
www.allitebooks.com

http:///
http://www.allitebooks.org

Big Data Forensics – Learning

Hadoop Investigations

Perform forensic investigations on Hadoop clusters

with cutting-edge tools and techniques

Joe Sremack

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Big Data Forensics – Learning Hadoop Investigations

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1190815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-810-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http:///
http://www.allitebooks.org

Credits

Author

Joe Sremack

Reviewers

Tristen Cooper

Mark Kerzner

Category Manager

Veena Pagare

Acquisition Editor

Nikhil Karkal

Content Development Editor

Gaurav Sharma

Technical Editor

Dhiraj Chandanshive

Copy Editor

Janbal Dharmaraj

Project Coordinator

Bijal Patel

Proofreader

Sais Editing

Indexer

Priya Sane

Graphics

Abhinash Sahu

Production Coordinator

Komal Ramchandani

Cover Work

Komal Ramchandani

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Joe Sremack is a director at Berkeley Research Group, a global expert services
irm. He conducts digital investigations and advises clients on complex data and
investigative issues. He has worked on some of the largest civil litigation and
corporate fraud investigations, including issues involving Ponzi schemes, stock
option backdating, and mortgage-backed security fraud. He is a member of the
Association of Certiied Fraud Examiners and the Sedona Conference.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Tristen Cooper is an IT professional with 20 years of experience of working
in corporate, academic, and SMB environments. He completed his BS degree in
criminology from Fresno State and has an MA degree in political science from
California State University, San Bernardino. Tristen's expertise includes system
administration, network monitoring, forensic investigation, and security research.

His current projects include a monograph on the application of Cloward and Ohlin's
Differential Opportunity to Islamic states to better understand the group's social
structure and a monograph on the international drug trade and its effects
on international security.

I'd like to thank Joe Sremack for giving me the opportunity to work
on this project and Bijal Patel for her patience and understanding
during the reviewing process.

Mark Kerzner holds degrees in law, math, and computer science. He is a software
architect and has been working with Big Data for the last 7 years. He is a cofounder of
Elephant Scale, a Big Data training and implementation company, and is the author
of FreeEed, an open source platform for eDiscovery based on Apache Hadoop. He
has authored books and patents. He loves learning languages, currently perfecting his
Hebrew and Chinese.

I would like to acknowledge the help of my colleagues, in particular
Sujee Maniyam, and last but not least, of my multitalented family.

www.allitebooks.com

http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

To my beautiful wife, Alison, and our new bundle of joy, Ella.

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

[i]

Table of Contents

Preface vii

Chapter 1: Starting Out with Forensic Investigations

and Big Data 1
An overview of computer forensics 2

The forensic process 3
Identiication 4
Collection 5

Analysis 7

Presentation 9

Other investigation considerations 10
Equipment 10
Evidence management 11
Investigator training and certiication 12
The post-investigation process 12

What is Big Data? 12
The four Vs of Big Data 12
Big Data architecture and concepts 15

Big Data forensics 16
Metadata preservation 17

Collection methods 18

Collection veriication 18
Summary 19

Chapter 2: Understanding Hadoop Internals and Architecture 21

The Hadoop architecture 22

The components of Hadoop 24
The Hadoop Distributed File System 26
The Hadoop coniguration iles 28
Hadoop daemons 30

http:///

Table of Contents

[ii]

Hadoop data analysis tools 31

Hive 32
HBase 33

Pig 37

Managing iles in Hadoop 37
File permissions 38

Trash 38

Log iles 39
File compression and splitting 40
Hadoop SequenceFile 41
The Hadoop archive iles 42
Data serialization 44
Packaged jobs and JAR iles 45

The Hadoop forensic evidence ecosystem 45

Running Hadoop 47
LightHadoop 48
Amazon Web Services 49
Loading Hadoop data 51

Importing sample data for testing 52
Summary 53

Chapter 3: Identifying Big Data Evidence 55
Identifying evidence 55

Locating sources of data 58

Compiling data requirements 59

Reviewing the system architecture 61
Interviewing staff and reviewing the documentation 62
Assessing data viability 65
Identifying data sources in noncooperative situations 67
Data collection requirements 69
Data source identiication 70
Structured and unstructured data 71

Data collection types 73
In-house or third-party collection 73

An investigator-led collection 78

The chain of custody documentation 79
Summary 80

Chapter 4: Collecting Hadoop Distributed File System Data 81

Forensically collecting a cluster system 83

Physical versus remote collections 86

http:///

Table of Contents

[iii]

HDFS collections through the host operating system 87
Imaging the host operating system 88

Imaging a mounted HDFS partition 93

Targeted collection from a Hadoop client 94
The Hadoop shell command collection 99

Collecting HDFS iles 101
HDFS targeted data collection 103

Hadoop Ofline Image and Edits Viewers 104
Collection via Sqoop 107
Other HDFS collection approaches 109

Summary 110

Chapter 5: Collecting Hadoop Application Data 113

Application collection approaches 114

Backups 117

Query extractions 118

Script extractions 118

Software extractions 119

Validating application collections 119

Collecting Hive evidence 121

Loading Hive data 123
Identifying Hive evidence 124
Hive backup collection 125
Hive query collection 126

Hive query control totals 128
Hive metadata and log collection 130

The Hive script collection 130

Collecting HBase evidence 131
Loading HBase data 134
Identifying HBase evidence 135

The HBase backup collection 136
The HBase query collection 138

HBase collection via scripts 139

HBase control totals 140
HBase metadata and log collection 140

Collecting other Hadoop application data and non-Hadoop data 141

Summary 143

Chapter 6: Performing Hadoop Distributed File

System Analysis 145

The forensic analysis process 146
Forensic analysis goals 147

http:///

Table of Contents

[iv]

Forensic analysis concepts 148
The challenges of forensic analysis 149

Anti-forensic techniques 149
Data encryption 149

Analysis preparation 150

Analysis 151

Keyword searching and ile and data carving 151
Bulk Extractor 152
Autopsy 154

Metadata analysis 158
File activity timeline analysis 158

Other metadata analysis 159

The analysis of deleted iles 160
HDFS data extraction 161

Hex editors 163
Cluster reconstruction 165
Coniguration ile analysis 168

Linux coniguration iles 169
Hadoop coniguration iles 170
Hadoop application coniguration iles 170

Log ile analysis 171
Summary 172

Chapter 7: Analyzing Hadoop Application Data 175
Preparing the analysis environment 176
Pre-analysis steps 177

Loading data 177
Preload data transformations 182

Data surveying 182
Transforming data 185

Transforming nonrelational data 188

Analyzing data 190

The analysis approach 190
Types of investigation 191

Analysis techniques 192
Isolating known facts and events 193

Grouping and clustering 194
Histograms 197

The time series analysis 197

Anomaly detection 200
Analyzing disparate data sets 211
Keyword searching 213

Validating the indings 214
Documenting the indings 215

Summary 216

http:///

Table of Contents

[v]

Chapter 8: Presenting Forensic Findings 217
Types of reports 218

Sample reports 218
Internal investigation report 219
Afidavit and declaration 220
Expert report 221

Developing the report 223

Explaining the process 223
Showing the indings 225
Using exhibits or appendices 227

Testimony and other presentations 227
Summary 229

Index 231

http:///

http:///

[vii]

Preface
Forensics is an important topic for law enforcement, civil litigators, corporate
investigators, academics, and other professionals who deal with complex digital
investigations. Digital forensics has played a major role in some of the largest
criminal and civil investigations of the past two decades—most notably, the Enron
investigation in the early 2000s. Forensics has been used in many different situations.
From criminal cases, to civil litigation, to organization-initiated internal investigations,
digital forensics is the way data becomes evidence—sometimes, the most important
evidence—and that evidence is how many types of modern investigations are solved.

The increased usage of Big Data solutions, such as Hadoop, has required new
approaches to how forensics is conducted, and with the rise in popularity of Big Data
across a wide number of organizations, forensic investigators need to understand how
to work with these solutions. The number of organizations who have implemented Big
Data solutions has surged in the past decade. These systems house critical information
that can provide information on an organization's operations and strategies—key areas
of interest in different types of investigations. Hadoop has been the most popular of
the Big Data solutions, and with its distributed architecture, in-memory data storage,
and voluminous data storage capabilities, performing forensics on Hadoop offers new
challenges to forensic investigators.

A new area within forensics, called Big Data forensics, focuses on the forensics of Big
Data systems. These systems are unique in their scale, how they store data, and the
practical limitations that can prevent an investigator from using traditional forensic
means. The ield of digital forensics has expanded from primarily dealing with desktop
computers and servers to include mobile devices, tablets, and large-scale data systems.
Forensic investigators have kept pace with the changes in technologies by utilizing
new techniques, software, and hardware to collect, preserve, and analyze digital
evidence. Big Data solutions, likewise, require different approaches to analyze the
collected data.

http:///

Preface

[viii]

In this book, the processes, tools, and techniques for performing a forensic
investigation of Hadoop are described and explored in detail. Many of the concepts
covered in this book can be applied to other Big Data systems—not just Hadoop.
The processes for identifying and collecting forensic evidence are covered, and the
processes for analyzing the data as part of an investigation and presenting the indings
are detailed. Practical examples are given by using LightHadoop and Amazon Web
Services to develop test Hadoop environments and perform forensics against them.
By the end of the book, you will be able to work with the Hadoop command line
and forensic software packages and understand the forensic process.

What this book covers
Chapter 1, Starting Out with Forensic Investigations and Big Data, is an overview of
both forensics and Big Data. This chapter covers why Big Data is important, how it
is being used, and how forensics of Big Data is different from traditional forensics.

Chapter 2, Understanding Hadoop Internals and Architecture, is a detailed explanation
of Hadoop's internals and how data is stored within a Hadoop environment.

Chapter 3, Identifying Big Data Evidence, covers the process for identifying relevant
data within Hadoop using techniques such as interviews, data sampling, and
system reviews.

Chapter 4, Collecting Hadoop Distributed File System Data, details how to collect
forensic evidence from the Hadoop Distributed File System (HDFS) using
physical and logical collection methods.

Chapter 5, Collecting Hadoop Application Data, examines the processes for collecting
evidence from Hadoop applications using logical- and query-based methods.
HBase, Hive, and Pig are covered in this chapter.

Chapter 6, Performing Hadoop Distributed File System Analysis, details how to conduct
a forensic analysis of HDFS evidence, utilizing techniques such as ile carving and
keyword analysis.

Chapter 7, Analyzing Hadoop Application Data, covers how to conduct a forensic analysis
of Hadoop application data using databases and statistical analysis techniques. Topics
such as Benford's law and clustering are discussed in this chapter.

Chapter 8, Presenting Forensic Findings, shows to how to present forensic indings
for internal investigations or legal proceedings.

http:///

Preface

[ix]

What you need for this book
You need to have a basic understanding of the Linux command line and some
experience working with a SQL DBMS. The exercises and examples in this book are
presented in Amazon Web Services and LightHadoop—a Hadoop virtual machine
distribution that is available for Oracle's VirtualBox, a free, cross-platform virtual
machine software. Several forensic analysis tool examples are shown in Microsoft
Windows, but they are also available for most Linux builds.

Who this book is for
This book is for those who are interested in digital forensics and Hadoop. Written
for readers who are new to both forensics and Big Data, most concepts are presented
in a simpliied, high-level manner. This book is intended as a getting-started guide
in this area of forensics.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The following command collects the /dev/sda1 volume, stores it in a ile called
sda1.img".

A block of code is set as follows:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

www.allitebooks.com

http:///
http://www.allitebooks.org

Preface

[x]

Any command-line input or output is written as follows:

#!/bin/bash

hive -e "show tables;" > hiveTables.txt

for line in $(cat hiveTables.txt) ;

do

hive -hiveconf tablename=$line -f tableExport.hql > ${line}.txt

done

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Enter
the Case Number and Examiner information, and click Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors
http:///

Preface

[xi]

Downloading the color images of this book
We also provide you a PDF ile that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this ile from: http://www.packtpub.com/sites/
default/files/downloads/8104OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/sites/default/files/downloads/8104OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/8104OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http:///

http:///

[1]

Starting Out with Forensic

Investigations and Big Data
Big Data forensics is a new type of forensics, just as Big Data is a new way of solving
the challenges presented by large, complex data. Thanks to the growth in data and
the increased value of storing more data and analyzing it faster—Big Data solutions
have become more common and more prominently positioned within organizations.
As such, the value of Big Data systems has grown, often storing data used to drive
organizational strategy, identify sales, and many different modes of electronic
communication. The forensic value of such data is obvious: if the data is useful to an
organization, then the data is valuable to an investigation of that organization. The
information in a Big Data system is not only inherently valuable, but the data is most
likely organized and analyzed in such a way to identify how the organization treated
the data.

Big Data forensics is the forensic collection and analysis of Big Data systems.
Traditional computer forensics typically focuses on more common sources of data,
such as mobile devices and laptops. Big Data forensics is not a replacement for
traditional forensics. Instead, Big Data forensics augments the existing forensics
body of knowledge to handle the massive, distributed systems that require different
forensic tools and techniques.

Traditional forensic tools and methods are not always well-suited for Big Data. The
tools and techniques used in traditional forensics are most commonly designed for
the collection and analysis of unstructured data (for example, e-mail and document
iles). Forensics of such data typically hinges on metadata and involves the calculation
of an MD5 or SHA-1 checksum. With Big Data systems, the large volume of data and
how the data is stored do not lend themselves well to traditional forensics. As such,
alternative methods for collecting and analyzing such data are required.

http:///

Starting Out with Forensic Investigations and Big Data

[2]

This chapter covers the basics of forensic investigations, Big Data, and how Big Data
forensics is unique. Some of the topics that are discussed include the following:

• Goals of a forensic investigation

• Forensic investigation methodology

• Big Data – defined and described

• Key differences between traditional forensics and Big Data forensics

An overview of computer forensics
Computer forensics is a ield that involves the identiication, collection, analysis,
and presentation of digital evidence. The goals of a forensic investigation include:

• Properly locating all relevant data

• Collecting the data in a sound manner

• Producing analysis that accurately describes the events

• Clearly presenting the findings

Forensics is a technical ield. As such, much of the process requires a deep technical
understanding and the use of technical tools and techniques. Depending on the
nature of an investigation, forensics may also involve legal considerations, such
as spoliation and how to present evidence in court.

Unless otherwise stated, all references to forensics, investigations,
and evidence in this book is in the context of Big Data forensics.

Computer forensics centers on evidence. Evidence is a proof of fact. Evidence may
be presented in court to prove or disprove a claim or issue by logically establishing
a fact. Many types of legal evidence exist, such as material objects, documents, and
sworn testimony. Forensic evidence falls irmly in that legal set of categories and
can be presented in court. In the broader sense, forensic evidence is the informational
content of and about the data.

Forensic evidence comes in many forms, such as e-mails, databases, entire
ilesystems, and smartphone data. Evidence can be the information contained in the
iles, records, and other logical data containers. Evidence is not only the contents
of the logical data containers, but also the associated metadata. Metadata is any
information about the data that is stored by a ilesystem, content management
system, or other container. Metadata is useful for establishing information about
the life of the data (for example, author and last modiied date).

http:///

Chapter 1

[3]

This metadata can be combined with the data to form a story about the who, what,
why, when, where, and how of the data. Evidence can also take the form of deleted
iles, ile fragments, and the contents of in-memory data.

For evidence to be court admissible or accepted by others, the data must be properly
identiied, collected, preserved, documented, handled, and analyzed. While the
evidence itself is paramount, the process by which the data is identiied, collected,
and handled is also critical to demonstrate that the data was not altered in any way.
The process should adhere to the best practices accepted by the court and backed
by technical standards. The analysis and presentation must also adhere to best
practices for both admissibility and audience comprehension. Finally, documentation
of the entire process must be maintained and available for presentation to clearly
demonstrate all the steps performed—from identiication to collection to analysis.

The forensic process
The forensic process is an iterative process that involves four phases: identiication,
collection, analysis, and presentation. Each of the phases is performed sequentially.
The forensic process can be iterative for the following reasons:

• Additional data sources are required

• Additional analyses need to be performed

• Further documentation of the identification process is needed

• Other situations, as required

The following igure shows the high-level forensic process discussed in this book:

Figure 1: The forensic process

http:///

Starting Out with Forensic Investigations and Big Data

[4]

This book follows the forensic process of Electronic Discovery
Reference Model (EDRM), which is the industry standard and is a
court-accepted best practice. The EDRM is developed and maintained
by forensic and electronic discovery (e-discovery) professionals. For
more information, visit EDRM's website at http://www.edrm.net/.

The sets of forensic steps and goals should be attempted to be applied
for every investigation. No two investigations are the same. As such,
practical realities may dictate which steps are performed and which
goals can be met.

The four steps in the forensic process and the goals for each are covered in the
following sections:

Identiication
Identifying and fully collecting the data of interest in the early stages of an
investigation is critical to any successful project. If data is not properly identiied
and, subsequently, is not collected, an embarrassing and dificult process of
corrective efforts will be required—at a minimum—not to mention wasted time.
At worst, improperly identifying and collecting data will result in working with
an incorrect or incomplete set of data. In the latter case, court sanctions, a lost
investigation, and ruined reputations can be expected.

The high-level approach taken in this book starts with:

• Examining the organization's system architecture

• Determining the kinds of data in each system

• Previewing the data

• Assessing which systems are to be collected

In addition, the identiication phase should also include a process to triage the
data sources by priority, ensuring the data sources are not subsequently used and/
or modiied. This approach results in documentation to back up the claim that all
potentially important sources of data were examined. It also provides assurance
that no major systems were overlooked. The main considerations for each source
are as follows:

• Data quality

http://www.edrm.net/
http:///

Chapter 1

[5]

• Data completeness

• Supporting documentation

• Validating the collected data

• Previous systems where the data resided

• How the data enters and leaves the system

• The available formats for extraction

• How well the data meets the data requirements

The following igure illustrates this high-level identiication process:

Figure 2: Data identification process

The primary goals for the identiication stage of an investigation are as follows:

• Proper identification and documentation of potentially relevant sources
of evidence

• Complete documentation of identified sources of information

• Timely assessment of potential sources of evidence from key stakeholders

Collection
The data collection phase involves the acquisition and preservation of evidence and
validation information as well as properly documenting the process. For evidence to
be court admissible and usable, it needs to be collected in a defensible manner that
adheres to best practices. Collecting data alone, however, is not always suficient in
an investigation. The data should be accompanied by validation information (for
example, log or query iles) and documentation of the collection and preservation steps
performed. Together, the collected data, validation information, and documentation
allow for proper analysis that can be validated and defended.

http:///

Starting Out with Forensic Investigations and Big Data

[6]

The following igure highlights the collection phase process:

Figure 3: Data collection process

Data collection is a critical phase in a digital investigation. The data analysis phase
can be rerun and corrected, if needed. However, improperly collecting data may
result in serious issues later during analysis, if the error is detected at all. If the error
goes undetected, the improper collection will result in poor data for the analysis.
For example, if the collection was only a partial collection, the analysis results may
understate the actual values. If the improper collection is detected during the analysis
process, recollecting data may be impossible. This is the case when the data has been
subsequently purged or is no longer available because the owner of the data will not
permit access to the data again. In short, data collection is critical for later phases of the
investigation, and there may not be opportunities to perform it again.

Data can be collected using several different methods. These methods are as follows:

• Physical collection: A physical acquisition of every bit, which may be done
across specific containers, volumes, or devices. The collection is an exact
replica of every bit of data and metadata. Slack space and deleted files can
be recovered using this method.

• Logical collection: An acquisition of active data. The collection is a replica
of the informational content and metadata, but is not a bit-by-bit collection.

• Targeted collection: A collection of specific containers, volumes, or devices.

Each of the methods is covered in this book. Validation information serves as a
means for proving what was collected, who performed the collection, and how
all relevant data was captured. Validation is also crucial to the collection phase and
later stages of an investigation. Collecting the relevant data is the primary goal of
any investigation, but the validation information is critical for ensuring that the
relevant data was collected properly and not modiied later. Obviously, without
the data, the entire process is moot.

http:///

Chapter 1

[7]

A closely-related goal is to collect the validation information along with the data.
The primary forms of validation information are MD5/SHA-1 hash values, system
and process logs, and control totals. Both MD5 and SHA-1 are hash algorithms that
generate a unique value based on the contents of the ile that serves as a ingerprint
and can be used to authenticate evidence. If a ile is modiied, the MD5 or SHA-1 of
the modiied ile will not match the original. In fact, generating two different iles
with the same value is virtually impossible. For this reason, forensic investigators
rely on MD5 or SHA-1 to prove that the evidence was successfully collected and
that the data analyzed matches the original source data. Control totals are another
form of validation information, which are values computed from a structured data
source—such as the number of rows or sum value of a numeric ield. All collected
data should be validated in some manner during the collection phase before moving
into the analysis.

Collect validation information simultaneously during or immediately
after collecting evidence to ensure accurate and reliable validation.

The goals of the collection phase are as follows:

• Forensically sound collection of relevant sources of evidence utilizing
technical best practices and adhering to legal standards

• Full, proper documentation of the collection process

• Collection of verification information (for example, MD5 or control totals)

• Validation of collected evidence

• Maintenance of chain of custody

Analysis
The analysis phase is the process by which collected and validated evidence
is examined to gather and assemble the facts of an investigation. Many tools
and techniques exist for converting the volumes of evidence into facts. In some
investigations, the requirements clearly and directly point to the types of evidence
and facts that are needed. These investigations may involve only a small amount
of data or the issues are straightforward. For example, they only require a speciic
e-mail or only a small timeframe is in question. Other investigations, however, are
large and complex. The requirements do not clearly identify a direct path of inquiry.
The tools and techniques in the analysis phase are designed for both types
of investigations and guide the inquiry.

www.allitebooks.com

http:///
http://www.allitebooks.org

Starting Out with Forensic Investigations and Big Data

[8]

The process for analyzing forensic evidence is dependent on the requirements of
the investigation. Every case is different, so the analysis phase is both a science
and an art. Most investigations are bounded by some known facts, such as a
speciic timeframe or the individuals involved. The analysis for such bounded
investigations can begin by focusing on data from those time periods or involving
those individuals. From there, the analysis can expand to include other evidence for
corroboration or a new focus. Analysis can be an iterative process of investigating
a subset of information. Analysis can also focus on one theory but then expand to
either include new evidence or to form a new theory altogether. Regardless, the
analysis should be completed within the practical conines of the investigation.

Two of the primary ways in which forensic analysis is judged are completeness and
bias. Completeness, in forensics, is a relative term based on whether the relevant data
has been reasonably considered and analyzed. Excluding relevant evidence or forms
of analysis harms the credibility of the analysis. The key point is the reasonableness
of including or excluding evidence and analysis. Bias is closely related to
completeness. Bias is prejudice towards or against a particular thing. In the case of
forensic analysis, bias is an inclination to favor a particular line of thinking without
giving equal weight to other theories. Bias should be eliminated or minimized as
much as possible when performing analysis to guarantee completeness and objective
analysis. Both completeness and bias are covered in subsequent chapters.

Another key concept is data reduction. Forensic investigations can involve terabytes
of data and millions of iles and other data points. The practical realities of an
investigation may not allow for a complete analysis of all data. Techniques exist for
reducing the volume of data to a more manageable amount. This is performed using
known facts and data interrelatedness to triage data by priority or eliminate data
from the set of data to be analyzed.

Cross-validation is the use of multiple analyses or pieces of evidence to corroborate
analysis. This is a key concept in forensics. While not always possible, cross-validation
adds veracity to indings by further proving the likelihood that a inding is true.
Cross-validation should be performed by independently testing two data sets or
forms of analysis and conirming that the results are consistent.

The types of analysis performed depend on a number of factors. Forensic
investigators have an arsenal of tools and techniques for analyzing evidence, and
those tools and techniques are chosen based on the requirements of the investigation
and the types of evidence. One example is timeline analysis, which is a technique
used when chronology is important and chronological information exists and can be
established. Timeline analysis is not important in all investigations, so it is not useful
in every investigation.

http:///

Chapter 1

[9]

In other cases, pattern analysis or anomaly detection may be required. While some
investigations only require a single tool or technique, most investigations require
a combination of tools and techniques. Later chapters include information about
the various tools and techniques and how to select the proper ones. The following
questions can help an investigator determine which tools and techniques to choose:

• What are the requirements of the investigation?
• What practical limitations exist?
• What information is available?
• What is already known about the evidence?

Documentation of indings and the analysis process must be carefully maintained
throughout the process. Forensic evidence is complex. Analyzing forensic evidence
can be even more complex. Without proper documentation, the indings are
unclear and not defensible. An investigator can go down a path of analyzing
data and related information—sometimes, linking hundreds of indings—and
without documentation, detailing the full analysis is impossible. To avoid this, an
investigator needs to carefully detail the evidence involved, the analysis performed,
the analysis indings, and the interrelationships between multiple analyses.

The primary goals of the analysis phase are as follows:

• Unbiased and objective analysis

• Reduction of data complexity

• Cross-validation of findings

• Application of accepted standards

Presentation
The inal phase in the forensic process is the presentation of indings. The indings
can be presented in a number of different ways, such as a written expert report,
graphical presentations, or testimony. Regardless of the format, the key to a successful
presentation is to clearly demonstrate the indings and the process by which the
indings were derived. The process and indings should be presented in a way that
the audience can easily understand. Not every piece of information about the process
phases or indings needs to be presented. Instead, the focus should be on the critical
indings at a level of detail that is suficiently thorough. Documentation, such as chain
of custody forms, may not need to be included but should still be available should the
need arise.

http:///

Starting Out with Forensic Investigations and Big Data

[10]

The goals of the presentation phase are as follows:

• Clear, compelling evidence

• Analysis that separates the signal from the noise

• Proper citation of source evidence

• Availability of chain of custody and validation documentation

• Post-investigation data management

Other investigation considerations
This book details the majority of the EDRM forensic process. However, investigators
should be aware of several additional considerations not covered in detail in this book.
Forensics is a large ield with many technical, legal, and procedural considerations.
Covering every topic would span multiple volumes. As such, this book does not
attempt to cover all concepts. The following sections highlight several key concepts
that a forensic investigator should consider—equipment, evidence management,
investigator training, and the post-investigation process.

Equipment
Forensic investigations require specialized equipment for the collection and processing
of evidence. Source data can reside on a host of different types of systems and devices.
An investigator may need to collect several different types of systems. These include
cell phones, mainframe computers, laptops with various operating systems, and
database servers. These devices have different hardware and software connectors,
different means of accessing, different conigurations, and so on. In addition, an
investigator must be careful not to alter or destroy evidence in the collection process.
A best practice is to employ write-blocker software or physical devices to ensure
that evidence is preserved in its original state. In some instances, specialized forensic
equipment should be used to perform the collections, such as forensic devices that
connect to smartphones for acquisitions. Big Data investigations rarely involve this
specialized equipment to collect the data, but encrypted drives and other forensic
devices may be used. Forensic investigators should be knowledgeable about the
required equipment and come prepared to collect data with a forensic kit that
contains the required equipment.

http:///

Chapter 1

[11]

Evidence management
The management of forensic evidence is also critical to maintaining proper control
and security of the evidence. Forensic evidence, once collected, requires careful
handling, storage, and documentation. A standard practice in forensics is to create
and maintain chain of custody of all evidence. Chain of custody documentation is
a chronological description that details the collection, handling, transfer, analysis,
and destruction of evidence. The chain of custody is established when a forensic
investigator irst acquires the data. The documentation details the collection process
and then serves as a log of all individuals who take possession of the evidence, when
that person had possession of the evidence, and details about what was done to the
evidence. Chain of custody documentation should always relect the full history and
current status of the evidence. Chain of custody is further discussed in later chapters.

Only authorized individuals should have access to the evidence. Evidence integrity
is critical for establishing and maintaining the veracity of indings. Allowing
unauthorized—or undocumented—access to evidence can cast doubt on whether the
evidence was altered. Even if the MD5 hash values are later found to match, allowing
unauthorized access to the evidence can be enough to call the investigative process
into question.

Security is important for preventing unauthorized access to both original evidence
and analysis. Physical and digital security both play important roles in the
overall security of evidence. The security of evidence should cover the premises,
the evidence locker, any device that can access the analysis server, and network
connections. Forensic investigators should be concerned with two types of security:
physical security and digital security.

• Physical security is the collection of devices, structural design, processes,
and other means for ensuring that unauthorized individuals cannot access,
modify, destroy, or deny access to the data. Examples of physical security
include locks, electronic fobs, and reinforced walls in the forensic lab.

• Digital security is the set of measures to protect the evidence on devices and
on a network. Evidence can contain malware that could infect the analysis
machine. A networked forensic machine that collects evidence remotely
can potentially be penetrated. Examples of digital security include antivirus
software, firewalls, and ensuring that forensic analysis machines are not
connected to a network.

http:///

Starting Out with Forensic Investigations and Big Data

[12]

Investigator training and certiication
Forensic investigators are often required to take forensic training and maintain
current certiications in order to conduct investigations and testify to the results.
While this is not always required, investigators can further prove that he has proper
technical expertise by way of such training and certiication. Forensic investigators
are forensic experts, so that expertise should be documented and provable should
anyone question their credentials. This can be achieved in part by way of training
and certiication.

The post-investigation process
After an investigation concludes, the evidence and analysis indings need to be
properly archived or destroyed. Criminal and civil investigations require that
evidence be maintained for a mandated period of time. The investigator should be
aware of such retention rules and ensure that evidence is properly and securely
archived and maintained for that period of time. In addition, documentation and
analysis should be retained as well to guarantee that the results of the investigation
are not lost and to prevent issues arising from questions about the evidence (for
example, chain of custody).

What is Big Data?
Big Data describes the tools and techniques used to manage and process data that
traditional means cannot easily accomplish. Many factors have led to the need for
Big Data solutions. These include the recent proliferation of data storage, faster and
easier data transfer, increased awareness of the value of data, and social media. Big
Data solutions were needed to address the rapid, complex, and voluminous data
sets that have been created in the past decade. Big Data can be structured data (for
example, databases), unstructured data (such as e-mails), or a combination of both.

The four Vs of Big Data
A widely-accepted set of characteristics of Big Data is the four Vs of data. In 2001,
Doug Laney of META Group produced a report on the needs of the changing
requirements for managing the forms of voluminous data. In this report, he deined the
three Vs of data: volume, velocity, and variety. These factors address the following:

• The large data sets

• The increased speed at which the data arrives, requires storage,
and should be analyzed

http:///

Chapter 1

[13]

• The multitude of forms the data, such as financial records, e-mails,
and social media data

This deinition has been expanded to include a fourth V for veracity—the
trustworthiness of the data quality and the data's source.

One way to identify whether a data set is Big Data is to consider
the four Vs.

Volume is the most obvious characteristic of Big Data. The amount of data produced
has grown exponentially over the past three decades, and that growth has been fueled
by better and faster communications networks and cheaper storage. In the early
1980s, a gigabyte of storage costs over $200,000. A gigabyte of storage today costs
approximately $0.06. This massive drop in storage costs and the highly networked
nature of devices provides a means to create and store massive volumes of data. The
computing industry now talks about the realities of exabytes (approximately, one
billion gigabytes) and zettabytes (approximately, one trillion gigabytes) of data—
possibly even yottabytes (over a thousand trillion gigabytes). Data volumes have
obviously grown, and Big Data solutions are designed to handle the voluminous
data sets through distributed storage and computing to scale out to the growing data
volumes. The distributed solutions provide a means for storing and analyzing massive
data volumes that could not feasibly be stored or computer by a single device.

Velocity is another characteristic of Big Data. The value of the information contained
in data has placed an increased emphasis on quickly extracting information from
data. The speed at which social media data, inancial transactions, and other forms
of data are being created can outpace traditional analysis tools. Analyzing real-time
social media data requires specialized tools and techniques for quickly retrieving,
storing, transforming, and analyzing the information. Tools and techniques designed
to manage high-speed data also fall into the category of Big Data solutions.

Variety is the third V of Big Data. A multitude of different forms of data are being
produced. The new emphasis is on extracting information from a host of different
data sources. This means that traditional analysis is not always suficient. Video iles
and their metadata, social media posts, e-mails, inancial records, and telephonic
recordings may all contain valuable information, and the data need to be analyzed
in conjunction with one another. These different forms of data are not easily
analyzed using traditional means.

http:///

Starting Out with Forensic Investigations and Big Data

[14]

Traditional data analysis focuses on transactional data or so-called structured
data for analysis in a relational or hierarchical database. Structured data has a
ixed composition and adheres to rules about what types of values it can contain.
Structured data are often thought of in terms of records or rows, each with a set
of one or more columns or ields. The rows and columns are bound by deined
properties, such as the data type and ield width limitations. The most common
forms of structured data are:

• Database records

• Comma-Separated Value (CSV) files

• Spreadsheets

Traditional analysis is performed on structured data using databases, programs,
or spreadsheets to load the data into a ixed format and run a set of commands or
queries on the data. SQL has been the standard database language for data analysis
over the past two decades—although many other languages and analysis packages
exist.

Unstructured and semi-structured data do not have the same ixed data structure
rules and do not lend themselves well to traditional analysis. Unstructured data is
data that is stored in a format that is not expressly bound by the same data format
and content rules as structured data. Several examples of unstructured data are:

• E-mails

• Video files

• Presentation documents

According to VMWare's 2013 Predictions for Big Data, over 80% of data
produced will be unstructured, and the growth rate of unstructured
data is 50-60% per year.

Semi-structured data is data that has rules for the data format and structure, but
those rules are too loose for easy analysis using traditional means for analyzing
structured data. XML is the most common form of semi-structured data. XML has
a self-describing structure, but the structure of one XML ile is not adhered to across
all other XML iles.

The variety of Big Data comes from the incorporation of a multitude of different types
of data. Variety can mean incorporating structured, semi-structured, and unstructured
data, but it can also mean simply incorporating various forms of structured data. Big
Data solutions are designed to analyze whatever type of data is required. Regardless of
the types of data are incorporated, the challenge for Big Data solutions is being able to
collect, store, and analyze various forms of data in a single solution.

http:///

Chapter 1

[15]

Veracity is the fourth V of Big Data. Veracity, in terms of data, indicates whether
the informational content of data can be trusted. With so many new forms of data
and the challenge of quickly analyzing a massive data set, how does one trust that
the data is properly formatted, has correct and complete information, and is worth
analyzing? Data quality is important for any analysis. If the data is lacking in some
way, all the analyses will be lacking. Big Data solutions address this by devising
techniques for quickly assessing the data quality and appropriately incorporating
or excluding the data based on the data quality assessment results.

Big Data architecture and concepts
The architectures for Big Data solutions vary greatly, but several core concepts are
shared by most solutions. Data is collected and ingested in Big Data solutions from
a multitude of sources. Big Data solutions are designed to handle various types and
formats of data, and the various types of data can be ingested and stored together. The
data ingestion system brings the data in for transformation before the data is sent to
the storage system. Distribution of storage is important for the storage of massive data
sets. No single device can possibly store all the data or be expected to not experience
failure as a device or on one of its disks. Similarly, computational distribution is
critical for performing the analysis across large data sets with timeliness requirements.
Typically, Big Data solutions enact a master/worker system—such as MapReduce—
whereby one computational system acts as the master to distribute individual analyses
for the worker computational systems to complete. The master coordinates and
manages the computational tasks and ensures that the worker systems complete
the tasks.

The following igure illustrates a high-level Big Data architecture:

Figure 4: Big Data overview

http:///

Starting Out with Forensic Investigations and Big Data

[16]

Big Data solutions utilize different types of databases to conduct the analysis.
Because Big Data can include structured, semi-structured, and/or unstructured
data, the solutions need to be capable of performing the analysis across various
types of iles. Big Data solutions can utilize both relational and nonrelational
database systems. NoSQL (Not only SQL) databases are one of the primary types of
nonrelational databases used in Big Data solutions. NoSQL databases use different
data structures and query languages to store and retrieve information. Key-value,
graph, and document structures are used by NoSQL. These types of structures can
provide a better and faster method for retrieving information about unstructured,
semi-structured, and structured data.

Two additional important and related concepts for many Big Data solutions are
text analytics and machine learning. Text analytics is the analysis of unstructured
sets of textual data. This area has grown in importance with the surge in social
media content and e-mail. Customer sentiment analysis, predictive analysis on
buyer behavior, security monitoring, and economic indicator analysis are performed
on text data by running algorithms across their data. Text analytics is largely made
possible by machine learning. Machine learning is the use of algorithms and tools
to learn from data. Machine algorithms make decisions or predictions from data
inputs without the need for explicit algorithm instructions.

Video iles and other nontraditional analysis input iles can be analyzed in a
couple ways:

• Using specialized data extraction tools during data ingestion

• Using specialized techniques during analysis

In some cases, only the unstructured data's metadata is important. In others,
content from the data needs to be captured. For example, feature extraction and
object recognition information can be captured and stored for later analysis. The
needs of the Big Data system owner dictate the types of information captured and
which tools are used to ingest, transform, and analyze the information.

Big Data forensics
The changes to the volumes of data and the advent of Big Data systems have
changed the requirements of forensics when Big Data is involved. Traditional
forensics relies on time-consuming and interruptive processes for collecting data.
Techniques central to traditional forensic include removing hard drives from
machines containing source evidence, calculating MD5/SHA-1 checksums, and
performing physical collections that capture all metadata. However, practical
limitations with Big Data systems prevent investigators from always applying
these techniques. The differences between traditional forensics and forensics for
Big Data are covered and explained in this section.

http:///

Chapter 1

[17]

One goal of any type of forensic investigation is to reliably collect relevant evidence
in a defensible manner. The evidence in a forensic investigation is the data stored in
the system. This data can be the contents of a ile, metadata, deleted iles, in-memory
data, hard drive slack space, and other forms. Forensic techniques are designed to
capture all relevant information. In certain cases—especially when questions about
potentially deleted information exist—the entire ilesystem needs to be collected using
a physical collection of every individual bit from the source system. In other cases, only
the informational content of a source ilesystem or application system are of value.
This situation arises most commonly when only structured data systems—such as
databases—are in question, and metadata or slack space are irrelevant or impractical
to collect. Both types of collection are equally sound; however, the application of the
type of collection depends on both practical considerations and the types of evidence
required for collection.

Big Data forensics is the identiication, collection, analysis, and presentation of the
data in a Big Data system. The practical challenges of Big Data systems aside, the
goal is to collect data from distributed ilesystems, large-scale databases, and the
associated applications. Many similarities exist between traditional forensics and
Big Data forensics, but the differences are important to understand.

Every forensic investigation is different. When choosing how
to proceed with collecting data, consider the investigation
requirements and practical limitations.

Metadata preservation
Metadata is any information about a ile, data container, or application data that
describes its attributes. Metadata provides information about the ile that may be
valuable when questions arise about how the ile was created, modiied, or deleted.
Metadata can describe who altered a ile, when a ile was revised, and which system
or application generated the data. These are crucial facts when trying to understand
the life cycle and story of an individual ile.

Metadata is not always crucial to a Big Data investigation. Metadata is often altered
or lost when data lows into and through a Big Data system. The ingestion engines
and data feeds collect the data without preserving the metadata. The metadata
would thus not provide information about who created the data, when the data was
last altered in the upstream data source, and so on. Collecting information in these
cases may not serve a purpose. Instead, upstream information about how the data
was received can be collected as an alternative source of detail.

http:///

Starting Out with Forensic Investigations and Big Data

[18]

Investigations into Big Data systems can hinge on the information in the data and not
the metadata. Like structured data systems, metadata does not serve a purpose when
an investigation is solely based on the content of the data. Quantitative and qualitative
questions can be answered by the data itself; metadata in that case would not be useful,
so long as the collection was performed properly and no questions exist about who
imported and/or altered the data in the Big Data system. The data within the systems
is the only source of information.

Collecting upstream information from application logs, source systems,
and/or audit logs can be used in place of metadata collection.

Collection methods
Big Data systems are large, complex systems with business requirements. As such,
they may not be able to be taken ofline for a forensic investigation. In traditional
forensics, systems can be taken ofline, and a collection is performed by removing the
hard drive to create a forensic copy of the data. In Big Data investigations, hundreds
or thousands of storage hard drives may be involved, and data is lost when the
Big Data system is brought ofline. Also, the system may need to stay online due
to business requirements. Big Data collections usually require logical and targeted
collection methods by way of logical ile forensic copies and query-based collection.

Collection veriication
Traditional forensics relies on MD5 and SHA-1 to verify the integrity of the data
collected, but it is not always feasible to use hashing algorithms to verify Big Data
collections. Both MD5 and SHA-1 are disk-access intensive. Verifying collections by
computing an MD5 or SHA-1 hash comprises a large percentage of the time dedicated
to collecting and verifying source evidence. Spending the time to calculate the MD5
and SHA-1 for a Big Data collection may not be feasible when many terabytes of data
are collected. The alternative is to rely on control totals, collection logs, and other
descriptive information to verify the collection.

http:///

Chapter 1

[19]

Summary
This book is an introduction to the key concepts and current technologies involved
in Big Data forensics. Big Data is a paradigm shift in how data is stored and
managed, and the same is true for forensic investigations of Big Data. A foundational
understanding of computer forensics is important to understand the process and
methods used in investigating digital information. Designed as a how-to guide,
this book provides practical guidance on how to conduct investigations utilizing
current technology and tools. Rather than rely on general principles or proprietary
software, this books presents practical solutions utilizing freely-available software
where possible. Several commercial software packages are also discussed to provide
guidance and other ideas on how to tackle Big Data forensics investigations.

The ield of forensics is large and continues to evolve. The ield is new, and the
technologies continue to change and develop. The constant growth in Big Data
technologies leads to change in the tools and technologies for forensic investigations.
Most of the tools presented in this book were developed in the past ive years.
Regardless of the tools used, this book is designed to provide readers with practical
guidance on how to conduct investigations and select the appropriate tools.

This book focuses on performing forensics on Hadoop systems and Hadoop-based
data. Hadoop is a framework for Big Data, and many software packages are built
on top of Hadoop. This book covers the Hadoop ilesystem and several of the key
software packages that are built on top of Hadoop, such as Hive and HBase. A
freely available Linux-based Hadoop virtual machine, LightHadoop, is used in
this book to present examples of collecting and analyzing Hadoop data that can
be followed by the reader.

Each of the stages of the forensic process is discussed in detail using practical
Hadoop examples. Chapter 2, Understanding Hadoop Internals and Architecture details
the Hadoop architecture and installing LightHadoop as a test environment. The
remaining chapters cover each of the phases of the forensic process and the most
common Hadoop packages that a forensic investigator will encounter.

http:///

http:///

[21]

Understanding Hadoop

Internals and Architecture
Hadoop is currently the most widely adopted Big Data platform, with a diverse
ecosystem of applications and data sources for forensic evidence. An Apache
Foundation framework solution, Hadoop has been developed and tested in
enterprise systems as a Big Data solution. Hadoop is virtually synonymous
with Big Data and has become the de facto standard in the industry.

As a new Big Data solution, Hadoop has experienced a high adoption rate by many
types of organizations and users. Developed by Yahoo! in the mid-2000s—and
released to the Apache Foundation as one of the irst major open source Big Data
frameworks—Hadoop is designed to enable the distributed processing of large,
complex data sets across a set of clustered computers. Hadoop's distributed
architecture and open source ecosystem of software packages make it ideal for speed,
scalability, and lexibility. Hadoop's adoption by large-scale technology companies is
well publicized, and many other types of organizations and users have come to adopt
Hadoop as well. These include scientiic researchers, healthcare corporations, and
data-driven marketing irms. Understanding how Hadoop works and how to perform
forensics on Hadoop enables investigators to apply that same understanding to
other Big Data solutions, such as PyTables.

Performing Big Data forensic investigations requires knowledge of Hadoop's internals
and architecture. Just as knowing how the NTFS ilesystem works is important for
performing forensics in Windows, knowing the layers within a Hadoop solution is
vital for properly identifying, collecting, and analyzing evidence in Hadoop. Moreover,
Hadoop is rapidly changing—new software packages are being added and updates
to Hadoop are being applied on a regular basis. Having a foundational knowledge
of Hadoop's architecture and how it functions will enable an investigator to perform
forensics on Hadoop as it continues to expand and evolve.

http:///

Understanding Hadoop Internals and Architecture

[22]

With its own ilesystem, databases, and application layers, Hadoop can store data
(that is, evidence) in various forms—and in different locations. Hadoop's multilayer
architecture runs on top of the host operating system, which means evidence may need
to be collected from the host operating system or from within the Hadoop ecosystem.
Evidence can reside in each of the layers. This may require performing forensic
collection and analysis in a manner speciic to each layer.

This chapter explores how Hadoop works. The following topics are covered in detail:
Hadoop's architecture, iles, and data input/output (I/O). This is done to provide
an understanding of the technical underpinnings of Hadoop. The key components
of the Hadoop forensic evidence ecosystem are mapped out, and how to locate
evidence within a Hadoop solution is covered. Finally, this chapter concludes with
instructions on how to set up and run LightHadoop and Amazon Web Services. These
are introduced as the Hadoop instances that serve as the basis for the examples used
in this book. If you are interested in performing forensic investigations, you should
follow the instructions on how to install LightHadoop and set up an Amazon Web
Services instance at the end of this chapter. These systems are necessary to follow
the examples presented throughout this book.

The Hadoop architecture
Hadoop is a reliable system for shared storage and analysis with a rich ecosystem
of layered solutions and tools for Big Data. Hadoop is built on the concepts of
distribution for storage and computing. It is a cross-platform, Java-based solution.
Hadoop can run on a wide array of different operating systems, such as Linux and
Windows, because it is built in Java, a platform-neutral language. Hadoop itself is a
layer that sits on top of the host operating system. Hadoop's core functionalities are
also built in Java and can be run as separate processes. With its own ilesystem and
set of core functionalities, Hadoop serves as its own abstract platform layer; it can
be accessed and run almost entirely independent of the host operating system.

http:///

Chapter 2

[23]

The following igure shows a high-level representation of the Hadoop layers:

Figure 1: The Hadoop architecture layers

The Hadoop layers are an abstraction for how the various components are organized
and the relationship between the other components. The following are the various
Hadoop layers:

• The Operating System layer: The first layer is the Operating System on the
host machine. Hadoop is installed on top of the operating system and runs
the same regardless of the host operating system (for example, Windows
or Linux).

• The Hadoop layer: This is the base installation of Hadoop, which includes
the file system and MapReduce components.

• The DBMS layer: On top of Hadoop, the various Hadoop DBMS and related
applications are installed. Typically, Hadoop installations include a data
warehousing or database package, such as Hive or HBase.

• The Application layer: The Application layer is the top layer, which includes
the tools that provide data management, analysis, and other capabilities.
Some tools, such as Pig, can interact directly with the operating system and
Hadoop layers. Other tools only interact with the database layer or other
application-layer tools.

http:///

Understanding Hadoop Internals and Architecture

[24]

The components of Hadoop
The Hadoop layer is the most important layer in understanding how Hadoop works
and how it is different from a database management system or other large-scale data
processing engines. This layer contains the core Hadoop components, the Hadoop
Distributed File System (HDFS), and the MapReduce functions. These elements
form the key functions for managing the storage and analysis of data—and they are
used in conjunction for running a distributed system. Distribution is controlled by a
Master Node machine. This machine controls Slave Node machines for ile storage
and retrieval and data analysis. The following igure illustrates how the Master
Node controls the Slave Node in the Hadoop layer for MapReduce and HDFS:

Figure 2: The Hadoop distributed process

Hadoop uses the HDFS to logically store data for use by Hadoop's applications.
HDFS is designed to store data on commodity storage hardware in a distributed
fashion. The NameNode ile controls the tasks of storing and managing the data
across each of the DataNode. When data is stored in Hadoop, the NameNode ile
automatically stores and replicates the data in multiple blocks (64 MB or 128 MB
by default) across the various DataNode. This is done to ensure fault tolerance
and high availability. HDFS is covered in more detail in the next section.

MapReduce is a key concept and framework for how Hadoop processes data.
Using Hadoop's distributed processing model, MapReduce enables large jobs to
be divided into Map() procedures and Reduce() procedures. Map() procedures
are iltering and sorting operations, whereas Reduce() procedures are summary
operations (for example, summation or counting). A single query can be divided
into Map() and Reduce() procedures with a Master Node distributing the tasks
to each of the Slave Node. The SlaveNode perform their discrete tasks and transmit
the results back to the Master Node for analysis compilation and reporting.

http:///

Chapter 2

[25]

The following igure is an example of how a MapReduce function works, in this
case, for an aggregation of sales data:

Figure 3: The Hadoop MapReduce process

The irst step of MapReduce is to run a Map() function on the initial data. This
creates data subsets that can be distributed to one or more nodes for processing. In
this example, the data consists of information about widget sales quantity and price
information, with each node receiving information about one widget. Each node that
receives a record performs an operation on the record. In this case, the nodes calculate
the total sales amounts. Finally, the Reduce() function computes the total sales
amount for all widgets.

MapReduce programs can be written and executed in a number of different ways.
First, programs can be written natively in Java using the org.apache.hadoop.
mapred library. A MapReduce program is compiled using a Java compiler; it is then
run in Hadoop using the Java runtime. Alternatively, additional Hadoop packages
offer abstractions of MapReduce that can implement the Map() and Reduce()
functions without using Java (for example, Pig).

For more information about programming in MapReduce, visit http://hadoop.
apache.org/docs/r1.2.1/mapred_tutorial.html.

The layers above the Hadoop layer are the add-on functionality for process and
resource management. These layers store, retrieve, convert, and analyze data. The
following table provides examples of tools found in these layers:

Tool Description

HBase This is a column-based data warehouse for high-speed

execution of operations over large data sets.
Hive This is a data warehouse that offers SQL-like access to

data in HDFS.

http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http:///

Understanding Hadoop Internals and Architecture

[26]

Tool Description

Sqoop This is a data transfer tool for moving to and from

relational database systems.

Pig This is the framework for executing MapReduce on HDFS

data using its own scripting language.

Flume This harvests, aggregates, and moves large amounts of log

data in and out of Hadoop.

The Hadoop Distributed File System
HDFS is the ilesystem primarily used by Hadoop. It is an abstracted ilesystem
layer that stores data in its own format to enable cross-platform functionality. The
actual storage of the iles resides in the host operating system's ilesystem. However,
the logical iles are stored within Hadoop blocks; they are not necessarily directly
accessible from the host operating system the way a ile stored in the host operating
system would be. HDFS serves the following purposes:

• The storage of data on a cluster

• The distribution of storage via NameNode and DataNode

• The division of files into blocks across DataNode

• The provision of access to the contents of the data blocks

HDFS is just one of over ten ilesystems that can be implemented in
Hadoop. While HDFS is the most popular Hadoop ilesystem and the
one presented in this book, investigators should be aware that a Hadoop
cluster could use a different ilesystem. Several examples of other
Hadoop ilesystems are Kosmos, Amazon S3, and the local ilesystem.

Data is imported into HDFS and then stored in blocks for distributed storage. Files
and data can be imported into HDFS in a number of ways, but all data stored in
HDFS is split into a series of blocks. The blocks are split by size only. A ile may
contain record information, and the splits may occur within an individual record
if that record spans a block size boundary. By default, blocks are 64 MB or 128 MB,
but the size can be set to a different number by a system administrator. Hadoop is
designed to work with terabytes and petabytes of data. The metadata about each
block is stored centrally on a server, so Hadoop cannot afford to store the metadata
about 4 KB blocks of data. Thus, Hadoop's block size is signiicantly larger than the
blocks in a traditional ilesystem.

http:///

Chapter 2

[27]

After the data has been split, it is stored in a number of DataNode. By default, the
replication level is set to three DataNode per block, but that setting can also be
changed by a system administrator. Mapping information indicating where the
data blocks are stored and other metadata are contained in NameNode, which is
located in the Master Node. The following igure illustrates this process:

Figure 4: HDFS Data block distribution

NameNode is a single point of failure. While DataNode information
is stored in multiple locations, NameNode information only resides
on a single machine—unless a secondary NameNode is set up for
redundancy.

Files are stored logically in HDFS, and they can be accessed through HDFS just like
a ile in any other ilesystem. Files may be stored in data blocks across a number of
DataNode, but the iles still retain their ilenames and can be accessed in a number
of ways. NameNode stores the information necessary to perform a lookup on a
ilename, identiies where the various blocks reside that comprise the ile, and
provides ile-level security. When a ile request is made in HDFS, Hadoop retrieves
data blocks and provides access to the data as a ile.

Once stored in HDFS, iles can be accessed through a number of mechanisms. Files
can be accessed via the Hadoop shell command line. The standard ways to locate
and access iles through the command line are the ls and cp commands, which are
available through Hadoop. For example, the following commands can be executed
to perform a folder listing and a ile copy for HDFS data, respectively:

$ hdfs dfs -ls /user/hadoop/file1

$ hdfs dfs -cp /user/hadoop/file1 /user/hadoop/file2

www.allitebooks.com

http:///
http://www.allitebooks.org

Understanding Hadoop Internals and Architecture

[28]

Files can also be accessed through the HDFS web interface. The HDFS web interface
provides information about the status of a Hadoop cluster. The interface enables
browsing through directories and iles in HDFS. By default, the web interface can
be accessed at http://namenode-name:50070/.

These commands are possible because of the way information is stored in HDFS.
Whether the Hadoop cluster is a single node or distributed across multiple nodes,
the iles are logically accessible in the same manner.

Information stored in NameNode is stored in memory, but it is also written to
the ilesystem for storage and disaster recovery. The in-memory data stored by
NameNode is the active information used to locate data blocks and pull metadata.
Because NameNode can have issues, or may need to be rebooted, the ilesystem
information stored in memory is also written to two iles: fsimage and edits. The
fsimage ile is a recent checkpoint of the data stored in the memory of NameNode.
The fsimage ile is a complete backup of the contents and is suficient to bring
NameNode back online in the event of a system restart or failure. The edits ile
stores all changes from the last fsimage checkpoint process. This is similar to a
database that utilizes a differential backup. NameNode does not utilize these iles
except for when NameNode is started, at which point, the contents of the iles are
brought into memory by NameNode. This is done by way of restoring the fsimage
ile data and then applying all updates from the edits ile in the sequential order.

The fsimage ile is similar in ilesystem structure to a Windows File Allocation
Table (FAT). The ile stores information about pointers to ile locations; ile locations
are called inodes. Each inode has associated metadata about the ile, including the
number of blocks, permissions, modiication and access times, and user and group
ownership. The fsimage ile can be useful in a forensic investigation when questions
arise about metadata. The fsimage ile is covered in more detail in later chapters.

The Hadoop coniguration iles
Hadoop contains standard system coniguration iles that store variables and default
locations. Similar to an operating system, Hadoop uses a series of coniguration iles
for storing and accessing system variables.

Coniguration iles are valuable in forensic investigations, especially in the
data identiication phase. These iles identify where data is stored, the Hadoop
applications that are used, and the various metadata about the data stores.
Coniguration iles contain information that is useful in the following situations:

• The Hadoop system is offline and cannot be brought back online, so the
Hadoop nodes need to be identified in order to collect data from each

http:///

Chapter 2

[29]

• The system contains a large amount of data and specific folders
(for example, log files) that need to be identified for a targeted collection

• The port information needs to be identified to reconstruct how the
system operated

The following table is a list of Hadoop's standard coniguration iles:

Filename Description

hadoop-default.xml
This contains the general default system variables and data

locations

hadoop-site.xml This contains the site-specific version of hadoop-default.xml

mapred-default.xml This contains the MapReduce parameters

job.xml This contains the job-specific configuration parameters

The hadoop-default.xml ile is valuable because it contains the information
about where data is stored, the temp directory location, log ile locations,
job history locations, and ilesystem information. The hadoop-site.xml ile
contains coniguration changes to the values in hadoop-default.xml. The
hadoop-default.xml ile is not supposed to be modiied. Instead, administrators
make modiications to the hadoop-site.xml ile, which overrides the settings in
hadoop-default.xml. Typically, administrators update the hadoop-site.xml
ile to set the JobTracker and NameNode parameters, such as the port information
for job management and output, data path settings, and MapReduce folders.
The other iles are typically only valuable when information about the jobs that
are run and the settings for each are potentially relevant.

The following is an excerpt from a sample hadoop-site.xml ile:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

 <property>

 <name>hadoop.tmp.dir</name>

 <value>/tmp/hadoop-${user.name}</value>

 </property>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:8020</value>

 </property>

 <property>

 <name>mapred.job.tracker</name>

http:///

Understanding Hadoop Internals and Architecture

[30]

 <value>hdfs://localhost:54311</value>

 </property>

 <property>

 <name>dfs.replication</name>

 <value>8</value>

 </property>

 <property>

 <name>mapred.child.java.opts</name>

 <value>- Xmx200m </value>

 </property>

</configuration>

This coniguration ile contains the following information that may be of value to
a forensic investigation:

• The HDFS temp directory used is /tmp/hadoop-${user.name}

• The NameNode file is located on the localhost on port 8020

• The MapReduce JobTracker is located on the localhost on port 54311

• The HDFS replication level is set to level 8

In addition to Hadoop coniguration iles, most Hadoop applications and data
analysis packages have their own coniguration iles that determine where data
is stored, permissions, and standard runtime parameters. These application
coniguration iles are also useful for identifying and collecting forensic evidence.

Hadoop daemons
Hadoop daemons are the processes that provide the core Hadoop functionality,
such as the NameNode and DataNode services. Hadoop's daemons are the processes
that run and form the backbone of Hadoop's operations, similar to the daemons that
provide operating system-level and other functionality within Linux and other
Unix variants.

Hadoop runs several daemons in the host operating system's Java Virtual Machine
(JVM). The primary daemons are:

• NameNode

• DataNode

• SecondaryNameNode

• JobTracker

• TaskTracker

http:///

Chapter 2

[31]

The daemons run as processes in the host operating system, so the status of the
daemons can be monitored from the host operating system, not only within Hadoop.
Because Hadoop is a Java-based system, the daemons are written in Java and the
tool jps can be used to test whether there are active daemons. jps is the Java Virtual
Machine Process Status Tool and it can be run from any host operating system with
Java installed. If Hadoop is running, the jps output will contain the ive daemons
mentioned earlier. This is an excellent tool for investigators to use when working with
a system suspected of running Hadoop. The following is an example of running jps
and its output:

$ jps

The response from jps shows the process identiier (pid) and process name as
follows:

• 1986 Jps

• 1359 ResourceManager

• 1223 RunJar

• 1353 NodeManager

• 1383 JobHistoryServer

• 1346 DataNode

• 1345 NameNode

Hadoop data analysis tools
Hadoop was designed to store and analyze large volumes of data. The ecosystem of
tools for Hadoop analysis is large and complex. Depending on the type of analysis,
many different tools can be used. The Apache Foundation set of tools has a number of
standard options such as Hive, HBase, and Pig, but other open source and commercial
solutions have been developed to meet different analysis requirements using Hadoop's
HDFS and MapReduce features. For example, Cloudera's Impala database runs on
Hadoop, but it is not part of the Apache Foundation suite of applications.

Understanding which data analysis tools are used in a Hadoop cluster is important
for identifying and properly collecting data. Some data analysis tools store data in
formatted iles and may offer easier methods for data collection. Other tools may
read data directly from iles stored in HDFS, but the scripts used for the tool may
serve as useful information when later analyzing the data. This section explores the
three most common data analysis tools used in Hadoop—Hive, HBase, and Pig.

http:///

Understanding Hadoop Internals and Architecture

[32]

Hive
Hive is a data warehousing solution developed to store and manage large volumes
of data. It offers an SQL-like language for analysis. Hive is a general purpose system
that can be scaled to extremely large data sets. As a data warehousing system, data is
imported into Hive data stores that can be accessed via an SQL-like query language
called HiveQL.

The Hive service is the engine that manages the data storage and query operations.
Hive queries are passed through the service, converted into jobs, and then executed
with the results returned to the query interface. Hive stores two types of data: table
data and metadata. Table data is stored in HDFS, and the metadata indicating where
the partitions and data tables are stored is located in the Hive metastore. The metastore
is a service and storage component that connects to a relational database (for example,
MySQL or Oracle) for storage of the metadata. This enables Hive to retrieve data and
table structure information. The following igure shows an overview of the
Hive environment:

Figure 5: The Hive architecture

Depending on the data volume, Hive data is stored in the local HDFS ilesystem.
By default, data is stored in the /user/hive/warehouse directory. Hive can
be conigured to store data in other locations by way of modifying the
hive-default.xml ile's hive.metastore.warehouse.dir variable.

The following Hive query loads data to a new Hive table:

LOAD DATA LOCAL INPATH '/home/data/import.txt'

OVERWRITE INTO TABLE sampletable

http:///

Chapter 2

[33]

This query imports the records from the import.txt ile into a Hive table named
sampletable. Since the default data location is /user/hive/warehouse, the data
is stored in a new directory called sampletable. The metastore is also updated
with metadata related to the new table and data location. The following Hadoop
command shows the imported ile:

$ hadoop fs -ls /user/hive/warehouse/sampletable/

The response from Hadoop is as follows:

import.txt

This example, however, only shows how Hive stores data when the local HDFS is
used. Other options exist, so investigators should be aware that data can be stored
in other locations. Hive table data can be stored in remote locations, such as cloud
storage as well as on local nodes. Likewise, the metastore and its database can either
be on the local machine or a remote machine. If the metastore is a required piece of
an investigation, the location of the metastore should be identiied.

Hive provides logging for critical events and errors. By default, Hive logs errors
to /tmp/$USER/hive.log. The error log location can be speciied for a different
directory in the hive log coniguration ile conf/hiv-log4j.properties. The
primary coniguration ile for Hive is the hive-default.xml ile.

The alternative to searching all of these additional sources in an investigation is to
extract data from Hive via queries. With the potential for multiple remote systems,
a large metastore, and various system coniguration and log iles—a simpler solution
to extract the data is required. This can be done by running HiveQL queries to retrieve
the contents from all tables and store the results in lat iles. This approach enables the
investigator to retrieve the entire set of contents from Hive; it is useful when metadata
or questions about data removal are not relevant.

HBase
HBase is currently the most popular NoSQL database for Hadoop. HBase is a
column-oriented, distributed database that is built on top of HDFS. This database is
commonly used for large-scale analysis across sparsely-populated datasets. HBase
does not support SQL, and data is organized by columns instead of the familiar
relational sets of tables.

HBase's data model is unique and requires understanding before data is collected
by an investigator. HBase makes use of the following concepts:

• Table: HBase organizes data into tables, with each table having a
unique name.

http:///

Understanding Hadoop Internals and Architecture

[34]

• Row: Data is stored in rows within each column, and the rows are identified
by their unique row key.

• Column Family: The data within a row is organized by groupings of
columns, called column families. Column families have a common prefix
and are on the left-hand side of the colon in a column name. For example,
the row columns location:city and location:street are both members of the
location family, whereas name:first belongs to the name column family.

• Column Qualifier: The individual row columns are specified by the column
qualifier. In the previous example, location:city is part of the location
column family and its qualifier is city.

• Cell: The unique identification of a value within a row is a cell. Cells are
identified by a combination of the table, row key, column family, and
column qualifier.

The following igure shows a sample set of data within HBase. The table contains
two column families: name and location. Each of the families has two qualiiers. A
combination of the unique row key, column family, and column qualiier represents
a cell. For example, the cell value for row key 00001 + name:irst is John:

Figure 6: HBase data

HBase stores all column family members together in HDFS. HBase is considered
a column-oriented database, but the physical storage is actually performed by
grouping columns and storing those together. Because of this storage methodology,
column families are expected to have similar data size and content characteristics
to enable faster sorting and analysis.

Tables are partitioned horizontally into sections of ixed-size chunks called regions.
When a table is irst created, the entire contents of the table are stored in a single
region. As the number of rows reaches a certain size threshold, a new region is
created for the additional rows. The new region is typically stored on a separate
machine, enabling the data to scale without compromising the speed of storage
and analysis.

http:///

Chapter 2

[35]

HBase utilizes a set of servers and a database log ile for running its distributed
database. The region servers store the data contents and are the data analysis
engines. Each region server has HFile data and a memstore. The region servers
share a write-ahead log (WAL) that stores all changes to the data, primarily for
disaster recovery. Each HBase instance has a master server, which is responsible
for assigning regions to region servers, recovering from region server failure,
and bootstrapping. Unlike the MapReduce process, master servers do not control
operations for analysis. Large-scale HBase instances typically have a backup master
server for failover purposes.

HBase also uses and depends on a tool called ZooKeeper to maintain the HBase
cluster. ZooKeeper is a software package used for the maintenance of coniguration
information and performing synchronization across distributed servers. At a
minimum, HBase uses a ZooKeeper leader server and a ZooKeeper follower server to
assign tasks to HBase nodes and track progress. These servers also provide disaster
recovery services.

The following igure highlights the coniguration of an HBase and ZooKeeper
environment:

Figure 7: The HBase architecture

The data ile format used by HBase is HFile. The iles are written in 64 KB blocks by
default. HFile blocks are not to be confused with HDFS blocks. HFiles are divided
into four regions as follows:

• Scanned Block Section: The data content (that is, key and value pairs) and
pointer information that is scanned; multiple data and leaf index blocks
can be stored in this section.

• Non-Scanned Block Section: The meta information that is not scanned;
multiple blocks can be stored in this section.

http:///

Understanding Hadoop Internals and Architecture

[36]

• Load-on-Open Section: The information loaded into memory when an HFile
is opened by HBase.

• Trailer Section: The trailer information, such as offsets, compression codec
information, and the number of block entry summary information.

The following ile layout igure shows the structure of an HFile that is stored on a
region server:

Figure 8: The HFile structure

Like Hive and other Hadoop applications, the HBase settings can be found in
its coniguration iles. The two coniguration iles are hbase-default.xml and
hbase-site.xml. By default, hbase-site.xml contains information about where
HBase and ZooKeeper write data.

HBase data can be accessed in a number of ways. The following is a list of means
by which HBase data can be accessed:

• Java program: HBase is a Java-based database that has its own object
library that can be implemented in custom Java programs for querying

• MapReduce: HBase data can also be queried via Hadoop's
MapReduce functions

• Avro: A Hadoop data serialization interface, called Avro, can be used

• REST: Data can be queried with responses formatted as JSON, XML,
or other formats

Extracting data from HBase requires using one of these methods. This makes data
collection more dificult, but the alternative is to identify all regional servers and use
coniguration iles and knowledge of HFiles to carve out the relevant data. These and
other HBase data collection and analysis issues are covered in later chapters.

http:///

Chapter 2

[37]

Pig
Pig is a tool that creates an abstraction layer on top of MapReduce to enable simpler
and faster analysis. Pig is a scripting language designed to facilitate query-like data
operations that can be executed with just several lines of code. Native MapReduce
applications written in Java are effective and powerful tools, but the time to develop
and test the applications is time-consuming and complex. Pig solves this problem
by offering a simpler development and testing process that takes advantage of the
power of MapReduce, without the need to build large Java applications. Whereas
Java programs may require 50-100 lines, Pig scripts often have ten lines of code or
less. Pig is comprised of two elements as follows:

• An execution environment that runs Pig scripts against Hadoop data sets

• A scripting language, called Pig Latin

Pig is not a database or a data storage tool. Unlike HBase, Pig does not require data
to be loaded into a data repository. Pig can read data directly from HDFS at script
runtime, which makes Pig very lexible and useful for analyzing data across HDFS
in real time.

Pig scripts typically have a .pig extension. If the Pig scripts
may be relevant or useful, investigators should collect the
scripts to help understand the data and how that data was
analyzed on the source system.

Managing iles in Hadoop
Hadoop has its own ile management concepts that come with many different
mechanisms for data storage and retrieval. Hadoop is designed to manage large
volumes of data distributed across many nodes built with commodity hardware.
As such, Hadoop manages the distribution of large volumes of data using
techniques designed to divide, compress, and share the data all while dealing with
the possibilities of node failures and numerous processes accessing the same data
simultaneously. Many of the ilesystem concepts in Hadoop are exactly the same
as in other systems, such as directory structures. However, other concepts, such
as MapFiles and Hadoop Archive Files, are unique to Hadoop. This section covers
many of the ile management concepts that are unique to Hadoop.

http:///

Understanding Hadoop Internals and Architecture

[38]

File permissions
HDFS uses a standard ile permission approach. The three types of permissions for
iles and directories are:

• Read (r): Read a file and list a directory's contents

• Write (w): Write to a file and create or delete files in a directory

• Execute (x): Access subdirectories (does not apply to files in HDFS)

Each ile and directory has an associated owner, group, and mode. The owner and
group are assigned based on who owns or created the ile or directory, and the same
is true for the group. The mode is the list of permissions for the owner, the members
of the group, and all others (that is, a non-owner and non-group member for the ile
or directory). There are also superuser accounts in HDFS, and all superuser accounts
can access any ile or directory, regardless of permissions.

File permissions in HDFS are not as useful for determining the actual people and
location of account logins as is the case with traditional operating systems. Client
accounts in Hadoop run under process accounts. So rather than each individual
having a login to the Hadoop instance, the clients access HDFS via an application
that has its own account. For example, an HBase client has an associated account,
HBase, by default and that account would be the one running analysis. While tools
such as ZooKeeper provide Access Control Lists (ACLs) to manage such community
accounts, one can see that having processes that act as user accounts can create
dificulties for identifying which person or location performed speciic actions.

Some Hadoop packages contain access control mechanisms that
enable more granular user access control. HBase, for example,
has an Access Controller coprocessor that can be added to the
hbase-site.xml coniguration ile to control which users can
access individual tables or perform speciic HBase actions. The
ACL is stored in the HBase table _acl_.

Trash
Hadoop has a trash feature that stores deleted iles for a speciic amount of time.
All Hadoop users have a .Trash folder, where deleted iles are stored. When a ile
is deleted in Hadoop, a subdirectory is created under the user's $HOME folder
using the original ile path, and the ile is stored there. All iles stored in trash
are permanently deleted when one of the following events happen:

• The periodic trash deletion process is run by Hadoop. This occurs after a
fixed amount of time, as specified by a user-configured time.

http:///

Chapter 2

[39]

• A user runs an expunge job. This can be performed from the Hadoop
command line as follows:

%hadoop fs –expunge

Files are only moved to the trash when deleted by a user from the
Hadoop command line. Files deleted programmatically bypass the
trash and are permanently deleted immediately.

Information about a Hadoop instance's trash coniguration can be found in
core-default.xml under the key FS_TRASH_INTERVAL_KEY. By default,
FS_TRASH_INTERVAL_KEY is set to 0, which means the trash feature is disabled
and iles are automatically deleted permanently. For example, if the key is set
to 5, then the trash feature is turned on, and trash is emptied every 5 minutes.

Log iles
Log iles are valuable sources of forensic evidence. They store information about where
data was stored, where data inputs originated, jobs that have been run, the locations of
other nodes, and other event-based information. As in any forensic investigation, the
logs may not contain directly relevant evidence; however, the information in logs can
be useful for identifying other locations and sources of evidence.

The following types of logs can be found on machines running a Hadoop cluster:

• Hadoop daemon logs: Stored in the host operating system, these .log files
contain error and warning information. By default, these log files will have
a hadoop prefix in the filename.

• log4j: These logs store information from the log4j process. The log4j
application is an Apache logging interface that is used by many Hadoop
applications. These logs are stored in the /var/log/hadoop directory.

• Standard out and standard error: Each Hadoop TaskTracker creates
and maintains these error logs to store information written to standard
out or standard error. These logs are stored in each TaskTracker node's
/var/log/hadoop/userlogs directory.

• Job configuration XML: The Hadoop JobTracker creates these files
within HDFS for tracking job summary details about the configuration
and job run. These files can be found in the /var/log/hadoop and
/var/log/hadoop/history directory.

• Job statistics: The Hadoop JobTracker creates these logs to store information
about the number of job step attempts and the job runtime for each job.

http:///

Understanding Hadoop Internals and Architecture

[40]

Log ile retention varies across implementation and administrator settings. Some logs,
such as log4j, can grow very quickly and may only have a retention period of several
hours. Even if logs are purged, a best practice for many types of logs is to archive them
in an ofline system for diagnostics and job performance tracking.

File compression and splitting
One method used by Hadoop for transferring data more eficiently is to compress
data in transit. The beneit of compressing data is that the time to compress, transmit,
and decompress data is often less than transmitting uncompressed data when the
data volume is large. For this reason, Hadoop supports a number of compression
algorithms and ile formats. The following compression formats are supported by
Hadoop:

• bzip2

• DEFLATE

• gzip

• LZO

• LZ4

• Snappy

Files compressed with DEFLATE in Hadoop have a .deflate
ile extension.

While compressed iles can be transmitted more easily, sending out one compressed
ile to multiple nodes is not always an eficient option. Hadoop's MapReduce is
designed with a framework to enable sending out smaller jobs to multiple nodes.
Each node does not need to receive the complete data set if it is only tasked with
a subset of the data. Instead, the data should be split into subsets, with each node
receiving only the subset it needs. For this reason, compression algorithms whose
iles can be split are preferred. DEFLATE does not support splitting, but formats
such as bzip2, LZO, LZ4, and Snappy do.

A forensic investigator should be aware of split iles that can be stored on node
machines. These iles may require forensic collection of the individual split data
iles on the various nodes to fully reconstruct the complete, original data container.

http:///

Chapter 2

[41]

Hadoop SequenceFile
SequenceFile are Hadoop's persistent data structure for key-value pair data
for MapReduce functions. These iles are both the input and output format for
MapReduce. They contain key-value pair values and have a deined structure.
SequenceFile are a common ile format in Hadoop, and they facilitate the splitting
of data for each transfer during MapReduce jobs. There are three formats of
SequenceFiles:

• Uncompressed: The plaintext data in individual records

• Record-compressed: Individual records compressed per segment

• Blocked-compressed: Multiple records compressed per segment

The three formats have a common ile header format. The following table lists
the ields found in the ile header:

Field Description

Version This holds SEQ4 or SEQ6, depending on the SequenceFile version

keyClassName This holds the name of the key class

valueClassName This holds the name of the value class

Compression This is used for key/pairs: 1 if compressed, 0 if uncompressed

blockCompression
This is used for key/pairs blocks: 1 if compressed, 0 if

uncompressed

Compression Codec This holds the compression codec name value

Metadata This is user-defined metadata

Sync This is a marker to denote the end of the header

The header segment deines the type of SequenceFile and the summary information
for the ile.

Both uncompressed and record-compressed SequenceFile have record and sync
blocks. The only difference between the two is that the value within the record
segment is compressed in the record-compressed format. The block-compressed
format is comprised of alternating sync and block segments. Within the block
segments, the keys and values are combined and compressed together.

http:///

Understanding Hadoop Internals and Architecture

[42]

The following igure illustrates the contents of each of the three SequenceFile formats:

Figure 9: The SequenceFile structure

Forensic investigations can require that investigators manually extract
data using the ile format as a reference or identify iles by their structure.
SequenceFile, for example, do not have a standard ile extension, so
investigators can only identify them by analyzing the ile structure.

SequenceFile are the base data structure for several variants. MapFiles are a
directory structure that have /index and /data directories. The key information is
stored in /index and the key/pairs are stored in /data. SetFile and ArrayFile are
MapFile variants that add functionality to the MapFile structure. Finally, BloomFiles
are extensions of MapFiles that have a /bloom directory for storing bloom ilter
information. All of these types of MapFile and MapFile variants can be readily
identiied by the presence of these directories.

The Hadoop archive iles
HDFS is designed to work with large data sets as evidenced by the large block
sizes of 64 MB to 128 MB. The NameNode ile stores namespace information for
identifying iles and blocks. As the number of iles increases, the NameNode's ile
lookup speed is reduced. The number of iles NameNode manages is also limited
by the amount of physical memory, because all ile information managed by
NameNode is stored in memory. One method in HDFS for solving this problem is
storing multiple iles in a single container ile, called Hadoop Archive (HAR) iles.

http:///

Chapter 2

[43]

HAR iles are multiple small iles stored in a single, uncompressed container ile.
HDFS has an interface that enables the individual iles within a HAR ile to be accessed
in parallel. Similar to the TAR container ile format that is common in UNIX, multiple
iles are combined into a single archive. Unlike TAR, however, HAR iles are designed
such that individual iles can be accessed from inside the container. HAR iles can be
accessed by virtually all Hadoop components and applications, such as MapReduce,
the Hadoop command line, and Pig.

While HAR iles offer several advantages for Hadoop, they also have limitations.
The advantage of HAR iles is the capability to access multiple small iles in parallel,
which reduces the NameNode ile management load. In addition, HAR iles work
well in MapReduce jobs because the individual iles can be accessed in parallel.
HAR iles also have their disadvantages. For example, because they are permanent
structures, they cannot be modiied after they are created. This means new HAR iles
have to be created any time new iles should be added to a HAR ile. Accessing a ile
within a HAR ile also requires an index lookup process, which adds an extra step
to the process.

The HAR ile format has several elements. The following three elements comprise
the HAR format:

• _masterindex: The file hashes and offsets

• index: The file statuses

• part-[1-n]: The actual file data content

The ile data is stored in multiple part iles based on block allocation, and the content
location is stored in the _masterindex element. The index element stores the ile
statuses and original directory structure.

Individual iles from within a HAR ile can be accessed via a har:// preix. The
following command copies a ile called testFile, originally stored in a directory
called testDir, from a HAR ile stored on NameNode called foo to the local
ilesystem:

% hadoop fs –get har://namenode/foo.har#testDir/testFile

localdir

HAR iles are unique to Hadoop. When forensically analyzing HAR data, investigators
should export the data from Hadoop to a local ilesystem for analysis.

http:///

Understanding Hadoop Internals and Architecture

[44]

Data serialization
Hadoop supports several data serialization frameworks. Data serialization is
a framework for storing data in a common format for transmission to other
applications or systems. For Hadoop, data serialization is primarily used for
transmitting data for MapReduce-related tasks. The three most common data
serialization frameworks in Hadoop are:

• Apache Avro

• Apache Thrift

• Google Protocol Buffers

Data serialization frameworks are designed to transmit data that is read and stored in
memory, but the data iles used for storage and transmission can be relevant forensic
evidence. The frameworks are fairly similar in overall structure and forensic artifacts.
The forensic artifacts for all three would be the data schema ile that deines the data
structure and the text- or binary-encoded data iles that store the data contents.

Avro is currently the most common data serialization framework in use for Hadoop.
An .avro container ile is the artifact created when data is serialized. The .avro ile
includes a schema ile that is a plaintext deinition of the data structure; it also includes
either a binary or text data content ile. For the data format, Avro supports both its
own binary encoding and JSON text-based encoding. Avro iles can be extracted
either directly through Avro or through Avro's Java methods.

The following igure illustrates the Avro container ile format:

Figure 10: The Avro container file structure

http:///

Chapter 2

[45]

Packaged jobs and JAR iles
MapReduce jobs can be executed natively in Java, and those jobs can be compiled
into Java Archive (JAR) iles for reuse. Hadoop developers and analysts have many
options for how to create and run data import, management, and analysis jobs. While
tools such as Pig are extremely popular, some developers still prefer to develop in
Java. Forensic investigators may encounter JAR iles or Java source code (.java) iles
in their collection process.

JAR iles are archive container iles. The source code, class iles, corresponding data
iles, and compiler instructions can all be stored in the same JAR ile, which then
can be subsequently transferred and unpacked for execution. The compression and
single container ile make JAR a popular option for storing the applications. While
a forensic investigator does not need to know how to create or execute a JAR ile,
they may need to extract the contents in order to review the Java class and source
code information. To preview the contents of a JAR ile named jarTestFile, the
following can be run for the Java command line:

$ jar tf jarTestFile

To extract the full set of contents from jarTestFile, the JAR extract command can
be run from the following Java command line:

$ jar xf jarTestFile

The Hadoop forensic evidence ecosystem
Forensics is based on evidence. For digital investigations, evidence is data. For
Hadoop, the evidence is the information stored on disk and in memory. Not
all information stored in Hadoop is relevant; it depends on the nature of the
investigation. Evidence that is relevant in one investigation may not be relevant in
another. This section summarizes the various sources of evidence and the overall
ecosystem of Hadoop forensic evidence.

Standard Hadoop processes or system-generated diagnostic information may not be
relevant to a forensic investigation. For example, a Hadoop cluster installed without
any customizations that only stores and analyses web log data may not require a
collection of all iles and process data. Instead, a targeted collection of the web log
data can be performed without losing evidence. In other investigations, collecting
the log and coniguration iles may be necessary.

http:///

Understanding Hadoop Internals and Architecture

[46]

Forensic data in Hadoop falls into three categories:

• Supporting information: This is the data that helps identify evidence or
provides context about the Hadoop cluster's operations or configurations.

• Record evidence: This is any data that is analyzed in Hadoop, whether that
is HBase data, text files for MapReduce jobs, or Pig output.

• User and application evidence: This is the third form of forensic data of
interest. This evidence includes the log and configuration files, analysis
scripts, MapReduce logic, metadata, and other forms of customization and
logic that act on the data. This form of evidence is useful in investigations
when questions arise about how the data was analyzed or generated.

The following igure lists the most common form of data for each type of
forensic evidence:

Figure 11: Types of forensic evidence

The dificulty in facing a forensic investigator working with a Big Data system such
as Hadoop is the volume of data as well as data being stored across multiple nodes.
An investigator cannot simply image a single hard drive and expect to have all
data from that system. Instead, forensic investigators working in Hadoop need to
irst identify the relevant data, and only then can the actual evidence be collected.
Some forms of data such as log and coniguration iles are valuable for identifying
where evidence is stored and whether data archives exist. This type of evidence is
categorized as supporting information. It is valuable in both the early and late stages
of an investigation for identifying information and piecing together how the Hadoop
cluster operated.

http:///

Chapter 2

[47]

Record evidence is the most common form of evidence for Hadoop investigations.
In nonBig Data investigations, the iles and e-mails from employees can be the most
valuable form of evidence; however, most organizations' employees do not interact
much with Hadoop. Rather, Hadoop is managed and operated by IT and data
analysis staff. The value of Hadoop is the data stored and analyzed in Hadoop. That
data is the transactional and unstructured data stored in Hadoop for analysis as well
as the outputs from the analyses. These structured and unstructured data are forms
of record evidence. The challenging aspect of Hadoop investigations is identifying
all potentially relevant sources of record evidence as record evidence can exist in
multiple forms and in multiple applications within Hadoop.

User and application evidence is any type of evidence that shows how the system
operates or the logic used to run analysis as they directly relate to the record evidence.
In some investigations, questions arise about what was done to data or how operations
were performed. While these questions can sometimes be answered by analyzing the
record evidence, user and application evidence provides a simpler and more powerful
way to answer such questions. User and application evidence ranges from the scripts
used to import and analyze data to the coniguration and log iles within Hadoop.

Running Hadoop
Hadoop can be run from a number of different platforms. Hadoop can be installed
and run from a single desktop, from a distributed network of systems, or as a
cloud-based service. Investigators should be aware of the differences and versed
in the various architectures. Hadoop runs in the same manner on all three setups;
however, collecting evidence may require different steps depending on how the
data is stored. For instance, a cloud-based Hadoop server may require a different
collection because of the lack of physical access to the servers.

This section details how to set up and run Hadoop using a free virtual machine
instance (LightHadoop) and a cloud-based service (Amazon Web Services). Both
LightHadoop and Amazon Web Services are used in the examples throughout this
book. They serve as testbed environments to highlight how Big Data forensics is
performed against different setups.

http:///

Understanding Hadoop Internals and Architecture

[48]

LightHadoop
Many of the examples in this book are intended to be hands-on exercises using
LightHadoop. LightHadoop is a freely distributed CentOS Hadoop virtual machine
instance. This Hadoop distribution differs from larger ones such as Cloudera.
LightHadoop requires less hardware and fewer storage resources. This makes
LightHadoop ideal for learning Hadoop on a single machine and enables one to create
many virtual machines for testing purposes without requiring large storage volumes
or multiple nodes. Due to the small virtual machine (VM) size, LightHadoop does
not include all of the major Hadoop-related Apache packages. However, it does
include the main ones required for learning about Hadoop and running a database
management system (DBMS). The following Apache packages are currently included
in LightHadoop:

• Hadoop

• Hive

• Pig

• Sqoop

Oracle VM VirtualBox is the virtual machine software that runs LightHadoop. It is an
open source, freely distributed virtualization software. It can be run in the following
operating systems: Windows, Mac OS X, Solaris, and numerous Linux builds.

The following steps explain how to install and set up VirtualBox with LightHadoop.
This environment is discussed throughout the book to demonstrate how to conduct
forensics against a live Hadoop environment:

1. The Oracle VM VirtualBox installation ile can be downloaded for free at
www.oracle.com/technetwork/server-storage/virtualbox/downloads/

index.html.

2. After downloading and installing Oracle VM VirtualBox, download the
latest LightHadoop VM from www.lighthadoop.com/downloads/.
Download the Pseudo-Distributed Mode VM version of LightHadoop.

3. Next, load LightHadoop by following these steps:

1. Run Oracle VM VirtualBox.

2. Select File | Import Appliance. Select the location of the
LightHadoop.ova file, and click Next.

www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
www.lighthadoop.com/downloads/
http:///

Chapter 2

[49]

3. Review the default settings, and click Import.

4. Start the VM and log into LightHadoop. Enter the username
as root and the password as lighthadoop.

LightHadoop can run either as a distributed system or as a single machine. This
book uses the Pseudo-Distributed Mode VM version of LightHadoop (that is, single
machine) for ease of installation. The same forensic principles apply to both the
single machine and distributed system versions.

Amazon Web Services
This book includes a number of examples for performing forensics against cloud-based
Hadoop setups. The cloud-based examples utilize Amazon Web Services (AWS), a
cloud-based service that enables one to set up Hadoop solutions and run them in a
cloud environment. More organizations are moving their data storage and processing
operations to cloud-based environments, and Hadoop is no exception. Forensic
investigators should have a strong understanding of the differences between cloud
computing and traditional server environments when performing investigations.

AWS enables users to initialize and run storage and computing solutions from a
web-based control panel. One of AWS's solutions, Elastic MapReduce (EMR), is a
Hadoop-based environment that can be set up with various Hadoop applications.
EMR is the environment used in this book for cloud-based Big Data forensics and
HBase collections.

To set up EMR, follow these steps:

1. Create an AWS account at aws.amazon.com/account.

2. Create a key pair for Secure Shell (SSH) login using the following steps:

1. Navigate to the AWS Console, and click EC2 Virtual Servers in
the cloud.

2. Click Key Pairs.

3. Click Create Key Pair, and name the key pair.

4. Copy the key pair PEM created in the previous step to a location
where one can load it into the SSH program.

3. Navigate to the AWS Console, and click EMR Managed Hadoop Framework
under the Analytics section.

aws.amazon.com/account
http:///

Understanding Hadoop Internals and Architecture

[50]

4. In the EMR console, click Create cluster and follow these steps:

1. Name the cluster and set the S3 folder name. S3 is the storage folder
and must be uniquely named across AWS. The following screenshot
shows an example:

Figure 12: The EMR setup – Part 1

2. Select the default software configurations, and add HBase as
an additional application. The following screenshot shows an
example configuration:

Figure 13: The EMR setup – Part 2

3. Under Security and Access, select the EC2 key pair just created.

4. Leave all other items with their default settings, and click
Create cluster.

5. After a few minutes, the cluster will be created. This can be accessed from
the EMR Cluster List menu once the cluster's status is Running.

http:///

Chapter 2

[51]

AWS charges per minute of runtime, whether or not an instance is being
accessed. Ensure that all AWS instances are terminated after use to
avoid unwanted charges.

The cluster can be accessed from an SSH terminal program such as PuTTY. To access
the cluster using PuTTY, follow these steps:

1. Convert the .pem key ile created previously into a .ppk ile.
2. Locate the instance's master public Domain Name System (DNS) in the EMR

Cluster List. The following screenshot illustrates an example of coniguration:

Figure 14: The EMR setup – Part 3

3. Using PuTTY, provide the location of the .ppk key ile, and enter the
host name as ec2-user@<Master Public DNS value>.

4. Connect with those parameters, and the EMR instance will load the
Linux session.

Loading Hadoop data
Hadoop offers a number of mechanisms for loading data. The following are the
most common methods for importing data into HDFS:

• Copy files from the local filesystem to HDFS

• Use a data transfer tool, such as Sqoop

• Use a Hadoop connector application

• Use a third-party data manager, such as Cloudera or Hortonworks

HDFS has built-in commands that can be used to copy data from the local
ilesystem. The two commands are as follows:

• hadoop fs -put <local file> <HDFS target location>

• hadoop fs -copyFromLocal <local file> <HDFS target location>

http:///

Understanding Hadoop Internals and Architecture

[52]

Both the –put and -copyFromLocal commands achieve the same
results. The only difference is that -put enables one to copy nonlocal
iles to HDFS.

Sqoop is an Apache Foundation tool designed to transfer bulk data sets between
Hadoop and structured databases. Sqoop can either directly import data into HDFS,
or it can import data indirectly by way of a Hive store that is stored in HDFS. Sqoop
has the ability to connect to a number of different data sources, such as MySQL and
Oracle databases. Sqoop connects to the data source and then eficiently imports the
data either directly into HDFS or into HDFS via Hive.

The third most common method for importing data into Hadoop is the use of a
Hadoop connector application. Hadoop's Java-based design and supporting libraries
provide developers with opportunities to directly connect to Hadoop for data
management, including importing data into Hadoop. Some data providers offer
Hadoop connector applications. Google, MongoDB, and Oracle are three examples
of Hadoop connector application providers.

The fourth method is to use a Hadoop data or ile manager. Several major Hadoop
distributions offer their own ile and data managers that can be used to import and
export data from Hadoop. Currently, the most popular Hadoop packages that offer
this are Hortonworks and Cloudera.

Methods for exporting or extracting data from HDFS are covered in the
subsequent chapters.

Importing sample data for testing
The sample data used in this book is a subset of the New York Stock Exchange ticker
data from 2000–2001, which is a freely available data set. The data is available at
https://s3.amazonaws.com/hw-sandbox/tutorial1/NYSE-2000-2001.tsv.gz.
This data contains over 800,000 records, which makes the data large enough
to demonstrate concepts, yet manageable enough to learn forensics.

To load the data into AWS, use the following steps:

1. Upload the ile to the /home/ec2-user folder using an SFTP utility
(for example, WinSCP).

2. Log in to the EMR instance via PuTTY.
3. Run the following HDFS -put command:

hadoop fs -put /home/ec2-user/NYSE-2000-2001.tsv /tmp

https://s3.amazonaws.com/hw-sandbox/tutorial1/NYSE-2000-2001.tsv.gz
http:///

Chapter 2

[53]

4. Conirm that the ile is now stored in HDFS:

hadoop fs –ls /tmp

This returns the following output:

-rw-r--r-- 1 ec2-user supergroup 44005963 2015-01-26 22:23
/tmp/NYSE-2000-2001.tsv

To load the data into LightHadoop, access the ile from the local ilesystem via the
mounted drive inside of VirtualBox. Repeat steps 3 and 4 running the HDFS -put
command and verifying the ile was copied with the HDFS -ls command.

The data is now loaded into HDFS. It can be accessed by Hadoop MapReduce and
analysis tools. In subsequent chapters, the data from this exercise is loaded into
analysis tools to demonstrate how to extract data from those tools.

Summary
This chapter covered many primary Hadoop concepts that a forensic investigator
needs to understand. Successful forensic investigations involve properly identifying
and collecting data, which requires the investigator to know how to locate the sources
of information in Hadoop as well as understand data structures and the methods for
extracting that information. Forensic investigations also involve analyzing the data that
has been collected, which in turn requires knowing how to extract information from
the Hadoop ile structures.

The next chapter discusses how to identify evidence. This process involves standard
investigative skills such as conducting interviews as well as applying technical
knowledge about Hadoop to identify relevant evidence.

http:///

http:///

[55]

Identifying Big Data Evidence
Identifying and fully collecting relevant evidence in the early stages of an investigation
is critical to success. Improperly collecting evidence will, at a minimum, result in an
embarrassing and dificult process of corrective efforts as well as wasted time. At
worst, an improper collection will result in working with the incorrect set of data.
In the latter case, court sanctions, lost cases, and ruined reputations can be expected.
This chapter provides the guidance to ensure all relevant data is identiied, so these
situations do not occur.

Identifying evidence
Identifying evidence is a complex process. It involves surveying a set of possible
sources of evidence and determining which sources warrant collection. Data in any
organization's systems is rarely well organized or documented. Investigators will
need to take a set of investigation requirements and determine which data needs to
be collected. This requires the following steps:

• Properly reviewing system and data documentation

• Interviewing staff

• Locating backup and noncentralized data repositories

• Previewing data

The process of identifying Big Data evidence is made dificult by the large volume
of data, distributed ilesystem, the numerous types of data, and the potential for
large-scale redundancy in evidence.

http:///

Identifying Big Data Evidence

[56]

Big Data solutions are also unique since evidence can reside in different layers within
it. Within Hadoop, evidence can take on multiple forms, as described in Chapter 2,
Understanding Hadoop Internals and Architecture. To properly identify the evidence in
Hadoop, multiple layers are examined. While all the data may reside in the Hadoop
Distributed File System (HDFS), the form may differ in a Hadoop application (for
example, HBase), or the data may be more easily extracted to a viable format through
HDFS using an application (such as Pig or Sqoop).

Identifying Big Data evidence can also be complicated by redundancies caused by:

• Systems that input to, or receive output from, Big Data systems

• Archived systems that may have previously stored the evidence in the
Big Data system

The primary goal of identifying evidence is to capture all relevant evidence while
minimizing redundant information. For example, a database may push all sales
information into a Hadoop system. The sales database and the sales data in Hadoop
may be an exact match, or there may be discrepancies caused by one or both systems
updating the data after the push. If the information is identical, collecting both would
be redundant, resulting in wasted time and resources. A forensic investigator needs to
understand the correct source from which the evidence should be collected or if both
sources should be captured.

Outsiders looking at a company's data needs may assume that identifying information
is as simple as asking several individuals where the data resides. In reality, the process
is much more complicated for a number of possible reasons:

• The organization may be an adverse party and cannot be trusted to
provide reliable information about the data

• The organization is large and no single person knows where all data
is stored and what the contents of the data are

• The organization is divided into business units with no two business
units knowing what data the other one stores

• The data is stored with a third-party data hosting provider

• The IT staff may know where data and systems reside, but only the
business users know the type of content the data stores

http:///

Chapter 3

[57]

For example, one might assume a pharmaceutical sales company would have
an internal system structured with the following attributes:

• A division where the data is collected from a sales database

• An HR department database containing employee compensation,
performance, and retention information

• A database of customer demographic information

• An accounting department database to assess what costs are associated
with each sale

In such a system, that data is then clearly uniied and compelling analyses are created
to drive sales. In reality, an investigator will probably ind that the Big Data sales
system is actually comprised of a larger set of data that originates inside and outside
the organization. There may be a collection of spreadsheets on sales employee's
desktops and laptops, along with some of the older versions on backup tapes and ile
server shared folders. There may be a new Salesforce database implemented two years
ago that is incomplete and is actually the replacement for a previous database, which
was custom developed and used by 75 percent of employees. A Hadoop instance
running HBase for analysis receives a iltered set of data from social media feeds, the
Salesforce database, and sales reports. All of these data sources may be managed by
different teams, so identifying how to collect this information requires a series of steps
to isolate the relevant information.

The problem for large, or even midsize companies is much more dificult than the
pharmaceutical sales company example. Simply creating a map of every data source
and the contents of those systems could require weeks of in-depth interviews with
key business owners and staff. Several departments may have their own databases
and Big Data solutions that may or may not be housed in a centralized repository.
Backups for these systems could be located anywhere. Data retention policies will vary
by department and most likely by system. Data warehouses and other aggregators
may contain important information that will not show themselves through normal
interviews with staff. These data warehouses and aggregators may have previously
generated reports that could serve as valuable reference points for future analysis;
however, all data may not be available online, and some data may be inaccessible.
In such cases, the company's data will most likely reside in off-site servers
maintained by an outsourcing vendor, or worse, in a cloud-based solution.

http:///

Identifying Big Data Evidence

[58]

Big Data evidence can be intertwined with non-Big Data evidence. E-mail, document
iles, and other evidence can be extremely valuable for performing an investigation.
The process for identifying Big Data evidence is very similar to the process for
identifying other evidence, so the identiication process described in this book can
be carried out in conjunction with identifying other evidence. For investigators, an
important factor to keep in mind is whether Big Data evidence should be collected
(that is, determining whether it is relevant or if the same evidence can be collected
more easily from other nonBig Data systems). Investigators must also consider
whether evidence needs to be collected to meet the requirements of an investigation.

The approach presented in this book starts with this high-level approach:

• Examining requirements

• Examining the organization's system architecture

• Determining the kinds of data in each system

• Assessing which systems to collect

This approach results in the documentation to back up the claim that all potentially
important sources of data were examined and provides assurance that no major
systems were overlooked.

The main considerations for each source of data include the following:

• The quality of the data

• The completeness of the data

• The supporting documentation

• Validating the collected data

• The previous systems where the data resided

• How the data enters and leaves the system

• The available formats for extraction

• How well the data meets the data requirements

Locating sources of data
Finding the sources of data to collect is an iterative process. This process includes
gathering data requirements, identifying which systems are available, determining
which systems contain data that match the requirements, and assessing whether the
data in those relevant systems is viable for collection. This top-down approach is
represented in detail in the following igure:

http:///

Chapter 3

[59]

Figure 1: The identification process

Compiling data requirements
The irst step is to compile the list of data requirements. For a litigation-related
collection, these data requirements are determined based on the merits of the case. In
the meet and confer process, the requirements are often quite broad. For a business
crisis, all stakeholders should agree on the date range of events, all possible business
units involved, and the facts in question. From this, a list of high-level information
that could answer the questions should be derived. For example, in an investigation
for a inancial restatement, the main stakeholders would be accounting, inance, and
IT. The time period would be two years before the restatement through the end of
the reporting period. The possible high-level information that would be required
includes previous inancial statements, journal entries, general ledger data, a list of
employees involved in the initial inancial statement, and a list of ile locations for
those employees from IT.

The most important aspect of the requirements phase is to be fully inclusive. Being
overly inclusive when gathering the requirements is a much easier issue to manage
than not being inclusive enough. Paring down overly inclusive requirements is simply
a matter of not collecting or analyzing the unnecessary data. If the requirements are
not inclusive enough, systems may be ignored and/or large swaths of data could
go uncollected. Collecting data a second time or starting over with interviews of key
stakeholders is much more expensive and time consuming than simply ignoring
parts of the data that have already been collected or omitting certain data ahead of the
collection phase. There is a difference between an overly inclusive and a fully inclusive
approach. The overly inclusive occurs when little thought is given to the value of the
information, whereas the fully inclusive meets all the requirements and even captures
the "this might be useful" information as well.

http:///

Identifying Big Data Evidence

[60]

The initial sets of facts that need to be analyzed are typically identiied by legal
counsel or the business group that identiied an issue. A problem requiring Big Data
analysis does not originate out of a vacuum, it occurs in a business or legal setting
with established rules for addressing the problem. The business and/or legal issues
at hand are best identiied and framed by a person qualiied to address and seek
the remedy to a problem. Those people must be heavily involved in the process of
distilling issues into facts. They should, however, work with someone well versed
in Big Data analysis to understand how those facts will later be proven or disproven
by data. A Big Data analyst can provide insights into how data can be used to form
the analysis and what the inal analysis will consist of, as well as ground the facts in
realistic terms about the types of facts the data can prove.

Gathering data requirements begins with fully expanding the issue into the facts that
need to be analyzed. Issues can take several forms, but for any issue, the merits of
allegation must be distilled into discrete facts that can be proven or disproven. For
example, a defendant may be a former employee of the plaintiff and stand accused
of stealing sensitive trade secret documents from the plaintiff and implementing a
copycat version of the product in 2012. Converting that issue into facts is a process
of identifying the manner by which the allegation can be proven or disproven. This
issue, while seemingly narrow, can expand into a larger set of sub-issues. First, what
are the trade secret documents? What access did the defendant have to the trade
secret documents? Could someone else be involved? In what ways are the products
similar and different? For all of these questions, what are the speciic dates of the
alleged activity?

The next step is compiling the Big Data collection requirements based on the facts
that have been identiied. The facts are converted into data requests that will later
be made more speciic with the inclusion of system-based information. Taking the
preceding example, one requirement would be to identify all trade secret documents
stored in the plaintiff's system during the time of the defendant's employment.
Another requirement would be to collect all system access records that could show
which documents the defendant accessed. Requirements in the early stages should
state the desired goal of the data collection without being too speciic about the type
of system expected to contain the data. Keep in mind that different organizations
may store information in different types of systems.

Several standard topics and requirements arise in investigations involving Big Data.
The following topics should be addressed at some level in the requirements:

• Dates in question: Identify key date ranges as well as surrounding dates
in order to test for normal behavior.

• Persons of interest: Identify key people by name or behavior and
consider including similar, but not "in question" people in order to
test for normal behavior.

http:///

Chapter 3

[61]

• Systems of interest: Identify the types of systems suspected of containing
key information. Also, consider upstream and downstream systems that
may validate or refute the targeted system's data.

Reviewing the system architecture
The system architecture review phase involves meeting with company and department
heads and reviewing documentation about the available systems. The goal of this
phase is to have a high-level understanding of the sources and types of data available
along with the key personnel and business owners. The irst step is to meet with the
appropriate high-level employees to either get the necessary high-level information
or to identify the appropriate person with whom to speak. Some examples of the irst
people to interview include:

• CIO/CTO
• The CFO

• The IT/Financial Audit manager
• The Information Systems manager

• The HR manager

• The Subject Matter manager (for example, head of engineering or
pharmaceutical development)

The interviews for the high-level personnel are typically brief. It is important to
stress the importance of the interview to the interviewee and also to ask the same list
of questions to each. While one interviewee may have told the investigator about a
particular system, he may have a limited view or knowledge of the system. As such,
asking the same question to multiple interviewees can result in a more complete and
accurate answer. Several of the important topics to cover in the interview include:

• Which systems definitely contain data pertaining to the requirements?
• What is the size of each of those systems (number of records,

size on disk, and so on)?
• Who are the IT and business owners of each system?
• What other systems might contain information pertaining to

the requirements?
• Who else might know of systems that pertain to the requirements?
• Are there any known data quality or completeness issues related to

the system?

http:///

Identifying Big Data Evidence

[62]

Collecting documentation is critical throughout the data location process, but it
is especially critical in the early stages to help identify sources of data that might
have slipped the attention of the interviewees. Ask each interviewee to provide all
requested documentation. If they are unable to provide any, ask them who would
be able to, or have them request the documentation from their team. The following
types of documentation can be extremely helpful:

• System architecture diagrams

• Database listings

• Database diagrams

• IT budgets (to identify Big Data hardware expenditures)

• Software versions, specifications, and implementation details

To conclude the system architecture review phase, fully document all interviews
that were conducted, being sure to note who was interviewed, when, by whom, and
what was covered. Also, be sure to note action items and any additional details of
note. Next, compile the list of additional points of contact and schedule interviews
with them. Finally, review all documentation, and create an initial spreadsheet
about each system mentioned, including all details pertaining to them.

Interviewing staff and reviewing the

documentation
The staff interview and documentation review process has the following goals:

• To clearly define the scope of what needs to be collected

• To identify data limitations

• To construct a collection plan that will either be carried out by internal
staff or external analysts

The process consists of using the initial scope created in the system architecture
review phase, leshing out the details by speaking to lower-level staff, and examining
the data. In addition, it is critical to fully document any data gaps, such as missing
backups, purged data, or data made inaccessible by the software. Finally, create a
plan detailing every step of the collection, including means for logging the process
and collecting control numbers and error messages. This can be accomplished
by fully reviewing all documentation and working closely with the IT personnel
responsible for the data.

http:///

Chapter 3

[63]

Staff are typically the ones who best understand the details of the available data
and business processes. They work with the data, in the processes, and execute the
procedures. Key staff members have already been identiied or previously interviewed
before the staff interview process, so the C-suite staff most likely do not need to be
interviewed again. The staff interview process focuses on the day-to-day operations
personnel. Examples of the staff that should be interviewed include:

• Manager-level staff

• The top technical and IT staff, including database administrators
and programmers

• The HR personnel (for employee information and identifying additional
staff for interviews)

• The subject matter experts for the matter in question (for example, financial
analysts, accountants, and engineers)

The focus of the interviews is to identify relevant data sources, possible approaches
to acquire the data, and any limitations or caveats that apply to the data. Most of
the relevant systems have already been identiied. Follow up with the interviewees
about these systems to ind out more information about the systems. Determine
what the standard business process is for the system, such as how data gets created
and imported into the systems, how data in the system is used, and data or reports
generated from the systems. Business-side interviewees are critical for understanding
how the systems are used, so ask key questions about the processes that exist.

Technical staff, such as database administrators, are the best source of information
for understanding the data life cycle and how to potentially extract data from the
source systems. Retention policies are an important issue to cover in technical
interviews. Does the source system have a data purge policy that automatically
removes data of a certain age from the system? If so, does an archive version of the
data exist in a different system or on backup media? Likewise, ask if any retired or
archived systems that may contain relevant information are available. In addition,
not all systems provide a method for quick and easy data extraction. Discuss with
the technical interviewee what the possible approaches are for extracting the data.
Big Data systems have a number of methods for data extraction, though some may
impact business operations more than others. Communicate the time requirements,
and establish conservative time estimates for how long extracting the data will take.

All available documentation should be requested in every interview. Documentation
provides additional information about systems, and it can serve as a road map for
understanding business processes, system interrelationships, and the details of
how data are stored in the systems. Ideally, interviews are only conducted once,
so requesting the documentation during or before the interview will reduce the
need for a follow-up interview.

http:///

Identifying Big Data Evidence

[64]

Investigators will want to request the following documentation in the staff interviews:

• The business and subject matter experts

 ° Policy and procedure documents

 ° Business process guides and manuals

 ° Application manuals

 ° Sample reports

 ° Organization chart

• The technical and IT Staff

 ° Data dictionaries

 ° Entity-relationship diagrams

 ° Schema documentation

 ° Descriptions of coded values stored in the database

 ° System architecture diagrams

 ° System manuals

 ° Data retention policies

 ° Summary of user access rights and security rules

 ° Application listings

No interview can be truly complete and answer all questions that may ever arise. The
focus of the interview, however, is to get a deep enough understanding of the systems
and available data to irmly establish which sources of data are relevant, how the data
can be extracted, and which business rules were in place to create and make use of the
data. Focusing on those critical questions will streamline the process. Some interviews
can only be performed once, especially in cases of a hostile client or a company that
will be terminating that person's employment. Conducting the interview with the
mindset of having only one shot at it makes for a more complete and informative
interview. If there is the opportunity for a future follow-up interview, remember to
collect that person's e-mail and phone information, and express that a future interview
may be required.

The following igure is a sample questionnaire with initial questions for interviewing
a database administrator:

http:///

Chapter 3

[65]

Figure 2: A sample questionnaire

Assessing data viability
Assessing the viability of data serves several purposes such as the following:

• It allows the investigator to identify which data sources are
potentially relevant

• It yields information that can corroborate the interview and
documentation review information

• It highlights data limitations or gaps

• It provides the investigator with information to create a better data
collection plan

Up until this point in the investigation, the investigator has only gathered
information about the data. Previewing and assessing samples of the data gives
the investigator the chance to actually see what information is contained in the data
and determine which data sources can meet the requirements of the investigation.

http:///

Identifying Big Data Evidence

[66]

Assessing the viability and relevance of data in a Big Data forensic investigation
is different from that of a traditional digital forensic investigation. In a traditional
digital forensic investigation, the data is typically not previewed out of fear of altering
the data or metadata. With Big Data, however, the data can be previewed in some
situations where metadata is not relevant or available. This factor opens up the
opportunity for a forensic investigator to preview data when identifying which data
should be collected.

There are several methods for previewing data. The irst is to review a data extract
or the results of a query, or collect sample text iles that are stored in Hadoop. This
method allows the investigator to determine the types of information available and
how the information is represented in the data. In highly complex systems consisting
of thousands of data sources, this may not be feasible or it might require a signiicant
investment of time and effort.

Querying Hadoop databases such as HBase and Hive are covered in
the later chapters.

The second method is to review reports or canned query output that were derived
from the data. Some Big Data solutions are designed with reporting applications
connected to the Big Data system. These reports are a powerful tool, enabling an
investigator to quickly gain an understanding of the contents of the system without
requiring much up-front effort to gain access to the systems.

Data retention policies and data purge schedules should be reviewed and considered
in this step as well. Given the large volume of data involved, many organizations
routinely purge data after a certain period of time.

Data purging can mean the archival of data to near-line or ofline storage, or it
can mean the destruction of old data without backup. When data is archived, the
investigator should also determine whether any of the data in near-line or ofline
backup media needs to be collected or whether the live system data is suficient.
Regardless, the investigator should determine what the next purge cycle is and
whether that necessitates an expedited collection to prevent loss of critical information.
Additionally, the investigator should determine whether the organization should
implement a litigation hold, which halts data purging during the investigation.
When data is purged without backup, the investigator must determine:

• How the purge affects the investigation

• When the data needs to be collected

• Whether supplemental data sources must be collected to account for the lost
data (for example, reports previously created from the purged data or other
systems that created or received the purged data)

http:///

Chapter 3

[67]

The following igure is a high-level depiction of the various sources of information
and methods for assessing the data in the identiication phase:

Figure 3: The data assessment process

Identifying data sources in noncooperative

situations
Not all investigations involve a cooperative organization with staff who can be
interviewed. Most investigations have one or several of the following types of staff:

• Cooperative: Willing to be interviewed and unlikely to attempt to hide
or destroy evidence or attempt to deceive the investigator

• Hostile/Adverse: Somewhat willing or unwilling to be interviewed
and likely to attempt to hide or destroy evidence or attempt to deceive
the investigator

• Unavailable: Staff knowledgeable of the evidence but unavailable to
be interviewed (for example, the company went bankrupt or potential
interviewees are in police custody)

www.allitebooks.com

http:///
http://www.allitebooks.org

Identifying Big Data Evidence

[68]

Identifying evidence when the staff members are either unavailable , hostile, or
adverse is more dificult. Each of these cases requires a speciic approach. First,
working with hostile or adverse staff poses problems with the identiication of
evidence and the availability and veracity of the data. Hostile staff members are
more likely to cause problems with the identiication of data by giving incomplete
or dishonest answers to questions or by hindering access to systems. Hostile staff
members may feel encumbered, annoyed, or somehow inconvenienced by the
investigation and will act accordingly. They should still be interviewed because
they may provide useful information that can be validated.

Strategies for dealing with hostile staff include the following:

• Conducting a standard investigation with interviews of other staff and
review of documentation

• Expressing to the interviewee the importance of the investigation and all
the ramifications that may exist for their noncompliance

• Verifying the interviewee's answers with those of other interviewees

• Cross-validating data from systems owned or accessed by the interviewee
with other data sources

Adverse staff members are also likely to be dificult and may not be trustworthy. In
addition, they may carry out actions that could affect the investigation. Adverse staff
members may be subjects of the investigation, or they may be negatively affected by
the outcome of the investigation. For example, in the Bernard Madoff Ponzi scheme
investigation, key programmers and IT personnel were both parties to the litigation
as well as some of the only staff with information pertaining to key programs and
data. Adverse staff members should be interviewed, but their answers require
careful scrutiny and veriication. In addition, they may carry out actions to alter
or destroy the data or create new data to stymie the investigator.

Strategies for dealing with adverse staff include the following:

• Expediting the collection of potentially relevant data and/or freezing all
adverse staff's access to the data

• Conducting a standard investigation by interviewing other staff members
and reviewing the documentation (if possible)

• Expressing to the interviewee the importance of the investigation and
all the ramifications that may exist for their noncompliance

http:///

Chapter 3

[69]

• Verifying the interviewee's answers with those of other interviewees

• Cross-validating data from systems owned or accessed by the interviewee
with other data sources

The third scenario is where no or limited staff members are available for interviews.
This can arise in situations such as:

• Bankruptcy

• All staff members are subject to the investigation and refuse to cooperate

• No staff members knowledgeable about the data or systems are available

This scenario requires placing more of an emphasis on the review of documentation
and the previewing of system data. This scenario also requires much more time for
the investigator. The time saved by having someone knowledgeable identify the
systems is replaced with reviewing even more documentation and determining the
type of data available in each system. For Big Data, this is not overly problematic,
because there are typically only several Hadoop instances. However, identifying
all of the underlying data and Hadoop applications requires signiicant effort.

Strategies for handling situations where staff members are not available include
the following:

• Collecting and reviewing key system-related documentation

• Identifying the location (physical or logical) of systems and data sources

• Performing a detailed review of data in the identified systems

Data collection requirements
Detailing the data collection is a process that involves assimilating all information
from the client interviews and gathered documentation to form a precise plan and
set of requirements for collecting all relevant data. The requirements should be in
clear, plain language that can be understood by anyone. Complex requirements
in highly technical or legal language can result in a misunderstanding between
the investigator and the data collector. Be sure to state the relevant facts about
the types of data that need to be collected, and explicitly spell out all supporting
documentation requests and considerations.

The data collection stage involves identifying data source information as well as
working with both structured and unstructured data. The following sections cover
these topics in detail.

http:///

Identifying Big Data Evidence

[70]

Data source identiication
Based on the facts and issues identiied in the initial stages, list all systems that could
potentially contain relevant information. The system documentation and interview
information will provide a wealth of necessary, semi-useful, and extraneous data.
Obviously, the investigator will need to include the necessary data sources in the data
collection requirements. However, the question of whether to include the semi-useful
and extraneous data sources is centered on the data size and the time limitations of the
investigation. There may be the potential for additional analysis that was not deemed
essential during the initial stages.

When a system contains semi-useful data, several questions should be answered
as follows:

• Does the necessary data source contain information that can address all facts?
If not, does the semi-useful data source address any of the remaining facts?

• Is the effort required to collect the semi-useful data minimal, and is the data
volume manageable?

• Does the semi-useful data source serve as a bridge between the necessary
data sources, or does it serve to fill a gap or address a data weakness in the
necessary data?

If the answer to any of these questions is yes, then the investigator should consider
including the semi-useful data in the data collection. The reasons for this include:

• The semi-useful data is actually necessary

• The data collection impact is minimal, and it doesn't hurt to include the data

• The semi-useful data serve a secondary role in enabling the analysis to be
performed with the necessary data

Plan for data gaps and anomalies. Assume that the system(s) will
have data issues. Collecting data from multiple systems can allow
for validating data across systems and can cover gaps in data.

The investigator should carefully consider any data that is deemed non-relevant
during the data collection phase. The risk of not collecting data during the initial
stages is that there will not be a second chance to collect it. The data may be deleted
or modiied later, and another opportunity to collect the data may not exist. The
timing of performing a second data collection may hamper analysis at a later stage.

http:///

Chapter 3

[71]

Consider the following when determining whether a data source is unnecessary:

• What information does the data contain?
• Is the data completely redundant to another data source that will be

collected?
• Will the data still exist in its current form at a later date?

Even if the data source is unnecessary, the investigator should document the answers
to those questions. Ignoring a data source can require justiication at a later stage.
Documenting the reasons when the information is irst made available will help the
investigator provide a clear answer should any questions be asked at a later stage.

Regardless of the type of data source, document the following about each
data source:

• The official name of the data source

• The data source owner(s)

• The description of the type of information the data source contains

• The type of data source (for example, HBase database)

• The data volume: size on disk and number of records

• The method for data extraction

• The effort required for extraction: man-hours, system impact, and total time

• The associated costs for extraction

Structured and unstructured data
Chapter 1, Starting Out with Forensic Investigations and Big Data, covered the concepts
of structured and unstructured data. However, the line between the two can become
extremely blurred when collecting Big Data. Both structured and unstructured
data can be stored in a Big Data system. The investigator needs to understand the
difference between these forms and whether data should be collected in a structured
or unstructured format. Structured data offers the advantage of easier analysis, but
collecting unstructured data in its original form can be faster and may contain
more content.

Big Data systems can include data in numerous forms. Unstructured text iles can
be imported, stored, and queried in Hadoop. This unstructured data can then be
transformed into a structured form or otherwise combined with other data sources.
The investigator should be aware of the various structures of the data that is to be
identiied and collected.

http:///

Identifying Big Data Evidence

[72]

Some forms of unstructured and semi-structured data fall under the umbrella of
a structured data analysis in later stages. For example, users at a company may
maintain a set of delimited or markup iles for accounting purposes. These iles,
while technically considered unstructured, contain structured data. Ignoring these
iles would not be prudent simply because they were stored in an unstructured ile
format. Instead, the spreadsheets should be collected and later transformed into
a structured format for analysis. The following table shows the format of the data
contained in a delimited ile:

CustNum Name Addr1 City State Zip Notes

1000011

John

Doe 123 Main St Centreville VA 55555 Paid on time

1000012

Jane

Doe 123 Main St Centreville VA 55555

Delinquent;

follow-up required

1000013 Joe Doe

456 Center

Rd Anytown GA 55554 N/A

1000014 Jill Doe

456 Center

Rd Anytown GA 55554 Call 5551230002

Unstructured data do not have the same rules and composition restrictions that
structured data have. This lack of rigidity and structure allows data to be stored
and presented in varied ways. Some of the most common forms of unstructured
data include:

• E-mail

• Presentation documents

• Video and audio files

• Textual documents (for example, MS Word documents and PDF files)

• Graphics files

• Executable binary files (for example, Windows .EXE files)

Some forms of these iles may contain structured information, despite being
unstructured or semi-structured iles. Client interviews should allow the investigator
to determine whether these iles should be collected and whether an option exists for
collecting the data in a structured or unstructured form. For example, unstructured
text iles can be stored in an HDFS, but this data can be collected in a structured form
via Hive or Sqoop. The investigator also needs to consider how to validate collected
data, which is easier if the entire unstructured ile is collected.

The next three chapters provide information on how to choose the proper method for
collecting both structured and unstructured data.

http:///

Chapter 3

[73]

Data collection types
Two primary categories of data collections can be made. First, the data collection
can be performed by the investigator. In this situation, the investigator performs
the forensic collection by accessing the source systems and collects the data for
ofline analysis. Alternatively, in some cases, such as civil litigation, the investigator
can request the system owner or third-party to collect the data. In such cases,
the investigator may oversee, advise, or simply be a passive participant in the
collection process.

The requirements of the investigation dictate which option is chosen.
Investigator-led collections have the advantage of being correctly performed and
veriiable. The investigator knows what data needs to be collected and performs
the collection using best practices. Because the investigator is unbiased, the collection
is less likely to be questioned. An organization-led or third-party collection has the
advantages of potentially being cheaper and less disruptive to the organization.
The disadvantages are the collection may not be performed correctly, data may
be accidentally or intentionally altered, and the collection may not be performed
as quickly. The individual investigation requirements such as investigation issues,
time considerations, and cost factors are the ultimate arbiter that determines who
should perform the collection.

In-house or third-party collection
Having an internal organization collect its own data or relying on a third-party to
perform the collection is contingent on carefully speciied requirements. Criminal
and civil cases involving forensics routinely involve data collected by someone other
than the investigator. Under certain circumstances and after carefully documenting
requirements, someone other than the investigator can successfully perform a data
collection. The key is to properly identify the data sources, the speciic data points,
and any ilters that are required. Also, the investigator must make it clear to the party
collecting the data that the evidence cannot be modiied. The investigator may need
to train the party performing the collection on best practices. From there, a detailed
data collection request can be delivered to the party conducting the data collection.

The types of data to request
Multiple types of data requests can be made. Some investigations are simple and
only involve a single data source, such as a single Hive database. Data requests for
investigations with a single data source (for example, one database) are much faster
and simpler than investigations whose data span multiple systems. Each of the data
sources identiied can be categorized to simplify the way in which the requests
are written.

http:///

Identifying Big Data Evidence

[74]

The main types of requests are:

• Loose files (for example, XML or JSON files)

• Entire databases

• Specific database tables

• Specific types of records from multiple database tables

• Specific records from a single database table

Evaluate each of the data sources deeply to identify the type of data request each
is. Documenting this level of detail allows the data collector to better identify
collection options.

A data request involving loose iles will need to address the following:

• Filenames, folder names, and/or file share locations
• File types (for example, text files or spreadsheets)

• File versions

• Date ranges for file creation or last update

Requesting the collection of an entire database server is straightforward; the
investigator just needs to state the name of the server and the format of the
extracted data.

Requesting speciic objects from a database is a more complex request. It is performed
when only speciic information is needed from the data source and when the volume
of data of the entire data source is too great to extract everything at once. Databases
can store terabytes to petabytes of data in tens of thousands of objects. Extracting all
the information can be an overly burdensome request that would negatively affect
business operations or would take too much time. As such, targeted data collections
can be performed instead to limit the impact to the data source and business
operations, as well as reduce the amount of time to perform the extraction and transfer
the data. The request for the individual objects from a database should explicitly state
which objects are needed and spell out any iltering criteria that need to be applied.

The data collection request
The data collection request document is a formal document that clearly presents all
collection request details and the parties responsible. The keys to a successful data
collection request document are:

• Clear, plain requirements

http:///

Chapter 3

[75]

• Specifics (for example, system name and output format)

• Accountability

• Stating deadlines

• Standardized requests

One example of a poor data collection request would consist of an e-mail to a
database administrator requesting "all records in 2008 related to sales". The database
administrator, in this example, would be left to make a judgment call about the nature
of the request. The "2008" portion of the request may result in the DBA providing
all sales records that were fulilled in 2008, rather than all possible orders, including
cancellations. In addition, the DBA may not properly capture all types of records
that would relate to sales, such as inventory records and customer communications.
Moreover, the DBA may provide the extract in a cumbersome data format and assume
that he has three weeks to complete the request. Any of these miscommunications can
result in a failed investigation.

Instead, the request should be very speciic, assign a deadline, and be in a
standardized request format. The speciics of the request depend on the type of
system being collected; however, several types of details are typically presented:

• The exact servers, databases, and tables from which to exact the data. If
backup media are involved, clearly explain which backup media to use.

• The fields to collect.

• The types of date and user restriction criteria. For example, all records with a
"date ordered" between 2008 and 2010, or all records with a "last updated by"
a Miami office user.

• Look up or code definition tables that provide detail on embedded
code meanings.

Clearly identifying people responsible for each task and assigning their deadline is
critical. Most investigations are time sensitive, so having clearly deined deadlines can
help eliminate surprises and help set expectations so the analysis can be performed
on time. Communicating with only the person responsible for the task may not be
suficient; consider including their boss and/or general counsel to ensure others
are aware of the deadline and can help push the request along. While seemingly
insigniicant, specifying the output format can also avoid unwanted surprises when
the data is delivered. The investigator's analysis tool may not support the data in
the format provided, which would require an entirely new data extraction to be
performed. The person providing the data may supply the data in a proprietary
database format, whereas the investigator may need the data in a pipe-delimited
text ile with double quote text qualiiers. Establishing the desired format up front
is critical to avoiding such problems.

http:///

Identifying Big Data Evidence

[76]

The language of the request should be understandable to anyone involved. A DBA and
a lawyer should both have a complete understanding of the request. Including legal
language in a data request is a simple way to confuse IT staff, while including highly
technical language will confound an attorney. Stating a precise technical request such
as "left join table 1 to table 2 on non-null values in ield X" will make sense to someone
well versed in databases, but that language is meaningless to outsiders. Instead, make
the requests in plain English so that anyone can understand what needs to be collected.
Avoid using jargons such as "left join." In this example, the investigator would want
to rephrase the request to say "include all records from table 1 and also provide any
matches between table 1 and 2 on records that match in the ield X when that ield is
populated in both tables. Include records from table 1 when no matches exist in table
2." While wordier, the language is precise and its meaning is not dependent on legal
or technical translation.

Collecting the correct documentation about the collection is critical for later verifying
that the collection was performed correctly. The collection will need to be veriied, so
information about how the collection was performed as well as when, and by whom,
is needed to ensure the collection was performed correctly and completely. Control
totals and information about how much data was collected is also later used to verify
that all data was correctly collected and loaded into an analysis platform.

Specify all required documentation related to the data collection in the
request. Requesting documentation that pertains to what was collected
and the method used to collect it will be important when verifying
the data collection. It will also serve later to prove that the data was
properly and completely collected.

The irst form of collection documentation includes the query iles used to extract
the data or the log iles that show what was collected. The queries are the logic run
that determine what types of records were pulled. A review of the query iles will
show how the extraction was performed. The result is then cross-validated with
the requirements to prove that the correct logic was applied. Log iles, likewise, are
used when the extraction was performed without a query. The log iles are generally
created through database backups or automated extraction programs. These logs will
show when the data was extracted, by whom, how many objects and records were
extracted, and if any ilter criteria were applied.

http:///

Chapter 3

[77]

Control totals and hash values are an important component of collection
documentation and should be included in the request. Hash values are typically the
MD5 or SHA-1 computed values for a ile or data container. These are collected when
information is collected either from the host operating system or HDFS. Control totals
are computed and collected when data is collected from other means most often from
databases via queries. No best practice rules exist that precisely outline what needs
to be collected, but at a minimum, the number of records, tables or schemas, and/or
databases should be collected. In addition, collecting computed values is useful for
proving that key ields or records were not altered. For example, standard methods for
validating that a collection was performed properly include computing the summed
value of a key numeric column or computing the list of distinct names and the number
of records per name.

Screenshots and server logs are also useful forms of documentation. The screenshots
can show the steps taken to perform the collection. Screenshots can also be taken to
gather control totals from system monitor applications or other utilities. Screenshots
are valuable when collecting control totals or logs is dificult or infeasible. Server logs
can also contain valuable control total information that can be more easily collected
than control totals. If server logs contain the necessary information and are easily
obtained, an investigator should consider requesting these in lieu of control totals.

Several other key requirements should be speciied to avoid confusion or delays in
the collection:

• Specify the output format of data (for example, CSV)

• Request column headers and field definitions

• Note any data limitation requirements (for example, do not include
personally identifiable information (PII), such as SSN)

• Specify how to transfer data (for example, encrypted hard drive or Secure
File Transfer Protocol (SFTP))

• Provide a standardized data collection form for the collector to fill out

http:///

Identifying Big Data Evidence

[78]

The following igure shows a sample data collection request document that can be
adjusted to the requirements of the request being made:

Figure 5: The data collection request form

An investigator-led collection
In the identiication phase, an investigator-led collection is virtually identical to a
collection performed in-house or by a third party. An investigator who intends to
perform the collection should also draft a collection plan that speciies the same
information as a data request document. This document should clearly outline
the following:

• What information needs to be collected

http:///

Chapter 3

[79]

• The steps that will be taken to collect the information

• How the collection process will be documented

Depending on the nature of the investigation, an investigator may want to share the
collection plan with the owners of the systems to ensure that all systems will be made
available. This will also help minimize any potential disruption to the organization.

The next three chapters detail the steps necessary for an investigator to perform the
data collection. The remaining chapters cover the analysis and presentation phases,
which apply to both an investigator-led collection and collections performed by
other parties.

The chain of custody documentation
The chain of custody documentation needs to be established as soon as evidence is
collected. If a collection is being performed by in-house staff or a third-party, chain
of custody forms should be illed out by the person performing the collection and
anyone who takes possession of the evidence. The chain of custody documentation
is a chronological history that shows who had possession of the evidence. This
is important in both criminal and civil investigations to prove who had access to
the evidence and who could have potentially altered the evidence. Every time the
evidence is exchanged between two people, the chain of custody documentation
should be updated to document when the transfer occurred and who was involved.
The following igure is a sample chain of custody document:

Figure 6: The chain of custody form

http:///

Identifying Big Data Evidence

[80]

Summary
The data identiication phase is an iterative process of locating sources of information
about potentially relevant data. Part art and part science, data identiication requires
making use of available sources of information. Data identiication irst establishes
the full set of data sources, who owns those data sources, and what the data sources
contain. From there, an investigator can home in on exactly what information is
available in each data source and determine what information from each data source
needs to be collected. Big Data systems are voluminous and collecting petabytes
of data is rarely a viable option, so an investigator needs to exert caution when
determining what data to collect. However, that caution has to be tempered with
the need to completely collect relevant data the irst time because that data may
not be available after the collection process is inished.

The next two chapters explain how to collect the forensic evidence identiied by the
steps in this chapter. The next chapter covers forensic collection of the HDFS layer,
which involves both traditional and Big Data-speciic forensic techniques to collect
bit- and ile-level evidence.

http:///

[81]

Collecting Hadoop

Distributed File System Data
The Hadoop Distributed File System (HDFS) is the primary source of evidence in
a Hadoop forensic investigation. Whether Hadoop data is used in Hive, HBase, or a
custom Java application, the data is stored in HDFS. This means the forensic evidence
can be collected from HDFS. Investigators can take two collection approaches: collect
HDFS data from the host operating system or directly from Hadoop.

The advantage of collecting from HDFS is investigators can collect much more data
than they can from a data analysis layer or application layer. Some potentially relevant
data can only be collected through HDFS. This includes metadata, coniguration
iles, user iles that were not imported into an application, custom scripts, and other
information. In some forensic investigations, this otherwise ancillary data can be
crucial for determining how the system operated and how the system was used.

Collecting evidence from HDFS can be more time- and effort-intensive than collecting
the evidence from a Hadoop application. HDFS evidence is the raw data, and that
data can be voluminous and distributed across a number of nodes. Collecting data
from HDFS in a Hadoop cluster with over 100 nodes can require going to each node
and collecting all of the individual data with that data later being pieced together for
analysis. Both the collection and analysis of the data can require much more time and
effort than a collection involving querying the relevant data out of Hive, for example.

http:///

Collecting Hadoop Distributed File System Data

[82]

As a distributed system, collecting HDFS data may require collecting data from
each node. Both the NameNode and DataNodes contain potentially relevant
information. Collecting HDFS data can involve collecting from each node separately
for certain collection approaches. Depending on the collection method and Hadoop
architecture, this can be dificult. With cloud-based storage and geographically
disparate systems, the collection can require extra time to complete or it may be
altogether impossible if the evidence cannot be located. A distributed architecture
can require multiple different collection approaches or at least a more complex
and time-consuming process.

HDFS data can be collected in several different ways as follows:

1. Take a complete forensic image of the host operating system and all
attached Hadoop storage for all nodes.

2. Mount HDFS to the host operating system and image the mounted
drives for all nodes.

3. Make a logical copy of all HDFS iles and directories.
4. Take a targeted collection of only the relevant iles.

Throughout this chapter, references are made to the various Hadoop layers and
different techniques for collecting data from HDFS. Conceptually, all Hadoop data
should be thought of as residing in disk storage accessible from the host operating
system. That data can be collected in numerous ways from each layer. Each collection
method has its pros and cons, and an investigator must weigh these in accordance
with the circumstances and requirements of the investigation.

This chapter covers the techniques used for collecting HDFS evidence. The greatest
challenge to collecting HDFS evidence is collecting them from multiple nodes. So
in this chapter, we'll spend time on how to handle this situation. We also cover the
following topics:

• Collecting HDFS data from the host operating system using HDFS
mounting tools

• Collecting HDFS data through the Hadoop command line

• Capturing metadata

• Using Sqoop to collect HDFS data

• Collecting HDFS evidence from remote storage (such as Amazon's
S3 storage)

http:///

Chapter 4

[83]

Forensically collecting a cluster system
Collecting Hadoop data requires acquiring data across multiple cluster nodes.
Hadoop's cluster design is structured, so data is distributed across multiple nodes.
With the potential for node failure, that data is also redundantly stored across nodes.
For a forensic investigator, this means data collection involves collecting data from
most or all of the nodes.

In traditional forensic investigations, a single machine or server array is acquired.
An investigator can pull the hard drive and perform a physical acquisition of the
hard drive. The investigator may not be permitted to turn off the server and pull
the server's hard drives. However, the investigator can access the server and
collect the server data and any data on attached storage devices.

For Hadoop, or any cluster system, this is rarely the case. A Hadoop cluster may
have a series of connected nodes, or its nodes could be geographically distributed.
Regardless, multiple nodes are connected through Hadoop, and these nodes may
not be connected in a way that is accessible through the host operating system. The
volume of data stored by Hadoop can make the full collection of all nodes infeasible,
and the data stored in HDFS is obscured by the Hadoop layer. These factors require
an investigator to approach Hadoop collections differently from non-cluster
server collections.

Several options exist for collecting Hadoop cluster data:

• Collect data from the host operating system individually for each node

• Collect data from HDFS using a Hadoop client

• Collect data from Hadoop applications (for example, HBase)

The irst option, and the most dificult and time-consuming, is collecting data from
the host operating system individually for each node. This method requires the
investigator to collect the HDFS data stored on each node from the host operating
system. This can either be achieved by imaging the Hadoop partitions or by
performing a targeted collection of the HDFS data containers from the host operating
system. The drawback to this method is that every node in the cluster must be
identiied and collected. For example, if a cluster has 50 nodes, all 50 nodes must be
collected. This method is useful and sometimes required when the Hadoop cluster is
ofline, such as when there is a concern the Hadoop cluster data may be modiied or
lost if it is left or brought online. This method also preserves metadata and enables
investigators to use forensic tools such as dd for the collection.

http:///

Collecting Hadoop Distributed File System Data

[84]

Data can be lost when Hadoop is taken ofline. This topic is covered in the discussion
on fsimage and edits iles in the section Hadoop ofline image and edits viewers. The
second option is collecting HDFS data by connecting to the cluster from a Hadoop
client. This method has a great advantage. An investigator can perform the collection
from a single machine while preserving the metadata. The process involves collecting
evidence through the Hadoop command line. If the NameNode and all DataNodes
are online and accessible, this method enables the investigator to capture all online
data and its metadata without having to collect from each individual DataNode.
This method is only viable when the NameNode and all of the required DataNodes
are online.

The third option is collecting data from Hadoop applications. Rather than collect data
from the host operating system or directly from HDFS, collecting from applications
often meets the requirements of an investigation. Big Data investigations typically
hinge on the contents of the data in the system applications, and not on the metadata.
This method involves collecting data through the applications, usually via queries or
data extracts. The drawback is that metadata, deleted data, and other forensic artifacts
are not collected. This, however, is not always an issue with Big Data investigations.
In fact, collecting data from applications is the preferred method for many types of
investigations in which the contents of the system are the prime evidence.

A hybrid approach can also be applied. An investigator need not be limited to only
one option. If the primary data of interest can be accessed from an application, but
Hadoop log data is also of value, the investigator can use two methods—one to
forensically collect from the application and one to forensically collect the log data.
Typically, an investigator only uses one method. However, best practice supports
a hybrid approach when practical factors dictate that an investigator use multiple
approaches to meet the requirements of the investigation.

For a host operating system collection, acquire means a forensic acquisition or
targeted collection. For a Hadoop client collection, acquire means to perform a
ile-based targeted collection. For a Hadoop application collection, acquire means
using a query-based acquisition method. Note that the use of Acquire in the
illustration means something different in each method. The following igure
illustrates the differences between these three methods:

http:///

Chapter 4

[85]

Figure 1: Hadoop collection methods

Another consideration with Hadoop collections is non-HDFS storage. Hadoop can
work with data outside of HDFS by importing input data, analyzing the data, and
then deleting the input data. In addition to inputs, Hadoop output can be stored
outside of HDFS. Hadoop applications can generate analysis that gets transferred
outside of HDFS for further analysis or data storage. HDFS data can also be archived
outside of HDFS for data retention purposes.

Investigators need to be mindful of these possibilities and ensure that data outside
of HDFS is properly identiied so they can make the correct determination about
collecting the data. Failing to collect the HDFS inputs and outputs can result in an
incomplete collection, and subsequently, the analysis will be incomplete as well.

Instances of non-HDFS data input and output data storage can be
located during the identiication phase by analyzing scripts and
interviewing personnel.

http:///

Collecting Hadoop Distributed File System Data

[86]

Physical versus remote collections
Hadoop data collection can either be performed directly on the Hadoop cluster or
via remote access. Physical collections are any form of data acquisition in which the
investigator is physically interacting with the cluster, typically by pulling the cluster's
hard drives and imaging them. Alternatively, collections can also be performed
remotely. In such cases, the investigator accesses the cluster through a network
connection and acquires the data through a terminal over the network connection.

Hadoop can be run in many different designs and conigurations. The Hadoop
cluster can be run on physical devices with Hadoop being installed on the host
operating system. Hadoop clusters can also be set up using a series of virtual
machines. With the increased use of cloud computing, Hadoop also can be run
as a Platform as a Service (PaaS) with the actual servers running Hadoop being
masked by the abstraction of the cloud service. Additionally, Hadoop can be
designed and run as a combination of these conigurations.

The different Hadoop designs have their own issues for forensic collections.
Hadoop clusters installed on the host operating system are the most straightforward
of the designs for an investigator to collect. With this design, the investigator has
the option to pull the hard drives and collect the data in one of three ways: through
the host operating system, through the Hadoop command line, or by running an
application-based acquisition. With virtual machines, the collection and analysis
phases are more dificult if the investigator wishes to pull the hard drives. In such
situations, the investigator needs to acquire the entire set of drives that contain
the virtual machines and then carve out the relevant data from each of the virtual
machines. This can require the investigator to install the same virtual machine host
software to access the virtual machine data. Finally, cloud or PaaS acquisitions
limit the investigator's ability to physically access the machine. In this situation,
the investigator is typically limited to command-line or application-based
acquisitions. Even in these cases, the cloud or PaaS service provider may have
applied security limitations that prevent software from being loaded or certain
system iles from being accessed.

Non-local or ofline storage is also a major consideration in Hadoop investigations.
The massive data volumes stored in Hadoop make on-site, physical storage of all
data infeasible for some organizations. Some organizations choose to store parts of
Hadoop data ofline. This data can either be HDFS or non-HDFS data. In either case,
the information can be relevant for an investigation. Even if all HDFS data is stored
on-site and is physically accessible, other data can be stored off-site, either within
that organization's systems or with a third-party provider.

http:///

Chapter 4

[87]

HDFS collections through the host

operating system
The host operating system is where many traditional forensic investigations
begin and end. The forensic evidence resides in disk storage accessible by the host
operating system, which stores metadata about the evidence that cannot be accessed
from other layers. The same cannot necessarily be said for Hadoop, but there are
methods for collecting HDFS data from the host operating system.

Currently, HDFS is not natively recognized by any of the modern operating systems,
so HDFS cannot be natively accessed by the host operating system as a ilesystem.
HDFS is stored in the host operating system's ilesystem, but this information resides
in the allocated space that cannot be read from the host operating system. This means
an investigator cannot easily perform a forensic collection of HDFS data through
the host operating system. There are three primary methods for collecting Hadoop
evidence from the host operating system:

• Imaging the host operating system

• Mounting HDFS and imaging the mounted HDFS drive

• Performing a targeted file collection

Imaging the host operating system is useful for collecting all evidence from the
host operating system and HDFS. This method captures Hadoop coniguration iles
stored in the host operating system and the entire contents of HDFS. The signiicant
downside to this method is the dificulty in analyzing the collected evidence. To
extract the data during analysis, the investigator has to carve the HDFS data from
the image for analysis.

Mounting HDFS is a much simpler method for collecting all HDFS data. This method
makes all the HDFS data available for collection without having to later carve out the
evidence. Mounting HDFS enables an investigator to target the HDFS data without
needing to collect the host operating system data. There are several drawbacks to
this method, however. Investigators may need to install a mounting tool on the host
operating system, a mounted HDFS partition has a slower response speed, metadata
is not accessible, and mounting software offerings tend to have bugs.

Performing a targeted ile collection involves collecting Hadoop data stores from
the host operating system. This method enables the investigator to work in the host
operating system and collect the HDFS data. Performing a targeted collection offers
an easy method for collecting HDFS data, but it also requires more effort in the
analysis phase to access the collected data.

http:///

Collecting Hadoop Distributed File System Data

[88]

Next, the three methods for collecting Hadoop evidence from the host operating
system are examined.

Imaging the host operating system
Host operating system collections take a complete copy of one or more disk volumes
from the host operating system. The copies, called images, are exact bit-by-bit replicas
of the source disk volume and are stored in a data ile for later analysis. Typically,
forensic investigators also compute a checksum using MD5 or SHA-1 to verify the
image is an exact copy. The following igure illustrates the forensic copy process:

Figure 2: Host operating system collection

Host operating system collections can be performed by imaging an entire disk
volume. If possible, the investigator should attempt to perform this type of collection
with the source ilesystem mounted in the read-only mode. This can be achieved
by booting the system with a copy of Linux designed for forensic collections that
automatically mounts all drives as read-only. This is not always possible, especially
with Big Data systems. When the system cannot be acquired in the read-only mode,
the investigator should note this in his documentation.

One of the most popular bootable freeware Linux forensic distributions
is Helix. For more information about Helix, visit www.e-fense.com/
products.php.

Imaging the host operating system collections works best when the investigator has
physical access to the machine and the ability to run administrator-level commands.
The investigator needs to be able to access certain parts of the host operating system
that are only accessible with administrator-level access. The primary cause of failure
for this method is performing it against cloud storage, or a PaaS or SaaS solution. In
those setups, key components are not accessible, thus blocking the investigator from
imaging the entire ilesystem.

www.e-fense.com/products.php
www.e-fense.com/products.php
http:///

Chapter 4

[89]

Imaging the host operating system to collect HDFS data requires identifying the
disk volume and disk location of the Hadoop data. The host operating system stores
HDFS data in a conigurable location within the host ilesystem. The coniguration
ile that stores the information is hdfs-site.xml, which is typically located in the
/etc/hadoop directory on Linux and Unix systems. The value of the DataNode
is stored in the variable dfs.data.dir. The default value for dfs.data.dir in
LightHadoop is /var/hadoop/datanode.

The /var/hadoop/datanode directory contains a lock ile and a current directory.
Within the current directory, a text ile called VERSION stores useful information
about the storage ID, cluster ID, and DataNode ID. This information is very
important if the Hadoop service is turned off or otherwise inaccessible because the
investigator must use this information to piece together the cluster. The subdirectory
(or subdirectories) in the DataNode directory contain the actual data HDFS contents.
This information is ultimately what gets collected for HDFS forensic analysis.

Many different forensic tools exist for imaging a hard drive. Commercial tools, such as
EnCase and Forensic Toolkit (FTK), provide graphical and command-line interfaces for
forensically acquiring the entire contents of a disk. These tools offer robust capabilities
for acquisitions. The following are several examples of their features:

• Metadata gathering

• Automatic MD5 or SHA-1 computations

• Generation of acquisition documentation

• Error correction

A freely-available tool used in this book for forensic collections is dd. The dd tool is
an imaging utility found in Linux and Unix variants. As one of the oldest forensic
utilities, dd has limited features compared to newer commercial forensic tools.
dd creates exact bit-by-bit copies of an input data source, offers an error-skipping
option, and enables users to conigure the block size of an image. The following is
the syntax for running dd:

dd if=/dev/sda1 of=./disk1.img bs=65536 conv=noerror,sync

This command speciies the following:

• The source data to image is /dev/sda1

• The image output file is stored as disk1.img in the current directory

• The block size is 65536 bytes

• If an error is encountered, continue creating the image file

• If an error is encountered, null fill that block in the image file

http:///

Collecting Hadoop Distributed File System Data

[90]

Specifying the block size offers some advantages. For example, data can be collected
faster by specifying a larger block size. However, if there is an error, a larger block
size means the entire block will be zero-illed. By contrast, a smaller block size would
only ill the smaller block with zeros. The advantage of using 512 KB blocks instead
of 64 KB blocks is the increased speed. However, if an error is encountered, the entire
512 KB block would be zero-illed, whereas only 64 KB would be zero-illed if the
smaller block size were used.

dd has several advantages over commercial software packages. It is a standard
Linux and Unix utility, so it is part of those operating system's builds. It is a free
utility that does not require signiicant training time to use. Because dd acquires
entire disk volumes, it is well-suited for complete acquisitions.

An investigator must take several steps to prepare the source system before
running dd:

1. Connect a wiped target drive that will store the collected image to the
source system.

2. Identify the disk volume(s) or ile(s) that need to be acquired.
3. Perform the collection and compute the MD5 checksum of the source data.

The irst step is to connect a wiped drive to the source system for the collection. The
drive should be large enough to collect all of the source system evidence. Otherwise,
the investigator will need to divide the collection into data subsets, so the evidence
is collected on multiple drives with each drive storing an image that its on the drive.
The investigator should also organize the drive with directories that correspond to
each source system. The directories can either be created at this stage or immediately
before the collection begins.

The second step is to identify the disk volume(s) or ile(s) that need to be acquired.
The fdisk command provides the listing of disk volumes. The following is the
command for fdisk:

fdisk –l

The following igure illustrates the output for this command:

Figure 3: The fdisk output

http:///

Chapter 4

[91]

This command lists the full set of partitions, along with the system description,
number of blocks, sector size, and total disk size. From this, the investigator can
identify which volume(s) should be acquired, and he can determine the best method
for collecting the data so that the collected evidence will it on the target drive(s).
In addition, the investigator should identify which volume is the target drive to
which the image will be written.

Finally, the command to collect the data and compute the MD5 hash value can be
constructed. The investigator can now start the forensic collection using dd. The
following command collects the /dev/sda1 volume, stores it in a ile called sda1.img
on the target drive volume, and uses a piped command to compute the MD5
hash value of the source data:

dd if=/dev/sda1 of=/dev/sdb1/disk1.img bs=65536 conv=noerror,sync |
md5sum /dev/sda1 > /dev/sdb1/md5.txt

This command returns the following information about the amount of data copied
into the image ile, as illustrated in the following igure:

Figure 4: The dd and md5sum output

This piped command creates three outputs. First, the command generates a dd
image ile called /dev/sdb1/disk1.img. This ile contains the complete image of
/dev/sda1. The second output is written to stdout, which is the information about
the amount of data read from the input and written to the image ile, as shown in
preceding igure. The investigator should document this information. The third
output is a text ile containing the MD5 value of /dev/sda1. Both the dd image
ile and MD5 ile should be stored on the target device.

The MD5 hash value is the bit-level unique ingerprint of the data. If the source
data is not mounted in read-only mode, the MD5 hash value can change. So if an
investigator does not mount the volume in the read-only mode, the MD5 hash
values taken in this step may not match the ones in the acquired image.

In cases where capturing an MD5 or SHA-1 hash value is not feasible, the
investigator should capture other information to show that the collection was
performed properly. For example, acquisition logs and ile size information are
useful for documenting the process to prove the data was not modiied.

http:///

Collecting Hadoop Distributed File System Data

[92]

When collecting multiple volumes or iles, run dd separately for each to
create separate image iles. dd does enable the concatenation of multiple
inputs, but identifying where one volume ends and the next begins
requires additional effort in the analysis phase.

The inal step of this process is to run md5sum on the image ile, document the
result, and compare it to the computed MD5 hash value of the source volume. If
an MD5 is not being captured, this step can be skipped. MD5 may not be collected
in situations where the data volume is too large to run MD5 in a timely manner, or
if other prohibitive factors exist. Otherwise, the investigator should validate that
the MD5 hash values from the source system and the acquired image ile match. If
they do not, the investigator must reacquire the data. The following igure shows a
comparison of the MD5 of the source volume and the acquired image ile:

Figure 5: MD5 comparisons

Documentation can now be completed. Investigators should include the
following forms:

• The chain of custody form

• The acquisition form

These forms should document the following:

• What was collected

• When the collection took place

• Who performed the collection

• Who took possession of the acquired data

• Detailed information about the target drive onto which the acquired
source data was copied, including the make, model, and serial number

• What was acquired, including hard drive and system serial numbers,
and descriptions of the system

• Validation information (for example, MD5)

http:///

Chapter 4

[93]

Imaging a mounted HDFS partition
Investigators can also collect HDFS data from the host operating system by mounting
HDFS using a mounting tool. This approach involves running a mounting tool and
modifying the host operating system's ilesystem table so it can access HDFS as if it
were a local ilesystem. The advantage of this approach is that the HDFS directory
structure and iles are directly accessible from the host operating system. This makes
the collection process more seamless and similar to a live collection of a server.

Several tools are currently available for locally mounting HDFS. The primary
package is FUSE, which is an Apache project that is part of the MountableHDFS set
of projects. FUSE is a cross-platform tool that can mount HDFS, and it offers access to
basic operations (such as cp, ls, and more). However, all standard ile and directory
operations are not available with FUSE. For a forensic investigator, FUSE's lack of
access to ile permissions or ile ownership makes it less than an ideal tool.

For more information about FUSE, visit the MountableHDFS page at
https://wiki.apache.org/hadoop/MountableHDFS.

Other mounting tools are available, such as:

• FUSE variants (HDFS-FUSE and FUSE-J both extend FUSE's capabilities
for HDFS)

• WebDAV (enables access to HDFS through a WebDAV interface)

• Hadoofus

However, all of these tools' current implementations have issues that make them less
desirable choices for HDFS forensic collections. First, mounting software packages
do not provide access to ile permissions, owner information, and other metadata.
This defeats the purpose of collecting HDFS directly from the ilesystem instead of
through software queries (for example, HBase). Mounting software packages have
not been designed with forensic collections in mind; rather, they are intended to
offer a means to access the iles. Second, the process of using mounting software is
a slow one. The software either needs to be prebuilt in the host operating system or
acquisition operating system, or it will need to be built on the host operating system.
The mounting software itself is slower than acquiring the data directly through
the host operating system or the Hadoop command line. Third, every one of these
tools currently on the market has bugs. These bugs primarily relate to large-scale
systems and the mounting software packages' need for static writes. The presence of
known bugs makes the evidence obtained through mounting software packages less
defensible and subject to scrutiny.

https://wiki.apache.org/hadoop/MountableHDFS
http:///

Collecting Hadoop Distributed File System Data

[94]

As discussed in later sections, the Hadoop command line provides all the advantages
of mounting. Mounting HDFS provides the investigator with access to the HDFS iles,
but so does accessing iles through the Hadoop command line. Because mounting
HDFS requires Hadoop to be running, mounting HDFS only adds an extra layer; it
does not provide any additional data or metadata that cannot be accessed already
through the Hadoop command line.

Given the current state of available tools, using mounting software for forensic
collections is not recommended. Potentially, a forensic-grade mounting software may
become available in the future. Such a software package would need to eliminate
the bugs and provide access to HDFS metadata. Until that time, the use of mounting
software for HDFS collections is not advisable, except in extenuating circumstances.

Targeted collection from a Hadoop client
The third method for collecting HDFS data from the host operating system is a
targeted collection. The HDFS data is stored in deined locations within the host
operating system. This data can be collected on a per-node basis through logical
ile copies. Every node needs to be collected to ensure the HDFS iles can be
reconstructed in the analysis phase.

The same process is conducted for both targeted collections and imaging collections,
except for a couple of differences. With imaging collections, entire disk volumes are
collected and hashed. Targeted collections involve the copying of individual iles
and directories. In both methods, the investigator collects the data, documents the
process, and computes MD5/SHA-1 hash values. However, there are differences.
In targeted collections, MD5/SHA-1 is computed on the iles but not the volumes,
the collection process requires multiple copies rather than a single image ile, and
certain metadata is not preserved. Also, investigators typically perform the targeted
collection using scripts rather than manually typing the commands at runtime.

The irst step for performing the targeted collection is to identify the location where
the host operating system stores the HDFS iles. For Linux, Unix, OS X, and other
Unix variants, this can be found in the hdfs-site.xml ile. While typically stored
in the /etc/hadoop directory, it can be stored in other locations, so the investigator
irst needs to ind this location before beginning. In Windows, this information is
typically located in the Windows Hadoop installation directory c:\hadoop. To ind
the directory location from the command line, run the following command:

cd %HADOOP_NODE_INSTALL_ROOT%

http:///

Chapter 4

[95]

Most production Hadoop environments do not run in a Windows
environment; the Windows Hadoop distribution is development-only.
Unlike the Linux Hadoop distribution, the Windows Hadoop distribution
has not been tested for production deployment.

After identifying the location of the hdfs-site.xml ile, ind the dfs.name.dir
and dfs.data.dir variables and navigate to those directories. The following
igure illustrates the contents of hdfs-site.xml that contain dfs.name.dir and
dfs.data.dir:

Figure 6: The dfs.data.dir variable in hdfs-site.xml

HDFS data is stored in the /var/hadoop/datanode directory in this example, and
the NameNode's ilesystem metadata is stored in the /var/hadoop/namenode
directory. The DataNode directory contains the HDFS distributed data blocks, and
the NameNode directory contains the fsimage and edits iles that store the HDFS
ilesystem metadata that is read into memory when Hadoop is brought online.

The DataNode directory tree structure is illustrated in the following igure:

Figure 7: The DataNode tree structure

http:///

Collecting Hadoop Distributed File System Data

[96]

The investigator should collect the entire DataNode tree structure. The structure is
comprised of the following directories and iles:

• BP-<integer>-<IP Address>-<creation time>: This directory is the
block pool that collects the blocks of data belonging to that DataNode.

• finalized/rbw: The actual data blocks are stored in these directories.
The finalized directory stores the blocks that have been completely written
to disk. The rbw directory stands for replica being written and stores the
blocks that are currently being written to HDFS.

• VERSION: This text file stores property information. Each DataNode has a
DataNode-wide VERSION file and also VERSION files for each block pool.

• blk_<block ID>: The binary data blocks content files.

• blk_<block ID>.meta: The binary data blocks metadata files.

• dncp_block_verification: This file tracks the times in which the block
was last verified via checksum.

• in_use.lock: This is a lock file used by the DataNode process to prevent
multiple DataNode processes from modifying the directory.

The investigator should also collect the entire NameNode tree structure. The
NameNode tree structure is illustrated in following igure:

Figure 8: The NameNode tree structure

The NameNode tree structure is comprised of the following directories and iles:

• edits_<start transaction ID>-<end transaction ID>: This binary
log file lists each filesystem change since the most recent fsimage file
was generated.

• fsimage_<end transaction ID>: This binary file stores the complete
metadata image up through the end transaction ID.

• fsimage_<end transaction ID>.md5: This text file contains the MD5
hash value for the corresponding fsimage file.

http:///

Chapter 4

[97]

• in_use.lock: This lock file is used by the NameNode process to prevent
multiple NameNode processes from modifying the directory.

In addition to the HDFS contents, the following potentially relevant data can
be collected:

Directory File Description

/etc/hadoop Files core-site.xml This has default Hadoop
settings

hadoop-env.sh This configures Hadoop
environment variables

hadoop-policy.xml This has Hadoop security
settings

httpfs-log4j.
properties

This has Hadoop log4j settings

hdfs-site.xml This has HDFS-related
configuration settings

core-site.xml This has default Hadoop
settings

/lib/hadoop/logs hadoop-env.sh This configures Hadoop
environment variables

hadoop-policy.xml This has Hadoop security
settings

httpfs-log4j.
properties

This has Hadoop log4j settings

hdfs-site.xml This has HDFS-related
configuration settings

log4j.properties This has Hadoop log4j settings

/tmp/root hive.log This has the Current Hive log

hive.log.<DATE> This has the Archived Hive log

Other Hadoop coniguration and log iles may be of interest, and the actual directory
locations vary across Hadoop setups.

http:///

Collecting Hadoop Distributed File System Data

[98]

After identifying the HDFS ile location(s), the next step is to prepare the script to
collect the iles and compute the MD5 hash values. The following sample script
performs the cp and md5sum commands across a folder location:

#!/bin/sh

#File and error counter variables

fileCount = 0

failCount = 0

echo "Collection script: basename $0" >
/dev/sdb1/collection_log.txt

echo "Collection start: $(date)" >> /dev/sdb1/collection_log.txt

First file copy

cp /tmp/root/hive.log /dev/sdb1/ | md5sum /tmp/root/hive.log >
/dev/sdb1/md5.txt

if [$? -ne 0]

then

echo "/tmp/root/hive.log not acquired" >>
/dev/sdb1/collection_log.txt

failCount=$((failCount+1))

else

fileCount=$((fileCount+1))

fi

Second file copy

cp /etc/hadoop/core-site.xml /dev/sdb1/ | md5sum /etc/hadoop/core-
site.xml >> /dev/sdb1/md5.txt

if [$? -ne 0]

then

echo "/etc/hadoop/core-site.xml not acquired" >>
/dev/sdb1/collection_log.txt

failCount=$((failCount+1))

else

fileCount=$((fileCount+1))

fi

[Additional file copy commands omitted]

echo "Total files copied: $(fileCount)" >>
/dev/sdb1/collection_log.txt

echo "Total failed copies: $(failCount)" >>
/dev/sdb1/collection_log.txt

echo "Collection end: $(date)" >> /dev/sdb1/collection_log.txt

http:///

Chapter 4

[99]

After running the script, the inal steps are to validate the MD5 hash values and
prepare the documentation. Next, md5sum should be run across all collected iles
and compared to the values previously collected. Each collected ile's MD5 hash
value should be validated before moving to the next step. If any mismatches exist,
the nonvalidated iles should be recollected. Several methods are available for
performing the comparison:

• Spreadsheet comparisons

• Database comparisons

• Script comparisons

After validating the collection, the investigator should complete the chain of custody
and acquisition forms, and all scripts used in the process should be copied and
retained for the investigator's records.

Because each HDFS node stores blocks of data and not actual HDFS iles, the
DataNode collection has to be performed on every node. The process for collecting
from each DataNode involves the same steps as described in the following:

1. Identify the location of the DataNode data storage directory on
each directory.

2. Generate a separate collection script for each DataNode.

3. Collect and validate all DataNode iles.

The inal step is to complete the acquisition log and chain of custody documentation.
In addition, the investigator should retain copies of the collecting scripts used in
the collection.

The Hadoop shell command collection
Collecting HDFS data from within the Hadoop layer solves many of the problems that
affect host operating system collections. First, the collection only has to be performed
from a single machine. By accessing Hadoop through a Hadoop client's command line,
all HDFS iles are available, so the collection does not involve collecting data from each
node individually. Second, the collected data does not require any piecing together or
ile carving in the analysis phase. The data that is collected is already pieced together
as the logical Hadoop iles, so no carving or data reconstruction is required.

http:///

Collecting Hadoop Distributed File System Data

[100]

The following is a list of limitations of collecting HDFS data from the Hadoop
shell command line:

• This method is only possible when Hadoop is online and its command line
is accessible

• Forensic tools such as dd and md5sum cannot easily be used during the
collection of the data

• Deleted data and data in memory that has not been written to disk may not
be available

• Hadoop does not store the same type of metadata that is available through
a normal operating system data collection

The advantages of collecting HDFS from the Hadoop shell often outweigh the
disadvantages. The contents of the data stored in HDFS are typically the primary
evidence, and slack space data, metadata, and other forensic artifacts are not
the crucial element. The investigator needs to ensure the requirements of the
investigation enable the collection to be performed at the Hadoop layer.

Hadoop shell command collection utilizes Hadoop's shell functionality and ile
management tools to collect HDFS iles. The Hadoop shell commands, hadoop and
hdfc, are run from the host operating system to locate and copy the iles in HDFS
to a target drive. These tools provide access to the actual iles and not the data
blocks. This has the advantage of not requiring any piecing together of iles later
by the investigator. The following igure illustrates the process by which a Hadoop
client sends a ile copy command to Hadoop and how the cluster's iles are sent to a
forensic target drive for acquisition:

Figure 9: Hadoop command line collection

http:///

Chapter 4

[101]

Information about the coniguration and status of the Hadoop cluster can be
collected via a Hadoop tool called the Hadoop Ofline Image Viewer. This tool
dumps the contents of the fsimage ile into a readable ile suitable for analysis.
This tool is covered later in this section.

The Hadoop shell commands and Hadoop Ofline Image Viewer work
with HDFS and any other ilesystem compatible with Hadoop.

Collecting HDFS iles
Collecting HDFS iles using Hadoop shell commands is a multistep process. The irst
step is to locate all potentially relevant iles that should be collected. This identiication
can either be done during the data identiication phase or on the Hadoop cluster using
Hadoop shell commands during the collection phase. The second step is the collection
of the iles from the target drive using the Hadoop shell get command. The inal steps
are to compute the MD5 hash values for the collected iles and complete the
acquisition documentation.

Locating iles in HDFS is performed by running a ile listing command. The
investigator runs the ile listing command and pipes the results into a text ile that is
then used to generate a ile copy script. The following is the shell command used to
list all iles in HDFS:

hdfs dfs –lsr /

This command runs a recursive directory listing starting in the root directory. The
output is a complete listing of every ile stored in the Hadoop cluster. The ile listing
includes the standard metadata information: permissions, owner, group, ile size,
creation date, ilename, and directory information.

Because Hadoop clusters are typically voluminous, the investigator needs to assess the
ile sizes of all iles and how to collect them. Single hard drives are usually too small
to store the entire contents of a Hadoop cluster, so the investigator needs to determine
how to divide the iles into sets that can it on a collection of drives. For example, if the
investigator only has a set of 5 TB hard drives for the collection, but there is over 200
TB of data, a plan needs to be constructed to identify which iles to collect and store on
each individual drive. Several methods exist for determining how to best divide iles
across each drive. The best-it allocation and irst-it allocation algorithms work well
for this. However, a simple method is to identify the largest iles and allocate those to a
drive irst, then ill the rest of the drive, and repeat this process until all iles have been
allocated to a drive.

http:///

Collecting Hadoop Distributed File System Data

[102]

The collection of iles is best scripted inside of a host operating system script. The
following Hadoop ile copy command copies the Hadoop ile /home/hadoopFile.txt
to the target drive location /dev/sdb1/hadoopFile.txt. The command also copies
the ile even if it has a Hadoop CRC error:

hdfs dfs -get -ignorecrc /home/hadoopFile.txt
/dev/sdb1/hadoopFile.txt

Next, the get command is scripted for every ile and an MD5 hash value is computed
and stored for each copied ile. The following script runs the collection and
documents the results:

#!/bin/sh

#File and error counter variables

fileCount = 0

failCount = 0

echo "Collection script: basename $0" >
/dev/sdb1/collection_log.txt

echo "Collection start: $(date)" >> /dev/sdb1/collection_log.txt

First file copy

hdfs dfs -get -ignorecrc /home/hadoopFile.txt
/dev/sdb1/hadoopFile.txt

if [$? -ne 0]

then

 echo "/tmp/root/hive.log not acquired" >>
/dev/sdb1/collection_log.txt

 failCount=$((failCount+1))

else

 fileCount=$((fileCount+1))

 md5sum /dev/sdb1/hadoopFile.txt > /dev/sdb1/md5.txt

fi

[Additional file copy commands omitted]

echo "Total files copied: $(fileCount)" >>
/dev/sdb1/collection_log.txt

echo "Total failed copies: $(failCount)" >>
/dev/sdb1/collection_log.txt

echo "Collection end: $(date)" >> /dev/sdb1/collection_log.txt

This script does the following:

• Generates the collection log collection_log.txt

• Copies the HDFS file /home/hadoopFile.txt to the target drive /dev/sdb1

• Computes the MD5 hash value and stores it in the target drive as md5.txt

http:///

Chapter 4

[103]

The MD5 computation has to be performed on the target ile after collection because
no MD5 tool exists within Hadoop. Hadoop does have an MD5 API function, but no
Hadoop tool exists, so the MD5 should be calculated on the collected data as part of
a script. This collection technique provides an MD5 that can be shown and veriied
in later stages and compensates for Hadoop's lack of built-in MD5 functionality.

This process of computing the MD5 after the copy completes is not unusual, and
Hadoop's ile import and export commands do not modify the ile. To prove this,
the following sets of commands can be run on any ile to demonstrate that the
MD5 is not affected by either the Hadoop import or export commands:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

The MD5 hash values for the original ile and copied ile that passed through
Hadoop will match, proving that the get command followed by md5sum is a
suitable and valid forensic approach.

Hadoop maintains checksums of the local ilesystem (for example,
HDFS). The process it uses consists of calculating a CRC32 for every
512 bytes on each data node. When the checksum is requested by the
ilesystem, the CRC32s are concatenated and an MD5 hash value is
generated from that string. While Hadoop does utilize a form of MD5
in its ilesystem, the method itself is not forensically sound.

After the script runs, the collection log is reviewed to check for errors. If ile copy errors
are found, those iles should be investigated and recollected. After the errors have been
accounted for, the chain of custody and acquisition forms should be completed.

HDFS targeted data collection
Another technique forensic investigators use in Big Data collections is to target
speciic iles. Targeted collections can be performed in two ways:

• By collecting a predefined set of files

• By previewing files to determine which files contain potentially relevant data

The investigator can determine which iles to collect during the identiication phase
or through instruction from one of the other parties in the investigation. From the list
of iles, a collection script can be developed to collect the iles in the same manner as
the full Hadoop shell command collection.

http:///

Collecting Hadoop Distributed File System Data

[104]

Alternatively, a subset of iles can be collected. Most Hadoop clusters have data feeds
with related ile names. These iles contain the same data points and information and
have a consistent structure. Rather than collecting all iles, the collection can be focused
on only the relevant subset of iles. For example, a Hadoop cluster may contain tens of
thousands of iles, but the iles are comprised of only three types, all with the same ile
preix. The investigation may only hinge on one of those three types of iles, so rather
than expending time, effort, and disk space on collecting all three, the investigator can
collect just the one relevant ile type.

Identifying which types of iles are relevant requires collecting a complete ile listing,
determining which categories of iles are available, previewing the iles, and assessing
which iles should be collected. The complete ile listing is acquired irst to identify the
universe of available iles. The second step is to establish the types of ile categories
by way of interviews and previewing sample iles. Previewing the iles is an effective
method for establishing the categories and identifying the relevant iles if a consistent
ilename or directory structure convention is followed. If the iles are named using
different conventions and/or iles are stored across directories without consistency,
previewing iles may fail to fully identify all relevant iles. After the categories of
relevant iles are identiied, the investigator should combine that information with
the ile listing to create a list of iles to collect.

Completely collecting all potentially relevant iles is the goal of the
collection phase. If questions arise about whether or not a ile should
be collected, it is best to err on the side of caution and collect the ile.

After the iles have been identiied, the collection process is the same. The iles
are collected by way of a script and validated and documented in the same way
as they would be in a full Hadoop shell command collection.

Hadoop Ofline Image and Edits Viewers
Hadoop provides a built-in method to dump the contents of fsimage into a
readable ile. The fsimage ile is Hadoop's point-in-time snapshot of the ilesystem's
metadata. The Hadoop Ofline Image Viewer extracts the contents of the fsimage
ile and makes it available in several different formats. The irst format is an HTTP
server that reads the fsimage contents and presents those as a WebHDFS API that
can be accessed through HTTP REST requests. The second format, and the one of
most value to investigators, is an XML ile that is generated and can be analyzed
ofline. The third format is the File Distribution tool output, which gives aggregated
information about the number of iles within certain ile size ranges.

http:///

Chapter 4

[105]

The Hadoop Ofline Image Viewer works well in tandem with a Hadoop shell
command collection by supplementing the HDFS ile collection with the metadata
generated by the Hadoop Ofline Image Viewer. The Hadoop Ofline Image Viewer
provides the following information in the XML output ile:

• NameNode: This provides level information, such as the namespace ID,
last inode ID, and last transaction ID

• Inode: This provides level information, such as path, ID, last modified and
access times, permissions, and replication factors

The metadata generated in the Hadoop Ofline Image Viewer XML ile can be used
as supplemental data to the iles collected via Hadoop shell commands. The Hadoop
shell get command does not provide complete metadata, so the XML ile can ill that
void because the metadata captured accurately relects the iles.

The following command generates a Hadoop Ofline Image Viewer XML ile:

hdfs oiv -i fsimage_0000000000000000015 -o fsimage_output.xml –p XML

The following igure illustrates the output generated by this command:

Figure 10: The Hadoop Offline Image Viewer output

The Hadoop Ofline Image Viewer metadata collection should be run immediately
after the ile collection in order to accurately capture the metadata with as few
metadata modiications as possible.

Hadoop also has an Ofline Edits Viewer to export the contents of the edits ile.
This utility is useful for extracting information about updates to the ilesystem since
the last fsimage ile update. The edits ile contains transaction-level updates to the
ilesystem, such as ile updates. If the investigation requires information about the
history of ile updates, examining the edits ile (or iles) is a great resource of
such information.

http:///

Collecting Hadoop Distributed File System Data

[106]

The following command generates a Hadoop Ofline Edits Viewer XML ile:

hdfs oev -i edits_0000000000000000017 -o edits_output.xml –p XML

The following igure illustrates the output generated by this command, which
includes the ile name, inode, and timestamps for the ile:

The following screenshot shows additional information from the Ofline Edits
Viewer output, including the ile's group, ile permissions mode, and block ID:

Figure 11: The Hadoop Offline Edits Viewer output

http:///

Chapter 4

[107]

In a forensic investigation, the combination of the fsimage and edits iles provides
a wealth of information about who created and modiied iles, the permissions, and
storage locations. As long as fsimage and edits iles are available for a speciic
period of time, these iles tell the story of all ilesystem changes. Hadoop has a
conigurable setting that determines how long and how many versions of both iles
are retained. If this information is potentially relevant, the Ofline Image and Edits
Viewer extractions should be performed for all available versions.

The following analyses can be performed later using the output from these utilities:

• Chronological file history analysis

• File deletion, modification, and overwrite identification

• File age analysis

Collection via Sqoop
Sqoop is an Apache Foundation package designed to transfer bulk data from
HDFS to relational databases. As a data migration tool, Sqoop is used to transfer
data to and from HDFS. The primary purpose for Sqoop is to serve as a utility for
transferring data between data warehouses and Hadoop clusters. It can also be
used as a forensic tool when HDFS data can be exported as relational data.

Sqoop reads data from HDFS and transfers the data to a relational database. It reads
entire directories of iles and then parses them based on speciied delimiters and
qualiiers. Sqoop imports the parsed data into databases using a series of INSERT
commands. It then tracks errors and exceptions and reports on any such failed inserts.

Sqoop imports data into the following databases:

• HSQLDB

• MySQL

• Oracle

• PostgreSQL

Other databases are supported via Sqoop connectors, including MS SQL Server.

To export HDFS data to a relational database using Sqoop, the investigator runs Sqoop
from a machine that can access both HDFS and the relational database management
system (RDBMS). The investigator also needs to create the table(s) in the relational
database that match the structure of the data being imported from HDFS. This requires
a priori knowledge of the structure of the iles. If data that does not match the structure
resides in the data being collected from HDFS, then the Sqoop data collection will fail.

http:///

Collecting Hadoop Distributed File System Data

[108]

The following igure illustrates the use of Sqoop for collecting HDFS data:

Figure 12: The Sqoop collection process

Sqoop is a useful tool when the structure of the data is already known and a relational
database can be connected to the Hadoop client. Sqoop eficiently transfers data to
a relational database, which eliminates any data preparation steps. With Hadoop
clusters' large data sets, directly importing the data to a database rather than collecting
it and storing it on individual hard drives saves quite a bit of effort. However, there
are dificulties with Sqoop. Investigators must know the structure in advance and have
the capability to connect to a database. Because investigators often collect data on the
premises, ensuring there is a Hadoop client that can connect to the cluster, and to a
database for later analysis, can be problematic. The other issue is that Sqoop will fail
on any iles or records that do not adhere to the predeined data structure. This is
a problem in forensic investigations because archived data stored in a different
format or data anomalies cannot be captured using this method.

The following code collects all data from the HDFS directory analysis and imports it
into a localhost MySQL server in the forensic database's analysis table:

sqoop export --connect jdbc:mysql://127.0.0.1/forensic --table
analysis \ --export-dir /results/analysis

Sqoop returns information about the number of records exported to MySQL:

15/02/20 09:54:18 INFO manager.SqlManager: Migrated 150301 records
from `analysis` to `analysis`

http:///

Chapter 4

[109]

Other HDFS collection approaches
Two other collection approaches require consideration when collecting HDFS
data: custom-developed Java programs and third-party collections. The irst, using
custom-developed Java programs, collects HDFS data utilizing the Hadoop Java
API and standard Java methods. Two of the drawbacks to collecting HDFS data
through shell commands are that the Java Virtual Machine (JVM) has to start and
inish for every copy command, considerably slowing down the copy process, and
MD5 computations can only be performed after the ile has been copied. Hadoop's
Java API provides methods for calculating the MD5 of iles inside HDFS, and the
program can perform all copies inside a single JVM session. The drawback is that
custom-developed Java solutions require signiicant testing and some Hadoop Java
API methods are still under development. For this reason, the investigator should
carefully develop and test any program used to perform the collection to avoid
unintended behavior or errors.

Another method for collecting HDFS data is where the system owner or a third party
performs the ile collection. This approach is typically performed in non-criminal
investigations and ones in which accessing the system is either dificult or prohibitive.
The system owner usually IT staff or another party with forensic expertise performs
the collection. Then a copy of the collected data (or the original data) is transferred
to the investigator.

The investigator should carefully consider whether having an outside party
conducting the collection is acceptable. In some situations, the investigator cannot
perform the collection. In other situations, having an outside party perform the
collection is not required, but it may be the most cost-effective or otherwise prudent
approach. The investigator should consider the following when deciding whether
the collection should be performed by another party:

• Does the other party understand the requirements of the investigation
(for example, methods and documentation protocols), and do they know
which data to collect?

• What are the benefits of having the other party perform the collection
(for example, cost, timeliness, and business continuity)?

• Who assumes liability for the collection if mistakes are made?
• Have the requirements been clearly communicated in writing?

http:///

Collecting Hadoop Distributed File System Data

[110]

• What is the chain of custody protocol for the collection?
• Is the other party better or equally well-equipped to perform the collection?
• What are the risks of having the other party perform the collection?

If the risks are controlled and the requirements can be met, having another party
perform the collection is an acceptable method. The investigator should ensure all
documentation is created and transferred as well as communicating the proper
process for data collection and transfer protocols.

Summary
This chapter covered several methods investigators can use to collect data from HDFS.
Investigators can collect HDFS data from the host operating system by imaging or
collecting logical iles. They can also collect HDFS data via the Hadoop shell, a data
transfer tool such as Sqoop, or using other methods, such as a custom-developed Java
application, or relying on an outside party to perform the collection. Each method has
its own advantages and disadvantages. The pros and cons for each are covered in the
following tables:

Methods Pros Cons

Host operating system
collection

This has a complete forensic
collection

This requires collection
across each node and
manual re-piecing of data
blocks for analysis

This follows standard
forensic process

This is a time-consuming
and cumbersome process

This captures the system as
is, including slack space and
deleted files

This requires extra disk
space for extraneous
collected data

Hadoop shell command
collection

This collects Hadoop files This requires collection
across each node and
manual re-piecing of data
blocks for analysis

This uses native application
for collection

The load time for JVM to
run Hadoop commands is
slow

This can be performed on a
single node or client

This requires scripting to
perform on a large set of
files

http:///

Chapter 4

[111]

Methods Pros Cons

Sqoop This collects data into a
database repository

In this data must have a
known structure and cannot
have anomalies

Sqoop is already available in
most Hadoop environments

This requires connection to a
database system

Custom java
application

This collects data in native
Java language

This requires careful testing
and verification

This can perform MD5 on
Hadoop files before they're
copied

It's subject to outside
scrutiny

Other party collection This can offer cost and time
savings

There's a risk of incomplete
or incorrect collection

This is a workable solution
when an investigator cannot
perform the collection

This requires detailed
communication and review

The next chapter will cover an alternative method for collecting Hadoop
data—application-based collections.

http:///

http:///

[113]

Collecting Hadoop

Application Data
Hadoop evidence can be forensically collected from more than just the ilesystem.
Evidence can also be collected from Hadoop applications. Hadoop data is formatted
for use by its applications, and these applications provide means for more easily
extracting relevant data. The process of collecting evidence from Hadoop applications
instead of from HDFS offers many advantages, but the approach is very different.
Some forensic artifacts, such as metadata, cannot be captured from a Hadoop
application collection. However, collecting data from an application avoids some
of the time-consuming and challenging tasks involved in forensically imaging
HDFS or collecting data from each node individually.

Any Hadoop software outside of the Hadoop layer is considered an application.
Two of the most common application packages are Hive and HBase. Both packages
operate in ways similar to a database, and their data can be collected through the
software itself. Hadoop applications that do not directly analyze or store data are
not applicable to this process because they offer no way to collect data. Applications
that fall into this category include ZooKeeper and YARN.

The process for collecting evidence from the applications differs from ilesystem
collections in a number of ways. First, collecting data from applications involves
extracting the informational content not creating a bit-by-bit replica of the source
system. This means the evidence gathered is the information accessible by the
application and is not every bit of disk space. Therefore, it does not represent every
form of metadata and slack space in the source system. Second, the investigator need
only use a single system client to access all data in the cluster's application collection,
so the investigator does not need to collect evidence from each node independently.
Third, the person who performs the application collection only needs to know how
to query the application as well as the steps to document and properly secure the
collected data in order to perform the collection.

http:///

Collecting Hadoop Application Data

[114]

Collecting Hadoop data through its applications has a number of advantages that
make it the preferred choice for most investigations. The following is a list of the
advantages of collecting data through applications:

• One only needs to access Hadoop from a single client

• Data is limited to relevant information accessed by the applications

• Even if data is replicated across nodes, only a single copy is collected

• An application collection is less intrusive to the system and causes less
business interruption

• A subset of the data can be targeted

This approach is best when the contents of the system are the only relevant evidence.
For investigations in which metadata, logs, and other data outside of the applications
is relevant, the investigator should employ a ilesystem collection, either in lieu of
the application collection or as a supplement to the application collection.

This chapter covers the process for application collections and how to perform sample
collections from Hive and HBase. Each of the collection methods are discussed along
with how to determine the best method for a particular investigation. Examples of
how to perform the collection are given for Hive and HBase.

Application collection approaches
Hadoop data is stored in a unique structure. Unlike most relational database
systems, which loads and stores data in a proprietary format, Hadoop applications
typically store data in sets of lat iles similar to a hierarchical database. Files are
imported into the application, and the application stores those iles in a separate
ile structure and generates the metadata about that data.

Application-based collections have advantages over ilesystem-based collections
of the application's underlying iles. While the ile-based storage of iles in Hadoop
applications enables logical copies of the lat iles, these iles may not be structured
in a format that can be quickly analyzed or the collection may require sampling
of iles to identify the relevant iles. Collecting data from the applications has the
following advantages:

• The investigator can collect the data in a format that is quickly
and readily analyzable

• The data can be collected more easily by third parties

• The collection can be performed from a single client machine

http:///

Chapter 5

[115]

Data in Hadoop can potentially be accessed by more than
one application, so the investigator should be aware of which
application is best suited for the application-based collection
and whether that application can access all relevant data.

The method of collecting data from applications depends on which application stores
or accesses the data and the means it provides for exporting data. Every application
is different. Some applications only offer query-based means to access the data,
some require scripts to be written, and others have multiple querying mechanisms
available. Like ilesystem collections, several application collection methods are
available to the investigator. These methods are similar to those used for database
collections and include the following:

• Backup-based collection: This collects a newly-created or archived
application backup

• Query-based collection: This collects all data or a subset of the data
via queries

• Script-based collection: This collects all data or a subset of the data
via scripts or another application (for example, via Pig)

• Software-based collection: This collects data through an application
that connects to the source application

Each application collection method is largely the same as the one used for collecting
relational and other database system types. Backup-based collections are a very
common method when a full copy of a database is required. This method offers the
advantage of quickly collecting every component of a database with minimal effort. In
Big Data collections, there are some differences in the collection process based on the
application. For instance, some applications do not have built-in backup mechanisms.
Query- and script-based collections are commonly employed in three instances: 1)
when backup methods are not available, 2) when queries or scripts are the easiest
collection method, or 3) when only a subset of data is required. Software-based
collections are common for commercial database packages such as Oracle and SQL
Server, but are not yet a common solution for Big Data collections.

Practical considerations also dictate how the collections are performed. If metadata
and ilesystem-level detail is required, application collection is not ideal, or requires
a supplemental data collection method. However, if only the contents of the stored
data are relevant, application data collections are typically faster, easier, and produce
evidence in a format that is more readily analyzed. Once the decision is made to
employ an application collection, choosing which method to use is based on other
practical considerations.

http:///

Collecting Hadoop Application Data

[116]

These include the following:

• Whether the application has a backup mechanism

• Whether all or only a subset of the data from the application is relevant

• How quickly the application produces full record data sets from queries
and scripts

• Whether the volume of data is small enough to extract through queries
and scripts

The following table lists the advantages and disadvantages of each method:

Methods Advantages Disadvantages

Backup-based collection This is a complete data

collection

This may contain extraneous

data

This has no upfront decision

making

This is not always available

This has minimal impact to

organization

This is potentially a slow

collection process

Query-based collection This has ability to limit data

scope

This may not capture all relevant

data and requires upfront review

of data and data structure

This contains queries that

can be scheduled to run

during off-hours

This has a high impact to source

system

This is potentially a fast

collection process

This is potentially difficult to

verify

Script-based collection This has ability to limit data

scope

This may not capture all relevant

data and requires upfront review

of data and data structure

In this scripts can be

scheduled to run during off-

hours

This has a high impact to source

system

This is potentially a fast

collection process

This is potentially difficult to

verify

Software-based collection This can collect data

automatically to desired

output format

This is not always an available

option for source system

software

This is a simple and fast

option

This can be disruptive to

organization's systems

http:///

Chapter 5

[117]

Unlike backup-based collection, query- and script-based collections offer a great deal of
lexibility in relation to what is collected. Both methods enable an investigator to collect
all or a subset of the data. For a Big Data investigation, this is very important and
valuable. In some cases, all of the data is required. In many other cases, however, the
volume of data and the facts of the investigation make collecting only a subset of the
data the best solution. Big Data systems can store petabytes of information, and much
of that data volume might be accessed by an application, if only a subset is required,
that can save a tremendous amount of time, disk space, and cluster availability for
normal use. A subset can be collected in one or more of the following ways:

• Limiting the number of data sets

• Limiting the number of data points or fields

• Limiting the number of records based on filter criteria

The investigator already knows which information is relevant from his indings in
the identiication phase. This information is then translated into queries or scripts
that are used to perform the collection.

Backups
Backups are unique in Hadoop. Unlike a standard database system, Hadoop
applications store data across a vast multi-node cluster, with the amount of data
potentially measuring in the petabytes. When compared to the single database
backup or dump iles in MS SQL Server or Oracle, this massive scale makes backups
in Hadoop seem impossible. However, methods do exist for most applications.
Because Hadoop is an enterprise system that requires backups for disaster recovery,
Hadoop applications offer backups that are familiar to most database administrators
as well as unique backup options. The range of Hadoop application backup
methods include:

• Snapshots that can be restored using the Hadoop application

• Replication to another cluster

• Full export to Hadoop SequenceFiles

• Table copies to text files

Each method has varying degrees of speed and system impact depending on the
application. For example, dumping the application contents to text iles is fast, but it
is highly system-resource intensive. The use of SequenceFiles and snapshots tend to
be slower but have less impact to the source system.

http:///

Collecting Hadoop Application Data

[118]

Investigators need to consider the output format of backups before beginning any
application backup collection. Unless the backup output is a set of text iles, the
backups may require some form of data loading and/or conversion before the iles
can be analyzed. Exporting application data to SequenceFiles requires conversion
of the SequenceFiles to a format that can be extracted. If the output is a snapshot, the
snapshot requires loading through that application (for example, HBase snapshots
must later be loaded in HBase) before analysis can be performed.

Query extractions
Query extractions use the application's native query language to access and
collect the application data. Applications designed for data analysis have their
own query language, and queries can be written in that language to access and
collect a subset or all of the data to text iles. The following methods are available
with query-based collections:

• Collection of all available data

• Collection of the relevant subset of data

• Sampling of data for statistical analysis

Querying the data enables the investigator to retrieve all or some of the data
and output the results to text iles or another application. The beneits of query
extractions are the ease of access to the data and the capability to custom-select
which ields are captured and apply any data ilters. Query extractions require the
investigator to access the data structure and perform some initial analysis before
the data can be collected. This analysis can be done at the time of collection or
during the identiication phase.

Script extractions
Script extractions are very similar to query extractions. Rather than use the
application's native query language, a scripting tool is used to access and collect the
data. Whether a script is written in Pig, Java, or another language, the investigator
can write scripts or programs that access the data and output the results to a desired
format and location. Like query extractions, script extractions give the investigator
the ability to customize which ields are collected and to apply ilters to the data if
only a subset of the data is relevant.

http:///

Chapter 5

[119]

In addition to being a replacement for querying, scripting languages can be used to
access unstructured data in Hadoop that is not accessible by other querying languages.
Some Hadoop clusters are designed to analyze unstructured data, and applications
may not provide a means for querying the data. This type of unstructured data is
analyzed through MapReduce functions. An investigator can collect the data with a
custom script extraction utilizing the same means used in a query extraction.

Software extractions
While a useful and common technique in standard database collections, software
extractions are not common in forensic Big Data investigations. Software utilities
such as commercial products that connect to databases and Open Database
Connectivity (ODBC) drivers are valuable to investigators because they can easily
connect to database systems and provide a reliable means for many different types of
application collections. At this time, these types of software are not yet common for
Hadoop applications and are not yet regularly employed by forensic investigators.

Validating application collections
Collecting application data requires a different form of information for validation.
Validating a collection involves proving the following:

• The collection was performed correctly and completely

• The collected data is a replica of the source system's data

Unlike ile-based collection methods, record-based collections compiled through
an application are not typically validated with hash values. Hash values are useful
for proving that data was not modiied and that the collection was performed
correctly. Supplemental information (for example, collection logs) is used to prove
that the collection was performed completely. The use of hash values, however, is
not always appropriate for application collections. There are several reasons why
hash values are not used to validate application collections:

• It is not necessary to calculate hash values because of the absence of
metadata or other artifacts that are collected

• Large data volumes make computing hash values infeasible in some cases

• It is faster to use non-hash methods

• Computing a hash value of the output does not prove that the contents
remained unchanged during the collection process

http:///

Collecting Hadoop Application Data

[120]

All four points relate to the nature of the data that was collected. First, collecting
records from applications does not yield metadata, so if the record is collected, the
contents of the information is all that is needed. Second, Big Data is voluminous,
and validating the collection through hash values can be infeasible if MD5/SHA-1
cannot be run on the source system. Also, it is possible the data is simply too large
to compute a hash value in a reasonable amount of time. Third, alternative methods
for validating a collection can be faster with pre-existing validation information or
more quickly producible forms of validation information. Finally, hash values only
work when the hash value is computed on the data source at the time of collection.
Collecting records from an application rather than collecting the source iles
themselves, and then computing the hash values of the output iles does not meet
the forensic requirement for computing a hash value. That is, the hash value of the
acquired data and not the source data, only proves that the acquired data was not
modiied between the time it was collected and when the hash was later conirmed.
This does not necessarily prove that the source data remains unchanged.

Record-based data collected from Hadoop applications can be validated in other
forensically-acceptable manners. The following methods for collection are used as
means to prove what was intended to be collected was in fact, collected and not
modiied after collection:

• Control totals

• System logs

• Extraction queries and scripts

• Process documentation

The use of control totals is the primary means for validating a collection. Control
totals are values from the source system that can be compared to the collected data.
Control totals can take forms such as:

• Number of records

• Number of unique values

• Numeric aggregate total of a particular field or key value

The idea of a control total is to show that the data is complete and that the values in
the selected ields were accurately acquired. The control totals are collected at the
time of data collection. The control totals are either immediately compared to the
collected data or later during a subsequent data validation step. The comparison is
typically performed in an analysis database.

http:///

Chapter 5

[121]

System logs, extraction queries and scripts, and process documentation can be used
in lieu of or in addition to control totals. These forms of validation information can
serve to prove that the collection method was correct and complete. Each shows the
method used to collect the data, and they can also be used to show how much data
was collected and whether the collection was complete. Whenever a query or script
is used, it should be retained for validation purposes. Likewise, if an application can
generate logs or output reports, that information should be collected and retained as
well. Finally, as with any form of forensic collection, the investigator should maintain
a log of all steps performed and the results. He should also transcribe those results into
an acquisition form to further demonstrate that the steps performed were done
so correctly.

Collecting Hive evidence
Hive is a platform for analyzing data. It uses a familiar SQL querying language,
so there is no need to write Java code for MapReduce functions. Hive operates such
as a database and stores all metadata in a database, so accessing the database via
queries should be familiar to people who have experience working with relational
databases. Hive has several important components that are critical to understand
for investigations:

• Hive Data Storage: The type and location of data stored and accessed by
Hive, which includes HDFS, Amazon S3, and other locations

• Metastore: The database that contains Hive data metadata (not in HDFS)

• HiveQL: The Hive query language, which is a SQL-like language

• Databases and Tables: The logical containers of Hive data

• Hive Shell: The shell interpreter for HiveQL

• Hive Clients: The mechanisms for connecting a Hive server, such as Hive
Thrift clients, Java Database Connectivity (JDBC) clients, and ODBC clients

Hive stores record-based data in iles. When data is loaded to Hive, Hive creates
links to or copies of the data to a conigurable location. Hive internally stores the
data in databases and tables. The metastore stores metadata about the data, such as
table structure, in a relational database. The data can be accessed via the Hive shell
with the use of HiveQL commands, or Hive clients can be used to access the data.
Hive clients are scripts or programs that utilize Hive's drivers to access the data.
The following are the three types of Hive clients:

• Thrift Client: This is a remote client library that is compatible with a
number of program languages, such as C++, Java, PHP, Python, and Ruby

http:///

Collecting Hadoop Application Data

[122]

• JDBC Client: This is a Java Database Connectivity library that allows for
JDBC calls to Hive

• ODBC Client: This is an Open Database Connectivity library that allows
for ODBC calls to Hive

Hive internally organizes data in database and table structures. A Hive server can
have one or more databases. Tables of data are created within each database. When
tables are created, the database is speciied, and new databases can be created through
Hive commands. If a table is created without a database name explicitly stated, the
table is created in the default database. Similarly, a table speciied in a query without
a database name is automatically interpreted as belonging to the default database.

HiveQL is the query language for Hive. HiveQL's syntax is very similar to ANSI SQL
and other SQL variants. The familiar SELECT, FROM, and WHERE clauses are foundational
to HiveQL queries. The powerful aspect of Hive is that the standard SQL queries
are converted into MapReduce jobs, which harnesses the power of MapReduce's
distributed processing via SQL queries. In the Hive shell, queries can either be loaded
from query iles or entered interactively in the shell. Both modes enable output to be
directed to iles and error messages to be logged.

A Hive application collection differs from collecting Hive data through HDFS. With
a Hive application collection, the data is collected either as a backup from HDFS with
the Hive metastore, or the Hive service is used to interface with the data for collection.
The following igure illustrates the process for performing a backup collection of Hive.

Figure 1: Hive backup collection

Alternatively—and most commonly—the Hive service is used as the means for
accessing and collecting Hive data. The Hive service can be accessed through
Hive queries, scripts, or Hive connectors.

http:///

Chapter 5

[123]

The following igure illustrates how the data lows through this collection process:

Figure 2: Hive service collection

Loading Hive data
Hive collections are performed against data stored in Hive itself. To follow along
with the Hive data collection steps covered in this section, perform the following
steps in either LightHadoop or Amazon S3:

1. Load data to HDFS.

2. Create Hive table.

3. Load data to Hive table.

4. Conirm the data load.

The irst step for loading Hive data is to bring data into HDFS. While methods exist for
directly loading data to Hive without this intermediate step, this method is simplest.
The sample data used for this exercise is the subset of NYSE trades from 2000-2001
from Chapter 2, Understanding Hadoop Internals and Architecture. The irst step is to copy
the data into HDFS from the local system's /home/ec2-user directory:

hadoop fs -put /home/ec2-user/NYSE-2000-2001.tsv /tmp

The second step is to create the Hive table that will store the NYSE data. First,
enter the following command to access the Hive shell:

hive

This brings up the Hive shell command line interface:

hive>

http:///

Collecting Hadoop Application Data

[124]

Next, run the following Hive command to create the table:

CREATE TABLE 'NYSE' (exchange1 string, stockSymbol string, dateVal
date, stockPriceOpen float, stockPriceHigh float, stockPriceLow
float, stockPriceClose float, stockVolume float, stockPriceAdjClose
float)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

This command produces the following output:

OK

Time taken: 0.152 seconds

Next, load the data to the NYSE table using the following command:

LOAD DATA INPATH '/hdfs/tmp/NYSE-2000-2001.tsv' INTO TABLE NYSE;

Finally, conirm the data load by examining the total number of records loaded
using the following command:

SELECT COUNT(*) from NYSE;

This creates a MapReduce job that generates the following output:

[…]

812990

Time taken: 68.492 seconds, Fetched: 1 row(s)

The data can now be viewed using queries, such as this one that returns the irst
10 records:

SELECT * from NYSE LIMIT 10;

Identifying Hive evidence
Hive evidence can be identiied through HiveQL commands. The following commands
can be used to get a full listing of all databases and tables as well as the table's formats:

Command Description

SHOW DATABASES; This lists all available databases

SHOW TABLES; This lists all tables in current database

USE databaseName; This makes databaseName the current database

DESCRIBE (FORMATTED|EXTENDED)
table;

This lists the formatting details about the table

http:///

Chapter 5

[125]

Identifying all tables and their formats requires iterating through every database and
generating a list of tables and each table's formats. This process can be performed
either manually or through an automated HiveQL script ile. These commands do not
provide information about database and table metadata, such as number of records
and last modiied date, but they do give a full listing of all available online Hive data.

Deleted Hive data can also be recovered in some instances. When data is deleted
from Hive, the metadata is removed from the database, but the iles in HDFS or other
storage are moved to the .Trash directory. In cases of a misconigured .Trash ile,
Hive cannot move iles to the .Trash, so the iles remain in their original folders.
However, the metadata records in the Hive metastore are erased. If there are questions
about whether data has been deleted, the raw iles should be collected, even if the
metadata is no longer available.

Hive backup collection
Hive does not have a natural backup mechanism. Most Hive environments are
conigured to replicate the metastore and data iles to a replication cluster. This
limitation means that true database backups of the entire Hive environment are not
possible; however, the replication process can be performed in order to collect all
evidence. To replicate Hive, the following steps are performed:

• Forensically, copy all Hive data files based on the file location information
found in the Hive configuration file

• Perform a full database backup of the metastore database

The metastore can be hosted in a number of different types of databases, such as
SQL Server and MySQL. A full backup of that database should be collected, but
the same considerations apply when collecting the metastore database. Namely,
a current copy should be collected and the output should be in a format that the
investigator can access and read during the analysis phase.

If the Hive environment has an embedded metastore, a slightly different process
should be taken. By default, Hive is installed to run a local Derby database that is
intended for testing purposes. Most production Hive environments are conigured
to run with a standalone database, but an investigator may encounter a Hive
metastore conigured to run Derby. Derby database viewing and extraction can
be performed through the Apache SQuirreL SQL Client. SQuirreL is a Java-based
package that interfaces with Derby through JDBC calls. If an investigator encounters
a Derby metastore, SQuirreL and custom-developed Java packages are the best
methods for extracting the metastore contents.

http:///

Collecting Hadoop Application Data

[126]

The metastore backend can be identiied in the Hive coniguration ile
hive-site.xml, which can be found in the $HIVE_HOME/conf directory. The
javax.jdo.option.ConnectionURL property will list the connection URL for
the metastore, and from this, the investigator can identify the type of metastore
database backend being used by Hive.

Depending on the Hadoop installation, third-party backup tools may be available
that can generate Hive backups. One commercial product, Cloudera Manager, offers
a backup and disaster recovery tool that can generate Hive backups. As with all
backups, the investigator should be prepared and able to extract the backup ile to
a usable format, which may require having a copy of Cloudera Manager or
whatever backup tool was used to generate the backup ile.

Hive query collection
Hive's query language, HiveQL, is a powerful tool that is suitable for performing
forensic collections. HiveQL offers the lexibility and granular querying capabilities
necessary for performing query-based collections. Entire tables can be collected in
the same format in which they are stored in Hive, or subsets of data can be collected
by specifying which ields to collect and applying any necessary ilter criteria. The
queries can be run either from the Hive shell or in batches via HiveQL query iles.

In most circumstances, the collection should be performed with query iles instead
of entering commands in the Hive shell. Query iles have a couple of advantages:
they enable the collection to be executed in one or more batches, and the query iles
serve as documentation of the collection process. Manually entering the collection
queries using the Hive shell is acceptable; however, documentation of the queries
should still be captured.

All three query collection methods are available with Hive: complete, subset, and
sampled. Performing a complete collection is the most straightforward. In SQL, the
SELECT * clause selects all ields from the speciied table. By selecting all ields and
not applying any ilter criteria, the investigator can collect all records from the table.
For a complete collection, this type of query is run for every database and every
table in the source system. The queries are run from the list of databases and tables
discovered during the identiication step.

HiveQL script iles are text iles that contain the Hive queries that should be run.
Create a text ile, insert the following query, and save the ile as NYSEexport.sql:

SELECT * from NYSE;

http:///

Chapter 5

[127]

Run the following command from the client to export the entire NYSE table to the
host operating system's /home directory:

hive -f /home/scripts/NYSEexport.sql > /home/NYSEexport.tsv

An alternative method is the Hive INSERT OVERWRITE LOCAL
command, which creates an output ile in the local ilesystem based
on the speciied query.

A tab-separated value ile that contains the table's column headers along with
every record in the table is created in the /home directory. The output ile's format
matches that of the input ile. An issue that sometimes arises with data extraction
is that the delimiter matches a character inside a ield. This commonly occurs with
tab- and comma-separated value iles because tab and comma characters are normal
characters. Typically, TSV and CSV iles use text qualiiers to denote the beginning
and end of a ield, so any characters within the ield that match the delimiter do not
cause issues when exporting or importing the data. Double quotes are sometimes
used as text qualiiers, as are infrequently used characters, such as the paragraph
symbol. Unfortunately, Hive does not handle text qualiiers, so a custom delimiter
that does not match any text in the table must be chosen.

If this issue is a concern, the investigator can export the data to a text ile with
custom-speciied delimiters and text qualiiers. The following query selects all
of the columns from the NYSE table with the custom delimiter | :

SELECT CONCAT_WS('|', exchange1, stockSymbol, CAST(dateVal as
string), CAST(stockPriceOpen as string), CAST(stockPriceHigh as
string), CAST(stockPriceLow as string),
CAST(stockPriceClose as string), CAST(stockVolume as string),
CAST(stockPriceAdjClose as string)

FROM NYSE;

This query uses the concat_ws() function to concatenate the strings with the pipe
character between each ield. Note that each numeric and date ield has to be cast as
a string. This is required because the concat_ws() function requires string values as
inputs. Because the pipe character is rarely used, this is an effective delimiter.

The irst row of output from this command is:

NYSE|ASP|2001-12-31|12.55|12.8|12.42|12.8|11300|6.91

www.allitebooks.com

http:///
http://www.allitebooks.org

Collecting Hadoop Application Data

[128]

If a custom delimiter is used, the investigator should examine
the properties of each table's ields via the DESCRIBE <TABLE>
command to identify the non-string ields that need to be cast as
strings. Failing to do so will result in errors.

Script iles are the ideal method for collecting multiple tables. Because the investigator
wants to collect each table into a separate ile, the query iles should be created
separately, but they can still be executed from a single script. For example, if 100 tables
need to be collected, one query ile should be created for each table. Then, a single
Bash script ile can be created that runs the following command for each of the 100
query iles:

hive -f /home/scripts/table1.sql > /home/table1_output.tsv

If all tables need to be collected, the process can be automated through a HiveQL
script and a Bash script. First, create a HiveQL script named tableExport.hql using
the following line of code. This selects all rows of a table, with the table name being
passed in through a variable named tablename:

select * from ${hiveconf:tablename}

Next, create a Bash script named HiveAllTableExport.sh with the following code:

#!/bin/bash

hive -e "show tables;" > hiveTables.txt

for line in $(cat hiveTables.txt) ;

do

hive -hiveconf tablename=$line -f tableExport.hql > ${line}.txt

done

This script generates a ile called hiveTables.txt, which is a listing of all tables in
the current database. The script then iterates through the table listing to generate a
full export ile for each table. If multiple databases need to be collected, the script
can be modiied to include an outer loop that iterates through the listing of
databases via the SHOW DATABASES command.

Hive query control totals
Control totals can be collected for Hive in a number of ways. The simplest and most
common method is to collect row counts for each table. Typically, row counts are the
only control totals required. However, in cases where questions may arise about the
quality of the collection, computing ield-level control totals may be necessary.

http:///

Chapter 5

[129]

The following should be considered when deciding whether ield-level control totals
are necessary:

• How many fields are being collected?
• Is one or more field particularly critical for the analysis?
• Does a particular field contain numeric data or data that otherwise lends

itself well to aggregation?
• Will the value from a field be called into question?
• Does an alternative method exist for validating the collection of that field?

Similar to the process for batch collection via queries, the control totals can be
captured by creating one query ile for each table that captures the row count:

SELECT count(*) from table1

The same Bash batch script ile can be created that executes each query ile and
stores the output in a separate ile—or in a single ile if the table name information
is generated in the queries.

Another control total method is to compute the numeric totals of key ields. These
computations can be the sum value of a numeric ield, the number of unique values,
or the min/max values. Because a collection can have many ields, the investigator
should select a handful of key ields—usually one or two per table—that demonstrate
the values were collected properly. Alternatively, if reports are available that represent
all records for the key ields from Hive, which is also a viable control total approach.

The following Hive query commands can be used to compute these values on
selected ields:

Command Description

Sum(field1) This computes the sum total of field1 for all records

Min(field1) This computes the minimum value of field1 for all records

Max(field1) This computes the maximum value of field1 for all records

Count(distinct
field1)

This computes the number of unique values in field1

Control totals are typically collected in a single ile, with the table name being
included. Because Big Data collections can involve a large number of tables, the fastest
method for collecting control totals is to include the table name and total—along with
the type of control total and applicable ield, if necessary. Collecting the data into a
single ile is easiest because that ile can be loaded into an analysis repository and then
quickly compared to the calculated control totals of the collected data in the analysis
repository. This saves the effort required to manually verify each control total.

http:///

Collecting Hadoop Application Data

[130]

Hive metadata and log collection
Collecting Hive data through the Hive application does not provide access to
metadata, log, and coniguration information. While a Hive application collection
enables the investigator to capture records from Hive, it does not capture the ile
metadata, logs, or coniguration information, which is available in a Hive data
ilesystem collection. If Hive is conigured to retain audit trail information or data
updates to a Hive table, that information can be collected. However, the full set of ile
metadata, log ile, and coniguration information can only be collected by acquiring
the data through the ilesystem. If an investigator decides to collect Hive records
through the application, he should consider whether to collect the metadata, log, and
coniguration ile information from the ilesystem to supplement the collection.

The Hive script collection
HiveQL is the main language for Hive collections, but other script-based languages
are available to collect data. Hive makes available several libraries that enable
various languages to access a Hive data set. The three types of libraries are:

• ODBC

• Java

• Thrift

Each of these libraries can be used to access the data. To do this, the investigator
must have the script call its language-speciic library to access the data. Scripting
the data collection offers several beneits, such as the following:

• Automation of the collection process

• Control of the data flow

• Streamlined generation of control totals in parallel to the collection

The two primary drawbacks to script-based collections are: 1) most script-based
methods are slower than the use of backups or queries, and 2) developing scripts
that collect the right data at a granular level can be time consuming. In addition,
the Hive scripting libraries, whether ODBC, Java, or Thrift, must be available on
the client machine accessing the data.

The following Python script creates a connection to Hive and exports the results to the
supplied output ile. Information about the table is exported to the supplied log ile,
with the collection date, number of records, and query also being written to the log.

import pyhs2

import datetime

http:///

Chapter 5

[131]

outputFile = open('/home/extract/outputFile.txt', 'w')

logFile = open('/home/extract/logFile.txt', 'w')

logFile.write(str(datetime.date.today())+'\n')

with pyhs2.connect(host='localhost',

 port=10000,

 authMechanism="PLAIN",

 user='root',

 password='pwdVal',

 database='default') as conn:

with conn.cursor() as cur:

logFile.write(cur.getDatabases()+'\n')

cur.execute("select * from table")

logFile.write('select * from table\n')

logFile.write('Number of rows: ' + str(cur.rowcount) + '\n')

logFile.write(cur.getSchema()+'\n')

#Fetch table results

for i in cur.fetch():

outputFile.write(i + '\n')

outputFile.close()

logFile.close()

Executing this query generates the output ile and the log ile. The log ile and
script are suficient for demonstrating the process used to perform the collection. If,
however, errors exist in the script, the entire collection can be called into question.
The acquisition log and chain of custody documentation should still be completed.

For more information about Hive libraries, visit https://cwiki.
apache.org/confluence/display/Hive/HiveClient.

Collecting HBase evidence
HBase differs from Hive in a number of ways. First, HBase is not a relational
database. Unlike Hive, HBase does not support SQL-like queries, because SQL
is a language for relational databases. Second, HBase does not have a metastore
database. Instead, HBase is a nonrelational database based on Google's BigTable
that works with HDFS for data storage and access. Third, HBase data is distributed
to various nodes in regions, or to data blocks that store column-oriented chunks
of related data. It is far easier to collect HBase evidence through HBase rather
than collecting from each node due to the distributed nature of the data.

https://cwiki.apache.org/confluence/display/Hive/HiveClient
https://cwiki.apache.org/confluence/display/Hive/HiveClient
http:///

Collecting Hadoop Application Data

[132]

Given the complexity of carving out data from HFiles, collecting HBase evidence
through the HBase interface has an advantage over a ilesystem collection. HFiles are
distributed ile structures that need to be collected from each node. Once collected,
HFiles must be carved in order to extract the column-oriented data and metadata and
then convert this data into a usable format. This can be overly burdensome during
an investigation. Instead, the HBase data can be collected more easily through the
application. The output of this data is either lat iles or HBase database backups.
Both formats are signiicantly easier to work with during the analysis phase.

The following concepts are important for understanding how HBase operates:

• HBase data storage: The type and location of data stored and accessed by
HBase, which includes HDFS, Amazon S3, and other locations

• Tables: The logical containers of HBase data

• NoSQL (Not only SQL): The type of non-SQL database that provides
nonrelational data storage and retrieval

• Key-pair values: The scheme in which data values are stored and retrieved;
keys are queried to retrieve their corresponding values

• HBase shell: The shell interpreter for HBase

• Master node and regionservers: The distributed storage and analysis nodes

• ZooKeeper: The software that manages the assignment of regionservers

• HFile: The MapFile-like file type stored in HDFS by HBase - HFiles are
the file containers for HBase table data and metadata

• Memstore: The in-memory storage of HBase data that is held in memory
until the storage threshold is met and the data is written to HFiles

• -ROOT- table: The table that stores the list of .META. table regions

• .META. table: The table that stores the list of all user-space regions

• HBase Clients: The mechanisms for connecting to an HBase server

The data can be accessed via the HBase shell, or HBase clients can be used to access
the data. HBase clients are scripts or programs that utilize Hive's drivers to access the
data. The main types of HBase clients are:

• MapReduce

• Java

http:///

Chapter 5

[133]

• REST

• Thrift

These clients operate similar to the Hive clients. Each offers programmatic means
for interfacing with HBase and performing data operations. MapReduce is the most
common method data analysts employ for running HBase analysis, whereas Java,
AVRO, REST, and Thrift can be used for data extract, transform, load (ETL), data
export, or analysis. The following igure shows how an HBase application-based
collection operates, with the HBase service used to represent the use of the HBase
shell or HBase clients to request and collect data:

Figure 3: HBase service collection

HBase has a number of robust backup mechanisms that can also be used for a
forensic collection. These include the following:

• Full backup

• Online table export

Each of the backup methods is a viable and sound method for collecting HBase data.
They also do not require signiicant coniguration for data restoration, making the
HBase backup options more advantageous than the Hive backup methods. HBase also
offers other backup methods, such as incremental backups and replication, but those
are not as valuable or expeditious as the two types mentioned in the preceding list.

http:///

Collecting Hadoop Application Data

[134]

Loading HBase data
Data can be loaded into HBase in a number of ways. HBase clients can be used to
programmatically push data into HBase. The simplest method is to load HBase data
through the HBase shell. The HBase shell is started via the following command:

hbase shell

Next, the HBase table is created with the following command:

create 'testTable', 'account', 'address'

This creates a table called testTable with account and address as column family.

Finally, the table is populated using put commands:

put 'testTable', 'record1', 'account:name', 'John Doe'

put 'testTable', 'record1', 'account:ID', '100'

put 'testTable', 'record1', 'address:street', '123 Main St'

put 'testTable', 'record1', 'address:country', 'USA'

put 'testTable', 'record2', 'account:name', 'Jane Doe'

put 'testTable', 'record2', 'account:ID', '101'

put 'testTable', 'record2', 'address:country', 'UK'

Each put command loads a new value into an HBase cell. The irst put command
inserts the value John Doe into testTable for record1 in the account:name cell.
The record1 value is the unique identiier for the table. Both the account and
address column families can have multiple values. In this case, name and ID are
part of the account column family and street and country are part of the address
column family. Four values are inserted into record1. Only three values are inserted
into record2, though HBase does not require every record to populate the same
number of columns.

The data load can be tested by irst counting the number of rows:

count 'testTable'

This returns the following output:

2 row(s) in 0.0210 seconds

The table can also be queried from the HBase shell using the scan command:

scan 'testTable'

http:///

Chapter 5

[135]

The scan command produces the following output:

record1 column=account:ID, timestamp=1427229190902, value=100

record1 column=account:country, timestamp=1427229218748, value=USA

record1 column=account:name, timestamp=1427228899101, value=John Doe

record1 column=account:street, timestamp=1427229207080, value=123
Main St

record2 column=account:ID, timestamp=1427229237904, value=101

record2 column=account:country, timestamp=1427229246303, value=UK

record2 column=account:name, timestamp=1427229008616, value=Jane Doe

2 row(s) in 0.8620 seconds

Identifying HBase evidence
HBase evidence is stored in tables, and identifying the names of the tables and the
properties of each is important for data collection. HBase stores metadata information
in the -ROOT- and .META. tables. These tables can be queried using HBase shell
commands to identify the information about all tables in the HBase cluster.

Information about the HBase cluster can be gathered using the status command
from the HBase shell:

status

2 servers, 0 dead, 1.5000 average load

For additional information about the names and locations of the servers, as well
as the total disk sizes for the memstores and HFiles, the status command can
be given the detailed parameter.

The list command outputs every HBase table. The one table created in HBase,
testTable, is shown via the following command:

list

TABLE

testTable

1 row(s) in 0.0370 seconds

=> ["testTable"]

http:///

Collecting Hadoop Application Data

[136]

Information about each table can be generated using the describe command:

describe 'testTable'

'testTable', {NAME => 'account', DATA_BLOCK_ENCODING => 'NONE',
BLOOMFILTER => 'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3',
COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',
KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY =>
'false', ENCODE_ON_DISK => 'true', BLOCKCACHE => 'true'}, {NAME =>
'address', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION => 'NONE',
MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS =>
'false', BLOCKSIZE => '65536', IN_MEMORY => 'false', ENCODE_ON_DISK
=> 'true', BLOCKCACHE => 'true'}

1 row(s) in 0.0300 seconds

The describe command yields several useful pieces of information about each table.
Each of the column families are listed, and for each family, the encoding, number of
columns (represented as versions), and whether the deleted cells are retained are
also listed.

Security information about each table can be gathered using the user_permission
command:

user_permission 'testTable'

This command is useful for identifying the users who currently have access to the
table. As mentioned earlier, user accounts are not as meaningful in Hadoop because
of the distributed nature of Hadoop conigurations, but in some cases, knowing
who had access to tables can be tied back to system logs to identify individuals
who accessed the system and data.

The HBase backup collection
HBase provides a number of backup mechanisms that can be used for forensic
collection of HBase data. The HBase snapshot and export utilities are the best methods
for forensic collection. The snapshot utility generates a complete backup of the HBase
database. The ile can be loaded into an HBase instance in the analysis repository via
the restore_snapshot command during the analysis phase. The export utility creates
SequenceFiles that are stored in HDFS. The SequenceFiles can be forensically copied
from HDFS to forensic storage after the export utility process completes.

To create a snapshot, irst ensure that the hbase-site.xml ile's hbase.snapshot.
enabled property is set to true. If it is set to false, snapshots cannot be created.
From the HBase shell, type:

snapshot 'testTable', 'snapshotName'

http:///

Chapter 5

[137]

This creates a snapshot in the ./hbase/snapshot directory. Once created, the snapshot
directory should be copied along with the iles in the following directories:

• ./hbase/<tableName>/<regionName>/<familyName>/: This directory
houses files that are still in use by HBase

• ./hbase/.archive/<tableName>/<regionName>/<familyName>/:
This directory houses files no longer in use by HBase

The MD5 hash values of the iles can be computed from the snapshot iles and then
compared to the MD5 hash values of the forensically copied snapshot iles. If the
size of the iles is prohibitive for the use of MD5, control totals can be captured
immediately after the snapshot is generated.

The export utility can be used to export an individual HBase table to SequenceFiles.
The advantage of this method is that complete backups of tables can be generated
to a common Hadoop ile format. To generate an export backup, run the following
command from the client operating system (not HBase shell):

hbase org.apache.hadoop.hbase.mapreduce.Export 'testTable'
/home/ec2-user/testTable

This generates the following output that serves as both a log and record count
control total for the export:

File System Counters

FILE: Number of bytes read=18233900

FILE: Number of bytes written=18644961

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

Map-Reduce Framework

Map input records=2

Map output records=2

Input split bytes=101

Spilled Records=0

Failed Shuffles=0

Merged Map outputs=0

GC time elapsed (ms)=8

CPU time spent (ms)=0

Physical memory (bytes) snapshot=0

Virtual memory (bytes) snapshot=0

http:///

Collecting Hadoop Application Data

[138]

Total committed heap usage (bytes)=238354432

HBase Counters

BYTES_IN_REMOTE_RESULTS=336

BYTES_IN_RESULTS=336

MILLIS_BETWEEN_NEXTS=327

NOT_SERVING_REGION_EXCEPTION=0

NUM_SCANNER_RESTARTS=0

REGIONS_SCANNED=1

REMOTE_RPC_CALLS=5

REMOTE_RPC_RETRIES=0

RPC_CALLS=5

RPC_RETRIES=0

File Input Format Counters

Bytes Read=0

File Output Format Counters

Bytes Written=508

The SequenceFile for this export is found in the /home/ec2-user/testTable
directory:

-rw-r--r-- 1 ec2-user ec2-user 496 Mar 25 15:03 part-m-00000

-rw-rw-r-- 1 ec2-user ec2-user 12 Mar 25 15:03 .part-m-00000.crc

-rw-r--r-- 1 ec2-user ec2-user 0 Mar 25 15:03 _SUCCESS

-rw-rw-r-- 1 ec2-user ec2-user 8 Mar 25 15:03 ._SUCCESS.crc

These iles should be forensically copied to the forensic destination drive, with an
MD5 hash value, if feasible.

The HBase query collection
HBase offers a very basic query language that is accessible from the shell. The query
language enables iltering and aggregation to be performed, but the language is not
as robust and lexible as a SQL variant. Collections are possible using the HBase shell
language; however, the queries require some data manipulation to ensure that the
results are returned correctly. The following command can be run from an HBase
client to execute the HBase shell scan command and exclude any output that does
not start with a space. That is, this command's output only includes HBase records
and excludes summary information and Java output:

echo "scan 'testTable'" | hbase shell | grep "^ " >
./outputDir/testTable.txt

http:///

Chapter 5

[139]

The output ile, testTable.txt, contains the records from testTable:

record1 column=account:ID, timestamp=1427286384337, value=100

record1 column=account:name, timestamp=1427286375900, value=John Doe

record1 column=address:country, timestamp=1427286409638, value=USA

record1 column=address:street, timestamp=1427286400653, value=123
Main St

record2 column=account:ID, timestamp=1427286437526, value=101

record2 column=account:name, timestamp=1427286427052, value=Jane Doe

record2 column=address:country, timestamp=1427286447013, value=UK

The use of the HBase shell's scan utility is useful for extracting all values for a table,
but its iltering capabilities are not as well-suited for iltering data for a collection
as SQL methods. Another limitation of scan is that the output is limited to the
format shown in the preceding output ile. Also, because of the lack of data type
enforcement and the incapability to create multiple columns for each column family,
the output of scan cannot be easily imported into a relational database without data
transformations. An investigator should determine how many tables need to be
extracted and whether data iltering needs to be applied before deciding whether
to use scan.

Apache Phoenix is a SQL-wrapped layer over HBase that provides
SQL-like access to HBase, and Hive can be connected to HBase for
SQL querying. If Phoenix or Hive is part of the HBase environment
in question, Phoenix or Hive queries can be run in place of HBase
queries for the collection.

HBase collection via scripts
HBase data can also be exported using scripts that connect to HBase via the HBase
client libraries. The HBase client libraries offer mechanisms for connecting to HBase
data stores and then programmatically exporting data. Most scripting languages
and Java offer granular data controls and iltering, methods for exporting data to a
desired location, and performing other steps (for example, MD5 calculation). The
script-based approach requires a strong understanding of the Hadoop architecture
and the effect a script has on the Hadoop cluster.

Pig is a common scripting language for querying and extracting data from Hadoop
applications. For HBase, the HBaseStorage() method can be used to connect to a
particular table and extract the speciied column families and/or columns.

http:///

Collecting Hadoop Application Data

[140]

The following Pig script can be run to collect the results from the testTable using
the HBaseStorage() method into pipe-delimited records:

dataOutput = LOAD 'hbase://testTable' USING
org.apache.pig.backend.hadoop.hbase.HBaseStorage('account:ID
account:name address:street address:country', '-loadKey=true') as
(id, accountID, accountName, addressStreet, addressCountry);

store dataOutput into 'results/extract' using PigStorage('|');

For more information about writing Pig scripts for HBase, visit
https://pig.apache.org/docs/r0.9.1/api/org/apache/
pig/backend/hadoop/hbase/HBaseStorage.html.

HBase control totals
Control totals can be collected in two ways with HBase. First, the HBase shell
command count can be used to capture the number of records for a particular
table. This method can also be scripted from the HBase client operating system:

echo "count 'testTable'" | hbase shell >
./outputDir/testTable_recCount.txt

The alternative is to collect the control totals through a Pig or MapReduce script at
the time of data collection. This method is best because of the automation and the
combined step of data collection and validation collection.

HBase metadata and log collection
HBase metadata is limited and not relevant to most investigations. The .META. and
-ROOT- tables, which are described as metadata tables, only contain information
about data regions and the locations of the data blocks. These tables are useful for
HBase's internal operations but not relevant for most investigations. The primary
sources of information about HBase can be found in the data tables, the hbase-
site.xml coniguration ile, and HBase log iles. Typically, HBase log iles are found
in the /var/log/hbase directory. In this directory, the HBase and ZooKeeper log
iles about all system activity are available. In addition, investigators can collect the
SecurityAuth.audit ile in the /var/log/hadoop directory for information about
application login attempts.

https://pig.apache.org/docs/r0.9.1/api/org/apache/pig/backend/hadoop/hbase/HBaseStorage.html
https://pig.apache.org/docs/r0.9.1/api/org/apache/pig/backend/hadoop/hbase/HBaseStorage.html
http:///

Chapter 5

[141]

Collecting other Hadoop application data

and non-Hadoop data
Not all relevant Hadoop data is always stored and accessed within Hive, HBase,
or even HDFS. Hadoop clusters are typically part of a larger data analysis ecosystem.
This means that data lows into and out of Hadoop from other systems. Inside
Hadoop, and at the Hadoop data ingress and egress points, data transfers and
transformations may occur. These changes to the data may be relevant, and as
such, the investigator may need to collect data from these systems.

Many other Hadoop applications are available for data analysis and storage. The
Apache Foundation currently lists many projects and incubator projects that are
deployed in production environments. Applications such as Cassandra, Chukwa, and
Spark may be found in the course of an investigation as well as new ones (for example,
Drill and Tajo). When a new or uncommon application is identiied, the investigator
can apply the same collection process for each application, which irst requires
determining whether the collection should be performed in HDFS or the application.
If the collection should be performed through the application, the investigator
should irst become well versed in the methods for collecting the data and review
documentation to ensure that critical evidence is not overlooked. If possible, work
with the system owner to understand the application. Otherwise, consider employing
an expert in that system to assist with the collection process.

For more information about typical Hadoop implementations and
the various Apache Hadoop applications in use, visit https://
wiki.apache.org/hadoop/PoweredB.

Hadoop is often designed to be part of a larger data environment. Data lows into
Hadoop from various sources, such as web servers and customer relationship
management (CRM) systems. Data can also low into Hadoop from other databases
or data warehouses as part of the analysis low. Hadoop performs actions on the
data, such as data aggregation, transformation, and reporting. Hadoop then outputs
the data into reports or as data lows into other systems.

https://wiki.apache.org/hadoop/PoweredB
https://wiki.apache.org/hadoop/PoweredB
http:///

Collecting Hadoop Application Data

[142]

The following igure illustrates a simpliied environment and how data lows into
and out of Hadoop:

Figure 4: A sample organizational data system architecture

This environment shows ive major systems that serve as inputs to both the traditional
data warehouse environment and the Hadoop cluster. The data warehouse and
Hadoop share data, and all output lows to a business intelligence server by way of
a data mart and Hadoop analytics environment. In real-world environments, subsets
and various versions of data are distributed to the data warehouse and Hadoop
environments, near-line and ofline versions of the data are stored, and some or all
of the various components are deployed in a cloud environment.

Some of the common solutions that interface with a Hadoop cluster include:

• Hadoop reporting and visualization solutions

• Hadoop data warehouse solutions

• Records management and compliance solutions

• Traditional data warehouses

• Business intelligence software

Understanding how data lows into and out of Hadoop is important for the
following reasons:

• The other systems may be easier to collect

• The other systems may retain data that was purged by Hadoop

• Data was transformed inside or outside of Hadoop, and the form of
data outside of Hadoop is relevant to the investigation

• Data from the other systems are valuable for data validation

http:///

Chapter 5

[143]

Each of these points highlight the fact that data can be found in various locations
and that an investigation does not always rely on a single system. Rather, Big Data
can be part of a larger organization-wide investigation. In some cases, only a single
system is required. In other investigations, such as fraud investigations and cases
involving data manipulation, multiple systems need to be analyzed. The key is for
the investigator to understand the requirements of the investigation and clearly
identify the available systems and the data they store.

Summary
Collecting evidence through Hadoop applications instead of HDFS offers a number
of beneits. The applications offer a quicker, easier means to access the data. Rather
than collecting data from each node of the cluster, applications bridge all of the
nodes and offer a means to collect data from a single point. Many application-based
collection methods also offer an up-front method to cull out the data and limit it to
only the relevant data. This is a huge beneit when dealing with terabytes or petabytes
of data. In the case of petabytes, a full collection is not currently feasible for most
investigations. Application-based collections also make the analysis phase easier.
Collecting data from applications enables the investigator to begin the analysis more
quickly, instead of spending a large amount of time carving out data and piecing
together the data.

Regardless of the application, the same process and concepts can be applied. This
chapter focused on Hive and HBase, which are the two most prominent Hadoop
data storage and analysis packages. However, many other open source, commercial,
and proprietary applications exist. The same concepts and principles can be applied
to any other application. First, determine which collection methods are available (for
example, query or backup) and then assess which of those best meet the needs of
the investigation. During the selection process, the investigator needs to be mindful
of the impact of that collection process on the source system and the output format
of the evidence. The collection should be documented, and control totals or other
validation information must be collected.

The next two chapters cover the analysis phase. The evidence that has been collected
can now be put into a format for analysis, and the analysis can be conducted utilizing
known techniques, such as fraud detection algorithms and descriptive statistics.

http:///

http:///

[145]

Performing Hadoop

Distributed File

System Analysis
The previous two chapters covered the data collection process. Chapter 4, Collecting
Hadoop Distributed File System Data discussed ilesystem data collection, with a focus on
how to collect Hadoop Distributed File System (HDFS) data in several different ways.
Chapter 5, Collecting Hadoop Application Data, went through the process of collecting
application-level Hadoop data. The analysis phase begins after the collection process,
and the type(s) of analysis chosen depend on the collection method that was selected.
This chapter covers examples of the main types of analyses that are conducted against
the ilesystem-level data collection, which was covered in Chapter 4, Collecting Hadoop
Distributed File System Data.

Evidence collected from the HDFS ilesystem can be analyzed in several ways.
First, evidence can be reconstructed into its original format for analysis. This is
typically the case when a Hadoop cluster is ofline during collection and each
node is forensically imaged. This process requires data reconstruction—such as
ile carving—and is the most time-consuming one. A second method is analyzing
the logical iles collected from a Hadoop cluster. Metadata analysis and data
reconstruction can be performed on the logical ile collection. A third method is log
and coniguration ile analysis to determine how the cluster was set up and what
events occurred. These analyses can be run independently or, more typically, in
concert as part of a larger investigation.

http:///

Performing Hadoop Distributed File System Analysis

[146]

The forensic analysis process
Forensic analysis is a process. Investigations are rarely solved in a linear manner.
Typically, an investigation begins with a hypothesis that is tested against the data.
During the analysis, additional clues or details are uncovered that change or add to
the original hypothesis. The process continues iteratively until the investigator can
determine exactly what occurred and can provide supporting evidence from the
data. This iterative process applies to both traditional computer forensics and Big
Data forensics. The following diagram illustrates the steps of the analysis phase:

Figure 1: The analysis process

The starting point of the analysis phase is the investigation hypothesis. The
hypothesis is based on the facts of the case and is often developed well in advance
of the analysis phase. One example of a hypothesis is, "Former employee X stole
trade secrets from Company Y, and then implemented a solution based on those
trade secrets for his new employer, Company Z."

An analysis plan is developed based on the hypothesis and a combination of factors.
The following are the key considerations for developing a plan in the analysis phase:

• The requirements of the investigation

• The available evidence

• The relevant non-Big Data evidence

http:///

Chapter 6

[147]

Analysis plans are useful for planning and directing the analysis. In highly complex
investigations, the analysis can involve hundreds or thousands of analyses. Organizing
those analysis steps into a plan is critical for ensuring that all analysis is completed.
A plan can be as simple as, "Identify all inancial transactions from employee X on
January 2 in the Hive table trades." Or, the analysis can involve comparing multiple
data sources to identify anomalies that indicate a particular pattern. Regardless,
analysis plans are developed that address the key points of the hypothesis vis-à-vis
the available evidence. They also incorporate additional evidence that can corroborate
or be used to cross-validate the results. Additionally, analysis plans account for time
limitations and the type of analysis that is admissible in the presentation phase.

The analysis itself takes on many different forms. In some cases, information about the
data is critical, such as ile date modiications, system conigurations, and the volume
of data. In other situations, the content of the data is what requires analysis. Most Big
Data investigations focus on the data contents. The data is loaded into an analysis
repository, and queries are run against the data to identify the characteristics of the
data using anomaly detection, descriptive statistics, and/or inferential statistics.

The results of the analysis are reviewed, and based on those results, the analysis
is concluded or the analysis is modiied based on the indings, or lack thereof.
Investigators take the analysis indings and determine whether the indings are
suficient, unbiased, and complete. The results should tell a compelling story that
is free of bias. If contradictory results are found, those results should not be
discarded. Rather, they should be analyzed further.

Forensic analysis goals
There are a number of goals in the analysis phase. No two investigations are the
same, so the goals will vary by investigation. One goal that is common among most
investigations is properly scoping the evidence. The investigator may not know
what information can be found in the evidence or what the smoking gun even is.
Scoping the evidence is the process of surveying the evidence and getting a better
understanding of the overall set of evidence. Another goal is extracting evidence.
Collected evidence may not be in a format that is conducive to further analysis.
The evidence must irst either be further extracted or converted into a format that
can be reviewed by the investigator.

http:///

Performing Hadoop Distributed File System Analysis

[148]

The obvious goal of the analysis phase is the actual analysis. The analysis should
determine what the facts contained in the evidence mean and how they relate to
the other facts of the investigation. The analysis should be:

• Timely: The analysis is performed within the time constraints of
the investigation

• Complete: All relevant evidence is analyzed

• Accurate: The analysis is performed correctly and without bias

• Meaningful: The analysis is conducted in a way that tells a logical
story that can be understood by others

Forensic analysis concepts
Several concepts are important in the analysis phase. They ensure the investigation
is performed properly and within the practical realities of an investigation. These
analysis concepts are deined in the following list:

• Anomaly/Outlier: A result or data point that is unexpected and/or not
of a normal pattern.

• Bias: Any form of prejudice for, or against, a party; or a preconceived fact
that is not backed by evidence (for example, confirmation bias).

• Completeness: The relevant evidence was analyzed fully.

• Cross-validation: The validation of results from one data set against another.

• Data reduction: The minimization or culling of irrelevant data to make the
analysis data set a more manageable size. This process is important in the
early stages of Big Data analysis to ensure the analysis can be performed
in a timely manner.

• False negative: An analysis result that incorrectly indicates the absence
of a condition or attribute.

• False positive: An analysis result that incorrectly indicates the presence
of a condition or attribute.

• Hash analysis: The verification and comparison of hash values against
source evidence or against a list of known hash values for common files.

http:///

Chapter 6

[149]

The challenges of forensic analysis
Several dificulties can arise during the course of a Big Data investigation. The
system may have been intentionally altered in an attempt to thwart the investigation,
or security measures may be in place that hamper or prevent the investigation.
These issues can be addressed in a number of ways and should be tested for
during the analysis phase.

Anti-forensic techniques
Anti-forensic techniques are intentional steps taken to defeat forensic analysis.
Anti-forensic techniques are problematic because they are aimed at destroying
evidence and/or creating false or misleading evidence. If an investigator does
not control for anti-forensic techniques or perform analysis to determine whether
anti-forensics was applied, the analysis could be completed using lawed data.
Some advanced techniques include steganography and secret data channels.
However, the most common anti-forensic techniques that apply to Big Data
investigations include the following:

• Log deletion/modification
• Record deletion/modification
• Injecting large volumes of data around key data

The best methods for combating anti-forensic techniques are 1) cross-validation of
existing evidence with other Big Data evidence as well as evidence from other sources,
and 2) anomaly detection. Several methods for doing this include comparing log ile
entries against data sources and comparing sets of mirrored data sets. For example,
comparing the Sqoop application log iles against the data imported into Hive via
Sqoop is one method for determining if records were deleted from Hive or if the
logs were modiied. The anti-forensic techniques can span multiple data sources, so
the investigator should be aware of the possibility of getting a false-positive when
validating only two data sources.

Data encryption
Hadoop and its applications support end-to-end encryption. When encryption
is conigured and turned on, the cluster's data is encrypted at rest and in transit.
At-rest encryption means that the data stored in the cluster is encrypted, which
is problematic if the evidence was collected via a forensic image with the cluster
powered off. In-transit encryption means that the data is encrypted while it is
being transferred across the network. Encryption is not an issue when the data
is forensically collected from an HDFS client or directly through Hadoop.

http:///

Performing Hadoop Distributed File System Analysis

[150]

If the evidence is encrypted, the forensic investigator should request the encryption
keys. The Hadoop Key Management Server (KMS) is the proxy server that manages
Hadoop encryption keys and would be the location of the keys for the cluster.
Encryption keys are required to be turned over in criminal and civil litigation cases
in the US, and most other courts also require that the party who holds the encryption
keys turn them over if they are the only means to decrypt the data.

For more information about Hadoop encryption, visit http://
hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/TransparentEncryption.html.

Analysis preparation
Several steps are taken at the onset of the analysis phase to prepare the forensic
environment for the analysis. The irst step is to attach a copy of the evidence to the
environment in a read-only manner. Because the amount of forensic data is large in
a Big Data investigation, the hard drives containing the evidence should be attached
to a suficiently large storage device in the read-only mode. The Big Data analysis
environment should be attached to a network-attached storage (NAS), or other
large-scale storage solution. Cloud environments are becoming increasingly common
in forensic investigations, but the investigator must ensure that proper security
measures are in place and that such storage is acceptable for the investigation.

Cloud computing has several advantages for Big Data investigations.
These include distributed computing and less of an infrastructure
burden being placed on the investigator. However, data upload speeds
to many cloud computing environments are slow, and loading data to
a cloud raises security issues. The investigator should ensure that cloud
storage is allowed for that investigation and that proper security and
data privacy controls are in place.

The analysis environment also needs to include the software for performing the
analysis. One or more analysis machines need to be set up with the analysis software
and connected to the copied read-only evidence. A standard tool for Big Data
investigations is database software. These software packages, such as Microsoft
SQL Server, MySQL, and Oracle, are valuable tools for loading and analyzing large
volumes of Big Data evidence. Programming languages and data visualization tools
are also useful for these purposes.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http:///

Chapter 6

[151]

Databases are excellent for analyzing transactional data, but other tools may be
required for analyzing HDFS data. HDFS data can require extensive data preparation
and the use of other tools before the data can be loaded into a data repository. The
subsequent section in this chapter, Analysis, covers this topic and several of the
available tools used by investigators.

Evidence should be re-inventoried at this stage to ensure that all data has been brought
into the analysis environment. Information from the documentation about which
information was collected during data collection is compared to the evidence in the
analysis environment. Control totals should also be validated at this point, if possible.

Evidence can be culled at this stage in some cases. If a known subset of data is all
that is needed for the analysis phase, the other data can be moved out of the analysis
repository. The moved data, often referred to as culled data, should still be available
should a need for it arise later, but moving that data out of the analysis repository
can make the analysis process smoother and faster.

Analysis
The ile-level analysis is the analysis that is performed on logical iles or forensic
images. This analysis differs from data content analysis, because the focus of this
analysis is to extract, or piece together, data containers or collect metadata information.
For Big Data investigations in which nodes were individually imaged, this is the
type of analysis whereby the images are analyzed and the contents of the cluster
are pieced back together for further analysis.

Because no two investigations are the same, analysis techniques serve as tools in
a toolbox and can be combined or run in various orders and combinations. The
primary ile-level analyses are:

• Keyword searching

• File and data carving

• Metadata analysis, such as file modification timeline analysis

• Cluster reconstruction

Keyword searching and ile and data carving
Two methods for analyzing HDFS evidence are keyword searching and ile and
data carving. Keyword searching is the technique of identifying sections of data that
contain a particular keyword or set of keywords. File and data carving is the process
of extracting iles or data containers out of a forensic image. A forensic image is just
a large data ile, but by carving the iles and data containers out of the image, the
investigator can analyze the evidence in their original structures and formats.

http:///

Performing Hadoop Distributed File System Analysis

[152]

Bulk Extractor
Bulk Extractor is a keyword search and ile carving tool that can extract text,
graphics, and other information from forensic images. This tool is an excellent
method for previewing data by way of searching entire dd images or a logical ile
collection without needing to reconstruct data or carve iles. To extract text using
Bulk Extractor, perform the following steps:

1. Download Bulk Extractor version 1.5 from http://digitalcorpora.org/
downloads/bulk_extractor/.

2. Run Bulk Extractor Viewer, and load the Bulk Extractor tool via
Tools | Run bulk_extractor.

3. Load the directory of iles or dd image to be scanned by selecting the
Image File option and providing the path to the dd image ile. Note that
Bulk Extractor provides a number of built-in scanners that look for forensic
artifacts and text strings that match known patterns. Additional words
or text patterns can be provided to Bulk Extractor:

Figure 2: Bulk Extractor image load

http://digitalcorpora.org/downloads/bulk_extractor/
http://digitalcorpora.org/downloads/bulk_extractor/
http:///

Chapter 6

[153]

4. Click Submit Run. After the process completes, the following summary
screen is shown as illustrated in the following igure which includes the
MD5 hash value and total amount of evidence analyzed:

Figure 3: Bulk Extractor processing

5. Bulk Extractor outputs a report for each scanner option selected. The reports
include a copy of the string matches and a histogram report of the most
frequent results, such as the most frequent email addresses or domains.

Bulk Extractor works well when relevant evidence is unencrypted and
uncompressed. The tool is an excellent method for the investigator to search for
relevant text strings and also to look at the frequency of text strings to get a better
understanding of the data without needing to structure and load the data to an
analysis repository. If the data is encrypted and/or compressed in a nonstandard
format, Bulk Extractor cannot extract the text and provide results.

Investigators should be careful when relying on this analysis to gain a complete
understanding of the text in the evidence collection. If a forensic image was performed
on the node's local operating system and Hadoop storage, the HDFS data may not
be extracted by Bulk Extractor, depending on the Hadoop coniguration settings.
For more information about Bulk Extractor, read the documentation available at
http://forensicswiki.org/wiki/Bulk_extractor.

http://forensicswiki.org/wiki/Bulk_extractor
http:///

Performing Hadoop Distributed File System Analysis

[154]

Autopsy
Autopsy is a freeware forensic tool that provides a number of useful functions,
including keyword searching and ile and data carving. Autopsy is a graphical
version of the Sleuth Kit, another freeware forensic tool that is widely used in
investigations.

To carve iles and data using Autopsy, perform the following steps:

1. Download and install Autopsy version 3.1 from http://www.sleuthkit.
org/autopsy/.

2. Run Autopsy, and select New Case.

3. On the New Case Information screen, as illustrated in the following igure,
enter the Case Name and Base Directory to indicate where to store the
Autopsy output, and click Next:

Figure 4: Autopsy case setup

4. Enter the Case Number and Examiner information, and click Next. The Case
Number is typically a sequential, numerical identiier for each set of evidence.
The following igure shows a coniguration with Case Number 001:

http://www.sleuthkit.org/autopsy/
http://www.sleuthkit.org/autopsy/
http:///

Chapter 6

[155]

Figure 5: Autopsy case setup continued

5. At this point, the new case has been opened and the evidence can be
added. Click on Add Data Source to add the forensic image or directory
of evidence iles.

6. Enter the data source information, as illustrated in the following igure.
Select either Image File or Logical Files, and enter the path to the image
ile or logical iles. Click Next:

Figure 6: Autopsy evidence input

http:///

Performing Hadoop Distributed File System Analysis

[156]

7. Select all ingest modules that apply to the investigation. For testing purposes,
select all options and ensure that Process Unallocated Space is checked. That
provides slack space analysis capabilities, including deleted ile recovery:

Figure 7: Autopsy evidence input continued

The carving tool provided by Autopsy ile view enables the investigator to view
audio, video, picture, document, and other ile types from the source ilesystem and
slack space. After the evidence has been ingested into Autopsy, the investigator can
view the iles under the Views menu, where the list of images, videos, and other iles
is available. The menu, as illustrated in the following igure, is divided into several
different types of views: 1) File Types, 2) Recent Files, 3) Deleted Files, and 4) MB
File Size (grouped by ile size).

Figure 8: Autopsy file viewer

http:///

Chapter 6

[157]

Files can be extracted through the ile carver by right-clicking on the ile and
selecting Extract File(s). Any type of ile, deleted or not, can be extracted using this
method. The iles are then extracted to the location speciied by the investigator.

Files can also be tagged in Autopsy for later extraction or further analysis. The
investigator can right-click on a selected ile and select Tag to save the ile with
tag information for later analysis.

Autopsy also provides keyword searching capabilities. In the top-right corner,
Autopsy has the Keyword Search and Keyword Lists menus. Click on Keyword
Search to run a one-time search. The search can run the following three types
of searches:

• An exact word match

• A substring match

• A regular expression match

When the search is run, Autopsy searches all extracted text from the evidence and
returns the list of iles with one or more matches and all associated metadata.

Multiple search terms can be searched in a batch via the Keyword Lists menu.
Clicking on Keyword Lists | Manage Lists brings up the search settings, where the
investigator can add a list of multiple search strings. A list is created and saved after
all terms have been entered. Then, the investigator can search the evidence using that
list by clicking on the dropdown menu next to Keyword Lists and selecting the list
to use.

The results of keyword searches can be exported as a report ile that shows the ile
that matched and the search term. Let's see the steps to generate a report ile:

1. Click Tools | Generate Report.

2. Select Results | Excel or Results | HTML.

3. Select All Results or Tagged Results, and click Finish.

A report ile is generated that displays which iles match the search terms.

Reports that are generated by forensic software are preferable over
manual notes, unless the reports do not capture the details required
for the analysis.

http:///

Performing Hadoop Distributed File System Analysis

[158]

Metadata analysis
Analyzing metadata is typically not as important or relevant for a Big Data
investigation. Because HDFS data is distributed and the data is created, modiied,
and accessed using shared or system accounts, the metadata is not as valuable as it
is in typical forensic investigations, where a single user's activity is important and
discernible. Metadata can still be important, though. Information about when iles
were last accessed or created can be retrieved.

Autopsy has a number of powerful metadata analysis tools for understanding when
data was created, modiied, and accessed; who created the data; and the types of
events that occurred. Metadata can be updated by various mechanisms and can
relect the local operating system's timestamps and permissions, or it can relect
application's information about the data.

File activity timeline analysis
Autopsy's timeline feature generates graphical, interactive timelines based on the
evidence's Modiied, Accessed, and Created (MAC) metadata times. To create a
timeline, click Tools | Timeline. Autopsy generates a timeline based on the loaded
evidence. If MAC times are not available for a ile, the ile is not represented in
the timeline.

The following igure shows the timeline feature:

Figure 9: Autopsy timeline viewer

http:///

Chapter 6

[159]

The Autopsy timeline is an interactive tool that gives the investigator the ability to
review events in a number of ways:

• Zoom: The time units, event type, and description can be adjusted to show
more or less information on the timeline; the investigator can zoom in on
specific dates and times down to the second.

• Filters: Text filters, known files, and types of events can be included or
excluded from the timeline, reducing noise events.

• Table/Thumbnail Preview: The list of files and thumbnail previews of the
files can be viewed, and the list of strings and metadata are also provided
when an investigator selects a file.

Timeline analysis is performed by one or more of the following approaches:

• Identifying key epochs and reviewing events in the same time period

• Looking for key clusters of events and homing in on those

• Tracing key events to related events to build a timeline of key events

Other metadata analysis
Other forms of metadata can be analyzed with the help of Autopsy and Excel (or a
database). Autopsy stores the available metadata for every ile, and that metadata
can be extracted to a tab-delimited text ile for analysis in another program:

1. Select Tools | Generate Report.

2. In the Report Module screen, select Files | Text.

3. Select the metadata to extract (select all for this example).

4. Click Finish, and note the location of the output ile.
5. Open Excel, select the Data tab from the ribbon, and click From Text.

6. Navigate to and select the Autopsy-generated text ile.
7. Import the text ile as Delimited with the Tab delimiter.

8. Click Finish.

The following metadata can now be analyzed:

• Filename

• File Extension

• File Type

http:///

Performing Hadoop Distributed File System Analysis

[160]

• Deleted/Not Deleted
• Last Accessed/Created/Modified
• Size

• Hash

• Permissions

• File Path

Depending on the nature of the investigation, several types of metadata analysis
may be useful and include:

• Identifying anomalies or outliers based on the number of such files or
having an extremely large or small size

• Locating files that meet a key characteristic, such as deleted files or files
accessed during a key time period

• Identifying patterns within the data, which could involve determining
file activity during normal business hours and then locating outliers

• Finding files related to known relevant files to see if additional clues or
information can be spotted from files of a certain related characteristic
(for example, the same file path or extension)

The number of iles that are listed by Autopsy in the export may exceed the limits
for Excel analysis and may require the use of a database. Any tool that can aggregate
large sets of data and lets the investigator work with individual records is suficient
for this type of analysis.

The analysis of deleted iles
One form of analysis is to speciically analyze deleted iles for indications of certain
actions or behavior that arose. Deleting iles before the investigator performs a
collection is a common technique to thwart or interfere with an investigation. The
iles can also be deleted accidentally or as part of an automated data purging process.
Regardless, the deletion of iles, also called spoliation, is an issue investigators
regularly encounter in the course of analyzing evidence.

There are several types of ile deletions that can occur for a Big Data investigation:

• Files were deleted from the node's local operating system

• Files were deleted from HDFS

• Hadoop data was deleted from inside a file

http:///

Chapter 6

[161]

Recovering iles that were deleted from the node's local operating system is a
straightforward process when a forensic image of the node was collected. In Autopsy,
select the Deleted Files view, and expand the list to see the list of all deleted iles that
were identiied. This list shows the iles that were deleted and the deletion date. The
iles can be sorted by ilename, directory, MAC times, ile size, and other metadata.

The following analyses and steps can be performed against deleted iles in Autopsy:

• Matching hash value analysis: Right-click on the file and select Search for
files with the same MD5 hash.

• Keyword searches: Run a keyword search and sort the results by the
Flags(Dir) to find the unallocated files.

• Tagging for reporting or further analysis: Right-click on the file and select
Tag File.

• File preview: Right-click on the file and select Open in External Viewer.

• File date filtering: Right-click on the file and select Show only rows where.

The recovery of HDFS deleted iles from a forensic image of a node requires
additional steps to irst identify the HDFS data blocks and iles. After they have been
reconstructed, analysis can be performed on the HDFS deleted iles and data. If the
Hadoop iles were copied logically, the only deleted data that can be recovered are
the iles from the .Trash directory. If iles were collected from the .Trash directory,
those can be analyzed in the same manner as non-deleted iles, because no additional
steps are required to recover the iles.

HDFS data extraction
When a node's operating system and Hadoop storage is imaged, the HDFS data
is embedded in the image. Those HDFS iles need to be extracted from the image
for analysis to be performed. The process for extracting the iles is to carve out the
DataNode data and then extract the data blocks from the DataNode data to piece
together records or HDFS iles. Currently, no software packages exist for this, so the
process is manual and requires careful analysis. This process is not ideal for large
Hadoop clusters but may be necessary if no other options exist.

There are a number of HDFS iles that will be encountered in an HDFS data
extraction process:

• Hadoop log files (for example, application and MapReduce logs)

• Input data files

• Hive and HBase files

• Job configuration files

http:///

Performing Hadoop Distributed File System Analysis

[162]

Some or all of these iles can be relevant depending on the investigation. Being able
to locate and extract these types of iles is important for analyzing relevant data.

The process for extracting HDFS data from a forensic image has several steps:

1. Identify the location of the DataNode data in the local operating system.

2. Locate the DataNode data block iles in the local operating system using
that path.

3. Analyze the data blocks to identify the relevant iles.
4. Extract the data into a ile for analysis. The process is similar to any other

type of ile carving, except the local operating system layer requires an
extra step for identifying the data.

To identify the location of the DataNode data in the local operating system, ind the
hdfs-site.xml ile in the forensic image. Using Autopsy, this can be done in two
ways: 1) navigate to the standard directories where hdfs-site.xml is stored, 2)
run a keyword search for hdfs-site.xml and sort the results by ilename for that
ile. After the ile is located, open the ile, and ind the value of the dfs.data.dir
property. That location is the root directory where the DataNode block iles
are located.

Next, go to that directory in the mounted forensic image in Autopsy. The directory
should contain a VERSION ile and a directory with this structure, BP-<random
integer>-<IP address>-<creation time>. Navigate to the BP directory, and
then navigate to the BP directory's current subdirectory. Inside this folder is data
that can be analyzed. The following should be located in the current subdirectory:

• dfsUsed: The storage report file.

• VERSION: The information about the namespace and current
block pool ID.

• finalized: The HDFS data blocks that have been written.

• rbw: The rbw directory with data blocks still being written to
the filesystem.

The current, finalized, and rbw subdirectories can contain DataNode block
iles that were deleted in the local operating system. These iles can be recovered
and analyzed, similar to DataNode block iles that are active and visible in the live
system. Autopsy can be used to recover these deleted iles. Note that these iles are
automatically deleted by Hadoop during the data writing process, so the presence
of deleted iles does not necessarily mean that the iles were intentionally deleted
by someone.

http:///

Chapter 6

[163]

The iles in the finalized and rbw directories should now be extracted for analysis.
There are two types of iles. The iles with the .meta ile extension contain checksum
information that is used by Hadoop to verify the integrity of data blocks. The
iles without an extension are the data blocks, which are the valuable iles for an
investigation. The inalized directory should contain the most data, and unless the
Hadoop cluster was particularly active, the rbw directory may not contain data,
although it probably contains deleted iles.

The following screenshot shows a subset of the iles from the DataNode's finalized
directory for a single node forensic image:

Figure 10: DataNode block files

Next, select all of the DataNode block iles for extraction. Right-click on the selected
iles, and select Extract ile(s) to extract the iles for analysis. Typically, the best
method is for the investigator to extract all iles and analyze each. If the number of
DataNode block iles makes this infeasible, the investigator can preview the iles
using Autopsy to locate the potentially relevant iles, or focus on data block iles
from a speciic period of time if they know the date ranges of interest.

The next step is to analyze the iles using a hex editor.

Hex editors
Hex editors are a part of every forensic investigator's toolbox. Hex editors are
applications that display the binary contents of a ile in a number of display formats,
most commonly represented in hexadecimal values. These applications are important
for forensic investigations because forensic investigators can look into the contents of
a ile. Unlike a text editor, the investigator can use a hex editor to see non-text values,
such as ile header signatures and binary ile formats. Hex editors also give the forensic
investigator the ability to copy binary chunks of data and create new iles with that
data. This means that an investigator can manually carve out iles or data records from
a ilesystem or image ile.

http:///

Performing Hadoop Distributed File System Analysis

[164]

To begin working with a hex editor, download and install the free HxD hex editor
from http://mh-nexus.de/en/hxd/.

Open one of the DataNode block iles in HxD. The following screenshot shows
the irst ten lines of the hex editor data for one of the DataNode block iles, which
contains the data imported into HDFS earlier in this chapter:

Figure 11: The hex editor analysis of a DataNode block file

The hex editor shows the hexadecimal value of the bytes based on the offset (in the
far-left column) and the location (in the top row). The ASCII value is shown on the
far right.

The ile in the previous screenshot is easily recoverable from the DataNode block
because the ile was stored as plaintext in HDFS. The entire ile can be analyzed in
a database without further carving from this format. If a subset of the ile is needed,
highlight the sections of the ile that need to be extracted, and select File | Save As.
If the amount of data for a single HDFS ile is greater than the HDFS block size, the
data will be found in multiple DataNode block iles.

The data shown in the previous screenshot is actually found in two different DataNode
block iles. The data was loaded into HDFS, which was stored in a block. Earlier in this
book, the HDFS ile was loaded into Hive during an example completed in Chapter 2,
Understanding Hadoop Internals and Architecture which created a new copy of the data in
the HDFS ./hive directory. If multiple copies of the same data are found during this
DataNode analysis, the investigator can infer that the data may have been loaded into
a Hadoop application, such as Hive.

Hex editors are valuable tools when investigating binary formats of data. Compressed
and other binary formats cannot be viewed and directly loaded into a database
for analysis. Instead, the iles can be extracted and then converted into text format.
Common formats that require this are SequenceFiles and MapFiles. Both types
have header and trailer information, metadata, and sync blocks—and they can be
compressed. The data requires conversion to a text format, but before the data can be
converted, the ile type must be identiied. This is accomplished by reviewing the ile
header. SequenceFiles have headers that begin with SEQ4 or SEQ6.

http://mh-nexus.de/en/hxd/
http:///

Chapter 6

[165]

The following screenshot illustrates a SequenceFiles header:

Figure 12: An example SequenceFiles header

Cluster reconstruction
Cluster reconstruction can be performed on different levels and in different ways.
The simplest way is reconstructing the cluster from an HDFS logical ile collection.
These are the iles from the node's HDFS that were copied to storage. The method for
reconstruction is to build up the collection of HDFS iles into a single repository and
de-duplicate iles based on MD5 hashes. This method gives the investigator a static
snapshot of the iles available in the cluster. It does not give a snapshot of Hadoop
data that was not yet written to the ilesystem, and it may not yield all of the
Hadoop application's data.

Forensic reconstruction refers to reconstructing the forensically-collected
data, not creating a replica Hadoop cluster using the data. The goal of
cluster reconstruction is to piece together the acquired data into a usable
format for analysis.

The second method is reconstructing the cluster using the forensically-imaged node
data. This is a complex process by which the following steps are taken:

1. Analyze the NameNode edits and fsimage iles to determine the iles and
application data required and the corresponding block ID information.

2. Extract the DataNode data blocks based on the block IDs identiied in the
previous step.

3. If the ile is spread across multiple blocks, piece together the blocks.
4. If necessary, recover deleted data to identify the cluster's status at

speciic points in time.
The reconstruction begins by reviewing the edits and fsimage iles. Both iles are
run through the Hadoop Ofline Image and Ofline Image Viewer to convert them
into a readable format. Once converted, the iles will contain the directory names and
ilenames, along with the corresponding block IDs. The DataNode block iles that
correspond to the relevant block IDs are extracted, and the contents can be put into
the analysis repository with the correct directory name or ilename. Because DataNode
blocks can be replicated across multiple nodes, the investigator should be careful not
to introduce duplicative data to the analysis repository.

http:///

Performing Hadoop Distributed File System Analysis

[166]

The following igure illustrates the process for reconstructing the cluster's data:

Figure 13: A cluster reconstruction of allocated data blocks

In some cases, the investigator is only required to analyze one application or a
speciic type of data. The entire cluster does not need to be analyzed to achieve
this. Instead, the edits and fsimage iles should be reviewed to identify the
relevant data blocks. Those data blocks should then be targeted.

As an example, the following steps can be performed to locate and reconstruct a
ile named wiki_page_hits.txt.

First, the edits ile is reviewed to identify the relevant data blocks:

<RECORD>

 <OPCODE>OP_ADD></OPCODE>

 <DATA>

 <TXID>18</TXID>

 <LENGTH>0</LENGTH>

 <INODEID>16937</INODEID>

 <PATH>/wiki_page_hits.txt._COPYING_</PATH>

 </DATA>

</RECORD>

<RECORD>

 <OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>

 <DATA>

 <TXID>19</TXID>

 <BLOCK_ID>1073741825</BLOCK_ID>

 </DATA>

</RECORD>

http:///

Chapter 6

[167]

Next, the fsimage ile is reviewed to verify the relevant data blocks and determine
the replication factor:

<inode>

 <id>16397</id>

 <type>FILE</type>

 <name>wiki_page_hits.txt</name>

 <replication>1</replication>

 <mtime>1424185545147</mtime>

 <atime>1424185543359</atime>

 <perferredBlockSize>134217728</perferredBlockSize>

 <permission>root:supergroup:rw-r--r--</permission>

 <blocks>

 <block>

 <id>1073741825</id>

 <genstamp>1001</genstamp>

 <numBytes>6322</numBytes>

 </block>

 </blocks>

</inode>

Both the edits and fsimage iles conirm that only one DataNode block ile must
be extracted. Block number 1073741825 needs to be extracted, and given that the
replication factor is set to 1 in fsimage, the investigator does not need to concern
himself with potential data block duplication, because only one DataNode block
ile would exist.

Next, the corresponding block ile is identiied. That ile is found in the
DataNode ./finalized directory, as illustrated in the following screenshot:

Figure 14: The DataNode block file

If the replication factor was set for 2 or more, only one of the DataNode block iles
would be required; however, the investigator would irst need to compare the hash
values of all duplicate iles to ensure that they are true duplicates.

http:///

Performing Hadoop Distributed File System Analysis

[168]

The ile is then extracted and saved with its ilename and relevant metadata for
subsequent analysis.

Unallocated iles can also be recovered using this method if a speciic point-in-time
snapshot of the cluster is needed. Because the local operating system may still have
the previously deleted DataNode block iles, archived versions of the fsimage and
edits iles can be analyzed vis-à-vis the unallocated DataNode block iles recovered
by Autopsy. Using the same method as described earlier, the information in the
entries in fsimage and edits are applied to the unallocated DataNode block iles,
and the iles are extracted. Hadoop rarely reuses block IDs, so the investigator can
reliably determine if a DataNode block ile corresponds to the fsimage and edits
ile entries for that block ID without concern about a mismatch. The ilename of
the archived version of the fsimage ile has the maximum block ID contained in
the ile, and the ilename of the archived version of the edits ile has the block ID
ranges contained in the ile. This means that for a given block ID, the investigator
can identify both the fsimage and edits iles that apply. The following diagram
illustrates the process for extracting unallocated DataNode block iles:

Figure 15: Unallocated DataNode block files

Coniguration ile analysis
Coniguration iles are useful for forensic investigations because of the information
they provide about how the system was set up, including how the coniguration
is unique and where data sources are located. Coniguration ile analysis, a form
of static analysis, is typically only performed when the investigator needs to know
more about how a cluster was conigured and operated, and the types of Hadoop
applications and services that were used. Coniguration ile analysis is sometimes
an overlooked part of a forensic investigation, and it can be performed in both the
identiication and analysis phases.

http:///

Chapter 6

[169]

The following types of coniguration iles can be analyzed:

• The local operating system

• Hadoop

• Hadoop application

The goal for analyzing coniguration iles is to build a map of the various layers
of a cluster's coniguration, and then ill in the relevant information about how
Hadoop is conigured.

Linux coniguration iles
Currently, the local operating system for Hadoop clusters is Linux, unless the
system is a non-production development server. This means that the local
operating system coniguration iles are Linux iles. There are many different
Linux coniguration iles, and the following is a list of some of the most useful
for Hadoop forensic investigations:

Filename Description

/etc/hosts This contains list of known hosts in the local network

/etc/hosts.allow
(deny)

This contains access control that permits or blocks
specific hosts from accessing the system

/etc/rc.d/rc/rcX.d
This contains the scripts that are run at startup based on
the run level "X," where "X" ranges from 1-5

/etc/fstab
This contains the list of filesystems currently mounted by
the system

/etc/group
This contains the valid group names and users included
in each group

/etc/syslogd.conf
This contains the syslogd daemon configuration file,
which controls the system logging received from
applications

The following are some of the types of information an investigator can glean from
these coniguration iles:

• They can identify data flows into and out of Hadoop

• They can identify user accounts that can access Hadoop

• They can identify the hosts that can or can't access the node

http:///

Performing Hadoop Distributed File System Analysis

[170]

Hadoop coniguration iles
Hadoop coniguration iles are stored in the local operating system but control how
Hadoop and HDFS are structured and operate. These coniguration iles are stored
in the local operating system, typically in the /etc/hadoop directory. The following
is the list of coniguration iles useful in Hadoop:

Filename Description

core-default.xml
This contains general default system variables and data
locations

hadoop-default.xml
This contains site-specific settings for all Hadoop daemons
and MapReduce jobs

hdfs-default.xml This contains HDFS-specific configuration settings

job.xml This contains job-specific configuration parameters

Each of the coniguration iles shown in the preceding list are the default versions.
System coniguration changes are made to the -site.xml versions of the iles (for
example, hdfs-site.xml). The investigator can quickly determine if the system was
conigured with non-default settings by searching for -site.xml iles.

In addition to those Hadoop coniguration iles, the Conf/log4j.properties ile is
the customized Hadoop daemon's logging coniguration ile. This controls default
logging by Hadoop and its applications. The output of the logging is speciic in the
${HADOOP_LOG_DIR} directory. Job history logs (for example, MapReduce job logs)
are stored in the ${HADOOP_LOG_DIR}/history directory.

Analyzing Hadoop coniguration iles enables the investigator to identify data lows
into and out of Hadoop, locate where MapReduce and other job iles are stored, and
identify the structure of NameNode(s) and DataNodes.

Hadoop application coniguration iles
Hadoop application coniguration iles are similar to Hadoop coniguration iles but
are speciic to the applications. These coniguration iles are valuable because of the
information they provide relating to where each application stores data, security
settings, logging settings, and data transfer conigurations. Both HBase and Hive
have coniguration iles, hbase-default.xml and hive-default.xml, respectively,
and cluster-speciic settings are saved to the -site.xml iles. The presence of other
application coniguration iles is a good way for the investigator to determine which
applications were installed and conigured in the cluster.

http:///

Chapter 6

[171]

Log ile analysis
Log iles can be valuable for investigations where the events on the cluster are
relevant or the investigator needs information about how the cluster operated.
There are different types of Hadoop logs. The local operating system maintains its
own set of logs about Hadoop's operations. There can also be logs for data transfers
that occur into or out of Hadoop, which would be maintained by the system that
interfaces with Hadoop. Log iles about databases connected to Hadoop may need
to be examined (for example, Hive). Finally, some log iles about Hadoop's
operations are maintained inside of HDFS.

Log ile analysis can be performed from logical ile collections or forensic image
collections. In the latter situation, any HDFS logs irst need to be extracted from
the DataNode block iles before the analysis can be performed.

Several types of log iles can be analyzed such as:

• Local operating system logs

• Hadoop logs

• Application logs (for example, Hive and HBase)

The local operating system maintains a variety of log iles that can be relevant to
an investigation. Linux, by default, stores log iles in the /var/log directory.
Several of the useful log iles include:

• Audit events: Auditable event logging, which is stored in the
/var/log/audit directory.

• Cron events: Scheduled job logs.

• User logins: User login attempts and location information.
The secure and btmp/utmp/wtmp files store this information.

Hadoop clusters can generate large volumes of log ile entries across a number of
different types of logs. Log iles can be found on the NameNode and the DataNodes,
depending on the type of log. Hadoop clusters can process billions of records per
day and generate millions or billions of log entries in the process, so the investigator
should only analyze the relevant logs. The following types of Hadoop log iles can
be found in the /var/log/hadoop and /var/log/mapred directories:

• Daemon logs: These include the NameNode, JobTracker, and secondary
NameNode daemons. The logs have either a .log or .out extension, with
the .log files storing the events of the running daemon and .out storing
the daemon startup events.

http:///

Performing Hadoop Distributed File System Analysis

[172]

• Job configuration: The logged events from the JobTracker jobs, which are
stored as XML files.

• Job statistics: The JobTracker log for runtime statistics, including start
times, attempts, and shuffling.

• log4j: The log4j output submitted by task processes. These log files are
given a filename that matches the corresponding application. For example,
Hive and HBase both use the log4j service for their logs, and the logs are
stored as hive.log and hbase.log.

• Standard error: The TaskTracker log for job errors.

• Standard out: The TaskTracker log for job output.

Analyzing Hadoop logs requires an analysis tool or a greatly reduced set of log iles
and entries that are analyzed. The large number of Hadoop events is best analyzed
in a structured database or a large spreadsheet application. Since millions of events
may exist, the investigator should either cull the data or load the information into
a large-scale analysis repository.

The main types of log analysis are:

• Cross-validation: A comparison of the results of data found in Hadoop
to logged events.

• User activity analysis: An inspection of logins by specific users or at
specific times.

• System change analysis: A review of changes to events and data systems
during the history of the cluster, such as changes to scheduled Hadoop
data transfers or data input sources.

Summary
In this chapter, we covered the elements of performing ilesystem-level analysis
and data carving. The topics we discussed included taking the data from a forensic
image or performing a logical ile collection, various analysis techniques, and data
extraction methods. The analysis techniques, such as timeline analysis and keyword
analysis, may be suficient for an investigation where a key event or a small set of
data is required for the investigation. In other cases, the analysis performed in this
chapter can be part of a larger investigation that includes both Hadoop data and
data from other systems.

http:///

Chapter 6

[173]

Regardless of the role of the analysis, the information must be presented. Taking
the analysis and putting that into an illustrative and accessible presentation format
is critical for conveying the results. The presentation of this type of information is
covered in Chapter 8, Presenting Forensic Findings.

Some of the data extraction methods are performed in order to prepare data for
analysis in a database for quantitative and further qualitative analysis. The next
chapter details some of the main analysis techniques used for large-scale data
investigations and how to prepare voluminous data sets for such analysis.

http:///

http:///

[175]

Analyzing Hadoop

Application Data
The analysis of Hadoop application data is often the primary objective in a Big
Data forensic investigation. Hadoop application data is valuable in a Big Data
investigation because of the informational content of the data. Unlike traditional
forensic investigations, issues such as metadata and ile carving are not often
applicable to the investigation. Instead, analysis of the data in the context of the
investigation is the investigator's primary concern.

Every investigation is different, so the types of analyses performed irst depends on
the available data and the nature of the investigation. In fraud investigations, the
investigator is analyzing data for signs of data manipulation or anomalous conditions
shown in the data. In fact-based litigation where Big Data is used to show what
occurred such as complaints involving retail sales, the data is analyzed to show that
certain events or conditions existed. The investigator must choose the right types of
analyses based on the facts of the case, the type of investigation, and other practical
considerations (for example, available time).

Analyzing application data requires different tools than analyzing HDFS data.
Hadoop application data are the transactional records, so metadata and forensic
artifacts are not part of this form of analysis. Instead, the investigator relies on
large-scale database systems to load, transform, and analyze the data to reach his
indings. The investigator sets up the analysis environment and prepares the data
for analysis before beginning any analysis. The data transformation or preparation
is the process of converting and standardizing the data from Hadoop applications
into a form that can be readily analyzed. After the data is prepared, the analysis can
begin. This is done utilizing the same process low discussed in Chapter 6, Performing
Hadoop Distributed File System Analysis.

http:///

Analyzing Hadoop Application Data

[176]

The following diagram illustrates this analysis process:

Figure 1: The analysis process

This chapter covers the steps necessary to prepare and analyze Hadoop application
data for forensic investigations. The main analysis techniques are discussed, along
with the types of investigations for which they are typically employed.

Preparing the analysis environment
The irst step of the analysis process is to prepare the data analysis environment.
Large volumes of data require a large-scale analysis tool, and that tool is a database
system. Relational databases are typically used for the analysis because of the
ease and power of the SQL language, and those systems work well with data
visualization tools and other software packages. Nonrelational databases can
be used, but those are not preferred by most investigators.

Any relational database software that can handle large data volumes can be used.
Commercial packages, such as SQL Server and Oracle, are the most common. Free
packages, such as MySQL and PostgreSQL, can also be used. In this book, SQL
Server is discussed because of its user-friendly interface and powerful features.

First, download and install SQL Server 2014 Express LocalDB and SQL Server 2014
Management Studio, which are available from http://www.microsoft.com/en-us/
server-cloud/products/sql-server-editions/sql-server-express.aspx.

Next, attach the evidence to the analysis environment, and copy the data to the
analysis environment's storage. During the copy, verify that all source evidence
data is copied to the analysis environment. This data will be loaded into SQL in
subsequent steps. Retain the original source evidence because the data copied to
the analysis environment will be deleted after the data has been loaded into SQL
Server and veriied.

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http:///

Chapter 7

[177]

On average, the analysis environment storage should be at least 2.5
times the cumulative size of the evidence. This is because the analysis
environment will have both the original evidence and analysis copies
of the data. In cases involving very large amounts of evidence, the
number of copies of the data can be reduced.

Pre-analysis steps
Several steps are performed before the analysis can be started. The data is irst
imported into the database. Some data is structured in a manner that cannot be
imported and requires pre-load transformations. The data should be surveyed after
the data has been loaded to understand the structure of the data, detect any anomalies,
and determine which data require transformations. Based on the results of the data
survey process, the data may require transformations before it can be analyzed.

This process can be iterative. The data may require a series of transformations,
and after each transformation, a data survey needs to be performed to assess
whether any further transformations are required. The following igure
illustrates the steps and iterative nature of the pre-analysis process:

Figure 2: Transformed records

Loading data
The collected evidence is next loaded into SQL Server. Relational databases systems
store data in databases comprised of tables. With forensic evidence, the original
evidence should be loaded into tables representing the original structure and values,
if possible. The source database will contain the unaltered data and can be referenced
should there be a need to review the original data.

http:///

Analyzing Hadoop Application Data

[178]

The following diagram illustrates the relationship between the source and
analysis databases:

Figure 3: The data architecture

The following are the steps for loading the data into the source database:

1. Create source database.

2. Create table structures in the source database.

3. Load source data.

4. Verify the loaded data.

New databases can be created in SQL Server Management Studio (SSMS) by
right-clicking on Databases in the Object Explorer screen and selecting
New Database. The following screenshot illustrates this process:

Figure 4: Creating a new database in SSMS

http:///

Chapter 7

[179]

The database should be created with a name that uniquely describes that case—
especially if multiple investigations are conducted on the same database server. A best
practice for naming an investigation database is to include the unique investigation
number, the name, and the database's type. For the data collected in Chapter 5,
Collecting Hadoop Application Data, create a database called 1001-NYSE-Source. This
naming convention denotes that the investigation number is 1001; it is related to NYSE
data, and the data loaded into the database is source evidence and not analysis.

Source evidence and analysis data can be stored in the same database
so long as the tables and/or schemas used are well labeled.

The underlying tables need to be created before the data can be loaded. The table
structures should be identiied using the information about the collected data. The
structure needs to map to the columns in the collected data. In addition, the data
types for each column need to be deined. If the data types are known, those data
types should be used when creating the table. If the columns are known but the
data types are not, the tables should be created with loose data types, such as SQL
Server's maximum-length Unicode string data type (nvarchar(max)) or the Unicode
text data type (ntext). With these loose data types, the data is not altered and can be
analyzed later to determine the correct data types.

The NYSE data collected in Chapter 5, Collecting Hadoop Application Data, is loaded into
a table by irst creating the table structure. The columns should be created with the
original column names for ease of reference. The table can either be created using the
SQL Server CREATE TABLE command or the SSMS New Table option in the Graphical
User Interface (GUI). To create the table using the GUI, go to Databases in the Object
Explorer. Next, select the database for which you want to create a new table, in our
example, this is 1001-NYSE-Source. Right-click Tables, and then select Table. This
creates a new table for the NYSE data. The following igure illustrates this process:

Figure 5: Creating a new table

http:///

Analyzing Hadoop Application Data

[180]

Next, enter the ield names exactly as they appear in the source data and set the data
type to nvarchar(max), which is the variable-length Unicode character ield with the
maximum number of allowable characters. The data types can be set to their actual
values, but those can be updated later in the transformation process. Setting those
ields to nvarchar(max) ensures that the import will not result in conversion errors so
long as none of the values are greater than the system-allowed number of characters,
which is typically 4,000 for nvarchar. The following igure illustrates this process:

Figure 6: Setting column names and data types

After the column names and data types are set, save the table, and give it a descriptive
name that contains the evidence ID number from the collection process. For this
example, the table is named 001_NYSE.

The table structure can be automatically created by SQL Server via
the SQL Server Import/Export wizard when the data contains the
column headers.

Next, the data is loaded into the table. SQL Server offers several methods for
importing data, but the BULK INSERT command is the preferred method in forensic
investigations. BULK INSERT is a script-based approach to loading the data into an
existing table by deining the location of the data and the source data's properties.
Investigators should retain copies of the BULK INSERT scripts that are executed
during the data load process for process validation. The following is an example
of loading data using BULK INSERT:

BULK INSERT dbo.[001_NYSE]

FROM 'C:\Evidence\NYSE-2000-2001.tsv'

WITH

(

 FIRSTROW = 2,

 FIELDTERMINATOR = '\t',

 ROWTERMINATOR = '0x0a'

)

http:///

Chapter 7

[181]

This command loads the data from the NYSE-2000-2001.tsv ile into the 001_NYSE
table. The command further speciies that the irst row should be skipped because
it is the header row, the ields are separated by tab characters, and the rows are
terminated by UNIX line breaks.

The following is the output from the BULK INSERT command:

(812989 row(s) affected)

This process can be validated in two ways. First, the number of records should be
validated against the evidence ile by opening it, using a text editor that can handle
large iles, and identifying the number of rows. Alternatively, a line-counting utility
can be used to return the number of lines in the ile without opening the ile in a text
editor. The second method is to compare the number of records to the control totals
collected in the collection phase. The control totals can include the number of records
and the calculated control totals of key ields.

Sample records should also be manually reviewed to ensure that the data was loaded
correctly. Run the following command to view the irst twenty records of the NYSE
data set:

SELECT TOP 20 *

FROM [001_NYSE]

In some cases, the data loading method may result in an improper data load. For
example, delimiters can be used without text qualiiers, and the delimiter is a part
of a ield's value. This kind of issue requires correction, either by reloading the data
or correcting the issue manually. Typically, this kind of issue can be easily identiied
by reviewing sample records and running several types of tests, such as:

• Querying the minimum and maximum length of each field to determine if
fields are empty or are the same length as the maximum-defined length of
the field (indicating that the data in the field exceeds the length of the field
in SQL)

• Identifying outliers, such as unexpected values

• Reviewing numeric fields for alphabetic characters, and vice versa

In some instances, the data validation is performed after data transformations
are performed. The data may not be in a format that can be easily veriied, such
as a numeric ield that has a character data type or multiple iles that need to be
consolidated before they can be compared to the control totals. The transformation
steps can be performed before the data validation if this is the case. The validation
should, however, be performed before the analysis is started.

http:///

Analyzing Hadoop Application Data

[182]

Preload data transformations
In some cases, data cannot be immediately loaded into the database and requires
transformations outside of the database. Some forms of data, such as key-value pairs,
object-oriented data, and other forms of data not in a two-dimensional relational
structure, cannot easily be loaded into the database. In other cases, it is easier or
faster to transform data before loading it into a database. Regardless, some types
of data structures are not conducive to being loaded into a relational database.

The following are several types of iles that can require pre-load transformations:

• Key-value pair data

• Report files that include headers and/or footers
• Certain forms of markup files

There are two possible solutions: 1) develop and run custom scripts that transform
the data into iles with a suitable structure for database import or 2) directly import
the transformed data into the database. The goal of a pre-load data transformation is
to correct the structure of the data so it can be loaded and analyzed immediately, or
analyzed after transformation. Additional transformations can be performed at this
stage, but they can also be performed after the data is in the database; the latter is
typically faster.

When running pre-load data transformations, keep the following in mind:

• Determine whether the script needs to be run and if running the script
is faster than performing transformations in the database

• Have the script generated logs detailing what was transformed and any
errors that may have occurred

• Preserve a copy of the script for documentation

Data surveying
Data surveying is the process of running an overview analysis of the data to
understand the structure and data contents. Surveying the data allows the
investigator to get a base understanding of the full structure of the data and the
types of values contained therein. Should any additional data transformation be
required, the survey process helps identify those transformations.

Surveying the data provides several beneits; they are as follows:

• Locating data that requires transformations

• Identifying anomalies and data gaps that require immediate attention

• Generating information that can be applied to the preliminary analysis

http:///

Chapter 7

[183]

Surveying is best performed through the use of scripts and a manual review of the
results. The irst type of surveying is to produce a list of boundary values and counts
of distinct values. Rather than running separate surveys for each ield in each table,
a script can be written to automatically identify all tables and ields and calculate
the relevant statistics.

The irst step is to create a table to store the results of the script:

CREATE TABLE tbl_DB_Survey (tableName varchar(max), colName
varchar(max), minVal varchar(max), maxVal varchar(max), minLen int,
maxLen in, numDistinct int, numNULL int, numNumeric int , numDate
int)

The table stores the table and column names; the minimum and maximum values;
the minimum and maximum ield lengths; and the number of distinct values,
NULLs, numeric values, and date values. Next, the following script is run to iterate
through SQL Server's syscolumns and sysobjects table to identify the tables and
ields as a cursor and then insert the corresponding tbl_DB_Survey values for each
table and ield:

DECLARE @curCol varchar(255)

DECLARE @curTable varchar(255)

DECLARE curSurvey CURSOR FOR

SELECT sc.name, so.name

FROM syscolumns sc, sysobjects so

WHERE sc.id = so.id

AND xtype = 'U'

ORDER BY 2,1

OPEN curSurvey

FETCH NEXT FROM update_cursor

INTO @curCol,@curTable

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO tbl_DB_Survey (tableName, colName, minVal, maxVal, minLen,
 maxLen, numDistinct, numNULL, numNumeric, numDate)

 SELECT ''@tableName'', ''@colName'', CONVERT(varchar,MIN(@colName)),
 CONVERT(varchar,MAX(@colName)), MIN(LEN(@colName)), MAX(LEN(@colName)),
 COUNT(DISTINCT(@colName)), COUNT(ISNULL(@colName)), COUNT(ISNUMERIC(@
 colName)), COUNT(ISDATE(@colName))

 FROM @tableName

 FETCH NEXT FROM curSurvey INTO @curCol,@curTable

END

CLOSE curSurvey

DEALLOCATE curSurvey

http:///

Analyzing Hadoop Application Data

[184]

This script populates the tbl_DB_Survey table with summary information about
each table. The results should be reviewed to identify anomalies and which ields
are important. Several examples of the types of issues to review include:

• An expected numeric field's minimum and maximum values are
evaluated as strings and not numeric

• An expected date field does not have a majority of values that are
considered date values by SQL Server

• The number of distinct values for a field is only one

Other forms of descriptive statistics can be applied to survey the data. Grouping and
outlier analysis are two methods that enable the investigator to identify what types
of information are contained in the data and how many outliers exist. The simplest
form of this analysis is to group data by a single ield. The following query returns
the number of records for each stock symbol in the descending order:

SELECT stock_symbol, COUNT(*)

FROM [001_NYSE]

GROUP BY stock_symbol

ORDER BY 2 DESC, 1

The query returns 1,734 results, with the irst 508 symbols having 500 records. This
large number of records shows that these symbols each have a normal amount of
records. The query can then be reordered to display the symbols with the smallest
amount of records by removing the DESC clause. As illustrated in the following table,
the top ive stock symbols with the fewest number of records shows that they each
have fewer than twenty records. Depending on the expected values, this type of survey
can help get a preliminary understanding of the data and highlight potential outliers:

stock_symbol Number of Records

PCN 3

KFS 9

PRU 11

HYV 19

AYI 19

http:///

Chapter 7

[185]

Transforming data
Data from Hadoop applications can require transformation into a more readily usable
format. Some Hadoop applications, such as HBase, store the data in a key-value pair
format, which is not a usable format for SQL Server or other relational databases. The
data has to be transformed before it can be analyzed. Even if the data was extracted
into a format that is usable for SQL Server, the data may still require transformation
to clean up the data values or structure the data for a particular type of analysis.

Transforming data is the process of converting the format of the data to a more
readily usable format, but it does not mean the values of the data should be altered.
A transformation involves changing the structure of the data. When data is collected
from Hadoop, the data is extracted into iles with the structure of the original
application's format (or into iles that were structured in the easiest format for
collection). These formats may not be ideal for analysis and need to be converted into
a format that can be analyzed in SQL Server. With all transformations, however, the
values are not altered. If data needs to be transformed into an aggregated or reduced
data set, the data must still relect the original values.

Transformations can be required for a number of reasons. Some of the common
reasons include:

• Data of the same structure needs to be consolidated into a single table

• Data is stored in report files with headers and footers that cannot easily be
imported into a relational database

• Duplicative data requires consolidation or normalization

• Data was imported in text field columns and needs to be converted to the
actual data types (for example, dates or numeric)

• Extraneous data needs to be removed from the analysis data set for simplicity
and data reduction

Many different types of transformations can be performed. Field values can be
transformed into a standardized format. For example, date values can be standardized
into a single format of DD/MM/YY to provide for uniform values and easier analysis.
The name and order of column headers can be structured in a consistent manner. The
records can also be reoriented by making horizontal records vertical.

http:///

Analyzing Hadoop Application Data

[186]

The next two igures illustrate a set of records that are transformed by rotating
them from horizontal to vertical. This was done by changing the date column
headers into a single date column and making the corresponding values presented
vertically into separate records. The following screenshot is an example of data in
a horizontal structure:

Figure 7: Pre-transformation records

In the next screenshot, the two sets of Amount and Orders are split into two
vertical records and the date range in the column headers is moved into the
Date Range column:

Figure 8: Transformed records

This type of transformation is useful for aggregating fewer sets of columns and
restricting records to a particular date range rather than aggregating multiple columns
together, or not being able to easily restrict the records to a speciic date range.

Several types of techniques can help the investigator prove that the data was not
altered during the transformation process. The primary mechanism is the use of
control totals. If a control total was captured during the collection phase, that control
total can continue to be used to verify that the transformation did not alter the
records. In the previous screenshot, if a control total was captured for the number of
orders or total amounts, the control total can be compared to the transformed data's
order or amount values. The other method is to perform the transformations using
queries that are retained as part of the records. All alterations to the data must be
carefully documented.

Using the NYSE data, the ield's data types can be updated for faster analysis. The
numeric ields can be updated to numeric data types, and the date ield can be
updated to SQL Server's datetime data type. Updating these data types in SQL
Server saves analysis time because the conversion is performed once instead of
during every query, enabling the investigator to run numeric computations and date
analysis functions faster. First, the ield's data types should be tested to determine
if the conversion can be performed.

http:///

Chapter 7

[187]

The following command returns any records in 001_NYSE that cannot be converted
into SQL Server's datetime data type:

SELECT *

FROM [001_NYSE]

WHERE ISDATE([date]) = 0

This command returns no records, so the data type can be updated using the
following command:

ALTER TABLE [001_NYSE] ALTER COLUMN [date] DATETIME

The date column's data type has been converted to datetime. The same steps
can be applied to the numeric columns using the ISNUMERIC() function.

Another common form of data transformation is culling data. Culling is the process
of reducing the data set based on speciic criteria. The relevant analysis for an
investigation may only require a subset of the data. Rather than have extraneous
ields or records, the data can be culled to the relevant data set. Culling in a forensic
investigation means to create a copy of the relevant subset of the evidence. It does
not mean that the source evidence should be deleted or modiied.

The irst method of culling is to identify and remove nonrelevant tables and columns.
This can be done by surveying the ields and reviewing sample records, as well as
documentation about the data, to determine whether it could potentially be relevant.
The process can either be performed by selecting the relevant tables and columns
that should be copied or by selecting the tables and columns that should be culled.

The second method is to apply iltering criteria to the data. Like culling tables and
columns, this method can be performed by identifying what should or should not
be included. An inclusive or exclusive ilter is applied to the data, and the results
determine what information should be copied into the analysis data set. For example,
a common form of culling is to restrict the data to a date range from the investigation.
A ilter is created to generate a new table for all records that fall within that date range.
The following command provides a simple example of how this is performed:

SELECT *

INTO ANALYSIS.[001_NYSE_Filtered]

FROM [001_NYSE]

WHERE [date] between '1/1/2000' and '12/31/2000'

This generates a new table in the ANALYSIS schema that only includes records
between January 1, 2000 and December 31, 2000.

http:///

Analyzing Hadoop Application Data

[188]

Optimization techniques can be applied to the analysis data. In addition
to culling data, standard techniques should be considered if the data set
is very large. Several examples include creating a new analysis database
with separate data and index iles, creating optimized indexes on key
ields, and normalizing or de-normalizing data.

Keep in mind, all data test and conversion scripts should be saved and clearly
documented to show that the data was not incorrectly modiied.

Transforming nonrelational data
Nonrelational data can be transformed in the database. Several Hadoop applications
produce key-value pair data, which is not a data structure traditionally handled in
relational databases. This type of data can either be transformed into a relational
structure or maintained in its key-value pair format and transformed in a way that
can be used in SQL. The decision about how to transform the data depends on the
structure of the data and the nature of the investigation.

Consider the following sample data that was extracted from HBase:

itemID Key Value

1 Name John Doe

1 Address 123 Main St

1 Email jdoe@zzz.com

2 Name Jane Doe

2 Phone 555-1234

This data can be imported directly into SQL Server with those column names.
An example of the dificulty with this format in SQL Server is that querying for
all key-value pairs of a particular itemID query criteria is cumbersome. For
example, identifying all items with an email address with a zzz.com domain requires
multiple steps. Instead, the data can be transformed in to a more useful structure.

There are several approaches to transform key-value pair data to a standard SQL
structure, but the following method is the most straightforward. First, identify all
possible keys using the following command:

SELECT DISTINCT Key

FROM tbl_keyPair

Next, create a table with those keys and the item ID as the column headers:

CREATE TABLE tbl_keyPair_transformed (itemID int, [Name] VARCHAR
(255), Address VARCHAR (500), Email VARCHAR (255), Phone VARCHAR
(100))

http:///

Chapter 7

[189]

Now insert one record into the transformed table for each item ID in the original
table:

INSERT INTO tbl_keyPair_transformed (itemID)

SELECT DISTINCT itemID

FROM tbl_keyPair

Finally, iterate through the original table and insert the corresponding key-value
for each item:

DECLARE @curKey varchar(255)

DECLARE curSurvey CURSOR FOR

SELECT DISTINCT KEY FROM tbl_keyPair ORDER BY 1

OPEN curSurvey

FETCH NEXT FROM update_cursor

INTO @curKey

WHILE @@FETCH_STATUS = 0

BEGIN

UPDATE output

SET @curKey = input.Value

FROM tbl_keyPair input, tbl_keyPair_transformed output

WHERE input.itemID = output.itemID

AND input.Key = @curKey

FETCH NEXT FROM curSurvey INTO @curKey

END

CLOSE curSurvey

DEALLOCATE curSurvey

The following is the resulting table:

itemID Name Address Email Phone

1 John Doe 123 Main St jdoe@zzz.com

2 Jane Doe 555-1234

This type of data is much more conducive to the types of analysis that are covered
in the following section, Analyzing data. However, in some cases, the key-value pair
data may need to be maintained in its original format should the analysis need to
mirror how the data was structured and analyzed in the source system.

http:///

Analyzing Hadoop Application Data

[190]

Analyzing data
Analyzing Hadoop data in a forensic investigation, also known as forensic analytics, is
the process of running tests against the data to isolate events, trends, and patterns that
relate to the investigation. Investigators have a large set of techniques for performing
the analysis that meets the needs of the case. Each investigation is different, and each
requires its own type of analysis. In some cases, not much is known about how the
data relates to the facts of the investigation. In other cases, a single data point that
represents an event or fact is believed to reside in the data. The role of the investigator
is to understand the data and run an analysis that brings out the facts of the case in a
clear, understandable way.

Investigators should begin the analysis with an approach and plan in place. The
investigation began with a set of issues and facts that need to be proven or further
developed. In addition, the preceding steps of the process, such as interviews and
documentation review, should have yielded information about what data has been
collected and how to analyze it. Based on this information, the investigator can
develop at least an initial plan on how to approach the data and begin the analysis.

The following sections discuss how to approach the forensic analysis and several
of the main analysis techniques employed by investigators.

The analysis approach
The analysis approach of the investigation depends on two major factors:

• How much information is known about the events or facts related to
the collected data

• The type of investigation

The amount of information known to the investigator impacts how the analysis
is conducted. Hadoop data can be used in some investigations to ind supporting
evidence or examples of a known set of facts. In these cases, the amount of information
known is high and the analysis process is largely a matter of further proving what
is already known, or highlighting known facts. In other cases, the investigation is
performed based on suspicions or evidence that points to some facts. The amount of
information known in these cases is low, and the analysis is aimed at locating facts,
often called the "smoking gun", and/or establishing patterns.

http:///

Chapter 7

[191]

To develop an analysis plan, the investigator must start with the known facts and
theory. This information is generally known because that was the basis for conducting
the investigation in the irst place. The set of facts may be limited, so the analysis
plan may involve surveying the data, further gathering supporting information, and
adjusting the investigation theory. If the facts are largely known, the analysis plan
should be focused on proving the established theory and bolstering it by identifying
key information that will serve as evidence while eliminating the possibility of
alternate theories. Finally, the analysis can include steps to further prove that the
indings were accurate. This can include validating the information using other
analysis techniques or data sources, including the use of publicly-available data
sets. The following igure illustrates the phases of the analysis process and several
approaches to each step:

Figure 9: The analysis process and approaches

The analysis process can be highly iterative. The investigation theory and a set
of known facts change throughout the process, so the analysis plan is adjusted to
account for the changes. The analysis may begin with a set of known facts and
the investigator focuses on proving those facts, but in the process, new information
may be uncovered that requires the original theory to be modiied.

Types of investigation
Forensic investigations are performed for a wide array of issues. The common and
well-known ones are fraud investigations; however, there are several different
types of fraud. Data breach or other forms of improper access are common types of
investigations, but many other types of investigations are also performed. Each type
of investigation has its own unique issues and requirements.

http:///

Analyzing Hadoop Application Data

[192]

The following table lists the various types of investigations and the unique
characteristics of each:

Investigation Type Characteristics

Consumer Fraud This is a fraud committed by one or more individuals, with
their behavior tracked and stored in the system

Corporate Fraud This is a fraud conducted by an organization, which requires
a large volume of data to be analyzed to isolate fraud events
from nonfraudulent ones

Employee Fraud This is a violation of organization's policies and procedures
and/or illegal activity by one or more employees that is
stored within the system

Government Fraud This is similar to corporate fraud, but perpetrated by the
government or an organization involved with the government

Intellectual Property This is a comparison of common data structures or
informational contents with another system or data set

Unauthorized Access (for
example, Data Breach)

This is an analysis of event-based evidence (for example, web
logs) indicating that an unauthorized access occurred

Class Action This is a litigation analysis whereby common characteristics
or set of facts affecting a set of individuals are analyzed

The type of investigation being conducted should be considered when developing the
analysis plan and performing the analysis. This serves to better direct the approach
and indings to match the requirements of the investigation. The analysis should align
with the characteristics of the type of investigation.

Several of the investigation types may apply to a complex
investigation. In such cases, the combined characteristics of
all applicable types should be considered.

Analysis techniques
While the identiication and collection of forensic data is a well-deined process,
forensic analysis requires some level of creativity. This is needed to match the
requirements of the investigation to the analysis techniques that should be run.
The analysis techniques employed for forensic investigators range in scope from
identifying individual transactions to performing inferential statistics to describe
the contents of the data. Multiple analysis techniques can often achieve the same
result, so the investigator needs to be aware of which analysis techniques best
meet the requirements of the investigation.

http:///

Chapter 7

[193]

The following sections detail some of the main analysis techniques used in forensic
investigations. Countless techniques exist, but the key ones covered here are frequently
used in investigations and can be applied to virtually any Big Data investigation.

Isolating known facts and events
The investigator can approach the data with a set of known facts and events that
need to be identiied in the data. In these cases, the facts and events can be identiied
by querying the data using information about the data to pinpoint where the data
exists. Big Data investigations are complicated by the fact that the data set can
contain billions of records, so the investigator cannot manually review all records
for the speciic data points of interest. Instead, the investigator can apply a series of
techniques to reduce the potentially relevant data to a manageable subset of records.

The irst technique is is to apply data ilters. A set of known facts or events will have
information associated with it that can be applied to the data to reduce the number
of potential records. The events may be within a speciic date range or on a speciic
date. The facts may be limited to a speciic person or for records with a speciic code
value. These ilters can be added as SQL WHERE clauses to ignore nonrelevant data.

The second technique is to sort the data by a key ield or set of ields to assess the
iltered records. Sorted data can be reviewed more easily, and if the set of returned
records is small enough, the investigator can review them to assess whether the
different sorted ield values are relevant. This sorting not only helps the investigator
identify the potentially relevant records quicker, but it also allows for an easier
data review to identify additional ilter criteria.

Using the NYSE data set, the following query can be run to limit results to a single
date in question:

SELECT *

FROM [001_NYSE]

WHERE date = '2/1/2001'

AND stock_volume BETWEEN 100 and 200

ORDER BY stock_symbol

The query returns three records. The investigator should manually review the
records to ensure that the query results include desired information. The query can
be adjusted to include additional ilter criteria if too many records are returned.

Once the facts or events have been located, the ilter criteria can be loosened to
look for supporting or related records that can help the investigation. One or more
of the facts may be supported by additional related records, or the scope of the
investigation may need to be expanded if a larger pattern of events is found.

http:///

Analyzing Hadoop Application Data

[194]

Grouping and clustering
Cluster analysis is a powerful statistical technique for analyzing large sets of
data. Clustering can be achieved by running a number of algorithms to group
data, assess the distribution, and identify outliers. A cluster is a grouping of like
subsets of data for the purpose of classifying them. Cluster analysis typically shows
multiple clusters from a data set, and these clusters can be devised and structured
in a number of ways. Cluster analysis is useful in Big Data investigations because
it provides a means for grouping data into sets for analysis (for example, relevant
versus nonrelevant data or legitimate versus fraudulent data).

A basic technique for grouping data is to create pseudo-clusters to group data and
deine groups from the results. Using the NYSE data set, the following query can
be run to group trades into clusters based on the size of the trades:

SELECT grouping, SUM(stock_volume), COUNT(*)

FROM

(SELECT stock_volume

CASE

WHEN stock_volume BETWEEN 1 and 25000 then 1

WHEN stock_volume BETWEEN 25001 and 50000 then 25001

WHEN stock_volume BETWEEN 50001 and 75000 then 50001

WHEN stock_volume BETWEEN 75001 and 100000 then 75001

ELSE 100001

END AS grouping

FROM [001_NYSE]) AS Z

GROUP BY grouping

ORDER BY 1

The results from the query can be plotted in a bubble chart to show the relative
size of the ive groups, as shown in the following igure. The x-axis represents
the grouping of the records based on the stock_volume value of each record.
The y-axis represents the cumulative number of stock_volume values, and the
size of the circle represents the number of records in that grouping:

http:///

Chapter 7

[195]

Figure 10: A basic grouping of stock trade volumes

Numerous cluster analysis techniques exist in the ield of data mining.
The two primary algorithms used for data clustering are k-means and
expectation-maximization (EM). The approaches an investigator can take
to perform clustering are:

1. Select a distance measure.

2. Select a clustering algorithm.

3. Deine the distance between two clusters.
4. Determine the number of clusters based on the data.

5. Validate the analysis.

The most common distance measure is the Euclidean measure, which computes
the distance using spatial coordinates. Here, the Euclidean measure can be applied
to calculate distance using the values from a numeric ield. The following example
calculates the distance for the irst three non-zero values of the stock_volume ield:

Record stock_volume

A 100

B 200

C 300

The following is the output generated:

Distance

B vs. A: 200 – 100 = 100

C vs. A: 300 – 100 = 200

C vs. B: 300 – 200 = 100

http:///

Analyzing Hadoop Application Data

[196]

Additional ields can be added to the distance calculation, if required. The formula
for adding ields is:

sqrt ((Record A - Record B) +(Record A - Record B))field 1 field 1
2

field 2 field 2
2

Next, the clustering algorithm is selected. The k-means clustering algorithm is a
well-known clustering algorithm and is computed as follows:

1. Deine the number of clusters, k.
2. Assign each data point to its closest cluster center.

3. Recompute the cluster centers.

4. Repeat these steps until there are minimal or no changes to the cluster
centers.

The clusters can be deined to meet the needs of the clustering. Here, three clusters
are selected based on the following values: second smallest (200), second largest
(153,932,600), and mean (672,237).

Next, each record's stock_volume is assigned to one of the clusters based on the
distance to each:

Cluster Starting Center Number of Records Avg stock_volume

2nd Smallest 200 561,501 79,047

2nd Largest 153,932,600 13 127,766,500

Mean 672,237 241,993 2,041,798

This result shows that a majority of records have a stock_volume value closest
to the minimum, while very few records have a stock_volume value close to the
maximum. The result also shows the mean of the values assigned to each cluster
and how far the centers for each cluster have shifted after just one iteration.

After the initial calculations are run, the cluster's centers are recalculated, and the
data point calculation is rerun until there are no signiicant changes to the number
of records and starting center after multiple iterations. If the results are too skewed,
the investigator can return to the irst step, select a different number of clusters, and
select different center values for each cluster to better distribute them.

http:///

Chapter 7

[197]

Histograms
The frequency of particular events or ranges of values appearing in the data is an
important metric for investigators. Histograms plot the frequency of events, or
ranges of values, in a visual that can be used to further analysis or as part of the
indings. To create a histogram, data is classiied into a preset list of bins, and the
number of data points per bin is summed. The number of data points per bin is
called the frequency. The following is an example of plotting a histogram based on
the stock_price ield, using bins in increments of 10, with everything greater than
100 represented in the More bin:

Figure 11: A histogram of the stock_price_open field

Histograms are useful for quickly showing the distribution of data in a format that
can be easily understood by most audiences. For an investigation, showing normal
patterns within normal distributions of events and highlighting abnormal events or
characteristics is important. Histograms provide a quick and accessible method for
showing the distributions in a way that is easily understood.

The time series analysis
Events in the data can be plotted to establish a chronology, highlight key pattern
changes, or establish what the normal patterns are in the data. Time series analysis
computes speciic metrics using a sequence of data points based on a deined date
interval. The date interval can be chosen by the investigator, and the time period
can either be the entire date range of the data or a selected subset of the dates.

http:///

Analyzing Hadoop Application Data

[198]

The irst step is to select the date range and date interval. In the NYSE data, there
are 519 individual dates spanning a two-year period. The investigator can plot every
single day, plot a subset of days, or plot the data using an aggregated interval (for
example, by months or years). Given the large number of days, the data can best
be reviewed when aggregated by month and year:

SELECT MONTH(date) + "-" + YEAR(date), SUM(stock_volume)

FROM [001_NYSE]

GROUP BY MONTH(date) + "-" + YEAR(date)

ORDER BY 1

The plotted data is shown in the following igure:

Figure 12: The stock volume plotted over time

Plotting the data to show chronology can help establish when events occurred
and demonstrate basic data patterns. More advanced techniques can be applied
to explain the chronology.

Measuring change over time
Changes in the data can be measured to show key changes that occurred. One such
measure is the single moving average, which is the mean of successive past events.
The mean for all preceding time periods is calculated for each time period, which
shows the change in average caused by each successive time period. The irst two time
periods do not receive a single moving average value. Starting with the third time
period, the mean is calculated using all values from that time period and the previous
two time periods. The process is repeated for all N time periods.

http:///

Chapter 7

[199]

The following table shows the stock volume single moving average for the irst four
time periods:

Date Stock Volume Single Moving Avg

1-2000 21,011,437,800 N/A
2-2000 20,137,095,500 N/A
3-2000 25,565,580,900 22,238,038,067

4-2000 19,879,493,700 21,860,723,367

The single moving average can be plotted along with the actual monthly values to
show the effect that each month has on the mean for that month and all preceding
months. This is illustrated in the following igure:

Figure 13: The stock volume and single moving average plotted over time

Time series analysis helps to establish normal patterns and can conditionally help
identify anomalies. The time series represents the patterns within the data over time.
Perhaps a key event or change in procedure resulted in a change that is relected
in the data, or perhaps the data contradicts what was believed to have happened.
Running time series analysis is a fast method for visually creating a chronology of
what happened and determining whether a repeating or consistent pattern exists
in the data. If there are spikes or dips in the time series, or a pattern is not followed,
that indicates an issue that needs to be explored and explained.

Normal behavior can also be tested by comparing the data set to a
trusted data set, such as a public data set, to determine if the data set
comports with the trusted data set. A common technique in inancial
fraud investigations is to compare inancial performance to other
organization's performance via public data sets.

http:///

Analyzing Hadoop Application Data

[200]

Anomaly detection
Data anomalies are a major issue. Anomalies can be natural occurrences due to data
being incorrectly entered or imported into a system, or they can indicate or be proof
of fraud or other wrongdoing. An investigator can analyze a data set for anomalies
to either pinpoint where evidence of wrongdoing exists or to indicate or rule out the
possibility of wrongdoing.

There are two major types of techniques for identifying anomalies: rule-based
identiication and statistical identiication. Rule-based identiication is where
predeined rules for expected values are established and the investigator tests the
data for records that violate the rule. These tests are run with speciic criteria in
mind, and all outliers are segregated for further analysis. Statistical identiication is
where descriptive or inferential statistics are used to determine normal patterns or
distributions of data. The investigator then uses these patterns or distributions to
isolate the anomalies for further analysis.

Both rule-based identiication and statistical identiication are equally valid forms
of analysis, but the investigator may choose one over the other based on the
requirements of the investigation. Rule-based analysis requires a priori knowledge
of the data and what constitutes an outlier. The rules can be developed from earlier
phases, from data surveying, or from other information learned about the data
and investigation. Statistical analysis can be applied without a priori knowledge
and is typically performed when the investigator does not know what constitutes
an anomaly or when he wants to prove what the normal behavior and patterns
of the data are. Grouping and clustering are forms of statistical analysis, and the
output from those forms of analysis can be used for anomaly detection. In addition,
analyzing data for duplication and applying Benford's law, topics that are covered
in the sections that follow, are useful techniques for identifying potential outliers.

Rule-based analysis
Rule-based analysis is an effective method for isolating speciic types of anomalies
or key records. This method requires knowing the rules that the data should adhere
to and then executing the rules against the data to identify the records that violate
the rules.

http:///

Chapter 7

[201]

The rules can take many forms and include multiple criteria, such as:

• Date ranges

• Acceptable values

• Numeric value ranges

• Acceptable combinations of values across fields

• Data values confirmed against known events

Once the rules have been documented, they can be converted into queries. The
queries can be run in one of two ways: 1) independently or 2) a table of rules can be
created and a script can be executed to run all of the rules from the table, sending
the outliers to an anomaly table.

The following query runs a rule-based query to isolate records whose
stock_price_open value is less than the stock_price_low value:

SELECT *

FROM [001_NYSE]

WHERE stock_price_open < stock_price_low

The query returns a single record whose stock_price_open equals to zero and
stock_price_low equals to 188.6. Obviously, this record is an anomaly, but it may
be a data quality issue or an explainable issue.

Multiple rules can also be coded into a rule table in the form of SQL WHERE clauses
in order to automate the process. An automated SQL script using a cursor can iterate
through the rules table, with all records that violate the rules being stored in a rules
violation table, as illustrated in the following igure:

Figure 14: Rule-based analysis using multiple rules

http:///

Analyzing Hadoop Application Data

[202]

Duplication analysis
One indicator of fraud or intentionally-altered data is higher-than-expected levels
of data duplication. Duplication can be normal when a particular type of data is
repeatedly entered; however, duplication is not always the norm. When fraud or a
cover-up of a certain kind of activity is committed, the values of the data are rarely
distributed in a normal manner. Instead, the individual(s) entering or altering the
data may enter duplicative data.

Duplication can be found in records, ields, or characters within a ield. The set of
values of a record, the entire value of a ield, or individual characters can repeat at
a higher-than-expected level. To identify duplicates, the data should be grouped or
split into the units to be analyzed. The simplest form is to analyze the entire ield.
The data is then aggregated to identify the counts. For example, the following query
aggregates the stock_volume ield and the number of results, with the results sorted
in descending order:

SELECT stock_volume, count(*) as recCount

FROM [001_NYSE]

GROUP BY stock_ volume

ORDER BY 2 DESC

The ive stock_volume values with the highest number of records are:

stock_volume recCount

0 9,482

200 1,783

1,000 1,661

2,000 1,660

600 1,551

This type of query is typically a starting point and requires an understanding of the
expected counts. The results are reviewed for any anomalies or unexpected values,
such as too much or too few records for each value. Then, the investigator can continue
the analysis in one of two ways: 1) by adding additional criteria to the aggregation
query in order to review a speciic subset of the records (for example, the date range
in question) or 2) by further reviewing the types of records with higher-than-expected
duplication. In this case, the records with a stock_volume equal to zero should be
reviewed for possible issues:

SELECT *

FROM [001_NYSE]

WHERE stock_volume = 0

ORDER BY stock_symbol

http:///

Chapter 7

[203]

Reviewing the individual values that contain duplication may identify an issue
based on suspicious records, or there may be an explanation for why the duplication
was normal. If other possible duplication remains, the analysis can be reined to
home in on the remaining duplicates. The following query adds the stock_symbol
to the aggregation and excludes records with a stock_volume equal to zero:

SELECT stock_volume, stock_symbol, count(*) as recCount

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_volume, stock_symbol

ORDER BY 3 DESC

This query irst returns the following top ive rows:

stock_volume stock_symbol recCount

800 KUB 54

1,200 KUB 47

100 CDR 42

100 GMK 42

200 CSS 41

This query then provides more reined results that can be interpreted against
the expected distribution. Here, both the volume and symbol can be examined
together, and the false positive (stock_volume = 0) is eliminated.

Another method is to include the relative percentage of duplication for each
aggregated set. In the previous query, the KUB stocks returned the irst two results,
but what if that stock has the highest number of overall records? The query can be
modiied as follows to include the percentage for any stock_volume and
stock_symbol combination with more than 10 records:

SELECT a.stock_volume, a.stock_symbol, a.recCount,
a.recCount/b.totalCount

AS percentOfSymbol

FROM

(SELECT stock_volume, stock_symbol, count(*) as recCount

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_volume, stock_symbol) a,

(SELECT stock_symbol, count(*) as totalCount

FROM [001_NYSE]

WHERE stock_volume <> 0

http:///

Analyzing Hadoop Application Data

[204]

GROUP BY stock_symbol) b

WHERE a.stock_symbol = b.stock_symbol AND a.recCount > 10

ORDER BY 4 DESC, 3 DESC

This query returns the following top ive results:

stock_volume stock_symbol recCount percentOfSymbol

100 EXM 30 0.278

100 CDR 42 0.251

100 ALY 12 0.245

200 EXM 19 0.176

100 GMK 42 0.163

As evidenced from these results, the top results do not appear to be an issue because
of how common stock purchases in blocks of 100 and 200 are and the relatively small
size of blocks of 100 and 200. However, there may still be issues in other duplicative
values that could require analysis.

Duplication analysis can also be performed on digits within certain ields. In fraud
investigations and cases where the data may have been altered, an investigator can
look into the duplication of values to determine if speciic digits have been used. As
an example, an accountant accused of manipulating the books may enter nonexistent
transactions using a standard value to mask the fraud.

To perform this analysis, one or more digits from a ield are aggregated and the
results are plotted to represent the distribution of the data. The following query
analyzes the two left-most digits of stock_price_open ield, excluding records
having stock_price_open equal to zero:

SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 2), COUNT(*) AS
recCount

FROM [001_NYSE]

WHERE stock_price_open <> 0

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 2)

ORDER BY 2 DESC

The query returns the following top ive results:

Digits recCount

13 35,508

14 33,929

12 31,079

11 29,388

10 27,478

http:///

Chapter 7

[205]

This analysis can be augmented by analyzing the days in which each set of digits
was entered at the highest percentage using the following query:

SELECT A.digits, date, dateCount/totalCount as datePercentage,
totalCount

FROM

(SELECT date, LEFT(CONVERT(VARCHAR, stock_price_open), 2) AS digits,
COUNT(*) as dateCount

FROM [001_NYSE]

WHERE stock_price_open <> 0 AND LEN(stock_price_open) > 1

GROUP BY date, LEFT(CONVERT(VARCHAR, stock_price_open), 2)) AS A,

(SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 2) AS digits,
COUNT(*) as dateCount

FROM [001_NYSE]

WHERE stock_price_open <> 0 AND LEN(stock_price_open) > 1

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 2)) AS B

WHERE A.digits = B.digits

ORDER BY 3 DESC

The query returns the following results:

Digits date datePercentage totalCount

98 2000-11-14 0.15 394

99 2000-12-13 0.12 335

88 2000-11-20 0.11 610

95 2001-04-11 0.11 445

95 2000-12-15 0.10 445

This analysis, or analyzing the two right-most digits, can be used to expose whether
certain digits were entered on a single date, pointing to the likelihood of manual
entry and possible data manipulation.

Benford's law
Benford's law is a principle that deines the expected distribution of digits in natural
data sets. Similar to duplication analysis, Benford's law enables the investigator to
break down the data to determine the distribution of digits and their positions to
assess whether any digits may have been intentionally altered. Numerous studies
have been performed on the distribution of digits related to real-life phenomena, and
the indings from most studies comport with Benford's law. While no one has been
able to give mathematical justiication for why Benford's law is true, the principle
itself is a widely accepted method for testing whether data appears natural.

http:///

Analyzing Hadoop Application Data

[206]

The applications of Benford's law to forensic analytics are numerous. Financial
statements are perhaps the most widely known application of Benford's law. The
distribution of certain types of inancial data has been tested many times, and
Benford's law is virtually always true when the data is unaltered. When Benford's
law does not comport with data, forensic investigators know that the data requires
further analysis because of the likelihood of fraud or data manipulation. Other ields,
such as marketing, natural sciences, and user online activity have also been studied
in relation to Benford's law.

The requirement for applying Benford's law to a data set is to conirm that the data set
is a geometric sequence. When the data set of digits is ordered, the data should form
a geometric sequence. If the data set forms a geometric sequence, the digits relative to
their position should conform to the previous position's value multiplied by a common
factor. The following table shows an example of the distribution of digits that obeys
Benford's law (source: Nigrini, M. J. "A taxpayer compliance application of Benford's law."
The Journal of American Taxation Association 18 (1996): 72-91.):

Digit 1st Position 2nd Position 3rd Position 4th Position

 0 N/A .11968 .10178 .10018

 1 .30103 .11389 .10138 .10014

 2 .17609 .10882 .10097 .10010

 3 .12494 .10433 .10057 .10006

 4 .09691 .10031 .10018 .10002

 5 .07918 .09668 .09979 .09998

 6 .06695 .09337 .09940 .09994

 7 .05799 .09035 .09902 .09990

 8 .05115 .08757 .09864 .09986

 9 .04576 .08500 .09827 .09982

Certain types of data sets are known to obey Benford's law. Accounting data, by and
large, obeys Benford's law because it contains nondeliberate human decision making.
The following types of data, however, are not believed to obey Benford's law:

• Data directly influenced by human decision making (for example,
negotiated prices)

• Numbers that are typically rounded or set to end in specific amounts
(for example, prices ending in 99 cents instead of arbitrary values)

• Sequentially-ordered number assignment

• Data with a predetermined floor and/or ceiling value

http:///

Chapter 7

[207]

Several techniques have been developed to determine whether a data set obeys
Benford's law. The simplest is calculating the mean, median, and skew of the data.
As a rule of thumb, if the mean is greater than the median and the skew is positive,
Benford's law is obeyed. Additionally, the data can be plotted and then overlaid
with the expected distribution based on Benford's law.

To apply Benford's law to the NYSE data, the ield in question should be queried to
isolate and aggregate the irst digit. The following query does this and excludes the
3,370 records that have a stock_price_open value of zero:

SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 1), COUNT(*)

FROM [001_NYSE]

WHERE stock_price_open <> 0

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 1)

ORDER BY 1

The results of this query can be plotted to visually inspect the distribution in relation
to Benford's law, as shown in the following igure:

Figure 15: The leading digit analysis of stock_price_open

This diagram illustrates that the distribution of the irst digit of stock_price_open
obeys Benford's law. This inding can be used by the investigator to potentially rule
out the likelihood that the leading digit was intentionally altered. The data may have
still been manipulated for a small set of records; however, this shows that at least the
majority of records have a natural distribution of the irst digit.

Note that all digits in stock_price_open are positive. If the digits
in a set are both positive and negative, the positive digits should be
evaluated separately from the negative digits.

http:///

Analyzing Hadoop Application Data

[208]

The digits for additional positions can be analyzed in certain cases, but typically the
irst digit is suficient for determining whether a signiicant amount of the data was
altered. Modifying the lesser digits is rarely performed as the amount of effort required
is often too great compared to simply modifying the irst digits of select records.

In the U.S., evidence based on Benford's law has been admitted in both civil litigation
and criminal cases, so the method is legally accepted. The investigator should ensure
that he is well versed in the mathematics of Benford's law and be able to prove 1) the
digits of the data set form a geometric sequence and 2) the nature of the data set is
suficiently natural. If both these points can be proven, Benford's law is a powerful
tool for the investigator to identify instances of data manipulation.

Before applying Benford's law to an investigation, the investigator
should spend time understanding the mathematics behind it. At a
minimum, he should understand how to identify whether there is a
geometric sequence and how to compare the results to determine if
the data set obeys Benford's law.

Aggregation analysis
Data can be analyzed using aggregation to establish the distribution of data and
isolate anomalies. In a Big Data investigation, analysis can be simpliied by using
aggregation to assess the distribution of data, rather than analyzing potentially
billions of records individually. Aggregation reduces the number of observations
that are required and can help pinpoint anomalies more quickly.

Aggregation can be performed across a single ield or across multiple ields. The
investigator can start with a single ield when the analysis requires learning more
about the data; they can then add more ields as they learn about the data. One test
that can be applied to identify the largest groups of values from a particular ield
is the largest subset test. This test takes one or more ields, aggregates a related
numeric ield, and sorts the data in descending order. The following query
calculates the stock symbols with the highest total stock volume:

SELECT stock_symbol, SUM(stock_volume), COUNT(*)

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_symbol

ORDER BY 2 DESC

http:///

Chapter 7

[209]

stock_symbol Total Stock Volume Total Records

GE 9,625,312,600 500

JNPR 8,003,694,300 500

EMC 7,920,856,300 500

MOT 7,218,593,300 500

NOK 7,145,176,100 500

The quantiied aggregation can be expanded to include other metrics, such as
average, minimum, and maximum values. In addition, other ields can be added to
the aggregation. The following query adds the trade date's year to the aggregation to
reine the results:

SELECT stock_symbol, YEAR(date), SUM(stock_volume), COUNT(*)

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_symbol, YEAR(date)

ORDER BY 3 DESC

This changes the results to show the stock that had the highest volume in a year in
the data set:

stock_symbol Year Total Stock Volume Total Records

JNPR 2001 5,652,752,300 248

GE 2001 5,449,695,500 248

EMC 2001 5,146,650,000 248

GE 2000 4,175,617,100 252

MOT 2000 4,147,971,600 252

When performing multiple analyses, be sure to use the same iltering criteria if
results from the separate analyses are to be compared. In this case, the WHERE clause
stock_volume <> 0 is used throughout to exclude those records. If the WHERE
clauses are different across analyses, be sure to note where and how they differ.

The aggregation can also be reined by adding WHERE clauses that restrict the data
to a particular subset of data. For example, if the investigation of the NYSE data is
speciic to small lot orders of stocks, the aggregation can restrict all records having
stock_volume values of 1,000 or less:

SELECT stock_symbol, YEAR(date), SUM(stock_volume), COUNT(*)

FROM [001_NYSE]

http:///

Analyzing Hadoop Application Data

[210]

WHERE stock_volume <> 0 and stock_volume <= 1000

GROUP BY stock_symbol, YEAR(date)

ORDER BY 3 DESC

stock_symbol Year Total Stock Volume Total Records

SNS 2000 58,600 82

MTR 2001 56,700 100

MLP 2000 51,000 109

ALX 2001 50,400 106

KTH 2001 50,300 87

Plotting outliers on a timeline
Outliers can be identiied and plotted on a timeline to assess whether the outliers
form a pattern or are restricted to a speciic time period. The investigator irst sets an
outlier threshold and then queries all records that are above or below that threshold.
The resulting list of anomalies can be plotted by date. The following igure illustrates
an example outlier timeline:

Figure 16: Identifying stock_volume outliers on a timeline

The anomalies in this case are the large sets of daily stock volume. Any one of the
records could be a key data point; however, the investigator can begin by looking
at the dates in which the highest number of anomalies occurred, especially those
that are immediately preceded by a low number of anomalies.

http:///

Chapter 7

[211]

The timeline can also plot relative percentages of anomaly types to show the trend
relative to the total number of records per day, as illustrated in the following igure:

Figure 17: Identifying stock_volume outliers by percentage on a timeline

This analysis can be compared to the previous analysis to assess whether the large
number of anomalies was due to the large number of transactions, or if there was
a disproportionately large number of anomalies. For example, June 2, 2000 shows
an anomaly rate of 2.84 percent, which was the day with the highest percentage
of anomalies but not the day with the most anomalies. This type of inding can be
signiicant in a fraud investigation to pinpoint when fraudulent events occurred and
to show that those types of events were not normal across the time period in question.

Analyzing disparate data sets
Big Data investigations can involve multiple, disparate data sets. One set of data may
include social media data and another may be accounting data. These data sets come
from different sources, and there may not be a natural way to link the data or easily
compare the values. To get around this issue, the investigator can take several steps
to address the disparate data sources.

First, data transformations can be run on both sets to identify whether certain values
(for example, addresses or names) can be standardized. Because the data sets may not
have the same types of values between them, data transformation enables the results
to be compared. If the data sets do have the same types of values, steps should be
taken to standardize the values.

http:///

Analyzing Hadoop Application Data

[212]

Other techniques can also be applied to disparate data. These include:

• Identifying duplication and data overlap, possibly with subsequent
corrective measures being applied

• Linking data on one or more common fields

• Performing transaction mapping

Transaction mapping is a set of techniques for creating links between data sets that
do not have a natural link between them. Transaction mapping is an important
concept in Big Data investigations as Big Data information is often unrelated and
fairly unstructured. Investigators may not ind good data links between multiple
data sets. Instead, the investigator may need to map sets of transactions across
multiple data sets using one or more criteria. An example of this in inancial fraud
investigations is tracing the order of a stock to its point of execution and then
tracing the point of execution to an account portfolio. All three data sets could have
originated from different systems that do not share a common identiier or link.
This prevents the investigator from running a SQL JOIN query.

Transaction mapping becomes necessary in such cases where disparate data sets
are a factor. To create links between these disparate data sets, the investigator must
perform the following steps:

1. Identify all ields that could be linked.
2. Test the possible links and determine whether any data variances need

to be addressed in order to link the data.

3. Test the links to determine the percentage of transactions that can and
cannot be mapped.

4. Codify the links as part of a query or within the table by assigning
shared ID values to form primary key and foreign key relationships.

In the case of the stock order and execution example, the irst step is to ind the links
between the stock order and execution data sets. Stock orders may be represented by
a single record that maps to multiple, smaller execution records. An order of 10,000
shares can be executed in two blocks (for example, 6,000 and 4,000 shares), so the
investigator should look to other ields to help form the data map. The customer
account number, the date and time of the order, the stock symbol, and the type
of order can all be possible ields used to help map the data. If both data sets are
complete and are expected to include all orders and executions, the investigator can
use these ields to ind all records in the execution data that form a sum value equal
to the order amount. The same process can then be applied to map the execution
data to the account portfolio.

http:///

Chapter 7

[213]

Transaction mapping is rarely a perfect process, and not all transactions may be able
to be mapped. The investigator can manually review key records or create a subset of
data that is not mapped. The key to the process is to identify the data that should be
mapped and carefully assess the mapping to avoid false positives when linking the
data sets.

Keyword searching
Big Data investigations can involve data from unstructured sources that are
converted into a structured format. This information can contain keywords or
speciic numeric amounts that need to be identiied. The simplest method is to
run searches using matching algorithms, either with wild cards or pattern
searches. SQL has built-in text wildcards that can be used to search data:

• %: Matches for zero or more of any character

• _: Matches to any single character

• [0-9]: Matches to a single digit between 0 and 9

• [a-Z]: Matches to a single character between a to z and A to Z

• [^a-Z] or [!a-Z]: Matches to any character not between a to z or A to Z

The following query returns all stock symbols that contain the letter z:

SELECT *

FROM [001_NYSE]

WHERE stock_symbol LIKE '%z%'

The results of the query include BEZ, LZ, ZTR, and others.

More complex pattern searching can be created using multiple WHERE clauses. The
following example returns records with a stock_symbol value that contains the
following features: a letter z, a length of three characters, and no letter a in the
second position:

SELECT *

FROM [001_NYSE]

WHERE stock_symbol LIKE '%z%'

AND LEN(stock_symbol) = 3

AND stock_symbol NOT LIKE '_a_%'

Patterns can also be searched in the SQL server using PATINDEX(). This function
returns the starting position of a matched pattern or 0 if the pattern is not found
in the ield. PATINDEX() functions are entered as WHERE clauses and are similar to
regular expression pattern matches.

http:///

Analyzing Hadoop Application Data

[214]

The investigator may not know exactly which ields contain the keyword, so multiple
ields within the data set need to be searched. This can be achieved by running a cursor
across several or all of the ields. The cursor structure is the same as the cursor shown
earlier in this chapter and simply includes the keyword or pattern in the WHERE section
of the matching query.

The SQL server is not always the most eficient method for running keyword searches.
An alternative method is to load the data into an indexing and searching tool to run
more eficient keyword searches. Tools such as dtSearch are excellent for indexing
data and locating keywords and strings of text using advanced search strings.

Validating the indings
The investigator should take steps to validate the indings. Validation helps to
conirm that the analysis methodology was sound, all key indings were found,
and no unknown biases inluenced the indings. This step is important for proving
both the correctness and completeness of the analysis.

The analysis indings can be validated by employing different analysis techniques or
comparing the results to data from other sources. The irst technique is to thoroughly
review and test the analysis that was performed. This includes reviewing the data
sources used and the queries that were executed. The output of the queries should
also be reviewed to ensure that the correct results were captured.

A second technique is to perform similar analyses on the evidence using different
techniques. This is a so-called quality control, or QC, method for validating that the
analysis was correct and that the results are accurate. For example, if a histogram is
a component of the analysis, the results of a SQL GROUP BY query using the same
data can be compared to the histogram to conirm that the distributions match.

Another technique is to compare the indings to another data source. In some cases,
the data may be able to be veriied against another data source, either data from
the organization or a third-party (for example, government data). From within
the organization, the data could be a copy of the data that originated from outside
Hadoop, or it may have come from Hadoop. This data can be used as a baseline from
which the analysis can be validated. If there is an expectation that the other data
source should comport with the evidence, this data serves as a general benchmark
for the data. Otherwise, the other data source could also be used as part of the
analysis indings to highlight the ways in which the evidence differs.

http:///

Chapter 7

[215]

Documenting the indings
The analysis process can become complex when the theory requires multiple analyses
and the data set is voluminous. Big Data investigations are complex, and the analysis
process is the stage where the information needs to be understood and multiple facts
must be combined to prove the theory. Unlike other types of investigations, Big Data
investigations often involve billions of records and many different data sets. The
analysis process of such investigations requires careful organization of the learned
facts and thoughtful structuring of the analysis steps. Likewise, each step of the
investigation should be properly documented by the investigator.

Best practices for a Big Data investigation include careful documentation of each
step taken by the investigator. In the analysis phase, this requires documenting two
important stages: the data transformations and the analysis steps. Documenting
the data transformations is critical when describing the data set that was analyzed.
Whether the transformations were changing the data types of ields, changing key-pair
values to relational records, or culling the data, all of these can be called into question
by an opposing party. As such, it is important that the investigator properly document
each step of the process.

To document the data transformations, the investigator should note the following
in his documentation:

• The summary data counts of each data set and for each derived data set,
accompanied by all scripts used to transform the data

• The explanations for why each transformation was performed

• The descriptions of any data sets not included in the analysis, such as
data characteristics and the total number of records

The analysis steps should also be documented. Many different analyses may have
been run, and remembering all of the criteria and techniques applied for each inding
may not be feasible. Instead, the investigator should document the analysis in such
a way that it includes the following information:

• Listing each finding with its query scripts or providing a detailed
explanation about how the findings were derived

• Carefully adding comments to complex queries that explain why
each technique and criteria was applied

• Listing the data source(s) for each finding

http:///

Analyzing Hadoop Application Data

[216]

The analysis usually yields a large number of indings, but not all of the indings may
be relevant. To determine which analyses are critical to the indings, the investigator
creates documentation about each theory and lists every analysis, in the order of
the logical story, to organize the indings and document which ones are necessary.
Findings that are not relevant should still be retained because they may help provide
further backing to the indings at a later stage.

Summary
The analysis process is both an art and a science. The pre-analysis steps of loading,
surveying, and transforming data are a well-deined process that prepares the data
for the analysis. The analysis itself, however, is a creative process whereby the
investigator matches the requirements of the investigation to the data in order to
determine which analyses should be performed. Many different types of analyses
can be performed, and it is up to the investigator to identify which techniques
should be applied in order to build the case and arrive at the indings.

The next chapter will cover how to present the analysis indings and how to
provide a clear and compelling case based on Big Data evidence.

http:///

[217]

Presenting Forensic Findings
The inal phase of an investigation is to present the indings to those who will
evaluate and rule on the outcome of the investigation. This process is crucial to the
success of the investigation because any actions taken regarding the issue depend
on the clarity, completeness, and accuracy of the indings. The investigator will most
likely present the indings to a non-technical audience, but that audience may also
seek input from other forensic experts. This means the indings should be presented
in a clear and understandable manner that is accessible to a non-technical audience,
and technical details should be provided with the indings for a technical expert who
may evaluate the indings.

A report is the most common method for presenting the indings of an investigation. It
is the account of the investigation that will be read by the audience. Almost no one else
will access the data, except for an opposing forensic expert and attorneys, so the report
is all that the audience has to learn about the data and how the investigation was
conducted. The investigator is responsible for educating the audience about all phases
of the investigation. If the report does not properly convey the indings and describe
the steps performed, the entire investigation can be dismissed or discredited.

Investigation indings can be presented in several other ways. They can be presented
in person, either as part of a legal proceeding or in other presentations outside of
court. The in-person presentation can be in the form of a deposition or trial testimony
for a legal proceeding. These presentations can make use of reports and other forms
of documentation entered as evidence. The indings can be presented in any number
of ways for investigations taking place outside of the court system. The indings for
an internal investigation, government inquiry, or other types of investigations can be
presented in-person using presentation software, remotely during a phone call, or in
any other agreed upon manner.

This chapter covers the most common ways to present indings and the standard
approaches used to build a presentation that can be understood by a general audience.

http:///

Presenting Forensic Findings

[218]

Types of reports
Findings are typically presented in writing, but they can also be accompanied by
various types of in-person presentations. There are several types of reports, depending
on the nature of the investigation. The irst is an internal report. These reports are
formal but do not require speciic legal formatting or standard language. The second
is an afidavit, which is a sworn statement that can be admitted as evidence in court.
The third is a declaration. Declarations are intended as statements of facts that are
submitted to a court. The fourth is an expert report, and this is evidence that can be
submitted by a subject matter expert about a particular set of facts and indings in a
case. The forensic investigator can also be called to provide an in-person presentation
based on the report, which can be in the form of a deposition, testimony, or a non-
legal, question-and-answer meeting.

The following table summarizes the types of reports an investigator may be asked
to write:

Report Description

Internal investigation This is a detailed report for an investigation of an

internal matter (for example, a data breach or employee

misconduct) that is not part of a legal proceeding

Affidavit This is a sworn, notarized statement of fact about the

investigation used to put facts into evidence in a case

Declaration This is a statement of fact about the investigation—similar

to an affidavit but not notarized—used as a clarifying

document by the court

Expert report This is a report detailing the investigation for a legal

proceeding that is admitted as evidence

Sample reports
Reports are written in a standardized way depending on the type of report. The
reports presented here show the standard structure of documents for US-based
investigations. Each legal system has its own requirements and individual jurisdictions
may differ, so the investigator should base his report on the standards for that
legal system.

http:///

Chapter 8

[219]

Internal investigation report
Internal investigation reports have several standard components but can vary in
structure. The goal of an internal investigation is to determine indings within
an organization, so the decision makers within that organization can decide
on what actions to take. The report should contain an executive summary, an
explanation about what prompted the investigation, a list of steps that were taken,
and the indings. The following igure provides a sample structure for an internal
investigation report:

Figure 1: An internal investigation report

Internal investigation reports are typically only used within an organization to
determine the cause and outcome of an event. The organization can use the report to
terminate employees, remediate against data theft, or any number of other actions.
The internal investigation may also lead to civil litigation or a criminal case, so the
investigator has to be thorough and speciic in his report. Every opinion should be
supported by veriiable fact.

http:///

Presenting Forensic Findings

[220]

Afidavit and declaration
Afidavits and declarations are reports that are submitted to the court by attorneys to
purport to facts that support a set of facts in the investigation. The primary differences
between an internal investigation report and expert afidavits and declarations are 1)
the expert submitting the afidavit or declaration must be recognized by the court as
an expert in forensics, 2) an afidavit or declaration has a more deined purpose and
format to be entered into a case, and 3) once submitted, an afidavit or declaration
cannot be revised.

Declarations and afidavits are reports used to support motions put forth by attorneys
to support a particular claim. The investigator submits a declaration or afidavit to
support those motions; however, the investigator's opinions should be objective and
not simply reiterate the attorneys' motions without substantiation. The facts and
opinions in the afidavit or declaration can be rebutted by an opposing expert. There
are at least two sides to every legal case, so the investigator should develop this report
with the understanding that the document will be carefully reviewed and critiqued by
the opposing side.

In an afidavit or declaration, the forensic investigator irst states his educational
background and the major factors that make him an expert who can opine on the
matter under investigation. This section is critical for explaining to the court why
it should trust his opinion. Courts have strict standards for assessing whether an
investigator is qualiied to be recognized as an expert, and if the investigator cannot
prove that he is an expert, his reports and testimony can be excluded from the
case. Investigators typically list several points about themselves to show the court
that their opinions can be trusted, and these include their educational background,
applicable technical certiications, current company, the number of years in their
ield, and any additional factors or training such as being a college professor or
having taken a certain number of hours of training in the past several years.

Investigators submitting expert opinions should be familiar with
Daubert requirements for being recognized by the court as an expert.

http:///

Chapter 8

[221]

Afidavits and declarations are written using a similar structure. The following igure
provides a sample structure for a declaration:

Figure 2: Declaration

Expert report
Expert reports are typically required of anyone offering expert testimony in a trial.
Investigators who serve as expert witnesses submit expert reports to 1) disclose
all opinions and the bases for those opinions, 2) provide information disclosed for
pretrial discovery, and 3) give the court information so it can decide whether the
expert's testimony is admissible. The report is a complete set of facts and opinions
from which the expert can testify.

http:///

Presenting Forensic Findings

[222]

The expert report is not required to adhere to a standard format, but several sets of
information are required. Generally, investigators write their reports in a narrative
style that tells the story of the investigation and how the conclusions were drawn. This
style is helpful to judges and juries because it reads better and is more understandable
than other formats. The investigator must include required information in the expert
report. As per the US Federal Rules of Civil Procedure Rule 26 (a)(2)(B), the expert
report is required to contain the following sections:

• A full and complete statement of all opinions expressed and the reasons
for them

• The qualifications of the witnesses, which includes a list of all publications
authored within the preceding ten years

• The compensation to be paid to the expert

• The information used by the expert to form his opinions (for example, data
and publications upon which the methodology was based)

• A full list of all cases in which the expert testified in the previous four years

The following igure provides a sample structure for an expert report:

Figure 3: An expert report

http:///

Chapter 8

[223]

Developing the report
All types of reports serve the same goal: explaining the indings and the steps that
were applied to arrive at the indings. Forensic investigations are complex, and the
results of an investigation are typically reported to a non-technical audience, whether
it is an internal investigation or an investigation involving the legal system. A report is
a tool that summarizes the salient points of the entire forensic investigation in a logical
and accessible way. While Big Data investigations are complex, the report should be
simple and understandable by any audience, so they understand the steps performed
from identiication through collection and analysis and the indings are supported by
the investigator's interpretation of the results. The report should be developed with
the audience in mind and an awareness of how to explain the technical concepts to a
non-technical audience.

Reports can be made more accessible and understandable for a general audience
by including certain types of information and explaining technical concepts. The
following concepts can be applied to a report to simplify and clarify the report:

• Use charts and diagrams to explain steps performed or logical
connections between findings

• Include technical detail as exhibits or appendices so as not to muddle
the main sections of the report

• Explain technical concepts that need to be included in general,
plain language

• Use professional language and avoid informal or colloquial language

• Only include relevant and factual information, not speculation

Explaining the process
The report structure typically includes one or more sections detailing the evidence
considered and the steps the investigator took to arrive at his indings. The investigator
must clearly list all evidence he considered. This is typically done by identifying the
name, type, and characteristics of the data source. The steps taken by the investigator
can be explained in several ways. A standard approach is to describe the process in
chronological order, from identiication through analysis. This approach is well-suited
to reports intended for a general audience, because it allows the reader to follow the
steps in the same order in which the events occurred.

http:///

Presenting Forensic Findings

[224]

The data identiication process should be explained in plain language, with
descriptions about why certain data sources were included or excluded. Most
audiences will understand how evidence was identiied; however, some explanation
about how each type of system operates and why some data was not deemed relevant
may be required. The investigator does not need to describe every data source that
was considered, but he may want to discuss key data sources if he expects that
questions will arise during testimony.

The collection process, likewise, should be explained in plain language. This process
is highly technical, so the investigator should adhere to very basic descriptions of the
collection. For example, rather than describing the collection as, "a bit-wise collection
of the 40 nodes was collected into dd image iles and restored to a single image using
[…]", the investigator may prefer to simplify the language to a statement more like "the
distributed system's data was collected and restored using forensic means". Depending
on the case and the preference of the attorneys, the latter approach may be preferable,
and any questions about the exact methods can be raised during trial.

A key point in Big Data forensic investigations is to explain the concept
of a distributed system and how Hadoop operates. Distributed systems
are not new, but the investigator cannot assume that the audience of the
report understands the concept of distributed systems.

Supporting documentation and complex, technical detail can be presented as an
appendix or exhibit in the report. Documentation, such as chain of custody forms
and logs from the collection process, can muddle the body of the report, making it
less readable. Similarly, technical detail, such as source code, can be excessive or
confusing to a general audience. Instead, the investigator can use plain language
to describe the process and explain what occurred in the body of the report, while
citing the detailed information and including it as an exhibit or appendix. This
method helps the investigator to provide a report that is readable while ensuring
that all backing information is available to a reader who wants to understand more
about the investigation.

The analysis phase is the most complicated phase, so the investigator should explain
his indings in a logical and coherent manner. The focus should be on the relevant
analyses performed, the results, and the interpretations of those results, not necessarily
the investigator's thinking, hypotheses, or reasons for performing the analysis. The
analysis can either be presented in a separate section or in the indings section.

http:///

Chapter 8

[225]

Showing the indings
The indings section is where the investigator presents the indings and his
interpretation of the indings. The indings are presented in a logical order to
demonstrate how and why the indings were reached. The indings should be
explained in clear, concise language that can be understood by a general audience.
The key points should be highlighted, and unnecessary detail should be excluded.

The following are several key points for the investigator to consider when drafting
the report:

• Be objective, not an advocate for a particular scenario. Present the results
clearly, concisely, and objectively.

• Avoid conjecture or hedge words such as "could" or "possibly."

• Do not draw legal conclusions. The investigator should stick to what was
asked of him and avoid legal language, such as discussing negligence.

• Do not provide opinions for which the reasons were not supplied.

The indings of an investigator should be organized in a logical way. There are
several approaches to organizing the indings section of a report. First, the indings
can be organized by the chronological order of events that occurred. This method for
organizing the indings is quite common and can be presented either according to the
order of the events that are being investigated or the order of events performed by
the investigator. The former is typically preferred, because it tells the story of what
actually happened.

A second method is to organize the indings by the relation of the facts. Rather than
focus on a chronology, this method organizes the indings by the importance of the
events and how they are related. For instance, in a fraud investigation, many less
signiicant events may have occurred, but two events that did not occur near to one
another may be the most important and what the investigator wants to stress. Rather
than detail those indings apart from one another, the investigator can present them
together to highlight their importance.

Another method is to present the indings according to a theory. In this case, the
investigator details why a particular theory appears to be true, and the subsequent
indings are presented to support that theory. The investigator may also include
indings that disprove potential alternative or contradictory theories. This method
requires careful organization and wording, because the investigator is required to
be an expert on the case. He cannot appear to have been led down a particular line
of reasoning or appear to be an advocate for a particular theory. Instead, he needs to
show that he had a solid basis for a particular theory and carefully explain how and
why his indings prove that theory.

http:///

Presenting Forensic Findings

[226]

The following igure illustrates how these methods for organizing the indings
can be structured:

Figure 4: Approaches for organizing the findings

The investigator has a great degree of freedom in how the individual indings are
presented. The indings can be shown as:

• Textual descriptions

• Numerical representations

• Charts

• Sample data records

A good report does not need all of these elements, but combining multiple types of
presentation can be helpful in detailing the indings. Textual descriptions are a part of
all reports. These are the narratives and explanations of the facts of the investigation.
They form the bulk of the report because this is how the indings are described, and
they present how the investigator interpreted the results. Numerical representations
are the facts presented numerically, such as aggregate computations and statistical
analyses. Charts and other graphics are useful for visually imparting the indings. A
general audience may not fully appreciate the raw numbers, so a visual can further
clarify and elucidate the signiicance of the numerical indings or a timeline.

In traditional digital forensic investigations, the indings are described in narrative
form and screenshots can be included. In Big Data investigations, screenshots and
sample data are not as valuable. Big Data investigations are based on large volumes
of data, and while sample records can help explain the structure of the data, the
indings are typically based on identifying a subset of records or performing aggregate
calculations. This is a major difference in how the indings are presented between Big
Data and traditional investigations.

http:///

Chapter 8

[227]

Using exhibits or appendices
Reports are written in a narrative form. An investigator may ind the supporting
information and large graphics that are necessary to fully explain a concept or fact
may interfere with the readability of the main sections. This information can be cited
in the main sections and placed at the end of the report. The main types of appendix
and exhibit content include:

• Graphics (for example, charts and screenshots)

• Forms (for example, chain of custody)

• Source code or other technical detail

The investigator should follow these general principles when considering whether
to include an exhibit or appendix:

• Each exhibit or appendix should be labeled in the sequential order in which
it appeared in the report

• The investigator should avoid providing an extraneous exhibit or appendix
(for example, chain of custody documentation when there are not questions
about the evidence's handling)

• The exhibit or appendix should be adequately described in the text of the
report or be self-explanatory

Testimony and other presentations
The investigation can also be presented orally. The investigation may need to be
presented in an interactive manner with one or more parties being present and
asking questions. For internal investigations, the investigator may be called to
present his indings to explain what he did and answer any questions that the
client may have. For legal proceedings, this can take the form of depositions or
testimony. Both of these types of oral presentations involve one or both sides of
the investigation having a chance to ask the investigator about his report and ask
further questions about his indings and interpretations.

Internal investigations take place outside of the legal system, so there are no ixed rules
for how those are conducted. The investigator may be called to answer questions and
explain the report in a way that can be understood by the organization. In this setting,
the investigator may wish to present the indings using a presentation software or
by using graphics that were not in the report to explain his indings. The investigator
should answer questions truthfully and avoid speculation.

http:///

Presenting Forensic Findings

[228]

In addition, the investigator should be aware of how the organization intends
on memorializing the indings. Should the organization reserve the right to use
the indings as evidence, or if a legal case may arise out of the investigation, the
investigator should prepare all materials and limit statements to only those for
which he would be able to support in court for a later legal proceeding.

Depositions and testimony are two distinctly different forms of legal presentation.
Expert witness depositions are sworn testimony that are conducted in a question-and-
answer manner, usually outside of the court. An attorney will ask questions—either
based on the expert's afidavit or declaration or not—and the investigator answers
the questions to the best of his knowledge. The investigator does have an opportunity
to later correct any statements for a ixed period of time, but he should aim to limit
the corrections as much as possible in order to maintain credibility. The deposition is
considered testimony by the court, so that information will be seen by the court as part
of the proceedings. Transcripts of the testimony can also be introduced as evidence
and read to the court or jury in a later trial.

Testimony, on the other hand, is sworn testimony that is taken in the court as
part of a trial. Testimony is preceded by the expert report being submitted. The
investigator will not have an opportunity to correct any mistakes he says. The
investigator should present himself professionally and be able to recall the facts
of the investigation. He must also have a keen legal sense and refrain from
speculation or interpreting questions.

• Answer only the questions asked; avoid giving long narratives

• Do not guess; "I don't know' or "I don't remember' are acceptable responses

• Ask to see document that would refresh one's memory, if one exists

• Couch opinions in terms of the underlying facts and the methods used
to come to them

• Be prepared to answer potentially hostile background-related questions
regarding academic and professional background as well as publications

Investigators who have not served as an expert witness before should
seek out expert witness training and literature before serving as an
expert. Experts are expected to be well versed in the legal system and
how to conduct themselves in that role.

http:///

Chapter 8

[229]

Summary
The inal step of the investigation is to present the indings. The investigator should
already have all of his indings and documentation when beginning this process.
Depending on the nature of the investigation, the investigator may need to write a
number of different reports and present the indings in person—or he may only need
to draft a single document. The goal for any investigation is not only to perform a
sound data collection and complete analysis, but also to present the indings in an
intelligible and accurate way. By knowing the requirements of the investigation
and the forms of presentation required, the investigator can successfully present
the indings.

Big Data forensics is a new and rapidly evolving ield. Many of the technologies
presented in this book will continue to evolve and possibly disappear. The concepts
and best practices in this book, however, will remain and can be applied to
investigations in the future. Data storage will continue to expand, which means
that forensic investigations will continue to expand in turn. Distributed systems,
NoSQL databases, and other Big Data concepts require these new forensic techniques
to keep pace with the rapid changes in the size and scope of forensic investigations.

http:///

http:///

[231]

Index

A

Access Control Lists (ACLs) 38
Acquire

using 84
analysis

deining 151
analysis approaches

about 190, 191
investigation types 191, 192

analysis concepts
Anomaly/Outlier 148
Bias 148
Completeness 148
Data reduction 148
False negative 148
False positive 148

analysis environment
preparing 176

analysis phase
goals 9
plan, developing 146
preparing 150, 151

analysis techniques
anomaly detection 200
clustering 194-196
disparate data sets, analyzing 211-213
grouping 194-196
histograms 197
keyword searching 213, 214
known facts and events, isolating 193
time series analysis 197, 198

anomaly detection
about 200
aggregation analysis 208, 209

Benford's law 205-207
duplication analysis 202-205
outliers, plotting on timeline 210, 211
rule-based analysis 200
rule-based identiication 200
statistical identiication 200

Apache Phoenix 139
appendix and exhibit

including 227
types 227

application-based collections
advantages, over ilesystem-based

collections 114
application collection approaches

backups 117, 118
deining 114-117
query extractions 118
script extractions 118, 119
software extractions 119

application collections
validating 119-121

Autopsy
about 154-157
URL 154
using 154

Autopsy timeline
Filters 159
Table/Thumbnail Preview 159
Zoom 159

Avro 44
AWS

data, loading into 52
AWS account

URL 49

http:///

[232]

B
backup-based collection 115
Benford's law 205-208
Big Data

about 12
architecture 15, 16
concepts 15, 16
four Vs 12-14
requirements 60
variety 13
velocity 13
veracity 15
volume 13

Big Data forensics
about 1, 16, 17
collection methods 18
collection veriication 18
metadata preservation 17

Bulk Extractor
about 152, 153
URL 152, 153

C

chain of custody 79
challenges, forensic analysis

anti-forensic techniques 149
encryption 149, 150

Cloud computing
advantages 150

cluster system
collecting 83-85

collection phase
Logical collection 6
Physical collection 6
Targeted collection 6

collection, via Sqoop 107, 108
compression formats, Hadoop

deining 40
computer forensics

about 2, 3
forensic process 3, 4
investigation considerations 10

coniguration iles
Hadoop application coniguration iles 170

Hadoop coniguration iles 170
Linux coniguration iles 169
types 169

coniguration iles, Hadoop
deining 170
hadoop-default.xml 29
hadoop-site.xml 29
job.xml 29
mapred-default.xml 29

cross-validation 8

D

data
analyzing 190
loading, into AWS 52

data analysis
analysis approaches 190, 191
analysis techniques 192
indings, documenting 215, 216
indings, validating 214

data analysis tools, Hadoop
about 31
HBase 33-36
Hive 32, 33
Pig 37

database management system (DBMS) 48
data collection

requirements 69
data collection request 74-78
data collection types

about 73
in-house 73
investigator-led collection 78
third-party collection 73

data low, in Hadoop
considerations 142

data, loading
deining 177-181
preload data transformations 182

data model, HBase
deining 33, 34

data requests
types 73, 74

data requirements
compiling 59, 60

http:///

[233]

data scripting
beneits 130

data source identiication
deining 70

data sources
considerations 58
identifying, in noncooperative

situations 67-69
data, surveying

beneits 182
data transformation

considerations 185
deining 185-187
nonrelational data, transforming 188, 189

data viability
assessing 65, 66

dd tool
about 89
advantages 90

documentation review process
deining 62-64

Domain Name System (DNS) 51

E

EDRM
about 4
URL 4

Elastic MapReduce (EMR) 49
evidence

identifying 55-58
expectation-maximization (EM) 195

F

features, tools 89
ields, ile header

blockCompression 41
Compression 41
Compression Codec 41
keyClassName 41
Metadata 41
Sync 41
valueClassName 41
Version 41

File Allocation Table (FAT) 28
ile deletion

types 160
ile-level analyses

cluster reconstruction 165-167
coniguration ile analysis 168
deleted iles, analysis 160, 161
ile and data carving 151
HDFS data extraction 161-163
keyword searching 151
log ile analysis 171, 172
metadata analysis 158

ile permissions, HDFS
Execute (x) 38
Read (r) 38
Write (w) 38

iles, Hadoop
data serialization 44
deining 37
ile compression and splitting 40
ile permissions 38
Hadoop archive iles 42, 43
JAR iles 45
log iles 39, 40
packaged jobs 45
SequenceFile 41, 42
trash feature 38, 39

forensic analysis
challenges 149
concepts 148
goals 147, 148

forensic analysis process
deining 146, 147

forensic data, Hadoop
record evidence 46
supporting information 46
user and application evidence 46

forensic process
analysis phase 7, 8
collection phase 5-7
identiication phase 4, 5
presentation phase 9

FUSE
URL 93

G

Graphical User Interface (GUI) 179

http:///

[234]

H

Hadoop
Amazon Web Services (AWS) 49-51
components 24, 25
coniguration iles 28-30
deining 21
forensic evidence ecosystem 45-47
Hadoop data, loading 51, 52
LightHadoop 48
running 47
working 22

Hadoop application backup methods
deining 117

Hadoop application data
collecting 141-143

Hadoop architecture
about 22, 23
application layer 23
DBMS layer 23
Hadoop layer 23
operating system layer 23

Hadoop Archive (HAR) iles 42
Hadoop daemons 30
Hadoop data

about 114
collecting 114
sample data, importing for testing 52, 53

Hadoop data, collecting
advantages 114

Hadoop Distributed File System (HDFS)
about 26-28, 56, 81, 145
advantages 81
collecting, ways 82
need for 26

Hadoop encryption
URL 150

Hadoop evidence
collecting, from host operating system 87

Hadoop implementations
URL 141

Hadoop Key Management Server
(KMS) 150

Hadoop log iles
Daemon logs 171
Job coniguration 172

Job statistics 172
log4j 172

Hadoop Ofline Image Viewer
deining 105
Inode 105
NameNode 105

Hadoop shell command collection
about 99-101
Edits Viewer 104-107
Hadoop Ofline Image Viewer 104-107
HDFS iles, collecting 101-103
HDFS targeted data collection 103, 104

HAR format
deining 43

HBase
.META. table 132
-ROOT- table 132
about 33-36
HBase Clients 132
HBase data storage 132
HBase shell 132
HFile 132
Key-pair values 132
Master node and regionservers 132
Memstore 132
NoSQL (Not only SQL) 132
tables 132
ZooKeeper 132

HBase data, accessing
Avro 36
Java program 36
MapReduce 36
REST 36

HBase evidence
collecting 131-133
HBase backup collection 136-138
HBase collection, via scripts 139
HBase control totals 140
HBase data, loading 134, 135
HBase metadata and log collection 140
HBase query collection 138, 139
identifying 135, 136

HDFS
advantages 100
built-in commands 51
mounting 87

http:///

[235]

HDFS collection approaches 109, 110
HDFS contents

collecting 97
HDFS data extraction

about 161-163
hex editors 163, 164

hex editor
about 163, 164
URL 164

HFiles
Load-on-Open Section 36
Non-Scanned Block Section 35
Scanned Block Section 35
Trailer Section 36

Hive
about 32, 33
Databases and Tables 121
Hive Clients 121
Hive Data Storage 121
HiveQL 121
Hive Shell 121
Metastore 121
replicating 125

Hive clients
JDBC Client 122
ODBC Client 122
Thrift Client 121

Hive evidence
collecting 121, 122
Hive backup collection 125
Hive data, loading 123
Hive metadata and log collection 130
Hive query collection 126-128
Hive script collection 130, 131
identifying 124

Hive libraries
URL 131

HiveQL
about 122
commands 124

Hive query collection
about 126-128
Hive query control totals 128, 129

Hive query commands 129
host operating system

deining 87

imaging 88-92
mounted HDFS partition, imaging 93
targeted collection, from Hadoop

client 94-99

I

identiication phase
considerations 4, 5
goals 5

investigation considerations
equipment 10
evidence management 11
investigator training and certiication 12
post-investigation process 12

investigation indings
deining 217

investigation types, analysis approaches
Class Action 192
Consumer Fraud 192
Corporate Fraud 192
Employee Fraud 192
Government Fraud 192
Intellectual Property 192
Unauthorized Access 192

J

Java Archive (JAR) 45
Java Database Connectivity (JDBC) 121
Java Virtual Machine (JVM) 30, 109

L

library types, Hive script collection 130
Linux coniguration iles

/etc/fstab 169
/etc/group 169
/etc/hosts 169
/etc/hosts.allow (deny) 169
/etc/rc.d/rc/rcX.d 169
/etc/syslogd.conf 169

log ile analysis
cross-validation 172
system change analysis 172
user activity analysis 172

http:///

[236]

log iles
deining 171
types 171

logs, Hadoop cluster
Hadoop daemon logs 39
job coniguration XML 39
job statistics 39
log4j 39
standard out and standard error 39

M

MapReduce
about 24
URL 25

metadata
analyzing 159

metadata analysis
about 158
ile activity timeline analysis 158, 159
other metadata analysis 159, 160

methods
used, for performing comparison 99

Modiied, Accessed, and
Created (MAC) 158

mounted HDFS partition
advantages 93

mounting tools 93

N

NameNode
about 27
URL 28

NameNode tree structure
directories and iles 96

network-attached storage (NAS) 150
non-Hadoop data

collecting 141-143

O

Open Database Connectivity (ODBC) 119
Oracle VM VirtualBox installation ile

URL 48

P

personally identiiable information (PII) 77
physical collection

versus remote collection 86
Pig scripts, for HBase

URL 140
Platform as a Service (PaaS) 86
pre-analysis steps

data, loading 177-181
data, surveying 182-184
data, transforming 185-187
deining 177

preload data transformations
ile types 182
running 182

presentation phase
goals 10

presentations
deining 227, 228

Q

query-based collection 115

R

relational database management
system (RDBMS) 107

remote collection
versus physical collection 86

report
appendices, using 227
developing 223
exhibits, using 227
indings, displaying 225, 226
process, explaining 223, 224

report types
about 218
Afidavit 218
Declaration 218
Expert report 218
Internal investigation 218
sample reports 218

http:///

[237]

S

sample data, for testing
URL 52

sample reports
afidavit and declaration 220, 221
expert report 221
internal investigation report 219

script-based collection 115
Secure File Transfer Protocol (SFTP) 77
Secure Shell (SSH) 49
semi-structured data 14
SequenceFile

Blocked-compressed 41
Record-compressed 41
Uncompressed 41

serialization frameworks, Hadoop 44
software-based collection 115
sources of data

locating 58
spoliation 160
SQL 131
SQL Server 2014 Express LocalDB

URL 176
SQL Server 2014 Management Studio

URL 176
SQL Server Management Studio

(SSMS) 178
Sqoop

about 107, 108
data, importing in databases 107

staff interview
deining 62-64

staff types
deining 67

structured data
deining 14, 71, 72

structure, directories and iles 96
subset

collecting 117
system architecture

reviewing 61, 62

T

testimony 227, 228
timeline analysis

performing 159
time series analysis

about 197, 198
change over time, measuring 198, 199

tools, Hadoop
Flume 26
HBase 25
Hive 25
Pig 26
Sqoop 26

U

unstructured data
deining 14, 71, 72

V

virtual machine (VM) 48

W

write-ahead log (WAL) 35

Z

ZooKeeper 35

http:///

http:///

Thank you for buying
Big Data Forensics – Learning Hadoop

Investigations

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com
http:///

Hadoop MapReduce v2 Cookbook

Second Edition

ISBN: 978-1-78328-547-1 Paperback: 322 pages

Explore the Hadoop MapReduce v2 ecosystem to
gain insights from very large datasets

1. Process large and complex datasets using
next generation Hadoop.

2. Install, conigure, and administer
MapReduce programs and learn what's
new in MapReduce v2.

3. More than 90 Hadoop MapReduce recipes
presented in a simple and straightforward
manner, with step-by-step instructions and
real-world examples.

Building Hadoop Clusters [Video]
ISBN: 978-1-78328-403-0 Duration: 02:34 hours

Deploy multi-node Hadoop clusters to harness the
Cloud for storage and large-scale data processing

1. Familiarize yourself with Hadoop and its
services, and how to conigure them.

2. Deploy compute instances and set up a
three-node Hadoop cluster on Amazon.

3. Set up a Linux installation optimized
for Hadoop.

Please check www.PacktPub.com for information on our titles

http:///

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1. Learn tools and techniques that let you
approach big data with relish and not fear.

2. Shows how to build a complete infrastructure
to handle your needs as your data grows.

3. Hands-on examples in each chapter give the
big picture while also giving direct experience.

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting Out with Forensic Investigations and Big Data
	Computer forensics overview
	The forensic process
	Identification
	Collection
	Analysis
	Presentation

	Other investigation considerations
	Equipment
	Evidence management
	Investigator training and certification
	The post-investigation process

	What is Big Data?
	The four Vs of Big Data
	Big Data architecture and concepts

	Big Data forensics
	Metadata preservation
	Collection methods
	Collection verification

	Summary

	Chapter 2: Understanding Hadoop Internals and Architecture
	The Hadoop architecture
	The components of Hadoop
	The Hadoop Distributed File System
	The Hadoop configuration files
	Hadoop daemons

	Hadoop data analysis tools
	Hive
	HBase
	Pig

	Managing files in Hadoop
	File permissions
	Trash
	Log files
	File compression and splitting
	Hadoop SequenceFile
	The Hadoop archive files
	Data serialization
	Packaged jobs and JAR files

	The Hadoop forensic evidence ecosystem
	Running Hadoop
	LightHadoop
	Amazon Web Services
	Loading Hadoop data
	Importing sample data for testing

	Summary

	Chapter 3: Identifying Big Data Evidence
	Identifying evidence
	Locating sources of data
	Compiling data requirements
	Reviewing the system architecture
	Interviewing staff and reviewing the documentation
	Assessing data viability
	Identify data sources in noncooperative situations
	Data collection requirements
	Data source identification
	Structured and unstructured data
	Data collection types
	In-house or third-party collection
	An investigator-led collection

	The chain of custody documentation
	Summary

	Chapter 4: Collecting Hadoop File System Data
	Forensically collecting a cluster system
	Physical versus remote collections
	HDFS collections through the host operating system
	Imaging the host operating system
	Imaging a mounted HDFS partition
	Targeted collection from a Hadoop client

	The Hadoop shell command collection
	Collecting HDFS files
	HDFS targeted data collection
	Hadoop Offline Image and Edits Viewers

	Collection via Sqoop
	Other HDFS collection approaches
	Summary

	Chapter 5: Collecting Hadoop Application Data
	Application collection approaches
	Backups
	Query extractions
	Script extractions
	Software extractions

	Validating application collections
	Collecting Hive evidence
	Loading Hive data
	Identifying Hive evidence
	Hive backup collection
	Hive query collection
	Hive query control totals

	Hive metadata and log collection
	The Hive script collection

	Collecting HBase evidence
	Loading HBase data
	Identifying HBase evidence
	The HBase backup collection
	The HBase query collection
	HBase collection via scripts
	HBase control totals
	HBase metadata and log collection

	Collecting other Hadoop application data and non-Hadoop data
	Summary

	Chapter 6: Performing Hadoop File System Analysis
	The forensic analysis process
	Forensic analysis goals
	Forensic analysis concepts
	The challenges of forensic analysis
	Anti-forensic techniques
	Data encryption

	Analysis preparation
	Analysis
	Keyword searching and file and data carving
	Bulk Extractor
	Autopsy

	Metadata analysis
	File activity timeline analysis
	Other metadata analysis

	The analysis of deleted files
	HDFS data extraction
	Hex editors

	Cluster reconstruction
	Configuration file analysis
	Linux configuration files
	Hadoop configuration files
	Hadoop application configuration files

	Log file analysis

	Summary

	Chapter 7: Analyzing Hadoop Application Data
	Preparing the analysis environment
	Pre-analysis steps
	Loading data
	Pre-load data transformations

	Data surveying
	Transforming data
	Transforming nonrelational data

	Analyzing data
	The analysis approach
	Types of investigation

	Analysis techniques
	Isolating known facts and events
	Grouping and clustering
	Histograms
	The time series analysis
	Anomaly detection
	Analyzing disparate data sets
	Keyword searching

	Validating the findings
	Documenting the findings

	Summary

	Chapter 8: Presenting Forensic Findings
	Types of reports
	Sample reports
	Internal investigation report
	Affidavit and declaration
	Expert report

	Developing the report
	Explaining the process
	Showing the findings
	Using exhibits or appendices

	Testimony and other presentations
	Summary

	Index

