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Preface
Forensics is an important topic for law enforcement, civil litigators, corporate 
investigators, academics, and other professionals who deal with complex digital 
investigations. Digital forensics has played a major role in some of the largest 
criminal and civil investigations of the past two decades—most notably, the Enron 
investigation in the early 2000s. Forensics has been used in many different situations. 
From criminal cases, to civil litigation, to organization-initiated internal investigations, 
digital forensics is the way data becomes evidence—sometimes, the most important 
evidence—and that evidence is how many types of modern investigations are solved.

The increased usage of Big Data solutions, such as Hadoop, has required new 
approaches to how forensics is conducted, and with the rise in popularity of Big Data 
across a wide number of organizations, forensic investigators need to understand how 
to work with these solutions. The number of organizations who have implemented Big 
Data solutions has surged in the past decade. These systems house critical information 
that can provide information on an organization's operations and strategies—key areas 
of interest in different types of investigations. Hadoop has been the most popular of 
the Big Data solutions, and with its distributed architecture, in-memory data storage, 
and voluminous data storage capabilities, performing forensics on Hadoop offers new 
challenges to forensic investigators.

A new area within forensics, called Big Data forensics, focuses on the forensics of Big 
Data systems. These systems are unique in their scale, how they store data, and the 
practical limitations that can prevent an investigator from using traditional forensic 
means. The ield of digital forensics has expanded from primarily dealing with desktop 
computers and servers to include mobile devices, tablets, and large-scale data systems. 
Forensic investigators have kept pace with the changes in technologies by utilizing 
new techniques, software, and hardware to collect, preserve, and analyze digital 
evidence. Big Data solutions, likewise, require different approaches to analyze the 
collected data.
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In this book, the processes, tools, and techniques for performing a forensic 
investigation of Hadoop are described and explored in detail. Many of the concepts 
covered in this book can be applied to other Big Data systems—not just Hadoop. 
The processes for identifying and collecting forensic evidence are covered, and the 
processes for analyzing the data as part of an investigation and presenting the indings 
are detailed. Practical examples are given by using LightHadoop and Amazon Web 
Services to develop test Hadoop environments and perform forensics against them.  
By the end of the book, you will be able to work with the Hadoop command line  
and forensic software packages and understand the forensic process.

What this book covers
Chapter 1, Starting Out with Forensic Investigations and Big Data, is an overview of  
both forensics and Big Data. This chapter covers why Big Data is important, how it  
is being used, and how forensics of Big Data is different from traditional forensics.

Chapter 2, Understanding Hadoop Internals and Architecture, is a detailed explanation  
of Hadoop's internals and how data is stored within a Hadoop environment.

Chapter 3, Identifying Big Data Evidence, covers the process for identifying relevant 
data within Hadoop using techniques such as interviews, data sampling, and  
system reviews.

Chapter 4, Collecting Hadoop Distributed File System Data, details how to collect  
forensic evidence from the Hadoop Distributed File System (HDFS) using  
physical and logical collection methods.

Chapter 5, Collecting Hadoop Application Data, examines the processes for collecting 
evidence from Hadoop applications using logical- and query-based methods.  
HBase, Hive, and Pig are covered in this chapter.

Chapter 6, Performing Hadoop Distributed File System Analysis, details how to conduct 
a forensic analysis of HDFS evidence, utilizing techniques such as ile carving and 
keyword analysis.

Chapter 7, Analyzing Hadoop Application Data, covers how to conduct a forensic analysis 
of Hadoop application data using databases and statistical analysis techniques. Topics 
such as Benford's law and clustering are discussed in this chapter.

Chapter 8, Presenting Forensic Findings, shows to how to present forensic indings  
for internal investigations or legal proceedings.
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What you need for this book
You need to have a basic understanding of the Linux command line and some 
experience working with a SQL DBMS. The exercises and examples in this book are 
presented in Amazon Web Services and LightHadoop—a Hadoop virtual machine 
distribution that is available for Oracle's VirtualBox, a free, cross-platform virtual 
machine software. Several forensic analysis tool examples are shown in Microsoft 
Windows, but they are also available for most Linux builds.

Who this book is for
This book is for those who are interested in digital forensics and Hadoop. Written  
for readers who are new to both forensics and Big Data, most concepts are presented 
in a simpliied, high-level manner. This book is intended as a getting-started guide  
in this area of forensics.

Conventions
In this book, you will ind a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The following command collects the /dev/sda1 volume, stores it in a ile called 
sda1.img".

A block of code is set as follows:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

www.allitebooks.com
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Any command-line input or output is written as follows:

#!/bin/bash

hive -e "show tables;" > hiveTables.txt

for line in $(cat hiveTables.txt) ;

do

hive -hiveconf tablename=$line -f tableExport.hql > ${line}.txt

done

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Enter  
the Case Number and Examiner information, and click Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the color images of this book
We also provide you a PDF ile that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this ile from: http://www.packtpub.com/sites/
default/files/downloads/8104OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are veriied, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/sites/default/files/downloads/8104OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/8104OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Starting Out with Forensic 

Investigations and Big Data
Big Data forensics is a new type of forensics, just as Big Data is a new way of solving 
the challenges presented by large, complex data. Thanks to the growth in data and 
the increased value of storing more data and analyzing it faster—Big Data solutions 
have become more common and more prominently positioned within organizations. 
As such, the value of Big Data systems has grown, often storing data used to drive 
organizational strategy, identify sales, and many different modes of electronic 
communication. The forensic value of such data is obvious: if the data is useful to an 
organization, then the data is valuable to an investigation of that organization. The 
information in a Big Data system is not only inherently valuable, but the data is most 
likely organized and analyzed in such a way to identify how the organization treated 
the data.

Big Data forensics is the forensic collection and analysis of Big Data systems. 
Traditional computer forensics typically focuses on more common sources of data, 
such as mobile devices and laptops. Big Data forensics is not a replacement for 
traditional forensics. Instead, Big Data forensics augments the existing forensics  
body of knowledge to handle the massive, distributed systems that require different 
forensic tools and techniques.

Traditional forensic tools and methods are not always well-suited for Big Data. The 
tools and techniques used in traditional forensics are most commonly designed for 
the collection and analysis of unstructured data (for example, e-mail and document 
iles). Forensics of such data typically hinges on metadata and involves the calculation 
of an MD5 or SHA-1 checksum. With Big Data systems, the large volume of data and 
how the data is stored do not lend themselves well to traditional forensics. As such, 
alternative methods for collecting and analyzing such data are required.
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This chapter covers the basics of forensic investigations, Big Data, and how Big Data 
forensics is unique. Some of the topics that are discussed include the following:

• Goals of a forensic investigation

• Forensic investigation methodology

• Big Data – defined and described

• Key differences between traditional forensics and Big Data forensics

An overview of computer forensics
Computer forensics is a ield that involves the identiication, collection, analysis,  
and presentation of digital evidence. The goals of a forensic investigation include:

• Properly locating all relevant data

• Collecting the data in a sound manner

• Producing analysis that accurately describes the events

• Clearly presenting the findings

Forensics is a technical ield. As such, much of the process requires a deep technical 
understanding and the use of technical tools and techniques. Depending on the 
nature of an investigation, forensics may also involve legal considerations, such  
as spoliation and how to present evidence in court.

Unless otherwise stated, all references to forensics, investigations, 
and evidence in this book is in the context of Big Data forensics.

Computer forensics centers on evidence. Evidence is a proof of fact. Evidence may 
be presented in court to prove or disprove a claim or issue by logically establishing 
a fact. Many types of legal evidence exist, such as material objects, documents, and 
sworn testimony. Forensic evidence falls irmly in that legal set of categories and  
can be presented in court. In the broader sense, forensic evidence is the informational 
content of and about the data.

Forensic evidence comes in many forms, such as e-mails, databases, entire 
ilesystems, and smartphone data. Evidence can be the information contained in the 
iles, records, and other logical data containers. Evidence is not only the contents 
of the logical data containers, but also the associated metadata. Metadata is any 
information about the data that is stored by a ilesystem, content management 
system, or other container. Metadata is useful for establishing information about  
the life of the data (for example, author and last modiied date).
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This metadata can be combined with the data to form a story about the who, what, 
why, when, where, and how of the data. Evidence can also take the form of deleted 
iles, ile fragments, and the contents of in-memory data.

For evidence to be court admissible or accepted by others, the data must be properly 
identiied, collected, preserved, documented, handled, and analyzed. While the 
evidence itself is paramount, the process by which the data is identiied, collected, 
and handled is also critical to demonstrate that the data was not altered in any way. 
The process should adhere to the best practices accepted by the court and backed 
by technical standards. The analysis and presentation must also adhere to best 
practices for both admissibility and audience comprehension. Finally, documentation 
of the entire process must be maintained and available for presentation to clearly 
demonstrate all the steps performed—from identiication to collection to analysis.

The forensic process
The forensic process is an iterative process that involves four phases: identiication, 
collection, analysis, and presentation. Each of the phases is performed sequentially. 
The forensic process can be iterative for the following reasons:

• Additional data sources are required

• Additional analyses need to be performed

• Further documentation of the identification process is needed

• Other situations, as required

The following igure shows the high-level forensic process discussed in this book:

Figure 1: The forensic process
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This book follows the forensic process of Electronic Discovery 
Reference Model (EDRM), which is the industry standard and is a 
court-accepted best practice. The EDRM is developed and maintained 
by forensic and electronic discovery (e-discovery) professionals. For 
more information, visit EDRM's website at http://www.edrm.net/.

The sets of forensic steps and goals should be attempted to be applied 
for every investigation. No two investigations are the same. As such, 
practical realities may dictate which steps are performed and which 
goals can be met.

The four steps in the forensic process and the goals for each are covered in the 
following sections:

Identiication
Identifying and fully collecting the data of interest in the early stages of an 
investigation is critical to any successful project. If data is not properly identiied 
and, subsequently, is not collected, an embarrassing and dificult process of 
corrective efforts will be required—at a minimum—not to mention wasted time. 
At worst, improperly identifying and collecting data will result in working with 
an incorrect or incomplete set of data. In the latter case, court sanctions, a lost 
investigation, and ruined reputations can be expected.

The high-level approach taken in this book starts with:

• Examining the organization's system architecture

• Determining the kinds of data in each system

• Previewing the data

• Assessing which systems are to be collected

In addition, the identiication phase should also include a process to triage the 
data sources by priority, ensuring the data sources are not subsequently used and/
or modiied. This approach results in documentation to back up the claim that all 
potentially important sources of data were examined. It also provides assurance  
that no major systems were overlooked. The main considerations for each source  
are as follows:

• Data quality

http://www.edrm.net/
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• Data completeness

• Supporting documentation

• Validating the collected data

• Previous systems where the data resided

• How the data enters and leaves the system

• The available formats for extraction

• How well the data meets the data requirements

The following igure illustrates this high-level identiication process:

Figure 2: Data identification process

The primary goals for the identiication stage of an investigation are as follows:

• Proper identification and documentation of potentially relevant sources  
of evidence

• Complete documentation of identified sources of information

• Timely assessment of potential sources of evidence from key stakeholders

Collection
The data collection phase involves the acquisition and preservation of evidence and 
validation information as well as properly documenting the process. For evidence to 
be court admissible and usable, it needs to be collected in a defensible manner that 
adheres to best practices. Collecting data alone, however, is not always suficient in 
an investigation. The data should be accompanied by validation information (for 
example, log or query iles) and documentation of the collection and preservation steps 
performed. Together, the collected data, validation information, and documentation 
allow for proper analysis that can be validated and defended.
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The following igure highlights the collection phase process:

Figure 3: Data collection process

Data collection is a critical phase in a digital investigation. The data analysis phase 
can be rerun and corrected, if needed. However, improperly collecting data may 
result in serious issues later during analysis, if the error is detected at all. If the error 
goes undetected, the improper collection will result in poor data for the analysis. 
For example, if the collection was only a partial collection, the analysis results may 
understate the actual values. If the improper collection is detected during the analysis 
process, recollecting data may be impossible. This is the case when the data has been 
subsequently purged or is no longer available because the owner of the data will not 
permit access to the data again. In short, data collection is critical for later phases of the 
investigation, and there may not be opportunities to perform it again.

Data can be collected using several different methods. These methods are as follows:

• Physical collection: A physical acquisition of every bit, which may be done 
across specific containers, volumes, or devices. The collection is an exact 
replica of every bit of data and metadata. Slack space and deleted files can  
be recovered using this method.

• Logical collection: An acquisition of active data. The collection is a replica  
of the informational content and metadata, but is not a bit-by-bit collection.

• Targeted collection: A collection of specific containers, volumes, or devices.

Each of the methods is covered in this book. Validation information serves as a 
means for proving what was collected, who performed the collection, and how  
all relevant data was captured. Validation is also crucial to the collection phase and 
later stages of an investigation. Collecting the relevant data is the primary goal of 
any investigation, but the validation information is critical for ensuring that the 
relevant data was collected properly and not modiied later. Obviously, without  
the data, the entire process is moot.
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A closely-related goal is to collect the validation information along with the data. 
The primary forms of validation information are MD5/SHA-1 hash values, system 
and process logs, and control totals. Both MD5 and SHA-1 are hash algorithms that 
generate a unique value based on the contents of the ile that serves as a ingerprint 
and can be used to authenticate evidence. If a ile is modiied, the MD5 or SHA-1 of 
the modiied ile will not match the original. In fact, generating two different iles 
with the same value is virtually impossible. For this reason, forensic investigators 
rely on MD5 or SHA-1 to prove that the evidence was successfully collected and 
that the data analyzed matches the original source data. Control totals are another 
form of validation information, which are values computed from a structured data 
source—such as the number of rows or sum value of a numeric ield. All collected 
data should be validated in some manner during the collection phase before moving 
into the analysis.

Collect validation information simultaneously during or immediately 
after collecting evidence to ensure accurate and reliable validation.

The goals of the collection phase are as follows:

• Forensically sound collection of relevant sources of evidence utilizing 
technical best practices and adhering to legal standards

• Full, proper documentation of the collection process

• Collection of verification information (for example, MD5 or control totals)

• Validation of collected evidence

• Maintenance of chain of custody

Analysis
The analysis phase is the process by which collected and validated evidence 
is examined to gather and assemble the facts of an investigation. Many tools 
and techniques exist for converting the volumes of evidence into facts. In some 
investigations, the requirements clearly and directly point to the types of evidence 
and facts that are needed. These investigations may involve only a small amount 
of data or the issues are straightforward. For example, they only require a speciic 
e-mail or only a small timeframe is in question. Other investigations, however, are 
large and complex. The requirements do not clearly identify a direct path of inquiry. 
The tools and techniques in the analysis phase are designed for both types  
of investigations and guide the inquiry.
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The process for analyzing forensic evidence is dependent on the requirements of 
the investigation. Every case is different, so the analysis phase is both a science 
and an art. Most investigations are bounded by some known facts, such as a 
speciic timeframe or the individuals involved. The analysis for such bounded 
investigations can begin by focusing on data from those time periods or involving 
those individuals. From there, the analysis can expand to include other evidence for 
corroboration or a new focus. Analysis can be an iterative process of investigating 
a subset of information. Analysis can also focus on one theory but then expand to 
either include new evidence or to form a new theory altogether. Regardless, the 
analysis should be completed within the practical conines of the investigation.

Two of the primary ways in which forensic analysis is judged are completeness and 
bias. Completeness, in forensics, is a relative term based on whether the relevant data 
has been reasonably considered and analyzed. Excluding relevant evidence or forms 
of analysis harms the credibility of the analysis. The key point is the reasonableness 
of including or excluding evidence and analysis. Bias is closely related to 
completeness. Bias is prejudice towards or against a particular thing. In the case of 
forensic analysis, bias is an inclination to favor a particular line of thinking without 
giving equal weight to other theories. Bias should be eliminated or minimized as 
much as possible when performing analysis to guarantee completeness and objective 
analysis. Both completeness and bias are covered in subsequent chapters.

Another key concept is data reduction. Forensic investigations can involve terabytes 
of data and millions of iles and other data points. The practical realities of an 
investigation may not allow for a complete analysis of all data. Techniques exist for 
reducing the volume of data to a more manageable amount. This is performed using 
known facts and data interrelatedness to triage data by priority or eliminate data 
from the set of data to be analyzed.

Cross-validation is the use of multiple analyses or pieces of evidence to corroborate 
analysis. This is a key concept in forensics. While not always possible, cross-validation 
adds veracity to indings by further proving the likelihood that a inding is true.  
Cross-validation should be performed by independently testing two data sets or  
forms of analysis and conirming that the results are consistent.

The types of analysis performed depend on a number of factors. Forensic 
investigators have an arsenal of tools and techniques for analyzing evidence, and 
those tools and techniques are chosen based on the requirements of the investigation 
and the types of evidence. One example is timeline analysis, which is a technique 
used when chronology is important and chronological information exists and can be 
established. Timeline analysis is not important in all investigations, so it is not useful 
in every investigation.
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In other cases, pattern analysis or anomaly detection may be required. While some 
investigations only require a single tool or technique, most investigations require 
a combination of tools and techniques. Later chapters include information about 
the various tools and techniques and how to select the proper ones. The following 
questions can help an investigator determine which tools and techniques to choose:

• What are the requirements of the investigation?
• What practical limitations exist?
• What information is available?
• What is already known about the evidence?

Documentation of indings and the analysis process must be carefully maintained 
throughout the process. Forensic evidence is complex. Analyzing forensic evidence 
can be even more complex. Without proper documentation, the indings are 
unclear and not defensible. An investigator can go down a path of analyzing 
data and related information—sometimes, linking hundreds of indings—and 
without documentation, detailing the full analysis is impossible. To avoid this, an 
investigator needs to carefully detail the evidence involved, the analysis performed, 
the analysis indings, and the interrelationships between multiple analyses.

The primary goals of the analysis phase are as follows:

• Unbiased and objective analysis

• Reduction of data complexity

• Cross-validation of findings

• Application of accepted standards

Presentation
The inal phase in the forensic process is the presentation of indings. The indings 
can be presented in a number of different ways, such as a written expert report, 
graphical presentations, or testimony. Regardless of the format, the key to a successful 
presentation is to clearly demonstrate the indings and the process by which the 
indings were derived. The process and indings should be presented in a way that 
the audience can easily understand. Not every piece of information about the process 
phases or indings needs to be presented. Instead, the focus should be on the critical 
indings at a level of detail that is suficiently thorough. Documentation, such as chain 
of custody forms, may not need to be included but should still be available should the 
need arise.
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The goals of the presentation phase are as follows:

• Clear, compelling evidence

• Analysis that separates the signal from the noise

• Proper citation of source evidence

• Availability of chain of custody and validation documentation

• Post-investigation data management

Other investigation considerations
This book details the majority of the EDRM forensic process. However, investigators 
should be aware of several additional considerations not covered in detail in this book. 
Forensics is a large ield with many technical, legal, and procedural considerations. 
Covering every topic would span multiple volumes. As such, this book does not 
attempt to cover all concepts. The following sections highlight several key concepts 
that a forensic investigator should consider—equipment, evidence management, 
investigator training, and the post-investigation process.

Equipment
Forensic investigations require specialized equipment for the collection and processing 
of evidence. Source data can reside on a host of different types of systems and devices. 
An investigator may need to collect several different types of systems. These include 
cell phones, mainframe computers, laptops with various operating systems, and 
database servers. These devices have different hardware and software connectors, 
different means of accessing, different conigurations, and so on. In addition, an 
investigator must be careful not to alter or destroy evidence in the collection process. 
A best practice is to employ write-blocker software or physical devices to ensure 
that evidence is preserved in its original state. In some instances, specialized forensic 
equipment should be used to perform the collections, such as forensic devices that 
connect to smartphones for acquisitions. Big Data investigations rarely involve this 
specialized equipment to collect the data, but encrypted drives and other forensic 
devices may be used. Forensic investigators should be knowledgeable about the 
required equipment and come prepared to collect data with a forensic kit that  
contains the required equipment.
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Evidence management
The management of forensic evidence is also critical to maintaining proper control 
and security of the evidence. Forensic evidence, once collected, requires careful 
handling, storage, and documentation. A standard practice in forensics is to create 
and maintain chain of custody of all evidence. Chain of custody documentation is 
a chronological description that details the collection, handling, transfer, analysis, 
and destruction of evidence. The chain of custody is established when a forensic 
investigator irst acquires the data. The documentation details the collection process 
and then serves as a log of all individuals who take possession of the evidence, when 
that person had possession of the evidence, and details about what was done to the 
evidence. Chain of custody documentation should always relect the full history and 
current status of the evidence. Chain of custody is further discussed in later chapters.

Only authorized individuals should have access to the evidence. Evidence integrity 
is critical for establishing and maintaining the veracity of indings. Allowing 
unauthorized—or undocumented—access to evidence can cast doubt on whether the 
evidence was altered. Even if the MD5 hash values are later found to match, allowing 
unauthorized access to the evidence can be enough to call the investigative process 
into question.

Security is important for preventing unauthorized access to both original evidence 
and analysis. Physical and digital security both play important roles in the 
overall security of evidence. The security of evidence should cover the premises, 
the evidence locker, any device that can access the analysis server, and network 
connections. Forensic investigators should be concerned with two types of security: 
physical security and digital security.

• Physical security is the collection of devices, structural design, processes, 
and other means for ensuring that unauthorized individuals cannot access, 
modify, destroy, or deny access to the data. Examples of physical security 
include locks, electronic fobs, and reinforced walls in the forensic lab.

• Digital security is the set of measures to protect the evidence on devices and 
on a network. Evidence can contain malware that could infect the analysis 
machine. A networked forensic machine that collects evidence remotely 
can potentially be penetrated. Examples of digital security include antivirus 
software, firewalls, and ensuring that forensic analysis machines are not 
connected to a network.

http:///


Starting Out with Forensic Investigations and Big Data

[ 12 ]

Investigator training and certiication
Forensic investigators are often required to take forensic training and maintain 
current certiications in order to conduct investigations and testify to the results. 
While this is not always required, investigators can further prove that he has proper 
technical expertise by way of such training and certiication. Forensic investigators 
are forensic experts, so that expertise should be documented and provable should 
anyone question their credentials. This can be achieved in part by way of training 
and certiication.

The post-investigation process
After an investigation concludes, the evidence and analysis indings need to be 
properly archived or destroyed. Criminal and civil investigations require that 
evidence be maintained for a mandated period of time. The investigator should be 
aware of such retention rules and ensure that evidence is properly and securely 
archived and maintained for that period of time. In addition, documentation and 
analysis should be retained as well to guarantee that the results of the investigation 
are not lost and to prevent issues arising from questions about the evidence (for 
example, chain of custody).

What is Big Data?
Big Data describes the tools and techniques used to manage and process data that 
traditional means cannot easily accomplish. Many factors have led to the need for 
Big Data solutions. These include the recent proliferation of data storage, faster and 
easier data transfer, increased awareness of the value of data, and social media. Big 
Data solutions were needed to address the rapid, complex, and voluminous data 
sets that have been created in the past decade. Big Data can be structured data (for 
example, databases), unstructured data (such as e-mails), or a combination of both.

The four Vs of Big Data
A widely-accepted set of characteristics of Big Data is the four Vs of data. In 2001, 
Doug Laney of META Group produced a report on the needs of the changing 
requirements for managing the forms of voluminous data. In this report, he deined the 
three Vs of data: volume, velocity, and variety. These factors address the following:

• The large data sets

• The increased speed at which the data arrives, requires storage,  
and should be analyzed
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• The multitude of forms the data, such as financial records, e-mails,  
and social media data

This deinition has been expanded to include a fourth V for veracity—the 
trustworthiness of the data quality and the data's source.

One way to identify whether a data set is Big Data is to consider 
the four Vs.

Volume is the most obvious characteristic of Big Data. The amount of data produced 
has grown exponentially over the past three decades, and that growth has been fueled 
by better and faster communications networks and cheaper storage. In the early 
1980s, a gigabyte of storage costs over $200,000. A gigabyte of storage today costs 
approximately $0.06. This massive drop in storage costs and the highly networked 
nature of devices provides a means to create and store massive volumes of data. The 
computing industry now talks about the realities of exabytes (approximately, one 
billion gigabytes) and zettabytes (approximately, one trillion gigabytes) of data—
possibly even yottabytes (over a thousand trillion gigabytes). Data volumes have 
obviously grown, and Big Data solutions are designed to handle the voluminous 
data sets through distributed storage and computing to scale out to the growing data 
volumes. The distributed solutions provide a means for storing and analyzing massive 
data volumes that could not feasibly be stored or computer by a single device.

Velocity is another characteristic of Big Data. The value of the information contained 
in data has placed an increased emphasis on quickly extracting information from 
data. The speed at which social media data, inancial transactions, and other forms 
of data are being created can outpace traditional analysis tools. Analyzing real-time 
social media data requires specialized tools and techniques for quickly retrieving, 
storing, transforming, and analyzing the information. Tools and techniques designed 
to manage high-speed data also fall into the category of Big Data solutions.

Variety is the third V of Big Data. A multitude of different forms of data are being 
produced. The new emphasis is on extracting information from a host of different 
data sources. This means that traditional analysis is not always suficient. Video iles 
and their metadata, social media posts, e-mails, inancial records, and telephonic 
recordings may all contain valuable information, and the data need to be analyzed  
in conjunction with one another. These different forms of data are not easily 
analyzed using traditional means.
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Traditional data analysis focuses on transactional data or so-called structured 
data for analysis in a relational or hierarchical database. Structured data has a 
ixed composition and adheres to rules about what types of values it can contain. 
Structured data are often thought of in terms of records or rows, each with a set 
of one or more columns or ields. The rows and columns are bound by deined 
properties, such as the data type and ield width limitations. The most common 
forms of structured data are:

• Database records

• Comma-Separated Value (CSV) files

• Spreadsheets

Traditional analysis is performed on structured data using databases, programs, 
or spreadsheets to load the data into a ixed format and run a set of commands or 
queries on the data. SQL has been the standard database language for data analysis 
over the past two decades—although many other languages and analysis packages 
exist.

Unstructured and semi-structured data do not have the same ixed data structure 
rules and do not lend themselves well to traditional analysis. Unstructured data is 
data that is stored in a format that is not expressly bound by the same data format 
and content rules as structured data. Several examples of unstructured data are:

• E-mails

• Video files

• Presentation documents

According to VMWare's 2013 Predictions for Big Data, over 80% of data 
produced will be unstructured, and the growth rate of unstructured 
data is 50-60% per year.

Semi-structured data is data that has rules for the data format and structure, but 
those rules are too loose for easy analysis using traditional means for analyzing 
structured data. XML is the most common form of semi-structured data. XML has  
a self-describing structure, but the structure of one XML ile is not adhered to across 
all other XML iles.

The variety of Big Data comes from the incorporation of a multitude of different types 
of data. Variety can mean incorporating structured, semi-structured, and unstructured 
data, but it can also mean simply incorporating various forms of structured data. Big 
Data solutions are designed to analyze whatever type of data is required. Regardless of 
the types of data are incorporated, the challenge for Big Data solutions is being able to 
collect, store, and analyze various forms of data in a single solution.
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Veracity is the fourth V of Big Data. Veracity, in terms of data, indicates whether 
the informational content of data can be trusted. With so many new forms of data 
and the challenge of quickly analyzing a massive data set, how does one trust that 
the data is properly formatted, has correct and complete information, and is worth 
analyzing? Data quality is important for any analysis. If the data is lacking in some 
way, all the analyses will be lacking. Big Data solutions address this by devising 
techniques for quickly assessing the data quality and appropriately incorporating  
or excluding the data based on the data quality assessment results.

Big Data architecture and concepts
The architectures for Big Data solutions vary greatly, but several core concepts are 
shared by most solutions. Data is collected and ingested in Big Data solutions from 
a multitude of sources. Big Data solutions are designed to handle various types and 
formats of data, and the various types of data can be ingested and stored together. The 
data ingestion system brings the data in for transformation before the data is sent to 
the storage system. Distribution of storage is important for the storage of massive data 
sets. No single device can possibly store all the data or be expected to not experience 
failure as a device or on one of its disks. Similarly, computational distribution is 
critical for performing the analysis across large data sets with timeliness requirements. 
Typically, Big Data solutions enact a master/worker system—such as MapReduce—
whereby one computational system acts as the master to distribute individual analyses 
for the worker computational systems to complete. The master coordinates and 
manages the computational tasks and ensures that the worker systems complete  
the tasks.

The following igure illustrates a high-level Big Data architecture:

Figure 4: Big Data overview
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Big Data solutions utilize different types of databases to conduct the analysis. 
Because Big Data can include structured, semi-structured, and/or unstructured 
data, the solutions need to be capable of performing the analysis across various 
types of iles. Big Data solutions can utilize both relational and nonrelational 
database systems. NoSQL (Not only SQL) databases are one of the primary types of 
nonrelational databases used in Big Data solutions. NoSQL databases use different 
data structures and query languages to store and retrieve information. Key-value, 
graph, and document structures are used by NoSQL. These types of structures can 
provide a better and faster method for retrieving information about unstructured, 
semi-structured, and structured data.

Two additional important and related concepts for many Big Data solutions are  
text analytics and machine learning. Text analytics is the analysis of unstructured 
sets of textual data. This area has grown in importance with the surge in social  
media content and e-mail. Customer sentiment analysis, predictive analysis on  
buyer behavior, security monitoring, and economic indicator analysis are performed 
on text data by running algorithms across their data. Text analytics is largely made 
possible by machine learning. Machine learning is the use of algorithms and tools  
to learn from data. Machine algorithms make decisions or predictions from data 
inputs without the need for explicit algorithm instructions.

Video iles and other nontraditional analysis input iles can be analyzed in a  
couple ways:

• Using specialized data extraction tools during data ingestion

• Using specialized techniques during analysis

In some cases, only the unstructured data's metadata is important. In others,  
content from the data needs to be captured. For example, feature extraction and 
object recognition information can be captured and stored for later analysis. The 
needs of the Big Data system owner dictate the types of information captured and 
which tools are used to ingest, transform, and analyze the information.

Big Data forensics
The changes to the volumes of data and the advent of Big Data systems have 
changed the requirements of forensics when Big Data is involved. Traditional 
forensics relies on time-consuming and interruptive processes for collecting data. 
Techniques central to traditional forensic include removing hard drives from 
machines containing source evidence, calculating MD5/SHA-1 checksums, and 
performing physical collections that capture all metadata. However, practical 
limitations with Big Data systems prevent investigators from always applying  
these techniques. The differences between traditional forensics and forensics for  
Big Data are covered and explained in this section.
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One goal of any type of forensic investigation is to reliably collect relevant evidence 
in a defensible manner. The evidence in a forensic investigation is the data stored in 
the system. This data can be the contents of a ile, metadata, deleted iles, in-memory 
data, hard drive slack space, and other forms. Forensic techniques are designed to 
capture all relevant information. In certain cases—especially when questions about 
potentially deleted information exist—the entire ilesystem needs to be collected using 
a physical collection of every individual bit from the source system. In other cases, only 
the informational content of a source ilesystem or application system are of value. 
This situation arises most commonly when only structured data systems—such as 
databases—are in question, and metadata or slack space are irrelevant or impractical 
to collect. Both types of collection are equally sound; however, the application of the 
type of collection depends on both practical considerations and the types of evidence 
required for collection.

Big Data forensics is the identiication, collection, analysis, and presentation of the 
data in a Big Data system. The practical challenges of Big Data systems aside, the 
goal is to collect data from distributed ilesystems, large-scale databases, and the 
associated applications. Many similarities exist between traditional forensics and  
Big Data forensics, but the differences are important to understand.

Every forensic investigation is different. When choosing how 
to proceed with collecting data, consider the investigation 
requirements and practical limitations.

Metadata preservation
Metadata is any information about a ile, data container, or application data that 
describes its attributes. Metadata provides information about the ile that may be 
valuable when questions arise about how the ile was created, modiied, or deleted. 
Metadata can describe who altered a ile, when a ile was revised, and which system 
or application generated the data. These are crucial facts when trying to understand 
the life cycle and story of an individual ile.

Metadata is not always crucial to a Big Data investigation. Metadata is often altered 
or lost when data lows into and through a Big Data system. The ingestion engines 
and data feeds collect the data without preserving the metadata. The metadata 
would thus not provide information about who created the data, when the data was 
last altered in the upstream data source, and so on. Collecting information in these 
cases may not serve a purpose. Instead, upstream information about how the data 
was received can be collected as an alternative source of detail.
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Investigations into Big Data systems can hinge on the information in the data and not 
the metadata. Like structured data systems, metadata does not serve a purpose when 
an investigation is solely based on the content of the data. Quantitative and qualitative 
questions can be answered by the data itself; metadata in that case would not be useful, 
so long as the collection was performed properly and no questions exist about who 
imported and/or altered the data in the Big Data system. The data within the systems 
is the only source of information.

Collecting upstream information from application logs, source systems, 
and/or audit logs can be used in place of metadata collection.

Collection methods
Big Data systems are large, complex systems with business requirements. As such, 
they may not be able to be taken ofline for a forensic investigation. In traditional 
forensics, systems can be taken ofline, and a collection is performed by removing the 
hard drive to create a forensic copy of the data. In Big Data investigations, hundreds 
or thousands of storage hard drives may be involved, and data is lost when the 
Big Data system is brought ofline. Also, the system may need to stay online due 
to business requirements. Big Data collections usually require logical and targeted 
collection methods by way of logical ile forensic copies and query-based collection.

Collection veriication
Traditional forensics relies on MD5 and SHA-1 to verify the integrity of the data 
collected, but it is not always feasible to use hashing algorithms to verify Big Data 
collections. Both MD5 and SHA-1 are disk-access intensive. Verifying collections by 
computing an MD5 or SHA-1 hash comprises a large percentage of the time dedicated 
to collecting and verifying source evidence. Spending the time to calculate the MD5 
and SHA-1 for a Big Data collection may not be feasible when many terabytes of data 
are collected. The alternative is to rely on control totals, collection logs, and other 
descriptive information to verify the collection.
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Summary
This book is an introduction to the key concepts and current technologies involved 
in Big Data forensics. Big Data is a paradigm shift in how data is stored and 
managed, and the same is true for forensic investigations of Big Data. A foundational 
understanding of computer forensics is important to understand the process and 
methods used in investigating digital information. Designed as a how-to guide, 
this book provides practical guidance on how to conduct investigations utilizing 
current technology and tools. Rather than rely on general principles or proprietary 
software, this books presents practical solutions utilizing freely-available software 
where possible. Several commercial software packages are also discussed to provide 
guidance and other ideas on how to tackle Big Data forensics investigations.

The ield of forensics is large and continues to evolve. The ield is new, and the 
technologies continue to change and develop. The constant growth in Big Data 
technologies leads to change in the tools and technologies for forensic investigations. 
Most of the tools presented in this book were developed in the past ive years. 
Regardless of the tools used, this book is designed to provide readers with practical 
guidance on how to conduct investigations and select the appropriate tools.

This book focuses on performing forensics on Hadoop systems and Hadoop-based 
data. Hadoop is a framework for Big Data, and many software packages are built 
on top of Hadoop. This book covers the Hadoop ilesystem and several of the key 
software packages that are built on top of Hadoop, such as Hive and HBase. A  
freely available Linux-based Hadoop virtual machine, LightHadoop, is used in  
this book to present examples of collecting and analyzing Hadoop data that can  
be followed by the reader.

Each of the stages of the forensic process is discussed in detail using practical 
Hadoop examples. Chapter 2, Understanding Hadoop Internals and Architecture details 
the Hadoop architecture and installing LightHadoop as a test environment. The 
remaining chapters cover each of the phases of the forensic process and the most 
common Hadoop packages that a forensic investigator will encounter.
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Understanding Hadoop 

Internals and Architecture
Hadoop is currently the most widely adopted Big Data platform, with a diverse 
ecosystem of applications and data sources for forensic evidence. An Apache 
Foundation framework solution, Hadoop has been developed and tested in 
enterprise systems as a Big Data solution. Hadoop is virtually synonymous  
with Big Data and has become the de facto standard in the industry.

As a new Big Data solution, Hadoop has experienced a high adoption rate by many 
types of organizations and users. Developed by Yahoo! in the mid-2000s—and  
released to the Apache Foundation as one of the irst major open source Big Data 
frameworks—Hadoop is designed to enable the distributed processing of large, 
complex data sets across a set of clustered computers. Hadoop's distributed 
architecture and open source ecosystem of software packages make it ideal for speed, 
scalability, and lexibility. Hadoop's adoption by large-scale technology companies is 
well publicized, and many other types of organizations and users have come to adopt 
Hadoop as well. These include scientiic researchers, healthcare corporations, and 
data-driven marketing irms. Understanding how Hadoop works and how to perform 
forensics on Hadoop enables investigators to apply that same understanding to  
other Big Data solutions, such as PyTables.

Performing Big Data forensic investigations requires knowledge of Hadoop's internals 
and architecture. Just as knowing how the NTFS ilesystem works is important for 
performing forensics in Windows, knowing the layers within a Hadoop solution is 
vital for properly identifying, collecting, and analyzing evidence in Hadoop. Moreover, 
Hadoop is rapidly changing—new software packages are being added and updates 
to Hadoop are being applied on a regular basis. Having a foundational knowledge 
of Hadoop's architecture and how it functions will enable an investigator to perform 
forensics on Hadoop as it continues to expand and evolve.
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With its own ilesystem, databases, and application layers, Hadoop can store data 
(that is, evidence) in various forms—and in different locations. Hadoop's multilayer 
architecture runs on top of the host operating system, which means evidence may need 
to be collected from the host operating system or from within the Hadoop ecosystem. 
Evidence can reside in each of the layers. This may require performing forensic 
collection and analysis in a manner speciic to each layer.

This chapter explores how Hadoop works. The following topics are covered in detail: 
Hadoop's architecture, iles, and data input/output (I/O). This is done to provide 
an understanding of the technical underpinnings of Hadoop. The key components 
of the Hadoop forensic evidence ecosystem are mapped out, and how to locate 
evidence within a Hadoop solution is covered. Finally, this chapter concludes with 
instructions on how to set up and run LightHadoop and Amazon Web Services. These 
are introduced as the Hadoop instances that serve as the basis for the examples used 
in this book. If you are interested in performing forensic investigations, you should 
follow the instructions on how to install LightHadoop and set up an Amazon Web 
Services instance at the end of this chapter. These systems are necessary to follow  
the examples presented throughout this book.

The Hadoop architecture
Hadoop is a reliable system for shared storage and analysis with a rich ecosystem 
of layered solutions and tools for Big Data. Hadoop is built on the concepts of 
distribution for storage and computing. It is a cross-platform, Java-based solution. 
Hadoop can run on a wide array of different operating systems, such as Linux and 
Windows, because it is built in Java, a platform-neutral language. Hadoop itself is a 
layer that sits on top of the host operating system. Hadoop's core functionalities are 
also built in Java and can be run as separate processes. With its own ilesystem and 
set of core functionalities, Hadoop serves as its own abstract platform layer; it can  
be accessed and run almost entirely independent of the host operating system.

http:///


Chapter 2

[ 23 ]

The following igure shows a high-level representation of the Hadoop layers:

Figure 1: The Hadoop architecture layers

The Hadoop layers are an abstraction for how the various components are organized 
and the relationship between the other components. The following are the various 
Hadoop layers:

• The Operating System layer: The first layer is the Operating System on the 
host machine. Hadoop is installed on top of the operating system and runs 
the same regardless of the host operating system (for example, Windows  
or Linux).

• The Hadoop layer: This is the base installation of Hadoop, which includes 
the file system and MapReduce components.

• The DBMS layer: On top of Hadoop, the various Hadoop DBMS and related 
applications are installed. Typically, Hadoop installations include a data 
warehousing or database package, such as Hive or HBase.

• The Application layer: The Application layer is the top layer, which includes 
the tools that provide data management, analysis, and other capabilities. 
Some tools, such as Pig, can interact directly with the operating system and 
Hadoop layers. Other tools only interact with the database layer or other 
application-layer tools.
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The components of Hadoop
The Hadoop layer is the most important layer in understanding how Hadoop works 
and how it is different from a database management system or other large-scale data 
processing engines. This layer contains the core Hadoop components, the Hadoop 
Distributed File System (HDFS), and the MapReduce functions. These elements 
form the key functions for managing the storage and analysis of data—and they are 
used in conjunction for running a distributed system. Distribution is controlled by a 
Master Node machine. This machine controls Slave Node machines for ile storage 
and retrieval and data analysis. The following igure illustrates how the Master 
Node controls the Slave Node in the Hadoop layer for MapReduce and HDFS:

Figure 2: The Hadoop distributed process

Hadoop uses the HDFS to logically store data for use by Hadoop's applications. 
HDFS is designed to store data on commodity storage hardware in a distributed 
fashion. The NameNode ile controls the tasks of storing and managing the data 
across each of the DataNode. When data is stored in Hadoop, the NameNode ile 
automatically stores and replicates the data in multiple blocks (64 MB or 128 MB  
by default) across the various DataNode. This is done to ensure fault tolerance  
and high availability. HDFS is covered in more detail in the next section.

MapReduce is a key concept and framework for how Hadoop processes data.  
Using Hadoop's distributed processing model, MapReduce enables large jobs to 
be divided into Map() procedures and Reduce() procedures. Map() procedures 
are iltering and sorting operations, whereas Reduce() procedures are summary 
operations (for example, summation or counting). A single query can be divided  
into Map() and Reduce() procedures with a Master Node distributing the tasks  
to each of the Slave Node. The SlaveNode perform their discrete tasks and transmit 
the results back to the Master Node for analysis compilation and reporting.
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The following igure is an example of how a MapReduce function works, in this 
case, for an aggregation of sales data:

Figure 3: The Hadoop MapReduce process

The irst step of MapReduce is to run a Map() function on the initial data. This 
creates data subsets that can be distributed to one or more nodes for processing. In 
this example, the data consists of information about widget sales quantity and price 
information, with each node receiving information about one widget. Each node that 
receives a record performs an operation on the record. In this case, the nodes calculate 
the total sales amounts. Finally, the Reduce() function computes the total sales 
amount for all widgets.

MapReduce programs can be written and executed in a number of different ways. 
First, programs can be written natively in Java using the org.apache.hadoop.
mapred library. A MapReduce program is compiled using a Java compiler; it is then 
run in Hadoop using the Java runtime. Alternatively, additional Hadoop packages 
offer abstractions of MapReduce that can implement the Map() and Reduce() 
functions without using Java (for example, Pig).

For more information about programming in MapReduce, visit http://hadoop.
apache.org/docs/r1.2.1/mapred_tutorial.html.

The layers above the Hadoop layer are the add-on functionality for process and 
resource management. These layers store, retrieve, convert, and analyze data. The 
following table provides examples of tools found in these layers:

Tool Description

HBase This is a column-based data warehouse for high-speed 

execution of operations over large data sets.
Hive This is a data warehouse that offers SQL-like access to 

data in HDFS.

http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
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Tool Description

Sqoop This is a data transfer tool for moving to and from 

relational database systems.

Pig This is the framework for executing MapReduce on HDFS 

data using its own scripting language.

Flume This harvests, aggregates, and moves large amounts of log 

data in and out of Hadoop.

The Hadoop Distributed File System
HDFS is the ilesystem primarily used by Hadoop. It is an abstracted ilesystem 
layer that stores data in its own format to enable cross-platform functionality. The 
actual storage of the iles resides in the host operating system's ilesystem. However, 
the logical iles are stored within Hadoop blocks; they are not necessarily directly 
accessible from the host operating system the way a ile stored in the host operating 
system would be. HDFS serves the following purposes:

• The storage of data on a cluster

• The distribution of storage via NameNode and DataNode

• The division of files into blocks across DataNode

• The provision of access to the contents of the data blocks

HDFS is just one of over ten ilesystems that can be implemented in 
Hadoop. While HDFS is the most popular Hadoop ilesystem and the 
one presented in this book, investigators should be aware that a Hadoop 
cluster could use a different ilesystem. Several examples of other 
Hadoop ilesystems are Kosmos, Amazon S3, and the local ilesystem.

Data is imported into HDFS and then stored in blocks for distributed storage. Files 
and data can be imported into HDFS in a number of ways, but all data stored in 
HDFS is split into a series of blocks. The blocks are split by size only. A ile may 
contain record information, and the splits may occur within an individual record 
if that record spans a block size boundary. By default, blocks are 64 MB or 128 MB, 
but the size can be set to a different number by a system administrator. Hadoop is 
designed to work with terabytes and petabytes of data. The metadata about each 
block is stored centrally on a server, so Hadoop cannot afford to store the metadata 
about 4 KB blocks of data. Thus, Hadoop's block size is signiicantly larger than the 
blocks in a traditional ilesystem.
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After the data has been split, it is stored in a number of DataNode. By default, the 
replication level is set to three DataNode per block, but that setting can also be 
changed by a system administrator. Mapping information indicating where the  
data blocks are stored and other metadata are contained in NameNode, which is 
located in the Master Node. The following igure illustrates this process:

Figure 4: HDFS Data block distribution

NameNode is a single point of failure. While DataNode information 
is stored in multiple locations, NameNode information only resides 
on a single machine—unless a secondary NameNode is set up for 
redundancy.

Files are stored logically in HDFS, and they can be accessed through HDFS just like 
a ile in any other ilesystem. Files may be stored in data blocks across a number of 
DataNode, but the iles still retain their ilenames and can be accessed in a number 
of ways. NameNode stores the information necessary to perform a lookup on a 
ilename, identiies where the various blocks reside that comprise the ile, and 
provides ile-level security. When a ile request is made in HDFS, Hadoop retrieves 
data blocks and provides access to the data as a ile.

Once stored in HDFS, iles can be accessed through a number of mechanisms. Files 
can be accessed via the Hadoop shell command line. The standard ways to locate 
and access iles through the command line are the ls and cp commands, which are 
available through Hadoop. For example, the following commands can be executed  
to perform a folder listing and a ile copy for HDFS data, respectively:

$ hdfs dfs -ls /user/hadoop/file1

$ hdfs dfs -cp /user/hadoop/file1 /user/hadoop/file2

www.allitebooks.com
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Files can also be accessed through the HDFS web interface. The HDFS web interface 
provides information about the status of a Hadoop cluster. The interface enables 
browsing through directories and iles in HDFS. By default, the web interface can  
be accessed at http://namenode-name:50070/.

These commands are possible because of the way information is stored in HDFS. 
Whether the Hadoop cluster is a single node or distributed across multiple nodes, 
the iles are logically accessible in the same manner.

Information stored in NameNode is stored in memory, but it is also written to  
the ilesystem for storage and disaster recovery. The in-memory data stored by 
NameNode is the active information used to locate data blocks and pull metadata. 
Because NameNode can have issues, or may need to be rebooted, the ilesystem 
information stored in memory is also written to two iles: fsimage and edits. The 
fsimage ile is a recent checkpoint of the data stored in the memory of NameNode. 
The fsimage ile is a complete backup of the contents and is suficient to bring 
NameNode back online in the event of a system restart or failure. The edits ile  
stores all changes from the last fsimage checkpoint process. This is similar to a 
database that utilizes a differential backup. NameNode does not utilize these iles 
except for when NameNode is started, at which point, the contents of the iles are 
brought into memory by NameNode. This is done by way of restoring the fsimage 
ile data and then applying all updates from the edits ile in the sequential order.

The fsimage ile is similar in ilesystem structure to a Windows File Allocation 
Table (FAT). The ile stores information about pointers to ile locations; ile locations 
are called inodes. Each inode has associated metadata about the ile, including the 
number of blocks, permissions, modiication and access times, and user and group 
ownership. The fsimage ile can be useful in a forensic investigation when questions 
arise about metadata. The fsimage ile is covered in more detail in later chapters.

The Hadoop coniguration iles
Hadoop contains standard system coniguration iles that store variables and default 
locations. Similar to an operating system, Hadoop uses a series of coniguration iles 
for storing and accessing system variables.

Coniguration iles are valuable in forensic investigations, especially in the 
data identiication phase. These iles identify where data is stored, the Hadoop 
applications that are used, and the various metadata about the data stores. 
Coniguration iles contain information that is useful in the following situations:

• The Hadoop system is offline and cannot be brought back online, so the
Hadoop nodes need to be identified in order to collect data from each
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• The system contains a large amount of data and specific folders  
(for example, log files) that need to be identified for a targeted collection

• The port information needs to be identified to reconstruct how the  
system operated

The following table is a list of Hadoop's standard coniguration iles:

Filename Description

hadoop-default.xml
This contains the general default system variables and data 

locations

hadoop-site.xml This contains the site-specific version of hadoop-default.xml

mapred-default.xml This contains the MapReduce parameters

job.xml This contains the job-specific configuration parameters

The hadoop-default.xml ile is valuable because it contains the information  
about where data is stored, the temp directory location, log ile locations,  
job history locations, and ilesystem information. The hadoop-site.xml ile  
contains coniguration changes to the values in hadoop-default.xml. The  
hadoop-default.xml ile is not supposed to be modiied. Instead, administrators 
make modiications to the hadoop-site.xml ile, which overrides the settings in 
hadoop-default.xml. Typically, administrators update the hadoop-site.xml  
ile to set the JobTracker and NameNode parameters, such as the port information  
for job management and output, data path settings, and MapReduce folders.  
The other iles are typically only valuable when information about the jobs that  
are run and the settings for each are potentially relevant.

The following is an excerpt from a sample hadoop-site.xml ile:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

  <property>

    <name>hadoop.tmp.dir</name>

    <value>/tmp/hadoop-${user.name}</value>

  </property>

  <property>

    <name>fs.default.name</name>

    <value>hdfs://localhost:8020</value>

  </property>

  <property>

    <name>mapred.job.tracker</name>
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    <value>hdfs://localhost:54311</value>

  </property>

  <property>

    <name>dfs.replication</name>

    <value>8</value>

  </property>

  <property>

    <name>mapred.child.java.opts</name>

    <value>- Xmx200m </value>

  </property>

</configuration>

This coniguration ile contains the following information that may be of value to  
a forensic investigation:

• The HDFS temp directory used is /tmp/hadoop-${user.name}

• The NameNode file is located on the localhost on port 8020

• The MapReduce JobTracker is located on the localhost on port 54311

• The HDFS replication level is set to level 8

In addition to Hadoop coniguration iles, most Hadoop applications and data 
analysis packages have their own coniguration iles that determine where data 
is stored, permissions, and standard runtime parameters. These application 
coniguration iles are also useful for identifying and collecting forensic evidence.

Hadoop daemons
Hadoop daemons are the processes that provide the core Hadoop functionality,  
such as the NameNode and DataNode services. Hadoop's daemons are the processes 
that run and form the backbone of Hadoop's operations, similar to the daemons that 
provide operating system-level and other functionality within Linux and other  
Unix variants.

Hadoop runs several daemons in the host operating system's Java Virtual Machine 
(JVM). The primary daemons are:

• NameNode

• DataNode

• SecondaryNameNode

• JobTracker

• TaskTracker
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The daemons run as processes in the host operating system, so the status of the 
daemons can be monitored from the host operating system, not only within Hadoop. 
Because Hadoop is a Java-based system, the daemons are written in Java and the 
tool jps can be used to test whether there are active daemons. jps is the Java Virtual 
Machine Process Status Tool and it can be run from any host operating system with 
Java installed. If Hadoop is running, the jps output will contain the ive daemons 
mentioned earlier. This is an excellent tool for investigators to use when working with 
a system suspected of running Hadoop. The following is an example of running jps 
and its output:

$ jps

The response from jps shows the process identiier (pid) and process name as 
follows:

• 1986 Jps

• 1359 ResourceManager

• 1223 RunJar

• 1353 NodeManager

• 1383 JobHistoryServer

• 1346 DataNode

• 1345 NameNode

Hadoop data analysis tools
Hadoop was designed to store and analyze large volumes of data. The ecosystem of 
tools for Hadoop analysis is large and complex. Depending on the type of analysis, 
many different tools can be used. The Apache Foundation set of tools has a number of 
standard options such as Hive, HBase, and Pig, but other open source and commercial 
solutions have been developed to meet different analysis requirements using Hadoop's 
HDFS and MapReduce features. For example, Cloudera's Impala database runs on 
Hadoop, but it is not part of the Apache Foundation suite of applications.

Understanding which data analysis tools are used in a Hadoop cluster is important 
for identifying and properly collecting data. Some data analysis tools store data in 
formatted iles and may offer easier methods for data collection. Other tools may 
read data directly from iles stored in HDFS, but the scripts used for the tool may 
serve as useful information when later analyzing the data. This section explores the 
three most common data analysis tools used in Hadoop—Hive, HBase, and Pig.
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Hive
Hive is a data warehousing solution developed to store and manage large volumes 
of data. It offers an SQL-like language for analysis. Hive is a general purpose system 
that can be scaled to extremely large data sets. As a data warehousing system, data is 
imported into Hive data stores that can be accessed via an SQL-like query language 
called HiveQL.

The Hive service is the engine that manages the data storage and query operations. 
Hive queries are passed through the service, converted into jobs, and then executed 
with the results returned to the query interface. Hive stores two types of data: table 
data and metadata. Table data is stored in HDFS, and the metadata indicating where 
the partitions and data tables are stored is located in the Hive metastore. The metastore 
is a service and storage component that connects to a relational database (for example, 
MySQL or Oracle) for storage of the metadata. This enables Hive to retrieve data and 
table structure information. The following igure shows an overview of the  
Hive environment:

Figure 5: The Hive architecture

Depending on the data volume, Hive data is stored in the local HDFS ilesystem.  
By default, data is stored in the /user/hive/warehouse directory. Hive can  
be conigured to store data in other locations by way of modifying the  
hive-default.xml ile's hive.metastore.warehouse.dir variable.

The following Hive query loads data to a new Hive table:

LOAD DATA LOCAL INPATH '/home/data/import.txt'

OVERWRITE INTO TABLE sampletable
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This query imports the records from the import.txt ile into a Hive table named 
sampletable. Since the default data location is /user/hive/warehouse, the data 
is stored in a new directory called sampletable. The metastore is also updated 
with metadata related to the new table and data location. The following Hadoop 
command shows the imported ile:

$ hadoop fs -ls /user/hive/warehouse/sampletable/

The response from Hadoop is as follows:

import.txt

This example, however, only shows how Hive stores data when the local HDFS is 
used. Other options exist, so investigators should be aware that data can be stored 
in other locations. Hive table data can be stored in remote locations, such as cloud 
storage as well as on local nodes. Likewise, the metastore and its database can either 
be on the local machine or a remote machine. If the metastore is a required piece of 
an investigation, the location of the metastore should be identiied.

Hive provides logging for critical events and errors. By default, Hive logs errors  
to /tmp/$USER/hive.log. The error log location can be speciied for a different 
directory in the hive log coniguration ile conf/hiv-log4j.properties. The 
primary coniguration ile for Hive is the hive-default.xml ile.

The alternative to searching all of these additional sources in an investigation is to 
extract data from Hive via queries. With the potential for multiple remote systems,  
a large metastore, and various system coniguration and log iles—a simpler solution 
to extract the data is required. This can be done by running HiveQL queries to retrieve 
the contents from all tables and store the results in lat iles. This approach enables the 
investigator to retrieve the entire set of contents from Hive; it is useful when metadata 
or questions about data removal are not relevant.

HBase
HBase is currently the most popular NoSQL database for Hadoop. HBase is a 
column-oriented, distributed database that is built on top of HDFS. This database is 
commonly used for large-scale analysis across sparsely-populated datasets. HBase 
does not support SQL, and data is organized by columns instead of the familiar 
relational sets of tables.

HBase's data model is unique and requires understanding before data is collected  
by an investigator. HBase makes use of the following concepts:

• Table: HBase organizes data into tables, with each table having a  
unique name.
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• Row: Data is stored in rows within each column, and the rows are identified 
by their unique row key.

• Column Family: The data within a row is organized by groupings of 
columns, called column families. Column families have a common prefix  
and are on the left-hand side of the colon in a column name. For example, 
the row columns location:city and location:street are both members of the 
location family, whereas name:first belongs to the name column family.

• Column Qualifier: The individual row columns are specified by the column 
qualifier. In the previous example, location:city is part of the location 
column family and its qualifier is city.

• Cell: The unique identification of a value within a row is a cell. Cells are 
identified by a combination of the table, row key, column family, and  
column qualifier.

The following igure shows a sample set of data within HBase. The table contains 
two column families: name and location. Each of the families has two qualiiers. A 
combination of the unique row key, column family, and column qualiier represents 
a cell. For example, the cell value for row key 00001 + name:irst is John:

Figure 6: HBase data

HBase stores all column family members together in HDFS. HBase is considered 
a column-oriented database, but the physical storage is actually performed by 
grouping columns and storing those together. Because of this storage methodology, 
column families are expected to have similar data size and content characteristics  
to enable faster sorting and analysis.

Tables are partitioned horizontally into sections of ixed-size chunks called regions. 
When a table is irst created, the entire contents of the table are stored in a single 
region. As the number of rows reaches a certain size threshold, a new region is 
created for the additional rows. The new region is typically stored on a separate 
machine, enabling the data to scale without compromising the speed of storage  
and analysis.
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HBase utilizes a set of servers and a database log ile for running its distributed 
database. The region servers store the data contents and are the data analysis 
engines. Each region server has HFile data and a memstore. The region servers  
share a write-ahead log (WAL) that stores all changes to the data, primarily for 
disaster recovery. Each HBase instance has a master server, which is responsible 
for assigning regions to region servers, recovering from region server failure, 
and bootstrapping. Unlike the MapReduce process, master servers do not control 
operations for analysis. Large-scale HBase instances typically have a backup master 
server for failover purposes.

HBase also uses and depends on a tool called ZooKeeper to maintain the HBase 
cluster. ZooKeeper is a software package used for the maintenance of coniguration 
information and performing synchronization across distributed servers. At a 
minimum, HBase uses a ZooKeeper leader server and a ZooKeeper follower server to 
assign tasks to HBase nodes and track progress. These servers also provide disaster 
recovery services.

The following igure highlights the coniguration of an HBase and ZooKeeper 
environment:

Figure 7: The HBase architecture

The data ile format used by HBase is HFile. The iles are written in 64 KB blocks by 
default. HFile blocks are not to be confused with HDFS blocks. HFiles are divided 
into four regions as follows:

• Scanned Block Section: The data content (that is, key and value pairs) and 
pointer information that is scanned; multiple data and leaf index blocks  
can be stored in this section.

• Non-Scanned Block Section: The meta information that is not scanned;  
multiple blocks can be stored in this section.
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• Load-on-Open Section: The information loaded into memory when an HFile  
is opened by HBase.

• Trailer Section: The trailer information, such as offsets, compression codec 
information, and the number of block entry summary information.

The following ile layout igure shows the structure of an HFile that is stored on a 
region server:

Figure 8: The HFile structure

Like Hive and other Hadoop applications, the HBase settings can be found in  
its coniguration iles. The two coniguration iles are hbase-default.xml and  
hbase-site.xml. By default, hbase-site.xml contains information about where 
HBase and ZooKeeper write data.

HBase data can be accessed in a number of ways. The following is a list of means  
by which HBase data can be accessed:

• Java program: HBase is a Java-based database that has its own object  
library that can be implemented in custom Java programs for querying

• MapReduce: HBase data can also be queried via Hadoop's  
MapReduce functions

• Avro: A Hadoop data serialization interface, called Avro, can be used

• REST: Data can be queried with responses formatted as JSON, XML,  
or other formats

Extracting data from HBase requires using one of these methods. This makes data 
collection more dificult, but the alternative is to identify all regional servers and use 
coniguration iles and knowledge of HFiles to carve out the relevant data. These and 
other HBase data collection and analysis issues are covered in later chapters.
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Pig
Pig is a tool that creates an abstraction layer on top of MapReduce to enable simpler 
and faster analysis. Pig is a scripting language designed to facilitate query-like data 
operations that can be executed with just several lines of code. Native MapReduce 
applications written in Java are effective and powerful tools, but the time to develop 
and test the applications is time-consuming and complex. Pig solves this problem 
by offering a simpler development and testing process that takes advantage of the 
power of MapReduce, without the need to build large Java applications. Whereas 
Java programs may require 50-100 lines, Pig scripts often have ten lines of code or 
less. Pig is comprised of two elements as follows:

• An execution environment that runs Pig scripts against Hadoop data sets

• A scripting language, called Pig Latin

Pig is not a database or a data storage tool. Unlike HBase, Pig does not require data 
to be loaded into a data repository. Pig can read data directly from HDFS at script 
runtime, which makes Pig very lexible and useful for analyzing data across HDFS  
in real time.

Pig scripts typically have a .pig extension. If the Pig scripts 
may be relevant or useful, investigators should collect the 
scripts to help understand the data and how that data was 
analyzed on the source system.

Managing iles in Hadoop
Hadoop has its own ile management concepts that come with many different 
mechanisms for data storage and retrieval. Hadoop is designed to manage large 
volumes of data distributed across many nodes built with commodity hardware. 
As such, Hadoop manages the distribution of large volumes of data using 
techniques designed to divide, compress, and share the data all while dealing with 
the possibilities of node failures and numerous processes accessing the same data 
simultaneously. Many of the ilesystem concepts in Hadoop are exactly the same 
as in other systems, such as directory structures. However, other concepts, such 
as MapFiles and Hadoop Archive Files, are unique to Hadoop. This section covers 
many of the ile management concepts that are unique to Hadoop.
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File permissions
HDFS uses a standard ile permission approach. The three types of permissions for 
iles and directories are:

• Read (r): Read a file and list a directory's contents

• Write (w): Write to a file and create or delete files in a directory

• Execute (x): Access subdirectories (does not apply to files in HDFS)

Each ile and directory has an associated owner, group, and mode. The owner and 
group are assigned based on who owns or created the ile or directory, and the same 
is true for the group. The mode is the list of permissions for the owner, the members 
of the group, and all others (that is, a non-owner and non-group member for the ile 
or directory). There are also superuser accounts in HDFS, and all superuser accounts 
can access any ile or directory, regardless of permissions.

File permissions in HDFS are not as useful for determining the actual people and 
location of account logins as is the case with traditional operating systems. Client 
accounts in Hadoop run under process accounts. So rather than each individual  
having a login to the Hadoop instance, the clients access HDFS via an application  
that has its own account. For example, an HBase client has an associated account, 
HBase, by default and that account would be the one running analysis. While tools 
such as ZooKeeper provide Access Control Lists (ACLs) to manage such community 
accounts, one can see that having processes that act as user accounts can create 
dificulties for identifying which person or location performed speciic actions.

Some Hadoop packages contain access control mechanisms that 
enable more granular user access control. HBase, for example, 
has an Access Controller coprocessor that can be added to the 
hbase-site.xml coniguration ile to control which users can 
access individual tables or perform speciic HBase actions. The 
ACL is stored in the HBase table _acl_.

Trash
Hadoop has a trash feature that stores deleted iles for a speciic amount of time.  
All Hadoop users have a .Trash folder, where deleted iles are stored. When a ile  
is deleted in Hadoop, a subdirectory is created under the user's $HOME folder  
using the original ile path, and the ile is stored there. All iles stored in trash  
are permanently deleted when one of the following events happen:

• The periodic trash deletion process is run by Hadoop. This occurs after a 
fixed amount of time, as specified by a user-configured time.
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• A user runs an expunge job. This can be performed from the Hadoop 
command line as follows:

%hadoop fs –expunge

Files are only moved to the trash when deleted by a user from the 
Hadoop command line. Files deleted programmatically bypass the 
trash and are permanently deleted immediately.

Information about a Hadoop instance's trash coniguration can be found in  
core-default.xml under the key FS_TRASH_INTERVAL_KEY. By default,  
FS_TRASH_INTERVAL_KEY is set to 0, which means the trash feature is disabled  
and iles are automatically deleted permanently. For example, if the key is set  
to 5, then the trash feature is turned on, and trash is emptied every 5 minutes.

Log iles
Log iles are valuable sources of forensic evidence. They store information about where 
data was stored, where data inputs originated, jobs that have been run, the locations of 
other nodes, and other event-based information. As in any forensic investigation, the 
logs may not contain directly relevant evidence; however, the information in logs can 
be useful for identifying other locations and sources of evidence.

The following types of logs can be found on machines running a Hadoop cluster:

• Hadoop daemon logs: Stored in the host operating system, these .log files 
contain error and warning information. By default, these log files will have  
a hadoop prefix in the filename.

• log4j: These logs store information from the log4j process. The log4j 
application is an Apache logging interface that is used by many Hadoop 
applications. These logs are stored in the /var/log/hadoop directory.

• Standard out and standard error: Each Hadoop TaskTracker creates  
and maintains these error logs to store information written to standard  
out or standard error. These logs are stored in each TaskTracker node's  
/var/log/hadoop/userlogs directory.

• Job configuration XML: The Hadoop JobTracker creates these files  
within HDFS for tracking job summary details about the configuration  
and job run. These files can be found in the /var/log/hadoop and  
/var/log/hadoop/history directory.

• Job statistics: The Hadoop JobTracker creates these logs to store information 
about the number of job step attempts and the job runtime for each job.

http:///


Understanding Hadoop Internals and Architecture

[ 40 ]

Log ile retention varies across implementation and administrator settings. Some logs, 
such as log4j, can grow very quickly and may only have a retention period of several 
hours. Even if logs are purged, a best practice for many types of logs is to archive them 
in an ofline system for diagnostics and job performance tracking.

File compression and splitting
One method used by Hadoop for transferring data more eficiently is to compress 
data in transit. The beneit of compressing data is that the time to compress, transmit, 
and decompress data is often less than transmitting uncompressed data when the 
data volume is large. For this reason, Hadoop supports a number of compression 
algorithms and ile formats. The following compression formats are supported by 
Hadoop:

• bzip2

• DEFLATE

• gzip

• LZO

• LZ4

• Snappy

Files compressed with DEFLATE in Hadoop have a .deflate 
ile extension.

While compressed iles can be transmitted more easily, sending out one compressed 
ile to multiple nodes is not always an eficient option. Hadoop's MapReduce is 
designed with a framework to enable sending out smaller jobs to multiple nodes. 
Each node does not need to receive the complete data set if it is only tasked with 
a subset of the data. Instead, the data should be split into subsets, with each node 
receiving only the subset it needs. For this reason, compression algorithms whose 
iles can be split are preferred. DEFLATE does not support splitting, but formats 
such as bzip2, LZO, LZ4, and Snappy do.

A forensic investigator should be aware of split iles that can be stored on node 
machines. These iles may require forensic collection of the individual split data  
iles on the various nodes to fully reconstruct the complete, original data container.
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Hadoop SequenceFile
SequenceFile are Hadoop's persistent data structure for key-value pair data 
for MapReduce functions. These iles are both the input and output format for 
MapReduce. They contain key-value pair values and have a deined structure. 
SequenceFile are a common ile format in Hadoop, and they facilitate the splitting 
of data for each transfer during MapReduce jobs. There are three formats of 
SequenceFiles:

• Uncompressed: The plaintext data in individual records

• Record-compressed: Individual records compressed per segment

• Blocked-compressed: Multiple records compressed per segment

The three formats have a common ile header format. The following table lists  
the ields found in the ile header:

Field Description

Version This holds SEQ4 or SEQ6, depending on the SequenceFile version

keyClassName This holds the name of the key class

valueClassName This holds the name of the value class

Compression This is used for key/pairs: 1 if compressed, 0 if uncompressed

blockCompression
This is used for key/pairs blocks: 1 if compressed, 0 if 

uncompressed

Compression Codec This holds the compression codec name value

Metadata This is user-defined metadata

Sync This is a marker to denote the end of the header

The header segment deines the type of SequenceFile and the summary information 
for the ile.

Both uncompressed and record-compressed SequenceFile have record and sync 
blocks. The only difference between the two is that the value within the record 
segment is compressed in the record-compressed format. The block-compressed 
format is comprised of alternating sync and block segments. Within the block 
segments, the keys and values are combined and compressed together.
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The following igure illustrates the contents of each of the three SequenceFile formats:

Figure 9: The SequenceFile structure

Forensic investigations can require that investigators manually extract 
data using the ile format as a reference or identify iles by their structure. 
SequenceFile, for example, do not have a standard ile extension, so 
investigators can only identify them by analyzing the ile structure.

SequenceFile are the base data structure for several variants. MapFiles are a 
directory structure that have /index and /data directories. The key information is 
stored in /index and the key/pairs are stored in /data. SetFile and ArrayFile are 
MapFile variants that add functionality to the MapFile structure. Finally, BloomFiles 
are extensions of MapFiles that have a /bloom directory for storing bloom ilter 
information. All of these types of MapFile and MapFile variants can be readily 
identiied by the presence of these directories.

The Hadoop archive iles
HDFS is designed to work with large data sets as evidenced by the large block 
sizes of 64 MB to 128 MB. The NameNode ile stores namespace information for 
identifying iles and blocks. As the number of iles increases, the NameNode's ile 
lookup speed is reduced. The number of iles NameNode manages is also limited  
by the amount of physical memory, because all ile information managed by 
NameNode is stored in memory. One method in HDFS for solving this problem is 
storing multiple iles in a single container ile, called Hadoop Archive (HAR) iles.
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HAR iles are multiple small iles stored in a single, uncompressed container ile. 
HDFS has an interface that enables the individual iles within a HAR ile to be accessed 
in parallel. Similar to the TAR container ile format that is common in UNIX, multiple 
iles are combined into a single archive. Unlike TAR, however, HAR iles are designed 
such that individual iles can be accessed from inside the container. HAR iles can be 
accessed by virtually all Hadoop components and applications, such as MapReduce, 
the Hadoop command line, and Pig.

While HAR iles offer several advantages for Hadoop, they also have limitations. 
The advantage of HAR iles is the capability to access multiple small iles in parallel, 
which reduces the NameNode ile management load. In addition, HAR iles work 
well in MapReduce jobs because the individual iles can be accessed in parallel. 
HAR iles also have their disadvantages. For example, because they are permanent 
structures, they cannot be modiied after they are created. This means new HAR iles 
have to be created any time new iles should be added to a HAR ile. Accessing a ile 
within a HAR ile also requires an index lookup process, which adds an extra step  
to the process.

The HAR ile format has several elements. The following three elements comprise 
the HAR format:

• _masterindex: The file hashes and offsets

• index: The file statuses

• part-[1-n]: The actual file data content

The ile data is stored in multiple part iles based on block allocation, and the content 
location is stored in the _masterindex element. The index element stores the ile 
statuses and original directory structure.

Individual iles from within a HAR ile can be accessed via a har:// preix. The 
following command copies a ile called testFile, originally stored in a directory 
called testDir, from a HAR ile stored on NameNode called foo to the local  
ilesystem:

% hadoop fs –get har://namenode/foo.har#testDir/testFile

localdir

HAR iles are unique to Hadoop. When forensically analyzing HAR data, investigators 
should export the data from Hadoop to a local ilesystem for analysis.
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Data serialization
Hadoop supports several data serialization frameworks. Data serialization is 
a framework for storing data in a common format for transmission to other 
applications or systems. For Hadoop, data serialization is primarily used for 
transmitting data for MapReduce-related tasks. The three most common data 
serialization frameworks in Hadoop are:

• Apache Avro

• Apache Thrift

• Google Protocol Buffers

Data serialization frameworks are designed to transmit data that is read and stored in 
memory, but the data iles used for storage and transmission can be relevant forensic 
evidence. The frameworks are fairly similar in overall structure and forensic artifacts. 
The forensic artifacts for all three would be the data schema ile that deines the data 
structure and the text- or binary-encoded data iles that store the data contents.

Avro is currently the most common data serialization framework in use for Hadoop. 
An .avro container ile is the artifact created when data is serialized. The .avro ile 
includes a schema ile that is a plaintext deinition of the data structure; it also includes 
either a binary or text data content ile. For the data format, Avro supports both its 
own binary encoding and JSON text-based encoding. Avro iles can be extracted  
either directly through Avro or through Avro's Java methods.

The following igure illustrates the Avro container ile format:

Figure 10: The Avro container file structure
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Packaged jobs and JAR iles
MapReduce jobs can be executed natively in Java, and those jobs can be compiled 
into Java Archive (JAR) iles for reuse. Hadoop developers and analysts have many 
options for how to create and run data import, management, and analysis jobs. While 
tools such as Pig are extremely popular, some developers still prefer to develop in 
Java. Forensic investigators may encounter JAR iles or Java source code (.java) iles 
in their collection process.

JAR iles are archive container iles. The source code, class iles, corresponding data 
iles, and compiler instructions can all be stored in the same JAR ile, which then 
can be subsequently transferred and unpacked for execution. The compression and 
single container ile make JAR a popular option for storing the applications. While 
a forensic investigator does not need to know how to create or execute a JAR ile, 
they may need to extract the contents in order to review the Java class and source 
code information. To preview the contents of a JAR ile named jarTestFile, the 
following can be run for the Java command line:

$ jar tf jarTestFile

To extract the full set of contents from jarTestFile, the JAR extract command can 
be run from the following Java command line:

$ jar xf jarTestFile

The Hadoop forensic evidence ecosystem
Forensics is based on evidence. For digital investigations, evidence is data. For 
Hadoop, the evidence is the information stored on disk and in memory. Not 
all information stored in Hadoop is relevant; it depends on the nature of the 
investigation. Evidence that is relevant in one investigation may not be relevant in 
another. This section summarizes the various sources of evidence and the overall 
ecosystem of Hadoop forensic evidence.

Standard Hadoop processes or system-generated diagnostic information may not be 
relevant to a forensic investigation. For example, a Hadoop cluster installed without 
any customizations that only stores and analyses web log data may not require a 
collection of all iles and process data. Instead, a targeted collection of the web log 
data can be performed without losing evidence. In other investigations, collecting  
the log and coniguration iles may be necessary.
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Forensic data in Hadoop falls into three categories:

• Supporting information: This is the data that helps identify evidence or 
provides context about the Hadoop cluster's operations or configurations.

• Record evidence: This is any data that is analyzed in Hadoop, whether that 
is HBase data, text files for MapReduce jobs, or Pig output.

• User and application evidence: This is the third form of forensic data of 
interest. This evidence includes the log and configuration files, analysis 
scripts, MapReduce logic, metadata, and other forms of customization and 
logic that act on the data. This form of evidence is useful in investigations 
when questions arise about how the data was analyzed or generated.

The following igure lists the most common form of data for each type of  
forensic evidence:

Figure 11: Types of forensic evidence

The dificulty in facing a forensic investigator working with a Big Data system such 
as Hadoop is the volume of data as well as data being stored across multiple nodes. 
An investigator cannot simply image a single hard drive and expect to have all 
data from that system. Instead, forensic investigators working in Hadoop need to 
irst identify the relevant data, and only then can the actual evidence be collected. 
Some forms of data such as log and coniguration iles are valuable for identifying 
where evidence is stored and whether data archives exist. This type of evidence is 
categorized as supporting information. It is valuable in both the early and late stages 
of an investigation for identifying information and piecing together how the Hadoop 
cluster operated.
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Record evidence is the most common form of evidence for Hadoop investigations. 
In nonBig Data investigations, the iles and e-mails from employees can be the most 
valuable form of evidence; however, most organizations' employees do not interact 
much with Hadoop. Rather, Hadoop is managed and operated by IT and data 
analysis staff. The value of Hadoop is the data stored and analyzed in Hadoop. That 
data is the transactional and unstructured data stored in Hadoop for analysis as well 
as the outputs from the analyses. These structured and unstructured data are forms 
of record evidence. The challenging aspect of Hadoop investigations is identifying 
all potentially relevant sources of record evidence as record evidence can exist in 
multiple forms and in multiple applications within Hadoop.

User and application evidence is any type of evidence that shows how the system 
operates or the logic used to run analysis as they directly relate to the record evidence. 
In some investigations, questions arise about what was done to data or how operations 
were performed. While these questions can sometimes be answered by analyzing the 
record evidence, user and application evidence provides a simpler and more powerful 
way to answer such questions. User and application evidence ranges from the scripts 
used to import and analyze data to the coniguration and log iles within Hadoop.

Running Hadoop
Hadoop can be run from a number of different platforms. Hadoop can be installed 
and run from a single desktop, from a distributed network of systems, or as a  
cloud-based service. Investigators should be aware of the differences and versed 
in the various architectures. Hadoop runs in the same manner on all three setups; 
however, collecting evidence may require different steps depending on how the 
data is stored. For instance, a cloud-based Hadoop server may require a different 
collection because of the lack of physical access to the servers.

This section details how to set up and run Hadoop using a free virtual machine 
instance (LightHadoop) and a cloud-based service (Amazon Web Services). Both 
LightHadoop and Amazon Web Services are used in the examples throughout this 
book. They serve as testbed environments to highlight how Big Data forensics is 
performed against different setups.
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LightHadoop
Many of the examples in this book are intended to be hands-on exercises using 
LightHadoop. LightHadoop is a freely distributed CentOS Hadoop virtual machine 
instance. This Hadoop distribution differs from larger ones such as Cloudera. 
LightHadoop requires less hardware and fewer storage resources. This makes 
LightHadoop ideal for learning Hadoop on a single machine and enables one to create 
many virtual machines for testing purposes without requiring large storage volumes 
or multiple nodes. Due to the small virtual machine (VM) size, LightHadoop does 
not include all of the major Hadoop-related Apache packages. However, it does 
include the main ones required for learning about Hadoop and running a database 
management system (DBMS). The following Apache packages are currently included 
in LightHadoop:

• Hadoop

• Hive

• Pig

• Sqoop

Oracle VM VirtualBox is the virtual machine software that runs LightHadoop. It is an 
open source, freely distributed virtualization software. It can be run in the following 
operating systems: Windows, Mac OS X, Solaris, and numerous Linux builds.

The following steps explain how to install and set up VirtualBox with LightHadoop. 
This environment is discussed throughout the book to demonstrate how to conduct 
forensics against a live Hadoop environment:

1. The Oracle VM VirtualBox installation ile can be downloaded for free at 
www.oracle.com/technetwork/server-storage/virtualbox/downloads/

index.html.

2. After downloading and installing Oracle VM VirtualBox, download the  
latest LightHadoop VM from www.lighthadoop.com/downloads/. 
Download the Pseudo-Distributed Mode VM version of LightHadoop.

3. Next, load LightHadoop by following these steps:

1. Run Oracle VM VirtualBox.

2. Select File | Import Appliance. Select the location of the 
LightHadoop.ova file, and click Next.

www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
www.lighthadoop.com/downloads/
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3. Review the default settings, and click Import.

4. Start the VM and log into LightHadoop. Enter the username  
as root and the password as lighthadoop.

LightHadoop can run either as a distributed system or as a single machine. This 
book uses the Pseudo-Distributed Mode VM version of LightHadoop (that is, single 
machine) for ease of installation. The same forensic principles apply to both the 
single machine and distributed system versions.

Amazon Web Services
This book includes a number of examples for performing forensics against cloud-based 
Hadoop setups. The cloud-based examples utilize Amazon Web Services (AWS), a 
cloud-based service that enables one to set up Hadoop solutions and run them in a 
cloud environment. More organizations are moving their data storage and processing 
operations to cloud-based environments, and Hadoop is no exception. Forensic 
investigators should have a strong understanding of the differences between cloud 
computing and traditional server environments when performing investigations.

AWS enables users to initialize and run storage and computing solutions from a 
web-based control panel. One of AWS's solutions, Elastic MapReduce (EMR), is a 
Hadoop-based environment that can be set up with various Hadoop applications. 
EMR is the environment used in this book for cloud-based Big Data forensics and 
HBase collections.

To set up EMR, follow these steps:

1. Create an AWS account at aws.amazon.com/account.

2. Create a key pair for Secure Shell (SSH) login using the following steps:

1. Navigate to the AWS Console, and click EC2 Virtual Servers in  
the cloud.

2. Click Key Pairs.

3. Click Create Key Pair, and name the key pair.

4. Copy the key pair PEM created in the previous step to a location 
where one can load it into the SSH program.

3. Navigate to the AWS Console, and click EMR Managed Hadoop Framework 
under the Analytics section.

aws.amazon.com/account
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4. In the EMR console, click Create cluster and follow these steps:

1. Name the cluster and set the S3 folder name. S3 is the storage folder 
and must be uniquely named across AWS. The following screenshot 
shows an example:

Figure 12: The EMR setup – Part 1

2. Select the default software configurations, and add HBase as  
an additional application. The following screenshot shows an 
example configuration:

Figure 13: The EMR setup – Part 2

3. Under Security and Access, select the EC2 key pair just created.

4. Leave all other items with their default settings, and click  
Create cluster.

5. After a few minutes, the cluster will be created. This can be accessed from  
the EMR Cluster List menu once the cluster's status is Running.
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AWS charges per minute of runtime, whether or not an instance is being 
accessed. Ensure that all AWS instances are terminated after use to 
avoid unwanted charges.

The cluster can be accessed from an SSH terminal program such as PuTTY. To access 
the cluster using PuTTY, follow these steps:

1. Convert the .pem key ile created previously into a .ppk ile.
2. Locate the instance's master public Domain Name System (DNS) in the EMR 

Cluster List. The following screenshot illustrates an example of coniguration:

Figure 14: The EMR setup – Part 3

3. Using PuTTY, provide the location of the .ppk key ile, and enter the  
host name as ec2-user@<Master Public DNS value>.

4. Connect with those parameters, and the EMR instance will load the  
Linux session.

Loading Hadoop data
Hadoop offers a number of mechanisms for loading data. The following are the  
most common methods for importing data into HDFS:

• Copy files from the local filesystem to HDFS

• Use a data transfer tool, such as Sqoop

• Use a Hadoop connector application

• Use a third-party data manager, such as Cloudera or Hortonworks

HDFS has built-in commands that can be used to copy data from the local  
ilesystem. The two commands are as follows:

• hadoop fs -put <local file> <HDFS target location>

• hadoop fs -copyFromLocal <local file> <HDFS target location>
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Both the –put and -copyFromLocal commands achieve the same 
results. The only difference is that -put enables one to copy nonlocal 
iles to HDFS.

Sqoop is an Apache Foundation tool designed to transfer bulk data sets between 
Hadoop and structured databases. Sqoop can either directly import data into HDFS, 
or it can import data indirectly by way of a Hive store that is stored in HDFS. Sqoop 
has the ability to connect to a number of different data sources, such as MySQL and 
Oracle databases. Sqoop connects to the data source and then eficiently imports the 
data either directly into HDFS or into HDFS via Hive.

The third most common method for importing data into Hadoop is the use of a 
Hadoop connector application. Hadoop's Java-based design and supporting libraries 
provide developers with opportunities to directly connect to Hadoop for data 
management, including importing data into Hadoop. Some data providers offer 
Hadoop connector applications. Google, MongoDB, and Oracle are three examples  
of Hadoop connector application providers.

The fourth method is to use a Hadoop data or ile manager. Several major Hadoop 
distributions offer their own ile and data managers that can be used to import and 
export data from Hadoop. Currently, the most popular Hadoop packages that offer 
this are Hortonworks and Cloudera.

Methods for exporting or extracting data from HDFS are covered in the  
subsequent chapters.

Importing sample data for testing
The sample data used in this book is a subset of the New York Stock Exchange ticker 
data from 2000–2001, which is a freely available data set. The data is available at 
https://s3.amazonaws.com/hw-sandbox/tutorial1/NYSE-2000-2001.tsv.gz. 
This data contains over 800,000 records, which makes the data large enough  
to demonstrate concepts, yet manageable enough to learn forensics.

To load the data into AWS, use the following steps:

1. Upload the ile to the /home/ec2-user folder using an SFTP utility  
(for example, WinSCP).

2. Log in to the EMR instance via PuTTY.
3. Run the following HDFS -put command:

hadoop fs -put /home/ec2-user/NYSE-2000-2001.tsv /tmp

https://s3.amazonaws.com/hw-sandbox/tutorial1/NYSE-2000-2001.tsv.gz
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4. Conirm that the ile is now stored in HDFS:

hadoop fs –ls /tmp

This returns the following output:

-rw-r--r--   1 ec2-user supergroup   44005963 2015-01-26 22:23  
/tmp/NYSE-2000-2001.tsv

To load the data into LightHadoop, access the ile from the local ilesystem via the 
mounted drive inside of VirtualBox. Repeat steps 3 and 4 running the HDFS -put 
command and verifying the ile was copied with the HDFS -ls command.

The data is now loaded into HDFS. It can be accessed by Hadoop MapReduce and 
analysis tools. In subsequent chapters, the data from this exercise is loaded into 
analysis tools to demonstrate how to extract data from those tools.

Summary
This chapter covered many primary Hadoop concepts that a forensic investigator 
needs to understand. Successful forensic investigations involve properly identifying 
and collecting data, which requires the investigator to know how to locate the sources 
of information in Hadoop as well as understand data structures and the methods for 
extracting that information. Forensic investigations also involve analyzing the data that 
has been collected, which in turn requires knowing how to extract information from 
the Hadoop ile structures.

The next chapter discusses how to identify evidence. This process involves standard 
investigative skills such as conducting interviews as well as applying technical 
knowledge about Hadoop to identify relevant evidence.
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Identifying Big Data Evidence
Identifying and fully collecting relevant evidence in the early stages of an investigation 
is critical to success. Improperly collecting evidence will, at a minimum, result in an 
embarrassing and dificult process of corrective efforts as well as wasted time. At 
worst, an improper collection will result in working with the incorrect set of data.  
In the latter case, court sanctions, lost cases, and ruined reputations can be expected. 
This chapter provides the guidance to ensure all relevant data is identiied, so these 
situations do not occur.

Identifying evidence
Identifying evidence is a complex process. It involves surveying a set of possible 
sources of evidence and determining which sources warrant collection. Data in any 
organization's systems is rarely well organized or documented. Investigators will 
need to take a set of investigation requirements and determine which data needs to  
be collected. This requires the following steps:

• Properly reviewing system and data documentation

• Interviewing staff

• Locating backup and noncentralized data repositories

• Previewing data

The process of identifying Big Data evidence is made dificult by the large volume  
of data, distributed ilesystem, the numerous types of data, and the potential for 
large-scale redundancy in evidence.
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Big Data solutions are also unique since evidence can reside in different layers within 
it. Within Hadoop, evidence can take on multiple forms, as described in Chapter 2, 
Understanding Hadoop Internals and Architecture. To properly identify the evidence in 
Hadoop, multiple layers are examined. While all the data may reside in the Hadoop 
Distributed File System (HDFS), the form may differ in a Hadoop application (for 
example, HBase), or the data may be more easily extracted to a viable format through 
HDFS using an application (such as Pig or Sqoop).

Identifying Big Data evidence can also be complicated by redundancies caused by:

• Systems that input to, or receive output from, Big Data systems

• Archived systems that may have previously stored the evidence in the  
Big Data system

The primary goal of identifying evidence is to capture all relevant evidence while 
minimizing redundant information. For example, a database may push all sales 
information into a Hadoop system. The sales database and the sales data in Hadoop 
may be an exact match, or there may be discrepancies caused by one or both systems 
updating the data after the push. If the information is identical, collecting both would 
be redundant, resulting in wasted time and resources. A forensic investigator needs to 
understand the correct source from which the evidence should be collected or if both 
sources should be captured.

Outsiders looking at a company's data needs may assume that identifying information 
is as simple as asking several individuals where the data resides. In reality, the process 
is much more complicated for a number of possible reasons:

• The organization may be an adverse party and cannot be trusted to  
provide reliable information about the data

• The organization is large and no single person knows where all data  
is stored and what the contents of the data are

• The organization is divided into business units with no two business  
units knowing what data the other one stores

• The data is stored with a third-party data hosting provider

• The IT staff may know where data and systems reside, but only the  
business users know the type of content the data stores
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For example, one might assume a pharmaceutical sales company would have  
an internal system structured with the following attributes:

• A division where the data is collected from a sales database

• An HR department database containing employee compensation, 
performance, and retention information

• A database of customer demographic information

• An accounting department database to assess what costs are associated  
with each sale

In such a system, that data is then clearly uniied and compelling analyses are created 
to drive sales. In reality, an investigator will probably ind that the Big Data sales 
system is actually comprised of a larger set of data that originates inside and outside 
the organization. There may be a collection of spreadsheets on sales employee's 
desktops and laptops, along with some of the older versions on backup tapes and ile 
server shared folders. There may be a new Salesforce database implemented two years 
ago that is incomplete and is actually the replacement for a previous database, which 
was custom developed and used by 75 percent of employees. A Hadoop instance 
running HBase for analysis receives a iltered set of data from social media feeds, the 
Salesforce database, and sales reports. All of these data sources may be managed by 
different teams, so identifying how to collect this information requires a series of steps 
to isolate the relevant information.

The problem for large, or even midsize companies is much more dificult than the 
pharmaceutical sales company example. Simply creating a map of every data source 
and the contents of those systems could require weeks of in-depth interviews with 
key business owners and staff. Several departments may have their own databases 
and Big Data solutions that may or may not be housed in a centralized repository. 
Backups for these systems could be located anywhere. Data retention policies will vary 
by department and most likely by system. Data warehouses and other aggregators 
may contain important information that will not show themselves through normal 
interviews with staff. These data warehouses and aggregators may have previously 
generated reports that could serve as valuable reference points for future analysis; 
however, all data may not be available online, and some data may be inaccessible.  
In such cases, the company's data will most likely reside in off-site servers  
maintained by an outsourcing vendor, or worse, in a cloud-based solution.

http:///


Identifying Big Data Evidence

[ 58 ]

Big Data evidence can be intertwined with non-Big Data evidence. E-mail, document 
iles, and other evidence can be extremely valuable for performing an investigation. 
The process for identifying Big Data evidence is very similar to the process for 
identifying other evidence, so the identiication process described in this book can 
be carried out in conjunction with identifying other evidence. For investigators, an 
important factor to keep in mind is whether Big Data evidence should be collected 
(that is, determining whether it is relevant or if the same evidence can be collected 
more easily from other nonBig Data systems). Investigators must also consider 
whether evidence needs to be collected to meet the requirements of an investigation.

The approach presented in this book starts with this high-level approach:

• Examining requirements

• Examining the organization's system architecture

• Determining the kinds of data in each system

• Assessing which systems to collect

This approach results in the documentation to back up the claim that all potentially 
important sources of data were examined and provides assurance that no major 
systems were overlooked.

The main considerations for each source of data include the following:

• The quality of the data

• The completeness of the data

• The supporting documentation

• Validating the collected data

• The previous systems where the data resided

• How the data enters and leaves the system

• The available formats for extraction

• How well the data meets the data requirements

Locating sources of data
Finding the sources of data to collect is an iterative process. This process includes 
gathering data requirements, identifying which systems are available, determining 
which systems contain data that match the requirements, and assessing whether the 
data in those relevant systems is viable for collection. This top-down approach is 
represented in detail in the following igure:
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Figure 1: The identification process

Compiling data requirements
The irst step is to compile the list of data requirements. For a litigation-related 
collection, these data requirements are determined based on the merits of the case. In 
the meet and confer process, the requirements are often quite broad. For a business 
crisis, all stakeholders should agree on the date range of events, all possible business 
units involved, and the facts in question. From this, a list of high-level information 
that could answer the questions should be derived. For example, in an investigation 
for a inancial restatement, the main stakeholders would be accounting, inance, and 
IT. The time period would be two years before the restatement through the end of 
the reporting period. The possible high-level information that would be required 
includes previous inancial statements, journal entries, general ledger data, a list of 
employees involved in the initial inancial statement, and a list of ile locations for 
those employees from IT.

The most important aspect of the requirements phase is to be fully inclusive. Being 
overly inclusive when gathering the requirements is a much easier issue to manage 
than not being inclusive enough. Paring down overly inclusive requirements is simply 
a matter of not collecting or analyzing the unnecessary data. If the requirements are 
not inclusive enough, systems may be ignored and/or large swaths of data could 
go uncollected. Collecting data a second time or starting over with interviews of key 
stakeholders is much more expensive and time consuming than simply ignoring 
parts of the data that have already been collected or omitting certain data ahead of the 
collection phase. There is a difference between an overly inclusive and a fully inclusive 
approach. The overly inclusive occurs when little thought is given to the value of the 
information, whereas the fully inclusive meets all the requirements and even captures 
the "this might be useful" information as well.
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The initial sets of facts that need to be analyzed are typically identiied by legal 
counsel or the business group that identiied an issue. A problem requiring Big Data 
analysis does not originate out of a vacuum, it occurs in a business or legal setting 
with established rules for addressing the problem. The business and/or legal issues 
at hand are best identiied and framed by a person qualiied to address and seek 
the remedy to a problem. Those people must be heavily involved in the process of 
distilling issues into facts. They should, however, work with someone well versed 
in Big Data analysis to understand how those facts will later be proven or disproven 
by data. A Big Data analyst can provide insights into how data can be used to form 
the analysis and what the inal analysis will consist of, as well as ground the facts in 
realistic terms about the types of facts the data can prove.

Gathering data requirements begins with fully expanding the issue into the facts that 
need to be analyzed. Issues can take several forms, but for any issue, the merits of 
allegation must be distilled into discrete facts that can be proven or disproven. For 
example, a defendant may be a former employee of the plaintiff and stand accused 
of stealing sensitive trade secret documents from the plaintiff and implementing a 
copycat version of the product in 2012. Converting that issue into facts is a process 
of identifying the manner by which the allegation can be proven or disproven. This 
issue, while seemingly narrow, can expand into a larger set of sub-issues. First, what 
are the trade secret documents? What access did the defendant have to the trade 
secret documents? Could someone else be involved? In what ways are the products 
similar and different? For all of these questions, what are the speciic dates of the 
alleged activity?

The next step is compiling the Big Data collection requirements based on the facts 
that have been identiied. The facts are converted into data requests that will later 
be made more speciic with the inclusion of system-based information. Taking the 
preceding example, one requirement would be to identify all trade secret documents 
stored in the plaintiff's system during the time of the defendant's employment. 
Another requirement would be to collect all system access records that could show 
which documents the defendant accessed. Requirements in the early stages should 
state the desired goal of the data collection without being too speciic about the type 
of system expected to contain the data. Keep in mind that different organizations 
may store information in different types of systems.

Several standard topics and requirements arise in investigations involving Big Data. 
The following topics should be addressed at some level in the requirements:

• Dates in question: Identify key date ranges as well as surrounding dates  
in order to test for normal behavior.

• Persons of interest: Identify key people by name or behavior and  
consider including similar, but not "in question" people in order to  
test for normal behavior.
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• Systems of interest: Identify the types of systems suspected of containing 
key information. Also, consider upstream and downstream systems that  
may validate or refute the targeted system's data.

Reviewing the system architecture
The system architecture review phase involves meeting with company and department 
heads and reviewing documentation about the available systems. The goal of this 
phase is to have a high-level understanding of the sources and types of data available 
along with the key personnel and business owners. The irst step is to meet with the 
appropriate high-level employees to either get the necessary high-level information 
or to identify the appropriate person with whom to speak. Some examples of the irst 
people to interview include:

• CIO/CTO
• The CFO

• The IT/Financial Audit manager
• The Information Systems manager

• The HR manager

• The Subject Matter manager (for example, head of engineering or  
pharmaceutical development)

The interviews for the high-level personnel are typically brief. It is important to 
stress the importance of the interview to the interviewee and also to ask the same list 
of questions to each. While one interviewee may have told the investigator about a 
particular system, he may have a limited view or knowledge of the system. As such, 
asking the same question to multiple interviewees can result in a more complete and 
accurate answer. Several of the important topics to cover in the interview include:

• Which systems definitely contain data pertaining to the requirements?
• What is the size of each of those systems (number of records,  

size on disk, and so on)?
• Who are the IT and business owners of each system?
• What other systems might contain information pertaining to  

the requirements?
• Who else might know of systems that pertain to the requirements?
• Are there any known data quality or completeness issues related to  

the system?
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Collecting documentation is critical throughout the data location process, but it 
is especially critical in the early stages to help identify sources of data that might 
have slipped the attention of the interviewees. Ask each interviewee to provide all 
requested documentation. If they are unable to provide any, ask them who would 
be able to, or have them request the documentation from their team. The following 
types of documentation can be extremely helpful:

• System architecture diagrams

• Database listings

• Database diagrams

• IT budgets (to identify Big Data hardware expenditures)

• Software versions, specifications, and implementation details

To conclude the system architecture review phase, fully document all interviews  
that were conducted, being sure to note who was interviewed, when, by whom, and 
what was covered. Also, be sure to note action items and any additional details of 
note. Next, compile the list of additional points of contact and schedule interviews 
with them. Finally, review all documentation, and create an initial spreadsheet  
about each system mentioned, including all details pertaining to them.

Interviewing staff and reviewing the 

documentation
The staff interview and documentation review process has the following goals:

• To clearly define the scope of what needs to be collected

• To identify data limitations

• To construct a collection plan that will either be carried out by internal  
staff or external analysts

The process consists of using the initial scope created in the system architecture 
review phase, leshing out the details by speaking to lower-level staff, and examining 
the data. In addition, it is critical to fully document any data gaps, such as missing 
backups, purged data, or data made inaccessible by the software. Finally, create a 
plan detailing every step of the collection, including means for logging the process 
and collecting control numbers and error messages. This can be accomplished 
by fully reviewing all documentation and working closely with the IT personnel 
responsible for the data.
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Staff are typically the ones who best understand the details of the available data 
and business processes. They work with the data, in the processes, and execute the 
procedures. Key staff members have already been identiied or previously interviewed 
before the staff interview process, so the C-suite staff most likely do not need to be 
interviewed again. The staff interview process focuses on the day-to-day operations 
personnel. Examples of the staff that should be interviewed include:

• Manager-level staff

• The top technical and IT staff, including database administrators  
and programmers

• The HR personnel (for employee information and identifying additional  
staff for interviews)

• The subject matter experts for the matter in question (for example, financial 
analysts, accountants, and engineers)

The focus of the interviews is to identify relevant data sources, possible approaches 
to acquire the data, and any limitations or caveats that apply to the data. Most of 
the relevant systems have already been identiied. Follow up with the interviewees 
about these systems to ind out more information about the systems. Determine 
what the standard business process is for the system, such as how data gets created 
and imported into the systems, how data in the system is used, and data or reports 
generated from the systems. Business-side interviewees are critical for understanding 
how the systems are used, so ask key questions about the processes that exist.

Technical staff, such as database administrators, are the best source of information 
for understanding the data life cycle and how to potentially extract data from the 
source systems. Retention policies are an important issue to cover in technical 
interviews. Does the source system have a data purge policy that automatically 
removes data of a certain age from the system? If so, does an archive version of the 
data exist in a different system or on backup media? Likewise, ask if any retired or 
archived systems that may contain relevant information are available. In addition, 
not all systems provide a method for quick and easy data extraction. Discuss with 
the technical interviewee what the possible approaches are for extracting the data. 
Big Data systems have a number of methods for data extraction, though some may 
impact business operations more than others. Communicate the time requirements, 
and establish conservative time estimates for how long extracting the data will take.

All available documentation should be requested in every interview. Documentation 
provides additional information about systems, and it can serve as a road map for 
understanding business processes, system interrelationships, and the details of  
how data are stored in the systems. Ideally, interviews are only conducted once,  
so requesting the documentation during or before the interview will reduce the  
need for a follow-up interview.
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Investigators will want to request the following documentation in the staff interviews:

• The business and subject matter experts

 ° Policy and procedure documents

 ° Business process guides and manuals

 ° Application manuals

 ° Sample reports

 ° Organization chart

• The technical and IT Staff

 ° Data dictionaries

 ° Entity-relationship diagrams

 ° Schema documentation

 ° Descriptions of coded values stored in the database

 ° System architecture diagrams

 ° System manuals

 ° Data retention policies

 ° Summary of user access rights and security rules

 ° Application listings

No interview can be truly complete and answer all questions that may ever arise. The 
focus of the interview, however, is to get a deep enough understanding of the systems 
and available data to irmly establish which sources of data are relevant, how the data 
can be extracted, and which business rules were in place to create and make use of the 
data. Focusing on those critical questions will streamline the process. Some interviews 
can only be performed once, especially in cases of a hostile client or a company that 
will be terminating that person's employment. Conducting the interview with the 
mindset of having only one shot at it makes for a more complete and informative 
interview. If there is the opportunity for a future follow-up interview, remember to 
collect that person's e-mail and phone information, and express that a future interview 
may be required.

The following igure is a sample questionnaire with initial questions for interviewing 
a database administrator:
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Figure 2: A sample questionnaire

Assessing data viability
Assessing the viability of data serves several purposes such as the following:

• It allows the investigator to identify which data sources are  
potentially relevant

• It yields information that can corroborate the interview and  
documentation review information

• It highlights data limitations or gaps

• It provides the investigator with information to create a better data  
collection plan

Up until this point in the investigation, the investigator has only gathered 
information about the data. Previewing and assessing samples of the data gives  
the investigator the chance to actually see what information is contained in the data 
and determine which data sources can meet the requirements of the investigation.
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Assessing the viability and relevance of data in a Big Data forensic investigation 
is different from that of a traditional digital forensic investigation. In a traditional 
digital forensic investigation, the data is typically not previewed out of fear of altering 
the data or metadata. With Big Data, however, the data can be previewed in some 
situations where metadata is not relevant or available. This factor opens up the 
opportunity for a forensic investigator to preview data when identifying which data 
should be collected.

There are several methods for previewing data. The irst is to review a data extract 
or the results of a query, or collect sample text iles that are stored in Hadoop. This 
method allows the investigator to determine the types of information available and 
how the information is represented in the data. In highly complex systems consisting 
of thousands of data sources, this may not be feasible or it might require a signiicant 
investment of time and effort.

Querying Hadoop databases such as HBase and Hive are covered in 
the later chapters.

The second method is to review reports or canned query output that were derived 
from the data. Some Big Data solutions are designed with reporting applications 
connected to the Big Data system. These reports are a powerful tool, enabling an 
investigator to quickly gain an understanding of the contents of the system without 
requiring much up-front effort to gain access to the systems.

Data retention policies and data purge schedules should be reviewed and considered 
in this step as well. Given the large volume of data involved, many organizations 
routinely purge data after a certain period of time.

Data purging can mean the archival of data to near-line or ofline storage, or it 
can mean the destruction of old data without backup. When data is archived, the 
investigator should also determine whether any of the data in near-line or ofline 
backup media needs to be collected or whether the live system data is suficient. 
Regardless, the investigator should determine what the next purge cycle is and 
whether that necessitates an expedited collection to prevent loss of critical information. 
Additionally, the investigator should determine whether the organization should 
implement a litigation hold, which halts data purging during the investigation.  
When data is purged without backup, the investigator must determine:

• How the purge affects the investigation

• When the data needs to be collected

• Whether supplemental data sources must be collected to account for the lost 
data (for example, reports previously created from the purged data or other 
systems that created or received the purged data)
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The following igure is a high-level depiction of the various sources of information 
and methods for assessing the data in the identiication phase:

Figure 3: The data assessment process

Identifying data sources in noncooperative 

situations
Not all investigations involve a cooperative organization with staff who can be 
interviewed. Most investigations have one or several of the following types of staff:

• Cooperative: Willing to be interviewed and unlikely to attempt to hide  
or destroy evidence or attempt to deceive the investigator

• Hostile/Adverse: Somewhat willing or unwilling to be interviewed  
and likely to attempt to hide or destroy evidence or attempt to deceive  
the investigator

• Unavailable: Staff knowledgeable of the evidence but unavailable to 
be interviewed (for example, the company went bankrupt or potential 
interviewees are in police custody)
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Identifying evidence when the staff members are either unavailable , hostile, or 
adverse is more dificult. Each of these cases requires a speciic approach. First, 
working with hostile or adverse staff poses problems with the identiication of 
evidence and the availability and veracity of the data. Hostile staff members are 
more likely to cause problems with the identiication of data by giving incomplete 
or dishonest answers to questions or by hindering access to systems. Hostile staff 
members may feel encumbered, annoyed, or somehow inconvenienced by the 
investigation and will act accordingly. They should still be interviewed because  
they may provide useful information that can be validated.

Strategies for dealing with hostile staff include the following:

• Conducting a standard investigation with interviews of other staff and 
review of documentation

• Expressing to the interviewee the importance of the investigation and all  
the ramifications that may exist for their noncompliance

• Verifying the interviewee's answers with those of other interviewees

• Cross-validating data from systems owned or accessed by the interviewee 
with other data sources

Adverse staff members are also likely to be dificult and may not be trustworthy. In 
addition, they may carry out actions that could affect the investigation. Adverse staff 
members may be subjects of the investigation, or they may be negatively affected by 
the outcome of the investigation. For example, in the Bernard Madoff Ponzi scheme 
investigation, key programmers and IT personnel were both parties to the litigation 
as well as some of the only staff with information pertaining to key programs and 
data. Adverse staff members should be interviewed, but their answers require 
careful scrutiny and veriication. In addition, they may carry out actions to alter  
or destroy the data or create new data to stymie the investigator.

Strategies for dealing with adverse staff include the following:

• Expediting the collection of potentially relevant data and/or freezing all 
adverse staff's access to the data

• Conducting a standard investigation by interviewing other staff members 
and reviewing the documentation (if possible)

• Expressing to the interviewee the importance of the investigation and  
all the ramifications that may exist for their noncompliance
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• Verifying the interviewee's answers with those of other interviewees

• Cross-validating data from systems owned or accessed by the interviewee 
with other data sources

The third scenario is where no or limited staff members are available for interviews. 
This can arise in situations such as:

• Bankruptcy

• All staff members are subject to the investigation and refuse to cooperate

• No staff members knowledgeable about the data or systems are available

This scenario requires placing more of an emphasis on the review of documentation 
and the previewing of system data. This scenario also requires much more time for 
the investigator. The time saved by having someone knowledgeable identify the 
systems is replaced with reviewing even more documentation and determining the 
type of data available in each system. For Big Data, this is not overly problematic, 
because there are typically only several Hadoop instances. However, identifying  
all of the underlying data and Hadoop applications requires signiicant effort.

Strategies for handling situations where staff members are not available include  
the following:

• Collecting and reviewing key system-related documentation

• Identifying the location (physical or logical) of systems and data sources

• Performing a detailed review of data in the identified systems

Data collection requirements
Detailing the data collection is a process that involves assimilating all information 
from the client interviews and gathered documentation to form a precise plan and 
set of requirements for collecting all relevant data. The requirements should be in 
clear, plain language that can be understood by anyone. Complex requirements 
in highly technical or legal language can result in a misunderstanding between 
the investigator and the data collector. Be sure to state the relevant facts about 
the types of data that need to be collected, and explicitly spell out all supporting 
documentation requests and considerations.

The data collection stage involves identifying data source information as well as 
working with both structured and unstructured data. The following sections cover 
these topics in detail.
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Data source identiication
Based on the facts and issues identiied in the initial stages, list all systems that could 
potentially contain relevant information. The system documentation and interview 
information will provide a wealth of necessary, semi-useful, and extraneous data. 
Obviously, the investigator will need to include the necessary data sources in the data 
collection requirements. However, the question of whether to include the semi-useful 
and extraneous data sources is centered on the data size and the time limitations of the 
investigation. There may be the potential for additional analysis that was not deemed 
essential during the initial stages.

When a system contains semi-useful data, several questions should be answered  
as follows:

• Does the necessary data source contain information that can address all facts? 
If not, does the semi-useful data source address any of the remaining facts?

• Is the effort required to collect the semi-useful data minimal, and is the data 
volume manageable?

• Does the semi-useful data source serve as a bridge between the necessary 
data sources, or does it serve to fill a gap or address a data weakness in the 
necessary data?

If the answer to any of these questions is yes, then the investigator should consider 
including the semi-useful data in the data collection. The reasons for this include:

• The semi-useful data is actually necessary

• The data collection impact is minimal, and it doesn't hurt to include the data

• The semi-useful data serve a secondary role in enabling the analysis to be 
performed with the necessary data

Plan for data gaps and anomalies. Assume that the system(s) will 
have data issues. Collecting data from multiple systems can allow 
for validating data across systems and can cover gaps in data.

The investigator should carefully consider any data that is deemed non-relevant 
during the data collection phase. The risk of not collecting data during the initial 
stages is that there will not be a second chance to collect it. The data may be deleted 
or modiied later, and another opportunity to collect the data may not exist. The 
timing of performing a second data collection may hamper analysis at a later stage.
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Consider the following when determining whether a data source is unnecessary:

• What information does the data contain?
• Is the data completely redundant to another data source that will be 

collected?
• Will the data still exist in its current form at a later date?

Even if the data source is unnecessary, the investigator should document the answers 
to those questions. Ignoring a data source can require justiication at a later stage. 
Documenting the reasons when the information is irst made available will help the 
investigator provide a clear answer should any questions be asked at a later stage.

Regardless of the type of data source, document the following about each  
data source:

• The official name of the data source

• The data source owner(s)

• The description of the type of information the data source contains

• The type of data source (for example, HBase database)

• The data volume: size on disk and number of records

• The method for data extraction

• The effort required for extraction: man-hours, system impact, and total time

• The associated costs for extraction

Structured and unstructured data
Chapter 1, Starting Out with Forensic Investigations and Big Data, covered the concepts 
of structured and unstructured data. However, the line between the two can become 
extremely blurred when collecting Big Data. Both structured and unstructured 
data can be stored in a Big Data system. The investigator needs to understand the 
difference between these forms and whether data should be collected in a structured 
or unstructured format. Structured data offers the advantage of easier analysis, but 
collecting unstructured data in its original form can be faster and may contain  
more content.

Big Data systems can include data in numerous forms. Unstructured text iles can 
be imported, stored, and queried in Hadoop. This unstructured data can then be 
transformed into a structured form or otherwise combined with other data sources. 
The investigator should be aware of the various structures of the data that is to be 
identiied and collected.
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Some forms of unstructured and semi-structured data fall under the umbrella of 
a structured data analysis in later stages. For example, users at a company may 
maintain a set of delimited or markup iles for accounting purposes. These iles, 
while technically considered unstructured, contain structured data. Ignoring these 
iles would not be prudent simply because they were stored in an unstructured ile 
format. Instead, the spreadsheets should be collected and later transformed into 
a structured format for analysis. The following table shows the format of the data 
contained in a delimited ile:

CustNum  Name Addr1 City State Zip Notes

1000011

John 

Doe 123 Main St Centreville VA 55555 Paid on time

1000012

Jane 

Doe 123 Main St Centreville VA 55555

Delinquent; 

follow-up required

1000013 Joe Doe

456 Center 

Rd Anytown GA 55554 N/A

1000014 Jill Doe

456 Center 

Rd Anytown GA 55554 Call 5551230002

Unstructured data do not have the same rules and composition restrictions that 
structured data have. This lack of rigidity and structure allows data to be stored  
and presented in varied ways. Some of the most common forms of unstructured  
data include:

• E-mail

• Presentation documents

• Video and audio files

• Textual documents (for example, MS Word documents and PDF files)

• Graphics files

• Executable binary files (for example, Windows .EXE files)

Some forms of these iles may contain structured information, despite being 
unstructured or semi-structured iles. Client interviews should allow the investigator 
to determine whether these iles should be collected and whether an option exists for 
collecting the data in a structured or unstructured form. For example, unstructured 
text iles can be stored in an HDFS, but this data can be collected in a structured form 
via Hive or Sqoop. The investigator also needs to consider how to validate collected 
data, which is easier if the entire unstructured ile is collected.

The next three chapters provide information on how to choose the proper method for 
collecting both structured and unstructured data.
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Data collection types
Two primary categories of data collections can be made. First, the data collection  
can be performed by the investigator. In this situation, the investigator performs  
the forensic collection by accessing the source systems and collects the data for 
ofline analysis. Alternatively, in some cases, such as civil litigation, the investigator 
can request the system owner or third-party to collect the data. In such cases,  
the investigator may oversee, advise, or simply be a passive participant in the 
collection process.

The requirements of the investigation dictate which option is chosen.  
Investigator-led collections have the advantage of being correctly performed and 
veriiable. The investigator knows what data needs to be collected and performs  
the collection using best practices. Because the investigator is unbiased, the collection 
is less likely to be questioned. An organization-led or third-party collection has the 
advantages of potentially being cheaper and less disruptive to the organization.  
The disadvantages are the collection may not be performed correctly, data may  
be accidentally or intentionally altered, and the collection may not be performed  
as quickly. The individual investigation requirements such as investigation issues, 
time considerations, and cost factors are the ultimate arbiter that determines who 
should perform the collection.

In-house or third-party collection
Having an internal organization collect its own data or relying on a third-party to 
perform the collection is contingent on carefully speciied requirements. Criminal 
and civil cases involving forensics routinely involve data collected by someone other 
than the investigator. Under certain circumstances and after carefully documenting 
requirements, someone other than the investigator can successfully perform a data 
collection. The key is to properly identify the data sources, the speciic data points, 
and any ilters that are required. Also, the investigator must make it clear to the party 
collecting the data that the evidence cannot be modiied. The investigator may need 
to train the party performing the collection on best practices. From there, a detailed 
data collection request can be delivered to the party conducting the data collection.

The types of data to request
Multiple types of data requests can be made. Some investigations are simple and 
only involve a single data source, such as a single Hive database. Data requests for 
investigations with a single data source (for example, one database) are much faster 
and simpler than investigations whose data span multiple systems. Each of the data 
sources identiied can be categorized to simplify the way in which the requests  
are written.
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The main types of requests are:

• Loose files (for example, XML or JSON files)

• Entire databases

• Specific database tables

• Specific types of records from multiple database tables

• Specific records from a single database table

Evaluate each of the data sources deeply to identify the type of data request each  
is. Documenting this level of detail allows the data collector to better identify 
collection options.

A data request involving loose iles will need to address the following:

• Filenames, folder names, and/or file share locations
• File types (for example, text files or spreadsheets)

• File versions

• Date ranges for file creation or last update

Requesting the collection of an entire database server is straightforward; the 
investigator just needs to state the name of the server and the format of the  
extracted data.

Requesting speciic objects from a database is a more complex request. It is performed 
when only speciic information is needed from the data source and when the volume 
of data of the entire data source is too great to extract everything at once. Databases 
can store terabytes to petabytes of data in tens of thousands of objects. Extracting all 
the information can be an overly burdensome request that would negatively affect 
business operations or would take too much time. As such, targeted data collections 
can be performed instead to limit the impact to the data source and business 
operations, as well as reduce the amount of time to perform the extraction and transfer 
the data. The request for the individual objects from a database should explicitly state 
which objects are needed and spell out any iltering criteria that need to be applied.

The data collection request
The data collection request document is a formal document that clearly presents all 
collection request details and the parties responsible. The keys to a successful data 
collection request document are:

• Clear, plain requirements
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• Specifics (for example, system name and output format)

• Accountability

• Stating deadlines

• Standardized requests

One example of a poor data collection request would consist of an e-mail to a 
database administrator requesting "all records in 2008 related to sales". The database 
administrator, in this example, would be left to make a judgment call about the nature 
of the request. The "2008" portion of the request may result in the DBA providing 
all sales records that were fulilled in 2008, rather than all possible orders, including 
cancellations. In addition, the DBA may not properly capture all types of records 
that would relate to sales, such as inventory records and customer communications. 
Moreover, the DBA may provide the extract in a cumbersome data format and assume 
that he has three weeks to complete the request. Any of these miscommunications can 
result in a failed investigation.

Instead, the request should be very speciic, assign a deadline, and be in a 
standardized request format. The speciics of the request depend on the type of 
system being collected; however, several types of details are typically presented:

• The exact servers, databases, and tables from which to exact the data. If 
backup media are involved, clearly explain which backup media to use.

• The fields to collect.

• The types of date and user restriction criteria. For example, all records with a  
"date ordered" between 2008 and 2010, or all records with a "last updated by" 
a Miami office user.

• Look up or code definition tables that provide detail on embedded  
code meanings.

Clearly identifying people responsible for each task and assigning their deadline is 
critical. Most investigations are time sensitive, so having clearly deined deadlines can 
help eliminate surprises and help set expectations so the analysis can be performed 
on time. Communicating with only the person responsible for the task may not be 
suficient; consider including their boss and/or general counsel to ensure others 
are aware of the deadline and can help push the request along. While seemingly 
insigniicant, specifying the output format can also avoid unwanted surprises when 
the data is delivered. The investigator's analysis tool may not support the data in 
the format provided, which would require an entirely new data extraction to be 
performed. The person providing the data may supply the data in a proprietary 
database format, whereas the investigator may need the data in a pipe-delimited  
text ile with double quote text qualiiers. Establishing the desired format up front  
is critical to avoiding such problems.
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The language of the request should be understandable to anyone involved. A DBA and 
a lawyer should both have a complete understanding of the request. Including legal 
language in a data request is a simple way to confuse IT staff, while including highly 
technical language will confound an attorney. Stating a precise technical request such 
as "left join table 1 to table 2 on non-null values in ield X" will make sense to someone 
well versed in databases, but that language is meaningless to outsiders. Instead, make 
the requests in plain English so that anyone can understand what needs to be collected. 
Avoid using jargons such as "left join." In this example, the investigator would want 
to rephrase the request to say "include all records from table 1 and also provide any 
matches between table 1 and 2 on records that match in the ield X when that ield is 
populated in both tables. Include records from table 1 when no matches exist in table 
2." While wordier, the language is precise and its meaning is not dependent on legal  
or technical translation.

Collecting the correct documentation about the collection is critical for later verifying 
that the collection was performed correctly. The collection will need to be veriied, so 
information about how the collection was performed as well as when, and by whom, 
is needed to ensure the collection was performed correctly and completely. Control 
totals and information about how much data was collected is also later used to verify 
that all data was correctly collected and loaded into an analysis platform.

Specify all required documentation related to the data collection in the 
request. Requesting documentation that pertains to what was collected 
and the method used to collect it will be important when verifying 
the data collection. It will also serve later to prove that the data was 
properly and completely collected.

The irst form of collection documentation includes the query iles used to extract 
the data or the log iles that show what was collected. The queries are the logic run 
that determine what types of records were pulled. A review of the query iles will 
show how the extraction was performed. The result is then cross-validated with 
the requirements to prove that the correct logic was applied. Log iles, likewise, are 
used when the extraction was performed without a query. The log iles are generally 
created through database backups or automated extraction programs. These logs will 
show when the data was extracted, by whom, how many objects and records were 
extracted, and if any ilter criteria were applied.
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Control totals and hash values are an important component of collection 
documentation and should be included in the request. Hash values are typically the 
MD5 or SHA-1 computed values for a ile or data container. These are collected when 
information is collected either from the host operating system or HDFS. Control totals 
are computed and collected when data is collected from other means most often from 
databases via queries. No best practice rules exist that precisely outline what needs 
to be collected, but at a minimum, the number of records, tables or schemas, and/or 
databases should be collected. In addition, collecting computed values is useful for 
proving that key ields or records were not altered. For example, standard methods for 
validating that a collection was performed properly include computing the summed 
value of a key numeric column or computing the list of distinct names and the number 
of records per name.

Screenshots and server logs are also useful forms of documentation. The screenshots 
can show the steps taken to perform the collection. Screenshots can also be taken to 
gather control totals from system monitor applications or other utilities. Screenshots 
are valuable when collecting control totals or logs is dificult or infeasible. Server logs 
can also contain valuable control total information that can be more easily collected 
than control totals. If server logs contain the necessary information and are easily 
obtained, an investigator should consider requesting these in lieu of control totals.

Several other key requirements should be speciied to avoid confusion or delays in 
the collection:

• Specify the output format of data (for example, CSV)

• Request column headers and field definitions

• Note any data limitation requirements (for example, do not include 
personally identifiable information (PII), such as SSN)

• Specify how to transfer data (for example, encrypted hard drive or Secure 
File Transfer Protocol (SFTP))

• Provide a standardized data collection form for the collector to fill out
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The following igure shows a sample data collection request document that can be 
adjusted to the requirements of the request being made:

Figure 5: The data collection request form

An investigator-led collection
In the identiication phase, an investigator-led collection is virtually identical to a 
collection performed in-house or by a third party. An investigator who intends to 
perform the collection should also draft a collection plan that speciies the same 
information as a data request document. This document should clearly outline  
the following:

• What information needs to be collected
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• The steps that will be taken to collect the information

• How the collection process will be documented

Depending on the nature of the investigation, an investigator may want to share the 
collection plan with the owners of the systems to ensure that all systems will be made 
available. This will also help minimize any potential disruption to the organization.

The next three chapters detail the steps necessary for an investigator to perform the 
data collection. The remaining chapters cover the analysis and presentation phases, 
which apply to both an investigator-led collection and collections performed by 
other parties.

The chain of custody documentation
The chain of custody documentation needs to be established as soon as evidence is 
collected. If a collection is being performed by in-house staff or a third-party, chain 
of custody forms should be illed out by the person performing the collection and 
anyone who takes possession of the evidence. The chain of custody documentation 
is a chronological history that shows who had possession of the evidence. This 
is important in both criminal and civil investigations to prove who had access to 
the evidence and who could have potentially altered the evidence. Every time the 
evidence is exchanged between two people, the chain of custody documentation 
should be updated to document when the transfer occurred and who was involved. 
The following igure is a sample chain of custody document:

Figure 6: The chain of custody form
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Summary
The data identiication phase is an iterative process of locating sources of information 
about potentially relevant data. Part art and part science, data identiication requires 
making use of available sources of information. Data identiication irst establishes 
the full set of data sources, who owns those data sources, and what the data sources 
contain. From there, an investigator can home in on exactly what information is 
available in each data source and determine what information from each data source 
needs to be collected. Big Data systems are voluminous and collecting petabytes 
of data is rarely a viable option, so an investigator needs to exert caution when 
determining what data to collect. However, that caution has to be tempered with  
the need to completely collect relevant data the irst time because that data may  
not be available after the collection process is inished.

The next two chapters explain how to collect the forensic evidence identiied by the 
steps in this chapter. The next chapter covers forensic collection of the HDFS layer, 
which involves both traditional and Big Data-speciic forensic techniques to collect 
bit- and ile-level evidence.
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Collecting Hadoop  

Distributed File System Data
The Hadoop Distributed File System (HDFS) is the primary source of evidence in 
a Hadoop forensic investigation. Whether Hadoop data is used in Hive, HBase, or a 
custom Java application, the data is stored in HDFS. This means the forensic evidence 
can be collected from HDFS. Investigators can take two collection approaches: collect 
HDFS data from the host operating system or directly from Hadoop.

The advantage of collecting from HDFS is investigators can collect much more data 
than they can from a data analysis layer or application layer. Some potentially relevant 
data can only be collected through HDFS. This includes metadata, coniguration 
iles, user iles that were not imported into an application, custom scripts, and other 
information. In some forensic investigations, this otherwise ancillary data can be 
crucial for determining how the system operated and how the system was used.

Collecting evidence from HDFS can be more time- and effort-intensive than collecting 
the evidence from a Hadoop application. HDFS evidence is the raw data, and that 
data can be voluminous and distributed across a number of nodes. Collecting data 
from HDFS in a Hadoop cluster with over 100 nodes can require going to each node 
and collecting all of the individual data with that data later being pieced together for 
analysis. Both the collection and analysis of the data can require much more time and 
effort than a collection involving querying the relevant data out of Hive, for example.
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As a distributed system, collecting HDFS data may require collecting data from 
each node. Both the NameNode and DataNodes contain potentially relevant 
information. Collecting HDFS data can involve collecting from each node separately 
for certain collection approaches. Depending on the collection method and Hadoop 
architecture, this can be dificult. With cloud-based storage and geographically 
disparate systems, the collection can require extra time to complete or it may be 
altogether impossible if the evidence cannot be located. A distributed architecture 
can require multiple different collection approaches or at least a more complex  
and time-consuming process.

HDFS data can be collected in several different ways as follows:

1. Take a complete forensic image of the host operating system and all  
attached Hadoop storage for all nodes.

2. Mount HDFS to the host operating system and image the mounted  
drives for all nodes.

3. Make a logical copy of all HDFS iles and directories.
4. Take a targeted collection of only the relevant iles.

Throughout this chapter, references are made to the various Hadoop layers and 
different techniques for collecting data from HDFS. Conceptually, all Hadoop data 
should be thought of as residing in disk storage accessible from the host operating 
system. That data can be collected in numerous ways from each layer. Each collection 
method has its pros and cons, and an investigator must weigh these in accordance  
with the circumstances and requirements of the investigation.

This chapter covers the techniques used for collecting HDFS evidence. The greatest 
challenge to collecting HDFS evidence is collecting them from multiple nodes. So 
in this chapter, we'll spend time on how to handle this situation. We also cover the 
following topics:

• Collecting HDFS data from the host operating system using HDFS  
mounting tools

• Collecting HDFS data through the Hadoop command line

• Capturing metadata

• Using Sqoop to collect HDFS data

• Collecting HDFS evidence from remote storage (such as Amazon's  
S3 storage)
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Forensically collecting a cluster system
Collecting Hadoop data requires acquiring data across multiple cluster nodes. 
Hadoop's cluster design is structured, so data is distributed across multiple nodes. 
With the potential for node failure, that data is also redundantly stored across nodes. 
For a forensic investigator, this means data collection involves collecting data from 
most or all of the nodes.

In traditional forensic investigations, a single machine or server array is acquired.  
An investigator can pull the hard drive and perform a physical acquisition of the 
hard drive. The investigator may not be permitted to turn off the server and pull  
the server's hard drives. However, the investigator can access the server and  
collect the server data and any data on attached storage devices.

For Hadoop, or any cluster system, this is rarely the case. A Hadoop cluster may 
have a series of connected nodes, or its nodes could be geographically distributed. 
Regardless, multiple nodes are connected through Hadoop, and these nodes may 
not be connected in a way that is accessible through the host operating system. The 
volume of data stored by Hadoop can make the full collection of all nodes infeasible, 
and the data stored in HDFS is obscured by the Hadoop layer. These factors require 
an investigator to approach Hadoop collections differently from non-cluster  
server collections.

Several options exist for collecting Hadoop cluster data:

• Collect data from the host operating system individually for each node

• Collect data from HDFS using a Hadoop client

• Collect data from Hadoop applications (for example, HBase)

The irst option, and the most dificult and time-consuming, is collecting data from 
the host operating system individually for each node. This method requires the 
investigator to collect the HDFS data stored on each node from the host operating 
system. This can either be achieved by imaging the Hadoop partitions or by 
performing a targeted collection of the HDFS data containers from the host operating 
system. The drawback to this method is that every node in the cluster must be 
identiied and collected. For example, if a cluster has 50 nodes, all 50 nodes must be 
collected. This method is useful and sometimes required when the Hadoop cluster is 
ofline, such as when there is a concern the Hadoop cluster data may be modiied or 
lost if it is left or brought online. This method also preserves metadata and enables 
investigators to use forensic tools such as dd for the collection.
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Data can be lost when Hadoop is taken ofline. This topic is covered in the discussion 
on fsimage and edits iles in the section Hadoop ofline image and edits viewers. The 
second option is collecting HDFS data by connecting to the cluster from a Hadoop 
client. This method has a great advantage. An investigator can perform the collection 
from a single machine while preserving the metadata. The process involves collecting 
evidence through the Hadoop command line. If the NameNode and all DataNodes  
are online and accessible, this method enables the investigator to capture all online 
data and its metadata without having to collect from each individual DataNode.  
This method is only viable when the NameNode and all of the required DataNodes  
are online.

The third option is collecting data from Hadoop applications. Rather than collect data 
from the host operating system or directly from HDFS, collecting from applications 
often meets the requirements of an investigation. Big Data investigations typically 
hinge on the contents of the data in the system applications, and not on the metadata. 
This method involves collecting data through the applications, usually via queries or 
data extracts. The drawback is that metadata, deleted data, and other forensic artifacts 
are not collected. This, however, is not always an issue with Big Data investigations. 
In fact, collecting data from applications is the preferred method for many types of 
investigations in which the contents of the system are the prime evidence.

A hybrid approach can also be applied. An investigator need not be limited to only 
one option. If the primary data of interest can be accessed from an application, but 
Hadoop log data is also of value, the investigator can use two methods—one to 
forensically collect from the application and one to forensically collect the log data. 
Typically, an investigator only uses one method. However, best practice supports 
a hybrid approach when practical factors dictate that an investigator use multiple 
approaches to meet the requirements of the investigation.

For a host operating system collection, acquire means a forensic acquisition or 
targeted collection. For a Hadoop client collection, acquire means to perform a  
ile-based targeted collection. For a Hadoop application collection, acquire means 
using a query-based acquisition method. Note that the use of Acquire in the 
illustration means something different in each method. The following igure 
illustrates the differences between these three methods:
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Figure 1: Hadoop collection methods

Another consideration with Hadoop collections is non-HDFS storage. Hadoop can 
work with data outside of HDFS by importing input data, analyzing the data, and 
then deleting the input data. In addition to inputs, Hadoop output can be stored 
outside of HDFS. Hadoop applications can generate analysis that gets transferred 
outside of HDFS for further analysis or data storage. HDFS data can also be archived 
outside of HDFS for data retention purposes.

Investigators need to be mindful of these possibilities and ensure that data outside 
of HDFS is properly identiied so they can make the correct determination about 
collecting the data. Failing to collect the HDFS inputs and outputs can result in an 
incomplete collection, and subsequently, the analysis will be incomplete as well.

Instances of non-HDFS data input and output data storage can be 
located during the identiication phase by analyzing scripts and 
interviewing personnel.
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Physical versus remote collections
Hadoop data collection can either be performed directly on the Hadoop cluster or 
via remote access. Physical collections are any form of data acquisition in which the 
investigator is physically interacting with the cluster, typically by pulling the cluster's 
hard drives and imaging them. Alternatively, collections can also be performed 
remotely. In such cases, the investigator accesses the cluster through a network 
connection and acquires the data through a terminal over the network connection.

Hadoop can be run in many different designs and conigurations. The Hadoop 
cluster can be run on physical devices with Hadoop being installed on the host 
operating system. Hadoop clusters can also be set up using a series of virtual 
machines. With the increased use of cloud computing, Hadoop also can be run  
as a Platform as a Service (PaaS) with the actual servers running Hadoop being 
masked by the abstraction of the cloud service. Additionally, Hadoop can be 
designed and run as a combination of these conigurations.

The different Hadoop designs have their own issues for forensic collections.  
Hadoop clusters installed on the host operating system are the most straightforward 
of the designs for an investigator to collect. With this design, the investigator has 
the option to pull the hard drives and collect the data in one of three ways: through 
the host operating system, through the Hadoop command line, or by running an 
application-based acquisition. With virtual machines, the collection and analysis 
phases are more dificult if the investigator wishes to pull the hard drives. In such 
situations, the investigator needs to acquire the entire set of drives that contain 
the virtual machines and then carve out the relevant data from each of the virtual 
machines. This can require the investigator to install the same virtual machine host 
software to access the virtual machine data. Finally, cloud or PaaS acquisitions  
limit the investigator's ability to physically access the machine. In this situation,  
the investigator is typically limited to command-line or application-based 
acquisitions. Even in these cases, the cloud or PaaS service provider may have 
applied security limitations that prevent software from being loaded or certain 
system iles from being accessed.

Non-local or ofline storage is also a major consideration in Hadoop investigations. 
The massive data volumes stored in Hadoop make on-site, physical storage of all 
data infeasible for some organizations. Some organizations choose to store parts of 
Hadoop data ofline. This data can either be HDFS or non-HDFS data. In either case, 
the information can be relevant for an investigation. Even if all HDFS data is stored 
on-site and is physically accessible, other data can be stored off-site, either within 
that organization's systems or with a third-party provider.
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HDFS collections through the host 

operating system
The host operating system is where many traditional forensic investigations 
begin and end. The forensic evidence resides in disk storage accessible by the host 
operating system, which stores metadata about the evidence that cannot be accessed 
from other layers. The same cannot necessarily be said for Hadoop, but there are 
methods for collecting HDFS data from the host operating system.

Currently, HDFS is not natively recognized by any of the modern operating systems, 
so HDFS cannot be natively accessed by the host operating system as a ilesystem. 
HDFS is stored in the host operating system's ilesystem, but this information resides 
in the allocated space that cannot be read from the host operating system. This means 
an investigator cannot easily perform a forensic collection of HDFS data through 
the host operating system. There are three primary methods for collecting Hadoop 
evidence from the host operating system:

• Imaging the host operating system

• Mounting HDFS and imaging the mounted HDFS drive

• Performing a targeted file collection

Imaging the host operating system is useful for collecting all evidence from the 
host operating system and HDFS. This method captures Hadoop coniguration iles 
stored in the host operating system and the entire contents of HDFS. The signiicant 
downside to this method is the dificulty in analyzing the collected evidence. To 
extract the data during analysis, the investigator has to carve the HDFS data from  
the image for analysis.

Mounting HDFS is a much simpler method for collecting all HDFS data. This method 
makes all the HDFS data available for collection without having to later carve out the 
evidence. Mounting HDFS enables an investigator to target the HDFS data without 
needing to collect the host operating system data. There are several drawbacks to 
this method, however. Investigators may need to install a mounting tool on the host 
operating system, a mounted HDFS partition has a slower response speed, metadata 
is not accessible, and mounting software offerings tend to have bugs.

Performing a targeted ile collection involves collecting Hadoop data stores from 
the host operating system. This method enables the investigator to work in the host 
operating system and collect the HDFS data. Performing a targeted collection offers 
an easy method for collecting HDFS data, but it also requires more effort in the 
analysis phase to access the collected data.

http:///


Collecting Hadoop Distributed File System Data

[ 88 ]

Next, the three methods for collecting Hadoop evidence from the host operating 
system are examined.

Imaging the host operating system
Host operating system collections take a complete copy of one or more disk volumes 
from the host operating system. The copies, called images, are exact bit-by-bit replicas 
of the source disk volume and are stored in a data ile for later analysis. Typically, 
forensic investigators also compute a checksum using MD5 or SHA-1 to verify the 
image is an exact copy. The following igure illustrates the forensic copy process:

Figure 2: Host operating system collection

Host operating system collections can be performed by imaging an entire disk 
volume. If possible, the investigator should attempt to perform this type of collection 
with the source ilesystem mounted in the read-only mode. This can be achieved 
by booting the system with a copy of Linux designed for forensic collections that 
automatically mounts all drives as read-only. This is not always possible, especially 
with Big Data systems. When the system cannot be acquired in the read-only mode, 
the investigator should note this in his documentation.

One of the most popular bootable freeware Linux forensic distributions 
is Helix. For more information about Helix, visit www.e-fense.com/
products.php.

Imaging the host operating system collections works best when the investigator has 
physical access to the machine and the ability to run administrator-level commands. 
The investigator needs to be able to access certain parts of the host operating system 
that are only accessible with administrator-level access. The primary cause of failure 
for this method is performing it against cloud storage, or a PaaS or SaaS solution. In 
those setups, key components are not accessible, thus blocking the investigator from 
imaging the entire ilesystem.

www.e-fense.com/products.php
www.e-fense.com/products.php
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Imaging the host operating system to collect HDFS data requires identifying the 
disk volume and disk location of the Hadoop data. The host operating system stores 
HDFS data in a conigurable location within the host ilesystem. The coniguration 
ile that stores the information is hdfs-site.xml, which is typically located in the 
/etc/hadoop directory on Linux and Unix systems. The value of the DataNode 
is stored in the variable dfs.data.dir. The default value for dfs.data.dir in 
LightHadoop is /var/hadoop/datanode.

The /var/hadoop/datanode directory contains a lock ile and a current directory. 
Within the current directory, a text ile called VERSION stores useful information 
about the storage ID, cluster ID, and DataNode ID. This information is very 
important if the Hadoop service is turned off or otherwise inaccessible because the 
investigator must use this information to piece together the cluster. The subdirectory 
(or subdirectories) in the DataNode directory contain the actual data HDFS contents. 
This information is ultimately what gets collected for HDFS forensic analysis.

Many different forensic tools exist for imaging a hard drive. Commercial tools, such as 
EnCase and Forensic Toolkit (FTK), provide graphical and command-line interfaces for 
forensically acquiring the entire contents of a disk. These tools offer robust capabilities 
for acquisitions. The following are several examples of their features:

• Metadata gathering

• Automatic MD5 or SHA-1 computations

• Generation of acquisition documentation

• Error correction

A freely-available tool used in this book for forensic collections is dd. The dd tool is 
an imaging utility found in Linux and Unix variants. As one of the oldest forensic 
utilities, dd has limited features compared to newer commercial forensic tools. 
dd creates exact bit-by-bit copies of an input data source, offers an error-skipping 
option, and enables users to conigure the block size of an image. The following is 
the syntax for running dd:

dd if=/dev/sda1 of=./disk1.img bs=65536 conv=noerror,sync

This command speciies the following:

• The source data to image is /dev/sda1

• The image output file is stored as disk1.img in the current directory

• The block size is 65536 bytes

• If an error is encountered, continue creating the image file

• If an error is encountered, null fill that block in the image file
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Specifying the block size offers some advantages. For example, data can be collected 
faster by specifying a larger block size. However, if there is an error, a larger block 
size means the entire block will be zero-illed. By contrast, a smaller block size would 
only ill the smaller block with zeros. The advantage of using 512 KB blocks instead 
of 64 KB blocks is the increased speed. However, if an error is encountered, the entire 
512 KB block would be zero-illed, whereas only 64 KB would be zero-illed if the 
smaller block size were used.

dd has several advantages over commercial software packages. It is a standard  
Linux and Unix utility, so it is part of those operating system's builds. It is a free 
utility that does not require signiicant training time to use. Because dd acquires 
entire disk volumes, it is well-suited for complete acquisitions.

An investigator must take several steps to prepare the source system before  
running dd:

1. Connect a wiped target drive that will store the collected image to the  
source system.

2. Identify the disk volume(s) or ile(s) that need to be acquired.
3. Perform the collection and compute the MD5 checksum of the source data.

The irst step is to connect a wiped drive to the source system for the collection. The 
drive should be large enough to collect all of the source system evidence. Otherwise, 
the investigator will need to divide the collection into data subsets, so the evidence 
is collected on multiple drives with each drive storing an image that its on the drive. 
The investigator should also organize the drive with directories that correspond to 
each source system. The directories can either be created at this stage or immediately 
before the collection begins.

The second step is to identify the disk volume(s) or ile(s) that need to be acquired. 
The fdisk command provides the listing of disk volumes. The following is the 
command for fdisk:

fdisk –l

The following igure illustrates the output for this command:

Figure 3: The fdisk output
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This command lists the full set of partitions, along with the system description, 
number of blocks, sector size, and total disk size. From this, the investigator can 
identify which volume(s) should be acquired, and he can determine the best method 
for collecting the data so that the collected evidence will it on the target drive(s).  
In addition, the investigator should identify which volume is the target drive to 
which the image will be written.

Finally, the command to collect the data and compute the MD5 hash value can be 
constructed. The investigator can now start the forensic collection using dd. The 
following command collects the /dev/sda1 volume, stores it in a ile called sda1.img 
on the target drive volume, and uses a piped command to compute the MD5  
hash value of the source data:

dd if=/dev/sda1 of=/dev/sdb1/disk1.img bs=65536 conv=noerror,sync |  
md5sum /dev/sda1 > /dev/sdb1/md5.txt

This command returns the following information about the amount of data copied 
into the image ile, as illustrated in the following igure:

Figure 4: The dd and md5sum output

This piped command creates three outputs. First, the command generates a dd  
image ile called /dev/sdb1/disk1.img. This ile contains the complete image of  
/dev/sda1. The second output is written to stdout, which is the information about 
the amount of data read from the input and written to the image ile, as shown in 
preceding igure. The investigator should document this information. The third 
output is a text ile containing the MD5 value of /dev/sda1. Both the dd image  
ile and MD5 ile should be stored on the target device.

The MD5 hash value is the bit-level unique ingerprint of the data. If the source 
data is not mounted in read-only mode, the MD5 hash value can change. So if an 
investigator does not mount the volume in the read-only mode, the MD5 hash  
values taken in this step may not match the ones in the acquired image.

In cases where capturing an MD5 or SHA-1 hash value is not feasible, the 
investigator should capture other information to show that the collection was 
performed properly. For example, acquisition logs and ile size information are 
useful for documenting the process to prove the data was not modiied.
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When collecting multiple volumes or iles, run dd separately for each to 
create separate image iles. dd does enable the concatenation of multiple 
inputs, but identifying where one volume ends and the next begins 
requires additional effort in the analysis phase.

The inal step of this process is to run md5sum on the image ile, document the 
result, and compare it to the computed MD5 hash value of the source volume. If 
an MD5 is not being captured, this step can be skipped. MD5 may not be collected 
in situations where the data volume is too large to run MD5 in a timely manner, or 
if other prohibitive factors exist. Otherwise, the investigator should validate that 
the MD5 hash values from the source system and the acquired image ile match. If 
they do not, the investigator must reacquire the data. The following igure shows a 
comparison of the MD5 of the source volume and the acquired image ile:

Figure 5: MD5 comparisons

Documentation can now be completed. Investigators should include the  
following forms:

• The chain of custody form

• The acquisition form

These forms should document the following:

• What was collected

• When the collection took place

• Who performed the collection

• Who took possession of the acquired data

• Detailed information about the target drive onto which the acquired  
source data was copied, including the make, model, and serial number

• What was acquired, including hard drive and system serial numbers,  
and descriptions of the system

• Validation information (for example, MD5)
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Imaging a mounted HDFS partition
Investigators can also collect HDFS data from the host operating system by mounting 
HDFS using a mounting tool. This approach involves running a mounting tool and 
modifying the host operating system's ilesystem table so it can access HDFS as if it 
were a local ilesystem. The advantage of this approach is that the HDFS directory 
structure and iles are directly accessible from the host operating system. This makes 
the collection process more seamless and similar to a live collection of a server.

Several tools are currently available for locally mounting HDFS. The primary 
package is FUSE, which is an Apache project that is part of the MountableHDFS set 
of projects. FUSE is a cross-platform tool that can mount HDFS, and it offers access to 
basic operations (such as cp, ls, and more). However, all standard ile and directory 
operations are not available with FUSE. For a forensic investigator, FUSE's lack of 
access to ile permissions or ile ownership makes it less than an ideal tool.

For more information about FUSE, visit the MountableHDFS page at 
https://wiki.apache.org/hadoop/MountableHDFS.

Other mounting tools are available, such as:

• FUSE variants (HDFS-FUSE and FUSE-J both extend FUSE's capabilities  
for HDFS)

• WebDAV (enables access to HDFS through a WebDAV interface)

• Hadoofus

However, all of these tools' current implementations have issues that make them less 
desirable choices for HDFS forensic collections. First, mounting software packages 
do not provide access to ile permissions, owner information, and other metadata. 
This defeats the purpose of collecting HDFS directly from the ilesystem instead of 
through software queries (for example, HBase). Mounting software packages have 
not been designed with forensic collections in mind; rather, they are intended to 
offer a means to access the iles. Second, the process of using mounting software is 
a slow one. The software either needs to be prebuilt in the host operating system or 
acquisition operating system, or it will need to be built on the host operating system. 
The mounting software itself is slower than acquiring the data directly through 
the host operating system or the Hadoop command line. Third, every one of these 
tools currently on the market has bugs. These bugs primarily relate to large-scale 
systems and the mounting software packages' need for static writes. The presence of 
known bugs makes the evidence obtained through mounting software packages less 
defensible and subject to scrutiny.

https://wiki.apache.org/hadoop/MountableHDFS
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As discussed in later sections, the Hadoop command line provides all the advantages 
of mounting. Mounting HDFS provides the investigator with access to the HDFS iles, 
but so does accessing iles through the Hadoop command line. Because mounting 
HDFS requires Hadoop to be running, mounting HDFS only adds an extra layer; it 
does not provide any additional data or metadata that cannot be accessed already 
through the Hadoop command line.

Given the current state of available tools, using mounting software for forensic 
collections is not recommended. Potentially, a forensic-grade mounting software may 
become available in the future. Such a software package would need to eliminate 
the bugs and provide access to HDFS metadata. Until that time, the use of mounting 
software for HDFS collections is not advisable, except in extenuating circumstances.

Targeted collection from a Hadoop client
The third method for collecting HDFS data from the host operating system is a 
targeted collection. The HDFS data is stored in deined locations within the host 
operating system. This data can be collected on a per-node basis through logical 
ile copies. Every node needs to be collected to ensure the HDFS iles can be 
reconstructed in the analysis phase.

The same process is conducted for both targeted collections and imaging collections, 
except for a couple of differences. With imaging collections, entire disk volumes are 
collected and hashed. Targeted collections involve the copying of individual iles 
and directories. In both methods, the investigator collects the data, documents the 
process, and computes MD5/SHA-1 hash values. However, there are differences. 
In targeted collections, MD5/SHA-1 is computed on the iles but not the volumes, 
the collection process requires multiple copies rather than a single image ile, and 
certain metadata is not preserved. Also, investigators typically perform the targeted 
collection using scripts rather than manually typing the commands at runtime.

The irst step for performing the targeted collection is to identify the location where 
the host operating system stores the HDFS iles. For Linux, Unix, OS X, and other 
Unix variants, this can be found in the hdfs-site.xml ile. While typically stored 
in the /etc/hadoop directory, it can be stored in other locations, so the investigator 
irst needs to ind this location before beginning. In Windows, this information is 
typically located in the Windows Hadoop installation directory c:\hadoop. To ind 
the directory location from the command line, run the following command:

cd %HADOOP_NODE_INSTALL_ROOT%
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Most production Hadoop environments do not run in a Windows 
environment; the Windows Hadoop distribution is development-only. 
Unlike the Linux Hadoop distribution, the Windows Hadoop distribution 
has not been tested for production deployment.

After identifying the location of the hdfs-site.xml ile, ind the dfs.name.dir  
and dfs.data.dir variables and navigate to those directories. The following  
igure illustrates the contents of hdfs-site.xml that contain dfs.name.dir and 
dfs.data.dir:

Figure 6: The dfs.data.dir variable in hdfs-site.xml

HDFS data is stored in the /var/hadoop/datanode directory in this example, and 
the NameNode's ilesystem metadata is stored in the /var/hadoop/namenode 
directory. The DataNode directory contains the HDFS distributed data blocks, and 
the NameNode directory contains the fsimage and edits iles that store the HDFS 
ilesystem metadata that is read into memory when Hadoop is brought online.

The DataNode directory tree structure is illustrated in the following igure:

Figure 7: The DataNode tree structure

http:///


Collecting Hadoop Distributed File System Data

[ 96 ]

The investigator should collect the entire DataNode tree structure. The structure is 
comprised of the following directories and iles:

• BP-<integer>-<IP Address>-<creation time>: This directory is the  
block pool that collects the blocks of data belonging to that DataNode.

• finalized/rbw: The actual data blocks are stored in these directories.  
The finalized directory stores the blocks that have been completely written  
to disk. The rbw directory stands for replica being written and stores the 
blocks that are currently being written to HDFS.

• VERSION: This text file stores property information. Each DataNode has a 
DataNode-wide VERSION file and also VERSION files for each block pool.

• blk_<block ID>: The binary data blocks content files.

• blk_<block ID>.meta: The binary data blocks metadata files.

• dncp_block_verification: This file tracks the times in which the block  
was last verified via checksum.

• in_use.lock: This is a lock file used by the DataNode process to prevent 
multiple DataNode processes from modifying the directory.

The investigator should also collect the entire NameNode tree structure. The 
NameNode tree structure is illustrated in following igure:

Figure 8: The NameNode tree structure

The NameNode tree structure is comprised of the following directories and iles:

• edits_<start transaction ID>-<end transaction ID>: This binary  
log file lists each filesystem change since the most recent fsimage file  
was generated.

• fsimage_<end transaction ID>: This binary file stores the complete 
metadata image up through the end transaction ID.

• fsimage_<end transaction ID>.md5: This text file contains the MD5  
hash value for the corresponding fsimage file.
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• in_use.lock: This lock file is used by the NameNode process to prevent 
multiple NameNode processes from modifying the directory.

In addition to the HDFS contents, the following potentially relevant data can  
be collected:

Directory File Description

/etc/hadoop Files core-site.xml This has default Hadoop 
settings

hadoop-env.sh This configures Hadoop 
environment variables

hadoop-policy.xml This has Hadoop security 
settings

httpfs-log4j.
properties

This has Hadoop log4j settings

hdfs-site.xml This has HDFS-related 
configuration settings

core-site.xml This has default Hadoop 
settings

/lib/hadoop/logs hadoop-env.sh This configures Hadoop 
environment variables

hadoop-policy.xml This has Hadoop security 
settings

httpfs-log4j.
properties

This has Hadoop log4j settings

hdfs-site.xml This has HDFS-related 
configuration settings

log4j.properties This has Hadoop log4j settings

/tmp/root hive.log This has the Current Hive log

hive.log.<DATE> This has the Archived Hive log

Other Hadoop coniguration and log iles may be of interest, and the actual directory 
locations vary across Hadoop setups.
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After identifying the HDFS ile location(s), the next step is to prepare the script to 
collect the iles and compute the MD5 hash values. The following sample script 
performs the cp and md5sum commands across a folder location:

#!/bin/sh

#File and error counter variables

fileCount = 0

failCount = 0

echo "Collection script: basename $0" >  
/dev/sdb1/collection_log.txt

echo "Collection start: $(date)" >> /dev/sdb1/collection_log.txt

# First file copy

cp /tmp/root/hive.log /dev/sdb1/ | md5sum /tmp/root/hive.log >  
/dev/sdb1/md5.txt

if [ $? -ne 0 ]

then

echo "/tmp/root/hive.log not acquired" >>  
/dev/sdb1/collection_log.txt

failCount=$((failCount+1))

else

fileCount=$((fileCount+1))

fi

# Second file copy

cp /etc/hadoop/core-site.xml /dev/sdb1/ | md5sum /etc/hadoop/core- 
site.xml >> /dev/sdb1/md5.txt

if [ $? -ne 0 ]

then

echo "/etc/hadoop/core-site.xml not acquired" >>  
/dev/sdb1/collection_log.txt

failCount=$((failCount+1))

else

fileCount=$((fileCount+1))

fi

# [Additional file copy commands omitted]

echo "Total files copied: $(fileCount)" >>  
/dev/sdb1/collection_log.txt

echo "Total failed copies: $(failCount)" >>  
/dev/sdb1/collection_log.txt

echo "Collection end: $(date)" >> /dev/sdb1/collection_log.txt
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After running the script, the inal steps are to validate the MD5 hash values and 
prepare the documentation. Next, md5sum should be run across all collected iles 
and compared to the values previously collected. Each collected ile's MD5 hash 
value should be validated before moving to the next step. If any mismatches exist, 
the nonvalidated iles should be recollected. Several methods are available for 
performing the comparison:

• Spreadsheet comparisons

• Database comparisons

• Script comparisons

After validating the collection, the investigator should complete the chain of custody 
and acquisition forms, and all scripts used in the process should be copied and 
retained for the investigator's records.

Because each HDFS node stores blocks of data and not actual HDFS iles, the 
DataNode collection has to be performed on every node. The process for collecting 
from each DataNode involves the same steps as described in the following:

1. Identify the location of the DataNode data storage directory on  
each directory.

2. Generate a separate collection script for each DataNode.

3. Collect and validate all DataNode iles.

The inal step is to complete the acquisition log and chain of custody documentation. 
In addition, the investigator should retain copies of the collecting scripts used in  
the collection.

The Hadoop shell command collection
Collecting HDFS data from within the Hadoop layer solves many of the problems that 
affect host operating system collections. First, the collection only has to be performed 
from a single machine. By accessing Hadoop through a Hadoop client's command line, 
all HDFS iles are available, so the collection does not involve collecting data from each 
node individually. Second, the collected data does not require any piecing together or 
ile carving in the analysis phase. The data that is collected is already pieced together 
as the logical Hadoop iles, so no carving or data reconstruction is required.
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The following is a list of limitations of collecting HDFS data from the Hadoop  
shell command line:

• This method is only possible when Hadoop is online and its command line  
is accessible

• Forensic tools such as dd and md5sum cannot easily be used during the 
collection of the data

• Deleted data and data in memory that has not been written to disk may not 
be available

• Hadoop does not store the same type of metadata that is available through  
a normal operating system data collection

The advantages of collecting HDFS from the Hadoop shell often outweigh the 
disadvantages. The contents of the data stored in HDFS are typically the primary 
evidence, and slack space data, metadata, and other forensic artifacts are not 
the crucial element. The investigator needs to ensure the requirements of the 
investigation enable the collection to be performed at the Hadoop layer.

Hadoop shell command collection utilizes Hadoop's shell functionality and ile 
management tools to collect HDFS iles. The Hadoop shell commands, hadoop and 
hdfc, are run from the host operating system to locate and copy the iles in HDFS 
to a target drive. These tools provide access to the actual iles and not the data 
blocks. This has the advantage of not requiring any piecing together of iles later 
by the investigator. The following igure illustrates the process by which a Hadoop 
client sends a ile copy command to Hadoop and how the cluster's iles are sent to a 
forensic target drive for acquisition:

Figure 9: Hadoop command line collection
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Information about the coniguration and status of the Hadoop cluster can be 
collected via a Hadoop tool called the Hadoop Ofline Image Viewer. This tool 
dumps the contents of the fsimage ile into a readable ile suitable for analysis.  
This tool is covered later in this section.

The Hadoop shell commands and Hadoop Ofline Image Viewer work 
with HDFS and any other ilesystem compatible with Hadoop.

Collecting HDFS iles
Collecting HDFS iles using Hadoop shell commands is a multistep process. The irst 
step is to locate all potentially relevant iles that should be collected. This identiication 
can either be done during the data identiication phase or on the Hadoop cluster using 
Hadoop shell commands during the collection phase. The second step is the collection 
of the iles from the target drive using the Hadoop shell get command. The inal steps 
are to compute the MD5 hash values for the collected iles and complete the  
acquisition documentation.

Locating iles in HDFS is performed by running a ile listing command. The 
investigator runs the ile listing command and pipes the results into a text ile that is 
then used to generate a ile copy script. The following is the shell command used to  
list all iles in HDFS:

hdfs dfs –lsr /

This command runs a recursive directory listing starting in the root directory. The 
output is a complete listing of every ile stored in the Hadoop cluster. The ile listing 
includes the standard metadata information: permissions, owner, group, ile size, 
creation date, ilename, and directory information.

Because Hadoop clusters are typically voluminous, the investigator needs to assess the 
ile sizes of all iles and how to collect them. Single hard drives are usually too small 
to store the entire contents of a Hadoop cluster, so the investigator needs to determine 
how to divide the iles into sets that can it on a collection of drives. For example, if the 
investigator only has a set of 5 TB hard drives for the collection, but there is over 200 
TB of data, a plan needs to be constructed to identify which iles to collect and store on 
each individual drive. Several methods exist for determining how to best divide iles 
across each drive. The best-it allocation and irst-it allocation algorithms work well 
for this. However, a simple method is to identify the largest iles and allocate those to a 
drive irst, then ill the rest of the drive, and repeat this process until all iles have been 
allocated to a drive.
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The collection of iles is best scripted inside of a host operating system script. The 
following Hadoop ile copy command copies the Hadoop ile /home/hadoopFile.txt 
to the target drive location /dev/sdb1/hadoopFile.txt. The command also copies 
the ile even if it has a Hadoop CRC error:

hdfs dfs -get -ignorecrc /home/hadoopFile.txt  
/dev/sdb1/hadoopFile.txt

Next, the get command is scripted for every ile and an MD5 hash value is computed 
and stored for each copied ile. The following script runs the collection and 
documents the results:

#!/bin/sh

#File and error counter variables

fileCount = 0

failCount = 0

echo "Collection script: basename $0" >  
/dev/sdb1/collection_log.txt

echo "Collection start: $(date)" >> /dev/sdb1/collection_log.txt

# First file copy

hdfs dfs -get -ignorecrc /home/hadoopFile.txt  
/dev/sdb1/hadoopFile.txt

if [ $? -ne 0 ]

then

  echo "/tmp/root/hive.log not acquired" >>  
/dev/sdb1/collection_log.txt

  failCount=$((failCount+1))

else

  fileCount=$((fileCount+1))

  md5sum /dev/sdb1/hadoopFile.txt > /dev/sdb1/md5.txt

fi

# [Additional file copy commands omitted]

echo "Total files copied: $(fileCount)" >>  
/dev/sdb1/collection_log.txt

echo "Total failed copies: $(failCount)" >>  
/dev/sdb1/collection_log.txt

echo "Collection end: $(date)" >> /dev/sdb1/collection_log.txt

This script does the following:

• Generates the collection log collection_log.txt

• Copies the HDFS file /home/hadoopFile.txt to the target drive /dev/sdb1

• Computes the MD5 hash value and stores it in the target drive as md5.txt
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The MD5 computation has to be performed on the target ile after collection because 
no MD5 tool exists within Hadoop. Hadoop does have an MD5 API function, but no 
Hadoop tool exists, so the MD5 should be calculated on the collected data as part of  
a script. This collection technique provides an MD5 that can be shown and veriied  
in later stages and compensates for Hadoop's lack of built-in MD5 functionality.

This process of computing the MD5 after the copy completes is not unusual, and 
Hadoop's ile import and export commands do not modify the ile. To prove this,  
the following sets of commands can be run on any ile to demonstrate that the  
MD5 is not affected by either the Hadoop import or export commands:

hdfs dfs -put ./testFile.txt /home/hadoopFile.txt

hdfs dfs –get /home/hadoopFile.txt ./testFile_copy.txt

md5sum testFile.txt

md5sum testFile_copy.txt

The MD5 hash values for the original ile and copied ile that passed through 
Hadoop will match, proving that the get command followed by md5sum is a  
suitable and valid forensic approach.

Hadoop maintains checksums of the local ilesystem (for example, 
HDFS). The process it uses consists of calculating a CRC32 for every 
512 bytes on each data node. When the checksum is requested by the 
ilesystem, the CRC32s are concatenated and an MD5 hash value is 
generated from that string. While Hadoop does utilize a form of MD5 
in its ilesystem, the method itself is not forensically sound.

After the script runs, the collection log is reviewed to check for errors. If ile copy errors 
are found, those iles should be investigated and recollected. After the errors have been 
accounted for, the chain of custody and acquisition forms should be completed.

HDFS targeted data collection
Another technique forensic investigators use in Big Data collections is to target 
speciic iles. Targeted collections can be performed in two ways:

• By collecting a predefined set of files

• By previewing files to determine which files contain potentially relevant data

The investigator can determine which iles to collect during the identiication phase 
or through instruction from one of the other parties in the investigation. From the list 
of iles, a collection script can be developed to collect the iles in the same manner as 
the full Hadoop shell command collection.
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Alternatively, a subset of iles can be collected. Most Hadoop clusters have data feeds 
with related ile names. These iles contain the same data points and information and 
have a consistent structure. Rather than collecting all iles, the collection can be focused 
on only the relevant subset of iles. For example, a Hadoop cluster may contain tens of 
thousands of iles, but the iles are comprised of only three types, all with the same ile 
preix. The investigation may only hinge on one of those three types of iles, so rather 
than expending time, effort, and disk space on collecting all three, the investigator can 
collect just the one relevant ile type.

Identifying which types of iles are relevant requires collecting a complete ile listing, 
determining which categories of iles are available, previewing the iles, and assessing 
which iles should be collected. The complete ile listing is acquired irst to identify the 
universe of available iles. The second step is to establish the types of ile categories 
by way of interviews and previewing sample iles. Previewing the iles is an effective 
method for establishing the categories and identifying the relevant iles if a consistent 
ilename or directory structure convention is followed. If the iles are named using 
different conventions and/or iles are stored across directories without consistency, 
previewing iles may fail to fully identify all relevant iles. After the categories of 
relevant iles are identiied, the investigator should combine that information with  
the ile listing to create a list of iles to collect.

Completely collecting all potentially relevant iles is the goal of the 
collection phase. If questions arise about whether or not a ile should 
be collected, it is best to err on the side of caution and collect the ile.

After the iles have been identiied, the collection process is the same. The iles  
are collected by way of a script and validated and documented in the same way  
as they would be in a full Hadoop shell command collection.

Hadoop Ofline Image and Edits Viewers
Hadoop provides a built-in method to dump the contents of fsimage into a 
readable ile. The fsimage ile is Hadoop's point-in-time snapshot of the ilesystem's 
metadata. The Hadoop Ofline Image Viewer extracts the contents of the fsimage 
ile and makes it available in several different formats. The irst format is an HTTP 
server that reads the fsimage contents and presents those as a WebHDFS API that 
can be accessed through HTTP REST requests. The second format, and the one of 
most value to investigators, is an XML ile that is generated and can be analyzed 
ofline. The third format is the File Distribution tool output, which gives aggregated 
information about the number of iles within certain ile size ranges.
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The Hadoop Ofline Image Viewer works well in tandem with a Hadoop shell 
command collection by supplementing the HDFS ile collection with the metadata 
generated by the Hadoop Ofline Image Viewer. The Hadoop Ofline Image Viewer 
provides the following information in the XML output ile:

• NameNode: This provides level information, such as the namespace ID,  
last inode ID, and last transaction ID

• Inode: This provides level information, such as path, ID, last modified and 
access times, permissions, and replication factors

The metadata generated in the Hadoop Ofline Image Viewer XML ile can be used 
as supplemental data to the iles collected via Hadoop shell commands. The Hadoop 
shell get command does not provide complete metadata, so the XML ile can ill that 
void because the metadata captured accurately relects the iles.

The following command generates a Hadoop Ofline Image Viewer XML ile:

hdfs oiv -i fsimage_0000000000000000015 -o fsimage_output.xml –p XML

The following igure illustrates the output generated by this command:

Figure 10: The Hadoop Offline Image Viewer output

The Hadoop Ofline Image Viewer metadata collection should be run immediately 
after the ile collection in order to accurately capture the metadata with as few 
metadata modiications as possible.

Hadoop also has an Ofline Edits Viewer to export the contents of the edits ile. 
This utility is useful for extracting information about updates to the ilesystem since 
the last fsimage ile update. The edits ile contains transaction-level updates to the 
ilesystem, such as ile updates. If the investigation requires information about the 
history of ile updates, examining the edits ile (or iles) is a great resource of  
such information.
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The following command generates a Hadoop Ofline Edits Viewer XML ile:

hdfs oev -i edits_0000000000000000017 -o edits_output.xml –p XML

The following igure illustrates the output generated by this command, which 
includes the ile name, inode, and timestamps for the ile:

The following screenshot shows additional information from the Ofline Edits 
Viewer output, including the ile's group, ile permissions mode, and block ID:

Figure 11: The Hadoop Offline Edits Viewer output
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In a forensic investigation, the combination of the fsimage and edits iles provides 
a wealth of information about who created and modiied iles, the permissions, and 
storage locations. As long as fsimage and edits iles are available for a speciic 
period of time, these iles tell the story of all ilesystem changes. Hadoop has a 
conigurable setting that determines how long and how many versions of both iles 
are retained. If this information is potentially relevant, the Ofline Image and Edits 
Viewer extractions should be performed for all available versions.

The following analyses can be performed later using the output from these utilities:

• Chronological file history analysis

• File deletion, modification, and overwrite identification

• File age analysis

Collection via Sqoop
Sqoop is an Apache Foundation package designed to transfer bulk data from 
HDFS to relational databases. As a data migration tool, Sqoop is used to transfer 
data to and from HDFS. The primary purpose for Sqoop is to serve as a utility for 
transferring data between data warehouses and Hadoop clusters. It can also be  
used as a forensic tool when HDFS data can be exported as relational data.

Sqoop reads data from HDFS and transfers the data to a relational database. It reads 
entire directories of iles and then parses them based on speciied delimiters and 
qualiiers. Sqoop imports the parsed data into databases using a series of INSERT 
commands. It then tracks errors and exceptions and reports on any such failed inserts.

Sqoop imports data into the following databases:

• HSQLDB

• MySQL

• Oracle

• PostgreSQL

Other databases are supported via Sqoop connectors, including MS SQL Server.

To export HDFS data to a relational database using Sqoop, the investigator runs Sqoop 
from a machine that can access both HDFS and the relational database management 
system (RDBMS). The investigator also needs to create the table(s) in the relational 
database that match the structure of the data being imported from HDFS. This requires 
a priori knowledge of the structure of the iles. If data that does not match the structure 
resides in the data being collected from HDFS, then the Sqoop data collection will fail.
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The following igure illustrates the use of Sqoop for collecting HDFS data:

Figure 12: The Sqoop collection process

Sqoop is a useful tool when the structure of the data is already known and a relational 
database can be connected to the Hadoop client. Sqoop eficiently transfers data to 
a relational database, which eliminates any data preparation steps. With Hadoop 
clusters' large data sets, directly importing the data to a database rather than collecting 
it and storing it on individual hard drives saves quite a bit of effort. However, there 
are dificulties with Sqoop. Investigators must know the structure in advance and have 
the capability to connect to a database. Because investigators often collect data on the 
premises, ensuring there is a Hadoop client that can connect to the cluster, and to a 
database for later analysis, can be problematic. The other issue is that Sqoop will fail  
on any iles or records that do not adhere to the predeined data structure. This is  
a problem in forensic investigations because archived data stored in a different  
format or data anomalies cannot be captured using this method.

The following code collects all data from the HDFS directory analysis and imports it 
into a localhost MySQL server in the forensic database's analysis table:

sqoop export --connect jdbc:mysql://127.0.0.1/forensic --table  
analysis \ --export-dir /results/analysis

Sqoop returns information about the number of records exported to MySQL:

15/02/20 09:54:18 INFO manager.SqlManager: Migrated 150301 records  
from `analysis` to `analysis`
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Other HDFS collection approaches
Two other collection approaches require consideration when collecting HDFS 
data: custom-developed Java programs and third-party collections. The irst, using 
custom-developed Java programs, collects HDFS data utilizing the Hadoop Java 
API and standard Java methods. Two of the drawbacks to collecting HDFS data 
through shell commands are that the Java Virtual Machine (JVM) has to start and 
inish for every copy command, considerably slowing down the copy process, and 
MD5 computations can only be performed after the ile has been copied. Hadoop's 
Java API provides methods for calculating the MD5 of iles inside HDFS, and the 
program can perform all copies inside a single JVM session. The drawback is that 
custom-developed Java solutions require signiicant testing and some Hadoop Java 
API methods are still under development. For this reason, the investigator should 
carefully develop and test any program used to perform the collection to avoid 
unintended behavior or errors.

Another method for collecting HDFS data is where the system owner or a third party 
performs the ile collection. This approach is typically performed in non-criminal 
investigations and ones in which accessing the system is either dificult or prohibitive. 
The system owner usually IT staff or another party with forensic expertise performs 
the collection. Then a copy of the collected data (or the original data) is transferred  
to the investigator.

The investigator should carefully consider whether having an outside party 
conducting the collection is acceptable. In some situations, the investigator cannot 
perform the collection. In other situations, having an outside party perform the 
collection is not required, but it may be the most cost-effective or otherwise prudent 
approach. The investigator should consider the following when deciding whether 
the collection should be performed by another party:

• Does the other party understand the requirements of the investigation  
(for example, methods and documentation protocols), and do they know 
which data to collect?

• What are the benefits of having the other party perform the collection  
(for example, cost, timeliness, and business continuity)?

• Who assumes liability for the collection if mistakes are made?
• Have the requirements been clearly communicated in writing?
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• What is the chain of custody protocol for the collection?
• Is the other party better or equally well-equipped to perform the collection?
• What are the risks of having the other party perform the collection?

If the risks are controlled and the requirements can be met, having another party 
perform the collection is an acceptable method. The investigator should ensure all 
documentation is created and transferred as well as communicating the proper 
process for data collection and transfer protocols.

Summary
This chapter covered several methods investigators can use to collect data from HDFS. 
Investigators can collect HDFS data from the host operating system by imaging or 
collecting logical iles. They can also collect HDFS data via the Hadoop shell, a data 
transfer tool such as Sqoop, or using other methods, such as a custom-developed Java 
application, or relying on an outside party to perform the collection. Each method has 
its own advantages and disadvantages. The pros and cons for each are covered in the 
following tables:

Methods Pros Cons

Host operating system 
collection

This has a complete forensic 
collection

This requires collection 
across each node and 
manual re-piecing of data 
blocks for analysis

This follows standard 
forensic process

This is a time-consuming 
and cumbersome process

This captures the system as 
is, including slack space and 
deleted files

This requires extra disk 
space for extraneous 
collected data

Hadoop shell command 
collection

This collects Hadoop files This requires collection 
across each node and 
manual re-piecing of data 
blocks for analysis

This uses native application 
for collection

The load time for JVM to 
run Hadoop commands is 
slow

This can be performed on a 
single node or client

This requires scripting to 
perform on a large set of 
files
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Methods Pros Cons

Sqoop This collects data into a 
database repository

In this data must have a 
known structure and cannot 
have anomalies

Sqoop is already available in 
most Hadoop environments

This requires connection to a 
database system

Custom java 
application

This collects data in native 
Java language

This requires careful testing 
and verification

This can perform MD5 on 
Hadoop files before they're 
copied

It's subject to outside 
scrutiny

Other party collection This can offer cost and time 
savings

There's a risk of incomplete 
or incorrect collection

This is a workable solution 
when an investigator cannot 
perform the collection

This requires detailed 
communication and review

The next chapter will cover an alternative method for collecting Hadoop  
data—application-based collections.
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Collecting Hadoop 

Application Data
Hadoop evidence can be forensically collected from more than just the ilesystem. 
Evidence can also be collected from Hadoop applications. Hadoop data is formatted 
for use by its applications, and these applications provide means for more easily 
extracting relevant data. The process of collecting evidence from Hadoop applications 
instead of from HDFS offers many advantages, but the approach is very different. 
Some forensic artifacts, such as metadata, cannot be captured from a Hadoop 
application collection. However, collecting data from an application avoids some  
of the time-consuming and challenging tasks involved in forensically imaging  
HDFS or collecting data from each node individually.

Any Hadoop software outside of the Hadoop layer is considered an application. 
Two of the most common application packages are Hive and HBase. Both packages 
operate in ways similar to a database, and their data can be collected through the 
software itself. Hadoop applications that do not directly analyze or store data are  
not applicable to this process because they offer no way to collect data. Applications 
that fall into this category include ZooKeeper and YARN.

The process for collecting evidence from the applications differs from ilesystem 
collections in a number of ways. First, collecting data from applications involves 
extracting the informational content not creating a bit-by-bit replica of the source 
system. This means the evidence gathered is the information accessible by the 
application and is not every bit of disk space. Therefore, it does not represent every 
form of metadata and slack space in the source system. Second, the investigator need 
only use a single system client to access all data in the cluster's application collection, 
so the investigator does not need to collect evidence from each node independently. 
Third, the person who performs the application collection only needs to know how 
to query the application as well as the steps to document and properly secure the 
collected data in order to perform the collection.
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Collecting Hadoop data through its applications has a number of advantages that 
make it the preferred choice for most investigations. The following is a list of the 
advantages of collecting data through applications:

• One only needs to access Hadoop from a single client

• Data is limited to relevant information accessed by the applications

• Even if data is replicated across nodes, only a single copy is collected

• An application collection is less intrusive to the system and causes less 
business interruption

• A subset of the data can be targeted

This approach is best when the contents of the system are the only relevant evidence. 
For investigations in which metadata, logs, and other data outside of the applications 
is relevant, the investigator should employ a ilesystem collection, either in lieu of  
the application collection or as a supplement to the application collection.

This chapter covers the process for application collections and how to perform sample 
collections from Hive and HBase. Each of the collection methods are discussed along 
with how to determine the best method for a particular investigation. Examples of  
how to perform the collection are given for Hive and HBase.

Application collection approaches
Hadoop data is stored in a unique structure. Unlike most relational database 
systems, which loads and stores data in a proprietary format, Hadoop applications 
typically store data in sets of lat iles similar to a hierarchical database. Files are 
imported into the application, and the application stores those iles in a separate  
ile structure and generates the metadata about that data.

Application-based collections have advantages over ilesystem-based collections  
of the application's underlying iles. While the ile-based storage of iles in Hadoop 
applications enables logical copies of the lat iles, these iles may not be structured  
in a format that can be quickly analyzed or the collection may require sampling 
of iles to identify the relevant iles. Collecting data from the applications has the 
following advantages:

• The investigator can collect the data in a format that is quickly  
and readily analyzable

• The data can be collected more easily by third parties

• The collection can be performed from a single client machine
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Data in Hadoop can potentially be accessed by more than 
one application, so the investigator should be aware of which 
application is best suited for the application-based collection 
and whether that application can access all relevant data.

The method of collecting data from applications depends on which application stores 
or accesses the data and the means it provides for exporting data. Every application 
is different. Some applications only offer query-based means to access the data, 
some require scripts to be written, and others have multiple querying mechanisms 
available. Like ilesystem collections, several application collection methods are 
available to the investigator. These methods are similar to those used for database 
collections and include the following:

• Backup-based collection: This collects a newly-created or archived 
application backup

• Query-based collection: This collects all data or a subset of the data  
via queries

• Script-based collection: This collects all data or a subset of the data  
via scripts or another application (for example, via Pig)

• Software-based collection: This collects data through an application  
that connects to the source application

Each application collection method is largely the same as the one used for collecting 
relational and other database system types. Backup-based collections are a very 
common method when a full copy of a database is required. This method offers the 
advantage of quickly collecting every component of a database with minimal effort. In 
Big Data collections, there are some differences in the collection process based on the 
application. For instance, some applications do not have built-in backup mechanisms. 
Query- and script-based collections are commonly employed in three instances: 1) 
when backup methods are not available, 2) when queries or scripts are the easiest 
collection method, or 3) when only a subset of data is required. Software-based 
collections are common for commercial database packages such as Oracle and SQL 
Server, but are not yet a common solution for Big Data collections.

Practical considerations also dictate how the collections are performed. If metadata 
and ilesystem-level detail is required, application collection is not ideal, or requires 
a supplemental data collection method. However, if only the contents of the stored 
data are relevant, application data collections are typically faster, easier, and produce 
evidence in a format that is more readily analyzed. Once the decision is made to 
employ an application collection, choosing which method to use is based on other 
practical considerations.
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These include the following:

• Whether the application has a backup mechanism

• Whether all or only a subset of the data from the application is relevant

• How quickly the application produces full record data sets from queries  
and scripts

• Whether the volume of data is small enough to extract through queries  
and scripts

The following table lists the advantages and disadvantages of each method:

Methods Advantages Disadvantages

Backup-based collection This is a complete data 

collection

This may contain extraneous 

data

This has no upfront decision 

making

This is not always available

This has minimal impact to 

organization

This is potentially a slow 

collection process

Query-based collection This has ability to limit data 

scope

This may not capture all relevant 

data and requires upfront review 

of data and data structure

This contains queries that 

can be scheduled to run 

during off-hours

This has a high impact to source 

system

This is potentially a fast 

collection process

This is potentially difficult to 

verify

Script-based collection This has ability to limit data 

scope

This may not capture all relevant 

data and requires upfront review 

of data and data structure

In this scripts can be 

scheduled to run during off-

hours

This has a high impact to source 

system

This is potentially a fast 

collection process

This is potentially difficult to 

verify

Software-based collection This can collect data 

automatically to desired 

output format

This is not always an available 

option for source system 

software

This is a simple and fast 

option

This can be disruptive to 

organization's systems
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Unlike backup-based collection, query- and script-based collections offer a great deal of 
lexibility in relation to what is collected. Both methods enable an investigator to collect 
all or a subset of the data. For a Big Data investigation, this is very important and 
valuable. In some cases, all of the data is required. In many other cases, however, the 
volume of data and the facts of the investigation make collecting only a subset of the 
data the best solution. Big Data systems can store petabytes of information, and much 
of that data volume might be accessed by an application, if only a subset is required, 
that can save a tremendous amount of time, disk space, and cluster availability for 
normal use. A subset can be collected in one or more of the following ways:

• Limiting the number of data sets

• Limiting the number of data points or fields

• Limiting the number of records based on filter criteria

The investigator already knows which information is relevant from his indings in 
the identiication phase. This information is then translated into queries or scripts 
that are used to perform the collection.

Backups
Backups are unique in Hadoop. Unlike a standard database system, Hadoop 
applications store data across a vast multi-node cluster, with the amount of data 
potentially measuring in the petabytes. When compared to the single database 
backup or dump iles in MS SQL Server or Oracle, this massive scale makes backups 
in Hadoop seem impossible. However, methods do exist for most applications. 
Because Hadoop is an enterprise system that requires backups for disaster recovery, 
Hadoop applications offer backups that are familiar to most database administrators 
as well as unique backup options. The range of Hadoop application backup  
methods include:

• Snapshots that can be restored using the Hadoop application

• Replication to another cluster

• Full export to Hadoop SequenceFiles

• Table copies to text files

Each method has varying degrees of speed and system impact depending on the 
application. For example, dumping the application contents to text iles is fast, but it 
is highly system-resource intensive. The use of SequenceFiles and snapshots tend to 
be slower but have less impact to the source system.
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Investigators need to consider the output format of backups before beginning any 
application backup collection. Unless the backup output is a set of text iles, the 
backups may require some form of data loading and/or conversion before the iles 
can be analyzed. Exporting application data to SequenceFiles requires conversion  
of the SequenceFiles to a format that can be extracted. If the output is a snapshot, the 
snapshot requires loading through that application (for example, HBase snapshots 
must later be loaded in HBase) before analysis can be performed.

Query extractions
Query extractions use the application's native query language to access and  
collect the application data. Applications designed for data analysis have their  
own query language, and queries can be written in that language to access and 
collect a subset or all of the data to text iles. The following methods are available 
with query-based collections:

• Collection of all available data

• Collection of the relevant subset of data

• Sampling of data for statistical analysis

Querying the data enables the investigator to retrieve all or some of the data 
and output the results to text iles or another application. The beneits of query 
extractions are the ease of access to the data and the capability to custom-select 
which ields are captured and apply any data ilters. Query extractions require the 
investigator to access the data structure and perform some initial analysis before  
the data can be collected. This analysis can be done at the time of collection or  
during the identiication phase.

Script extractions
Script extractions are very similar to query extractions. Rather than use the 
application's native query language, a scripting tool is used to access and collect the 
data. Whether a script is written in Pig, Java, or another language, the investigator 
can write scripts or programs that access the data and output the results to a desired 
format and location. Like query extractions, script extractions give the investigator 
the ability to customize which ields are collected and to apply ilters to the data if 
only a subset of the data is relevant.

http:///


Chapter 5

[ 119 ]

In addition to being a replacement for querying, scripting languages can be used to 
access unstructured data in Hadoop that is not accessible by other querying languages. 
Some Hadoop clusters are designed to analyze unstructured data, and applications 
may not provide a means for querying the data. This type of unstructured data is 
analyzed through MapReduce functions. An investigator can collect the data with a 
custom script extraction utilizing the same means used in a query extraction.

Software extractions
While a useful and common technique in standard database collections, software 
extractions are not common in forensic Big Data investigations. Software utilities 
such as commercial products that connect to databases and Open Database 
Connectivity (ODBC) drivers are valuable to investigators because they can easily 
connect to database systems and provide a reliable means for many different types of 
application collections. At this time, these types of software are not yet common for 
Hadoop applications and are not yet regularly employed by forensic investigators.

Validating application collections
Collecting application data requires a different form of information for validation. 
Validating a collection involves proving the following:

• The collection was performed correctly and completely

• The collected data is a replica of the source system's data

Unlike ile-based collection methods, record-based collections compiled through  
an application are not typically validated with hash values. Hash values are useful 
for proving that data was not modiied and that the collection was performed 
correctly. Supplemental information (for example, collection logs) is used to prove 
that the collection was performed completely. The use of hash values, however, is 
not always appropriate for application collections. There are several reasons why 
hash values are not used to validate application collections:

• It is not necessary to calculate hash values because of the absence of  
metadata or other artifacts that are collected

• Large data volumes make computing hash values infeasible in some cases

• It is faster to use non-hash methods

• Computing a hash value of the output does not prove that the contents 
remained unchanged during the collection process
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All four points relate to the nature of the data that was collected. First, collecting 
records from applications does not yield metadata, so if the record is collected, the 
contents of the information is all that is needed. Second, Big Data is voluminous, 
and validating the collection through hash values can be infeasible if MD5/SHA-1 
cannot be run on the source system. Also, it is possible the data is simply too large 
to compute a hash value in a reasonable amount of time. Third, alternative methods 
for validating a collection can be faster with pre-existing validation information or 
more quickly producible forms of validation information. Finally, hash values only 
work when the hash value is computed on the data source at the time of collection. 
Collecting records from an application rather than collecting the source iles 
themselves, and then computing the hash values of the output iles does not meet 
the forensic requirement for computing a hash value. That is, the hash value of the 
acquired data and not the source data, only proves that the acquired data was not 
modiied between the time it was collected and when the hash was later conirmed. 
This does not necessarily prove that the source data remains unchanged.

Record-based data collected from Hadoop applications can be validated in other 
forensically-acceptable manners. The following methods for collection are used as 
means to prove what was intended to be collected was in fact, collected and not 
modiied after collection:

• Control totals

• System logs

• Extraction queries and scripts

• Process documentation

The use of control totals is the primary means for validating a collection. Control 
totals are values from the source system that can be compared to the collected data. 
Control totals can take forms such as:

• Number of records

• Number of unique values

• Numeric aggregate total of a particular field or key value

The idea of a control total is to show that the data is complete and that the values in 
the selected ields were accurately acquired. The control totals are collected at the 
time of data collection. The control totals are either immediately compared to the 
collected data or later during a subsequent data validation step. The comparison is 
typically performed in an analysis database.
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System logs, extraction queries and scripts, and process documentation can be used 
in lieu of or in addition to control totals. These forms of validation information can 
serve to prove that the collection method was correct and complete. Each shows the 
method used to collect the data, and they can also be used to show how much data 
was collected and whether the collection was complete. Whenever a query or script 
is used, it should be retained for validation purposes. Likewise, if an application can 
generate logs or output reports, that information should be collected and retained as 
well. Finally, as with any form of forensic collection, the investigator should maintain 
a log of all steps performed and the results. He should also transcribe those results into 
an acquisition form to further demonstrate that the steps performed were done  
so correctly.

Collecting Hive evidence
Hive is a platform for analyzing data. It uses a familiar SQL querying language,  
so there is no need to write Java code for MapReduce functions. Hive operates such 
as a database and stores all metadata in a database, so accessing the database via 
queries should be familiar to people who have experience working with relational 
databases. Hive has several important components that are critical to understand  
for investigations:

• Hive Data Storage: The type and location of data stored and accessed by 
Hive, which includes HDFS, Amazon S3, and other locations

• Metastore: The database that contains Hive data metadata (not in HDFS)

• HiveQL: The Hive query language, which is a SQL-like language

• Databases and Tables: The logical containers of Hive data

• Hive Shell: The shell interpreter for HiveQL

• Hive Clients: The mechanisms for connecting a Hive server, such as Hive 
Thrift clients, Java Database Connectivity (JDBC) clients, and ODBC clients

Hive stores record-based data in iles. When data is loaded to Hive, Hive creates 
links to or copies of the data to a conigurable location. Hive internally stores the 
data in databases and tables. The metastore stores metadata about the data, such as 
table structure, in a relational database. The data can be accessed via the Hive shell 
with the use of HiveQL commands, or Hive clients can be used to access the data. 
Hive clients are scripts or programs that utilize Hive's drivers to access the data.  
The following are the three types of Hive clients:

• Thrift Client: This is a remote client library that is compatible with a  
number of program languages, such as C++, Java, PHP, Python, and Ruby
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• JDBC Client: This is a Java Database Connectivity library that allows for 
JDBC calls to Hive

• ODBC Client: This is an Open Database Connectivity library that allows  
for ODBC calls to Hive

Hive internally organizes data in database and table structures. A Hive server can  
have one or more databases. Tables of data are created within each database. When 
tables are created, the database is speciied, and new databases can be created through 
Hive commands. If a table is created without a database name explicitly stated, the 
table is created in the default database. Similarly, a table speciied in a query without  
a database name is automatically interpreted as belonging to the default database.

HiveQL is the query language for Hive. HiveQL's syntax is very similar to ANSI SQL 
and other SQL variants. The familiar SELECT, FROM, and WHERE clauses are foundational 
to HiveQL queries. The powerful aspect of Hive is that the standard SQL queries 
are converted into MapReduce jobs, which harnesses the power of MapReduce's 
distributed processing via SQL queries. In the Hive shell, queries can either be loaded 
from query iles or entered interactively in the shell. Both modes enable output to be 
directed to iles and error messages to be logged.

A Hive application collection differs from collecting Hive data through HDFS. With  
a Hive application collection, the data is collected either as a backup from HDFS with 
the Hive metastore, or the Hive service is used to interface with the data for collection. 
The following igure illustrates the process for performing a backup collection of Hive.

Figure 1: Hive backup collection

Alternatively—and most commonly—the Hive service is used as the means for 
accessing and collecting Hive data. The Hive service can be accessed through  
Hive queries, scripts, or Hive connectors.
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The following igure illustrates how the data lows through this collection process:

Figure 2: Hive service collection

Loading Hive data
Hive collections are performed against data stored in Hive itself. To follow along 
with the Hive data collection steps covered in this section, perform the following 
steps in either LightHadoop or Amazon S3:

1. Load data to HDFS.

2. Create Hive table.

3. Load data to Hive table.

4. Conirm the data load.

The irst step for loading Hive data is to bring data into HDFS. While methods exist for 
directly loading data to Hive without this intermediate step, this method is simplest. 
The sample data used for this exercise is the subset of NYSE trades from 2000-2001 
from Chapter 2, Understanding Hadoop Internals and Architecture. The irst step is to copy 
the data into HDFS from the local system's /home/ec2-user directory:

hadoop fs -put /home/ec2-user/NYSE-2000-2001.tsv /tmp

The second step is to create the Hive table that will store the NYSE data. First,  
enter the following command to access the Hive shell:

hive

This brings up the Hive shell command line interface:

hive>
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Next, run the following Hive command to create the table:

CREATE TABLE 'NYSE' (exchange1 string, stockSymbol string, dateVal  
date, stockPriceOpen float, stockPriceHigh float, stockPriceLow  
float, stockPriceClose float, stockVolume float, stockPriceAdjClose  
float)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

This command produces the following output:

OK

Time taken: 0.152 seconds

Next, load the data to the NYSE table using the following command:

LOAD DATA INPATH '/hdfs/tmp/NYSE-2000-2001.tsv' INTO TABLE NYSE;

Finally, conirm the data load by examining the total number of records loaded  
using the following command:

SELECT COUNT(*) from NYSE;

This creates a MapReduce job that generates the following output:

[…]

812990

Time taken: 68.492 seconds, Fetched: 1 row(s)

The data can now be viewed using queries, such as this one that returns the irst  
10 records:

SELECT * from NYSE LIMIT 10;

Identifying Hive evidence
Hive evidence can be identiied through HiveQL commands. The following commands 
can be used to get a full listing of all databases and tables as well as the table's formats:

Command Description

SHOW DATABASES; This lists all available databases

SHOW TABLES; This lists all tables in current database

USE databaseName; This makes databaseName the current database

DESCRIBE (FORMATTED|EXTENDED) 
table;

This lists the formatting details about the table
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Identifying all tables and their formats requires iterating through every database and 
generating a list of tables and each table's formats. This process can be performed 
either manually or through an automated HiveQL script ile. These commands do not 
provide information about database and table metadata, such as number of records 
and last modiied date, but they do give a full listing of all available online Hive data.

Deleted Hive data can also be recovered in some instances. When data is deleted 
from Hive, the metadata is removed from the database, but the iles in HDFS or other 
storage are moved to the .Trash directory. In cases of a misconigured .Trash ile, 
Hive cannot move iles to the .Trash, so the iles remain in their original folders. 
However, the metadata records in the Hive metastore are erased. If there are questions 
about whether data has been deleted, the raw iles should be collected, even if the 
metadata is no longer available.

Hive backup collection
Hive does not have a natural backup mechanism. Most Hive environments are 
conigured to replicate the metastore and data iles to a replication cluster. This 
limitation means that true database backups of the entire Hive environment are not 
possible; however, the replication process can be performed in order to collect all 
evidence. To replicate Hive, the following steps are performed:

• Forensically, copy all Hive data files based on the file location information 
found in the Hive configuration file

• Perform a full database backup of the metastore database

The metastore can be hosted in a number of different types of databases, such as  
SQL Server and MySQL. A full backup of that database should be collected, but 
the same considerations apply when collecting the metastore database. Namely, 
a current copy should be collected and the output should be in a format that the 
investigator can access and read during the analysis phase.

If the Hive environment has an embedded metastore, a slightly different process 
should be taken. By default, Hive is installed to run a local Derby database that is 
intended for testing purposes. Most production Hive environments are conigured  
to run with a standalone database, but an investigator may encounter a Hive 
metastore conigured to run Derby. Derby database viewing and extraction can 
be performed through the Apache SQuirreL SQL Client. SQuirreL is a Java-based 
package that interfaces with Derby through JDBC calls. If an investigator encounters 
a Derby metastore, SQuirreL and custom-developed Java packages are the best 
methods for extracting the metastore contents.
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The metastore backend can be identiied in the Hive coniguration ile  
hive-site.xml, which can be found in the $HIVE_HOME/conf directory. The  
javax.jdo.option.ConnectionURL property will list the connection URL for  
the metastore, and from this, the investigator can identify the type of metastore 
database backend being used by Hive.

Depending on the Hadoop installation, third-party backup tools may be available 
that can generate Hive backups. One commercial product, Cloudera Manager, offers 
a backup and disaster recovery tool that can generate Hive backups. As with all 
backups, the investigator should be prepared and able to extract the backup ile to  
a usable format, which may require having a copy of Cloudera Manager or  
whatever backup tool was used to generate the backup ile.

Hive query collection
Hive's query language, HiveQL, is a powerful tool that is suitable for performing 
forensic collections. HiveQL offers the lexibility and granular querying capabilities 
necessary for performing query-based collections. Entire tables can be collected in 
the same format in which they are stored in Hive, or subsets of data can be collected 
by specifying which ields to collect and applying any necessary ilter criteria. The 
queries can be run either from the Hive shell or in batches via HiveQL query iles.

In most circumstances, the collection should be performed with query iles instead  
of entering commands in the Hive shell. Query iles have a couple of advantages: 
they enable the collection to be executed in one or more batches, and the query iles 
serve as documentation of the collection process. Manually entering the collection 
queries using the Hive shell is acceptable; however, documentation of the queries 
should still be captured.

All three query collection methods are available with Hive: complete, subset, and 
sampled. Performing a complete collection is the most straightforward. In SQL, the 
SELECT * clause selects all ields from the speciied table. By selecting all ields and 
not applying any ilter criteria, the investigator can collect all records from the table. 
For a complete collection, this type of query is run for every database and every 
table in the source system. The queries are run from the list of databases and tables 
discovered during the identiication step.

HiveQL script iles are text iles that contain the Hive queries that should be run. 
Create a text ile, insert the following query, and save the ile as NYSEexport.sql:

SELECT * from NYSE;
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Run the following command from the client to export the entire NYSE table to the 
host operating system's /home directory:

hive -f /home/scripts/NYSEexport.sql > /home/NYSEexport.tsv

An alternative method is the Hive INSERT OVERWRITE LOCAL 
command, which creates an output ile in the local ilesystem based 
on the speciied query.

A tab-separated value ile that contains the table's column headers along with 
every record in the table is created in the /home directory. The output ile's format 
matches that of the input ile. An issue that sometimes arises with data extraction 
is that the delimiter matches a character inside a ield. This commonly occurs with 
tab- and comma-separated value iles because tab and comma characters are normal 
characters. Typically, TSV and CSV iles use text qualiiers to denote the beginning 
and end of a ield, so any characters within the ield that match the delimiter do not 
cause issues when exporting or importing the data. Double quotes are sometimes 
used as text qualiiers, as are infrequently used characters, such as the paragraph 
symbol. Unfortunately, Hive does not handle text qualiiers, so a custom delimiter 
that does not match any text in the table must be chosen.

If this issue is a concern, the investigator can export the data to a text ile with  
custom-speciied delimiters and text qualiiers. The following query selects all  
of the columns from the NYSE table with the custom delimiter | :

SELECT CONCAT_WS('|', exchange1, stockSymbol, CAST(dateVal as  
string), CAST(stockPriceOpen as string), CAST(stockPriceHigh as  
string), CAST(stockPriceLow as string),  
CAST(stockPriceClose as string), CAST(stockVolume as string),  
CAST(stockPriceAdjClose as string)

FROM NYSE;

This query uses the concat_ws() function to concatenate the strings with the pipe 
character between each ield. Note that each numeric and date ield has to be cast as 
a string. This is required because the concat_ws() function requires string values as 
inputs. Because the pipe character is rarely used, this is an effective delimiter.

The irst row of output from this command is:

NYSE|ASP|2001-12-31|12.55|12.8|12.42|12.8|11300|6.91

www.allitebooks.com
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If a custom delimiter is used, the investigator should examine 
the properties of each table's ields via the DESCRIBE <TABLE> 
command to identify the non-string ields that need to be cast as 
strings. Failing to do so will result in errors.

Script iles are the ideal method for collecting multiple tables. Because the investigator 
wants to collect each table into a separate ile, the query iles should be created 
separately, but they can still be executed from a single script. For example, if 100 tables 
need to be collected, one query ile should be created for each table. Then, a single  
Bash script ile can be created that runs the following command for each of the 100 
query iles:

hive -f /home/scripts/table1.sql > /home/table1_output.tsv

If all tables need to be collected, the process can be automated through a HiveQL 
script and a Bash script. First, create a HiveQL script named tableExport.hql using 
the following line of code. This selects all rows of a table, with the table name being 
passed in through a variable named tablename:

select * from ${hiveconf:tablename}

Next, create a Bash script named HiveAllTableExport.sh with the following code:

#!/bin/bash

hive -e "show tables;" > hiveTables.txt

for line in $(cat hiveTables.txt) ;

do

hive -hiveconf tablename=$line -f tableExport.hql > ${line}.txt

done

This script generates a ile called hiveTables.txt, which is a listing of all tables in 
the current database. The script then iterates through the table listing to generate a 
full export ile for each table. If multiple databases need to be collected, the script  
can be modiied to include an outer loop that iterates through the listing of  
databases via the SHOW DATABASES command.

Hive query control totals
Control totals can be collected for Hive in a number of ways. The simplest and most 
common method is to collect row counts for each table. Typically, row counts are the 
only control totals required. However, in cases where questions may arise about the 
quality of the collection, computing ield-level control totals may be necessary.
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The following should be considered when deciding whether ield-level control totals 
are necessary:

• How many fields are being collected?
• Is one or more field particularly critical for the analysis?
• Does a particular field contain numeric data or data that otherwise lends 

itself well to aggregation?
• Will the value from a field be called into question?
• Does an alternative method exist for validating the collection of that field?

Similar to the process for batch collection via queries, the control totals can be 
captured by creating one query ile for each table that captures the row count:

SELECT count(*) from table1

The same Bash batch script ile can be created that executes each query ile and  
stores the output in a separate ile—or in a single ile if the table name information  
is generated in the queries.

Another control total method is to compute the numeric totals of key ields. These 
computations can be the sum value of a numeric ield, the number of unique values, 
or the min/max values. Because a collection can have many ields, the investigator 
should select a handful of key ields—usually one or two per table—that demonstrate 
the values were collected properly. Alternatively, if reports are available that represent 
all records for the key ields from Hive, which is also a viable control total approach.

The following Hive query commands can be used to compute these values on 
selected ields:

Command Description

Sum(field1) This computes the sum total of field1 for all records 

Min(field1) This computes the minimum value of field1 for all records

Max(field1) This computes the maximum value of field1 for all records

Count(distinct 
field1)

This computes the number of unique values in field1

Control totals are typically collected in a single ile, with the table name being 
included. Because Big Data collections can involve a large number of tables, the fastest 
method for collecting control totals is to include the table name and total—along with 
the type of control total and applicable ield, if necessary. Collecting the data into a 
single ile is easiest because that ile can be loaded into an analysis repository and then 
quickly compared to the calculated control totals of the collected data in the analysis 
repository. This saves the effort required to manually verify each control total.
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Hive metadata and log collection
Collecting Hive data through the Hive application does not provide access to 
metadata, log, and coniguration information. While a Hive application collection 
enables the investigator to capture records from Hive, it does not capture the ile 
metadata, logs, or coniguration information, which is available in a Hive data 
ilesystem collection. If Hive is conigured to retain audit trail information or data 
updates to a Hive table, that information can be collected. However, the full set of ile 
metadata, log ile, and coniguration information can only be collected by acquiring 
the data through the ilesystem. If an investigator decides to collect Hive records 
through the application, he should consider whether to collect the metadata, log, and 
coniguration ile information from the ilesystem to supplement the collection.

The Hive script collection
HiveQL is the main language for Hive collections, but other script-based languages 
are available to collect data. Hive makes available several libraries that enable 
various languages to access a Hive data set. The three types of libraries are:

• ODBC

• Java

• Thrift

Each of these libraries can be used to access the data. To do this, the investigator 
must have the script call its language-speciic library to access the data. Scripting  
the data collection offers several beneits, such as the following:

• Automation of the collection process

• Control of the data flow

• Streamlined generation of control totals in parallel to the collection

The two primary drawbacks to script-based collections are: 1) most script-based 
methods are slower than the use of backups or queries, and 2) developing scripts  
that collect the right data at a granular level can be time consuming. In addition,  
the Hive scripting libraries, whether ODBC, Java, or Thrift, must be available on  
the client machine accessing the data.

The following Python script creates a connection to Hive and exports the results to the 
supplied output ile. Information about the table is exported to the supplied log ile, 
with the collection date, number of records, and query also being written to the log.

import pyhs2

import datetime
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outputFile = open('/home/extract/outputFile.txt', 'w')

logFile = open('/home/extract/logFile.txt', 'w')

logFile.write(str(datetime.date.today())+'\n')

with pyhs2.connect(host='localhost',

 port=10000,

 authMechanism="PLAIN",

 user='root',

 password='pwdVal',

 database='default') as conn:

with conn.cursor() as cur:

logFile.write(cur.getDatabases()+'\n')

cur.execute("select * from table")

logFile.write('select * from table\n')

logFile.write('Number of rows: ' + str(cur.rowcount) + '\n')

logFile.write(cur.getSchema()+'\n')

#Fetch table results

for i in cur.fetch():

outputFile.write(i + '\n')

outputFile.close()

logFile.close()

Executing this query generates the output ile and the log ile. The log ile and 
script are suficient for demonstrating the process used to perform the collection. If, 
however, errors exist in the script, the entire collection can be called into question. 
The acquisition log and chain of custody documentation should still be completed.

For more information about Hive libraries, visit https://cwiki.
apache.org/confluence/display/Hive/HiveClient.

Collecting HBase evidence
HBase differs from Hive in a number of ways. First, HBase is not a relational 
database. Unlike Hive, HBase does not support SQL-like queries, because SQL 
is a language for relational databases. Second, HBase does not have a metastore 
database. Instead, HBase is a nonrelational database based on Google's BigTable  
that works with HDFS for data storage and access. Third, HBase data is distributed 
to various nodes in regions, or to data blocks that store column-oriented chunks  
of related data. It is far easier to collect HBase evidence through HBase rather  
than collecting from each node due to the distributed nature of the data.

https://cwiki.apache.org/confluence/display/Hive/HiveClient
https://cwiki.apache.org/confluence/display/Hive/HiveClient
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Given the complexity of carving out data from HFiles, collecting HBase evidence 
through the HBase interface has an advantage over a ilesystem collection. HFiles are 
distributed ile structures that need to be collected from each node. Once collected, 
HFiles must be carved in order to extract the column-oriented data and metadata and 
then convert this data into a usable format. This can be overly burdensome during 
an investigation. Instead, the HBase data can be collected more easily through the 
application. The output of this data is either lat iles or HBase database backups.  
Both formats are signiicantly easier to work with during the analysis phase.

The following concepts are important for understanding how HBase operates:

• HBase data storage: The type and location of data stored and accessed by 
HBase, which includes HDFS, Amazon S3, and other locations

• Tables: The logical containers of HBase data

• NoSQL (Not only SQL): The type of non-SQL database that provides 
nonrelational data storage and retrieval

• Key-pair values: The scheme in which data values are stored and retrieved; 
keys are queried to retrieve their corresponding values

• HBase shell: The shell interpreter for HBase

• Master node and regionservers: The distributed storage and analysis nodes

• ZooKeeper: The software that manages the assignment of regionservers

• HFile: The MapFile-like file type stored in HDFS by HBase - HFiles are  
the file containers for HBase table data and metadata

• Memstore: The in-memory storage of HBase data that is held in memory 
until the storage threshold is met and the data is written to HFiles

• -ROOT- table: The table that stores the list of .META. table regions

• .META. table: The table that stores the list of all user-space regions

• HBase Clients: The mechanisms for connecting to an HBase server

The data can be accessed via the HBase shell, or HBase clients can be used to access 
the data. HBase clients are scripts or programs that utilize Hive's drivers to access the 
data. The main types of HBase clients are:

• MapReduce

• Java
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• REST

• Thrift

These clients operate similar to the Hive clients. Each offers programmatic means 
for interfacing with HBase and performing data operations. MapReduce is the most 
common method data analysts employ for running HBase analysis, whereas Java, 
AVRO, REST, and Thrift can be used for data extract, transform, load (ETL), data 
export, or analysis. The following igure shows how an HBase application-based 
collection operates, with the HBase service used to represent the use of the HBase 
shell or HBase clients to request and collect data:

Figure 3: HBase service collection

HBase has a number of robust backup mechanisms that can also be used for a 
forensic collection. These include the following:

• Full backup

• Online table export

Each of the backup methods is a viable and sound method for collecting HBase data. 
They also do not require signiicant coniguration for data restoration, making the 
HBase backup options more advantageous than the Hive backup methods. HBase also 
offers other backup methods, such as incremental backups and replication, but those 
are not as valuable or expeditious as the two types mentioned in the preceding list.
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Loading HBase data
Data can be loaded into HBase in a number of ways. HBase clients can be used to 
programmatically push data into HBase. The simplest method is to load HBase data 
through the HBase shell. The HBase shell is started via the following command:

hbase shell

Next, the HBase table is created with the following command:

create 'testTable', 'account', 'address'

This creates a table called testTable with account and address as column family.

Finally, the table is populated using put commands:

put 'testTable', 'record1', 'account:name', 'John Doe'

put 'testTable', 'record1', 'account:ID', '100'

put 'testTable', 'record1', 'address:street', '123 Main St'

put 'testTable', 'record1', 'address:country', 'USA'

put 'testTable', 'record2', 'account:name', 'Jane Doe'

put 'testTable', 'record2', 'account:ID', '101'

put 'testTable', 'record2', 'address:country', 'UK'

Each put command loads a new value into an HBase cell. The irst put command 
inserts the value John Doe into testTable for record1 in the account:name cell. 
The record1 value is the unique identiier for the table. Both the account and 
address column families can have multiple values. In this case, name and ID are 
part of the account column family and street and country are part of the address 
column family. Four values are inserted into record1. Only three values are inserted 
into record2, though HBase does not require every record to populate the same 
number of columns.

The data load can be tested by irst counting the number of rows:

count 'testTable'

This returns the following output:

2 row(s) in 0.0210 seconds

The table can also be queried from the HBase shell using the scan command:

scan 'testTable'
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The scan command produces the following output:

record1 column=account:ID, timestamp=1427229190902, value=100

record1 column=account:country, timestamp=1427229218748, value=USA

record1 column=account:name, timestamp=1427228899101, value=John Doe

record1 column=account:street, timestamp=1427229207080, value=123  
Main St

record2 column=account:ID, timestamp=1427229237904, value=101

record2 column=account:country, timestamp=1427229246303, value=UK

record2 column=account:name, timestamp=1427229008616, value=Jane Doe

2 row(s) in 0.8620 seconds

Identifying HBase evidence
HBase evidence is stored in tables, and identifying the names of the tables and the 
properties of each is important for data collection. HBase stores metadata information 
in the -ROOT- and .META. tables. These tables can be queried using HBase shell 
commands to identify the information about all tables in the HBase cluster.

Information about the HBase cluster can be gathered using the status command 
from the HBase shell:

status

2 servers, 0 dead, 1.5000 average load

For additional information about the names and locations of the servers, as well  
as the total disk sizes for the memstores and HFiles, the status command can  
be given the detailed parameter.

The list command outputs every HBase table. The one table created in HBase, 
testTable, is shown via the following command:

list

TABLE

testTable

1 row(s) in 0.0370 seconds

=> ["testTable"]
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Information about each table can be generated using the describe command:

describe 'testTable'

'testTable', {NAME => 'account', DATA_BLOCK_ENCODING => 'NONE',  
BLOOMFILTER => 'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3',  
COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',  
KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY =>  
'false', ENCODE_ON_DISK => 'true', BLOCKCACHE => 'true'}, {NAME =>  
'address', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'NONE',  
REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION => 'NONE',  
MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS =>  
'false', BLOCKSIZE => '65536', IN_MEMORY => 'false', ENCODE_ON_DISK  
=> 'true', BLOCKCACHE => 'true'}

1 row(s) in 0.0300 seconds

The describe command yields several useful pieces of information about each table. 
Each of the column families are listed, and for each family, the encoding, number of 
columns (represented as versions), and whether the deleted cells are retained are  
also listed.

Security information about each table can be gathered using the user_permission 
command:

user_permission 'testTable'

This command is useful for identifying the users who currently have access to the 
table. As mentioned earlier, user accounts are not as meaningful in Hadoop because 
of the distributed nature of Hadoop conigurations, but in some cases, knowing  
who had access to tables can be tied back to system logs to identify individuals  
who accessed the system and data.

The HBase backup collection
HBase provides a number of backup mechanisms that can be used for forensic 
collection of HBase data. The HBase snapshot and export utilities are the best methods 
for forensic collection. The snapshot utility generates a complete backup of the HBase 
database. The ile can be loaded into an HBase instance in the analysis repository via 
the restore_snapshot command during the analysis phase. The export utility creates 
SequenceFiles that are stored in HDFS. The SequenceFiles can be forensically copied 
from HDFS to forensic storage after the export utility process completes.

To create a snapshot, irst ensure that the hbase-site.xml ile's hbase.snapshot.
enabled property is set to true. If it is set to false, snapshots cannot be created. 
From the HBase shell, type:

snapshot 'testTable', 'snapshotName'
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This creates a snapshot in the ./hbase/snapshot directory. Once created, the snapshot 
directory should be copied along with the iles in the following directories:

• ./hbase/<tableName>/<regionName>/<familyName>/: This directory 
houses files that are still in use by HBase

• ./hbase/.archive/<tableName>/<regionName>/<familyName>/:  
This directory houses files no longer in use by HBase

The MD5 hash values of the iles can be computed from the snapshot iles and then 
compared to the MD5 hash values of the forensically copied snapshot iles. If the 
size of the iles is prohibitive for the use of MD5, control totals can be captured 
immediately after the snapshot is generated.

The export utility can be used to export an individual HBase table to SequenceFiles. 
The advantage of this method is that complete backups of tables can be generated 
to a common Hadoop ile format. To generate an export backup, run the following 
command from the client operating system (not HBase shell):

hbase org.apache.hadoop.hbase.mapreduce.Export 'testTable'  
/home/ec2-user/testTable

This generates the following output that serves as both a log and record count 
control total for the export:

File System Counters

FILE: Number of bytes read=18233900

FILE: Number of bytes written=18644961

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

Map-Reduce Framework

Map input records=2

Map output records=2

Input split bytes=101

Spilled Records=0

Failed Shuffles=0

Merged Map outputs=0

GC time elapsed (ms)=8

CPU time spent (ms)=0

Physical memory (bytes) snapshot=0

Virtual memory (bytes) snapshot=0
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Total committed heap usage (bytes)=238354432

HBase Counters

BYTES_IN_REMOTE_RESULTS=336

BYTES_IN_RESULTS=336

MILLIS_BETWEEN_NEXTS=327

NOT_SERVING_REGION_EXCEPTION=0

NUM_SCANNER_RESTARTS=0

REGIONS_SCANNED=1

REMOTE_RPC_CALLS=5

REMOTE_RPC_RETRIES=0

RPC_CALLS=5

RPC_RETRIES=0

File Input Format Counters

Bytes Read=0

File Output Format Counters

Bytes Written=508

The SequenceFile for this export is found in the /home/ec2-user/testTable 
directory:

-rw-r--r-- 1 ec2-user ec2-user  496 Mar 25 15:03 part-m-00000

-rw-rw-r-- 1 ec2-user ec2-user   12 Mar 25 15:03 .part-m-00000.crc

-rw-r--r-- 1 ec2-user ec2-user    0 Mar 25 15:03 _SUCCESS

-rw-rw-r-- 1 ec2-user ec2-user    8 Mar 25 15:03 ._SUCCESS.crc

These iles should be forensically copied to the forensic destination drive, with an 
MD5 hash value, if feasible.

The HBase query collection
HBase offers a very basic query language that is accessible from the shell. The query 
language enables iltering and aggregation to be performed, but the language is not 
as robust and lexible as a SQL variant. Collections are possible using the HBase shell 
language; however, the queries require some data manipulation to ensure that the 
results are returned correctly. The following command can be run from an HBase 
client to execute the HBase shell scan command and exclude any output that does 
not start with a space. That is, this command's output only includes HBase records 
and excludes summary information and Java output:

echo "scan 'testTable'" | hbase shell | grep "^ " >  
./outputDir/testTable.txt
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The output ile, testTable.txt, contains the records from testTable:

record1 column=account:ID, timestamp=1427286384337, value=100

record1 column=account:name, timestamp=1427286375900, value=John Doe

record1 column=address:country, timestamp=1427286409638, value=USA

record1 column=address:street, timestamp=1427286400653, value=123  
Main St

record2 column=account:ID, timestamp=1427286437526, value=101

record2 column=account:name, timestamp=1427286427052, value=Jane Doe

record2 column=address:country, timestamp=1427286447013, value=UK

The use of the HBase shell's scan utility is useful for extracting all values for a table, 
but its iltering capabilities are not as well-suited for iltering data for a collection 
as SQL methods. Another limitation of scan is that the output is limited to the 
format shown in the preceding output ile. Also, because of the lack of data type 
enforcement and the incapability to create multiple columns for each column family, 
the output of scan cannot be easily imported into a relational database without data 
transformations. An investigator should determine how many tables need to be 
extracted and whether data iltering needs to be applied before deciding whether  
to use scan.

Apache Phoenix is a SQL-wrapped layer over HBase that provides 
SQL-like access to HBase, and Hive can be connected to HBase for 
SQL querying. If Phoenix or Hive is part of the HBase environment 
in question, Phoenix or Hive queries can be run in place of HBase 
queries for the collection.

HBase collection via scripts
HBase data can also be exported using scripts that connect to HBase via the HBase 
client libraries. The HBase client libraries offer mechanisms for connecting to HBase 
data stores and then programmatically exporting data. Most scripting languages 
and Java offer granular data controls and iltering, methods for exporting data to a 
desired location, and performing other steps (for example, MD5 calculation). The 
script-based approach requires a strong understanding of the Hadoop architecture 
and the effect a script has on the Hadoop cluster.

Pig is a common scripting language for querying and extracting data from Hadoop 
applications. For HBase, the HBaseStorage() method can be used to connect to a 
particular table and extract the speciied column families and/or columns.
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The following Pig script can be run to collect the results from the testTable using 
the HBaseStorage() method into pipe-delimited records:

dataOutput = LOAD 'hbase://testTable' USING  
org.apache.pig.backend.hadoop.hbase.HBaseStorage('account:ID  
account:name address:street address:country', '-loadKey=true') as  
(id, accountID, accountName, addressStreet, addressCountry);

store dataOutput into 'results/extract' using PigStorage('|');

For more information about writing Pig scripts for HBase, visit 
https://pig.apache.org/docs/r0.9.1/api/org/apache/
pig/backend/hadoop/hbase/HBaseStorage.html.

HBase control totals
Control totals can be collected in two ways with HBase. First, the HBase shell 
command count can be used to capture the number of records for a particular  
table. This method can also be scripted from the HBase client operating system:

echo "count 'testTable'" | hbase shell >  
./outputDir/testTable_recCount.txt

The alternative is to collect the control totals through a Pig or MapReduce script at 
the time of data collection. This method is best because of the automation and the 
combined step of data collection and validation collection.

HBase metadata and log collection
HBase metadata is limited and not relevant to most investigations. The .META. and 
-ROOT- tables, which are described as metadata tables, only contain information 
about data regions and the locations of the data blocks. These tables are useful for 
HBase's internal operations but not relevant for most investigations. The primary 
sources of information about HBase can be found in the data tables, the hbase-
site.xml coniguration ile, and HBase log iles. Typically, HBase log iles are found 
in the /var/log/hbase directory. In this directory, the HBase and ZooKeeper log 
iles about all system activity are available. In addition, investigators can collect the 
SecurityAuth.audit ile in the /var/log/hadoop directory for information about 
application login attempts.

https://pig.apache.org/docs/r0.9.1/api/org/apache/pig/backend/hadoop/hbase/HBaseStorage.html
https://pig.apache.org/docs/r0.9.1/api/org/apache/pig/backend/hadoop/hbase/HBaseStorage.html
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Collecting other Hadoop application data 

and non-Hadoop data
Not all relevant Hadoop data is always stored and accessed within Hive, HBase,  
or even HDFS. Hadoop clusters are typically part of a larger data analysis ecosystem. 
This means that data lows into and out of Hadoop from other systems. Inside 
Hadoop, and at the Hadoop data ingress and egress points, data transfers and 
transformations may occur. These changes to the data may be relevant, and as  
such, the investigator may need to collect data from these systems.

Many other Hadoop applications are available for data analysis and storage. The 
Apache Foundation currently lists many projects and incubator projects that are 
deployed in production environments. Applications such as Cassandra, Chukwa, and 
Spark may be found in the course of an investigation as well as new ones (for example, 
Drill and Tajo). When a new or uncommon application is identiied, the investigator 
can apply the same collection process for each application, which irst requires 
determining whether the collection should be performed in HDFS or the application. 
If the collection should be performed through the application, the investigator 
should irst become well versed in the methods for collecting the data and review 
documentation to ensure that critical evidence is not overlooked. If possible, work  
with the system owner to understand the application. Otherwise, consider employing 
an expert in that system to assist with the collection process.

For more information about typical Hadoop implementations and 
the various Apache Hadoop applications in use, visit https://
wiki.apache.org/hadoop/PoweredB.

Hadoop is often designed to be part of a larger data environment. Data lows into 
Hadoop from various sources, such as web servers and customer relationship 
management (CRM) systems. Data can also low into Hadoop from other databases 
or data warehouses as part of the analysis low. Hadoop performs actions on the 
data, such as data aggregation, transformation, and reporting. Hadoop then outputs 
the data into reports or as data lows into other systems.

https://wiki.apache.org/hadoop/PoweredB
https://wiki.apache.org/hadoop/PoweredB
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The following igure illustrates a simpliied environment and how data lows into 
and out of Hadoop:

Figure 4: A sample organizational data system architecture

This environment shows ive major systems that serve as inputs to both the traditional 
data warehouse environment and the Hadoop cluster. The data warehouse and 
Hadoop share data, and all output lows to a business intelligence server by way of 
a data mart and Hadoop analytics environment. In real-world environments, subsets 
and various versions of data are distributed to the data warehouse and Hadoop 
environments, near-line and ofline versions of the data are stored, and some or all  
of the various components are deployed in a cloud environment.

Some of the common solutions that interface with a Hadoop cluster include:

• Hadoop reporting and visualization solutions

• Hadoop data warehouse solutions

• Records management and compliance solutions

• Traditional data warehouses

• Business intelligence software

Understanding how data lows into and out of Hadoop is important for the 
following reasons:

• The other systems may be easier to collect

• The other systems may retain data that was purged by Hadoop

• Data was transformed inside or outside of Hadoop, and the form of  
data outside of Hadoop is relevant to the investigation

• Data from the other systems are valuable for data validation
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Each of these points highlight the fact that data can be found in various locations 
and that an investigation does not always rely on a single system. Rather, Big Data 
can be part of a larger organization-wide investigation. In some cases, only a single 
system is required. In other investigations, such as fraud investigations and cases 
involving data manipulation, multiple systems need to be analyzed. The key is for 
the investigator to understand the requirements of the investigation and clearly 
identify the available systems and the data they store.

Summary
Collecting evidence through Hadoop applications instead of HDFS offers a number 
of beneits. The applications offer a quicker, easier means to access the data. Rather 
than collecting data from each node of the cluster, applications bridge all of the 
nodes and offer a means to collect data from a single point. Many application-based 
collection methods also offer an up-front method to cull out the data and limit it to 
only the relevant data. This is a huge beneit when dealing with terabytes or petabytes 
of data. In the case of petabytes, a full collection is not currently feasible for most 
investigations. Application-based collections also make the analysis phase easier. 
Collecting data from applications enables the investigator to begin the analysis more 
quickly, instead of spending a large amount of time carving out data and piecing 
together the data.

Regardless of the application, the same process and concepts can be applied. This 
chapter focused on Hive and HBase, which are the two most prominent Hadoop 
data storage and analysis packages. However, many other open source, commercial, 
and proprietary applications exist. The same concepts and principles can be applied 
to any other application. First, determine which collection methods are available (for 
example, query or backup) and then assess which of those best meet the needs of 
the investigation. During the selection process, the investigator needs to be mindful 
of the impact of that collection process on the source system and the output format 
of the evidence. The collection should be documented, and control totals or other 
validation information must be collected.

The next two chapters cover the analysis phase. The evidence that has been collected 
can now be put into a format for analysis, and the analysis can be conducted utilizing 
known techniques, such as fraud detection algorithms and descriptive statistics.
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Performing Hadoop 

Distributed File  

System Analysis
The previous two chapters covered the data collection process. Chapter 4, Collecting 
Hadoop Distributed File System Data discussed ilesystem data collection, with a focus on 
how to collect Hadoop Distributed File System (HDFS) data in several different ways. 
Chapter 5, Collecting Hadoop Application Data, went through the process of collecting 
application-level Hadoop data. The analysis phase begins after the collection process, 
and the type(s) of analysis chosen depend on the collection method that was selected. 
This chapter covers examples of the main types of analyses that are conducted against 
the ilesystem-level data collection, which was covered in Chapter 4, Collecting Hadoop 
Distributed File System Data.

Evidence collected from the HDFS ilesystem can be analyzed in several ways. 
First, evidence can be reconstructed into its original format for analysis. This is 
typically the case when a Hadoop cluster is ofline during collection and each 
node is forensically imaged. This process requires data reconstruction—such as 
ile carving—and is the most time-consuming one. A second method is analyzing 
the logical iles collected from a Hadoop cluster. Metadata analysis and data 
reconstruction can be performed on the logical ile collection. A third method is log 
and coniguration ile analysis to determine how the cluster was set up and what 
events occurred. These analyses can be run independently or, more typically, in 
concert as part of a larger investigation.
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The forensic analysis process
Forensic analysis is a process. Investigations are rarely solved in a linear manner. 
Typically, an investigation begins with a hypothesis that is tested against the data. 
During the analysis, additional clues or details are uncovered that change or add to 
the original hypothesis. The process continues iteratively until the investigator can 
determine exactly what occurred and can provide supporting evidence from the 
data. This iterative process applies to both traditional computer forensics and Big 
Data forensics. The following diagram illustrates the steps of the analysis phase:

Figure 1: The analysis process

The starting point of the analysis phase is the investigation hypothesis. The 
hypothesis is based on the facts of the case and is often developed well in advance  
of the analysis phase. One example of a hypothesis is, "Former employee X stole 
trade secrets from Company Y, and then implemented a solution based on those 
trade secrets for his new employer, Company Z."

An analysis plan is developed based on the hypothesis and a combination of factors. 
The following are the key considerations for developing a plan in the analysis phase:

• The requirements of the investigation

• The available evidence

• The relevant non-Big Data evidence
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Analysis plans are useful for planning and directing the analysis. In highly complex 
investigations, the analysis can involve hundreds or thousands of analyses. Organizing 
those analysis steps into a plan is critical for ensuring that all analysis is completed. 
A plan can be as simple as, "Identify all inancial transactions from employee X on 
January 2 in the Hive table trades." Or, the analysis can involve comparing multiple 
data sources to identify anomalies that indicate a particular pattern. Regardless, 
analysis plans are developed that address the key points of the hypothesis vis-à-vis 
the available evidence. They also incorporate additional evidence that can corroborate 
or be used to cross-validate the results. Additionally, analysis plans account for time 
limitations and the type of analysis that is admissible in the presentation phase.

The analysis itself takes on many different forms. In some cases, information about the 
data is critical, such as ile date modiications, system conigurations, and the volume 
of data. In other situations, the content of the data is what requires analysis. Most Big 
Data investigations focus on the data contents. The data is loaded into an analysis 
repository, and queries are run against the data to identify the characteristics of the 
data using anomaly detection, descriptive statistics, and/or inferential statistics.

The results of the analysis are reviewed, and based on those results, the analysis 
is concluded or the analysis is modiied based on the indings, or lack thereof. 
Investigators take the analysis indings and determine whether the indings are 
suficient, unbiased, and complete. The results should tell a compelling story that  
is free of bias. If contradictory results are found, those results should not be 
discarded. Rather, they should be analyzed further.

Forensic analysis goals
There are a number of goals in the analysis phase. No two investigations are the 
same, so the goals will vary by investigation. One goal that is common among most 
investigations is properly scoping the evidence. The investigator may not know 
what information can be found in the evidence or what the smoking gun even is. 
Scoping the evidence is the process of surveying the evidence and getting a better 
understanding of the overall set of evidence. Another goal is extracting evidence. 
Collected evidence may not be in a format that is conducive to further analysis.  
The evidence must irst either be further extracted or converted into a format that  
can be reviewed by the investigator.
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The obvious goal of the analysis phase is the actual analysis. The analysis should 
determine what the facts contained in the evidence mean and how they relate to  
the other facts of the investigation. The analysis should be:

• Timely: The analysis is performed within the time constraints of  
the investigation

• Complete: All relevant evidence is analyzed

• Accurate: The analysis is performed correctly and without bias

• Meaningful: The analysis is conducted in a way that tells a logical  
story that can be understood by others

Forensic analysis concepts
Several concepts are important in the analysis phase. They ensure the investigation 
is performed properly and within the practical realities of an investigation. These 
analysis concepts are deined in the following list:

• Anomaly/Outlier: A result or data point that is unexpected and/or not  
of a normal pattern.

• Bias: Any form of prejudice for, or against, a party; or a preconceived fact  
that is not backed by evidence (for example, confirmation bias).

• Completeness: The relevant evidence was analyzed fully.

• Cross-validation: The validation of results from one data set against another.

• Data reduction: The minimization or culling of irrelevant data to make the 
analysis data set a more manageable size. This process is important in the 
early stages of Big Data analysis to ensure the analysis can be performed  
in a timely manner.

• False negative: An analysis result that incorrectly indicates the absence  
of a condition or attribute.

• False positive: An analysis result that incorrectly indicates the presence  
of a condition or attribute.

• Hash analysis: The verification and comparison of hash values against 
source evidence or against a list of known hash values for common files.
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The challenges of forensic analysis
Several dificulties can arise during the course of a Big Data investigation. The 
system may have been intentionally altered in an attempt to thwart the investigation, 
or security measures may be in place that hamper or prevent the investigation.  
These issues can be addressed in a number of ways and should be tested for  
during the analysis phase.

Anti-forensic techniques
Anti-forensic techniques are intentional steps taken to defeat forensic analysis.  
Anti-forensic techniques are problematic because they are aimed at destroying 
evidence and/or creating false or misleading evidence. If an investigator does  
not control for anti-forensic techniques or perform analysis to determine whether 
anti-forensics was applied, the analysis could be completed using lawed data.  
Some advanced techniques include steganography and secret data channels. 
However, the most common anti-forensic techniques that apply to Big Data 
investigations include the following:

• Log deletion/modification
• Record deletion/modification
• Injecting large volumes of data around key data

The best methods for combating anti-forensic techniques are 1) cross-validation of 
existing evidence with other Big Data evidence as well as evidence from other sources, 
and 2) anomaly detection. Several methods for doing this include comparing log ile 
entries against data sources and comparing sets of mirrored data sets. For example, 
comparing the Sqoop application log iles against the data imported into Hive via 
Sqoop is one method for determining if records were deleted from Hive or if the 
logs were modiied. The anti-forensic techniques can span multiple data sources, so 
the investigator should be aware of the possibility of getting a false-positive when 
validating only two data sources.

Data encryption
Hadoop and its applications support end-to-end encryption. When encryption 
is conigured and turned on, the cluster's data is encrypted at rest and in transit. 
At-rest encryption means that the data stored in the cluster is encrypted, which 
is problematic if the evidence was collected via a forensic image with the cluster 
powered off. In-transit encryption means that the data is encrypted while it is  
being transferred across the network. Encryption is not an issue when the data  
is forensically collected from an HDFS client or directly through Hadoop.
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If the evidence is encrypted, the forensic investigator should request the encryption 
keys. The Hadoop Key Management Server (KMS) is the proxy server that manages 
Hadoop encryption keys and would be the location of the keys for the cluster. 
Encryption keys are required to be turned over in criminal and civil litigation cases 
in the US, and most other courts also require that the party who holds the encryption 
keys turn them over if they are the only means to decrypt the data.

For more information about Hadoop encryption, visit http://
hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/TransparentEncryption.html.

Analysis preparation
Several steps are taken at the onset of the analysis phase to prepare the forensic 
environment for the analysis. The irst step is to attach a copy of the evidence to the 
environment in a read-only manner. Because the amount of forensic data is large in 
a Big Data investigation, the hard drives containing the evidence should be attached 
to a suficiently large storage device in the read-only mode. The Big Data analysis 
environment should be attached to a network-attached storage (NAS), or other 
large-scale storage solution. Cloud environments are becoming increasingly common 
in forensic investigations, but the investigator must ensure that proper security 
measures are in place and that such storage is acceptable for the investigation.

Cloud computing has several advantages for Big Data investigations. 
These include distributed computing and less of an infrastructure 
burden being placed on the investigator. However, data upload speeds 
to many cloud computing environments are slow, and loading data to 
a cloud raises security issues. The investigator should ensure that cloud 
storage is allowed for that investigation and that proper security and 
data privacy controls are in place.

The analysis environment also needs to include the software for performing the 
analysis. One or more analysis machines need to be set up with the analysis software 
and connected to the copied read-only evidence. A standard tool for Big Data 
investigations is database software. These software packages, such as Microsoft 
SQL Server, MySQL, and Oracle, are valuable tools for loading and analyzing large 
volumes of Big Data evidence. Programming languages and data visualization tools 
are also useful for these purposes.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http:///


Chapter 6

[ 151 ]

Databases are excellent for analyzing transactional data, but other tools may be 
required for analyzing HDFS data. HDFS data can require extensive data preparation 
and the use of other tools before the data can be loaded into a data repository. The 
subsequent section in this chapter, Analysis, covers this topic and several of the 
available tools used by investigators.

Evidence should be re-inventoried at this stage to ensure that all data has been brought 
into the analysis environment. Information from the documentation about which 
information was collected during data collection is compared to the evidence in the 
analysis environment. Control totals should also be validated at this point, if possible.

Evidence can be culled at this stage in some cases. If a known subset of data is all 
that is needed for the analysis phase, the other data can be moved out of the analysis 
repository. The moved data, often referred to as culled data, should still be available 
should a need for it arise later, but moving that data out of the analysis repository 
can make the analysis process smoother and faster.

Analysis
The ile-level analysis is the analysis that is performed on logical iles or forensic 
images. This analysis differs from data content analysis, because the focus of this 
analysis is to extract, or piece together, data containers or collect metadata information. 
For Big Data investigations in which nodes were individually imaged, this is the  
type of analysis whereby the images are analyzed and the contents of the cluster  
are pieced back together for further analysis.

Because no two investigations are the same, analysis techniques serve as tools in 
a toolbox and can be combined or run in various orders and combinations. The 
primary ile-level analyses are:

• Keyword searching

• File and data carving

• Metadata analysis, such as file modification timeline analysis

• Cluster reconstruction

Keyword searching and ile and data carving
Two methods for analyzing HDFS evidence are keyword searching and ile and 
data carving. Keyword searching is the technique of identifying sections of data that 
contain a particular keyword or set of keywords. File and data carving is the process 
of extracting iles or data containers out of a forensic image. A forensic image is just 
a large data ile, but by carving the iles and data containers out of the image, the 
investigator can analyze the evidence in their original structures and formats.
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Bulk Extractor
Bulk Extractor is a keyword search and ile carving tool that can extract text, 
graphics, and other information from forensic images. This tool is an excellent 
method for previewing data by way of searching entire dd images or a logical ile 
collection without needing to reconstruct data or carve iles. To extract text using 
Bulk Extractor, perform the following steps:

1. Download Bulk Extractor version 1.5 from http://digitalcorpora.org/
downloads/bulk_extractor/.

2. Run Bulk Extractor Viewer, and load the Bulk Extractor tool via  
Tools | Run bulk_extractor.

3. Load the directory of iles or dd image to be scanned by selecting the 
Image File option and providing the path to the dd image ile. Note that 
Bulk Extractor provides a number of built-in scanners that look for forensic 
artifacts and text strings that match known patterns. Additional words  
or text patterns can be provided to Bulk Extractor:

Figure 2: Bulk Extractor image load

http://digitalcorpora.org/downloads/bulk_extractor/
http://digitalcorpora.org/downloads/bulk_extractor/
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4. Click Submit Run. After the process completes, the following summary
screen is shown as illustrated in the following igure which includes the
MD5 hash value and total amount of evidence analyzed:

Figure 3: Bulk Extractor processing

5. Bulk Extractor outputs a report for each scanner option selected. The reports
include a copy of the string matches and a histogram report of the most
frequent results, such as the most frequent email addresses or domains.

Bulk Extractor works well when relevant evidence is unencrypted and 
uncompressed. The tool is an excellent method for the investigator to search for 
relevant text strings and also to look at the frequency of text strings to get a better 
understanding of the data without needing to structure and load the data to an 
analysis repository. If the data is encrypted and/or compressed in a nonstandard 
format, Bulk Extractor cannot extract the text and provide results.

Investigators should be careful when relying on this analysis to gain a complete 
understanding of the text in the evidence collection. If a forensic image was performed 
on the node's local operating system and Hadoop storage, the HDFS data may not  
be extracted by Bulk Extractor, depending on the Hadoop coniguration settings.  
For more information about Bulk Extractor, read the documentation available at 
http://forensicswiki.org/wiki/Bulk_extractor.

http://forensicswiki.org/wiki/Bulk_extractor
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Autopsy
Autopsy is a freeware forensic tool that provides a number of useful functions, 
including keyword searching and ile and data carving. Autopsy is a graphical 
version of the Sleuth Kit, another freeware forensic tool that is widely used in 
investigations.

To carve iles and data using Autopsy, perform the following steps:

1. Download and install Autopsy version 3.1 from http://www.sleuthkit.
org/autopsy/.

2. Run Autopsy, and select New Case.

3. On the New Case Information screen, as illustrated in the following igure, 
enter the Case Name and Base Directory to indicate where to store the 
Autopsy output, and click Next:

Figure 4: Autopsy case setup

4. Enter the Case Number and Examiner information, and click Next. The Case 
Number is typically a sequential, numerical identiier for each set of evidence. 
The following igure shows a coniguration with Case Number 001:

http://www.sleuthkit.org/autopsy/
http://www.sleuthkit.org/autopsy/
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Figure 5: Autopsy case setup continued

5. At this point, the new case has been opened and the evidence can be  
added. Click on Add Data Source to add the forensic image or directory  
of evidence iles.

6. Enter the data source information, as illustrated in the following igure.  
Select either Image File or Logical Files, and enter the path to the image  
ile or logical iles. Click Next:

Figure 6: Autopsy evidence input
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7. Select all ingest modules that apply to the investigation. For testing purposes, 
select all options and ensure that Process Unallocated Space is checked. That 
provides slack space analysis capabilities, including deleted ile recovery:

Figure 7: Autopsy evidence input continued

The carving tool provided by Autopsy ile view enables the investigator to view 
audio, video, picture, document, and other ile types from the source ilesystem and 
slack space. After the evidence has been ingested into Autopsy, the investigator can 
view the iles under the Views menu, where the list of images, videos, and other iles 
is available. The menu, as illustrated in the following igure, is divided into several 
different types of views: 1) File Types, 2) Recent Files, 3) Deleted Files, and 4) MB  
File Size (grouped by ile size).

Figure 8: Autopsy file viewer
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Files can be extracted through the ile carver by right-clicking on the ile and 
selecting Extract File(s). Any type of ile, deleted or not, can be extracted using this 
method. The iles are then extracted to the location speciied by the investigator.

Files can also be tagged in Autopsy for later extraction or further analysis. The 
investigator can right-click on a selected ile and select Tag to save the ile with  
tag information for later analysis.

Autopsy also provides keyword searching capabilities. In the top-right corner, 
Autopsy has the Keyword Search and Keyword Lists menus. Click on Keyword 
Search to run a one-time search. The search can run the following three types  
of searches:

• An exact word match

• A substring match

• A regular expression match

When the search is run, Autopsy searches all extracted text from the evidence and 
returns the list of iles with one or more matches and all associated metadata.

Multiple search terms can be searched in a batch via the Keyword Lists menu. 
Clicking on Keyword Lists | Manage Lists brings up the search settings, where the 
investigator can add a list of multiple search strings. A list is created and saved after 
all terms have been entered. Then, the investigator can search the evidence using that 
list by clicking on the dropdown menu next to Keyword Lists and selecting the list 
to use.

The results of keyword searches can be exported as a report ile that shows the ile 
that matched and the search term. Let's see the steps to generate a report ile:

1. Click Tools | Generate Report.

2. Select Results | Excel or Results | HTML.

3. Select All Results or Tagged Results, and click Finish.

A report ile is generated that displays which iles match the search terms.

Reports that are generated by forensic software are preferable over 
manual notes, unless the reports do not capture the details required 
for the analysis.
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Metadata analysis
Analyzing metadata is typically not as important or relevant for a Big Data 
investigation. Because HDFS data is distributed and the data is created, modiied, 
and accessed using shared or system accounts, the metadata is not as valuable as it 
is in typical forensic investigations, where a single user's activity is important and 
discernible. Metadata can still be important, though. Information about when iles 
were last accessed or created can be retrieved.

Autopsy has a number of powerful metadata analysis tools for understanding when 
data was created, modiied, and accessed; who created the data; and the types of 
events that occurred. Metadata can be updated by various mechanisms and can 
relect the local operating system's timestamps and permissions, or it can relect 
application's information about the data.

File activity timeline analysis
Autopsy's timeline feature generates graphical, interactive timelines based on the 
evidence's Modiied, Accessed, and Created (MAC) metadata times. To create a 
timeline, click Tools | Timeline. Autopsy generates a timeline based on the loaded 
evidence. If MAC times are not available for a ile, the ile is not represented in  
the timeline.

The following igure shows the timeline feature:

Figure 9: Autopsy timeline viewer
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The Autopsy timeline is an interactive tool that gives the investigator the ability to 
review events in a number of ways:

• Zoom: The time units, event type, and description can be adjusted to show 
more or less information on the timeline; the investigator can zoom in on 
specific dates and times down to the second.

• Filters: Text filters, known files, and types of events can be included or 
excluded from the timeline, reducing noise events.

• Table/Thumbnail Preview: The list of files and thumbnail previews of the 
files can be viewed, and the list of strings and metadata are also provided 
when an investigator selects a file.

Timeline analysis is performed by one or more of the following approaches:

• Identifying key epochs and reviewing events in the same time period

• Looking for key clusters of events and homing in on those

• Tracing key events to related events to build a timeline of key events

Other metadata analysis
Other forms of metadata can be analyzed with the help of Autopsy and Excel (or a 
database). Autopsy stores the available metadata for every ile, and that metadata  
can be extracted to a tab-delimited text ile for analysis in another program:

1. Select Tools | Generate Report.

2. In the Report Module screen, select Files | Text.

3. Select the metadata to extract (select all for this example).

4. Click Finish, and note the location of the output ile.
5. Open Excel, select the Data tab from the ribbon, and click From Text.

6. Navigate to and select the Autopsy-generated text ile.
7. Import the text ile as Delimited with the Tab delimiter.

8. Click Finish.

The following metadata can now be analyzed:

• Filename

• File Extension

• File Type
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• Deleted/Not Deleted
• Last Accessed/Created/Modified
• Size

• Hash

• Permissions

• File Path

Depending on the nature of the investigation, several types of metadata analysis  
may be useful and include:

• Identifying anomalies or outliers based on the number of such files or  
having an extremely large or small size

• Locating files that meet a key characteristic, such as deleted files or files 
accessed during a key time period

• Identifying patterns within the data, which could involve determining  
file activity during normal business hours and then locating outliers

• Finding files related to known relevant files to see if additional clues or 
information can be spotted from files of a certain related characteristic  
(for example, the same file path or extension)

The number of iles that are listed by Autopsy in the export may exceed the limits 
for Excel analysis and may require the use of a database. Any tool that can aggregate 
large sets of data and lets the investigator work with individual records is suficient 
for this type of analysis.

The analysis of deleted iles
One form of analysis is to speciically analyze deleted iles for indications of certain 
actions or behavior that arose. Deleting iles before the investigator performs a 
collection is a common technique to thwart or interfere with an investigation. The 
iles can also be deleted accidentally or as part of an automated data purging process. 
Regardless, the deletion of iles, also called spoliation, is an issue investigators 
regularly encounter in the course of analyzing evidence.

There are several types of ile deletions that can occur for a Big Data investigation:

• Files were deleted from the node's local operating system

• Files were deleted from HDFS

• Hadoop data was deleted from inside a file
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Recovering iles that were deleted from the node's local operating system is a 
straightforward process when a forensic image of the node was collected. In Autopsy, 
select the Deleted Files view, and expand the list to see the list of all deleted iles that 
were identiied. This list shows the iles that were deleted and the deletion date. The 
iles can be sorted by ilename, directory, MAC times, ile size, and other metadata.

The following analyses and steps can be performed against deleted iles in Autopsy:

• Matching hash value analysis: Right-click on the file and select Search for 
files with the same MD5 hash.

• Keyword searches: Run a keyword search and sort the results by the 
Flags(Dir) to find the unallocated files.

• Tagging for reporting or further analysis: Right-click on the file and select 
Tag File.

• File preview: Right-click on the file and select Open in External Viewer.

• File date filtering: Right-click on the file and select Show only rows where.

The recovery of HDFS deleted iles from a forensic image of a node requires 
additional steps to irst identify the HDFS data blocks and iles. After they have been 
reconstructed, analysis can be performed on the HDFS deleted iles and data. If the 
Hadoop iles were copied logically, the only deleted data that can be recovered are 
the iles from the .Trash directory. If iles were collected from the .Trash directory, 
those can be analyzed in the same manner as non-deleted iles, because no additional 
steps are required to recover the iles.

HDFS data extraction
When a node's operating system and Hadoop storage is imaged, the HDFS data 
is embedded in the image. Those HDFS iles need to be extracted from the image 
for analysis to be performed. The process for extracting the iles is to carve out the 
DataNode data and then extract the data blocks from the DataNode data to piece 
together records or HDFS iles. Currently, no software packages exist for this, so the 
process is manual and requires careful analysis. This process is not ideal for large 
Hadoop clusters but may be necessary if no other options exist.

There are a number of HDFS iles that will be encountered in an HDFS data 
extraction process:

• Hadoop log files (for example, application and MapReduce logs)

• Input data files

• Hive and HBase files

• Job configuration files
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Some or all of these iles can be relevant depending on the investigation. Being able 
to locate and extract these types of iles is important for analyzing relevant data.

The process for extracting HDFS data from a forensic image has several steps:

1. Identify the location of the DataNode data in the local operating system.

2. Locate the DataNode data block iles in the local operating system using  
that path.

3. Analyze the data blocks to identify the relevant iles.
4. Extract the data into a ile for analysis. The process is similar to any other 

type of ile carving, except the local operating system layer requires an  
extra step for identifying the data.

To identify the location of the DataNode data in the local operating system, ind the 
hdfs-site.xml ile in the forensic image. Using Autopsy, this can be done in two 
ways: 1) navigate to the standard directories where hdfs-site.xml is stored, 2) 
run a keyword search for hdfs-site.xml and sort the results by ilename for that 
ile. After the ile is located, open the ile, and ind the value of the dfs.data.dir 
property. That location is the root directory where the DataNode block iles  
are located.

Next, go to that directory in the mounted forensic image in Autopsy. The directory 
should contain a VERSION ile and a directory with this structure, BP-<random 
integer>-<IP address>-<creation time>. Navigate to the BP directory, and  
then navigate to the BP directory's current subdirectory. Inside this folder is data 
that can be analyzed. The following should be located in the current subdirectory:

• dfsUsed: The storage report file.

• VERSION: The information about the namespace and current  
block pool ID.

• finalized: The HDFS data blocks that have been written.

• rbw: The rbw directory with data blocks still being written to  
the filesystem.

The current, finalized, and rbw subdirectories can contain DataNode block 
iles that were deleted in the local operating system. These iles can be recovered 
and analyzed, similar to DataNode block iles that are active and visible in the live 
system. Autopsy can be used to recover these deleted iles. Note that these iles are 
automatically deleted by Hadoop during the data writing process, so the presence  
of deleted iles does not necessarily mean that the iles were intentionally deleted  
by someone.
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The iles in the finalized and rbw directories should now be extracted for analysis. 
There are two types of iles. The iles with the .meta ile extension contain checksum 
information that is used by Hadoop to verify the integrity of data blocks. The 
iles without an extension are the data blocks, which are the valuable iles for an 
investigation. The inalized directory should contain the most data, and unless the 
Hadoop cluster was particularly active, the rbw directory may not contain data, 
although it probably contains deleted iles.

The following screenshot shows a subset of the iles from the DataNode's finalized 
directory for a single node forensic image:

Figure 10: DataNode block files

Next, select all of the DataNode block iles for extraction. Right-click on the selected 
iles, and select Extract ile(s) to extract the iles for analysis. Typically, the best 
method is for the investigator to extract all iles and analyze each. If the number of 
DataNode block iles makes this infeasible, the investigator can preview the iles 
using Autopsy to locate the potentially relevant iles, or focus on data block iles 
from a speciic period of time if they know the date ranges of interest.

The next step is to analyze the iles using a hex editor.

Hex editors
Hex editors are a part of every forensic investigator's toolbox. Hex editors are 
applications that display the binary contents of a ile in a number of display formats, 
most commonly represented in hexadecimal values. These applications are important 
for forensic investigations because forensic investigators can look into the contents of 
a ile. Unlike a text editor, the investigator can use a hex editor to see non-text values, 
such as ile header signatures and binary ile formats. Hex editors also give the forensic 
investigator the ability to copy binary chunks of data and create new iles with that 
data. This means that an investigator can manually carve out iles or data records from 
a ilesystem or image ile.
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To begin working with a hex editor, download and install the free HxD hex editor 
from http://mh-nexus.de/en/hxd/.

Open one of the DataNode block iles in HxD. The following screenshot shows 
the irst ten lines of the hex editor data for one of the DataNode block iles, which 
contains the data imported into HDFS earlier in this chapter:

Figure 11: The hex editor analysis of a DataNode block file

The hex editor shows the hexadecimal value of the bytes based on the offset (in the 
far-left column) and the location (in the top row). The ASCII value is shown on the 
far right.

The ile in the previous screenshot is easily recoverable from the DataNode block 
because the ile was stored as plaintext in HDFS. The entire ile can be analyzed in 
a database without further carving from this format. If a subset of the ile is needed, 
highlight the sections of the ile that need to be extracted, and select File | Save As. 
If the amount of data for a single HDFS ile is greater than the HDFS block size, the 
data will be found in multiple DataNode block iles.

The data shown in the previous screenshot is actually found in two different DataNode 
block iles. The data was loaded into HDFS, which was stored in a block. Earlier in this 
book, the HDFS ile was loaded into Hive during an example completed in Chapter 2, 
Understanding Hadoop Internals and Architecture which created a new copy of the data in 
the HDFS ./hive directory. If multiple copies of the same data are found during this 
DataNode analysis, the investigator can infer that the data may have been loaded into 
a Hadoop application, such as Hive.

Hex editors are valuable tools when investigating binary formats of data. Compressed 
and other binary formats cannot be viewed and directly loaded into a database 
for analysis. Instead, the iles can be extracted and then converted into text format. 
Common formats that require this are SequenceFiles and MapFiles. Both types 
have header and trailer information, metadata, and sync blocks—and they can be 
compressed. The data requires conversion to a text format, but before the data can be 
converted, the ile type must be identiied. This is accomplished by reviewing the ile 
header. SequenceFiles have headers that begin with SEQ4 or SEQ6.

http://mh-nexus.de/en/hxd/
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The following screenshot illustrates a SequenceFiles header:

Figure 12: An example SequenceFiles header

Cluster reconstruction
Cluster reconstruction can be performed on different levels and in different ways. 
The simplest way is reconstructing the cluster from an HDFS logical ile collection. 
These are the iles from the node's HDFS that were copied to storage. The method for 
reconstruction is to build up the collection of HDFS iles into a single repository and 
de-duplicate iles based on MD5 hashes. This method gives the investigator a static 
snapshot of the iles available in the cluster. It does not give a snapshot of Hadoop 
data that was not yet written to the ilesystem, and it may not yield all of the  
Hadoop application's data.

Forensic reconstruction refers to reconstructing the forensically-collected 
data, not creating a replica Hadoop cluster using the data. The goal of 
cluster reconstruction is to piece together the acquired data into a usable 
format for analysis.

The second method is reconstructing the cluster using the forensically-imaged node 
data. This is a complex process by which the following steps are taken:

1. Analyze the NameNode edits and fsimage iles to determine the iles and 
application data required and the corresponding block ID information.

2. Extract the DataNode data blocks based on the block IDs identiied in the 
previous step.

3. If the ile is spread across multiple blocks, piece together the blocks.
4. If necessary, recover deleted data to identify the cluster's status at  

speciic points in time.
The reconstruction begins by reviewing the edits and fsimage iles. Both iles are 
run through the Hadoop Ofline Image and Ofline Image Viewer to convert them 
into a readable format. Once converted, the iles will contain the directory names and 
ilenames, along with the corresponding block IDs. The DataNode block iles that 
correspond to the relevant block IDs are extracted, and the contents can be put into  
the analysis repository with the correct directory name or ilename. Because DataNode 
blocks can be replicated across multiple nodes, the investigator should be careful not  
to introduce duplicative data to the analysis repository.
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The following igure illustrates the process for reconstructing the cluster's data:

Figure 13: A cluster reconstruction of allocated data blocks

In some cases, the investigator is only required to analyze one application or a 
speciic type of data. The entire cluster does not need to be analyzed to achieve  
this. Instead, the edits and fsimage iles should be reviewed to identify the  
relevant data blocks. Those data blocks should then be targeted.

As an example, the following steps can be performed to locate and reconstruct a  
ile named wiki_page_hits.txt.

First, the edits ile is reviewed to identify the relevant data blocks:

<RECORD>

  <OPCODE>OP_ADD></OPCODE>

  <DATA>

    <TXID>18</TXID>

    <LENGTH>0</LENGTH>

    <INODEID>16937</INODEID>

    <PATH>/wiki_page_hits.txt._COPYING_</PATH>

  </DATA>

</RECORD>

<RECORD>

  <OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>

  <DATA>

    <TXID>19</TXID>

   <BLOCK_ID>1073741825</BLOCK_ID>

  </DATA>

</RECORD>
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Next, the fsimage ile is reviewed to verify the relevant data blocks and determine 
the replication factor:

<inode>

  <id>16397</id>

  <type>FILE</type>

  <name>wiki_page_hits.txt</name>

  <replication>1</replication>

  <mtime>1424185545147</mtime>

  <atime>1424185543359</atime>

  <perferredBlockSize>134217728</perferredBlockSize>

  <permission>root:supergroup:rw-r--r--</permission>

  <blocks>

    <block>

      <id>1073741825</id>

      <genstamp>1001</genstamp>

      <numBytes>6322</numBytes>

    </block>

  </blocks>

</inode>

Both the edits and fsimage iles conirm that only one DataNode block ile must 
be extracted. Block number 1073741825 needs to be extracted, and given that the 
replication factor is set to 1 in fsimage, the investigator does not need to concern 
himself with potential data block duplication, because only one DataNode block  
ile would exist.

Next, the corresponding block ile is identiied. That ile is found in the  
DataNode ./finalized directory, as illustrated in the following screenshot:

Figure 14: The DataNode block file

If the replication factor was set for 2 or more, only one of the DataNode block iles 
would be required; however, the investigator would irst need to compare the hash 
values of all duplicate iles to ensure that they are true duplicates.
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The ile is then extracted and saved with its ilename and relevant metadata for 
subsequent analysis.

Unallocated iles can also be recovered using this method if a speciic point-in-time 
snapshot of the cluster is needed. Because the local operating system may still have 
the previously deleted DataNode block iles, archived versions of the fsimage and 
edits iles can be analyzed vis-à-vis the unallocated DataNode block iles recovered 
by Autopsy. Using the same method as described earlier, the information in the 
entries in fsimage and edits are applied to the unallocated DataNode block iles, 
and the iles are extracted. Hadoop rarely reuses block IDs, so the investigator can 
reliably determine if a DataNode block ile corresponds to the fsimage and edits 
ile entries for that block ID without concern about a mismatch. The ilename of 
the archived version of the fsimage ile has the maximum block ID contained in 
the ile, and the ilename of the archived version of the edits ile has the block ID 
ranges contained in the ile. This means that for a given block ID, the investigator 
can identify both the fsimage and edits iles that apply. The following diagram 
illustrates the process for extracting unallocated DataNode block iles:

Figure 15: Unallocated DataNode block files

Coniguration ile analysis
Coniguration iles are useful for forensic investigations because of the information 
they provide about how the system was set up, including how the coniguration 
is unique and where data sources are located. Coniguration ile analysis, a form 
of static analysis, is typically only performed when the investigator needs to know 
more about how a cluster was conigured and operated, and the types of Hadoop 
applications and services that were used. Coniguration ile analysis is sometimes 
an overlooked part of a forensic investigation, and it can be performed in both the 
identiication and analysis phases.
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The following types of coniguration iles can be analyzed:

• The local operating system

• Hadoop

• Hadoop application

The goal for analyzing coniguration iles is to build a map of the various layers  
of a cluster's coniguration, and then ill in the relevant information about how 
Hadoop is conigured.

Linux coniguration iles
Currently, the local operating system for Hadoop clusters is Linux, unless the  
system is a non-production development server. This means that the local  
operating system coniguration iles are Linux iles. There are many different  
Linux coniguration iles, and the following is a list of some of the most useful  
for Hadoop forensic investigations:

Filename Description

/etc/hosts This contains list of known hosts in the local network

/etc/hosts.allow 
(deny)

This contains access control that permits or blocks 
specific hosts from accessing the system

/etc/rc.d/rc/rcX.d
This contains the scripts that are run at startup based on 
the run level "X," where "X" ranges from 1-5

/etc/fstab
This contains the list of filesystems currently mounted by 
the system

/etc/group
This contains the valid group names and users included 
in each group

/etc/syslogd.conf
This contains the syslogd daemon configuration file, 
which controls the system logging received from 
applications

The following are some of the types of information an investigator can glean from 
these coniguration iles:

• They can identify data flows into and out of Hadoop

• They can identify user accounts that can access Hadoop

• They can identify the hosts that can or can't access the node
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Hadoop coniguration iles
Hadoop coniguration iles are stored in the local operating system but control how 
Hadoop and HDFS are structured and operate. These coniguration iles are stored  
in the local operating system, typically in the /etc/hadoop directory. The following 
is the list of coniguration iles useful in Hadoop:

Filename Description

core-default.xml
This contains general default system variables and data 
locations

hadoop-default.xml
This contains site-specific settings for all Hadoop daemons 
and MapReduce jobs

hdfs-default.xml This contains HDFS-specific configuration settings

job.xml This contains job-specific configuration parameters

Each of the coniguration iles shown in the preceding list are the default versions. 
System coniguration changes are made to the -site.xml versions of the iles (for 
example, hdfs-site.xml). The investigator can quickly determine if the system was 
conigured with non-default settings by searching for -site.xml iles.

In addition to those Hadoop coniguration iles, the Conf/log4j.properties ile is 
the customized Hadoop daemon's logging coniguration ile. This controls default 
logging by Hadoop and its applications. The output of the logging is speciic in the 
${HADOOP_LOG_DIR} directory. Job history logs (for example, MapReduce job logs) 
are stored in the ${HADOOP_LOG_DIR}/history directory.

Analyzing Hadoop coniguration iles enables the investigator to identify data lows 
into and out of Hadoop, locate where MapReduce and other job iles are stored, and 
identify the structure of NameNode(s) and DataNodes.

Hadoop application coniguration iles
Hadoop application coniguration iles are similar to Hadoop coniguration iles but 
are speciic to the applications. These coniguration iles are valuable because of the 
information they provide relating to where each application stores data, security 
settings, logging settings, and data transfer conigurations. Both HBase and Hive 
have coniguration iles, hbase-default.xml and hive-default.xml, respectively, 
and cluster-speciic settings are saved to the -site.xml iles. The presence of other 
application coniguration iles is a good way for the investigator to determine which 
applications were installed and conigured in the cluster.
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Log ile analysis
Log iles can be valuable for investigations where the events on the cluster are 
relevant or the investigator needs information about how the cluster operated. 
There are different types of Hadoop logs. The local operating system maintains its 
own set of logs about Hadoop's operations. There can also be logs for data transfers 
that occur into or out of Hadoop, which would be maintained by the system that 
interfaces with Hadoop. Log iles about databases connected to Hadoop may need  
to be examined (for example, Hive). Finally, some log iles about Hadoop's 
operations are maintained inside of HDFS.

Log ile analysis can be performed from logical ile collections or forensic image 
collections. In the latter situation, any HDFS logs irst need to be extracted from  
the DataNode block iles before the analysis can be performed.

Several types of log iles can be analyzed such as:

• Local operating system logs

• Hadoop logs

• Application logs (for example, Hive and HBase)

The local operating system maintains a variety of log iles that can be relevant to  
an investigation. Linux, by default, stores log iles in the /var/log directory.  
Several of the useful log iles include:

• Audit events: Auditable event logging, which is stored in the  
/var/log/audit directory.

• Cron events: Scheduled job logs.

• User logins: User login attempts and location information.  
The secure and btmp/utmp/wtmp files store this information.

Hadoop clusters can generate large volumes of log ile entries across a number of 
different types of logs. Log iles can be found on the NameNode and the DataNodes, 
depending on the type of log. Hadoop clusters can process billions of records per 
day and generate millions or billions of log entries in the process, so the investigator 
should only analyze the relevant logs. The following types of Hadoop log iles can  
be found in the /var/log/hadoop and /var/log/mapred directories:

• Daemon logs: These include the NameNode, JobTracker, and secondary 
NameNode daemons. The logs have either a .log or .out extension, with  
the .log files storing the events of the running daemon and .out storing  
the daemon startup events.
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• Job configuration: The logged events from the JobTracker jobs, which are 
stored as XML files.

• Job statistics: The JobTracker log for runtime statistics, including start  
times, attempts, and shuffling.

• log4j: The log4j output submitted by task processes. These log files are  
given a filename that matches the corresponding application. For example, 
Hive and HBase both use the log4j service for their logs, and the logs are 
stored as hive.log and hbase.log.

• Standard error: The TaskTracker log for job errors.

• Standard out: The TaskTracker log for job output.

Analyzing Hadoop logs requires an analysis tool or a greatly reduced set of log iles 
and entries that are analyzed. The large number of Hadoop events is best analyzed 
in a structured database or a large spreadsheet application. Since millions of events 
may exist, the investigator should either cull the data or load the information into  
a large-scale analysis repository.

The main types of log analysis are:

• Cross-validation: A comparison of the results of data found in Hadoop  
to logged events.

• User activity analysis: An inspection of logins by specific users or at  
specific times.

• System change analysis: A review of changes to events and data systems 
during the history of the cluster, such as changes to scheduled Hadoop  
data transfers or data input sources.

Summary
In this chapter, we covered the elements of performing ilesystem-level analysis 
and data carving. The topics we discussed included taking the data from a forensic 
image or performing a logical ile collection, various analysis techniques, and data 
extraction methods. The analysis techniques, such as timeline analysis and keyword 
analysis, may be suficient for an investigation where a key event or a small set of 
data is required for the investigation. In other cases, the analysis performed in this 
chapter can be part of a larger investigation that includes both Hadoop data and  
data from other systems.
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Regardless of the role of the analysis, the information must be presented. Taking 
the analysis and putting that into an illustrative and accessible presentation format 
is critical for conveying the results. The presentation of this type of information is 
covered in Chapter 8, Presenting Forensic Findings.

Some of the data extraction methods are performed in order to prepare data for 
analysis in a database for quantitative and further qualitative analysis. The next 
chapter details some of the main analysis techniques used for large-scale data 
investigations and how to prepare voluminous data sets for such analysis.
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Analyzing Hadoop  

Application Data
The analysis of Hadoop application data is often the primary objective in a Big 
Data forensic investigation. Hadoop application data is valuable in a Big Data 
investigation because of the informational content of the data. Unlike traditional 
forensic investigations, issues such as metadata and ile carving are not often 
applicable to the investigation. Instead, analysis of the data in the context of the 
investigation is the investigator's primary concern.

Every investigation is different, so the types of analyses performed irst depends on 
the available data and the nature of the investigation. In fraud investigations, the 
investigator is analyzing data for signs of data manipulation or anomalous conditions 
shown in the data. In fact-based litigation where Big Data is used to show what 
occurred such as complaints involving retail sales, the data is analyzed to show that 
certain events or conditions existed. The investigator must choose the right types of 
analyses based on the facts of the case, the type of investigation, and other practical 
considerations (for example, available time).

Analyzing application data requires different tools than analyzing HDFS data. 
Hadoop application data are the transactional records, so metadata and forensic 
artifacts are not part of this form of analysis. Instead, the investigator relies on  
large-scale database systems to load, transform, and analyze the data to reach his 
indings. The investigator sets up the analysis environment and prepares the data  
for analysis before beginning any analysis. The data transformation or preparation 
is the process of converting and standardizing the data from Hadoop applications 
into a form that can be readily analyzed. After the data is prepared, the analysis can 
begin. This is done utilizing the same process low discussed in Chapter 6, Performing 
Hadoop Distributed File System Analysis.
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The following diagram illustrates this analysis process:

Figure 1: The analysis process

This chapter covers the steps necessary to prepare and analyze Hadoop application 
data for forensic investigations. The main analysis techniques are discussed, along 
with the types of investigations for which they are typically employed.

Preparing the analysis environment
The irst step of the analysis process is to prepare the data analysis environment. 
Large volumes of data require a large-scale analysis tool, and that tool is a database 
system. Relational databases are typically used for the analysis because of the 
ease and power of the SQL language, and those systems work well with data 
visualization tools and other software packages. Nonrelational databases can  
be used, but those are not preferred by most investigators.

Any relational database software that can handle large data volumes can be used. 
Commercial packages, such as SQL Server and Oracle, are the most common. Free 
packages, such as MySQL and PostgreSQL, can also be used. In this book, SQL 
Server is discussed because of its user-friendly interface and powerful features.

First, download and install SQL Server 2014 Express LocalDB and SQL Server 2014 
Management Studio, which are available from http://www.microsoft.com/en-us/
server-cloud/products/sql-server-editions/sql-server-express.aspx.

Next, attach the evidence to the analysis environment, and copy the data to the 
analysis environment's storage. During the copy, verify that all source evidence 
data is copied to the analysis environment. This data will be loaded into SQL in 
subsequent steps. Retain the original source evidence because the data copied to  
the analysis environment will be deleted after the data has been loaded into SQL 
Server and veriied.

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
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On average, the analysis environment storage should be at least 2.5 
times the cumulative size of the evidence. This is because the analysis 
environment will have both the original evidence and analysis copies 
of the data. In cases involving very large amounts of evidence, the 
number of copies of the data can be reduced.

Pre-analysis steps
Several steps are performed before the analysis can be started. The data is irst 
imported into the database. Some data is structured in a manner that cannot be 
imported and requires pre-load transformations. The data should be surveyed after 
the data has been loaded to understand the structure of the data, detect any anomalies, 
and determine which data require transformations. Based on the results of the data 
survey process, the data may require transformations before it can be analyzed.

This process can be iterative. The data may require a series of transformations,  
and after each transformation, a data survey needs to be performed to assess  
whether any further transformations are required. The following igure  
illustrates the steps and iterative nature of the pre-analysis process:

Figure 2: Transformed records

Loading data
The collected evidence is next loaded into SQL Server. Relational databases systems 
store data in databases comprised of tables. With forensic evidence, the original 
evidence should be loaded into tables representing the original structure and values, 
if possible. The source database will contain the unaltered data and can be referenced 
should there be a need to review the original data.
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The following diagram illustrates the relationship between the source and  
analysis databases:

Figure 3: The data architecture

The following are the steps for loading the data into the source database:

1. Create source database.

2. Create table structures in the source database.

3. Load source data.

4. Verify the loaded data.

New databases can be created in SQL Server Management Studio (SSMS) by  
right-clicking on Databases in the Object Explorer screen and selecting  
New Database. The following screenshot illustrates this process:

Figure 4: Creating a new database in SSMS
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The database should be created with a name that uniquely describes that case—
especially if multiple investigations are conducted on the same database server. A best 
practice for naming an investigation database is to include the unique investigation 
number, the name, and the database's type. For the data collected in Chapter 5, 
Collecting Hadoop Application Data, create a database called 1001-NYSE-Source. This 
naming convention denotes that the investigation number is 1001; it is related to NYSE 
data, and the data loaded into the database is source evidence and not analysis.

Source evidence and analysis data can be stored in the same database 
so long as the tables and/or schemas used are well labeled.

The underlying tables need to be created before the data can be loaded. The table 
structures should be identiied using the information about the collected data. The 
structure needs to map to the columns in the collected data. In addition, the data 
types for each column need to be deined. If the data types are known, those data 
types should be used when creating the table. If the columns are known but the 
data types are not, the tables should be created with loose data types, such as SQL 
Server's maximum-length Unicode string data type (nvarchar(max)) or the Unicode 
text data type (ntext). With these loose data types, the data is not altered and can be 
analyzed later to determine the correct data types.

The NYSE data collected in Chapter 5, Collecting Hadoop Application Data, is loaded into 
a table by irst creating the table structure. The columns should be created with the 
original column names for ease of reference. The table can either be created using the 
SQL Server CREATE TABLE command or the SSMS New Table option in the Graphical 
User Interface (GUI). To create the table using the GUI, go to Databases in the Object 
Explorer. Next, select the database for which you want to create a new table, in our 
example, this is 1001-NYSE-Source. Right-click Tables, and then select Table. This 
creates a new table for the NYSE data. The following igure illustrates this process:

Figure 5: Creating a new table
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Next, enter the ield names exactly as they appear in the source data and set the data 
type to nvarchar(max), which is the variable-length Unicode character ield with the 
maximum number of allowable characters. The data types can be set to their actual 
values, but those can be updated later in the transformation process. Setting those 
ields to nvarchar(max) ensures that the import will not result in conversion errors so 
long as none of the values are greater than the system-allowed number of characters, 
which is typically 4,000 for nvarchar. The following igure illustrates this process:

Figure 6: Setting column names and data types

After the column names and data types are set, save the table, and give it a descriptive 
name that contains the evidence ID number from the collection process. For this 
example, the table is named 001_NYSE.

The table structure can be automatically created by SQL Server via 
the SQL Server Import/Export wizard when the data contains the 
column headers.

Next, the data is loaded into the table. SQL Server offers several methods for 
importing data, but the BULK INSERT command is the preferred method in forensic 
investigations. BULK INSERT is a script-based approach to loading the data into an 
existing table by deining the location of the data and the source data's properties. 
Investigators should retain copies of the BULK INSERT scripts that are executed 
during the data load process for process validation. The following is an example  
of loading data using BULK INSERT:

BULK INSERT dbo.[001_NYSE]

FROM 'C:\Evidence\NYSE-2000-2001.tsv'

WITH

(

  FIRSTROW = 2,

  FIELDTERMINATOR = '\t',

  ROWTERMINATOR = '0x0a'

)
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This command loads the data from the NYSE-2000-2001.tsv ile into the 001_NYSE 
table. The command further speciies that the irst row should be skipped because 
it is the header row, the ields are separated by tab characters, and the rows are 
terminated by UNIX line breaks.

The following is the output from the BULK INSERT command:

(812989 row(s) affected)

This process can be validated in two ways. First, the number of records should be 
validated against the evidence ile by opening it, using a text editor that can handle 
large iles, and identifying the number of rows. Alternatively, a line-counting utility 
can be used to return the number of lines in the ile without opening the ile in a text 
editor. The second method is to compare the number of records to the control totals 
collected in the collection phase. The control totals can include the number of records 
and the calculated control totals of key ields.

Sample records should also be manually reviewed to ensure that the data was loaded 
correctly. Run the following command to view the irst twenty records of the NYSE 
data set:

SELECT TOP 20 *

FROM [001_NYSE]

In some cases, the data loading method may result in an improper data load. For 
example, delimiters can be used without text qualiiers, and the delimiter is a part  
of a ield's value. This kind of issue requires correction, either by reloading the data 
or correcting the issue manually. Typically, this kind of issue can be easily identiied 
by reviewing sample records and running several types of tests, such as:

• Querying the minimum and maximum length of each field to determine if 
fields are empty or are the same length as the maximum-defined length of 
the field (indicating that the data in the field exceeds the length of the field  
in SQL)

• Identifying outliers, such as unexpected values

• Reviewing numeric fields for alphabetic characters, and vice versa

In some instances, the data validation is performed after data transformations 
are performed. The data may not be in a format that can be easily veriied, such 
as a numeric ield that has a character data type or multiple iles that need to be 
consolidated before they can be compared to the control totals. The transformation 
steps can be performed before the data validation if this is the case. The validation 
should, however, be performed before the analysis is started.

http:///


Analyzing Hadoop Application Data

[ 182 ]

Preload data transformations
In some cases, data cannot be immediately loaded into the database and requires 
transformations outside of the database. Some forms of data, such as key-value pairs, 
object-oriented data, and other forms of data not in a two-dimensional relational 
structure, cannot easily be loaded into the database. In other cases, it is easier or 
faster to transform data before loading it into a database. Regardless, some types  
of data structures are not conducive to being loaded into a relational database.

The following are several types of iles that can require pre-load transformations:

• Key-value pair data

• Report files that include headers and/or footers
• Certain forms of markup files

There are two possible solutions: 1) develop and run custom scripts that transform 
the data into iles with a suitable structure for database import or 2) directly import 
the transformed data into the database. The goal of a pre-load data transformation is 
to correct the structure of the data so it can be loaded and analyzed immediately, or 
analyzed after transformation. Additional transformations can be performed at this 
stage, but they can also be performed after the data is in the database; the latter is 
typically faster.

When running pre-load data transformations, keep the following in mind:

• Determine whether the script needs to be run and if running the script  
is faster than performing transformations in the database

• Have the script generated logs detailing what was transformed and any  
errors that may have occurred

• Preserve a copy of the script for documentation

Data surveying
Data surveying is the process of running an overview analysis of the data to 
understand the structure and data contents. Surveying the data allows the 
investigator to get a base understanding of the full structure of the data and the  
types of values contained therein. Should any additional data transformation be 
required, the survey process helps identify those transformations.

Surveying the data provides several beneits; they are as follows:

• Locating data that requires transformations

• Identifying anomalies and data gaps that require immediate attention

• Generating information that can be applied to the preliminary analysis
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Surveying is best performed through the use of scripts and a manual review of the 
results. The irst type of surveying is to produce a list of boundary values and counts 
of distinct values. Rather than running separate surveys for each ield in each table,  
a script can be written to automatically identify all tables and ields and calculate  
the relevant statistics.

The irst step is to create a table to store the results of the script:

CREATE TABLE tbl_DB_Survey (tableName varchar(max), colName  
varchar(max), minVal varchar(max), maxVal varchar(max), minLen int,  
maxLen in, numDistinct int, numNULL int, numNumeric int , numDate  
int)

The table stores the table and column names; the minimum and maximum values; 
the minimum and maximum ield lengths; and the number of distinct values, 
NULLs, numeric values, and date values. Next, the following script is run to iterate 
through SQL Server's syscolumns and sysobjects table to identify the tables and 
ields as a cursor and then insert the corresponding tbl_DB_Survey values for each 
table and ield:

DECLARE @curCol varchar(255)

DECLARE @curTable varchar(255)

DECLARE curSurvey CURSOR FOR

SELECT sc.name, so.name

FROM syscolumns sc, sysobjects so

WHERE sc.id = so.id

AND xtype = 'U'

ORDER BY 2,1

OPEN curSurvey

FETCH NEXT FROM update_cursor

INTO @curCol,@curTable

WHILE @@FETCH_STATUS = 0

BEGIN

  INSERT INTO tbl_DB_Survey (tableName, colName, minVal, maxVal, minLen,  
  maxLen, numDistinct, numNULL, numNumeric, numDate)

  SELECT ''@tableName'', ''@colName'', CONVERT(varchar,MIN(@colName)),  
  CONVERT(varchar,MAX(@colName)), MIN(LEN(@colName)), MAX(LEN(@colName)),      
  COUNT(DISTINCT(@colName)), COUNT(ISNULL(@colName)), COUNT(ISNUMERIC(@   
  colName)), COUNT(ISDATE(@colName))

  FROM @tableName

  FETCH NEXT FROM curSurvey INTO @curCol,@curTable

END

CLOSE curSurvey

DEALLOCATE curSurvey
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This script populates the tbl_DB_Survey table with summary information about 
each table. The results should be reviewed to identify anomalies and which ields  
are important. Several examples of the types of issues to review include:

• An expected numeric field's minimum and maximum values are  
evaluated as strings and not numeric

• An expected date field does not have a majority of values that are  
considered date values by SQL Server

• The number of distinct values for a field is only one

Other forms of descriptive statistics can be applied to survey the data. Grouping and 
outlier analysis are two methods that enable the investigator to identify what types 
of information are contained in the data and how many outliers exist. The simplest 
form of this analysis is to group data by a single ield. The following query returns 
the number of records for each stock symbol in the descending order:

SELECT stock_symbol, COUNT(*)

FROM [001_NYSE]

GROUP BY stock_symbol

ORDER BY 2 DESC, 1

The query returns 1,734 results, with the irst 508 symbols having 500 records. This 
large number of records shows that these symbols each have a normal amount of 
records. The query can then be reordered to display the symbols with the smallest 
amount of records by removing the DESC clause. As illustrated in the following table, 
the top ive stock symbols with the fewest number of records shows that they each 
have fewer than twenty records. Depending on the expected values, this type of survey 
can help get a preliminary understanding of the data and highlight potential outliers:

stock_symbol Number of Records

PCN 3

KFS 9

PRU 11

HYV 19

AYI 19
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Transforming data
Data from Hadoop applications can require transformation into a more readily usable 
format. Some Hadoop applications, such as HBase, store the data in a key-value pair 
format, which is not a usable format for SQL Server or other relational databases. The 
data has to be transformed before it can be analyzed. Even if the data was extracted 
into a format that is usable for SQL Server, the data may still require transformation  
to clean up the data values or structure the data for a particular type of analysis.

Transforming data is the process of converting the format of the data to a more 
readily usable format, but it does not mean the values of the data should be altered. 
A transformation involves changing the structure of the data. When data is collected 
from Hadoop, the data is extracted into iles with the structure of the original 
application's format (or into iles that were structured in the easiest format for 
collection). These formats may not be ideal for analysis and need to be converted into 
a format that can be analyzed in SQL Server. With all transformations, however, the 
values are not altered. If data needs to be transformed into an aggregated or reduced 
data set, the data must still relect the original values.

Transformations can be required for a number of reasons. Some of the common 
reasons include:

• Data of the same structure needs to be consolidated into a single table

• Data is stored in report files with headers and footers that cannot easily be 
imported into a relational database

• Duplicative data requires consolidation or normalization

• Data was imported in text field columns and needs to be converted to the 
actual data types (for example, dates or numeric)

• Extraneous data needs to be removed from the analysis data set for simplicity 
and data reduction

Many different types of transformations can be performed. Field values can be 
transformed into a standardized format. For example, date values can be standardized 
into a single format of DD/MM/YY to provide for uniform values and easier analysis. 
The name and order of column headers can be structured in a consistent manner. The 
records can also be reoriented by making horizontal records vertical.
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The next two igures illustrate a set of records that are transformed by rotating  
them from horizontal to vertical. This was done by changing the date column 
headers into a single date column and making the corresponding values presented 
vertically into separate records. The following screenshot is an example of data in  
a horizontal structure:

Figure 7: Pre-transformation records

In the next screenshot, the two sets of Amount and Orders are split into two  
vertical records and the date range in the column headers is moved into the  
Date Range column:

Figure 8: Transformed records

This type of transformation is useful for aggregating fewer sets of columns and 
restricting records to a particular date range rather than aggregating multiple columns 
together, or not being able to easily restrict the records to a speciic date range.

Several types of techniques can help the investigator prove that the data was not 
altered during the transformation process. The primary mechanism is the use of 
control totals. If a control total was captured during the collection phase, that control 
total can continue to be used to verify that the transformation did not alter the 
records. In the previous screenshot, if a control total was captured for the number of 
orders or total amounts, the control total can be compared to the transformed data's 
order or amount values. The other method is to perform the transformations using 
queries that are retained as part of the records. All alterations to the data must be 
carefully documented.

Using the NYSE data, the ield's data types can be updated for faster analysis. The 
numeric ields can be updated to numeric data types, and the date ield can be 
updated to SQL Server's datetime data type. Updating these data types in SQL 
Server saves analysis time because the conversion is performed once instead of 
during every query, enabling the investigator to run numeric computations and date 
analysis functions faster. First, the ield's data types should be tested to determine  
if the conversion can be performed.
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The following command returns any records in 001_NYSE that cannot be converted 
into SQL Server's datetime data type:

SELECT *

FROM [001_NYSE]

WHERE ISDATE([date]) = 0

This command returns no records, so the data type can be updated using the 
following command:

ALTER TABLE [001_NYSE] ALTER COLUMN [date] DATETIME

The date column's data type has been converted to datetime. The same steps  
can be applied to the numeric columns using the ISNUMERIC() function.

Another common form of data transformation is culling data. Culling is the process 
of reducing the data set based on speciic criteria. The relevant analysis for an 
investigation may only require a subset of the data. Rather than have extraneous 
ields or records, the data can be culled to the relevant data set. Culling in a forensic 
investigation means to create a copy of the relevant subset of the evidence. It does 
not mean that the source evidence should be deleted or modiied.

The irst method of culling is to identify and remove nonrelevant tables and columns. 
This can be done by surveying the ields and reviewing sample records, as well as 
documentation about the data, to determine whether it could potentially be relevant. 
The process can either be performed by selecting the relevant tables and columns 
that should be copied or by selecting the tables and columns that should be culled.

The second method is to apply iltering criteria to the data. Like culling tables and 
columns, this method can be performed by identifying what should or should not 
be included. An inclusive or exclusive ilter is applied to the data, and the results 
determine what information should be copied into the analysis data set. For example, 
a common form of culling is to restrict the data to a date range from the investigation. 
A ilter is created to generate a new table for all records that fall within that date range. 
The following command provides a simple example of how this is performed:

SELECT *

INTO ANALYSIS.[001_NYSE_Filtered]

FROM [001_NYSE]

WHERE [date] between '1/1/2000' and '12/31/2000'

This generates a new table in the ANALYSIS schema that only includes records 
between January 1, 2000 and December 31, 2000.
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Optimization techniques can be applied to the analysis data. In addition 
to culling data, standard techniques should be considered if the data set 
is very large. Several examples include creating a new analysis database 
with separate data and index iles, creating optimized indexes on key 
ields, and normalizing or de-normalizing data.

Keep in mind, all data test and conversion scripts should be saved and clearly 
documented to show that the data was not incorrectly modiied.

Transforming nonrelational data
Nonrelational data can be transformed in the database. Several Hadoop applications 
produce key-value pair data, which is not a data structure traditionally handled in 
relational databases. This type of data can either be transformed into a relational 
structure or maintained in its key-value pair format and transformed in a way that 
can be used in SQL. The decision about how to transform the data depends on the 
structure of the data and the nature of the investigation.

Consider the following sample data that was extracted from HBase:

itemID       Key           Value

1            Name         John Doe

1            Address      123 Main St

1            Email        jdoe@zzz.com

2            Name         Jane Doe

2            Phone        555-1234

This data can be imported directly into SQL Server with those column names.  
An example of the dificulty with this format in SQL Server is that querying for  
all key-value pairs of a particular itemID query criteria is cumbersome. For  
example, identifying all items with an email address with a zzz.com domain requires 
multiple steps. Instead, the data can be transformed in to a more useful structure.

There are several approaches to transform key-value pair data to a standard SQL 
structure, but the following method is the most straightforward. First, identify all 
possible keys using the following command:

SELECT DISTINCT Key

FROM tbl_keyPair

Next, create a table with those keys and the item ID as the column headers:

CREATE TABLE tbl_keyPair_transformed (itemID int, [Name] VARCHAR  
(255), Address VARCHAR (500), Email VARCHAR (255), Phone VARCHAR  
(100))
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Now insert one record into the transformed table for each item ID in the original 
table:

INSERT INTO tbl_keyPair_transformed (itemID)

SELECT DISTINCT itemID

FROM tbl_keyPair

Finally, iterate through the original table and insert the corresponding key-value  
for each item:

DECLARE @curKey varchar(255)

DECLARE curSurvey CURSOR FOR

SELECT DISTINCT KEY FROM tbl_keyPair ORDER BY 1

OPEN curSurvey

FETCH NEXT FROM update_cursor

INTO @curKey

WHILE @@FETCH_STATUS = 0

BEGIN

UPDATE output

SET @curKey = input.Value

FROM tbl_keyPair input, tbl_keyPair_transformed output

WHERE input.itemID = output.itemID

AND input.Key = @curKey

FETCH NEXT FROM curSurvey INTO @curKey

END

CLOSE curSurvey

DEALLOCATE curSurvey

The following is the resulting table:

itemID    Name         Address          Email            Phone

1       John Doe     123 Main St     jdoe@zzz.com          

2       Jane Doe                                        555-1234

This type of data is much more conducive to the types of analysis that are covered 
in the following section, Analyzing data. However, in some cases, the key-value pair 
data may need to be maintained in its original format should the analysis need to 
mirror how the data was structured and analyzed in the source system.
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Analyzing data
Analyzing Hadoop data in a forensic investigation, also known as forensic analytics, is 
the process of running tests against the data to isolate events, trends, and patterns that 
relate to the investigation. Investigators have a large set of techniques for performing 
the analysis that meets the needs of the case. Each investigation is different, and each 
requires its own type of analysis. In some cases, not much is known about how the 
data relates to the facts of the investigation. In other cases, a single data point that 
represents an event or fact is believed to reside in the data. The role of the investigator 
is to understand the data and run an analysis that brings out the facts of the case in a 
clear, understandable way.

Investigators should begin the analysis with an approach and plan in place. The 
investigation began with a set of issues and facts that need to be proven or further 
developed. In addition, the preceding steps of the process, such as interviews and 
documentation review, should have yielded information about what data has been 
collected and how to analyze it. Based on this information, the investigator can 
develop at least an initial plan on how to approach the data and begin the analysis.

The following sections discuss how to approach the forensic analysis and several  
of the main analysis techniques employed by investigators.

The analysis approach
The analysis approach of the investigation depends on two major factors:

• How much information is known about the events or facts related to  
the collected data

• The type of investigation

The amount of information known to the investigator impacts how the analysis 
is conducted. Hadoop data can be used in some investigations to ind supporting 
evidence or examples of a known set of facts. In these cases, the amount of information 
known is high and the analysis process is largely a matter of further proving what 
is already known, or highlighting known facts. In other cases, the investigation is 
performed based on suspicions or evidence that points to some facts. The amount of 
information known in these cases is low, and the analysis is aimed at locating facts, 
often called the "smoking gun", and/or establishing patterns.
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To develop an analysis plan, the investigator must start with the known facts and 
theory. This information is generally known because that was the basis for conducting 
the investigation in the irst place. The set of facts may be limited, so the analysis 
plan may involve surveying the data, further gathering supporting information, and 
adjusting the investigation theory. If the facts are largely known, the analysis plan 
should be focused on proving the established theory and bolstering it by identifying 
key information that will serve as evidence while eliminating the possibility of 
alternate theories. Finally, the analysis can include steps to further prove that the 
indings were accurate. This can include validating the information using other 
analysis techniques or data sources, including the use of publicly-available data 
sets. The following igure illustrates the phases of the analysis process and several 
approaches to each step:

Figure 9: The analysis process and approaches

The analysis process can be highly iterative. The investigation theory and a set 
of known facts change throughout the process, so the analysis plan is adjusted to 
account for the changes. The analysis may begin with a set of known facts and  
the investigator focuses on proving those facts, but in the process, new information 
may be uncovered that requires the original theory to be modiied.

Types of investigation
Forensic investigations are performed for a wide array of issues. The common and 
well-known ones are fraud investigations; however, there are several different 
types of fraud. Data breach or other forms of improper access are common types of 
investigations, but many other types of investigations are also performed. Each type 
of investigation has its own unique issues and requirements.
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The following table lists the various types of investigations and the unique 
characteristics of each:

Investigation Type Characteristics

Consumer Fraud This is a fraud committed by one or more individuals, with 
their behavior tracked and stored in the system

Corporate Fraud This is a fraud conducted by an organization, which requires 
a large volume of data to be analyzed to isolate fraud events 
from nonfraudulent ones

Employee Fraud This is a violation of organization's policies and procedures 
and/or illegal activity by one or more employees that is  
stored within the system

Government Fraud This is similar to corporate fraud, but perpetrated by the 
government or an organization involved with the government

Intellectual Property This is a comparison of common data structures or 
informational contents with another system or data set

Unauthorized Access (for 
example, Data Breach)

This is an analysis of event-based evidence (for example, web 
logs) indicating that an unauthorized access occurred

Class Action This is a litigation analysis whereby common characteristics  
or set of facts affecting a set of individuals are analyzed

The type of investigation being conducted should be considered when developing the 
analysis plan and performing the analysis. This serves to better direct the approach 
and indings to match the requirements of the investigation. The analysis should align 
with the characteristics of the type of investigation.

Several of the investigation types may apply to a complex 
investigation. In such cases, the combined characteristics of 
all applicable types should be considered.

Analysis techniques
While the identiication and collection of forensic data is a well-deined process, 
forensic analysis requires some level of creativity. This is needed to match the 
requirements of the investigation to the analysis techniques that should be run. 
The analysis techniques employed for forensic investigators range in scope from 
identifying individual transactions to performing inferential statistics to describe  
the contents of the data. Multiple analysis techniques can often achieve the same 
result, so the investigator needs to be aware of which analysis techniques best  
meet the requirements of the investigation.
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The following sections detail some of the main analysis techniques used in forensic 
investigations. Countless techniques exist, but the key ones covered here are frequently 
used in investigations and can be applied to virtually any Big Data investigation.

Isolating known facts and events
The investigator can approach the data with a set of known facts and events that 
need to be identiied in the data. In these cases, the facts and events can be identiied 
by querying the data using information about the data to pinpoint where the data 
exists. Big Data investigations are complicated by the fact that the data set can 
contain billions of records, so the investigator cannot manually review all records 
for the speciic data points of interest. Instead, the investigator can apply a series of 
techniques to reduce the potentially relevant data to a manageable subset of records.

The irst technique is is to apply data ilters. A set of known facts or events will have 
information associated with it that can be applied to the data to reduce the number 
of potential records. The events may be within a speciic date range or on a speciic 
date. The facts may be limited to a speciic person or for records with a speciic code 
value. These ilters can be added as SQL WHERE clauses to ignore nonrelevant data.

The second technique is to sort the data by a key ield or set of ields to assess the 
iltered records. Sorted data can be reviewed more easily, and if the set of returned 
records is small enough, the investigator can review them to assess whether the 
different sorted ield values are relevant. This sorting not only helps the investigator 
identify the potentially relevant records quicker, but it also allows for an easier  
data review to identify additional ilter criteria.

Using the NYSE data set, the following query can be run to limit results to a single 
date in question:

SELECT *

FROM [001_NYSE]

WHERE date = '2/1/2001'

AND stock_volume BETWEEN 100 and 200

ORDER BY stock_symbol

The query returns three records. The investigator should manually review the 
records to ensure that the query results include desired information. The query can 
be adjusted to include additional ilter criteria if too many records are returned.

Once the facts or events have been located, the ilter criteria can be loosened to 
look for supporting or related records that can help the investigation. One or more 
of the facts may be supported by additional related records, or the scope of the 
investigation may need to be expanded if a larger pattern of events is found.
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Grouping and clustering
Cluster analysis is a powerful statistical technique for analyzing large sets of 
data. Clustering can be achieved by running a number of algorithms to group 
data, assess the distribution, and identify outliers. A cluster is a grouping of like 
subsets of data for the purpose of classifying them. Cluster analysis typically shows 
multiple clusters from a data set, and these clusters can be devised and structured 
in a number of ways. Cluster analysis is useful in Big Data investigations because 
it provides a means for grouping data into sets for analysis (for example, relevant 
versus nonrelevant data or legitimate versus fraudulent data).

A basic technique for grouping data is to create pseudo-clusters to group data and 
deine groups from the results. Using the NYSE data set, the following query can  
be run to group trades into clusters based on the size of the trades:

SELECT grouping, SUM(stock_volume), COUNT(*)

FROM

(SELECT stock_volume

CASE

WHEN stock_volume BETWEEN 1 and 25000 then 1

WHEN stock_volume BETWEEN 25001 and 50000 then 25001

WHEN stock_volume BETWEEN 50001 and 75000 then 50001

WHEN stock_volume BETWEEN 75001 and 100000 then 75001

ELSE 100001

END AS grouping

FROM [001_NYSE]) AS Z

GROUP BY grouping

ORDER BY 1

The results from the query can be plotted in a bubble chart to show the relative  
size of the ive groups, as shown in the following igure. The x-axis represents  
the grouping of the records based on the stock_volume value of each record.  
The y-axis represents the cumulative number of stock_volume values, and the  
size of the circle represents the number of records in that grouping:
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Figure 10: A basic grouping of stock trade volumes

Numerous cluster analysis techniques exist in the ield of data mining.  
The two primary algorithms used for data clustering are k-means and  
expectation-maximization (EM). The approaches an investigator can take  
to perform clustering are:

1. Select a distance measure.

2. Select a clustering algorithm.

3. Deine the distance between two clusters.
4. Determine the number of clusters based on the data.

5. Validate the analysis.

The most common distance measure is the Euclidean measure, which computes 
the distance using spatial coordinates. Here, the Euclidean measure can be applied 
to calculate distance using the values from a numeric ield. The following example 
calculates the distance for the irst three non-zero values of the stock_volume ield:

Record stock_volume

A 100

B 200

C 300

The following is the output generated:

Distance

B vs. A: 200 – 100 = 100

C vs. A: 300 – 100 = 200

C vs. B: 300 – 200 = 100
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Additional ields can be added to the distance calculation, if required. The formula 
for adding ields is:

sqrt ((Record A - Record B ) +(Record A - Record B ) )field 1 field 1
2

field 2 field 2
2

Next, the clustering algorithm is selected. The k-means clustering algorithm is a  
well-known clustering algorithm and is computed as follows:

1. Deine the number of clusters, k.
2. Assign each data point to its closest cluster center.

3. Recompute the cluster centers.

4. Repeat these steps until there are minimal or no changes to the cluster 
centers.

The clusters can be deined to meet the needs of the clustering. Here, three clusters 
are selected based on the following values: second smallest (200), second largest 
(153,932,600), and mean (672,237).

Next, each record's stock_volume is assigned to one of the clusters based on the 
distance to each:

Cluster Starting Center Number of Records Avg stock_volume

2nd Smallest 200 561,501 79,047

2nd Largest 153,932,600 13 127,766,500

Mean 672,237 241,993 2,041,798

This result shows that a majority of records have a stock_volume value closest 
to the minimum, while very few records have a stock_volume value close to the 
maximum. The result also shows the mean of the values assigned to each cluster  
and how far the centers for each cluster have shifted after just one iteration.

After the initial calculations are run, the cluster's centers are recalculated, and the 
data point calculation is rerun until there are no signiicant changes to the number 
of records and starting center after multiple iterations. If the results are too skewed, 
the investigator can return to the irst step, select a different number of clusters, and 
select different center values for each cluster to better distribute them.

http:///


Chapter 7

[ 197 ]

Histograms
The frequency of particular events or ranges of values appearing in the data is an 
important metric for investigators. Histograms plot the frequency of events, or 
ranges of values, in a visual that can be used to further analysis or as part of the 
indings. To create a histogram, data is classiied into a preset list of bins, and the 
number of data points per bin is summed. The number of data points per bin is 
called the frequency. The following is an example of plotting a histogram based on 
the stock_price ield, using bins in increments of 10, with everything greater than 
100 represented in the More bin:

Figure 11: A histogram of the stock_price_open field

Histograms are useful for quickly showing the distribution of data in a format that 
can be easily understood by most audiences. For an investigation, showing normal 
patterns within normal distributions of events and highlighting abnormal events or 
characteristics is important. Histograms provide a quick and accessible method for 
showing the distributions in a way that is easily understood.

The time series analysis
Events in the data can be plotted to establish a chronology, highlight key pattern 
changes, or establish what the normal patterns are in the data. Time series analysis 
computes speciic metrics using a sequence of data points based on a deined date 
interval. The date interval can be chosen by the investigator, and the time period  
can either be the entire date range of the data or a selected subset of the dates.
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The irst step is to select the date range and date interval. In the NYSE data, there 
are 519 individual dates spanning a two-year period. The investigator can plot every 
single day, plot a subset of days, or plot the data using an aggregated interval (for 
example, by months or years). Given the large number of days, the data can best  
be reviewed when aggregated by month and year:

SELECT MONTH(date) + "-" + YEAR(date), SUM(stock_volume)

FROM [001_NYSE]

GROUP BY MONTH(date) + "-" + YEAR(date)

ORDER BY 1

The plotted data is shown in the following igure:

Figure 12: The stock volume plotted over time

Plotting the data to show chronology can help establish when events occurred  
and demonstrate basic data patterns. More advanced techniques can be applied  
to explain the chronology.

Measuring change over time
Changes in the data can be measured to show key changes that occurred. One such 
measure is the single moving average, which is the mean of successive past events. 
The mean for all preceding time periods is calculated for each time period, which 
shows the change in average caused by each successive time period. The irst two time 
periods do not receive a single moving average value. Starting with the third time 
period, the mean is calculated using all values from that time period and the previous 
two time periods. The process is repeated for all N time periods.
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The following table shows the stock volume single moving average for the irst four 
time periods:

Date Stock Volume Single Moving Avg

1-2000 21,011,437,800 N/A
2-2000 20,137,095,500 N/A
3-2000 25,565,580,900 22,238,038,067

4-2000 19,879,493,700 21,860,723,367

The single moving average can be plotted along with the actual monthly values to 
show the effect that each month has on the mean for that month and all preceding 
months. This is illustrated in the following igure:

Figure 13: The stock volume and single moving average plotted over time

Time series analysis helps to establish normal patterns and can conditionally help 
identify anomalies. The time series represents the patterns within the data over time. 
Perhaps a key event or change in procedure resulted in a change that is relected 
in the data, or perhaps the data contradicts what was believed to have happened. 
Running time series analysis is a fast method for visually creating a chronology of 
what happened and determining whether a repeating or consistent pattern exists 
in the data. If there are spikes or dips in the time series, or a pattern is not followed, 
that indicates an issue that needs to be explored and explained.

Normal behavior can also be tested by comparing the data set to a 
trusted data set, such as a public data set, to determine if the data set 
comports with the trusted data set. A common technique in inancial 
fraud investigations is to compare inancial performance to other 
organization's performance via public data sets.
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Anomaly detection
Data anomalies are a major issue. Anomalies can be natural occurrences due to data 
being incorrectly entered or imported into a system, or they can indicate or be proof 
of fraud or other wrongdoing. An investigator can analyze a data set for anomalies 
to either pinpoint where evidence of wrongdoing exists or to indicate or rule out the 
possibility of wrongdoing.

There are two major types of techniques for identifying anomalies: rule-based 
identiication and statistical identiication. Rule-based identiication is where 
predeined rules for expected values are established and the investigator tests the 
data for records that violate the rule. These tests are run with speciic criteria in 
mind, and all outliers are segregated for further analysis. Statistical identiication is 
where descriptive or inferential statistics are used to determine normal patterns or 
distributions of data. The investigator then uses these patterns or distributions to 
isolate the anomalies for further analysis.

Both rule-based identiication and statistical identiication are equally valid forms 
of analysis, but the investigator may choose one over the other based on the 
requirements of the investigation. Rule-based analysis requires a priori knowledge 
of the data and what constitutes an outlier. The rules can be developed from earlier 
phases, from data surveying, or from other information learned about the data 
and investigation. Statistical analysis can be applied without a priori knowledge 
and is typically performed when the investigator does not know what constitutes 
an anomaly or when he wants to prove what the normal behavior and patterns 
of the data are. Grouping and clustering are forms of statistical analysis, and the 
output from those forms of analysis can be used for anomaly detection. In addition, 
analyzing data for duplication and applying Benford's law, topics that are covered  
in the sections that follow, are useful techniques for identifying potential outliers.

Rule-based analysis
Rule-based analysis is an effective method for isolating speciic types of anomalies  
or key records. This method requires knowing the rules that the data should adhere 
to and then executing the rules against the data to identify the records that violate 
the rules.
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The rules can take many forms and include multiple criteria, such as:

• Date ranges

• Acceptable values

• Numeric value ranges

• Acceptable combinations of values across fields

• Data values confirmed against known events

Once the rules have been documented, they can be converted into queries. The  
queries can be run in one of two ways: 1) independently or 2) a table of rules can be 
created and a script can be executed to run all of the rules from the table, sending  
the outliers to an anomaly table.

The following query runs a rule-based query to isolate records whose  
stock_price_open value is less than the stock_price_low value:

SELECT *

FROM [001_NYSE]

WHERE stock_price_open < stock_price_low

The query returns a single record whose stock_price_open equals to zero and 
stock_price_low equals to 188.6. Obviously, this record is an anomaly, but it may 
be a data quality issue or an explainable issue.

Multiple rules can also be coded into a rule table in the form of SQL WHERE clauses 
in order to automate the process. An automated SQL script using a cursor can iterate 
through the rules table, with all records that violate the rules being stored in a rules 
violation table, as illustrated in the following igure:

Figure 14: Rule-based analysis using multiple rules
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Duplication analysis
One indicator of fraud or intentionally-altered data is higher-than-expected levels 
of data duplication. Duplication can be normal when a particular type of data is 
repeatedly entered; however, duplication is not always the norm. When fraud or a 
cover-up of a certain kind of activity is committed, the values of the data are rarely 
distributed in a normal manner. Instead, the individual(s) entering or altering the 
data may enter duplicative data.

Duplication can be found in records, ields, or characters within a ield. The set of 
values of a record, the entire value of a ield, or individual characters can repeat at 
a higher-than-expected level. To identify duplicates, the data should be grouped or 
split into the units to be analyzed. The simplest form is to analyze the entire ield. 
The data is then aggregated to identify the counts. For example, the following query 
aggregates the stock_volume ield and the number of results, with the results sorted 
in descending order:

SELECT stock_volume, count(*) as recCount

FROM [001_NYSE]

GROUP BY stock_ volume

ORDER BY 2 DESC

The ive stock_volume values with the highest number of records are:

stock_volume     recCount

0                 9,482

200               1,783

1,000             1,661

2,000             1,660

600               1,551

This type of query is typically a starting point and requires an understanding of the 
expected counts. The results are reviewed for any anomalies or unexpected values, 
such as too much or too few records for each value. Then, the investigator can continue 
the analysis in one of two ways: 1) by adding additional criteria to the aggregation 
query in order to review a speciic subset of the records (for example, the date range 
in question) or 2) by further reviewing the types of records with higher-than-expected 
duplication. In this case, the records with a stock_volume equal to zero should be 
reviewed for possible issues:

SELECT *

FROM [001_NYSE]

WHERE stock_volume = 0

ORDER BY stock_symbol
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Reviewing the individual values that contain duplication may identify an issue  
based on suspicious records, or there may be an explanation for why the duplication 
was normal. If other possible duplication remains, the analysis can be reined to 
home in on the remaining duplicates. The following query adds the stock_symbol  
to the aggregation and excludes records with a stock_volume equal to zero:

SELECT stock_volume, stock_symbol, count(*) as recCount

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_volume, stock_symbol

ORDER BY 3 DESC

This query irst returns the following top ive rows:

stock_volume     stock_symbol       recCount

800                  KUB              54

1,200                KUB              47

100                  CDR              42

100                  GMK              42

200                  CSS              41

This query then provides more reined results that can be interpreted against  
the expected distribution. Here, both the volume and symbol can be examined 
together, and the false positive (stock_volume = 0) is eliminated.

Another method is to include the relative percentage of duplication for each 
aggregated set. In the previous query, the KUB stocks returned the irst two results, 
but what if that stock has the highest number of overall records? The query can be 
modiied as follows to include the percentage for any stock_volume and  
stock_symbol combination with more than 10 records:

SELECT a.stock_volume, a.stock_symbol, a.recCount,  
a.recCount/b.totalCount

AS percentOfSymbol

FROM

(SELECT stock_volume, stock_symbol, count(*) as recCount

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_volume, stock_symbol) a,

(SELECT stock_symbol, count(*) as totalCount

FROM [001_NYSE]

WHERE stock_volume <> 0
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GROUP BY stock_symbol) b

WHERE a.stock_symbol = b.stock_symbol AND a.recCount > 10

ORDER BY 4 DESC, 3 DESC

This query returns the following top ive results:

stock_volume     stock_symbol     recCount   percentOfSymbol

100                  EXM             30          0.278

100                  CDR             42          0.251

100                  ALY             12          0.245

200                  EXM             19          0.176

100                  GMK             42          0.163

As evidenced from these results, the top results do not appear to be an issue because 
of how common stock purchases in blocks of 100 and 200 are and the relatively small 
size of blocks of 100 and 200. However, there may still be issues in other duplicative 
values that could require analysis.

Duplication analysis can also be performed on digits within certain ields. In fraud 
investigations and cases where the data may have been altered, an investigator can 
look into the duplication of values to determine if speciic digits have been used. As 
an example, an accountant accused of manipulating the books may enter nonexistent 
transactions using a standard value to mask the fraud.

To perform this analysis, one or more digits from a ield are aggregated and the 
results are plotted to represent the distribution of the data. The following query 
analyzes the two left-most digits of stock_price_open ield, excluding records 
having stock_price_open equal to zero:

SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 2), COUNT(*) AS  
recCount

FROM [001_NYSE]

WHERE stock_price_open <> 0

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 2)

ORDER BY 2 DESC

The query returns the following top ive results:

Digits            recCount

13                 35,508

14                 33,929

12                 31,079

11                 29,388

10                 27,478
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This analysis can be augmented by analyzing the days in which each set of digits  
was entered at the highest percentage using the following query:

SELECT A.digits, date, dateCount/totalCount as datePercentage,  
totalCount

FROM

(SELECT date, LEFT(CONVERT(VARCHAR, stock_price_open), 2) AS digits,  
COUNT(*) as dateCount

FROM [001_NYSE]

WHERE stock_price_open <> 0 AND LEN(stock_price_open) > 1

GROUP BY date, LEFT(CONVERT(VARCHAR, stock_price_open), 2)) AS A,

(SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 2) AS digits,  
COUNT(*) as dateCount

FROM [001_NYSE]

WHERE stock_price_open <> 0 AND LEN(stock_price_open) > 1

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 2)) AS B

WHERE A.digits = B.digits

ORDER BY 3 DESC

The query returns the following results:

Digits          date         datePercentage   totalCount

98           2000-11-14         0.15             394

99           2000-12-13         0.12             335

88           2000-11-20         0.11             610

95           2001-04-11         0.11             445

95           2000-12-15         0.10             445

This analysis, or analyzing the two right-most digits, can be used to expose whether 
certain digits were entered on a single date, pointing to the likelihood of manual 
entry and possible data manipulation.

Benford's law
Benford's law is a principle that deines the expected distribution of digits in natural 
data sets. Similar to duplication analysis, Benford's law enables the investigator to 
break down the data to determine the distribution of digits and their positions to 
assess whether any digits may have been intentionally altered. Numerous studies 
have been performed on the distribution of digits related to real-life phenomena, and 
the indings from most studies comport with Benford's law. While no one has been 
able to give mathematical justiication for why Benford's law is true, the principle 
itself is a widely accepted method for testing whether data appears natural.
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The applications of Benford's law to forensic analytics are numerous. Financial 
statements are perhaps the most widely known application of Benford's law. The 
distribution of certain types of inancial data has been tested many times, and 
Benford's law is virtually always true when the data is unaltered. When Benford's 
law does not comport with data, forensic investigators know that the data requires 
further analysis because of the likelihood of fraud or data manipulation. Other ields, 
such as marketing, natural sciences, and user online activity have also been studied 
in relation to Benford's law.

The requirement for applying Benford's law to a data set is to conirm that the data set 
is a geometric sequence. When the data set of digits is ordered, the data should form 
a geometric sequence. If the data set forms a geometric sequence, the digits relative to 
their position should conform to the previous position's value multiplied by a common 
factor. The following table shows an example of the distribution of digits that obeys 
Benford's law (source: Nigrini, M. J. "A taxpayer compliance application of Benford's law." 
The Journal of American Taxation Association 18 (1996): 72-91.):

Digit     1st Position  2nd Position  3rd Position  4th Position

 0            N/A         .11968       .10178        .10018

 1          .30103        .11389       .10138        .10014

 2          .17609        .10882       .10097        .10010

 3          .12494        .10433       .10057        .10006

 4          .09691        .10031       .10018        .10002

 5          .07918        .09668       .09979        .09998

 6          .06695        .09337       .09940        .09994

 7          .05799        .09035       .09902        .09990

 8          .05115        .08757       .09864        .09986

 9          .04576        .08500       .09827        .09982

Certain types of data sets are known to obey Benford's law. Accounting data, by and 
large, obeys Benford's law because it contains nondeliberate human decision making. 
The following types of data, however, are not believed to obey Benford's law:

• Data directly influenced by human decision making (for example,  
negotiated prices)

• Numbers that are typically rounded or set to end in specific amounts  
(for example, prices ending in 99 cents instead of arbitrary values)

• Sequentially-ordered number assignment

• Data with a predetermined floor and/or ceiling value
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Several techniques have been developed to determine whether a data set obeys 
Benford's law. The simplest is calculating the mean, median, and skew of the data. 
As a rule of thumb, if the mean is greater than the median and the skew is positive, 
Benford's law is obeyed. Additionally, the data can be plotted and then overlaid  
with the expected distribution based on Benford's law.

To apply Benford's law to the NYSE data, the ield in question should be queried to 
isolate and aggregate the irst digit. The following query does this and excludes the 
3,370 records that have a stock_price_open value of zero:

SELECT LEFT(CONVERT(VARCHAR, stock_price_open), 1), COUNT(*)

FROM [001_NYSE]

WHERE stock_price_open <> 0

GROUP BY LEFT(CONVERT(VARCHAR, stock_price_open), 1)

ORDER BY 1

The results of this query can be plotted to visually inspect the distribution in relation 
to Benford's law, as shown in the following igure:

Figure 15: The leading digit analysis of stock_price_open

This diagram illustrates that the distribution of the irst digit of stock_price_open 
obeys Benford's law. This inding can be used by the investigator to potentially rule 
out the likelihood that the leading digit was intentionally altered. The data may have 
still been manipulated for a small set of records; however, this shows that at least the 
majority of records have a natural distribution of the irst digit.

Note that all digits in stock_price_open are positive. If the digits 
in a set are both positive and negative, the positive digits should be 
evaluated separately from the negative digits.

http:///


Analyzing Hadoop Application Data

[ 208 ]

The digits for additional positions can be analyzed in certain cases, but typically the 
irst digit is suficient for determining whether a signiicant amount of the data was 
altered. Modifying the lesser digits is rarely performed as the amount of effort required 
is often too great compared to simply modifying the irst digits of select records.

In the U.S., evidence based on Benford's law has been admitted in both civil litigation 
and criminal cases, so the method is legally accepted. The investigator should ensure 
that he is well versed in the mathematics of Benford's law and be able to prove 1) the 
digits of the data set form a geometric sequence and 2) the nature of the data set is 
suficiently natural. If both these points can be proven, Benford's law is a powerful 
tool for the investigator to identify instances of data manipulation.

Before applying Benford's law to an investigation, the investigator 
should spend time understanding the mathematics behind it. At a 
minimum, he should understand how to identify whether there is a 
geometric sequence and how to compare the results to determine if 
the data set obeys Benford's law.

Aggregation analysis
Data can be analyzed using aggregation to establish the distribution of data and 
isolate anomalies. In a Big Data investigation, analysis can be simpliied by using 
aggregation to assess the distribution of data, rather than analyzing potentially 
billions of records individually. Aggregation reduces the number of observations 
that are required and can help pinpoint anomalies more quickly.

Aggregation can be performed across a single ield or across multiple ields. The 
investigator can start with a single ield when the analysis requires learning more 
about the data; they can then add more ields as they learn about the data. One test 
that can be applied to identify the largest groups of values from a particular ield 
is the largest subset test. This test takes one or more ields, aggregates a related 
numeric ield, and sorts the data in descending order. The following query  
calculates the stock symbols with the highest total stock volume:

SELECT stock_symbol, SUM(stock_volume), COUNT(*)

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_symbol

ORDER BY 2 DESC
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stock_symbol  Total Stock Volume  Total Records

GE               9,625,312,600         500

JNPR             8,003,694,300         500

EMC              7,920,856,300         500

MOT              7,218,593,300         500

NOK              7,145,176,100         500

The quantiied aggregation can be expanded to include other metrics, such as 
average, minimum, and maximum values. In addition, other ields can be added to 
the aggregation. The following query adds the trade date's year to the aggregation to 
reine the results:

SELECT stock_symbol, YEAR(date), SUM(stock_volume), COUNT(*)

FROM [001_NYSE]

WHERE stock_volume <> 0

GROUP BY stock_symbol, YEAR(date)

ORDER BY 3 DESC

This changes the results to show the stock that had the highest volume in a year in 
the data set:

stock_symbol  Year     Total Stock Volume    Total Records

JNPR          2001        5,652,752,300         248

GE            2001        5,449,695,500         248

EMC           2001        5,146,650,000         248

GE            2000        4,175,617,100         252

MOT           2000        4,147,971,600         252

When performing multiple analyses, be sure to use the same iltering criteria if 
results from the separate analyses are to be compared. In this case, the WHERE clause 
stock_volume <> 0 is used throughout to exclude those records. If the WHERE 
clauses are different across analyses, be sure to note where and how they differ.

The aggregation can also be reined by adding WHERE clauses that restrict the data 
to a particular subset of data. For example, if the investigation of the NYSE data is 
speciic to small lot orders of stocks, the aggregation can restrict all records having 
stock_volume values of 1,000 or less:

SELECT stock_symbol, YEAR(date), SUM(stock_volume), COUNT(*)

FROM [001_NYSE]
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WHERE stock_volume <> 0 and stock_volume <= 1000

GROUP BY stock_symbol, YEAR(date)

ORDER BY 3 DESC

stock_symbol   Year       Total Stock Volume  Total Records

SNS            2000          58,600            82

MTR            2001          56,700            100

MLP            2000          51,000            109

ALX            2001          50,400            106

KTH            2001          50,300            87

Plotting outliers on a timeline
Outliers can be identiied and plotted on a timeline to assess whether the outliers 
form a pattern or are restricted to a speciic time period. The investigator irst sets an 
outlier threshold and then queries all records that are above or below that threshold. 
The resulting list of anomalies can be plotted by date. The following igure illustrates 
an example outlier timeline:

Figure 16: Identifying stock_volume outliers on a timeline

The anomalies in this case are the large sets of daily stock volume. Any one of the 
records could be a key data point; however, the investigator can begin by looking  
at the dates in which the highest number of anomalies occurred, especially those  
that are immediately preceded by a low number of anomalies.
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The timeline can also plot relative percentages of anomaly types to show the trend 
relative to the total number of records per day, as illustrated in the following igure:

Figure 17: Identifying stock_volume outliers by percentage on a timeline

This analysis can be compared to the previous analysis to assess whether the large 
number of anomalies was due to the large number of transactions, or if there was 
a disproportionately large number of anomalies. For example, June 2, 2000 shows 
an anomaly rate of 2.84 percent, which was the day with the highest percentage 
of anomalies but not the day with the most anomalies. This type of inding can be 
signiicant in a fraud investigation to pinpoint when fraudulent events occurred and  
to show that those types of events were not normal across the time period in question.

Analyzing disparate data sets
Big Data investigations can involve multiple, disparate data sets. One set of data may 
include social media data and another may be accounting data. These data sets come 
from different sources, and there may not be a natural way to link the data or easily 
compare the values. To get around this issue, the investigator can take several steps 
to address the disparate data sources.

First, data transformations can be run on both sets to identify whether certain values 
(for example, addresses or names) can be standardized. Because the data sets may not 
have the same types of values between them, data transformation enables the results  
to be compared. If the data sets do have the same types of values, steps should be 
taken to standardize the values.
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Other techniques can also be applied to disparate data. These include:

• Identifying duplication and data overlap, possibly with subsequent 
corrective measures being applied

• Linking data on one or more common fields

• Performing transaction mapping

Transaction mapping is a set of techniques for creating links between data sets that 
do not have a natural link between them. Transaction mapping is an important 
concept in Big Data investigations as Big Data information is often unrelated and 
fairly unstructured. Investigators may not ind good data links between multiple 
data sets. Instead, the investigator may need to map sets of transactions across 
multiple data sets using one or more criteria. An example of this in inancial fraud 
investigations is tracing the order of a stock to its point of execution and then 
tracing the point of execution to an account portfolio. All three data sets could have 
originated from different systems that do not share a common identiier or link.  
This prevents the investigator from running a SQL JOIN query.

Transaction mapping becomes necessary in such cases where disparate data sets 
are a factor. To create links between these disparate data sets, the investigator must 
perform the following steps:

1. Identify all ields that could be linked.
2. Test the possible links and determine whether any data variances need  

to be addressed in order to link the data.

3. Test the links to determine the percentage of transactions that can and  
cannot be mapped.

4. Codify the links as part of a query or within the table by assigning  
shared ID values to form primary key and foreign key relationships.

In the case of the stock order and execution example, the irst step is to ind the links 
between the stock order and execution data sets. Stock orders may be represented by 
a single record that maps to multiple, smaller execution records. An order of 10,000 
shares can be executed in two blocks (for example, 6,000 and 4,000 shares), so the 
investigator should look to other ields to help form the data map. The customer 
account number, the date and time of the order, the stock symbol, and the type 
of order can all be possible ields used to help map the data. If both data sets are 
complete and are expected to include all orders and executions, the investigator can 
use these ields to ind all records in the execution data that form a sum value equal 
to the order amount. The same process can then be applied to map the execution 
data to the account portfolio.
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Transaction mapping is rarely a perfect process, and not all transactions may be able 
to be mapped. The investigator can manually review key records or create a subset of 
data that is not mapped. The key to the process is to identify the data that should be 
mapped and carefully assess the mapping to avoid false positives when linking the 
data sets.

Keyword searching
Big Data investigations can involve data from unstructured sources that are 
converted into a structured format. This information can contain keywords or 
speciic numeric amounts that need to be identiied. The simplest method is to  
run searches using matching algorithms, either with wild cards or pattern  
searches. SQL has built-in text wildcards that can be used to search data:

• %: Matches for zero or more of any character

• _: Matches to any single character

• [0-9]: Matches to a single digit between 0 and 9

• [a-Z]: Matches to a single character between a to z and A to Z

• [^a-Z] or [!a-Z]: Matches to any character not between a to z or A to Z

The following query returns all stock symbols that contain the letter z:

SELECT *

FROM [001_NYSE]

WHERE stock_symbol LIKE '%z%'

The results of the query include BEZ, LZ, ZTR, and others.

More complex pattern searching can be created using multiple WHERE clauses. The 
following example returns records with a stock_symbol value that contains the 
following features: a letter z, a length of three characters, and no letter a in the 
second position:

SELECT *

FROM [001_NYSE]

WHERE stock_symbol LIKE '%z%'

AND LEN(stock_symbol) = 3

AND stock_symbol NOT LIKE '_a_%'

Patterns can also be searched in the SQL server using PATINDEX(). This function 
returns the starting position of a matched pattern or 0 if the pattern is not found 
in the ield. PATINDEX() functions are entered as WHERE clauses and are similar to 
regular expression pattern matches.
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The investigator may not know exactly which ields contain the keyword, so multiple 
ields within the data set need to be searched. This can be achieved by running a cursor 
across several or all of the ields. The cursor structure is the same as the cursor shown 
earlier in this chapter and simply includes the keyword or pattern in the WHERE section 
of the matching query.

The SQL server is not always the most eficient method for running keyword searches. 
An alternative method is to load the data into an indexing and searching tool to run 
more eficient keyword searches. Tools such as dtSearch are excellent for indexing  
data and locating keywords and strings of text using advanced search strings.

Validating the indings
The investigator should take steps to validate the indings. Validation helps to 
conirm that the analysis methodology was sound, all key indings were found,  
and no unknown biases inluenced the indings. This step is important for proving 
both the correctness and completeness of the analysis.

The analysis indings can be validated by employing different analysis techniques or 
comparing the results to data from other sources. The irst technique is to thoroughly 
review and test the analysis that was performed. This includes reviewing the data 
sources used and the queries that were executed. The output of the queries should 
also be reviewed to ensure that the correct results were captured.

A second technique is to perform similar analyses on the evidence using different 
techniques. This is a so-called quality control, or QC, method for validating that the 
analysis was correct and that the results are accurate. For example, if a histogram is  
a component of the analysis, the results of a SQL GROUP BY query using the same 
data can be compared to the histogram to conirm that the distributions match.

Another technique is to compare the indings to another data source. In some cases, 
the data may be able to be veriied against another data source, either data from 
the organization or a third-party (for example, government data). From within 
the organization, the data could be a copy of the data that originated from outside 
Hadoop, or it may have come from Hadoop. This data can be used as a baseline from 
which the analysis can be validated. If there is an expectation that the other data 
source should comport with the evidence, this data serves as a general benchmark 
for the data. Otherwise, the other data source could also be used as part of the 
analysis indings to highlight the ways in which the evidence differs.
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Documenting the indings
The analysis process can become complex when the theory requires multiple analyses 
and the data set is voluminous. Big Data investigations are complex, and the analysis 
process is the stage where the information needs to be understood and multiple facts 
must be combined to prove the theory. Unlike other types of investigations, Big Data 
investigations often involve billions of records and many different data sets. The 
analysis process of such investigations requires careful organization of the learned 
facts and thoughtful structuring of the analysis steps. Likewise, each step of the 
investigation should be properly documented by the investigator.

Best practices for a Big Data investigation include careful documentation of each 
step taken by the investigator. In the analysis phase, this requires documenting two 
important stages: the data transformations and the analysis steps. Documenting 
the data transformations is critical when describing the data set that was analyzed. 
Whether the transformations were changing the data types of ields, changing key-pair 
values to relational records, or culling the data, all of these can be called into question 
by an opposing party. As such, it is important that the investigator properly document 
each step of the process.

To document the data transformations, the investigator should note the following  
in his documentation:

• The summary data counts of each data set and for each derived data set, 
accompanied by all scripts used to transform the data

• The explanations for why each transformation was performed

• The descriptions of any data sets not included in the analysis, such as  
data characteristics and the total number of records

The analysis steps should also be documented. Many different analyses may have 
been run, and remembering all of the criteria and techniques applied for each inding 
may not be feasible. Instead, the investigator should document the analysis in such  
a way that it includes the following information:

• Listing each finding with its query scripts or providing a detailed  
explanation about how the findings were derived

• Carefully adding comments to complex queries that explain why  
each technique and criteria was applied

• Listing the data source(s) for each finding
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The analysis usually yields a large number of indings, but not all of the indings may 
be relevant. To determine which analyses are critical to the indings, the investigator 
creates documentation about each theory and lists every analysis, in the order of 
the logical story, to organize the indings and document which ones are necessary. 
Findings that are not relevant should still be retained because they may help provide 
further backing to the indings at a later stage.

Summary
The analysis process is both an art and a science. The pre-analysis steps of loading, 
surveying, and transforming data are a well-deined process that prepares the data 
for the analysis. The analysis itself, however, is a creative process whereby the 
investigator matches the requirements of the investigation to the data in order to 
determine which analyses should be performed. Many different types of analyses 
can be performed, and it is up to the investigator to identify which techniques  
should be applied in order to build the case and arrive at the indings.

The next chapter will cover how to present the analysis indings and how to  
provide a clear and compelling case based on Big Data evidence.
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Presenting Forensic Findings
The inal phase of an investigation is to present the indings to those who will 
evaluate and rule on the outcome of the investigation. This process is crucial to the 
success of the investigation because any actions taken regarding the issue depend 
on the clarity, completeness, and accuracy of the indings. The investigator will most 
likely present the indings to a non-technical audience, but that audience may also 
seek input from other forensic experts. This means the indings should be presented 
in a clear and understandable manner that is accessible to a non-technical audience, 
and technical details should be provided with the indings for a technical expert who 
may evaluate the indings.

A report is the most common method for presenting the indings of an investigation. It 
is the account of the investigation that will be read by the audience. Almost no one else 
will access the data, except for an opposing forensic expert and attorneys, so the report 
is all that the audience has to learn about the data and how the investigation was 
conducted. The investigator is responsible for educating the audience about all phases 
of the investigation. If the report does not properly convey the indings and describe 
the steps performed, the entire investigation can be dismissed or discredited.

Investigation indings can be presented in several other ways. They can be presented 
in person, either as part of a legal proceeding or in other presentations outside of 
court. The in-person presentation can be in the form of a deposition or trial testimony 
for a legal proceeding. These presentations can make use of reports and other forms 
of documentation entered as evidence. The indings can be presented in any number 
of ways for investigations taking place outside of the court system. The indings for 
an internal investigation, government inquiry, or other types of investigations can be 
presented in-person using presentation software, remotely during a phone call, or in 
any other agreed upon manner.

This chapter covers the most common ways to present indings and the standard 
approaches used to build a presentation that can be understood by a general audience.
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Types of reports
Findings are typically presented in writing, but they can also be accompanied by 
various types of in-person presentations. There are several types of reports, depending 
on the nature of the investigation. The irst is an internal report. These reports are 
formal but do not require speciic legal formatting or standard language. The second 
is an afidavit, which is a sworn statement that can be admitted as evidence in court. 
The third is a declaration. Declarations are intended as statements of facts that are 
submitted to a court. The fourth is an expert report, and this is evidence that can be 
submitted by a subject matter expert about a particular set of facts and indings in a 
case. The forensic investigator can also be called to provide an in-person presentation 
based on the report, which can be in the form of a deposition, testimony, or a non-
legal, question-and-answer meeting.

The following table summarizes the types of reports an investigator may be asked  
to write:

Report Description

Internal investigation This is a detailed report for an investigation of an 

internal matter (for example, a data breach or employee 

misconduct) that is not part of a legal proceeding

Affidavit This is a sworn, notarized statement of fact about the 

investigation used to put facts into evidence in a case

Declaration This is a statement of fact about the investigation—similar 

to an affidavit but not notarized—used as a clarifying 

document by the court 

Expert report This is a report detailing the investigation for a legal 

proceeding that is admitted as evidence

Sample reports
Reports are written in a standardized way depending on the type of report. The 
reports presented here show the standard structure of documents for US-based 
investigations. Each legal system has its own requirements and individual jurisdictions 
may differ, so the investigator should base his report on the standards for that  
legal system.
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Internal investigation report
Internal investigation reports have several standard components but can vary in 
structure. The goal of an internal investigation is to determine indings within 
an organization, so the decision makers within that organization can decide 
on what actions to take. The report should contain an executive summary, an 
explanation about what prompted the investigation, a list of steps that were taken, 
and the indings. The following igure provides a sample structure for an internal 
investigation report:

Figure 1: An internal investigation report

Internal investigation reports are typically only used within an organization to 
determine the cause and outcome of an event. The organization can use the report to 
terminate employees, remediate against data theft, or any number of other actions. 
The internal investigation may also lead to civil litigation or a criminal case, so the 
investigator has to be thorough and speciic in his report. Every opinion should be 
supported by veriiable fact.
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Afidavit and declaration
Afidavits and declarations are reports that are submitted to the court by attorneys to 
purport to facts that support a set of facts in the investigation. The primary differences 
between an internal investigation report and expert afidavits and declarations are 1) 
the expert submitting the afidavit or declaration must be recognized by the court as 
an expert in forensics, 2) an afidavit or declaration has a more deined purpose and 
format to be entered into a case, and 3) once submitted, an afidavit or declaration 
cannot be revised.

Declarations and afidavits are reports used to support motions put forth by attorneys 
to support a particular claim. The investigator submits a declaration or afidavit to 
support those motions; however, the investigator's opinions should be objective and 
not simply reiterate the attorneys' motions without substantiation. The facts and 
opinions in the afidavit or declaration can be rebutted by an opposing expert. There 
are at least two sides to every legal case, so the investigator should develop this report 
with the understanding that the document will be carefully reviewed and critiqued by 
the opposing side.

In an afidavit or declaration, the forensic investigator irst states his educational 
background and the major factors that make him an expert who can opine on the 
matter under investigation. This section is critical for explaining to the court why 
it should trust his opinion. Courts have strict standards for assessing whether an 
investigator is qualiied to be recognized as an expert, and if the investigator cannot 
prove that he is an expert, his reports and testimony can be excluded from the 
case. Investigators typically list several points about themselves to show the court 
that their opinions can be trusted, and these include their educational background, 
applicable technical certiications, current company, the number of years in their 
ield, and any additional factors or training such as being a college professor or 
having taken a certain number of hours of training in the past several years.

Investigators submitting expert opinions should be familiar with 
Daubert requirements for being recognized by the court as an expert.

http:///


Chapter 8

[ 221 ]

Afidavits and declarations are written using a similar structure. The following igure 
provides a sample structure for a declaration:

 

Figure 2: Declaration

Expert report
Expert reports are typically required of anyone offering expert testimony in a trial. 
Investigators who serve as expert witnesses submit expert reports to 1) disclose 
all opinions and the bases for those opinions, 2) provide information disclosed for 
pretrial discovery, and 3) give the court information so it can decide whether the 
expert's testimony is admissible. The report is a complete set of facts and opinions 
from which the expert can testify.
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The expert report is not required to adhere to a standard format, but several sets of 
information are required. Generally, investigators write their reports in a narrative 
style that tells the story of the investigation and how the conclusions were drawn. This 
style is helpful to judges and juries because it reads better and is more understandable 
than other formats. The investigator must include required information in the expert 
report. As per the US Federal Rules of Civil Procedure Rule 26 (a)(2)(B), the expert 
report is required to contain the following sections:

• A full and complete statement of all opinions expressed and the reasons  
for them

• The qualifications of the witnesses, which includes a list of all publications 
authored within the preceding ten years

• The compensation to be paid to the expert

• The information used by the expert to form his opinions (for example, data 
and publications upon which the methodology was based)

• A full list of all cases in which the expert testified in the previous four years

The following igure provides a sample structure for an expert report:

Figure 3: An expert report
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Developing the report
All types of reports serve the same goal: explaining the indings and the steps that 
were applied to arrive at the indings. Forensic investigations are complex, and the 
results of an investigation are typically reported to a non-technical audience, whether 
it is an internal investigation or an investigation involving the legal system. A report is 
a tool that summarizes the salient points of the entire forensic investigation in a logical 
and accessible way. While Big Data investigations are complex, the report should be 
simple and understandable by any audience, so they understand the steps performed 
from identiication through collection and analysis and the indings are supported by 
the investigator's interpretation of the results. The report should be developed with  
the audience in mind and an awareness of how to explain the technical concepts to a 
non-technical audience.

Reports can be made more accessible and understandable for a general audience 
by including certain types of information and explaining technical concepts. The 
following concepts can be applied to a report to simplify and clarify the report:

• Use charts and diagrams to explain steps performed or logical  
connections between findings

• Include technical detail as exhibits or appendices so as not to muddle  
the main sections of the report

• Explain technical concepts that need to be included in general,  
plain language

• Use professional language and avoid informal or colloquial language

• Only include relevant and factual information, not speculation

Explaining the process
The report structure typically includes one or more sections detailing the evidence 
considered and the steps the investigator took to arrive at his indings. The investigator 
must clearly list all evidence he considered. This is typically done by identifying the 
name, type, and characteristics of the data source. The steps taken by the investigator 
can be explained in several ways. A standard approach is to describe the process in 
chronological order, from identiication through analysis. This approach is well-suited 
to reports intended for a general audience, because it allows the reader to follow the 
steps in the same order in which the events occurred.
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The data identiication process should be explained in plain language, with 
descriptions about why certain data sources were included or excluded. Most 
audiences will understand how evidence was identiied; however, some explanation 
about how each type of system operates and why some data was not deemed relevant 
may be required. The investigator does not need to describe every data source that  
was considered, but he may want to discuss key data sources if he expects that 
questions will arise during testimony.

The collection process, likewise, should be explained in plain language. This process 
is highly technical, so the investigator should adhere to very basic descriptions of the 
collection. For example, rather than describing the collection as, "a bit-wise collection 
of the 40 nodes was collected into dd image iles and restored to a single image using 
[…]", the investigator may prefer to simplify the language to a statement more like "the 
distributed system's data was collected and restored using forensic means". Depending 
on the case and the preference of the attorneys, the latter approach may be preferable, 
and any questions about the exact methods can be raised during trial.

A key point in Big Data forensic investigations is to explain the concept 
of a distributed system and how Hadoop operates. Distributed systems 
are not new, but the investigator cannot assume that the audience of the 
report understands the concept of distributed systems.

Supporting documentation and complex, technical detail can be presented as an 
appendix or exhibit in the report. Documentation, such as chain of custody forms 
and logs from the collection process, can muddle the body of the report, making it 
less readable. Similarly, technical detail, such as source code, can be excessive or 
confusing to a general audience. Instead, the investigator can use plain language  
to describe the process and explain what occurred in the body of the report, while 
citing the detailed information and including it as an exhibit or appendix. This 
method helps the investigator to provide a report that is readable while ensuring  
that all backing information is available to a reader who wants to understand more 
about the investigation.

The analysis phase is the most complicated phase, so the investigator should explain 
his indings in a logical and coherent manner. The focus should be on the relevant 
analyses performed, the results, and the interpretations of those results, not necessarily 
the investigator's thinking, hypotheses, or reasons for performing the analysis. The 
analysis can either be presented in a separate section or in the indings section.
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Showing the indings
The indings section is where the investigator presents the indings and his 
interpretation of the indings. The indings are presented in a logical order to 
demonstrate how and why the indings were reached. The indings should be 
explained in clear, concise language that can be understood by a general audience.  
The key points should be highlighted, and unnecessary detail should be excluded.

The following are several key points for the investigator to consider when drafting 
the report:

• Be objective, not an advocate for a particular scenario. Present the results 
clearly, concisely, and objectively.

• Avoid conjecture or hedge words such as "could" or "possibly."

• Do not draw legal conclusions. The investigator should stick to what was 
asked of him and avoid legal language, such as discussing negligence.

• Do not provide opinions for which the reasons were not supplied.

The indings of an investigator should be organized in a logical way. There are 
several approaches to organizing the indings section of a report. First, the indings 
can be organized by the chronological order of events that occurred. This method for 
organizing the indings is quite common and can be presented either according to the 
order of the events that are being investigated or the order of events performed by 
the investigator. The former is typically preferred, because it tells the story of what 
actually happened.

A second method is to organize the indings by the relation of the facts. Rather than 
focus on a chronology, this method organizes the indings by the importance of the 
events and how they are related. For instance, in a fraud investigation, many less 
signiicant events may have occurred, but two events that did not occur near to one 
another may be the most important and what the investigator wants to stress. Rather 
than detail those indings apart from one another, the investigator can present them 
together to highlight their importance.

Another method is to present the indings according to a theory. In this case, the 
investigator details why a particular theory appears to be true, and the subsequent 
indings are presented to support that theory. The investigator may also include 
indings that disprove potential alternative or contradictory theories. This method 
requires careful organization and wording, because the investigator is required to 
be an expert on the case. He cannot appear to have been led down a particular line 
of reasoning or appear to be an advocate for a particular theory. Instead, he needs to 
show that he had a solid basis for a particular theory and carefully explain how and 
why his indings prove that theory.
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The following igure illustrates how these methods for organizing the indings  
can be structured:

Figure 4: Approaches for organizing the findings

The investigator has a great degree of freedom in how the individual indings are 
presented. The indings can be shown as:

• Textual descriptions

• Numerical representations

• Charts

• Sample data records

A good report does not need all of these elements, but combining multiple types of 
presentation can be helpful in detailing the indings. Textual descriptions are a part of 
all reports. These are the narratives and explanations of the facts of the investigation. 
They form the bulk of the report because this is how the indings are described, and 
they present how the investigator interpreted the results. Numerical representations 
are the facts presented numerically, such as aggregate computations and statistical 
analyses. Charts and other graphics are useful for visually imparting the indings. A 
general audience may not fully appreciate the raw numbers, so a visual can further 
clarify and elucidate the signiicance of the numerical indings or a timeline.

In traditional digital forensic investigations, the indings are described in narrative 
form and screenshots can be included. In Big Data investigations, screenshots and 
sample data are not as valuable. Big Data investigations are based on large volumes 
of data, and while sample records can help explain the structure of the data, the 
indings are typically based on identifying a subset of records or performing aggregate 
calculations. This is a major difference in how the indings are presented between Big 
Data and traditional investigations.
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Using exhibits or appendices
Reports are written in a narrative form. An investigator may ind the supporting 
information and large graphics that are necessary to fully explain a concept or fact 
may interfere with the readability of the main sections. This information can be cited 
in the main sections and placed at the end of the report. The main types of appendix 
and exhibit content include:

• Graphics (for example, charts and screenshots)

• Forms (for example, chain of custody)

• Source code or other technical detail

The investigator should follow these general principles when considering whether  
to include an exhibit or appendix:

• Each exhibit or appendix should be labeled in the sequential order in which  
it appeared in the report

• The investigator should avoid providing an extraneous exhibit or appendix 
(for example, chain of custody documentation when there are not questions 
about the evidence's handling)

• The exhibit or appendix should be adequately described in the text of the 
report or be self-explanatory

Testimony and other presentations
The investigation can also be presented orally. The investigation may need to be 
presented in an interactive manner with one or more parties being present and 
asking questions. For internal investigations, the investigator may be called to 
present his indings to explain what he did and answer any questions that the  
client may have. For legal proceedings, this can take the form of depositions or 
testimony. Both of these types of oral presentations involve one or both sides of  
the investigation having a chance to ask the investigator about his report and ask 
further questions about his indings and interpretations.

Internal investigations take place outside of the legal system, so there are no ixed rules 
for how those are conducted. The investigator may be called to answer questions and 
explain the report in a way that can be understood by the organization. In this setting, 
the investigator may wish to present the indings using a presentation software or 
by using graphics that were not in the report to explain his indings. The investigator 
should answer questions truthfully and avoid speculation.
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In addition, the investigator should be aware of how the organization intends 
on memorializing the indings. Should the organization reserve the right to use 
the indings as evidence, or if a legal case may arise out of the investigation, the 
investigator should prepare all materials and limit statements to only those for  
which he would be able to support in court for a later legal proceeding.

Depositions and testimony are two distinctly different forms of legal presentation. 
Expert witness depositions are sworn testimony that are conducted in a question-and-
answer manner, usually outside of the court. An attorney will ask questions—either 
based on the expert's afidavit or declaration or not—and the investigator answers 
the questions to the best of his knowledge. The investigator does have an opportunity 
to later correct any statements for a ixed period of time, but he should aim to limit 
the corrections as much as possible in order to maintain credibility. The deposition is 
considered testimony by the court, so that information will be seen by the court as part 
of the proceedings. Transcripts of the testimony can also be introduced as evidence 
and read to the court or jury in a later trial.

Testimony, on the other hand, is sworn testimony that is taken in the court as  
part of a trial. Testimony is preceded by the expert report being submitted. The 
investigator will not have an opportunity to correct any mistakes he says. The 
investigator should present himself professionally and be able to recall the facts  
of the investigation. He must also have a keen legal sense and refrain from 
speculation or interpreting questions.

• Answer only the questions asked; avoid giving long narratives

• Do not guess; "I don't know' or "I don't remember' are acceptable responses

• Ask to see document that would refresh one's memory, if one exists

• Couch opinions in terms of the underlying facts and the methods used  
to come to them

• Be prepared to answer potentially hostile background-related questions 
regarding academic and professional background as well as publications

Investigators who have not served as an expert witness before should 
seek out expert witness training and literature before serving as an 
expert. Experts are expected to be well versed in the legal system and 
how to conduct themselves in that role.
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Summary
The inal step of the investigation is to present the indings. The investigator should 
already have all of his indings and documentation when beginning this process. 
Depending on the nature of the investigation, the investigator may need to write a 
number of different reports and present the indings in person—or he may only need 
to draft a single document. The goal for any investigation is not only to perform a 
sound data collection and complete analysis, but also to present the indings in an 
intelligible and accurate way. By knowing the requirements of the investigation  
and the forms of presentation required, the investigator can successfully present  
the indings.

Big Data forensics is a new and rapidly evolving ield. Many of the technologies 
presented in this book will continue to evolve and possibly disappear. The concepts 
and best practices in this book, however, will remain and can be applied to 
investigations in the future. Data storage will continue to expand, which means  
that forensic investigations will continue to expand in turn. Distributed systems, 
NoSQL databases, and other Big Data concepts require these new forensic techniques 
to keep pace with the rapid changes in the size and scope of forensic investigations.
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