
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Advance Praise for REST in Practice

“Jim, Savas, and Ian manage to make the notoriously abstract concepts behind RESTful in-
tegration useful and applicable in day-to-day work, as well as easy to understand. If you’re
looking into how to do web-based integration simply and effectively, this is where you
should start.”

—Mark Nottingham
Principal Technical Yahoo!, Yahoo

“It is no coincidence that since Jim, Savas, and Ian started their frequent presentations and
writings on the importance and applicability of hypermedia in distributed systems, the land-
scape of REST’s practical usage started to change. Restfulie is an example how influential their
ideas have been.”

—Guilherme Silveira
Tech Lead at Caelum and Restfulie Project Leader

“While there are by now many books that describe basic REST and HTTP principles, this book
raises the bar by exploiting the web architecture’s benefits for more advanced use cases, such
as hypermedia-driven processes. A perfect mix of theory and practice.”

—Stefan Tilkov
CEO, InnoQ

“REST is different from traditional approaches to application design and development. It’s
important to clearly understand REST and build on successful examples. REST in Practice meets
this need head-on. Its authors are all excellent technologists and communicators, and have
done a great job tackling this challenging subject.”

—Eric Newcomer
Chief Architect, Investment Banking Division, Credit Suisse

“REST in Practice unifies a grounded, pragmatic approach to building real-world services with
crystal-clear explanations of higher-level abstractions. The result is a book that teaches you
both how and why to develop services with flexible, negotiable, discoverable interfaces.”

—Michael T. Nygard
Author of Release It!

“REST can appear confusing and inaccessible, filled with jargon and with precious few really
good examples. Luckily, this book does a superb job of taking the difficult and misunderstood
parts of REST and describing them so they appear both simple and obvious. Along the way, it
also shows how to build upon REST and the Web to solve real-world problems.”

—Colin Jack
Senior Software Developer

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

REST in Practice

Jim Webber, Savas Parastatidis, and Ian Robinson

Beijing · Cambridge · Farnham · Köln · Sebastopol · Tokyo

www.allitebooks.com

http://www.allitebooks.org

REST in Practice
by Jim Webber, Savas Parastatidis, and Ian Robinson

Copyright © 2010 Jim Webber, Savas Parastatidis, and Ian Robinson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: Rachel Monaghan

Copyeditor: Audrey Doyle

Proofreader: Rachel Monaghan

Production Services:
 Newgen North America

Indexer: Lucie Haskins

Cover Designer: Karen Montgomery

Interior Designer: Ron Bilodeau

Illustrator: Robert Romano

Printing History:
September 2010: 	 First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc., REST in Practice, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and au-
thors assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

ISBN: 978-0-596-80582-1

[M]

www.allitebooks.com

http://my.safaribooksonline.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

v

C o n t e n t s

Foreword. ix

Preface. xi

1	 The Web As a Platform for Building Distributed Systems.. . 1
Architecture of the Web	 2

Thinking in Resources	 4

From the Web Architecture to the REST Architectural Style	 12

The Web As an Application Platform	 15

Web Friendliness and the Richardson Maturity Model	 18

GET on Board	 20

2	 Introducing Restbucks: How to GET a Coffee,
Web Style.. 21
Restbucks: A Little Coffee Shop with Global Ambitions	 22

Toolbox	 27

Here Comes the Web	 30

3	 Basic Web Integration. 31
Lose Weight, Feel Great!	 31

A Simple Coffee Ordering System	 32

URI Templates	 35

URI Tunneling	 37

POX: Plain Old XML over HTTP	 42

We Are Just Getting Started	 54

4	 CRUD Web Services. 55
Modeling Orders As Resources	 55

Building CRUD Services	 57

Aligning Resource State	 78

Consuming CRUD Services	 83

Consuming Services Automatically with WADL	 86

CRUD Is Good, but It’s Not Great	 90

www.allitebooks.com

http://www.allitebooks.org

vi Contents

5	 Hypermedia Services.. 93
The Hypermedia Tenet	 93

Hypermedia Formats	 97

Contracts	 108

Hypermedia Protocols	 112

Implementing a Hypermedia Service	 128

Building the Ordering Service in Java	 128

Building the Ordering Service in .NET	 140

Ready, Set, Action	 152

6	 Scaling Out.. 155
GET Back to Basics	 155

Caching	 157

Making Content Cacheable	 161

Implementing Caching in .NET	 167

Consistency	 171

Extending Freshness	 179

Stay Fresh	 183

7	 The Atom Syndication Format.. 185
The Format	 185

Common Uses for Atom	 188

Using Atom for Event-Driven Systems	 189

Building an Atom Service in Java	 207

Building an Atom Service in .NET	 219

Atom Everywhere?	 234

After the Event	 236

8	 Atom Publishing Protocol. 237
Atom Publishing Protocol	 238

Implementing Order Fulfillment Using AtomPub	 249

Implementing AtomPub in .NET	 268

A Versatile Protocol	 283

9	 Web Security.. 285
HTTP Security Essentials	 286

Identity and the OpenID Protocol	 295

The OAuth Protocol	 315

Service Hacks and Defenses	 339

Final Thoughts	 349

www.allitebooks.com

http://www.allitebooks.org

viiContents

10	 Semantics. 351
Syntax Versus Semantics	 351

Structure and Representation of Information	 352

The Semantic Web	 357

Microformats	 372

Linked Data and the Web	 373

Guidance	 374

11	 The Web and WS-*. 375
Are Web Services Evil?	 375

SOAP: The Whole Truth	 376

WSDL: Just Another Object IDL	 380

Two Wrongs Don’t Make a Right	 386

Secure, Reliable, Transacted	 387

A Requiem for Web Services?	 405

12	 Building the Case for the Web. 407
No More Silver Bullets	 407

Building and Running Web-Based Services	 407

No Architecture Without Measurement	 409

Selling the Web	 412

Go Forth and Build	 414

Index.. 415

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ix

Foreword

From the very start of when I got involved in computing, there’s been

the desire to have software systems designed as components that can be freely com-

bined. The wide-scale connectivity of the Internet fueled this desire, and added the

desire to have components operate over networks that introduce issues of latency

and unknown reliability. In this world many systems have been tried, and many

have failed—usually with a whimper.

A great example of success is the World Wide Web. Its success has penetrated both

business operations and popular culture. It provides opportunities for people to pull

together information from many sources, with hardly any prearranged collaboration—

and at a global scale.

The Web, as we currently know it, isn’t the be-all and end-all of computing, but many

people believe it offers an important lesson on how to construct systems of networked

components. Many people take advantage of its protocol, HTTP, to connect systems.

But some people think we should go further, using HTTP not as a convenient tunnel,

but to embrace the way the Web works as a foundation for systems collaboration.

This thinking gathers together under the name of “REST.” It refers to Roy Fielding’s

PhD thesis, which is far more often referred to than it is read. There is a growing

notion that following the principles of REST offers a fruitful path to making networked

components work, one that is built upon the success of the Web itself.

x FOREWORD

That vision is attractive, but there is much to be done to reach it. We have to take the

principles of REST and see how to apply them to the everyday problems of systems

integration. This is the task the authors of this book have taken on: to take REST from

an attractive vision to implemented systems. They’ve done much to teach me about

thinking in resources, how to use HTTP idioms, and the importance of hypermedia

controls. As a result, this book will give you a thorough grounding in applying the core

elements of RESTful thinking.

As we all should know, REST is not the answer to all questions. There are many situa-

tions where a REST approach is an appropriate approach, but many where it is not. As

it’s early days in using this style for integration problems, we are still feeling our way

around these boundaries. But in order to explore these boundaries properly, it’s vital

to have a proper understanding of what REST is about. Without that, you run the risk

of trying pseudo-REST and drawing the wrong conclusions. This book can help you

avoid that fate.

—Martin Fowler

August 2010

xi

Preface

The Web has revolutionized the way we access and share information. In

just two decades, it has become the global platform for delivering and consuming services.

The pervasiveness and ubiquity of the Web stems from the way it combines architec-

tural simplicity with a small set of widely accepted technologies. The Web provides

scalability, security, and reliability for those systems that embrace its simple tenets, and

it does so using commodity tools and platforms.

Our goal in this book is twofold: to demystify the Web as an application platform and

to showcase how web architecture can be applied to common enterprise computing

problems. Throughout the chapters, we make it a point to demonstrate how services

can leverage the Web both inside and outside enterprise boundaries. Our vision is of

an information platform that is open and available to other systems, which eschews

integration in favor of composition, and yet implements valuable business behaviors: a

distributed, hypermedia-driven application platform.

You don’t have to know REST or HTTP in detail in order to understand this book. We’ll

take you from simple integration through to sophisticated business protocols, all with

detailed code examples that you can adapt for your own ends.

Should I Read This Book?
Like most of us, you’re probably already building something that feeds into the Web, and

you’ve probably used tools and patterns for the Web that seem pretty useful. Then you’ve

tackled typical enterprise problems and wondered why it can’t be as nice as the web stuff.

xii Preface

You’re seeing the benefits of the Web all around and you start to question whether

your enterprise’s expensive middleware offers a good return on investment, or

whether it will ever scale to meet your users’ demands.

You might be a developer who wants to understand the Web’s principles in more

detail, and likes to learn through code examples. You’ve heard terms such as URIs,

HTTP, and Atom, and you want to learn more about them, including the type of sup-

port you can get from popular programming platforms.

You may even be an enthusiast who has heard about REST and wants to know what

it is all about. You want to learn more about “hypermedia” and the REST architectural

style so that you can build resource-oriented systems and implement sophisticated

business protocols atop the Web.

This book will help.

Should I Skip This Book?
If you are looking to learn how to design websites or how to write JavaScript applica-

tions, this book will not offer you much, though there’s plenty for competent AJAX

developers to leverage from our approach to building backend services.

If you are looking to build mashups or systems for people to use directly, this book is

probably not for you. We’ve focused on machine-to-machine interactions. In fact, this

book is full of machines talking to one another through the Web.

We rather like it that way.

Resources
The book is accompanied by a website: http://restinpractice.com. There you’ll find work-

ing code samples from the book, links to other resources, errata, and community

information. We will make every effort to continuously update the site with more

information.

What Did You Think About the Book?
We are very interested in your thoughts on this book, positive or negative. You can

head to Amazon and share your thoughts by writing a review. Alternatively, O’Reilly

would be more than happy to hear your views at:

http://www.oreilly.com/catalog/9780596805821/

http://restinpractice.com
http://www.oreilly.com/catalog/9780596805821/

xiiiPREFACE

Errata
While we have made every effort to keep the book error-free, we have probably

missed a few things. Errata give readers a way to let us know about typos, errors, and

other problems with the book. You can head to the book’s URI at O’Reilly in order to

let us know. We’d really appreciate it:

http://www.oreilly.com/catalog/9780596805821/

Alternatively, you can reach us directly. Our contact details can be found on the book’s

website:

http://restinpractice.com

We will post corrections on both websites as soon as possible after confirming the iden-

tified issue. O’Reilly can also fix errata in future printings of the book and on Safari, so

you can help make the book even better. We’ll credit your assistance on the website

and in any future editions too!

Conventions Used in This Book
The following font conventions are used in this book:

Italic

Indicates Internet addresses, such as domain names and URIs, and new items

where they are defined

Constant width
Indicates method, variable, and class names in programs; also, XML element and

attribute names, and HTTP idioms

Constant width bold
Indicates emphasis in program code lines

Note
This icon signifies a tip, suggestion, or general note.

warning
This icon indicates a warning or caution.

http://www.oreilly.com/catalog/9780596805821/
http://restinpractice.com

xiv Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in

this book in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code. For example,

writing a program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example

code does not require permission. Incorporating a significant amount of example code

from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,

authors, publisher, copyright holder, and ISBN. For example: “REST in Practice by Jim

Webber, Savas Parastatidis, and Ian Robinson (O’Reilly). Copyright 2010 Jim Webber,

Savas Parastatidis, and Ian Robinson, 978-0-596-80582-1.”

If you feel your use of code examples falls outside fair use or the permission given

here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,

but you may find that features have changed (or even that we have made a few mis-

takes!). Please let us know about any errors you find, as well as your suggestions for

future editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)

707-829-0515 (international/local)

707-829-0104 (fax)

O’Reilly has a web page for this book, where we list errata, examples, and any addi-

tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596805821/

The book also has its own website at:

http://restinpractice.com

To comment or ask technical questions about this book, send email to:

questions@restinpractice.com

For more information about our books, conferences, Resource Centers, and the

O’Reilly Network, see our website at:

http://www.oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596805821/
http://restinpractice.com
mailto:questions@restinpractice.com
http://www.oreilly.com

xvPREFACE

Safari® Books Online
	� Safari Books Online is an on-demand digital library that lets you

easily search over 7,500 technology and creative reference books and

videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library

online. Read books on your cell phone and mobile devices. Access new titles before

they are available for print, and get exclusive access to manuscripts in development

and post feedback for the authors. Copy and paste code samples, organize your

favorites, download chapters, bookmark key sections, create notes, print out pages,

and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have

full digital access to this book and others on similar topics from O’Reilly and other

publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
We would like to thank all our community reviewers for their feedback and advice

over the course of this book project. They all volunteered their time to help us write

this book over several years: Solomon Duskis, Rafael de F. Ferreira, Glen Ford, Martin

Fowler, Colin Jack, Ken Kolchier, Sriram Narayan, Eric Newcomer, Barry Norton,

Chris Read, Ryan Riley, Guilherme Silveira, Halvard Skogsrud, Nigel Small, Monika

Solanki, Stefan Tilkov, Jon Tirsen, Spiros Tzavellas, Steve Vinoski, Lasse Westh-

Nielsen, and Herbjörn Wilhelmsen.

Our O’Reilly reviewers also deserve to be called out for their very useful and prompt

feedback: William Martínez Pomares and Zach Kessin.

Our great appreciation and warm thanks go to our editor, Simon St.Laurent.

Special thanks to Mark Baker, who inspired us to write this book, educated us along

the way, and never gave up on us.

This book wouldn’t have been possible without the constant love and support of our

families and friends. Special thanks go to Kath, Mary, Lottie, Tiger, and Elliot. It’s been

a long road.

Our deepest thanks to you all.

http://my.safaribooksonline.com

1

C h a p t e r o n e

The Web As a Platform for
Building Distributed Systems

The Web has radically transformed the way we produce and share informa-

tion. Its international ecosystem of applications and services allows us to search, aggre-

gate, combine, transform, replicate, cache, and archive the information that underpins

today’s digital society. Successful despite its chaotic growth, it is the largest, least formal

integration project ever attempted—all of this, despite having barely entered its teenage

years.

Today’s Web is in large part the human Web: human users are the direct consumers

of the services offered by the majority of today’s web applications. Given its success in

managing our digital needs at such phenomenal scale, we’re now starting to ask how

we might apply the Web’s underlying architectural principles to building other kinds of

distributed systems, particularly the kinds of distributed systems typically implemented

by “enterprise application” developers.

Why is the Web such a successful application platform? What are its guiding principles,

and how should we apply them when building distributed systems? What technologies

can and should we use? Why does the Web model feel familiar, but still different from

previous platforms? Conversely, is the Web always the solution to the challenges we

face as enterprise application developers?

These are the questions we’ll answer in the rest of this book. Our goal throughout

is to describe how to build distributed systems based on the Web’s architecture. We

show how to implement systems that use the Web’s predominant application protocol,

2 CHAPTER 1: the web as a platform for building distributed systems

HyperText Transfer Protocol (HTTP), and which leverage REST’s architectural tenets. We

explain the Web’s fundamental principles in simple terms and discuss their relevance in

developing robust distributed applications. And we illustrate all this with challenging

examples drawn from representative enterprise scenarios and solutions implemented

using Java and .NET.

The remainder of this chapter takes a first, high-level look at the Web’s architecture.

Here we discuss some key building blocks, touch briefly on the REpresentational State

Transfer (REST) architectural style, and explain why the Web can readily be used as a

platform for connecting services at global scale. Subsequent chapters dive deeper into

the Web’s principles and discuss the technologies available for connecting systems in a

web-friendly manner.

Architecture of the Web
Tim Berners-Lee designed and built the foundations of the World Wide Web while a

research fellow at CERN in the early 1990s. His motivation was to create an easy-to-

use, distributed, loosely coupled system for sharing documents. Rather than starting

from traditional distributed application middleware stacks, he opted for a small set

of technologies and architectural principles. His approach made it simple to imple-

ment applications and author content. At the same time, it enabled the nascent Web

to scale and evolve globally. Within a few years of the Web’s birth, academic and

research websites had emerged all over the Internet. Shortly thereafter, the busi-

ness world started establishing a web presence and extracting web-scale profits from

its use. Today the Web is a heady mix of business, research, government, social, and

individual interests.

This diverse constituency makes the Web a chaotic place—the only consistency being

the consistent variety of the interests represented there; the only unifying factor the

seemingly never-ending thread of connections that lead from gaming to commerce, to

dating to enterprise administration, as we see in Figure 1-1.

Despite the emergent chaos at global scale, the Web is remarkably simple to under-

stand and easy to use at local scale. As documented by the World Wide Web Consortium

(W3C) in its “Architecture of the World Wide Web,” the anarchic architecture of today’s

Web is the culmination of thousands of simple, small-scale interactions between agents

and resources that use the founding technologies of HTTP and the URI.*

*	“Architecture of the World Wide Web, Volume One,” http://www.w3.org/TR/webarch/.

www.allitebooks.com

http://www.w3.org/TR/webarch/
http://www.allitebooks.org

3Architecture of the Web

Figure 1-1.  The Web

The Web’s architecture, as portrayed in Figure 1-1, shows URIs and resources playing a

leading role, supported by web caches for scalability. Behind the scenes, service bound-

aries support isolation and independent evolution of functionality, thereby encourag-

ing loose coupling. In the enterprise, the same architectural principles and technology

can be applied.

4 CHAPTER 1: the web as a platform for building distributed systems

Traditionally we’ve used middleware to build distributed systems. Despite the amount

of research and development that has gone into such platforms, none of them has

managed to become as pervasive as the Web is today. Traditional middleware tech-

nologies have always focused on the computer science aspects of distributed systems:

components, type systems, objects, remote procedure calls, and so on.

The Web’s middleware is a set of widely deployed and commoditized servers. From the

obvious—web servers that host resources (and the data and computation that back

them)—to the hidden: proxies, caches, and content delivery networks, which manage

traffic flow. Together, these elements support the deployment of a planetary-scale network

of systems without resorting to intricate object models or complex middleware solutions.

This low-ceremony middleware environment has allowed the Web’s focus to shift to

information and document sharing using hypermedia. While hypermedia itself was

not a new idea, its application at Internet scale took a radical turn with the decision to

allow broken links. Although we’re now nonplussed (though sometimes annoyed) at

the classic “404 Page Not Found” error when we use the Web, this modest status code

set a new and radical direction for distributed computing: it explicitly acknowledged

that we can’t be in control of the whole system all the time.

Compared to classic distributed systems thinking, the Web’s seeming ambivalence to

dangling pointers is heresy. But it is precisely this shift toward a web-centric way of

building computer systems that is the focus of this book.

Thinking in Resources
Resources are the fundamental building blocks of web-based systems, to the extent

that the Web is often referred to as being “resource-oriented.” A resource is any-

thing we expose to the Web, from a document or video clip to a business process

or device. From a consumer’s point of view, a resource is anything with which that

consumer interacts while progressing toward some goal. Many real-world resources

might at first appear impossible to project onto the Web. However, their appear-

ance on the Web is a result of our abstracting out their useful information aspects and

presenting these aspects to the digital world. A flesh-and-blood or bricks-and-mortar

resource becomes a web resource by the simple act of making the information associ-

ated with it accessible on the Web. The generality of the resource concept makes for a

heterogeneous community. Almost anything can be modeled as a resource and then

made available for manipulation over the network: “Roy’s dissertation,” “the movie

Star Wars,” “the invoice for the books Jane just bought,” “Paul’s poker bot,” and “the

HR process for dealing with new hires” all happily coexist as resources on the Web.

5Thinking in Resources

Resources and Identifiers
To use a resource we need both to be able to identify it on the network and to have

some means of manipulating it. The Web provides the Uniform Resource Identifier, or

URI, for just these purposes. A URI uniquely identifies a web resource, and at the same

time makes it addressable, or capable of being manipulated using an application pro-

tocol such as HTTP (which is the predominant protocol on the Web). A resource’s URI

distinguishes it from any other resource, and it’s through its URI that interactions with

that resource take place.

The relationship between URIs and resources is many-to-one. A URI identifies only

one resource, but a resource can have more than one URI. That is, a resource can be

identified in more than one way, much as humans can have multiple email addresses

or telephone numbers. This fits well with our frequent need to identify real-world

resources in more than one way.

There’s no limit on the number of URIs that can refer to a resource, and it is in fact quite

common for a resource to be identified by numerous URIs, as shown in Figure 1-2. A

resource’s URIs may provide different information about the location of the resource,

or the protocol that can be used to manipulate it. For example, the Google home page

(which is, of course, a resource) can be accessed via both http://www.google.com and http://

google.com URIs.

Figure 1-2.  Multiple URIs for a resource

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.google.com
http://google.com
http://google.com

6 CHAPTER 1: the web as a platform for building distributed systems

Note
Although several URIs can identify the same resource, the Web doesn’t provide any
way to compute whether two different URIs actually refer to the same resource.
As developers, we should never assume that two URIs refer to different resources
based merely on their syntactic differences. Where such comparisons are impor-
tant, we should draw on Semantic Web technologies, which offer vocabularies for
declaring resource identity sameness. We will discuss some useful techniques from
semantic computing later in the book.

A URI takes the form <scheme>:<scheme-specific-structure>. The scheme defines how the

rest of the identifier is to be interpreted. For example, the http part of a URI such as

http://example.org/reports/book.tar tells us that the rest of the URI must be interpreted

according to the HTTP scheme. Under this scheme, the URI identifies a resource at

a machine that is identified by the hostname example.org using DNS lookup. It’s the

responsibility of the machine “listening” at example.org to map the remainder of the

URI, reports/book.tar, to the actual resource. Any authorized software agent that under-

stands the HTTP scheme can interact with this resource by following the rules set out

by the HTTP specification (RFC 2616).

Note
Although we’re mostly familiar with HTTP URIs from browsing the Web, other
forms are supported too. For example, the well-known FTP scheme* suggests
that a URI such as ftp://example.org/reports/book.txt should be interpreted in
the following way: example.org is the Domain Name System (DNS) name of the
computer that knows File Transfer Protocol (FTP), reports is interpreted as the
argument to the CWD (Change Working Directory) command, and book.txt is a file-
name that can be manipulated through FTP commands, such as RETR for retrieving
the identified file from the FTP server. Similarly, the mailto URI scheme is used to
identify email addresses: mailto:enquiries@restbucks.com.

The mechanism we can use to interact with a resource cannot always be inferred
as easily as the HTTP case suggests; the URN scheme, for example, is not associ-
ated with a particular interaction protocol.

In addition to URI, several other terms are used to refer to web resource identifiers.

Table 1-1 presents a few of the more common terms, including URN and URL, which

are specific forms of URIs, and IRI, which supports international character sets.

*	RFC 1738, Uniform Resource Locators (URLs): http://www.ietf.org/rfc/rfc1738.txt.

mailto:enquiries@restbucks.com
http://example.org/reports/book.tar
ftp://example.org/reports/book.txt
http://www.ietf.org/rfc/rfc1738.txt

7Thinking in Resources

Table 1-1.  Terms used on the Web to refer to identifiers

Term Comments

URI (Uniform Resource Identifier) This is often incorrectly referred to as a “Univer-
sal” or “Unique” Resource Identifier; “Uniform” is
the correct expansion.

IRI (International Resource Identifier) This is an update to the definition of URI to allow
the use of international characters.

URN (Uniform Resource Name) This is a URI with “urn” as the scheme,
used to convey unique names in a particular
“namespace.” The namespace is defined as part
of the URN’s structure. For example, a book’s
ISBN can be captured as a unique name:
urn:isbn:0131401602.

URL (Uniform Resource Locator) This is a URI used to convey information about
the way in which one interacts with the identi-
fied resource. For example, http://google.com
identifies a resource on the Web with which
communication is possible through HTTP. This
term is now obsolete, since not all URIs need to
convey interaction-protocol-specific information.
However, the term is part of the Web’s history
and is still widely in use.

Address Many think of resources as having “addresses”
on the Web and, as a result, refer to their identi-
fiers as such.

URI Versus URL Versus URN
URLs and URNs are special forms of URIs. A URI that identifies the mechanism by which a
resource may be accessed is usually referred to as a URL. HTTP URIs are examples of URLs.

If the URI has urn as its scheme and adheres to the requirements of RFC 2141 and RFC
2611,* it is a URN. The goal of URNs is to provide globally unique names for resources.

*	http://www.ietf.org/rfc/rfc2141.txt and http://www.ietf.org/rfc/rfc2611.txt

Resource Representations
The Web is so pervasive that the HTTP URI scheme is today a common synonym for

both identity and address. In the web-based solutions presented in this book, we’ll use

HTTP URIs exclusively to identify resources, and we’ll often refer to these URIs using

the shorthand term address.

Resources must have at least one identifier to be addressable on the Web, and

each identifier is associated with one or more representations. A representation is

http://google.com
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2611.txt

8 CHAPTER 1: the web as a platform for building distributed systems

a transformation or a view of a resource’s state at an instant in time. This view is

encoded in one or more transferable formats, such as XHTML, Atom, XML, JSON,

plain text, comma-separated values, MP3, or JPEG.

For real-world resources, such as goods in a warehouse, we can distinguish between the

actual object and the logical “information” resource encapsulated by an application or

service. It’s the information resource that is made available to interested parties through

projecting its representations onto the Web. By distinguishing between the “real” and

the “information” resource, we recognize that objects in the real world can have proper-

ties that are not captured in any of their representations. In this book, we’re primarily

interested in representations of information resources, and where we talk of a resource

or “underlying resource,” it’s the information resource to which we’re referring.

Access to a resource is always mediated by way of its representations. That is, web com-

ponents exchange representations; they never access the underlying resource directly—

the Web does not support pointers! URIs relate, connect, and associate representations

with their resources on the Web. This separation between a resource and its representa-

tions promotes loose coupling between backend systems and consuming applications. It

also helps with scalability, since a representation can be cached and replicated.

Note
The terms resource representation and resource are often used interchangeably. It
is important to understand, though, that there is a difference, and that there exists a
one-to-many relationship between a resource and its representations.

There are other reasons we wouldn’t want to directly expose the state of a resource.

For example, we may want to serve different views of a resource’s state depending

on which user or application interacts with it, or we may want to consider different

quality-of-service characteristics for individual consumers. Perhaps a legacy application

written for a mainframe requires access to invoices in plain text, while a more modern

application can cope with an XML or JSON representation of the same information.

Each representation is a view onto the same underlying resource, with transfer for-

mats negotiated at runtime through the Web’s content negotiation mechanism.

The Web doesn’t prescribe any particular structure or format for resource representa-

tions; representations can just as well take the form of a photograph or a video as they

can a text file or an XML or JSON document. Given the range of options for resource

representations, it might seem that the Web is far too chaotic a choice for integrat-

ing computer systems, which traditionally prefer fewer, more structured formats.

However, by carefully choosing a set of appropriate representation formats, we can

constrain the Web’s chaos so that it supports computer-to-computer interactions.

Resource representation formats serve the needs of service consumers. This con-

sumer friendliness, however, does not extend to allowing consumers to control how

9Thinking in Resources

resources are identified, evolved, modified, and managed. Instead, services control

their resources and how their states are represented to the outside world. This encap-

sulation is one of the key aspects of the Web’s loose coupling.

The success of the Web is linked with the proliferation and wide acceptance of com-

mon representation formats. This ecosystem of formats (which includes HTML for

structured documents, PNG and JPEG for images, MPEG for videos, and XML and

JSON for data), combined with the large installed base of software capable of pro-

cessing them, has been a catalyst in the Web’s success. After all, if your web browser

couldn’t decode JPEG images or HTML documents, the human Web would have

been stunted from the start, despite the benefits of a widespread transfer protocol

such as HTTP.

To illustrate the importance of representation formats, in Figure 1-3 we’ve modeled

the menu of a new coffee store called Restbucks (which will provide the domain for

examples and explanations throughout this book). We have associated this menu with

an HTTP URI. The publication of the URI surfaces the resource to the Web, allowing

software agents to access the resource’s representation(s).

Figure 1-3.  Example of a resource and its representations

In this example, we have decided to make only XHTML and text-only representa-

tions of the resource available. Many more representations of the same announcement

could be served using formats such as PDF, JPEG, MPEG video, and so on, but we have

made a pragmatic decision to limit our formats to those that are both human- and

machine-friendly.

Typically, resource representations such as those in Figure 1-3 are meant for human

consumption via a web browser. Browsers are the most common computer agents

on the Web today. They understand protocols such as HTTP and FTP, and they know

how to render formats such as (X)HTML and JPEG for human consumption. Yet, as

10 CHAPTER 1: the web as a platform for building distributed systems

we move toward an era of computer systems that span the Web, there is no reason

to think of the web browser as the only important software agent, or to think that

humans will be the only active consumers of those resources. Take Figure 1-4 as an

example. An order resource is exposed on the Web through a URI. Another software

agent consumes the XML representation of the order as part of a business-to-business

process. Computers interact with one another over the Web, using HTTP, URIs, and

representation formats to drive the process forward just as readily as humans.

Figure 1-4.  Computer-to-computer communication using the Web

Representation Formats and URIs
There is a misconception that different resource representations should each have

their own URI—a notion that has been popularized by the Rails framework. With this

approach, consumers of a resource terminate URIs with .xml or .json to indicate a pre-

ferred format, requesting http://restbucks.com/order.xml or http://example.org/order.json as

they see fit. While such URIs convey intent explicitly, the Web has a means of negoti-

ating representation formats that is a little more sophisticated.

Note
URIs should be opaque to consumers. Only the issuer of the URI knows how to
interpret and map it to a resource. Using extensions such as .xml, .html, or .json is
a historical convention that stems from the time when web servers simply mapped
URIs directly to files.

In the example in Figure 1-3, we hinted at the availability of two representation for-

mats: XHTML and plain text. But we didn’t specify two separate URIs for the repre-

sentations. This is because there is a one-to-many association between a URI and its

possible resource representations, as Figure 1-5 illustrates.

http://example.org/order.json
http://restbucks.com/order.xml

11Thinking in Resources

Figure 1-5.  Multiple resource representations addressed by a single URI

Using content negotiation, consumers can negotiate for specific representation formats

from a service. They do so by populating the HTTP Accept request header with a list of

media types they’re prepared to process. However, it is ultimately up to the owner of a

resource to decide what constitutes a good representation of that resource in the con-

text of the current interaction, and hence which format should be returned.

The Art of Communication
It’s time to bring some threads together to see how resources, representation for-

mats, and URIs help us build systems. On the Web, resources provide the subjects and

objects with which we want to interact, but how do we act on them? The answer is

that we need verbs, and on the Web these verbs are provided by HTTP methods.*

The term uniform interface is used to describe how a (small) number of verbs with well-

defined and widely accepted semantics are sufficient to meet the requirements of most

distributed applications. A collection of verbs is used for communication between systems.

Note
In theory, HTTP is just one of the many interaction protocols that can be used to
support a web of resources and actions, but given its pervasiveness we will assume
that HTTP is the protocol of the Web.

In contemporary distributed systems thinking, it’s a popular idea that the set of verbs sup-

ported by HTTP—GET, POST, PUT, DELETE, OPTIONS, HEAD, TRACE, CONNECT, and PATCH—forms a

sufficiently general-purpose protocol to support a wide range of solutions.

Note
In reality, these verbs are used with differing frequencies on the Web, suggesting
that an even smaller subset is usually enough to satisfy the requirements of many
distributed applications.

*	Commonly, the term verb is used to describe HTTP actions, but in the HTTP specification the term
method is used instead. We’ll stick with verb in this book because method suggests object-oriented
thinking, whereas we tend to think in terms of resources.

12 CHAPTER 1: the web as a platform for building distributed systems

In addition to verbs, HTTP also defines a collection of response codes, such as 200 OK,

201 Created, and 404 Not Found, that coordinate the interactions instigated by the use

of the verbs. Taken together, verbs and status codes provide a general framework for

operating on resources over the network.

Resources, identifiers, and actions are all we need to interact with resources hosted on

the Web. For example, Figure 1-6 shows how the XML representation of an order might

be requested and then delivered using HTTP, with the overall orchestration of the pro-

cess governed by HTTP response codes. We’ll see much more of all this in later chapters.

Figure 1-6.  Using HTTP to “GET” the representation of a resource

From the Web Architecture to the
REST Architectural Style
Intrigued by the Web, researchers studied its rapid growth and sought to understand

the reasons for its success. In that spirit, the Web’s architectural underpinnings were

investigated in a seminal work that supports much of our thinking around contempo-

rary web-based systems.

As part of his doctoral work, Roy Fielding generalized the Web’s architectural principles

and presented them as a framework of constraints, or an architectural style. Through this

framework, Fielding described how distributed information systems such as the Web

are built and operated. He described the interplay between resources, and the role of

unique identifiers in such systems. He also talked about using a limited set of operations

with uniform semantics to build a ubiquitous infrastructure that can support any type of

application.* Fielding referred to this architectural style as REpresentational State Transfer,

or REST. REST describes the Web as a distributed hypermedia application whose linked

resources communicate by exchanging representations of resource state.

*	http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

www.allitebooks.com

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.allitebooks.org

13From the Web Architecture to the REST Architectural Style

Hypermedia
The description of the Web, as captured in W3C’s “Architecture of the World Wide Web”*

and other IETF RFC† documents, was heavily influenced by Fielding’s work. The archi-

tectural abstractions and constraints he established led to the introduction of hypermedia

as the engine of application state. The latter has given us a new perspective on how the Web

can be used for tasks other than information storage and retrieval. His work on REST

demonstrated that the Web is an application platform, with the REST architectural style

providing guiding principles for building distributed applications that scale well, exhibit

loose coupling, and compose functionality across service boundaries.

The idea is simple, and yet very powerful. A distributed application makes forward prog-

ress by transitioning from one state to another, just like a state machine. The difference

from traditional state machines, however, is that the possible states and the transitions

between them are not known in advance. Instead, as the application reaches a new

state, the next possible transitions are discovered. It’s like a treasure hunt.

Note
We’re used to this notion on the human Web. In a typical e-commerce solution such
as Amazon.com, the server generates web pages with links on them that corral the
user through the process of selecting goods, purchasing, and arranging delivery.

This is hypermedia at work, but it doesn’t have to be restricted to humans; comput-
ers are just as good at following protocols defined by state machines.

In a hypermedia system, application states are communicated through representations

of uniquely identifiable resources. The identifiers of the states to which the application

can transition are embedded in the representation of the current state in the form of

links. Figure 1-7 illustrates such a hypermedia state machine.

*	http://www.w3.org/TR/webarch/

†	IETF: Internet Engineering Task Force; RFC: Request for Comments. See http://www.ietf.org.

http://www.w3.org/TR/webarch/
http://www.ietf.org

14 CHAPTER 1: the web as a platform for building distributed systems

Figure 1-7.  Example of hypermedia as the engine for application state in action

This, in simple terms, is what the famous hypermedia as the engine of application state or

HATEOAS constraint is all about. We see it in action every day on the Web, when we

follow the links to other pages within our browsers. In this book, we show how the

same principles can be used to enable computer-to-computer interactions.

REST and the Rest of This Book
While REST captures the fundamental principles that underlie the Web, there are still

occasions where practice sidesteps theoretical guidance. Even so, the term REST has

become so popular that it is almost impossible to disassociate it from any approach

that uses HTTP.* It’s no surprise that the term REST is treated as a buzzword these days

rather than as an accurate description of the Web’s blueprints.

The pervasiveness of HTTP sets it aside as being special among all the Internet protocols.

The Web has become a universal “on ramp,” providing near-ubiquitous connectivity

for billions of software agents across the planet. Correspondingly, the focus of this book

is on the Web as it is used in practice—as a distributed application platform rather than

as a single large hypermedia system. Although we are highly appreciative of Fielding’s

research, and of much subsequent work in understanding web-scale systems, we’ll use

the term web throughout this book to depict a warts-’n-all view, reserving the REST

terminology to describe solutions that embrace the REST architectural style. We do this

*	RFC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

15The Web As an Application Platform

because many of today’s distributed applications on the Web do not follow the REST

architectural tenets, even though many still refer to these applications as “RESTful.”

The Web As an Application Platform
Though the Web began as a publishing platform, it is now emerging as a means of con-

necting distributed applications. The Web as a platform is the result of its architectural

simplicity, the use of a widely implemented and agreed-upon protocol (HTTP), and the

pervasiveness of common representation formats. The Web is no longer just a success-

ful large-scale information system, but a platform for an ecosystem of services.

But how can resources, identifiers, document formats, and a protocol make such an

impression? Why, even after the dot-com bubble, are we still interested in it? What do

enterprises—with their innate tendency toward safe middleware choices from estab-

lished vendors—see in it? What is new that changes the way we deliver functionality

and integrate systems inside and outside the enterprise?

As developers, we build solutions on top of platforms that solve or help with hard

distributed computing problems, leaving us free to work on delivering valuable busi-

ness functionality. Hopefully, this book will give you the information you need in

order to make an informed decision on whether the Web fits your problem domain,

and whether it will help or hinder delivering your solution. We happen to believe that

the Web is a sensible solution for the majority of the distributed computing problems

encountered in business computing, and we hope to convince you of this view in the

following chapters. But for starters, here are a number of reasons we’re such web fans.

Technology Support
An application platform isn’t of much use unless it’s supported by software libraries and

development toolkits. Today, practically all operating systems and development platforms

provide some kind of support for web technologies (e.g., .NET, Java, Perl, PHP, Python,

and Ruby). Furthermore, the capabilities to process HTTP messages, deal with URIs, and

handle XML or JSON payloads are all widely implemented in web frameworks such

as Ruby on Rails, Java servlets, PHP Symfony, and ASP.NET MVC. Web servers such as

Apache and Internet Information Server provide runtime hosting for services.

Scalability and Performance
Underpinned by HTTP, the web architecture supports a global deployment of net-

worked applications. But the massive volume of blogs, mashups, and news feeds

wouldn’t have been possible if it wasn’t for the way in which the Web and HTTP con-

strain solutions to a handful of scalable patterns and practices.

Scalability and performance are quite different concerns. Naively, it would seem that

if latency and bandwidth are critical success factors for an application, using HTTP

is not a good option. We know that there are messaging protocols with far better

16 CHAPTER 1: the web as a platform for building distributed systems

performance characteristics than HTTP’s text-based, synchronous, request-response

behavior. Yet this is an inequitable comparison, since HTTP is not just another messag-

ing protocol; it’s a protocol that implements some very specific application semantics.

The HTTP verbs (and GET in particular) support caching, which translates into reduced

latency, enabling massive horizontal scaling for large aggregate throughput of work.

Note
As developers ourselves, we understand how we can believe that asynchronous
message-centric solutions are the most scalable and highest-performing options.
However, existing high-performance and highly available services on the Web are
proof that a synchronous, text-based request-response protocol can provide good
performance and massive scalability when used correctly.

The Web combines a widely shared vision for how to use HTTP efficiently and
how to federate load through a network. It may sound incredible, but through the
remainder of this book, we hope to demonstrate this paradox beyond doubt.

Loose Coupling
The Web is loosely coupled, and correspondingly scalable. The Web does not try to

incorporate in its architecture and technology stack any of the traditional quality-

of-service guarantees, such as data consistency, transactionality, referential integrity,

statefulness, and so on. This deliberate lack of guarantees means that browsers some-

times try to retrieve nonexistent pages, mashups can’t always access information, and

business applications can’t always make immediate progress. Such failures are part of

our everyday lives, and the Web is no different. Just like us, the Web needs to know

how to cope with unintended outcomes or outright failures.

A software agent may be given the URI of a resource on the Web, or it might retrieve

it from the list of hypermedia links inside an HTML document, or find it after a business-

to-business XML message interaction. But a request to retrieve the representation of

that resource is never guaranteed to be successful. Unlike other contemporary distrib-

uted systems architectures, the Web’s blueprints do not provide any explicit mecha-

nisms to support information integrity. For example, if a service on the Web decides

that a URI is no longer going to be associated with a particular resource, there is no

way to notify all those consumers that depend on the old URI–resource association.

This is an unusual stance, but it does not mean that the Web is neglectful—far from it.

HTTP defines response codes that can be used by service providers to indicate what has

happened. To communicate that “the resource is now associated with a new URI,” a

service can use the status code 301 Moved Permanently or 303 See Other. The Web always

tries to help move us toward a successful conclusion, but without introducing tight

coupling.

17The Web As an Application Platform

Business Processes
Although business processes can be modeled and exposed through web resources,

HTTP does not provide direct support for such processes. There is a plethora of work

on vocabularies to capture business processes (e.g., BPEL,* WS-Choreography†), but

none of them has really embraced the Web’s architectural principles. Yet the Web—and

hypermedia specifically—provides a great platform for modeling business-to-business

interactions.

Instead of reaching for extensive XML dialects to construct choreographies, the Web

allows us to model state machines using HTTP and hypermedia-friendly formats such

as XHTML and Atom. Once we understand that the states of a process can be modeled

as resources, it’s simply a matter of describing the transitions between those resources

and allowing clients to choose among them at runtime.

This isn’t exactly new thinking, since HTML does precisely this for the human-readable

Web through the tag. Although implementing hypermedia-based solu-

tions for computer-to-computer systems is a new step for most developers, we’ll show

you how to embrace this model in your systems to support loosely coupled business

processes (i.e., behavior, not just data) over the Web.

Consistency and Uniformity
To the Web, one representation looks very much like another. The Web doesn’t care

if a document is encoded as HTML and carries weather information for on-screen

human consumption, or as an XML document conveying the same weather data to

another application for further processing. Irrespective of the format, they’re all just

resource representations.

The principle of uniformity and least surprise is a fundamental aspect of the Web. We see

this in the way the number of permissible operations is constrained to a small set, the

members of which have well-understood semantics. By embracing these constraints, the

web community has developed myriad creative ways to build applications and infra-

structure that support information exchange and application delivery over the Web.

Caches and proxy servers work precisely because of the widely understood caching

semantics of some of the HTTP verbs—in particular, GET. The Web’s underlying infra-

structure enables reuse of software tools and development libraries to provide an eco-

system of middleware services, such as caches, that support performance and scaling.

With plumbing that understands the application model baked right into the network,

the Web allows innovation to flourish at the edges, with the heavy lifting being carried

out in the cloud.

*	http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

†	http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

18 CHAPTER 1: the web as a platform for building distributed systems

Simplicity, Architectural Pervasiveness, and Reach
This focus on resources, identifiers, HTTP, and formats as the building blocks of the

world’s largest distributed information system might sound strange to those of us

who are used to building distributed applications around remote method invoca-

tions, message-oriented middleware platforms, interface description languages, and

shared type systems. We have been told that distributed application development is

difficult and requires specialist software and skills. And yet web proponents constantly

talk about simpler approaches.

Traditionally, distributed systems development has focused on exposing custom behav-

ior in the form of application-specific interfaces and interaction protocols. Conversely,

the Web focuses on a few well-known network actions (those now-familiar HTTP

verbs) and the application-specific interpretation of resource representations. URIs,

HTTP, and common representation formats give us reach—straightforward connectiv-

ity and ubiquitous support from mobile phones and embedded devices to entire server

farms, all sharing a common application infrastructure.

Web Friendliness and the Richardson Maturity Model
As with any other technology, the Web will not automatically solve a business’s appli-

cation and integration problems. But good design practices and adoption of good, well-

tested, and widely deployed patterns will take us a long way in our journey to build

great web services.

You’ll often hear the term web friendliness used to characterize good application of web

technologies. For example, a service would be considered “web-friendly” if it correctly

implemented the semantics of HTTP GET when exposing resources through URIs. Since

GET doesn’t make any service-side state changes that a consumer can be held account-

able for, representations generated as responses to GET may be cached to increase per-

formance and decrease latency.

Leonard Richardson proposed a classification for services on the Web that we’ll use in

this book to quantify discussions on service maturity.* Leonard’s model promotes three

levels of service maturity based on a service’s support for URIs, HTTP, and hypermedia

(and a fourth level where no support is present). We believe this taxonomy is impor-

tant because it allows us to ascribe general architectural patterns to services in a man-

ner that is easily understood by service implementers.

The diagram in Figure 1-8 shows the three core technologies with which Richardson

evaluates service maturity. Each layer builds on the concepts and technologies of the

*	Richardson presented this taxonomy during his talk “Justice Will Take Us Millions Of Intricate
Moves” at QCon San Francisco 2008; see http://www.crummy.com/writing/speaking/2008-QCon/.

http://www.crummy.com/writing/speaking/2008-QCon/

19Web Friendliness and the Richardson Maturity Model

layers below. Generally speaking, the higher up the stack an application sits, and the

more it employs instances of the technology in each layer, the more mature it is.

Figure 1-8.  The levels of maturity according to Richardson’s model

Level Zero Services
The most basic level of service maturity is characterized by those services that have a sin-

gle URI, and which use a single HTTP method (typically POST). For example, most Web

Services (WS-*)-based services use a single URI to identify an endpoint, and HTTP POST

to transfer SOAP-based payloads, effectively ignoring the rest of the HTTP verbs.*

Note
We can do wonderful, sophisticated things with WS-*, and it is not our intention to
imply that its level zero status is a criticism. We merely observe that WS-* services
do not use many web features to help achieve their goals.†

XML-RPC and Plain Old XML (POX) employ similar methods: HTTP POST requests with

XML payloads transmitted to a single URI endpoint, with replies delivered in XML as

part of the HTTP response. We will examine the details of these patterns, and show

where they can be effective, in Chapter 3.

Level One Services
The next level of service maturity employs many URIs but only a single HTTP verb. The

key dividing feature between these kinds of rudimentary services and level zero services

is that level one services expose numerous logical resources, while level zero services tun-

nel all interactions through a single (large, complex) resource. In level one services,

*	The suite of SOAP-based specifications and technologies, such as WSDL, WS-Transfer, WS-
MetadataExchange, and so forth. Refer to http://www.w3.org/2002/ws/ as a starting point. We’ll
discuss Web Services and their relationship to the Web in Chapter 12.

†	The report of the “Web of Services” workshop is a great source of information on this topic: http://
www.w3.org/2006/10/wos-ec-cfp.html.

http://www.w3.org/2002/ws/
http://www.w3.org/2006/10/wos-ec-cfp.html
http://www.w3.org/2006/10/wos-ec-cfp.html

20 CHAPTER 1: the web as a platform for building distributed systems

however, operations are tunneled by inserting operation names and parameters into a

URI, and then transmitting that URI to a remote service, typically via HTTP GET.

Note
Richardson claims that most services that describe themselves as “RESTful” today
are in reality often level one services. Level one services can be useful, even
though they don’t strictly adhere to RESTful constraints, and so it’s possible to acci-
dentally destroy data by using a verb (GET) that should not have such side effects.

Level Two Services
Level two services host numerous URI-addressable resources. Such services support

several of the HTTP verbs on each exposed resource. Included in this level are Create

Read Update Delete (CRUD) services, which we cover in Chapter 4, where the state

of resources, typically representing business entities, can be manipulated over the net-

work. A prominent example of such a service is Amazon’s S3 storage system.

Note
Importantly, level two services use HTTP verbs and status codes to coordinate
interactions. This suggests that they make use of the Web for robustness.

Level Three Services
The most web-aware level of service supports the notion of hypermedia as the engine

of application state. That is, representations contain URI links to other resources that

might be of interest to consumers. The service leads consumers through a trail of

resources, causing application state transitions as a result.

Note
The phrase hypermedia as the engine of application state comes from Fielding’s
work on the REST architectural style. In this book, we’ll tend to use the term hyper-
media constraint instead because it’s shorter and it conveys that using hypermedia to
manage application state is a beneficial aspect of large-scale computing systems.

GET on Board
Can the same principles that drive the Web today be used to connect systems? Can we

follow the same principles driving the human Web for computer-to-computer sce-

narios? In the remainder of this book, we will try to show why it makes sense to do

exactly that, but first we’ll need to introduce our business domain: a simple coffee

shop called Restbucks.

21

C h a p t e r t w o

Introducing Restbucks:
How to GET a Coffee,

Web Style

While developing this book, we wondered how we would describe web-based

distributed systems in an accessible scenario. We weren’t really keen on the idea of yet

another e-commerce or trading application. We thought it would have been too bor-

ing. We certainly wouldn’t want to read a book like that, so why write one?

Instead, we chose a modest scenario that doesn’t try to steal the focus from the technical

discussion or try to become the star of the book. We didn’t want to engage in long expla-

nations about complex problem domains. So, in that spirit, this is the only chapter where

we’ll discuss our domain in depth. The other chapters will deal with technical concepts.

The inspiration for our problem domain came from Gregor Hohpe’s brilliant observation

on how a Starbucks coffee shop works. In his popular blog entry, Gregor talks about syn-

chronous and asynchronous messaging, transactions, and scaling the message-processing

pipeline in an everyday situation.*

We liked the approach very much, and as believers that “imitation is the sincerest form

of flattery,” we adopted Gregor’s scenario at the heart of this book. We freely admit

that our need for good coffee while writing also encouraged us to focus on our own

little coffee megastore: Restbucks.

*	http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

22 CHAPTER 2: introducing restbucks: how to get a coffee, web style

Restbucks: A Little Coffee Shop with Global Ambitions
Throughout this book, we’ll frame our problems and web-based solutions in terms of a

coffee shop called Restbucks, which grows from modest beginnings to become a global

enterprise. As Restbucks grows, so do its needs for better organization and more effi-

cient use of resources for operating at larger scale. We’ll show how Restbucks opera-

tions can be implemented with web technologies and patterns to support all stages of

the company’s growth.

While nothing can replace the actual experience of waiting in line, ordering, and then

tasting the coffee, our intention is to use our coffee shop to showcase common prob-

lems and demonstrate how web technologies and patterns can help solve them, within

both Restbucks and systems development in general. The Restbucks analogy does not

describe every aspect of the coffee shop business; we chose to highlight only those

problems that help support the technical discussion.

Actors and Conversations
The Restbucks service and the resources that it exposes form the core of our discus-

sion. Restbucks has actors such as customers, cashiers, baristas, managers, and suppli-

ers who must interact to keep the coffee flowing.

In all of the examples in this book, computers replace human-to-human interactions.

Each actor is a program that interacts through the Web to drive business processes hosted

by Restbucks services. Even so, our business goals remain: we want to serve good coffee,

take payments, keep the supply chain moving, and ultimately keep the business alive.

Interactions occur through HTTP using formats that are commonly found on the Web.

We chose to use XML since it’s widely supported and it’s relatively easy for humans to

parse, as we can see in Figure 2-1. Of course, XML isn’t our only option for integra-

tion; others exist, such as plain text, HTML forms, and JSON. As our problem domain

becomes more sophisticated in later chapters, we’ll evolve our formats to meet the

new requirements.

Figure 2-1.  XML-based exchange between a customer and a waiter

www.allitebooks.com

http://www.allitebooks.org

23Restbucks: A Little Coffee Shop with Global Ambitions

As in real life, things won’t always go according to plan in Restbucks. Coffee machines

may break, demand may peak, or the shop may have supply chain difficulties. Given the

importance of scaling, fault reporting, and error handling in integration scenarios, we

will identify relevant web technologies and patterns that we can use to cope with such

problems.

Boundaries
In Restbucks, we draw boundaries around the actors involved in the system to encap-

sulate implementation details and emphasize the interactions between systems. When

we order a coffee, we don’t usually care about the mechanics of the supply chain or

the details of the shop’s internal coffee-making processes. Composition of functionality

and the introduction of façades with which we can interact are common practices in

system design, and web-based systems are no different in that respect. For example, in

Figure 2-2 the customer doesn’t need to know about the waiter–cashier and cashier–

barista interactions when he orders a cup of coffee from the waiter.

Figure 2-2.  Boundaries help decompose groups of interactions

The Web’s principles, technologies, and patterns can be used to model and implement

business processes whether they are exposed across the boundaries of the Restbucks ser-

vice or used for internal functionality. That is, the Web pervades Restbucks’ infrastructure,

providing connectivity to both external partners and customers and internal systems!

The Menu
Restbucks prides itself on the variety of products it serves and allows customers to

customize their coffee with several options. Table 2-1 shows some of the products and

24 CHAPTER 2: introducing restbucks: how to get a coffee, web style

options offered. Throughout the book, we’ll see how these options manifest them-

selves in service interactions and the design decisions regarding their representation.

Table 2-1.  Sample catalog of products offered by Restbucks

Product name Customization option

Latte

Cappuccino

Espresso

Tea

Milk: skim, semi, whole

Size: small, medium, large

Shots: single, double, triple

Hot chocolate Milk: skim, semi, whole

Size: small, medium, large

Whipped cream: yes, no

Cookie Kind: Chocolate chip, ginger

All Consume location: take away, in shop

Sample Interactions
Let’s set the scene for the remainder of the book by examining some of the typical

interactions between the main actors. Subsequent chapters build on these scenarios,

expand them further, and introduce new ones.

Customer–Barista
Restbucks takes its first steps as a small, neighborhood coffee shop. A barista is respon-

sible for everything: taking orders, preparing the coffee, receiving payment, and giving

receipts. Figure 2-3 shows the interaction between a customer and a barista.

Figure 2-3.  A simple interaction between a customer and a barista

25Restbucks: A Little Coffee Shop with Global Ambitions

If we want to model the interactions of Figure 2-3 on the Web, we have to consider

the representation of the order (its format), the communication mechanism (HTTP),

and the resources themselves (addressed by URIs). However, we’re not immune to

classic problems in distributed systems. For example, we still have to address the fol-

lowing issues:

Notification

We need mechanisms for sending notification. For example, we need to be able to

signal that a coffee is ready.

Handling communication failures

We need a solution for handling failures that occur during the flow of an interaction,

including timeouts.

Transactions

We have to consider the implementation of transactions. For example, we need to

consider whether we will optimistically accept orders even though we may not be

able to fulfill a small number of them in exception cases (such as running out of

coffee beans).

Scalability

We need to consider how to cope with large volumes of customers or repeated

requests.

At the outset, Restbucks employs only a single barista. As a result, every customer

has to wait in line, as shown in Figure 2-4. This approach doesn’t scale well for a busy

shop, nor does it scale for web-based systems where we often need to scale individual

services or components independently to manage load.

Figure 2-4.  Customers will have to wait

26 CHAPTER 2: introducing restbucks: how to get a coffee, web style

Customer–Cashier–Barista
Although Restbucks stems from modest roots, its coffee quality and increasingly posi-

tive reputation help it to continue to grow. To help scale the business, Restbucks

decides to hire a cashier to speed things up. With a cashier busy handling the financial

aspects of the operation, the barista can concentrate on making coffee. The customer’s

interactions aren’t affected, but Restbucks now needs to coordinate the cashier’s and

barista’s tasks with a low-ceremony approach using sticky notes. The interactions (or

protocol) between the cashier and the barista remain hidden from customers. Now

that we’ve got two moving parts in our coffee shop, we need to think about how to

encapsulate them, which leads to the scenario shown in Figure 2-5.

Figure 2-5.  A cashier helps the barista

By implementing this scheme, Restbucks decouples ordering and payment from the

coffee preparation. In turn, it is possible for Restbucks to abstract the inner workings of

the shop through a façade. While the customer gets the same good coffee, Restbucks is

free to innovate and evolve its implementation behind the scenes.

27Toolbox

Decoupling payments and drink preparation allows Restbucks to optimize available

resources. The barista can now look at the queue of orders and make decisions for

the optimal preparation sequence. Furthermore, decoupling tasks allows Restbucks

to scale operations by adding more cashiers and baristas independently as demand

increases. We will see that the Web makes adding capacity straightforward.

Toolbox
Although Restbucks is contrived to provide a simple problem domain, we will be using

real web technologies. We will choose the appropriate URIs for identifying resources,

identify the formats that meet business and technical requirements, and apply the

necessary patterns for modeling and implementing interactions. With that in mind,

it’s time to see some examples of how web technologies might be used to model

interactions.

Restbucks Formats
We discussed formats for resource representations in general terms in Chapter 1, but

here we’ll introduce formats that Restbucks uses in its business. All Restbucks resources

are represented by XML documents defined in the http://restbucks.com namespace

and identified on the Web as the media types application/xml and application/
vnd.restbucks+xml for standard XML processing and Restbucks-specific processing,

respectively.*

Note
We’ve chosen XML-based formats deliberately for this book since they’re easily
understood and readable by humans. However, we shouldn’t see XML as the only
option. As we discussed in Chapter 1, real web services use myriad other formats,
depending on the application.

Example 2-1 shows an order represented in XML, with the different specialties and

options drawn from the Restbucks menu. We’ve chosen element names for the XML

representations that are easy for humans to understand, even though that is not

strictly necessary for machine-to-machine communication. However, we believe there’s

value in making representations—like source code—as self-descriptive as possible, so

we’ll pay the modest price of a few more bytes per interaction to keep the representa-

tions human-friendly.

*	For now, it’s easiest to think of both of these as simply XML documents. However, in Chapter 5,
when we think about hypermedia and REST, we’ll need to differentiate more critically.

http://restbucks.com

28 CHAPTER 2: introducing restbucks: how to get a coffee, web style

Example 2-1.  A Restbucks order resource represented in XML format

POST /order HTTP/1.1
Host: restbucks.com
Content-Type:application/vnd.restbucks+xml
Content-Length: 243

<order xmlns="http://schemas.restbucks.com/order">
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
</order>

A cashier service receiving the order in Example 2-1 will lodge the order and respond

with the XML in Example 2-2, which contains the representation of a newly created

order resource.

Example 2-2.  Acknowledging the order with a custom XML format

HTTP/1.1 200 OK
Content-Length: 421
Content-Type: application/vnd.restbucks+xml
Date: Sun, 3 May 2009 18:22:11 GMT
<order xmlns="http://restbucks.com" xlmns:atom="http://www.w3.org/2005/Atom">
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <cost>3.00</cost>
 <currency>GBP</currency>
 <atom:link rel="payment" type="application/xml"
href="http://restbucks.com/order/1234/payment"/>
</order>

A customer receiving a response such as that in Example 2-2 can be assured that its

order has been received and accepted by the Restbucks service. The order details are

confirmed in the reply and some additional information is contained, such as the

payment amount and currency, a timestamp for when the order was received, and a

<link> element that identifies another resource with which the customer is expected

to interact to make a payment.

http://schemas.restbucks.com/order
http://restbucks.com
http://www.w3.org/2005/Atom
http://restbucks.com/order/1234/payment"/

29Toolbox

Note
We borrowed the <link> element in our order format from the Atom Syndication
Format specification* (which is covered in depth in Chapter 8) since it already has
well-defined semantics for links between resources. Such links constitute what we
think of as “hypermedia controls” that describe the protocol that the service sup-
ports, as we’ll see in Chapter 5.

Modeling Protocols and State Transitions
Using <atom:link> elements to describe possible next steps through a service protocol

should feel familiar; after all, we’re quite used to links and forms being used to guide us

through HTML pages on the Web. In particular, we’re comfortable with e-commerce sites

guiding us through selecting products, confirming delivery addresses, and taking pay-

ment by stringing together a set of pages into a workflow. Unwittingly, we have all

been driving a business protocol via HTTP using a web browser!

It’s remarkable that the Web has managed to turn us humans into robots who follow

protocols, but we take it for granted nowadays. We even think the concept of comput-

ers driving protocols through the same mechanism is new, yet this is the very essence

of building distributed systems on the Web: using hypermedia to describe protocol

state machines that govern interactions between systems.

Note
Protocols described in hypermedia are not binding contracts. If a Restbucks con-
sumer decides not to drive the protocol through to a successful end state where
coffee is paid for and served, the service has to deal with that. Fortunately, HTTP
helps by providing useful status codes to help deal with such situations, as we shall
see in the coming chapters.

Although hypermedia-based protocols are useful in their own right, they can be

strengthened using microformats, such as hCard.† If we embed semantic information

about the next permissible steps in a protocol inside the hypermedia links, we raise

the level of abstraction. This allows us to change the underlying URIs as the system

evolves without breaking any consumers, as well as to declare and even change a pro-

tocol dynamically without breaking existing consumers.

*	See http://tools.ietf.org/html/rfc4287.

†	See http://microformats.org. Microformats and other semantics-related technologies will be discussed
in Chapter 10.

http://tools.ietf.org/html/rfc4287
http://microformats.org

30 CHAPTER 2: introducing restbucks: how to get a coffee, web style

Note
The <atom:link> element in Example 2-1 contains some useful and meaning-
ful text embedded in its rel attribute. We use a lot of microformats throughout
this book. It’s simply Restbucks’ way of highlighting the possible routes through a
service protocol by marking up links with metadata that is meaningful (in this case,
to both humans and computers).

Of course, we can break existing consumers, but only if we remove or redefine some-

thing on which they rely. We’re safe to add new, optional protocol steps or to change

the URIs contained within the links, provided we keep the microformat vocabulary

consistent.

Figure 2-6 shows an example of a protocol state machine as it evolves through the

interactions between the customer, cashier, and barista. The state machine will not

generally show the total set of permissible states, only those choices that are avail-

able during any given interaction to take the consumer down a particular path. If the

customer cancels its order, it will not be presented with the option to pay the bill or

add specialties to its coffee. The description of an application’s state machine might be

exposed in its entirety as part of metadata associated with a service, if the service pro-

vider chooses to do so. However, a state machine might change over time, even as a

customer interacts with the service.

Figure 2-6.  Modeling state machines dynamically

Here Comes the Web
Restbucks provides a domain that allows us to think of the Web as a platform for

building distributed systems. We’ll continue to expand Restbucks’ domain through-

out the book as more ambitious scenarios are introduced. Expect to see the addition of

third-party services, security, more coordination of interactions, and scalability mea-

sures. Along the way, we’ll dip into topics as diverse as manageability, semantics, noti-

fications, queuing, caching, and load balancing, all neatly tied together by the Web.

But to start with, we’re going to see how we can integrate systems using the bedrock

of web technologies: the humble URI.

31

C h a p t e r t h r e e

Basic Web Integration

Understanding every aspect of the Web’s architecture can be a challeng-

ing task. That task, coupled with the everyday pressure to deliver working software,

means we are often time-poor. Fortunately, we can start to use some web techniques

immediately, at least for simple integration problems.

warning
Although the techniques we cover in this chapter are simple, they come with an
enormous health warning. If you find yourself using them, it’s probably an indication
that you should reconsider your design and use some of the techniques described
in later chapters instead.

We will learn more sophisticated patterns and techniques as requirements become more

challenging. The approaches we’re going to consider in this chapter are simple to pick up.

For now, we’re going to focus on two simple web techniques for application integration:

URI tunneling and Plain Old XML (POX). These techniques allow us to quickly integrate

systems using nothing more than web servers, URIs, and, for POX, a little XML.

Lose Weight, Feel Great!
Many enterprise integration projects (wrongly) begin with middleware. Architects

invest significant efforts in making sure the middleware products they choose support

the latest features for reliable messaging, security, transactions, and so on. The chosen

platform is then dropped onto development teams, whose working life is subsequently

spent trying to figure out what to do with all the software they’ve been told to use.

32 CHAPTER 3: basic web integration

Of course, there’s an element of caricature in these sentiments, yet sometimes, while

we’re working on enterprise systems, there’s a nagging doubt about whether we really

need all these clever middleware capabilities. Sometimes, while reflecting over the

business drivers for the solution, we realize that the features, cost, and complexity

inherent in enterprise solutions are really overkill for our purposes.

Choosing to base your system on the Web may raise some pointed questions. After all,

any respectable software project includes a middleware product. However, it’s also cus-

tomary for projects to overrun cost and time; and although only anecdotal evidence

supports the claim, working with large, complex middleware is often a factor in project

underperformance. Conversely, the projects we’ve worked on using approaches based

on HTTP have rarely disappointed. We believe this is a function of low-ceremony, highly

commoditized tools that are highly amenable to contemporary iterative software delivery.

The fact is that not all integration problems need middleware-based solutions. Going

lightweight can significantly reduce the complexity of a system and reduce its cost,

risk, and time to deployment. Going lightweight also allows us to favor simpler

technology from commodity development platforms. And leveraging HTTP gives us

straightforward application-to-application connectivity with very little effort, not least

because HTTP libraries are so pervasive in modern computer systems.

Note
As web-based integration becomes more popular, it’s inevitable that increasingly
ambitious middleware tools will come to market. However, we hold to the prin-
ciple that we should start with the simplest possible system architecture, and add
middleware to the mix only if it implements something that would be risky or costly
to implement for ourselves. Throughout this book, we hope to show that “risky” or
“costly” software is really the opposite of what the Web offers.

A Simple Coffee Ordering System
One of the best ways to understand how to apply a new technique is to build a simple

system. For our purposes, that system is the Restbucks coffee ordering service, which

allows remote customers to lodge their coffee orders with the Restbucks server. Our

goal here is to understand how application code and server infrastructure fit within

the overall solution.

Choosing Integration Points for a Service
Though services and service-oriented architecture often seem arcane, in reality a ser-

vice is nothing more than a technical mechanism for hosting some business logic. The

way we allow others to consume services—business logic—over a network is the core

topic of this book, and we think the Web is the right kind of system to support net-

works of collaborative business processes.

www.allitebooks.com

http://www.allitebooks.org

33A Simple Coffee Ordering System

While the Web gives us infrastructure and patterns to deal with connecting systems

together, we still need to invest effort in designing services properly so that they will

be robust when exposed to remote consumers and easy to maintain as those consum-

ers become more demanding.

Choosing integration points is not difficult; we look for appropriate modules in our

software through which we expose business-meaningful functionality. To illustrate,

let’s look at the example in Figure 3-1. Although the example is (deliberately) sim-

plistic, it shows a logical architecture, with customer software agents interacting

with Restbucks to place orders. To support this scenario, we have to expose existing

Restbucks functionality for external consumption by mapping the internal domain

model onto the network domain (and absolutely not exposing the internal details

directly, because that is the path that leads to tight, brittle coupling).

Figure 3-1.  Customers from other companies interact with Restbucks employees

Note
Integration-friendly interfaces tend to be at the edges of the system (or at least on
the periphery of major modules), rather than deep inside the domain model or data
access tiers. In that spirit, we should look for interfaces that encapsulate recogniz-
able concepts from the problem domain with reasonably coarse granularity.

We’ve learned from building service-oriented systems that good integration points

tend to encapsulate business-meaningful processes or workflows. Generally, we don’t

want to expose any technical or implementation details. It’s often worth writing

façades (adapting Fowler’s Remote Façade pattern*) to support this idiom if no existing

*	http://martinfowler.com/eaaCatalog/remoteFacade.html

http://martinfowler.com/eaaCatalog/remoteFacade.html

34 CHAPTER 3: basic web integration

interfaces or integration points are suitable. For Restbucks services, we will look for the

following kinds of integration points:

•	 Methods that encapsulate some (coarse-grained) business concept rather than

low-level technical detail

•	 Methods that support existing presentation logic, such as controllers in the Model-

View-Controller* pattern

•	 Scripts or workflows that orchestrate interactions with a domain model

Conversely, we avoid integration points such as:

•	 Data access methods, especially those that are transactional

•	 Properties/getters and setters

•	 Anything that binds to an existing presentation tier such as reusing view logic or

screen scraping

These aren’t hard-and-fast rules, and you may find solutions where this guidance

doesn’t apply. In those cases, be pragmatic and do the simplest thing that will work

without compromising the solution.

A Simple Service Architecture
We’ll be using HTTP requests and responses to transfer information between the cus-

tomers and Restbucks. To keep things simple from a client programming point of view,

we’ll abstract the remote behavior of the cashier behind a local-looking façade that

we’ve termed the client-side cashier dispatcher.

Note
Hiding remote behavior from a consuming application is known to be a poor idea.†
Still, we’ve deliberately written examples in this chapter to highlight that HTTP is all
too often abused for remote procedure calls.

Hiding remote activity is usually a poor design choice that may have surprisingly
harsh consequences at runtime when an operation that appears local malfunctions
because of hidden remote activity over the network.

In Figure 3-2, network code that customer objects use is encapsulated behind the dis-

patcher’s interface (a waiter in real life), which gives a necessary clean separation of

concerns between plumbing code and our application-level objects. On the server side,

*	http://en.wikipedia.org/wiki/Model-view-controller

†	Waldo et al. argue in their seminal paper, “A Note on Distributed Computing,” that abstracting away
remote behavior is an anti-pattern, and we agree. The “remoteness” of a service is one of the impor-
tant nonfunctional characteristics that we have to cater to if we’re going to build good systems.

http://en.wikipedia.org/wiki/Model-view-controller

35URI Templates

we follow suit with a server-side cashier dispatcher, which isolates server-side objects

from the underlying network protocol.

Figure 3-2.  HTTP remote procedure call architecture

Figure 3-2 shows a very simple architecture that uses a tiered approach to system inte-

gration. It can be built using common components from any decent development frame-

work, even using different platforms. Since both the customer client application and the

cashier service agree on HTTP as the wire protocol, they can very easily interoperate.

We still need to write some code to turn this design into a working solution, but it will

only be a little plumbing between the dispatchers and web client, and between the

server APIs and the business logic. However, before we get down to coding, we need

to understand one more technique used to design and share service contracts with

consumers: URI templates.

URI Templates
Often in distributed systems, service providers offer machine-readable metadata

that describes how clients should bind to and interact with services. For example,

you would normally use interface definition languages (IDLs) such as Web Services

Description Language (WSDL) for WS-* Web Services, or CORBA-IDL when imple-

menting CORBA systems. On the Web, various metadata technologies are used to

describe service contracts, including URI templates, which describe syntactic patterns

for the set of URIs that a service supports.

When used properly, URI templates can be an excellent tool for solution designers. As we

discuss in later chapters, they are particularly useful for internal service documentation.

warning
When used poorly, URI templates increase coupling between systems and lead
to brittle integration. In subsequent chapters, we’ll see how hypermedia greatly
reduces the necessity to share URI templates outside services.

36 CHAPTER 3: basic web integration

Intuitive URIs
A service advertising URI templates encourages its consumers to construct URIs that

can be used to access the service’s functionality. As an example, let’s take Restbucks,

which exposes ordering information through URI-addressable resources, such as http://

restbucks.com/order/1234.

To a web developer, it should be intuitive that changing the number after the final /

character in the URI will probably result in another resource representation being

returned for a different order. It’s easy to determine how to vary the contents of a

simple URI programmatically to access a range of different resources from the service.

Intuitive URIs are great things—they convey intent and provide a level of documenta-

tion for services.

From Intuitive URIs to URI Templates
While intuitive URIs are encouraged, intuition alone isn’t enough. As implementers

of web services, we need to provide richer metadata for consumers. This is where URI

templates come into their own, since they provide a way to parameterize URIs with

variables that can be substituted at runtime. In turn, they can therefore be used to

describe a service contract.*

Since we want to help Restbucks’ customers use our services as easily as possible, we

would like to provide a description of how these services can be accessed through a

URI. A URI template fits the bill here. An example of a URI template that describes

valid URIs for the service is http://restbucks.com/order/{order_id}.

The markup in curly braces, {order_id}, is an invitation to Restbucks customers to “fill

in the gaps” with sensible values. By substituting those parameters, customers address

different coffee orders hosted at Restbucks. In most cases, this is as far as we might go

with URI templates, and in fact, many web services are documented with just a hand-

ful of similar URI templates.†

Note
Calculating a URI from a URI template and a set of variables is known as expan-
sion, and the URI template draft specifies a set of rules governing it. Those rules
include how to substitute variables with values, including dealing with some of the
quirkier aspects of internationalized character sets.

*	This is actually a little white lie for now. We will see in later chapters that service contracts aren’t
just constituted from URIs and URI templates, but from a conflation of URIs, the HTTP uniform
interface, and media types.

†	Plus a handful of verbs and status codes with some explanatory text.

http://restbucks.com/order/1234
http://restbucks.com/order/1234
http://restbucks.com/order/

37URI Tunneling

Of course, we’re not limited to single variables in our URI templates, and it’s common

to represent hierarchies in URIs. For example, the http://restbucks.com/order/{year}/
{month}/{day} template supports accessing all of the orders for a given date, allowing con-

sumers to vary the year, month, and day variables to access audit information.

In addition to variable substitution, URI templates support several more sophisticated

use cases that allow advanced URI template expansions. The URI Template specifica-

tion contains a set of worked examples for each operator, which is useful if you are

dealing with sophisticated URI structures. However, we only use simple variable sub-

stitution in this book, which covers the majority of everyday uses.

Using URI Templates
One of the major uses for URI templates is as human- and machine-readable docu-

mentation. For humans, a good URI template lays out a map of the service with which

we want to interact; for machines, URI templates allow easy and rapid validation of

URIs that should resolve to valid addresses for a given service and so can help auto-

mate the way clients bind to services.

Note
In practice, we prefer URI templates as a means of internal documentation for
services, rather than as contract metadata. We find that URI templates are fine as
a shorthand notation for communication within the context of a system, but as a
mechanism for describing contracts, we think they risk introducing tight coupling. In
the next chapter, we’ll show why, but for now, we’ll accept that they have drawbacks
and use them anyway.

We can put URI templates into practice immediately, staring with the most basic HTTP

integration option: URI tunneling.

URI Tunneling
When we order coffee from Restbucks, we first select the drinks we’d like, then we

customize those drinks in terms of size, type of milk (if any), and other specialties such

as flavorings. Once we’ve decided, we can convey our order to the cashier who han-

dles all incoming orders. Of course, we have numerous options for how to convey our

order to a cashier, and on the Web, URI tunneling is the simplest.

URI tunneling uses URIs as a means of transferring information across system bound-

aries by encoding the information within the URI itself.* This can be a useful tech-

nique, because URIs are well understood by web servers (of course!) and web client

software. Since web servers can host code, this allows us to trigger program execution

*	In more robust integration schemes, URIs identify only resources, which can then be manipulated
using HTTP verbs and metadata.

http://restbucks.com/order/

38 CHAPTER 3: basic web integration

by sending a simple HTTP GET or POST request to a web server, and gives us the ability

to parameterize the execution of that code using the content of the URI. Whether we

choose GET or POST depends on our intentions: retrieving information should be tun-

neled through GET, while changing state really ought to use POST.

On the Web, we use GET in situations where we want to retrieve a resource’s state rep-

resentation, rather than deliberately modify that state. When used properly, GET is both

safe and idempotent.

By safe, we mean a GET request generates no server-side side effects for which the cli-

ent can be held responsible. There may still be side effects, but any that do occur are the

sole responsibility of the service. For example, many services log GET requests, thereby

changing some part of their state. But GET is still safe. Server-side logging is a private

affair; clients don’t ask for something to be logged when they issue a GET request.

An idempotent operation is one that generates absolute side effects. Invoking an idem-

potent operation repeatedly has the same effect as invoking it once. Because GET exhibits

no side effects for which the consumer can be held responsible, it is naturally idempo-

tent. Multiple GETs of the same URI generate the same result: they retrieve the state of the

resource associated with that URI at the moment the request was received, even if they

return different data (which can occur if the resource’s state changes in between requests).

When developing services we must preserve the semantics of GET. Consumers of our

resources expect our service to behave according to the HTTP specification (RFC 2616).

Using a GET request to do something other than retrieve a resource representation—such

as delete a resource, for example—is simply an abuse of the Web and its conventions.

POST is much less strict than GET; in fact, it’s often used as a wildcard operation on

the Web. When we use POST to tunnel information through URIs, it is expected that

changes to resource state will occur. To illustrate, let’s look at Figure 3-3.

Figure 3-3.  Mapping method calls to URIs

Figure 3-3 shows an example of a URI used to convey order information to the ordering

service at http://restbucks.com in accordance with the URI template http://restbucks.com/
PlaceOrder?coffee={type}&size={size}&milk={milk}&location={location}. On the server

http://restbucks.comI
http://restbucks.com/

39URI Tunneling

side, this URI is matched against the template and is deconstructed, and an instance

of the class Order is populated based on the values extracted from the URI path. The

Order instance is then dispatched into a method called PlaceOrder(), which in turn will

execute the business logic for that order. Once the PlaceOrder method has completed, it

will return an order ID that is serialized into the response, as shown in Figure 3-4.

Figure 3-4.  HTTP request/response for URI tunneling

Knowing the URI structure, response format, and expected behavior allows us to write

code to support simple remote interactions. As it happens, using URI tunneling means

our code turns out to be very simple. First, let’s take a look at how we might build this

on the server side in .NET code in Example 3-1.

Example 3-1.  Extracting business objects from a URI

public void ProcessPost(HttpListenerContext context)
{
 // Parse the URI
 Order order = ParseUriForOrderDetails(context.Request.QueryString);
 string response = string.Empty;
 if (order != null)
 {
 // Process the order by calling the mapped method
 var orderConfirmation = RestbucksService.PlaceOrder(order);
 response = "OrderId=" + orderConfirmation.OrderId.ToString();
 }
 else
 {
 response = ″Failure: Could not place order.″;
 }

40 CHAPTER 3: basic web integration

 // Write to the response stream
 using (var sw = new StreamWriter(context.Response.OutputStream))
 {
 sw.Write(response);
 }
}

The .NET server-side code in Example 3-1 uses a little plumbing code to bind to an

HttpListener before it is ready to use. When called, the ProcessPost method parses

out order information from the collection held in the context.Request.QueryString

property and uses it to create an order object. Once the order has been created, it’s dis-

patched to some backend order processing system (typically a barista!), and the order

confirmation is returned to the caller.

The client code shown in Example 3-2 is also straightforward to understand. It simply

extracts information out of a client-side Order object and uses that information to form

a URI. It then performs an HTTP POST on that URI via the HttpWebRequest instance,

which causes the order information to be passed over the network to the server.

Example 3-2.  URI-tunneling client

public OrderConfirmation PlaceOrder(Order order)
{
 // Create the URI
 var sb = new StringBuilder(″http://restbucks.com/PlaceOrder?″);
 sb.AppendFormat(″coffee={0}″, order.Coffee.ToString());
 sb.AppendFormat(″&size={0}″, order.Size.ToString());
 sb.AppendFormat(″&milk={0}″, order.Milk.ToString());
 sb.AppendFormat(″&location={0}″, order.ConsumeLocation.ToString());

 // Set up the POST request
 var request = HttpRequest.Create(sb.ToString()) as HttpWebRequest;
 request.Method = ″POST″;
 // Send the POST request
 var response = request.GetResponse();

 // Read the contents of the response
 OrderConfirmation orderConfirmation = null;
 using (var sr = new StreamReader(response.GetResponseStream()))
 {

 var str = sr.ReadToEnd();
 // Create an OrderConfirmation object from the response
 orderConfirmation = new OrderConfirmation(str);
 }

 return orderConfirmation;
}

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder?%E2%80%B3%00

41URI Tunneling

When the remote server responds, the client software simply parses the contents of the

HTTP response and creates an OrderConfirmation object before continuing processing.

Note
Although we use the same name for the OrderConfirmation class in both the cli-
ent and the service, there is no requirement for the client and the service to share
a type system. In fact, we generally advise against sharing types across service
boundaries since it introduces tight coupling, which prevents independent evolution
of the coupled systems.

Is URI Tunneling a Good Idea?
Services that use URI tunneling are categorized as level one services by Richardson’s

maturity model. Figure 3-5 highlights that URIs are a key concept in such services, but

no other web technologies are embraced. Even HTTP is only used as a transport proto-

col for moving URIs over the Web.

Figure 3-5.  URI tunneling is only at level one in Richardson’s maturity model

Though tunneling remote method calls through URIs is not a sophisticated way of

integrating systems, sometimes it can be web-friendly. First, we have URIs, and nam-

ing resources through URIs is the first step toward any web-friendly solution. Second,

if an HTTP GET request doesn’t change any state on a service, we’re within the guide-

lines of the Web Architecture, which suggests that GET should be “safe.” For example,

the URI http://restbucks.com/GetOrder?orderId=1234 could either represent a URI-encoded

operation called GetOrder or equally identify a resource (a coffee order) through an

ugly (verb-embedded-in-URI) convention. From the point of view of a consumer of

the service, this is indeed the observable behavior.

However, in the general case, URI tunneling isn’t web-friendly because URIs are used

to encode operations rather than identify resources that can be manipulated through

HTTP verbs. Ordering a coffee is a demonstration of how URI tunneling can be used

to violate the safe and idempotent nature of HTTP GET. For example, a client executing

GET (instead of POST) on http://restbucks.com/PlaceOrder?id=1234&coffee=latte expects that

a new coffee order (a resource) will be created as a result, whereas if we follow good

http://restbucks.com/GetOrder?orderId=1234
http://restbucks.com/PlaceOrder?id=1234&coffee=latte

42 CHAPTER 3: basic web integration

web practices, GET requests to a URI shouldn’t result in new resources being created as

a side effect—the result is neither safe (it changes server state) nor idempotent (it can-

not be repeated without further side effects).*

warning
Where we use URIs as the conduit for transferring information to services, often
instead of building a level one service, we end up building many level zero
services. For instance, the set of URIs permitted by http://restbucks.com/
GetOrder?orderId={id} is really nothing more than a shorthand for many level
zero services, all of which support a single URI and a single verb.

Although it might be tempting to offer services based on URI tunneling, we must be

aware that consumers of those services will expect to be able to GET URIs without

going against the Web Architecture guidelines. Violating the widely shared under-

standing of GET will lead to trouble!

Using POST instead of GET goes some way toward alleviating the problem of unintended

side effects, though it doesn’t change the level zero mindset of a service. POST requests

are understood to have side effects by the Web so that any intermediaries (such as

caches) don’t get confused. Either way, the trade-offs in URI tunneling are not nice!

POX: Plain Old XML over HTTP
For all its ingenuity (and potential drawbacks too), URI tunneling is a little out of

the ordinary for enterprise integration—using addresses to convey business intent is,

after all, strange. Our second web-based approach to lightweight integration puts us

squarely back in familiar territory: messaging. The Plain Old XML (POX) web-style

approach to application integration uses HTTP requests and responses as the means to

transfer documents, encoded in regular XML, between a client and a server. It’s a lot

like SOAP, but without the SOAP envelope or any of the other baggage.

POX is appealing as an approach because XML gives us platform independence,

while the use of HTTP gives us practically ubiquitous connectivity between systems.

Furthermore, compared to the URI tunneling approach, dealing with XML allows us to

use more complex data structures than can be encoded in a URI, which supports more

sophisticated integration scenarios.

That’s not to say that POX is on a par with enterprise message-oriented middleware,

because clearly it isn’t. We have to remember that POX is a pattern, not a platform,

and POX can’t handle transacted or reliable message delivery in a standard way.

*	This is a simplification. In reality, resources may be created, but the client issuing the GET request
is not accountable for them. If your service supports resource creation—and remember, in some
cases, these may be physical resources such as payments—on GET requests, you are responsible for
them, not your clients!

www.allitebooks.com

http://restbucks.com/GetOrder?orderId=%7bid%7d
http://restbucks.com/GetOrder?orderId=%7bid%7d
http://www.allitebooks.org

43POX: Plain Old XML over HTTP

However, for integration problems that don’t need such advanced features, XML

over HTTP has the virtue of being a simple and highly commoditized solution.

In the remainder of this chapter, we’ll revisit our ordering system and show how it can

be developed using the POX approach. We’ll see how to use web servers and request-

response XML message exchanges to enable remote procedure calls between systems, and

we’ll also take the time to understand the strengths and weaknesses of the approach.

Using XML and HTTP for Remote Procedure Calls
POX uses HTTP POST to transfer XML documents between systems. On both sides of

the message exchange, the information contained in the XML payload is converted

into a format suitable for making local method calls.

It’s often said of POX that, like URI tunneling, it too tunnels through the Web. Since

POX uses HTTP as a transport protocol, all application semantics reside inside the XML

payload and much of the metadata contained in the HTTP envelope is ignored. In fact,

POX uses HTTP merely as a synchronous, firewall-friendly transport protocol for con-

venience. POX would work just as well over a TCP connection, message queues, or

even SOAP as it does over HTTP.

While POX isn’t rocket science, it can form the basic pattern for constructing distributed

systems that are relatively simple to build and easy to deploy, as shown in Figure 3-6.

Figure 3-6.  Canonical POX interaction

Figure 3-6 shows the typical execution model of a POX-based solution:

1.	 A POX invocation begins with an object in the customer’s system calling into a dis-

patcher that presents a local interface to the remote Restbucks service.

44 CHAPTER 3: basic web integration

2.	 The dispatcher converts the values of parameters it receives from the application-

level object into an XML document. It then calls into an HTTP client library to pass

the information over the network.

3.	 The HTTP client POSTs the XML payload from the dispatcher to the remote

service.

4.	 The web server hosting the ordering service accepts the incoming POST and passes

the request’s context to the server-side dispatcher.

5.	 The server-side dispatcher translates the XML document into a local method call

on an object in the Restbucks service.

6.	 When the method call returns, any returned values are passed to the dispatcher.

7.	 The dispatcher creates an XML document from the returned values and pushes it

back into the web server.

8.	 The web server generates an HTTP response (habitually using a 200 status code)

with the XML document from the dispatcher as the entity body. It sends the

response over the same HTTP connection used for the original request.

9.	 The HTTP client on the customer’s system receives the response and makes the

XML payload available to the client-side dispatcher.

10.	 The client-side dispatcher extracts values from the XML response into a return

value, which is then returned to the original calling object, completing the

remote call.

POX isn’t a hard pattern. Indeed, all this should be familiar given that most RPC sys-

tems have a very similar design, so let’s press on with applying what we know.

POX Away!
Now that we’re comfortable with the approach, the next stage is to determine the APIs

that we’re going to expose as integration points on the server side.

Let’s consider this in terms of server-side methods such as public OrderConfirmation

PlaceOrder(Order order) { … }. Given this method signature, our challenge is to fig-

ure out what information needs to flow between the client and server. Once we know

that, then we need to design XML messages for the remote call we want to support.

We’ll expose this method to remote clients in a similar way to URI tunneling: by

making it part of the URI to which clients will POST XML-encoded arguments. For

example, the method PlaceOrder() can be exposed through the URI http://restbucks.

com/PlaceOrder. Unlike URI tunneling, though, the order information will be sent as

an XML document in the HTTP request from the customer. The result of the method

call, the OrderConfirmation instance, is serialized as an XML document and sent back

as the payload of an HTTP response with 200 OK as its status, as we see in Figure 3-7.

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder

45POX: Plain Old XML over HTTP

Figure 3-7.  POX wire-level protocol

Figure 3-7 shows a typical interaction with the Restbucks ordering service. The request

message for our service is an HTTP POST with an XML document representing an order

as the payload. There’s nothing in this exchange that comes as a surprise to us here

since we’re familiar with XML, and the headers are commonplace in our everyday

use of the World Wide Web. Still, it’s illustrative to take a closer look, starting with the

headers:

POST /PlaceOrder HTTP/1.1 This tells the web server hosting the Rest-
bucks service that the incoming request is a
POST and is directed at the /PlaceOrder re-
source (bound to a method call in the service
implementation) using HTTP 1.1.

Content-Type: application/xml This indicates that the body content is XML
intended for machine consumption.

Host: restbucks.com This is the hostname of the machine providing
the service.

Content-Length: 361 This is the size (in bytes) of the body content.

The XML document contained in the body is quite simple too. Let’s take a look at

that now:

46 CHAPTER 3: basic web integration

<Order xmlns=... > This is an Order serialized into XML. The service will use this
XML content to create and populate objects when it receives
the message.

<Location /> This is the place where the order will be consumed, either
inStore or takeAway.

<Item>

 <Name>latte</Name>

 <Quantity>1</Quantity>

 ...

</Item>

Finally, we have the items we’re ordering.

We can break down the response from the server along similar lines. First, there are

the HTTP headers:

HTTP/1.1 200 OK The request was processed happily by the service at least as
far as the HTTP part is concerned. Nothing related to the net-
work protocol failed and nothing threw a top-level exception.

Content-Length: 93 This indicates the length of the reply in bytes.

Content-Type:
application/xml;
charset=utf-8

This indicates that we can expect our response to be XML-
encoded as UTF-8.

Server: Microsoft-HTTPA-
PI/2.0

This indicates the type of web server that handled the
request (in this case, Microsoft’s development server).

Date: Mon, 28 Jul 2008
19:18:03 GMT

This is the timestamp when the response was generated.

Finally, we have the body of the response:

<OrderConfirmation xmlns=
"http://restbucks.com">

 <OrderId>1234</OrderId>

</OrderConfirmation>

This is the confirmation that the order was processed on the
server side, with an ID that uniquely identifies the order.

Using this approach, creating a simple XML remote procedure call solution using POST

is well within our grasp. Implementing the solution is just a matter of writing the busi-

ness logic, and deploying any plumbing code needed onto a web server. As we’ll see in

the next section, that’s straightforward to do.

Server-side POX implementation in .NET
To show just how straightforward POX can be, let’s start off by looking at the server-side

implementation. Unlike the URI tunneling example, where most of the effort was spent

writing XML plumbing code between the web server and methods on business objects,

here we’ll delegate that work to a framework (see Example 3-3). For this example,

we’ve chosen Microsoft’s Windows Communication Foundation (WCF), which supports

exposing resources via HTTP and is widely used in enterprise environments.

http://restbucks.com

47POX: Plain Old XML over HTTP

Example 3-3.  Server-side POX implementation with WCF

[ServiceContract(Namespace = ″http://restbucks.com″)]
public interface IRestbucksService
{
 [OperationContract]
 [WebInvoke(Method = ″POST″, UriTemplate=″/PlaceOrder″)]
 OrderConfirmation PlaceOrder(Order order);
}

The code in Example 3-3 follows the typical WCF idiom of separating the contract

from the implementation of the service (which we are not showing for the sake of

brevity*). WCF allows us to express a set of addressable resources using URI templates

and HTTP methods set at compile time.

In this case, we have a service contract expressed as in the IRestbucksService interface.

The PlaceOrder method of the interface is annotated with the OperationContract attri-

bute, which indicates to WCF that the method will become part of the service contract

and be exposed over the network. Since this is a POX solution, we use the WebInvoke

attribute on the PlaceOrder() method to indicate to WCF that this method is going to

handle HTTP POST messages to the /PlaceOrder URI. Under the covers, the WCF frame-

work will help us to handle message dispatching, serialization, and deserialization.

All that is left to do now is to implement the IOrderingService interface with our business

logic and put the necessary deployment configuration options in the app.config file to run

the service.

Server-side POX in Java
For the Java RestbucksService, we’ve chosen to go back to basics and use the Servlet

API rather than a higher-level framework. In doing so, we hope to show that, just like

URI tunneling, we don’t need much in the way of frameworks or libraries to get POX

services working (see Example 3-4).

Example 3-4.  Java POX service using the HTTP servlet

public class RestbucksService extends HttpServlet {

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Initialization code omitted for brevity
 try {
 BufferedReader requestReader = request.getReader();
 PrintWriter responseWriter = response.getWriter();

*	Go to http://restinpractice.com to find full examples.

http://restbucks.com
http://restbucks.com%E2%80%B3%00
http://restinpractice.com

48 CHAPTER 3: basic web integration

 String xmlRequest = extractPayload(requestReader);
 Order order = createOrder(xmlRequest);
 OrderConfirmation confirmation = restbucksService.place(order);
 embedPayload(responseWriter, confirmation);
 } finally {
 // Cleanup code omitted for brevity
 }
 }
}

The Java implementation shown in Example 3-4 uses the RestbucksService (which

extends the base HttpServlet class) to listen for HTTP POST requests via the overridden

doPost method. The doPost method is invoked on receiving an HTTP POST at a URI reg-

istered with the servlet container.

Inside the doPost method, we call extractPayload(...) to handle the translation of

XML found in the HTTP requests to Java objects. Internally, that method merely uses

XPath expressions to extract values from the request, and using those values creates

domain objects for computation. On the return path, the embedPayload(...) method

does the reverse by serializing an OrderConfirmation object into the HTTP response.

All the interaction with the HTTP aspects of the system is done through the serv-

let framework classes. It is the requestReader and responseWriter objects that pro-

vide access to the underlying network messages. Using the requestReader, we’re able

to extract information from request payloads. Using the requestWriter, we’re able to

compute response messages for the consumer.

Note
Servlets aren’t the only way to write POX (or any other kind of web) services. In
later chapters, we’ll use more recent frameworks such as JAXB (for serialization)
and JAX-RS (for our HTTP API) to build Java-based services. It’s interesting to see
how we trade off control for simplicity in those frameworks compared to our servlet
implementation.

Client-Side POX Implementation
Constructing a client API to consume POX services is well supported in modern devel-

opment platforms. We already know the simple protocol that the service supports

because we designed it (or where we’re consumer third-party services we’ll have read

the service’s documentation, XML templates, WADL, or WSDL), and so the next task is

to implement that protocol atop an HTTP client library and encapsulate it behind a set

of friendly method calls.

49POX: Plain Old XML over HTTP

Note
Service providers have several choices when conveying the protocol to client devel-
opers so that they can bind to the service. Providers can publish natural-language
descriptions, or make templated XML available on web pages. Other options
include sharing a WADL* or WSDL contract from our service to help consumers
auto-generate bindings.

Using the .NET WebClient to invoke the ordering service
Numerous options are available to us for developing clients for our ordering service.

For this example, we’re going to make use of an object-to-XML (de)serializer and the

default HTTP client implementation from the .NET platform.

Note
We can use WCF’s contracts and XML (de)serializer for even more automation,
but it’s illustrative that we have to use large frameworks such as WCF for building
web-based systems.

For our .NET client, all we have to do is to create the appropriate XML payload and

then use a WebClient object to send our request message to the service via an HTTP

POST. Once the service responds, we pick out the XML from the response and use it

to set any return values. The PlaceOrder method shown in Example 3-5 is a typical

client-side implementation.

Example 3-5.  NET client-side POX bindings

public OrderConfirmation PlaceOrder(Item[] items)
{
 // Serialize our objects
 XmlDocument requestXml = CreateXmlRequest(items);
 var client = new WebClient();

 var ms = new MemoryStream();
 requestXml.Save(ms);

 client.Headers.Add(″Content-Type″, ″application/xml″);
 ms = new MemoryStream(client.UploadData(″http://restbucks.com/PlaceOrder″,
 null, ms.ToArray()));

 var responseXml = new XmlDocument();
 responseXml.Load(ms);
 return CreateOrderConfirmation(responseXml);
}

*	WADL (Web Application Description Language) can be used to describe XML over HTTP interfaces.
We’ll show how WADL can be used in the next chapter. If you’re too curious to wait until then, see
https://wadl.dev.java.net/wadl20060802.pdf.

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder%E2%80%B3
https://wadl.dev.java.net/wadl20060802.pdf

50 CHAPTER 3: basic web integration

There are a few interesting aspects to the code in Example 3-5. First, we encapsulate

the creation of an XML request in the CreateXmlRequest() method. The generated

XML document is converted to a byte stream, which is then given to the UploadData()

method of our WebClient instance, resulting in an HTTP POST request. If you recall the

server implementations, both the verb and the URI are used to dispatch and deserialize

the message, so the client must provide both of these.

The next point of interest is that we add the header Content-Type: application/xml

to the HTTP envelope to help the receiving web server identify the content as XML,

rather than name-value pairs, JSON, or other formats. After sending the HTTP POST

via the UploadData(...) method, we finally load the payload of the response to an

XmlDocument instance and deserialize it to an OrderConfirmation object. Although this

isn’t a particularly sophisticated way to process the response, it highlights the fact

that we don’t need any fancy frameworks (though such frameworks exist, and may

be helpful) to make POX work—just commodity XML and HTTP processing.

Note
It goes without saying that in production code, we’ll need to check for any reported
errors from the service. Also, we need to make sure the returned XML payload is
indeed deserializable to an OrderConfirmation object. It’s all part of the fun of
writing robust software.

Using the Apache Commons HttpClient in Java
In the Java implementation, we follow the same pattern that we used for .NET using

the HttpClient from the Apache Commons library to handle the HTTP parts of the

solution. In Example 3-6, we see how the HttpClient is used to POST string-constructed

XML payloads to the service.

Example 3-6.  Java client for the ordering service

public class OrderingClient {

 private static final String XML_HEADING = ″<?xml version=\″1.0\″?>\n″;
 private static final String NO_RESPONSE = ″Error: No response. ″;

 public String placeOrder(String[] items) throws Exception {

 String request = ... // XML request string creation omitted for brevity
 String response = sendRequestPost(request, ″http://restbucks.com/PlaceOrder″);

 Document xmlResponse =
 DocumentBuilderFactory.newInstance().newDocumentBuilder()
 .parse(new InputSource(new StringReader(response)));
 // XML response handling omitted for brevity
 }

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder%E2%80%B3%00%00

51POX: Plain Old XML over HTTP

 private String sendRequestPost(String request, String uri)
 throws IOException, HttpException {
 PostMethod method = new PostMethod(uri);
 method.setRequestHeader(″Content-type″, ″application/xml″);
 method.setRequestBody(XML_HEADING + request);
 try {
 new HttpClient().executeMethod(method);
 return new String(method.getResponseBody(),″UTF-8″);
 } finally {
 method.releaseConnection();
 }
 }
}

In the placeOrder() method of Example 3-6, the order information is serialized to a

string representation of an XML document that is used as the payload of the HTTP

request. The implementation of the sendRequestPost method provides the actual con-

nectivity to the service. Each business method, such as placeOrder, uses sendRequest-
Post to interact with the remote service.

Note
In both the Java and .NET clients, any notion of timeliness is omitted for the sake
of clarity. In any production code, the client will have to deal with the latency of
interacting with the remote service, and be prepared to time out if the service
doesn’t respond quickly enough. Otherwise, a crashed service will cause the client
to lock too!

The body of the sendRequestPost method acts as our client-side dispatcher. It sets the

content type header and fills the body of the HTTP request with the XML content. It

places the XML payload of a request into an HTTP POST message and extracts the response

message from the service before releasing the connection, leaving the placeOrder method

free to deal with business logic.

XML-RPC
At this point, it’s worth mentioning another HTTP and XML remoting technology,

called XML-RPC.* The premise of XML-RPC is to support simple remote procedure

calls across different kinds of systems using XML as a common intermediate format.

As such, XML-RPC falls under the POX umbrella because it uses HTTP POST and XML

to make remote calls. XML-RPC attempts to standardize the way in which such infor-

mation is represented in the HTTP request and response payloads so that different appli-

cations don’t have to invent their own formats and mappings to type systems. As a result,

*	http://www.xmlrpc.com/

http://www.xmlrpc.com/

52 CHAPTER 3: basic web integration

reusable components/frameworks are available to hide the plumbing details and pro-

vide comfortable programming abstractions.

Note
XML-RPC defines an interoperable, lowest-common-denominator type system
in terms of XML structures. This type system can easily be mapped into those of
common enterprise platforms such as .NET and Java. However, the architectural
style is equivalent to POX and suffers from the same drawbacks. Equally, we do not
advise deploying XML-RPC, though in niche situations where some form of POX
is unavoidable, at least there is tool support and documentation for XML-RPC that
may swing the balance in its favor.

For comparison, Example 3-7 shows how a request to call the PlaceOrder() method

might look when conveyed as the payload of an XML-RPC request.

Example 3-7.  PlaceOrder() method call represented in XML-RPC

<methodCall>
 <methodName>PlaceOrder</methodName>
 <params>
 <param>
 <value>
 <string>1234</string>
 </value>
 </param>
 <param>
 <array>
 <data>
 <struct>
 <member>
 <name>Name</name>
 <value>
 <string>latte</string>
 </value>
 </member>
 <member>
 <name>Quantity</name>
 <value>
 <int>1</int>
 </value>
 </member>
...
<!-- The rest of the XML is omitted... It looks very similar -->

</methodCall>

www.allitebooks.com

http://www.allitebooks.org

53POX: Plain Old XML over HTTP

What About When Things Go Wrong?
The POX approach is popular because it’s lightweight and almost universally interoper-

able, but it is not an especially robust pattern.

Note
It’s perhaps ironic that POX services are ranked more lowly on Richardson’s model
than URI tunneling, since they seem less harmful. Nonetheless, we believe arguing
over which is the poorest approach is uninteresting; it simply shows that neither
model is especially suited for web-scale computing.

POX services are given a level zero rating by Richardson’s maturity model. Figure 3-8

highlights that none of the fundamental web technologies is prevalent in such ser-

vices. Instead, level zero services use HTTP for a transport protocol and a single URI as

a well-known endpoint through which XML messages can be exchanged.

Figure 3-8.  POX services are level zero in Richardson’s maturity model

Although POX, like URI tunneling, lacks sophistication, it does have some useful char-

acteristics. For example, since POX uses HTTP as a transport protocol, it’s often very

firewall-friendly and, as we have seen, straightforward to implement.

However, the POX approach ignores the Web as a platform and merely uses it as a tun-

nel for tunneling remote calls. The scalability, reliability, and robustness characteristics,

which are inherent in the Web’s architecture, are not necessarily available to POX-

based solutions. As a result, POX solutions tend to be limited to simpler integration

problems. If POX is to be used for mission-critical scenarios, significant additional effort

is required to deal with failure cases where messages go missing and services fail (and

may potentially recover).

Note
Failures in distributed systems (including those based on POX) tend to be more
complicated than their centralized counterparts, because we can have situations
where some parts of the system continue while others crash. Correspondingly,
avoiding or dealing with failures consumes a great deal of effort.

54 CHAPTER 3: basic web integration

Although it’s a simple approach and one that is comfortingly familiar, POX, like URI

tunneling, has extremely limited applicability. Our advice in general is to avoid POX

like the plague!

We Are Just Getting Started
URI tunneling and POX over HTTP integration emphasize simplicity and accessibil-

ity over robustness. While proprietary systems such as Java RMI and .NET remoting

may be more robust than passing XML documents or URIs around, the web-based

approaches are often simpler and more widely supported.

Using URIs or XML for transferring messages over HTTP directly enables platform-

independent integration. This is important in the enterprise context, given that most

enterprises have a heterogeneous range of systems to support. Since URI and XML

processing components are commonplace, using these tools for simple integration

projects is an appealing, low-ceremony option—provided that we understand each

approach’s strengths and weaknesses, as we’ve discussed.

As you might expect, URI tunneling and POX are not the only strategies available to

developers when building distributed systems on the Web. You probably wouldn’t be

reading this book if that were the case! Embracing functionality provided by the Web

can alleviate many of the more difficult issues around reliability that we’ve covered in

this chapter. In the next chapter, we’ll start to look past using HTTP as a transport pro-

tocol and begin to think about how to use the Web as a platform for building distrib-

uted systems.

55

C h a p t e r F o u r

CRUD Web Services

In the preceding chapter, we saw how GET and POST can be used to tunnel infor-

mation to remote services through URIs and how POST can be used to transfer XML

documents between services. However, as more interesting distributed system scenarios

emerge, we rapidly reach the limit of what we can accomplish with those verbs. We

need to expand our vocabulary in order to support more advanced interactions.

In this chapter, we’ll introduce two new HTTP verbs to our repertoire: PUT and DELETE.

Alongside GET and POST, they form the set of verbs required to fully support the Create,

Read, Update, Delete (CRUD) pattern for manipulating resources across the network.

note
From here onward, we consider the network and HTTP as an integral part of our
distributed application, not just as a means of transporting bytes over the wire.

Through CRUD, we’ll take our first steps along the path to enlightenment using HTTP

as an application protocol instead of a transport protocol, and see how the Web is

really a big framework for building distributed systems.

Modeling Orders As Resources
In Restbucks, orders are core business entities, and as such, their life cycles are of real

interest to us from a CRUD perspective. For the ordering parts of the Restbucks busi-

ness process, we want to create, read, update, and delete order resources like so:

•	 Orders are created when a customer makes a purchase.

•	 Orders are frequently read, particularly when their preparation status is inquired.

56 CHAPTER 4: crud web services

•	 Under certain conditions, it may be possible for orders to be updated (e.g., in cases

where customers change their minds or add specialties to their drinks).

•	 Finally, if an order is still pending, a customer may be allowed to cancel it (or

delete it).

Within the ordering service, these actions (which collectively constitute a protocol)

move orders through specific life-cycle phases, as shown in Figure 4-1.

Figure 4-1.  Possible states for an order

Each operation on an order can be mapped onto one of the HTTP verbs. For example,

we use POST for creating a new order, GET for retrieving its details, PUT for updating it,

and DELETE for, well, deleting it. When mixed with appropriate status codes and some

commonsense patterns, HTTP can provide a good platform for CRUD domains, result-

ing in really simple architectures, as shown in Figure 4-2.

Figure 4-2.  CRUD ordering service high-level architecture

While Figure 4-2 exemplifies a very simple architectural style, it actually marks a sig-

nificant rite of passage toward embracing the Web’s architecture. In particular, it high-

lights the use of URIs to identify and address orders at Restbucks, and in turn it supports

HTTP-based interactions between the customers and their orders.

57Building CRUD Services

Since CRUD services embrace both HTTP and URIs, they are considered to be at level

two in Richardson’s maturity model. Figure 4-3 shows how CRUD services embrace

URIs to identify resources such as coffee orders and HTTP to govern the interactions

with those resources.

Figure 4-3.  CRUD services reach level two on Richardson’s maturity model

Level two is a significant milestone in our understanding. Many successful distributed

systems have been built using level two services. For example, Amazon’s S3 product

is a classic level two service that has enabled the delivery of many successful systems

built to consume its functionality over the Web. And like the consumers of Amazon S3,

we’d like to build systems around level two services too!

Building CRUD Services
When you’re building a service, it helps to think in terms of the behaviors that the service

will implement. In turn, this leads us to think in terms of the contract that the service will

expose to its consumers. Unlike other distributed system approaches, the contract that

CRUD services such as Restbucks exposes to customers is straightforward, as it involves

only a single concrete URI, a single URI template, and four HTTP verbs. In fact, it’s so

compact that we can provide an overview in just a few lines, as shown in Table 4-1.

Table 4-1.  The ordering service contract overview

Verb URI or template Use
POST /order Create a new order, and upon success, receive a

Location header specifying the new order’s URI.
GET /order/{orderId} Request the current state of the order specified by the

URI.
PUT /order/{orderId} Update an order at the given URI with new information,

providing the full representation.
DELETE /order/{orderId} Logically remove the order identified by the given URI.

The contract in Table 4-1 provides an understanding of the overall life cycle of an order.

Using that contract, we can design a protocol to allow consumers to create, read, update,

and delete orders. Better still, we can implement it in code and host it as a service.

58 CHAPTER 4: crud web services

note
What constitutes a good format for your resource representations may vary
depending on your problem domain. For Restbucks, we’ve chosen XML, though the
Web is able to work with any reasonable format, such as JSON or YAML.

Creating a Resource with POST
We first saw HTTP POST in Chapter 3, when we used it as an all-purpose transfer

mechanism for moving Plain Old XML (POX) documents between clients and servers.

In that example, however, the semantics of POST were very loose, conveying only that

the client wished to “transfer a document” to the server with the hope that the server

would somehow process it and perhaps create a response document to complete the

interaction.

As the Restbucks coffee ordering service evolves into a CRUD service, we’re going to

strengthen the semantics of POST and use it as a request to create an order resource

within the service. To achieve this, the payload of the POST request will contain a

representation of the new order to create, encoded as an XML document. Figure 4-4

illustrates how this works in practice.

Figure 4-4.  Creating an order via POST

In our solution, creating an order at Restbucks requires that we POST an order rep-

resentation in XML to the service.* The create request consists of the POST verb, the

ordering service path (relative to the Restbucks service’s URI), and the HTTP version.

In addition, requests usually include a Host header that identifies the receiving host of

*	We’ve adopted the convention used in RESTful Web Services (http://oreilly.com/catalog/9780596529260/)
by Leonard Richardson and Sam Ruby (O’Reilly), where POST is used for creation and the server
determines the URI of the created resource.

http://oreilly.com/catalog/9780596529260/

59Building CRUD Services

the server being contacted and an optional port number. Finally, the media type (XML

in this case) and length (in bytes) of the payload is provided to help the service process

the request. Example 4-1 shows a network-level view of a POST request that should

result in a newly created order.

Example 4-1.  Creating a coffee order via POST

POST /order HTTP/1.1
Host: restbucks.com
Content-Type: application/xml
Content-Length: 239

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
</order>

Once the service receives the request, its payload is examined and, if understood,

dispatched to create a new order resource.

note
The receiving service may choose to be strict or lax with respect to the syntactic
structure of the order representation. If it is strict, it may force compliance with
an order schema. If the receiving service chooses to be lax (e.g., by extracting the
information it needs through XPath expressions), its processing logic needs to be
permissive with respect to the representation formats that might be used.

Robust services obey Postel’s Law,* which states, “be conservative in what you do;
be liberal in what you accept from others.” That is, a good service implementation is
very strict about the resource representations it generates, but is permissive about
any representations it receives.

If the POST request succeeds, the server creates an order resource. It then generates

an HTTP response with a status code of 201 Created, a Location header containing the

newly created order’s URI, and confirmation of the new order’s state in the response

body, as we can see in Example 4-2.

*	See http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law.

http://schemas.restbucks.com/order%E2%80%B3
http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law

60 CHAPTER 4: crud web services

Example 4-2.  Response to successful order creation

HTTP/1.1 201 Created
Content-Length: 267
Content-Type: application/xml
Date: Wed, 19 Nov 2008 21:45:03 GMT
Location: http://restbucks.com/order/1234

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
 <status>pending</status>
</order>

The Location header that identifies the URI of the newly created order resource is

important. Once the client has the URI of its order resource, it can then interact with it

via HTTP using GET, PUT, and DELETE.

While a 201 Created response is the normal outcome when creating orders, things may

not always go according to plan. As with any computing system—especially distributed

systems—things can and do go wrong. As service providers, we have to be able to deal

with problems and convey helpful information back to the consumer in a structured

manner so that the consumer can make forward (or backward) progress. Similarly, as

consumers of the ordering service, we have to be ready to act on those problematic

responses.

Fortunately, HTTP offers a choice of response codes, allowing services to inform their

consumers about a range of different error conditions that may arise during process-

ing. The Restbucks ordering service has elected to support two error responses when a

request to create a coffee order fails:

•	 400 Bad Request, when the client sends a malformed request to the service

•	 500 Internal Server Error, for those rare cases where the server faults and cannot

recover internally

http://restbucks.com/order/1234
http://schemas.restbucks.com/order%E2%80%B3

61Building CRUD Services

With each of these responses, the server is giving the consumer information about

what has gone wrong so that a decision can be made on how (or whether) to make

further progress. It is the consumer’s job to figure out what to do next.

note
500 Internal Server Error as a catchall error response from the ordering service
isn’t very descriptive. In reality, busy baristas might respond with 503 Service
Unavailable and a Retry-After header indicating that the server is temporarily
too busy to process the request. We’ll see event status codes and how they help in
building robust distributed applications in later chapters.

When the ordering service responds with a 400 status, it means the client has sent an

order that the server doesn’t understand. In this case, the client shouldn’t try to resub-

mit the same order because it will result in the same 400 response. For example, the

malformed request in Example 4-3 doesn’t contain the drink that the consumer wants,

and so cannot be a meaningful coffee order irrespective of how strict or lax the server

implementation is in its interpretation. Since the <name> element is missing, the ser-

vice can’t interpret what kind of drink the consumer wanted to order, and so an order

resource cannot be created. As a result, the service must respond with an error.

Example 4-3.  A malformed order request

POST /order HTTP/1.1
Host: restbucks.com
Content-Type: application/xml
Content-Length: 216

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
</order>

On receiving the malformed request, the server responds with a 400 status code, and

includes a description of why it rejected the request,* as we see in Example 4-4.

*	This is demanded of us by the HTTP specification.

http://schemas.restbucks.com/order%E2%80%B3

62 CHAPTER 4: crud web services

Example 4-4.  Response to a malformed order request

HTTP/1.1 400 Bad Request
Content-Length: 250
Content-Type: application/xml
Date: Wed, 19 Nov 2008 21:48:11 GMT

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <!-- Missing drink type -->
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
</order>

To address this problem, the consumer must reconsider the content of the request and

ensure that it meets the criteria expected by the ordering service before resubmitting

it. If the service implementers were being particularly helpful, they might provide a

textual or machine-processable description of why the interaction failed to help the

consumer correct its request, or even just a link to the service’s documentation. The

ordering service won’t create an order in this case, and so retrying with a corrected

order is the right thing for the consumer to do.

In the case of a 500 response, the consumer may have no clear understanding about

what happened to the service or whether the request to create an order succeeded,

and so making forward progress can be tricky. In this case, the consumer’s only real

hope is to try again by repeating the POST request to lodge an order.

note
In the general case, consumers can try to recompute application state by GETting
the current representations of any resources whose URIs they happen to know.
Since GET doesn’t have side effects (that consumers can be held accountable for),
it’s safe to call repeatedly until a sufficiently coherent picture of the system state
emerges and forward or backward progress can be made. However, at this stage in
our ordering protocol, the consumer knows nothing other than the entry point URI
for the coffee ordering service, http://restbucks.com/order, and can only retry.

On the server side, if the ordering service is in a recoverable state, or may eventually

be, its implementation should be prepared to clean up any state created by the failed

interaction. That way, the server keeps its own internal order state consistent whether

the client retries or not.

http://schemas.restbucks.com/order%E2%80%B3
http://restbucks.com/order

63Building CRUD Services

Implementing create with POST
Now that we have a reasonable strategy for handling order creation, let’s see how to

put it into practice with a short code sample (see Example 4-5).

Example 4-5.  A Java servlet implementation for creating a coffee order

protected void doPost(HttpServletRequest request, HttpServletResponse response) {
 try {
 Order order = extractOrderFromRequest(request);
 if(order == null) {
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);
 } else {
 String internalOrderId = saveOrder(order);
 response.setHeader(″Location″, computeLocationHeader(request,
 internalOrderId));
 response.setStatus(HttpServletResponse.SC_CREATED);
 } catch(Exception ex) {
 response.setStatus(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
}

The Java code in Example 4-5 captures the pattern we’re following for processing a POST

request on the service side. We extract an order from the POST request content and save it

into a database. If that operation fails, we’ll conclude that the request from the consumer

wasn’t valid and we’ll respond with a 400 Bad Request response, using the value SC_BAD_
REQUEST. If the order is successfully created, we’ll embed that order’s URI in a Location

header and respond with a 201 status (using the SC_CREATED value) to the consumer. If

anything goes wrong, and an Exception is thrown, the service returns a 500 response

using the SC_INTERNAL_SERVER_ERROR value.

Reading Resource State with GET
We’ve already seen how GET can be used to invoke remote methods via URI tunnel-

ing, and we’ve also seen it being used to recover from 500 response codes during order

creation. From here onward, we’ll be using GET explicitly for retrieving state informa-

tion—resource representations—from services. In our case, we are going to use GET to

retrieve coffee orders from Restbucks that we’ve previously created with POST.

Using GET to implement the “R” in CRUD is straightforward. We know that after a suc-

cessful POST, the service creates a coffee order at a URI of its choosing and sends that

URI back to the consumer in the HTTP response’s Location header. In turn, that URI

allows consumers to retrieve the current state of coffee order resources, as we see in

Figure 4-5.

64 CHAPTER 4: crud web services

Figure 4-5.  Reading a coffee order with GET

Performing GET on an order’s URI is very simple. At the HTTP level, it looks like

Example 4-6.

Example 4-6.  Requesting an order via GET

GET /order/1234 HTTP/1.1
Host: restbucks.com

If the GET request is successful, the service will respond with a 200 OK status code and a

representation of the state of the resource, as shown in Example 4-7.

Example 4-7.  Reading an order with GET

HTTP/1.1 200 OK
Content-Length: 241
Content-Type: application/xml
Date: Wed, 19 Nov 2008 21:48:10 GMT

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
</order>

http://schemas.restbucks.com/order%E2%80%B3

65Building CRUD Services

The response from the server consists of a representation of the order created by the

original POST request, plus some additional information such as the status, and a collec-

tion of useful metadata in the headers. The first line includes a 200 OK status code and

a short textual description of the outcome of the response informing us that our GET

operation was successful. Two headers follow, which consumers use as hints to help

parse the representation in the payload. The Content-Type header informs us that the

payload is an XML document, while Content-Length declares the length of the rep-

resentation in bytes. Finally, the representation is found in the body of the response,

which is encoded in XML in accordance with the Content-Type header.

A client can GET a representation many times over without the requests causing the

resource to change. Of course, the resource may still change between requests for

other reasons. For example, the status of a coffee order could change from “pend-

ing” to “served” as the barista makes progress. However, the consumer’s GET requests

should not cause any of those state changes, lest they violate the widely shared under-

standing that GET is safe.

Since Restbucks is a good web citizen, it’s safe to GET a representation of an order at

any point. However, clients should be prepared to receive different representations

over time since resource state—that is, the order—changes on the server side as the

barista prepares the coffee. To illustrate the point, imagine issuing the GET request from

Example 4-6 again a few minutes later. This time around, the response is different

because the order’s status has changed from paid to served (in the <status> element),

since the barista has finished preparing the drink, as we can see in Example 4-8.

Example 4-8.  Rereading an order with GET

HTTP/1.1 200 OK
Content-Length: 265
Content-Type: application/xml
Date: Wed, 19 Nov 2008 21:58:21 GMT

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 </items>
 <status>served</status>
</order>

http://schemas.restbucks.com/order%E2%80%B3

66 CHAPTER 4: crud web services

In our CRUD ordering service, we’re only going to consider two failure cases for

GET. The first is where the client requests an order that doesn’t exist, and the second

is where the server fails in an unspecified manner. For these situations, we borrow

inspiration from the Web and use the 404 and 500 status codes to signify that an order

hasn’t been found or that the server failed, respectively. For example, the request in

Example 4-9 identifies an order that does not (yet) exist, so the service responds with

the 404 Not Found status code shown in Example 4-10.

Example 4-9.  Requesting an order that doesn’t exist via GET

GET /order/123456789012345667890 HTTP/1.1
Host: restbucks.com

Example 4-10.  Ordering service does not recognize an order URI and responds with
404 Not Found

HTTP/1.1 404 Not Found
Date: Sat, 20 Dec 2008 19:01:33 GMT

The 404 Not Found status code in Example 4-10 informs the consumer that the specified

order is unknown to the service.* On receipt of a 404 response, the client can do very

little to recover. Effectively, its view of application state is in violent disagreement with

that of the ordering service. Under these circumstances, Restbucks consumers should

rely on out-of-band mechanisms (such as pleading with the barista!) to solve the prob-

lem, or try to rediscover the URI of their order.

If the consumer receives a 500 Internal Server Error status code as in Example 4-11,

there may be a way forward without having to immediately resort to out-of-band

tactics. For instance, if the server-side error is transient, the consumer can simply

retry the request later.

Example 4-11.  Ordering service indicates unexpected failure with a 500 response

HTTP/1.1 500 Internal Server Error
Date: Sat, 20 Dec 2008 19:24:34 GMT

This is a very simple but powerful recovery scenario whose semantics are guaranteed

by the behavior of GET. Since GET requests don’t change service state, it’s safe for

consumers to GET representations as often as they need. In failure cases, consumers

simply back off for a while and retry the GET request until they give up (and accept

handing over control to some out-of-band mechanism) or wait until the service comes

back online and processing continues.

*	If we wanted to be more helpful to the consumer, our service could provide a helpful error mes-
sage in the HTTP body.

67Building CRUD Services

Implementing read with GET
The code in Example 4-12 shows how retrieving an order via GET can be implemented

using JAX-RS* in Java.

Example 4-12.  Server-side implementation of GET with JAX-RS

@Path(″/order″)
public class OrderingService {
 @GET
 @Produces(″application/xml″)
 @Path(″/{orderId}″)
 public String getOrder(@PathParam(″orderId″) String orderId) {
 try {
 Order order = OrderDatabase.getOrder(orderId);
 if (order != null) {
 // Use an existing XStream instance to create the XML response
 return xstream.toXML(order);
 } else {
 throw new WebApplicationException(Response.Status.NOT_FOUND);
 }
 } catch (Exception e) {
 throw new WebApplicationException(Response.Status.INTERNAL_SERVER_ERROR);
 }
 }
 // Remainder of implementation omitted for brevity
}

In Example 4-12, the root path where our service will be hosted is declared using the

@Path annotation, which in turn yields the /order part of the URI. The getOrder(...)

method is annotated with @GET, @Produces, and @Path annotations that provide the fol-

lowing behaviors:

•	 @GET declares that the getOrder(...) method responds to HTTP GET requests.

•	 @Produces declares the media type that the method generates as its return value. In

turn, this is mapped onto the HTTP Content-Type header in the response. Since the

ordering service uses XML for order resource representations, we use application/
xml here.

•	 @Path declares the final part of the URI where the method is registered, using the

URI template {/orderId}. By combining this with the root path declared at the

class level, the service is registered at the URI /order/{orderId}.

*	Oracle Corp. website. “JAX-RS (JSR 311): The Java API for RESTful Web Services”; see http://jcp.org/
en/jsr/detail?id=311.

http://jcp.org/

68 CHAPTER 4: crud web services

The orderId parameter to the getOrder(...) method is automatically bound by JAX-RS

using the @PathParam annotation on the method’s orderId parameter to match the @Path

annotation attached to the method. Once this is all configured, the JAX-RS implemen-

tation extracts the order identifier from URIs such as http://restbucks.com/order/1234 and

makes it available as the String parameter called orderId in the getOrder(...) method.

Inside the getOrder(...) method, we try to retrieve order information from the database

keyed by the orderId parameter. If we find a record matching the orderId, we encode

it as an XML document using XStream* and return the document. This relinquishes

control back to JAX-RS, which in turn packages the XML-encoded order into an HTTP

response and returns it to the consumer. If we can’t find the order in the database,

the implementation throws a WebApplicationException with the parameter NOT_FOUND,

which results in a 404 Not Found response code being returned to the consumer. If

something unpredicted goes wrong, such as the loss of database connectivity, we throw

a WebApplicationException but with a 500 Internal Server Error status code indicated by

the INTERNAL_SERVER_ERROR code. Either way, JAX-RS takes care of all the plumbing for

us, including the creation of a well-formed HTTP response.

note
It’s interesting that the JAX-RS implementation for GET in Example 4-10 deals with
a substantial amount of plumbing code on our behalf when compared to the bare
servlet implementation in Example 4-3. However, it’s also important to note that
we don’t have to use frameworks such as JAX-RS to build CRUD services, since
servlets (and other HTTP libraries) can work just as well.

Updating a Resource with PUT
For the uninitiated, HTTP can be a strange protocol, not least because it offers two

ways of transmitting information from client to server with the POST and PUT verbs. In

their landmark book,† Richardson and Ruby established a convention for determining

when to use PUT and when to use POST to resolve the ambiguity:

•	 Use POST to create a resource identified by a service-generated URI.

•	 Use POST to append a resource to a collection identified by a service-generated URI.

•	 Use PUT to create or overwrite a resource identified by a URI computed by the client.

This convention has become widely accepted, and the Restbucks ordering service

embraces it by generating URIs for orders when they’re created by POSTing to the well-

known entry point: http://restbucks.com/order. Conversely, when updating orders via

PUT, consumers specify the URIs. Figure 4-6 shows how using different verbs disambig-

uates the two different cases and simplifies the protocol.

*	http://xstream.codehaus.org/

†	RESTful Web Services (http://oreilly.com/catalog/9780596529260/), published by O’Reilly.

http://restbucks.com/order/1234
http://restbucks.com/order
http://xstream.codehaus.org/
http://oreilly.com/catalog/9780596529260/

69Building CRUD Services

Figure 4-6.  PUT request and responses

In Figure 4-6, consumers know the URI of the order they want to update from the

Location header received in the response to an earlier POST (create) request. Using that

URI, a consumer can PUT an updated order representation to the ordering service. In

accordance with the HTTP specification, a successful PUT request won’t create a new

resource or produce a new URI. Instead, the state of the identified resource will be

updated to reflect the data in the request representation.

Example 4-13 shows how a request for an update looks on the wire. While the HTTP

headers should look familiar, in this case the HTTP body contains an XML representa-

tion of the original order with the contents of the <milk> element for the cappuccino

changed to be skim rather than whole.

Example 4-13.  Updating an order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
Content-Type: application/xml
Content-Length: 246

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>skim</milk>
 <name>cappuccino</name>
 <quantity>1</quantity>
 <size>large</size>
 </item>
 </items>
</order>

http://schemas.restbucks.com/order%E2%80%B3

70 CHAPTER 4: crud web services

note
PUT expects the entire resource representation to be supplied to the server, rather
than just changes to the resource state. Another relatively unknown HTTP verb,
PATCH, has been suggested for use in situations—typically involving large resource
representations—where only changes are provided. We’ll use PUT for now, but we’ll
also cover the use of PATCH in the next chapter.

When the PUT request is accepted and processed by the service, the consumer will

receive either a 200 OK response as in Example 4-14, or a 204 No Content response as in

Example 4-15.

Whether 200 is used in preference to 204 is largely an aesthetic choice. However,

200 with a response body is more descriptive and actively confirms the server-side

state, while 204 is more efficient since it returns no representation and indicates that

the server has accepted the request representation verbatim.

Example 4-14.  Successful update with a 200 response

HTTP/1.1 200 OK
Content-Length: 275
Content-Type: application/xml
Date: Sun, 30 Nov 2008 21:47:34 GMT

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>skim</milk>
 <name>cappuccino</name>
 <quantity>1</quantity>
 <size>large</size>
 </item>
 </items>
 <status>preparing</status>
</order>

Example 4-15.  Successful update with a 204 response

HTTP/1.1 204 No Content
Date: Sun, 30 Nov 2008 21:47:34 GMT

On receiving a 200 or 204 response, the consumer can be satisfied that the order has

been updated. However, things can and do go wrong in distributed systems, so we

should be prepared to deal with those eventualities.

The most difficult of the three failure response codes from Figure 4-6 is where a

request has failed because of incompatible state. An example of this kind of failure is

where the consumer tries to change its order after drinks have already been served by

http://schemas.restbucks.com/order%E2%80%B3

71Building CRUD Services

the barista. To signal conflicting state back to the client, the service responds with a 409
Conflict status code, as shown in Example 4-16.

Example 4-16.  Order has already been served as a take-away

HTTP/1.1 409 Conflict
Date: Sun, 21 Dec 2008 16:43:07 GMT
Content-Length:271

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>whole</milk>
 <name>cappuccino</name>
 <quantity>1</quantity>
 <size>large</size>
 </item>
 </items>
 <status>served</status>
</order>

In keeping with the HTTP specification, the response body includes enough informa-

tion for the client to understand and potentially fix the problem, if at all possible. To

that end, Example 4-16 shows that the ordering service returns a representation of the

current state of the order resource from the service. In the payload, we can see that

the <status> element contains the value served, which indicates that the order cannot

be altered. To make progress, the consumer will have to interpret the status code and

payload to determine what might have gone wrong.

note
We might reasonably expect that either 405 Method Not Allowed or 409 Conflict
would be a valid choice for a response code in situations where PUTting an update
to a resource isn’t supported. In this instance, we chose 409 since PUT may be valid
for some updates that don’t violate business rules. For example, it might still be per-
mitted to change the order from drink-in to take-away during the order’s life cycle
since it’s just a matter of changing cups.

As with errors when processing POST and GET, a 500 response code is equally straight-

forward when using PUT—simply wait and retry. Since PUT is idempotent—because

service-side state is replaced wholesale by consumer-side state—the consumer can safely

repeat the operation as many times as necessary. However, PUT can only be safely used

for absolute updates; it cannot be used for relative updates such as “add an extra shot

to the cappuccino in order 1234.” That would violate its semantics.

http://schemas.restbucks.com/order%E2%80%B3

72 CHAPTER 4: crud web services

note
PUT is one of the HTTP verbs that has idempotent semantics (along with GET and
DELETE in this chapter). The ordering service must therefore guarantee that PUTting
the same order many times has the same side effects as PUTting it exactly once.
This greatly simplifies dealing with intermittent problems and crash recovery by
allowing the operation to be repeated in the event of failure.

If the service recovers, it simply applies any changes from any of the PUT requests to

its underlying data store. Once a PUT request is received and processed by the ordering

service, the consumer will receive a 200 OK response.

Implementing update with PUT
Now that we understand the update process, implementation is straightforward, espe-

cially with a little help from a framework. Example 4-17 shows an implementation of

the update operation using the HTTP-centric features of Microsoft’s WCF. The service

contract—the set of operations that will be exposed—is captured by the IOrderingService

interface. In turn, the IOrderingService is adorned by a [ServiceContract] attribute that

binds the interface to WCF so that the underlying framework can expose implement-

ing classes as services.* For our purposes, the most interesting aspect of this code is the

[WebInvoke] attribute, which, when used in tandem with an [OperationContract] attri-

bute, declares that the associated method is accessible via HTTP.

Example 4-17.  WCF ServiceContract for updating an order with PUT

[ServiceContract]
public interface IOrderingService
{
 [OperationContract]
 [WebInvoke(Method = ″PUT″, UriTemplate = ″/order/{orderId}″)]
 void UpdateOrder(string orderId, Order order);

 // Remainder of service contract omitted for brevity
}

The [WebInvoke] attribute takes much of the drudgery out of plumbing together

URIs, entity body payloads, and the methods that process representations.

Compared to lower-level frameworks, the WCF approach removes much boilerplate

plumbing code.

*	WCF implements the same model for all kinds of remote behavior, including queues and WS-*
Web Services. This lowest-common-denominator approach seeks to simplify programming distrib-
uted systems. Unfortunately, it often hides essential complexity, so use it with care!

73Building CRUD Services

In Example 4-17, the [WebInvoke] attribute is parameterized so that it responds only

to the PUT verb, at URIs that match the URI template /order/{orderId}. The value

supplied in {orderId} is bound at runtime by WCF to the string parameter orderId,

which is then used to process the update.

When invoked, the representation in the HTTP body is deserialized from XML and

dispatched to the implementing method as an instance of the Order type. To achieve

this, we declare the mapping between the on-the-wire XML and the local Order

object by decorating the Order type with [DataContract] and [DataMember] attributes, as

shown in Example 4-18. These declarations help the WCF serializer to marshal objects to

and from XML. Once the WCF serializer completes the deserialization work, all we need

to implement is the update business logic, as shown in Example 4-19.

Example 4-18.  Marking up an order for use with WCF

[DataContract(Namespace = ″http://schemas.restbucks.com/order″, Name = ″order″)]
public class Order
{
 [DataMember(Name = ″location″)]
 public Location ConsumeLocation
 {
 get { return location; }
 set { location = value; }
 }

 [DataMember(Name = ″items″)]
 public List<Item> Items
 {
 get { return items; }
 set { items = value; }
 }

 [DataMember(Name = ″status″)]
 public Status OrderStatus
 {
 get { return status; }
 set { status = value; }
 }
 // Remainder of implementation omitted for brevity
}

http://schemas.restbucks.com/order%E2%80%B3

74 CHAPTER 4: crud web services

Example 4-19.  WCF implementation for updating an order

public void UpdateOrder(string orderId, Order order)
{
 try
 {
 if (OrderDatabase.Database.Exists(orderId))
 {
 bool conflict = OrderDatabase.Database.Save(order);
 if (!conflict)
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.NoContent;
 }
 else
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.Conflict;
 }
 }
 else
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.NotFound;
 }
 }
 catch (Exception)
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.InternalServerError;
 }
}

The code in Example 4-19 first checks whether the order exists in the database. If the

order is found, it is simply updated and a 204 No Content status code is returned to the

consumer by setting the WebOperationContext.Current.OutgoingResponse.StatusCode

property.

If there’s a conflict while trying to update the order, a 409 Conflict response and a

representation highlighting the inconsistency will be returned to the consumer.

note
It’s worth noting that the only identifier we have for the order comes from the URI
itself, extracted by WCF via the {orderId} template. There’s no order ID embed-
ded in the payload, since it would be superfluous. Following this DRY (Don’t Repeat
Yourself) pattern, we avoid potential inconsistencies between the domain model
and the resources the service exposes, and keep the URI as the authoritative
identifier, as it should be.

75Building CRUD Services

If we can’t find the entry in the database, we’ll set a 404 Not Found response to indicate

the order resource isn’t hosted by the service. Finally, if something unexpected hap-

pens, we’ll catch any Exception and set a 500 Internal Server Error status code on the

response to flag that the consumer should take some alternative (recovery) action.

Removing a Resource with DELETE
When a consumer decides that a resource is no longer useful, it can send an HTTP

DELETE request to the resource’s URI. The service hosting that resource will interpret

the request as an indication that the client has become disinterested in it and may

decide that the resource should be removed—the decision depends on the require-

ments of the service and the service implementation.

note
Deleting a resource doesn’t always mean the resource is physically deleted; there
are a range of outcomes. A service may leave the resource accessible to other
applications, make it inaccessible from the Web and maintain its state internally, or
even delete it outright.

Figure 4-7 highlights the use of DELETE in the Restbucks ordering service where DELETE

is used to cancel an order, if that order is in a state where it can still be canceled. For

example, sending DELETE to an order’s URI prior to preparation should be successful and

the client should expect a 204 No Content response from the service as a confirmation.

Figure 4-7.  DELETE request and responses

Conversely, if the order has already been prepared, which means it can’t be deleted, a

405 Method Not Allowed response would be used. If the service is unavailable to respond

to our DELETE request for some other reason, the client can expect a 503 Service

Unavailable response and might try the request again later.

76 CHAPTER 4: crud web services

On the wire, DELETE requests are simple, consisting only of the verb, resource URI, pro-

tocol version, and HOST (and optional PORT) header(s), as shown in Example 4-20.

Example 4-20.  Removing an order with DELETE

DELETE /order/1234 HTTP/1.1
Host: restbucks.com

Assuming the ordering service is able to satisfy the DELETE request, it will respond affir-

matively with a 204 No Content response, as shown in Example 4-21.

Example 4-21.  Order successfully removed

HTTP/1.1 204 No Content
Date: Tue, 16 Dec 2008 17:40:11 GMT

note
Some services may elect to return the final state of the deleted resource on the
HTTP response. In those cases, 204 isn’t appropriate, and a 200 OK response along
with Content-Type and Content-Length headers and a resource representation in
the body is used.

Failure cases tend to be intricate with DELETE requests, since they might have signifi-

cant side effects! One such failure case is shown in Example 4-22, where the client has

specified a URI that the server cannot map to an order, causing the ordering service to

generate a 404 Not Found response.

Example 4-22.  The requested order doesn’t exist

HTTP/1.1 404 Not Found
Content-Length: 0
Date: Tue, 16 Dec 2008 17:42:12 GMT

Although this is a simple response to understand—we see it all too often on the human

Web, after all—it’s troubling from a programmatic perspective because it means the

consumer has stale information about order resource state compared to the service.

We might take one of several different recovery strategies when we get a 404 Not Found

response. Ordinarily, we might prefer a human to resolve the problem through some out-

of-band mechanism. However, in some situations, it may be practical for the consumer to

recompute application state by retrieving representations of the resources it knows about

and attempt to make forward progress once it’s synchronized with the service.

Restbucks archives all orders after they have been served for audit purposes. Once

archived, the order becomes immutable, and any attempts to DELETE an archived order

will result in a 405 Method Not Allowed response from the ordering service, as shown in

Example 4-23.

77Building CRUD Services

Example 4-23.  Order has been archived

HTTP/1.1 405 Method Not Allowed
Allow: GET
Date: Tue, 23 Dec 2008 16:23:49 GMT

The response in Example 4-23 informs the client that while the order resource still

exists, the client is not allowed to DELETE it. In fact, the Allow header is used to convey

that GET is the only acceptable verb at this point in time and that requests using any

other verb will be met with a 405 Method Not Allowed response.

note
The Allow header can be used to convey a comma-separated list of verbs that can
be applied to a given resource at an instant.

An implementation for DELETE using the HttpListener from the .NET Framework is

shown in Example 4-24. Like the servlet implementation in Example 4-5, this exam-

ple shows that it’s possible to develop services with just an HTTP library, and that we

don’t always have to use sophisticated frameworks.

Example 4-24.  Using HttpListener to delete an order

static void DeleteResource(HttpListenerContext context)
{
 string orderId = ExtractOrderId(context.Request.Url.AbsolutePath);

 var order = OrderDatabase.Retrieve(orderId);

 if (order == null)
 {
 context.Response.StatusCode = HttpStatusCode.NotFound;
 }
 else if (order.CanDelete)
 {
 OrderDatabase.archive(orderId);
 context.Response.StatusCode = HttpStatusCode.NoContent;
 }
 else
 {
 context.Response.StatusCode = HttpStatusCode.MethodNotAllowed;
 }

 context.Response.Close();
}

In Example 4-24, an HTTPListenerContext instance provides access to the underlying

HTTP request and response messages. Using the request URI, we extract an order

identifier and then determine whether it corresponds to a valid order. If no order is

78 CHAPTER 4: crud web services

found, we immediately set the HTTP response to 404 and call Close() on the response

object to return control to the web server, which in turn returns a well-formed 404 Not

Found response message to the consumer.

If we can find the resource, we check whether we’re allowed to delete it. If we are, we

logically remove the associated order before returning a 204 No Content response to the

client. Otherwise, we set the response code to 405 and let the client know they can’t

delete that resource.

Safety and Idempotency
We saw in Chapter 3 that GET is special since it has the properties of being both safe

and idempotent. PUT and DELETE are both idempotent, but neither is safe, while POST is

neither safe nor idempotent. Only GET returns the same result with repeated invoca-

tions and has no side effects for which the consumer is responsible.

With GET, failed requests can be repeated without changing the overall behavior of an

application. For example, if any part of a distributed application crashes in the midst

of a GET operation, or the network goes down before a response to a GET is received,

the client can just reissue the same request without changing the semantics of its

interaction with the server.

In broad terms, the same applies to both PUT and DELETE requests. Making an absolute

update to a resource’s state or deleting it outright has the same outcome whether

the operation is attempted once or many times. Should PUT or DELETE fail because of

a transient network or server error (e.g., a 503 response), the operation can be safely

repeated.

However, since both PUT and DELETE introduce side effects (because they are not safe),

it may not always be possible to simply repeat an operation if the server refuses it at

first. For instance, we have already seen how a 409 response is generated when the

consumer and service’s view of resource state is inconsistent—merely replaying the

interaction is unlikely to help. However, HTTP offers other useful features to help us

when state changes abound.

Aligning Resource State
In a distributed application, it’s often the case that several consumers might interact

with a single resource, with each consumer oblivious to changes made by the others.

As well as these consumer-driven changes, internal service behaviors can also lead to

a resource’s state changing without consumers knowing. In both cases, a consumer’s

understanding of resource state can become misaligned with the service’s resource

state. Without some way of realigning expectations, changes requested by a consumer

based on an out-of-date understanding of resource state can have undesired effects,

from repeating computationally expensive requests to overwriting and losing another

consumer’s changes.

79Aligning Resource State

HTTP provides a simple but powerful mechanism for aligning resource state

expectations (and preventing race conditions) in the form of entity tags and conditional

request headers. An entity tag value, or ETag, is an opaque string token that a server

associates with a resource to uniquely identify the state of the resource over its

lifetime. When the resource changes—that is, when one or more of its headers, or

its entity body, changes—the entity tag changes accordingly, highlighting that state

has been modified.

ETags are used to compare entities from the same resource. By supplying an entity

tag value in a conditional request header—either an If-Match or an If-None-Match

request header—a consumer can require the server to test a precondition related to

the current resource state before applying the method supplied in the request.

note
ETags are also used for cache control purposes, as we’ll see in Chapter 6.

To illustrate how ETags can be used to align resource state in a multiconsumer scenario,

imagine a situation in which a party of two consumers places an order for a single coffee.

Shortly after placing the order, the first consumer decides it wants whole milk instead of

skim milk. Around the same time, the second consumer decides it, too, would like a

coffee. Neither consumer consults the other before trying to amend the order.

To begin, both consumers GET the current state of the order independently of each

other. Example 4-25 shows one of the consumer’s requests.

Example 4-25.  Consumer GETs the order

GET /order/1234 HTTP/1.1
Host: restbucks.com

The service’s response contains an ETag header whose value is a hash of the returned

representation (Example 4-26).

Example 4-26.  Service generates a response with an ETag header

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: 275
ETag: ″72232bd0daafa12f7e2d1561c81cd082″

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>skim</milk>
 <name>cappuccino</name>

http://schemas.restbucks.com/order%E2%80%B3

80 CHAPTER 4: crud web services

 <quantity>1</quantity>
 <size>large</size>
 </item>
 </items>
 <status>pending</preparing>
</order>

note
The service computes the entity tag and supplies it as a quoted string in the ETag
header prior to returning a response. Entity tag values can be based on anything
that uniquely identifies an entity: a version number associated with a resource in
persistent storage, one or more file attributes, or a checksum of the entity head-
ers and body, for example. Some methods of generating entity tag values are more
computationally expensive than others. ETags are often computed by applying a hash
function to the resource’s state, but if hashes are too computationally expensive, any
other scheme that produces unique values can be used. Whichever method is used,
we recommend attaching ETag headers to responses wherever possible.

When a consumer receives a response containing an ETag, it can (and should) use

the value in any subsequent requests it directs to the same resource. Such requests

are called conditional requests. By supplying the received entity tag as the value of an

If-Match or If-None-Match conditional header, the consumer can instruct the service to

process its request only if the precondition in the conditional header holds true.

Of course, consumers aren’t obliged to retransmit ETags they’ve received, and so ser-

vices can’t expect to receive them just because they’ve been generated. However,

consumers that don’t take advantage of ETags are disadvantaged in two ways. First,

consumers will encounter increased response times as services have to perform more

computation on their behalf. Second, consumers will discover their state has become

out of sync with service state through status codes such as 409 Conflict at inconve-

nient and (because they’re not using ETags) unexpected times. Both of these failings

are easily rectified by diligent use of ETags.

An If-Match request header instructs the service to apply the consumer’s request

only if the resource to which the request is directed hasn’t changed since the consumer

last retrieved a representation of it. The service determines whether the resource has

changed by comparing the resource’s current entity tag value with the value supplied

in the If-Match header. If the values are equal, the resource hasn’t changed. The ser-

vice then applies the method supplied in the request and returns a 2xx response. If the

entity tag values don’t match, the server concludes that the resource has changed since

the consumer last accessed it, and responds with 412 Precondition Failed.

81Aligning Resource State

note
Services are strict about processing the If-Match header. A service can’t (and
shouldn’t) do clever merges of resource state where one coffee is removed and
another, independent coffee in the same order is changed to decaf. If two parts of
a resource are independently updatable, they should be separately addressable
resources. For example, if fine-grained control over an order is useful, each cup of
coffee could be modeled as a separate resource.

Continuing with our example, the first consumer does a conditional PUT to update the

order from skim to whole milk. As Example 4-27 shows, the conditional PUT includes

an If-Match header containing the ETag value from the previous GET.

Example 4-27.  The first consumer conditionally PUTs an updated order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
If-Match: ″72232bd0daafa12f7e2d1561c81cd082″

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>whole</milk>
 <name>cappuccino</name>
 <quantity>1</quantity>
 <size>large</size>
 </item>
 </items>
 <status>pending</preparing>
</order>

Because the order hadn’t been modified since the first consumer last saw it, the PUT

succeeds, as shown in Example 4-28.

Example 4-28.  The conditional PUT succeeds

HTTP/1.1 204 No Content
ETag: ″6e87391fdb5ab218c9f445d61ee781c1″

Notice that while the response doesn’t include an entity body, it does include an

updated ETag header. This new entity tag value reflects the new state of the order

resource held on the server (the result of the successful PUT).

Oblivious to the change that has just taken place, the second consumer attempts to add its

order, as shown in Example 4-29. This request again uses a conditional PUT, but with an

entity tag value that is now out of date (as a result of the first consumer’s modification).

http://schemas.restbucks.com/order%E2%80%B3

82 CHAPTER 4: crud web services

Example 4-29.  The second consumer conditionally PUTs an updated order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
If-Match: ″72232bd0daafa12f7e2d1561c81cd082″

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <items>
 <item>
 <milk>skim</milk>
 <name>cappuccino</name>
 <quantity>2</quantity>
 <size>large</size>
 </item>
 </items>
 <status>pending</preparing>
</order>

The service determines that the second consumer is trying to modify the order based

on an out-of-date understanding of resource state, and so rejects the request, as shown

in Example 4-30.

Example 4-30.  The response indicates a precondition has failed

HTTP/1.1 412 Precondition Failed

When a consumer receives a 412 Precondition Failed status code, the correct thing to

do is to GET a fresh representation of the current state of the resource, and then use the

ETag header value supplied in this response to retry the original request, which is what

the second consumer does in this case. Having done a fresh GET, the consumer sees that

the original order had been modified. The second consumer is now in a position to PUT

a revised order that reflects both its and the first consumer’s wishes.

Our example used the If-Match header to prevent the second consumer from over-

writing the first consumer’s changes. Besides If-Match, consumers can also use

If-None-Match. An If-None-Match header instructs the service to process the request

only if the associated resource has changed since the consumer last accessed it. The pri-

mary use of If-None-Match is to save valuable computing resources on the service side.

For example, it may be far cheaper for a service to compare ETag values than to per-

form computation to generate a representation.

note
If-None-Match is mainly used with conditional GETs, whereas If-Match is typically
used with the other request methods, where race conditions between multiple con-
sumers can lead to unpredictable side effects unless properly coordinated.

http://schemas.restbucks.com/order%E2%80%B3

83Consuming CRUD Services

Both If-Match and If-None-Match allow the use of a wildcard character, *, instead of a

normal entity tag value. An If-None-Match conditional request that takes a wildcard

entity tag value instructs the service to apply the request method only if the resource

doesn’t currently exist. Wildcard If-None-Match requests help to prevent race conditions

in situations where multiple consumers compete to PUT a new resource to a well-known

URI. In contrast, an If-Match conditional request containing a wildcard value instructs the

service to apply the request only if the resource does exist. Wildcard If-Match requests are

useful in situations where the consumer wishes to modify an existing resource using a

PUT, but only if the resource hasn’t already been deleted.

note
As well as ETag and its associated If-Match and If-None-Match headers,
HTTP supports a timestamp-based Last-Modified header and its two associ-
ated conditional headers: If-Modified-Since and If-Unmodified-Since. These
timestamp-based conditional headers act in exactly the same way as the If-Match
and If-None-Match headers, but the conditional mechanism they implement is
accurate only to the nearest second—the limit of the timestamp format used by
HTTP. Because timestamps are often cheaper than hashes, If-Modified-Since
and If-Unmodified-Since may be preferable in solutions where resources don’t
change more often than once per second.

In practice, we tend to use timestamps as cheap ETag header values, rather than as
Last-Modified values. By using ETags from the outset, we ensure that the upgrade
path to finer-grained ETags is entirely at the discretion of the service. The service can
switch from using timestamps to using hashes without upsetting clients.

Consuming CRUD Services
Services are one side of distributed systems, but to perform useful work they need

consumers to drive them through their protocols. Fortunately, many frameworks and

libraries support CRUD Web Services, and it’s worthwhile to understand a little about

what they offer.

A Java-Based Consumer
In the Java world, we might use the Apache Commons HTTP client* to implement the

Create part of the protocol by POSTing an order to the ordering service, as shown in

Example 4-31.

Example 4-31.  Client-side order creation in Java

public String placeOrder(Order order, String restbucksOrderingServiceUri)
 throws BadRequestException, ServerFailureException,
 HttpException, IOException {

*	http://hc.apache.org/httpcomponents-client/index.html

http://hc.apache.org/httpcomponents-client/index.html

84 CHAPTER 4: crud web services

 PostMethod post = new PostMethod(restbucksOrderingServiceUri);
 // Use an existing XStream instance to generate XML for the order to transmit
 RequestEntity entity = new ByteArrayRequestEntity(
 xstream.toXML(order).getBytes());
 post.setRequestEntity(entity);

 HttpClient client = new HttpClient();

 try {
 int response = client.executeMethod(post);

 if(response == 201) {
 return post.getResponseHeader(″Location″).getValue();
 } else if(response == 400) {
 // If we get a 400 response, the caller's gone wrong
 throw new BadRequestException();
 } else if(response == 500 || response == 503) {
 // If we get a 5xx response, the caller may retry
 throw new ServerFailureException(post.getResponseHeader(″Retry-After″));
 }
 // Otherwise abandon the interaction
 throw new HttpException(″Failed to create order. Status code: ″ + response);
 } finally {
 post.releaseConnection();
 }
}

The implementation in Example 4-31 shows the construction of a POST operation on the

ordering service, using a PostMethod object. All we need to do is to populate the HTTP

request with the necessary coffee order information by setting the request entity to con-

tain the bytes of an XML representation of the order. To keep things simple for ourselves,

we use the XStream library to encode the order resource representation in XML.

Having populated the HTTP request, we instantiate an HttpClient and execute the

PostMethod, which POSTs the order to the Restbucks ordering service. Once the method

returns, we examine the response code for a 201 Created status and return the contents

of the Location header, which will contain the URI of the newly created order. We can

use this URI in subsequent interactions with Restbucks. If we don’t get a 201 response,

we fail by throwing an HTTPException, and assume that order creation has failed.

A .NET Consumer
On the .NET platform, we can opt for the framework’s built-in XML and HTTP librar-

ies. The code in Example 4-32 represents how a client can send an order update to the

Restbucks ordering service via HTTP PUT.

85Consuming CRUD Services

Example 4-32.  .NET client code for order update via PUT

public void UpdateOrder(Order order, string orderUri)
{
 HttpWebRequest request = WebRequest.Create(orderUri) as HttpWebRequest;
 request.Method = ″PUT″;
 request.ContentType = ″application/xml″;

 XmlSerializer xmlSerializer = new XmlSerializer(typeof(Order));
 xmlSerializer.Serialize(request.GetRequestStream(), order);

 request.GetRequestStream().Close();

 HttpWebResponse response = (HttpWebResponse)request.GetResponse();

 if (response.StatusCode != HttpStatusCode.OK)
 {
 // Compensation logic omitted for brevity
 }
}

In Example 4-32, we use an HTTPWebRequest instance to handle the HTTP aspects of

the interaction. First we set the HTTP verb PUT via the Method property and subse-

quently set the Content-Type header to application/xml through the ContentType

property. We then write an XML-serialized representation of the order object that

was given as an argument to the UpdateOrder() method. The XmlSerializer trans-

forms the local object instance into an XML document, and the Serialize() method

writes the XML to the request’s stream. Once we’re done populating the request

stream, we simply call Close(). Under the covers, the framework sets other headers

such as Content-Length and Host for us, so we don’t have to worry about them.

To send the request we call the GetResponse() method on the request object, which

has the effect of transmitting an HTTP PUT to the URI supplied as an argument to

the updateOrder() method. The response from the ordering service is returned as an

HttpWebResponse and its StatusCode property triggers any further processing.

One final job that we need to undertake is to mark up the Order type so that the

XmlSerializer knows how to transform Order instances to and from XML representa-

tions. The code snippet in Example 4-33 shows the .NET attributes that we need to

apply for our client-side plumbing to be complete.

Example 4-33.  An XML-serializable order

[XmlRoot(Namespace = ″http://schemas.restbucks.com/order″)]
[XmlType(TypeName = ″order″)]
public class Order
{

http://schemas.restbucks.com/order%E2%80%B3%00%00

86 CHAPTER 4: crud web services

 [XmlElement(ElementName = ″location″)]
 public Location ConsumeLocation
 {
 get; set;
 }

 // Remainder of type omitted for brevity
}

Consuming Services Automatically with WADL
Although the patterns for writing clients in .NET and Java are easy to understand

and implement, we can save ourselves effort—and, in some cases, generate code

automatically—using service metadata. Up to this point, much of the work we’ve

done in building our ordering service and its consumers has been plumbing code.

But for some kinds of services,* a static description can be used to advertise the

addresses and representation formats of the resources the service hosts. This is the

premise of the Web Application Description Language, or WADL.

A WADL contract is an XML document that describes a set of resources with URI tem-

plates, permitted operations, and request-response representations. As you’d expect,

WADL also supports the HTTP fault model and supports the description of multiple

formats for resource representations. Example 4-34 shows a WADL description of the

Restbucks ordering service.

Example 4-34.  Ordering service WADL example

<?xml version=″1.0″ encoding=″utf-8″?>
<application
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns=″http://research.sun.com/wadl/2006/10″
 xmlns:ord=″http://schemas.restbucks.com/order″>

 <grammars>
 <include href=″order.xsd″/>
 </grammars>

 <resources base=″http://restbucks.com/″>
 <resource path=″order″>
 <method name=″POST″>
 <request>
 <representation mediaType=″application/xml″ element=″ord:order″/>
 </request>

*	CRUD services are great candidates for describing with WADL. Hypermedia services—as we will see
in the next chapter—use different mechanisms to describe the protocols they support.

http://www.w3.org/2001/XMLSchema
http://research.sun.com/wadl/2006/10%E2%80%B3
http://schemas.restbucks.com/order%E2%80%B3
http://restbucks.com/%E2%80%B3

87Consuming Services Automatically with WADL

 <response>
 <representation status=″201″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″400″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″500″/>
 </response>
 </method>
 </resource>
 <resource path=″order/{orderId}″>
 <method name=″GET″>
 <response>
 <representation mediaType=″application/xml″ element=″ord:order″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″404″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″500″/>
 </response>
 </method>
 <method name=″PUT″>
 <request>
 <representation mediaType=″application/xml″ element=″ord:order″/>
 </request>
 <response>
 <representation status=″200″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″404″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″409″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″500″/>
 </response>
 </method>
 <method name=″DELETE″>
 <response>
 <representation status=″200″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″404″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″405″/>
 <fault mediaType=″application/xml″ element=″ord:error″ status=″500″/>
 </response>
 </method>
 </resource>
 </resources>
</application>

The <application> element is the root for the WADL metadata. It acts as the container

for schemas that describe the service’s resource representations in the <grammars>

element and the resources that are contained within the <resources> element.

The <grammars> element typically refers to XML Schema schemas (which we have

defaulted to for Restbucks) that describe the structure of the resource representations

supported by the service, though other schema types (e.g., RELAX NG) are supported

too. Consumers of the service can use this information to create local representations

of those resources such as orders and products.

88 CHAPTER 4: crud web services

In a WADL description, the <resources> element is where most of the action

happens. It provides a static view of the resources available for consumption. It uses a

templating scheme that allows consumers to infer the URIs of the resources supported

by a service. Calculating URIs can be a little tricky since WADL relies on a hierarchy

of resources, with each URI based on the parent URI’s template plus its own. In

Example 4-34, we have two logical resources: http://restbucks.com/order for POST

and http://restbucks.com/order/{orderId} for the other verbs. The resource URIs are

computed by appending the path of the <resource> element to the path defined in the

base attribute of the <resources> element.

note
In addition to dealing with URI templates and query strings, WADL also has a com-
prehensive mechanism for building URIs. WADL can deal with form encoding and
handling a range of URI structures, including matrix URIs.*

The <method> element allows WADL to bring together the request and response

resource representations and HTTP verbs to describe the set of permissible interactions

supported by the service. The Restbucks ordering service is described in terms of two

separate resource paths. We first define the order resource (<resource path=″order″>),

which only allows POST requests (<method name=″POST″>) and requires that the payload

of those requests be XML representations of an order. We also describe the possible

ways the Restbucks ordering service can reply to a POST request (in the <response> ele-

ment) depending on the outcome of processing the submitted order. In this case, the

possible response code is 201, 400, or 500.

Using a URI template, a second set of resources—the orders that Restbucks has

created—is advertised by the element <resource path=″order/{orderId}″>. Like the

POST method element, each subsequent <method> element describes the possible

responses and faults that the ordering service might return. Additionally, the PUT

<method> element declares that an XML order representation must be present as the

payload of any PUT requests.

While it’s helpful that we can read and write WADL by hand (at least in simple cases),

the point of WADL is to help tooling automate as much service plumbing as possible.

To illustrate how WADL can be consumed by an automation infrastructure, the

authors of WADL have created the WADL2Java† tool.‡ WADL2Java allows us to create

consumer-side Java that minimizes the code we have to write in order to interact with

a service described in WADL. The Java code in Examples 4-35 and 4-36 shows the

consumer-side API that Java programmers can use to interact with a WADL-decorated

ordering service.

*	http://www.w3.org/DesignIssues/MatrixURIs.html

†	https://wadl.dev.java.net/wadl2java.html

‡	Other tools also exist; for example, REST Describe at http://tomayac.de/rest-describe/latest/RestDescribe.html.

http://restbucks.com/order
http://restbucks.com/order/
http://www.w3.org/DesignIssues/MatrixURIs.html
https://wadl.dev.java.net/wadl2java.html
http://tomayac.de/rest-describe/latest/RestDescribe.html

89Consuming Services Automatically with WADL

Example 4-35.  WADL-generated endpoint

public class Endpoint {
 public static class Orders {

 public DataSource postAsIndex(DataSource input)
 throws IOException, MalformedURLException {
 // Implementation removed for brevity
 }
 }

 public static class OrdersOrderId {

 public OrdersOrderId(String orderid)
 throws JAXBException {
 // Implementation removed for brevity
 }

 // Getters and setters omitted for brevity

 public DataSource getAsApplicationXml()
 throws IOException, MalformedURLException {
 // Implementation removed for brevity
 }

 public Order getAsOrder()
 throws ErrorException, IOException, MalformedURLException, JAXBException {
 // Implementation removed for brevity
 }

 public DataSource putAsIndex(DataSource input)
 throws IOException, MalformedURLException {
 // Implementation removed for brevity
 }

 public DataSource deleteAsIndex()
 throws IOException, MalformedURLException {
 // Implementation removed for brevity
 }
 }
}

In Java, resources are locally represented by classes such as Order, shown in

Example 4-36, which allow us to inspect and set values in the XML representations

exchanged with the ordering service.

90 CHAPTER 4: crud web services

Example 4-36.  Java representation of an order resource

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = ″″, propOrder = {
 ″location″,
 ″items″,
 ″status″
})
@XmlRootElement(name = ″order″)
public class Order {

 @XmlElement(required = true)
 protected String location;
 @XmlElement(required = true)
 protected Order.Items items;
 @XmlElement(required = true)
 protected String status;

 // Getters and setters only, omitted for brevity

 }

WADL can be useful as a description language for CRUD services such as the ordering

service. It can be used to automatically generate plumbing code with very little effort,

compared to manually building clients. Since the client and server collaborate over the

life cycle of a resource, its URI, and its representation format, it does not matter whether

the plumbing is generated from a metadata description. Indeed, WADL descriptions may

help expedite consumer-side maintenance when changes happen on the server side.

note
As we will see in the next chapter, the Web uses hypermedia to provide contracts in
a much more loosely coupled way than WADL. But for CRUD-only services, WADL
can be a useful tool.

CRUD Is Good, but It’s Not Great
Now that we’ve completed our tour of CRUD services, it’s clear that using HTTP as

a CRUD protocol can be a viable, robust, and easily implemented solution for some

problem domains. In particular for systems that manipulate records, HTTP-based

CRUD services are a straightforward way to extend reach over the network and expose

those applications to a wider range of consumers.*

*	Naively exposing systems that have not been built for network access is a bad idea. Systems have to
be designed to accommodate network loads.

91CRUD Is Good, but It’s Not Great

Since we can implement CRUD services using a small subset of HTTP, our integration

needs may be completely satisfied with few CRUD-based services. Indeed, this is

typically where most so-called RESTful services stop.* However, it’s not the end of

our journey, because for all their strengths and virtue of simplicity, CRUD services are

only suited to CRUD scenarios. More advanced requirements need richer interaction

models and, importantly, will emphasize stronger decoupling than CRUD allows.

To decouple our services from clients and support general-purpose distributed systems,

we need to move away from a shared, tightly coupled understanding of resource life

cycles. On the human Web, this model has long been prevalent when using hyperlinks

to knit together sequences of interactions that extend past CRUD operations. In the

next chapter, we’re going to replicate the same hypermedia concept from the Web to

create robust distributed systems.

*	We’re being generous here, since most so-called RESTful services tend to stop at tunneling through
HTTP!

93

C h a p t e r F i v e

Hypermedia Services

Embracing HTTP as an application protocol puts the Web at the heart of

distributed systems development. But that’s just a start. In this chapter, we will go

further, building RESTful services that use hypermedia to model state transitions and

describe business protocols.

The Hypermedia Tenet
When browsing the Web, we’re used to navigating between pages by clicking links or

completing and submitting forms. Although we may not realize it, these interlinked

pages describe a protocol—a series of steps we take to achieve a goal, whether that’s

buying books, searching for information, creating a blog post, or even ordering a

coffee. This is the very essence of hypermedia: by transiting links between resources,

we change the state of an application.

Hypermedia is an everyday part of our online activities, but despite this familiarity, it’s

rarely used in computer-to-computer interactions. Although Fielding’s thesis on REST

highlighted its role in networked systems, hypermedia has yet to figure significantly in

contemporary enterprise solutions.

Hypermedia As the Engine of Application State
The phrase hypermedia as the engine of application state, sometimes abbreviated to

HATEOAS, was coined to describe a core tenet of the REST architectural style. In this

book, we tend to refer to the hypermedia tenet or just hypermedia. Put simply, the tenet

says that hypermedia systems transform application state.

94 CHAPTER 5: hypermedia services

note
What is application state? If we think of an application as being computerized
behavior that achieves a goal, we can describe an application protocol as the set of
legal interactions necessary to realize that behavior. Application state is a snapshot
of an execution of such an application protocol. The protocol lays out the interac-
tion rules; application state is a snapshot of the entire system at a particular instant.

A hypermedia system is characterized by the transfer of links in the resource represen-

tations exchanged by the participants in an application protocol. Such links advertise

other resources participating in the application protocol. The links are often enhanced

with semantic markup to give domain meanings to the resources they identify.

For example, in a consumer-service interaction, the consumer submits an initial

request to the entry point of the service. The service handles the request and responds

with a resource representation populated with links. The consumer chooses one of

these links to transition to the next step in the interaction. Over the course of several

such interactions, the consumer progresses toward its goal. In other words, the distributed

application’s state changes. Transformation of application state is the result of the systemic

behavior of the whole: the service, the consumer, the exchange of hypermedia-enabled

resource representations, and the advertisement and selection of links.

On each interaction, the service and consumer exchange representations of resource state,

not application state. A transferred representation includes links that reflect the state of

the application. These links advertise legitimate application state transitions. But the

application state isn’t recorded explicitly in the representation received by the consumer;

it’s inferred by the consumer based on the state of all the resources—potentially distrib-

uted across many services—with which the consumer is currently interacting.

The current state of a resource is a combination of:

•	 The values of information items belonging to that resource

•	 Links to related resources

•	 Links that represent a transition to a possible future state of the current resource

•	 The results of evaluating any business rules that relate the resource to other local

resources

This last point emphasizes the fact that the state of a resource is partly dependent on

the state of other local resources. The state of a sales order, for example, is partly a

function of the state of a local copy of an associated purchase order; changes to the

purchase order will affect the state of the sales order the next time the business rules

governing the state of the sales order are evaluated (i.e., the next time a representa-

tion of the sales order is generated).

Importantly, the rules that control the state of a resource are internal to the service that

governs the resource: they’re not made available to consumers. In other words, resource

95The Hypermedia Tenet

state is a function of a private ruleset that only the resource owner knows about: those

rules don’t leak into the external representation.

Business rules that relate a resource to other resources should refer only to locally owned

resources, however. This allows us to identify and prevent circular dependencies,

whereby the state of resource A is partly a function of the state of resource B, which in

turn is partly a function of the state of resource A, and so on. We can always arrange

locally owned resources so as to prevent circular dependencies; we can’t do the same if

the associated resources are governed by another service. If you need to relate the state of

a resource to a third-party resource, we recommend making a local copy of the third-

party resource using the Atom-based state alignment mechanisms described in Chapter 7.

A service enforces a protocol—a domain application protocol, or DAP—by advertising

legitimate interactions with relevant resources. When a consumer follows links

embedded in resource representations and subsequently interacts with the linked

resources, the application’s overall state changes, as illustrated in Figure 5-1.

note
Domain application protocols (DAPs) specify the legal interactions between a con-
sumer and a set of resources involved in a business process. DAPs sit atop HTTP
and narrow HTTP’s broad application protocol to support specific business goals.
As we shall see, services implement DAPs by adding hypermedia links to resource
representations. These links highlight other resources with which a consumer can
interact to make progress through a business transaction.

Figure 5-1.  Resources plus hypermedia describe protocols

Consumers in a hypermedia system cause state transitions by visiting and manipulating

resource state. Interestingly, the application state changes that result from a consumer

driving a hypermedia system resemble the execution of a business process. This suggests

that our services can advertise workflows using hypermedia. Hypermedia makes it easy

96 CHAPTER 5: hypermedia services

to implement business protocols in ways that reduce coupling between services and

consumers. Rather than understand a specific URI structure, a consumer need only

understand the semantic or business context in which a link appears. This reduces an

application’s dependency on static metadata such as URI templates or Web Application

Description Language (WADL). As a consequence, services gain a great deal of freedom

to evolve without having to worry whether existing consumers will break.

note
Services should ensure that any changes they introduce do not violate contracts with
existing consumers. While it’s fine for a service to make structural changes to the rela-
tionships between its resources, semantic changes to the DAP or to the media types
and link relations used may change the contract and break existing consumers.

Loose Coupling
When developing a service we abstract away implementation details from consumers,

thereby decreasing coupling. But no matter the degree of loose coupling, consumers must

have enough information available in order to interact with our service. We need to

provide some way for them to bind to our service and drive the supported application

protocol. The beauty of hypermedia is that it allows us to convey protocol information in

a declarative and just-in-time fashion as part of an application’s resource representations.*

note
Web contracts are expressed in media types and link relations. Accepting a media
type means you understand how to process that format when interacting with a ser-
vice. Using the media types and link relations supported by the service, we can extend
a contract over the Web at runtime by advertising new valid links and state transitions.

For computer-to-computer interactions, we advertise protocol information by embed-

ding links in representations, much as we do with the human Web. To describe a link’s

purpose, we annotate it. Annotations indicate what the linked resource means to the

current resource: “status of your coffee order,” “payment,” and so on. For annotations

we can use microformats or Semantic Web technologies, or we can design our own

application-specific formats. We call such annotated links hypermedia controls, reflecting

their enhanced capabilities over raw URIs.

note
Forms are hypermedia controls too. Though we use links exclusively throughout the
remainder of this chapter, forms can also be used to guide a consumer’s interaction
with linked resources. At the HTTP level, POSTing a representation to a URI in a link
is equivalent to submitting a form.

*	Most middleware solutions, such as WS-*, emphasize the opposite: imperative contracts presented
upfront.

97Hypermedia Formats

To illustrate the key aspects of hypermedia-driven services, we’ll build the ordering

and payment parts of Restbucks’ service using a custom hypermedia format.

Hypermedia Formats
Hypermedia-driven distributed systems put similar demands on their consumers as the

Web does on humans: consumers need to discover and interact with resources so that

they can realize an application’s goal. To illustrate how representation formats allow

consumers to discover and interact with resources, let’s consider XHTML, one of the

most popular representation formats on the World Wide Web. XHTML is used to

represent information on a page (its business payload) and to link to other pages or

content (its protocol description). The inclusion of links to other resources makes

XHTML a hypermedia format. As humans, we take this property for granted. We use

web browsers to move from one page to another without thinking of the underlying

mechanics (which is a good thing, of course). Browsers apply the hypermedia tenet

and interpret links to show possible transitions from one resource (page) to another.

The Web is agnostic to the representation formats exchanged by consumers and

services, which is one of the primary reasons for its success in diverse domains. But

when it comes to hypermedia, not all formats are equal.

Hypermedia Dead Ends
Despite the success of hypermedia formats on the Web, today’s distributed applications

typically use nonhypermedia formats such as plain XML to integrate systems.

Although XML is easy to use as a data interchange format, and despite its near

ubiquity, it is utterly oblivious to the Web. This is neatly demonstrated by our humble

order XML representation from Chapter 4, which we show again in Example 5-1.

Example 5-1.  XML lacks hypermedia controls

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <status>pending</status>
</order>

There’s nothing intrinsically wrong with this order representation when considered in

isolation. After all, it conveys the current state of the order well enough. But it fails to

provide any context; that is, it doesn’t indicate the current state of the business process,

http://schemas.restbucks.com%E2%80%B3

98 CHAPTER 5: hypermedia services

or how to advance it. Informally, we know we need to pay for a drink once ordered, but

the representation of Example 5-1 doesn’t indicate how to make that payment.

The use of plain XML leaves the consumer without a guide—a protocol—for

successfully completing the business transaction it has initiated. Because there are no

hypermedia controls in the order representation, the consumer must rely on out-of-

band information to determine what to do next. From a loose coupling point of view,

that’s a poor design decision. Aspects of the service’s implementation leak through

mechanisms such as URI templates into the consumer’s implementation, making

change difficult and risky.

We can, of course, communicate protocol information to the developers of a consumer

application using written documentation, or static contracts such as Web Services

Description Language (WSDL), WADL, or URI templates. But, as we’ll see, the Web

and hypermedia enable us to do better.

URI Templates and Coupling
Let’s consider first how Restbucks might communicate protocol information if it chose

the static, upfront approach. As we wrote in Chapter 3, Restbucks could share URI

templates with its consumers. For example, it could document and share the template

http://restbucks.com/payment/{order_id}. The documentation would describe how

consumers are expected to PUT a payment representation to a URI generated by

replacing the order_id part of the template with the ID of the original order. It’s hardly

rocket science, and with a little URI manipulation it can quickly be made to work.

Unfortunately, it can be made to fail just as rapidly.

If Restbucks chose to publish URI templates to consumers, it would then be bound to

honor those templates for the long term, or risk breaking existing consumer applica-

tions. Publishing URI template details outside a service’s boundary exposes too much

information about the service’s implementation. If the implementation of the ordering

and payment services were to change, perhaps as a result of outsourcing the payment

capability to a third party, there’d be an increased risk that consumers built to the

(now defunct) http://restbucks.com/payment/{order_id} template would break. Since

that kind of business change happens frequently, Restbucks ought to encapsulate its

implementation details as far as possible.

Generally, it’s better to expose only stable URIs. These stable URIs act as entry points to

services, after which hypermedia takes over. For example, the entry point to the

Restbucks ordering service is http://restbucks.com/order. Interacting with the resource at

that URI generates further resource representations, each of which contains hyper-

media links to yet more resources involved in the ordering business process.

This doesn’t mean URI templates are a bad idea. In fact, they are an excellent metadata

format. But as with all good things, we must learn how to use them in moderation.

We believe URI templates are an excellent means for documenting service design.

http://restbucks.com/payment/
http://restbucks.com/payment/
http://restbucks.com/order

99Hypermedia Formats

Restbucks’ implementations all embrace URI templates for internal documentation and

implementation purposes. However, those same implementations only ever share

completed (opaque) URIs with consumers. The templates remain a private design and

development detail.

Selecting a Hypermedia Format
Formats provide the means for interacting with a service, and as such they’re part of

that service’s contract. Because a format is part of the service contract, it’s important to

choose an appropriate hypermedia format at design time.

REST’s hypermedia tenet doesn’t prescribe a specific representation format, but it does

require a format capable of conveying necessary hypermedia information. Different

hypermedia formats suit different services. The choice depends on a trade-off between

reach and utility—between the ability to leverage existing widely deployed software

agents and the degree to which a format matches our domain’s needs.

Standard hypermedia formats
Several of the hypermedia formats already in use on the Web today are capable of

supporting some of our requirements. Formats such as Atom* (and RSS) and XHTML

are widely used and understood. Correspondingly, many software tools and libraries

are available to produce, consume, and manage resource representations in these

formats. Web browsers, for example, know how to render XHTML representations

as pages, and Atom representations as lists of entries.

note
Underlying the Web is a principle of generality, which prefers a few commonly
agreed-upon, general-purpose formats to many specialized formats. The principle of
generality allows huge numbers of different programs and systems to interoperate
using a few core technologies.

However, widespread tool support alone doesn’t make a format suitable for every

domain. For example, XHTML supports hypermedia (and is therefore capable of

describing business protocols) because it implements hypermedia controls such as

<a href>. Still, as Example 5-2 shows, it’s a verbose format for representing a Restbucks

order in a computer-to-computer interaction.

Example 5-2.  Encoding an order in XHTML

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Transitional//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd″>

*	A popular hypermedia format and the focus of Chapter 7.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3

100 CHAPTER 5: hypermedia services

<html xmlns=″http://www.w3.org/1999/xhtml″>
 <body>
 <div class=″order″>
 <p class=″location″>takeAway</p>

 <li class=″item″>
 <p class=″name″>latte</p>
 <p class=″quantity″>1</p>
 <p class=″milk″>whole</p>
 <p class=″size″>small</p>

 <a href=″http://restbucks.com/payment/1234″
 rel=″http://relations.restbucks.com/payment″>payment
 </div>
 </body>
</html>

By encoding our order as XHTML, we are able to render it in a web browser, which is

helpful for debugging. We leverage XHTML controls, such as the class attribute, to

convey semantics about the contents of an element. The approach of mixing business

data with web page presentation primitives has been popularized through microformats,

which we’ll discuss in Chapter 10. Example 5-2 illustrates, however, how the fusion of

business data and presentation primitives comes at the expense of some noisy XHTML

markup. In choosing XHTML, we make the conscious decision to trade expressiveness for

reach by shoehorning a specific application format into a more general format.

But sometimes, trading expressiveness for reach isn’t the right thing to do. Do our

consumers really need to understand XHTML and all its verbiage? Given that

Restbucks isn’t concerned with user-facing software (browsers), XHTML appears

more an overhead than a benefit. In this case, it’s probably better to devise our own

hypermedia format.

Domain-specific hypermedia formats
Because the Web is agnostic to representation formats, we’re free to create custom

formats tailored to our own problem domains. Whether we use a widely under-

stood format or create our own, hypermedia formats are more web-friendly than

nonhypermedia formats. A good hypermedia format conveys both domain-specific and

protocol information. Domain-specific information includes the values of information

elements belonging to a business resource, such as the drinks in an order. Protocol

information declares how to make forward progress in a business process—how to

move from ordering to payment, for example.

In a hypermedia format, hypermedia controls represent protocol information. A

hypermedia control includes the address of a linked resource, together with some

http://www.w3.org/1999/xhtml%E2%80%B3
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3

101Hypermedia Formats

semantic markup. In the context of the current resource representation, the semantic

markup indicates the meaning of the linked resource.

Creating a domain-specific hypermedia format isn’t as difficult as it might seem. In

Restbucks’ case, we can build on the XML schemas we’ve already created. All we have

to do is to introduce additional elements into the representations. We can add hyper-

media controls to these schemas by defining both a link and the necessary semantic

markup. Example 5-3 shows a first attempt at adding an application-specific hypermedia

control to an order.

Example 5-3.  A coffee order with a custom hypermedia link

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <cost>2.0</cost>
 <status>payment-expected</status>
 <payment>https://restbucks.com/payment/1234</payment>
</order>

In this format, the order representation contains a proprietary <payment> element.

<payment> is a hypermedia control.

If we wanted to represent hypermedia controls in this manner, we would specify in

our format description that a <payment> element indicates “a linked resource respon-

sible for payments relating to the current order.” A consumer wanting to make a

payment now knows which resource it needs to interact with next.

But that’s not the only way to add hypermedia controls to our representation

format. In fact, we believe it’s a suboptimal method because it results in multiple

elements with almost identical link semantics, but different protocol semantics.

<payment> bears the joint responsibility of being both a link and a semantic annotation.

If we added a <cancel> element to our scheme, this new element would have exactly

the same link semantic as <payment>, but a wholly different protocol semantic.

Our preferred approach is to separate concerns by distinguishing between the act of

linking and the act of adding meaning to links. Linking is a repeatable process. The

meanings we attach to links, however, change from context to context. To achieve this

separation of concerns, we define a <link> element to convey the domain-agnostic

link function, and a rel attribute to represent the application semantics associated with

a particular link. Composing this <link> element into Restbucks’ representation format

is easy, as shown in Example 5-4.

http://schemas.restbucks.com%E2%80%B3
https://restbucks.com/payment/1234</payment

102 CHAPTER 5: hypermedia services

Example 5-4.  A coffee order with hypermedia

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <cost>2.0</cost>
 <status>payment-expected</status>
 <link rel=″http://relations.restbucks.com/payment″
 href=″https://restbucks.com/payment/1234″ />
</order>

The Restbucks hypermedia format specification would have to document the meaning

of the rel attribute’s payment value so that consumers understand the role of the linked

resource in relation to the current resource.

note
By incorporating reusable hypermedia controls in our format, we can minimize how
much of our representation we need to document and explain to consumers. If we
can construct our business documents solely from widely understood and reusable
building blocks, so much the better. Indeed, we’ll have a closer look at a collection
of such building blocks when we discuss the Atom format in Chapter 7 and seman-
tics in Chapter 10.

By adding a <link> element to our order schema, we’ve successfully defined our own

custom hypermedia format. Designing our own format allows us to express our

specific application needs, yet retain the benefits of hypermedia. Of course, as with any

design trade-off, there are downsides. For example, the representations in Examples

5-3 and 5-4 don’t have the same reach—the ability to be processed by widely deployed

generic clients—as more established hypermedia formats such as XHTML. In essence,

we’re creating a closed hypermedia ecosystem—one that’s specific to Restbucks. This

ecosystem is for consumers who are prepared to process our domain-specific payloads.

Though this limits an application’s reach, for Restbucks and enterprise systems in

general, it might be just what we need.

Processing Hypermedia Formats
Introducing a custom hypermedia format feels like a step in the right direction. Now

consumers of Restbucks services can receive both business data and the information

necessary to drive the ordering and payment protocol, all in a concise and expressive

format specific to the business domain.

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
https://restbucks.com/payment/1234%E2%80%B3

103Hypermedia Formats

Still, we need to convey to consumers how to process and reason about these

representations. Fortunately, HTTP provides a way of identifying particular media

type representations using the Content-Type header (e.g., Content-Type: application/
xml, which we have used in previous chapters).

Media types
Grafting hypermedia controls onto XML documents is easy, but it’s only half the story.

What we really need to do is to create a media type. A media type specifies an interpreta-

tive scheme for resource representations. This scheme is described in terms of encodings,

schemas, and processing models, and is a key step in creating a contract for a service.

A media type name (such as application/xml) is a key into a media type’s interpreta-

tive scheme. Media types are declared in Content-Type HTTP headers. Because they’re

situated outside the payload body to which they’re related, consumers can use them to

determine how to process a representation without first having to crack open the

payload and deeply inspect its content—something that might require relatively heavy

processing, such as a decrypt operation, for example.

note
Media type names may also appear in some inline links and forms, where they
indicate the likely representation format of the linked resource.

A media type value indicates the service’s preferred scheme for interpreting a represen-

tation: consumers are free to ignore this recommendation and process a representation

as they see fit.

For example, we know that XHTML is valid XML and can be consumed by any

software that understands XML. However, XHTML carries richer semantics (it supports

hypermedia) than plain XML, and so processing it as XML rather than XHTML is

lossy—we lose information about linked resources.

If a consumer interprets a received representation ignoring the rules set out by the

media type in the accompanying Content-Type header, all bets are off.

warning
Willfully ignoring a media type declaration in a Content-Type header is not to be
taken lightly, and is a rare occurrence.

Media types are one of three key components of DAPs. The other two components are

link relation values, which describe the roles of linked resources, and HTTP idioms,

which manipulate resources participating in the protocol. Link relation values help

consumers understand why they might want to activate a hypermedia control. They do so

by indicating the role of the linked resource in the context of the current representation.

104 CHAPTER 5: hypermedia services

A media type value helps a consumer understand what is at the end of a link. The how

of interacting with a resource is realized by HTTP constructs such as GET, PUT, and POST

(and their conditional counterparts) and the control alternatives suggested by the

HTTP status codes.

note
Media types and DAPs are not the same. A media type specification describes
schemas, processing models, and link relation values for a representation format.
A DAP specification lays out the rules for achieving an application goal based on
interactions with resource representations belonging to one or more media types.
DAPs augment media type specifications with application-specific link relation
values where necessary.

A media type for Restbucks
The media type declaration used in the Content-Type header for interactions with

Restbucks is application/vnd.restbucks+xml. Breaking it down, the media type name

tells us that the payload of the HTTP request or response is to be treated as part of an

application-specific interaction. The vnd.restbucks part of the media type name

declares that the media type is vendor-specific (vnd), and that the owner is restbucks.

The +xml part declares XML is used for the document formatting.

More specifically, the vnd.restbucks part of the media type name marks the payload as

being part of Restbucks’ DAP. Consumers who know how to interact with a Restbucks

service can identify the media type and interpret the payloads accordingly.*

Why application/xml doesn’t help
As we described earlier, we chose to stick with XML for the Restbucks representation

formats. This decision allows us to reuse existing schemas/formats in our media type

description.† However, this doesn’t mean we should use text/xml or application/xml

as the value of the Content-Type header, and for good reason. The Content-Type header

sets the context for how the payloads should be processed. Suggesting that the payload

is just XML gives the wrong indication to software agents about the content and

processing model for a representation. Treating Restbucks content and its hypermedia

control format as plain XML simply leads to a hypermedia dead end.

For example, in Example 5-5 we see a Restbucks order, which contains two <link>

elements advertising other resources of interest to the customer. Using this simple

protocol representation format, the service shows consumers how they can make

*	As more coffee shops bring their business to the Web, it’s conceivable to create a common applica-
tion protocol and a vendor-agnostic media type (e.g., application/coffee+xml). Until such an
event, we will assume that Restbucks has the monopoly on coffee on the Web.

†	Media types can reference many schemas. When accepting the contract imposed by a media type,
you’re indicating that you understand the associated schemas.

105Hypermedia Formats

forward progress through the business process by interacting with the payment and

special offer resources.

Example 5-5.  Content-Type dictates how entity bodies are processed

HTTP/1.1 200 OK
Content-Length: 342
Content-Type: application/xml
Date: Sun, 21 Mar 2010 17:04:10 GMT

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <cost>2.0</cost>
 <status>payment-expected</status>
 <link rel=″http://relations.restbucks.com/payment″
 href=″https://restbucks.com/payment/1234″/>
 <link rel=″http://relations.restbucks.com/special-offer″
 href=″http://restbucks.com/offers/cookie/1234″/>
</entry>

But all is not well with Example 5-5. While the root XML namespace of the payload

clearly indicates that this is a Restbucks order (and is therefore hypermedia-friendly, as

defined by the Restbucks specification), the Content-Type header declares it should be

processed as plain XML, not as the hypermedia-friendly application/vnd.
restbucks+xml. When we encounter an HTTP payload on the Web whose Content-Type

header is set to application/xml, we’re meant to process that payload in accordance

with its media type specification, as set out in RFC 3023.

By treating XML hypermedia formats as plain XML, we skip many of their benefits.

The interpretative scheme for each format includes hypermedia control definitions

that enable programs to identify and process hypermedia controls embedded within

a document of that type. These processing imperatives do not exist in the application/
xml media type specification, which means that the payload of Example 5-5 should be

treated simply as structured data. The protocol information (the <link> elements) will

appear as odd-looking business information.

warning
HTTP is not a transport protocol, it is an application protocol. An HTTP message’s
body cannot be divorced from its headers, because those headers set the process-
ing context for the entity body payload.

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
https://restbucks.com/payment/1234%E2%80%B3/
http://relations.restbucks.com/special-offer%E2%80%B3
http://restbucks.com/offers/cookie/1234%E2%80%B3/

106 CHAPTER 5: hypermedia services

XML thinking encourages us to separate protocol and data—usually to our detriment.

Too often, we end up designing containers for data, with no inline provision for

protocol information. This leads us to advertise the protocol using an out-of-band

mechanism such as URI templates. The burden then falls to consumer applications to

keep current with changes in the service implementation (particularly around URIs)—

changes that ordinarily the service would not be obliged to share.

Adding hypermedia controls to an XML representation doesn’t help much if we then

go on to recommend the representation be treated as plain XML. The controls can play

their part in a hypermedia system only if the Content-Type header suggests using a

hypermedia-aware interpretative scheme. This is the case even if the document’s root

XML namespace alludes to a useful processing model. Content-Type headers, not XML

namespaces, declare how a representation is to be processed: that’s the convention on

the Web.

note
Services and consumers are bound by the application protocol semantics of HTTP.
When a service declares that a payload is in a particular format, consumers should
honor that directive rather than second-guess the processing model by deeply
examining the payload contents.

A diligent consumer might later examine the XML namespace or associated schema

and discover a more specialized type. Activities such as this take place outside the

well-understood, predictable mechanisms defined by HTTP. Wrongly inferring the

processing model may even harm the application if the originating service explicitly

meant for the payload to be interpreted in a specific way—not all representations with

angle brackets are well-formed XML, after all.

For example, as part of its monitoring processes, Restbucks may produce a feed of

malformed orders: corrupted documents submitted by inept or malicious customers. In

the Content-Type header, the service indicates that the representation should be treated

as text/plain. Consumers that decide to treat these representations as XML, because

they contain angle brackets, had better guard against exceptions arising from malformed

XML since the service has made no stronger commitment than to provide plain text.

Media type design and formats
Balancing the number of media types we use against the number of representation

formats that our DAP uses can be a tricky affair. On the one hand, it’s possible to create a

new media type for each representation format hosted by a service. On the other hand,

we might choose to create one media type for the entire application domain.

107Hypermedia Formats

Creating a one-to-one mapping between media types and representation formats, with

specialized media type values such as application/vnd.restbucks.order+xml and

application/vnd.restbucks.payment.creditCard+xml, can lead to extremely tight cou-

pling between a service’s domain layer and its consumers. The interactions in the

application protocol might have to be fine-grained since the composition of representa-

tion formats will not be possible, given that there can be only one media type per HTTP

request or response. At the other extreme, a single monolithic media type can add

unnecessary overhead when we want to share a subset of schemas between application

domain contexts.

In our case, we’ve chosen to make application/vnd.restbucks+xml generally applicable

to the entire domain of orders and payments in Restbucks. As a result, our media type

defines the order, payment, and receipt schemas, and our chosen hypermedia control

format and processing model (the <link> element). It also defines a number of link

relation values, which our DAP uses to identify the relationship between resources.

note
Although Restbucks defined the core functionality for its media type, there’s noth-
ing to stop other DAPs from composing our media type with other media types, or
adding to our set of link relation values. By composing other media types or layer-
ing on other link relations, the Restbucks media type can be easily extended and
put to other uses, just like any other good media type.

In the Restbucks application domain, we assume that consumers who understand the

application/vnd.restbucks+xml media type are capable of dealing with everything

defined by it. However, it occasionally happens that some consumers want to handle

only a subset of the representation formats defined in a media type. While there is no

standard solution to this issue on the Web, there is a popular convention defined by

the Atom community. The application/atom+xml media type defines both the feed and

the entry resource representation formats.* While the vast majority of consumers can

handle both, there is a small subset wishing only to deal with standalone entries. In

recognition of this need, Atom Publishing Protocol (AtomPub) added a type parameter

to the media type value (resulting in Content-Type headers such as application/
atom+xml;type=entry). With such a value for the ContentType header, it is now possible

to include “entry” resource representations as payloads in HTTP requests or responses

without requiring that the processing software agents have a complete understanding

of all the Atom-defined formats.

*	We will discuss the Atom formats and Atom Publishing Protocol thoroughly in Chapters 7 and 8.

108 CHAPTER 5: hypermedia services

note
Though the Restbucks media type contains multiple schemas, we’ve chosen not
to implement a type parameter. Instead, we distinguish individual representations
based on their XML namespaces. It’s worth keeping this convention in mind, how-
ever, for situations where we only want to provide support for a subset of a media
type’s representation formats.

In many of the examples in the remainder of this chapter, we’ll omit the HTTP headers

and focus on the hypermedia payloads. These examples assume the Content-Type

header is set to application/vnd.restbucks+xml.

Contracts
Contracts are a critical part of any distributed system since they prescribe how

disparate parts of an application should interact. Contracts typically encompass data

encodings, interface definitions, policy assertions, and coordination protocols. Data

encoding requirements and interface definitions establish agreed-upon mechanisms for

composing and interpreting message contents to elicit specific behaviors. Policies

describe interoperability preferences, capabilities, and requirements—often around

security and other quality-of-service attributes. Coordination protocols describe how

message exchanges can be composed into meaningful conversations between the

disparate parts of an application in order to achieve a specific application goal.*

The Web breaks away from the traditional way of thinking about upfront agreement

on all aspects of interaction for a distributed application. Instead, the Web is a platform

of well-defined building blocks from which distributed applications can be composed.

Hypermedia can act as instant and strong composition glue.

Contracts for the Web are quite unlike static contracts for other distributed systems.

As Figure 5-2 shows, contracts are a composition of a number of aspects, with media

types at their core. Protocols extend the capabilities of a media type into a specific

domain. Currently, there is no declarative notation to capture all aspects of a contract

on the Web. While technologies such as XML Schema allow us to describe the struc-

ture of documents, there is no vocabulary that can describe everything. As developers,

we have to read protocol and media type specifications in order to implement applica-

tions based on contracts.

*	In the WS-* stack, these contract elements are typically implemented using XML Schema, WSDL,
WS-Policy, and BPEL or WS-Choreography, respectively.

109Contracts

Figure 5-2.  Contracts are a composition of media types and protocols

Contracts Begin with Media Types
The core of any contract on the Web is the set of media types a service supports. A

media type specification sets out the formats (and any schemas), processing model,

and hypermedia controls that services will embed in representations.

There are numerous existing media type specifications that we can use to meet the

demands of our service. Occasionally, we may create new media types to fit a particu-

lar domain. The challenge for service designers is to select the most appropriate media

type(s) to form the core service contract.

On entering into the contract, consumers of a service need simply to agree to the

format, processing model, and link relations found in the media types the service uses.

If common media types are used (e.g., XHTML or Atom), widespread interoperability

is easily achievable since many systems and libraries support these types.

We believe an increase in the availability of media type processors will better enable us

to rapidly construct distributed applications on the Web. Instead of coding to static

contracts, we will be able to download (or build) standard processors for a given media

type and then compose them together.*

*	Examples of such processors already abound; these include Apache Abdera and .NET’s syndication
types, both of which implement the Atom Syndication Format.

110 CHAPTER 5: hypermedia services

Often, that’s as far as we need to go in designing a contract. By selecting and option-

ally composing media types, we’ve got enough collateral to expose a contract to other

systems. However, we need not stop there, and can refine the contract by adding

protocols.

Extending Contracts with Protocols
On the Web, protocols extend the base functionality of a media type by adding new

link relations and processing models.

note
A classic example of protocols building on established media types is Atom
Publishing Protocol. AtomPub describes a number of new link relations, which
augment those declared in the Atom Syndication Format. It builds on these link
relations to create a new processing model that supports the specific application
goal of publishing and editing web content.

While media types help us interpret and process a format, link relations help us

understand why we might want to follow a link. A protocol can add new link relations

to the set provided by existing media types. It can also augment the set of HTTP idioms

used to manipulate resources in the context of specific link relations. Service designers

can also use independently defined link relations, such as those in the IANA Link

Relations registry, mixing them in with the link relations provided by media types and

protocols to advertise specific interactions.*

HTTP Idioms
Underpinning all media types and protocols is the HTTP uniform interface, which

provides the plumbing through which contracts are enacted at runtime. Even with

media types and protocols to describe a contract, consumers still need to know how

individual resources should be manipulated at runtime. In other words, contracts

define which HTTP idioms—methods, headers, and status codes—consumers should

use to interact with a linked resource in a specific context.

Such information can come from several sources. Many hypermedia controls have

attributes that describe transfer options. XHTML’s <form> element, for example,

includes a method attribute that specifies the HTTP method to use to send form data.

Occasionally, the current application context can be used to determine which idiom to

use next. If the consumer receives a representation accompanied by an ETag header, it’s

reasonable to assume that subsequent requests for the same resource can be made using

a precondition: If-Match or If-None-Match, as appropriate. Similarly, a 303 See Other

*	IANA defines numerous top-level link relations that are broadly applicable across numerous
domains. These relations aren’t bound to any particular media type or protocol, and can be freely
reused in any service implementation with matching requirements.

111Contracts

status code and accompanying Location header instruct the recipient to perform a GET on

the Location header’s URI. When neither the current payload nor the processing context

indicates which idioms to use, OPTIONS can be used on the linked resource’s URI.

note
We should always remember that the OPTIONS method allows us to query for infor-
mation regarding the communication options currently supported by a resource.
However, if we find the need to use many OPTIONS requests or probe linked
resources with best-guess requests, we should be concerned about the predict-
ability and robustness of our distributed application.

Using Contracts at Runtime
At runtime, a contract is enacted over the Web as shown in Figure 5-3. The final

contract element put into place is a well-known entry point URI (or URIs), which is

advertised to consumers so that they can bind to the service.

Figure 5-3.  Enacting contracts at runtime

Although media types, protocols, and link relations are defined orthogonally to any

given service, they still constitute a strong contract. A consumer that understands a set

of media types, protocols, and link relations can interact with any service that supports

them (in any combination).

Since consumers know the service contract, its protocol can be driven entirely by

exchanging and processing representations whose content and hypermedia controls

are consistent with that contract. This scheme provides loose coupling, and it also

allows services to lead their consumers through business protocols.

112 CHAPTER 5: hypermedia services

Hypermedia Protocols
REST introduces a set of tenets that, when applied to distributed systems design, yield

the desirable characteristics of scalability, uniformity, performance, and encapsulation.

Using HTTP, URIs, and hypermedia, we can build systems that exhibit exactly the same

characteristics. These three building blocks also allow us to implement application

protocols tailored to the business needs of our solutions.

The Restbucks Domain Application Protocol
As a web-based system, Restbucks supports a DAP for ordering and payment.

Figure 5-4 summarizes the HTTP requests that the ordering service supports and the

associated workflow logic each request will trigger.

Figure 5-4.  Possible HTTP requests for the Restbucks ordering service

The permitted interactions shown in Figure 5-4 constitute a complete business

protocol for lodging, managing, and paying for an order. Each interaction invokes a

workflow activity that changes the underlying state of one or more resources managed

113Hypermedia Protocols

by the service.* Modeling Restbucks’ business processes as a DAP and then represent-

ing that protocol as a state machine in this manner is a useful way of capturing a

business process at design time.

Moving from design to implementation, we need to think about the protocol in a

slightly different way. In a resource-oriented distributed application, an application

protocol can be thought of as a function of one or more resource life cycles and the

business rules that connect these resources. Because of its resource-centric nature, the

Restbucks service does not host an application protocol state machine. In other words,

there’s no workflow or business logic for the application protocol as such. Rather, the

service governs the life cycles of the orders and payments participating in the applica-

tion protocol. Any workflows in the service implementation relate to resource life cycles,

not the application protocol life cycle. While we’ve been explicit in modeling the

business process as an application protocol state machine, we’ve been diligent in

implementing it wholly in terms of resource state machines.

Figure 5-5 shows the resource state machine for an order as implemented in the

service. From this diagram and Figure 5-4, we can derive the DAP:

•	 POST creates an order.

•	 Any number of POSTs updates the order.

•	 A single DELETE cancels the order, or a single PUT to a payment resource pays for

the order.

•	 And finally, a single DELETE confirms that the order has been received.

Figure 5-5.  State transitions for the order resource from Figure 5-4

The state machine diagram in Figure 5-5 is a useful design artifact, but it isn’t a good

representation format for sharing protocols over the Web. For that, we use hypermedia,

which starts with a single, well-known entry point URI.

*	GET requests are also associated with business logic, but don’t cause any state transitions for which
the consumer can be held accountable by the service. This is consistent with the use of GET on the
Web, and as we will see in later chapters, it is one of the key enablers for massive scalability.

114 CHAPTER 5: hypermedia services

Resources Updates: PUT Versus POST
In Chapter 4, our CRUD service used PUT to update the state of a resource, whereas in
our hypermedia service, we’re using POST—a verb we’d normally associate with resource
creation.

We’ve made this change because of the strict semantics of PUT. With PUT, the state encap-
sulated by the incoming representation will, if legal, wholly replace the state of the resource
hosted by the service. This obliges a client to PUT all the resource state, including any links,
as part of the representation it sends. But since, in this example, clients have no business
sending links to a service, we can’t expect them to use PUT.

At the time of this writing, a new verb called PATCH has become an Internet RFC under
the auspices of the IETF.* Unlike PUT, PATCH is neither safe nor idempotent, but it can be
used to send patch documents (diffs) over the wire for partial resource modification. Us-
ing PATCH, a consumer could legally transmit the business information portion of the order
to the Restbucks service, which would then apply the information to an existing order
resource and update links as necessary.

PATCH has only recently become an Internet standard (as RFC5789) and is not yet widely
supported. Until that situation changes, we will continue to send partial updates to the
service using POST.

*	http://tools.ietf.org/html/rfc5789

Advertising Protocols with Hypermedia
For our hypermedia service implementation, we’ll create an entry point to the order-

ing service at http://restbucks.com/order. To initiate the ordering protocol, a consumer

POSTs a request with an order representation to http://restbucks.com/order, which results

in a new order being created. The payload of the POST request must be a Restbucks

order XML representation, and the Content-Type header must contain the value

application/vnd.restbucks+xml.

Changing the media type to application/vnd.restbucks+xml from application/xml

might seem a modest step, but in doing so we’ve realized some fundamental goals: the

entry point to the Restbucks service gives consumers a way of triggering an instance of

our DAP. From this point onward, hypermedia takes over, with link relations from the

Restbucks media type leading consumers from one step in the business protocol to the

next. If all goes well, by the end of the process we will have the set of interactions

shown in Figure 5-6.

Figure 5-6 shows the trace of HTTP interactions that occur during a normal, successful

interaction with Restbucks. Each interaction is guided by hypermedia links, so it’s easy

to piece this puzzle together, starting from the beginning.

http://restbucks.com/order
http://tools.ietf.org/html/rfc5789
http://restbucks.com/order

115Hypermedia Protocols

Figure 5-6.  Driving the Restbucks ordering protocol through the happy path

If Restbucks accepts the POSTed order, the ordering service generates a 201 Created

response, which contains a representation of the service’s version of the order. So far,

this matches the CRUD approach we saw in the preceding chapter. The marked

differences are in the use of the Content-Type header, and in the contents of the

returned resource representation, which now uses links to advertise the next set of

accessible resources.

At this point, the ordering protocol allows the consumer to check the status of the

order, cancel it, update it, or pay for it (see Figure 5-7). For example, if the consumer

checks the status of the order prior to paying, the service returns a representation with

a business payload part depicting the status of the order, and a protocol part indicating

payment is still required, as shown shortly in Example 5-6.

Figure 5-7.  Responses contain links to valid next steps in the interaction

116 CHAPTER 5: hypermedia services

note
The protocol parts of the payload direct customers through the ordering process,
but the service can’t assume that every customer will follow these directions.
Because we can’t control the development of consumer applications, we need to
make sure the service can process any incoming request—even an out-of-order or
invalid request—and return the appropriate response codes.

The semantics of the links in the order representation must be communicated to, and

understood by, Restbucks’ customers. This is the purpose of the Restbucks media type.*

By accepting HTTP responses with the Content-Type header set to application/vnd.
restbucks+xml, consumers enter into a contract that requires them to understand

Restbucks’ representation format and link relation values if they wish to make forward

progress. As per the media type description, Restbucks leverages a reusable <link>

element to convey business protocol information. We separate the <link> element and

its attributes from the rest of the Restbucks representation format elements and we

define it in its own http://schemas.restbucks.com/dap namespace:

•	 <link> elements have a uri attribute whose value indicates a resource with which

the consumer can interact to progress the application protocol.

•	 <link> elements have a rel attribute containing semantic markup. The definitions

of the markup values imply which HTTP verb to use when following the link, as

well as required HTTP headers, and the structure of the payload.

•	 If a request requires an entity body, the <link> element will contain a mediaType

attribute that declares the format of the request payload. If a request does not

require an entity body, the mediaType attribute will be absent.

With the <dap:link> hypermedia control at our disposal, let’s see an example order

representation. Example 5-6 shows a response representation generated immediately

after an order has been accepted.

Example 5-6.  Hypermedia order representation

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″
 rel=″http://relations.restbucks.com/cancel″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/payment/1234″
 rel=″http://relations.restbucks.com/payment″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″

*	Since the media type maps entirely to the Restbucks business domain, all link relation values used
in the application protocol are defined in its specification.

http://schemas.restbucks.com/dap
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3/
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3

117Hypermedia Protocols

 rel=″http://relations.restbucks.com/update″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″ rel=″self″/>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>unpaid</status>
</order>

This order representation shows the different URIs and associated rel values

consumers can use to advance the DAP. The semantic markup definitions are shared

widely with consumers as part of the media type specification, and are as follows:

payment
The linked resource allows the consumer to begin paying for the order. Initiating

payment involves PUTting an appropriate resource representation to the specified

URI, as defined in the Restbucks media type.

self
The uri value can be used to GET the latest resource representation of the order.

update
Consumers can change the order using a POST to transfer a representation to the

linked resource.

cancel
This is the uri to be used to DELETE the order resource should the consumer wish

to cancel the order.

At this point in the workflow, if the customer GETs the status of the order via http://

restbucks.com/order/1234, the customer will be presented with the resource representa-

tion shown in Example 5-6. Once payment has been PUT to the payment URI, how-

ever, subsequent requests for the order will return a representation with different

links, reflecting a change in application state and the opening up of a new set of steps

in the DAP.

At any point in the execution of the ordering process, the service can inject hypermedia

controls into response bodies. For example, if the customer submits a payment via

POST, as shown in Example 5-7, the service updates the state of the order to reflect the

fact that payment is no longer required.

http://relations.restbucks.com/update%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://restbucks.com/order/1234
http://restbucks.com/order/1234

118 CHAPTER 5: hypermedia services

Example 5-7.  A payment resource representation

<payment xmlns=″http://schemas.restbucks.com″>
 <amount>2.0</amount>
 <cardholderName>Michael Faraday</cardholderName>
 <cardNumber>11223344</cardNumber>
 <expiryMonth>12</expiryMonth>
 <expiryYear>12</expiryYear>
</payment>

The service then injects links to both the order and receipt resources into the response,

as shown in Example 5-8.

Example 5-8.  Payment response contains links to order and receipt resources

<ns2:payment xmlns:dap=″http://schemas.restbucks.com/dap″
 xmlns=″http://schemas.restbucks.com″>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″
 rel=″http://relations.restbucks.com/order″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/receipt/1234″
 rel=″http://relations.restbucks.com/receipt″/>
 <amount>2.0</amount>
 <cardholderName>Michael Faraday</cardholderName>
 <cardNumber>11223344</cardNumber>
 <expiryMonth>12</expiryMonth>
 <expiryYear>12</expiryYear>
</payment>

In the newly minted representation in Example 5-8, we have two <link> elements to

consider. The order link takes the customer directly to the order resource (where the

customer can complete the ordering protocol) while the receipt link leads to a receipt

resource (should the customer need a receipt).

If the customer requires a receipt, a GET on the receipt link returns the representation

in Example 5-9. If the customer doesn’t want a receipt, it can follow the order link in

Example 5-8 directly back to the order. Whichever route is chosen, the customer ends

up at a point in the workflow where the order is paid for and we have a representation

similar to the one in Example 5-10.

Example 5-9.  Receipt representation with a link to the order resource

<receipt xmlns:dap=″http://schemas.restbucks.com/dap″
 xmlns=″http://schemas.restbucks.com″>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″
 rel=″http://relations.restbucks.com/order″/>

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/order%E2%80%B3/
http://restbucks.com/receipt/1234%E2%80%B3
http://relations.restbucks.com/receipt%E2%80%B3/
http://schemas.restbucks.com/dap%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/order%E2%80%B3/

119Hypermedia Protocols

 <amount>2.0</amount>
 <paid>2010-03-03T21:58:03.834+01:00</paid>
</receipt>

Example 5-9 contains two elements that allow us to infer the state of the distributed

application. The <paid> element, which contains a timestamp, provides business-level

confirmation that the order has been paid for. This sense of application state is reinforced

at the protocol level by the presence of a single <link> element, which directs the

consumer toward the order resource and the end of the business process. And because

the payment link is now absent, the consumer has no way of activating that part of the

protocol.

note
While all this is going on in full view of the consumer, behind the scenes an internal
process is initiated to add the order to a barista’s queue. Restbucks’ customers
aren’t exposed to any of this detail. All they need to know is the next protocol step
after payment.

We know that having paid for the order, the customer might GET a receipt—and

following that, the latest order representation—or the customer might simply go

straight to the latest representation of the order. Either way, the customer eventually

ends up with the order information shown in Example 5-10.

There are two things to note here. First, the value of the <status> element has

changed to preparing. Second, there is only one possible transition the customer can

initiate, which is to request the status of the order through the self link.

Example 5-10.  The updated order resource representation after payment has been accepted

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
 <dap:link mediaType="application/vnd.restbucks+xml"
 uri="http://restbucks.com/order/1234" rel="self"/>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>preparing</status>
</order>

While the order is in this state, every inquiry regarding the status of the order will

receive the same response. This is the equivalent of the service saying, “Your order is

being prepared; thank you for waiting.” Every time the customer GETs the order repre-

sentation, it will see the same preparing value, until the barista delivers the coffee.

http://schemas.restbucks.com
http://schemas.restbucks.com/dap
http://restbucks.com/order/1234

120 CHAPTER 5: hypermedia services

warning
Once a service has exposed information to the outside world, it no longer controls how
or when that information might be used. For example, when Restbucks exposes a URI
for canceling an order, it can’t know when—or if—a customer will use it.

Similarly, customers can’t be sure an order (including its hypermedia links) won’t
change as a result of an internal business process. Even if they try immediately to initi-
ate a transition based on a link in a representation they’ve just received, they may find
the resource no longer supports the transition—the barista may have been even faster!

As with any consumer or service application on the Web, our service implementa-
tion must be prepared to deal with any out-of-order request, even if it is just to
return an error condition, or to flag conflicting state with a 409 Conflict response.

Once the order is complete, the barista changes the status of the underlying resource

to ready. This is an example of how an internal, backend business process can change

the state of a resource without consumer intervention. The next time the customer

GETs the order resource representation, the response will include the final possible

transition in the ordering process, as shown in Example 5-11.

Example 5-11.  Order resource representation after the barista has prepared it

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/receipt/1234″
 rel=″http://relations.restbucks.com/receipt″/>
 <item>
 <milk>semi</ milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>ready</status>
</order>

note
As it stands, there’s no way for Restbucks to notify a customer that its order is
ready. Instead, the solution uses GET-based polling. We could ask that as part of
order submission, customers register a callback URI to which a notification could
be POSTed, but this presumes the customer has the means to deploy a service
somewhere and accept HTTP requests.

The lack of notification capabilities isn’t a big problem. The Web is designed to deal
with “impatient” customers who repeatedly try to update their orders. Paradoxical as
it might seem, polling and caching enable the Web to scale. Because representations
can be cached close to consumers, no additional load needs to be generated on the
service. Caching and its implications for service design are discussed in Chapter 6.

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/receipt/1234%E2%80%B3
http://relations.restbucks.com/receipt%E2%80%B3/

121Hypermedia Protocols

The representation in Example 5-11 includes a single, final state transition in the

ordering process:

receipt
Customers can DELETE the linked resource, thereby completing the order.

This DELETE request takes the receipt from Restbucks, at least as far as the consumer is

concerned. It’s the logical equivalent of physically taking a receipt from the cashier’s

hand, and in doing so completing the order process.

Inside the service, we probably wouldn’t remove the resource, but instead maintain it

as part of Restbucks’ audit trail. This final resource state transition has the effect of

completing the order, and transitions our DAP to its final state.

The response to DELETE transfers a final copy of the order. The representation, as

shown in Example 5-12, has no hypermedia constructs, indicating that the resource is

not part of an active business process.

Example 5-12.  Representations of completed orders have no links

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>taken</status>
</order>

And with that, our protocol instance is complete. But our exploration into hypermedia

isn’t—at least not yet.

Dynamically Extending the Application Protocol
One advantage of using hypermedia to advertise protocols is that we can introduce new

features without necessarily breaking existing consumers. The media type application/
vnd.restbucks+xml contains numerous schemas and link relation values, not all of which

are required for the basic ordering workflow; some of them are for optional interactions,

such as special offers, which Restbucks occasionally runs.

warning
Remember that media types and link relations act as contracts between a service
and its consumers. Any additional link relation values that a service adds to its proto-
cols over time must either be supported by existing media types or made optional.

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3

122 CHAPTER 5: hypermedia services

For example, Restbucks might run a loyalty program based on coffee cards: after a

customer places nine coffee orders, the tenth drink is free. To allow consumers to create

or update a coffee card, Restbucks adds a link to the receipt representation returned

after payment has been taken and the drinks dispensed, as shown in Example 5-13.

Example 5-13.  Advertising a coffee card loyalty program

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>taken</status>
 <dap:link rel=″http://relations.restbucks.com/coffee-card″
 uri=″http://restbucks.com/order/1234/coffeecard″
 mediaType=″application/vnd.restbucks+xml″/>
</order>

Customers that don’t understand the semantics of the coffee-card link are free to

ignore it—they just won’t get any free drinks. Customers who do understand the

semantics of the http://relations.restbucks.com/coffee-card relation but who don’t

already have a coffee card can issue a simple GET request to the URI identified by the

coffee-card link. The response contains the representation of a new coffee card with

the coffee that was just purchased already recorded, as shown in Example 5-14.

Example 5-14.  Coffee card GET response

HTTP/1.1 200 OK
Content-Length: 242
Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 19:04:49 GMT

<coffeeCard xmlns=″http://schemas.restbucks.com″>
 <link rel=″self″
 href=″http://restbucks.com/coffeecard/4456afd23″ />
 <tamperProof>37d8c227a9e6e255327bb583dd149274</tamperProof>
 <numberOfCoffees>1</numberOfCoffees>
</coffeeCard>

The coffee card’s resource representation in Example 5-14 contains a self link,

which identifies the card; a <numberOfCoffees> element, which records how many

coffees have been purchased using the card; and a tamper-proofing mechanism,

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/coffee-card%E2%80%B3
http://restbucks.com/order/1234/coffeecard%E2%80%B3
http://relations.restbucks.com/coffee-card
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

123Hypermedia Protocols

which allows Restbucks to determine whether malicious customers have adjusted

the card’s data.*

note
It’s safe for us to add links to representations for optional parts of a business pro-
cess. Nonparticipating consumers will just ignore the optional hypermedia controls
and proceed as normal. What’s noticeable is how easy it is to add and publish new
functionality.

If a customer has a coffee card from a previous purchase, the customer can update it by

POSTing it to the identified URI. Doing so updates both the number of coffees purchased

and the tamper proofing. In accordance with the business rules around the promotion, if

the presented card already carries enough endorsements to obtain a free coffee, a new

card will be generated; this new card will then be returned in the response.

note
There is no correlation between the coffee card and a specific order, despite the
format of the URI in Example 5-13. Remember, URIs are opaque to consumers. In
this case, the link contains information that the Restbucks ordering service uses
when updating the count of endorsements in the coffee card.

Upon successfully accepting and updating the customer’s coffee card, the service

returns the latest representation of the coffee card resource using a 200 OK response, as

per Example 5-15.

Example 5-15.  Coffee card POST response

HTTP/1.1 200 OK
Content-Length: 242
Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 19:07:33 GMT

<coffeeCard xmlns=″http://schemas.restbucks.com″>
 <link rel=http://relations.restbucks.com/self
 href=″http://restbucks.com/coffeecard/4456afd23″>
 <tamperProof>fff405268fea556a351459e7368bc1d3</tamperProof>
 <numberOfCoffees>2</numberOfCoffees>
</coffeeCard>

Spending fully endorsed coffee cards is simple: at the payment step, customers present

their card toward full or partial fulfillment of the bill. While Restbucks is running the

promotion, the order’s set of hypermedia controls is extended to encompass this

activity, as shown in Example 5-16.

*	This could be something as simple as a hash of the number of coffees and a secret key.

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/self
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

124 CHAPTER 5: hypermedia services

Example 5-16.  Payment by coffee card is available during the promotion

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″
 rel=″http://relations.restbucks.com/cancel″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/payment/1234″
 rel=″http://relations.restbucks.com/payment″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/payment/coffee-card/1234″
 rel=″http://relations.restbucks.com/coffee-card-payment″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″
 rel=″http://relations.restbucks.com/update″/>
 <dap:link mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1234″ rel=″self″/>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>2.0</cost>
 <status>unpaid</status>
</order>

Customers that don’t want (or are unable) to participate in a promotion simply ignore

the coffee-card-payment hypermedia control. Customers that do want to participate

simply POST their endorsed card to the coffee-card-payment URI (see Example 5-17).

Example 5-17.  Coffee card POST response

POST /order HTTP/1.1
Host: restbucks.com
Content-Length: 270
Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 19:08:22 GMT
<coffeeCard xmlns=″http://schemas.restbucks.com″>
 <link rel=http://relations.restbucks.com/self
 href=″http://restbucks.com/coffeecard/4456afd23″>
 <tamperProof>19590f1ed86f3b2ecaf911267067e8a8</tamperProof>
 <numberOfCoffees>9</numberOfCoffees>
</coffeeCard>

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3/
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3/
http://restbucks.com/payment/coffee-card/1234%E2%80%B3
http://relations.restbucks.com/coffee-card-payment%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/self
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

125Hypermedia Protocols

If the coffee card payment covers the bill, the customer receives a payment confirma-

tion as per Example 5-8. If not, the customer receives another order representation

with the <cost> element adjusted to reflect the value of the submitted coffee card.

note
The benefit of using a closed set of hypermedia control definitions with an open
set of link relation values is that consumers can recognize the presence of a hyper-
media control even if they don’t understand what it means. Consumers that can’t
understand the coffee-card link relation value will nonetheless be able to report
the presence of a link. This can encourage the consumer development team to
discover the significance of the additional functionality associated with the link.

We recommend that proprietary link relation values take the form of fully quali-
fied URIs, which, if dereferenced, return a human-readable description of the
link semantic. That way, processors that report the presence of an unknown link
relation value can include the link relation description in any log output, thereby
documenting the evolution of the application. <link> elements and rel attributes
thus provide a high degree of discoverability.

Data Modeling Versus Protocol Hypermedia
Our discussion to this point has concentrated on using hypermedia to model and

implement business protocols. But hypermedia has other uses, including the provision

of network-friendly data models.

note
Although we think hypermedia will be used primarily in distributed systems to drive
business protocols, we recognize that some systems will need to exchange data in a
way that respects and leverages the underlying network. Accessing linked information
items over the Web is just as RESTful as interacting with services through DAPs.

On the Web, pages and other media are composed together using links. A web browser

fetches a web page and then fetches other resources, such as images and JavaScript. The

browser renders the page and exposes links to the user to support page transitions.

This model respects the underlying network. Information is loaded as lazily as possible

(but no lazier), and the user is encouraged to browse pages—traverse a hypermedia

structure—to access information. Breaking information into hypermedia-linked

structures reduces the load on a service by reducing the amount of data that has to be

served. Instead of downloading the entire information model, the application transfers

only the parts pertinent to the user.

Not only does this laziness reduce the load on web servers, but the partitioning of data

across pages on the Web allows the network infrastructure itself to cache information.

126 CHAPTER 5: hypermedia services

An individual page, once accessed, may be cached for up to a year (the maximum

allowed by HTTP) depending on how the service developer configures the service. As

a result, subsequent requests for the same page along the same network path will be

satisfied using a cached representation, which in turn further reduces load on the

origin server.

Importantly, the same is true of computer-to-computer systems: hypermedia allows

sharing of information in a lazy and cacheable manner. For example, if Restbucks

wanted to share its complete menu with other systems, it could use hypermedia to

split the menu details across separate resources. This would allow different resource

representations to be cached for different lengths of time, depending on the business

use. Coffee descriptions, for example, might be long-lived, while pricing might change

daily. Examples 5-18 and 5-19 show some of these hypermedia-linked representations.

Example 5-18.  Sharing Restbucks’ menu in a network-friendly manner

<menu xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <drink name=″latte″>
 <dap:link rel=″http://relations.restbucks.com/description″
 uri=″http://restbucks.com/description/latte″/>
 <dap:link rel=″http://relations.restbucks.com/pricing″
 uri=″http://restbucks.com/pricing/latte″/>
 <dap:link rel=″http://relations.restbucks.com/image″
 uri=″http://restbucks.com/images/latte.png″/>
 </drink>
 <!-- More coffees, removed for brevity -->
</menu>

Example 5-19.  A resource linked from the Restbucks menu

<drink xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″ name=″latte″>
 <description>
 Classic Italian-style coffee with 1/3 espresso, 1/3 steamed milk,
 and 1/3 foamed milk
 </description>
 <dap:link rel=″http://relations.restbucks.com/image″
 uri=″http://restbucks.com/images/latte.png″/>
</drink>

As Examples 5-18 and 5-19 show, a large information model such as the Restbucks

menu can easily be partitioned for network access using hyperlinks.

note
Structural hypermedia is best suited for read-mostly systems, where the dual ben-
efits of lazy loading of information and caching are available.

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/description%E2%80%B3
http://restbucks.com/description/latte%E2%80%B3/
http://relations.restbucks.com/pricing%E2%80%B3
http://restbucks.com/pricing/latte%E2%80%B3/
http://relations.restbucks.com/image%E2%80%B3
http://restbucks.com/images/latte.png%E2%80%B3/
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/image%E2%80%B3
http://restbucks.com/images/latte.png%E2%80%B3/

127Hypermedia Protocols

It’s quite valid to mix structural and protocol hypermedia in a representation. But

there are other options: some systems may choose to split hypermedia controls from

business payload in their representations. In Restbucks, for example, we could choose

to separate the representation of an order from its DAP links. We’d then put the DAP

links into a separate resource, as shown in Example 5-20. rel=″http://relations.
restbucks.com/dap″ indicates that the consumer can dereference the link to establish

the next legal steps in the DAP.

Example 5-20.  The DAP links for the order are a separate resource

<order xmlns=″http://schemas.restbucks.com″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 <dap:link rel=″coffee-beans″
 uri=″http://restbucks-coffee-beans-supplier.com/beans-no10″
 mediaType=″application/xml″/>
 <dap:link rel=″coffee-image″
 uri=″http://restbucks.com/latte.jpg″
 mediaType=″image/jpeg″/>
 </item>
 <cost>2.0</cost>
 <status>preparing</status>
 <dap:link rel=″http://relations.restbucks.com/dap″
 uri=″http://restbucks.com/order/1234/dap″
 mediaType=″application/vnd.restbucks.dap+xml″/>
</order>

The decision on what should be decomposed into separate, or even overlapping,

resources is part of the design process for a service. In making these decisions, we need

to consider numerous design factors:

Size of the representation

How large is the payload going to be? Is it worth decomposing into multiple

resources to optimize network access and caching?

Atomicity

Is there a chance that the application might enter an inconsistent state because a

resource is in a composite relationship with other resources? Does the entire

representation of a resource need to be packaged together in the same payload?

Importance of the information

Do we really need to send all the information as an atomic block? Can we allow

consumers to decide which of the linked resources they need to request?

http://relations
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks-coffee-beans-supplier.com/beans-no10%E2%80%B3
http://restbucks.com/latte.jpg%E2%80%B3
http://relations.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234/dap%E2%80%B3

128 CHAPTER 5: hypermedia services

Performance/scalability

Is the resource going to be accessed frequently? Is it computationally or transac-

tionally expensive to generate its representation?

Cacheability

Can resource representations be cached and replicated? Do different information

items associated with the resource change at different rates? Which information

items are dependent on the request context, and which are agnostic to that

context? Answering these questions helps partition the resource by freshness

criteria, allowing some of its representations to be cached for long periods of time,

others to be regenerated with every request.

Implementing a Hypermedia Service
Implementing a hypermedia service might seem at first to be an intimidating prospect,

but in practice, the overhead of building a hypermedia system is modest compared to

the effort of building a CRUD system. Moreover, the effort generally has a positive

return on investment in the longer term as a service grows and evolves. Although the

implementation details will differ from project to project, there are three activities that

every service delivery team will undertake throughout the lifetime of a service:

designing protocols, choosing formats, and writing software.

We’ve been describing Restbucks’ DAP and formats throughout this chapter, so we’re

already one step toward a working implementation.

Building the Ordering Service in Java
To build the ordering service in Java, we need only two framework components: a web

server and an HTTP library. On the client side, we need only an HTTP library. For these

tasks, we’ve chosen Jersey* (a JAX-RS† implementation), which provides the HTTP

plumbing for both the service and its consumers, and the Grizzly web server, because it

works well with Jersey. Apart from framework support, all we need is a handful of

patterns for services and consumers, beginning with the server-side architecture.

Service Architecture
The Java server-side architecture is split across several layers, as shown in Figure 5-8.

*	https://jersey.dev.java.net

†	Java API for RESTful Web Services; see http://jcp.org/en/jsr/detail?id=311.

https://jersey.dev.java.net
http://jcp.org/en/jsr/detail?id=311

129Building the Ordering Service in Java

Figure 5-8.  Server-side Java architecture

Although crucial to the deployment of a working service, the web server implementa-

tion is less important architecturally. Fortunately, it is abstracted from the service

developer through the JAX-RS layer. The JAX-RS layer—although its name implies

much more—simply provides a friendly programmatic binding to the underlying web

server.

Using JAX-RS, we declare a set of methods, to which the framework routes HTTP

interactions. Inside the service, resources act as controllers for workflow activities,

passing through business information extracted from the representations and

marshalling results and exceptions into HTTP responses.

Workflow activities implement the individual stages of the Restbucks workflow in

terms of resource life cycles: creating orders, updating orders, canceling orders,

creating payments, and delivering completed orders to customers. They’re also

responsible for changing the state of the underlying domain objects, which in turn

are persisted in repositories.

Though their value in partitioning work into smaller, more manageable units is

obvious, workflow activities provide more than just a unit of work abstraction; they

also provide choreography between tasks.

130 CHAPTER 5: hypermedia services

Each activity knows which downstream activities are valid. For example, if payment

succeeds, the valid next steps are to ask for a receipt or to check the order status. No

other activities are valid, and any attempt to do anything else will result in an error

being propagated to the consumer via an HTTP status code. Knowing which activities

are valid given the current state of current resources, the service can advertise the next

steps in the protocol by embedding hypermedia controls in the representations sent to

the consumer.

The hypermedia controls that the service makes available to the consumer describe the

parts of the DAP the consumer can use to drive the service through the next stages of

its business workflow, as we see in Figure 5-9.

Figure 5-9.  Hypermedia resources describe the ordering and payment protocol to consumers

Each resource in Figure 5-9 is internally identified by its URI or URI template. The

well-known entry point URI /order is the only URI consumers are expected to know

before interacting with the service. The URIs of all other resources (whose templates

are used for internal documentation only) are discovered at runtime.

In accordance with Restbucks’ DAP, when the service receives a valid order at the

entry point URI, it returns a confirmation. This response contains an order representa-

tion augmented with additional resource state, including cost and status. Importantly,

it also contains links the consumer can use to progress the workflow. In Figure 5-9, the

hypermedia-enhanced order representation returned to the consumer contains links to

both the order resource and a payment resource.

The pattern repeats for the payment resource. When the service receives a valid

payment representation, it generates an enhanced representation containing links to

other resources with which the consumer can interact: the order resource (to check

status) and a receipt resource (to request a receipt).

Underlying the DAP is code, of course. In the Java implementation, resource behavior

is implemented by one or more activity classes, as shown in Figure 5-10.

131Building the Ordering Service in Java

Figure 5-10.  Resources are implemented with workflow activities

Each activity in Figure 5-10 is bound to a particular URI and verb. For example, the

UpdateOrderActivity is triggered by the consumer POSTing a valid order representation

to URIs matching /order/{orderId}. Similarly, PaymentActivity is triggered by a PUT

with a valid payment representation to /payment/{paymentId} and the protocol is

completed with a DELETE request to /receipt/{orderId}.

Here, we’re concerned simply that valid representations are transferred via the correct

HTTP verb to a resource in the appropriate state. Consumers are corralled toward

making the right request at the right time by the semantically annotated hypermedia

controls in the representations they receive.

132 CHAPTER 5: hypermedia services

Java Implementation
Jersey helps provide a programmatic abstraction over a web server, but it doesn’t help

create hypermedia and DAPs. Because of this, most of the code in the service imple-

mentation is our own. In writing this code, we’ve devised some patterns to separate

out the concerns of protocols from the concerns of the business activities they coordi-

nate. With that in mind, let’s walk through the implementation.

Resources
The resource classes OrderResource, PaymentResource, and ReceiptResource expose the

service implementation to the Web through Jersey. In our implementation, all JAX-RS

code is localized to the resource classes. Framework code is not allowed to penetrate

deeper into the service implementation—we prefer most of our code to be (easily

testable) Plain Old Java Objects (POJOs).

The OrderResource class shown in Example 5-21 is typical of the resources in the

ordering service implementation.

Example 5-21.  OrderResource class

@Path(″/order″)
public class OrderResource {

 private @Context UriInfo uriInfo;

 @GET
 @Path(″/{orderId}″)
 @Produces(″application/vnd.restbucks+xml″)
 public Response getOrder() {
 try {
 OrderRepresentation responseRepresentation = new ReadOrderActivity()
 .retrieveByUri(new RestbucksUri(uriInfo.getRequestUri()));
 return Response.ok().entity(responseRepresentation).build();
 } catch(NoSuchOrderException nsoe) {
 return Response.status(Status.NOT_FOUND).build();
 } catch (Exception ex) {
 return Response.serverError().build();
 }
 }

 @POST
 @Consumes(″application/vnd.restbucks+xml″)
 @Produces(″application/vnd.restbucks+xml″)
 public Response createOrder(String orderRepresentation) {
 try {
 OrderRepresentation responseRepresentation = new CreateOrderActivity()

mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Consumes(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3

133Building the Ordering Service in Java

 .create(OrderRepresentation.fromXmlString(orderRepresentation).getOrder(),
 new RestbucksUri(uriInfo.getRequestUri()));
 return Response.created(
 responseRepresentation.getUpdateLink().getUri())
 .entity(responseRepresentation).build();
 } catch (InvalidOrderException ioe) {
 return Response.status(Status.BAD_REQUEST).build();
 } catch (Exception ex) {
 return Response.serverError().build();
 }
 }

 @DELETE
 @Path(″/{orderId}″)
 @Produces(″application/vnd.restbucks+xml″)
 public Response removeOrder() {
 try {
 OrderRepresentation removedOrder = new RemoveOrderActivity()
 .delete(new RestbucksUri(uriInfo.getRequestUri()));
 return Response.ok().entity(removedOrder).build();
 } catch (NoSuchOrderException nsoe) {
 return Response.status(Status.NOT_FOUND).build();
 } catch(OrderDeletionException ode) {
 return Response.status(405).header(″Allow″, ″GET″).build();
 } catch (Exception ex) {
 return Response.serverError().build();
 }
 }

 @POST
 @Path(″/{orderId}″)
 @Consumes(″application/vnd.restbucks+xml″)
 @Produces(″application/vnd.restbucks+xml″)
 public Response updateOrder(String orderRepresentation) {
 try {
 OrderRepresentation responseRepresentation = new UpdateOrderActivity()
 .update(
 OrderRepresentation.fromXmlString(
 orderRepresentation)
 .getOrder(), new RestbucksUri(uriInfo.getRequestUri()));
 return Response.ok().entity(responseRepresentation).build();
 } catch (InvalidOrderException ioe) {
 return Response.status(Status.BAD_REQUEST).build();
 } catch (NoSuchOrderException nsoe) {
 return Response.status(Status.NOT_FOUND).build();
 } catch(UpdateException ue) {
 return Response.status(Status.CONFLICT).build();

mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Consumes(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3

134 CHAPTER 5: hypermedia services

 } catch (Exception ex) {
 return Response.serverError().build();
 }
 }
}

The JAX-RS annotations bridge the Web and the service implementation (activities in

our case). Methods are invoked in response to a combination of a specific verb and

URI or URI template, and each method consumes and produces a representation with

a particular media type.

To illustrate, in Example 5-21 the updateOrder method is invoked whenever a

representation with media type application/vnd.restbucks+xml is POSTed to the path*

/order/{orderId} concatenated with the service URI and web application context (e.g.,

http://restbucks.com/). The media type, verb, and path elements are associated with

the method using the annotations @Consumes, @POST, and @Path, respectively. If the

invocation is successful, the service produces a response with media type application/
vnd.restbucks+xml, as declared by the @Produces annotation.

All the public methods in the resource classes follow a similar pattern. For operations

that require a received representation, the JAX-RS framework provides one. Domain

objects are instantiated from such received representations and passed into a workflow

activity for processing. We also pass the request URI into the workflow activity so that

the activity can generate response links with the same base path. Once the workflow

activity has completed, the representation it generates is packaged as an HTTP response

with the appropriate status code and sent back to the consumer.

If an exception occurs during the execution of a workflow activity, an HTTP response

is generated to reflect the failure. For instance, if the consumer sends an invalid order

representation to the /order or /order/{orderId} URI, an InvalidOrderException is

raised in the UpdateOrderActivity. This exception is translated into an HTTP 400 Bad

Request response by the OrderResource class. If there’s no specific catch block for an

exception, the service responds with an HTTP 500 Internal Server Error.

Representations
The representation classes in the service are much like the underlying domain objects,

except for two things: they’re marked up with JAXB annotations to support XML

serialization, and the serialized representations contain links. In our implementation,

each representation class inherits from a common parent that stores named links and

deals with XML and HTTP metadata such as namespaces and media types. This base

Representation class is shown in Example 5-22.

*	The path for the updateOrder(...) method is a combination of the root path for the resource (/order)
and the local path for the method (/{orderId}).

http://restbucks.com/

135Building the Ordering Service in Java

Example 5-22.  Base Representation class

public abstract class Representation {
 public static final String RELATIONS_URI = ″http://relations.restbucks.com/″;
 public static final String RESTBUCKS_NAMESPACE =
 ″http://schemas.restbucks.com″;
 public static final String DAP_NAMESPACE = RESTBUCKS_NAMESPACE + ″/dap″;
 public static final String RESTBUCKS_MEDIA_TYPE =
 ″application/vnd.restbucks+xml″;
 public static final String SELF_REL_VALUE = ″self″;

 @XmlElement(name = ″link″, namespace = DAP_NAMESPACE)
 protected List<Link> links;
 protected Link getLinkByName(String uriName) {
 if (links == null) {
 return null;
 }
 for (Link l : links) {
 if (l.getRelValue().toLowerCase().equals(uriName.toLowerCase())) {
 return l;
 }
 }
 return null;
 }
}

There’s only one JAXB annotation in the Representation class, and only one @XmlElement

annotation to help serialize the links in the DAP namespace. The solution’s other represen-

tation classes (OrderRepresentation, PaymentRepresentation, and ReceiptRepresentation)
extend the base Representation class, adding in links and business-specific information.

The OrderRepresentation in Example 5-23 shows a typical implementation.

Example 5-23.  OrderRepresentation implementation

@XmlRootElement(name = ″order″, namespace = Representation.RESTBUCKS_NAMESPACE)
public class OrderRepresentation extends Representation {

 @XmlElement(name = ″item″, namespace = Representation.RESTBUCKS_NAMESPACE)
 private List<Item> items;
 @XmlElement(name = ″location″, namespace = Representation.RESTBUCKS_NAMESPACE)
 private Location location;
 @XmlElement(name = ″cost″, namespace = Representation.RESTBUCKS_NAMESPACE)
 private double cost;
 @XmlElement(name = ″status″, namespace = Representation.RESTBUCKS_NAMESPACE)
 private OrderStatus status;

http://relations.restbucks.com/%E2%80%B3
http://schemas.restbucks.com%E2%80%B3

136 CHAPTER 5: hypermedia services

 public OrderRepresentation(Order order, Link... links) {
 try {
 this.location = order.getLocation();
 this.items = order.getItems();
 this.cost = order.calculateCost();
 this.status = order.getStatus();
 this.links = java.util.Arrays.asList(links);
 } catch (Exception ex) {
 throw new InvalidOrderException(ex);
 }
 } // Remainder of class ommitted for brevity
}

Much of the code in Example 5-23 is simply JAXB annotations. We use @XmlRootElement

and @XmlElement to declare how to serialize fields into root and child nodes in XML. Aside

from the framework code, though, OrderRepresentation instances are just value objects.

What’s more interesting about this code is the way it’s used by the workflow activities.

Recall that representations are created by activities, and that activities know about

subsequent valid activities. Using the constructor OrderRepresentation(Order order,

Link... links), activities inject links into the representation. Those links advertise

subsequent valid activities to consumers of the representation, informing them of the

next steps to take in the DAP.

Workflow activities
The workflow activity classes are units of work that execute some business interaction

against the domain model on behalf of a consumer. Each activity knows about the

valid activities that follow and is able to map those downstream activities to URIs,

thereby rendering hypermedia representations for consumers. To illustrate, consider

the create(...) method of the CreateOrderActivity in Example 5-24.

Example 5-24.  CreateOrderActivity implementation

public class CreateOrderActivity {
 public OrderRepresentation create(Order order, RestbucksUri requestUri) {
 order.setStatus(OrderStatus.UNPAID);

 Identifier identifier = OrderRepository.current().store(order);

 RestbucksUri orderUri = new RestbucksUri(requestUri.getBaseUri() + ″/order/″
 + identifier.toString());
 RestbucksUri paymentUri = new RestbucksUri(requestUri.getBaseUri() +
 ″/payment/″ + identifier.toString());
 return new OrderRepresentation(order,
 new Link(Representation.RELATIONS_URI + ″cancel″, orderUri),
 new Link(Representation.RELATIONS_URI + ″payment″, paymentUri),

137Building the Ordering Service in Java

 new Link(Representation.RELATIONS_URI + ″update″, orderUri),
 new Link(Representation.SELF_REL_VALUE, orderUri));
 }
}

The create(...) method in Example 5-24 works as follows. On receipt of an Order

instance for a given URI, we set the order status to UNPAID and attempt to store it in

the order repository. If the order is successfully stored, we take the internal identi-

fier generated by the repository and use it to compute both a public URI for the

order resource and a corresponding URI for the payment resource.* We then create

a new OrderRepresentation that contains the updated order information and the valid

DAP links. This representation is then returned to the calling JAX-RS code and

dispatched to the consumer. For a newly created order, we return four links marked

up with appropriate rel and mediaType attributes in an OrderRepresentation instance:

rel=″http://relations.restbucks.com/cancel″
The operation requires the order URI, but no media type declarations, because the

cancel operation uses DELETE.

rel=″http://relations.restbucks.com/payment″

The operation requires a Restbucks payment representation in the entity body to

be transferred via POST to the payment URI.

rel=″http://relations.restbucks.com/update″

The operation needs a Restbucks order representation in the entity body to be

transferred by POST to the order URI.

rel=″self″

The operation requires an order URI, with no entity body, and is invoked via GET.

In the other activities (ReadOrderActivity, UpdateOrderActivity, RemoveOrderActivity,

PaymentActivity, ReadReceiptActivity, and CompleteOrderActivity), the pattern is

repeated: domain objects are created from any input representations and the activity

orchestrates an interaction with the underlying domain model. On completion,

activities generate a response representation (if any is needed) and insert links adver-

tising next valid steps in the protocol, along with any media type declarations needed

to advance through those steps.

Consumer-Side Architecture
The consumer-side architecture for a hypermedia service is shown in Figure 5-11. In

this stack, the Jersey client library provides HTTP connectivity and is responsible for

mapping HTTP requests and responses into higher-level abstractions such as domain

objects and exceptions, and dispatching them to workflow activities. The workflow

*	If Restbucks outsourced payment processing, instead of computing a URI for payment, we’d ask the
payment provider for a URI.

http://relations.restbucks.com/cancel%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3

138 CHAPTER 5: hypermedia services

activities process business payloads while actions handle hypermedia controls. Overall

control of the consumer resides in the business logic, which uses the actions to

orchestrate interactions with the service through the workflow activities.

Figure 5-11.  Consumer-side architecture

Figure 5-12 shows how activities are again at the core of our architecture. Activities

take business objects and use them to create representations to transfer to the service.

For responses with representations, activities provide access to the business payload in

the received data.

Importantly, activities also surface actions to the business logic—abstractions that

correspond to future legal interactions with the service. Actions encapsulate the

hypermedia controls and associated semantic context in the underlying representation,

allowing the consumer business logic to select the next activity in the workflow.

Figure 5-12.  Activities are the key abstraction on the consumer side

139Building the Ordering Service in Java

Activities also encapsulate error responses from the service, providing a choice of actions

to the consumer business logic. For example, if the service responds with a 500 Internal

Server Error message when trying to place an order, the PlaceOrderActivity will yield a

retry action—the only valid thing to do at that point in the protocol.

Java Consumer Implementation
Implementing the consumer is nontrivial in the absence of frameworks that understand

hypermedia. Nonetheless, with a few simple patterns, we can confidently build consum-

ers for hypermedia services. To illustrate, we’ll walk through the code in Example 5-25.

Example 5-25.  Actions and business objects in the consumer

public void orderAndPay(Order order, URI entryPointUri) {

 PlaceOrderActivity placeOrderActivity = new PlaceOrderActivity();
 placeOrderActivity.placeOrder(order, entryPointUri);

 // Order processing omitted for brevity...

 Actions actions = placeOrderActivity.getActions();
 if(actions.has(PaymentActivity.class)) {
 PaymentActivity paymentActivity = actions.get(PaymentActivity.class);
 paymentActivity.payForOrder(
 payment().withAmount(readOrderActivity.getOrder().getCost()).build());
 actions = paymentActivity.getActions();
 }
 // Remainder of workflow omitted for brevity
}

When building a consumer, we know the service’s contractual information is con-

tained in the media types and link relations the service supports, as well as in any

entry point URIs the service provider chooses to share with us. Because we already

know the processing model for the Restbucks media type, building a consumer for

services that support that media type is straightforward.

The orderAndPay(...) method in Example 5-25 shows an ordering and payment

implementation that we used in the functional testing of our Java service. The method

takes the well-known Restbucks ordering URI (http://restbucks.com/order) and uses a

PlaceOrderActivity to create and send an order representation to the service via the

underlying Jersey client library.

http://restbucks.com/order

140 CHAPTER 5: hypermedia services

Assuming the order is successfully lodged, the placeOrderActivity instance will

contain a local Order object for the consumer to process and an Actions object that

encapsulates the legal next activities (if any). Under the covers, the creation of an

Actions object is parameterized from the link relations that the consumer plumbing

finds in response representations.

note
As consumers, we know the link relations that Restbucks uses and can code against
that contract. Hence, in our implementation, specific consumer-side actions have been
written to correspond to service-side activities advertised through link relations.

From the set of actions returned, the consumer-side business logic can make choices

about what to do next. For example, if the consumer discovers an UpdateOrderActivity

in the Actions instance (using the actions.has(UpdateOrderActivity.class) call), it

retrieves it by calling the actions.get(UpdateOrderActivity.class) method and uses it

to update the corresponding order resource on the service.

From this point, the workflow proceeds through the remaining activities, updating

(or canceling) the order, paying for the order, obtaining a receipt, and acknowledg-

ing receipt of the drinks. At each stage, the consumer follows the same pattern:

look for the most desirable action to take at the current instant, execute it, and repeat.

Building the Ordering Service in .NET
Like Java, the .NET platform has frameworks, such as Windows Communication

Foundation (WCF), that make working with HTTP more pleasant and productive.

Again like Java, there’s no obvious framework for building hypermedia-aware

services, so Restbucks developed one.

The Restbucks .NET Hypermedia Framework
The Restbucks framework decouples hypermedia from business activities, and trans-

parently maps between the service implementation and the DAP advertised to con-

sumers. Figure 5-13 shows a logical view of how a service processes incoming and

outgoing resource representations. A similar approach can be used to build consumers

with the same framework.

141Building the Ordering Service in .NET

Figure 5-13.  Separating network, hypermedia, and business logic

In our solution, the network layer deals with HTTP and is provided by the .NET

Framework. The hypermedia layer deals with resource state transitions. For incoming

representations, it determines whether the request is valid given the current resource

state. For outgoing representations, the hypermedia layer injects <dap:link> elements,

which advertise the next legal protocol steps, into the response. The business layer,

meanwhile, focuses exclusively on application logic and its data.

The hypermedia framework manages resource state transitions by embedding appro-

priate hypermedia controls into a response based on both the state of the resource

targeted by the request and the state of any associated resources. To express this

protocol, we have devised a simple, declarative Domain-Specific Language (DSL).

Scripts written with the Restbucks DSL choreograph numerous business actions and

externalize application state to consumers.

The hypermedia framework and its scripts are hosted on a web server implemented

with the HttpListener class.* The server delegates incoming requests to the hyper-

media framework’s dispatcher. The dispatcher maintains a collection of the currently

active state machines, each of which runs an instance of our DSL program.

note
Remember that each workflow in the service implementation represents resource
state machines, not a single, overarching application protocol state machine. By
implementing the service solely in terms of resource states, we avoid having to
save protocol instance state (application state) on the server, which allows us to
scale the service horizontally.

*	Internet Information Server (IIS) on Windows or any other web server that can host the .NET
runtime and load SQL Server Modeling’s codename “M” language can be used.

142 CHAPTER 5: hypermedia services

Each state machine analyzes incoming HTTP requests and, depending on the state of the

resource to which the request relates, dispatches the payload to an appropriate .NET

method in the business logic layer. The method deals with XML documents as the input

and output, and is unaware of the HTTP and hypermedia details of the interaction.

On the response path, the hypermedia framework receives XML documents from the

business layer and augments them with any hypermedia constructs declared in the

state machine DSL description. The resultant payload is then passed to the underlying

HTTP infrastructure for delivery to the consumer, as we see in Figure 5-14.

Figure 5-14.  The Restbucks .NET hypermedia framework

An External DSL for Hypermedia Interactions
The DSL used for the Restbucks hypermedia framework is a state machine description

markup language. This language includes constructs representing hypermedia controls,

which are injected into representations as XML <dap:link> elements.

The DSL in Example 5-26 declares the possible states of a Restbucks order resource

and the supported transitions from each of those life-cycle states. It’s easy to see how

tooling could be used to produce such DSL documents, but we think it’s easy enough

to write by hand too. While the primary focus of the DSL is to describe a resource’s

state transitions, it also includes those DAP-specific transitions that relate to the

particular resource.

143Building the Ordering Service in .NET

Example 5-26.  Representing a resource state machine and the supported DAP transitions
using the Restbucks hypermedia DSL

StateMachine
 UriTemplate http://restbucks.com/order/{id}
 Namespace Restbucks.OrderingService
 MediaType application/vnd.restbucks+xml
 RelationsIn http://relations.restbucks.com

State OrderCreated
 POST NewOrder 201 => Unpaid
 When NotValidOrder 400
End

State Unpaid
 GET GetOrderStatus 200
 When NoSuchOrder 404
 POST UpdateOrder 200
 DELETE CancelOrder 200 => Cancelled
 Links
 latest # When the URI is missing, the active resource's one is assumed
 update
 payment http://restbucks.com/payment/{id}
 cancel
End

State Preparing
 GET GetOrderStatus 200
 Links
 latest
End

State Ready
 GET GetOrderStatus 200
 Links
 latest
 receipt http://restbucks.com/receipt/{id}
End

Final State Delivered End
Final State Cancelled End

The state machine description in Example 5-26 consists of a declaration of a set of

global properties and a series of states through which the order resource may transi-

tion. The first state lexically is considered to be the initial resource state.

http://relations.restbucks.com
http://restbucks.com/order/
http://restbucks.com/payment/
http://restbucks.com/receipt/

144 CHAPTER 5: hypermedia services

•	 The UriTemplate property at the top of the DSL identifies the resource whose life

cycle is managed by state machine instances based on this program. To keep things

simple, we’ve assumed that the UriTemplate has a specific structure, with the

resource identifier at the end being the only variable part of the URI. The service

implementation does not expose the URI template to consumers. Outside the

boundaries of the ordering service, there is no way to determine which part of the

URI is actually used as the internal order identifier.

•	 The Namespace property defines the .NET namespace in which any unqualified

method and exception names will reside.

•	 The MediaType property defines the media type that will be used in all HTTP

requests and responses based on this DSL.

•	 The RelationsIn property defines the URI prefix for all the relations in the Links

sections of the DSL.

There are two different subconstructs in each state of Example 5-26:

•	 The HTTPVerb is used to identify valid incoming HTTP requests, given the current

state of a resource and what action should be performed upon receipt of such

requests. The MethodName specifies the .NET method to dispatch followed by the

HTTP status code of the response should that method complete normally. An

optional => StateName identifies the state to which the resource should automati-

cally transition after successful processing of the incoming request. The optional

When conjunction allows us to deal with exceptions that the business logic from the

invoked .NET method might generate, and the HTTP status code of the response in

such a case.

•	 The Links section declares the <dap:link> elements that should be included in the

payload of the responses to consumers when the resource is at that particular

state. The links can point to other resources hosted by Restbucks, or any other

resources on the Web.

Using a declarative description of resource state transitions, such as the one shown in

Example 5-26, we can modify and evolve a DAP without having to radically change

our service’s implementation. Most importantly, however, we can rapidly develop and

deploy new DAPs.

Implementation Considerations for .NET
When the Restbucks service receives an HTTP request, it routes it to the hypermedia

framework dispatcher, which in turn delivers it to the appropriate state machine

instance. The dispatcher checks the request’s URI against each state machine’s URI

template to determine which state machine should deal with the request.

145Building the Ordering Service in .NET

Resource creation
The order resource state machine expects the first request to be a POST, as per the

initial state of the DSL script in Example 5-26. By activating the initial state of a

resource, the framework also creates an instance of the state machine to track the

resource’s life cycle and its hypermedia interactions. The value of the UriTemplate

property, up to but not including the /{id} variable part, is considered the URI for the

initial request (http://restbucks.com/order). From that point on, requests matching the

resource’s URI template are checked against the same state machine instance.

note
Our sample implementation maintains resource state in memory. This solution
is not easily scaled horizontally, nor is it resilient to machine failure. In a produc-
tion environment, we would retrieve resource state on a per-request basis from a
shared store or object cache.

If an incoming request doesn’t match any of the expected HTTP verbs in the active

state, the framework automatically responds with a 405 Method Not Allowed status code.

Example 5-27 shows an initial POST request* to the .NET ordering service.

Example 5-27.  HTTP request for a new order

POST /order HTTP/1.1
Content-Type: application/vnd.restbucks+xml
Accept: application/vnd.restbucks+xml
Connection: keep-alive
Content-Length: 425

<?xml version=″1.0″ encoding=″UTF-8″ standalone=″yes″?>
<order xmlns=″http://schemas.restbucks.com″>
 <item>
 <milk>skim</milk>
 <size>medium</size>
 <drink>cappuccino</drink>
 </item>

 <item>
 <milk>semi</milk>
 <size>small</size>
 <drink>cappuccino</drink>
 </item>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>

*	The XML payload was formatted for readability. The raw XML is unpleasant.

http://restbucks.com/order
http://schemas.restbucks.com%E2%80%B3

146 CHAPTER 5: hypermedia services

 </item>
 <location>takeAway</location>
</order>

The web server receives the request and hands it to the dispatcher, which determines

from the URI http://restbucks.com/order that the order state machine should process the

request. Since the URI template and the verb match the conditions for the initial state

and the media type is as expected, the state machine extracts the payload from the

request and gives it to the NewOrder() method, as per the POST NewOrder definition.

Example 5-28 shows the NewOrder() method. The signatures for methods such as this,

which handle requests for the initial state of a state machine, differ from those of the

methods for the remaining states in that they return a string that acts as the identifier

for the state about to be instantiated. The same string will also be used as the value of

the {id} part in the state machine’s URI template. The framework maintains an

internal dictionary of all the active states based on the unique key returned by the

NewOrder() method.

Example 5-28.  Implementation of the NewOrder() method

namespace Restbucks
{
 public class OrderingService
 {
 public static string NewOrder(XDocument request, XDocument response)
 {
 var order = Database.NewOrderFromXml(request.Root);
 response.Add(order.ToXml());
 return order.Id.ToString();
 }
 }
}

As Example 5-28 shows, the hypermedia framework abstracts the HTTP details from

the implementation. The application logic only needs to deal with XML payloads for

the incoming requests and outgoing responses.

In our service, we create a new business object to represent the order in the database,

serialize it back to XML, add it to the response, and return its identifier. The service

will embed more information about the order (e.g., its preparation status and cost) in

the payload. Remember that the hypermedia framework will add the necessary

<dap:link> elements.

The response for this interaction has a 201 Created status code, as shown in Example

5-29, in accordance with the state machine definition in Example 5-26. The payload is

the representation of the order resource. This representation includes <status> and

http://restbucks.com/order

147Building the Ordering Service in .NET

<cost> elements, as well as hypermedia links representing the possible transitions the

customer application can initiate. Notice the => Unpaid part following POST NewOrder 201

in Example 5-26; this tells the hypermedia framework to transition the state machine

instance for the order to the Unpaid state once the response has been sent.

Example 5-29.  Response sent to the consumer after the successful creation of an order

HTTP/1.1 201 Created
Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 22:44:11 GMT
Content-Length: 1067

<?xml version=″1.0″ encoding=″UTF-8″ standalone=″yes″?>
<order xmlns=″http://schemas.restbucks.com″>
 <item>
 <milk>skim</milk>
 <size>medium</size>
 <drink>cappuccino</drink>
 </item>
 <item>
 <milk>semi</milk>
 <size>small</size>
 <drink>cappuccino</drink>
 </item>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 <cost>8.00</cost>
 <status>payment-expected</status>
 <dap:link rel=″http://relations.restbucks.com/latest″
 mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1″ />
 <dap:link rel=″http://relations.restbucks.com/update″
 mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1″/>
 <dap:link rel=″http://relations.restbucks.com/payment″
 mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/payment/1″ />
 <dap:link rel=″http://relations.restbucks.com/cancel″
 mediaType=″application/vnd.restbucks+xml″
 uri=″http://restbucks.com/order/1″ />
</order>

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/latest%E2%80%B3
http://restbucks.com/order/1%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3
http://restbucks.com/order/1%E2%80%B3/
http://relations.restbucks.com/payment%E2%80%B3
http://restbucks.com/payment/1%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3
http://restbucks.com/order/1%E2%80%B3

148 CHAPTER 5: hypermedia services

note
In Example 5-29, the link for payment given to consumers is http://restbucks.com/
payment/1. Remember: consumers should treat this as an opaque URI since they
have no way of knowing that the URI path ending in /1 represents an internal iden-
tifier for the resource.

In this initial state, the order representation contains links that indicate that the

customer can get the latest version of the order resource, or update it, or cancel the

order, or submit payment. The verbs and the format of the payloads to be used are

captured by the rel and mediaType attributes of each <link> element, as per our

description of the Restbucks DAP.

Main service logic
Subsequent interactions continue in a similar manner. For example, as long as the

order is in the Unpaid state, a GET request sent to http://restbucks.com/order/1 will result in

a call to the GetOrderStatus() method, as shown in Example 5-30.

Example 5-30.  Ordering operations implemented in C#

namespace Restbucks
{
 public class OrderingService
 {
 public static void GetOrderStatus(string id,
 XDocument request, XDocument response)
 {
 var order = Database.GetOrder(id);
 response.Add(order.ToXml());
 }
 }

 // Other methods elided for brevity
}

The GetOrderStatus() method is given the order’s identifier and the request/response

payloads and interacts with an order repository on the caller’s behalf. Correspondingly,

the OrderingService class has methods (not shown in Example 5-30) to create, update,

and delete an order, each of which follows the same pattern.

Payment
Our next task is to add the payment logic. Without payment, the order won’t transition

to the Preparing state or be given to the barista. From the moment an order is created,

payment is expected. We treat payment as a separate resource, with its own internal

state machine. The payment resource state machine is shown in Example 5-31.

http://restbucks.com/order/1
http://restbucks.com/

149Building the Ordering Service in .NET

Example 5-31.  Payment state machine

StateMachine
 UriTemplate http://restbucks.com/payment/{id}
 Namespace Restbucks.OrderingService
 MediaType application/vnd.restbucks+xml
 RelationsIn http://relations.restbucks.com

State PaymentCreated
 => PaymentExpected
End

State PaymentExpected
 PUT PaymendReceived 201 => PaymentReceived
 When NoValidPayment 400
 Links
 payment
End

Final State PaymentReceived
 GET GetReceipt 200
 When NoSuchPayment 404
 Links
 order http://restbucks.com/order/{id}
 receipt
End

Notice that there’s no service logic associated with the initial state. The hypermedia

framework will not call a method to create a payment resource. Instead, it is expected

that the resource will be created out of band, in code. Therefore, once an instance of

the state machine is created, the framework will automatically transition it to the

PaymentExpected state.*

Because consumers have already been given a payment URI, we have to follow a

different pattern here. This requires a consumer to submit a PUT request containing the

payment representation, which results in the PaymentReceived() method being called.

The implementation of PaymentReceived() is shown in Example 5-32.

*	It could be argued that PaymentExpected should be the initial state and that the PUT request would
create the payment resource. However, the semantics of the initial state in the DSL are such
that we expect an HTTP request to be sent to the URI template without the {id} part. Since the
payment resource was already created through code, rather than due to a request initiated by a
consumer, we need to instruct the hypermedia framework to perform this automatic transition
without expecting an initial request.

http://restbucks.com/payment/
http://relations.restbucks.com
http://restbucks.com/order/

150 CHAPTER 5: hypermedia services

Example 5-32.  Payment implementation

namespace Restbucks
{
 public static class OrderingService
 {
 public static void PaymentReceived(string id,
 XDocument request,
 XDocument response)
 {
 var payment = Payment.FromXml(request.Root);
 payment.Paid = DateTime.Now;

 var order = Database.GetOrder(id);
 order.Status = ″Preparing″;
 Database.UpdateOrder(order);

 Database.PutPayment(id, payment);

 response.Add(payment.ToXml());

 OrderingService.PrepareOrder(id);
 }
 }

 // Other methods elided for brevity
}

When the service receives a payment request, it creates a business object from the

payload, and then retrieves the order from the database and sets its Status property to

Preparing. The service then adds the payment to the database and initiates the

preparation of the order. This last step starts an internal process involving the barista.

To do this, the service calls ThreadPool.QueueUserWorkItem() to add the work to a

queue. The barista receives the order information, prepares it, and then notifies the

rest of the ordering service that the order is ready by calling OrderPrepared(), which

moves the order into the Ready state.

Notice that the OrderPrepared() method is able to interact with the hypermedia

framework without involving a consumer. This allows Restbucks to transition the state

machine to the Ready state by binding directly to the state machine instance, rather

than through the external HTTP interface.

Delivery
Recall that when the service receives a payment from a consumer, it replies with a 201

Created response. The hypermedia framework adds an order link to that response. In

this context, the link indicates to the client that it is expected to GET the latest repre-

sentation of the order to find out whether it is ready for delivery.

151Building the Ordering Service in .NET

When the barista calls the OrderPrepared() method, the order transitions to the Ready

state. This change in resource state causes different links to be added to the order’s

representation the next time it is requested. This is handled by the hypermedia DSL

snippet shown in Example 5-33.

Example 5-33.  The Ready state of the order resource

State Ready
 GET GetOrderStatus 200
 Links
 latest
 receipt http://restbucks.com/receipt/{id}
End

The DSL here indicates that the receipt link will be included in the payload of any

response if the order is in the Ready state. To complete delivery of the order, the

consumer only needs to send a DELETE request, as defined by the semantics of http://
relations.restbucks.com/receipt of the application/vnd.restbucks+xml media type,

to the receipt URI http://restbucks.com/receipt/1. The DSL for the receipt resource is very

simple and similar to that of the payment resource, as shown in Example 5-34.

Example 5-34.  Receipt state machine

StateMachine
 UriTemplate http://restbucks.com/receipt/{id}
 Namespace Restbucks.OrderingService
 MediaType application/vnd.restbucks+xml
 RelationsIn http://relations.restbucks.com

State ReceiptCreated
 => ReceiptReady
End

State ReceiptReady
 DELETE ReceiveOrder 200
 When NoSuchReceipt 404
 Links
 receipt
End

When the DELETE request is received by the receipt resource, the ReceiveOrder()

method is called, as shown in Example 5-35.

Example 5-35.  Completing an order

namespace Restbucks
{
 public static class OrderingService

http://restbucks.com/receipt/
http://relations.restbucks.com/receipt
http://relations.restbucks.com/receipt
http://restbucks.com/receipt/1
http://restbucks.com/receipt/
http://relations.restbucks.com

152 CHAPTER 5: hypermedia services

 {
 public static void ReceiveOrder(string id,
 XDocument request,
 XDocument response)
 {
 var order = Database.GetOrder(id);
 order.Status = ″received″;
 Database.UpdateOrder(order);

 response.Add(order.ToXml());
 }
 }
}

Like the other methods, the implementation here is very simple. We retrieve the order

from the database, update its status, and add its representation to the response.

Because the protocol has ended, the representation passes through the hypermedia

framework untouched before being dispatched to the consumer.

Ready, Set, Action
With the addition of hypermedia, we’ve reached the pinnacle of Richardson’s service

maturity model in Figure 5-15. While we still haven’t completed our journey—we

have plenty more to learn about using the Web as a platform for building distributed

systems—we now have all the elements at our disposal to build RESTful services.

Figure 5-15.  Hypermedia services are level three on the Richardson maturity model

There’s more to the Web than REST, but this milestone is important because of the

significant benefits, in terms of loose coupling, self-description, scalability, and main-

tainability, conferred by the tenets of the REST architectural style.

153Ready, Set, Action

All of this comes at a rather modest cost when compared to what we did to build

nonhypermedia services. This is encouraging, since it means the effort required to

build and support a robust hypermedia service over its lifetime is comparable to that

associated with building CRUD services. It’s certainly a better proposition than tunnel-

ing through the Web.

We’ve now seen how hypermedia services are straightforward to design, implement,

and test using familiar tools and libraries. And by augmenting representations with

hypermedia controls, we’re able to project DAPs over the Web to consumers. We’ve

also seen that computer systems (not just browsers!) use hypermedia links to build

DAPs that model (dynamically evolving) business workflows.

From here onward, we’ll assume that hypermedia and RESTful services are the norm.

In the following chapters, we’ll see how scalability, security, and other higher-order

protocols such as publish-subscribe can work harmoniously with the Web. Read on!

155

C h a p t e r s ix

Scaling Out

The Web is the world’s largest online information system, scaling to

billions of devices and users. Hypermedia documents connect a near limitless number

of resources, most of which are designed to be read, not modified. At a grand scale,

structural hypermedia rules, helped by the safe, idempotent properties of the ubiqui-

tous GET method, and to a lesser extent some of the other cacheable verbs.

From a programmatic web perspective, the infrastructure that has evolved on the

Web—particularly around information retrieval—solves many integration challenges.

In this chapter, we look at how we can use that infrastructure and some associated

patterns to build scalable, fault-tolerant enterprise applications.

GET Back to Basics
According to the HTTP specification, GET is used to retrieve the representation of a

resource. Example 6-1 shows a consumer retrieving a representation of an order

resource from a Restbucks service by sending an HTTP GET request to the server where

the resource is located.

Example 6-1.  A GET request using a relative URI

GET /order/1234 HTTP/1.1
Connection: keep-alive
Host: restbucks.com

156 CHAPTER 6: scaling out

The value of the Host header plus the relative path that follows GET together give the

complete URI of the resource being requested—in this case, http://restbucks.com/

order/1234. In HTTP 1.1, servers must also support absolute URIs, in which case the

Host header is not necessary, as shown in Example 6-2.

Example 6-2.  A GET request using an absolute URI

GET http://restbucks.com/order/1234 HTTP/1.1

The response to either of these two requests is shown in Example 6-3.

Example 6-3.  A response to a GET request

HTTP/1.1 200 OK
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
Cache-Control: max-age=3600
ETag: ″74f4be4b″

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeaway</location>
 <item>
 <drink>latte</drink>
 <milk>whole</milk>
 <size>large</size>
 </item>
</order>

As well as the payload, the response includes some headers, which help consumers

and any intermediaries on the network process the response. Importantly, we can use

some of these headers to control the caching behavior of the order representation.

As we discussed in Chapter 3, GET is both safe and idempotent. We use GET simply to

retrieve a resource’s state representation, rather than deliberately modify that state.

Note
If we don’t want the entire representation of a resource, but just want to inspect
the HTTP headers, we can use the HEAD verb. HEAD allows us to decide how to
make forward progress based on the processing context of the identified resource,
without having to pay the penalty of transferring its entire representation over the
network.

http://restbucks.com/
http://restbucks.com/order/1234
http://schemas.restbucks.com%E2%80%B3

157Caching

Because GET has no impact on resource state, it is possible to optimize the network to take

advantage of its safe and idempotent characteristics. If we see a GET request, we immedi-

ately understand that the requestor doesn’t want to modify anything. For these requests,

it makes sense to store responses closer to consumers, where they can be reused to satisfy

subsequent requests. This optimization is baked into the Web through caching.

Note
GET isn’t the only HTTP verb to yield cacheable responses, though it is by far the
most prevalent and useful. We’ll focus on GET for now because it’s so widespread,
but later in the chapter we’ll look at caching in the context of other verbs too.

Caching
Caching is the ability to store copies of frequently accessed data in several places along

the request-response path. When a consumer requests a resource representation, the

request goes through a cache or a series of caches toward the service hosting the

resource. If any of the caches along the request path has a fresh copy of the requested

representation, it uses that copy to satisfy the request. If none of the caches can satisfy

the request, the request travels all the way to the service (or origin server as it is

formally known).

Origin servers control the caching behavior of the representations they issue. Using

HTTP headers, an origin server indicates whether a response can be cached, and if so,

by whom, and for how long. Caches along the response path can take a copy of a

response, but only if the caching metadata allows them to do so. The caches can then

use these copies to satisfy subsequent requests. Cached copies of a resource representa-

tion can be used to satisfy subsequent requests so long as they remain fresh. A cached

representation remains fresh for a specific period of time, which is called its freshness

lifetime. When the age of a cached object exceeds its freshness lifetime, the object is

said to be stale. Caches will often add an Age response header to a cached response. The

Age header indicates how many seconds have passed since the representation was

generated at the origin server.

A stale representation must be revalidated with the origin server before it can be used

to satisfy any further requests. If the revalidation reveals that the stale representation

is in fact still valid, the cached copy can be reused. If, however, the resource has

changed since the stale representation was first issued, the cached copy must be

invalidated and replaced. Representations can become invalid during their freshness

lifetime without the cache knowing. Unless the consumer specifically asks for a

revalidation or a new copy from the origin server, the cache will continue to use these

invalid (but fresh) representations until they become stale.

158 CHAPTER 6: scaling out

Benefits of Caching
Optimizing the network using caching improves the overall quality-of-service charac-

teristics of a distributed application. Caching significantly benefits four areas of systems

operation, allowing us to:

Reduce bandwidth

By reducing the number of network hops required to retrieve a representation,

caching reduces network traffic and conserves bandwidth.

Reduce latency

Because caches store copies of frequently accessed information nearer to where

the information is used, caching reduces the time it takes to satisfy a request.

Reduce load on servers

Because they are able to serve a percentage of requests from their own stores,

caches reduce the number of requests that reach an origin server.

Hide network failures

Caches can continue to serve cached content even if the origin server that issued

the content is currently unavailable or committed to an expensive processing task

that prevents it from generating a response. In this way, caches provide fault

tolerance by masking intermittent failures and delays from consumers.

Ordinarily, we’d have to make a substantial investment in development effort and

middleware in order to achieve these benefits. However, the Web’s existing caching

infrastructure means we don’t have to; the capability is already globally deployed.

Caching and the Statelessness Constraint
One of the Web’s key architectural tenets is that servers and services should not

preserve application state. The statelessness constraint helps make distributed applica-

tions fault-tolerant and horizontally scalable. But it also has its downsides. First,

because application state is not persisted on the server, consumers and services must

exchange application state information with each request and response, which adds

to the size of the message and the bandwidth consumed by the interaction. Second,

because the constraint requires services to forget about clients between requests, it

prevents the use of the classical publish-subscribe pattern (which requires the service to

retain subscriber lists). To receive notifications, consumers must instead frequently poll

services to determine whether a resource has changed, adding to the load on the server.

Caching helps mitigate the consequences of applying the statelessness constraint.* It

reduces the amount of data sent over the network by storing representations closer to

where they are needed, and it reduces the load on origin servers by having caches

satisfy repeated requests for the same data.

*	Benjamin Carlyle discusses this topic in more detail here: http://soundadvice.id.au/blog/2010/01/17/.

http://soundadvice.id.au/blog/2010/01/17/

159Caching

Note
In fact, polling is what allows the Web to scale. By repeatedly polling a cacheable
resource, a consumer “warms” all of the caches between it and the origin server,
pulling data from the origin server into the network where other consumers can
rapidly access it. Furthermore, once the caches are warm, any requests they can sat-
isfy mean less traffic to the origin server, no matter how hard a consumer polls. This
is the classic latency/scalability trade-off that the Web provides. By making represen-
tations cacheable, we get massive scale, but introduce latency between the resource
changing and those changes becoming visible to consumers. Of course, individual
caches can themselves become overloaded by requests; in such circumstances, we
may have to consider clustered or hierarchical caching topologies.

Reasons for Not Caching
We’ve discussed several of the benefits of caching. But there are at least four situations

in which we might not want to cache data:

•	 When GET requests generate server-side side effects that have a business impact on

the service. Remember, GET is safe, but it can still generate side effects for which

the consumer cannot be held responsible. These effects may range from simply

logging traffic (which is then used to generate business metrics) to incrementing a

counter that determines whether a particular class of customer is within a certain

usage threshold for the service to which the request is being directed. If these kinds

of internal side effects are important, we may want to prevent or limit caching.

•	 When consumers cannot tolerate any discrepancy between the state of a resource

as conveyed in a response and the actual state of that resource at the moment the

request was satisfied. As we discuss later in this chapter, caching exacerbates the

weak consistency of the Web; the longer a representation of a volatile resource is

cached, the more likely it is that a response returned from a cache no longer reflects

the state of the resource at the origin server. This is particularly problematic when

two or more overlapping resources manipulate the same underlying domain entity.

Consider, for example, a service that exposes order and completion resources, where

both an order and a completion are associated with the same underlying order

domain entity. POSTing a completion changes the state of an order entity. Because of

this change, cached order representations no longer reflect the state of the underly-

ing domain entity. Consumers that act on these cached order representations may

commit themselves to business transactions that are no longer valid.

•	 When a response contains sensitive or personal data particular to a consumer.

Security and caching can coexist to a certain extent: first, local and proxy caches

can sometimes cache encrypted responses; second, as we show later, it is possible

to cache responses in a way that requires the cache to authorize them with the

origin server with every request. But in many circumstances, regulatory or

organizational requirements will dictate that responses must not be cached.

160 CHAPTER 6: scaling out

•	 When the data changes so frequently that caching and revalidating a response

adds more overhead than the origin server simply generating a fresh response

with each request.

Types of Caches
A whole ecosystem of proxy servers has grown up around GET and its safe and idempo-

tent semantics. Proxy servers are common intermediaries between consumers and

origin servers, which we recognize from our human use of the Web. While they can

perform various operations on HTTP requests and responses, such as information

filtering and security checks, they are most commonly used for caching.

Many of us are familiar with application caches and database caches—two types of

caches that can reside behind service boundaries. Nowadays, many systems also

explicitly route requests through distributed in-memory caches. But the kinds of

caches we’re talking about here are those that are already part of the installed infra-

structure of the Web:

Local cache

A local cache stores representations from many origin servers on behalf of a single

user agent, application, or machine. A consumer may have a local cache so that

frequently accessed resources are stored locally and served immediately. Local

caches can be held in memory or persisted to disk.

Proxy cache

A proxy cache stores representations from many origin servers on behalf of many

consumers. Proxies can be hosted both inside the corporate firewall and outside.

An organization may deploy caches of its own so that the applications running

within its boundaries don’t necessarily hit the Internet when accessing cacheable

resources. Network providers (e.g., ISPs), organizations with their own virtual

networks, and even entire countries may also introduce proxies in order to speed

up access to frequently accessed web resources.

Reverse proxy

A reverse proxy, or accelerator, stores representations from one origin server on

behalf of many consumers. Reverse proxies are located in front of an application

or web server. Clusters of reverse proxies improve redundancy and prevent

popular resources from becoming server hotspots. Reverse proxy implementations

include Squid,* Varnish,† and Apache Traffic Server.‡

Figure 6-1 shows the many places in which these caches appear on the Web.

*	http://www.squid-cache.org/

†	http://varnish-cache.org/

‡	http://trafficserver.apache.org/

http://www.squid-cache.org/
http://varnish-cache.org/
http://trafficserver.apache.org/

161Making Content Cacheable

Figure 6-1.  Web caches

Caches can be arranged in complex topologies. They can be clustered to improve

reliability or arranged in hierarchies. Caches in a cache hierarchy forward requests for

which they do not have a cached representation to other caches farther up the

hierarchy, until a cached representation is found or the request is finally passed to the

origin server.

Warning
A request reaching an origin server is the most expensive operation on the Web.
Not only will the request have consumed network bandwidth, but also, once it
reaches the server, it may cause computation to occur and data to be retrieved.
These are not cheap options at web scale: contention for computational and data
resources will be fierce for a typical service. Caching acts as a buffer between
the finite resources of a service and the myriad consumers of those resources
on the Web.

Making Content Cacheable
Given that caches are designed around the retrieval of resource representations, it

shouldn’t come as a surprise to learn that they mostly (but not exclusively) work with

162 CHAPTER 6: scaling out

GET requests. Responses to GET requests are cacheable by default.* Responses to POST

requests are not cacheable by default, but can be made cacheable if either an Expires

header, or a Cache-Control header with a directive that explicitly allows caching, is

added to the response. Responses to PUT and DELETE requests are not cacheable at all.

The more a service supports GET and the appropriate caching headers, the more the

Web’s infrastructure can help with scalability. Imagine a situation in which a very

inquisitive Restbucks customer repeatedly asks a barista for the status of his coffee.

If the barista spends a lot of her time answering questions, her overall output will

diminish. Given that the answer stays the same for relatively long periods (e.g., “I’m

preparing your medium skim-milk latte”), a lot of effort is wasted for very little

benefit. Deploying a cache between the consumer and the Restbucks barista frees the

barista from having to answer the same question over and over again. As a result, the

overall coffee output of the Restbucks service improves.

Response Headers Used for Caching
There are two main HTTP response headers that we can use to control caching behavior:

Expires
The Expires HTTP header specifies an absolute expiry time for a cached representa-

tion. Beyond that time, a cached representation is considered stale and must be

revalidated with the origin server. A service can indicate that a representation has

already expired by including an Expires value equal to the Date header value (the

representation expires now), or a value of 0. To indicate that a representation never

expires, a service can include a time up to one year in the future.

Cache-Control
The Cache-Control header can be used in both requests and responses to control

the caching behavior of the response. The header value comprises one or more

comma-separated directives. These directives determine whether a response is

cacheable, and if so, by whom, and for how long.

If we can determine an absolute expiry time for a cached response, we should use an

Expires header. If it’s more appropriate to indicate how long the response can be

considered fresh once it has left the origin server, we should use a Cache-Control

header, adding a max-age or s-maxage directive to specify a relative Time to Live (TTL).

Cacheable responses (whether to a GET or to a POST request) should also include a

validator—either an ETag or a Last-Modified header:

*	The response should really have either an expiry time, or a validator, as we discuss shortly.

163Making Content Cacheable

ETag
In Chapter 4, we said that an ETag value is an opaque string token that a server

associates with a resource to uniquely identify the state of the resource over its

lifetime. When the resource changes, the entity tag changes accordingly. Though

we used ETag values for concurrency control in Chapter 4, they are just as useful

for validating the freshness of cached representations.

Last-Modified
Whereas a response’s Date header indicates when the response was generated, the

Last-Modified header indicates when the associated resource last changed. The

Last-Modified value cannot be later than the Date value.

Example 6-4 shows a response containing Expires, ETag, and Last-Modified headers.

Example 6-4.  A response with an absolute expiry time

Request:
GET /product-catalog/9876
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 09:33:49 GMT
Expires: Sat, 27 Mar 2010 09:33:49 GMT
Last-Modified: Fri, 26 Mar 2010 09:33:49 GMT
ETag: ″cde893c4″

<product xmlns=″http://schemas.restbucks.com/product″>
 <name>Sumatra Organic Beans</name>
 <size>1kg</size>
 <price>12</price>
</product>

This response can be cached and will remain fresh until the date and time specified in

the Expires header. To revalidate a response, a cache uses the ETag header value or the

Last-Modified header value to do a conditional GET.* If a consumer wants to revalidate

a response, it should include a Cache-Control: no-cache directive in its request. This

ensures that the conditional request travels all the way to the origin server, rather than

being satisfied by an intermediary.

Example 6-5 shows a response containing a Last-Modified header, an ETag header, and

a Cache-Control header with a max-age directive.

*	Choosing between ETag values and Last-Modified timestamps depends on the granularity of updates
to the resource. Last-Modified is only as accurate as a timestamp (to the nearest second), while ETags
can be generated at any frequency. Typically, however, timestamps are cheaper to generate.

http://schemas.restbucks.com/product%E2%80%B3

164 CHAPTER 6: scaling out

Example 6-5.  A response with a relative expiry time

Request:
GET /product-catalog/1234
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 12:07:22 GMT
Cache-Control: max-age=3600
Last-Modified: Fri, 26 Mar 2010 11:45:00 GMT
ETag: ″59c6dd9f″

<product xmlns=″http://schemas.restbucks.com/product″>
 <name>Fairtrade Roma Coffee Beans</name>
 <size>1kg</size>
 <price>12</price>
</product>

This response is cacheable and will remain fresh for up to one hour. As with the

previous example, a cache can revalidate the representation using either the Last-
Modified value or the ETag value.

Using Caching Directives in Responses
Cache-Control directives serve three functions when used in a response. Some make

normally uncacheable responses cacheable. Others make normally cacheable

responses uncacheable. Finally, there are some Cache-Control directives that do not

affect the cacheability of a response at all; rather, they determine the freshness of an

already cacheable response. An individual directive can serve one or more of these

functions.

max-age=<delta-seconds>
This directive controls both cacheability and freshness. It makes a response capable

of being cached by local and shared caches (proxies and reverse proxies), as well

as specifying a freshness lifetime in seconds. A max-age value overrides any Expiry

value supplied in a response.

s-maxage=<delta-seconds>
Like max-age, this directive serves two functions: it makes responses cacheable, but

only by shared caches, and it specifies a freshness lifetime in seconds.

http://schemas.restbucks.com/product%E2%80%B3

165Making Content Cacheable

public
This directive makes a response capable of being cached by local and shared

caches, but doesn’t determine a freshness value. Importantly, public takes

precedence over authorization headers. Normally, if a request includes an

Authorization header, the response cannot be cached. If, however, the response

includes a public directive, it can be cached. You should exercise care, however,

when making responses that require authorization cacheable.

private
This directive makes a response capable of being cached by local caches only (i.e.,

within the consumer implementation). At the same time, it prevents normally

cacheable responses from being cached by shared caches. private doesn’t deter-

mine a freshness value.

must-revalidate
This directive makes normally uncacheable responses cacheable, but requires

caches to revalidate stale responses with the origin server. Only if the stale

response is successfully validated with the origin server can the cached content be

used to satisfy the request. must-revalidate is enormously useful in balancing

consistency with reduced bandwidth and computing resource consumption. While

it forces a revalidation request to travel all the way to the origin server, an

efficient validation mechanism on the server side will prevent the core service

logic from being invoked for a large percentage of requests—all for the cost of a

measly 304 Not Modified response.

proxy-revalidate
This directive is similar to must-revalidate, but it only applies to shared caches.

no-cache
This directive requires caches to revalidate a cached response with the origin server

with every request. If the request is successfully validated with the origin server, the

cached content can be used to satisfy the request. The directive only works for

responses that have been made cacheable using another header or directive (i.e., it

doesn’t make uncacheable responses cacheable). Unfortunately, different caches

behave in different ways with regard to no-cache: some caches treat no-cache as an

instruction to not cache a response (as per an old draft of HTTP 1.1); some treat it

correctly, as a requirement to always revalidate a cached response.

no-store
This directive makes normally cacheable content uncacheable by all caches.

166 CHAPTER 6: scaling out

The HTTP Stale Controls Informational RFC recently added two new directives to this

list, which together enable us to make trade-offs between latency, availability, and

consistency.* These directives are:

stale-while-revalidate=<delta-seconds>
In situations where a cache is able to release a stale response, this directive allows

the cache to release the response immediately, but instructs it to also revalidate it

in the background (i.e., in a nonblocking fashion). This directive favors reduced

latency (caches release stale responses immediately, even as they revalidate them)

over consistency. If a stale representation is not revalidated before delta-seconds

have passed, however, the cache should stop serving it.

stale-if-error=<delta-seconds>
This directive allows a cache to release a stale response if it encounters an error

while contacting the origin server. If a response is staler than the stale window

specified by delta-seconds, it should not be released. This directive favors avail-

ability over consistency.

Squid 2.7 currently supports these last two directives; support is forthcoming in later

versions of Squid and Apache Traffic Server.

The directives we’ve looked at so far can be mixed in interesting and useful ways, as

the following examples demonstrate. Example 6-6 shows how we can make a repre-

sentation cacheable by local caches for up to one hour.

Example 6-6.  Making content cacheable by local caches only

Cache-Control: private, max-age=3600

Example 6-7 is more interesting, in that it allows caching of representations that

require authorization.

Example 6-7.  Caching authorized responses

Cache-Control: public, max-age=0

public makes the response cacheable by both local and shared caches, while max-age=0

requires a cache to revalidate a cached representation with the origin server (using a

conditional GET request) before releasing it. (Ideally, we’d use no-cache, but because

some caches treat no-cache as an instruction to not cache at all, we’ve opted for

max-age=0 instead.) This combination is useful when we want to authorize each

request, but still take advantage of the bandwidth savings offered by the caching

infrastructure, as we see in Figure 6-2.

*	http://www.rfc-editor.org/rfc/rfc5861.txt

http://www.rfc-editor.org/rfc/rfc5861.txt

167Implementing Caching in .NET

Figure 6-2.  Minimizing traffic for accessing local, consistent, cached representations

In revalidating each request with the server, the cache will pass on the contents of the

Authorization header supplied by the consumer. If the origin server replies 401

Unauthorized, the cache will refuse to release the cached representation. The combina-

tion public, max-age=0 differs from must-revalidate in that it allows caching of

responses to requests that contain Authorization headers.

Implementing Caching in .NET
Let’s see how Restbucks can take advantage of caching to improve the distribution of its

menu. The Restbucks menu is an XML document that is consumed by third-party

applications such as coffee shop price comparators and customers. The menu resource is

dynamically created from the Restbucks product database. Every time the menu service

receives a GET request for the menu, it must perform some logic and database access.

Restbucks would like to ensure that its menu service isn’t overwhelmed by thousands

of requests from external services. But instead of deploying more servers or paying for

more bandwidth, Restbucks decides to make use of the Web’s caching infrastructure.

This caching infrastructure includes reverse proxies and proxy caches, as well as local

caches. Some consumers of Restbucks’ menu service may opt to use their local caches to

speed up their systems, knowing that consistency with Restbucks’ data isn’t always

guaranteed. Doing so is easy: Example 6-8 shows some simple .NET HTTP client code that

uses the WinINet cache provided by Microsoft Windows Internet Services. The WinINet

cache is the same local cache that Internet Explorer uses, and so has a large installed base.

To take advantage of local caching, we need only add a RequestCachePolicy instance to

our request. The policy is initialized with a RequestCacheLevel.Default enum value,

which ensures that the local cache is used to try to satisfy the request. If the local

168 CHAPTER 6: scaling out

cache can’t satisfy the request, the request will be forwarded to the origin server (or to

any intervening shared caches).

Example 6-8.  Using the WinINet local cache from consumer code

Uri uri = new Uri(″http://restbucks.com/product-catalog/1234″);
HttpWebRequest webRequest = (HttpWebRequest) WebRequest.Create(uri);
webRequest.Method = ″GET″;
webRequest.CachePolicy = new RequestCachePolicy(RequestCacheLevel.Default);
HttpWebResponse webResponse = (HttpWebResponse) webRequest.GetResponse();

On the server side, the menu service is implemented using an instance of the .NET

Framework’s HttpListener class.* Example 6-9 shows the code that creates and starts

the listener.

Example 6-9.  A simple web server

private static void Main(string[] args)
{
 Console.WriteLine(″Server started...″);
 Console.WriteLine();

 HttpListener listener = new HttpListener();
 listener.Prefixes.Add(″http://localhost./″);
 listener.Start();
 listener.BeginGetContext(new AsyncCallback(GetMenu), listener);

 Console.ReadKey();
}

When it receives a request, the listener calls its GetMenu(...) method, passing it an

HttpListenerContext object, which encapsulates the request and response context.

Each request is handled on a separate thread taken from the .NET thread pool. The

implementation of GetMenu(...) is shown in Example 6-10.

Example 6-10.  GetMenu(…) satisfies an HTTP GET request

public void GetMenu(HttpListenerContext context)
{
 context.Response.ContentType = ″application/xml″;
 XDocument menu = menuRepository.Get();
 using (Stream stream = context.Response.OutputStream)
 {
 using (XmlWriter writer = new XmlTextWriter(stream, Encoding.UTF8))
 {

*	For this example, we host the HttpListener instance in a console application. For production, we’d
host it in IIS to take advantage of management and fault-tolerance features.

http://restbucks.com/product-catalog/1234%E2%80%B3%00
http://localhost./%E2%80%B3%00/

169Implementing Caching in .NET

 menu.WriteTo(writer);
 }
 }
}

First, GetMenu(...) sets the ContentType of the response to application/xml. Then it

gets an XDocument representation of the menu from a repository and writes it to the

response stream.

This implementation produces the response shown in Example 6-11. Every time a

consumer attempts to GET the Restbucks menu, the request is handled by this code. In

other words, every request consumes processor time. This is because there are no

caching headers in the response that would allow any web proxies on the request path

to cache the response and directly serve it in the future.

Example 6-11.  Response to a GET request for the Restbucks menu

HTTP/1.1 200 OK
Content-Type: application/xml
Date: Sun, 27 Dec 2009 01:30:51 GMT
Content-Length: ...
...
<!-- Content omitted -->

According to the HTTP specification, a web proxy can cache a 200 OK response even if

the response doesn’t include any specific caching metadata.* Still, it’d be helpful if the

service explicitly stated whether a response can be cached. Doing so helps to ensure

that the caching infrastructure is used to its full potential. Example 6-12 shows how we

can change the implementation of GetMenu(...) to include some caching metadata.

Example 6-12.  Adding a Cache-Control header to the response

public void GetMenu(HttpListenerContext context)
{
 context.Response.ContentType = ″application/xml″;
 context.Response.AddHeader(″Cache-Control″, ″public, max-age=604800″);
 XDocument menu = Database.GetMenu();
 using (Stream stream = context.Response.OutputStream)
 {
 using (XmlWriter writer = new XmlTextWriter(stream, Encoding.UTF8))
 {
 menu.WriteTo(writer);
 }
 }
}

*	Additional responses that can be cached in this fashion include 203 Non-Authoritative Informa-
tion, 206 Partial Content, 300 Multiple Choices, 301 Moved Permanently, and 410 Gone.

170 CHAPTER 6: scaling out

As Example 6-12 shows, we only need to add a single line in order to make the

response cacheable. Because we don’t expect the menu to change more than once per

week, we inform caches that they can consider the response fresh for up to 604,800

seconds. We also indicate that the representation is public, meaning both local and

shared caches can cache it. As a result of this change, the response now contains a

Cache-Control header, as shown in Example 6-13.

Example 6-13.  The response now includes a Cache-Control header

HTTP/1.1 200 OK
Cache-Control: public, max-age=604800
Content-Type: application/xml
Date: Sun, 27 Dec 2009 01:30:51 GMT
Content-Length: ...
...
<!-- Content omitted -->

That one line of code has the potential to dramatically reduce Restbucks’ infrastructure

and operational costs. Our menu’s representation now gets distributed at various

caches around the Web, as Figure 6-3 illustrates.

Figure 6-3.  The menu representation is cached throughout the Web

171Consistency

Caching doesn’t just work for public-facing services. Using these same web caching

techniques, we can also improve the scalability and fault-tolerance characteristics of

services we deploy within the boundaries of an organization. If we write our applica-

tions with caching in mind, and expose most of our business logic through domain

application protocols using GET and caching headers, we can offload much of the

processing and bandwidth load to caches without any special coding or middleware.

Consistency
Because the Web is loosely coupled, weak consistency is a feature of all web-based

distributed applications. As a result of the statelessness constraint, a service has no way

of notifying consumers when a resource changes. In consequence, consumers some-

times act on stale data. In an attempt to keep up-to-date, many consumers will

repeatedly GET (poll) a resource representation to discover whether it has changed

recently. But this strategy is only as good as the polling frequency. In general, we must

assume that a consumer’s understanding of the state of a resource lags the service’s

view of the same resource.

Caching only exacerbates the situation. The moment we introduce caching, we should

assume that consumers will become inconsistent with services, and just deal with it.

While there are several techniques for increasing the degree of consistency among

consumers, caches, and services, the fact remains that different web actors will often

have different copies of a resource representation.

The three techniques for improving consistency are:

Invalidation

Invalidation involves notifying consumers and caches of changes to resources for

which they hold cached representations. With server-driven invalidation, the

server must maintain a list of recipients to be contacted whenever a resource

changes. This goes against the requirement that services not maintain application

state.

Validation

To ensure that they have an up-to-date resource representation, consumers and

caches can verify a local copy with the origin server. This approach requires the

consumer to make a validation request of the service, which uses bandwidth and

places some load on the server. Services must be able to respond to validation

requests. Unlike server-driven invalidation, however, servers do not have to

maintain a list of consumers to be contacted whenever a resource changes.

Despite the fact that requests have to travel all the way to the origin server,

validation is a relatively efficient, low-bandwidth way of keeping data up-to-date.

Validation helps improve scalability and performance, and reduce latency. In so

doing, it drives down per-request costs.

172 CHAPTER 6: scaling out

Expiration

Expiration-based consistency involves specifying an explicit TTL for each cache-

able representation. Cached representations older than this TTL are considered

stale, and must usually be revalidated or replaced. HTTP implements expiration-

based consistency using Expires HTTP headers and Cache-Control directives.

Expiration raises a couple of issues. On the one hand, a long TTL increases the likeli-

hood that at some point a cached representation will no longer reflect the current state

of the resource on the origin server, even though it is still fresh in the cache. That is,

fresh representations can become invalid. Consumers of such cached representations

must be able to tolerate a degree of latency between a resource changing and its being

updated in a cache. On the other hand, representations that have become stale in the

cache, but whose resources haven’t changed since they were issued, will in fact prove

to be still valid; revalidating such representations, though necessary, is suboptimal in

terms of network and server resource usage.

Expiration and validation can be used separately or in combination. With a pure

validation-based approach (using, for example, a no-cache directive), consumers and

caches revalidate with every request, thereby ensuring that they always have an

up-to-date version of a representation. With this strategy, we must assess the trade-offs

between increased consistency and the resultant rise in bandwidth and load on the

server.

In contrast, an exclusively expiration-based approach reduces bandwidth usage and

the load on the origin server, but at the risk of there being newer versions of a

resource on the server while older (but still fresh) representations are being served

from caches. After a cached representation has expired, a subsequent GET will result in

a full representation being returned along the response path, even if the version hasn’t

in fact changed on the server.

By using expiration and validation together, we get the best of both worlds. Cached

representations are used while they remain fresh. When they become stale, the cache

or consumer revalidates the representation with the origin server. This approach helps

reduce bandwidth usage and server load. There’s still the possibility, however, that

representations that remain fresh in a cache become inconsistent with resource state

on the origin server.

Using Validation
A cache can determine whether a resource has changed by revalidating a cached

representation with the origin server. In Chapter 4, we used ETag values with If-Match

and If-None-Match headers (and Last-Modified values with If-Unmodified-Since and

If-Modified-Since headers) to do conditional updates and deletes. Validation is

accomplished using the same headers and values, but with conditional GETs.

173Consistency

A conditional GET tries to conserve bandwidth by sending and receiving just HTTP

headers rather than headers and entity bodies. A conditional GET only exchanges entity

bodies when a cached resource representation is out of date. In simple terms, the

conditional GET pattern says to a server: “Give me a new resource representation only

if the resource has changed substantially since the last time I asked for it. Otherwise,

just give me the headers I need to keep my copy up-to-date.”

Conditional GETs are useful only when the client making the request has previously

fetched and held a copy of a resource representation (and the attached ETag or Last-
Modified value). To revalidate a representation, a consumer or cache uses a previously

received ETag value with an If-None-Match header, or a previously supplied Last-
Modified value with an If-Modified-Since header. If the resource hasn’t changed (its

ETag or Last-Modified value is the same as the one supplied by the consumer), the

service replies with 304 Not Modified (plus any ETag or Location headers that would

normally have been included in a 200 OK response). If the resource has changed, the

service sends back a full representation with a 200 OK status code.

When a service replies with 304 Not Modified, it can also include Expires, Cache-
Control, and Vary headers. Caches can update their cached representation with any

new values in these headers. A 304 Not Modified response should also include any ETag

or Location headers that would ordinarily have been sent in a 200 OK response;

including these headers ensures that as well as the cached resource state, the consum-

er’s cached metadata is also kept up-to-date.

Note
The Vary header is used to list the request headers a service uses to generate differ-
ent representations of a resource. Caches store and release responses based on the
values of these request headers. Vary: Accept-Encoding, for example, indicates that
requests with different Accept-Encoding header values will generate significantly
different representations. If the responses can be cached, each variation will be
stored separately so that it can be used to satisfy subsequent requests with the same
Accept-Encoding value. Be careful using Vary: careless use of the Vary header can
easily overload a cache with multiple representations of the same resource.

Example 6-14 shows two request-response interactions: a GET, which returns an entity

body, and then a revalidation, which uses the Last-Modified value from the first

response with an If-Modified-Since header. The revalidation says “execute this request

only if the entity has changed since the Last-Modified time supplied in this request.”

Example 6-14.  Revalidation using If-Modified-Since with a previous Last-Modified value

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com

174 CHAPTER 6: scaling out

Response:
HTTP/1.1 200 OK
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
ETag: ″74f4be4b″

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeaway</location>
 <item>
 <drink>latte</drink>
 <milk>whole</milk>
 <size>large</size>
 </item>
</order>

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com
If-Modified-Since: Fri, 26 Mar 2010 09:55:15 GMT

Response:
HTTP/1.1 304 Not Modified

Example 6-15 shows a similar pair of interactions, but this time the revalidation uses

an If-None-Match header with an ETag value. This revalidation says “execute this

request only if the ETag belonging to the entity is different from the ETag value sup-

plied in the request.”

Example 6-15.  Revalidation using If-None-Match with an entity tag value

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
ETag: ″74f4be4b″

http://schemas.restbucks.com%E2%80%B3

175Consistency

<order xmlns=″http://schemas.restbucks.com″>
 <location>takeaway</location>
 <item>
 <drink>latte</drink>
 <milk>whole</milk>
 <size>large</size>
 </item>
</order>

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com
If-None-Match: ″74f4be4b″

Response:
HTTP/1.1 304 Not Modified

When developing services, we have to decide the best way of calculating entity tags on

a case-by-case basis. Consumers, however, should always treat ETags as opaque string

tokens—they don’t care how they’re generated, so long as the tag discriminates

between changed representations.

There are two things to consider when implementing ETags in a service: computation

and storage. If an entity tag value can be computed on the fly in a relatively cheap

manner, there’s very little point in storing the value with the resource—we can just

compute it with each request. If, however, generating an entity tag value is a relatively

expensive operation, it’s worth persisting the computed value with the resource.

Computationally cheap ETag values can be generated using quoted string versions of

timestamps, as we discussed in Chapter 4. This is generally a “good enough” solution

for entities that don’t change very often. When a consumer includes an entity tag

value generated using this method in a conditional request, evaluating the conditional

request is often as simple as comparing the supplied value against a file or database

row timestamp. For collections, we can use the timestamp of the most recently

updated member of the collection. Using a timestamp in an ETag header rather than—

as is more usual—a Last-Modified header allows us to evolve the service validation

strategy without requiring corresponding changes in consumers. For example, we

might choose to use a timestamp-based strategy in an early version of a service

because the business context ensures that resources change relatively infrequently. If

the business process later evolves such that resources change twice or more during a

single second, we can safely change the service-side entity tag generation and valida-

tion strategy without consumers having to evolve in lockstep. If we’d initially used a

Last-Modified header, consumers would have to switch to using ETags.

http://schemas.restbucks.com%E2%80%B3

176 CHAPTER 6: scaling out

The most expensive ETag values tend to be those that are computed using a hash of a

representation. Hashes can be computed from just the entity body, or they can include

headers and header values as well. If hashing headers, avoid including header values

containing machine identity. This is to avoid problems when scaling out, where many

machines serve identical representations. If a representation’s ETag value encodes

something host-specific, caches will end up with multiple copies of a representation

differing only by origin server. Similarly, if we generate ETag values based on a hash of

the headers as well as the entity body, we should avoid using the Expires, Cache-
Control, and Vary headers, which can sometimes be used to update a cached represen-

tation after revalidating with the origin server.

Note
Of course, we should remember that before we can hash a resource, we must
assemble its representation. When used in response to a conditional GET, this
strategy requires the server to do everything it would do to satisfy a normal request,
except send the full-blown representation back across the wire. We’ll still save
bandwidth, but we’ll continue to pay a high computational cost—because hashes
tend to be expensive algorithms. If assembling a representation is expensive, it may
be better to use version numbers, even if it involves fetching them from a backing
store. Alternatively, we might simply indicate that an entity has changed by generat-
ing a universally unique identifier value (a UUID), which we then store with the
entity. If in doubt as to the best strategy, implement some representative test cases,
measure the results, and then choose.

As an optimization, we might consider caching precomputed entity tag values in an

in-memory structure. Once again, load-balanced, multimachine scenarios introduce

additional complexity here, but if computing the value on the fly is especially expen-

sive, or accessing a persisted, precomputed value becomes a bottleneck in the system,

a distributed, in-memory cache of ETag values might just be the thing we need to help

save precious computing resources.

Most of the work of implementing conditional GET takes place in the service code,

which has to look for the If-Modified-Since and If-None-Match headers, evaluate their

conditions, and construct a 200 OK or 304 Not Modified response as appropriate. Services

that don’t set caching headers, or that incorrectly handle conditional GETs, can have a

detrimental effect on the behavior of the system.

The bandwidth, latency, and scalability benefits of using conditional GET should be

clear by now, but at what expense? It might seem as though to realize these benefits

we have quite a bit of work to do on the client and the server—storing entity tags,

adding If-Modified-Since and If-None-Match headers to requests, and updating store

representations with response header values.

But guess what? Most caches handle this behavior for us for free. Consumer applica-

tions don’t need to take any notice of ETag and Last-Modified values: validations are

dealt with by the underlying caching infrastructure.

177Consistency

Using Expiration
We’ve already seen how a service can control the expiration of a representation using

the Expires header and certain Cache-Control directives in a response. Consumers, too,

can influence cache behavior. By sending Cache-Control directives in requests, con-

sumers can express their preference for representations that fall within particular

freshness bounds, or their tolerance for stale representations.

max-age=<delta-seconds>
Indicates that the consumer will only accept cached representations that are

not older than the specified age, delta-seconds. If the consumer specifies max-
age=0, the request causes an end-to-end revalidation all the way to the origin server.

max-stale=<delta-seconds>
Indicates that the consumer is prepared to accept representations that have been

stale for up to the specified number of seconds. The delta-seconds value is

optional; by omitting this value, the consumer indicates it is prepared to accept a

stale response of any age.

min-fresh=<delta-seconds>
Indicates that the consumer wants only cached representations that will still

be fresh when the current age of the cached object is added to the supplied

delta-seconds value.

only-if-cached
Tells a cache to return only a cached representation. If the cache doesn’t have a

fresh representation of the requested resource, it returns 504 Gateway Timeout.

no-cache
Instructs a cache not to use a cached representation to satisfy the request, thereby

generating an end-to-end reload. An end-to-end reload causes all intermediaries on

the response path to obtain fresh copies of the requested representation (whereas

an end-to-end revalidation—using max-age=0—allows intermediaries to update

cached representations with headers in the response).

no-store
Requires caches not to store the request or the response, and not to return a

cached representation.

These Cache-Control directives allow a consumer to make trade-off decisions around

consistency and latency. Consider, for example, an application that has been optimized

for latency (by making the majority of representations cacheable). Consumers that

require a higher degree of consistency can use max-age or min-stale to obtain represen-

tations with stricter freshness bounds, but at the expense of the cache revalidating with

the origin server more often than dictated by the server. In contrast, consumers that care

more about latency than consistency can choose to relax freshness constraints, and

accept stale representations from nearby caches, using max-stale or only-if-cached.

178 CHAPTER 6: scaling out

Another situation where these request directives are useful is after a failed conditional

PUT or POST. If a conditional operation fails, it’s normal for the consumer to GET the

current state of the resource before retrying the operation. In these circumstances, it is

advisable to use a Cache-Control: no-cache directive with the request, to force an

end-to-end reload that returns the current state of the resource on the server, rather

than a still fresh but now invalid representation from a cache.

Using Invalidation
There are two types of invalidation: consumer-driven invalidation and server-driven

invalidation. Server-driven invalidation falls outside HTTP’s capabilities, whereas a

form of consumer-driven invalidation is intrinsic to HTTP.

Let’s look at consumer-driven invalidation first. According to the HTTP specification,

DELETE, PUT, and POST requests should invalidate any cached representations belonging to

the request URI. In addition, if the response contains a Location or Content-Location

header, representations associated with either of these header values should also be

invalidated.

Note
Unfortunately, many caches do not invalidate cached content based on the
Location and Content-Location header values. Invalidations based on the unsafe
methods just listed are, however, common.

At first glance, it would appear that a consumer could invalidate a cached representa-

tion using a DELETE, PUT, or POST request, and thereafter be confident that this same

representation won’t be returned in subsequent GETs. But we must remember that this

technique can only guarantee to invalidate caches on the immediate request path.

Caches that are not on the request path will not necessarily be invalidated. Once

again, we are reminded of the need to deal with the weak consistency issues inherent

in the Web’s architecture.

In contrast to the necessarily weak consistency model of consumer-driven invalida-

tion, server-driven invalidation would appear to offer stronger consistency guarantees.

With server-driven invalidation, the service sends invalidation notices to the caches

and consumers it knows are likely to have a cached representation of a particular

resource. With this approach, all interested parties—both those on and those off the

request-response path—will be invalidated when a resource changes.

But this is not the way the Web usually works. For such an approach to be successful,

a service would have to maintain a list of consumers and caches to be contacted when

a resource changes. In other words, the service would have to maintain application

state. And holding application state on the server undermines scalability.

179Extending Freshness

Server-driven invalidation only works for caches the server knows about. Moreover,

its strong consistency guarantees only hold while the caches that need to be notified of

an invalidation event are connected to the service. If a network problem disconnects a

cache, causing it to miss one or more invalidation messages, the overall distributed

application will be in an inconsistent state—at least temporarily.

It should be clear by now that server-driven invalidation can only partly mitigate the

weak consistency issues that come with adopting the Web as an integration platform.

Because of the generally web-unfriendly nature of server-driven invalidation, expira-

tion and validation are by far the most common methods of ensuring eventual

consistency between services and consumers on the Web.

Extending Freshness
Once we have determined that a resource’s representations can be cached, we will

have to decide which caches to target, together with the freshness lifetimes of the

cacheable representations.

When deciding on the freshness lifetime of a representation, we must balance server

control with scalability concerns. With short expiration values, the service retains a

relatively high degree of control over the representations it releases, but this control

comes at the expense of frequent reloads and revalidations, both of which use network

resources and place load on the origin server. Longer expiration values, on the other

hand, conserve bandwidth and reduce the number of requests that reach the origin

server; at the same time, however, they increase the likelihood that a cached representa-

tion will become inconsistent with resource state on the server over the course of its

freshness lifetime.

Being able to invalidate cached representations would help here; we could specify a

long freshness lifetime for each representation, but then invalidate cached entries the

moment a resource changes. Unfortunately, the Web doesn’t support a general

invalidation mechanism.

There is, however, one way we can work with the Web to make representations as

cacheable as possible, but no more. Instead of seeking to invalidate entries, we can

extend their freshness lifetime.

Cache Channels
Cache channels implement a technique for extending the freshness lifetimes of cached

representations.* Caches that don’t understand the cache channel protocol will

continue to expire representations the moment they become stale. Caches that do

understand the protocol, however, are entitled to treat a normally stale representation

as still fresh, until they hear otherwise.

*	Cache channels are the brainchild of Mark Nottingham; see http://www.mnot.net/blog/2008/01/04/
cache_channels.

http://www.mnot.net/blog/2008/01/04/

180 CHAPTER 6: scaling out

Cache channels use two new Cache-Control extensions. Caches that understand these

directives can use cache channels to extend the freshness lifetime of cached represen-

tations. These extensions are:

channel
The channel extension supplies the absolute URI of a channel that a cache can

subscribe to in order to fetch events associated with a cached representation.

group
The group extension supplies an absolute URI that can be used to group multiple

cached representations. Events that apply to a group ID can be applied to all the

cached representations belonging to that group.

Example 6-16 shows a request for a product from Restbucks’ product catalog. The

response includes a Cache-Control header containing both cache channel extensions.

Example 6-16.  The channel and group extensions allow caches to subscribe to a cache channel

Request:
GET /product-catalog/1234
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Cache-Control: max-age=3600, channel=″http://internal.restbucks.com/product-
catalog/cache-channel/″, group=″urn:uuid:1f80b2a1-660a-4874-92c4-45732e03087b″
Content-Length: ...
Content-Type: application/vnd.restbucks+xml
Last-Modified: Fri, 26 Mar 2010 09:33:49 GMT
Date: Fri, 26 Mar 2010 09:33:49 GMT
ETag: ″d53514da9e54″

<product xmlns=″http://schemas.restbucks.com/product″>
 <name>Fairtrade Roma Coffee Beans</name>
 <size>1kg</size>
 <price>10</price>
</product>

The max-age directive specifies that this representation will remain fresh for up to an

hour, after which it must be revalidated with the origin server. But any cache on the

response path that understands the channel and group extensions can continue to

extend the freshness lifetime of this representation as long as two conditions hold:

•	 The cache continues to poll the channel at least as often as a precision value

specified by the channel itself.

•	 The channel doesn’t issue a “stale” event for either the URI of the cached repre-

sentation or the group URI with which the representation is associated.

http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3

181Extending Freshness

If a cache performs a GET on the channel specified in the channel extension, it receives

the cache channel feed shown in Example 6-17.

Example 6-17.  An empty cache channel feed

HTTP/1.1 200 OK
Cache-Control: max-age=300
Content-Length: ...
Content-Type: application/atom+xml
Last-Modified: Fri, 26 Mar 2010 09:00:00 GMT
Date: Fri, 26 Mar 2010 09:42:02 GMT

<feed xmlns=″http://www.w3.org/2005/Atom″
 xmlns:cc=″http://purl.org/syndication/cache-channel″>
 <title>Invalidations for restbucks.com</title>
 <id>urn:uuid:d2faab5a-2743-44b1-a979-8e60248dcc8e</id>
 <link rel=″self″
 href=″http://internal.restbucks.com/product-catalog/cache-channel/″/>
 <updated>2010-03-26T09:00:00Z</updated>
 <author>
 <name>Product Catalog Service</name>
 </author>
 <cc:precision>900</cc:precision>
 <cc:lifetime>86400</cc:lifetime>
</feed>

This is an Atom feed that has been generated by the origin server. In the next chapter,

we discuss Atom feeds in detail and use them to build event-driven systems. For now, all

we need to understand is that this is an empty feed—it doesn’t contain any channel

events. (Cache channels don’t have to be implemented as Atom feeds, but given that

there’s widespread support for Atom on almost all development platforms it’s easy to

build cache channels using the Atom format.) The feed’s <cc:precision> element specifies

a precision in seconds, meaning that caches that subscribe to this feed must poll it at least

as often as every 15 minutes if they want to extend the freshness lifetimes of any repre-

sentations associated with this channel. The <cc:lifetime> element value indicates that

events in this feed will be available for at least a day after they have been issued.

Note
As you can see from Example 6-17, the Atom feed can itself be cached. As we’ll
learn in the next chapter, event feeds can take advantage of the Web’s caching
infrastructure as much as any other representation.

As long as the cache continues to poll the channel at least every 15 minutes, it can

continue to serve the cached product representation well beyond its original freshness

lifetime of an hour. If the resource does change on the origin server, the very next

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/cache-channel%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3/

182 CHAPTER 6: scaling out

time the cache polls the channel it will receive a response similar to the one shown in

Example 6-18.

Example 6-18.  A cache channel feed containing a stale event

HTTP/1.1 200 OK
Cache-Control: max-age=900
Content-Length: ...
Content-Type: application/atom+xml
Last-Modified: Fri, 26 Mar 2010 13:10:05 GMT
Date: Fri, 26 Mar 2010 13:15:42 GMT

<feed xmlns=″http://www.w3.org/2005/Atom″
 xmlns:cc=″http://purl.org/syndication/cache-channel″>
 <title>Invalidations for restbucks.com</title>
 <id>urn:uuid:d2faab5a-2743-44b1-a979-8e60248dcc8e</id>
 <link rel=″self″
 href=″http://internal.restbucks.com/product-catalog/cache-channel/″/>
 <updated>2010-03-26T13:10:05Z</updated>
 <author>
 <name>Product Catalog Service</name>
 </author>
 <cc:precision>900</cc:precision>
 <cc:lifetime>86400</cc:lifetime>
 <entry>
 <title>stale</title>
 <id>urn:uuid:d8b4cd04-d448-4c26-85a6-b08363de8e87</id>
 <updated>2010-03-26T13:10:05Z</updated>
 <link href=″urn:uuid:1f80b2a1-660a-4874-92c4-45732e03087b″ rel=″alternate″/>
 <cc:stale/>
 </entry>
</feed>

The feed now contains a stale event entry whose alternate <link> element associates it

with the group ID to which the product representation belongs (urn:uuid:1f80b2a1-
660a-4874-92c4-45732e03087b). Each event has its own ID, which has nothing to do

with the identifiers of any cached representations; it’s the <link> element’s href value

that associates the event with a group or particular representation.

Note
In practice, we might expect to see additional entries—related to other groups and
individual resource IDs—in the feed, with the most recent entries appearing first.

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/cache-channel%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3/

183Stay Fresh

Seeing this event, the cache stops extending the freshness lifetime of any representa-

tions belonging to this group. The next time a consumer issues a request for http://

restbucks.com/product-catalog/1234, the cache will revalidate its stale representation with

the origin server.

Cache channels work with the Web because they don’t require origin servers to

maintain application state in the form of lists of connected caches. Each cache is

responsible for guaranteeing the delivery of stale events by polling the cache channel.

If a cache can’t connect to the channel, it can no longer continue to extend the

freshness lifetime of otherwise stale representations.

By associating cached representations with groups, cache channels provide a powerful

mechanism for canceling the extended freshness of several related representations at the

same time. This is particularly useful when we decompose an application protocol into

several overlapping resources that together manipulate the state of an underlying

domain entity. POSTing a completion to http://restbucks.com/orders/1234/completion, for

example, may render any fresh representations of http://restbucks.com/orders/1234 invalid.

This is the kind of consistency issue traditional invalidation mechanisms seek to address

and precisely the kind of challenge the loosely coupled nature of the Web makes difficult

to solve. Using small freshness lifetimes together with cache channels, we can reduce the

time it takes for the overall distributed application to reach a consistent state.

Note
Cache channels provide a clean separation of concerns. Cache management can
be dealt with separately from designing the caching characteristics of individual
resource representations. Cache channel servers can even be deployed on sepa-
rate hardware from business services.

Of course, cache channels only work for caches that know how to take advantage of

the channel and group extensions. Though the HTTP Cache Channels Internet-Draft

has now expired, several reverse proxies, including Squid and Varnish, include support

for its freshness extension mechanism.* But in an environment where not all cache

implementations can be controlled by service implementers, the same difficult truth

emerges once again: the Web is weakly consistent.

Stay Fresh
In this chapter, we saw how the safe and idempotent properties of the most popular

verb on the Web, GET, are key to building fault-tolerant and scalable systems. The

installed infrastructure of the Web includes a caching substrate that we can use to

bring frequently accessed representations closer to consumers, thereby reducing

*	http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels/

http://restbucks.com/product-catalog/1234
http://restbucks.com/product-catalog/1234
http://restbucks.com/orders/1234/completion
http://restbucks.com/orders/1234
http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels/

184 CHAPTER 6: scaling out

latency, conserving bandwidth, masking transient faults, and decreasing the load on

services. Services dictate the caching behaviors of the representations they issue;

consumers tighten or relax the expectations they have of caches as they see fit.

We also considered the implications of the Web’s weak consistency model. No matter

the expiration or validation mechanisms we choose to employ, we must always

remember that we cannot guarantee that a representation of resource state as received

by a consumer reflects the current state of the resource as held by the service.

In the last section, we looked at how cache channels allow us to extend the freshness

lifetimes of cached representations. Our cache channels example used an Atom feed to

communicate “stale” events to caches that understand the cache channels protocol.

In the next chapter, we look in more detail at the Atom feed format. Knowing about

GET and the caching opportunities offered by the Web, we show how to put these

pieces together to create a scalable, fault-tolerant, event-driven system.

185

C h a p t e r s e v e n

The Atom Syndication
Format

HTML remains the most popular hypermedia format in use today, but

as the Web extends its reach beyond the browser, we’re seeing other useful formats

emerge. Of these newer hypermedia types, one in particular deserves our attention:

the Atom Syndication Format, or Atom for short.* Atom is an XML-based hypermedia

format for representing timestamped lists of web content and metadata such as blog

postings and news articles.

Note
In Chapter 5, we used a custom hypermedia format to expose data and protocols
to consumers. By contrast, Atom is a general-purpose hypermedia format.

Atom interests us because it provides a flexible and extensible interoperability format

for transferring data between applications. Its success has led to wide cross-platform

support, and you can now find Atom libraries in all popular languages, including Java

and C#.

The Format
Atom represents data as lists, called feeds. Feeds are made up of one or more time-

stamped entries, which associate document metadata with web content.

*	http://www.ietf.org/rfc/rfc4287.txt

http://www.ietf.org/rfc/rfc4287.txt

186 CHAPTER 7: the atom syndication format

The structure of an Atom document is defined in the Atom specification (RFC 4287),

but the content of a feed will vary depending on our domain’s requirements. On the

human Web, it might be blog posts or news items, whereas for computer-to-computer

interactions, it might be stock trades, system health notifications, payroll instructions,

or representations of coffee orders.

To illustrate the Atom format, let’s share a list of coffee orders between a cashier, who

takes orders, and a barista, who prepares them. Example 7-1 shows an Atom feed pro-

duced by the Restbucks ordering service. The feed is consumed by the order manage-

ment system (we’ll see more of the order management system in the next chapter).

Example 7-1.  An Atom feed containing two entries

<?xml version=″1.0″?>
<feed xmlns=″http://www.w3.org/2005/Atom″>
 <id>urn:uuid:d0b4f914-30e9-418c-8628-7d9b7815060f</id>
 <title type=″text″>Recent Orders</title>
 <updated>2009-07-01T12:05:00Z</updated>
 <generator uri=″http://restbucks.com/order″>Order Service</generator>
 <link rel=″self″ href=″http://restbucks.com/order/recent″/>
 <entry>
 <id>urn:uuid:aa990d44-fce0-4823-a971-d23facc8d7c6</id>
 <title type=″text″>order</title>
 <updated>2009-07-01T11:58:00Z</updated>
 <author>
 <name>Jenny</name>
 </author>
 <link rel=″self″ href=″http://restbucks.com/order/1″/>
 <content type=″application/vnd.restbucks+xml″>
 <order xmlns=″http://schemas.restbucks.com/order″>
 <item>
 <milk>whole</milk>
 <size>small</size>
 <drink>latte</drink>
 </item>
 <item>
 <milk>whole</milk>
 <size>small</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 </order>
 </content>
 </entry>
 <entry>
 <id>urn:uuid:6fa8eca3-48ee-44a9-a899-37d047a3c5f2</id>
 <title type=″text″>order</title>

http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/order%E2%80%B3
http://restbucks.com/order/recent%E2%80%B3/
http://restbucks.com/order/1%E2%80%B3/
http://schemas.restbucks.com/order%E2%80%B3

187The Format

 <updated>2009-07-01T11:25:00Z</updated>
 <author>
 <name>Patrick</name>
 </author>
 <link rel=″self″ href=″http://restbucks.com/order/2″/>
 <content type=″application/vnd.restbucks+xml″>
 <order xmlns=″http://schemas.restbucks.com/order″>
 <item>
 <milk>semi</milk>
 <size>large</size>
 <drink>cappuccino</drink>
 </item>
 <location>takeAway</location>
 </order>
 </content>
 </entry>
</feed>

Here, Atom entries represent coffee orders, with the Atom metadata capturing useful

business information, such as who took the order and when.

Note
While entries are typically contained inside feeds, they can also be treated as
standalone, individually addressable resources. Individually addressable entries
present numerous opportunities for caching. Caching, as we discussed in Chapter
6, helps tremendously when building scalable systems.

Feeds, like entries, have metadata associated with them. Feed metadata allows us to

provide friendly descriptions of content, links to other services or resources, and, most

importantly, a means of navigating to other feeds—all in a standard manner.

Atom doesn’t attach any significance to the order of entries in a feed. A feed will often

be sorted by the <atom:updated> or <atom:published> value of its constituent entries,

but it can as easily be sorted by other elements—by category, or author, or title, for

instance. In our example, we’ve organized the feed based on when coffee orders were

placed, with the most recent order appearing at the top of the feed.

Our orders feed is typical of how Atom is used in a computer-to-computer scenario.

The feed’s metadata sets the context for the enclosed coffee orders, allowing consum-

ers to reason about the list’s origin, its purpose, and its timeliness. This feed metadata

includes the following elements:

•	 <atom:id> is a permanent, universally unique identifier for the feed.

•	 <atom:title> provides a human-readable name for the feed.

•	 <atom:updated> indicates when the feed last changed.

http://restbucks.com/order/2%E2%80%B3/
http://schemas.restbucks.com/order%E2%80%B3

188 CHAPTER 7: the atom syndication format

•	 <atom:generated> identifies the software agent that created the feed, which in this

case is the ordering service.

•	 <atom:link> contains the canonical URI for retrieving the feed.

The ordering service feed in Example 7-1 contains two <atom:entry> elements, each

representing an order (of course, there could have been more). Each entry is a mixture

of Atom metadata markup and application-specific XML content. The following ele-

ments are included in the <atom:entry> metadata:

•	 <atom:id> is a unique identifier for the entry.

•	 <atom:title> provides a human-readable title for the entry.

•	 <atom:updated> is a timestamp indicating when the entry last changed, which in

this instance is the time the order was accepted by the system.

•	 <atom:author> identifies who created the entry, which in our example is the

cashier who took the order.

•	 <atom:link> contains the URI for addressing this entry as a standalone document.

Each entry also contains an <atom:content> element. <atom:content> elements can con-

tain arbitrary foreign elements, including elements that share the default namespace.

Here, the content includes a piece of Restbucks XML representing an order’s details. The

<atom:content> element’s type attribute contains a media type value (application/vnd.
restbucks+xml) so that the consumers of an entry know how to process the payload.

Common Uses for Atom
In Restbucks, we use Atom feeds to move business information between providers and

consumers of coffee operations, exactly as we would using other enterprise integration

techniques. This is just one use of Atom in the enterprise; other uses include:

Syndicating content

Atom is an ideal representation format when the creation and consumption of

resources closely mirrors a syndication model, with a producer or publisher dis-

tributing content to many consumers.

Representing documents and document-like structures

Many domain resources are structured like documents; if this is the case, we

might consider mapping the resource’s attributes to Atom’s metadata elements.

Creating metadata-rich lists of resources

We can use Atom feeds to represent ordered lists, such as search results or events,

especially if the Atom metadata is useful in the context of our service. In this

scenario, Atom establishes a domain processing context for some other domain

content. The event example later in this chapter shows how we can use Atom

metadata to represent event metadata, thereby establishing an event-oriented pro-

cessing context for each Atom entry’s payload.

189Using Atom for Event-Driven Systems

Adding metadata to existing resource representations

We can use feeds and entries to add metadata to existing resource representations.

In particular, we can use Atom metadata elements to surface information related

to a resource’s publishing life cycle: its author, the date it was created, when it was

last updated, and so on. Just as importantly, we can attach hypermedia links to

existing resource representations by embedding the representation inside an Atom

entry and adding one or more <atom:link> elements to the entry.

Creating directories of nonhypermedia content

We can use Atom to create entries that link to resources that cannot otherwise be

represented in a hypermedia format, such as binary objects. Use the <atom:content>

element’s src attribute to link to the resource, and specify a media type using the

element’s type attribute.

Using Atom for Event-Driven Systems
Now that we’ve looked at the anatomy of an Atom feed, we’re ready to see how such

feeds can be used for simple computer-to-computer interactions. As an example, let’s see

how Atom can be used to implement a staple of enterprise computing: events. Normally

with event-driven systems, events are propagated through listeners. Here, however, we

plan to publish an ordered list of events that readers can poll to consume events.

Note
We believe Atom is an ideal format for highly scalable event-driven architec-
tures. But as with any web-based system, Atom-based solutions trade scalability
for latency, making Atom often inappropriate for very low-latency notifications.*
However, if we’re building solutions where seconds, or better still, minutes or hours,
can pass between events being produced and consumed, publishing Atom feeds
works very well.

The Problem
Restbucks’ headquarters chooses which coffees and snacks will be served in its stores.

HQ is also responsible for organizing promotions across the regions. It maintains prod-

uct and promotion information in a centralized product catalog, but a number of other

business functions within Restbucks depend on this information, including distribu-

tion, local inventory management, point of sale, and order management.

This situation is typical of the integration challenges facing many organizations today:

systems that support key business processes need access to data located elsewhere. Such

*	For extremely low-latency notifications, we might consider proprietary middleware designed for
that domain. The trade-off is scalability for latency, but with the added complication of lock-in.

190 CHAPTER 7: the atom syndication format

shared data may be required to enable end-to-end processing, or it may be needed in

order to provide the organization with a single, consistent view of a business resource.

The benefits of data integration include increased consistency and availability of core data.

But to get to this state we often have to overcome the challenges of data redundancy,

poor data quality, lack of consistency among multiple sources, and poor availability.

Reference Data
As it has grown, Restbucks has evolved its data and application integration strategy to

mirror its business capabilities and processes. This strategy has led to independent ser-

vices, each of which authoritatively manages the business processes and data belong-

ing to a business unit.

Effectively, Restbucks has decomposed its information technology ecosystem into

islands of expertise. The product catalog service, for example, acts as an authoritative

source of data and behavior for Restbucks’ product management capabilities.

Data such as product and promotions data is often called reference data. Reference data

is the kind of data other applications and services refer to in the course of completing

their own tasks.

Sourcing and using reference data are two quite separate concerns. Typically, an appli-

cation will source a piece of reference data at the point in time it needs to use it. To

preserve service autonomy and maintain high availability in a distributed system,

however, it is best to maintain separation of concerns by decoupling the activities that

own and provide access to reference data from those that consume it. If order manage-

ment has to query the product catalog for a price for every line item, we’d say the two

services were tightly coupled in time. This coupling occurs because the availability of

order management is dependent on the availability of the product catalog. By breaking

this dependency—separating the sourcing of data from its use—we reduce coupling

and increase the availability of the order management service.

Warning
Temporal coupling weakens a solution because it requires numerous independent
systems to be running correctly at a specific instant in time. When multiple servers,
networks, and software all need to be functioning to support a single business
behavior, the chances for failure increase.

To reduce coupling between producers and consumers of reference data, we generally

recommend that reference data owners publish copies of their data, which consum-

ers can then cache. Consumers work with their local copy of reference data until it

becomes stale. By distributing information this way, services can continue to func-

tion even if the network partitions or services become temporarily unavailable. This is

exactly how the Web scales.

191Using Atom for Event-Driven Systems

To solve the coupling problem between the product catalog and its several consumers,

Restbucks replicates its product catalog data. Each consumer maintains a local cache

of the reference data, which it then updates in response to notifications from the pro-

vider. Each consumer can continue to function, albeit with possibly stale data, even if

the product catalog becomes unavailable.

To ensure that updates to the product catalog are propagated in a timely manner,

Restbucks uses Atom feeds.

Event-Driven Updates
To communicate data changes from the product catalog service to the distribution,

inventory, and order management systems, Restbucks has chosen to implement an

event-driven architecture. Whenever a new product is introduced, an existing prod-

uct is changed, or a promotion is created or canceled, the product catalog publishes

an event. The systems responsible for distribution, inventory, and order manage-

ment consume these events and apply the relevant changes to their reference data

caches.

Figure 7-1 shows how Restbucks’ product catalog exposes an Atom feed of events.

Stores poll this feed at regular intervals to receive updates. When processing a feed, a

store first finds the last entry it successfully processed the last time it polled the feed,

and then works forward from there.

Figure 7-1.  Event-driven architecture using Atom feeds

Restbucks’ underlying business process in this instance isn’t latency-sensitive. Products

and promotions don’t change very often, and when an event occurs, it’s OK for stores

to find out several minutes later. But while low latency isn’t an issue, guaranteed

delivery is: price optimization and campaign management depend on HQ’s product

192 CHAPTER 7: the atom syndication format

catalog changes definitely being propagated to stores. It’s important, therefore, that we

can guarantee that changes reach the stores, and that they are applied by the start of

the next business day.

Event-driven systems in general exhibit a high degree of loose coupling. Loose coupling

provides failure isolation and allows services and consumers to evolve independently of

each other. Restbucks uses polling and caching to loosely couple providers and consum-

ers. This polling solution respects the specific technical and quality-of-service require-

ments belonging to the challenge at hand (many consumers, guaranteed delivery, but

latency-tolerant).

Polling propagates product catalog events in a timely fashion, limited only by the

speed with which a store can sustainably poll a service’s feeds. But polling can intro-

duce its own challenges: as stores multiply and polling becomes more frequent, there’s

a danger that the product catalog service becomes a bottleneck. To mitigate this, we

can introduce caching. As we saw in Chapter 6, local or intermediary caches help by

reducing the workload on the server and masking intermittent failures.

The Anatomy of an Event
An event represents a significant change in the state of a resource at a particular point

in time (in the case of the product catalog, the resource is a product or a promotion).

An event carries important metadata, including the event type, the date and time it

occurred, and the name of the person or system that triggered it. Many events also

include a payload, which can contain a snapshot of the state of the associated resource

at the time the event was generated, or simply a link to some state located elsewhere,

thereby encouraging consumers to GET the latest representation of that resource.

note
Interestingly, the polling approach inverts the roles and responsibilities normally
associated with guaranteed message delivery in a distributed system. Instead of
the service or middleware being responsible for guaranteeing delivery of mes-
sages, each consumer now becomes responsible for ensuring that it retrieves all
relevant information. Since messages are collocated in time-ordered feeds, there’s
no chance of a message arriving out of order.

Solution Overview
Restbucks’ product catalog feed is treated as a continuous logical feed. In practice,

however, this logical feed consists of a number of physical feeds chained together,

much like a linked list. The chain begins with a “working” feed, followed by a series of

193Using Atom for Event-Driven Systems

“archive” feeds. The working feed contains all the events that have occurred between

the present moment and a cutoff point in the past. This historical cutoff point is deter-

mined by the notification source (the product catalog service in our case). The archives

contain all the events that occurred before that cutoff point. The contents of the work-

ing feed continue to change until the feed is archived, whereupon the feed becomes

immutable and is associated with a single permanent URI.

The product catalog service is responsible for creating this series of feed resources. The

contents of each feed represent all the changes that occurred during a particular inter-

val. At any given point in time, only one of these feeds is the working feed. The service

creates an entry to represent each event and assigns it to the working feed. When the

service determines that the working feed is “complete,” either because a certain period

has elapsed since the feed was started or because the number of entries in the feed has

reached a predetermined threshold, the service archives the working feed and begins

another.

Each feed relates to a specific historical period. This includes the working feed, which

always relates to a specific period. The only thing that differentiates the working feed

from an archive feed is the open-ended (the “as yet” not determined) nature of the

working feed’s period.

In addition to these historical feeds there is one more resource, which we call “the feed

of recent events.” Unlike the other feeds, the feed of recent events is not a histori-

cal feed; it’s always current. At any given moment, the feed of recent events and the

working feed contain the same information, but when the service archives the current

working feed and starts a new one, the feed of recent events changes to contain the

same data as the new working feed.

As we’ll see, consumers need never know about working or archive feeds. Working and

archive feeds are implementation details; as far as consumers are concerned, the notifi-

cations feed is the feed of recent events (the current feed). As service designers, however,

we’ve found it useful to distinguish between these three types of feeds because of some

subtle differences among them, particularly in terms of caching and links.

Using a linked list of feeds, we can maintain a history of everything that has taken place

in the product catalog. This allows Restbucks’ stores to navigate the entire history of

changes to the catalog if they so wish. Figure 7-2 shows how all these feeds link together,

including the feed of recent events, the working feed, and the archive feeds.

194 CHAPTER 7: the atom syndication format

Figure 7-2.  The notifications feed is a chain of connected feeds

At the Atom level, each feed and entry has its own unique atom:id. A feed’s atom:id

remains the same for the lifetime of that feed, irrespective of whether it’s the work-

ing feed or it has become an archive feed. This guarantees that stores can identify feeds

even if the addressing (URI) scheme radically changes, further ensuring that the solu-

tion is loosely coupled and capable of being evolved.

195Using Atom for Event-Driven Systems

note
In Chapter 1, we described how a URI both identifies and addresses a resource.
But putting identification and addressability together in this way is not always pos-
sible in practice. The authors of the Atom format recognized that while feeds and
entries require stable identities, the URIs through which they can be addressed
often change (due to changes in website property ownership or infrastructure,
for example). To put it bluntly, cool URIs never change; URIs change—get over it.
Hence the division of responsibilities between atom:id, which provides identifi-
cation (and in combination with atom:updated identifies the latest version of a
document), and a feed or entry’s self link, which provides addressability.

The lessons learned by the Atom authors apply more generally, meaning that you
should consider providing identities for your domain resources as well as address-
able URIs. In the Restbucks example, however, for the sake of brevity we continue
to identify products and promotions using only their addressable URIs.

Link Relations
Because we’ve split the notifications feed into a series of linked feeds, we need to help

stores navigate them. In other words, we need to both link feeds together and describe

how they relate to each other. We do this using Atom’s <atom:link> element.

The <link> element is Atom’s primary hypermedia control. As we discussed in

Chapter 5, connecting resources is an important part of building web-friendly systems.

Hypermedia controls allow services to connect and clients to access and manipulate

resources by sending and receiving resource representations using a uniform set of

operations.

To use a hypermedia control successfully, a client must first understand the control’s

semantic context. The client must then be able to identify and address the resource

with which the control is associated. Finally, it must know which media type to send

or what representation formats it can expect to receive when it makes use of the con-

trol. These requirements are satisfied by the <atom:link> element’s rel, href, and type

attributes, respectively:

•	 A rel attribute’s value describes the link relation or semantic context for the link.

•	 The href attribute value is the URI of the linked resource.

•	 The type attribute describes a linked resource’s likely media type.

note

The <link> element captures most of the connectedness characteristics we want
to include in our resource representations. This fact, coupled with the growing
popularity of Atom as a syndication format and the corresponding rise in Atom
clients, leads us to suggest making atom:link a common building block of web-
friendly distributed systems.

196 CHAPTER 7: the atom syndication format

We say that the type attribute value represents the likely media type because this value

can always be overridden by the owner of the resource at the end of the link. The

Content-Type header in a response is always authoritative, irrespective of any prior indi-

cation of the linked resource’s media type. The type attribute remains useful, however,

insofar as it allows clients to distinguish between different media type representations of

the same resource. Consider a situation in which an entry is linked to JSON and XML

representations of a resource. A client interested in only JSON representation would

look for links with a type attribute value of application/json.

The Atom specification describes five link relations. Using two of these core link rela-

tions, we can now describe the relationships between some of the product catalog

feeds, as shown in Table 7-1.

Table 7-1.  The core Atom link relations

Link relation Meaning

self Advertises a link whose href identifies a resource equivalent to the cur-
rent feed or entry.

via Identifies the source for the information in the current feed or entry. Rest-
bucks uses this link to indicate the current source for the feed of recent
events.

Table 7-2 describes the remaining three Atom link relations.

Table 7-2.  The remaining core Atom link relations

Link relation Meaning

alternate Indicates that the link connects to an alternative representation of the cur-
rent feed or entry.

enclosure Indicates that the referenced resource is potentially large in size.

related Indicates that the resource at the href is related to the current feed or
entry in some way. Restbucks uses this link to correlate each entry (which
represents an event) with the domain resource to which the event relates
(the related link contains the URI of this domain resource).

IANA’s Registry of Link Relations contains a larger list of recognized link relation val-

ues.* This list has nearly quadrupled since 2008, and now includes values such as pay-
ment (for describing links to resources that accept payments), first, last, previous,

next, previous-archive, and next-archive (for navigating paged and archived feeds).

For the Restbucks product catalog service, we will use several of these values to help

navigate between the feeds that compose the overall set of product notifications.

*	http://www.iana.org/assignments/link-relations.html

http://www.iana.org/assignments/link-relations.html

197Using Atom for Event-Driven Systems

note
Though the link relation values in the Registry are primarily for use in Atom docu-
ments, their semantics are in many cases more generally applicable to a wide
variety of application protocols. The Registry is a good place to find commonly used
shared semantics that we can reuse to build hypermedia consumers and providers.

Polling for Recent Events
Recall that the feed of recent events is the entry point for all consumers of the list of

product notifications. The feed is located at the well-known URI http://restbucks.com/

products/notifications. The entries in this feed represent the most “recent” events (rela-

tive to the point in time when the feed is accessed). But these entries also belong to a

specific historical period, which began when the previous working feed was archived.

The feed of recent events therefore includes a link (a via link) to the source of the

entries for this specific historical period.

Example 7-2 shows a store polling the feed of recent events.

Example 7-2.  A store polls the feed of recent events

Request:
GET /product-catalog/notifications HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...
Cache-Control: max-age=3600
Content-Length: ...
Content-Type: application/atom+xml;charset=″utf-8″
ETag: ″6a0806ca″

<feed xmlns=″http://www.w3.org/2005/Atom″>

 <id>urn:uuid:be21b6b0-57b4-4029-ada4-09585ee74adc</id>
 <title type=″text″>Product Catalog Notifications</title>
 <updated>2009-07-05T10:25:00Z</updated>
 <author>
 <name>Product Catalog</name>

 </author>
 <generator uri=″http://restbucks.com/products″>Product Catalog</generator>
 <link rel=″self″ href=″http://restbucks.com/products/notifications″/>
 <link rel=″via″ type=″application/atom+xml″
 href=″http://restbucks.com/products/notifications/2009/7/5″/>
 <link rel=″prev-archive″
 href=″http://restbucks.com/products/notifications/2009/7/4″/>

http://restbucks.com/products/notifications
http://restbucks.com/products/notifications
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/products%E2%80%B3
http://restbucks.com/products/notifications%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/5%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/4%E2%80%B3/

198 CHAPTER 7: the atom syndication format

 <entry>
 <id>urn:uuid:95506d98-aae9-4d34-a8f4-1ff30bece80c</id>
 <title type=″text″>product created</title>
 <updated>2009-07-05T10:25:00Z</updated>
 <link rel=″self″
 href=″http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-
 1ff30bece80c″/>
 <link rel=″related″ href=″http://restbucks.com/products/527″/>
 <category scheme=″http://restbucks.com/products/categories/type″
 term=″product″/>
 <category scheme=″http://restbucks.com/products/categories/status″
 term=″new″/>
 <content type=″application/vnd.restbucks+xml″>
 <product xmlns=″http://schemas.restbucks.com/product″
 href=″http://restbucks.com/products/527″>
 <name>Fairtrade Roma Coffee Beans</name>
 <size>1kg</size>
 <price>10</price>
 </product>
 </content>
 </entry>

 <entry>
 <id>urn:uuid:4c6b6b57-81af-4501-8bbc-12fee2e3cd50</id>
 <title type=″text″>promotion cancelled</title>
 <updated>2009-07-05T10:15:00Z</updated>
 <link rel=″self″
 href=″http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-
 12fee2e3cd50″/>
 <link rel=″related″ href=″http://restbucks.com/promotions/391″/>
 <category scheme=″http://restbucks.com/products/categories/type″
 term=″promotion″/>
 <category scheme=″http://restbucks.com/products/categories/status″
 term=″deleted″/>
 <content type=″application/vnd.restbucks+xml″>
 <promotion xmlns=″http://schemas.restbucks.com/promotion″
 href=″http://restbucks.com/promotions/391″>
 <effective>2009-08-01T00:00:00Z</effective>
 <product type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/products/156″ />
 <region type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/regions/23″ />
 </promotion>
 </content>
 </entry>
</feed>

http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-1ff30bece80c%E2%80%B3/
http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-1ff30bece80c%E2%80%B3/
http://restbucks.com/products/527%E2%80%B3/
http://restbucks.com/products/categories/type%E2%80%B3
http://restbucks.com/products/categories/status%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/products/527%E2%80%B3
http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-12fee2e3cd50%E2%80%B3/
http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-12fee2e3cd50%E2%80%B3/
http://restbucks.com/promotions/391%E2%80%B3/
http://restbucks.com/products/categories/type%E2%80%B3
http://restbucks.com/products/categories/status%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://restbucks.com/promotions/391%E2%80%B3
http://restbucks.com/products/156%E2%80%B3
http://restbucks.com/regions/23%E2%80%B3

199Using Atom for Event-Driven Systems

The response here contains two useful HTTP headers: ETag and Cache-Control. The

ETag header allows Restbucks’ stores to perform a conditional GET the next time they

request the list of recent events from the product catalog service, thereby potentially

conserving network bandwidth (as described in Chapter 6). The Cache-Control header

declares that the response can be cached for up to 3,600 seconds, or one hour.

The decision as to whether to allow the feed of recent events to be cached depends on

the behavior of the underlying business resources and the quality-of-service expecta-

tions of consumers. In this particular instance, two facts helped Restbucks determine

an appropriate caching strategy: products and promotions change infrequently, and

consumers can tolerate some delay in finding out about a change. Based on these fac-

tors, Restbucks decided the feed of recent events can be cached for at least an hour

(and probably longer).

The feed itself contains three <atom:link> elements. The self link contains the URI of

the feed requested by the store, which in this case is the feed of recent events. The via

link points to the source of entries for the feed of recent events; that is, to the work-

ing feed. (Remember, the working feed is a feed associated with a particular histori-

cal period. It differs from an archive feed in that it is still changing, and is therefore

cacheable for only a short period of time. It differs from the feed of recent events in

that at some point it will no longer be current.) The last link, prev-archive, refers to

the immediately preceding archive document.* This archive document contains all the

events that occurred in the period immediately prior to this one.

note
In our example, the Restbucks product catalog service ticks over every day,
archiving the current working feed at midnight. Because we use “friendly” URIs
for feed links, it looks as if stores can infer the address of an archive feed from
the URI structure, but we must emphasize that’s not really the case. Stores should
not infer resource semantics based on a URI’s structure. Instead, they should treat
each URI as just another opaque address. Stores navigate the archive not by con-
structing URIs, but by following links based on rel attribute values.

Moving now to the content of the feed, we see that each entry has a self link, indicat-

ing that it’s an addressable resource in its own right. Besides being addressable, in our

solution every entry is cacheable. This is not always the case with Atom entries, since

many Atom feeds contain entries that change over time. But in this particular solution,

each entry represents an event that occurs once and never changes. If an underlying

product changes twice in quick succession, the product catalog service will create two

separate events, which in turn will cause two separate entries to be published into the

feed. The service never modifies an existing entry.

*	The prev-archive link relation value is defined in the Feed Paging and Archiving specification:
http://tools.ietf.org/html/rfc5005.

http://tools.ietf.org/html/rfc5005

200 CHAPTER 7: the atom syndication format

note
The working feed is mutable, limiting its cache friendliness. Every entry, however, is
immutable, and therefore cacheable from the moment it is created.

Below the self link are two <atom:category> elements. Atom categories provide a simple

means of tagging feeds and entries. Consumers can easily search categorized feeds for

entries matching one or more categories. (And by adding feed filters on the server side,

we can produce category-specific feeds based on consumer-supplied filter criteria.)

An <atom:category> element must include a term attribute. The value of this term attri-

bute represents the category. Categories can also include two optional attributes: label,

which provides a human-readable representation of the category value, and scheme,

which identifies the scheme to which a category belongs. Schemes group categories

and disambiguate them, much as XML and package namespaces disambiguate ele-

ments and classes. This allows entries to be tagged with two categories that have the

same terms, but belong to two different schemes.

In Restbucks, we use categories to identify the event type (product or promotion), and its

status (new, updated, or cancelled). The last entry in the feed in Example 7-2, for exam-

ple, indicates that the promotion for the product http://restbucks.com/products/156

has been canceled. Using these categories, Restbucks’ stores can filter specific kinds of

events from a feed.

Navigating the Archive
Navigating an individual feed is straightforward. Feeds are ordered by each entry’s

<atom:updated> timestamp element, with the most recent entry first.* To process

a feed, a Restbucks store steps through the entries looking for the combination of

atom:id and atom:updated that belongs to the last entry it successfully processed. Once

it has found that entry, it works forward through the feed, applying each entry’s pay-

load to its own local copy of the product catalog data.

Atom doesn’t prescribe how a consumer should process the entries in a feed. In our

example, Atom entries represent event metadata. This metadata provides a process-

ing context for the event’s business payload. When an Atom processor encounters

an <atom:content> element, it delegates control to a media type processor capable of

handling the contained product or promotion representation. The client invokes the

specialized handler for the content in the knowledge that it is dealing with a repre-

sentation of state at a particular point in time. We call this ability to hand off from one

media type processor to another media type composition.

*	The value of the feed’s <atom:updated> element matches that of the first entry.

http://restbucks.com/products/156

201Using Atom for Event-Driven Systems

If the consumer can’t find in the current feed the last entry it successfully processed, it

navigates the prev-archive link and looks in the previous archive. It continues to trawl

through the archives until either it finds the entry it’s looking for or comes to the end

of the oldest archive feed (the oldest archive has no prev-archive link). Example 7-3

shows a consumer retrieving a previous archive.

Example 7-3.  The consumer retrieves the previous archive

Request:
GET /product-catalog/notifications/2009/7/4 HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Cache-Control: max-age=2592000
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;charset=″utf-8″
ETag: ″a32d0b30″

<feed xmlns=″http://www.w3.org/2005/Atom″
 xmlns:fh=″http://purl.org/syndication/history/1.0″>

 <id>urn:uuid:be21b6b0-57b4-4029-ada4-09585ee74adc</id>
 <title type=″text″>Product Catalog Notifications</title>
 <updated>2009-07-04T23:52:00Z</updated>
 <author>
 <name>Product Catalog</name>
 </author>
 <generator uri=″http://restbucks.com/products″>Product Catalog</generator>
 <fh:archive/>
 <link rel=″self″ href=″http://restbucks.com/products/notifications/2009/7/4″/>
 <link rel=″prev-archive″
 href=″http://restbucks.com/products/notifications/2009/7/3″/>
 <link rel=″next-archive″
 href=″http://restbucks.com/products/notifications/2009/7/5″/>

 <!-- Entries omitted for brevity -->

</feed>

The first thing to note about this archive feed is that it contains an <fh:archive> ele-

ment, which is a simple extension element defined in the Feed Paging and Archiving

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/history/1.0%E2%80%B3
http://restbucks.com/products%E2%80%B3
http://restbucks.com/products/notifications/2009/7/4%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/3%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/5%E2%80%B3/

202 CHAPTER 7: the atom syndication format

specification.* The presence of <fh:archive> is a further indication that this archive

feed will never change and is therefore safe to cache.

Following the <fh:archive> element are three <atom:link> elements. As with the feed

of recent events, this archive feed contains self and prev-archive links, but it also

includes a next-archive link, which links to the feed of events that have occurred in

the period immediately following this one—that is, to a feed of more recent events. A

store can follow next-archive links all the way up to the current working feed.

Again, just like the feed of recent events, the response contains a Cache-Control

header. Whereas the recent feed can only be cached for up to an hour, archive feeds

are immutable, meaning they can be cached for up to 2,592,000 seconds, or 30 days.

Caching Feeds
Feeds can be cached locally by each store, as well as by gateway and reverse proxy

servers along the response path. Processing an archive is a “there and back again”

operation: a consumer follows prev-archive links until it finds an archive containing

the last entry it successfully processed, and then works its way back to the head feed—

this time following next-archive links. Whenever a consumer dereferences a prev-
archive link, its local cache stores a copy of the response. When the consumer next

accesses this same resource, most likely as a result of following a next-archive link on

the return journey, the cache uses its stored response. Navigating the full extent of

an archive is a potentially expensive operation from a network point of view: caching

locally helps save valuable network resources when returning to the head feed.

note
This ability to create or reconstruct a local copy of the product catalog based on
the entire archive is a great pattern for bringing a new system online or for support-
ing crash recovery, and is one of the ways the Restbucks infrastructure scales to
thousands or even millions of stores if necessary.

To explore the implications of this strategy in more detail, let’s assume a store goes

offline for a period of time—perhaps because of a problem with its local infrastruc-

ture. When the store eventually comes back up, it begins to update its local copy of the

product catalog by polling the feed of recent events, and then working its way through

prev-archive links looking for an archive feed containing the last entry it processed.

Figure 7-3 shows the store following prev-archive links and working its way back in

time through the archives. At each step, it caches the response locally in accordance

with the metadata it receives in the HTTP cache control headers.

*	http://tools.ietf.org/html/rfc5005

http://tools.ietf.org/html/rfc5005

203Using Atom for Event-Driven Systems

Figure 7-3.  The consumer works its way back through the archives

At some point, the store finds the last entry it successfully processed. The store can

now start working forward in time, applying the contents of each feed entry to its local

copy of the product catalog, and following next-archive links whenever it gets to the

top of a feed. This forward traversal is shown in Figure 7-4.

204 CHAPTER 7: the atom syndication format

Figure 7-4.  Working forward through the archives

Every time the store traverses a next-archive link, the response is fetched from the

local cache (or an intermediary cache somewhere on the Restbucks network). This hap-

pens with every next-archive link—except the last one, when the request once again

goes across the network. This last network request happens because the head of the feed

is cached (if it is cached at all) against the well-known entry point URI, http://restbucks.

com/products/notifications, rather than the working feed URI, which is http://restbucks.com/

products/notifications/2009/7/5. Because the store hadn’t accessed the working feed while

working back through the archives (it went from the feed of recent events to the first

archive feed), it now has to fetch the working feed from the origin server.

This linking and caching strategy trades efficiency for generalization. Generalization

comes from our being able to build hypermedia clients that can navigate feeds using

http://restbucks.com/products/notifications/2009/7/5
http://restbucks.com/products/notifications/2009/7/5
http://restbucks

205Using Atom for Event-Driven Systems

standardized prev-archive and next-archive link relations. In other words, there’s no

need to build any special logic to prevent unnecessary end-to-end requests: it’s the

local caching infrastructure’s job to store and return archive feeds at appropriate points

in the feed traversal process. To a consumer, a request that returns a cached response

looks the same as a request that goes all the way to the product catalog service.

The overall efficiency of this solution, however, breaks down with the final GET, when

the consumer has to make one last network request. Assuming we started with empty

caches all the way along the response path, navigating forward and backward through

N feeds will cause the product catalog service to handle N+1 requests.

In designing this solution, we’ve assumed Restbucks’ stores won’t navigate the archive

quite as often as they access the head feed by itself. If in practice the stores navigated

the archives almost every time they polled the feed, we’d change the solution so that

every request for the feed of recent events is redirected immediately to the current

working feed, as shown in Example 7-4. Such a change would ensure that the head

feed is cached against the current working feed’s URI, rather than the entry point URI.

An immediate redirect doesn’t cut down on the overall number of wire requests, since

the redirect response itself counts as an over-the-wire interaction, but it does reduce

the overall volume of data sent in comparison to the first solution.

Example 7-4.  Redirecting requests for the feed of recent events to the current working feed

Request:
GET /product-catalog/notifications HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 303 See Other
Location: http://restbucks.com/products/notifications/2009/7/5

Request:
GET /product-catalog/notifications/2009/7/5 HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...
Cache-Control: max-age=3600
Content-Length: ...
Content-Type: application/atom+xml;charset=″utf-8″
ETag: ″6a0806ca″

<feed xmlns=″http://www.w3.org/2005/Atom″>
 ...
</feed>

http://restbucks.com/products/notifications/2009/7/5
http://www.w3.org/2005/Atom%E2%80%B3

206 CHAPTER 7: the atom syndication format

Recall that at some point the current working feed will be archived. When this hap-

pens, an <fh:archive> element and an <atom:link> element with a rel attribute value

of next-archive will be inserted into the feed. The link points to the new current work-

ing feed. Responses containing the newly archived feed will include a Cache-Control

header whose value allows the now immutable feed to be cached for up to 30 days.

Implementation Considerations
What distinguishes the working feed from an archive feed? As developers, we must

distinguish between these feeds because the combination of caching strategy and avail-

able links differs. The working feed is cacheable only for short periods of time, whereas

archive feeds are cacheable for long periods of time.

Using prev-archive and next-archive links saves us from having to add to each store

some specialized knowledge of the product catalog’s URI structure and the periodiza-

tion rules used to generate archives. Because they depend instead on hypermedia,

stores need never go off the rails; they just follow opaque links based on the seman-

tics encoded in link relations. This allows the catalog to vary its URI structure without

forcing changes in the consumers. More importantly, it allows the server to vary its

feed creation rules based on the flow of events.

During particularly busy periods, for example, the product catalog service may want

to archive feeds far more frequently than it does during quiet periods. Instead of

archiving at predefined intervals, the service could archive after a certain number

of events have occurred. This strategy allows the service to get feeds into a cache-

able state very quickly. As far as Restbucks’ stores are concerned, however, nothing

changes. Each store still accesses the system through the feed of most recent events,

and navigates the archives using prev-archive and next-archive links.

note
In low-throughput situations, it’s often acceptable to generate feeds on demand,
as and when consumers ask for them. But as usage grows, this approach puts
increasing strain on both the application and data access layers of the feed service.
In high-throughput scenarios, where lots of consumers make frequent requests for
current and archive feeds, we might consider separating the production of feeds
from their consumption by clients. Such an approach can use a background pro-
cess to generate feeds and store them on the filesystem (or in memory), ready to
be served rapidly with minimal compute cost when requested by a consumer.

At a feed level, links with link relation values of self, alternate, next-archive, and

prev-archive encapsulate the product catalog service’s implementation details—in par-

ticular, the service’s archiving strategy and the location of its current and archive feeds.

This interlinking helps us both size feeds and tune performance. It also establishes a

protocol that allows consumers to navigate the set of feeds and consume the event

data held within.

207Building an Atom Service in Java

The Restbucks product catalog uses many other Atom elements besides links to cre-

ate an entire processing context for a list of domain-specific representations. In other

words, Restbucks uses Atom to implement hypermedia-driven event handlers. To

build this processing context, stores use:

•	 <atom:id> and <atom:updated> to identify the oldest entry requiring processing

•	 Categories to further refine a list of entries to be processed

•	 related links to correlate entries with domain-specific resources

•	 An entry’s <atom:content> element’s type attribute value to determine the process-

ing model to be applied to the enclosed domain-specific representation

Atom helps us separate protocol and processing context from business payload using

media type composition. Because the processing context for an event is conveyed

solely at the Atom document level, the event-handling protocol itself can be imple-

mented by domain-agnostic client code—that is, by generic Atom clients. The split

between event context and business resource state snapshot allows stores to use Atom

processors to determine which events to process, and allows domain- or application-

specific media type processors to act on an entry’s business payload.

Building an Atom Service in Java
For Java solutions, on the server side our basic tools are a web server, an HTTP library,

and a feed generator. On the client side, we need only an HTTP library and a feed

parser. For our Java implementation, we’ve chosen Jersey* (a JAX-RS† implementa-

tion) to provide the HTTP plumbing for the service and its consumers, and ROME‡ for

generating and consuming Atom feeds. For development purposes, we’ve chosen to

use the Grizzly web server because it works nicely with Jersey.

Server-Side Architecture
The server-side architecture follows a classic layered pattern, as shown in Figure 7-5.

At the lowest layer is a repository, which holds a history of changes to products and

promotions, much like a source repository holds the records of changes to code. The

domain objects in the middle layer encapsulate the information in the repository and

make it available to the upper layers.

*	https://jersey.dev.java.net

†	http://jcp.org/en/jsr/detail?id=311

‡	https://rome.dev.java.net

https://jersey.dev.java.net
http://jcp.org/en/jsr/detail?id=311
https://rome.dev.java.net

208 CHAPTER 7: the atom syndication format

Figure 7-5.  Server-side Java architecture

The uppermost layers compose the interface to the network. Here we must address

two separate concerns: creating Atom feeds and providing access to feeds via HTTP.

Generating feeds is a matter of querying and pushing appropriate events from the domain

model into feed objects through the ROME library. Exposing feeds to the Web is done

through the JAX-RS layer, which provides connectivity to the underlying web server.

note
With our Java solution, we regenerate a feed with each request. As we’ll see in the
.NET example later in this chapter, it’s possible to store feeds in their final form so
that instead of being regenerated with each request, they can be served without
any transformation.

Managing Feeds
Recall that our strategy for managing the many events the service produces is to par-

tition events across separate feeds, and then to link feeds so that clients can navigate

between them. For the Java implementation, rather than archiving on an hourly or

daily basis, we split the feeds based on a maximum number of entries per feed. By

optimizing the size of feeds, we trade granularity for the number of network interac-

tions needed to read the feed history.

The strategy we use for archiving feeds is application-specific, and has no bearing on

the way in which consumers access and navigate the feed.

Service consumers navigate feeds by following next-archive and prev-archive links.

While our service has a predictable algorithm for creating these links, to consumers the

links are just opaque URIs. Example 7-5 shows a couple of links.

209Building an Atom Service in Java

Example 7-5.  Providing links between feeds

<link rel=″next-archive″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/40,59″ />
<link rel=″prev-archive″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/0,19″ />

Internally, the Java service generates links according to a simple URI template: http://
restbucks.com/product-catalog/notifications/{start},{end}. Using this template, the

service extracts from the request URI a pair of numerical identifiers, which it then uses

to retrieve the appropriate events from the underlying event repository.

warning
The Java service uses a URI template internally for design and documentation
purposes, but it doesn’t share this template with consumers. Doing so would tightly
couple the service and its consumers; a change to the service’s URI structure
would break clients.

Consumers who choose to infer URIs based on this structure are treading a dan-
gerous path, because the service isn’t obliged to honor them.

The URIs we’re using in Example 7-5 look different from the others we’ve seen so far.

This is a result of the different (but equivalent) feed generation strategy we’ve used

for our Java implementation. The changes serve to emphasize that URIs are opaque to

consumers, and that it is the link relations that drive the protocol.

Java Implementation
On the Java platform, we have a ready set of components to build out each layer of

our service. Some of these (such as Jersey, our JAX-RS implementation) we’ve seen in

prior chapters; others (such as ROME, our Atom library) are new.

Using Jersey for HTTP connectivity
JAX-RS provides a comfortable abstraction over HTTP, especially when compared to

lower-level APIs such as the Servlet interface.* Using Jersey as our friendly interface

to the HTTP stack allows us to delegate the plumbing details to the framework, and to

concentrate instead on the overall design of the service.

Our first task is to expose the feed of recent events at a well-known URI, thereby

providing an entry point into the service for consumers. The implementation for this

is shown in Example 7-6. To expose the feed, we simply declare the verb (GET), the

path where the feed will be hosted (/recent), and the representation format for the

resource, which of course is Atom (application/atom+xml).

*	http://java.sun.com/products/servlet/

http://restbucks.com/product-catalog/notifications/%7bstart%7d,%7bend
http://restbucks.com/product-catalog/notifications/%7bstart%7d,%7bend
http://restbucks.com/product-catalog/notifications/40,59%E2%80%B3
http://restbucks.com/product-catalog/notifications/0,19%E2%80%B3
http://java.sun.com/products/servlet/

210 CHAPTER 7: the atom syndication format

Once we’ve got the framework code out of the way, all that’s left for us to do is to

generate a feed. We do this using our own EventFeedGenerator, which wraps an

underlying Feed object from the ROME framework. We then turn the generated feed

into a string representation. Finally, using a JAX-RS builder, we build and return

a 200 OK response, adding the appropriate caching directive (Cache-Control: max-
age=3600, to cache the feed for one hour) and the Atom media type. Any exceptions

are handled by Jersey, which generates an HTTP 500 Internal Server Error response.

Example 7-6.  Exposing feeds for recent events and the working feed through JAX-RS

@GET
@Path(″/recent″)
@Produces(″application/atom+xml″)
public Response getRecentFeed() {
 EventFeedGenerator generator = new
 EventFeedGenerator(uriInfo.getRequestUri(),
 ENTRIES_PER_FEED);
 Feed feed = generator.getRecentFeed();

 return Response.ok().entity(stringify(feed))
 .header(CACHE_CONTROL_HEADER,
 cacheDirective(CachePolicy.getRecentFeedLifetime()))
 .type(ATOM_MEDIA_TYPE).build();
}

We follow a similar pattern for archive feeds, though the framework code here is a

little more intricate than the code for the feed of recent events. The framework decla-

rations in Example 7-7 include an @Path annotation, which defines the URI template

the service implementation uses to extract parameters (″/{startPos},{endPos}″), and

which Jersey uses to dispatch requests to the method. Only request URIs matching the

template will be routed to this method.

Example 7-7.  Exposing older feeds through JAX-RS

@GET
@Path(″/{startPos},{endPos}″)
@Produces(″application/atom+xml″)
public Response getSpecificFeed(@PathParam(″startPos″) int startPos,
 @PathParam(″endPos″) int endPos) {

 if (validStartAndEndEntries(startPos, endPos)) {
 // Bad URI - the paramters don't align with our feeds
 return Response.status(Status.NOT_FOUND).build();
 }

 if(workingFeedRequested(startPos)) {
 return getWorkingFeed();
 }

211Building an Atom Service in Java

 EventFeedGenerator generator = new
 EventFeedGenerator(uriInfo.getRequestUri(), ENTRIES_PER_FEED);
 Feed feed = generator.feedFor(startPos);
 return Response.ok().entity(stringify(feed)).header(CACHE_CONTROL_HEADER,
 cacheDirective(CachePolicy.getArchiveFeedLifetime()))
 .type(ATOM_MEDIA_TYPE).build();
}

private Response getWorkingFeed() {
 EventFeedGenerator generator = new
 EventFeedGenerator(uriInfo.getRequestUri(),
 ENTRIES_PER_FEED);
 Feed feed = generator.getWorkingFeed();

 return Response.ok().entity(stringify(feed))
 .header(CACHE_CONTROL_HEADER,
 cacheDirective(CachePolicy.getWorkingFeedLifetime()))
 .type(ATOM_MEDIA_TYPE).build();
}

Jersey extracts the URI parameters from the URI at runtime and passes them into the

method via the two @PathParam annotations in the method signature. From there, we

validate whether the parameters fit with our feed-splitting scheme by testing whether

the values are divisible by our feed size. If the values from the URI template don’t fit

our feed scheme, the service returns a 404 Not Found response.

If the URI parameters are valid, we check whether the requested feed refers to the

current working feed. If it does, we generate a representation of the working feed

and send that back to the consumer. Otherwise, we call into the archive feed genera-

tion logic to create a feed using generator.feedFor(startPos). Once the feed has been

created, we turn it into a string representation and build a 200 OK response containing

the feed plus the Content-Type header, as shown in the final line of the method.

Generating feeds with ROME
The HTTP-centric code is only half the implementation of the service. Under the covers

is a great deal of code that generates Atom feeds on demand.

warning
ROME can be an awkward library to work with. Many of the API calls in the 1.0
release are weakly typed using String and nongeneric collections. It’s helpful to
have the Javadoc comments on hand when working with it.*

*	https://rome.dev.java.net/apidocs/1_0/overview-summary.html

https://rome.dev.java.net/apidocs/1_0/overview-summary.html

212 CHAPTER 7: the atom syndication format

Example 7-8 shows the EventFeedGenerator.feedFor(...) method, which creates a

feed by orchestrating several calls into the underlying ROME library.

Example 7-8.  Generating an Atom feed with ROME

public Feed feedFor(int startEntry) {
 Feed feed = new Feed();

 feed.setFeedType(″atom_1.0″);
 feed.setId(″urn:uuid:″ + UUID.randomUUID().toString()); // We don't need stable
 // ID because we're not
 // aggregating feeds
 feed.setTitle(FEED_TITLE);
 final Generator generator = new Generator();
 generator.setUrl(getServiceUri());
 generator.setValue(PRODUCING_SERVICE);
 feed.setGenerator(generator);
 feed.setAuthors(generateAuthorsList());
 feed.setAlternateLinks(generateAlternateLinks(startEntry));
 feed.setOtherLinks(generatePagingLinks(startEntry));
 feed.setEntries(createEntries(EventStore.current()
 .getEvents(startEntry, entriesPerFeed)));
 feed.setUpdated(newestEventDate(events));
 return feed;
}

The first few lines in Example 7-8 set the feed metadata: feed type, title, creation date,

generator, and authors. These elements are created by the setters setFeedType(...)

through to setAuthors(...).

note
We’re using a randomly generated feed identifier here. This means that consum-
ers receive a different identifier each time they request the feed. If we had multiple
feed providers (as Atom supports), the identifier would need to be stable over time,
and crash-recoverable, so that consumers could safely merge separate physical
feeds into a single logical feed.

The setter methods in Example 7-8 give us the beginnings of the Atom feed shown in

Example 7-9. This feed contains all the necessary feed metadata.

Example 7-9.  Generated feed metadata

HTTP/1.1 200 OK
server: grizzly/1.8.1
Cache-Control: max-age=3600
Content-Type: application/atom+xml

213Building an Atom Service in Java

<feed xmlns=″http://www.w3.org/2005/Atom″>
 <title>Restbucks products and promotions</title>
 <author>
 <name>A Product Manager</name>
 </author>
 <id>urn:uuid:4679956d-b084-48f7-a20f-6e7b3891d951</id>
 <generator uri=″http://restbucks.com/product-catalog/notifications″>
 Product Catalog
 </generator>
 <updated>2009-08-13T16:42:04Z</updated>
 <!-- Remainder of feed omitted for brevity -->
</feed>

Things get more interesting when we have to generate some of the dynamic feed con-

tent, particularly links. For the feed, this means identifying the URI through which

the feed was accessed (rel=″self″) and the source of entries for that feed (rel=″via″).
Both of these are serialized as <atom:link> elements as the feed is constructed. The

code in Example 7-10 shows how the dynamic content for the /recent feed is created.

Example 7-10.  Generating self and via links

public Feed getRecentFeed() {
 int startEntry = findStartingEntryForHeadFeeds();
 Feed recent = feedFor(startEntry);
 Link self = new Link();
 self.setHref(requestUri.toString());
 self.setRel(″self″);
 self.setType(ATOM_MEDIA_TYPE);
 recent.getAlternateLinks().add(self);
 recent.getAlternateLinks().addAll(generatePagingLinks(startEntry));
 Link via = new Link();
 via.setHref(this.generateCanonicalUri(startEntry));
 via.setRel(″via″);
 via.setType(ATOM_MEDIA_TYPE);
 recent.getAlternateLinks().add(via);
 return recent;
}

To generate the self link we take the (previously validated) request URI and add it

to the list of Link objects with a rel value of self. If the requested feed is the feed of

recent events, as accessed via the well-known URI /recent, we also need to gener-

ate the source URI so that a consumer can still access the entries associated with this

particular time period when the current feed is archived. That’s easily done by adding

another Link object with a rel value of via to the list of links for the feed.

http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/notifications%E2%80%B3

214 CHAPTER 7: the atom syndication format

With the links added to the feed, we now get the XML shown in Example 7-11 for the

feed of recent events, and that in Example 7-12 for an archive feed.

Example 7-11.  Generated self and via links in the feed of recent events

<link rel=″self″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/recent″ />
<link rel=″via″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/160,179″ />

Example 7-12.  Generated self link in archive feed

<link rel=″self″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/80,99″ />

The final feed metadata comprises the links we need to navigate back (prev-archive)

and forth (next-archive) through older feeds. In Example 7-13, we generate these links

by determining whether there are newer and older feeds relative to the current feed; if

there are, we calculate the link values using our algorithm for splitting feeds. Once cal-

culated, we add the paging links to the list of links returned to the feed generator.

Example 7-13.  Generating navigation links between feeds

private List<Link> generatePagingLinks(int currentFeedStart) {
 ArrayList<Link> links = new ArrayList<Link>();

 if(hasNewerFeed(currentFeedStart)) {
 Link next = new Link();
 next.setRel(″next-archive″);
 next.setType(ATOM_MEDIA_TYPE);
 next.setHref(generatePageUri(getServiceUri(),
 currentFeedStart + entriesPerFeed));
 links.add(next);
 }

 if(hasOlderFeed(currentFeedStart)) {
 Link prev = new Link();
 prev.setRel(″prev-archive″);
 prev.setType(ATOM_MEDIA_TYPE);
 prev.setHref(generatePageUri(getServiceUri(),
 currentFeedStart - entriesPerFeed));
 links.add(prev);
 }
 return links;
}

The code in Example 7-13 gives us the feed-level links shown in Example 7-14.

http://restbucks.com/product-catalog/notifications/recent%E2%80%B3
http://restbucks.com/product-catalog/notifications/160,179%E2%80%B3
http://restbucks.com/product-catalog/notifications/80,99%E2%80%B3

215Building an Atom Service in Java

Example 7-14.  Navigation links in an Atom feed

<link rel=″prev-archive″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/140,159″ />
<link rel=″next-archive″ type=″application/atom+xml″
 href=″http://restbucks.com/product-catalog/notifications/180,199″ />

Once the feed-level metadata has been created, it’s time to populate the feed with

entries. Each entry in a feed represents a business event pertaining to a product or

promotion. The createEntries(...) method shown in Example 7-15 is responsible for

creating the entries for a given set of events.

Example 7-15.  Populating a feed with entries containing events

private List<Entry> createEntries(List<Event> events) {
 ArrayList<Entry> entries = new ArrayList<Entry>();

 for(Event e : events) {
 final Entry entry = new Entry();
 entry.setId(e.getTagUri());
 entry.setTitle(e.getEventType());
 entry.setUpdated(e.getTimestamp());
 entry.setAlternateLinks(generateLinks(e));
 entry.setCategories(generateCategories(e));
 entry.setContents(generateContents(e));
 entries.add(entry);
 }

 return entries;
}

The events provided to the createEntries(...) method are supplied from the under-

lying event store. For each event, the following metadata is extracted and pushed

directly into the entry:

•	 An identifier from the event’s stable, long-lived tag URI*

•	 The event type, being a product or promotion event

•	 The timestamp for when the event was generated

Following on from the metadata, we add two links, self and related, to the entry.

The self link contains the entry’s URI; the related link correlates the entry with the

underlying product or promotion’s URI in the product catalog service.

*	Tag URIs are a way of creating a nonaddressable identifier from an addressable URI scheme such as
HTTP. We use them here because events only have to be identifiable, whereas entries have to be ad-
dressable. See http://diveintomark.org/archives/2004/05/28/howto-atom-id for more information.

http://diveintomark.org/archives/2004/05/28/howto-atom-id
http://restbucks.com/product-catalog/notifications/140,159%E2%80%B3
http://restbucks.com/product-catalog/notifications/180,199%E2%80%B3

216 CHAPTER 7: the atom syndication format

Finally, we serialize the event payload into XML, and add it to the entry’s <content> ele-

ment. We then add the new entry to the feed. The snapshot of the state of a product or

promotion appears as a child of an <atom:content> element, as shown in Example 7-16.

Example 7-16.  Event payloads exposed as entry content in an Atom feed

HTTP/1.1 200 OK
server: grizzly/1.8.1
Cache-Control: max-age=2592000
Content-Type: application/atom+xml

...
<entry>
 <title>product</title>
 <link rel=″self″
 href=″http://restbucks.com/product-catalog/notifications/notifications/120″ />
 <link rel=″related″ href=″http://restbucks.com/products/2012703733″ />
 <category term=″product″
 scheme=″http://restbucks.com/product-catalog/notifications/categories/type″ />
 <category term=″new″
 scheme=″http://restbucks.com/product-catalog/notifications/categories/status″ />
 <id>tag:restbucks.com,2009-08-15:120</id>
 <updated>2008-04-04T16:24:02Z</updated>
 <content type=″application/vnd.restbucks+xml″>
 <product xmlns=″http://schemas.restbucks.com/product″
 href=″http://restbucks.com/products/2012703733″>
 <name>product name 543809053</name>
 <price>2.34</price>
 </product>
 </content>
</entry>
<entry>
 <title>promotion</title>
 <link rel=″self″
 href=″http://restbucks.com/product-catalog/notifications/notifications/148″ />
 <link rel=″related″ href=″http://restbucks.com/promotions/1669488880″ />
 <category term=″promotion″
 scheme=″http://restbucks.com/product-catalog/notifications/categories/type″ />
 <category term=″new″
 scheme=″http://restbucks.com/product-catalog/notifications/categories/status″ />
 <id>tag:restbucks.com,2009-08-15:148</id>
 <updated>2008-04-04T16:24:02Z</updated>
 <content type=″application/vnd.restbucks+xml″>
 <promotion xmlns=″http://schemas.restbucks.com/promotion″
 xmlns:ns2=″http://www.w3.org/2005/Atom″

http://restbucks.com/product-catalog/notifications/notifications/120%E2%80%B3
http://restbucks.com/products/2012703733%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/type%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/status%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/products/2012703733%E2%80%B3
http://restbucks.com/product-catalog/notifications/notifications/148%E2%80%B3
http://restbucks.com/promotions/1669488880%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/type%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/status%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3

217Building an Atom Service in Java

 href=″http://restbucks.com/promotions/1669488880″>
 <effective>2009-08-15</effective>
 <ns2:product type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/products/1995649500″ />
 <ns2:region type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/regions/2140798621″ />
 </promotion>
 </content>
</entry>
...

Now that we have exposed interlinked feeds with entries representing business events,

clients can traverse and consume those feeds, and use the information in the events to

trigger local processing. This leads us to the consumer-side infrastructure.

Java Consumer Implementation
Like the product catalog service, the consumer implementation has been developed

using Jersey for HTTP plumbing code, and ROME for parsing Atom feeds. Unlike the

service implementation, however, the consumer code—excluding any business logic

and error handling—is quite small, with Jersey and ROME providing most of the nec-

essary functionality.

The code to request an Atom feed is shown in Example 7-17.

Example 7-17.  Consuming an event feed with Jersey and ROME

private Feed getFeed(URI uri) {
 // Jersey
 Client client = Client.create();
 ClientResponse response = client.resource(uri)
 .accept(ATOM_MEDIA_TYPE)
 .get(ClientResponse.class);

 String responseString = response.getEntity(String.class);

 // Rome code
 WireFeedInput wfi = new WireFeedInput();
 WireFeed wireFeed;
 try {

 wireFeed = wfi.build(new StringReader(responseString));
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 return (Feed) wireFeed;
}

http://restbucks.com/promotions/1669488880%E2%80%B3
http://restbucks.com/products/1995649500%E2%80%B3
http://restbucks.com/regions/2140798621%E2%80%B3

218 CHAPTER 7: the atom syndication format

The responsibilities in Example 7-17 are split between Jersey and ROME. The Jersey

code creates an HTTP client, and then sends an HTTP GET request with an Accept

header of application/atom+xml to the product catalog service.

The get(...) call populates the HTTP response object with the results of the interac-

tion, including an Atom feed if the request was successfully processed. This Atom feed is

extracted as a String instance and passed into the ROME library where it is converted to

an object representation that can be processed by the consumer’s business logic.

Of course, this isn’t the end of the story for our consumer. If the consumer can’t find

the entry it last successfully processed in the current feed, it will have to look through

the archives. Fortunately, because feeds are navigable via their next-archive and prev-
archive links, the consumer need only follow these links to discover and consume the

archive feeds. Programmatically, this is straightforward, since we already have a means

to access feeds by URI (Example 7-17), and ROME provides us the means to extract

URIs from feeds, as we see in Example 7-18.

Example 7-18.  Navigating feeds from a consumer perspective

private URI getUriFromNamedLink(String relValue, Feed feed)
 throws URISyntaxException {
 for (Object obj : feed.getOtherLinks()) {
 Link l = (Link) obj;
 if (l.getRel().equals(relValue)) {
 return new URI(l.getHref());
 }
 }
 return null;
}
private URI getPrevArchive(Feed feed) throws URISyntaxException {
 return getUriFromNamedLink(″prev-archive″, feed);
}
private URI getNextArchive(Feed feed) throws URISyntaxException {
 return getUriFromNamedLink(″next-archive″, feed);
}

Example 7-18 shows how a consumer extracts links from a feed. Moving forward

through a set of feeds is a matter of looking for next-archive links, while moving

backward is a matter of acting on the corresponding prev-archive links in each feed.

As each feed is discovered, the consumer filters and applies the feed’s entries to the

objects in its local domain model.

219Building an Atom Service in .NET

Building an Atom Service in .NET
Our .NET solution serves pregenerated Atom feeds from the filesystem rather than con-

structing them on the fly. This way, we separate the construction of feeds from the han-

dling of requests. The benefit of this approach is that it conserves computing resources.

The downside is that it introduces additional latency between an event occurring and

its appearing in a feed. We can tolerate this trade-off because transferring products and

offers to Restbucks stores isn’t very latency-sensitive, and so any additional delay doesn’t

prevent the solution from working effectively.

note
Using pregenerated static files for archive feeds is particularly effective at web scale.
Most web servers are very good at serving static files; furthermore, public-facing
services can use content delivery networks (CDNs) to store copies of archive feeds
closer to their globally distributed consumers. Static files allow us to implement addi-
tional optimizations, such as storing and serving feeds in a gzipped state.

This separation of concerns between constructing feeds and handling requests is

reflected in two core components: ProductCatalog.Writer, which generates feeds, and

ProductCatalog.Notifications, which handles requests.

Writing Feeds to Files
Writing feeds to files is triggered by a timer, which fires periodically. When the timer

fires, the feed writer reads new events from a buffer and writes them to the recent

events feed file. If during this process the recent events feed becomes full, the service

archives it and starts a new one.

Importantly, with this approach, once a file has been written to the filesystem,

it’s never updated. This is to prevent contention between file readers and writers.

Consider, for example, the situation where a client request is being served from a file

at the same time as the recent events feed is being updated. If we were to allow file

updates, we’d run the risk of blocking consumers while the service obtains a lock on

the underlying file and modifies its contents, complicating the solution for little gain.

Making a file unchangeable once it has been published works fine in the case of

archive feeds: archives by their very nature are immutable. But things are trickier with

the feed of recent events, which continues to grow as more events occur.

220 CHAPTER 7: the atom syndication format

One solution to this problem is to publish the feed of recent events as a series of tem-

porary files. Each time the feed writing process is triggered, the service creates a copy of

the recent events feed, and then it adds new events to this copy. The service maintains

an in-memory mapping between the resource identifier for the recent events feed and

the newest temporary file containing this feed. When the feed updating process com-

pletes, the service updates the mapping.

Updating the in-memory mapping is an atomic operation. Until the mapping is

updated, requests continue to be served from the older temporary file. Once the map-

ping has been updated, however, new requests are satisfied from the new temporary

file. A reaper process cleans up older temporary files after a short interval.

The feed writing process is controlled by an instance of the FeedWriter class, which

hosts a timer. Timer events are handled by the FeedWriter.WriteFeed() method

shown in Example 7-19. WriteFeed() stops the timer, loops through and executes the

tasks responsible for updating the recent events feed, and then restarts the timer.

Example 7-19.  WriteFeed() handles the feed writing timer event

private void WriteFeed()
{
 timer.Stop();

 ITask task = new QueryingEvents();
 while (!task.IsLastTask)
 {
 task = task.Execute(fileSystem, buffer, feedBuilder, NotifyMappingsChanged);
 }

 timer.Start();
}

Tasks
We’ve broken down the feed writing process down into a series of discrete tasks. Each

task is responsible for a single activity. Once it has completed its activity, the currently

executing task creates and returns the next task to be executed. By breaking the pro-

cess of updating the recent events feed into a number of discrete tasks, we make the

solution easier to develop and test.

Each task executed by WriteFeed() implements the ITask interface shown in

Example 7-20.

221Building an Atom Service in .NET

Example 7-20.  The ITask interface

public interface ITask
{
 bool IsLastTask { get; }
 ITask Execute(IFileSystem fileSystem,
 IEventBuffer buffer,
 FeedBuilder feedBuilder,
 Action<FeedMappingsChangedEventArgs> notifyMappingsChanged);
}

ITask’s Execute(...) method takes four parameters:

fileSystem

An object that implements the IFileSystem interface, which provides access to the

filesystem directories containing the recent events feed, archive feeds, and feed

entries.

buffer
Provides access to new events waiting to be written to a feed. Example 7-21 shows

the IEventBuffer interface. In a production system, we might use a persistent

queue or database table to back this buffer. In our sample application, the event

buffer is implemented as an in-memory queue.

feedBuilder

Formats feeds and entries. We’ll look at the FeedBuilder class in more detail later.

notifyMappingsChanged

A delegate, which is used to raise an event indicating the feed mappings have

changed. Tasks can invoke this delegate when the process of writing a feed has

been completed. Doing so notifies other parts of the system that the recent events

feed has changed.

Example 7-21.  The IEventBuffer interface

public interface IEventBuffer
{
 void Add(Event evnt);
 IEnumerable<Event> Take(int batchSize);
}

Figure 7-6 shows how the tasks responsible for updating the recent events feed are

organized into a processing pipeline for events.

222 CHAPTER 7: the atom syndication format

Figure 7-6.  Tasks involved in writing a feed

These task classes are:

QueryingEvents
Takes a batch of events from the buffer. If there are no new events in the

buffer, QueryingEvents returns a Terminate task; otherwise, it returns an

IdentifyingRecentEventsFeed task.

223Building an Atom Service in .NET

IdentifyingRecentEventsFeed
Identifies the latest recent events feed file. If the file exists, this task uses the feed

builder to load the feed into memory. It then returns an UpdatingRecentEventsFeed

task, passing the in-memory feed and the new events waiting to be added to the

feed to the new task’s constructor. If IdentifyingRecentEventsFeed can’t find a

recent events feed file on the filesystem, it returns a CreatingNewRecentEventsFeed

task.

UpdatingRecentEventsFeed
Iterates over new events retrieved from the buffer and updates the recent events

feed. If during this process the feed’s entry quota is reached, the task returns an

ArchivingRecentEventsFeed task. If, on the other hand, the task gets through all

the new events without having to archive the recent events feed, it returns a

RequeryingEvents task.

RequeryingEvents
Gets another batch of new events from the buffer. If there are no new events,

this task returns a SavingRecentEventsFeed task; otherwise, it returns a new

UpdatingRecentEventsFeed task.

SavingRecentEventsFeed
Tells the in-memory recent events feed to save itself to the filesystem and then

returns a NotifyingListeners task.

NotifyingListeners
Invokes the notifyMappingsChanged delegate with the latest recent events feed’s

details and then returns a Terminate task.

CreatingNewRecentEventsFeed
Is executed when the service can’t find a recent events file on the filesystem.

This will be the case, for example, when the service starts for the very first time.

CreatingNewRecentEventsFeed creates an empty recent events feed and returns a new

UpdatingRecentEventsFeed task, passing the newly created feed to this new task. (This

new feed is not saved to the filesystem until SavingRecentEventsFeed is executed.)

ArchivingRecentEventsFeed
Uses the current feed to create a new recent events feed, which is empty. It then

archives the old feed and creates and returns an UpdatingRecentEventsFeed task,

passing the new recent events feed to the new task’s constructor.

Terminate
Completes the process of updating the recent events feed.

Together, these tasks retrieve batches of new events from the event buffer and update

the recent events feed. When the current feed’s entry quota has been reached, the ser-

vice archives the feed and begins a new one. The service then repeats the process of

retrieving events, adding them to the recent events feed and archiving where neces-

sary, until there are no more new events in the buffer.

224 CHAPTER 7: the atom syndication format

Building Feeds
FeedBuilder creates in-memory representations of feeds and entries. Feeds are of two

types: RecentEventsFeed and ArchiveFeed. The feed builder is responsible for creating

new recent events feeds and restoring recent events feeds from the filesystem. It can

also create a subsequent feed and an archive feed from the current feed.

A feed builder uses a helper class, Links, to generate links. When the service starts, it

configures a Links object with some service-specific URI templates. The feed builder

parameterizes these templates at runtime with resource Ids to generate URIs for feeds

and entries.

RecentEventsFeed and ArchiveFeed objects are initialized with a FeedMapping object.

Feed mappings encapsulate the mapping between a resource ID and its filename. An

Id is the service’s own internal representation of the distinguishing part of a feed or

entry’s address. Links uses an Id object to generate a feed or entry URI by filling in a

URI template. Our sample service is configured at startup with a base address of http://

restbucks.com/product-catalog/notifications/, and a URI template for feeds of /?page={id}.

An Id object with an integer value of 4, therefore, will result in the following feed URI:

http://restbucks.com/product-catalog/notifications/?page=4.

By making the creation of temporary filenames private to a feed mapping, we ensure

that we generate a different temporary filename every time we create a mapping,

thereby guaranteeing that feed files will never be updated once they’ve been saved. A

feed mapping can generate new feed mappings in three different ways. It can create

a copy of itself with the same ID but a different temporary filename. It can generate a

new feed mapping with an incremented ID (and different filename). Finally, it can cre-

ate a copy with the same ID and a permanent, archive filename—as opposed to a tem-

porary filename—based on that same ID.

A feed builder’s primary responsibility is to create a recent events feed. Its

CreateRecentEventsFeed(...) method is shown in Example 7-22.

Example 7-22.  Creating an in-memory representation of a new feed

public RecentEventsFeed CreateRecentEventsFeed(FeedMapping mapping,
 IPrevArchiveLinkGenerator prevArchiveLinkGenerator)
{
 SyndicationFeed feed = new SyndicationFeed
 {
 Id = new UniqueId(Guid.NewGuid()).ToString(),
 Title = SyndicationContent.CreatePlaintextContent(Title),
 Generator = ServiceName,
 LastUpdatedTime = DateTime.Now,
 Items = new List<SyndicationItem>()
 };

 feed.Authors.Add(new SyndicationPerson {Name = ServiceName});

http://restbucks.com/product-catalog/notifications/
http://restbucks.com/product-catalog/notifications/
http://restbucks.com/product-catalog/notifications/?page=4

225Building an Atom Service in .NET

 feed.Links.Add(links.CreateRecentFeedSelfLink());
 feed.Links.Add(links.CreateViaLink(mapping.Id));

 prevArchiveLinkGenerator.AddTo(feed, links);

 return new RecentEventsFeed(feed, mapping, this);
}

CreateRecentEventsFeed(...) accepts a feed mapping and an object that implements

IPrevArchiveLinkGenerator. Depending on its underlying implementation, this latter

parameter will either add a prev-archive link to the generated feed or do nothing. The

very first feed to be generated doesn’t require a prev-archive link, but all the others do.

CreateRecentEventsFeed(...) uses the .NET Framework’s SyndicationFeed to build the

feed. SyndicationFeed is one of many classes in the System.ServiceModel.Syndication

that together make up a media type library for constructing and parsing Atom feeds.

CreateRecentEventsFeed(...) initializes a new syndication feed with some feed-level

metadata. It then adds a self link and a via link, and uses the prevArchiveLinkGenerator

parameter to add a prev-archive link.

Feed builders are also responsible for creating individual Atom entries. FeedBuilder.
CreateEntry(...), which is shown in Example 7-23, initializes a SyndicationItem

and sets its Id, Title, and LastUpdatedTime properties. Note that the entry’s ID value

is computed using the same Tag scheme we used in our Java solution. After creating

and adding self and related links (the self link is a standalone URI for the entry, the

related link the URI of the domain entity to which the event refers), CreateEntry(...)

serializes the supplied event to the entry’s Content property.

Example 7-23.  FeedBuilder.CreateEntry(…) method

public Entry CreateEntry(Event evnt)
{
 SyndicationItem item = new SyndicationItem
 {
 Id = string.Format(″tag:restbucks.com,{0}:{1}″,
 evnt.Timestamp.ToString(″yyyy-MM-dd″), evnt.Id),
 Title = SyndicationContent.CreatePlaintextContent(evnt.Subject),
 LastUpdatedTime = evnt.Timestamp
 };

 item.Links.Add(links.CreateEntrySelfLink(new Id(evnt.Id)));
 item.Links.Add(links.CreateEntryRelatedLink(evnt.Body.Href));

 item.Content = new XmlSyndicationContent(evnt.Body.ContentType,
 evnt.Body.Payload, null as DataContractSerializer);

 return new Entry(item, new Id(evnt.Id).CreateFileName());
}

226 CHAPTER 7: the atom syndication format

FeedBuilder exposes three more public methods:

•	 LoadRecentEventsFeed(...)

•	 CreateNextRecentEventsFeed(...)

•	 CreateArchiveFeed(...)

The first of these, LoadRecentEventsFeed(...), uses an IFileSystem implementation to

load a feed from the current directory, as shown in Example 7-24. With the file con-

tents loaded into a syndication feed, the method parses out the resource ID from the

feed’s via link and uses this to create a new feed mapping. It then uses the new map-

ping to initialize a new RecentEventsFeed. This ensures that the returned feed retains

the loaded feed’s resource ID, but is given a new temporary filename.

Example 7-24.  Loading a feed from the filesystem

public RecentEventsFeed LoadRecentEventsFeed(IFileSystem fileSystem,
 FileName fileName)
{
 using (XmlReader reader = fileSystem.CurrentDirectory.GetXmlReader(fileName))
 {
 SyndicationFeed feed = SyndicationFeed.Load(reader);
 Id id = links.GetIdFromFeedUri(feed.GetViaLink().GetAbsoluteUri());
 return new RecentEventsFeed(feed, new FeedMapping(id), this);
 }
}

CreateNextRecentEventsFeed(...), which is shown in Example 7-25, takes a feed

mapping belonging to the current recent events feed and uses it to initialize a

PrevArchiveLinkGenerator. This generator can then be used to generate prev-archive

links that point to the feed associated with the mapping. It can also be used to generate

a new mapping containing the next resource ID. The new feed mapping and the link

generator instance are used to call CreateRecentEventsFeed(...), which creates a new

RecentEventsFeed.

Example 7-25.  Creating the next recent events feed

public RecentEventsFeed CreateNextRecentEventsFeed(FeedMapping mapping)
{
 return CreateRecentEventsFeed(
 mapping.WithNextId(), new PrevArchiveLinkGenerator(mapping.Id));
}

Example 7-26 shows the implementation of CreateArchiveFeed(...). This method

takes a syndication feed and feed mapping belonging to the feed to be archived,

together with a mapping belonging to the next recent events feed, and uses them to

create an ArchiveFeed based on a clone of the supplied feed.

227Building an Atom Service in .NET

Example 7-26.  Creating an archive feed

public ArchiveFeed CreateArchiveFeed(SyndicationFeed feed,
 FeedMapping currentMapping, FeedMapping nextMapping)
{
 SyndicationFeed archive = feed.Clone(true);

 archive.GetSelfLink().Uri = archive.GetViaLink().Uri;
 archive.Links.Remove(archive.GetViaLink());
 archive.Links.Add(links.CreateNextArchiveLink(nextMapping.Id));
 archive.ElementExtensions.Add(new SyndicationElementExtension(
 ″archive″, ″http://purl.org/syndication/history/1.0″, string.Empty));

 return new ArchiveFeed(archive, currentMapping.WithArchiveFileName());
}

To create an archive feed from a recent events feed, CreateArchiveFeed(...) first clones

the supplied syndication feed. It then copies the cloned feed’s via link value into a new

self link and removes the via link from the feed. Next, it adds a next-archive link that

points to the next recent events feed. Finally, it adds an <archive> extension element.

Handling Requests
Requests are handled by a NotificationsService object, which is hosted by an instance

of ServiceHost. The service host encapsulates all the HTTP plumbing. In our imple-

mentation, this means using a System.Net.HttpListener object to listen for requests

and send responses.

Example 7-27 shows the service host’s HandleRequest(...) method. This method is

dispatched to a thread from the .NET thread pool with each request.

Example 7-27.  ServiceHost.HandleRequest(…) wraps requests and applies responses to the
output

private void HandleRequest(HttpListenerContext context)
{
 Log.DebugFormat(″{0} {1}″, context.Request.HttpMethod, context.Request.RawUrl);

 IResponse response = service.GetResponse(
 new HttpListenerRequestWrapper(context.Request));
 using (IResponseWrapper wrapper =
 new HttpListenerResponseWrapper(context.Response))
 {
 response.ApplyTo(wrapper);
 }
}

http://purl.org/syndication/history/1.0%E2%80%B3

228 CHAPTER 7: the atom syndication format

HandleRequest(...) translates between the requests and responses used by the service

logic and the request and response objects belonging to the HTTP plumbing. The method

wraps the request and response objects provided by the HttpListenerContext with sim-

ple wrapper objects so as to prevent HttpListener specifics from leaking into the rest of

the service code. Doing so supports rapid test-driven development because it allows the

service implementation to be tested without depending on any HTTP plumbing or connectivity.

The service host itself simply translates between the HTTP infrastructure and

the service implementation. The real request handling logic is implemented in

NotificationsService.GetResponse(...), as shown in Example 7-28.

Example 7-28.  The notifications service handles requests

public IResponse GetResponse(IRequestWrapper request)
{
 Log.DebugFormat(″Received request. Uri: [{0}].″, request.Uri.AbsoluteUri);

 try
 {
 IRepositoryCommand command = routes.CreateCommand(request.Uri);
 IRepresentation representation = command.Invoke(repository);
 return request.Condition.CreateResponse(representation);
 }
 catch (ServerException ex)
 {
 Log.ErrorFormat(″Server exception. {0}″, ex.Message);
 return Response.InternalServerError();
 }
 catch (InvalidUriException ex)
 {
 Log.WarnFormat(″Invalid request. {0}″, ex.Message);
 return Response.NotFound();
 }
 catch (NotFoundException ex)
 {
 Log.WarnFormat(″Invalid request. {0}″, ex.Message);
 return Response.NotFound();
 }
}

GetResponse(...) implements the conditional GET HTTP idiom. To implement a con-

ditional GET, GetResponse(...) first fetches a representation from a repository. It then

supplies this representation to the condition specified in the request. This condition

creates and returns a response, which is handed back to the host for applying to the

response stream. We’ll look at how this condition is generated, and how it determines

whether to return 200 OK or 304 Not Modified, in more detail shortly. Before we do that,

let’s look at how the repository command is created.

229Building an Atom Service in .NET

Every feed has a unique URI. The notifications service uses this URI to create a com-

mand that can retrieve a feed representation from a repository. The logic for creating

a command from a URI is encapsulated in a Routes object, which matches the request

URI with some service-specific URI templates. Example 7-29 shows the implementa-

tion of Routes in its entirety.

Example 7-29.  Routes creates repository functions based on request URIs

public class Routes
{
 private readonly Uri baseAddress;
 private readonly UriTemplateTable uriTemplates;

 private static readonly Func<NameValueCollection, IRepositoryCommand>
 GetFeedOfRecentEvents =
 parameters => GetFeedOfRecentEventsCommand.Instance;

 private static readonly Func<NameValueCollection, IRepositoryCommand>
 GetFeed =
 parameters => new GetFeedCommand(
 new ResourceId(parameters.GetValues(″id″)[0]));

 public Routes(UriConfiguration uriConfiguration)
 {
 Check.IsNotNull(uriConfiguration, ″uriConfiguration″);

 baseAddress = uriConfiguration.BaseAddress;

 uriTemplates = new UriTemplateTable(baseAddress);
 uriTemplates.KeyValuePairs.Add(new KeyValuePair<UriTemplate, object>(
 uriConfiguration.RecentFeedTemplate, GetFeedOfRecentEvents));
 uriTemplates.KeyValuePairs.Add(new KeyValuePair<UriTemplate, object>(
 uriConfiguration.FeedTemplate, GetFeed));
 }

 public Uri BaseAddress
 {
 get { return baseAddress; }
 }

 public IRepositoryCommand CreateCommand(Uri uri)
 {
 UriTemplateMatch match = uriTemplates.MatchSingle(uri);

 if (match == null)
 {
 throw new InvalidUriException(string.Format(″Invalid uri: [{0}]″,
 uri.AbsoluteUri));
 }

230 CHAPTER 7: the atom syndication format

 var commandFactoryMethod = (Func<NameValueCollection, IRepositoryCommand>)
 match.Data;
 return commandFactoryMethod.Invoke(match.BoundVariables);
 }
}

GetFeedOfRecentEvents and GetFeed are static functions, both of which accept a

NameValueCollection parameter and return a command. In the case of GetFeedCommand,

this command is initialized with a ResourceId based on an id value in the parameters

collection.

The constructor for Routes associates these functions with UriTemplates by adding

them to a UriTemplateTable object. When it receives a request, CreateCommand(...)

matches the request URI with a template in this table. If it finds a match, it invokes the

associated function, passing in any variables parsed out of the request URI. The com-

mand returned from this invocation becomes the return value for CreateCommand(...).

At startup, the notifications service is initialized with a repository, which is then passed

to this command. With each request, the repository queries the underlying store and

returns a representation object, which the notifications service then hands to the con-

dition (If-None-Match) supplied in the request. This condition is responsible for creat-

ing a Response object.

Writing the response
In Example 7-27, we saw that the response returned by NotificationsService.
GetResponse(...) is applied to a wrapped instance of the HttpListener’s outgoing

response. This Response wrapper object applies a representation to a ResponseContext

object and then flushes this context to the response stream. Example 7-30 shows how

this is implemented.

Example 7-30.  Response.ApplyTo(…) applies a response context to an outgoing response

public void ApplyTo(IResponseWrapper responseWrapper)
{
 ResponseContext context = new ResponseContext();
 context.AddHeader(statusCode);
 representation.UpdateContext(context);
 context.ApplyTo(responseWrapper);
}

In our .NET service, representation data is built up using a decorator pattern.* The

representation returned from a repository comprises one of three feed instances—

WorkingFeed, FeedOfRecentEvents, or ArchiveFeed—plus, in each case, an inner

FileBasedAtomDocument instance.

*	http://en.wikipedia.org/wiki/Decorator_pattern

http://en.wikipedia.org/wiki/Decorator_pattern

231Building an Atom Service in .NET

As a result of using the decorator pattern, several representation objects contribute

HTTP headers and entity body strategies to the response context:

WorkingFeed

Adds a short caching policy to the context, plus a response body rewriting strategy

that transforms a recent events feed into a working feed

FeedOfRecentEvents

Simply adds a short caching policy to the response context

ArchiveFeed

Adds a long caching policy

FileBasedAtomDocument

Adds Content-Type, Last-Modified, and ETag HTTP headers to the response con-

text, and a strategy that opens the feed file for reading

Entity body strategies are simply functions that open files and apply transformations

to file contents. By implementing a strategy as a function, we allow its execution to be

deferred until the service is certain it is needed. While a FileBasedAtomDocument object

may add a function that opens a feed file to the response context, and a WorkingFeed

a function that transforms feed file contents into a working feed, neither function will

be invoked until the service determines it is necessary to open a file and write the con-

tents to the response stream. If the service receives a conditional GET and determines

that the requested feed has not changed since it was last requested, it skips these func-

tions and writes only the necessary headers to the output.

Implementing Conditional GETs
As we mentioned, our .NET service supports conditional GET operations as a perfor-

mance and scalability optimization. The FileBasedAtomDocument class generates several

representation values, including an entity tag value based on a feed’s filename and

write time, as illustrated in Example 7-31.

Example 7-31.  Generating HTTP headers based on file properties

public FileBasedAtomDocument(string fileName,
 IChunkingStrategy chunkingStrategy)
{
 fileInfo = new FileInfo(fileName);

 if (!fileInfo.Exists)
 {
 throw new NotFoundException(
 string.Format(″File does not exist. File: [{0}].″, fileInfo.FullName));
 }

232 CHAPTER 7: the atom syndication format

 eTag = new ETag(
 string.Format(@″″″{0}#{1}″″″, fileInfo.Name, fileInfo.LastWriteTimeUtc.Ticks));
 chunking = chunkingStrategy.CreateHeader(fileInfo.Length);
 lastModified = new LastModified(fileInfo.LastWriteTimeUtc);
}

Because they’re based on file properties rather than the contents of a file, these entity

tag values are relatively cheap to generate. The service can compare an entity tag value

supplied in a request’s If-None-Match header with a feed’s current value, and return

304 Not Modified if the feed hasn’t changed since it was last requested—all without

once having to open and read a file.

To see how this is implemented, we’ll look at the IfNoneMatch class. As we saw when

we looked at ServiceHost.HandleRequest(...), every request is wrapped with an

object that implements IRequestWrapper. The IRequestWrapper interface exposes an

ICondition property. Example 7-32 shows HttpListenerRequestWrapper’s implementa-

tion of this Condition property.

Example 7-32.  Retrieving an entity tag value from a request

public ICondition Condition
{
 get
 {
 string eTag = request.Headers[″If-None-Match″];
 if (string.IsNullOrEmpty(eTag))
 {
 return NullCondition.Instance;
 }

 Log.DebugFormat(″If-None-Match header present. ETag: [{0}].″, eTag);

 return new IfNoneMatch(new ETag(eTag));
 }
}

The request member variable here is an instance of HttpListenerRequest, which is the

request as it comes off the wire. The Condition property parses out the If-None-Match

header from this request. If the header value exists, it returns a new IfNoneMatch object;

otherwise, it returns a NullCondition instance.

Condition objects are responsible for creating responses. As Example 7-33 shows, an

IfNoneMatch condition object will return 304 Not Modified if the supplied representa-

tion contains an ETag header and matching entity tag value, or 200 OK if it doesn’t.

233Building an Atom Service in .NET

Example 7-33.  IfNoneMatch creates a response based on evaluating a condition

public IResponse CreateResponse(IRepresentation representation)
{
 HeaderQuery query = new HeaderQuery(eTag);

 if (query.Matches(representation))
 {
 Log.DebugFormat(″If-None-Match precondition failed.″);
 return Response.NotModified();
 }

 Log.DebugFormat(″If-None-Match precondition OK.″);
 return Response.OK(representation);
}

The IfNoneMatch object uses a HeaderQuery to determine whether the representation the

service is about to write contains a specific header and header value. Its Matches(...)

method is shown in Example 7-34.

Example 7-34.  HeaderQuery uses a local response context to determine whether a representation
includes a header

public bool Matches(IRepresentation representation)
{
 IResponseContext context = new ResponseContext();
 representation.UpdateContext(context);
 return context.ContainsHeader(header);
}

IfNoneMatch is an example of using a response context for a purpose other than writing

to the output stream. The response context gathers all the headers from the supplied

representation parameter. Matches(...) then uses this context to determine whether

the header exists. Because it doesn’t involve opening a file or transforming a file’s con-

tents, the context is cheap to initialize.

Wiring It Up
In our .NET implementation, the feed writer and the notifications service run on sepa-

rate threads inside the same process. The only time they need to synchronize is when

the feed writer has updated the recent events feed. When that happens, the notifica-

tions service needs to know the name of the new temporary file associated with the

recent events feed.

To achieve this, the feed writer exposes a FeedMappingsChanged event. This event is raised

when the NotifyingListeners task calls the notifyMappingsChanged parameter delegate.

234 CHAPTER 7: the atom syndication format

When the service starts, it initializes a repository instance and then subscribes the reposi-

tory’s OnFeedMappingsChanged(...) event handler to the feed writer’s FeedMappingsChanged

event. The repository’s implementation of OnFeedMappingsChanged(...) is shown in

Example 7-35.

Example 7-35.  A repository’s OnFeedMappingsChanged(…) event handler

public void OnFeedMappingsChanged(object sender,
 FeedMappingsChangedEventArgs args)
{
 Log.DebugFormat(
 ″FeedMappingsChanged event. ResourceId: [{0}]. StoreId: [{1}].″,
 args.RecentEventsFeedResourceId, args.RecentEventsFeedStoreId);

 Interlocked.Exchange(ref feedMappings, new FeedMappings(
 converter, new ResourceId(args.RecentEventsFeedResourceId),
 new StoreId<string>(args.RecentEventsFeedStoreId)));
}

A FeedMappings object is responsible for creating functions that can retrieve a spe-

cific feed file from a backing store based on an understanding of the current work-

ing feed’s ResourceId and the name of the temporary file containing the recent events

feed. The feedMappings reference changes atomically each time the repository handles

a FeedMappingsChanged event.

Atom Everywhere?
Atom, as we’ve seen, can be a powerful tool in our developer toolbox, but it’s not an

integration panacea. Originally designed for syndicating news articles and blog entries,

Atom has since proven to be applicable in many other areas—integration included.

Broadly speaking, it can be used to enrich resource representations with general-purpose

metadata, allowing consumers to search, sort, and filter representations without need-

ing to understand their details.

note
This separation of concerns between Atom and the resources it encapsulates is
helpful. It means we can use Atom-specific software for managing and consum-
ing Atom-formatted lists of resources, and more specialized software for handling
embedded content only where necessary. In turn, this allows us to implement
protocols based entirely on Atom.

Most development platforms today include an Atom library for creating and parsing

feeds and entries. But cross-platform support alone isn’t a sufficient reason to choose

Atom as a representation format. While it’s tempting to use Atom everywhere, to

235Atom Everywhere?

make every list and collection a feed and every item an entry, there are many situa-

tions where Atom is not the most appropriate representation format. If all we need is a

list, not the feed metadata, we shouldn’t burden our application with Atom’s informa-

tion overhead. If we’ve no real need for an entry’s document metadata, we shouldn’t

use Atom entries. If we find ourselves populating Atom’s metadata elements with data

that’s of no use to clients, or with default or “stub” data, we should consider employ-

ing an alternative representation format.

Assuming Atom is appropriate for our integration needs, we may still find we need to

extend the format to support some domain- or application-specific requirements. Atom’s

metadata elements implement the majority of feed syndication and document description

use cases, but it’s still quite common to discover a requirement to extend the format.

There are a couple of options to choose from when extending Atom. All Atom elements

can be extended with new attributes. Many can also be extended with additional ele-

ments. Extending Atom with additional elements and attributes is called metadata exten-

sibility. In contrast, content extensibility involves putting proprietary information inside an

entry’s <atom:content> element. Content extensibility supports media type composition,

which tends to enforce a stricter separation of concerns.

Our guidelines for choosing between these options are pretty straightforward: use

metadata extensions for adding generally applicable, application-agnostic metadata to

a feed, and use content extensibility for domain- or application-specific information. In

the majority of cases, you’re better off going with content extensibility. The more the

Atom format itself is customized for a specific domain, the less the resultant feed and

entry documents can be consumed and usefully manipulated by a generic Atom client.

Proprietary extensions to the Atom format can severely limit an application’s reach and

longevity. A test of a good extension is to ask whether a client must understand it before it

can process a feed or entry successfully. The best extensions accelerate specialized clients,

but do not hinder nonspecialized ones. Clients should be able to ignore proprietary ele-

ments when processing a feed or entry and still achieve meaningful and useful results.

Add proprietary metadata to the Atom format only when you’re certain it has broad

reach and applicability. Evaluate candidate elements in terms of their application

agnosticism and their conformance with any existing standards or community initia-

tives. There’s an obvious parallel here with microformats, which draw on prior art and

adapt commonly accepted formats.

note
The Feed Paging and Archiving specification is a proprietary metadata extension
with precisely this mix of application agnosticism and broad reach and applicability.
The specification is set out in RFC 5005.

236 CHAPTER 7: the atom syndication format

Content extensibility, on the other hand, forces a cleaner separation of responsibilities:

Atom clients handle feed and entry metadata, and specialized processors handle the

application-specific content, with content dispatched to specialized processors based on

its type.

After the Event
In this chapter, we explored the Atom Syndication Format and used it to develop an

event-driven system for propagating product information around Restbucks. In particular,

we saw how Atom as a hypermedia format can be used to create a simple protocol that

allows consumers to consume both current and historical notifications. We also saw how

load can be federated across the network with caches to increase availability and decrease

load and response times for the product catalog service and downstream systems.

Atom-based services score highly on Richardson’s service maturity model. Atom feeds

and entries advertise service-generated URIs that link to other resources; this is a sim-

ple but powerful example of the hypermedia constraint, and is considered level three

(the highest level) on the Richardson maturity model.

237

C h a p t e r e ig h t

Atom Publishing Protocol

In the preceding chapter we learned about Atom, a hypermedia format for

publishing timestamped lists of web content. We then successfully applied that format

to creating an event-driven system, typical of both enterprise and Internet computing,

where events published by one system as an Atom feed were consumed and processed

by downstream systems.

In this chapter, we’re going to look at Atom Publishing Protocol (AtomPub), a protocol

that is built on top of Atom, and which is used for publishing and editing web resources.*

As a publishing protocol, AtomPub provides a standard mechanism for creating and

editing resources, and resolving any arising conflicts. AtomPub extends the Atom for-

mat with a number of new publishing-related elements; at the same time, it specifies

the HTTP idioms that can be used to manipulate published content.

Once we’ve understood AtomPub, we’ll look at how it can serve as a foundation for

our own domain application protocols. In the second half of the chapter, we show how

Restbucks built an order fulfillment protocol and service atop AtomPub.

note
In Chapter 5, we used custom domain application protocols. AtomPub is a general-
purpose domain application protocol, which is widely understood and supported by
many software tools.

*	http://www.ietf.org/rfc/rfc5023.txt

http://www.ietf.org/rfc/rfc5023.txt

238 CHAPTER 8: atom publishing protocol

Atom Publishing Protocol
Resources can be created on or off the Web. Resources that are generated by a back-

end process inserting a row in a database table are created off-Web. Atom Publishing

Protocol, in contrast, uses HTTP to create resources on the Web.

AtomPub is a domain application protocol for publishing and editing web content

(including binary content) with associated Atom metadata. The protocol is composed

of a number of protocol-specific resources, plus the rules governing how a client can

manipulate these resources using HTTP verbs, headers, and status codes.

AtomPub addresses issues common to many publishing scenarios: the concurrent edit-

ing of resources and the visibility of published resources. It implements an optimistic

concurrency control mechanism based on HTTP entity tags and validators. Using an

extension to the Atom format, it provides clients with the ability to control the public

visibility of published resources.

Overview
AtomPub describes itself as “an application-level protocol for publishing and editing

web resources…based on HTTP transfer of Atom-formatted representations.” Despite

its brevity, this description captures several key points about AtomPub:

It’s an application-level protocol

AtomPub is an application-level protocol, meaning it’s implemented in software at

the application layer, not the transport or network layer. Being a protocol, it gov-

erns the interactions between two applications, a client and a server, in the con-

text of a specific goal. That goal is to publish web resources. AtomPub lays out the

rules a client and server use to create and edit web resources.

It’s designed for publishing and editing web content

A web resource is anything that can be put on the Web and given an address.

AtomPub is concerned with web resources in general, not just Atom feeds and

entries. This may seem a little odd at first, but it makes more sense when we

understand that the “Atom” in “Atom Publishing Protocol” refers not to the thing

being published, but to the carrier format used to transfer a representation of the

thing being published.

It’s based on the HTTP transfer of Atom-formatted representations

AtomPub reuses a more general-purpose application transfer protocol, HTTP,

to implement a domain-specific application protocol. To create and edit web

resources, clients and servers exchange Atom-formatted representations of these

resources using HTTP idioms.

239Atom Publishing Protocol

When to Use AtomPub
We can, of course, create and manipulate resources directly using the HTTP idioms

discussed in previous chapters, effectively creating our own custom publishing pro-

tocols. After all, the CRUD systems we looked at in Chapter 4 also implement simple

publishing protocols. So, why would we want to use Atom and AtomPub to do the same

thing? As with Atom, reach and interoperability weigh heavily in AtomPub’s favor.

AtomPub is applicable in many publishing scenarios precisely because it addresses a

core set of well-understood activities; it covers the bulk of common publishing use cases

much as Atom covers the core elements common to an envelope format.

We recommend using AtomPub for the following:

Creating and manipulating Atom entries

A web resource published by AtomPub doesn’t have to be an Atom entry; it simply

needs to be added to the content of an Atom entry while participating in the proto-

col. But given the prominent role AtomPub attaches to Atom, it makes perfect sense

to use the protocol to publish Atom entries. In other words, AtomPub is the ideal

means for manipulating the contents of Atom feeds in a standardized manner.

Associating Atom metadata with published web resources

If we need to record events in a resource’s life cycle—when it was published,

when it last changed, and so on—or index it by some document attributes (such

as author and title), or categorize it, Atom and AtomPub provide a means for asso-

ciating this information with the resource as part of the publishing process.

Promoting an interoperable publishing protocol

We can use AtomPub wherever we require an unambiguous, interoperable

mechanism for creating and editing resources. Though programming support for

AtomPub is not as widespread as it is for Atom, it is still relatively easy to imple-

ment the protocol on popular platforms.

Underpinning a domain application protocol

Besides its intrinsic utility, AtomPub acts as a useful foundation for creating higher-

level domain-specific application protocols. In the example at the end of this chapter,

we show how Restbucks implements an order fulfillment protocol using AtomPub.

Anatomy of AtomPub
AtomPub servers host collections of published web content. When a client submits a

piece of content to a collection, the server creates an Atom-formatted member to con-

tain that content and represent its associated Atom metadata. Clients can then use this

new member’s URI to further manipulate the web resource and its metadata.

AtomPub services also host service and category documents, which together help cli-

ents discover collections and understand how the contents of those collections can be

manipulated.

240 CHAPTER 8: atom publishing protocol

Taken together with the Atom format specification, AtomPub is an excellent example

of a hypermedia-driven application protocol. AtomPub’s processing model defines four

things that are key to building hypermedia applications:

•	 Resource representation formats

•	 Hypermedia control markup

•	 The HTTP idioms clients can use to manipulate resources

•	 The link relations servers use to advertise legitimate state transitions

A good RESTful protocol can be described in terms of resources, representation for-

mats, methods, and status codes.* Atom Publishing Protocol is described in exactly

these terms. Its moving parts include four resources—members, collections, service

documents, and category documents—and their representation formats. Members and

collections are abstract names for the things targeted by publishing activities. A mem-

ber encapsulates a representation of a published web resource, or a representation of a

resource that is in a draft state, waiting to be published. A collection is a set of mem-

bers. In AtomPub, a member is represented as an Atom entry, a collection as an Atom

feed. The activities used to manipulate these resources are described in terms of HTTP

methods, headers, and status codes.

Example 8-1 shows an AtomPub collection with three members.

Example 8-1.  An AtomPub collection with three members

<feed xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>

 <title>Product Catalog</title>
 <link rel=″self″ href=″http://restbucks.com/product-catalog″/>
 <updated>2010-02-01T13:04:30Z</updated>
 <generator uri=″http://restbucks.com/product-catalog″>
 Product Catalog Service
 </generator>
 <id>urn:uuid:1d0f1a52-31d7-11df-b8ee-f47856d89593</id>

 <entry>
 <title>Fairtrade Roma Coffee Beans</title>
 <id>urn:uuid:7b512808-31d7-11df-aede-127c56d89593</id>
 <updated>2010-01-29T08:22:00Z</updated>
 <app:edited>2010-02-01T13:04:30Z</app:edited>
 <author>
 <name>Product Manager A</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>

*	See “How to Create a REST Protocol,” http://www.xml.com/pub/a/2004/12/01/restful-web.html.

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://restbucks.com/product-catalog%E2%80%B3/
http://restbucks.com/product-catalog%E2%80%B3
http://www.xml.com/pub/a/2004/12/01/restful-web.html

241Atom Publishing Protocol

 <product xmlns=″http://schemas.restbucks.com/product″>
 <name>Fairtrade Roma Coffee Beans</name>
 <size>1kg</size>
 <price>10</price>
 </product>
 </content>
 <link rel=″edit″ href=″http://restbucks.com/product-catalog/1234″/>
 </entry>

 <entry>
 <title>Fairtrade Roma Coffee Beans</title>
 <id>urn:uuid:08acdbfe-31db-11df-9fa6-839856d89593</id>
 <updated>2010-01-29T08:22:00Z</updated>
 <app:edited>2010-01-29T08:22:00Z</app:edited>
 <author>
 <name>Product Manager A</name>
 </author>
 <summary type=″text″>Fairtrade Roma Coffee Beans image</summary>
 <content type=″image/png″
 src=″http://restbucks.com/product-catalog/fairtrade_roma.png″/>
 <link rel=″edit-media″
 href=″http://restbucks.com/product-catalog/fairtrade_roma.png″ />
 <link rel=″edit″
 href=″http://restbucks.com/product-catalog/5555″ />
 </entry>

 <entry>
 <title>Early Riser Promotion</title>
 <id>urn:uuid:3bb346e8-31d9-11df-8999-e78956d89593</id>
 <updated>2010-01-28T10:02:00Z</updated>
 <app:edited>2010-01-28T10:02:00Z</app:edited>
 <author>
 <name>Product Manager B</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 <promotion xmlns=″http://schemas.restbucks.com/promotion″>
 <effective>2010-03-01T00:00:00Z</effective>
 <product type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/products/156″ />
 <region type=″application/vnd.restbucks+xml″
 href=″http://restbucks.com/regions/23″ />
 </promotion>
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>

http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/product-catalog/1234%E2%80%B3/
http://restbucks.com/product-catalog/fairtrade_roma.png%E2%80%B3/
http://restbucks.com/product-catalog/fairtrade_roma.png%E2%80%B3
http://restbucks.com/product-catalog/5555%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://restbucks.com/products/156%E2%80%B3
http://restbucks.com/regions/23%E2%80%B3

242 CHAPTER 8: atom publishing protocol

 <link rel=″edit″ href=″http://restbucks.com/product-catalog/9876″/>
 </entry>

</feed>

The collection comprises an Atom feed whose default namespace, http://www.
w3.org/2005/Atom, belongs to the Atom Syndication Format. The collection also

includes some AtomPub elements belonging to the AtomPub namespace, http://
www.w3.org/2007/app. These elements are considered foreign markup, and will be

safely ignored by an Atom processor that doesn’t understand AtomPub.

The first member in the collection in Example 8-1 has been edited more recently than

the other two. The second member is a media link entry whose <atom:content> ele-

ment’s href value points to an image of some coffee beans. Its edit-media link allows the

client to delete or replace this image; its edit link allows the client to edit the entry (i.e.,

the image metadata).* The last member in the collection contains an <app:draft> ele-

ment with a status of yes, indicating that this member is not to be made publicly visible.

Now that we have an overall understanding of AtomPub, we’ll examine in more

detail AtomPub’s resources, their representation formats, and the HTTP idioms used to

manipulate them.

Collections
Collections are defined in service documents. The protocol doesn’t specify how they

are created or deleted. Collections support the following operations:

•	 To list a collection’s members, a client sends a GET to the collection’s URI.

•	 To create a new member, a client POSTs a representation of the prospective mem-

ber to a collection’s URI. Different collections support different media types. The

set of acceptable media types supported by a collection is typically specified in a

service document (described later in this section).

Upon successful creation of a member resource, a service responds with a 201 Created

status code and a Location header containing the URI of the newly created member.

This URI is called the member URI. The body of the response contains an Atom entry

representing the new member resource. The new resource’s member URI also appears

as the value of an edit link in this member’s entry in a collection.

Although AtomPub establishes the conventions for creating and modifying web

resources, the server always determines whether an interaction is permitted. The

server mints URIs and controls the URI space and the members identified by these

URIs. Clients can create their own ID for a new member, but the server is entitled to

modify the member and its representation, and even assign a new ID, as it sees fit.

*	We describe media link entries in more detail later on.

http://restbucks.com/product-catalog/9876%E2%80%B3/
http://www
http://www.w3.org/2007/app
http://www.w3.org/2007/app

243Atom Publishing Protocol

Servers will not, however, modify any IDs the client assigns to the underlying web

resources—that is, the server won’t touch the contents of member representations.

The entity body in the response to a POST reflects whatever actions the server has

applied to a member in the course of handling a request.

Members
Members in a collection are time-ordered based on the value of their <app:edited> ele-

ments (we provide details of this new element shortly), with the most recently edited

member appearing first. Members support the following operations:

•	 To get a representation of a member resource, a client sends a GET to the resource’s

member URI.

•	 To update a member resource, a client sends a PUT request to its member URI.

•	 To delete a resource, a client sends a DELETE request to its member URI.

Text-based resource representations can be included directly in a member’s

<atom:content> element. Images, videos, and executables, on the other hand, can’t

be included directly. To cover these different situations, AtomPub breaks mem-

bers down into a couple of subtypes. Members that can be represented using Atom

entries are called entry resources. Members whose representations can’t be included

directly in an Atom entry are called media resources. Entry resources can be included

directly in a collection feed; media resources can’t. In place of a media resource,

a proxy resource, known as a media link entry, is inserted in a collection feed. This

media link entry contains the media resource’s metadata, plus a link to the media

resource itself.

Category and service documents
Whereas collections and members transport representations of web resources, category

and service documents describe the overall protocol. In particular, they group collec-

tions into workspaces, describe each collection’s capabilities, describe which categories

and media types belong to each collection, and provide discovery mechanisms based

on well-known entry points to collections. AtomPub provides simple XML vocabular-

ies for service and category documents, borrowing elements from the Atom format

wherever possible.

Category documents. Category documents contain lists of categories for categorizing

collections and members. A category list can be fixed, meaning it’s a closed set, or left

open, allowing for subsequent extension.

Category documents have their own processing model, with a media type of application/
atomcat+xml.

244 CHAPTER 8: atom publishing protocol

Restbucks’ product catalog, which we looked at in the preceding chapter, is updated

using AtomPub. Because products can be categorized in a number of different ways,

Restbucks’ product catalog service exposes several category documents, one of which

is shown in Example 8-2.

Example 8-2.  A category document containing a fixed set of categories

<categories xmlns=″http://www.w3.org/2007/app″
 xmlns:atom=″http://www.w3.org/2005/Atom″
 scheme=″http://restbucks.com/product-catalog/categories/status″ fixed=″yes″>
 <atom:category term=″new″/>
 <atom:category term=″updated″/>
 <atom:category term=″deleted″/>
</categories>

Example 8-2 shows a closed set of categories. These categories can be used to indicate

the status of a product entry in a product catalog feed. The category document’s root

element belongs to the AtomPub namespace, but the categories themselves are defined

using <atom:category> elements.

Service documents. A service document acts as a well-known entry point into the col-

lections hosted by a service. From a service document, a client can navigate to the col-

lections provided by the service. As shown in Figure 8-1, a service groups collections

into workspaces. A service document can contain more than one workspace, and a

collection can appear in more than one workspace.

Figure 8-1.  Service documents group collections into workspaces

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3

245Atom Publishing Protocol

Service documents have their own processing model, with a media type of application/
atomsvc+xml.

Restbucks’ product catalog service has a service document, which acts as a well-known

entry point into the catalog, as shown in Example 8-3.

Example 8-3.  Service document for Restbucks’ product catalog

<service
 xmlns=″http://www.w3.org/2007/app″
 xmlns:atom=″http://www.w3.org/2005/Atom″>
 <workspace>
 <atom:title>Product Catalog</atom:title>
 <collection href=″http://restbucks.com/product-catalog/products″>
 <atom:title>Products</atom:title>
 <accept>application/atom+xml;type=entry</accept>
 <categories href=″http://restbucks.com/product-catalog/categories/status″/>
 </collection>
 <collection href=″http://restbucks.com/product-catalog/promotions″>
 <atom:title>Promotions</atom:title>
 <accept>application/atom+xml;type=entry</accept>
 <accept>image/png</accept>
 <accept>image/gif</accept>
 <categories href=″http://restbucks.com/product-catalog/categories/status″/>
 <categories href=″http://restbucks.com/product-catalog/categories/scope″/>
 <categories scheme=″http://restbucks.com/product-catalog/categories/origin″
 fixed=″yes″>
 <atom:category term=″in-house″/>
 <atom:category term=″partner″/>
 </categories>
 </collection>
 </workspace>
</service>

The product catalog service document contains a single workspace, which represents

the editable face of the catalog. This workspace contains two collections: one for prod-

ucts, the other for promotions. Clients interact with these collections by dereferencing

the href attribute values associated with each collection.

Collections indicate which media types they support using <app:accept> elements. While

the product collection only accepts Atom entries in POSTs to the collection, the promo-

tions collection accepts both Atom entries and two types of images. Each collection also

advertises a number of categories. The product collection’s <app:categories> element ref-

erences an external category document (in fact, the category document described earlier).

The promotions collection includes an inline set of categories.

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/products%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3/
http://restbucks.com/product-catalog/promotions%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3/
http://restbucks.com/product-catalog/categories/scope%E2%80%B3/
http://restbucks.com/product-catalog/categories/origin%E2%80%B3

246 CHAPTER 8: atom publishing protocol

AtomPub Extensions to Atom
AtomPub extends Atom in a number of ways:

•	 It uses Atom extensibility to add three new entry elements: <app:edited>,

<app:control>, and <app:draft>. These elements belong to the AtomPub namespace.

•	 It adds two new link-relation values, edit and edit-media, to the IANA Link

Relations registry.

•	 It adds a type parameter to the Atom media type.

AtomPub also introduces a new HTTP header, Slug. Clients can include a Slug header

when creating a new member. The Slug header represents a request that the server

include the header value (or a modified version of the header value) in the URI, ID, or

title of a new member. A client might use a Slug header to encourage the server to cre-

ate pretty or human-readable URIs for a particular member.

app:edited
The <app:edited> element indicates when a member was created or last edited. Every

member in a collection must contain exactly one <app:edited> element. Members in

an AtomPub collection are ordered by <app:edited>, with the most recently created

or updated members appearing first in the collection. The server changes the value of

<app:edited> every time the member’s metadata or content changes. <atom:updated>,

on the other hand, only needs to be updated when a “significant” change occurs, typi-

cally in the member content. As we suggested in Chapter 7, in some circumstances we

might give clients control of the <atom:updated> value. Clients, after all, are best placed

to determine which changes are significant. <app:edited>, on the other hand, is always

under the server’s control.

app:control and app:draft
<app:control> is an Atom extension used to host publishing controls. Publishing con-

trols are Atom extension elements dedicated to controlling parts of the publishing life

cycle. <app:draft> is one such publishing control. Both collections and members can

incorporate an <app:control> element. The <app:draft> value represents a client’s

preference regarding the visibility of a member; the server can always ignore the cli-

ent’s request and publish the submitted feed or entry as normal.

edit and edit-media link relation values
AtomPub adds the edit and edit-media link relation values to the IANA Link Relations

registry. Links with these relation values point to editable member entries and editable

media resources, respectively. Clients can use edit and edit-media links to GET, PUT,

and DELETE the resources with which they are associated.

247Atom Publishing Protocol

type parameters
AtomPub extends the Atom media type of application/atom+xml with a type param-

eter. Using this parameter, feeds can be identified as application/atom+xml;type=feed

and entries as application/atom+xml;type=entry. The introduction of the type param-

eter caters to different client processing capabilities. Clients designed to handle feeds

will usually handle entries as well; applications designed to handle just entries, how-

ever, won’t necessarily cater to feeds. Clients that understand the type parameter can

eagerly invoke the appropriate processing model. Clients that don’t understand the

parameter still have to examine the root element of an Atom-formatted representation

to determine which processing model to apply.

Concurrency Control
One of the most important issues AtomPub addresses is how a service coordinates

and resolves multiple updates from different clients. Once it has been made available

through an edit link, a web resource is potentially subject to concurrent manipulation

by several different clients. In these situations, it is possible that instructions from one

client can countermand or overwrite the instructions issued by another, often without

either party being aware of the conflict until some time later. This can give rise to the

“lost update” problem.

The lost update problem is best illustrated with an anecdote. When Restbucks first opened

its doors, communications between customers and staff members were uncoordinated. It

wasn’t unusual for orders to change, sometimes several times. When this happened, all

bets were off: no one could be sure what the prepared drinks would look like.

Imagine a situation in which a couple orders two lattes. The pair wanders off—one

person to browse a magazine, the other to make a phone call. Moments later, the first

customer returns to the counter and asks for a second shot in one of the lattes. Shortly

after that, the second customer, her call completed, comes back to the counter and

asks to change the order to a latte and a cappuccino. When preparing the drinks, the

barista makes a cappuccino and a latte, both with just a single shot.

This example illustrates how, in the absence of an explicit coordination protocol,

a sequence of instructions issued by different parties can lead to an incorrect out-

come.* Our barista followed the last instruction he received, but from the first cus-

tomer’s point of view, this resulted in the initial correction to the order being lost or

overwritten.

*	The lost update problem is described in more detail in a W3C note from 1999, “Detecting the Lost
Update Problem Using Unreserved Checkout,” at http://www.w3.org/1999/04/Editing/.

http://www.w3.org/1999/04/Editing/

248 CHAPTER 8: atom publishing protocol

note
What should be considered a correct outcome, and the rules for achieving that
outcome, vary according to the business process. Here we would expect a cashier
or barista to notify the second customer that the order has already been modified.
This would give the customer a chance to change the instruction so as to take
account of the previous modification. That’s the right thing to do here, but in other
circumstances, it might be more correct to refuse the second instruction until the
first has been completed.

To stop this problem from being repeated, Restbucks could require customers to

hang on to their order until they see it being prepared by a barista, effectively

implementing a pessimistic locking approach. But this solution consumes space at

the counter. Moreover, it’s extremely inconvenient for customers. Exclusive locking

of resources becomes prohibitively expensive when we scale things out on the Web.

Instead of using pessimistic locking to prevent conflicts and lost updates, AtomPub

implements an unreserved checkout strategy. Unreserved checkout means that a

resource isn’t locked while a client is working with it. AtomPub’s lightweight alterna-

tive to pessimistic locks uses entity tags and validators to identify potential conflicts,

thereby implementing an optimistic locking scheme. When a client POSTs an order

to the service, the server responds with 201 Created and an ETag header containing a

unique identifier for that particular version of the resource:

HTTP/1.1 201 Created
...
ETag: ″44bd59eeb984c″

When a client PUTs a subsequent modification to the server, it adds an If-Match header

and the last known ETag entity value to the request:

PUT /orders/123 HTTP/1.1
...
If-Match: ″44bd59eeb984c″

If the resource has changed on the server since the supplied entity tag value was gen-

erated, the server responds with 412 Precondition Failed.

note
This strategy is not exclusive to AtomPub. As we saw in Chapter 4, ETags and
If-Match validators provide a useful optimistic locking strategy irrespective of the
protocol. AtomPub showcases the utility and value of this approach.

Of course, the client could use a conditional GET to determine whether the resource

has changed. But even if this conditional GET returns 304 Not Modified, there’s noth-

ing to stop a second client from changing the resource before the first finally PUTs its

changes—a race condition still exists. Conditional GETs are optional when updating a

resource; conditional PUTs aren’t.

249Implementing Order Fulfillment Using AtomPub

Based on a 412 Precondition Failed, the client must decide what to do next. The simplest

thing is to GET the latest version of the resource (and its new entity tag value), apply the

changes all over again, and then conditionally PUT the modified representation back to

the server using the new entity tag value. Some clients, however, will want to examine

the latest representation of a resource to determine what has changed in the interven-

ing period. The decision as to whether to proceed with another PUT may require man-

ual (human) intervention. It’s analogous to a cashier detecting that an order has been

changed since he last saw it and questioning the customer to confirm her intentions.

As we will see shortly, Restbucks can exclusively use AtomPub to coordinate order ful-

fillment, avoiding the lost update problem without resorting to out-of-band coordina-

tion or fancy middleware.

Implementing Order Fulfillment Using AtomPub
Following its shambolic first few days in business, when fickle customers exposed the

flaws in its order fulfillment process (as described in the “lost update” anecdote in

the preceding section), Restbucks took a long, hard look at the ad hoc coordination

mechanisms behind the counter and decided to implement a more robust process—

one designed to guarantee that customers got what they wanted, no matter how many

times they changed their minds. In the following sections, we’re going to show how

Restbucks now implements order fulfillment using AtomPub.

Overview
Before we dive into the details, let’s review the steps in the fulfillment sequence:

•	 A cashier takes an order from a customer.

•	 The cashier adds the order to a list of orders awaiting fulfillment and takes pay-

ment from the customer.

•	 The store’s baristas work their way through the list of unfulfilled orders, usually

but not always picking up the oldest first.

•	 When a barista finishes making all the drinks in an order, he hands them over to

the customer.

•	 Prior to the drinks being prepared, the order can be modified or canceled.

What we’re facing here, from an application integration point of view, is a case of com-

peting consumers. In the competing consumer pattern, multiple receivers—baristas in this

case—process messages (orders) from a single point-to-point channel.* The success of the

pattern relies on there being no temporal dependencies between messages. That is, mes-

sage B can be successfully processed before message A, even though it arrived after A.

*	Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2003).

250 CHAPTER 8: atom publishing protocol

Restbucks’ fulfillment protocol structures and coordinates the activities that go into ful-

filling an order. The protocol is agnostic to the implementation of the fulfillment activi-

ties themselves. This means we won’t look in any detail at how any of the individual

fulfillment activities (paying, making a coffee, notifying the customer) are implemented.

Instead, we’ll look at how the protocol guides cashiers and baristas to communicate their

intended actions; how it prevents two baristas from tending simultaneously to the same

order; and how it allows cashiers to intervene and correct an order when a customer

changes her mind. What emerges is a coordination mechanism that’s completely agnos-

tic to orders—a mechanism that uses AtomPub alone, rather than the structure or con-

tent of an order, to advance the application state to a successful conclusion.

note
The rules that the cashiers and baristas use to coordinate their activities, and the
sequence of steps that abide by these rules, are an internal implementation detail
of Restbucks’ order fulfillment process. Customers are not exposed directly to this
process. All customers care about is being able to order, pay, and receive drinks in
return, perhaps changing their minds in the process. The systems that implement the
order fulfillment protocol are therefore backend systems, which use the internal.
restbucks.com hostname.

Figure 8-2 shows the interactions that comprise the fulfillment protocol. Use this dia-

gram to follow along as we describe the protocol in more detail.

Figure 8-2.  Driving the fulfillment protocol using AtomPub

251Implementing Order Fulfillment Using AtomPub

Adding an Order to the Fulfillment Pipeline
We’ll start by assuming a cashier has just taken an order from a customer. Having

taken the order, the cashier adds it to a list of unfulfilled orders. This list functions as

a backlog of tasks that supplies the baristas with new work items. Example 8-4 shows

what this list looks like just before the cashier adds the new order.

Example 8-4.  An AtomPub collection representing the order fulfillment pipeline

<feed xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>

 <title>Order Fulfillment</title>
 <link rel=″self″ href=″http://internal.restbucks.com/fulfillment″/>
 <updated>2010-03-29T13:00:30Z</updated>
 <generator uri=″http://internal.restbucks.com/fulfillment″>
 Order Fulfillment Service
 </generator>
 <id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186ea409</id>

 <app:collection href=″http://internal.restbucks.com/fulfillment″>
 <title>Order Fulfillment Service</title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 </app:collection>

 <entry>
 <title>order</title>
 <id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
 <updated>2010-03-29T13:00:30Z</updated>
 <app:edited>2010-03-29T13:00:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/1234″/>
 </entry>

</feed>

As you can see, the order fulfillment pipeline is implemented as an AtomPub collec-

tion. To advertise its capabilities, the collection includes an <app:collection> element

whose child <app:accept> element indicates that the collection accepts representations

of type application/atom+xml;type=entry.

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

252 CHAPTER 8: atom publishing protocol

note

<app:collection> elements are normally found in AtomPub service documents,
but they can also be added to feeds.

The collection currently has one member. This member is in a draft state, as signaled

by the presence of an <app:draft> element with a value of yes. In the context of the

fulfillment protocol, a draft member is simply one that is not visibly in progress. It rep-

resents an order that has not yet been picked up by a barista.

To begin the fulfillment process for a new order, the cashier must POST an Atom-

formatted representation of a new order to the collection. Example 8-5 shows this POST

request.

Example 8-5.  A cashier POSTs an order to the order fulfillment collection

POST /fulfillment HTTP/1.1
Host: internal.restbucks.com
Content-Type: application/atom+xml
Content-Length: ...

<entry xmlns=″http://www.w3.org/2005/Atom″>

 <title>order</title>

 <id>urn:uuid:b8e77ffa-31b4-11df-a2b3-1a8155d89593</id>

 <updated>2010-03-29T13:01:30Z</updated>

 <author>

 <name>Cashier</name>

 </author>

 <content type=″application/vnd.restbucks+xml″>

 <order xmlns=″http://schemas.restbucks.com/order″>

 <consume-at>takeAway</consume-at>

 <items>

 <item>

 <name>latte</name>

 <quantity>1</quantity>

 <milk>whole</milk>

 <size>small</size>

 </item>

 </items>

 </order>

 </content>

</entry>

On receiving the new order, the fulfillment server creates a new member and then

responds with 201 Created. Example 8-6 shows the response.

http://www.w3.org/2005/Atom%E2%80%B3
http://schemas.restbucks.com/order%E2%80%B3

253Implementing Order Fulfillment Using AtomPub

Example 8-6.  The server responds with a representation of the new order

HTTP/1.1 201 Created
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=entry;charset=″utf-8″
Location: http://internal.restbucks.com/fulfillment/9876
Content-Location: http://internal.restbucks.com/fulfillment/9876
ETag: ″3f2b06f7″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:01:30Z</updated>
 <app:edited>2010-03-29T13:01:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
</entry>

The response includes a Location header containing the member URI of the newly

created entry. Because the response contains a Content-Location header as well as a

Location header, the cashier can treat the entity body as an authoritative representa-

tion of the new entry, as per the AtomPub specification.

Below the headers, the entity body contains the AtomPub member representation. In

the fulfillment protocol, this member represents an instance of fulfilling an order. The

order itself has been encapsulated as a child of the member’s <atom:content> element.

When engaged in coordinating fulfillment activities as part of the fulfillment protocol,

cashiers and baristas deal with AtomPub collections and members. When they come

to undertake a specific fulfillment activity, such as making a drink, they deal with the

order details inside a member’s <atom:content>.

The server has created a new ID for the new member (replacing the ID supplied by the

cashier). This ID serves as an ID for this instance of fulfillment. The cashier can asso-

ciate this fulfillment ID with the original order ID, thereby reconciling records in dif-

ferent systems and providing full end-to-end auditing of the progress of an order. The

server has also added an <app:edited> timestamp, an <app:draft> element indicating

that the order is not yet being actively fulfilled, and an edit link to the new member.

http://internal.restbucks.com/fulfillment/9876
http://internal.restbucks.com/fulfillment/9876
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

254 CHAPTER 8: atom publishing protocol

In a happy-path scenario, this is the last a cashier has to do with the order fulfillment

process. We’ll look later at what happens if the cashier wants to amend or cancel the

order.

Beginning Fulfillment
Let’s turn now to the baristas. Each Restbucks store employs several baristas, all of

whom take work from the same list of unfulfilled orders. That list is the same one

we’ve just been looking at: the AtomPub collection at http://internal.restbucks.com/
fulfillment.

When a barista needs more work to do, it retrieves the current list of outstanding

orders. Example 8-7 shows a typical request and response.

Example 8-7.  A barista GETs the list of outstanding orders

Request:
GET /fulfillment HTTP/1.1
Host: internal.restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=feed;charset=″utf-8″

<feed xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>

 <title>Order Fulfillment</title>
 <link rel=″self″ href=″http://internal.restbucks.com/fulfillment″/>
 <updated>2010-03-29T13:01:30Z</updated>
 <generator uri=″http://internal.restbucks.com/fulfillment″>
 Order Fulfillment Service
 </generator>
 <id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186ea409</id>

 <app:collection href=″http://internal.restbucks.com/fulfillment″>
 <title>Order Fulfillment Service</title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 </app:collection>

 <entry>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:01:30Z</updated>
 <app:edited>2010-03-29T13:01:30Z</app:edited>

http://internal.restbucks.com/
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3

255Implementing Order Fulfillment Using AtomPub

 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
 </entry>

 <entry>
 <title>order</title>
 <id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
 <updated>2010-03-29T13:00:30Z</updated>
 <app:edited>2010-03-29T13:00:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/1234″/>
 </entry>

</feed>

The response comprises an AtomPub collection. The collection is ordered by app:edited,

with the most recent unfulfilled order at its head. This collection of unfulfilled orders

currently contains two members, the topmost one being the order we’ve just seen the

cashier submit.

Though not an intrinsic part of the protocol, it’s customary for baristas to take the old-

est outstanding order, which in this instance is the last member in the collection. As

shown in Example 8-8, the barista GETs a full representation of the order using the

member’s edit link.

Example 8-8.  The barista GETs an unfulfilled order

Request:
GET /fulfillment/1234 HTTP/1.1
Host: internal.restbucks.com

http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

256 CHAPTER 8: atom publishing protocol

Response:
HTTP/1.1 200 OK
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=entry
ETag: ″3877069e″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
 <updated>2010-03-29T13:00:30Z</updated>
 <app:edited>2010-03-29T13:00:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/1234″/>
</entry>

The server replies with a member representation whose <atom:content> element con-

tains the order details (omitted here to emphasize the parts of the member that are

used in the fulfillment protocol). The response also includes an ETag header.

The barista can now use this ETag header to do a conditional PUT back to the mem-

ber’s edit URI (its member URI). Before sending the member representation back to

the member URI, the barista removes its <app:control> and <app:draft> elements. The

overall intention of the PUT is to reserve or check out the order, thereby preventing

other baristas from working on it at the same time.

note
An AtomPub member without an <app:draft> element is treated as though it had
an <app:draft> element with a value of no. By removing these two elements, the
barista announces (or publishes) its intention to fulfill the order. Draft members
represent orders waiting to be fulfilled; “published” members represent orders that
are currently being fulfilled.

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

257Implementing Order Fulfillment Using AtomPub

Failed reservation
The barista’s PUT takes the form of a conditional PUT to the member’s edit URI. By

using an If-Match header, the barista effectively says, “Please accept this representa-

tion of my intent, but only if the order is in the same state as when I last looked at it.”

Example 8-9 shows the PUT.

Example 8-9.  The barista does a conditional PUT to reserve an outstanding order

PUT /fulfillment/1234 HTTP/1.1
Host: internal.restbucks.com
Content-Type: application/atom+xml;type=entry
Content-Length: ...
If-Match: ″3877069e″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
 <updated>2010-03-29T13:03:00Z</updated>
 <app:edited>2010-03-29T13:00:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/1234″/>
</entry>

Unfortunately, another barista has already started work on this particular order. The

state of the underlying resource, therefore, has changed since our barista last looked

at it (i.e., between the barista GETting and conditionally PUTting the order). As a result,

the conditional PUT fails, as shown in Example 8-10.

Example 8-10.  Response to the conditional PUT

HTTP/1.1 412 Precondition Failed
Date: ...

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

258 CHAPTER 8: atom publishing protocol

Try again
Not to worry. Our barista simply has to find more work to do. It does so by navigating

to the top of the orders list, attempting to reserve unfulfilled orders along the way. As

it happens, the list contains only one more outstanding order: the one recently placed

by the cashier at the beginning of this example. So, the barista tries that one.

note
Newer orders may, in fact, be present in the system, but the barista is working from
a copy of the orders collection that is slowly becoming stale. This isn’t really an
issue. Once a barista has exhausted the copy of the list it currently holds, it GETs a
fresh copy from http://internal.restbucks.com/fulfillment. This new copy
will contain any orders generated in the intervening period (in fact, it will contain
both new orders and all orders currently being fulfilled). As far as is practically pos-
sible, baristas try to take a first-in, first-out approach to serving coffees. The oldest
orders are dealt with first. Newer orders don’t become visible to a barista until the
backlog has been cleared.

Example 8-11 shows the barista GETting the topmost member in the collection.

Example 8-11.  The barista looks at another recent order

Request:
GET /fulfillment/9876
Host: internal.restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=entry
ETag: ″83fd0a03″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:01:30Z</updated>
 <app:edited>2010-03-29T13:01:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>
 <app:draft>yes</app:draft>

http://internal.restbucks.com/fulfillment
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3

259Implementing Order Fulfillment Using AtomPub

 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
</entry>

Once again, the barista attempts to reserve the order using a conditional PUT.

Example 8-12 shows the resultant request and response. Note that before PUTting

the member back to the server, the barista updates the member’s <atom:updated>

element and adds its name to the list of contributors.

Example 8-12.  Successfully reserving an outstanding order

Request:
PUT /fulfillment/9876 HTTP/1.1
Host: internal.restbucks.com
Content-Type: application/atom+xml;type=entry
Content-Length: ...
If-Match: ″83fd0a03″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:04:00Z</updated>
 <app:edited>2010-03-29T13:01:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
</entry>

Response:
HTTP/1.1 200 OK
Date: ...

This time, the PUT succeeds.

Where are we?
What would the fulfillment backlog look like if a cashier or barista were to do a GET

now? Let’s assume neither of the orders we’ve looked at so far has been completed.

To make matters more interesting, we’ll say that the cashier has recently submitted a

third order. Given this state of affairs, Example 8-13 shows the current collection.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

260 CHAPTER 8: atom publishing protocol

Example 8-13.  The orders collection with one new and two in-process orders

<feed xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>

 <title>Order Fulfillment</title>
 <link rel=″self″ href=″http://internal.restbucks.com/fulfillment″/>
 <updated>2010-03-29T13:04:30Z</updated>
 <generator uri=″http://internal.restbucks.com/fulfillment″>
 Order Fulfillment Service
 </generator>
 <id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186ea409</id>

 <app:collection href=″http://internal.restbucks.com/fulfillment″>
 <title>Order Fulfillment Service</title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 </app:collection>

 <entry>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:04:00Z</updated>
 <app:edited>2010-03-29T13:04:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
 </entry>

 <entry>
 <title>order</title>
 <id>urn:uuid:1b305ebe-9077-42e5-bd95-00792c33ffbf</id>
 <updated>2010-03-29T13:03:30Z</updated>
 <app:edited>2010-03-29T13:03:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <app:control>

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

261Implementing Order Fulfillment Using AtomPub

 <app:draft>yes</app:draft>
 </app:control>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9999″/>
 </entry>

 <entry>
 <title>order</title>
 <id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
 <updated>2010-03-29T13:02:00Z</updated>
 <app:edited>2010-03-29T13:02:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista B</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/1234″/>
 </entry>

</feed>

The first and third members represent orders currently being fulfilled (neither contains

an <app:control> or <app:draft> element). The middle member represents the latest

order submitted by the cashier. The members are ordered by <app:edited>, with the

most recently edited member first. The server changes a member’s <app:edited> value

every time the resource changes. Because our barista reserved an order some moments

after the cashier POSTed a newer order, it’s the in-process order, not the new order, that

appears at the top of the collection.

Completing the Protocol
Remember, the process outlined here is responsible solely for coordinating fulfillment

activities. It doesn’t have anything to do with how each fulfillment activity is actually

implemented. This means that once a barista has reserved an order, the barista must

step outside AtomPub to make the drinks.

When making the drinks, the barista will peer into the <atom:content> element and

inspect the order details. In other words, it drops down to a media type processor capa-

ble of handling application/vnd.restbucks+xml to process the representation trans-

ported in the <atom:content> element.

After making the customer’s drinks, the barista completes the fulfillment protocol by

deleting the member, as shown in Example 8-14.

http://internal.restbucks.com/fulfillment/9999%E2%80%B3/
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

262 CHAPTER 8: atom publishing protocol

Example 8-14.  Completing the fulfillment protocol

Request:
DELETE /fulfillment/9876 HTTP/1.1
Host: internal.restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...

And that’s it: coffee’s served.

Exceptions
That’s the happy path. Now let’s look at some exceptional circumstances. First, what

happens if a customer changes her mind?

If a customer asks to change her order, the cashier must attempt to modify the rel-

evant member in the fulfillment backlog. Using the member’s edit link, the cashier

can GET an up-to-date representation of the member, together with a fresh entity tag.

The cashier modifies the order details inside atom:content, and then conditionally PUTs

the member back to its edit URI. If the member is still in a state that allows it to be

updated (it hasn’t been reserved by a barista), the PUT will succeed. If the server deter-

mines it’s too late to modify this instance of fulfillment—perhaps because preparation

is already underway—it returns 412 Precondition Failed.

note
Completed orders, of course, can’t be changed: they must be thrown away. Whether
this is a permitted outcome for an order depends on a business-level trade-off
among order throughput, cost, and customer satisfaction.

If the cashier PUTs a changed order back to the server after a barista has retrieved a

member representation, but before the barista has reserved the enclosed order using

its own conditional PUT, the cashier’s PUT will succeed (thereby modifying the order),

and the barista’s will fail (because the resource state will have changed in between

the barista GETting and PUTting). A barista interprets a failed PUT as meaning another

member of the staff has the member and its contained order. This results in the barista

discarding the member in favor of a more recent one. Figure 8-3 shows the sequence

of requests: you can clearly see that about two-thirds of the way down, the barista

skips /fulfillment/1234 and moves on to /fulfillment/9876.

263Implementing Order Fulfillment Using AtomPub

Figure 8-3.  Changing an order while a barista attempts to reserve it

This isn’t really a problem. At some point, one of the baristas will GET an updated ver-

sion of the orders collection. The modified (but discarded) order will appear some-

where toward the bottom of the collection, waiting to be picked off. It’s a somewhat

suboptimal solution, but so long as baristas continue polling the orders collection

whenever they’re ready to take on new jobs, it succeeds in clearing any backlog.

Canceling an order is achieved by sending a DELETE request to the current edit URI.

Occasionally, a barista will experience a 410 Gone in response to its attempt to complete

the fulfillment protocol; this occurs as a result of the order being successfully canceled

(the fulfillment resource deleted) while the drinks were being prepared.

Summary
Let’s review the solution and see what we’ve achieved. We’ve successfully progressed

through a domain-specific protocol—order fulfillment—using a more general, standardized

application protocol: AtomPub. At no point have any of the clients—cashiers and baristas

alike—had to inspect the domain-specific order XML to determine what to do next.

note
Don’t confuse the fulfillment protocol with the steps necessary to implement fulfill-
ment activities. As we saw when it came to the barista making drinks, it is perfectly
legitimate and usually necessary to peer into these domain-specific representa-
tions when implementing an activity coordinated by the protocol.

264 CHAPTER 8: atom publishing protocol

To ensure the correctness of the fulfillment protocol, we’ve had to insist that baris-

tas, whenever they GET a fresh representation of the orders collection, always start at

the bottom and work their way up the list until they find the first draft member. This

ensures that new orders sitting below recently edited in-process orders are picked up

and processed.

Implementing More Complex Protocols
Restbucks’ order fulfillment protocol is implemented entirely in AtomPub. To partici-

pate in the protocol, cashiers and baristas have simply to behave like good AtomPub

clients: POSTing an order to the fulfillment collection to create a “draft” member await-

ing fulfillment; GETting a member representation, removing its <app:draft> element,

and conditionally PUTting it back to “publish” it into an in-process state; and finally,

requesting that the server DELETE it to complete the protocol.

But order fulfillment, at least as we’ve described it here, is a relatively linear three-step

process. Few processes are as simple or as straightforward. How would we cope if there

were more steps in the protocol, or decisions that an agent—cashier or barista—had to

make somewhere along the way? Can AtomPub deal with more complex protocols?

The answer is to compose AtomPub into higher-level protocols. Such protocol imple-

mentations still use Atom as a representation format, and AtomPub to coordinate

interactions, but they add new link relation values. To progress the protocol, clients

need to understand these new values in addition to understanding AtomPub.

We’re now going to modify the implementation of Restbucks’ order fulfillment proto-

col to show how AtomPub can be composed into a more complex protocol. While the

overall business outcome is the same, the revised implementation shows how such an

approach can be used to implement more complex processes.

In this revised solution, the fulfillment service exposes several AtomPub collections,

each of which represents one or more states in the application protocol. A member

moves from one collection to another as a result of clients activating hypermedia con-

trols provided by the server.

The first thing we’re going to do is to create a service document for the new order ful-

fillment service. This document advertises the collections supported by the service, as

shown in Example 8-15.

Example 8-15.  A service document advertising the order fulfillment application state space

<service
 xmlns=″http://www.w3.org/2007/app″
 xmlns:atom=″http://www.w3.org/2005/Atom″>

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3

265Implementing Order Fulfillment Using AtomPub

 <workspace>
 <atom:title>Order Fulfillment</atom:title>
 <collection href=″http://internal.restbucks.com/fulfillment″>
 <atom:title>Order Fulfillment Service</atom:title>
 <accept>application/atom+xml;type=entry</accept>
 </collection>
 <collection href=″http://internal.restbucks.com/fulfillment/fulfilled″>
 <atom:title>Fulfilled Orders Service</atom:title>
 <accept>application/atom+xml;type=entry</accept>
 </collection>
 </workspace>
</service>

This service document has one workspace, which contains two collections. The first

collection in the workspace is the entry point into the fulfillment process. The second

collection contains members that represent instances of the fulfillment process cur-

rently in the fulfilled state. Both collections accept Atom entries.

The first part of the implementation works much as before. Cashiers POST orders to

http://internal.restbucks.com/fulfillment, whereupon the server creates a draft

member that baristas can then reserve using a conditional PUT. Things change, how-

ever, once a barista has successfully reserved a member. A fresh GET on a member’s

member URI returns the representation show in Example 8-16.

Example 8-16.  A member representing an instance of fulfillment in the in-process state

Request:
GET /fulfillment/9876 HTTP/1.1
Host: internal.restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=entry
ETag: ″495b0f8f″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>

 <updated>2010-03-29T13:04:00Z</updated>
 <app:edited>2010-03-29T13:04:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>

http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3

266 CHAPTER 8: atom publishing protocol

 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″http://relations.restbucks.com/fulfilled″
 href=″http://internal.restbucks.com/fulfillment/fullfilled″/>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
</entry>

Notice that besides an edit link, this representation includes a second <atom:link>

element, with a link relation of http://relations.restbucks.com/fulfilled.* A link

relation of http://relations.restbucks.com/fulfilled describes a URI that returns a

collection whose members represent fulfilled instances of the fulfillment protocol.

When a barista finishes making an order, it POSTs the member to the fulfilled collec-

tion, as shown in Example 8-17.

Example 8-17.  A barista completes the order fulfillment protocol by POSTing a member to the
fulfilled collection

POST /fulfillment/fullfilled HTTP/1.1
Host: internal.restbucks.com
Content-Type: application/atom+xml;type=entry
Content-Length: ...

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:05:00Z</updated>
 <app:edited>2010-03-29T13:04:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...

 </content>
 <link rel=″http://internal.restbucks.com/link-relations/fulfilled″
 href=″http://internal.restbucks.com/fulfillment/fullfilled″/>
 <link rel=″edit″ href=″http://internal.restbucks.com/fulfillment/9876″/>
</entry>

*	In accordance with the Atom Syndication Format, this proprietary link relation value is an absolute
URI.

http://relations.restbucks.com/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment/fullfilled%E2%80%B3/
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://relations.restbucks.com/fulfilled.*
http://relations.restbucks.com/fulfilled
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/link-relations/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment/fullfilled%E2%80%B3/
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

267Implementing Order Fulfillment Using AtomPub

Behind the scenes, the server applies some business logic over the internal order

resource, modifying the order’s state in line with the intentions expressed through the

client transfer of a member representation to a particular URI. At the same time, the

server determines an appropriate response to the client request based on the current

state of the internal order resource. If the order is already in a fulfilled state, POSTing a

member containing that order to the fulfilled collection results in the server returning

409 Conflict.

Assuming all goes well, the server adds the member to the fulfilled collection, as

shown in Example 8-18.

Example 8-18.  The server adds the member to the fulfilled collection

HTTP/1.1 201 Created
Date: ...
Content-Length: ...
Content-Type: application/atom+xml;type=entry;charset=″utf-8″
Location: http://internal.restbucks.com/fulfillment/fulfilled/9876
Content-Location: http://internal.restbucks.com/fulfillment/fulfilled/9876
ETag: ″c7be9039″

<entry xmlns=″http://www.w3.org/2005/Atom″ xmlns:app=″http://www.w3.org/2007/app″>
 <title>order</title>
 <id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
 <updated>2010-03-29T13:05:00Z</updated>
 <app:edited>2010-03-29T13:05:30Z</app:edited>
 <author>
 <name>Cashier</name>
 </author>
 <contributor>
 <name>Barista A</name>
 </contributor>
 <content type=″application/vnd.restbucks+xml″>
 ...
 </content>
 <link rel=″edit″
 href=″http://internal.restbucks.com/fulfillment/fulfilled/9876″/>
</entry>

Figure 8-4 shows the relations among cashiers and baristas, collections, members, and

the underlying resources.

http://internal.restbucks.com/fulfillment/fulfilled/9876
http://internal.restbucks.com/fulfillment/fulfilled/9876
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/fulfilled/9876%E2%80%B3/

268 CHAPTER 8: atom publishing protocol

Figure 8-4.  Using multiple collections to implement the order fulfillment protocol

There’s nothing in AtomPub about moving members between collections in this fash-

ion. But that doesn’t mean we’ve departed from the protocol in any way. The solu-

tion still uses AtomPub to coordinate activities and constrain the mechanisms used to

transfer representations. We use link relations to identify the links a client can use to

forward the fulfillment protocol. The client then activates these links using AtomPub.

What’s important to the client is the relationship between the linked resource and the

current representation. That relationship is determined by a link relation value. By

matching its intention to its understanding of the link relation values on offer, a client

can determine which link to pursue next. This decision is based on the client’s current

understanding of its own particular roles, responsibilities, and goals, and the current

state of the fulfillment activity for which it’s responsible.

The server mints links with proprietary link relation values to guide clients down the

correct path. It interprets a client’s intentions by attaching different pieces of process-

ing logic to each URI. It then activates this logic according to the URI chosen by the

client. The server knows which links to mint based on the current and possible next

states of an order resource. Taken together, these links form a set of legitimate transi-

tions through which clients can change the application state of the fulfillment process.

Implementing AtomPub in .NET
In this section, we show how Restbucks has implemented a simple version of the ful-

fillment service using Windows Communication Foundation (WCF). WCF provides a

service hosting runtime that takes care of some of the low-level plumbing, allowing us

269Implementing AtomPub in .NET

to concentrate on the overall design of our service. Since we tend to work in a rapid,

test-driven manner, we’ve decoupled our service implementation from the WCF run-

time. This enables us to deliver functionality quickly by specifying and testing specific

HTTP interactions without having to start and stop a service instance.

Because the fulfillment protocol is built on top of AtomPub, our solution needs to imple-

ment AtomPub collection and member protocol resources. We’ll start by describing how

we’ve built these collections and members using some of the .NET Framework’s syndi-

cation classes. After that, we’ll look at how to add domain logic that instantiates these

classes in line with the fulfillment protocol. Next, we’ll look at the simple Test Driven

Development–centric framework we use to decouple our service implementation from

the WCF runtime. Last, we’ll examine the commands that we use to handle requests.

Implementing AtomPub Collections and Members
As we mentioned in Chapter 7, the .NET Framework’s System.ServiceModel.Syndication

namespace contains a number of classes that can be used to implement feeds and entries.

For example, by adding a list of SyndicationItem objects to a SyndicationFeed and then

outputting that feed using an Atom10FeedFormatter, we can easily generate an Atom feed.

AtomPub, as we’ve seen, adds several extension elements to Atom’s basic feed format.

Our fulfillment service uses a member’s <app:edited> element and its <app:control>

and <app:draft> extension elements to coordinate the fulfillment of coffee orders. In

addition, the fulfillment collection itself exposes an <app:collection> element that

advertises which media types a cashier can use to initiate the fulfillment process. To

use these elements in our solution, we must extend the framework classes.

The .NET Framework allows SyndicationFeed and SyndicationItem classes to be sub-

classed. To illustrate how we can implement AtomPub extensions by subclassing syndi-

cation classes, we’ll look in detail at how we extend the SyndicationItem class to provide

EditedDateTime and Draft properties corresponding to the <app:edited> and <app:draft>

extension elements. Example 8-19 shows the implementation of our Member class.

Example 8-19.  Subclassing SyndicationItem to implement AtomPub extension elements

public class Member : SyndicationItem
{
 private const string EditedElementName = ″edited″;
 private const string ControlElementName = ″control″;
 private const string DateTimeFormat = ″yyyy-MM-ddTHH:mm:ssZ″;

 private static readonly DataContractSerializer ControlSerializer =
 new DataContractSerializer(typeof (ControlExtension));

 private ControlExtension control;
 private DateTimeOffset? editedDateTime;

270 CHAPTER 8: atom publishing protocol

 public Member()
 {
 control = new ControlExtension {Draft = DraftStatus.No};
 }

 public DraftStatus Draft
 {
 get { return control.Draft; }
 set { control.Draft = value; }
 }

 public DateTimeOffset EditedDateTime
 {
 get
 {
 if (editedDateTime == null)
 {
 editedDateTime = LastUpdatedTime;
 }
 return editedDateTime.Value;
 }
 set { editedDateTime = value; }
 }

 protected override bool TryParseElement(XmlReader reader, string version)
 {
 if (reader.LocalName.Equals(ControlElementName) &&
 reader.NamespaceURI.Equals(Namespaces.AtomPub))
 {
 control = (ControlExtension) ControlSerializer.ReadObject(reader);
 return true;
 }
 if (reader.LocalName.Equals(EditedElementName) &&
 reader.NamespaceURI.Equals(Namespaces.AtomPub))
 {
 editedDateTime = reader.ReadElementContentAsDateTime();
 return true;
 }
 return base.TryParseElement(reader, version);
 }

 protected override void WriteElementExtensions(XmlWriter writer, string version)
 {
 writer.WriteStartElement(EditedElementName, Namespaces.AtomPub);
 writer.WriteValue(FormatDateTime(EditedDateTime));
 writer.WriteEndElement();

271Implementing AtomPub in .NET

 if (control != null)
 {
 ControlSerializer.WriteObject(writer, control);
 }

 base.WriteElementExtensions(writer, version);
 }

 private static string FormatDateTime(DateTimeOffset dateTime)
 {
 return dateTime.ToUniversalTime().ToString(DateTimeFormat);
 }
}

Member has two properties, Draft and EditedDateTime, each of which is backed by a

member variable. The first of these, Draft, is of type ControlExtension, which is a sim-

ple serializable class, as shown in Example 8-20.

Example 8-20.  ControlExtension represents the app:control and app:draft elements

[DataContract(Name = ″control″, Namespace = Namespaces.AtomPub)]
public class ControlExtension
{
 [DataMember(Name = ″draft″)]
 private string draft;

 public DraftStatus Draft
 {
 get
 {
 if (string.IsNullOrEmpty(draft))
 {
 return DraftStatus.No;
 }
 return DraftStatus.Parse(draft);
 }
 set { draft = value.Value; }
 }
}

To ensure that these elements are serialized and deserialized correctly, we override

SyndicationItem’s WriteElementExtensions(...) and TryParseElement(...) meth-

ods, respectively. When serializing a member, WriteElementExtensions(...) writes

the <app:edited> value to the supplied XML writer directly, and then uses a static

ControlSerializer to serialize a ControlExtension instance into <app:control> and

<app:draft> elements. When deserializing a member from an XML document,

272 CHAPTER 8: atom publishing protocol

TryParseElement(...) parses these same elements from the supplied XML reader and

instantiates the corresponding .NET classes.

note
Member is initialized with a draft status of DraftStatus.No. This is to cater to
situations where the received XML representation of a member does not include
<app:control> and <app:draft> elements. As per the AtomPub specification,
a member without an <app:draft> element is assumed to be in a published (not
draft) state.

Our Collection class extends the SyndicationFeed class in a similar manner to Member.

Collection provides a CollectionExtension property that indicates which media types

a client can use to initiate the fulfillment process.

Using Collections and Members for Order Fulfillment
The fulfillment service uses AtomPub members to represent instances of fulfillment

(both outstanding and in-process), and AtomPub collections to represent lists of ful-

fillment instances. To ensure that collections and members are created with the cor-

rect property values according to our domain business rules, we create Fulfillment

and FulfillmentCollection classes. Fulfillment encapsulates a single member.

It controls access to this member according to our fulfillment business rules.

FulfillmentCollection does the same for an AtomPub collection.

When a cashier submits a new order to the service, the service creates a new Fulfillment

object. This fulfillment instance initializes a Member object with the Atom and AtomPub

metadata used throughout the fulfillment process, as shown in Example 8-21.

Example 8-21.  The Fulfillment constructor initializes a Member object with the necessary
metadata

public Fulfillment(Guid id, DateTimeOffset createdDateTime,
 SyndicationContent content, Uri baseUri, string author)
{
 member = new Member
 {
 Title = SyndicationContent.CreatePlaintextContent(″order″),
 Id = new UniqueId(id).ToString(),
 LastUpdatedTime = createdDateTime,
 EditedDateTime = createdDateTime,
 Draft = DraftStatus.Yes,
 Content = content
 };
 member.Authors.Add(new SyndicationPerson {Name = author});
 member.Links.Add(new EditLink(baseUri, id).ToSyndicationLink());
}

273Implementing AtomPub in .NET

In a similar fashion, FulfillmentCollection initializes a Collection object with service-

specific metadata. After it has been constructed, a fulfillment collection can be popu-

lated with AtomPub members by calling its Add(...) method and supplying a list of

member objects. The implementation of Add(...) is shown in Example 8-22.

Example 8-22.  FulfillmentCollection’s Add(…) method adds members to the underlying
collection

public void Add(IEnumerable<Fulfillment> newMembers)
{
 foreach (Fulfillment member in newMembers)
 {
 member.DoAction(i => members.Add(i));
 }

 members.Sort((x, y) =>
 ((Member) y).EditedDateTime.CompareTo(
 ((Member) x).EditedDateTime));

 if (members.Count > 0)
 {
 collection.LastUpdatedTime = ((Member) members.First()).EditedDateTime;
 }
}

Add(...) can’t assume that the supplied members are in any particular order, so after it

has added the new members to the existing list, it sorts the entire list. This ensures that

the members are ordered correctly based on their app:edited values. Once the list has

been sorted, the collection’s LastUpdatedTime property is set to the EditedDateTime of

the first (i.e., the most recent) member.

To illustrate how Fulfillment implements some of our domain logic, let’s look at what

happens when a fulfillment instance is updated. When a cashier or barista PUTs a

revised member to the service, the corresponding fulfillment instance is retrieved from

a repository and updated via its Edit(...) method, as shown in Example 8-23.

Example 8-23.  Updating a fulfillment instance

public Fulfillment Edit(Member editedMember, DateTimeOffset editedDateTime)
{
 if (member.Draft.Equals(DraftStatus.No))
 {
 throw new InvalidOperationException(″Fulfillment can no longer be edited.″);
 }

 member.EditedDateTime = editedDateTime;
 member.Draft = editedMember.Draft;
 member.Content = editedMember.Content;

274 CHAPTER 8: atom publishing protocol

 return this;
}

In the simplest version of our fulfillment protocol, a fulfillment instance can no longer

be modified once it has been claimed by a barista. At the AtomPub level, this means

that a member can no longer be edited once it has been published. If the member

belonging to an existing fulfillment instance has been published, Edit(...) throws an

exception; otherwise, it updates the fulfillment instance’s member properties with val-

ues from the member contained in the request.

Testing WCF REST Services
Before we look at how we’ve implemented the fulfillment service itself, we’ll exam-

ine the mechanism we’ve used to separate the service implementation from the WCF

runtime.

The WCF runtime acts as a service factory. This factory creates new service instances

based on a declarative (config-, code- or attribute-based) service specification. When a

WCF service starts, the runtime assembles a channel stack based on this specification. The

channel stack takes care of a lot of common infrastructure tasks, including serializing,

encoding, and dispatching messages to .NET methods. Importantly, for web applications,

the channel stack also initializes an instance of WCF’s WebOperationContext helper class,

which provides access to the HTTP request and response context. This helper object is

available to service instances through the WebOperationContext.Current property.

With the HTTP context so tightly coupled to the WCF runtime, to test a service we must

first start a service instance and then send it requests using an HTTP client. This adds

unnecessary complexity to every test, as well as slowing down the execution of a large

suite of tests—both of which hamper development. Because access to the HTTP context is

critical to our service implementation, we decided to create our own wrapper around this

context so that we could isolate our code from any runtime dependencies.

With this approach, our service logic is written against a request interface that we

define, and populates a response object that we own. At runtime, we pass the service

an implementation of our request interface that delegates to the WCF request instance.

In our tests, however, we use a fake request. This allows us fine-grained control over

all parts of the request, including the URI, headers, and entity body. When the service

is finished handling a request, it creates a response object, which once again belongs to

our decoupling framework. At runtime, this response populates a WCF response con-

text; in our tests, it populates a fake context.

Example 8-24 shows our IRequest interface. Note that for requests containing an

entity body we’ve also created a generic interface that derives from this base interface.

This latter interface is parameterized with the deserialized type associated with the

entity body in the service implementation.

275Implementing AtomPub in .NET

Example 8-24.  IRequest abstracts the runtime HTTP request context

public interface IRequest
{
 Uri Uri { get; }
 IRequestHeaders Headers { get; }
}

public interface IRequest<T> : IRequest
{
 T EntityBody { get; }
}

At runtime, service instances are given an instance of WcfRequest, the implementation

of which is shown in Example 8-25.

Example 8-25.  WcfRequest wraps the WCF request context at runtime

public class WcfRequest : IRequest
{
 private readonly Uri uri;
 private readonly IRequestHeaders headers;
 private readonly string method;

 public WcfRequest(OperationContext operationContext,
 WebOperationContext webOperationContext)
 {
 uri = GetUri(operationContext);
 headers = GetHeaders(webOperationContext);
 method = GetMethod(webOperationContext);
 }

 public Uri Uri
 {
 get { return uri; }
 }

 public IRequestHeaders Headers
 {

 get { return headers; }
 }

 protected static Uri GetUri(OperationContext context)
 {
 return context.EndpointDispatcher.EndpointAddress.Uri;
 }

276 CHAPTER 8: atom publishing protocol

 protected static IRequestHeaders GetHeaders(WebOperationContext context)
 {
 return new WcfRequestHeaders(context.IncomingRequest.Headers);
 }

 protected static string GetMethod(WebOperationContext context)
 {
 return context.IncomingRequest.Method;
 }
}

public class WcfRequest<T> : WcfRequest, IRequest<T>
{
 private readonly T entityBody;

 public WcfRequest(OperationContext operationContext,
 WebOperationContext webOperationContext)
 : base(operationContext, webOperationContext)
 {
 entityBody = GetEntityBody(operationContext);
 }

 public T EntityBody
 {
 get { return entityBody; }
 }

 private T GetEntityBody(OperationContext context)
 {
 var storedMessage = context.Extensions.Find<StoredMessage>();
 return storedMessage.Message.GetBody<T>();
 }
}

Most of the implementation of WcfRequest is quite straightforward. The WCF channel

stack creates instances of OperationContext and WebOperationContext for each request.

These instances are passed to the WcfRequest constructor, where they are used to ini-

tialize its property values.

The one piece of code that requires further explanation is the implementation of

GetEntityBody(...). Here we retrieve a copy of the entity body from the operation

context’s Extensions collection. We do this so that we can incorporate the entity body

into a cohesive request object.

277Implementing AtomPub in .NET

note
The entity body is also made available to our service logic through a service method
parameter. For example, the order fulfillment service’s CreateMember(...) method
has a member parameter (of type Atom10ItemFormatter) that represents the entity
body. In deciding to ignore this parameter in favor of a copy of the entity body that
has been pushed onto the operation context, we made a deliberate decision to rein-
force the cohesiveness of our request object (the request brings together headers
and the entity body) at the expense of a small degree of additional complexity.

WCF extensions provide a mechanism for sharing state between different stages in the

processing of a message. With our framework, as a message progresses through the

message pipeline created by the WCF channel stack, we intercept it and put a copy

into a StoredMessage extension object. We then attach this extension object to the cur-

rent operation context. The extension is retrieved by a WcfRequest instance once the

runtime has handed control to our service implementation.

To copy and store the received message in the operation context, we create a message

inspector. WCF provides many extensibility points; message inspectors plug into one

of these extensibility points, allowing us to examine or modify messages prior to being

handed off to the service implementation. Example 8-26 shows the implementation of

our StoreMessage message inspector.

Example 8-26.  StoreMessage copies a received message and attaches it to the operation
context

public class StoreMessage : IDispatchMessageInspector
{
 public object AfterReceiveRequest(ref Message request,
 IClientChannel channel, InstanceContext instanceContext)
 {
 MessageBuffer buffer = request.CreateBufferedCopy(Int32.MaxValue);
 OperationContext.Current.Extensions.Add(
 new StoredMessage(buffer.CreateMessage()));
 request = buffer.CreateMessage();
 buffer.Close();

 return null;
 }

 public void BeforeSendReply(ref Message reply, object correlationState)
 {
 //Do nothing
 }
}

278 CHAPTER 8: atom publishing protocol

The IDispatchMessageInspector interface here is defined by WCF. As you can see, the

interface’s methods allow us to handle received messages prior to them being deserial-

ized into our service’s typed objects, as well as deal with outgoing responses once they’ve

been serialized into WCF messages. We take advantage only of the former capability,

creating a copy of the received message, putting the copy into a new StoredMessage, and

adding this stored message to the current operation context’s Extensions collection.

We insert the message inspector into the dispatching runtime using a service behav-

ior, which is attached to the service host using a custom class attribute on the service

implementation. This custom attribute, WcfDecouplingSupportAttribute, is shown in

Example 8-27.

Example 8-27.  WcfDecouplingSupportAttribute attaches a message inspector to the dispatch
runtime

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public class WcfDecouplingSupportAttribute : Attribute, IServiceBehavior
{
 public void Validate(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 //Do nothing
 }

 public void AddBindingParameters(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters)
 {
 //Do nothing
 }

 public void ApplyDispatchBehavior(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 IEnumerable<DispatchRuntime> runtimes =
 (from ChannelDispatcher cd in serviceHostBase.ChannelDispatchers
 from EndpointDispatcher e in cd.Endpoints
 select e.DispatchRuntime);

 foreach (DispatchRuntime dr in runtimes)
 {
 dr.MessageInspectors.Add(new StoreMessage());
 }
 }
}

279Implementing AtomPub in .NET

Again, IServiceBehavior is an interface defined by WCF. When a service host starts,

it calls the behavior’s interface methods at the appropriate point in the service startup

life cycle. When ApplyDispatchBehavior(...) is called, the attribute instance adds a

StoreMessage message inspector to each dispatch runtime.

The last parts of the WCF decoupling framework are the Request.Handle<>(...) and

RequestWithEntityBody.Handle<>(...) methods. Each method accepts a function that

takes a request object and parameters collection, and which returns a response. The

methods are responsible for creating WcfRequest objects, invoking the service logic in

the supplied function, and applying the response to the WCF response context.

WCF Service Implementation
With our AtomPub Collection and Member classes and our domain-specific Fulfillment

and FulfillmentCollection classes in place, we’re ready to implement AtomPub.

note
Our solution implements only a subset of AtomPub, because order fulfillment itself
requires only a subset of the protocol.

Our first task is to create a C# service contract interface whose methods represent

AtomPub transitions, as shown in Example 8-28.

Example 8-28.  IOrderFulfillmentService exposes AtomPub resources and state transitions

[ServiceKnownType(typeof (Atom10FeedFormatter))]
[ServiceKnownType(typeof (Atom10ItemFormatter))]
public interface IOrderFulfillmentService
{
 [OperationContract]
 [WebGet(UriTemplate = ″/″)]
 Atom10FeedFormatter<Collection> GetCollection();

 [OperationContract]
 [WebGet(UriTemplate = ″/{id}″)]
 Atom10ItemFormatter<Member> GetMember(string id);

 [OperationContract]
 [WebInvoke(Method = ″POST″, UriTemplate = ″/″)]
 Atom10ItemFormatter<Member> CreateMember(Atom10ItemFormatter member);

 [OperationContract]
 [WebInvoke(Method = ″PUT″, UriTemplate = ″/{id}″)]
 void UpdateMember(string id, Atom10ItemFormatter<Member> member);

280 CHAPTER 8: atom publishing protocol

 [OperationContract]
 [WebInvoke(Method = ″DELETE″, UriTemplate = ″/{id}″)]
 void DeleteMember(string id);
}

This interface is attributed with two ServiceKnownType attributes. These attributes indi-

cate to the runtime that it can expect to serialize and deserialize Atom10FeedFormatter

and Atom10ItemFormatter types when handling requests and returning responses.

In addition, each interface method has an OperationContract attribute, and either

a WebGet or WebInvoke attribute. WebGet associates the attributed method with GET

requests that match the supplied URI template. These requests will be dispatched to

that attributed method’s implementation at runtime. WebInvoke associates any other

HTTP verb (and the specified URI template) with the attributed method.

We now create a service class, OrderFulfillmentService, which implements this inter-

face contract, as shown in Example 8-29.

Example 8-29.  OrderFulfillmentService handles requests at runtime

[ServiceBehavior(IncludeExceptionDetailInFaults = false,
 ConcurrencyMode = ConcurrencyMode.Single,
 InstanceContextMode = InstanceContextMode.PerCall)]
[WcfDecouplingSupport]
[AllowXmlSubTypeExtension]
public class OrderFulfillmentService : IOrderFulfillmentService
{
 private readonly CommandFactory commands;

 public OrderFulfillmentService(CommandFactory commands)
 {
 this.commands = commands;
 }

 public Atom10FeedFormatter<Collection> GetCollection()
 {
 return Request.Handle(
 (request, parameters) =>
 commands.GetFulfillmentCollection()
 .Execute(request, parameters));
 }

 public Atom10ItemFormatter<Member> GetMember(string id)
 {
 return Request.Handle(
 (request, parameters) =>
 commands.GetFulfillment()
 .Execute(request, parameters));
 }

281Implementing AtomPub in .NET

 public Atom10ItemFormatter<Member> CreateMember(Atom10ItemFormatter member)
 {
 return RequestWithEntityBody.Handle<Atom10ItemFormatter,
 Atom10ItemFormatter<Member>>(
 (request, parameters) =>
 commands.CreateFulfillment()
 .Execute(request, parameters));
 }

 public void UpdateMember(string id, Atom10ItemFormatter<Member> member)
 {
 RequestWithEntityBody.Handle<Atom10ItemFormatter<Member>>(
 (request, parameters) =>
 commands.UpdateFulfillment()
 .Execute(request, parameters));
 }

 public void DeleteMember(string id)
 {
 Request.Handle(
 (request, parameters) =>
 commands.DeleteFulfillment().Execute(request, parameters));
 }
}

This class has been attributed with our framework’s WcfDecouplingSupport attri-

bute. It has also been attributed with AllowXmlSubTypeExtension, which is another

custom service behavior. AllowXmlSubTypeExtension configures the service to accept

representations whose Content-Type header value ends with +xml. Above these two

custom attributes, the ServiceBehavior attribute controls the execution behavior

of a service instance. As indicated by the PerCall value of the InstanceContextMode

property of this ServiceBehavior attribute, WCF creates a new instance of the ser-

vice class for each request, ensuring that the service doesn’t retain any state between

requests.

Looking at the body of OrderFulfillmentService, the interesting thing is that it doesn’t

contain any service logic. Each service method simply creates a command, which

it then executes to handle the request. The code that creates and executes a com-

mand is written as a lambda expression, which the service method passes to a static

Handle<>(...) method from our own WCF decoupling framework. Handle<>(...) is

parameterized with the types of the request and response entity bodies.

The service logic, then, is encapsulated in a number of commands, each of which can

be developed and tested in isolation from the service infrastructure and runtime. Each

command is responsible for validating a request, constructing a domain object (or

retrieving one from a repository), and invoking its functionality. Example 8-30 shows

the UpdateFufillment command implementation.

282 CHAPTER 8: atom publishing protocol

Example 8-30.  UpdateFulfillment command

public class UpdateFulfillment
{
 private readonly IRepository repository;
 private readonly IDateTimeProvider dateTimeProvider;

 public UpdateFulfillment(IRepository repository,
 IDateTimeProvider dateTimeProvider)
 {
 this.repository = repository;
 this.dateTimeProvider = dateTimeProvider;
 }

 public Response Execute(IRequest<Atom10ItemFormatter<Member>> request,
 NameValueCollection parameters)
 {
 if (request.Headers.IfMatch == null)
 {
 return new Response(Status.PreconditionFailed);
 }

 if (!MediaTypes.AtomEntry.IsTypeAndSubtypeMatch(
 request.Headers.ContentType))
 {
 return new Response(Status.UnsupportedMediaType);
 }

 try
 {
 ETaggedEntity eTaggedEntity = repository.Get(new Guid(parameters[″id″]));

 if (!eTaggedEntity.EntityTag.Equals(request.Headers.IfMatch))
 {
 return new Response(Status.PreconditionFailed);
 }

 Fulfillment fulfillment = eTaggedEntity.Fulfillment.Edit(
 (Member)request.EntityBody.Item, dateTimeProvider.Now);
 repository.Update(fulfillment, request.Headers.IfMatch);
 }
 catch (MemberDoesNotExistException)
 {
 return new Response(Status.NotFound);
 }
 catch (OptimisticUpdateFailedException)
 {

283A Versatile Protocol

 return new Response(Status.PreconditionFailed);
 }
 catch (InvalidOperationException)
 {
 return new Response(Status.Conflict);
 }

 return new Response(Status.OK);
 }
}

This command first validates that the request contains an If-Match header and a

Content-Type header with the correct content type (application/atom+xml). If either

test fails, it returns a response with the appropriate 4XX status code. If both guard

clauses pass, the command then retrieves the latest version of the fulfillment instance

from the repository.

If the entity tag associated with the latest version doesn’t match the value supplied in

the If-Match header, the command returns 412 Precondition Failed. If the values do

match, it updates the latest version with the member supplied in the request’s entity

body, and then updates the fulfillment instance in the repository. If at any point an

error occurs, the command returns a 4XX status code; otherwise, it returns a response

with 200 OK.

A Versatile Protocol
In this chapter, we looked at Atom Publishing Protocol: a standardized mechanism

for creating and editing web content. AtomPub addresses many common publishing

use cases, and though programming support is not as ubiquitous as it is for Atom, it’s

still the closest thing we have to a broadly adopted, interoperable publishing protocol.

AtomPub should be at the forefront of our minds whenever we need to implement

publishing functionality for collections of web resources.

note
There’s no need to use AtomPub everywhere, however. If our solution doesn’t require
Atom metadata, it’s simpler to adopt a plain CRUD protocol, as we saw in Chapter 4.
We can always implement AtomPub’s optimistic locking strategy (based on entity tags
and validators) if the need for some form of concurrency control arises.

There’s a nice symmetry in being able to publish web resources using collections and

members, and then consume them using feeds and entries. In simple cases, the col-

lections we use for publishing resources can also serve as the feeds we expose to

other consumers. Our event stream capability, for example, could be outsourced to an

AtomPub server. This would allow many applications to publish events to a collection

(using AtomPub), from where they could then be consumed by any number of clients.

284 CHAPTER 8: atom publishing protocol

In other circumstances, however, we might consider separating the publishing of

resources from their consumption. In the case of AtomPub, a collection is dedicated

to the publishing needs of a service and any clients that wish to publish resources.

For example, Restbucks’ headquarters uses the product catalog AtomPub collection

to manage (i.e., publish and edit) the contents of the product catalog. Stores, on the

other hand, have no interest in editing catalog entries, nor do they care that feeds

have been ordered according to AtomPub’s rules.

To meet the needs of stores, we might consider creating more specialized feeds, gener-

ated using the same underlying resources but lacking the AtomPub extensions. These

feeds would be made available at different URIs from that of the collection. We might

even consider exposing product catalog data in a format other than Atom. This high-

lights the fact that not everything published using AtomPub needs to be surfaced as an

Atom feed.

In the second half of this chapter, we looked at ways in which we can build domain

application protocols on top of the more general-purpose AtomPub. Here we saw how

the server wholly encapsulates the specific knowledge necessary to construct a domain

application protocol. In our example, the server maintains a rich domain model of

newly created and in-process orders. This model encapsulates the business logic and

behaviors controlling the resource life cycles of those domain objects.

Based on its understanding of the current state of a resource, the server constructs

AtomPub representations that guide cashiers and baristas to progress the application

protocol. As these clients manipulate application state using the legitimate links in the

member representations returned by the server, the server changes the underlying

resource state, which in turn is reflected in the links made available to the clients in

subsequent responses.

This chapter has shown that AtomPub can be used to implement common enterprise

integration patterns (e.g., pub/sub) without resorting to specialized infrastructure or

writing new code. This is an exciting prospect: the Web’s commodity workhorse proto-

cols are already well suited to enterprise heavy lifting.

All we need now is to secure these systems, and we’ll have an entire enterprise stack.

And the Web provides that too, so read on.

285

C h a p t e r n i n e

Web Security

This chapter focuses on some exciting developments in security proto-

cols, which combine the Web’s features with mature cryptographic techniques. Yet

secure systems need more than just clever cryptography at the network layer to be

secure, so throughout this chapter we’ll take a systematic view of web security. We’ll

investigate the following four core pillars of secure computing and show how to apply

them to build distributed systems on the Web:

Confidentiality

The ability to keep information private while in transit or in storage

Integrity

The ability to prevent information from being changed undetectably

Identity

The ability to authenticate parties involved in an interaction

Trust

Authorizing a party to interact with a system in a prescribed manner

The Web has evolved solutions to each of these challenges, and in this chapter, we’ll show

how those techniques can be adopted for building secure computer-to-computer services.

286 CHAPTER 9: web security

HTTP Security Essentials
The web community has developed a number of higher-order protocols that address

issues such as identity and trust. These protocols sit atop HTTP so as to allow systems

to interoperate securely. We’ll look at these protocols shortly, but before we do so, we

should understand the basics of HTTP security.

HTTP Authentication and Authorization
As we’ve often seen on the World Wide Web, HTTP natively supports authentica-

tion (to establish identity) and authorization (to help establish trust). When a con-

sumer attempts to access a privileged resource, credentials must be provided in an

Authorization header, or the consumer will be refused access.

In Restbucks, we can secure access to resources using this capability. For instance, we

might allow only authorized consumers to access payment resources. If an unauthor-

ized consumer tries to access a payment resource, it will be refused because it lacks

appropriate credentials.

In Example 9-1, the consumer system sends a GET request to the Restbucks payment

service. Seeing that there is no WWW-Authenticate header present, Restbucks responds

with the challenge shown in Example 9-2.

Example 9-1.  Accessing a payment resource

GET /payment/1234 HTTP/1.1
Host: restbucks.com

Example 9-2.  Restbucks challenges the consumer

401 Unauthorized
WWW-Athenticate: Basic realm=″payments@restbucks.com″

The challenge tells the consumer that Restbucks requires a Basic digest to access

some resources in the realm payments@restbucks.com.* If the consumer knows user-

name and password credentials for that realm, it hashes them and embeds them in an

Authorization header and retries the request, as shown in Example 9-3.

As an optimization, if a consumer already knows that a resource is protected through

Basic authentication, it can provide credentials with the initial request message and so

avoid the challenge-response steps.

*	A realm is an identifier that the service generates to describe the resource a consumer is trying to
access. It’s useful for browser-based systems since it can be presented to a human user for consider-
ation; it’s far less useful for machine-to-machine interactions.

mailto:payments@restbucks.com%E2%80%B3
mailto:payments@restbucks.com.*

287HTTP Security Essentials

Example 9-3.  Attempted authorized access to a payment resource

GET /payment/1234 HTTP/1.1
Host: restbucks.com
Authorization: Basic Zm9vOmJhcg==

Unfortunately, HTTP Basic authentication is not secure. Although the username and

password are never sent in plain text, the base64-encoded text is easily intercepted

and decoded. To make HTTP authentication less susceptible to simple attacks, we

need either a secure channel such as HTTPS (which we’ll see in the next section), or a

mechanism that allows credentials to be passed securely through an insecure channel.

Fortunately, this is precisely what HTTP Digest authentication provides.

Example 9-4 shows a Digest challenge from the payment service. Note that this chal-

lenge contains far more metadata than a Basic one.

Example 9-4.  Restbucks challenges the consumer

401 Unauthorized
WWW-Athenticate: Digest realm=″payments@restbucks.com″,
 qop=″auth″,
 nonce=″1e8c46a7d793433490cb8303f18a86e5″,
 opaque=″ff1eccda9ef442b3b38cabb2435d5967″

The Digest challenge metadata shown in Example 9-4 allows the consumer to trans-

mit credentials safely over the Web:

qop
Quality of Protection metadata that determines whether the consumer’s response

to the challenge should be based on the HTTP method and digest URI only

(qop=″auth″), or whether it should include the entity body too (qop=″auth-int″). If

auth-int is chosen, the entity body can be transferred in a tamper-resistant man-

ner since it is hashed in subsequent interactions.

nonce
An opaque string used to prevent replay attacks against the service. A nonce is

typically created by hashing a representation and a timestamp so that services

can uniquely identify requests and reject any suspicious repetitions. Clients are

allowed to reuse a nonce until the service generates a 401 Unauthorized response,

which may be per request or for several requests within a limited time depending

on the security requirements of the service.

opaque
Information generated by the service that should be returned unchanged in the

Authorization header of subsequent requests. The service can use this header to

provide context for successive interactions.

Based on the information presented in the challenge, the consumer retries the request

with credentials attached to the Authorization header, as shown in Example 9-5.

mailto:payments@restbucks.com%E2%80%B3

288 CHAPTER 9: web security

Example 9-5.  Consumer submits a digest

GET /payment/1234 HTTP/1.1
Host: restbucks.com
Authorization: Digest username=″beancounter″,
 realm=″payments@restbucks.com″,
 nonce=″1e8c46a7d793433490cb8303f18a86e5″,
 uri=″/payment/1234″
 qop=″auth″,
 nc=00000001,
 cnonce=″cf45f0087f33bce12332aef430945dff″,
 response=″ff14aa3457acd60aa2091232a98756ff″,
 opaque=″ff1eccda9ef442b3b38cabb2435d5967″

As you can see in Example 9-5, much of the information in the initial challenge is

returned without modification in the response. However, the consumer produces addi-

tional metadata to fulfill its part of the authentication protocol:

username
The identifier of an account authorized to access the resources at the specified

URI.

uri
The URI of the resource to which the request is targeted. This is often identical to

the path in the HTTP request, but is repeated since intermediaries (such as load

balancers) can rewrite that address.

nc
A (hexadecimal) count of how many requests the consumer has made using the

service’s nonce.

cnonce
The consumer’s nonce, generated for each request to prevent replay attacks

against the service.

response
The result of applying a set of hash functions (discussed shortly) to the nonce,

nonce count, consumer’s nonce, and consumer’s password. This is the value the

service will ultimately check to see whether the consumer has valid credentials for

the realm.

The response is calculated using a three-step process, as follows:

1.	 The MD5 hash of the username, realm, and password is computed.*

2.	 The MD5 hash of the method and digest URI is computed.

*	http://tools.ietf.org/html/rfc1321

mailto:payments@restbucks.com%E2%80%B3
http://tools.ietf.org/html/rfc1321

289HTTP Security Essentials

3.	 The MD5 hash of the value produced by step 1—the service’s nonce, request count

(nc), cnonce, and qop—and the result from step 2 is calculated, yielding the con-

sumer’s response value.

Since the consumer and service both know the shared secret (the consumer’s password)

the consumer’s request can be checked by the service by repeating the calculation.

note
Unlike Basic authentication, Digest authentication always requires a challenge/
response, since the challenge step provides metadata to parameterize the response.

This scheme provides a number of benefits when compared to Basic authentication.

First, because passwords are not transmitted over the network, security credentials

are far less easily compromised. Second, because the Authorization header’s response

entry is never repeated (as a result of using nonces) brute force replay attacks are ren-

dered ineffective. Third, passwords no longer have to be transmitted over the network

in an easily compromised form.

Despite being more secure than Basic authentication, HTTP Digest authentication can still

be broken using a man-in-the-middle attack if transport-level security isn’t also used. In

Figure 9-1, an interloper mimicking the behavior of the remote service intercepts the ini-

tial authentication and responds with a Basic authentication challenge to the consumer.

Basic authentication is easily broken; when the consumer responds to the Basic authenti-

cation challenge, the man in the middle is able to compromise the credentials.

Figure 9-1.  Man-in-the-middle attack on HTTP Digest authentication

warning
If you are going to use HTTP authentication, transport-level security should be
considered mandatory.

Critically, the consumer may not know this has happened if the man in the middle pres-

ents a faithful reproduction of the target service! To prevent this, transport-level secu-

rity is still necessary, even for Digest authentication. To provide comprehensive defense

against man-in-the-middle attacks, we need transport-level mechanisms. Enter HTTPS.

290 CHAPTER 9: web security

note
In addition to Basic and Digest authentication, a third scheme called WSSE
has evolved, driven in part by the desire to secure Atom and AtomPub services.
The WSSE scheme borrows an authentication approach from WS-Security’s
UsernameToken profile and maps those features onto HTTP headers.*

WSSE is superior to Basic insofar as it doesn’t transmit passwords in clear text,
requiring instead shared secrets between client and server. Like the other authen-
tication mechanisms, WSSE is vulnerable to man-in-the-middle attacks in the
absence of transport-level security.

Transport-Level Confidentiality and Integrity
We often take HTTPS for granted, and yet it supports vast numbers of secure inter-

actions every day on the Web. While it might not be glamorous, humble HTTPS is

mature, widely deployed, and well understood, making it ideally suited to hostile

environments such as the public Internet. Of all the security protocols we could use,

nothing else comes close in terms of ubiquity, maturity, and the huge volume of value

transactions it supports every single minute.

All this gives service developers a degree of comfort: HTTPS is a well-understood and

researched protocol that routinely provides the underlay for secure interactions at

global scale. We can be sure it’s fit for purpose.

Conceptually, HTTPS is straightforward. Instead of exchanging HTTP requests and

responses over TCP, we transmit those same requests and responses over Transport

Layer Security, or TLS.† While TLS transparently provides integrity and confidentiality

for HTTP interactions, it’s important to understand how it works.

note
TLS started life as Netscape’s SSL (Secure Sockets Layer). The IETF renamed the
protocol to TLS as it evolved into an Internet RFC.

The TLS protocol has three phases, each of which must be completed before we can

transfer representations via HTTPS:

1.	 Handshake

2.	 Secure session

3.	 Channel setup

*	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

†	See http://tools.ietf.org/html/rfc5246 for the latest version (v1.2).

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://tools.ietf.org/html/rfc5246

291HTTP Security Essentials

An HTTPS session begins with a normal TCP three-way handshake, which opens a con-

nection to port 443 (the standard TLS port) on the remote server. Once the TCP connec-

tion has been established, the secure session can be initiated, as shown in Figure 9-2.

Figure 9-2.  Negotiating parameters for a secure session

To initiate a secure session, the consumer begins by sending a ClientHello message

to the remote service. As part of this message, the consumer includes its highest sup-

ported TLS version (or SSL version if the consumer is old), the ciphers and hashing

algorithms that the consumer understands (in order of preference), and an optional

session identifier.* The consumer also sends some pseudorandom data for service-side

key generation.

note
TLS is a versatile protocol; besides security, it also supports data compression as
an optimization. Compression, however, is not widely used. We favor keeping any
compression at the HTTP level using the Content-Encoding header so that we
can compress representations irrespective of whether we’re using TLS or TCP as
the transport protocol.

In response, the service sends a ServerHello message back to the consumer, indicating

the TLS (or SSL) version chosen, the selected cipher and hash algorithms, an optional

session identifier, and its own pseudorandom data for consumer-side key generation.†

Following on from the ServerHello message, the service transmits a Certificate mes-

sage to the consumer. The Certificate message contains the service’s public key, and

optionally the service name and certificate authority (CA). The consumer uses this

information to authenticate the service; it does this by matching the name of the ser-

vice and the certificate to the name (or domain) of the server. (There’s a dependency

here on DNS in that we are only as secure as the DNS infrastructure we are using.)

*	The client provides a session identifier only if it is trying to resume an earlier secure session to
avoid paying for setup cost.

†	The server responds with an existing identifier only if it is prepared to resume the session. Other-
wise, the client must accept that a new session will be initiated.

292 CHAPTER 9: web security

The final message of the negotiation phase is ServerHelloDone, which the service sends

to the consumer to indicate that it’s finished negotiating.

note
TLS also supports client-side certificates. If the service sends a Client
CertificateRequest message prior to ServerHelloDone, the consumer should
immediately respond with its certificate in a ClientCertificate message.

This is useful because it enables the consumer and service to establish mutual
trust at the transport level. Any traffic flowing over a bilaterally certified session
has a trusted source and origin, allowing service implementations to authorize or
disallow interactions based on the well-known source of an HTTP request.

Having negotiated parameters for a secure session, the service and consumer are now

ready to set up a cryptographically secure channel, as shown in Figure 9-3.

Figure 9-3.  Initializing a secure session

The consumer transmits a ClientKeyExchange message encrypted using the service’s public

key. This message typically contains a PreMasterSecret computed from the consumer and

service’s random data.* If the service is able to decrypt the ClientKeyExchange message,

the consumer can be sure the service has the corresponding private key, thereby proving

the service’s authenticity. To defend against an attacker reverting the session to an earlier

and weaker protocol version (known as a rollback attack) the service double-checks the

protocol version number in the ClientKeyExchange message.

note
The negotiation of a shared secret is secure and cannot be eavesdropped, even by
a man-in-the-middle attack. An attacker cannot modify the messages in the hand-
shake without being detected, making the negotiation reliable.

The consumer follows with a ChangeCipherSpec message, which indicates to the service

that from now on the consumer will use the session key for hashing and encrypting

messages. Hashing a message with the session key creates a Message Authentication

*	Depending on the cipher chosen, the client’s public key may be sent instead.

293HTTP Security Essentials

Code (MAC). The MAC provides integrity and authenticity by allowing recipients who

know the key to repeat the hash function in order to detect whether the message con-

tent has been changed.

As further evidence that nothing has gone awry, the consumer securely transmits a

ClientFinished message containing a hash of the entire conversation up to this point.

The ClientFinished message is the first message encrypted and hashed using the

shared session key computed by the consumer and service.

To complete the protocol, the service responds first with a ChangeCipherSpec message,

indicating that it, too, will now use a secure channel using the negotiated keys. The

service then sends a ServerFinished message that verifies its common understanding

of the parameters for the session. The ServerFinished message contains a hash of the

conversation up to this point for the consumer to verify.

From this point onward, the consumer and service can exchange secure messages

using computationally inexpensive shared key methods. That is, we can now transmit

HTTP requests and responses whose privacy and integrity are assured.

Network and Performance Considerations
Because HTTPS is so common, we might be tempted to use it liberally in an attempt to

provide blanket security. If all a service’s resources are secured with HTTPS (particu-

larly with bilateral certificates), its attack surface is significantly reduced. In practice,

however, there are drawbacks to such an approach. In particular, forcing every inter-

action over a secure channel may limit scalability.

The use of a secure channel not only incurs cryptography costs, it also prevents caching

in the network; because intermediaries cannot see the representations being exchanged,

they cannot understand their caching metadata. Losing the important visibility aspect of

HTTP means we only have consumer-side caching (which does not permit cached repre-

sentations to be shared among many consumers) to help reduce load on servers.

The questions we have to ask ourselves when considering securing resources are

“What is the value of the resource?” and “Who should be able to access it?” Only by

answering these questions can we determine whether interactions with a resource

should be secured, and plan for any performance challenges that arise.

note
Establishing HTTPS requires several network interactions and cryptographic opera-
tions before a TLS channel can be used to transfer representations. This overhead
makes a single HTTPS call several times more expensive than a single HTTP call.
However, if the TLS channel is used for many exchanges, the setup cost and cost
of ongoing cryptographic operations becomes less significant and the cost of
missed intermediary caching becomes the primary consideration.

294 CHAPTER 9: web security

To gain the dual benefits of caching and secure interactions, we must turn aside from

using encrypted channels to enforce security considerations, and consider instead pat-

terns that allows us to encrypt content on unencrypted (and therefore cacheable)

channels. As Figure 9-4 shows, it is possible to publish data on the public Web and still

maintain confidentiality and integrity.

Figure 9-4.  Cacheable and secure representations broadcast over an insecure channel with
Atom

The pattern in Figure 9-4 shows a service publishing an Atom feed onto the Web. The

feed and its entries are cacheable, and therefore scale well at modest latencies—as

we have come to expect from the Web. However, the content of each atom:entry can

be encrypted so that it is meaningless for any consumers that don’t have the key to

decrypt it.

In Figure 9-4, the top two consumers both access the same (shared) key, while the third

accesses a different shared key. This allows the service to broadcast information in the

knowledge that only certain recipients will understand it (assuming that any shared keys

have already been transmitted and stored securely). Because the content is useless with-

out the decryption keys, the pattern enables the Atom service to publish a highly cache-

able feed without worrying about attackers getting hold of the content.

warning
This technique is not without its drawbacks. Having to share keys increases cou-
pling, and in practice can be tricky to implement and scale.

In the general case, services will expose both secure and insecure resources. It is our

duty as service developers to understand the trade-off between security and scal-

ability, and to decide which resources to secure based on their risk/performance

profiles.

295Identity and the OpenID Protocol

Identity and the OpenID Protocol
HTTPS provides the foundations of secure computing on the Web. But security doesn’t

stop at the transport layer. Having looked at how HTTPS provides confidentiality and

integrity, we can now begin to address higher-order challenges, starting with identity.

Both HTTP authentication and HTTPS (with client-side certificates) can be used to

identify consumers, but they do so in a way that places the burden of identity man-

agement on the service itself. Keeping track of consumers is a hard problem, but it

shouldn’t be our problem as business service providers. Instead, we’d like to delegate

identity management to services that know how to do identity management well.

One solution to this problem is to decentralize identity management. OpenID is a pro-

tocol that allows consumers to present claims about their identity to services such as

Restbucks, where an identity provider trusted by Restbucks has authenticated those

claims.

note
OpenID doesn’t solve trust. A service may accept the identity claims presented
by a consumer, but only because it trusts the provider through some out-of-band
mechanism. This doesn’t, however, mean the consumer is automatically entitled to
interact with all aspects of the service.

OpenID allows a service or relying party to delegate the responsibility for storing con-

sumer credentials to one or more OpenID providers. The providers are responsible for

checking OpenID consumers’ credentials and informing the relying party if an identity

claim is valid. OpenID allows consumers to keep their personal details from relying

parties, while still being able to present an authenticated identity claim to that party.

OpenID evens the playing field between consumers and services: consumers know the

identity of services through their certificates, and services come to know the identity of

consumers through their OpenID.*

Protocol Flow
OpenID is compelling because of its simplicity. In just a handful of interactions, a con-

sumer can securely present a claim and have it validated by an OpenID provider, and

then interact with a service using the substantiated claim. The end-to-end protocol

is shown in Figure 9-5 with the customer playing the consumer role, Restbucks as the

relying party, and the voucher service acting as the provider.

*	We can, of course, use client certificates to provide the identity of the client to the server. However,
that approach means the service still has to manage client certificates rather than, as OpenID does,
delegating that responsibility to a provider.

296 CHAPTER 9: web security

Figure 9-5.  The OpenID protocol

In Chapter 5, we allowed consumers to keep loyalty cards for Restbucks special offers,

but we were never really concerned about customers’ identity, and as a result, the

cards were anonymous. By allowing consumers to share their identity, Restbucks can

track their purchases and reward them when they’ve bought enough coffee (and begin

to gather data for business intelligence as a side effect). We can create a simple loyalty

domain application protocol (DAP) based on the following OpenID interactions:

Initiation

A customer submits an OpenID that it claims to own.

Discovery

The coffee ordering service discovers the OpenID provider for the presented OpenID.

Key exchange

Secrets are exchanged between the coffee ordering service and the OpenID

provider.

Restbucks redirects to OpenID provider

Restbucks redirects the consumer to its OpenID provider to authenticate.

Authentication

The consumer authenticates with its OpenID provider. (The way in which authen-

tication occurs is out of scope for OpenID.)

OpenID provider redirects to Restbucks

On successful authentication, the OpenID provider redirects the consumer to

Restbucks. The redirect includes an OpenID payload.

Present credentials

Finally, the OpenID payload containing the validated identity claim is sent to

Restbucks.

297Identity and the OpenID Protocol

In devising this scheme, we’ve made some pragmatic choices where the OpenID specifica-

tion allows multiple options. Since we’re not limited by the behavior of web browsers, we

can reduce the problem to a simple hypermedia application driven by XHTML forms—a

popular hypermedia format that is readily amenable to machine processing.

The loyalty protocol starts when a consumer follows a coffee-card link, shown in

Example 9-6, contained within an order representation. The link leads to a login

resource.

Example 9-6.  A coffee-card link initiates the loyalty protocol

<link xmlns=″http://schemas.restbucks.com/dap″
 rel=″http://restbucks.com/relations/coffee-card″
 uri=″http://restbucks.com/login/1234″ mediaType=″application/xhtml+xml″/>

To process the link, the consumer GETs the representation shown in Example 9-7.

Example 9-7.  Client is directed to the Restbucks OpenID login

GET /login/1234 HTTP/1.1
Accept: application/xhtml+xml
Host: restbucks.com

The service responds with the XHTML form shown in Example 9-8. The form contains

an <input> element with a well-known name attribute value of openid_identifier (the

attribute value is defined by the OpenID protocol). This markup tells a consumer that

an OpenID URI is expected in a POST response.

Example 9-8.  The Restbucks OpenID login form is the starting point for authentication

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 382
Date: Tue, 18 May 2010 17:36:50 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Strict//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″ xml:lang=″en″ lang=″en″>
 <head><title>OpenID Login</title></head>
 <body>
 <form action=″http://restbucks.com/login/1234″ method=″post″>
 <input type=″text″ name=″openid_identifier″/>
 </form>
 </body>
</html>

http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/relations/coffee-card%E2%80%B3
http://restbucks.com/login/1234%E2%80%B3
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://restbucks.com/login/1234%E2%80%B3

298 CHAPTER 9: web security

Following this form-based challenge, the consumer replies with its OpenID URI. The

URI the consumer supplies to the service resolves to a discovery document through

which the Restbucks service can find an OpenID provider willing to validate the iden-

tity claim.

The OpenID URI we’ve chosen is http://openid.example.org/jim, which is transmitted

to Restbucks in an application/x-www-form-urlencoded representation, as shown in

Example 9-9.*

Example 9-9.  Consumer sends its OpenID URI to Restbucks

POST /login/1234 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Accept: application/xhtml+xml
Host: restbucks.com
Content-Length: 56

openid_identifier=http%3A%2F%2Fopenid.example.org%2Fjim

After receiving the consumer’s OpenID URI, Restbucks can discover the provider

associated with that URI. It does this by GETting the resource—known as a discov-

ery document—at the URI specified by the consumer. As shown in Example 9-10,

Restbucks specifies its preference for an xhtml discovery document (over html or xrds,

which OpenID also supports) using the HTTP Accept header.

Example 9-10.  Restbucks discovers the OpenID provider

GET /jim HTTP/1.1
Accept: application/xhtml+xml
Host: openid.example.org

In response, the OpenID provider generates an XHTML representation containing the

specific URI pertaining to the consumer’s OpenID. As we can see in Example 9-11, this

information is provided as a link header in the XHTML header space.

Example 9-11.  OpenID provider responds with a discovery document

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 271
Date: Tue, 18 May 2010 17:36:50 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Transitional//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd″>

*	There isn’t really an OpenID provider at this URI. For development, we mapped that hostname
onto the address of our servers.

http://openid.example.org/jim
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3

299Identity and the OpenID Protocol

<html xmlns=″http://www.w3.org/1999/xhtml″>
 <head>
 <link rel=″openid2.provider″ href=″http://provider.example.org/jim″/>
 </head>
</html>

Now that it knows the address of the OpenID provider, Restbucks can use Diffie-

Hellman key exchange* to establish a shared secret key, which can then be used to

sign subsequent interactions. The process of establishing a shared secret key is called

association. Although the association phase is optional, we’ve elected to adopt it for

Restbucks since we believe it’s the canonical use case for OpenID.

There’s a modest cost to establishing a shared key as a result of both parties having to

remember the association. The advantage is that from this point onward, there’s no

need to verify exchanges between the parties, as would be the case if no association

had been established. Without association, Restbucks would have to validate signa-

tures directly with the OpenID provider every time the provider makes a positive iden-

tity assertion, resulting in more network traffic overall.

To establish this association Restbucks POSTs an association request to the association

resource on the OpenID provider, as per Example 9-12. Restbucks sends the OpenID

provider its public key together with the encryption algorithm to be used for the key

exchange (SHA-256 in this example).†

Example 9-12.  Restbucks creates a shared secret with the OpenID provider using Diffie-
Hellman key exchange

POST /jim HTTP/1.1
Host: provider.example.org
Content-Length: 344
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=associate&
openid.session_type=DH-SHA256&openid.assoc_type=HMAC-
SHA256&openid.dh_consumer_public=ALs6VTbE6ZrffuOwB1ht%2F5D2XmugZAqCEQtsqLA5GHik9YF2
vx7UU0jWj47zGsqRvK3%2BAcoEWBaE4LNiqutj673UvX98XYCuQ3hjEpeiOg%2BHtXAScMd5f7NwMlEw2kB
Xht88dFDo8Fsm2EV9dDYyix%2BI%2BYdEwwDZimbMNPcXQ4li

The OpenID provider responds to Restbucks’ request, as shown in Example 9-13. The

provider’s response contains the provider’s public key and an encrypted MAC. Using

the provider’s public key together with its own public key, Restbucks can now deter-

mine the shared secret key encoded in the MAC.

*	http://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange

†	OpenID association allows key exchange without encryption. Our preference is to secure the repre-
sentations that services and consumers exchange, irrespective of the underlying channel.

http://www.w3.org/1999/xhtml%E2%80%B3
http://provider.example.org/jim%E2%80%B3/
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

300 CHAPTER 9: web security

note
OpenID is liberal with its use of media types in this exchange. Instead of using
application/x-www-form-urlencoded, a proprietary key-value pair format called
application/x-openid-kvf is used.

Example 9-13.  OpenID provider fulfills the Diffie-Hellman key exchange

HTTP/1.1 200 OK
Content-Type: application/x-openid-kvf
Content-Length: 375
Date: Tue, 18 May 2010 17:36:50 GMT

ns:http://specs.openid.net/auth/2.0
session_type:DH-SHA256
assoc_type:HMAC-SHA256
assoc_handle:1274204211041-0
expires_in:1800
dh_server_public:cht1xvy3G95qk8SqZuizvA8GBIowaIrj5TMt9OEe9bhNX7G2KPKlxmy398cKJ3NBAa
ZdqHcmy65qU4J5HgpFh+kB89gztAXd4zMKANeaHq3DkRp+isufoqS19cdvl0e/QokylkgN
N/RCfMPrxHa65wNweGlLqHS01VRxokHUvwc=
enc_mac_key:OCHBkrqdL2JAJ9bUcn8p7Q3gn1lCatkbTe5Y3sKHUq4=

Once the association stage has been completed, Restbucks responds to the consumer’s

original login request (Example 9-9) by generating a form containing several hidden

fields, as per Example 9-14. This form is to be submitted to the OpenID provider (as

indicated by the value of the form’s action attribute) by the consumer.

Example 9-14.  Restbucks responds with authentication data for the consumer to pass through
to the OpenID provider

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 1086
Date: Tue, 18 May 2010 17:36:50 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Strict//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″ xml:lang=″en″ lang=″en″>
 <head>
 <title>OpenID Redirection</title>
 </head>
 <body>
 <form name=″openid-form-redirection″
 action=″http://provider.example.org/jim″ method=″post″>
 <input type=″hidden″ name=″openid.ns″
 value=″http://specs.openid.net/auth/2.0″/>

http://specs.openid.net/auth/2.0
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://provider.example.org/jim%E2%80%B3
http://specs.openid.net/auth/2.0%E2%80%B3/

301Identity and the OpenID Protocol

 <input type=″hidden″ name=″openid.claimed_id″
 value=″http://openid.example.org/jim″/>
 <input type=″hidden″ name=″openid.identity″
 value=″http://openid.example.org/jim″/>
 <input type=″hidden″ name=″openid.return_to″
 value=″http://restbucks.com/authenticate/1234″/>
 <input type=″hidden″ name=″openid.realm″
 value=″http://restbucks.com/authenticate/1234″/>
 <input type=″hidden″ name=″openid.assoc_handle″ value=″1274204211041-0″/>
 <input type=″hidden″ name=″openid.mode″ value=″checkid_setup″/>
 <input type=″Submit″ value=″Submit″/>
 </form>
 </body>
</html>

In Example 9-14, Restbucks returns an XHTML form with some user-interface

markup, namely the element <input type=″Submit″ value=″Submit″/>. Consuming

applications can safely ignore this, but it has the benefit of meaning the whole OpenID

workflow can be driven through a browser during development and debugging.

On receiving the form in Example 9-14, the consumer POSTs it to the provider, encoding it

as an application/x-www-form-urlencoded representation, as shown in Example 9-15.

Example 9-15.  Consumer transmits Restbucks’ OpenID parameters to the OpenID provider
prior to logging in

POST /jim HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Accept: application/xhtml+xml
Host: provider.example.org
Content-Length: 381

openid.realm=http%3A%2F%2Frestbucks.com%3A9998%2Fauthenticate%2F1234&openid.return_
to=http%3A%2F%2Frestbucks.com%3A9998%2Fauthenticate%2F1234&openid.identity=http%3A%
2F%2Fopenid.example.org%3A9999%2Fjim&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth
%2F2.0&openid.assoc_handle=1274204211041-
0&openid.claimed_id=http%3A%2F%2Fopenid.example.org%3A9999%2Fjim&openid.mode=
checkid_setup

The provider is now in a position to begin authenticating the consumer. OpenID

doesn’t in fact specify how a consumer authenticates with an OpenID provider. Our

provider has been built to respond with a form-based login challenge when consumers

try to authenticate against a given service (e.g., Restbucks). This scheme demands that

consumers re-POST the OpenID authentication data from Restbucks (or any other rely-

ing party) as well as the credentials matching their OpenID URI. It’s a simple scheme

that adds a single password input, as shown in Example 9-16.

http://openid.example.org/jim%E2%80%B3/
http://openid.example.org/jim%E2%80%B3/
http://restbucks.com/authenticate/1234%E2%80%B3/
http://restbucks.com/authenticate/1234%E2%80%B3/

302 CHAPTER 9: web security

Example 9-16.  The OpenID provider challenges the consumer

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 1027
Date: Tue, 18 May 2010 17:36:50 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Transitional//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″>
 <body>
 <form action=″http://provider.example.org/jim″ method=″post″>
 <input type=″hidden″ name=″openid.ns″
 value=″http://specs.openid.net/auth/2.0″/>
 <input type=″hidden″ name=″openid.identity″
 value=″http://openid.example.org/jim″/>
 <input type=″hidden″ name=″openid.claimed_id″
 value=″http://openid.example.org/jim″/>
 <input type=″hidden″ name=″openid.mode″ value=″checkid_setup″/>
 <input type=″hidden″ name=″openid.realm″
 value=″http://restbucks.com/authenticate/1234″/>
 <input type=″hidden″ name=″openid.assoc_handle″ value=″1274204211041-0″/>
 <input type=″hidden″ name=″openid.return_to″
 value=″http://restbucks.com/authenticate/1234″/>
 <input type=″password″ name=″password″/>
 <input type=″submit″ value=″submit″ />
 </form>
 </body>
</html>

As you can see, the form the provider uses to challenge the consumer is the same form

that Restbucks sent the consumer, and which the consumer then sent on to the pro-

vider. The only difference is that the provider has added the <password> input element

to challenge the consumer to authenticate.

Example 9-17 shows how the consumer logs in to the provider by POSTing back the

OpenID data together with its password.

warning
Moving a password between the consumer and the OpenID provider in plain text
over an insecure channel is not safe for production use—its purpose is only to show
the protocol flow. A sensible OpenID provider will use HTTPS to secure the chan-
nel over which the plain-text password flows.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://provider.example.org/jim%E2%80%B3
http://specs.openid.net/auth/2.0%E2%80%B3/
http://openid.example.org/jim%E2%80%B3/
http://openid.example.org/jim%E2%80%B3/
http://restbucks.com/authenticate/1234%E2%80%B3/
http://restbucks.com/authenticate/1234%E2%80%B3/

303Identity and the OpenID Protocol

Example 9-17.  Consumer logs in to the OpenID provider

POST /jim HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Accept: application/xhtml+xml
Host: provider.example.org
Content-Length: 394

password=jim&openid.realm=http%3A%2F%2Frestbucks.com%3A9998%2Fauthenticate%2F1234&
openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.identity=http%3A%2F%2F
openid.example.org%3A9999%2Fjim&openid.return_to=http%3A%2F%2Frestbucks.com%3A9998%
2Fauthenticate%2F1234&openid.mode=checkid_setup&openid.assoc_handle=1274204211041-
0&openid.claimed_id=http%3A%2F%2Fopenid.example.org%3A9999%2Fjim

Once the password is accepted, the OpenID provider generates another form for the

consumer. This form, shown in Example 9-18, allows the provider to transmit authen-

tication outcomes to Restbucks. It uses hypermedia to drive the protocol by requir-

ing the consumer to POST the form’s data to the Restbucks URI specified in the action

attribute.

Example 9-18.  OpenID provider responds with data for the consumer to transmit to Restbucks

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 1323
Date: Tue, 18 May 2010 17:36:50 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Transitional//EN″
 ″http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″>
 <body>
 <form action=″http://restbucks.com/authenticate/1234″ method=″post″>
 <input type=″hidden″ name=″openid.ns″
 value=″http://specs.openid.net/auth/2.0″/>
 <input type=″hidden″ name=″openid.op_endpoint″
 value=″http://provider.example.org/jim″/>
 <input type=″hidden″ name=″openid.claimed_id″
 value=″http://provider.example.org/jim″/>
 <input type=″hidden″ name=″openid.response_nonce″
 value=″2010-05-18T17:36:51Z0″/>
 <input type=″hidden″ name=″openid.mode″ value=″id_res″/>
 <input type=″hidden″ name=″openid.identity″
 value=″http://provider.example.org/jim″/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://restbucks.com/authenticate/1234%E2%80%B3
http://specs.openid.net/auth/2.0%E2%80%B3/
http://provider.example.org/jim%E2%80%B3/
http://provider.example.org/jim%E2%80%B3/
http://provider.example.org/jim%E2%80%B3/

304 CHAPTER 9: web security

 <input type=″hidden″ name=″openid.return_to″
 value=″http://restbucks.com/authenticate/1234″/>
 <input type=″hidden″ name=″openid.assoc_handle″ value=″1274204211041-0″/>
 <input type=″hidden″ name=″openid.signed″
 value=″op_endpoint,claimed_id,identity,return_to,response_nonce,assoc_handle″/>
 <input type=″hidden″ name=″openid.sig″
 value=″xQeM1HJEta2KN2jc+rvt856vplM01MIYY2sSz1z0jk8=″/>
 <input type=″submit″ value=″redirect″ />
 </form>
 </body>
</html>

The consumer finally presents its authenticated identity claim to Restbucks by POSTing

the form data from Example 9-18, as we can see in Example 9-19.

Example 9-19.  Consumer transmits the OpenID payload to Restbucks

POST /authenticate/1234 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Accept: application/xhtml+xml
Host: restbucks.com
Content-Length: 577

openid.sig=xQeM1HJEta2KN2jc%2Brvt856vplM01MIYY2sSz1z0jk8%3D&openid.response_nonce=2
010-05-18T17%3A36%3A51Z0&openid.assoc_handle=1274204211041-
0&openid.claimed_id=http%3A%2F%2Fprovider.example.org%3A9999%2Fjim&openid.mode=
id_res&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.return_to=http%3
A%2F%2Frestbucks.com%3A9998%2Fauthenticate%2F1234&openid.identity=http%3A%2F%2F
provider.example.org%3A9999%2Fjim&openid.op_endpoint=http%3A%2F%2Fprovider.example.
org%3A9999%2Fjim&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2
Cresponse_nonce%2Cassoc_handle

If the consumer has successfully authenticated against the OpenID provider, it receives

a 200 OK response from Restbucks (see Example 9-20) and knows its purchases will be

credited against the loyalty scheme.

If the consumer has not successfully authenticated against the OpenID provider, it

receives a 401 Unauthorized response from Restbucks (see Example 9-21). The con-

sumer can then choose whether to retry authentication or to backtrack through the

Restbucks ordering protocol.

Irrespective of whether authentication has been successful or unsuccessful, Restbucks

provides a link to the current order to help the consumer progress.

http://restbucks.com/authenticate/1234%E2%80%B3/

305Identity and the OpenID Protocol

Example 9-20.  Consumer logs in successfully to Restbucks

HTTP/1.1 200 OK
Content-Type: application/vnd.restbucks+xml
Content-Length: 188
Date: Mon, 14 Dec 2009 16:04:36 GMT

<link xmlns=″http://schemas.restbucks.com/dap″
 rel=″http://restbucks.com/relations/order″
 uri=″http://restbucks.com/order/1234″
 mediaType=″application/vnd.restbucks+xml″ />

Example 9-21.  Consumer fails to log in

HTTP/1.1 401 Unauthorized
Content-Type: application/vnd.restbucks+xml
Content-Length: 188
Date: Mon, 14 Dec 2009 16:04:36 GMT

<link xmlns=″http://schemas.restbucks.com/dap″
 rel=″http://restbucks.com/relations/order″
 uri=″http://restbucks.com/order/1234″
 mediaType=″application/vnd.restbucks+xml″ />

As you can see from these examples, OpenID is a web-centric protocol. It uses URIs as

the basis for a consumer’s identity claims, and hypermedia—XHTML forms and POST

data—to bind protocol steps together.

Because all mandatory communication happens through the consumer, the protocol pre-

serves loose coupling between OpenID providers and relying parties (such as Restbucks).

As long as the service trusts the provider it finds through the discovery mechanism, the

protocol allows for decentralized authentication and runtime discovery—all driven by

hypermedia.

Although there’s some detail in the underlying cryptographic principles and in the

security data that’s exchanged during OpenID authentication, most of this detail is

encapsulated by a variety of freely available toolkits, as we shall see next when we

jump into an implementation.

OpenID in Java
Because numerous OpenID toolkits are available on the Java platform, using OpenID

is straightforward. All we need to do is wire one of these toolkits into our service to

form a working solution, at least in theory.*

*	In practice, the current crop of Java OpenID toolkits can be difficult to work with. They are tightly
coupled to specific underlying HTTP libraries and so resist Test-Driven Development.

http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/relations/order%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/relations/order%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3

306 CHAPTER 9: web security

Figure 9-6 shows that we chose the Grizzly web server and Jersey as our program-

matic layer over HTTP for both the consumer and services. For the cryptographic parts

of the solution, we chose OpenID4java.*

Figure 9-6.  Loyalty card Java solution architecture

An OpenID-enabled Java consumer
The business goal of the consumer is to identify itself to Restbucks so that any purchases

it makes can be reconciled against the generous loyalty program that Restbucks runs.

In the OpenID protocol, the consumer spends most of its time filling in XHTML forms

and POSTing form data to Restbucks and its OpenID provider.† In Example 9-22, the

consumer first retrieves Restbucks’ loyalty scheme login form and fills in the openid_
identifier value.

Example 9-22.  Consumer begins the OpenID workflow

public void loginToRestbucks(String id) throws Exception {

 // Get the OpenID Login form from Restbucks
 URI restbucksOpenIdLoginUri = new URI(″http://restbucks.com/login/″ + id);
 XhtmlForm loginForm = getXhtmlForm(restbucksOpenIdLoginUri);
 FormInput element = loginForm.getElement(″openid_identifier″);
 element.setValue(″http://openid.example.org/RosalindFranklin″);

*	http://code.google.com/p/openid4java/

†	Remember, there’s an optional message exchange in OpenID where the provider and relying party
exchange keys. The consumer isn’t involved in that step.

http://restbucks.com/login/%E2%80%B3
http://openid.example.org/RosalindFranklin%E2%80%B3%00%00
http://code.google.com/p/openid4java/

307Identity and the OpenID Protocol

The consumer subsequently sends the URI of the discovery document for its OpenID

provider to Restbucks, and receives back an XHTML form containing opaque informa-

tion destined for the OpenID provider, as shown in Example 9-23.

Example 9-23.  Consumer receives an XHTML form with opaque information intended for the
OpenID provider

 // Send the OpenID URI to Restbucks
 // Steps 1 & 4 from Figure 9-5; Example 9-9 and Example 9-14
 XhtmlForm openIdProviderRedirectionForm = postForm(loginForm);

The consuming application duly passes that information on to the OpenID provider by

POSTing it in URL-encoded form, as we can see in Example 9-24. The OpenID provider

then provides a login form for the consumer to complete and return.

note
Remember: the means by which a consumer logs in to an OpenID provider is not
standardized. This is largely the point of OpenID: the relying party doesn’t care how
a consumer authenticates with an OpenID provider. In this instance, we use simple
forms-based authentication, but any sensible authentication mechanism can be used.

Example 9-24.  Consumer receives and completes a login form from its OpenID provider

 // Send Restbucks OpenID data to the OpenID Provider
 // Step 5, Figure 9-5; Example 9-15 and Example 9-16
 XhtmlForm openIdProviderLoginForm = postForm(openIdProviderRedirectionForm);

 // Complete login form (Out of scope for OpenID, Example 9-16)
 openIdProviderLoginForm.getElement(″password″).setValue(″scoobydoo″);
 // Successful login produces redirect form
 // Step 6, Figure 9-5; Example 9-18
 XhtmlForm openIdProviderLoginResponse = postForm(openIdProviderLoginForm);

Once the consumer has successfully logged in to the OpenID provider, it receives

another form containing opaque data about the success (or not) of the login; this form

is to be relayed back to Restbucks. To complete the OpenID login, the consumer POSTs

the form back to Restbucks as per Example 9-25.

Example 9-25.  Consumer relays opaque OpenID login data to Restbucks and receives
confirmation of successful (or unsuccessful) identification

 // Redirect back to Restbucks
 // Step 7, Figure 9-5, Example 9-19, Example 9-20, and Example 9-21
 int authenticationResponseCode = postForm(openIdProviderLoginResponse)
 .getResponseCode();

 // Finally check if Restbucks accepted the login

308 CHAPTER 9: web security

 if(authenticationResponseCode == 200) {
 // Continue with workflow
 // ...
 } else if (authenticationResponseCode == 401) {
 // Failed to authenticate, try again!
 // ...
 } else {
 throw new RuntimeException(
 String.format(″Unexpected response code [%d] from [%s]″,
 authenticationResponseCode, restbucksOpenIdLoginUri.toString()));
}

Since the OpenID workflow is predominantly composed from GETting and POSTing

forms between Restbucks and the OpenID provider, we have written a few useful

convenience methods to deal with transferring XHTML forms and URL-encoded data.

These are shown in Example 9-26.

Example 9-26.  Exchanging XHTML forms and form-encoded data with Restbucks and the
OpenID provider

private XhtmlForm toXhtmlForm(ClientResponse response) {
 return new XhtmlForm(response);
}

private XhtmlForm getXhtmlForm(URI loginUri) {
 return toXhtmlForm(client.resource(loginUri)
 .accept(MediaType.APPLICATION_XHTML_XML)
 .get(ClientResponse.class));
}

private XhtmlForm postForm(XhtmlForm form) {
 return toXhtmlForm(client.resource(form.getActionUri())
 .accept(MediaType.APPLICATION_XHTML_XML)
 .type(MediaType.APPLICATION_FORM_URLENCODED)
 .entity(form.toUrlEncoded())
 .post(ClientResponse.class));
}

To provide XHTML form support for the OpenID workflow, we created a simple

class that internally represents the form as a set of FormInput elements. These ele-

ments represent the various <input> element types allowed in an XHTML form.*

The most important aspect of this class is the method that turns XHTML forms into

their URL-encoded equivalent via string manipulation, as shown in Example 9-27.

*	The permissible <input> element types are text, which represents clear text boxes; hidden, for hid-
den form fields; password, for obfuscated text boxes; and submit, for buttons (which tend not to be
used in computer-to-computer scenarios).

309Identity and the OpenID Protocol

Example 9-27.  Converting form content from XHTML form to application/x-www-form-urlencoded
format

public String toUrlEncoded() {
 StringBuilder sb = new StringBuilder();
 for (FormInput fi : inputs) {
 if (!fi.isSubmitType()) {
 sb.append(fi.toUrlendcodedFormat());
 sb.append(″&″);
 }
 }

 // Remove trailing '&' char
 sb.deleteCharAt(sb.length() - 1);

 return sb.toString();
}

In Example 9-27, we simply transform each form input element into a name=value

pair and insert an ampersand (&) between successive pairs. The method then strips the

trailing & character from the last pair.

There is some detail in converting to the application/x-www-form-urlencoded format.

Example 9-28 shows how we percent-encode any special characters in the names

or values of pairs that we wish to transfer.* As each input item is processed (in the

toUrlEncodedFormat(...) method) the names and values are percent-encoded using

the values held in a (static) lookup table.

note
Sometimes a piece of base64-encoded text also happens to be legal URL-
encoded text. OpenID makes extensive use of base64-encoded text; this text
should then be converted into URL-encoded form for transfer. We learned this
the hard way: while creating examples for this chapter, we experienced a series of
intermittent authentication failures.

Remember to URL-encode all of your OpenID representations, or you’ll be caught
out too.

Example 9-28.  Converting form content from base64 to application/x-www-form-urlencoded
format

private static final HashMap<String, String> percentEncodingSubsitutions =
 new HashMap<String, String>();

static {

*	http://en.wikipedia.org/wiki/Percent-encoding

http://en.wikipedia.org/wiki/Percent-encoding

310 CHAPTER 9: web security

 percentEncodingSubsitutions.put(″!″, ″%21″);
 // Several more substitutions removed for brevity...
 percentEncodingSubsitutions.put(″]″, ″%2D″);
}

private String percentEncode(String toEncode) {
 toEncode = ensureNotNull(toEncode);
 StringBuilder sb = new StringBuilder();
 for(int i = 0; i < toEncode.length(); i++) {
 String current = new Character(toEncode.charAt(i)).toString();

 if(percentEncodingSubsitutions.containsKey(current)) {
 sb.append(percentEncodingSubsitutions.get(current));
 } else {
 sb.append(current);
 }
 }
 return sb.toString();
}

public String toUrlendcodedFormat() {
 StringBuilder sb = new StringBuilder();
 sb.append(percentEncode(name));
 sb.append(″=″);
 sb.append(percentEncode(value));
 return sb.toString();
}

Although the consumer workflow is simple, there’s a reasonable amount of complex-

ity in creating and maintaining our own XHTML forms implementation. Although we

sensibly didn’t create a fully functioning XHTML form abstraction, we still wrote code.

note
It’s possible to replace at least some of our custom code with existing, tested soft-
ware. For example, the web testing tool WebDriver provides automated testing of
web pages in code.* While its APIs are designed to support dynamic web applica-
tions, it can also be used to drive XHTML forms, thereby reducing the amount of
code we have to write (and debug).

Restbucks Java ordering service
To OpenID-enable the Restbucks ordering service, we need to support four activities:

*	http://code.google.com/p/webdriver

http://code.google.com/p/webdriver

311Identity and the OpenID Protocol

•	 Accept OpenID URIs identifying customers.

•	 Create associations with OpenID providers.

•	 Undertake indirect communication with the OpenID provider through the consumer.

•	 Finally, if the consumer authenticates, accredit its order against its loyalty card.

Accepting an OpenID is an easy task for Restbucks: we simply expose an XHTML form

to the consumer and ask for OpenID URI. The code for this is a JAX-RS method that

returns a login form. The method is triggered by a GET request for a URI matching the

template /login/{orderId}, as shown in Example 9-29.

Example 9-29.  Exposing an OpenID login form to consumers

@GET
@Produces(MediaType.APPLICATION_XHTML_XML)
@Path(LOGIN_PATH + ″/{orderId}″)
public Response openIDLogin(@PathParam(″orderId″) String orderId) {
 return Response.ok().entity(getLoginForm()).build();
}

When the consumer receives the form (such as the one in Example 9-8), it looks for

an <input> element with an attribute of openid_identifier. It then completes the

form by populating this field with its OpenID URI. Once that’s done, the consumer

converts the form to an application/x-www-form-urlencoded representation (as per

Example 9-9) and POSTs it to the form’s action URI, which is the service’s receiving

URI for starting the OpenID authentication process for that order.

On receiving the POSTed form, JAX-RS dispatches to the method shown in Example 9-30.

This method triggers the discovery and association interactions with the OpenID provider.

It then redirects the consumer to authenticate with its OpenID provider, again using an

XHTML form.

Example 9-30.  Discovery, association, and redirecting the consumer to log in to its chosen
OpenID provider

@POST
@Path(LOGIN_PATH + ″/{orderId}″)
@Produces(MediaType.APPLICATION_XHTML_XML)
public Response login(MultivaluedMap<String, String> postBody,
@PathParam(″orderId″) String orderId) throws Exception {

 String openId = parseOpenIdFromPostBody(postBody);

 Discovery discovery = new Discovery();
 Identifier identifier = discovery.parseIdentifier(openId);

 List discoveries = discovery.discover(identifier);
 DiscoveryInformation discovered = manager.associate(discoveries);

312 CHAPTER 9: web security

 session(new OrderId(orderId)).add(OPENID_DISCOVERY_KEY, discovered);

 String authenticationUri = uriInfo.getBaseUri().toString() +
 AUTHENTICATION_URI_PATH + ″/″ + orderId;

 AuthRequest authReq = manager.authenticate(discovered, authenticationUri);

 return Response.ok().entity(redirectForm(authReq.getOPEndpoint(),
 authReq.getParameterMap())).build();
}

The form generated in Example 9-30 allows the consumer to verify its claim with

an OpenID provider. When that interaction is completed, the consumer is directed

back to Restbucks (again through an XHTML form). This last form is handled by the

authenticate(...) method shown in Example 9-31. This method processes the out-

come of the authentication between the consumer and its OpenID provider.

Example 9-31.  Processing the OpenID provider’s indirect authentication response

@POST
@Path(AUTHENTICATION_URI_PATH + ″/{orderId}″)
public Response authenticate(@PathParam(″orderId″) String orderId,
 MultivaluedMap<String, String> params) throws
 MessageException, DiscoveryException,
 AssociationException {

 ParameterList httpParams = new ParameterList(convertToParameterList(params));

 // retrieve the previously stored discovery information
 OrderId sessionOrderId = new OrderId(orderId);
 DiscoveryInformation discovered = (DiscoveryInformation)
 session(sessionOrderId).get(OPENID_DISCOVERY_KEY);

 Identifier verified = manager.verify(uriInfo.getRequestUri().toString(),
 httpParams, discovered).getVerifiedId();

 if (verified != null) {
 session(sessionOrderId).add(OPEN_ID_IDENTIFIER_KEY, verified);
 return Response.ok().entity(generateOrderLink(orderId).toString())
 .type(RESTBUCKS_MEDIA_TYPE).build();
 } else {

 return Response.status(Status.UNAUTHORIZED)
 .entity(generateOrderLink(orderId).toString())
 .type(RESTBUCKS_MEDIA_TYPE).build();
 }
}

313Identity and the OpenID Protocol

Once JAX-RX has dispatched to the code in Example 9-31, the consumer’s session is

reestablished and the data contained in the POST body is passed in to the OpenID frame-

work code for validation. If the consumer authenticated successfully with the OpenID

provider, the login is added to the consumer’s session and a representation containing a

link to the order is sent back to the consumer, along with a 200 OK status code.

If authentication failed, the consumer still receives a representation containing a link

to the original order, but with a 401 Unauthorized status code. Either way, once the

consumer has the link and the status code, it can reenter the ordering DAP.

Java OpenID provider
The OpenID provider has to deal with three activities: discovery, association, and

authentication. Discovery involves exposing a discovery document on demand. We’ve

chosen XHTML for our discovery mechanism, and we provide links to the OpenID pro-

vider for a given OpenID URI, as per Example 9-32.

Example 9-32.  OpenID provider discovery

@GET
@Produces(MediaType.APPLICATION_XHTML_XML)
@Path(″/{userId}″)
public Response discover(@PathParam(″userId″) String userId) {
 StringBuilder sb = new StringBuilder();
 sb.append(generateXhtmlPreamble());
 sb.append(″<head><link rel=\″openid2.provider\″ href=\″″ +
 UriHelper.getBaseUri(uriInfo.getRequestUri()).toString() + ″/″ +
 userId + ″\″/></head>″);
 sb.append(″</html>″);
 return Response.ok().entity(sb.toString()).build();
}

Both association and authentication are handled by the associateOrAuthenticate()

method in Example 9-33. This method is invoked by JAX-RS whenever any repre-

sentation encoded as application/x-www-form-urlencoded is POSTed to a URI matching

the /{userId} template. The actual association is handled by the OpenID4J toolkit’s

ServerManager type with the manager.associationResponse() method. To transfer the

results of the association to Restbucks, a little more JAX-RS plumbing is used.

Example 9-33.  OpenID provider authentication and association

@POST
@Path(″/{userId}″)
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public Response associateOrAuthenticate(@PathParam(″userId″) String userId,
 MultivaluedMap<String, String> params)
 throws URISyntaxException {

314 CHAPTER 9: web security

 initialiseManager();
 ParameterList requestParams = new ParameterList(convertToParameterList(params));

 URI requestUri = uriInfo.getRequestUri();

 String mode = requestParams.hasParameter(″openid.mode″) ?
 requestParams.getParameterValue(″openid.mode″) : null;

 // Association
 if (″associate″.equals(mode)) {
 return Response.ok().entity(manager.associationResponse(requestParams)
 .keyValueFormEncoding())
 .header(HttpHeaders.CONTENT_TYPE,
 MediaType.APPLICATION_FORM_URLENCODED).build();
 // Authentication
 } else if (″checkid_setup″.equals(mode) || ″checkid_immediate″.equals(mode)) {

 if (isPostback(params)) {
 if (!credentialsValid(params, requestUri)) {
 return Response.status(Status.UNAUTHORIZED).build();
 }
 } else {
 return Response.ok()
 .entity(generateLoginForm(requestUri,
 requestParams))
 .header(HttpHeaders.CONTENT_TYPE,
 MediaType.APPLICATION_XHTML_XML).build();
 }

 String usersOpenId = UriHelper.getBaseUri(requestUri) + ″/″ + userId;
 Message response = manager.authResponse(requestParams, usersOpenId,
 usersOpenId, true, true);

 if (response instanceof DirectError) {
 return Response.ok().entity(response.keyValueFormEncoding()).build();
 } else {
 // Generate response for Relying Party
 return Response.ok()
 .entity(generateRelyingPartyResponseForm(response
 .getDestinationUrl(false), response.getParameterMap()))
 .header(HttpHeaders.CONTENT_TYPE,
 MediaType.APPLICATION_XHTML_XML).build();
 }

 // Other error handling elided for brevity...
 }

315The OAuth Protocol

Authentication is not within the scope of OpenID, so we’ve elected to use simple forms-

based authentication in our code. In Example 9-33, we check to see if the consumer

has authenticated via a POST of the login form back to the URI matching the {/userId}

template.

note
Much of the complexity in the OpenID provider and relying party implementations
stems from the impedance mismatch between the OpenID4J toolkit and JAX-RS.

Once the consumer authenticates, we’re back in OpenID territory. Using the

ServerManager.authResponse() method, we compute the authentication information

and relay it back to Restbucks via the consumer with some JAX-RS plumbing.

Practical Considerations for OpenID
OpenID is a popular protocol on the human Web, but it is also suitable for program-

matic use. Although the toolkits we’ve used aren’t terribly refined, the fact is that

OpenID can still be used for managing identity claims for interacting web services.

On the Web, OpenID suffers from a trust issue in that relying parties are under no

obligation to accept OpenID URIs from arbitrary providers. However, in the enterprise,

where use of a particular OpenID provider can be mandated, the trust problem evapo-

rates (because every system must trust the mandated provider). As such, OpenID is

an excellent example of a technology that is useful on the Web, but which can thrive

in the enterprise. In the near future, we can expect enterprise security frameworks

to support OpenID; Microsoft’s Windows Identity Foundation (WIF), for example,

already has open source support for OpenID.*

The OAuth Protocol
Once a consumer has been identified, service providers can decide which interactions

are allowed. This is known as authorization. Authorization is often based on a user-

name and password combination; successfully logging in to a system grants access to

some of the functions and data managed by that system. In the enterprise environ-

ment, this has worked relatively well because usernames and passwords are often

managed centrally in directory services.

note
Authentication determines who is interacting with a service, while authorization
determines what a consumer can do with the resources a service exposes.

*	See http://startersts.codeplex.com/.

http://startersts.codeplex.com/

316 CHAPTER 9: web security

It’s not always possible or desirable, however, to centralize and share credentials in the

traditional way. When third parties provide services to the enterprise, for example, shar-

ing usernames is normally undesirable and impractical, if not downright impossible. This

is where OAuth steps in.* The OAuth protocol enables services and applications to inter-

act with resources hosted securely in third-party services, without requiring the owners

of those resources to share their credentials.

The Next Best Thing to Free Coffee?
At Restbucks, we understand that our busy customers don’t always have access to cash

or cards when they really need their coffee. To solve this problem, Restbucks has part-

nered with a coffee voucher provider. This third-party provider allows customers to

buy and manage vouchers that can be used to pay for coffee at Restbucks.

Importantly, Restbucks isn’t involved with the day-to-day operations of the voucher

provider’s service. All that Restbucks needs to know is that it can redeem vouch-

ers when customers pay with them, and that the service will eventually honor those

vouchers with cash. Customers own the vouchers and manage their accounts using

third-party credentials. These credentials are of no concern to Restbucks. This frees

Restbucks from the additional workload of user management.

To support the voucher payment scenario, the system shown in Figure 9-7 has been

developed.

Figure 9-7.  Service provider, consumer, and user roles and existing domains of trust

The diagram in Figure 9-7 shows the following roles in the OAuth protocol and how

they map to Restbucks, its partners, and its customers:

*	Specifically, OAuth 1.0. See http://tools.ietf.org/html/rfc5849.

http://tools.ietf.org/html/rfc5849

317The OAuth Protocol

Server

The service hosting the protected resources. In our example, the server is the

Coffee Voucher service. This voucher service hosts protected coffee vouchers.

Resource owner

The owner of the protected resources hosted by the server. The resource owner

drives the overall workflow. In our example, Restbucks’ customers play this role.

Trust is established between the resource owner and the server out-of-band, by

human agreement, and enforced through mechanisms such as credit cards.

Client

The service that needs access to the protected resources. Restbucks plays the cli-

ent role in this example, having first established trust with the voucher service

through an out-of-band mechanism.

As the client, Restbucks never sees the credentials that the resource owner shares

with the voucher service. Instead, sets of credentials created during the OAuth autho-

rization process are used to access protected resources hosted by the server. OAuth

defines three different types of credentials: client, temporary, and token. Each set of

credentials comprises a unique identifier and a shared secret. Client credentials are

established out-of-band between the server and the client prior to any instance of

the OAuth protocol. Temporary credentials are used to bootstrap the OAuth protocol,

while token credentials are used to allow access to protected resources once the proto-

col has completed.

With all the basics in place, it’s time to see how it all fits together with an example.

Protocol Example
OAuth is going to play a central role in the vouchers-for-coffee business process, but

the process doesn’t start with OAuth. Prior to allowing any of its customers to pay

with vouchers, Restbucks must establish trust with the voucher service. This trust

cuts across two axes. The first is a business-level agreement as to pricing and pay-

ment terms. The second is more interesting to us in that it involves Restbucks and the

voucher service establishing an electronic domain of trust by sharing a set of client cre-

dentials. These credentials comprise a consumer key and a consumer secret.

note
Sharing keys and secrets is not part of OAuth. Protocols such as Diffie-Hellman
key exchange can be used to establish a shared secret directly between comput-
ers. Alternatively, human protocols, such as writing the secret on a piece of paper
and sending it by courier, can be used.

Once trust is established, the first business protocol step is the electronic equivalent

of looking in our wallets for paper vouchers. In Figure 9-8, we show the customer

318 CHAPTER 9: web security

making an HTTP GET request of the coffee voucher service. Assuming the resource

owner is authorized to retrieve a list of vouchers, the service responds with an Atom

feed containing a list of valid vouchers for that customer.

Figure 9-8.  Customer checks for coffee vouchers

Each Atom entry in the feed contains a link attributed with a coffee voucher link rela-

tion, as per Example 9-34.

Example 9-34.  An Atom feed containing available vouchers

<?xml version=″1.0″ encoding=″UTF-8″?>
<feed xmlns=″http://www.w3.org/2005/Atom″>
 <title>Coffee Vouchers for jim</title>
 <link rel=″self″ href=″http://vouchers.example.org/jim″ />
 <author>
 <name>vouchers@example.org</name>
 </author>
 <id>http://vouchers.example.org/jim</id>
 <generator uri=″http://vouchers.example.org/″>Coffee Voucher Service</generator>
 <updated>2010-04-03T00:20:00Z</updated>
 <entry>
 <title>Coffee Voucher</title>
 <link rel=″http://relations.vouchers.example.org/coffee″
 href=″http://vouchers.example.org/voucher/jim/1234″ />
 <author>
 <name>vouchers@example.org</name>
 </author>
 <id>http://vouchers.example.org/voucher/jim/1234</id>
 <updated>2010-04-03T00:20:50Z</updated>
 <content>Exchange this voucher for a coffee of your choice at your local
 Restbucks store.</content>
 </entry>
 <!-- Many more entries removed for brevity -->
 </feed>

http://www.w3.org/2005/Atom%E2%80%B3
http://vouchers.example.org/jim%E2%80%B3
http://vouchers.example.org/jim</id
http://vouchers.example.org/%E2%80%B3
http://relations.vouchers.example.org/coffee%E2%80%B3
http://vouchers.example.org/voucher/jim/1234%E2%80%B3
http://vouchers.example.org/voucher/jim/1234</id

319The OAuth Protocol

You may recall from Chapter 5 that Restbucks payments are made by PUTting a

credit card payment representation to a URI generated by the service. We use the

same approach for vouchers. The customer chooses a voucher from the feed in

Example 9-34 and then pays by PUTting the voucher representation to Restbucks, as

shown in Example 9-35.

Example 9-35.  Paying with a voucher

PUT /payment/1234 HTTP/1.1
Accept: application/vnd.restbucks+xml
Content-Type: application/vnd.restbucks+xml
User-Agent: Java/1.6.0_17
Host: restbucks.com
Content-Length: 205

<?xml version=″1.0″ encoding=″UTF-8″ standalone=″yes″?>
<voucherPayment xmlns=″http://schemas.restbucks.com″>
 <voucherUri>http://vouchers.example.org/voucher/jim/1234</voucherUri>
</voucherPayment>

Once the voucher payment has been received, Restbucks can attempt to redeem it

with the voucher service. After it’s been redeemed, the customer can continue with

the order, and Restbucks can instigate a back-office process to bill the voucher service.

This is where OAuth kicks in. Because vouchers are protected with OAuth, Restbucks

(the client) must first obtain some temporary credentials from the voucher service (the

server). If the customer (the resource owner) and voucher service agree, these tem-

porary credentials can then be exchanged for token credentials, which in turn can be

used to redeem vouchers.

Since the OAuth protocol hasn’t run at this point, Restbucks has no token credentials

with which to redeem the voucher. Because of this, the attempt to redeem the voucher

is met with an OAuth challenge from the voucher service, as shown in Figure 9-9.

Figure 9-9.  Restbucks fails to authorize and redeem the voucher

http://schemas.restbucks.com%E2%80%B3
http://vouchers.example.org/voucher/jim/1234</voucherUri

320 CHAPTER 9: web security

The wire-level view of the failed redemption attempt is shown in Examples 9-36

and 9-37. Restbucks attempts to redeem a voucher by issuing a DELETE against the

appropriate voucher resource. The voucher service responds with a 401 Unauthorized

response. This response includes a WWW-Authenticate header—a challenge—whose

value indicates that the service uses OAuth, and that the realm for which Restbucks

must obtain credentials is http://vouchers.example.org/.

Example 9-36.  Restbucks attempts to redeem the voucher

DELETE /voucher/jim/1234 HTTP/1.1
Accept: application/vnd.coffeevoucher+xml
Host: vouchers.example.org

Example 9-37.  Voucher service challenges the redemption

HTTP/1.1 401 Unauthorized
WWW-Authenticate: OAuth realm=″http://vouchers.example.org/″
Content-Type: application/x-www-form-urlencoded
Date: Sat, 03 Apr 2010 00:27:47 GMT

Restbucks answers the voucher service’s challenge by POSTing its OAuth client creden-

tials to the service, as shown in Figure 9-10.

Figure 9-10.  Restbucks responds to authorization challenge by demanding a set of temporary
credentials

The Authorization header value here contains some OAuth metadata. The combina-

tion of the metadata and the destination URI triggers the generation of temporary cre-

dentials. These OAuth metadata values are important to understand:

oauth_signature and oauth_signature_method

The signature element ensures the integrity of the representation. Using a shared

secret (e.g., the consumer secret), the voucher service can determine whether the

contents of the request have been tampered with in transit. The signature method

http://vouchers.example.org/
http://vouchers.example.org/%E2%80%B3

321The OAuth Protocol

tells the voucher service which algorithm has been used to compute the signature.

The service then uses the same algorithm to validate incoming messages.*

oauth_timestamp
The timestamp provides a simple test of message freshness, which the voucher

service can use to reject old or out-of-order requests.

oauth_nonce
The nonce is used to uniquely identify the request, thereby preventing replay

attacks when transferring representations over insecure channels. The voucher

service will honor a request containing a particular nonce only once.

oauth_consumer_key
The client’s credentials—comprising a consumer key and consumer secret—were

established with the voucher service prior to any OAuth interactions taking place.

oauth_callback
This represents a Restbucks URI to which the voucher service will redirect the cus-

tomer once the customer has delegated authorization to Restbucks.

oauth_version
This represents an optional entry containing the version of the protocol in use.

The wire-level view of obtaining a set of temporary credentials is shown in Example 9-38.

Example 9-38.  Restbucks acquires a set of temporary credentials

POST /requestToken/voucher/jim/1234 HTTP/1.1
Accept: application/x-www-form-urlencoded
Authorization: OAuth
oauth_callback=″http%3A%2F%2Frestbucks.com%2Fpayment%2F9baea738″,
oauth_signature=″GHU4a%2Fv9JnvZFTXnRiVf3HqDGfk%3D″, oauth_version=″1.0″,
oauth_nonce=″05565e78″, oauth_signature_method=″HMAC-SHA1″,
oauth_consumer_key=″light″, oauth_timestamp=″1270254467″
Host: vouchers.example.org

note
OAuth is permissive about the way protocol messages are transferred between the
client and server. Using the HTTP Authorization header is the preferred mecha-
nism, but transferring application/x-www-form-urlencoded data in an entity
body or request URI is also permitted (in that order of preference).

Because we’re working in a computer-to-computer scenario, we can carefully
craft our implementation to follow the preferred approach, which is to use the
Authorization header.

*	In these examples, we have chosen HMAC-SHA-1 to generate signatures. SHA-1 has vulnerabilities
that may be practical to exploit in the future. There is no problem using SHA-1 for HMAC, how-
ever, because the collision-free property isn’t important in this use case.

322 CHAPTER 9: web security

The voucher service determines whether the request in Example 9-38 is valid by veri-

fying the supplied signature using its copy of the consumer secret (which it can find in

its trusted store based on the supplied consumer key). If the request can be validated,

the voucher service generates a response containing temporary credentials, as shown

in Example 9-39.

Example 9-39.  OAuth temporary credentials created

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
Content-Length: 79
Date: Sat, 03 Apr 2010 00:27:47 GMT

oauth_token=b0c2ec2c&oauth_token_secret=f41eab9d&oauth_callback_confirmed=true

The temporary credentials consist of a temporary token (oauth_token) and a secret

(oauth_token_secret). The response also includes an oauth_callback_confirmed param-

eter, which is there simply to differentiate the response from previous versions of the

protocol.

Restbucks stores the oauth_token_secret in case it needs it to sign any future requests

for a set of token credentials. Restbucks then redirects the customer to a resource on

the voucher service using an HTTP 303 See Other response.

On the wire, this is achieved with an HTTP redirect. Notice how, in Example 9-40, the

redirect URI in the Location header contains both the voucher ID (voucher/jim/1234)

and the temporary OAuth token (oauth_token=b0c2ec2c) with which Restbucks has

just been issued.

Example 9-40.  Redirection for sign-in

HTTP/1.1 303 See Other
Location: http://vouchers.example.org/signIn/voucher/jim/1234?oauth_token=b0c2ec2c
Content-Type: application/vnd.restbucks+xml
Content-Length: 0
Date: Sat, 03 Apr 2010 00:27:47 GMT

On receiving the redirect, the customer performs an HTTP GET on the resource iden-

tified in the Location header. At this point, the customer must authenticate with the

voucher service. Because OAuth does not mandate how services manage login and

authorization, we temporarily step outside the OAuth protocol. In our implementation,

the response to the redirected GET is an XHTML login form, correctly parameterized for

the current resource owner, voucher, and OAuth session, as we can see in Figure 9-11.

http://vouchers.example.org/signIn/voucher/jim/1234?oauth_token=b0c2ec2c

323The OAuth Protocol

Figure 9-11.  Out-of-band authentication and authorization with the voucher service

On the wire, the customer’s GET request uses an Accept header to request an XHTML

representation, as shown in Example 9-41. The voucher service obliges with an

XHTML form, as shown in Example 9-42. The form’s action attribute contains the URI

of the login resource for the voucher that Restbucks wants to access. The form’s con-

tent includes a hidden <input> element containing the OAuth token to be POSTed back

during login.

Example 9-41.  Requesting a sign-in form

GET /signIn/voucher/jim/1234?oauth_token=b0c2ec2c HTTP/1.1
Accept: application/xhtml+xml
Host: vouchers.example.org

Example 9-42.  The XHTML sign-in form

HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
Content-Length: 360
Date: Sat, 03 Apr 2010 00:27:47 GMT

<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML 1.0 Transitional//EN″
″http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″>
 <body>
 <form action=″http://vouchers.example.org/signIn/voucher/jim/1234″
 method=″post″>
 <input type=″hidden″ name=″oauth_token″ value=″b0c2ec2c″/>
 <input type=″password″ name=″password″/>
 </form>
 </body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://vouchers.example.org/signIn/voucher/jim/1234%E2%80%B3

324 CHAPTER 9: web security

The customer provides a password and POSTs the completed form back to the vouch-

er’s login resource. If the voucher service accepts the form and the password, it

issues another redirect, this time back to Restbucks. This new redirect carries with it

the same temporary request token that the voucher service first issued to Restbucks,

and which has since been passed from Restbucks to the customer, and from the cus-

tomer back to the voucher service. The redirect also includes a verification code des-

tined for Restbucks. The customer login and the subsequent redirect are shown in

Figure 9-12.

Figure 9-12.  Coffee voucher service authorizes the temporary request token for customer and
redirects to Restbucks

The exchange depicted in Figure 9-12 is shown at the wire level in Examples 9-43,

9-44, and 9-45.

In Example 9-43, the customer sends its credentials to the voucher’s login resource,

as hosted by the voucher service.* If authorization succeeds, the voucher service

responds with a redirect, as shown in Example 9-44.

The redirect is parameterized with the OAuth temporary request token and the veri-

fier that Restbucks will need to obtain a set of token credentials. In Example 9-45, the

customer uses the URI in the redirect Location header to GET the notification resource

from Restbucks. That GET operation has the side effect of letting Restbucks know the

customer has authorized use of the voucher.

*	In this example, we use HTTP and forms-based authentication for clarity. In a real system on the
Web, this interaction should use either HTTPS to guarantee confidentiality, or some other authenti-
cation mechanism that is tolerant of insecure channels (e.g., WSSE).

325The OAuth Protocol

Example 9-43.  Signing in

POST /signIn/voucher/jim/1234 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Accept: application/xhtml+xml
Host: vouchers.example.org
Content-Length: 68

password=sc00byd00&oauth_token=b0c2ec2c

Example 9-44.  Redirecting back to Restbucks

HTTP/1.1 303 See Other
Location: http://restbucks.com/payment/1234/voucherReady?oauth_token=b0c2ec2c
&oauth_verifier=c87677a4
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Date: Sat, 03 Apr 2010 00:27:47 GMT

Example 9-45.  Notifying Restbucks of a successful sign-in

GET /payment/1234/voucherReady?oauth_token=b0c2ec2c&oauth_verifier=c87677a4
HTTP/1.1
Host: restbucks.com

The next step in the payment process is for Restbucks to request a set of token creden-

tials from the voucher service. Restbucks does this by POSTing the temporary request

token and the verifier it received at its callback URI (in Example 9-45) to the voucher

service (see Figure 9-13).

Did We GET This Wrong?
A question arises at this point: is a redirect and subsequent GET to Restbucks’ callback URI
the right way to notify Restbucks that the customer has authorized use of the voucher? The
GET here is used to send new data—the verification code—to Restbucks. This would seem
to be a case of URI tunneling (which we saw and warned against in Chapter 3).

Remember, OAuth was originally developed for the human Web, where the uniform in-
terface has historically been constrained to GET and POST. With a browser as the main
software agent, redirections and GET have become a pragmatic way of managing the flow
of control between services.

On the programmatic Web, we tend to use forms and links, not redirects, to manage control
flow. We can still use redirection, provided we always follow the golden rule: consumers
(like Restbucks customers) are not held responsible for any state changes that occur in
response to GET requests.

http://restbucks.com/payment/1234/voucherReady?oauth_token=b0c2ec2c

326 CHAPTER 9: web security

Figure 9-13.  Restbucks exchanges the temporary request token for a set of token credentials

Restbucks signs its request for a set of token credentials using the oauth_token_secret

it received at the outset of the OAuth protocol (the oauth_token_secret is part of the

set of temporary credentials received in Example 9-39). On the wire, the request and

response are shown in Examples 9-46 and 9-47.

Example 9-46.  Restbucks requests a set of token credentials

POST /accessToken/voucher/jim/1234 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: OAuth oauth_signature=″m7ials2v0VJuKD05BrNGISi7Nog%3D″,
oauth_version=″1.0″, oauth_nonce=″10d13b8e″, oauth_signature_method=″HMAC-SHA1″,
oauth_consumer_key=″light″, oauth_verifier=″c87677a4″, oauth_token=″b0c2ec2c″,
oauth_timestamp=″1270254468″
Host: vouchers.example.org
Accept: application/x-www-form-urlencoded

Example 9-47.  Voucher service generates a set of token credentials

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
Content-Length: 49
Date: Sat, 03 Apr 2010 00:27:48 GMT

oauth_token=99fe97e1&oauth_token_secret=255ae587

The token credentials allow Restbucks to manipulate any of the resources that the

voucher service has associated with those credentials. In the general case, sets of

token credentials are valid for multiple interactions, which makes sense consider-

ing the effort involved in obtaining them! However, our voucher service is restrictive:

Restbucks will be allowed to DELETE only a single payment voucher resource per set of

token credentials, as we can see in Figure 9-14.

327The OAuth Protocol

Figure 9-14.  Restbucks redeems a voucher and returns control flow to the customer

At the network level, redeeming the voucher in exchange for coffee is a simple DELETE

request containing OAuth metadata in the Authorization header. Restbucks computes

the signature in Example 9-48 using the token credentials’ oauth_token_secret value.

If the voucher service agrees to redeem the voucher, it responds with a 200 OK response

and a copy of the voucher state, as per Example 9-49.

Example 9-48.  Restbucks redeems a voucher using the access token

DELETE /voucher/jim/1234 HTTP/1.1
Accept: application/vnd.coffeevoucher+xml
Authorization: OAuth oauth_signature=″k2awEpciJkd2X8rt3NmgDg8AyUo%3D″,
oauth_version=″1.0″, oauth_nonce=″9ceea445″, oauth_signature_method=″HMAC-SHA1″,
oauth_consumer_key=″light″, oauth_token=″99fe97e1″, oauth_timestamp=″1270254468″
Host: vouchers.example.org

Example 9-49.  Voucher service corroborates the redemption

HTTP/1.1 200 OK
Content-Type: application/vnd.coffeevoucher+xml
Content-Length: 252
Date: Sat, 03 Apr 2010 00:27:48 GMT

<?xml version=″1.0″ encoding=″UTF-8″ standalone=″yes″?>
<link xmlns=″http://voucher.example.org/schema″
 mediaType=″application/vnd.coffeevoucher+xml″
 uri=″http://vouchers.example.org/voucher/jim/1234″ rel=″voucher″/>

http://voucher.example.org/schema%E2%80%B3
http://vouchers.example.org/voucher/jim/1234%E2%80%B3

328 CHAPTER 9: web security

With the voucher redeemed, the workflow is almost complete. The final step is to

return control to the customer. This involves completing the notification process the

customer had started in Example 9-45 (this notification, or callback, had triggered the

request for token credentials and the secure voucher redemption). If everything went

well, this step is almost an anticlimax: Restbucks responds with a simple 200 OK.

After the workflow has completed, the customer might be interested in seeing how

many vouchers it has remaining. It’s easy enough to validate that Restbucks has

redeemed a voucher. All the customer has to do is GET the Atom feed of available

vouchers, as per Example 9-50, and inspect the state of the virtual wallet. Because the

voucher has been redeemed, it’s no longer present in the feed.*

Example 9-50.  The voucher service has one less voucher

HTTP/1.1 200 OK
Content-Type: application/atom+xml
Content-Length: 977
Date: Sat, 03 Apr 2010 00:27:48 GMT

<?xml version=″1.0″ encoding=″UTF-8″?>
<feed xmlns=″http://www.w3.org/2005/Atom″>
 <title>Coffee Vouchers for jim</title>
 <link rel=″self″ href=″http://vouchers.example.org/jim″ />
 <author>
 <name>vouchers@example.org</name>
 </author>
 <id>http://vouchers.example.org/jim</id>
 <generator uri=″http://vouchers.example.org/″>Coffee Voucher Service</generator>
 <updated>2010-04-03T00:19:12Z</updated>
 <entry>
 <title>Coffee Voucher</title>
 <link rel=″http://relations.vouchers.example.org/coffee″
 href=″http://vouchers.example.org/voucher/jim/25983cab″ />
 <author>
 <name>vouchers@example.org</name>
 </author>
 <id>http://vouchers.example.org/voucher/jim/25983cab</id>
 <updated>2010-04-03T00:21:20Z</updated>
 <content>Exchange this voucher for a coffee of your choice at your local
 Restbucks store.
 </content>
 </entry>
</feed>

*	Alternatively, we could have added a status flag to the voucher to show that it has been redeemed,
or even create a second feed for redeemed vouchers. This is a matter of design taste and doesn’t
significantly affect the overall solution.

http://www.w3.org/2005/Atom%E2%80%B3
http://vouchers.example.org/jim%E2%80%B3
http://vouchers.example.org/jim</id
http://vouchers.example.org/%E2%80%B3
http://relations.vouchers.example.org/coffee%E2%80%B3
http://vouchers.example.org/voucher/jim/25983cab%E2%80%B3
http://vouchers.example.org/voucher/jim/25983cab</id

329The OAuth Protocol

Implementing OAuth in Java
OAuth 1.0a is well supported by vendors and open source efforts across all major

development platforms. To demonstrate how to use OAuth, we’ll show how to build

the example from the preceding section in Java using Jersey* and Jersey-OAuth.†

Coffee voucher service
The coffee voucher service plays three roles in the overall solution. Primarily it acts as

a virtual wallet, hosting voucher resources that can be used to pay for coffee. It also

plays the role of OAuth server, hosting resources for managing temporary and token

credentials. Finally, it exposes resources to help customers authorize the use of vouch-

ers. The high-level architecture is presented in Figure 9-15.

Figure 9-15.  Coffee voucher service logical resources

Each resource in Figure 9-15 is implemented as a Java class with standard JAX-RS

annotations. The VoucherResource class shown in Example 9-51 typifies the approach

we’ve chosen.

Example 9-51.  The VoucherResource class

@Path(″/voucher″)
public class VoucherResource {
 @Context
 private UriInfo uriInfo;

 @GET
 @Path(″/{username}″)
 @Produces(MediaType.APPLICATION_ATOM_XML)
 public Response vouchersFor(@PathParam(″username″) String username) {
 String stringifiedFeed = stringify(getVouchersFeedFor(new UserId(username)));
 return addContentLengthHeader(Response.ok().entity(stringifiedFeed),
 stringifiedFeed.getBytes().length).build();
 }

*	https://jersey.dev.java.net/

†	Jersey-OAuth is a small OAuth library written for Jersey. It provides helpers for signatures and
some support for creating client-side filters that inject OAuth metadata into HTTP requests. See
http://download.java.net/maven/2/com/sun/jersey/contribs/jersey-oauth/.

https://jersey.dev.java.net/
http://download.java.net/maven/2/com/sun/jersey/contribs/jersey-oauth/

330 CHAPTER 9: web security

 @DELETE
 @Path(″/{username}/{voucherId}″)
 @Produces(Representation.COFFEE_VOUCHER_MEDIA_TYPE)
 @ResourceFilters(value = {OAuthAuthorizationRequiredFilter.class,
 OAuthAccessTokenRequiredFilter.class,
 OAuthNonceFilter.class})
 public Response useVoucher(@PathParam(″username″) String username,
 @PathParam(″voucherId″) String voucherId) {
 UserId userId = new UserId(username);
 Voucher voucher = VoucherStore.current().remove(userId,
 UUID.fromString(voucherId));

 if(voucher == null) {
 return Response.status(Status.NOT_FOUND).build();
 }

 return Response.ok().entity(voucher.toLink(uriInfo.getRequestUri())).build();
 }
 // Other methods elided for brevity
}

There are a couple of guards in place to prevent malicious parties from circumventing

authorization or subverting the OAuth protocol:

•	 To obtain a set of temporary credentials, one first needs a shared consumer secret

with which to sign requests.

•	 To obtain a set of token credentials, requests must be signed with the secret from

the temporary credentials.

To implement these guards in Jersey, we use the @ResourceFilters annota-

tion to declare preconditions on the execution of various methods within the

resource classes. Example 9-51 shows how we’ve protected the useVoucher(...)

method. The @ResourceFilters annotation declares that the OAuth Authorization

header (OAuthAuthorizationRequiredFilter), plus a set of token credentials

(OAuthAccessTokenRequiredFilter), plus a valid nonce (OAuthNonceRequiredFilter)

must be present to trigger dispatch to the useVoucher(...) method.

In general, in our implementation, each resource has zero or more filters associated

with it, depending on the protocol preconditions that must be met before the resource

can be manipulated. The filters for each resource are shown in Figure 9-16.

Figure 9-16.  Filters are used to enforce the protocol at runtime

331The OAuth Protocol

The OAuthAccessTokenRequiredFilter class shown in Example 9-52 is a typical example

of how to separate OAuth protocol concerns from the core business logic using filters.

Example 9-52.  The OAuthAccessTokenRequiredFilter class

public class OAuthAccessTokenRequiredFilter implements ResourceFilter {

 @Override
 public ContainerRequestFilter getRequestFilter() {
 return new ContainerRequestFilter() {

 public ContainerRequest filter(ContainerRequest cr) {
 HashMap<String, String> oauthValues =
 OauthHeaderHelper.extractOauthParamsFromAuthorizationHeader(
 cr.getHeaderValue(″Authorization″));

 if(!oauthValues.containsKey(″oauth_token″)) {
 throw new WebApplicationException(
 Response.status(Status.UNAUTHORIZED)
 .type(MediaType.TEXT_PLAIN)
 .entity(″No oauth_token in request.″).build());
 }

 String oauthToken = oauthValues.get(″oauth_token″);

 if(!AccessTokenStore.current().containsToken(oauthToken)) {
 throw new WebApplicationException(
 Response.status(Status.UNAUTHORIZED)
 .type(MediaType.TEXT_PLAIN)
 .entity(″No matching access token issued.″).build());
 }

 return cr;
 }
 };
 }

 // Other methods elided for brevity
}

The filter code in Example 9-52 is invoked by Jersey prior to the request reaching a

resource class. In the OAuthAccessTokenRequiredFilter class, we check whether the

request contains an oauth_token value; if it does, we then check whether that value

corresponds to an issued set of token credentials in the access token store. Should

either of those tests fail, the request is rejected with a 401 Unauthorized response with-

out being dispatched to the resource for processing.

332 CHAPTER 9: web security

A similar pattern is used for the OAuthAuthorizationRequiredFilter class. This filter

checks that the HTTP Authorization header contains correctly formed and signed

OAuth values. The filter code is shown in Example 9-53.

Example 9-53.  The OAuthAuthorizationRequiredFilter class

public class OAuthAuthorizationRequiredFilter implements ResourceFilter {

 public ContainerRequestFilter getRequestFilter() {
 return new ContainerRequestFilter() {

 public ContainerRequest filter(ContainerRequest cr) {

 String authorizationHeader = cr.getHeaderValue(″Authorization″);
 ConsumerKey consumerKey = extractConsumerKey(authorizationHeader);
 validateConsumerKey(consumerKey, cr);
 OAuthParameters params = new OAuthParameters();
 OAuthServerRequest request = new OAuthServerRequest(cr);
 params.readRequest(request);

 OAuthSecrets secrets = setupSecretsFor(authorizationHeader, consumerKey);

 try {
 if (!OAuthSignature.verify(request, params, secrets)) {
 throw new WebApplicationException(Response.status(401)
 .entity(″Failed to verify signature″)
 .type(MediaType.TEXT_PLAIN).build());
 }
 } catch (OAuthSignatureException e) {
 throw new WebApplicationException(e, 500);
 }

 return cr;
 }
 // Other methods elided for brevity
 };
 }
 // Other methods elided for brevity
}

Example 9-53 demonstrates the use of some of the server-side Jersey-OAuth compo-

nents. Specifically, we wrap the underlying request in an OAuthServerRequest instance.

This allows us to read the OAuth values into an OAuthParameters instance. We then

initialize an OAuthSecrets object with the secrets for the OAuth values in the request,

and attempt to validate the signature using the OAuthSignature type.

333The OAuth Protocol

The Jersey-OAuth components only abstract the underlying cryptographic techniques.

This leaves us with quite a bit to implement, including consumer secret storage, poli-

cies for token storage and expiration, and the protocol itself.

note
Because implementing a good token store is not trivial, it’s common for solutions
designers to look to existing middleware to provide OAuth provider functionality.
We think this is a sensible thing to do.

Having implemented a basic OAuth provider for the voucher service, however, we
can attest that it is possible for regular developers to build and deploy them too.

Restbucks payment service
The payment service is based on the same code we saw back in Chapter 5 in the

Restbucks ordering service. This time, however, instead of using credit card details to

make payments, we’ve implemented a voucher version of that code. We’ve also imple-

mented a notification resource, which allows OAuth callbacks when customers autho-

rize Restbucks to redeem vouchers. The service architecture is shown in Figure 9-17.

Figure 9-17.  Payment service and its logical resources

The core of the PaymentResource implementation is shown in Example 9-54. The meth-

od’s preamble simply validates that there is a corresponding order awaiting payment

before then attempting to redeem a voucher.

Example 9-54.  The PaymentResource implementation

@PUT
@Path(″/{orderId}″)
@Consumes(RESTBUCKS_MEDIA_TYPE)
@Produces(RESTBUCKS_MEDIA_TYPE)
public Response makePayment(@PathParam(″orderId″) String orderId,
 VoucherPayment voucherPayment) throws Exception {

 Identifier identifier = new Identifier(orderId);
 if (!OrderStore.current().has(identifier)) {
 return Response.status(Status.NOT_FOUND)

334 CHAPTER 9: web security

 .type(MediaType.TEXT_PLAIN)
 .entity(String.format(″Order [%s] does not exist.″,
 uriInfo.getRequestUri().toString()))
 .build();
 }

 Status voucherRedeemed = Status.fromStatusCode(
 redeemVoucher(voucherPayment).getStatus());

 if (voucherRedeemed == Status.OK) {
 // Unsecured vouchers, free money on the Internet!
 PaymentStore.current().store(identifier, voucherPayment);
 return Response.created(new URI(
 uriInfo.getBaseUri().toString() + ″payment/″ + orderId))
 .entity(voucherPayment).build();
 } else if (voucherRedeemed == Status.UNAUTHORIZED) {
 PendingPaymentStore.current().store(identifier, voucherPayment);

 URI requestTokenUri = lookupRequestTokenUriFor(voucherPayment);
 RequestToken rt = obtainRequestTokenFor(requestTokenUri);
 RequestTokenStore.current().store(rt);

 URI loginUri = lookupLoginUriFor(voucherPayment);
 URI redirectUri = UriBuilder.fromUri(loginUri)
 .queryParam(″oauth_token″, rt.getToken()).build();

 return Response.seeOther(redirectUri)
 .type(MediaType.APPLICATION_FORM_URLENCODED).build();
 }
 return Response.status(Status.BAD_REQUEST).build();
}

If Restbucks has not yet started the OAuth protocol for this payment, the attempt to

redeem a voucher by DELETEing the voucher resource fails with a 401 Unauthorized

challenge. This causes the payment service first to store a new entry in the pending

payments store, and then to begin the OAuth protocol.

At the outset of the protocol, Restbucks must resolve the URI where temporary cre-

dentials for the current voucher can be requested. This information may come from

the voucher itself, or perhaps be stored as part of the trust arrangement that is created

when Restbucks and a voucher service choose to partner.

Once the URI for requesting temporary credentials has been resolved, Restbucks calls

obtainRequestTokenFor(...) to obtain a set of temporary credentials (we’ll look at this

method shortly). Having obtained the necessary credentials, Restbucks then redirects

the customer to authorize voucher access at the voucher service.

335The OAuth Protocol

Before we look at what happens after the customer has authorized voucher access,

let’s examine obtainRequestTokenFor(...), a private method for obtaining a set of tem-

porary credentials as shown in Example 9-55.

Example 9-55.  Requesting a set of temporary credentials

private RequestToken obtainRequestTokenFor(URI requestTokenUri) {
 ClientConfig cc = new DefaultClientConfig();
 cc.getClasses().add(RequestTokenProvider.class);

 Client client = Client.create(cc);

 URI callbackUri = UriBuilder.fromUri(uriInfo.getRequestUri())
 .path(″voucherReady″).build();

 client.addFilter(
 clientFilterForRequestTokenExchange(requestTokenUri, callbackUri));

 ClientResponse response = client.resource(requestTokenUri)
 .accept(MediaType.APPLICATION_FORM_URLENCODED)
 .post(ClientResponse.class);

 if(response.getStatus() == 200) {
 return response.getEntity(RequestToken.class);
 }

 if(response.getStatus() == 401) {
 throw new WebApplicationException(
 Response.status(Status.UNAUTHORIZED).build());
 }

 throw new WebApplicationException(Response.serverError().build());
}

There’s a little housekeeping code toward the start of Example 9-55 where we register

the RequestTokenProvider class with the Jersey client. Registering this provider means

any OAuth temporary credentials we receive from the voucher service will be auto-

matically translated into usable objects.

The next housekeeping task is to register a client filter to handle the creation of

the OAuth Authorization header on our behalf. The clientFilterForRequestToken
Exchange(...) method generates such a filter, using the preexisting consumer secret to

sign any outgoing requests. Finally, the temporary credentials are requested through a

normal Jersey client call to client.resource(...).post(...).

That’s the temporary credentials out of the way. Continuing with the payment service’s

view of the protocol, we can now look at what happens after the customer has authorized

336 CHAPTER 9: web security

use of a voucher (we’ll look at the customer’s part in the protocol in the next section). As

you may remember from the protocol description earlier in this chapter, after the cus-

tomer has authorized voucher access with the voucher service, the voucher service redi-

rects the customer back to the payment service’s notification URI. This triggers the final

phase of the OAuth protocol, including voucher redemption, as per Example 9-56.

Example 9-56.  Dealing with the authorization notification

@GET
@Path(″/{orderId}/voucherReady″)
public Response notifyUserAuthorization(@PathParam(″orderId″) String id,
 @QueryParam(″oauth_token″) String requestToken,
 @QueryParam(″oauth_verifier″) String verifier)
 throws Exception {

 Identifier orderId = new Identifier(id);
 if (!OrderStore.current().has(orderId) ||
 !PendingPaymentStore.current().has(orderId)) {
 return Response.status(Status.NOT_FOUND).build();
 }

 VoucherPayment pendingVoucherPayment =
 PendingPaymentStore.current().get(orderId);

 OAuthVerifier oauthVerifier = new OAuthVerifier(verifier);
 AccessToken accessToken = obtainAccessToken(
 lookupAccessTokenUriFor(pendingVoucherPayment),
 RequestTokenStore.current()
 .getToken(requestToken), oauthVerifier);
 AccessTokenStore.current().store(accessToken,
 pendingVoucherPayment.getVoucherUri());

 ClientResponse response = securelyRedeemVoucher(pendingVoucherPayment,
 accessToken);

 Status voucherRedeemed = Status.fromStatusCode(response.getStatus());

 if(voucherRedeemed == Status.OK) {
 return Response.ok().build();
 } else if(voucherRedeemed == Status.UNAUTHORIZED) {
 return Response.status(Status.UNAUTHORIZED).build();
 } else {
 return Response.serverError().build();
 }
}

337The OAuth Protocol

private AccessToken obtainAccessToken(URI accessTokenUri,
 RequestToken requestToken) {
 ClientConfig cc = new DefaultClientConfig();
 cc.getClasses().add(AccessTokenProvider.class);

 Client client = Client.create(cc);
 client.addFilter(clientFilterForAccessTokenExchange(
 accessTokenUri, requestToken, verifier));
 ClientResponse response = client.resource(accessTokenUri)
 .type(MediaType.APPLICATION_FORM_URLENCODED)
 .accept(MediaType.APPLICATION_FORM_URLENCODED)
 .post(ClientResponse.class);

 return response.getEntity(AccessToken.class);
}

private ClientResponse securelyRedeemVoucher(VoucherPayment voucherPayment,
 AccessToken accessToken) {
 URI voucherUri = voucherPayment.getVoucherUri();
 Client client = Client.create();
 client.addFilter(
 clientFilterForSecureRedeemVoucherExchange(voucherUri, accessToken));
 return client.resource(voucherUri)
 .accept(″application/vnd.coffeevoucher+xml″).delete(ClientResponse.class);
}

If the guard logic at the top of this method passes, Restbucks tries to trade its tempo-

rary credentials for a set of token credentials. The obtainAccessToken(...) method

encapsulates this activity, including the production of the Authorization header signed

with the temporary credential’s secret.

Once a set of token credentials has been procured, Restbucks uses it to securely

redeem the voucher. The securelyRedeemVoucher(...) method encapsulates this activ-

ity, taking the token from the token credentials and using it to populate and sign the

Authorization header for the DELETE request sent to the voucher’s URI.

All that remains once the voucher has been redeemed is to let the customer know

the outcome of the notification by returning a 200 OK, 401 Unauthorized, or 500 Server

Error status code.

Restbucks customer
In contrast to the client (Restbucks) and server (voucher service) roles in OAuth, the

resource owner (customer) role is very straightforward to implement. It just needs

to be able to select a voucher and lodge payments with Restbucks, sign in to the

voucher service, and deal with any redirections it encounters. The (skeletal) code in

Example 9-57 shows an implementation of the necessary resource owner logic.

338 CHAPTER 9: web security

Example 9-57.  Resource owner implementation

// Choose a voucher, submit it to Restbucks
Identifier orderId = RestbucksServiceHelper.createCoffeeOrder();
URI orderUri = new URI(RestbucksServiceHelper.SERVICE_URI + ″payment/″ +
 orderId.toString());

VoucherPayment payment = new VoucherPayment(voucherUri);

Client client = Client.create();
ClientResponse response = client.resource(orderUri).entity(payment)
 .accept(PaymentResource.RESTBUCKS_MEDIA_TYPE)
 .type(PaymentResource.RESTBUCKS_MEDIA_TYPE)
 .put(ClientResponse.class);

// Client will be redirected to an XHTML form

XhtmlForm form = new XhtmlForm(response.getEntity(String.class));
form.getFirstPasswordElement().setValue(″supertopsecretpassword″);

ClientResponse response = client.resource(form.getActionUri())
 .entity(form.toUrlEncoded())
 .type(MediaType.APPLICATION_FORM_URLENCODED)
 .accept(MediaType.APPLICATION_XHTML_XML)
 .post(ClientResponse.class);

// Client will be redirected to Restbucks

if(response.getStatus() != 200) {
 // Report the failure
}

Although the resource owner code in Example 9-57 is short, it is complete from a

protocol perspective. The Jersey Client type handles much of the hard work (the

redirects) for us, and so all we have to do is to PUT a voucher to pay and complete an

XHTML form to authorize access to a voucher. Everything else is handled through

HTTP redirection by the Jersey framework.

Practical Considerations for OAuth
OAuth is a popular protocol on the Web. Although it has historically been used for

browser-based systems, it is also suitable for programmatic use. The frameworks we

used provide the basic cryptography and network plumbing to make OAuth services a

reality for regular developers. For those who prefer packages, vendor and open source

products are available for OAuth servers.

339Service Hacks and Defenses

OAuth 1.0 is now an Internet RFC (RFC 5849). OAuth 2.0 is due toward the end

of 2010, with specific flows for web applications, desktop applications, mobile

phones, and domestic devices. OAuth 2.0 will not be backward-compatible with ver-

sion 1.0, however; the parameters are different, and there are many terminological

differences.

Service Hacks and Defenses
The protocols we’ve seen so far in this chapter form an important pillar in securing

interactions between services. But good security extends not just to the network, but

also to service implementations. To be dependable, a service must tolerate various

abuses that it is likely to encounter on the Web and deal with those threats grace-

fully. In the following sections, we outline five important security themes for building

dependable services that will survive production.

Denial of Service
It can be hard to distinguish between a genuine consumer interaction and a malicious

request. In the normal course of operations, customers submit many successful orders

to Restbucks each second, most of which are innocuous.

note
A common attack vector is to overwhelm a service with many requests, thereby
causing a denial-of-service attack. Such attacks are best prevented by opera-
tions specialists analyzing traffic at the network layer. We’re not going to focus
any further on the network layer. In this section, we’ll cover only those attacks that
specifically pertain to service implementations.

While the majority of well-formed requests will likely be legitimate coffee orders, it

is possible to craft a perfectly valid order representation that is nonetheless capable of

causing mischief. Imagine the problems caused if a malicious consumer crafted a very

large representation, such as that in Example 9-58, and POSTed it to Restbucks.

Example 9-58.  A large representation crafted to cause denial of service

POST /order HTTP/1.1
Host: restbucks.com
Content-Type:application/vnd.restbucks+xml

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>

http://schemas.restbucks.com/order%E2%80%B3

340 CHAPTER 9: web security

 <milk>whole</milk>
 <size>small</size>
 </item>
 <item>
 <name>cappuccino</name>
 <quantity>1</quantity>
 <milk>skim</milk>
 <size>small</size>
 </item>
 <!-- Millions more item elements -->
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>skim</milk>
 <size>small</size>
 </item>
</order>

At the outset, when the Restbucks ordering service accepts and begins processing the

request shown in Example 9-58, everything looks normal. Apart from a missing Content-
Length header, the XML appears well formed and valid. The only problem—as the service

is about to find out—is that the representation is insanely large! At some point, a suffi-

ciently large representation will consume all the memory available to the service.

note
Whether through sloppy techniques, such as loading an entire XML representation
into a DOM representation before processing, or simply by instantiating domain
objects in response to processing events, the result of processing a maliciously
large representation is the same: out of memory.

If the service runs out of memory, it will cause a slowdown (at best) and a denial of

service (at worst) for other consumers. If the implementation has not been developed

with such attacks in mind, resuming normal service may even require a restart.

Frustratingly, the Content-Length header might not help defend against these simple

attacks, even if it is present. Where it is present and is suspiciously large (this would be

rare; hackers aren’t normally sloppy), representations can be dropped early in the pro-

cessing life cycle, before they can do any damage.

A more realistic scenario is one in which the web server drops any representation

whose size does not correspond to the Content-Length header. If we establish a policy

whereby the service will accept representations up to a reasonable content length

(which may be a few megabytes at most for Restbucks), any larger representations can

be dropped before they have a chance to do too much damage.

341Service Hacks and Defenses

If the Content-Length header is missing, we’re in a quandary. The permissive thing to

do is to accept the representation and assume it’s just a poorly conformant consumer.

The secure—and most likely correct—thing to do is to immediately cease processing

the representation and respond with 411 Length Required instead.

To make things a little more complex, consumers can also use chunked transfer

encoding.* To use chunked transfer encoding, a consumer sets the request header to

Transfer-Encoding: chunked. Chunking a message allows the consumer to stream a

request of unknown length to the service. Unless your service trusts the consumer, it’s

wise to reject chunked requests with 411 Length Required.

To defend against large payload attacks, you should test your web server. The HTTP

specification says that compliant systems should use the Content-Length header—but

it’s not mandatory. If your web server is ambivalent about these potentially malicious

representations, you’ll have to code your own defenses at the application layer.

Writing defensive code in modern web frameworks is straightforward. Most frame-

works provide hooks into the various processing stages of a request, allowing you to

insert checks early in the processing life cycle. If the inbound request seems suspicious,

it can be rejected before it does any real damage.

Sometimes, despite your best efforts, an attack will succeed, and a malicious payload

will make it into your service. But we’re not helpless, even here. Provided our service

implementation doesn’t allow an exception to be thrown while servicing one request

to shut down the entire service, we can always reject the offending consumer and con-

tinue processing for others.

warning
Unhandled exceptions should not be allowed to percolate to the top of the stack.
Problems such as OutOfMemoryError in Java or OutOfMemoryException in .NET
should be handled by the service gracefully—even if that means swallowing the
exception and restarting the process.

When dealing with a malicious request, it’s important not to leak information to an

attacker—even when the service is under severe stress. For example, don’t let an

exception find its way into a response—that’s just more ammunition to an attacker.

Instead, either immediately terminate the connection (at the TCP level if at all possi-

ble), or return a 400 Bad Request response code. In both cases, you should log the stack

trace to help forensic investigations after the fact.

*	Usually chunking is used by services to efficiently stream large responses to a consumer over a
persistent underlying TCP connection.

342 CHAPTER 9: web security

Keep Secrets Secret
Security through obscurity is a poor strategy by itself, but that doesn’t mean a service

should be liberal with the information it gives out. We’ve already discussed how a ser-

vice should keep its internal structure private by not allowing implementation details

(such as exceptions) to be rendered in responses, but we can go further.

Services and consumers coordinate their interactions based on a shared understanding

of the semantics of HTTP’s status codes. In certain circumstances, however, a service

might respond with a more general status code so as to avoid giving too much infor-

mation away. Consider a scenario in which a possible attacker is probing the resources

hosted by a service. Imagine, for example, that by some cunning means an attacker

has obtained or reverse-engineered the internal URI templates for the Restbucks pay-

ments and ordering services: http://restbucks.com/payment/{payment_id} and http://
restbucks.com/order/{order_id}.

Recall from Chapter 5 that once a payment is lodged, the service no longer allows it

to be manipulated by consumers. Instead, the service responds with 405 Method Not

Allowed to requests for a valid payment, and with 404 Not Found to requests for pay-

ments that do not exist. Although this might seem innocuous enough to us, that

information is helpful to attackers: a 405 response allows an attacker to infer the URI

of orders, and thereafter meddle with them, whereas a 404 response does not.

In these cases, we might choose to trade expressiveness for security. The 405 response

indicates that a resource exists, as well as indicating that the consumer can’t use any

of the HTTP verbs to interact with it at this moment. The information here doesn’t

help legitimate consumers, but it does give malicious agents a peek into the service. As

such, we might consider always responding with 404 Not Found should any consumer

try to interact with a payment resource once it’s been created.

note
Defaulting to a 404 Not Found response is commonplace on the Web in situa-
tions where a consumer can’t make any forward progress. We can adopt the same
approach for our web services, using 404 to indicate simply that no further action is
allowed; in many circumstances, we’d rather do this than give away more specific
details (such as would be conveyed by 401, 405, 409, or 413), any of which might
give an attacker a useful glimpse into the state of the service.

The same principle applies even if we enforce authorization for payment resources.

Normally, an unauthenticated consumer receives a 401 Unauthorized response to

a payment request, but this suggests that a resource is available, and it allows an

attacker to make inferences about other resources. Again, a 404 Not Found response is

safer in this situation.

http://restbucks.com/payment/%7bpayment_id
http://restbucks.com/order/
http://restbucks.com/order/

343Service Hacks and Defenses

note
There’s a trade-off here. Sometimes a 401 challenge is used to bootstrap a more
secure interaction. For example, HTTP Digest authentication uses information in
a 401 response to set up future secure interactions. Similarly, our OAuth example
(Figure 9-9) is bootstrapped by a 401 response.

One strategy here is simply to reduce the attack surface by responding with 401
for entry points into a service, and 404 where we want to hide the existence of
otherwise secure resources.

All of the above is predicated on an attacker being able to deduce a URI from the

Restbucks URI structure. For humans this is quite simple, since we’ve designed the

Restbucks URI structure for expressiveness, and we’ve even documented it in this

book! Nonetheless, it doesn’t take a genius to infer Restbucks URI generation rules and

then put that knowledge to mischievous uses.

One way of preventing attackers from guessing the URIs associated with a live DAP

is to scramble those readable URIs into something much more opaque. Because

Restbucks and its customers are agnostic to the actual URI structure, this scrambling

can be done transparently. As we can see in Example 9-59, a link’s semantics are in

the rel attribute, not the uri attribute; this allows us to supply opaque URIs while

maintaining semantic clarity.

Example 9-59.  Using unguessable URIs in the ordering and payment protocol

<order xmlns=″http://schemas.restbucks.com/order″
 xmlns:dap=″http://schemas.restbucks.com/dap″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>small</size>
 </item>
 <cost>2.0</cost>
 <status>unpaid</status>

 <!-- Restbucks Domain Application Protocol -->
 <dap:link rel=″http://relations.restbucks.com/payment″
 uri=″https://restbucks.com/a/d77620fe-9dad-14d1-87bc-de432fdc9841″
 mediaType=″application/vnd.restbucks+xml″/>
 <dap:link rel=″http://relations.restbucks.com/latest″
 uri=″https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe″
 mediaType=″application/vnd.restbucks+xml″/>
 <dap:link rel=″http://relations.restbucks.com/update″
 uri=″https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe″
 mediaType=″application/vnd.restbucks+xml″/>

http://schemas.restbucks.com/order%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
https://restbucks.com/a/d77620fe-9dad-14d1-87bc-de432fdc9841%E2%80%B3
http://relations.restbucks.com/latest%E2%80%B3
https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3
https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe%E2%80%B3

344 CHAPTER 9: web security

 <dap:link rel=″http://relations.restbucks.com/cancel″
 uri=″https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe″
 mediaType=″application/vnd.restbucks+xml″/>
</order>

By using hard-to-guess URIs, we make it difficult for attackers to infer valid URIs.*

In this way, we prevent attackers outside the network path between a consumer

and Restbucks from interrupting other consumers’ workflows. However, software

agents (proxies, routers, etc.) that are on the network path between a consumer and

Restbucks will see the opaque URIs; these agents will therefore still be able to interfere

with the service. To thwart this last attack vector, techniques to ensure confidentiality

(e.g., HTTPS) must be used to make the approach robust.

note
Notice that even though we’ve used UUIDs to generate opaque URIs, we’ve still
retained a degree of structure. Payment URIs begin with /a/, while order URIs start
with /b/. This small amount of structure allows us to dispatch requests efficiently
inside the service (by matching against the URI templates http://restbucks.com/b/
{payment_uuid} and http://restbucks.com/b/{order_uuid}, respectively).
Alternatively, to dispatch requests to handler code, we might use a mapping table
to map URIs to resource handlers.

Act Defensively
Web-facing services are subject to the most hostile computing environment on the

planet: the Internet. As such, we have to assume the worst, and program defensively

within our services.

We’ve already discussed how attackers might try to compromise our systems using

large payloads, and thought through some responses to that threat. Dangerous pay-

loads aren’t always so obvious, however—at least to machines, as we can see in

Example 9-60.

Example 9-60.  A representation containing a malicious value

<order xmlns=″http://schemas.restbucks.com/order″>
 <location>takeAway</location>
 <item>
 <name>latte</name>
 <quantity>2147483648</quantity>

*	If we use a strong UUID generation algorithm (e.g., pseudorandom) as the basis for creating URIs,
the chance of an attacker guessing a URI in use is infinitesimally small. For illustration, if an at-
tacker generates 1 billion UUID-based URIs every second for the next 100 years, the probability of
creating just one matching a Restbucks URI would be about 50%. When you consider that Rest-
bucks URIs are relatively short-lived, they’re highly unlikely to be guessed in a useful time frame.

http://relations.restbucks.com/cancel%E2%80%B3
https://restbucks.com/b/8877ef49-774c-11bc-bbce-abf47e0923fe%E2%80%B3
http://restbucks.com/b/
http://restbucks.com/b/
http://schemas.restbucks.com/order%E2%80%B3

345Service Hacks and Defenses

 <milk>whole</milk>
 <size>small</size>
 </item>
 ...
</order>

Although an order of just over 216 café lattes would be quite lucrative if true, in all

probability this payload is meant to disrupt the ordering service by causing an integer

overflow. In this case, the attacker intends to create an order with a negative number

of coffees (due to wraparound), hoping to cause unexpected exceptions, which it can

then exploit.

Annoying as it is, this attack can be easily prevented with a simple business rule that

constrains the valid quantity of coffees to something reasonable (for retail), such as

greater than 0 but less than 50.

Representations aren’t the only attack vector that attackers might exploit. URIs them-

selves can present vulnerabilities if we haven’t built services defensively. For example,

attackers might wish to access our service’s configuration files, or worse, the line-of-

business databases that support it (which is especially true of the Restbucks payment

service). In Example 9-61, we see a GET request that has been crafted to steal the pass-

word file from a service hosted on a Unix server.

Example 9-61.  Probing the service with relative URIs

GET /order/../../../../etc/passwd HTTP/1.1
Host: restbucks.com

The attack in Example 9-61 will succeed if we are lax on two fronts:

•	 The service does not validate URI paths, constraining them to legal URIs for

resources in the service implementation.

•	 The user under which the service runs has read access to the file being targeted by

the attacker (in this instance, the password file).

This attack is easily thwarted, yet in a pressurized environment, where software must

be delivered and deployed rapidly, such obvious security measures are easily missed.

Another attack that uses carefully crafted URIs is one designed to cause a denial of ser-

vice rather than obtain information.* Imagine that an attacker figures out the relative

path of the root directory on a Unix system and issues a GET request such as the one

shown in Example 9-62.

*	See http://code.google.com/edu/submissions/web_security/listing.html for a fascinating discussion of this
technique.

http://code.google.com/edu/submissions/web_security/listing.html

346 CHAPTER 9: web security

Example 9-62.  Using relative URIs to cause a denial-of-service attack

GET /order/../../../../dev/random HTTP/1.1
Host: restbucks.com

The device /dev/random on Unix systems provides a continuous stream of random(ish)

bytes when read. This means that any process—including a service—reading from

that location will never stop. In the worst case, this could once again use up available

memory on the server and so cause a denial of service.

Although we don’t have to use sophisticated frameworks to develop web services, such

frameworks help immensely when dealing with this type of threat. WCF and Jersey, for

example, validate URIs in ways that typically prevent such attacks from succeeding—all

without additional developer effort.

warning
Even if we build services atop frameworks that validate URIs on our behalf, it
doesn’t always mean we’re safe. To further reduce risk, we suggest creating some
malicious test scripts that mimic the attacks we’ve outlined. These scripts should be
automated and run as part of deployment testing. Executing these tests provides
some confidence that at least the simple hacks are defended against.

Less Is Best
Often, the perfect place for a security exploit to hide is deep in mountains of code

that is rarely or never used. These are the corners of your codebase that haven’t been

exposed to the cleansing light of continuous testing and improvement, and have

instead been left to fester, waiting for an opportunity to wreak havoc.

But where does this code come from? The answer, unfortunately, is from our own

ingenuity. All too often, a feature will be implemented in software that development

teams simply guess may be useful in the future. The feature is developed and then

waits for its moment of glory, at which point all the preplanning miraculously pays off.

That’s the theory at least. In practice, many speculative features are forgotten about

and never used.

This speculative code is like a tumor. It might be benign or remain forever undiscov-

ered. Or it might be malignant and become active when an attacker happens across it.

Either way, it constitutes an unnecessary, but entirely avoidable, security risk.

We’re not going to extol the virtues of agile software development here, though we

tend to favor those techniques. However, in order to reduce the attack surface of a

service, the simplest thing we can do is to write less code. In writing less code, we still

need to meet the service’s business objectives. To that end, we advocate building

347Service Hacks and Defenses

only immediately useful features, while at all times leaving the service implementa-

tion in a state that can be rapidly evolved to meet new requirements.*

note
Be agile about delivering against requirements for your service, including validation
code to support current requirements. Only deliver what you know consumers want
now: build less code, and be more secure.

Security-centric code can itself, ironically, become a weakness in our solutions. Since

security code is often complicated and intricate, there’s a risk that we regular develop-

ers simply get it wrong, and inadvertently create a new attack vector for some mali-

cious party to exploit.

We should be proportionate when securing services. For example, we might apply

HTTP-level (HTTPS, OAuth) security widely in a healthcare or financial setting, whereas

for Restbucks we might secure only the payment-related resources. In both cases, we

still use as little code/infrastructure/configuration as possible to get the job done.

Defend in Depth
Although we maintain that less is better from a security point of view, this doesn’t mean

we object to classical layered security architectures, simply that we want to maintain sim-

plicity in each layer. Many enterprise systems fall foul of this, believing that HTTPS solves

security, and that a large lock on the front door is enough to foil any hackers. Plainly, it is

not enough, but such complacency can prove to be an effective attack vector.

note
Remember that SSL (which underpins HTTPS) doesn’t concern itself with human
notions of security; it only helps with confidentiality and integrity.

Securing certain resources with HTTPS is a good first step toward protecting services.

However, good in-depth defense demands more layers. In a production environment,

we need to secure all layers of the stack, starting with the network.

For web-based systems, this task can be achieved by using firewalls. Because common

web protocols run on well-known ports, a firewall can block traffic on other ports that

might otherwise offer attackers a glimpse of less secure services running on the service’s

servers. The default choice is to open TCP ports 80 (for HTTP) and 443 (for HTTPS), and

to block everything else. This applies equally to hardware firewalls, which sit on the

physical perimeter of a network, and to software firewalls hosted by servers.

*	This typically means good unit test coverage to ensure design integrity of the system as it evolves, and
a good suite of functional tests to ensure that the functionality—including security provisions—of the
service is maintained.

348 CHAPTER 9: web security

warning
Web services can listen on any port. Just remember that when moving from port 80
(or 443) to a service-specific port, you are adding complexity into the firewall con-
figuration. That complexity needs to be managed; otherwise, your firewall becomes
a string vest!

Having secured the network, we can turn to the servers. Good system administration

hygiene is critically important here. If the service’s outer defenses are compromised,

we need to restrict access internally so as to limit damage. In practice, this means run-

ning the service at the lowest possible user level. In the event of a successful attack,

the attacker is sandboxed by lowly privileges on the server.

warning
Never run a service as root or administrator. If you do so, successful attackers
may be able to cause far more damage than if you had run the service with low
privileges.

It’s worth reiterating here: good deployment hygiene is important. We have already

discussed how attackers might craft URIs to extract useful configuration files or data-

bases through a service interface. To prevent these kinds of attacks, ensure that con-

figuration files and databases are in a separate directory structure to the main service

implementation.

Of course, all the other security practices that we know from the WWW are still

valid for service-oriented systems. Enforcing strong passwords (or certificates) and

checking logs for suspicious activity are sensible procedures. But social engineering

techniques need defenses too. Don’t allow your production network to be accessed

from poorly secured wireless networks; wardrivers will thwart your Internet-facing

defenses. Don’t share knowledge of critical passwords widely or encode them

directly into build/deploy scripts. And remind engineers that the free USB key they

were given by a nice guy at the drive-through probably shouldn’t go anywhere near

a computer!

This is all common sense, yet it’s easy to forget about the simple, obvious aspects of secu-

rity while implementing clever things such as OAuth and bilateral certificate exchanges

over HTTPS. But attackers will always work toward finding your weakest point, whether

that is in the network, in the service, or in the people who run your system.

warning
Don’t be so blindsided by web security that you neglect physical security and social
engineering.

349Final Thoughts

Final Thoughts
Security is a multifaceted problem, and one that constantly evolves in the presence of

new threats and countermeasures. While the protocols and strategies outlined in this

chapter are a good start, service developers must remain vigilant, particularly if ser-

vices are exposed outside the relative safety of the enterprise IT environment.

Even in the enterprise, however, we still favor web-based approaches to security. The

methods we’ve studied in this chapter have been forged in the wilds of the Internet

by a large community of security specialists, and successfully validated by millions of

users over many years. If these techniques can tolerate and thrive in a hostile environ-

ment like the Web, there is every reason to believe they will work well in the rela-

tively safe environs behind the corporate firewall!

351

C h a p t e r t e n

Semantics

When building distributed applications on the Web, you’ll see one thing is

clear: document formats matter. The meaning, or semantics, behind the data and infor-

mation in a document must be understood by both parties in an interaction in order to

successfully achieve a business goal.

This chapter explores some of the possibilities raised by the advent of semantic tech-

nologies. It focuses on data, information, and the technologies that have emerged to

help in integration scenarios. Semantics and Semantic Web are popular terms; here we

show how they apply both to the example of Restbucks and more generally to build-

ing distributed systems on the Web. We’ll also briefly explore some popular technolo-

gies from the Semantic Web, including RDF and SPARQL.

Syntax Versus Semantics
Most distributed computing models enforce the structural or syntactic correctness of

a system’s APIs and messages using interface or contract definition languages and

message schemas. The semantics of these structural elements, however, is usually

communicated through some other mechanism—typically a natural language speci-

fication. From a syntactic point of view, a <cost>2.0</cost> element is as good as

an <a11119eb>2.0</a11119eb> element, just so long as both conform to the schema

defined by the service provider. The difference is that the former is immediately

meaningful to a human developer of an application, whereas the latter requires

some interpretation—most likely involving reading a specification document.

352 CHAPTER 10: semantics

note
Of course, the implied semantics of a human-readable document element, opera-
tion, or operation name can sometimes be misleading—as many of us know all too
well. How many times have you come across a method whose implementation is
entirely at odds with its name? What would you make of a document element that
is entirely in conformance with a message schema, but which reads <cost>In
store</cost>?

Throughout this book, we’ve suggested that applications need to agree on the way

information is encoded, structured, and represented. With distributed systems, how-

ever, individual services need to have a common understanding of how to interpret the

(structurally correct) information they exchange so as to ensure meaningful interac-

tions. Our use of link relations to provide semantic context for a hypermedia control

takes us a small way toward creating this common understanding. The introduction of

contracts in Chapter 5 further addressed this requirement, but unsatisfactorily required

some level of human involvement.

We believe there is little chance of real machine automation unless we can somehow

enrich these contracts for machines. Today, there is a great deal of interest in how infor-

mation can be represented and explicitly exposed in a way that allows (some parts of)

its semantics to be understood and processed by machines. But before we can approach

building systems with Semantic Web technology, we need to understand a little theory.

Structure and Representation of Information
Throughout this chapter, we distinguish between the structure and representation of infor-

mation. While the former is about the relationship between the different information

pieces that make up the details of a document, concept, or business entity, the latter is

about choices in representing that information. The choice of representation might have

a significant impact on our ability to share the information in an interoperable manner.

Data, Information, Knowledge
The terms data, information, and knowledge are often encountered in discussions related to

semantics. Here we’ll explain what we mean by these terms. Though you may find them

used differently elsewhere, we’ve tried to align ourselves with more popular definitions.*

We use the term data to refer to the raw, uninterpreted bits that make up a busi-

ness entity (e.g., an invoice, a receipt, the customer details).† We call information the

interpretation of data within the context of a particular application domain (e.g., the

contents of the <milk> element in a Restbucks order when interpreted as a customer’s

*	http://en.wikipedia.org/wiki/DIKW

†	We are not just referring to the 0s and 1s of the binary system. A series of characters, or a collec-
tion of numbers without any way to interpret them within a particular context, is still “data.”

http://en.wikipedia.org/wiki/DIKW

353Structure and Representation of Information

choice of milk). Finally, knowledge represents our understanding of a domain after we

collect, analyze, and reason over the available data and information.

The result of this reasoning is a set of information facts—knowledge—that we can use

to make business decisions. Knowledge can be explicitly recorded, or it can be inferred,

or probabilistically assumed, based on analysis such as “Paul is a valued Restbucks cus-

tomer because he buys coffee every day.”

Data can contain different layers of information. For example, a PNG image on the

Web is represented as a series of bits in a file. A software agent can interpret the raw

data and produce (and manipulate) a visual representation of that image only if it

understands the PNG specification. We can interpret the visual depiction of the image

as the “information” hidden inside the raw “data” (e.g., a photograph of a car). However,

in the context of a different application or user, the same PNG image may convey differ-

ent information because of some additional context. For example, the statement “this

is a photograph of my Ferrari” may be inferred from the same photograph because the

person recognizes the car as being a Ferrari, and that it belongs to the person (probably

due to a unique characteristic or because of the origin of the photograph).

The cognitive transition from “data” to “information” is dependent on an application’s

requirements and on the context in which the data is interpreted. That context may be

implicit (e.g., a common understanding and experience, such as our familiarity with a

sports car’s appearance) or explicitly recorded (e.g., the specification of the Restbucks

domain application protocol, or DAP). In many cases, the interpretation of data and

information may even be subjective.

Turning aside from philosophical discussion about data and information, let’s see

how semantics might relate to our efforts to build the Restbucks coffee service.*

Example 10-1 shows a possible representation of a coffee order.

Example 10-1.  An order as a sequence of characters

ta:latte,q1,m1,s12:cookie,k1,q2

Without some additional context or explanation, it’s practically impossible for anyone

to interpret the data in Example 10-1 as a customer’s order (even though we made

things easier using ASCII characters instead of binary). At first glance, it looks like a

series of meaningless characters. If, however, we were to record the thought process

that accompanied the creation of the data, or the algorithmic process that one needs to

follow in order to decode the information behind the data, the string of Example 10-1

no longer appears to be a random collection of characters; it becomes instead an order

for a take-away coffee and two cookies.

*	See Sowa’s “Knowledge Representation: Logical, Philosophical, and Computational Foundations,”
and Brachman’s and Levesque’s “Knowledge Representation and Reasoning” for more information
on the subject—or many books on related areas of philosophy such as epistemology.

354 CHAPTER 10: semantics

Structure
As it happens, the string in Example 10-1 represents a Restbucks order:

•	 The order is to be taken away (ta).

•	 The first item ordered is a latte with the following details:

—— Quantity: 1 (q1)

—— Milk: whole (m1)

—— Size: 12oz (s12)

•	 The second item is a cookie with the following details:

—— Quantity: 2 (q2)

—— Kind: chocolate chip (k1)

It’s clear that there is a lot of context not explicitly recorded in the order’s representa-

tion. The set of rules needed to extract information from the string is encoded exter-

nally by that representation’s specification. If a Restbucks consumer is to meaningfully

interact with a Restbucks barista software agent, a common understanding of those

rules needs to be in place. Otherwise, any attempt to engage in a meaningful exchange

would be unsuccessful.

Besides requiring a common, out-of-band understanding of the rules needed to extract

information, a significant problem with data formats such as that of Example 10-1 is

that they are very difficult to modify, extend, and evolve without breaking existing

applications. Although it is often criticized as being a verbose encoding mechanism,

XML explicitly expresses hierarchical structure; furthermore, because of its textual

nature, it can often be self-describing. Consider, for example, the same order from

Example 10-1, but represented using XML (see Example 10-2).

Example 10-2.  A Restbucks order in XML

<order xmlns=″http://restbucks.com″>
 <consume-at>takeAway</consume-at>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>12</size>
 </item>
 <item>
 <name>cookie</name>
 <kind>chocolate-chip</kind>
 <quantity>2</quantity>
 </item>
</order>

http://restbucks.com%E2%80%B3

355Structure and Representation of Information

The XML document of Example 10-2 encodes exactly the same data as the string of

Example 10-1, but using more characters (because XML is verbose). However, the

move to XML brings a shared understanding about how the data is structured. Since

we know this is an XML document, we can infer information by simply examining it

within that context:

•	 The <item> tags are contained by (children of) the <order> tag.

•	 The <quantity>, <size>, and <milk> tags are also children of the <item> tag.

•	 And so on.…

The XML specification does not dictate how an application should take advantage

of structure; nor does it determine how to interpret the data. However, because

there is a shared understanding of how XML documents look, we can leverage com-

modity tools to process the order. We can copy, query, or transform the XML docu-

ment without having to interpret or reason over the information it conveys. XML

allows us to maintain a separation between the structured data and the represented

information.

note
In building distributed systems on the Web, we often use XML processing librar-
ies without really having to interpret the contents of the XML documents in the
infrastructure layers of our applications (e.g., digital signatures, structure validation,
query frameworks, etc.). The interpretation and processing of the data are left to
the business layer of our application.

Interpretation
Humans can understand the tag elements in the XML document of Example 10-2,

making it possible to infer (some of) the intended use of the captured data. As a result,

a technically literate English speaker can assume by inspection that the document

describes an order.

However, a software agent usually needs more than just assumptions. We need to be

careful how information is inferred. For example, what volume measurement does

Restbucks use to express the size of the latte in Example 10-2? Such issues arise in

application integration scenarios all the time, as the JPL and the Lockheed Martin

engineers will testify.*

As developers, we need to encode the information used by our application’s busi-

ness logic in the document formats we use. We also need to capture and externalize

*	The Mars Climate Orbiter was sent to its destruction because Lockheed Martin used pounds
for measuring thrust while the JPL engineers interpreted the given number as newtons (http://
en.wikipedia.org/wiki/Mars_Climate_Orbiter).

http://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

356 CHAPTER 10: semantics

the context so as to allow correct interpretation of that information. Services can

only interact correctly if this information is shared. Sharing context and interpreta-

tion semantics, however, is easier said than done, partly because interactions between

distributed services tend to become more intricate as coupling becomes looser.

Automation can help us when we need to share interpretation context for both the

exchanged information and the semantics of the interactions between the participa-

tions in a distributed system.

Shared Understanding
When we deal with the exchange of data in an integration scenario, it’s critical that all

parties interpret the conveyed information in the same way. Otherwise, a Restbucks

customer could order “a latte with whole milk” only for the barista to interpret it as

“tea with sugar.”

We’ve already shown how the protocols and formats in use on the Web address the

problem of how to exchange data between components. Format it using XML or JSON

and coordinate its exchange with HTTP, and suddenly data has been transferred. Data

exchange isn’t the problem; the key challenge is to actually make sure all parties in an

interaction interpret the information consistently.

It’s part of every developer’s life to read specifications and convert them to working

software. In Chapter 5, we suggested that hypermedia application contracts require

written specifications. The process of converting a specification written in a natu-

ral language to a computer program is difficult and error-prone. Nevertheless, that’s

the predominant mechanism for implementing a shared understanding of exchanged

information.

The web community is trying to address this problem through techniques that auto-

mate how applications represent and describe data and information. The goal is for

machines rather than developers to reason over the semantics of any information in

transferred representations.

Semantics
The term semantics is overloaded and overhyped, in part thanks to the Semantic Web.

Since this book is about building distributed systems, we concentrate on the seman-

tics of distributed system components. We use the term semantics to refer to the shared

understanding defined by a contract, the meaning of a sequence of request-response

exchanges, or the manner in which a resource representation should be interpreted.

For example, the semantics of the Restbucks ordering protocol defines why we PUT a

payment resource representation to a particular URI before allowing the associated

order to be given to the barista. Similarly, the semantics attached to the Restbucks

media type allows the barista to interpret the <milk> element under <item> as the type

of milk to be used.

357The Semantic Web

Representing and sharing semantics makes it possible for humans and computers to

meaningfully exchange information. For computer systems, we want to automate the

mechanics of sharing this understanding as much as possible. The Semantic Web,

microformats, and even the humble rel attribute are all techniques that allow us to

capture and convey semantics.

The Semantic Web
Human knowledge is captured on the Web in various digital forms: web pages, news

articles, blog posts, digitized books, scanned paintings, videos, podcasts, lyrics, speech

transcripts, and so on. Over the years, services have emerged to aggregate, index, and

enable rapid searching of this digital data. However, the full meaning of that data is

only interpretable by humans. Machines are typically incapable of understanding or

reasoning about this vast source of information.

The Semantic Web promises to enable machines to meaningfully process, combine,

and infer information from the world’s data. With the W3C’s support, a community

was formed to deliver a set of technologies, such as RDF(S) and OWL.

Machines become capable of analyzing all the data on the Web—the content, links, and
transactions between people and computers. A “Semantic Web,” which should make
this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade,
bureaucracy, and our daily lives will be handled by machines talking to machines, leav-
ing humans to provide the inspiration and intuition. The intelligent “agents” people have
touted for ages will finally materialize. This machine-understandable Web will come
about through the implementation of a series of technical advancements and social
agreements that are now beginning.*

Semantic Web technologies attempt to standardize the mechanics of information sharing

so that it can be more easily supported in software. It should come as no surprise that

resources and URIs are the building blocks on top of which the Semantic Web is built.

note
We make a distinction between the general approach of computing based on
semantic technologies (machine learning, ontologies, inference, etc.), and the
Semantic Web, which is the term used to refer to a specific ecosystem of technolo-
gies such as RDF and OWL.† ‡ The Semantic Web has gained a lot of attention;
however, we consider the Semantic Web technologies to be just some of the many
tools at our disposal when we build semantically aware solutions.

*	Tim Berners-Lee, “Weaving the Web,” http://www.w3.org/People/Berners-Lee/Weaving/.

†	Berners-Lee, T., J.A. Hendler, and O. Lasilla. “The Semantic Web.” Scientific American, May 2001.

‡	Shadbolt, N., T. Berners-Lee, and W. Hall.“The Semantic Web Revisited.” IEEE Intelligent Systems
21(3):2006, p. 96–101.

http://www.w3.org/People/Berners-Lee/Weaving/

358 CHAPTER 10: semantics

The Semantic Web community has produced many technologies (and an equal num-

ber of acronyms) over the past decade—acronyms such as RDF, RDFS, RDFa, OWL,

SPARQL, and GRDDL.* While we won’t cover all of these technologies in depth, we

will look at how Restbucks can utilize RDF and OWL (and, in subsequent sections,

SPARQL and RDFa) to offer some additional functionality.

RDF
The Resource Description Framework (RDF) provides a model for describing data as

a directed, labeled graph.† RDF’s simple structure and resource orientation make it

easy for us to evolve data representations, merge different graphs, and reason over the

results. For example, part of the Restbucks order can be represented as the graph of

Figure 10-1.

Figure 10-1.  Part of an order as a directed graph

Note the use of URIs in Figure 10-1. RDF supports statements of the form [subject,

predicate, object], also known as triples. The subject and the predicate here are

always URIs, whereas the object can be either a URI or a literal (e.g., a string or a

number). In the case of an order, we could use a literal object value to define whether

the order is “take-away” or “to be consumed in house.” A URI, however, allows us to

represent the possible locations for consuming a beverage as resources with which we

can explicitly associate additional information and processing semantics. For example,

we could create a list of textual representations in different languages for “take-away,”

which can then be automatically used by consuming systems in other countries.

By combining URIs and literals in a structured way, RDF allows us to make statements

about resources such as those in Example 10-3. This is because URIs have meaning

attached to them, either because there is another RDF graph that describes them (e.g.,

an OWL description, as we will see shortly), or because they are “well-known” URIs,

with well-understood semantics defined by either a natural language specification or a

folksonomy.‡

*	http://semanticweb.org/, http://www.w3.org/2001/sw/

†	http://www.w3.org/RDF/

‡	A collection of terms defined by a community through collaborative tagging: http://en.wikipedia.org/
wiki/Folksonomy.

http://semanticweb.org/
http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://en.wikipedia.org/

359The Semantic Web

Example 10-3.  Statements based on the graph of Figure 10-1

Order 1 is to be taken away
Order 1 costs 2.0

As we add more information from a typical Restbucks order to our graph, the graph

begins to take on a familiar shape, coming to look like the kind of hierarchical structure

we find in XML documents (see Figure 10-2). RDF, however, is not restricted to represent-

ing tree structures; it can also represent arbitrary relationships between nodes in a graph.

Figure 10-2.  A Restbucks order as a graph

Please note the “anonymous” node in the graph of Figure 10-2—that is, the one that

is not given its own URI. When we don’t want all the information in a graph to be

identifiable through a URI, we introduce anonymous nodes. For example, we obvi-

ously want the Restbucks order to be identifiable as a resource. We also want the

predicates and many of the objects in each [subject, predicate, object] relation-

ship to be identifiable—this allows them to be reused across graphs, and their seman-

tics described using machine-readable representations. There are occasions, however,

where it is not an application requirement to refer to a node in a graph outside an RDF

document. This is the case for all the _:itemN nodes in an RDF Restbucks order, where

N is a sequence number. Restbucks doesn’t expect individual item entries in an order

to be referenced outside the context of an order. Anonymous RDF nodes allow us to

build graphs without having to make all its subjects and objects explicitly identifiable

outside its context.

360 CHAPTER 10: semantics

There are multiple representation formats for RDF graphs, including Notation 3* and

RDF/XML.† We’ve chosen to use RDF/XML for Restbucks. Example 10-4 shows the

graph from Figure 10-2 represented using RDF/XML.

Example 10-4.  A Restbucks order in RDF/XML

<?xml version=″1.0″?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd ″http://www.w3.org/2001/XMLSchema#″>]>
<rdf:RDF xmlns:rdf=″http://www.w3.org/1999/02/22-rdf-syntax-ns#″
 xmlns:restbucks=″http://restbucks.com/vocab#″>

 <rdf:Comment>This graph represents a simple Restbucks order</rdf:Comment>
 <rdf:Description rdf:about=″http://restbucks.com/order/1″>
 <restbucks:location rdf:resource=″http://restbucks.com/vocab#take-away″/>
 <restbucks:cost rdf:datatype=″&xsd;decimal″>2.0</restbucks:cost>
 <restbucks:item rdf:resource=″_:item1″ />
 </rdf:Description>

 <rdf:Description rdf:about=″_:item1″>
 <restbucks:milk rdf:resource=″http://restbucks.com/vocab#semi″ />
 <restbucks:size rdf:resource=″http://restbucks.com/vocab#large />
 <restbucks:drink rdf:resource=″http://restbucks.com/vocab#latte />
 </rdf:Description>
</rdf:RDF>

Example 10-4 doesn’t contain any more domain information about a Restbucks order

than a typical XML representation, with the exception of the @datatype attribute,

which conveys the type of the literal. What, then, is the value of moving to RDF? The

strength of RDF lies in its processing model and use of URIs to build statements.‡ This

means all aspects of a Restbucks order can be further described using additional RDF

statements. These additional statements can be either embedded directly in our order

representation or delivered to consumers through other means. For example, the cur-

rent representation contains the price of the order, together with the type of the literal

(a decimal), but it doesn’t specify which currency is being used. Using RDF, however,

we can easily add that information to the representation, as shown in Example 10-5.

Example 10-5.  Capturing the currency for the cost of the Restbucks order

<rdf:Description rdf:about=″http://restbucks.com/order/1″>
 <restbucks:location rdf:resource=″http://restbucks.com/vocab#take-away″/>

*	http://www.w3.org/DesignIssues/Notation3.html

†	http://www.w3.org/TR/REC-rdf-syntax/

‡	As per the RDF/XML specification, our examples make use of Qualified Names (QNames), which
are shorter versions of URIs, for the RDF statements. For example, restbucks:milk is the QName
for http://restbucks.com/vocab#milk.

http://www.w3.org/2001/XMLSchema#%E2%80%B3%00%00%00
http://www.w3.org/1999/02/22-rdf-syntax-ns#%E2%80%B3
http://restbucks.com/vocab#%E2%80%B3
http://restbucks.com/order/1%E2%80%B3
http://restbucks.com/vocab#take-away%E2%80%B3/
http://restbucks.com/vocab#semi%E2%80%B3
http://restbucks.com/vocab#large
http://restbucks.com/vocab#latte
http://restbucks.com/order/1%E2%80%B3
http://restbucks.com/vocab#take-away%E2%80%B3/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/REC-rdf-syntax/
http://restbucks.com/vocab#milk

361The Semantic Web

 <restbucks:cost rdf:parseType=″Resource″>
 <rdf:value rdf:datatype=″&xsd;decimal″>2.0</rdf:value>
 <restbucks:currency rdf:resource=″http://restbucks.com/vocab#uk-pounds″ />
 </restbucks:cost>
 <restbucks:item rdf:resource=″_:item1″ />
</rdf:Description>

Adding the rdf:parseType=″Resource″ attribute to the <restbucks:cost> property ele-

ment allows us to add blank nodes to the restbucks:cost subgraph. Blank nodes

are nodes that aren’t explicitly identified through a URI. In this case, we want to

describe the value of the cost predicate as being currency in UK pounds. In Example

10-5, the rdf:value and restbucks:currency* blank nodes describe properties of the

restbucks:cost node; the restbucks:cost node in turn describes a property of http://
restbucks.com/order/1.

Adjusting the graph in this way allows a software agent to reason about the value 2.0

and treat it as a currency, not just a decimal. If we were using plain XML, we would

have to associate this semantic information with the price value using a natural language

specification. Using RDF, the semantic information can be consumed by an application

directly. Figure 10-3 shows how the added information changes the order’s graph.

Figure 10-3.  Adding more information to the Restbucks order graph

*	We could have reused an existing vocabulary to describe the currency node. For example, Good
Relations (http://www.heppnetz.de/ontologies/goodrelations/v1) includes terms to describe the cost of
products and the requested currency. In general, the reuse of vocabularies is recommended.

http://www.heppnetz.de/ontologies/goodrelations/v1
http://restbucks.com/vocab#uk-pounds%E2%80%B3
http://restbucks.com/order/1
http://restbucks.com/order/1

362 CHAPTER 10: semantics

note
The RDF processing model includes more constructs than we can cover here. It
provides ways to describe collections of items as bags, sequences, and sets of
alternatives. It offers a mechanism, called reification, for making statements about
statements, such as “Berlin has been the capital of Germany since 1991,” or “Jim
likes his latte to be hot.” Finally, through the use of RDF Schema, it is possible
to describe simple vocabularies, such as the one that we have been using for
Restbucks orders.

RDF makes it simple to combine information from different graphs, as long as match-

ing URIs are used. This allows software libraries to bring together the known statements

about a resource. For example, consider the RDF of Example 10-6, which states that cus-

tomer http://restbucks.com/customer/123 has placed the order http://restbucks.com/
order/1. The document also states that the URI representing the choice “latte” is asso-

ciated with the “latte” label in English and the “une crème” label in French (using the

SKOS* vocabulary); that its origin is Italy (using GeoNames†); and that its milk is hot

(using a proprietary coffee vocabulary). Finally, given that Restbucks wishes to be trans-

parent about the ingredients it uses, it declares that its coffee beans come from Brazil.

Example 10-6.  Additional RDF graphs can be combined with a Restbucks order

<rdf:Description rdf:about=″http://restbucks.com/customer/123″>
 <restbucks:order rdf:resource=″http://restbucks.com/order/1″ />
</rdf:Description

<rdf:Description rdf:about=″http://restbucks.com/vocab#latte″>
 <skos:prefLabel xml:lang=″en″>latte</skos:prefLabel>
 <skos:prefLabel xml:lang=″fr″>une crème</skos:prefLabel>
 <coffee-vocab:origin rdf:resource=″http://www.geonames.org/countries/#IT″ />
 <coffee-vocab:milk rdf:resource=″http://coffee.org/milk#hot″ />
 <coffee-vocab:beans-origin rdf:resource=″http://www.geonames.org/countries/#BR″/>
</rdf:Description>

RDF defines a set of basic rules and constructs that software agents can use as the

building blocks for constructing the documents they exchange. However, these build-

ing blocks are not enough for all our scenarios. They can be used as the basis for devel-

oping vocabularies of concepts, such as “order,” “cost,” and “drink,” which we can

then use in our application domains. Due to the absence of a widely used coffee indus-

try vocabulary, Restbucks has defined its own. The Semantic Web community refers to

such vocabularies as ontologies.

*	SKOS Simple Knowledge Organization System: http://www.w3.org/2004/02/skos/.

†	http://www.geonames.org/ontology/

http://restbucks.com/order/1
http://restbucks.com/order/1
http://restbucks.com/customer/123
http://restbucks.com/customer/123%E2%80%B3
http://restbucks.com/order/1%E2%80%B3
http://restbucks.com/vocab#latte%E2%80%B3
http://www.geonames.org/countries/#IT%E2%80%B3/
http://coffee.org/milk#hot%E2%80%B3/
http://www.geonames.org/countries/#BR%E2%80%B3/
http://www.w3.org/2004/02/skos/
http://www.geonames.org/ontology/

363The Semantic Web

OWL
The Ontology Web Language (OWL) is a family of knowledge representation languages.

These languages allow us to define, represent, and share the meaning of things, con-

cepts, relationships, and abstractions.* OWL provides the building blocks for creat-

ing vocabularies specific to a particular domain of interest. Each term in the vocabulary

can be associated with semantics in a machine-readable way. OWL’s formal under-

pinnings make it possible for applications to reason over the set of facts expressed

using one or more defined vocabularies. Developers can use available software

libraries, such as Jena,† to incorporate inferencing capabilities into their applications,

allowing them to generate new information by processing facts captured in OWL and

RDF documents.

note
OWL has evolved a great deal with the move from v1.1 to v2.0. The latter is more
expressive and offers different levels of semantics in representing knowledge,
depending on our application’s requirements.

OWL provides the mechanics for defining classes, relationships, properties/predicates,

instances, constraints, and axioms. While there are several ways it can be used on the

Web, in this chapter we focus on its potential uses in building distributed systems.

The Restbucks ontology
So far, we haven’t defined the vocabulary we’ve been using to describe Restbucks

orders. OWL uses RDF Schema (RDFS) to describe basic class hierarchies, class proper-

ties, and type constraints for property values.‡ OWL’s own vocabulary includes axioms

for defining more sophisticated interclass relationships and the constraints on these

relationships, such as cardinalities, existential relationships (e.g., there exists some

value), universal relationships (e.g., all values must hold true), and so on. In addition

to the description of concepts, OWL’s vocabulary can also be used to describe instances

of those concepts, known as individuals.

Figure 10-4 shows a visual representation of a simple Restbucks ontology. The graph

includes concepts such as coffee and ingredient, and their specializations. It also

includes the concepts of an order and an item.

*	http://www.w3.org/2001/sw/wiki/OWL

†	http://jena.sourceforge.net/

‡	http://www.w3.org/TR/rdf-schema/

http://www.w3.org/2001/sw/wiki/OWL
http://jena.sourceforge.net/
http://www.w3.org/TR/rdf-schema/

364 CHAPTER 10: semantics

Figure 10-4.  Restbucks concept graph (an arc represents a SubClassOf OWL statement)

Example 10-7* shows part of the OWL document for the Restbucks ontology. There

are multiple renderings of an OWL document: OWL/XML, RDF/XML, Manchester,

Turtle, and Functional.† We decided to avoid the XML-based ones given their verbose

nature. Instead, we use the Manchester Syntax.‡

Example 10-7.  The Restbucks order and item declarations

Ontology: <http://restbucks.com/vocab#>

Class: <Order>
Class: <Item>

ObjectProperty: <containsItem>
 Domain: <Order>
 Range: <Item>

DataProperty: <quantity>
 Domain: <Item>
 Range: xsd:positiveInteger
DataProperty: <size>
 Domain: <Item>
 Range: {″12oz″ , ″6oz″}

*	In all the OWL examples that follow, we are omitting the declarations indicating that some of the
concepts are subclasses of owl:Thing, the top-level concept declared by OWL. We have also omitted
the http://restbucks.com/vocab# part of the concepts’ and properties’ URIs in order to make the
examples more readable. <Order> should be read as <http://restbucks.com/vocab#Order>.

†	http://www.w3.org/TR/owl2-overview/

‡	http://www.w3.org/TR/owl2-manchester-syntax/

http://restbucks.com/vocab#
http://restbucks.com/vocab#
http://restbucks.com/vocab#Order
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-manchester-syntax/

365The Semantic Web

Example 10-7 first declares the classes Order and Item. Next, the object property contains
Item is declared with Order as its domain (source of a relationship) and Item as its range

(target of a relationship). Finally, the quantity and size data properties for the Item class

are declared to be an integer and one of “6oz” or “12oz” strings, respectively. Effectively,

the OWL of Example 10-7 allows us to make statements of the form “an Order may con-

tain an Item” and “an Item may have the quantity and size data properties.”

The links between nodes in graphs are always one-way. Without OWL, we would have

to explicitly record a statement such as “an Item may be contained by an Order,” which

is the inverse of the one we saw earlier. If we were describing individuals, rather than

concepts, we would have to record both statements for every pair of individuals.

With OWL, however, we can declare two object properties as being the inverse of each

other. As a result, when reasoning over a set of statements, we can assume the exis-

tence of one relationship when we encounter its inverse, even if that relationship is

not explicitly declared. Example 10-8 shows the declaration of the itemContainedBy

property and how it is declared as the inverse of containsItem.

Example 10-8.  The properties containsItem and itemContainedBy are declared to be the
inverse of each other

ObjectProperty: <containsItem>
 Domain: <Order>
 Range: <Item>
 InverseOf: <itemContainedBy>

ObjectProperty: <itemContainedBy>
 Domain: <Item>
 Range: <Order>
 InverseOf: <containsItem>

Now, let’s have a look at one of the Restbucks menu entries—the ones that have been

declared as specializations of the Item class (see Example 10-9).

Example 10-9.  The Coffee Restbucks menu item and its hasMilk object property

Class: <Coffee>
 SubClassOf: <Item>
 EquivalentTo: <hasMilk> max 1 <Milk>

ObjectProperty: <hasMilk>
 Domain: <Coffee>
 Range: <Milk>
Class: <Latte>
 SubClassOf: <Coffee>

Class: <Mocha>
 SubClasSOf: <Coffee>

366 CHAPTER 10: semantics

Example 10-9 shows the declaration of the Coffee class and two of its specializations,

Latte and Mocha. Note that the Coffee class is declared to be equivalent to a class that

includes at maximum one instance of the hasMilk object property, whose range is the

Milk class. Example 10-9 allows us to make a statement such as “A coffee may have

one, but no more, milk individuals.” Example 10-10 shows the declaration of some of

the Ingredient concepts.

Example 10-10.  The Milk and Dairy concepts

Class: <Ingredient>

Class: <Milk>
 SubClassOf: <Ingredient>

Class: <Dairy>
 SubClassOf: <Milk>
 DisjointWith: <Soya>

Class: <Whole>
 SubClassOf: <Dairy>

Class: <Soya>
 SubClassOf: <Milk>
 DisjointWith: <Dairy>

Class: <Cheese>
 SubClassOf: <Ingredient>
 EquivalentTo: <containsIngredient> some <Dairy>

Example 10-10 also shows how the Dairy and Soya concepts are declared to be disjoint.

In other words, a class or an individual cannot be Dairy and Soya at the same time.

Such a declaration allows us to capture the fact that soya milk is not considered dairy

and that dairy milk cannot be made out of soya. Furthermore, the example shows how

the Cheese class is defined to be equivalent to any class that is declared to contain some

dairy as an ingredient.

We now have all the concepts and object properties that we need in order to describe

an actual order (see Example 10-11).

Example 10-11.  A Restbucks order using OWL

Individual: <WholeMilk>
 Types: <Whole>

Individual: <WholeMilk>
 Types: <SoyaMilk>

367The Semantic Web

Individual: <MyDairyOrder>
 Types: <Order>
 Facts: <containsItem> <LatteOrderItem>,
 <containsItem> <MochaOrderItem>

Individual: <LatteOrderItem>
 Types: <Latte>
 Facts: <hasMilk> <WholeMilk>,
 <quantity> ″2″^^xsd:positiveInteger,
 <size> ″6oz″

Individual: <MochaOrderItem>
 Types: <Mocha>
 Facts: <hasMilk> <SoyaMilk>,
 <quantity> ″1″^^xsd:positiveInteger,
 <size> ″12oz″

The OWL in Example 10-11 describes an individual order whose identity is

http://restbucks.com/vocab#MyDairyOrder, and which contains the individuals

...#LatteOrderItem and ...#MochaOrderItem. The former is a Latte, has WholeMilk,

has a quantity of 2, and is ″6oz″ in size. The latter has SoyaMilk, has a quantity of 1,

and is ″12oz″ in size.

What if a consuming application wanted to determine whether this order contains any

dairy?

A reasoner can use the set of classes and individuals that we have declared in order to

determine the answer to our question. Of course, we need to express our question in

OWL first (see Example 10-12).

Example 10-12.  The ContainingDairy class

Class: <ContainingDairy>
 EquivalentTo:
 <Order>
 and (<containsItem> some (
 (<containsIngredient> some <Dairy>) or (<hasMilk> some <Dairy>)))

Example 10-12 shows the declaration of the ContainingDairy class, which can be read

as “ContainingDairy is a class that is an Order and contains an item with some dairy

as an ingredient or some dairy milk.” In addition to checking whether a coffee con-

tains dairy milk, the declaration also checks to see if an ingredient used is dairy or not.

Indeed, using the Hermit OWL reasoner* (used as a plug-in to Protégé†), we can deter-

mine that MyDairyOrder is indeed of type ContainingDairy. An order that included only

*	http://hermit-reasoner.com/

†	http://protege.stanford.edu/

http://restbucks.com/vocab#MyDairyOrder
http://hermit-reasoner.com/
http://protege.stanford.edu/

368 CHAPTER 10: semantics

the MochaLatteOrder of Example 10-11 wouldn’t be categorized as ContainingDairy

(see Example 10-13).

Example 10-13.  A Restbucks order that doesn’t contain dairy

Individual: <MyNonDairyOrder>
 Types: <Order>
 Facts: <containsItem> <MochaOrderItem>

The declaration of the ContainingDairy class makes use of the containsIngredient

object property, which we haven’t defined yet (see Example 10-14).

Example 10-14.  The containsIngredient object property and the HamAndCheese order item

ObjectProperty: <containsIngredient>
 Characteristics: Transitive
 Domain: <Item>, <Ingredient>
 Range: <Ingredient>

Class: <HamAndCheese>
 EquivalentTo: <containsIngredient> some <Cheese>,
 <containsIngredient> some <Ham>
 SubClassOf: <Sandwich>

Note the use of the Transitive axiom in Example 10-14. A reasoner must now

consider the transitive closure of all the classes or individuals that make use of the

containsIngredient object property. In other words, if an order item A contains ingre-

dient B, and B contains ingredient C, a reasoner can assume that order item A contains

ingredient C. We can now declare order items such as ham and cheese and describe

their ingredients in detail.

In addition to characterizing object properties (the predicates in relationships) as tran-

sitive, OWL allows us to use other mathematical axioms as well. Object properties can

be declared to be symmetric, reflective, or functional.

Now that we have an OWL description of the Restbucks vocabulary, we can make it

part of our DAP’s contract, and so share it with our customers and partners. We can

extend the vocabulary to capture the semantics of all the formats and protocols in the

DAP so that machines can understand them.

Of course, we’ve barely scratched the surface of what OWL can do in terms of captur-

ing information and knowledge in a machine-processable manner.

SPARQL
Remember that the RDF and OWL documents can be combined into a single informa-

tion graph of subject-predicate-object triples. Designed to support the RDF data model,

SPARQL is the query language for such graphs. Those familiar with SQL will recognize

large parts of its syntax.

369The Semantic Web

Using SPARQL, we can match patterns within a graph or subgraphs. The result may

consist of a set of resources and their interrelationships that satisfy the given condi-

tions; answers to true/false questions, given the encoded knowledge; or new graphs

that were generated by inferring new triples over the existing set of statements.

As an example, let’s assume that Restbucks offers a registry for loyal customers. The

registry uses the Friend of a Friend (FOAF) vocabulary.* A service allows customers to

register their details; Restbucks then stores all customer information in a large graph

at http://internal.restbucks.com/customers.rdf, and makes it available to internal services.

Example 10-15 shows what a simple query such as “List the Restbucks customers who

are over 40” would look like in SPARQL.

Example 10-15.  A simple SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rest: <http://restbucks.com/vocab#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?name
FROM <http://internal.restbucks.com/customers.rdf>
WHERE { ?x foaf:name ?name;
 foaf:age ?age.
 FILTER (xsd:positiveInteger(?age) > 40) }

One of the advantages of Semantic Web technologies is that we can build graphs of

information facts without having to fix on a predefined and fixed schema. Sometimes

we might not even have a schema for our information model at all. Unlike relational

database technologies, RDF allows us to combine information in arbitrary ways, with-

out having to adhere to a data layout defined and fixed in advance of an application’s

deployment. We saw an example of this earlier in the chapter when we augmented an

order’s graph with information about how the cost should be interpreted. SPARQL can

query these dynamic graphs, thereby supporting an evolutionary approach to data and

application design.

RDFa
RDF and OWL are built around the concepts of resources and URIs. Despite the use

of web technologies, however, the promise of linked data has been difficult to achieve.

Today, the machine-driven semantic processing of information is nowhere near as per-

vasive as the human-driven navigation of linked documents.

*	See http://www.foaf-project.org/. FOAF is an ontology used for representing information about
people, such as their name, their email, their workplace, their friends, and much more.

http://internal.restbucks.com/customers.rdf
http://xmlns.com/foaf/0.1/
http://restbucks.com/vocab#
http://www.w3.org/2001/XMLSchema#
http://internal.restbucks.com/customers.rdf
http://www.foaf-project.org/

370 CHAPTER 10: semantics

note
The term Linked Data refers to the set of technologies, patterns, and practices
used to describe and annotate data on the Web in a semantically rich and machine-
processable way. The application of the Semantic Web suite of technologies is the
primary focus of the Linked Data effort.* † ‡

RDF in attributes (RDFa) fills this gap by bringing RDF to the human Web. While it’s

targeted mainly at the human Web, we believe it’s also useful for building distributed

web-based applications.

The premise of RDFa is that web documents such as XHTML can convey both pre-

sentation and semantic information. Through the use of XML attributes, presentation

constructs are annotated with semantic information. This allows software agents other

than browsers to process and reason over the embedded information. For example,

Example 10-16 illustrates how an XHTML Restbucks coupon can be presented in a

way that allows both John Smith and a software agent to process it.

Example 10-16.  A coupon for a free latte in XHTML with RDFa annotations

<?xml version=″1.0″ encoding=″UTF-8″?>
<!DOCTYPE html PUBLIC ″-//W3C//DTD XHTML+RDFa 1.0//EN″
 ″http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd″>
<html xmlns=″http://www.w3.org/1999/xhtml″
 xmlns:restbucks=″http://restbucks.com/vocab#″
 xmlns:foaf=″http://xmlns.com/foaf/0.1/″
 version=″XHTML+RDFa 1.0″ xml:lang=″en″>
 <head>
 <title>Offer to a valued customer</title>
 <!-- Digitally signed thumbprint of a coupon number -->
 <meta property=″restbucks:coupon″ content=″123456″ />
 </head>
 <body>
 <h1>Receipt for order 1234</h1>
 <p about=″restbucks:coupon-recipient″>Dear
 John Smith,</p>
 <p about=″restbucks:coupon-product″>Thank you for being a Restbucks
 valued customer. Since you have been a valued customer, we would
 like to offer you a complimentary

 latte.</p>
 </body>
</html>

*	http://linkeddata.org

†	Tim Berners-Lee’s design note: http://www.w3.org/DesignIssues/LinkedData.html.

‡	http://en.wikipedia.org/wiki/Linked_Data

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd%E2%80%B3
http://www.w3.org/1999/xhtml%E2%80%B3
http://restbucks.com/vocab#%E2%80%B3
http://xmlns.com/foaf/0.1/%E2%80%B3
http://linkeddata.org
http://www.w3.org/DesignIssues/LinkedData.html
http://en.wikipedia.org/wiki/Linked_Data

371The Semantic Web

The <meta> element in Example 10-16 tells us that “this document represents a coupon

with ID 123456.” We can also see that the coupon is sent to “John Smith” and is for a

“latte.” A browser can render this information for a human to read, while a software

agent participating in a machine-to-machine interaction can extract the necessary

information for making forward progress in a business process involving an offer.

We can leverage RDFa statements in Restbucks’ XML documents in order to avoid

the expensive transition to RDF and OWL for computer-to-computer interactions. For

example, rather than representing a Restbucks order in RDF, as we did earlier in this

chapter, we could reuse our familiar XML representation together with RDFa state-

ments to create self-describing documents.

Assuming that recipients of a Restbucks XML+RDFa document understand the

Restbucks OWL vocabulary we defined earlier, Example 10-17 shows how the cost of

an order can easily be annotated with the currency and the type of the value.

Example 10-17.  A Restbucks XML+RDFa order

<order xmlns=″http://restbucks.com″
 xmlns:rv=″http://restbucks.com/vocab#″
 xmlns:xsd=″http://www.w3.org/2001/XMLSchema#″>
 <location>takeAway</location>
 <cost property=″rv:uk-pounds″ typeof=″xsd:decimal″>12.0</cost>
 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk>whole</milk>
 <size>12</size>
 </item>
 <item>
 <name>cookie</name>
 <kind>chocolate-chip</kind>
 <quantity>2</quantity>
 </item>
</order>

Imagine the possibilities. We could add provenance information for the coffee beans

used for the coffee, pointers to the recipe used for the chocolate cookie, or a link to the

farmers who supplied the milk. Example 10-18 shows how simple this is.

Example 10-18.  A Restbucks XML+RDFa order with more statements

<order xmlns=″http://restbucks.com″
 xmlns:rv=″http://restbucks.com/vocab#″
 xmlns:xsd=″http://www.w3.org/2001/XMLSchema#″>
 <location>takeAway</location>
 <link about=″rv:coffee-beans″ rel=″rv:origin″ href=″http://coffeebeans.com″ />
 <cost property=″rv:uk-pounds″ typeof=″xsd:decimal″>12.0</cost>

http://restbucks.com%E2%80%B3
http://restbucks.com/vocab#%E2%80%B3
http://www.w3.org/2001/XMLSchema#%E2%80%B3
http://restbucks.com%E2%80%B3
http://restbucks.com/vocab#%E2%80%B3
http://www.w3.org/2001/XMLSchema#%E2%80%B3
http://coffeebeans.com%E2%80%B3

372 CHAPTER 10: semantics

 <item>
 <name>latte</name>
 <quantity>1</quantity>
 <milk rel=″rv:supplier″ href=″http://localfarmer.com/″>whole</milk>
 <size>12</size>
 </item>
 <item>
 <name>cookie</name>
 <kind rel=″rv:recipe″
 href=″http://restbucks.com/recipes/choc-cookie″>chocolate-chip</kind>
 <quantity>2</quantity>
 </item>
</order>

A software agent that understands Restbucks’ vocabulary will translate the highlighted

RDFa statements of Example 10-18 to the statements of Example 10-19.

Example 10-19.  Machine interpretation of the RDFa statements in Example 10-18

The coffee beans originate from http://coffeebeans.com
The whole milk's supplier is http://localfarmer.com
The recipe for a chocolate cookie is http://restbucks.com/recipes/choc-cookie

Note the use of the <link> element and rel attribute in the order in Example 10-18. We

use the rel attribute in our hypermedia examples when we want to convey additional

information about the referenced resource. RDFa reuses this hypermedia control but

allows terms from different vocabularies, rather than just strings, to be used as values.

Microformats
Microformats are a collection of community-driven specifications for conveying machine-

processable information.* The goal of this grassroots effort is to design small document

formats that can be reused by humans first and machines second. Take, for example, the

chocolate cookie recipe referenced by one of the RDFa statements in Example 10-18.

Using microformats, we could represent this recipe as an XHTML document containing

both human- and machine-processable information, as shown in Example 10-20.

Example 10-20.  A recipe in an XHTML document as a microformat

<div class=″hrecipe″>
 <h1 class=″fn″>Restbucks Chocolate Cookies</h1>
 <p class=″summary″>This is how you can make Restbucks chocolate cookies</p>
 <h2>Ingredients</h2>

*	http://microformats.org

http://localfarmer.com/%E2%80%B3
http://restbucks.com/recipes/choc-cookie%E2%80%B3
http://coffeebeans.com
http://localfarmer.com
http://restbucks.com/recipes/choc-cookie
http://microformats.org

373Linked Data and the Web

 <li class=″ingredient″>
 2.25 cups flour.

 <li class=″ingredient″>
 1 teaspoon baking soda.

 <li class=″ingredient″>
 1 teaspoon salt.

 <!-- More ingredients -->

 <h2>Preparation instructions</h2>
 <ul class=″instructions″>
 Preheat oven to 375° F.
 Combine flour, baking soda, and salt in small bowl...
 <!-- More instructions -->

</div>

As you can see from Example 10-20, microformats use existing HTML attributes—the

class attribute in particular—to transport machine-readable semantic information.

It’s this thrifty attitude toward reusing existing HTML presentation attributes, rather

than adding new elements and attributes as RDFa does, together with a narrow focus

on representing everyday domain entities, such as contact details and calendar events,

that makes the microformat movement so appealing to those wanting to add semantic

annotations to their representations.

Microformats and RDFa are alike in that they separate semantics from document

structure. With plain XML, semantics are bolted to a document’s structure: we under-

stand that the value of an <email> element contained within a <user> element signifies

a user’s email address as a result of our correlating an out-of-band description of the

semantics with a part of the document schema. Microformats and RDFa, on the other

hand, can insert the very same semantics into many different document structures. An

hCard parser, for example, is more interested in identifying any element with a class

attribute value of tel, indicating the presence of a telephone number, than it is in nav-

igating a specific XML or HTML structure.

Despite being widely used on the Web today, microformats may soon lose out to RDFa,

which will likely be included in future HTML standards. However, it is definitely worth

keeping them in mind when designing distributed applications.

Linked Data and the Web
As previously mentioned, the Linked Data effort is all about exposing data and

information so that computers, rather than humans, can consume and process it.

Companies and organizations are encouraged to make their data available using

Semantic Web technologies and link it with other data on the Web.

374 CHAPTER 10: semantics

Structural hypermedia is at the core of this effort. It is used so that all data and infor-

mation is interconnected in a semantically rich manner. HTTP and URIs, as used by

RDF(S), RDFa, and OWL, allow us to create information and knowledge graphs that

span organizational and geopolitical boundaries. Tim Berners-Lee has called it the

“Giant Global Graph.”*

The UK government’s initiative to expose the public sector’s information using web

APIs and Semantic Web technologies is a great example of the Linked Data effort.†

Guidance
As developers of web services, we are all too aware of the importance of contracts and

protocols for computer-to-computer interaction. It wouldn’t be possible to exchange

information among computers if there wasn’t an agreement on how that informa-

tion should be interpreted. Systems can’t work if the meaning represented by the

exchanged data isn’t shared.

note
It is important that a shared understanding of the exchanged information doesn’t
get translated into a shared way of processing that information. Participants in
loosely coupled distributed applications are free to deal with the documents they
receive in any way they wish.

Natural language specifications—whether media type descriptions, protocols, or

contracts—provide a mechanism for developers to agree on the meaning of the doc-

uments they exchange. However, as the complexity and scale of distributed appli-

cations grow, it is important to consider the representation of information using

machine-processable formats.

Technologies are emerging, especially as part of the Semantic Web effort, to help with

the definition of document formats, protocols, and contracts. Semantic technologies

are a great asset in our development toolbox whenever we want to represent informa-

tion that machines can “understand.” The intention of a service provider can be cap-

tured in semantically rich documents. These documents can be consumed directly by

applications, removing the need for humans to read specifications and create programs

from them. As a result, the correctness of our distributed system can be improved and

the integration process accelerated.

*	http://en.wikipedia.org/wiki/Giant_Global_Graph

†	http://data.gov.uk/

http://en.wikipedia.org/wiki/Giant_Global_Graph
http://data.gov.uk/

375

C h a p t e r e l e v e n

The Web and WS-*

The Web community has questioned the WS-* protocol stack (SOAP,

WSDL, and friends) because of its perceived complexity. In this chapter, we’ll take a

closer look at the WS-* stack, understand its capabilities, and discuss the reasons the

web ecosystem of tools and protocols can provide equivalent, but often more elegant,

solutions to many common enterprise and Internet computing problems.

Are Web Services Evil?
In a book about building web-based systems, it’s fitting to ask this fundamental ques-

tion. Of course, the answer is not clear-cut. When SOAP-based Web Services became

popular in 2000 they were a disruptive technology. The advent of Web Services

changed the enterprise integration landscape utterly by using Internet protocols and

XML to connect systems without proprietary middleware, private APIs, or integration

specialists. It seems obvious now that open formats and protocols are good for interop-

erability, but back in 2000 this was a revelation.

Before Web Services, integration middleware had been dominated by uninteroper-

able technologies such as DCOM, RMI, and CORBA. Even where these technologies

had been subjected to standardization, the standards were loose enough to allow

integration products that were standards-based on paper yet proprietary in practice.

Compounding this, the lack of commoditized and interoperable integration choices

meant integration was the sole domain of specialist (costly!) developers.

376 CHAPTER 11: the web and ws-*

Today integration is largely a commodity. While we can go out to market and buy spe-

cialist integration software, often the development community is finding that the tools

built into our everyday development platforms are sufficient. In fact, Web Services did

the community a huge service as they became part and parcel of modern development

platforms and championed the notion of heterogeneous interoperability.

Since those halcyon days, Web Services—once perceived as disruptive and innovative—

have begun to lose some of their glamour and technical credibility in the light of web-

friendly approaches to developing distributed systems. It also hasn’t helped the Web

Services cause that numerous political battles have been fought over the standards,

and many incompatibilities, inconsistencies, and some outright mistakes found in the

WS-* stack.

The WS-* stack has been the butt of some cruel jokes across the Web, and given names

such as WS-DeathStar, an amusing if dramatic reference to its perceived heavyweight and

destructive nature. But the questions remain, aside from the hilarity and religious argu-

ments that wage: are Web Services really so bad? Are they in fact evil? The short answer

is “not entirely” because, like Darth Vader, there is good in Web Services too.

SOAP: The Whole Truth
The irony of the Web Services stack is that its core specification—SOAP—is lightweight

and devoid of much of the bloat that its adversaries detest. All it describes is an XML

envelope and a processing model for transferring messages across a network. It also

provides some guidance for SOAP implementers on how underlying transport proto-

cols can be used to transfer SOAP messages.

SOAP doesn’t try to solve larger problems such as security or transactions and it

doesn’t try to impose application-level semantics or messaging patterns on SOAP mes-

sages. In fact, it’s a whole lot lighter than the HTTP specification in that respect.

The SOAP Processing Model
Much like the HTTP envelope, the SOAP envelope consists of a placeholder for headers

that contain metadata for setting processing context (e.g., security context, routing) for

the message. Headers can also be used to convey information specific to a higher-level

protocol (e.g., transactions). At runtime, SOAP envelopes are transferred across arbi-

trary transport protocols, with bindings defined by the various SOAP binding specifica-

tions, of which SOAP over HTTP is the only widely accepted binding to date.

note
SOAP treats all protocols that it binds to as transport protocols, including HTTP,
much to the annoyance of the web community. WS-Addressing introduces SOAP
headers that, when included in a message, capture binding information. In a sense,
SOAP and WS-Addressing together provide the complete transport-independent,
end-to-end model for SOAP message processing.

377SOAP: The Whole Truth

SOAP messages can be routed through any number of intermediaries (both on the

network and within services), which process SOAP headers as each message passes

through. This is where the similarities end, however.

As we’ve become accustomed throughout this book, HTTP is an application protocol.

As an application protocol, HTTP supports a uniform interface through which opera-

tions are applied to resources. We’ve come to expect that the verbs GET, POST, PUT, and

so on are application-level constructs that a program can use to interoperate with

another system over the network. Participants share an understanding of the seman-

tics of an interaction, which is defined by the Web in an end-to-end model that covers

the behaviors of both services and intermediaries (such as caches).

Conversely, SOAP (plus WS-Addressing) is much more akin to message-oriented

middleware since it only defines an envelope and a means of transferring that enve-

lope over the network. Application semantics are maintained entirely within service

boundaries and are determined by message payloads (both the header and body con-

tent). In other words, SOAP is a low-level messaging protocol* that does not impose

any application semantics on transferred payloads, leaving the interpretation of mes-

sages to the services that receive them.

Make Love, Not War
Since SOAP is normally used to transport an HTTP-like envelope over an HTTP con-

nection, it has caused a great deal of angst in the web community. It has been argued

that since the Web already provides an extensible envelope, metadata, entity body,

and support for intermediaries, SOAP merely adds verbosity, latency, and complexity

to the stack. Furthermore, web advocates are enraged that SOAP messages are tun-

neled through HTTP POST, which means the benefits of the existing web infrastructure

(particularly caching) are lost.

Clearly, we think the Web is a robust platform too, or we wouldn’t have written this

book. Yet there are so few ways to build interoperable solutions over the Internet that we

shouldn’t be surprised that two popular approaches share a few concepts. In fact, it’s use-

ful to see just how similar they are before we get into any more mudslinging.

Envelope
Let’s start with the envelope. The envelope is the fundamental structure of both the

SOAP and HTTP worlds and provides a placeholder for data and metadata. In both

SOAP and HTTP, the envelopes are similar. The structure of the HTTP envelope shown

in Example 11-1 should look familiar; it’s just a set of headers (metadata) and possibly

a body containing data. As we can see in Example 11-2, the SOAP envelope is similar

if a little more angle-brackety. In this case, both messages have similar intent: to lodge

a new purchase order with a remote service.

*	SOAP started its life as an interobject RPC protocol and, sadly, is still often used as such.

378 CHAPTER 11: the web and ws-*

Example 11-1.  An HTTP envelope

POST /orders HTTP/1.1
Host: restbucks.com
Content-Type: application/vnd.restbucks+xml
Content-Length: 32064

<order xmlns=″http://...″ .../>

Example 11-2.  A SOAP envelope

<soap:Envelope xmlns:soap=″http://...″>
 <soap:Header>
 <wsa:To xmlns:wsa=″http://...″>http://restbucks.com/orders</wsa:To>
 </soap:Header>
 <soap:Body>
 <order xmlns=″http://...″ .../>
 </soap:Body>
</soap:Envelope>

Headers
Headers are like labels that we stick on an envelope to ensure that it’s delivered to

the right place and to set processing context for the contents. For example, if we want

to send a paper letter across the planet, we’d attach an “Airmail/Par Avion” sticker

to the outside of the envelope to help route it via airmail. Similarly, if we wanted to

send potentially hazardous material through a courier, we’d probably want to stick

“HazMat” warning stickers to our package so that it can be identified as a particular

type of chemical and handled accordingly.

In Example 11-1, we start with the verb (POST), the target path (/orders), and the

HTTP version. The HTTP headers that follow are, of course, familiar by now. We have

the destination host and some metadata, such as the content type and length to help

the recipient process the body. In a real application, there may be any number and

combination of headers to set the interaction context.

The SOAP envelope in Example 11-2 also contains its addressing information in a

header; in this example, it uses a WS-Addressing To header, which helps the underlying

SOAP stack bind the message to an appropriate transfer channel.

Body
In both cases, the business payload is an XML document representing an order. In the

HTTP case, we see the corresponding match with the Content-Type header (application/
vnd.restbucks+xml) in the HTTP envelope.

In the SOAP envelope, the <order> element is the only child of the <soap:Body> ele-

ment. The receiving service will typically extract this order from the <soap:Body>

and route it internally to some business logic. The body of both the HTTP and SOAP

http://restbucks.com/orders</wsa:To

379SOAP: The Whole Truth

envelopes is application-specific. In the HTTP case, we’re carrying resource state represen-

tations; with SOAP, we’re carrying a payload that the interacting parties must interpret.

Intermediaries
Both HTTP and SOAP processing models support intermediaries between the sender and

receiver of messages. For instance, in the Web we are used to caches acting as inter-

mediaries between a client and a resource to help with scalability and reliability. In the

SOAP world, we have the notion of nodes, which process messages as they flow from

the sender to the ultimate recipient. As with HTTP, these SOAP nodes may use metadata

stored in the headers to process the messages along the transfer path. In practice, SOAP

nodes are implemented by handlers inside the SOAP server and are typically used to set

security context or encrypt/decrypt messages as they progress through the server stack

to the network or vice versa. It is not uncommon to also see enterprise-wide message

routers, which decouple an organization’s client applications from enterprise services.

note
The SOAP specification is decoupled from the WS-* protocols that utilize SOAP
headers to perform their work. The SOAP processing model treats all headers
as equal and does not impose a processing order on them. This allows any set of
WS-* technologies to be cleanly interleaved without side effects.

But some technologies, such as WS-Security, have side effects, which means that the
ordering of encryption/decryption operations is critical with respect to other headers
in the same message. In practice, this means adopting conventions outside the scope
of the SOAP specification for ordering encryption and decryption of messages.

Faults
We’ve seen throughout this book how the Web deals with faults using the 4xx and 5xx

response codes from HTTP. This fault model is intrinsic to the Web and is one of the

reasons web-based integration is so robust—this metadata provides coordination to

help applications make progress or take compensating action at every interaction.

By comparison, SOAP has a very basic fault mechanism, called the SOAP fault, which

conveys whether it was the consumer, the service, or an intermediary that caused the

fault, plus some information about why the fault happened. Unlike the Web, SOAP faults

don’t convey enough standardized information to allow for recovery from failed interac-

tions. In other words, we don’t have the equivalent of the HTTP status codes or hypermedia

links to guide us through an interaction. Instead, the WS-* world leaves such coordina-

tion and life-cycle issues to the rarely used WS-Coordination family of protocols.*

*	WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity provide context and coor-
dinated outcomes for collaborating services, effectively allowing status codes to be shared among
services once a set of operations has completed. This is a different model from HTTP’s since coordi-
nation happens on a per-activity basis rather than a per-operation basis, but it remains an effective
strategy for improving reliability of distributed systems.

380 CHAPTER 11: the web and ws-*

While SOAP faults are widely used, they rarely convey SOAP processing faults as the

name suggests. Instead, they are often used to transfer programming exceptions between

services and consumers. In the process, encapsulation is broken and unhelpful internal

implementation errors are delivered to a consumer that has no business knowing them.

As we see in Example 11-3, although the SOAP fault is used syntactically correctly,

the consumer receiving the message can’t do much with it. The fault doesn’t describe

a problem with the service’s protocol, but instead with its internal implementation.

There’s no way a consumer can take any meaningful action on receiving this fault

other than to propagate the exception.

Example 11-3.  Misusing SOAP faults

<?xml version=″1.0″ ?>
<env:Envelope
 xmlns:env=″http://www.w3.org/2002/06/soap-envelope″>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Receiver</env:Value>
 </env:Code>
 <env:Detail>
 java.io.FileNotFoundException: db.txt
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at Service.main(Service.java:15)
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

note
SOAP faults don’t compare favorably with the Web, where standard failure status
codes are used to coordinate applications.

Unfortunately, most of the popular Web Services toolkits tend to follow this approach.

This, as we shall now see, is linked to the unhelpful role that WSDL plays in develop-

ing Web Services.

WSDL: Just Another Object IDL
From the preceding section, you’d think that SOAP and HTTP are similar enough that

the outbreak of WS-Peace would be imminent. After all, both define envelopes, both

have an end-to-end processing model that includes intermediaries, and both rely on

metadata. If there is complexity in the Web Services stack, it doesn’t come from SOAP.

http://www.w3.org/2002/06/soap-envelope%E2%80%B3

381WSDL: Just Another Object IDL

But we don’t have to go far into the Web Services stack to find the source of most

complexity: the Web Services Description Language, or WSDL. While WSDL pays lip

service to SOAP’s message-oriented processing model, in fact it is mostly used as noth-

ing more than a verbose object interface definition language (IDL), which forces an

unsuitable RPC-like model of parameters, return values, and exceptions onto Web

Services.

Center stage in WSDL 1.1 is the portType (the equivalent in WSDL 2.0 is the more

honestly named interface), which is where all of the operations (!) that a Web

Service supports are declared. Even to the casual observer, it’s clear how the WSDL in

Example 11-4 maps directly onto the equivalent Java code in Example 11-5, or indeed

how easy it would be to go from Java to the corresponding WSDL—both encouraging

unhelpful tight coupling between the service’s contract and its implementation.

Example 11-4.  Typical WSDL use

<wsdl:portType name=″ordering″>
 <wsdl:operation name=″placeOrder″>
 <wsdl:input message=″restbucks:Order″/>
 <wsdl:output message=″restbucks:OrderConfirmation″/>
 <wsdl:fault name=″fault″ message=″restbucks:OrderException″/>
 </wsdl:operation>
 <wsdl:operation name=″cancelOrder″>
 <wsdl:input message=″restbucks:Cancellation″/>
 <wsdl:output message=″restbucks:Cancelled″/>
 <wsdl:fault name=″fault″ message=″restbucks:NoSuchOrderException″/>
 <wsdl:fault name=″fault″ message=″bank:OrderAlreadyServedException″/>
 </wsdl:operation>
 ...
</wsdl:portType>

Example 11-5.  Typical Java Web Service implementation

public class OrderingService {
 public OrderConfirmation placeOrder(Order order)
 throws OrderException {
 ...
 }

 public Cancelled cancelOrder(Cancellation cancellation)
 throws NoSuchOrderException,
 OrderAlreadyServedException {
 ...
 }
}

382 CHAPTER 11: the web and ws-*

note
We’re not saying Java is a poor fit for building Web Services. In fact, a typical .NET
solution is quite similar, using attributes to generate tightly coupled WSDL descrip-
tions. Either way, coupling programming language objects to a distribution bound-
ary is brittle.

Parameters, return values, and exceptions may be great abstractions for Java or .NET

programming, but on the Internet these abstractions don’t make much sense. We

know from experience that using a method-centric model to hide distribution bound-

aries is brittle, despite its immediate convenience for developers.*

Tight coupling between a service’s WSDL and its internal implementation occurs because

Web Services tools try to hide the perceived implementation complexity of building

service-oriented systems. Tools encourage us to apply an attribute or property to a class or

method in order to make it available as a Web Service. Such ease of use tends to make us

quite generous in what we expose from our services. Furthermore, the same tools allow

us to very easily bind to a Web Service through its WSDL and hide its remote nature by

making the interactions with it appear as invocations against any other local object.

note
Since tooling allows any type to be exposed as a Web Service, it’s easy to see
how brittle Web Services can be. If we make a change to the domain model of
our service—something that we do regularly during the service’s development and
maintenance—that change will ripple through the system to the service’s endpoint
and surface in the WSDL, likely breaking any existing consumers.

Existing consumers may find that our service no longer works for them because the

WSDL contract that the service exposes has changed. This is an awkward situation since

we’d like to be given freedom to implement and evolve our domain model as the busi-

ness requirements for our service evolves, yet we’re tightly coupled to a service contract,

and by extension, external consumers, which inhibits such change. In fact, we’d inadver-

tently started to share a domain model between systems that should be decoupled!

note
Objects in a domain model usually make poor choices for integration points
because their life cycles are bound by their service. Not only do remote methods
make for chatty interfaces that aren’t efficient over a network, but they also intro-
duce tight coupling.

*	Waldo et al. were more diplomatic in their seminal paper, “A Note on Distributed Computing,” but
the underlying message is the same: you can’t hide distribution and still have a reliable system. See
http://research.sun.com/techrep/1994/smli_tr-94-29.pdf.

http://research.sun.com/techrep/1994/smli_tr-94-29.pdf

383WSDL: Just Another Object IDL

Figure 11-1 shows the tight coupling that arises when the normal tooling-centric

approach is used for developing Web Services. Encapsulation is violated as the service’s

internal domain model is exposed via WSDL to the outside world. Any consumers that

in turn use this WSDL to generate their own domain model become tightly coupled to

the service’s implementation. In turn, this makes changes significantly more difficult,

expensive, and risky.

Figure 11-1.  Unintentional RPC with Web Services

We don’t have to create tightly coupled solutions with Web Services, though most

tools make implementing that anti-pattern frighteningly easy. It’s straightforward to

design loosely coupled services by building a “service model” between the domain

model and the framework code that connects services to the network.

The service model provides a faithful view of the underlying messaging behavior of the

system so that we can explicitly code for high latencies and low reliability in the net-

work. It also provides a mechanism to map information from messages into and out of

domain objects, as shown in Figure 11-2.

This model is most prominent in the Spring Web Services approach where developers

are expected to interact with SOAP messages via an XML-based API that forces loose

coupling between the messages and domain model. Unfortunately, this approach tends

to lack metadata (such as WSDL, poor as it is) to support the generation of client-

and server-side bindings, and so places a programming burden on the developer. The

Windows Communication Foundation (WCF) platform also supports the concepts of

“service and data contracts” in an attempt to decouple implementation details from the

interaction contract exposed through a service’s endpoint, although through judicious

use of attributes, WSDL can still be produced.*

*	It’s unfortunate that WCF still creates contracts that tightly couple consumers and services. By
default, the tooling produces consumer-side stubs that syntactically match the service-side contract.
If a service changes, the consumer breaks too.

384 CHAPTER 11: the web and ws-*

Figure 11-2.  Decoupling domain model from WSDL contract

Following the approach in Figure 11-2, we have an extra tier to build compared to the

naïve tool-generated approach, but the benefits of creating the service model tier are

manifold:

•	 We explicitly decouple our external contract and internal domain model.

•	 We explicitly code for messages and so take time to understand the latencies and

failure modes so that we can handle them gracefully and produce a robust service.

•	 Proper separation of concerns makes the codebase maintainable for the long term.

Once we’ve decoupled the domain model from the SOAP messages, WSDL interface

changes become significantly more straightforward. Changes to the domain model

will not affect service consumers because they are instead bound to the service model.

Similarly, changes to the outwardly facing WSDL contract of the service may not

require changes to our domain model since our contract and domain model are decou-

pled via the service model. In short, we have sensible separation of concerns.

Unfortunately, mainstream WSDL tooling promotes poor practices that discourage the

design philosophy outlined earlier—SOAP messaging and the SOAP processing model

are simply not well supported.*

To make matters a little more confusing, WSDL allows for a number of different

encoding styles for the payloads of operations. Confusingly, these styles share over-

loaded names with other concepts in distributed computing. For example, the seri-

alization styles Document/Literal and RPC/Encoded in WSDL are easily confused with

Remote Procedure Call (RPC).

*	This is partially because WSDL is a lowest common denominator description language. It takes the
abstract notion of operations and binds them onto physical network exchanges. Whether it is an
RPC mechanism like Java RMI or a messaging format like SOAP, everything is reduced to fit the
operation abstraction.

385WSDL: Just Another Object IDL

warning
Some practitioners misguidedly claim that their Web Services aren’t RPC because
they’ve chosen Document/Literal as their encoding mechanism!

Encoding messages with your own schema (Literal) and placing the resultant XML

directly in the SOAP body (Document) or encoding your content with the SOAP

schema* (Encoded) and wrapping it with a parent element before placing it in the

SOAP body (RPC) merely changes how the XML looks on the wire. The underlying

convention is still request-response plus fault that—in the presence of poor tooling—

promotes brittle RPC that has dogged Web Services since their inception.

Both the Web and the explicit messaging model supported by SOAP with

WS-Addressing embrace the idiosyncrasies of distributed systems, without trying to

hide them. Unfortunately, WSDL’s conceptual model and the naïve tooling based

around it attempt to hide distribution as though programmers need to be protected

from it.† In hiding the remote aspects of a distributed system, we hide necessary com-

plexity to the extent that we can’t build services that are tolerant of their inherent

latencies, failure characteristics, and ownership boundaries.

Let’s call it out, explicitly, just in case you’re in any doubt.

warning
WSDL is the single most damaging technology in the Web Services space today,
not only because it is complex and unwieldy, but also because it supports an
inherently unsuitable model for Internet-scale systems. WSDL-based toolkits make
choosing inappropriate engineering decisions easy, which substantially increases
technical risk when using the WS-* stack.

As if being an RPC description format wasn’t bad enough, it turns out that WSDL is

metadata-poor in many other respects. Even though WSDL can support interactions

up to a single request and a response (or fault), more sophisticated message exchange

patterns are beyond its capabilities. This means WSDL is unable to cope with the typi-

cal use case where services exchange messages in arbitrary ways to match the problem

at hand, and move beyond trivial request-response plus faults.

note
Using WSDL alone, it is extremely difficult to describe a protocol such as the cof-
fee ordering domain application protocol (DAP) we built in Chapter 5.

*	The SOAP encoding schema (also known as “Section 5” encoding after part of the original SOAP
specification) is now deprecated.

†	Nothing could be further from the truth. We need to know about distribution boundaries so that
we can write code that deals gracefully with failures outside our control.

386 CHAPTER 11: the web and ws-*

WSDL’s limited metadata means you can’t tell in which order the operations defined

in a WSDL interface should be invoked, since those operations convey only a single

request, single response, and faults—with no dependencies among them. The conver-

sation state of the Web Service is hidden, so any consumers looking to understand in

what order to invoke operations have to be directed to an external source for conversa-

tion such as an abstract BPEL or WS-Choreography description. Not only does this add

complexity to the solution, but also, most Web Services toolkits simply don’t support it.

The final nail in WSDL’s coffin is that it is able to support any transfer/transport proto-

col combination. In theory, capability to support a wide range of envelope formats and

transport protocols should be useful, but in practice, Web Services habitually use SOAP

over HTTP.* Unfortunately, this means we pay the price in terms of verbosity and com-

plexity for the perceived added flexibility of binding to different envelope formats and

transport protocols even though we’ll never use it.

note
WSDL is tremendously difficult to write and debug without tool support, and much
of that tool support is actively harmful because it hides necessary complexity.

The Web Services stack has been dogged by the inadequacies of WSDL for far too long.

WSDL makes doing the wrong things easy and makes doing the right things difficult,

especially for frameworks that support WSDL generation from code (and vice versa).

However, even in the web world, this mindset lingers on.

Two Wrongs Don’t Make a Right
The techniques we’ve discussed in this book for APIs for web-based services have been

uncontroversial. We think that links and careful use of URI templates with the HTTP

uniform interface make sensible web-friendly APIs.

The kinds of APIs we see on the Web aren’t necessarily isomorphic to Java or .NET

classes. Even so, there exists a moral equivalent to WSDL in the web space: WADL,

the Web Application Description Language, which we saw in Chapter 4, can be used to

describe CRUD web services.

note
WADL isn’t the only game in town for describing HTTP-centric services. In fact,
WSDL has bindings for HTTP GET and POST. Unfortunately, those bindings still
promote the operation rather than resource abstraction, which is a poor fit for web-
based services.

*	There is at least a chance of being interoperable this way, unlike proprietary SOAP over JMS bind-
ings, for example.

387Secure, Reliable, Transacted

WADL was created with the best of intentions: to make building and consuming web-

based services accessible to a wide community of programmers. However, it falls foul of

many of the same problems as WSDL, in addition to some of its own making, specifically:

•	 WADL takes a static view of the web application by presenting the available

resources, schemas, operations, and faults upfront, where the Web uses media

types and links for contracts.

•	 WADL tooling promotes tight coupling of client and service-side abstractions.

Resources advertised from the service become the client’s domain model with

frightening ease, allowing service-side changes to readily ripple through all client

applications, leading to fragile, brittle systems just as WSDL-based tooling does in

the WS-* world.

•	 WADL offers no clues about ordering of interactions with resources it advertises. A

consumer of a WADL description doesn’t know from WADL alone how the service

expects interactions to occur. On the Web, we use hypermedia for this.

•	 WADL often duplicates the metadata that is available from the resources them-

selves (e.g., via OPTIONS, HEAD). Thus, WADL introduces an opportunity for incon-

sistency where resource metadata and WADL are different.

Perhaps the saving grace for web-based services is that there is comparatively little

tooling based around WADL at the moment, and so it doesn’t have the same momen-

tum in the web space that WSDL enjoys in the Web Services space. The truth of the

matter is that the Web has its transgressions just like Web Services—WADL being a

case in point. But just like Web Services, the Web can handle sophisticated distrib-

uted computing scenarios including security, reliability, and transactions, but without

resorting to unsustainable architectural patterns.

Secure, Reliable, Transacted
We can forgive the Web Services stack some of its transgressions (like WSDL) provid-

ing the stack can deliver some value that the Web cannot. Security, reliability, and

transactions were values deeply enshrined in the Web Services psyche early on by

some of its more influential corporate backers* to make interactions between Web

Services as robust as traditional enterprise middleware.

This was a worthy and important goal, and it’s interesting to see how these fundamen-

tal tenets are supported in the WS-* stack. It’s also useful to understand how the Web

achieves similar outcomes with quite different means.

*	Specifically, IBM and Microsoft.

388 CHAPTER 11: the web and ws-*

Security
Web Services security encompasses a suite of XML cryptographic techniques to pro-

vide a secure end-to-end mechanism for transferring SOAP messages between services.

WS-Security allows the sender of a message to sign and/or encrypt any part or the

whole of the outgoing message so that it can’t be tampered with and/or read while it’s

in transit, while higher-order protocols allow us to establish domains of trust, negoti-

ate credentials, and so on.

End-to-end model
What’s interesting about the WS-Security model is that it is truly end-to-end, based on

public key cryptography. The WS-Security components are installed and configured

inside a service’s SOAP stack, and the security capabilities that the Web Service sup-

ports can be advertised in the WS-SecurityPolicy document associated with the service’s

WSDL. Once a consumer locates some service metadata, it can find out how to securely

bind to the service via the WSDL and policy metadata and begin exchanging messages.

WS-Security works at the transfer protocol (message) level rather than the transport

protocol level, so confidentiality and tamper proofing are supported from the sender

through to the ultimate recipient. This is not merely between an enterprise gateway and

receiving socket in the demilitarized zone (DMZ), but truly an end-to-end approach. In

practical terms, this approach reduces the attack surface of the system considerably.

The architecture in Figure 11-3 is typical of many enterprise situations where the

services (and their valuable business logic and data) are kept safely away from the

Internet inside a protected network zone. A gateway server sits inside the DMZ and

provides managed and secured communications between the Internet and the local

network, as well as mediating connectivity to the Web Services. Any compromised

systems in between the sender and receiver won’t be able to view or tamper with the

messages in transit. Given the realities of distributed ownership and governance in

typical enterprises, this is a sensible defense-in-depth approach.

Figure 11-3.  Secure end-to-end message transfer

389Secure, Reliable, Transacted

WS-Security doesn’t have to be applied only at the SOAP envelope level. Unlike

transport-level security such as HTTPS, applying cryptographic techniques at the mes-

sage level makes it possible to sign and/or encrypt only certain parts of the message.

Not only can this be more computationally efficient than encrypting all of a message,

but it also allows headers to be seen by intermediaries for routing and so on. Any vis-

ible headers can, of course, be signed to prevent tampering while keeping data meant

for the ultimate recipient of the message private, end to end.

note
Although encryption and signatures can be applied to individual message elements,
in practice they are often applied at the envelope level, preventing processing by
intermediaries.

Securing long-lived conversations
While WS-Security works well for single message exchanges, the cost of pub-

lic key cryptography for multiple message exchanges can become expensive very

quickly. While we could scale out the number of physical servers to deal with

the additional computational workload, a better solution comes in the form of

WS-SecureConversation, which uses WS-Security to bootstrap a secure, long-lived

conversation with a Web Service.

WS-SecureConversation allows communicating Web Services to establish a shared key

using a single public key exchange and then subsequently use that shared key to trans-

fer multiple messages. To make the channel more secure, WS-SecureConversation

allows the services to mutate the key as each message is exchanged, which all

but circumvents attacks on the key, at a very low computational cost. A typical

WS-SecureConversation scenario is shown in Figure 11-4.

390 CHAPTER 11: the web and ws-*

Figure 11-4.  WS-SecureConversation

The secure session starts when the consumer and Web Service establish a Security

Context Token (SCT). The Web Service has three choices in creating the SCT: the SCT

can be requested from a WS-Trust Security Token Service, the service can generate

its own, or the service can negotiate an appropriate SCT using the WS-Trust protocol

(which we will see later).

As the conversation proceeds, the shared key used to secure the messages will mutate

to maintain security. These mutated keys (known as derived keys) are computed with

(pseudo) random number generators. Finally, the WS-SecureConversation specifica-

tion provides the capability for renewing an SCT (via WS-Trust) where the SCT has

expired before the conversation has completed, or conversely terminate the secure ses-

sion immediately.

391Secure, Reliable, Transacted

Issuing security tokens
At the heart of Web Services security is the notion of a token that represents a claim in

respect of the sender’s identity. We see such tokens in everyday life—video store member-

ship cards, driver’s licenses, passports, and OpenID URIs are all examples of tokens with

varying degrees of strength in various domains. Sometimes tokens are interchangeable;

for example, the video store will accept your passport as proof of identity. Sometimes they

aren’t—just try boarding an international flight with your video store card!

In the Web Services security world, we are exposed to many kinds of tokens too. The

same tokens that we use in existing network security protocols are reused by Web

Services, including the commonplace X.509 certificate and Kerberos ticket. Since Web

Services make no assumptions about any specific token type, we may need to trade

tokens when we’re interoperating between domains of trust using the WS-Trust protocol.

WS-Trust defines extensions to WS-Security that provide methods for issuing, renew-

ing, and validating security tokens, and ways to establish and broker trust relation-

ships. The cornerstone of establishing trust is the WS-Trust Security Token Service

or STS (itself a Web Service), which is able to exchange tokens of one type (in the

requesting service’s domain) for appropriate tokens of another type (in the receiving

service’s domain), as shown in Figure 11-5.

Figure 11-5.  WS-Trust in action

392 CHAPTER 11: the web and ws-*

The security model defined by WS-Trust allows a Web Service to specify that an

incoming message must provide a set of claims (e.g., name, key, permission, capability,

etc.) via its associated WS-Policy description. If a message arrives without having the

required proof of claims, the service will typically ignore or reject the message.

If the requesting service doesn’t have the necessary token to support the required

claims for a service, it can contact an STS* (indicated in the service’s policy) and

request those tokens with the proper claims. Once the new tokens have been issued,

the service consumer can resume its conversation with the responding service.

Federating identities
The pinnacle of Web Services security is federated identity, where services in one orga-

nization may access Web Services in other organizations, using local credentials to

access remote services. This is the scenario supported by WS-Federation.

A typical scenario for WS-Federation is shown in Figure 11-6. While this pattern is

simple, it can easily be used to build larger trust systems.

Figure 11-6.  Single sign-on with WS-Federation

In Figure 11-6, the requesting Web Service obtains its credentials from its local iden-

tity provider using WS-Trust. The requesting service sends a message to the receiv-

ing service with evidence of its identity from its local domain using WS-Security. On

receipt of this message with its foreign identity credentials, the receiving service asks its

local identity provider to authenticate the sender of the message using WS-Trust. The

identity provider in Domain B uses the foreign credentials to authenticate the sender

with the identity provider from Domain A, which it already trusts (via WS-Federation).

Once authenticated, the identity provider in Domain B informs the receiving Web ser-

vice (using WS-Trust) and processing of the message may proceed. Whew!

*	The STS may, in turn, require its own set of claims—it is, after all, just another Web Service.

393Secure, Reliable, Transacted

note
Although the WS-Trust protocol readily supports federation of trust domains, that
doesn’t mean we enter into such arrangements lightly!

This pattern, where a receiving service calls back to an identity provider, has the benefit

that the credentials are only stored in and validate at a single authority. If business part-

nerships change and Web services from Domain A are no longer to be serviced, only the

STS in Domain B needs to be updated, which reduces cost and complexity in operations.

Similarly, if an employee in Domain A is no longer trusted to perform tasks, a change

is made in Domain A and it immediately impacts Domain B. This pattern eliminates

the problems of defining and coordinating identities in multiple places.

Web services security: Sophisticated and robust, or complex and opaque?
It seems obvious that simple systems tend to be secure. There are just fewer places for

potential bugs to hide in a simple system, and so correspondingly, there’s less for the

malicious hacker to exploit. Yet it’s with trepidation that developers approach the Web

Services security stack.

The WS-Security stack is smart enough not to reimplement cryptographic primitives

such as hashing functions, random number generators, and encryption algorithms.

Instead, it reuses mature cryptography techniques from the XML security arena.

WS-Security also delivers more powerful techniques such as conversations, trust, and

federated identity. These techniques add to the sophistication of WS-Security and

make federated domains of trust feasible at interenterprise scales.

However, the sophistication of the WS-Security stack comes at a cost in terms of com-

plexity. Each higher-level security specification is itself a specialist protocol that has

been designed by experts and in turn hidden by tools. Being opaque to developers like

this can be risky. If developers are so baffled by the technologies we’re using, we’re

prone to make mistakes and reduce the overall trustworthiness of our services.

note
We don’t advocate development teams creating their own WS-Federation imple-
mentations, but we do suggest understanding the protocols rather than simply
relying on tooling to magically handle security concerns.

Web Security
Compared with the sophisticated set of protocols we’ve just seen that compose the

WS-Security stack, the HTTPS solution used by the Web seems pitiful. Yet from

the human Web, we know that HTTP has the ability to support client-to-server

394 CHAPTER 11: the web and ws-*

authentication using anHTTP Basic or Digest approach. Furthermore, TLS—the under-

lay for HTTPS—provides other critical functionality, such as strong authentication

(even bilaterally with client certificates) and integrity for message exchanges, that

allow us to establish mutually authenticated, confidential, session-based channels

between a client and server using widely adopted Internet protocols.

Unlike WS-Security, which can be used in a fine-grained manner, HTTPS creates a

secure transport channel and so obfuscates the entire HTTP envelope (including head-

ers). For secure web traffic, this means transferred representations bypass web inter-

mediaries like proxies, and the HTTP metadata is only available to the client and server

and not to the underlying web infrastructure.

On the one hand, this is sensible since sensitive information shouldn’t be cached or

seen by intermediaries. On the other, it does inhibit scalability because a vital part of

the Web (caching by intermediaries, and particularly reverse proxy servers) doesn’t

work for secure traffic, leaving us with client-side caching only. This means HTTPS

should be used thoughtfully to ensure that most of the heavy lifting is still delegated to

the Web.

note
Although HTTPS is a (relatively) simple point-to-point mechanism for transport
security, and is not as sophisticated as the WS-Security stack, it is worth remem-
bering that huge amounts of value—including monetary transactions—are realized
every day using this approach. It may be simple, but it is widespread, highly interop-
erable, and trusted.

Federated authentication on the Web
In the same way that the Web Services community has layered sophisticated security

mechanisms such as WS-Trust atop WS-Security, the web community has begun to

develop its own security protocols to support more sophisticated secure interactions

over the Web.

Since the Web has a collaborative mindset, OpenID seems to have captured the zeit-

geist for identity. We covered OpenID in depth in Chapter 9. To recap, its underlying

philosophy is to enable an individual (or a computer system) to own a single long-lived

identity across the Web—decoupled from any specific identity provider. The OpenID

model is relatively simple. A service consumer makes a claim to a service that it owns

a particular identity referenced by a URI. That identity enables an OpenID provider

to be discovered, which will authenticate the consuming application. The service then

authenticates the consumer by delegating the authentication to that OpenID provider—

provided the service trusts the provider. Underpinning OpenID are the same mature

cryptographic algorithms that are used by the WS-Security stack, so we have the same

degree of confidence in OpenID.

395Secure, Reliable, Transacted

A similar argument can be made for OAuth (which we also covered in Chapter 9). OAuth

provides authorization to interact (read, update, remove) with resources on the Web for

a given authenticated user (who may be authenticated through OpenID) for a certain

time period. This scheme has allowed some services to evolve into open platforms whose

third-party security is implemented through an open and widely used protocol.*

It’s telling that protocols such as OpenID and OAuth prosper in a harsh environment

like the public Internet, whereas the equivalent WS-* protocols seem to have made

little impact even in the safe, law-abiding havens that are enterprise networks. It’s

paradoxical that techniques that have proven themselves on the public Internet are so

downplayed in enterprise computing!

Reliable Messaging
One of the pains inherent in building distributed applications is failure of the commu-

nications infrastructure that links components together. At Internet scale, transient

communication failures are commonplace, and although TCP does a good job of mask-

ing these failures in most cases, application-level mechanisms that deal with delivery

of messages are a useful technique to have in our toolbox.

In the Web Services arena, WS-ReliableMessaging is the dominant protocol supported

by the major platforms and vendors.† WS-ReliableMessaging offers four schemes for

reducing message delivery errors between Web Services:

At most once

Duplicate messages will not be delivered, but messages may still be dropped.

At least once

Every message will be delivered, but duplication may occur.

Exactly once

Every message will be delivered once and once only.

In order

Messages will be received in the same order they were sent.

Each of these is supported by WS-ReliableMessaging. From a developer’s perspective,

a Web Service’s SOAP stack is configured with components that implement the proto-

col. On good Web Services stacks, declaring that a service supports the WS-RM protocol

will also cause the capability to be advertised via a WS-Policy document associated with

the service’s WSDL. In turn, consumers of the service know they can use the protocol to

communicate reliably with the service from those policy declarations.

*	For example, Twitter and LinkedIn.

†	Like so many of the interesting WS-* specifications, the vendor community has spent several years
fighting with proprietary and incompatible versions of reliable messaging protocols. WS-Reliable
Messaging 1.1 finally became an OASIS standard in June 2007, some six years behind the first
SOAP specification.

396 CHAPTER 11: the web and ws-*

At runtime, the reliable messaging protocol establishes a reliable session by tagging

sequence numbers into the SOAP headers of messages, as shown in Figure 11-7.

Figure 11-7.  WS-ReliableMessaging in action

Figure 11-7 shows a typical use case for WS-ReliableMessaging. The consumer nego-

tiates with the service to set up a sequence that is used to identify the order of mes-

sages exchanged between the sender and recipient. As each message is received, the

WS-ReliableMessaging components on the service side examine the sequence number

and request retransmission of messages from the consumer by omitting a confirmation

for the missing message in its response ACK message.

On the consumer side, the WS-ReliableMessaging components respond to protocol mes-

sages by resending any messages that have gone missing. To make things more reliable,

the consumer may request an acknowledgment of the re-sent (and any other) message

too, and may persist outgoing messages ready for retransmission in the event of a failure.

397Secure, Reliable, Transacted

Reliability on the Web
The Web is quite different from Web Services when it comes to reliable transfer

between clients and servers. Not only are operations such as GET and PUT idempotent

and therefore safe to retry in failure cases, but the stateless, synchronous request-

response interaction model of the Web ensures ordering by default—there just isn’t

any asynchrony to mess things up. In fact, the Web deals with many of the same

requirements as WS-ReliableMessaging, but does so using HTTP verbs, headers, and

status codes to coordinate interactions and implement retries. To recap, we are specifi-

cally interested in the following interaction patterns:

•	 In order

•	 At least once

•	 At most once

•	 Exactly once

The first of these, in order, is actually baked right into the web model—the Web is

inherently synchronous. Only if the HTTP status code of an interaction suggests it was

successful would we go ahead with the next interaction. If a status code indicates a

failure, we might try again or divert to another strategy to make forward progress. The

Web embraces distribution rather than trying to hide it beneath an RPC façade.

note
When building web-based systems, we need to know the results of a prior interac-
tion with a resource, because they contextualize future interactions. For example, if
we get a 500 or 404, we may take different actions compared to receiving a 200 or
201. Understanding HTTP and the implicit coordination it provides is a prerequisite
for building reliable web-based systems.

HTTP does in fact allow asynchrony in the form of pipelined requests. Pipelining
allows a client to send multiple requests over a persistent connection without
waiting for each response. By convention, however, pipelined requests should
only include safe requests. If an error occurs during a sequence of safe pipelined
requests, the entire sequence can be retried.

The other three requirements (at most, at least, and exactly once) are just as easily

handled by the Web, and actually collapse down to a single exactly once case. If we

PUT a representation, it’s safe to retry the operation until we get a 200 or 201 response.

If we get something like a 409 Conflict, we know to take appropriate recovery action.*

The other idempotent verbs, such as GET and DELETE, follow a similar scheme.

*	Which is to GET the latest state of any resources involved in the computation and compute whether
forward progress can be made, or whether some kind of compensation will be required.

398 CHAPTER 11: the web and ws-*

The exception to this scheme is, as we might expect, the POST verb. Since POST isn’t

guaranteed to be idempotent, when we’re POSTing to create a new resource or add to

an existing resource, we need an additional safeguard. Again we will use the HTTP

status codes to reason about the outcome of our POST and react accordingly to success

or failure. However, we also need to prevent multiple POST operations from creating

unintended side effects. In this case, we can either rely on some unique identifier within

the payload, or add an HTTP header with a unique value as per Mark Nottingham’s

“POST Once Exactly”* scheme where the server will return a 405 Method Not Allowed

in response to duplicate POST requests. Either way, there is an expectation that our ser-

vice implementation will not process any operations for that unique value more than

once, which delivers our exactly once semantics.

This means we can achieve the same level of reliable messaging on the Web as WS-*

services achieve with XML-based protocols. However, this is not the end of the story

as far as reliability goes. Though it’s a useful pattern, reliable delivery only applies to

a single set of interactions between a consumer and a service. To achieve reliability

across a system composed of services, we need (transactional) coordination.

Transactions
To achieve end-to-end reliability in a distributed system, we need to be confident that

at the end of an application scope or business process (known as a context) each service

involved has a consistent view of the outcome. Classically, to achieve consistent outcomes

across parties we use coordination/transaction protocols to drive consensus.

As enterprise developers, we’re completely at ease with the notion of database trans-

actions. We have probably experienced distributed transactions across systems using

a transaction manager and two-phase commit. In either case, we use transactions to

ensure a consistent outcome even in the event of failures. This classic transactional

architecture is shown in Figure 11-8.

Figure 11-8.  Classic transactions architecture

*	See Mark’s website at http://www.mnot.net/drafts/draft-nottingham-http-poe-00.txt.

http://www.mnot.net/drafts/draft-nottingham-http-poe-00.txt

399Secure, Reliable, Transacted

All of the transaction protocols that we know from the Web Services world (and

indeed their precursors in J2EE, CORBA, MTS, etc.) are based on the classic model

shown in Figure 11-8. It follows that a typical distributed transaction scenario proceeds

along these lines:

1.	 Some part of a distributed application’s work needs a globally agreed outcome, so

the application requests a transaction context from the transaction manager.

2.	 The transaction manager returns a reference to a transaction context back to the

application. On each subsequent interaction with a transactional service, the cli-

ent application passes context along in some out-of-band mechanism (e.g., SOAP

header).

3.	 When the service receives the message containing the transaction reference, it

may choose to register itself with that transaction. It then goes on to complete any

work asked of it. It must have some mechanism such as database rollback, or com-

pensation logic to undo any work in the event that it is instructed to do so by the

transaction coordinator.

4.	 Once all the application work has been completed, the client signals to the trans-

action manager that the transaction is ready to be completed.

5.	 The transaction manager then runs the consensus protocol, where it asks each

registered service to vote whether it wants to proceed with the work it has per-

formed or whether it wants to cancel that work.

6.	 After gathering all the votes, the transaction coordinator instructs the services to

either commit the work they had provisionally completed, or cancel the work,

which forces a rollback or compensation in each service.

Transactions involve a lot of work to arrive at an agreed-upon outcome between compo-

nents, and implementing the necessary infrastructure to support them can be nontrivial.

Transactions are a deep computer science discipline,* and the techniques we take for

granted as developers are often the results of significant R&D investments. And there are

myriad variants and optimizations for transaction models that suit particular domains.

In the Web Services arena, we’ve seen a number of competing transaction proto-

cols from Business Transaction Protocol and WS-CAF through to the (finally) broadly

accepted WS-BusinessActivity protocol. Although each protocol differed in the details,

their lineage derives from the two-phase commit pattern, which is an approach that

can make sense in an asynchronous messaging system like Web Services.

*	See Chapter 7 of Developing Enterprise Web Services: An Architect’s Guide by Chatterjee and Webber
(Prentice-Hall, 2003) for a more thorough explanation of transactional coordination in loosely
coupled systems.

400 CHAPTER 11: the web and ws-*

note
The Web Services transaction protocols don’t uphold full ACID semantics that we
expect from classic transactions. In fact, these protocols are better described as
two-phase consensus protocols since they only try to agree on a globally shared
view of an outcome, and don’t dictate what to do in response to that outcome (e.g.,
commit or roll back). Instead, services are allowed to make their own business-level
decisions regarding the outcome, rather than relying on strict two-phase locking,
which is known to reduce scalability through making resources unavailable.

Web Transactions
Applying two-phase transactions to the Web is straightforward, though as we will

show, we don’t believe it is necessary. Although the Web lacks any standard transac-

tion models or media types to support transactions natively, we could choose to reuse

the same two-phase pattern with HTTP interactions. For example, at their OOPSLA

2007 session,* Baker and Charlton outlined a model for dealing with transactional

coordination across the Web, using a traditional model where all parties in the trans-

action are modeled as web resources. They also advocate the same kind of two-phase

protocol for driving out consensus between distributed resources at the end of the

transaction’s scope.

As we would expect, web-based service transactions begin with the creation of a trans-

action by a client application. In this case, we POST a request for a new transaction to a

transaction manager to request the creation of a new transaction context as a resource,

as in Figure 11-9.

Figure 11-9.  Creating a transaction resource

Once we have created a resource to represent our transaction, the next stage is for

the URI of that transaction to be shared with other (transactional) resources. To

achieve this, we embed a transaction context in the form of a URI in an HTTP header

that is propagated to any resources we interact with in the scope of the transaction.

Something simple like Transaction-Id: http://transaction.example.org/1234 will suf-

fice here, with the benefit that any resources that don’t want to be part of the transac-

tion (or are unable to) can simply ignore the header.

*	http://www.slideshare.net/StuC/oopsla-2007-the-web-distributed-objects-realized

http://transaction.example.org/1234
http://www.slideshare.net/StuC/oopsla-2007-the-web-distributed-objects-realized

401Secure, Reliable, Transacted

Once a transaction identifier has reached a resource, the next step for the receiving

resource is to register as a participant resource in the transaction. It does this by POSTing

to the transaction resource with its participant resource URI, as shown in Figure 11-10.

Figure 11-10.  Registering participants under a transaction

As the application proceeds, a participant resource is created for each transactional

resource that has registered. Ultimately, the client application will attempt to finish the

transaction, at which point it will initialize the outcome protocol with the registered par-

ticipants by updating the status of the transaction resource, as we can see in Figure 11-11.

Figure 11-11.  Initiating transaction completion

Once the client application has initiated transaction completion, the transaction

resource gathers votes from its registered participants by PUTting the prepare state onto

each, as in Figure 11-12. In response, the participants may answer with a 200 OK status

indicating that the resource is happy to go ahead with the work (perhaps along with

a copy of the to-be resource representation) or a 409 Conflict to indicate that it is not

able to honor the unit of work and wishes to roll back or compensate.

Figure 11-12.  Gathering votes

Once all the votes have been gathered, the transaction resource PUTs the final outcome of

the transaction to each participant and informs the client application of the outcome, as

shown in Figure 11-13. On receipt of the outcome, each resource either makes perma-

nent any state changes that have occurred during the transaction or undoes them (by

rolling back or compensating, depending on its implementation strategy).

402 CHAPTER 11: the web and ws-*

Figure 11-13.  Resolving a consistent outcome

Of course, transactional scenarios aren’t always as straightforward as we’ve described

so far. For example, participants may deregister from the transaction or may want to

know (security permitting) who else is participating in the distributed unit of work.

Fortunately, the Web allows us to support both of these easily using DELETE and GET. To

deregister from a transaction—assuming that it hasn’t yet voted and the security policy

is not violated—a resource owner or client application can simply DELETE the partici-

pant, as we can see in Figure 11-14.

Figure 11-14.  Deregistering a participant with DELETE

Similarly, to discover which resources are registered with a transaction at any point,

we can GET the parent transaction resource and expect to see a set of URIs for each

registered participant (or an Atom or RSS feed), as per Figure 11-15. Likewise, if we

GET a particular participant resource, we can reasonably expect to see its current status

(whether it has yet to vote or whether it has voted to proceed or cancel).

Figure 11-15.  Listing current participants and participant statuses with GET

403Secure, Reliable, Transacted

In terms of robustness, the pattern we’ve shown is solid. If the transaction manager

and its participant resources are able to recover from crashes (by writing all pertinent

resource information to a database or disk), we can be confident we’ll get a coordi-

nated outcome even in the presence of all but the nastiest of failures, just like enter-

prise transaction systems.

Crash recovery for any participant in the transaction is straightforward because the

participant can simply GET the status of the transaction as a whole and its own partici-

pant status. The means transactional services have to remember (and therefore code

for) little transactional state of their own, which is a very good thing.

The downside of this pattern is that it is precisely that: simply a pattern, not a standard

or implementation. To transact in an interoperable way, convention may not be suffi-

cient, at least not until a sufficiently large community lends its weight to that conven-

tion and appropriate media types and link relations emerge. So, in order to transact in

the classical sense over the Web, we might need to resort to the same standards com-

mittees and politics that have dogged the evolution of Web Services standards in the

past few years.

Un-transactions
Fortunately, as we are discovering, the Web tends to have its own answer to enter-

prise problems, and as it happens transactions aren’t necessary when dealing with

web-based services. The Web provides feedback in the form of HTTP status codes about

every interaction with resources, which means that web-based business processes

build consensus as they execute rather than waiting until the end. A consumer driving

a protocol through hypermedia spanning any number of services knows at each step in

that protocol whether it’s safe to continue, or whether it needs to attempt some kind

of error recovery after every interaction.

note
Receiving a 200 or 201 status code as the result of an interaction with a resource is
an invitation to continue, whereas responses in the 400 or 500 range are an imme-
diate signal that some part of the system has refused to go any further and some
corrective or compensating action may be needed.

Even though compensating activities may be nontrivial to develop, they are coordi-
nated via the Web just like any other interaction. That is, in order to repeat or undo
a unit of work, the same verbs, status codes, hyperlinks, servers, and libraries are
used; no additional frameworks or middleware are necessary.

Status codes are coordination metadata, and are as valuable to the Web as transactional

coordination is to the enterprise. But unlike the enterprise distributed transaction mod-

els, the Web doesn’t rely on a shared, trusted coordinator. Since coordinators have to be

available for the entirety of the work (just so they can run a consensus algorithm at the

404 CHAPTER 11: the web and ws-*

end), they risk becoming a scalability and reliability bottleneck. Instead, the Web’s model

requires only that the consumer makes sensible decisions with respect to the applica-

tion state and metadata it knows. This is a much more loosely coupled approach.

Respecting boundaries
The fact is that the Web already provides coordination between services. While there

are those in the community who will maintain that classic consensus-at-the-end-

of processing protocols are necessary for systems composed from web services to be

enterprise quality, we disagree.

We understand that in some cases, transactions—even classic two-phase commits—

might be used within a service implementation. Not all projects will be greenfield devel-

opments, and some services will be built by composing existing transactional systems. In

these cases, we have just one plea: respect the autonomy of service boundaries.

While it might make sense for a service implementation to use transactions for its own

internal consistency, that’s an implementation detail. Don’t be tempted to involve con-

sumers in your transactions by allowing such life-cycle information to leak past your

service boundary. Not only is it largely unhelpful for your consumers, but also you’ll

be inviting them to tightly couple to your service’s implementation.

In brownfield service development, the challenge of a designer is to minimize the time

that transactions spend holding resources, and to map the execution of transactions

cleanly onto the steps in the DAP(s) that your service supports.

In Figure 11-16, we show a typical strategy for encapsulating transactions behind

service boundaries. The consumer of a service knows nothing of the transaction it

triggers when it interacts with a resource. However, when the resource processes the

consumer’s request, it may trigger a transaction on the domain model and underlying

datastore. The scope of the transaction is limited to the backend, and runs for as short

a duration as possible to avoid causing contention. Once the transaction completes,

a status code mapping to the outcome of the transaction (a domain-specific mapping)

and perhaps a representation of the resource will be sent back to the consumer. At no

point is the consumer aware that the service executed a transaction on its behalf, since

that is the service’s implementation detail and not something that needs to be shared.

Figure 11-16.  Relationship between service and transaction boundaries

405A Requiem for Web Services?

warning
Backend processes may have to be changed to allow for smaller transactions to
be chained together as part of a larger workflow that the service exposes. Allowing
transactions to span multiple interactions with a consumer is not a good idea since
it effectively allows those consumers to control when resources are released.
Poorly written or malicious consumers may cause inadvertent denial-of-service
attacks, leaving the service with a mess to clean up.

A Requiem for Web Services?
If we take the entire WS-* stack, it’s a large body of work and deserves its heavyweight

reputation. Moreover, WS-* services are categorized in Richardson’s maturity model

at level zero as per Figure 11-17. SOAP and friends leverage very little from the Web,

save the odd URI for service endpoints and HTTP as a firewall-friendly transport proto-

col. This doesn’t mean that WS-* itself lacks sophistication, but all of this ingenuity has

been built afresh atop and around SOAP, ignoring the value that the Web brings.

Figure 11-17.  WS-* is a level zero strategy from a web point of view

Yet much as the web community may like to celebrate the demise of the Web Services

stack, it’s not yet the end of the road for that platform. The WS-* stack is both compre-

hensive and modular. If we need reliable messaging, we deploy and use that protocol

only. We don’t need to worry about the facilities for security or transactions.

The SOAP model means we can focus on the capabilities we need now and defer intro-

ducing any other protocols until we are driven to do so. Interoperability among popu-

lar WS-* stacks has become substantially better over time, and bridging the Java and

.NET worlds (at least) is a reality for most of the mature parts of the stack.

Yet the WS-* stack has failed to leave WSDL behind and move to more sophisticated

metadata formats. This has left a legacy of WSDL-centric tooling, which limits the

approach to RPC-like communication between services. So much time and effort has

been invested in these tools that it is difficult to deviate from this anti-pattern and

frustratingly simple to expose domain objects outside of service boundaries.

406 CHAPTER 11: the web and ws-*

But as the developer community becomes more confident in embracing the Web,

there will be fewer and fewer things that WS-* can do that cannot be achieved by the

Web with common patterns and technologies. Of course, there’s no guarantee that the

Web will have any less of a political and factional aspect when multiple solutions for

the same problem are suggested, particularly when those same WS-* vendors become

involved, but it is certainly an interesting time to be a web developer!

407

C h a p t e r t w e lv e

Building the Case
for the Web

Throughout this book, we hope we’ve shown how the Web can be used to build

real distributed systems, even “enterprise class” solutions for business-critical comput-

ing. But there’s a great deal of skepticism in computing circles about the “next big

thing” because all the previous “next big things” haven’t lived up to expectations.

No More Silver Bullets
Think of the various panaceas we’ve been sold in recent memory: model-driven

development, object request brokers, SOA, and Enterprise Service Bus—all have failed

to deliver on their promise to make building robust systems easy and repeatable. If we

position the Web as another silver bullet, it is similarly doomed to fail. So it’s impor-

tant to understand that even though web-inspired systems are often an excellent

solution, the Web is not a silver bullet and is not suitable for each and every problem domain.

Far from being an admission of failure, taking the time to understand when the Web

will be helpful, and when it will not, is key to successfully deploying web services into

your distributed computing environment.

Building and Running Web-Based Services
As system designers and developers, our primary concern is to deliver a working

system that satisfies the functional and nonfunctional requirements placed upon it.

In satisfying those requirements, we have to select frameworks and components to

support our implementation and accelerate delivery.

408 CHAPTER 12: building the case for the web

Using commodity components and contemporary software processes, we’ve seen how

the Web successfully delivers simple remote data access, complex business protocols,

and even event-driven systems. In fact, we’d go so far as to say that unless you’re

building real-time or safety-critical systems, the Web has a high probability of being a

great choice as a platform for business information systems.

The high probability of the Web being a good fit for our purpose does not arise by

chance. The intrinsic nature of the Web makes it so. For example, if a solution requires

numerous components to be wired up, the uniform interface substantially reduces

plumbing complexity.

If services need to advertise sophisticated protocols to consumers, the Web’s focus on

hypermedia and hypermedia-friendly media types allows services to declare contracts

that include protocol behavior. Not to mention that such protocol behavior can be

readily changed and versioned by changing the links that join resources.

Should our requirements drive us toward creating a secure service, we can rely on

extremely mature web standards (such as HTTPS) for channel-level privacy and

integrity. Or we can adopt security protocols such as OpenID and OAuth—originally

intended for human-facing systems—to support computer-to-computer interactions,

reusing the very same web infrastructure that already drives the human Web.

The middleware that we use to deliver web-based systems is mature. Web servers,

caches, and proxy servers are some of the most widely deployed middleware servers

on the Internet. They are commoditized (and sometimes free), and they don’t require

product specialists to build, configure, and run them.

Similarly, the frameworks we use to produce web services are commoditized—they’re

the same frameworks web developers use every day. And since the web community

is now at the forefront of developing testable, modular software (influenced by the

success of Ruby on Rails and the like), development tends to be rapid, incremental,

low-risk, and, ultimately, great fun. There really is little comparison to the middleware

monoliths of yesteryear, with their heavyweight servers, restrictive licensing, adminis-

trative bureaucracy, and frustrating development cycles.

Web development is a mature discipline, and as developers of web services we’re

piggybacking on all that prior effort. When building a web-based solution, we can

use contemporary software engineering practices such as Test/Behavior-Driven

Development to write our software. QAs in particular will be thrilled when they

discover that even complex web-based systems can be tested with something as

familiar and simple as a web browser.*

Nothing is hidden or untestable. There’s no (necessary) dependence on proprietary

software or protocols, no need for the accounting department to purchase licenses so

*	Exploratory testing and debugging with simple tools such as Firefox and the Poster add-on (https://
addons.mozilla.org/en-US/firefox/addon/2691) is extremely powerful.

https://addons.mozilla.org/en-US/firefox/addon/2691
https://addons.mozilla.org/en-US/firefox/addon/2691

409No Architecture Without Measurement

that developers can run middleware on their desktops. Even where production

environments use proprietary web or application servers, we can still use commodity

(even free and open source) software for development. Of course, we’ll still need to do

realistic testing with the proprietary environments, but most of our developer activities

won’t be hampered.

No Architecture Without Measurement
Though the Web almost always wins out against traditional middleware-driven

solutions, software architecture on any platform remains a notoriously subjective

discipline. Architects argue vehemently over design issues expressed using whiteboard

sketches or stacks of UML diagrams. Whether a solution’s architecture is fit for purpose

often depends on the sensibilities of the architect and a good measure of gut instinct

based on prior experience.*

The Web doesn’t change any of this. A web-based system designed in the absence of

careful measurements and empirical data is as likely to fail as any other solution

designed without diligence. But the Web encourages the decomposition of systems

into interacting services. This means it’s easy to measure and evaluate each service, as

well as the entire system. Compared to traditional enterprise approaches—particularly

those where integration brokers hide necessary complexity—the Web offers visibility,

which supports effective planning and design.

Like any serious engineering project, building a web-based system is a diligent and

disciplined endeavor. We can’t shirk our responsibilities as computer scientists; we

must tackle difficult issues in distributed systems design head-on using the abstractions

the Web provides. While delegating responsibility for so-called “heavy lifting” to

middleware services is appealing, it’s misguided, since it encourages us to ignore

fundamental design considerations and trust an unknown black box.

warning
The classic paper by Waldo et al. emphasizes that distribution cannot be safely
hidden from developers.† If you try to hide distribution in a distributed system, the
abstractions will leak at inconvenient times and cause significant problems. It’s best
to acknowledge the distribution in distributed systems—it is necessary complexity—
and to plan accordingly. Correspondingly, the Web does not try to hide distribution.
Instead, HTTP offers a universal application protocol for coordinating interactions
among distributed resources.

Distributed systems tend to have much more intricate failure characteristics and

nonfunctional requirements than centralized systems (though completely centralized

*	Unfortunately for architects, humans process information using their brains rather than their
stomachs, so gut instinct isn’t always an accurate measure.

†	http://research.sun.com/techrep/1994/abstract-29.html

http://research.sun.com/techrep/1994/abstract-29.html

410 CHAPTER 12: building the case for the web

systems are becoming rare in the 21st century). Taking control of nonfunctional

requirements is a critical factor in making a solution successful. But to take control, we

need to measure and adapt throughout the development cycle, not just in a panic-

stricken phase moments before a delivery deadline.

The nonfunctional characteristic that is most obvious and easiest to measure is perfor-

mance. We must ask hard questions about the loads a service will be subject to and how

that load profile changes over time. We have to learn the permitted latencies a service

can reasonably operate within, and understand trade-offs between latency and through-

put as volumes rise. Importantly, we must understand how the service is expected to

react under large loads, and how it is expected to fail once its parameters are exceeded.

note
Although the Web is an excellent choice for high-throughput systems, low
latency is not a strong point. If you are considering the Web for a low-latency
service (millisecond scale), test the response times of your chosen server under
a representative load first.*

In the 21st century, none of this is controversial. Business (and technical) stakeholders

must be able to describe loads and performance expectations to the development team.

Enterprise architects should be able to determine how the service should fail. (Should

it fail gracefully or noisily? Should it degrade or halt? And so on.) All of this can be

combined into a service-level agreement (SLA) for the service, and in turn, this SLA

can be used to continually test the service as it is being built.

In modern software delivery, continuous integration (CI; an automated build

approach) is commonplace. CI servers handle the drudgery of repeatedly building and

deploying code, and running tests against the software. Importantly, the CI process can

be used to run performance tests against a service to ensure that the established SLAs

are being met as the software is built. When the SLA is contravened, the build breaks

and the development team figures out which recent addition or change to their system

caused the failure.†

For example, we’ve used commercial and open source load generation tools (and even

crafted our own simple test harnesses) to run realistic performance tests as part of our

CI build. We’ve graphed those results with visualization tools to show to our business

and technical stakeholders and to help solve performance problems, as shown in

Figure 12-1.

*	As a rule of thumb, our experience suggests that average latencies of less than 100 ms can be
sustained under high loads—thousands of requests per second—for a tuned web server on typical
blades. This is surprisingly good for a synchronous, text-based, request-response protocol!

†	You won’t remember the O(n3) algorithm you accidentally wrote in the depths of a critical part of
your service code by the time the project is almost over. It’ll take forever to track it down during
the panicky test and optimization period. Measuring and optimizing at the end of software delivery
is much harder and riskier than incrementally optimizing just enough during development.

411No Architecture Without Measurement

Figure 12-1.  Visualizing performance data to isolate latency problems under sustained
high load

Should we breach our SLA, the Web gives us numerous options to correct the behav-

ior of the service. Developers and system administrators can optimize code, runtime,

and server configuration without resorting to arcane (and expensive) specialists to

perform the work. The troubleshooting process of understanding the performance

data, forming a hypothesis, making changes, running the performance tests, and

solving the problem is basic science (and quite therapeutic).

Outside the implementation of an individual service, the Web provides numerous

opportunities for performance enhancements. Since good services are built to be

stateless, they can scale horizontally just like regular web farms (a tried and trusted

pattern). And once a good caching strategy is devised,* load on servers and latency for

consumers are both reduced.

Even with caching, horizontal scaling, and careful tuning, a service has limits, and it’s

important to incorporate those limits into the service design. Constant measurement

helps greatly in this effort and provides a great deal of confidence in a service’s ability

to manage predicted loads.

*	Not all interactions are amenable to caching, so don’t rely on this as your only performance-
improving option.

412 CHAPTER 12: building the case for the web

But sometimes even careful predictions can be upset by a successful TV advertisement

or by faults elsewhere in the system (or even in connected third-party systems). The

question then arises of how we deal with failures and how the Web might help.

In such cases, we use the Web to flag failures and highlight services that are approach-

ing their measured engineering limits (or their SLA). For failure scenarios, we use the

standard server status codes (the 500 range) that HTTP provides—it’s an easy case that

can be solved with out-of-the-box tools.

Where we want to flag services that are approaching their tolerable limits, we’ve used

HTTP status codes to implement crumple zones.* For example, in one compute-intensive

system, we used the HTTP status code 413 Request Entity Too Large to reject a repre-

sentation on the basis that it probably wouldn’t be processed within the agreed SLA.

Consumers of that particular service then push the workload through an alternative

“safety valve” route and avoid overloading a service that is working near capacity. This

isn’t some unexpected afterthought; this behavior was built into the service and tested

just like any other feature.

By considering nonfunctional characteristics as part of the service development,

we tend to build very robust solutions. Going into production with a high level

of confidence from testing services to destruction and watching them cope is a great

feeling.

Selling the Web
It’s perhaps a little disappointing that the Web still needs to be sold to stakeholders, but

if we want to build web solutions it’s a necessary evil. There’s a grain of truth to the

anecdote that IT purchasing decisions are rarely based on technical merit. Indeed,

some middleware vendors have every reason to fear commoditization, and will raise

concerns about any technology that jeopardizes their relevance. They’re good at

getting that message across to management too.

If you want to build successful web-based systems, you first have to sell the Web to

your managers. Managers have different drivers from technologists, and more than

anything they want to reduce the risk of their projects going off the rails (it makes

them look bad).

Patiently explaining to a typical IT manager why all the “computer science stuff” is

important and shouldn’t be hidden won’t win them over. Telling them that the Web is

where all systems are converging won’t win them over. The mindset of middleware

encapsulating and solving hard information engineering problems is hard to shift.

*	A crumple zone is designed to remove some of the energy during car collisions. In his wonderful
book Release It! (Pragmatic Programmers), Michael T. Nygard uses the metaphor to prevent cascade
when one component in a system fails. We like this pattern hugely, and are really pleased that it’s
so easy to implement with HTTP.

413Selling the Web

Fortunately, IT managers aren’t (typically) foolish. And while they’ll glaze over at any

deeply technical reasons why the Web is a great software platform, they intuitively

understand two factors in software delivery: cost and risk.

Cost
Anecdotally, the Web wins out on cost versus any other approach. Given the wide

availability of free servers and sophisticated development frameworks, it’s hard to

imagine a scenario where software costs could be less. Nothing needs to be locked in to

proprietary platforms or frameworks; instead, we used commodity technology that

doesn’t get in the way of delivering business functionality.

Furthermore, since the Web has a rich, extensive, and commoditized set of tools,

developers feel at home. Not just expert developers with niche skills in proprietary

middleware, but regular developers like us who build everyday systems.

Since people costs are often the most significant factor in any software delivery, by

choosing the Web, we can curtail those costs. We don’t need to (but can) call in

specialist integration consultants since developers with a good understanding of

distributed systems and a modern web framework can get the job done.

But cost savings don’t stop at development, and importantly, they are overshadowed

by the returns that software delivers in the long term. Since successful software spends

much more of its lifetime in production than development, the costs of operating a

service impact the total cost of ownership.* Given that web servers are commonplace

in most production environments, operations staff are quite used to managing them.

This means we don’t need ongoing support from operational specialists for middleware

products just keeping the system ticking over. The same standard tools for monitoring

and maintenance that operations staff use for websites can be directly reused for web

services. Given that web servers are a commodity,† the cost of software infrastructure

to run the service is usually modest.

Mitigate Risk and Release Value, Early and Often
Large system projects are like trophies for IT managers. Bagging a multiyear,

multimillion-dollar project brings kudos and the prospect of a career boost. It’s not our

role to argue with this; we don’t want to deny the sense of achievement associated

with this behavior. But we do want to make it less risky.

*	Some IT managers are corralled into a project-centric view of the world where success is defined as
getting something over the wall into production. We do not agree with that view, and see produc-
tion as a normal part of the full software delivery life cycle.

†	Web servers are either free or covered as part of the cost of an operating system license. We like
both types.

414 CHAPTER 12: building the case for the web

Agile software development follows a mantra whereby working software is the only

measure of a successful IT investment. In agile teams, working software is placed into

production as soon as it is useful, rather than waiting for an entire solution to be

finished. A similar mindset is evident with Internet Software-as-a-Service companies

(e.g., Google, Salesforce.com) where functionality is released incrementally and

constantly rather than waiting for the whole system to be finished, whenever that

might be.*

The Web helps us to follow a similar pattern. Since we’re not dependent on any shared

middleware frameworks, licenses, specialist developers, or any other impediment, we

can choose to deploy any completed features from our service into production early

and add to them incrementally over time without disturbing other systems.

This removes significant project risk, and gives the opportunity for other stakeholders

to get early access to a subset of the final functionality and to provide feedback at a useful

point in the delivery cycle. It also gives the operations staff early experience in running

the software.

For our IT manager, deploying to production provides hard data about project prog-

ress. It also gives a certain sense of satisfaction that something is live. The recognition

will still be there at the end of the project when all the required functionality is in

production, but the manager receives constant reassurance that the software will

succeed because it has been deployed many times in the interim. Reducing risk, like

reducing cost, makes managers happy, and happy managers are much more amenable

to input from software practitioners than stressed, unhappy ones.

Go Forth and Build
Over the past few years, we’ve seen (and helped to build) numerous web-based

distributed systems. They’ve been fun to build, easy to test, and straightforward to

deploy and manage in production. The techniques we’ve distilled into this book have

served us well, and we hope you’ll have as much success (and fun) using them as we

have. Now, go build something wonderful.

*	It can be a long wait for a system to be complete. Complex enterprise projects have durations of
years. Even Google’s Gmail application was in beta for an awfully long time!

415

Index

404 Not Found status code

reading resource state, 66, 68

removing resources, 76, 78

security considerations, 342

updating resources, 75

405 Method Not Allowed status code

creating resources, 145

removing resources, 75, 76

security considerations, 342

updating resources, 71

409 Conflict status code

aligning resource state, 80

order fulfillment example, 267

reliable transfers and, 397

updating resources, 71, 74

web transactions, 401

410 Gone status code, 169

411 Length Required status code, 341

412 Precondition Failed status code

aligning resource state, 80, 82

concurrency control, 248, 249

413 Request Entity Too Large status code,

412

Numbers
200 OK status code, 12, 64, 70

201 Created status code

about, 12

creating resources, 59, 63, 146, 242

203 Non-Authoritative Information status

code, 169

204 No Content status code

removing resources, 75, 78

updating resources, 70, 74

206 Partial Content status code, 169

300 Multiple Choices status code, 169

301 Moved Permanently status code, 16,

169

303 See Other status code, 16, 110, 322

304 Not Modified status code, 173, 176,

232

400 Bad Request status code, 60, 134,

341

401 Unauthorized status code, 167, 287,

342

416 Index

building Atom service, 213

link relations, 195

modeling protocols and, 29

order fulfillment example, 266

polling for recent events, 199

atom:published element, 187

atom:title element, 187, 188

atom:updated element

about, 187, 188

atom:id element and, 195, 207

navigating archive, 200

order fulfillment example, 259

building in Java, 207–218

building in .NET, 219–234

caching, 202–206

common uses for, 188

default namespace, 242

for event-driven systems, 189–207

format overview, 185–188

security considerations, 294

voucher payment system, 318

writing to files, 219

Atom Publishing Protocol

about, 110, 238

anatomy of, 239–245

app:collection element, 252

app:control element, 246, 256

app:draft element

about, 246

order fulfillment example, 252, 253,

256

syndication classes and, 269

app:edited element

about, 246

order fulfillment example, 253, 255,

261

syndication classes and, 269

concurrency control, 247–249

edit link relation value, 246

edit-media link relation value, 246

extensions to, 246

implementing in .NET, 268–283

500 Internal Server Error status code

about, 60

implementing hypermedia service, 134

reading resource state, 66, 68

updating resources, 75

A
absolute URIs, 156

Accept-Encoding header, 173

Accept header (HTTP), 298, 323

ACID semantics, 400

addresses

archive feed and, 199

defined, 7

advertising protocols with hypermedia

dynamically extending, 121–125

usage example, 114–121

Age response header, 157

annotations

JAXB, 134, 135, 136

JAX-RS, 134

OAuth, 330

Apache Commons, 50, 83

Apache Traffic Server, 160

application state, 93–96

application/xml media type, 103, 104–106

Atom feeds

atom:author element, 188

atom:category element, 200

atom:content element

about, 188, 207

content extensibility and, 235

order fulfillment example, 253, 256,

261

atom:entry element, 188

atom:generated element, 188

atom:id element

about, 187, 188

atom:updated element and, 194, 207

atom:link element

about, 188

attributes supported, 30, 195

417Index

caching and, 162–164, 170, 173, 176

polling for recent events, 199

cache directives

building Atom service, 210

controlling expiration, 177

in response headers, 163, 164–172

caching

about, 157

Atom feeds, 202–206

benefits of, 158

design considerations, 128

freshness and, 157, 179–183

HTTP response headers, 162–164

HTTP verbs and, 16, 17, 155–157

implementing in .NET, 167–171

making content cacheable, 161–167

reasons for not, 159–160

secure channels and, 293

stale-if-error directive, 166

stale-while-revalidate directive, 166

statelessness constraint and, 158–159

structural hypermedia and, 126

types of, 160

category documents, 239, 243

CDNs (content delivery networks), 219

certificate authority (CA), 291

Certificate message, 291

chunked transfer encoding, 341

CI (continuous integration), 410

ClientKeyExchange message, 292

coffee shop scenario

about, 21, 22

actors and conversations, 22

boundaries, 23

sample interactions, 24–26

sample menu, 23

toolbox support, 27–30

coffee voucher system. See voucher

payment system

collections

AtomPub support, 240–242

defined, 240

implementing, 269–272

implementing order fulfillment, 249–

268

usage recommendations, 239

Atom Syndication Format

building service in Java, 207–218

building service in .NET, 219–234

common uses, 188

entry resources, 243

event-driven systems and, 189–207

format overview, 185–188

link relations and, 110, 196–197

usage considerations, 234–236

authentication

federated, 394

HTTP support, 286–290

Kerberos, 391

OpenID and, 301, 315, 394

web security and, 394

authorization

HTTP support, 286–290

OAuth protocol and, 315–339, 395

passwords and, 315

Authorization header (HTTP)

about, 286–290

caching directives and, 167

OAuth and, 320, 321, 335

B
Basic authentication, 287–290, 394

Berners-Lee, Tim, 2, 374

brownfield service development, 404

Business Transaction Protocol, 399

C
CA (certificate authority), 291

cache channels

about, 179–183

cc:lifetime element, 181

cc:precision element, 181

Cache-Control header (HTTP)

cache channels and, 180

cache directives and, 163, 164–172, 177

418 Index

HTTP idioms, 110

hypermedia and, 29, 110

media types and, 109

runtime considerations, 111

WCF support, 383

CORBA technology, 35, 375

CRUD services

about, 20

aligning resource state, 78–83

creating resources, 57, 58–63

Java-based, 83–84

modeling orders as resources, 55–57

.NET-based, 84

reading resource state, 57, 63–68

removing resources, 57, 75–78

Richardson maturity model, 57

safety and idempotency, 78

updating resources, 57, 68–75

WADL support, 86–90, 386

crumple zones, 412

D
DAP (domain application protocol). See

also Atom Publishing Protocol

about, 95, 112–113

dereferencing links, 127

dynamically extending, 121–125

implementing hypermedia service, 130

media types and, 103, 106

data, defined, 352

data modeling, 125–128

Date header (HTTP), 46

DCOM technology, 375

DELETE (HTTP) verb

building CRUD services, 57, 75–78

idempotency and, 78

implementing hypermedia service, 131

invalidation and, 178–179

linked resources, 121

reliable transfers and, 397

web transactions, 402

collections (continued)

operations supported, 242

order fulfillment example, 264–268,

272–274

service documents and, 242

concurrency control (AtomPub), 247–249

conditional GETs

implementing, 228, 231–233

race condition and, 248

validation and, 173

conditional request headers, 79–83

confidentiality

HTTP security and, 290–293

as security pillar, 285

consistency

about, 171–172

expiration-based, 172, 177–178

invalidation and, 171, 178–179

validation and, 171, 172–176

content delivery networks (CDNs), 219

Content-Encoding header (HTTP), 291

content extensibility, 235

Content-Length header (HTTP)

building CRUD services, 65

denial-of-service attacks and, 340

POX example, 45, 46

Content-Location header (HTTP), 178, 253

Content-Type header (HTTP)

application/xml value, 103, 104–106

building Atom service, 211

building CRUD services, 65

consuming CRUD services, 85

link relations and, 196

media types and, 103, 104

POX example, 45, 46, 50

@Produces annotation and, 67

SOAP comparison, 378

continuous integration (CI), 410

contract definition languages, 351

contracts

about, 108

extending with protocols, 110

419Index

Feed Paging and Archiving specification

about, 235

fh:archive element, 201, 202, 206

Fielding, Roy, 12, 14, 20, 93

File Transfer Protocol (FTP), 6

FOAF (Friend of a Friend), 369

forms

action attribute, 323

as hypermedia controls, 96

media types and, 103

freshness lifetime (caching), 157

Friend of a Friend (FOAF), 369

FTP (File Transfer Protocol), 6

G
GeoNames website, 362

GET (HTTP) verb

advertising protocols, 122

building Atom service, 209

caching support, 16, 17, 155–157, 169

conditional, 173, 228, 231–233, 248

idempotency and, 38, 78

polling considerations, 120

reading resource state, 57, 63–68

reliable transfers and, 397

URI tunneling and, 38, 41–42

voucher payment system and, 324

web transactions, 402

GoodRelations website, 361

H
HATEOAS acronym, 93

hCard format, 29

headers. See HTTP headers

HEAD (HTTP) verb, 156

HMAC-SHA-1 algorithm, 321

Hohpe, Gregor, 21

Host header (HTTP), 45

HTML, microformats and, 373

HTTP Basic authentication, 287–290, 394

HTTP Cache Channels Internet-Draft, 183

HttpClient class, 50, 83

demilitarized zone (DMZ), 388

denial-of-service attacks, 339–341

Diffie-Hellman key exchange, 299, 317

Digest authentication, 287–290, 394

DMZ (demilitarized zone), 388

DNS (Domain Name System), 6

documentation, URI templates as, 37

domain application protocol. See see DAP

(domain application protocol)

domain models, 382–383

Domain Name System (DNS), 6

DSL (Domain-Specific Language), 141–145

E
entity body strategies, 231

ETags

aligning resource state, 79–83

caching and, 163–164, 173

polling for recent events, 199

timestamps in, 175

validation and, 174–176

event-driven systems

anatomy of events, 192

Atoms feeds and, 189

caching feeds, 202–206

implementation considerations, 206–

207

link relations, 195–197

navigating archive, 200

polling for events, 197–200

problem overview, 189

reference data, 190

update considerations, 191–192

exception handling, 262–263

expiration-based consistency, 172, 177–

178

Expires header (HTTP), 162, 173, 176

F
federated authentication, 394

federated identity, 392

420 Index

domain-specific, 100–102

hypermedia controls in, 100, 101

processing, 102–109

selecting, 99–102

standard, 99–100

URI templates and coupling, 98

hypermedia protocols

advertising, 114–121

AtomPub as, 240

binding contracts and, 29

DAP support, 112–113, 121–125

data modeling versus, 125–128

extending contracts with, 110

hypermedia services

building in Java, 128–140

building in .NET, 140–152

consumer-side architecture, 137–140

contracts and, 29, 108–111

defined, 13

hypermedia formats, 97–108

hypermedia protocols, 112–128

implementing, 128

loose coupling and, 96–97

protocols and, 29, 110

Richardson maturity model, 20, 152

server-side architecture, 128–131

state machine illustration, 13

URI templates and, 35

HyperText Transfer Protocol. See HTTP

(HyperText Transfer Protocol)

I
IANA Link Relations registry, 110, 196,

246

idempotency

HTTP verbs and, 38, 72, 78

reliable transfers and, 397

identifiers, resources and, 5–7

identity

federated, 392

HTTP security and, 286–290

OpenID protocol and, 295–315

as security pillar, 285

HTTP Digest authentication, 287–290, 394

HTTP headers. See specific headers

HTTP (HyperText Transfer Protocol)

AtomPub support, 238, 246

authentication support, 286–290

authorization support, 286–290

building CRUD services, 57

caching support, 16, 17, 155–157,

162–164

envelope structure, 377

idempotency and, 38, 72, 78

network considerations, 293–294

performance considerations, 293–294

remote procedure calls, 43–44

Richardson maturity model, 19

security essentials, 286–294

transport-level considerations, 290–293

uniform interface and, 11, 110, 386

URI tunneling and, 39

web architecture and, 2

HttpListener class (.NET)

caching and, 168

DELETE verb and, 77

handling requests, 227

hypermedia service and, 141

HTTP response/status codes. See specific

response/status codes

HTTPS protocol, 290–293, 393–395

HTTP Stale Controls Informational RFC,

166

HTTP verbs. See specific verbs

hypermedia controls

atom:link element, 195

defined, 96

HTTP idioms and, 110

in hypermedia formats, 100, 101

implementing hypermedia service,

130, 141

semantic context for, 352

XML and, 97, 105

hypermedia formats

dead ends, 97

defined, 97

421Index

OAuth and, 329

OpenID and, 311–313

@Path annotation, 67, 134, 210

@PathParam annotation, 68, 211

@POST annotation, 134

@Produces annotation, 67, 134

reading resource state, 67, 68

@ResourceFilters annotation, 330

Jersey (JAX-RS implementation)

Atom service, 207, 209–211

hypermedia service, 128, 132

OAuth and, 329

OpenID and, 306

security considerations, 346

JSON representation, 196, 356

K
Kerberos authentication, 391

knowledge, defined, 353

knowledge representation languages, 363

L
Last-Modified header

caching support, 162–164

timestamps and, 83, 175

validation support, 172, 173

Linked Data effort, 373

link element, 116

link relations

AtomPub and, 110, 246

caching feeds and, 202–206

event-driven systems and, 195–197

local cache, 160, 166

Location header (HTTP), 59, 60, 178, 253

loose coupling

consistency and, 171

event-driven systems and, 192

hypermedia and, 96–97

URI templates and, 98

lost update problem, 247

IDLs (interface definition languages), 35,

351, 381

If-Match header, 79–83, 110, 172

If-Modified-Since header

ETag support, 83

validation support, 172, 173, 176

IfNoneMatch class, 232

If-None-Match header

conditional GETs, 232

ETag support, 79–83, 110

validation support, 172, 174, 176

If-Unmodified-Since header, 83, 172

IIS (Internet Information Server), 141

information structure/representation,

352–357

integrity, security and, 285, 290–293

interface definition languages (IDLs), 35,

351, 381

International Resource Identifier (IRI), 7

Internet Information Server (IIS), 141

intuitive URIs, 36

invalidation, 171, 178–179

IRI (International Resource Identifier), 7

J
Java language

building Atom service in, 207–218

building hypermedia services, 128–140

client-side POX implementation,

50–51

CRUD services and, 83–84

implementing OAuth in, 329–338

OpenID and, 305–315

server-side POX implementation, 47

JAXB annotations, 134, 135, 136

JAX-RS

building Atom service, 207–218

@Consumes annotation, 134

@GET annotation, 67

implementing hypermedia service,

128, 129, 132–134

422 Index

URI templates and, 35, 98

WADL support, 387

web security and, 394

WSDL limitations, 386

metadata extensibility, 235

microformats, 372

Microsoft Windows Internet Services, 167

min-fresh directive, 177

Model-View-Controller pattern, 34

must-revalidate directive, 165

N
namespaces

Atom feeds, 242

representation classes and, 134

navigating archives, 200

.NET platform

buiding hypermedia services, 140–152

building Atom service in, 219–234

CRUD services, 84

implementing AtomPub, 268–283

implementing caching in, 167–171

POX implementation in, 46–47, 49

SyndicationFeed class, 225

no-cache directive, 165, 166, 172, 177

no-store directive, 165, 177

Notation 3 format, 360

Nottingham, Mark, 398

Nygard, Michael, 412

O
OAuth protocol

about, 316, 395

implementing in Java, 329–338

oauth_callback_confirmed parameter,

322

oauth_callback parameter, 321

oauth_consumer_key parameter, 321

oauth_nonce parameter, 321

oauth_signature_method parameter,

320

oauth_signature parameter, 320

M
MAC (Message Authentication Code),

292, 299

mailto URI scheme, 6

Manchester Syntax, 364

man-in-the-middle attacks, 289, 292

Mars Climate Orbiter, 355

max-age directive

about, 164, 177

building Atom service, 210

cache channels and, 180

caching authorized responses, 166

usage example, 163

max-stale directive, 177

MD5 hash, 288

media link entries, 243

media resources, 243

media types

application/xml value, 103, 104–106

category documents, 243

contracts and, 109

defined, 103

design/format considerations, 106

representation classes and, 134

service documents, 245

usage example, 104

members

AtomPub support, 240–242

defined, 240, 243

implementing, 269–272

operations supported, 243

order fulfillment example, 272–274

member URI, 242

Message Authentication Code (MAC),

292, 299

metadata

Atom feeds and, 185, 187, 188

AtomPub support, 239

building Atom service, 212

OAuth supported, 320

representation classes and, 134

resource representations and, 189

423Index

GET considerations, 120

scaling and, 159

POST (HTTP) verb

advertising protocols, 123–125

creating resources, 57, 58–63, 145–148

implementing hypermedia service, 131

invalidation and, 178–179

POX support, 45

PUT comparison, 114

reliable transfers and, 398

remote procedure calls, 43–44

URI tunneling and, 38

POX (Plain Old XML)

about, 42–43

client-side implementation, 48–51

remote procedure calls, 43–44

Richardson maturity model, 53

server-side implementation, 44–48

XML-RPC and, 51–52

private directive, 165

protocols. See hypermedia protocols

proxy cache, 160

proxy-revalidate directive, 165

proxy servers, 160

public directive, 165, 166

PUT (HTTP) verb

building CRUD services, 57, 68–75

idempotency and, 78

implementing hypermedia service, 131

invalidation and, 178–179

POST comparison, 114

web transactions, 401

Q
Qualified Names (QNames), 360

query languages, 368, 369

R
Rails framework, 10

RDFa (RDF in attributes), 370–372

RDF (Resource Description Framework),

358–362

oauth_timestamp parameter, 321

oauth_token parameter, 322

oauth_token_secret parameter, 322,

326

oauth_version parameter, 321

practical considerations, 338

voucher payment system, 316–317,

317–328

only-if-cached directive, 177

ontologies

defined, 362

OWL support, 363–368

SPARQL support, 369

Ontology Web Language (OWL), 363–368

OpenID protocol

about, 295, 394

Java support, 305–315

practical considerations, 315

protocol flow, 295–305

OPTIONS method, 111

order fulfillment

adding orders to pipeline, 251–254

beginning, 254–261

collection/member usage for, 272–274

completing the protocol, 261

exception handling, 262–263

implementing complex protocols, 264–

268

overview, 249–250

OWL (Ontology Web Language), 363–368

OWL/XML format, 364

P
passwords

authorization and, 315

security considerations, 302

PATCH (HTTP) verb, 70, 114

pessimistic locking, 248

POJOs (Plain Old Java Objects), 132

polling

event-driven systems, 192

for recent events, 197–200

424 Index

modeling orders as, 55–57

reading with GET, 57, 63–68

removing with DELETE, 57, 75–78

resource representations and, 8

uniform interface and, 11

updating with PUT, 57, 68–75

web architecture and, 3

resource state

about, 94

aligning, 78–83

caching and, 159

determining, 94

GET verb and, 157

implementing hypermedia service, 130

reading with GET, 63–68

retrieving, 156

transitioning, 95, 113, 141, 142

response/status codes. See specific

response/status codes

REST architectural style, 12–15

RETR (FTP) command, 6

reverse engineering, 342

reverse proxies, 160, 183

RFC 2141, 7

RFC 2611, 7

RFC 2616, 6, 38

RFC 4287, 186

RFC 5005, 235

RFC 5849, 339

Richardson, Leonard, 18

Richardson maturity model

CRUD services, 57

hypermedia services, 20, 152

POX services and, 53

URI tunneling and, 41–43

web friendliness and, 18–20

Web Services and, 405

risk mitigation, 413

RMI technology, 375

rollback attack, 292

ROME library, 207, 211, 212

RPC (Remote Procedure Call)

POX support, 43–44

WSDL and, 383, 384

RDF Schema (RDFS), 363

RDF/XML format, 360, 364

realm, defined, 286

reference data, 190

relative URIs, 155

reliable messaging, 395–398

Remote Façade pattern, 33

Remote Procedure Call (RPC)

POX support, 43–44

WSDL and, 383, 384

representation formats

coffee shop scenario, 27

content negotiation for, 11

importance of, 9

media types and, 104

proliferation of, 9

for RDF, 360

uniform interface and, 11

URIs and, 10

XHTML, 97

representations. See resource

representations

Resource Description Framework (RDF),

358–362

resource representations

about, 7–10

adding metadata, 189

caching considerations, 128, 166

computing hashes, 176

DAPs and, 104

freshness of, 157, 179–183

GET verb and, 155–157

hypermedia systems and, 94

implementing hypermedia service, 134–

136

URIs and, 10

resources

aligning state, 78–83

creating with POST, 57, 58–63, 145–148

defined, 4

identifiers and, 5–7

implementing hypermedia service,

132–134

425Index

service documents

about, 244–245

AtomPub hosting, 239

collections and, 242

media types, 245

order fulfillment example, 264

service-level agreement (SLA), 410

service models, 383–384

service-oriented systems

choosing integration points, 32–34

defined, 32

simple architecture for, 34–35

services. See specific services

SHA-1 algorithm, 321

SHA-256 algorithm, 299

Simple Knowledge Organization System

(SKOS), 362

SKOS (Simple Knowledge Organization

System), 362

SLA (service-level agreement), 410

Slug header (HTTP), 246

s-maxage directive, 164

SOAP over HTTP, 386

SOAP specification

envelope structure, 377–379

fault mechanism, 379–380

processing model, 376–377

reliable messaging and, 395

Section 5 encoding, 385

SPARQL (query language), 368

Spring Web Services, 383

Squid caching proxy, 160, 166

SSL (Secure Sockets Layer)

ChangeCipherSpec message, 292, 293

HTTPS and, 290

security and, 347

TLS and, 290

statelessness constraint, 158–159

state machines/transitions

modeling dynamically, 30

for resource state, 95, 113, 141, 142

status codes. See specific response/status

codes

S
scalable systems

caching and, 157–161, 161–167

caching in .NET, 167–171

consistency and, 171–179

design considerations, 128

extending freshness, 179–183

GET verb and, 155–157

web architecture and, 15

SCT (Security Context Token), 390

Secure Sockets Layer. See SSL (Secure

Sockets Layer)

security

Atom feeds and, 294

caching and, 159

core pillars of, 285

HTTP and, 286–294

OAuth protocol and, 315–339

OpenID protocol and, 295–315

password considerations, 302

service hacks/defenses, 339–348

Web Services and, 387–395

Security Context Token (SCT), 390

Security Token Service (STS), 390, 391

semantic computing, 6

semantics

ACID, 400

defined, 356

information structure/representation,

352–357

microformats and, 372, 373

syntax versus, 351

Semantic Web

about, 357

Linked Data effort and, 373

OWL and, 363–368

RDFa and, 369–374

RDF and, 358–362

SPARQL and, 368

serialization, XML, 134

Server header (HTTP), 46

426 Index

hypermedia and, 35

intuitive URIs and, 36–37

major usage, 37

mapping method calls, 38

reducing dependency on, 96

reverse-engineered, 342

as static contracts, 98

web-based services and, 386

Web Services and, 35

URI tunneling

about, 37–41

POX comparison, 42

Richardson maturity model and, 41–43

URI (Uniform Resource Identifier)

calculating from URI templates, 36

defined, 5, 7

extracting business codes from, 39

GET request and, 155

mapping method calls to, 38

RDF support, 358

representation formats and, 10

representing hierarchies, 37

resource representations and, 10

resources and, 5

Richardson maturity model, 19

security considerations, 343, 345

typical form, 6

uniform interface and, 11

web architecture and, 3

URL (Uniform Resource Locator), 7

URN (Uniform Resource Name), 7

UUID (universally unique identifier),

176, 344

V
validation, 171, 172–176

Varnish HTTP accelerator, 160

Vary header, 173, 176

voucher payment system

implementing in Java, 329–338

overview, 316–317

protocol example, 317–328

structural hypermedia

caching and, 126

scaling and, 155

STS (Security Token Service), 390, 391

SyndicationFeed class, 225, 269

SyndicationItem class, 269–272

syntax versus semantics, 351

T
temporal coupling, 190

Test/Behavior-Driven Development, 408

tight coupling, 382–383

TLS (Transport Layer Security), 290–293

transactions, Web Services and, 398–404

Transitive axiom, 368

Transport Layer Security (TLS), 290–293

triples, 358, 368

trust

HTTP security and, 286–290

OpenID protocol and, 295

as security pillar, 285

TTL (Time to Live), 162, 172

Turtle documents, 364

type parameter (AtomPub), 247

U
uniform interface

defined, 11

HTTP idiioms and, 110

URI templates and, 386

uniformity principle, 17

Uniform Resource Identifier. See URI

(Uniform Resource Identifier)

Uniform Resource Locator (URL), 7

Uniform Resource Name (URN), 7

universally unique identifier (UUID),

176, 344

unreserved checkout strategy, 248

URI templates

coupling and, 98

handling requests, 229

427Index

Web Services Description Language

(WSDL)

about, 380–386

metadata support, 35

as static contracts, 98

wildcards, headers and, 83

Windows Communication

Foundation. See WCF (Windows

Communication Foundation)

WinINet cache, 167

working feed

building Atom service, 209, 211

comparing archive feed and, 206

defined, 199

mutable nature of, 200

World Wide Web

as application platform, 15–18

architectural style, 2–4, 12

as building platform, 1

business processes, 17

consistency and uniformity, 17

loose coupling, 9, 16

scalability and performance, 15

simplicity and reach, 18

technology support, 15

web friendliness and, 18–20

World Wide Web Consortium (W3C), 2,

13

WS-Addressing protocol, 376, 377, 385

WS-Addressing To header, 378

WS-AtomicTransaction protocol, 379

WS-BusinessActivity protocol, 379, 399

WS-CAF protocol, 399

WS-Choreography protocol, 386

WS-Coordination protocol, 379

WS-DeathStar, 376

WSDL (Web Services Description

Language)

about, 380–386

metadata support, 35

as static contracts, 98

WS-Federation protocol, 392

WS-ReliableMessaging protocol, 395, 396

W
W3C (World Wide Web Consortium), 2,

13

WADL2Java tool, 88

WADL (Web Application Description

Language)

about, 386

consuming services automatically,

86–90

POX implementations and, 49

reducing dependency on, 96

as static contracts, 98

WCF (Windows Communication

Foundation)

implementing AtomPub, 268

implementing hypermedia service, 140

implementing services, 279–283

POX support, 46, 49

security considerations, 346

service and data contracts, 383

testing services, 274–279

updating resources, 72

Web Application Description Language.

See WADL (Web Application

Description Language)

web-based services

building/running, 407–409

cost considerations, 413

measurement considerations, 409–412

risk mitigation, 413

as silver bullets, 407

web friendliness

about, 18–20

hypermedia formats, 100

link relations and, 195

URI tunneling and, 41

web integration

coffee ordering system, 32–35

middleware solutions, 31–32

POX over HTTP, 42–54

URI templates, 35–37

URI tunneling, 37–42

428 Index

WS-RM protocol, 395

WS-SecureConversation protocol, 389

WS-SecurityPolicy protocol, 388

WS-Security protocol

about, 388–393

HTTPS and, 393–395

side effects, 379

WS-Trust and, 391, 392, 394

WSSE scheme, 290

WS-Trust protocol

SCT and, 390

Security Token Service, 390, 391

WS-Security and, 391, 392, 394

WS-* Web Services

about, 375

future considerations, 405

reliable messaging and, 395–398

reliable transfers, 397–398

Richardson maturity model, 405

security considerations, 387–395

SOAP and, 376–380

transactions and, 398–404

WADL and, 386

WSDL and, 380–386

WWW-Authenticate header, 286, 320

X
X.509 certificate, 391

XHTML format

about, 97, 99

HTTP idioms and, 110

hypermedia support, 99–100, 103

microformat example, 372

OpenID and, 298, 306–315

RDFa support, 370

XML format

coffee shop representations, 27

hierarchical structure in, 354

hypermedia controls and, 97, 105

interpreting, 355

link relations and, 196

OWL support, 364

POX and, 42–54

RDF support, 360, 364

semantics and, 373

serialization support, 134

shared understanding, 356

XML-RPC, 51–52

XML Schema, 108

XStream library, 68, 84

About the Authors

Jim Webber is a director with ThoughtWorks, where he works with clients around

the world to deliver dependable service-oriented systems tailored to business needs.

Savas Parastatidis is an architect at Microsoft working on large-scale distributed

computing platforms for compute- and data-intensive applications and services.

Previously he was part of Microsoft’s Bing group, where he focused on semantic and

knowledge representation technologies.

Ian Robinson is a principal consultant with ThoughtWorks, where he specializes in

helping clients create sustainable service-oriented development capabilities that align

business and IT from inception through to operation.

Colophon

The cover fonts are Akzidenz Grotesk and Orator. The text font is Adobe’s Meridien; the head-

ing font is Akzidenz Grotesk; and the code font is LucasFont’s TheSansMonoCondensed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Copyright
	Foreword
	Preface
	1	The Web As a Platform for Building Distributed Systems
	Architecture of the Web
	Thinking in Resources
	From the Web Architecture to the
REST Architectural Style
	The Web As an Application Platform
	Web Friendliness and the Richardson Maturity Model
	GET on Board

	2	Introducing Restbucks: How to GET a Coffee,
Web Style
	Restbucks: A Little Coffee Shop with Global Ambitions
	Toolbox
	Here Comes the Web

	3	Basic Web Integration
	Lose Weight, Feel Great!
	A Simple Coffee Ordering System
	URI Templates
	URI Tunneling
	POX: Plain Old XML over HTTP
	We Are Just Getting Started

	4	CRUD Web Services
	Modeling Orders As Resources
	Building CRUD Services
	Aligning Resource State
	Consuming CRUD Services
	Consuming Services Automatically with WADL
	CRUD Is Good, but It’s Not Great

	5	Hypermedia Services
	The Hypermedia Tenet
	Hypermedia Formats
	Contracts
	Hypermedia Protocols
	Implementing a Hypermedia Service
	Building the Ordering Service in Java
	Building the Ordering Service in .NET
	Ready, Set, Action

	6	Scaling Out
	GET Back to Basics
	Caching
	Making Content Cacheable
	Implementing Caching in .NET
	Consistency
	Extending Freshness
	Stay Fresh

	7	The Atom Syndication Format
	The Format
	Common Uses for Atom
	Using Atom for Event-Driven Systems
	Building an Atom Service in Java
	Building an Atom Service in .NET
	Atom Everywhere?
	After the Event

	8	Atom Publishing Protocol
	Atom Publishing Protocol
	Implementing Order Fulfillment Using AtomPub
	Implementing AtomPub in .NET
	A Versatile Protocol

	9	Web Security
	HTTP Security Essentials
	Identity and the OpenID Protocol
	The OAuth Protocol
	Service Hacks and Defenses
	Final Thoughts

	10	Semantics
	Syntax Versus Semantics
	Structure and Representation of Information
	The Semantic Web
	Microformats
	Linked Data and the Web
	Guidance

	11	The Web and WS-*
	Are Web Services Evil?
	SOAP: The Whole Truth
	WSDL: Just Another Object IDL
	Two Wrongs Don’t Make a Right
	Secure, Reliable, Transacted
	A Requiem for Web Services?

	12	Building the Case
for the Web
	No More Silver Bullets
	Building and Running Web-Based Services
	No Architecture Without Measurement
	Selling the Web
	Go Forth and Build

	Index

