
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Programming Social Applications

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Programming Social Applications

Jonathan LeBlanc

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Programming Social Applications
by Jonathan LeBlanc

Copyright © 2011 Yahoo!, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Holly Bauer
Copyeditor: Rachel Monaghan
Proofreader: Jennifer Knight

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Social Applications, the image of a Diana monkey and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39491-2

[LSI]

1313423418

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

To my amazing wife, Heather, and our little
miracle, Scarlett

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . xvii

1. Social Application Container Core Concepts . 1
What Is a Social Application Container? 2

The User Profile 3
User Friends and Connections 4
The User Activity Stream 4

Implementing Proprietary Versus Open Standards 5
Proprietary Implementation 5
Open Source Implementation 6
Why This Book Covers Open Standards 7

The Embedded Application: Building in a Black Box 7
Embedded Application Security 9

Cross-Site Scripting 10
Same-Origin Policy and Older Browsers 10
Drive-by Downloads 11
Securing Applications 11

The External Application: Integrating Social Data
Outside the Container 11
Application Views 12

The Home View (Small View) 13
The Profile View (Small View) 14
The Canvas View (Large View) 15
The Default View (Any View) 16

Application Permission Concepts 17
Client-Side Versus Server-Side Applications 19

Using Template Systems for the Markup Layer 19
Using a Blended Server and Client Environment 19
Deferring the Loading of Noncritical Content 20

When Good Applications Go Bad 21
The Portable Flash Application 21
The Underdeveloped View 22

vii

www.allitebooks.com

http://www.allitebooks.org

The Copycat View Application 23
The Oversharing Application 24
The Unmonetized Application 24
The Feed Application 25

Application Model Case Studies 26
Case Study: Friendship-Based Social Gaming 26
Case Study: Product Sales Applications 30
Case Study: Location-Based Applications 32

Quick-Start Tips 36
Understand Your Audience 36
Build Social Integration Points Early 37
Build with Monetization in Mind 37
Create Comprehensive Views That Play Off One Another 37

2. Mapping User Relationships with the Social Graph . 39
The Online Social Graph 39
Applying the Real-Life Social Graph Online 41

Clustering Users Automatically 41
Privacy and Security 42
Establishing Trust 42

Sharing Private User Data: Opt-in Versus Opt-out 43
The Opt-in Sharing Model 43
The Opt-out Sharing Model 44

Understanding Relationship Models 44
The Follower Model 45
The Connection Model 46
The Group Model 47

Relationships Versus Entities 50
Building Social Relevance: Exploring the Facebook Social Graph 51

Building Upon Real Identity 51
Understanding the Viral Channels 52
Building User Groups 53
Avoiding Irrelevant Social Graphs 53

Defining Entity Likes and Dislikes Through the OpenLike Protocol 54
Integrating the OpenLike Widget 54
How the Shared Likes Appear 55

Conclusion 56

3. Constructing the Foundation of a Social Application Platform 57
What You’ll Learn 57
Apache Shindig 57
Setting Up Shindig 58

Installing Shindig on Mac OS X (Leopard) 59

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Installing Shindig on Windows 62
Testing Your Shindig Installation 65

Partuza 66
Requirements 66
Installing Partuza on Mac OS X (Leopard) 67
Installing Partuza on Windows 69
Testing the Partuza Installation 75

The OpenSocial Gadget XML Specification 75
Configuring Your Application with ModulePrefs 76

Require/Optional 76
Preload 77
Icon 77
Locale 78
Link 79

Defining User Preferences 81
Enum Data Types 82

Application Content 82
Defining Content Views 83
Inline Versus Proxy Content 89

Putting It All Together 91

4. Defining Features with OpenSocial JavaScript References . 95
What You’ll Learn 95
Including the OpenSocial Feature JavaScript Libraries 96
Dynamically Setting the Height of a Gadget View 96
Inserting Flash Movies in Your Gadget 98
Displaying Messages to Your Users 100

Creating a Message 100
Positioning the Message Windows 103
Styling the Message and Window 105

Saving State with User Preferences 108
Setting Your Gadget Title Programmatically 110
Integrating a Tabbed Gadget User Interface 111

The Basic Gadget 112
Creating a Tab from Markup 112
Creating a Tab from JavaScript 113
Getting and Setting Information About the TabSet 114

Extending Shindig with Your Own JavaScript Libraries 117
Putting It All Together 121

Building the Gadget XML File 121
Displaying the Gadget Using Shindig 125

Table of Contents | ix

5. Porting Applications, Profiles, and Friendships . 127
What You’ll Learn 127
Evaluating OpenSocial Container Support 127
Core Components of the OpenSocial Specification 129

Core API Server Specification 130
Core Gadget Container Specification 130
Social API Server Specification 131
Social Gadget Container Specification 132
OpenSocial Container Specification 132

Cross-Container Development and Porting 132
Use a Blended Client-Server Environment 133
Decouple Social Features from Mainstream Application Code 133
Avoid Using Container-Specific Tags 133

Porting Applications from Facebook to OpenSocial 134
Employ iframes for Non-Social-Application Constructs 134
Abstract Facebook Function Logic 135
Separate Visual Markup from Programming Logic 135
Use REST Endpoints, Not FQL 135
Employ a Server-Side Heavy Code Implementation 135

Personalizing Applications with Profile Data 136
The Person Object 136
Person Data Extraction Methods 136
Fields Available Within the Person Object 141
Extending the Person Object 162
Capturing the User Profile 168

Using Friendships to Increase Your Audience 170
Making a Request to Capture User Friendships 171

Putting It All Together 171
The Gadget Specification 172
The Content Markup 172
The JavaScript 174
Running the Gadget 175

6. OpenSocial Activities, Sharing, and Data Requests . 177
What You’ll Learn 177
Promoting Your Applications with OpenSocial Activities 178

Personalizing an Application Experience by Consuming Activity Updates 179
Driving Application Growth by Producing Activity Updates 180

Direct Sharing Versus Passive Sharing 183
Direct Sharing 184
Passive Sharing 185
Balanced Sharing 186

Making AJAX and External Data Requests 187

x | Table of Contents

Making Standard Data Requests 188
Pushing Content with Data Requests 190
Using Signed Requests to Secure a Data Connection 191

Putting It All Together 199

7. Advanced OpenSocial and OpenSocial Next . 203
What You’ll Learn 203
Data Pipelining 203

Data Request Types 206
Making Data Available to Proxied Data Requests 211
Working with Pipelined Data on the Client 212
Handling Errors Produced by the Data Pipe 215
Dynamic Parameters 216

OpenSocial Templating 218
A Different Approach to Markup and Data 219
Rendering Templates 222
Expressions 225
Special Variables 226
Conditionals 229
Looping Content 231
Marrying Data Pipelining and Templating 236
Other Special Tags 238
Template Libraries 240
JavaScript API 244

A Few More Tags: The OpenSocial Markup Language 249
Displaying a Person’s Name: os:Name 250
Creating a Person Selector: os:PeopleSelector 250
Display a Person’s Badge: os:Badge 251
Loading External HTML: os:Get 251

Localization Support with Message Bundles 251
The OpenSocial REST API Libraries 254

Which Libraries Are Available 254
OpenSocial Next: Areas of Exploration 254

Enterprise Containers 255
Mobile Transitions 255
Distributed Web Frameworks 256

OpenSocial and Distributed Web Frameworks 256
Activity Streams 256
PubSubHubbub 257
Salmon Protocol 258
Open Graph Protocol 258

Putting It All Together 259

Table of Contents | xi

8. Social Application Security Concepts . 265
What You’ll Learn 265
Hosting Third-Party Code Through iframes 266
A Secure Approach: The Caja Project 266
Why Use Caja? 267
Attack Vectors: How Caja Protects 267

Redirecting Users Without Their Consent 267
Mining a User’s Browser History 268
Arbitrary Code Execution with document.createElement 269
Logging the User’s Keystrokes 269

Setting Up Caja 271
Cajoling Scripts from the Command Line 273

Cajoling HTML and JavaScript 273
Modifying the Cajoler Rendering Format 278

Running Caja from a Web Application 279
Running Caja with an OpenSocial Gadget 281

Adding Caja to a Gadget 282
A Practical Example 282

Using JSLint to Spot JavaScript Issues Early 284
Playing in the Caja Playground 285
Tips for Working in a Caja Environment 286

Implement Code Modularity: Don’t Cajole an Entire Project 286
Use Precajoled JavaScript Libraries 286
Don’t Rely on Firebug or the Cajoled JavaScript Source Code 288
Don’t Embed Events in Markup 288
Centralize JavaScript: Request Data and Markup Only 289

A Lighter Alternative to Caja: ADsafe 290
ADsafe Versus Caja: Which One Should You Use? 291
How to Implement ADsafe 292

Setting Up the ADSafe Object 292
The DOM Object 294
DOM Selection with the Query Method 295
Working with Bunch Objects 299
Attaching Events 306
Defining Libraries 307

Putting It All Together 309
The Data Source 309
The Head: Script Includes and Styles 310
The Body: Markup Layer 311
The Body: JavaScript Layer 312
The Final Result 313

Conclusion 314

xii | Table of Contents

9. Securing Social Graph Access with OAuth . 315
Beyond Basic Auth 315

Basic Auth Implementation: How It Works 316
The Reasons Against Using Basic Authentication 317

The OAuth 1.0a Standard 318
OAuth 1.0a Workflow 319
The End-User Experience 327
Two-Legged Versus Three-Legged OAuth 329
Three-Legged OAuth Implementation Example 332
Tools and Tips for Debugging Signature Issues 348

OAuth 2 352
OAuth 2 Workflow 352
Implementation Example: Facebook 361
Implementation Example: Requesting More User Information
in the Facebook OAuth Process 372
Implementation Example: End-User Experience 375
Tips for Debugging Request Issues 376

Conclusion 380

10. The Future of Social: Defining Social Entities Through Distributed Web Frameworks . .
381
What You’ll Learn 381
The Open Graph Protocol: Defining Web Pages As Social Entities 382

The Rise and Fall of Metadata 382
How the Open Graph Protocol Works 383
Implementing the Open Graph Protocol 384
A Real-World Example: The Facebook Open Graph 390
Practical Implementation: Capturing Open Graph Data from a Web
Source 392
The Shortcomings of the Open Graph Protocol 400

Activity Streams: Standardizing Social Activities 401
Why Do We Need to Define a Standard for Activities? 401
Implementing Activity Streams 402
Object Types 406
Verbs 407

WebFinger: Expanding the Social Graph Through Email Addresses 410
Finger to WebFinger: The Origin of WebFinger 410
Implementing WebFinger 411
The Shortcomings of the WebFinger Protocol 413

OExchange: Building a Social Sharing Graph 414
How Does OExchange Work? 414
The Uses of OExchange 415
Implementing OExchange 416

Table of Contents | xiii

PubSubHubbub: Content Syndication 422
How Does PubSubHubbub Work? 422
The Benefits: From Publishers to Subscribers 425
Hosted Hubs and Implementation Services 426
Workflow Libraries 427
Building a Publisher in PHP 428
Building a Publisher in Python 430
Building a Subscriber in PHP 432
Building a Subscriber in Python 435

The Salmon Protocol: Unification of Conversation Entities 438
The Salmon Protocol Workflow 438
Building on the Foundation of PubSubHubbub 441
Abuse and Spam Protection 441
Implementation Overview 442

Conclusion 443

11. Extending Your Social Graph with OpenID . 445
The OpenID Standard 445

Decentralization Is Key 446
Improvement over Traditional Login 446
Accessing the Existing Membership Database and Social Graph 446

Do I Already Have an OpenID? How Do I Sign Up for One? 447
The OpenID Authentication Flow 447

Step 1: Request Login with OpenID Identifier 448
Step 2: Perform Discovery to Establish the Endpoint URL 449
Step 3: Request User Authentication 449
Step 4: Provide Passed or Failed State 452

OpenID Providers 453
Bypassing Domain Discovery Errors in OpenID 453
OpenID Extensions 455

Simple Registration Extension 456
Attribute Exchange Extension 457
Provider Authentication Policy Extension 463
Extensions Currently Under Development 467

Implementation Example: OpenID 469
Implementing OpenID Using PHP 469
Implementing OpenID Using Python 482

Common Errors and Debugging Techniques 494
Callback URL Mismatch 494
Undiscoverable OpenID Identifier 494

Conclusion 496

xiv | Table of Contents

12. Delivering User-Centric Experiences with Hybrid Auth . 497
The OpenID OAuth Hybrid Extension 497

Current Implementers 498
When Should I Use OpenID Versus Hybrid Auth? 498

Questions to Ask Yourself Before Choosing 498
Pros and Cons: Standard OpenID 499
Pros and Cons: Hybrid Auth 500

The OpenID OAuth Hybrid Auth Flow 501
Step 1â€“2: Perform Discovery (OpenID Steps 1â€“2) 502
Step 3: Request User Authentication Permissions 502
Step 4: Provide OpenID Approved/Failed State and Hybrid Extension
Parameters 504
Step 5: Exchange the Preapproved Request Token for an Access Token 505
Step 6: Make Signed Requests for Privileged User Data 506

Implementation Example: OpenID, OAuth, and Yahoo! 507
Application Setup: Getting Your OAuth Keys for the Hybrid Auth Proc-
ess 507
Implementing Hybrid Auth Using PHP 508
Implementing Hybrid Auth Using Python 520

Conclusion 532

Appendix: Web Development Core Concepts . 533

Glossary . 551

Index . 555

Table of Contents | xv

Preface

I first began developing social applications when Facebook opened up its developer
platform in 2007, giving people like me a taste of the extensive social data that an
application can use to improve growth and target personalization settings. At the time,
I was building social fantasy sports applications for CBSSports.com, pulling user infor-
mation to enrich that fantasy sports data into a highly personalized state.

It wasn’t until 2008, when I joined the partner integrations team in the Yahoo! Devel-
oper Network, that I got my first peek at an open source approach to social application
development through OpenSocial. What attracted me to OpenSocial was not the fact
that you could build an application once and deploy to numerous OpenSocial con-
tainers (which proved to be a faulty notion), but rather that through an open source
approach I could build social applications on a container and understand how these
platforms worked from a core level. I developed a deep drive to explore how the rela-
tionships that people form on the Web can enrich and personalize their online lives.
This was the starting point of my career advocating open source social technologies.

OpenSocial was the gateway specification for me, leading me to explore the Shindig
OpenSocial container, OpenID and OAuth (for authentication and authorization,
respectively), the third-party code security technologies Caja and ADSafe, and newer
distributed web framework specifications like Activity Streams, PubSubHubbub, and
the Open Graph protocol. I quickly came to realize that there was a wide range of open
source technologies to enable the construction of rich social frameworks. These tech-
nologies and specifications built rich layers of functionality in a simple way using very
open methodologies.

These social technologies and specifications are what this book is about. Each chapter
uncovers a new layer in the construction of highly viral social applications and plat-
forms. We start by exploring the concepts behind social applications and containers,
and then dive into the technologies used to build them. With the application basics
down, we look at technologies to secure third-party code on a container, and follow
with a discussion of how to secure user information and develop a standard login
architecture for platforms. After exposing all of those complex layers, we take an in-
depth look at distributed web frameworks that showcase standardization techniques
for syndicating activities, discovering rich web and user data from sites and email

xvii

addresses. And finally, we explore some wonderful upcoming standards in the social
application world.

The content of this book comes from years of direct partner integration work empha-
sizing the power and features behind open source technologies while collaborating with
other developers and companies to create rich social integrations with Yahoo!. This
book is a labor of love, as I have both taught and learned from seeing firsthand how
social integration technologies are applied to real-world applications and interactions.

Audience
Since this book touches on many different areas of social web application development,
container specifications, architecture, and standards, the audience that it will appeal
to includes a wide breadth of fields and proficiencies, including (but not limited to):

• Social web application developers who are building applications for Facebook,
iGoogle, Orkut, YAP, or any other social networking site that hosts third-party
applications

• Application platform architects and server-side engineers who are building prod-
ucts to host a socialized experience

• Frontend engineers who wish to leverage the customization and direct targeting
afforded by the massive social graph derived from these technologies

• Hackers and part-time developers who are building small-scale personal projects
off of the social web

• Followers of open source technology who want to understand how these technol-
ogies are being used to promote social sharing and standards

• Web developers and company teams who wish to develop membership systems
and authentication security

• Security gurus and engineers who want to learn about security within online social
experiences

Contents of This Book
This book covers many technologies and tools for working with the social web, from
container and application development to building highly engaging social graphs.

Each chapter builds on the fundamentals you’ve learned in the preceding chapters’
social explorations. Here are the overarching topics covered throughout the book, bro-
ken down by chapter:

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 1
Takes you through an overview of applications, systems, and open source funda-
mentals to give you a good foundation for implementing the technologies in the
remainder of the book.

Chapter 2
Explores the concepts behind the social graph, breaking it down into its funda-
mental properties.

Chapter 3
This chapter forms the base of our social application development, walking you
through the construction of a social container to host third-party applications.

Chapter 4
Examines extensions and features built into the OpenSocial JavaScript libraries.

Chapters 5 and 6
These chapters offer a deeper exploration of the OpenSocial specification. We will
look at the core social aspects of a social platform, from the social graph imple-
mentation to the data architecture model.

Chapter 7
Our final OpenSocial chapter will dive into advanced OpenSocial topics such as
templating, data pipelining methods, and the future of OpenSocial.

Chapter 8
Covers third-party code security models and how a container can protect itself and
its users against malicious code using frontend security systems.

Chapter 9
Explores user and application authorization through OAuth, diving into both
OAuth 1 and the newer OAuth 2 specification.

Chapter 10
Details experimental and new technologies being developed for constructing social
graphs, activities, and distributed web frameworks.

Chapters 11 and 12 (Chapter 12 available online)
These final chapters look at user authentication and authentication security
through the use of OpenID and the OpenID OAuth hybrid extension.

Chapter 12, the Glossary, and the Appendix are available on this book’s website.

Using an Open Source Technology Stack
Since this book’s major focus is teaching the fundamentals of social application, con-
tainer, and graph development using an open source stack, it is only prudent that I
outline the technologies we will examine.

Preface | xix

http://www.oreilly.com/catalog/9781449394912

The major set of open source technologies we will explore in this book includes:

• OpenSocial for exploring the social graph and application development

• Shindig and Partuza as container implementations using OpenSocial

• OAuth for secure application and user authorization

• OpenID for user authentication, including the hybrid OpenID OAuth extension

• Caja and ADsafe for securing frontend code

• The Open Graph protocol to explore social web entities

• Activity Streams as a foundation for delivering activity content

• WebFinger as a means of discovering public user data using email addresses

• OExchange as a means of sharing any URL with any other web service on the Web

• PubSubHubbub as a means of syndicating user conversations from a root provider
to multiple subscribers

• The Salmon protocol for taking the foundation of PubSubHubbub and unifying
conversations between publishers and subscribers

As we explore this open stack, we will compare the technologies with many of the
current proprietary standards used in the industry today. This will give you a good
overview of both the potential and the implications of using open source fundamentals.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

xx | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Social Applications by Jon-
athan LeBlanc (O’Reilly). Copyright 2011 Yahoo! Inc., 978-1-449-39491-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xxi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449394912

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, my heartfelt thanks go out to my wife, Heather, for “putting up
with me” throughout these many months of obsession and late nights, and for the
constant support she has given me.

Thank you also to Mary Treseler of O’Reilly for being a sounding board for my many
questions and for helping to guide me through this process.

To Rachel Monaghan, the copyeditor for this book, I am grateful for the wonderful
tone and flow that you have provided in these chapters.

Next, I want to express my gratitude to all of the reviewers of this book: Matthew
Russell, Bill Day, Henry Saputra, Mark Weitzel, and Joseph Catera. Thank you all for
catching issues before they became immortalized in print, for suggesting wonderful
improvements to this text, and for calling me out on content that was simply not good
enough to be a part of this book.

xxii | Preface

http://www.oreilly.com/catalog/9781449394912
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

My appreciation goes out to my parents and sister for always standing by me and for
teaching me that with hard work I can accomplish anything.

A final big thanks goes out to Havi Hoffman, who runs the Yahoo! Press program at
Yahoo!. Without her help and support, this book could have never happened.

Preface | xxiii

CHAPTER 1

Social Application Container
Core Concepts

As we can see from the rise of social networking sites like Facebook, LinkedIn, My-
Space, the Yahoo! Application Platform (YAP), and hundreds of others around the
world, there’s a major shift taking place in how humans interact with the Web and how
the Web in turn interacts with them. The static web is an artifact of the past, having
been replaced by the idea that sites or applications should, as a standard practice,
provide their users with an experience customized to their preferences. The Internet
has quickly become a vast community of people who find relevance in their online
social experiences and interactions. Just as with our real lives, our online lives contain
different communication buckets, such as interacting with friends or networking with
other professionals. Humans instinctively build these categories of social engagement,
deriving value from the people with whom they choose to interact in a particular space.

This is where application development on the social web comes in. Social application
developers can help drive the relevance of the interaction that a user chooses to have
on the Web. Traditionally, developers have had to build their product, launch it, and
then try to adopt users. The social web has given developers the ability to increase the
adoption rates of their applications by starting in a space that already has a rich social
graph and user base. This space is the social application container.

In this chapter, we will explore a number of topics and attempt to answer the following
questions:

• What are social application containers and their features?

• What are the differences between open and proprietary standards?

• What are the different types of application development environments, and what
are the security issues to be aware of?

• What does the user interface of an application consist of?

• What are application permissions, and what are they used for?

1

• What are some real-world examples of mistakes you should avoid making when
building your applications?

• What are some real-world application models that have worked in the past?

• What are some quick tips that you can use to get started?

Let’s begin our exploration with a look at what an application container is.

This book includes numerous sample gadgets, applications, and pro-
grams. For your convenience, I’ve added all the major code examples
to the following Github repository so that you can easily integrate and
deploy them: https://github.com/jcleblanc/programming-social-applica
tions.

What Is a Social Application Container?
Social networking sites are a very familiar part of our daily lives; for example, we use
Facebook to connect with friends and family, and LinkedIn to network or interact with
colleagues. These sites have become deeply ingrained in our daily online habits. As
social networking sites attempt to increase participation among their user base, they
may begin allowing third parties to build applications that reside within them.

At a base level, such applications can provide the social networking site with integral
functionality for users, delivering valuable features where none existed previously. In
some cases, these applications may have even been planned integration points for the
site.

A site that hosts a third-party application, thus providing a means by which the appli-
cation can leverage the social data of its user base, is a container. The relationship
between the container and an application is mutually beneficial:

• The container builds more value for its users by providing new content that can
tap into the profile information or connections they already have, thereby increas-
ing their amount of time on site.

• The application gains a new outlet for promoting its content. In addition, it im-
mediately inherits the benefit of the social graph built out by the container. The
application can use this graph to drive new users back to its root site or build
additional users for its service.

Jive Software is one example of an enterprise social networking con-
tainer. Jive could have created a feature to provide survey functionality,
but because it allows third-party developers to construct applications
on top of it, the SurveyGizmo app supplies this functionality instead.
Both companies benefit from this relationship.

2 | Chapter 1: Social Application Container Core Concepts

https://github.com/jcleblanc/programming-social-applications
https://github.com/jcleblanc/programming-social-applications

A social networking container typically consists of at least three categories of user-based
social information that an application can take advantage of:

The user profile
Information the user has provided about himself

Friends and connections
The user’s social graph, comprising a rich web of interconnected, relevant contacts

Activity stream
The user’s news feed, which provides an aggregated view of the activities around
the network and updates from his friends and connections

Each piece helps to build the relevance of a social container. More importantly, it offers
an instant starting point from which application developers can reach a large new au-
dience for their products and applications, where otherwise they might have had to
host a site to display the information and build up their own social graph.

The User Profile
A user’s profile (Figure 1-1) consists of personal information, such as name, birthday,
websites, interests, photos, location, and a host of other details that he chooses to
provide for friends (or the whole world, depending on the privacy settings specified)
to see.

Figure 1-1. Basic user profile

From a development perspective, the user profile is a gold mine of information the
developer can use to construct applications that provide a highly targeted and person-
alized user experience. Many users of social networking containers want to provide as
much information about themselves as possible. They want to create their own little
corner of the Web, where they can communicate with friends, store photos, or perform
any other social networking actions they wish. In addition, many containers provide
statistics on how complete a profile is, prompting users to complete their entire profile
and engage with the container as much as they can. For containers, this feature helps
them develop an engaged user base and increase their daily active users, which in turn
benefits application developers as they attempt to personalize applications for each
user.

What Is a Social Application Container? | 3

User Friends and Connections
User friendships and connections form the basis for a social graph within the social
networking container. People who build a profile will add to their network their
friends, family, coworkers, and a host of other people who have some sort of social
relevance in their lives, online or offline. Figure 1-2 shows a visualization of a user’s
social connections.

Figure 1-2. Social profile friendships

As people build relationships within their online world, they sort those relationships
into buckets, such as friends, family, or coworkers. When you develop applications,
understanding the concept of these buckets will help you identify the best targeting
methods for content you produce through the application.

The User Activity Stream
One of the major interaction points of a social networking site is the user’s activity
stream, or news feed. This feed (shown in Figure 1-3) shows users an aggregated view
of their own activities and status updates, as well as the application activities of their
connections and friends.

Figure 1-3. A user’s social activity stream

4 | Chapter 1: Social Application Container Core Concepts

www.allitebooks.com

http://www.allitebooks.org

Often, applications within a container are not promoted in that container’s prime real-
estate locations. This means that in order to drive traffic back to their applications,
developers need to take advantage of features that put their applications front and
center for the users.

Because it is the major interaction point for users, the activity stream is the prime outlet
for doing just that. Being able to push out application-promoting activities to the user’s
stream allows developers to reach an entirely new audience—the user’s friends and
connections—and drive traffic to their applications.

Implementing Proprietary Versus Open Standards
As social sites continue competing for dominance over the online world, you’ll inevi-
tably face the question of whether to implement proprietary or open standards when
creating a container. Do you implement a custom solution for all aspects of the social
container, or do you go with a specification that includes contributors from many of
the major technology companies in the space?

Both implementation methods have their benefits and drawbacks, as described next.

Proprietary Implementation
It may not always be appropriate for a container to have an open-ended specification
that caters to many different locales and requirements. In this case, building custom
software to fit your needs can be a good approach. Doing so has a number of definite
benefits for container implementers:

• The software will be highly targeted for your container’s specific needs and re-
quirements, thereby reducing code bloat and unneeded features.

• The code base is divorced from the requirements of an open specification. This
means that if a change is needed in the code that conflicts with the initial devel-
opment specification, you can make that change without having to contribute it
back to the open specification (and working to get it standardized in future ver-
sions) or having to maintain the code differences from the specification when you
upgrade to new versions.

These are definitely powerful drivers for many development shops. You are building a
project that exists within a silo, separate from the rest of the world. However, there are
also a number of drawbacks to this approach:

• You have to develop all code in-house or for the container itself. Since this is a
proprietary code base, you’ll have to devote engineering time for all upgrades and
new features.

Implementing Proprietary Versus Open Standards | 5

• The company must offer support mechanisms for developers building on top of
the platform. The community of integration specialists on the particular platform
will not include other companies or developers who have implemented a solution
based on the same specification.

Facebook is one container that has a lot of its implementation built around proprietary
technology developed specifically for its needs. We can see from its example that the
proprietary approach can be very successful, but it takes a lot of effort, engineering,
and development time.

In recent years, Facebook has begun integrating certain open source initiatives into its
proprietary stack, such as the new OAuth 2.0 standard and the Open Graph Protocol,
both of which we will cover in later chapters.

Open Source Implementation
Small development shops, or any developers who want to take advantage of the vast
community of engineers and knowledge in the social container and application devel-
opment space, will find a lot of value in the open standard approach. Leveraging a
community comprising some of the greatest minds in the space helps developers create
powerful tools and specifications for any social container or application.

This approach has many benefits, including:

• The specifications and tools built within open source communities usually have
numerous contributors, all of whom have different perspectives on the software.
This approach lends itself well to building comprehensive solutions for a lot of the
normal problems that would otherwise have to be custom developed through a
proprietary approach.

• Open specifications are constantly in development. Unless your company is ac-
tively engaged in developing these specifications and tools, the upgrades and fea-
tures are added independently of your company or product. This means that you
do not need to devote engineering resources to upgrading the product with new
features. When a new version is developed, the teams implementing the product
simply need to revise their tools based on the requirements set forth by the speci-
fication. Even though you do have to allow for some development time in this
approach, the issues related to security, features, and upgrades have already been
solved and outlined within the specifications.

• The supporting community and documentation for open source software is often
extensive, providing many supporting samples and use cases.

With all of that in mind, we can see that the benefit of open source initiatives is really
about the community interaction with the specifications. As with the proprietary ap-
proach, though, open source standards have a few drawbacks as well:

6 | Chapter 1: Social Application Container Core Concepts

• The solutions are not custom built for any one container. Even though specifica-
tions like OpenSocial define methods for integrating only the portions of the
specifications that you require for a particular implementation, these pieces still
encompass a lot of use cases that you may not have needed for a custom container
or application solution.

• The specification upgrades are usually bound by community voting procedures,
where everyone has a voice and can vote on which upgrades they see as the best
features. This process can be a benefit at times, but it can also mean that not all
the requested features make it back into the core specification.

Even with these considerations, many containers build upon open source initiatives,
including companies with open container approaches such as Yahoo!, Google, Hi5,
and LinkedIn, as well as enterprise vendors such as Jive, IBM, Atlassian, and many
others.

Why This Book Covers Open Standards
When it came down to it, this book had to target one approach—either open source
initiatives or a single proprietary container implementation. The reason this book cov-
ers the open standards approach for social application containers and development is
because it is not tied to any one container. I didn’t want to limit the scope of this text
to a single proprietary platform that could change on a whim and may contain a shallow
view of the social web.

My main goals are to provide an overview of the creation and use of a social application
container and how applications are built on top of those containers. The concepts
behind open source projects are solidly based in the state of the social web, regardless
of whether any single container implements all of the features included within a par-
ticular open source project.

The Embedded Application: Building in a Black Box
One of the most important things to remember when you’re developing applications
on top of a social container is that you are not building within a traditional application
environment, where you just have to ensure that your application is loading and your
server uptime is high. Those are all variables that we as developers can account for and
adjust if necessary.

Figure 1-4 displays the difference between a traditional application development
environment (right) and the black box environment of a social application container
(left). This is a very base-level comparison, as each layer may also contain a number of
processing, filtering, and serving mechanisms.

The Embedded Application: Building in a Black Box | 7

Figure 1-4. Loading an application in a container (left) versus a traditional server environment (right)

The difference is the middle tier of the social container environment. When building
social applications within a container, you are building on top of the infrastructure that
the container defines. Instead of the application servers providing the code and func-
tionality for the application directly, they provide content to the container for process-
ing. The container may then filter the content for malicious code, unsupported features,
or any number of other elements before returning the sanitized content back to the
application.

What this means is that you are now relying on a third-party source to serve your
application, so any changes to its processes will directly affect the communication be-
tween your server and the container, or the data processing for the application itself.
The container issues that will affect you the most are:

Container upgrades
Upgrades can be the bane of any developer’s existence when he’s working in a
black-box environment. They may reveal new bugs or produce issues with back-
ward compatibility.

Uptime of the container
If the container goes down, your application goes down.

Changes in support
Containers may change the features that they support, which may affect your ap-
plication. For example, when Twitter removed support for Simple Authorization
(username/password) in 2010, applications built on the Twitter platform had to
upgrade to use Open Authorization (OAuth) for authentication instead.

Broken features
Some of the container’s features that you may be using (e.g., custom tags, REST
endpoints, etc.) can break on occasion.

When working in these environments, you can do a lot to make sure that you are not
blindsided by container changes or issues:

Follow container blogs, mailing lists, Twitter feeds, and communication channels
When a container upgrades its platform, that release usually coincides with a blog
entry and release notes. If you follow those channels, you can check functionality

8 | Chapter 1: Social Application Container Core Concepts

when the release comes out—or even before, if the container provides early release
announcements (usually via the container mailing lists) to make developers aware
of changes. Lastly, many containers now use Twitter to provide up-to-the-minute
announcements of downtime, upgrades, or bugs, so those feeds should be your
first resource if you notice platform issues.

Be aware of the container’s bug-reporting structure
Some containers use open bug-tracking systems, while others use forums to report
and track bugs within the system. If the usual communication channels don’t
provide the information you need on an issue, then you should invoke the bug-
reporting tools.

Build appropriate feature testing tools
Many containers do not provide an externally available, automated test suite to
ensure that all platform features are functional and running. Building your appli-
cation with test-driven development practices in mind can give you full end-to-end
tests to check feature availability easily and quickly when platform changes occur.

While black-box development can be more challenging than traditional methods, its
benefits are also worth mentioning. In a traditional development environment, you
would create or integrate all the functionality needed to run the application’s social
features from your own servers. With the black-box environment, however, you are
building on top of an ever-upgrading container; the container itself takes care of de-
velopment to ensure that features are up to date, as well as appropriate QA and end-
to-end testing. This means that application developers don’t need to worry about
development and can instead allocate their time to different aspects of the application.

Embedded Application Security
Social applications running on top of a container pose a major security risk for that
container. To host the applications, containers essentially need to run third-party code
within their pages. This raises the question of how to host applications without intro-
ducing a security risk to the users of the social networking container.

There have been numerous efforts to mitigate this concern. Some containers encourage
developers to build their applications using a secured subset of HTML and JavaScript
functionality, giving the containers assurance that the code they host is safe from po-
tential security problems. Other approaches include the implementation of frontend
code rewriters like Caja or ADSafe, which allow the container to rewrite an application’s
code to a secured subset of functionality, stripping out any tags or functionality that
could be used maliciously. We will explore these technologies more in the upcoming
section “Securing Applications” on page 11, and in Chapter 8, which covers secure
application development methods.

Despite the number of methods that have been employed to secure applications,
iframes remain the most popular for the vast majority of containers. The benefits to

Embedded Application Security | 9

using iframes are quite clear: they are easy for containers to implement, and they give
application developers maximum functionality with minimal restrictions.

On the other hand, though, the limited restrictions imposed on developers who build
their application content within an iframe are also the main drawback to this method.
Malicious developers can take advantage of this freedom through a number of well-
known iframe exploits, described in the following sections.

Cross-Site Scripting
Cross-site scripting (XSS) is a prevalent security concern in untamed web applications,
especially those within the confines of a container. XSS is the most widely used vul-
nerability attack in this space. An attacker can use XSS to inject client-side scripts into
the pages viewed by other users. Once on the page, these scripts can be used to bypass
access controls like the same-origin policy.

The consequences of working with a site that is running XSS can range from simple
annoyance all the way up to a serious security vulnerability that allows the attacker to
capture login details, credit card information, the user’s personal profile data, or any
number of other private interactions that take place online.

A simple example of XSS is the implementation of advertising on a web application,
which allows the third-party advertiser to run some frontend code within the site. Ad-
vertising is a form of self-inflicted XSS, but in most cases the website can trust that the
advertiser won’t do anything malicious.

Even though this is a standard security vulnerability with web applications, it reinforces
the need for some measure of application control when third-party code and applica-
tions are running within a social networking container.

Same-Origin Policy and Older Browsers
The same-origin policy is a very important security concept in terms of user interaction
within a website or application. Without the implementation of the same-origin policy,
arbitrary sites loaded within an iframe would not only be able to access the DOM of
the parent site, but also its cookies and form data.

Modern browsers do a good job of implementing the same-origin policy to prevent this
from happening in social application development, but some older browsers do not
take adequate measures to restrict sites from violating the policy.

While these older browsers are by no means a large majority of those currently in use,
these insecurities should still be noted.

10 | Chapter 1: Social Application Container Core Concepts

Drive-by Downloads
Drive-by downloads are the processes by which a malicious site can download content
to the user’s computer without that user having any knowledge that it is happening.
This is not a problem exclusive to iframe security, but since using an iframe to secure
an application allows the application developer to run any frontend code she wishes,
the potential for drive-by downloads is magnified.

Drive-by downloads may mimic the functionality of a pop-up window. When attempt-
ing to dismiss the pop up, the user may inadvertently download spyware, malware, or
viruses onto his system. These pop-up windows may appear as error reports, advertis-
ing, or any other deceptively common message. Since the user’s action initiates the
attack, he is considered to have given consent to download the malicious package.

This is just one of the methods that a malicious developer may employ. Drive-by
downloads take many forms and can be a prevalent problem when third-party code is
allowed to run unchecked within an application container.

Securing Applications
Many methods are accepted as appropriate solutions for securing third-party applica-
tion code within a container host. Two of these, Caja and ADSafe, accomplish this task
in particularly unique ways.

Caja is a JavaScript compiler that rewrites any frontend code that is to be loaded into
the container. During this rewrite process, insecure functionality will be stripped out
and all code will be rewritten as “Caja-safe” code. When working in a Caja-defined
container, the underlying application will have indirect access to the DOM of the parent
container page, thereby allowing any requests to be secured as needed.

ADSafe does not rewrite the application code, but rather works by stripping out any
JavaScript functionality that is deemed to be insecure. This approach is not as painful
to work with as Caja’s complete rewriter, but it also doesn’t provide the extensive
security approach that Caja does.

We will discuss both of these topics in more depth in Chapter 8.

The External Application: Integrating Social Data
Outside the Container
The main focus of our discussion thus far has been on the construction of applications
to exist within the container itself. But this isn’t the only context in which social net-
working applications can exist.

Most containers offer access to their social and container data through a series of URI
endpoints. For on-container application development, these endpoints are generally

The External Application: Integrating Social Data Outside the Container | 11

wrapped within an easier-to-use method, such as OpenSocial JavaScript requests or
container-specific tags that allow secure access to users’ social data and are processed
when the application is rendered. In the context of off-container application develop-
ment, however, these endpoints provide a means by which developers can leverage the
container’s social data to enhance their websites and applications without needing to
build them on the container itself.

To provide this access layer safely and protect their users’ social data from attacks,
many containers use security implementations such as OAuth. Many of the most pop-
ular social networking containers—including Facebook, YAP, iGoogle, Orkut, My-
Space, and others—currently implement OAuth in some capacity.

Leveraging a container’s social features can help developers extend their reach far
beyond the silo of the container itself and build out a rich social graph for their web
applications or sites immediately, instead of having to build their own custom relevant
graph during their website’s inception.

In addition to being able to capture social information from a container off-site, de-
velopers can use other technologies to allow users to sign in to a website using the
username and password login structure of the container. One open source technology
that allows developers to implement such a login structure is called OpenID (Open
Identification). By not requiring users to create a new login for your particular site, you
can help further socialize your web-based application and decrease the amount of drop-
off during the registration process. Once a user logs in using OpenID, the site can then
implement a facility to allow users to customize their profiles.

Combining these two technologies (OpenID and OAuth) into a sort of hybrid author-
ization process, developers can construct a login structure to prevent drop-off during
registration (OpenID) and then use the container’s social URI endpoints to prepopulate
a user’s profile and leverage whatever rich social data the container provides (OAuth).

We will discuss the implementations of OAuth and OpenID in the context of an off-
site application or website in later chapters.

Application Views
Views allow an application to interact with a user on a social container. The container
may have one or more views that an application developer can build content for, ena-
bling the user to view and interact with the application throughout different pages in
the container.

Generally speaking, all views will fall under one of two types:

Small view
A view that is usually restricted in size and functionality. Small views usually appear
on the user’s profile or her personalized home view, which only she can interact

12 | Chapter 1: Social Application Container Core Concepts

with. There may be many small views present on a page, depending on how many
applications the user has installed.

Large view
A view that usually delivers a fully immersive user experience. This view is seldom
overly restricted and will provide most of the same functionality you’d find when
developing an application on an external website that you have complete control
over. Large views generally have only one application on the page, meaning that
users on that view will be engaged only with the application itself.

On most of the current social networking containers, iframes are used to cordon off
all views from the rest of the container. While this might provide a small measure of
security for the container and its users, it’s far from a secure environment. In many
cases, applications will load only after the full container has loaded to prevent per-
formance degradation on pages where multiple applications are attempting to load.

The Home View (Small View)
An application’s home view is generally a small view that provides personal aggregated
content specific to a user. In other words, the home view cannot be accessed by any of
the user’s friends or connections. For the most part, this type of view is the main in-
teraction that the user has with the particular container, providing an aggregate feed
of the activities of his connections, upcoming events, pictures, etc. Depending on the
container that hosts this type of view, numerous applications may be displayed to
the user in this view. Figure 1-5 shows its placement within the container.

Figure 1-5. The application home view

The home view also typically offers a small window view into the full application. Quite
often, the container imposes restrictions on this view, such as limiting the markup that
may be used to HTML, CSS, and some secure, container-defined tags that provide
access to social information like invite drop-down lists, user data, etc. Many containers

Application Views | 13

highly regulate the use of JavaScript and Flash due to performance and security
concerns.

Since this view is often the user’s first interaction with your application in the container,
it is vitally important that it provide as much functionality as possible to draw a user
in to one of the more extensive application views. If a small view contains a number of
the aforementioned restrictions, many developers will mostly ignore it, opting to devote
the majority of their time and attention to the fully featured view. In a vast number of
cases, this means that the small view becomes an afterthought and usually just contains
a number of calls to action for users to go to the canvas view, without adding any
incentive for them to actually do so.

Any view that helps form a user’s first impression of your application should warrant
as much of your attention as the full feature set of the application. I can’t stress this
point enough: devoting proper attention to a small view can increase daily active use
of your application, drive engagement, and ultimately add users and increase moneti-
zation potential.

Any application small view should provide compelling and engaging content (e.g., new
activities that users can do in the application), should never be a direct copy of the
canvas view, and should provide enough base-level functionality that users do not have
to fully engage with the application to get some value.

The Profile View (Small View)
The profile view is the publicly available profile that the user exposes to the outside
world, and can be accessed by anyone the user allows. In some containers, the profile
view may reveal applications that the user has added to anyone viewing his profile.
Applications such as those that display gifts sent and received or provide information
about the user, or wall-type applications with ping abilities, are all popular within this
space because they allow interaction between an outside party and an application that
the original user has installed. Figure 1-6 shows the placement of this view within the
container.

Figure 1-6. The application profile view

14 | Chapter 1: Social Application Container Core Concepts

www.allitebooks.com

http://www.allitebooks.org

It’s less common for containers to have this view in addition to just a standard small
view (home view) and a large view (canvas view), but if available, the profile view has
a great number of benefits. Unlike with the home view, the direct audience for this
small view is anyone viewing the user’s profile. This audience will see your application
load with some content attempting to draw them into using it. Because you are reaching
out to an audience that is relevant to the user in some way, you have a real opportunity
here to drive new user installations of your application. You can provide new methods
by which that person can reach out to the original user beyond what would normally
be available from the social container itself. Such interaction methods might be pro-
viding free gifts to the two users, helping them out in games, or comparing maps of
where they have been in the world. When the new person interacts with your applica-
tion to do something like this, she will be prompted to add it to her own profile, gaining
you a user.

Since this view is essentially a small view that allows outside interaction, development
for it usually contains the same restrictions as those for the home view. Working with
all available views to provide a comprehensive user experience that allows users to
interact with whatever view of the application they wish is probably the most vital thing
we’ll talk about here. Users will never use your application in exactly the way that you
intend, so plan accordingly and provide them with as much application depth as you
can in every view.

The Canvas View (Large View)
The canvas, or large, view is considered the fully featured view for your application.
Most containers do not impose restrictions on the use of JavaScript or Flash within this
view, and it offers the greatest amount of functionality for providing content and tools
to end users. This view is the meat of your application, providing the bulk of the func-
tionality and features that the application is capable of.

Unlike the small view of an application, the canvas view is not displayed with other
applications in the same view; rather, it generally encompasses the majority of the social
container view, delivering a high pixel count for the available height and width, as
shown in Figure 1-7. What this means for developers is that when users interact with
this view, they have already engaged with the application by either visiting it directly
or by being interested enough in one of the small views to follow a call to action to see
the larger view. In the vast majority of cases, if a user comes to this view, he is already
invested in your application.

Application Views | 15

Figure 1-7. The application canvas view

The most important thing to remember here is that this view is the best interaction the
user will have with your application. Overcomplicating his experience, abusing his
social information (e.g., pushing too many messages to his activity stream), or failing
to provide a means by which he can engage with it as he wishes are all sure-fire ways
to have him stop using your application.

Some of the best applications not only provide a rich experience in this view, but they
also offer an appropriate link between the smaller views and this large view. For ex-
ample, if the user is interacting with the small view of the application, provides some
information on a form, and then clicks Submit to go to the canvas view, the application
should respond with exactly the application state the user expects, such as a processed
form request.

The other vital piece of information here is that you are still within a social container
and have the ability to access the user’s profile and friends. If your application requires
user information such as interests, name, or ID, you can obtain these details via the
personal information that the user has already entered about herself in her profile.
Requiring the user to enter account information to register for a service without pre-
populating the fields with the information already available to you is a recipe for user
drop-off.

The Default View (Any View)
The last view that is generally available within many social containers is not actually a
view at all, but more of a view state. The default, or preview, view of an application
displays content to users who have not already installed the application or to individuals
who are currently logged out of the social network. This view is in public view space,
and therefore, may not have direct access to much of a user’s profile information, similar
to how the public badge provided through the user profile provides only a small subset
of information about her.

16 | Chapter 1: Social Application Container Core Concepts

This view state can emerge within any traditional view, including the profile and canvas
view. The home view, however, is generally a personal profile for a logged-in user, so
it is unlikely that the default state would emerge in that view. In the case of a signed-
out user, you will not be able to take advantage of any personal information because
it’s unknown. If this state emerges in a small view, it may simply be a case of someone
trying to view a user’s profile; although your application will render, this event does
not necessarily indicate a user who is engaged with it. If this state emerges within the
application’s canvas view, though, you most likely have a user who is interested and
wants to learn more.

For cases where this state emerges in the smaller views of an application, you should
be providing a method to try to immediately drive the viewer to your application’s
canvas view to install the application, or provide a method to engage with her and then
drive her to the canvas view. Since the user has never interacted with the application
and thus will not have entered personal information that you can leverage, it’s difficult
to personalize this state. An engaging small view is important even in these cases, but
your ultimate goal for the default view is to drive the user toward an install state and
engage her.

When this state emerges in the larger canvas view, it’s likely that users are looking to
see what the application is before committing to installing it. In this case, you should
try to provide them with as much interaction with the application as possible while still
pushing them to log in and install. Coupling the install state of the container with the
functionality of the application is a good way to seamlessly add a new user. If the user
begins interacting with the application’s controls and customizations, you can bring
her to the container install state and walk her through installation to begin working
with the application.

Application Permission Concepts
Applications within a social application container do not automatically have access
to a user’s social profiles, activity streams, and friendships—that would be a major
security concern. Containers usually require that the application define the permission
scopes it needs access to. As shown in Figure 1-8, these scopes will be requests that a
user must agree to when installing the application.

Application Permission Concepts | 17

Figure 1-8. An application permission screen

Typically, social scopes are defined as major pieces of social information about a user,
such as his:

• Profile

• Activity stream

• Friendships

Each container may define different scopes or even include a number of nonsocial
scopes that a container may gain access to. Once the user accepts the scopes, the con-
tainer can do things on his behalf. For the three aforementioned social scopes, these
things may respectively include:

• Allowing the application to capture all information within the user’s profile.

• Allowing the application to obtain any activities in the user’s activity stream and
to push new activities to this stream on the user’s behalf.

• Allowing the application to obtain the profiles for all of the user’s friends. Although
those friends have not necessarily added the application, once a user declares that
someone is his friend, it establishes a trust relationship, and applications capitalize
on this. Essentially, the user trusts that friend with his personal information. When
that friend in turn trusts an application with her information, there exists a trust
“bridge” between the application and the friends. Some containers impose restric-
tions on how much social information can be obtained with these predefined trust
relationships.

These scopes are usually secured through authorization mechanisms such as OAuth,
which require that a user sign in through the container when he grants permissions to
an application.

18 | Chapter 1: Social Application Container Core Concepts

Client-Side Versus Server-Side Applications
As you begin developing applications on a social network, you’ll inevitably have ques-
tions about the best method for serving an application’s content. Should you use a
client-side approach, taking advantage of many of the client tools a container usually
makes available? Or should you use a mainly server-side approach to provide a scalable,
high-performance user experience? In other words, what are the best tools for the job?
These are some of the questions that we need to answer before building an application.

Before we begin development, we should look at a few factors that can help you build
an application that is scalable and offers good overall performance.

Using Template Systems for the Markup Layer
Although some template systems require additional development time to integrate,
using them can provide noticeable results when you’re attempting to scale an applica-
tion environment. Simply put, templates allow developers to separate out their pro-
gramming logic from the visual layer of the application. This makes application
development easier, allows for multideveloper collaboration, provides an easier means
for debugging the environment, and enables you to scale the product as needed.

There’s no doubt that some template systems can add a large amount of unnecessary
heft to application code, but the question comes down to what systems you really need
for the specific application you’re developing. Small applications will not get a lot of
mileage out of fully developed template systems, which are built for large-scale
development projects; on the flipside, large application projects would require a lot of
development effort to create a custom template solution.

Again, the real question comes down to need. As we explore the different open source
techniques for application development in this book, we will look into a few excellent
template solutions offered through the OpenSocial application framework.

Using a Blended Server and Client Environment
As mentioned earlier, when beginning a new application project, developers usually
face questions about the proper methods for building its programming logic. Devel-
opers tend to use an approach that is comfortable to them, sometimes ignoring other
good options that are available because of their ingrained habits.

When it comes to developing an application, is a heavy client-side system better than
a heavy server-side implementation, or vice versa? The short answer is that both ap-
proaches provide different benefits that add to the performance, functionality, or de-
velopment ease of an application.

Most containers that currently allow applications to be developed on their platforms
offer a series of secure tags from which the developer can create quick visualizations of

Client-Side Versus Server-Side Applications | 19

user social data without actually having to make any server calls. This provides an
obvious boon to frontend development, as the container can take care of processing
social data without actually requiring the user to grant the application permission to
access her personal information. Secure tags are just one benefit available to developers
who are building out a frontend system, but having the container manage the frontend
processing of social data is usually the critical piece that allows developers to build
highly social applications.

Exploring the alternate side of the fence, a server-side approach has obvious benefits
for developers. First of all, server processing doesn’t have to account for browser quirks
like JavaScript does. The server environment will be consistent no matter which
browser the user views the application in, and will not be affected by a user’s browser
settings, such as having custom JavaScript disabled. In addition, server processing al-
lows the developer to cache data results and thus provide quicker responses to data
requests from the application.

So when should we use a server-side approach versus a client-side implementation?
Data processing is more efficient from the server side and offers caching mechanisms
that speed up data requests. The client side, on the other hand, allows for custom tags
and access to other container-specific social data by enabling the container to efficiently
parse and display a user’s personal information without requiring the application to
request access to it. The short answer is that a blended client/server environment is the
most efficient and offers the largest opportunity for taking advantage of container-
specific tools and utilities.

Deferring the Loading of Noncritical Content
When a social networking container imposes strict security measures on the content
being loaded to it, applications with large amounts of content tend to load much slower
and might time out if the container expects all the application content to load within
a specific time. This problem can be compounded if the application being built loads
its content from a single server request, which in turn performs an extensive amount
of processing before returning the complete application markup. Processing an entire
application from a single request can certainly reduce the number of HTTP requests
that are being made from the application and can help with performance. So, for many
smaller applications, this may make sense. But in the case of applications with heavy
content loads, this approach can be detrimental to the point that it sometimes prevents
the application from loading within the container at all.

Using a deferred loading approach can easily mitigate this issue. Since most containers
load applications on a page only after the container and page content have finished
loading, there is usually precious little time for an application to capture the user’s
attention. An application that stays in a loading state for eight seconds while all of its
markup loads will usually miss this window, as the user moves on to doing other tasks
within his profile.

20 | Chapter 1: Social Application Container Core Concepts

If you load the most important content of the application within the first HTTP request,
returning data such as core user customizations or pertinent application information
like scores or statuses, you can grab the user’s attention. Once you have that attention,
the application can continue to make HTTP requests to the server to gather additional,
less important content, loading once that’s completed.

By using this technique to engage with users as soon as possible, you can increase the
number of daily active users.

When Good Applications Go Bad
Even with the developer’s best intentions, sometimes a good application can fail be-
cause of improper architecture, not having enough room to scale, or by not leveraging
the social tools available to it. But with a little bit of planning before the development
actually begins, developers can build an application core that can scale, makes use of
available social hooks to drive traffic, and will make money in the long run.

Before beginning an application project, developers should ask themselves a series of
questions:

• What is our intended audience? Do we plan to expand to additional audiences or
languages?

• How are we planning to scale the server backbone to handle traffic spikes if the
application becomes popular?

• What social features of the container can we use in the application to drive traffic
and new user installs?

• How can we monetize the application?

These are just some of the basic questions that we should ask and answer before de-
velopment even begins. It’s important to lay a good foundation and plan for the future.

With that in mind, let’s take a look at a few use cases that have some inherent issues
in their development practices.

The Portable Flash Application
Quick turnaround time and portability between containers is a major selling point for
many development shops. Having a complete application process that consists of tak-
ing a new container platform, slapping in an iframe that points to the developer servers,
and loading a Flash movie can seem like a great advantage during development, but
this type of development practice has some serious ramifications in the social realm.

As mentioned previously, many social networking containers impose limits, sometimes
including Flash and JavaScript restrictions, on the content that is served from the small
views of an application. For a developer who has embedded his application’s sole con-
tent in Flash, this means that his small view is often a glorified ad trying to forward the

When Good Applications Go Bad | 21

user on to the large view or developer site, or it’ll end up having little relevance to the
actual application. It certainly won’t provide similar functionality to the large view.

Next, let’s explore the social features. Portability is not the only aspect that you should
consider when developing an application for cross-container functionality. All too of-
ten, Flash-based applications silo themselves from the container’s root social features,
including activity hooks to push out updates to users, friendship graphs to promote
application growth, or even simple messaging systems to drive additional traffic and
installs. Such applications usually have a very shallow user following. They have a high
turnover and eventually fizzle as new user growth areas become harder to find. Without
social hooks and relevant views, the application does not go far enough to keep users
engaged.

Cross-container development should mean that developers spend time building an
abstraction layer that sits between the container and an application. This allows the
developer to build a single, highly social application and then just plug in the social
and data hooks of any new container that is integrated into the architecture.

The Underdeveloped View
I’ve mentioned the fact that having relevant small views can help to promote user
growth and engagement, but the same is also true for the larger views. Some develop-
ment shops wish to work only with the larger views; likewise, some want to work only
with the small views since that is the first thing the user sees in most circumstances.

Let’s look at an application’s small views first. We’ve already talked about how some
containers impose restrictions on the small view that may prevent JavaScript and Flash
integration, and these restrictions are usually the chief reason why developers don’t
develop a rich and compelling small view. Since it is the user’s first interaction with
your application, a compelling small view will promote application growth. Once
the user has been regularly interacting with your application, you should change the
small view to incentivize him to continue on to the large view. For a game, this incentive
might be current statistics, stats of friends for comparison, or new items that the user
can earn by performing some action. For productivity applications, it might include
reminders for upcoming tasks, a comparison of his actions against those of his friends,
or some simple functionality for interacting with the application.

Moving on to the large view, the main reason why some developers don’t develop this
view is that they create applications containing functionality that’s so simple it is not
impeded by any small view restrictions. This is a very shallow way to think about a
social application and basically means that you don’t think your users will need or want
any further functionality other than the basic data you’re providing. Most containers
do not offer a way to turn off a view, so they show a blank page for views that are not
defined. This means that the developer has to go through the task of attempting to hide
the means for users to switch between views, which may actually require some devel-
opment effort, depending on how containers have implemented their view-switching

22 | Chapter 1: Social Application Container Core Concepts

mechanisms. The bottom line is that such a developer basically restricts users to views
that are smaller and contain fewer features because she doesn’t want to make the effort
to build a compelling application that leverages the container’s existing features.

Users quickly catch on to applications that try to deliver them content without any
extensive depth or those that expect them to use the application from only a single
place.

The Copycat View Application
We all know how tempting it can be to copy our view code in each view instance. We
want to provide our user base with as much functionality (and as many different views)
as possible without expending a lot of engineering resources. Cloning that view for
every portal that’s visible to the user can seem like a no-brainer at times.

The simple fact is that users will see right through this technique, and will view your
application poorly, if they switch between a small view and a large view only to be
presented with exactly the same thing they just saw. This can create a lack of trust once
the users see something amiss in the application. After all, if the developer has not put
in the time and effort to fully build out the application, how can they trust that appli-
cation with their social information?

Let’s explore the trust relationship of this scenario first. If you’re building an application
that will attempt to either monetize the user experience or drive traffic back to a source,
the last thing you want is for a user not to trust that application. When a user actively
migrates to a different view and is presented with the same screen and functionality
that he just saw, he will believe there’s something wrong with the application—
something happened that shouldn’t have. He’ll remember this when you try to mon-
etize that experience. Essentially, you’re establishing a trust relationship in order to get
some sort of return on investment from your users.

Next, let’s look at the view differences. If you copy your small view to your large view
(or vice versa), you will face one of two visible issues:

• If you built the application to a specific width instead of making the size fluid, the
application will either look too small or too large for the view. If it’s too large for
the view, it will also require the user to scroll to view the content. In either case,
this makes for an unpleasant user experience.

• If you built the application using fluid width techniques, allowing the content to
drop down to the next line if it needs to, then you have mitigated against many of
the previous option’s concerns. But the issue of too much versus too little content
still comes into play here. If you build an extensive amount of content, the small
view looks excessively large and bloated; likewise, if you integrate too little content,
the large view looks too sparse.

When Good Applications Go Bad | 23

No matter which use case you are developing, the amount of effort you’ll expend to
fully answer and develop solutions for the aforementioned issues can nearly equal that
of creating a second view in the first place.

The Oversharing Application
The next use case we’ll look at is an application that abuses the user’s activity stream.
Shamelessly pushing every action the user takes within it, the “oversharing” application
promotes itself relentlessly through the news feed, where it’s visible to all of the user’s
friends. Those of us who have used applications within a social networking container
have undoubtedly come across such an example.

The problem here really occurs in the news feed items that are displayed to the user’s
friends. What do we all do when we encounter continuous updates from an application
that we have never seen before? Well, most users disable updates from that application
(if that functionality is available) or from the user completely. In either case, this
disables the application’s communication channel to a relevant user base, making it
more difficult to reach new users. There are precious few channels available for appli-
cation developers to reach potential users, so having a major one disabled can be det-
rimental to the application’s longevity.

Later in this book, we will talk about different sharing methods to help developers
choose a solution that is right for them without overtaxing the user’s activity stream.

The Unmonetized Application
One of the saddest things in the application world is seeing a great idea poorly executed.
Time and time again, developers build highly successful applications without ever giv-
ing any thought as to how they will make money from the user experience. Unless
you’re banking on selling your application to one of the top application development
companies in the space, you need to be able to pay for the expenses that the server
traffic will incur.

Even if you don’t implement all of the monetization techniques you’d like in an appli-
cation, plan to upgrade from the beginning. It’s important to understand the key areas
of your application that can produce some sort of return on investment. Setting clear
goals about when and how you’ll integrate the monetization effort is part of a good
long-term strategy for the application. For instance, you might plan to develop an in-
app marketplace when you hit a certain number of users or daily active users.

As important as monetizing is, how you go about it is just as important. Essentially,
you want the act of requesting additional money to convince users that the application
will get much better if they purchase something, whether that’s upgrades or new con-
tent. You still want the application to be functional for those users who don’t put down
much or any money, but you want to make it known that their experience can be much
improved with additional features—with a premium account, if you would.

24 | Chapter 1: Social Application Container Core Concepts

www.allitebooks.com

http://www.allitebooks.org

There are numerous methods that an application developer can use to monetize the
user experience, including:

• An in-game marketplace that offers new content or features to enhance the appli-
cation’s user experience. These are virtual offerings, not tangible.

• Social networking application advertising platforms. There are a number of ad-
vertising platforms that are built to work well in applications running within a
container.

• A product marketplace that presents the user with tangible sale items that may be
based on the application or related to the user’s social information (i.e., targeted
social sales).

These techniques are widely employed by many of the most successful applications in
the more popular social networking containers. If used tactfully and with proper con-
sideration for how the sales techniques flow with the application logic, monetization
techniques do not need to be imposing or irritating to your user base.

The Feed Application
The last application type we’ll look at is used quite often by publishers trying to syn-
dicate their feed out to a different source, such as an application in a social networking
container. Many times, publishers just want to take an XML or RSS feed of their news
content, apply a stylesheet, and link every story back to its originating source—most
often, their website. This application model certainly provides easy and fast integration,
but easy is not always good.

The reasons why publishers choose to implement such applications are usually fairly
simple. Either they don’t wish to devote much engineering effort to the application
until they see a return on investment (i.e., an increased number of active users), or they
don’t want to provide all of their content on another site since they don’t have all of
their same tracking and marketing mechanisms within the application context.

First of all, publishers who use this method tend to either not integrate all application
views, or populate each view with exactly the same content. We discussed the reasons
why this type of application model tends to fail in the earlier section “The Copycat
View Application” on page 23, so I won’t reiterate those points here.

Besides the view issue, the major drawback to this application model is simply that the
implementation is shallow and doesn’t provide any value for a user. In this instance,
the only difference between using this application and reading through an RSS feed of
the same content is the styling. In addition, having each link within the application
jump the user from the social networking container over to the publisher site is jarring.
People use applications to get all of their content in one place; they don’t want to have
their viewing experience terminated just to look at the content of a story.

When Good Applications Go Bad | 25

Feed applications are truly a shame, because most of the time they have real users who
want to consume their information from their favorite source. It was proven long ago
that a closed application development model—not providing your technology or data
outside of your company—doesn’t work. Opening up your data and sources helps you
reach entirely new audiences. If nurtured correctly, these users can become loyal read-
ers, which can in turn translate into monetization benefits.

Fortunately, it’s easy to adjust this model into something that delivers a clear benefit
to users. First, publishers don’t need to provide the entire content of their stories within
the application context. Most of the time, users look through an application’s synopsis
and title to see if they are interested in reading more; publishers should support that
use case by providing a paragraph or two of content inside the application to pique user
interest. Below that content, they can provide a link to the full story on their website.
This small change to the application can make a world of difference.

Next, in the large view of the application, developers can integrate additional config-
uration options to allow users to consume only the data that they are interested in. This
configuration panel will provide users with an additional layer of functionality that
helps them get relevant information from the application, driving more daily activity.

All in all, this application model is one of the easiest to change. Thinking of an appli-
cation less as a feed outlet and more like an interactive object can help increase
application growth, the number of unique users, and the overall amount of traffic that
returns to the originating website.

Application Model Case Studies
Now that we’ve examined some application models that do not work and why they
don’t, let’s take a brief tour of three different application models that do work, looking
at specific companies that are implementing these models today.

The case-study models we’ll cover are:

• Friendship-based social gaming applications

• Product sales applications

• Location-based applications

This section should give us a good overview of some business models that work in the
application, mobile, and social spaces.

Case Study: Friendship-Based Social Gaming
Our first case is a social gaming application whose infrastructure is built off of social
interactions between two-way, or reciprocated, connections (friendships). Building
upon the real-life relationships that people have with their friends, family, coworkers,

26 | Chapter 1: Social Application Container Core Concepts

and everyone else in their stream is a great method for developing an extensive relevant
graph within the social game as well.

Let’s take as an example one of the biggest players in the social gaming space: Zynga.
Zynga has built its core business from creating highly addictive social games that are
some of the most played in the social gaming space. Love it or hate it, Zynga is one of
the most successful social gaming companies in the business, developing titles such
as FarmVille, CityVille, and Mafia Wars. Companies like Zynga use several tactics to
build highly viral, lucrative games.

Even though we are speaking specifically about social gaming applica-
tions in this case study, you can apply these principles to any social-
based application that makes use of someone’s social graph.

Understanding user targeting

Understanding the appropriate audience (i.e., which demographics you should be tar-
geting) should be one of the first steps for any social application developer. Simply
understanding who makes up your existing audience is not enough anymore, though.
For instance, if you build a great social game targeting an audience that is completely
saturated with other great social games, you are not going to see the same return on
investment as you would by targeting another niche group.

This is an area Zynga has navigated incredibly well. Traditionally, online games were
targeted to specific demographics, such as males between the ages of 14 and 25, and
were created for noncasual users. Zynga changed the state of online gaming by targeting
the casual gaming market, drawing in many users who were younger, older, and of a
different gender than the stereotypical online game audience. The company developed
an entire market for social-based casual gaming.

Building a relevant graph in the game

Even if the social graph of the platform on which you’re building your social game is
vastly irrelevant (i.e., users have few two-way connections and of those that they do
have, many have no real-life significance to the users), that should not prevent the social
graph within the application from being vastly relevant to the game.

Zynga has proven this case as it has moved from different platforms, even those that
had just emerged as a social network, such as the YAP. No matter what the state of the
user-based connections within a platform, the game environment offers you the chance
to build up a social graph to the level of relevance required for a viral application.

You can take advantage of this by developing comprehensive invitation flows within
your application so that a user may send notifications to any connections asking them
to join her in the game. This process needs to also have some sort of benefit to the user,
though, or it will not be effective. For instance, Zynga builds an invitation flow into its

Application Model Case Studies | 27

applications’ gameplay; Mafia Wars players gain power by adding new connections to
their mafia, and FarmVille players get help with their farms. Earning a few core benefits
from adding users will motivate players to search out new connections who have a
shared interest in the game in order to build themselves up in the game. While these
connections may not know each other personally, they are relevant to the game because
they share an interest and mutually benefit from remaining connected.

Allowing connections to interact with one another in the game

Expanding upon an earlier point, it’s important to offer some benefit for users to in-
teract with one another. While the previous case had to do with increasing the relevance
of the social graph, it’s equally crucial to present in-game opportunities for social in-
teractions in order to help increase the number of daily active users who play your game.

To showcase this point, let’s go back to our Zynga Mafia Wars example. If you are
playing the game with friends, you can take advantage of a few mechanisms Zynga has
built in to allow you to work directly with the social graph you have built in the game,
such as:

• Starting missions where your friends can help you

• Asking your connections for items in the game (gifts)

Gift giving is a very popular aspect of these games. Having options where users can give
and request free gifts from one another every day allows them to improve their in-game
personas while also increasing their activity.

In short, once you have the channels to draw users in to your game, you also need the
mechanisms in place for keeping them there.

Providing clear benefits for actions taken in a game

Another aspect of vital importance in this case study is providing a clear incentive for
people who are already using your application to continue using it. In other words, you
need to create opportunities for growth within the game or application itself.

There are several different mechanisms you can employ to retain the user’s long-term
interest. Just to name a few:

• Offering increased power levels within the games based on the amount of time
played and the number of game actions the user performs.

• Providing character-based level progression so that users associate the amount of
time they invest with the progression of their avatar in the game.

• Delivering real-time growth mechanisms. Making the acts of, say, building new
facilities or growing crops time-based will keep players coming back within certain
timeframes. You can take this a step further by providing a time window where a
user must do something after the building process (e.g., harvest crops before they

28 | Chapter 1: Social Application Container Core Concepts

wither) or she’ll lose what she’s built. This will dramatically increase the use of
your application within those time periods.

Providing such benefits will help to increase the number of daily game players, which
in turn gives you more time to monetize their use.

Integrating social channels through email, notifications, and activities

Application platforms usually provide numerous viral channels for developers to com-
municate with users or invite other people to the game. Although these channels are
one of the most important features to promote growth in your application, for most
developers, they’re often secondary to feature enhancements to the product.

Let’s look at Zynga, for instance. If you monitor the activities that the company pushes
from its applications, you will see that it makes subtle changes to the update’s static
text on a regular basis. This is because the language you use in an activity can vastly
increase the number of new users you obtain from the update. The user’s activity stream
is a direct pipeline to his regular news feed, which is the same data that he consumes
on a regular basis to see what his friends are doing.

Application platforms usually have alternate contact methods for application devel-
opers to leverage, such as direct email correspondence (initiated by the user) or action-
item notifications that the user must accept or decline. Instead of using the user’s
activity stream as a passive delivery device for increasing application use or obtaining
new users, emails and notifications require the user to take some action in order to
dismiss them. This action can either be deleting the message or acting upon it, but in
either event, you get the user’s direct attention.

Do not overuse communication channels to send many messages to
users. No one likes a spammy application, and doing so will negatively
impact your application’s growth.

At the end of the day, you should be constructing an application that leverages every
single viral and communication channel that the platform has available. Plan the ap-
plication architecture to embed opportunities where you can communicate with users,
and don’t overproduce updates to them. Be conscientious of your application users.

Monetizing through the sale of virtual goods

One of the best milestones you can reach in the monetization arena is offering a product
that costs you nothing to produce. This is exactly what many of the top-grossing games
in the business are doing.

Let’s look at the Zynga Mafia Wars game example again. Within the game, the user
can purchase reward points (as shown in Figure 1-9), which can be considered virtual
currency. Players can use this virtual currency to buy equipment and bonuses in the
game to put them ahead of their competition. Zynga collects money by providing

Application Model Case Studies | 29

something that isn’t even tangible, so the production cost of that item really doesn’t
exist (though of course, the company is still responsible for server costs, employee
salaries, and the like).

Figure 1-9. Zynga’s Mafia Wars Marketplace

Increasing the amount of money that comes in from the game can be as easy as creating
new items for users to purchase in the virtual store, and is only limited by the imagi-
nations of the application engineers and designers.

Case Study: Product Sales Applications
For our second case study, we will look at an application type that is quite different
from the social gaming examples we just discussed.

Arriving on the scene in the past few years, companies like Groupon and Living Social
(as well as many others) have built large empires around the idea of offering goods and
services to users at a heavily discounted price.

We’ll explore the experiences that these companies deliver in the following sections,
looking at the components that make these “daily deal” applications so successful.

30 | Chapter 1: Social Application Container Core Concepts

It’s not all about games

Many of us have probably seen an oversaturation of games on the social networking
sites we frequent, but it needs to be said: it’s not all about the games. In fact, numerous
productivity and product sales applications have raised millions in funding for their
companies. These applications, which are inherently social and make users’ day-to-day
lives easier, can be just as popular as those in the gaming space. They succeed by
providing:

• A solution to a problem in users’ lives

• A way for users to get answers about something that they can’t get elsewhere (i.e.,
shared social experiences)

• A product that improves the way that users normally do something

These are just a few of the reasons why people use productivity and sales applications.

Taking an old idea and making it new

What makes Groupon such a wonderful product is that it takes a very old, embedded
societal invention—coupons—and updates it for today’s social and mobile world.
Rather than simply taking the old way of doing things and adding some social and
mobile features, however, Groupon has entirely rewritten the concept of a coupon.

If you’re unfamiliar with Groupon, think of it as a small daily dose of
Black Friday or Boxing Day sales.

This is one of the most important things you can do if you are building an application
that includes a sales aspect. People don’t want yet another method for doing the exact
same thing; they need a compelling reason for using your application, and that reason
is innovation. Your product has to provide a new way of doing something, a custom
spin on the thing that you are trying to sell or do.

Groupon not only gives people a way to find the goods and services that they already
enjoy at a discounted price, but it also exposes them to new products or experiences
that they may have never encountered otherwise. Many users enjoy Groupon most for
that reason—it provides them with things to do that they wouldn’t normally do.

These factors are what make Groupon such a great product.

Opening up discussions to get and provide feedback

One of Groupon’s other advantages is the fact that each available product or service
represents an opportunity for potential buyers to discuss the product not only with
each other, but also with Groupon staff and, many times, with the business that is
offering it.

Application Model Case Studies | 31

A discussion area like this delivers numerous benefits, including:

• Pushing users who are on the fence into buying the product or service simply by
being able to address their concerns about the product directly.

• Placing the application business, its users, and the business selling the product at
the same level, in a single discussion thread. This goes a long way toward making
buyers more comfortable with the process.

Using methods such as discussion areas may take some time and effort from the cus-
tomer service angle—and from the people who understand the product well—but you
gain the benefit of building a quick FAQ for the product or service and closing more
deals by addressing potential buyers’ concerns upfront.

Gifting a service

Productivity and sales applications can take their core concept a step further and draw
in additional sales by offering users their products as gifts for someone else.

As you can see in Figure 1-10, Groupon implements this concept very well. While the
offered product may not appeal to the user, it might to someone she knows, or she
might have an upcoming event that she needs a unique gift for. By simply providing
users with another option for consuming what you are selling, you can increase sales
significantly.

Figure 1-10. Groupon’s “Buy it for a friend!” gifting option

Case Study: Location-Based Applications
In this case study, we will explore an application type that has gained a lot of popularity
over the past few years: the location-based application.

32 | Chapter 1: Social Application Container Core Concepts

Applications like Gowalla, FourSquare, or even Facebook Places demonstrate the cur-
rent capabilities of these types of services. We’ll use these services as a jumping-off
point for exploring the ways that location-based applications can gain new users,
increase levels of daily active use, and deliver highly customized monetization
experiences.

Meeting friends

One of the greatest benefits to location-based applications is being able to see where
your friends are. At some point, we’ve probably all thought to ourselves, I wonder what
so-and-so is doing, or I wonder if any of my friends are someplace interesting where I can
join them. With location-based applications, users no longer have to wonder. Providing
functionality for people to follow one another and see the places their friends check in
to allows them to socialize more.

When users want to join friends at a location that they have checked
in to, one issue they might face is that their friends might not actually
be at that location anymore. Although these services offer a check-in
option, they do not offer a check-out option.

Giving users a location-based way to interact with their friends allows them to use your
service for something way beyond its original intent, and in doing so, motivates them
to find new and innovative methods for deriving more relevance from (and thus spend-
ing more time in) your application.

Providing badges and points

One of the methods for driving user activity within a location-based application is to
reward them with virtual goods when they take certain actions in the application. This
method keeps users engaged with the product, and it requires only a minimal amount
of effort from the application developer to implement.

For example, Gowalla has included a feature within its application that gives users
badges and items based on the places that they have checked in to. With each new place
that a user visits, he is given a badge to signify that he was there. He may also obtain
multiple badges if he is checking in to a new state or country. Sometimes he may be
lucky enough to pick up a new item when he checks in to a new place, and he can add
such items to his official collection to more easily see everything he’s collected over
time.

Gowalla also shows the user any items that he is missing, as shown in Figure 1-11. A
“fear of loss” is often enough to push people to check in at more places in the hopes of
obtaining the elusive items they need for their collections.

Application Model Case Studies | 33

Figure 1-11. Missing items on Gowalla

In contrast to social gaming applications, location-based applications tend to use
virtual goods to boost user engagement as opposed to monetizing the application.

Offering competition (mayorships and leaderboards)

What’s wrong with a little healthy competition? When it comes to location-based
applications, nothing at all.

Gowalla introduced a leaderboard (Figure 1-12) within its application that displays a
ranked list of users for a specific location based on the number of times that they have
checked in. Similarly, FourSquare built a mayor list to promote a single user to the
status of “mayor” for a given location.

Figure 1-12. The leaderboard on Gowalla

34 | Chapter 1: Social Application Container Core Concepts

www.allitebooks.com

http://www.allitebooks.org

Such utilities encourage people to use the application more to try to gain the top spot
at a given location (although they have also prompted some false checkins from users
hoping to promote their status). Providing a means for users to compete against one
another by using the service more is a great way to keep users engaged on a daily basis.

Location- and profile-based ad targeting

What is one of the biggest benefits to knowing where a person is when she uses your
service? Knowing what’s around her. When you combine this knowledge with the in-
formation you have obtained about her and her habits, you have a perfect formula for
serving up content that is much more targeted toward her specific tastes and interests.

Let’s say we have our own check-in application like Gowalla or FourSquare, and we
maintain a history of the locations where a user has checked in. Now, from those spots
we can determine some of her interests, such as foods she likes (based on restaurant
trends), general area of interest (based on density of checkins in a specific location),
and general consumption times (based on the check-in times). By combining all of this
information, we can start serving up ads for local businesses that match these criteria
or are in the same family of businesses as the trends we have discovered. We can also
shuffle these ads on a timely basis depending on when the user generally checks in.

Now we’ll take this a little bit further. Let’s say that the user is using the location-based
application, so we know where she is and which neighborhoods she likes. When she
searches for restaurants, the application can suggest places based on her tastes, such
as promoted businesses around the area in which the user is checking in.

While this is a very specific example, you can easily see how the physical location and
location history that you obtain from such an application can help you serve up content
that is targeted toward one user. When you tailor advertising or suggestions to an
individual user’s habits, you increase the likelihood of her accepting the offer. Working
with local businesses and advertisers is a very effective strategy for providing sugges-
tions geared toward a specific user’s habits and trends.

Offering promotions through local businesses

Now let’s look at a different angle on monetization of location-based applications:
partnerships with local businesses.

If your application is based on the user’s physical location in the real world, you have
a great opportunity to build partnerships with local businesses that might mutually
benefit from offering discounts or benefits to your application’s users.

Let’s take FourSquare as an example. Back in May 2010, the company partnered
with Starbucks to provide the mayors of local Starbucks shops with a discount on one
of its new drinks, as shown in Figure 1-13. For Starbucks, it was a way to promote its
new drink offering within a large group of users, while FourSquare benefited from like

Application Model Case Studies | 35

promotion,* increased user activity in specific locations, and a general sense that its
service was not just for “fun and games,” but in fact had some real-world benefit.

Figure 1-13. FourSquare’s Starbucks mayor offer

When it comes to location-based applications, the benefits reside in the fact that you
can play in both the virtual and real worlds, showing people that their online actions
have a direct correlation to their real-world lives.

Quick-Start Tips
Building applications can be a tricky business, especially when you are under pressure
to see a return on your investment. Before beginning the development process, you
need to answer a number of practical questions, specifically around how the processes
will be developed.

Understand Your Audience
The most important question that any business should answer is, “who is my audi-
ence?” The same is true for social application developers—you must understand the

* The term like promotion draws from services such as the Facebook Like button, where a person viewing a
page or product “likes” it, thereby promoting it to other users through social media channels.

36 | Chapter 1: Social Application Container Core Concepts

core users you’re trying to target with your application. Once you understand this, you
can structure the application discovery mechanisms, gallery placement, and promotion
methods around this information.

Build Social Integration Points Early
One of the biggest pitfalls for a lot of applications being developed within social con-
tainers is failing to account for the fact that a social application is not a traditional closed
application. Building a simple service that doesn’t include any social hooks, promo-
tional mechanisms through the user activity stream, or a means of interacting with the
social graph is not enough. These social elements are critical for the application’s lon-
gevity and user growth.

When first specifying how the application should run, you must understand how social
information will play into the overall application structure. Specifically, you should
thoroughly explore how to promote your application through the user’s activities, in-
teract with the user’s social graph to invite new application users, and leverage profile
information to personalize your application.

Build with Monetization in Mind
Another application developer failure point is not knowing how to monetize a good
idea. As you develop your applications, you must have a clear understanding of how
they will eventually make money. If it’s through advertising, you must make sure to set
aside the appropriate space for the ads.

If advertising is not your preferred monetization method, there is a host of other meth-
ods available to you. Adding content upgrades to enrich the user experience can be an
excellent way to keep users happy and give them the freedom to use the application
how they wish.

Another effective method is integrating monetization into the application’s flow. For
example, some game companies will provide a small amount of powerful enhancement
points that players can use to speed up production of something, give them better stats,
or add any number of other upgrades. Most players will just use the free points as they
are slowly allotted, but some will purchase additional amounts to get an advantage over
their peers.

No matter which method you use, it’s essential to form a strategy for how your appli-
cation will make money prior to the start of development.

Create Comprehensive Views That Play Off One Another
We’ve discussed the importance of views when you’re building out social applications.
The best current social applications utilize all possible views to the maximum degree

Quick-Start Tips | 37

possible. Don’t simply provide all your content in every view, but rather, use the dif-
ferent views to complement one another.

For example, use the canvas view to configure the content of the smaller views. Offering
dynamic views that a user can customize to suit his viewing needs will go a long way
toward building an active user base for your application.

38 | Chapter 1: Social Application Container Core Concepts

CHAPTER 2

Mapping User Relationships
with the Social Graph

Relationships, between both people and things, are the root of a user’s social graph.
The links in this graph are a rich source of information about a person—his hobbies,
preferences, purchasing habits, and many other details that an application developer
can use to build a user experience geared specifically to an individual.

A relevant social graph is an application developer’s single most important tool. It is
the means by which you engage a new, relevant user base, grow your social application’s
audience, and target a set of users based on their social profile details and preferences.

This chapter explores some of the concepts behind the social graph, how you can ma-
nipulate it, and how you can extend the social links between users with entity objects
that they may interact with. We’ll conclude with an exploration of the Facebook social
graph, which is a practical implementation of the graph concepts covered in this chap-
ter, and the OpenLike widget, which can help you promote your product to multiple
sources in one easy step.

The Online Social Graph
We no longer live in a time where our offline lives are divorced from our online lives,
where a user can interact anonymously with the Web without worrying about the im-
plications it may have on her life.

Today, any social web interaction we participate in, site we log on to, or online mer-
chant we purchase from leaves a virtual footprint that someone can track to enhance
ad targeting, provide alternative options for our future purchases, or identify individ-
uals in our social circles who have a higher likelihood of using or purchasing something
if someone they know has already done so.

As citizens of the social web, we typically have a multitude of different social graphs
depending on which social services we use, what information we have provided to

39

them, and how they interact with other social services. Although we might share dif-
ferent information on these services, the concept of the social graph applies to all of
them.

Our social graphs differ depending on how we use the service. For in-
stance, we may have one professional social graph for colleagues and
professional contacts on LinkedIn, another for friends and family on
Facebook, and yet another for technically minded peers on Github.

There is an adage relating to the concept of a free web: if you are using a service for free,
you are not the customer—you’re the product being sold. What this means is that com-
panies like ad agencies use your online footprint, social relationships, and interaction
history to target their ads appropriately. A user is more likely to click on these targeted
ads because they are served based on her social interactions within a site, and are thus
more relevant to her. In other words, these companies leverage the concept of a social
graph, where user relationships are mapped into a set of logical social groupings
(Figure 2-1).

Figure 2-1. Social groupings and links

On the social web, a user interacts with other people who may or may not be related
to her outside the virtual web construct. These people may be friends, family, cowork-
ers, or any number of other logical groupings. Social links to people we know are re-
ferred to as direct relationships. Direct relationships contain the highest degree of social
relevance to a user, which means that targeting them is more likely to produce suc-
cessful returns. As we branch further away from the root user (e.g., friends of the user’s
friends), we enter the realm of indirect relationships. These relationships map back to
the root user through another user. Indirect links still provide some social relevance
since they have a common association, but that relevance is greatly diminished com-
pared to that of a direct relationship.

All relationships can be categorized in relevance tiers. A direct relationship is the first
tier, providing the greatest social link. A first-level indirect relationship is the second

40 | Chapter 2: Mapping User Relationships with the Social Graph

tier, and so on. As we expand outward into a user’s social links, relevance to the root
user exponentially decreases.

Because direct relationships produce the greatest return on investment for a company
or application developer, it is important to capitalize on those links between two users,
building a construct known as a one-to-few cluster. To illustrate this concept, consider
the difference between having a cluster containing the root user and her immediate
family (parents, siblings, children) and having one containing all her family members
(immediate family, cousins, second cousins, and the entire extended family relation-
ships). In many cases, communication and relationships between a person and her
immediate family will be stronger, so if we can develop behavioral profiles for how that
user interacts with those small clusters, we reach a holy grail of relevance. In simpler
terms, we’re hoping to achieve incredibly detailed targeting of a user, her behaviors,
habits, likes, and dislikes—essentially, her online DNA.

Applying the Real-Life Social Graph Online
There’s a stark contrast between the social graphs we have in real life and those we
build online. To comprehend the difference, we need look no further than our own
day-to-day interactions with the people around us, minus the computer, mobile device,
or any other tool that connects us to the online world.

Our online social graph is a deeply interconnected web of relationships, where the
majority of our conversations involve people spanning many different social groups,
including our family, friends, peers, etc. The graph generated from these types of in-
teractions doesn’t include the concept of clustering.

This is where the real-life social graph differs. In our day-to-day interactions, we con-
sciously form clusters for the people in our lives, interacting with each group in different
ways and through various methods. We develop social boundaries for these clusters,
sharing different pieces of ourselves with each group. For instance, you may be more
candid with your friends about a physical relationship you are involved in than you are
with your immediate family members.

Unfortunately, user clustering is one area where the online social graph is lacking. Since
different criteria—anything from physical location to topics of interest—determine a
person’s status in a cluster, it is incredibly difficult to programmatically categorize his
relationship to someone else and maintain any level of privacy or security.

Clustering Users Automatically
It’s easy enough for an online service to start clustering people into like groups based
on physical location, topics of interest, family status, or any number of other factors
that a site may take into account within its profile system. However, it gets much more
difficult when the site allows you to manually cluster connections instead of doing it

Applying the Real-Life Social Graph Online | 41

automatically. The fact is that the majority of people will not participate in this type of
tedious exercise just to gain some simple communications benefit for interacting with
a specific group. In addition, users may cluster only some of their connections, leaving
a large portion in a group “void.” The real task here is finding a method to automate
this more meaningful type of user clustering.

Privacy and Security
One particular challenge with user clustering involves privacy and security, and devel-
opers should keep both concepts foremost in their minds when exploring this area.

Simply clustering users does not advance your goal of engaging them. It may be an
interesting metrics technique, but in the end you must apply clustering purposefully to
maximize user engagement, increase time on site, target advertising, and build revenue.
You do this by automatically targeting conversations between clusters, sharing infor-
mation with certain clusters and not others (much like we do in our real lives). In this
way, you protect user privacy and help to build a trust relationship between users and
the social sites that they are using.

Let’s look at a practical example of a use case that was a failure point for previous
services that endeavored down this path, and which you should avoid at all costs. Let’s
say you are using clustering to identify the people a user communicates with the most
to give them privileged access to more information about one another, such as feeds
from other services they use. This sounds like a good clustering target since these are
the people a user has chosen to interact with the most; the logic is fairly sound. The
problem here is that relationships (and thus the clusters) change with each interaction
(or lack of interaction); for example, a husband and wife (in the family cluster) might
go through a particularly bad breakup. The service is now broadcasting privileged in-
formation about those users to each other when they may not want it anymore.

This is a flaw of automatic clustering and can have some serious implications for a
person’s physical security. What if our previous example involved one party who
was violent and abusive? And what if our privileged information included the user’s
location and contact information? You can easily see how physical security can become
a concern.

Establishing Trust
While the concepts underlying user clustering can lead to innovative, highly engaging
products, developers should not tread this path lightly. As described in the preceding
section, privacy and security should be paramount in any clustering system. If you have
to sacrifice features to protect your users, then so be it. Within any social service, the
trust relationship between the service and the users determines the product’s success.
If implementers of these services don’t care about their users’ privacy and security, they
should at least understand that their indifference has a cost. If a user doesn’t trust you,

42 | Chapter 2: Mapping User Relationships with the Social Graph

his interaction with your service—which might come in the form of additional profile
information or social data that could be monetized through ad targeting or other sales
mechanisms—will diminish or disappear completely.

Sharing Private User Data: Opt-in Versus Opt-out
Most of us probably share a lot of our private data with applications or containers that
we interact with on a regular basis. Whether this is Facebook or another social network
that maintains a complete user profile on us, or services like Gowalla and Foursquare
that track our locations, it’s crucial to understand how our information is being shared
with others.

Let’s face it: the true value in a social network or application is the opportunity it gives
us to interact and share information or ideas with others, so we’re unlikely to stop
putting that data out there. Even though this is the case, we should still be aware of the
different models the majority of containers use to share our personal information with
others.

The Opt-in Sharing Model
The opt-in sharing model has a simple premise. By default, an application with this
model will not share information about the user publicly or with other users that he
may be connected to. To begin sharing information, the user has to manually enable
that feature through the application.

A good example of this type of model is a location-based application.
Before using your physical location, the application will request that you
allow it to do so. If you allow the application to track your location, you
are opting in.

The opt-in sharing model is a clear benefit for the user, not the application or network
requesting the information. The user will need to either modify his sharing settings
manually or enable them through prompts that the service provides. This protects the
user by forcing him to understand exactly what he’ll be sharing through the application
before he commits.

A social service’s life-blood is having that sharing mechanism enabled. It increases user
interaction, time on site, and adoption through community awareness. But since many
users do not enable the full gamut of social sharing features, the service’s reach is often
limited and growth occurs at a slower rate.

Many services that implement this model prompt the user to allow the service to use
and share his information, because some users never venture into the service’s privacy

Sharing Private User Data: Opt-in Versus Opt-out | 43

and sharing settings. By prompting the user, the service forces him to make a choice
one way or another.

The Opt-out Sharing Model
In complete contrast to the opt-in sharing model, with the opt-out model, any user of
the service will share everything by default. The amount of data that is shared, and with
whom, depends on the needs of the service in question.

If you are not sure whether a social network or application that you are
using (and have provided personal information to) uses an opt-in or opt-
out model, it is best to assume that it uses an opt-out model. You should
check the privacy and sharing settings of any online tool that you use to
ensure that you are sharing only the information you wish to.

The benefits of this type of model definitely favor the service, not the user. Many users
will never bother to view and edit their privacy and sharing settings on a service, bliss-
fully ignorant of what the service may be doing with their information. The one benefit
to the user here is that sharing more information may, and often does, make the service
that she is using more valuable and useful.

Using an opt-out sharing model, the service can instantly capture and share all of the
information that it needs from the user without having to prompt her or wait for her
to enable the appropriate setting. This approach increases the service’s adoption rates,
since more information is being shared and interaction between users will likely
ramp up.

Understanding Relationship Models
As we delve further into the core concepts underlying a user’s relationships with people
and objects, and how applications can use that information, we need to understand
the basic types of relationships that users have on the different social networks.

We will explore these three relationship models, which represent some of the most
popular social sites available today:

Follower model
The user interacts with many other people at once.

Connection model
The user interacts with one other person at a time.

Group model
The user interacts with small groups of people.

Each model has its own reach and complexities. In the sections that follow, we’ll ex-
plore them in more depth to see what they are all about.

44 | Chapter 2: Mapping User Relationships with the Social Graph

www.allitebooks.com

http://www.allitebooks.org

The Follower Model
In the follower model, the user is always interacting with the majority or all of her
following. When you post something on a network developed around a follower model,
your potential reach is the number of followers you have.

This model’s focus on reach comes at the expense of privacy and deep relationship
links. Unless you’re taking the extra step to protect your messages (meaning that people
who wish to follow you must get your permission), you don’t get to choose who is part
of your social circle or to whom you broadcast messages. People will follow you based
on shared interests, the appeal or relevance of your messages, or any number of other
reasons.

Social relationships formed within this type of model tend to be limited and shallow.
The focus here is more on the “what” (messages and updates that are posted) and less
on the “who” (the person posting them). Implementers of this model tend to limit the
amount of information that can be posted in a single message or update, and may
provide only a very limited amount of social information about the individual. This
means that you will not get the same depth of social relationships that you might from
a more relationship-centric model.

Example

As you might have guessed, Twitter is a prime example of the follower model. Through
Twitter, users post messages (“tweets”) that reach their followers. Followers may in
turn retweet those posts (in most cases, giving the original user proper attribution) to
their followers, thus increasing global reach.

If a user doesn’t protect his tweets, individuals other than his followers will also be able
to see his tweets by going to his Twitter page.

Although Twitter provides mechanisms for direct messaging between users or mentions
between groups of followers, it’s built around the action of a user posting updates to
all of his followers. At its core, it’s a mechanism for quick dissemination of information
among many users.

Privacy

Unless you are taking advantage of the more extreme option to protect your tweets (to
stick with our Twitter example) or to protect your data on another service that uses the
follower model, then the vast majority of your content will be fully visible to friends,
followers, and people you’ve never met. In the case of Twitter, it has partnered with
popular search engines that can conduct real-time searches of its content, meaning that
your tweets are also displayed within search results.

Removing the Twitter example from the equation, the follower model type is rife with
privacy concerns because your interaction with the service using it is fairly global. You

Understanding Relationship Models | 45

should assume that any data that you share on sites with this model will be seen by
everyone—including people you may want to hide it from.

The Connection Model
Taking a 180-degree turn from the follower model, the connection model focuses on
personal, singular interactions with other people or objects. To this end, implementers
typically allow users to generate highly detailed and rich profile systems and tie them
to other groups, organizations, and movements.

This model focuses on shared social experiences rather than the quick dissemination
of information to large groups. Users of this model tend to share many of the most
important events of their lives—both good and bad—with their friends via text, photos,
and videos.

Example

Facebook is an ideal example of this model type. The meat of the site is constructed
around its users’ social profiles, which allows individuals to reach out and share pieces
of information with one another and interact on a very personal level.

Although the Facebook news feed acts as a global push mechanism to share information
with all of your friends, the true advantage for most active users is on the personal level.
When you post items to your Wall, your friends may comment, providing a shared
social experience. People who do not use Facebook simply as a feed mechanism for
cross-posting between multiple services (such as Twitter) can use the site to develop
highly engaging social experiences with friends, family, coworkers, or even strangers.

Between constructs such as direct messaging, status comments, groups, pages, appli-
cations, and more, Facebook offers users the opportunity to build a comprehensive
profile and interact with people on a personal level.

People who are actively engaged in Facebook are looking for different things from the
service than they would from Twitter, and in fact, casual Facebook users often comment
that they “don’t get” Twitter. This is because the two services reach their audiences in
very different ways.

Privacy

Since a connection model usually contains a vastly complex and detailed amount of
user information and personalization settings, privacy is often one of the most impor-
tant priorities for implementers. Normal implementations tend to include layered pri-
vacy settings that allow users to display different pieces of information to different
people, or to hide some data altogether by setting it to private. In addition, users gen-
erally have the option to hide the majority of their profiles from people they have not
included in their circle of friends.

46 | Chapter 2: Mapping User Relationships with the Social Graph

While sites built on this model usually have a strict security policy in place, it’s still
very difficult to secure social data and shared information. This is especially true if you
have an embedded application environment where third-party developers can build an
application that accesses the profile information of users who have added it.

Another issue is that privacy settings within this type of model can become convoluted,
especially when the application offers a high degree of customization. For example,
Facebook has a number of security pages, like those shown in Figure 2-2, which are
just a small portion of the full security features that are actually available on the site.
With this kind of complexity, users can quickly become confused and misunderstand
settings, making it easy for them to inadvertently allow unwanted parties to obtain
access to their privileged data.

Figure 2-2. Facebook privacy settings

The Group Model
The last model we’ll look at, the group model, is based upon the interactions and shared
experiences of a group of like-minded individuals or people with similar interests,
backgrounds, or situations. You can think of this much like hanging out with a group
of friends—you have things in common that make you want to spend time together,
sharing experiences and learning from one another. The same is true for the group
model. You are interacting with a micrograph, a small portion of your entire social
graph. There may be one or many groups in your graph, and some may overlap when
there are people who bridge the gaps between multiple areas of interest.

Now let’s explore the simple and complex iterations of this type of graph.

Understanding Relationship Models | 47

Simple group model: User-defined groups

At a very basic level, you can establish the group model by simply providing predefined
methods for users to manually add themselves (and others) to communication clusters
such as groups, pages, or initiatives. The onus is on the user to define the group rela-
tionships and then manage those groups when relationships change.

If your entire service is built on such a model, clustering comes naturally. The problem
here lies in segmenting a large relevant social graph into pieces when you want to offer
a service that is not just focused on group relationships, but also on the individual, her
profile, and close interactions with other users.

There are many examples of this type of model, since allowing users to group
themselves is a simple matter of defining the space, security, and communication tools
and methods. These examples include:

Yahoo!/Google groups
These are an example of the simple group model at its purest. Both of these group
products have overarching companies with standardized profile systems, as well
as users who may have many connections and contacts from their mail, profile, or
application systems. Each group uses the user’s Yahoo! or Google account as a
base but allows individuals with similar interests to section themselves off in a
small communications bubble, where they can speak and interact with like-
minded users.

Facebook
Even though the main driver behind a lot of what Facebook delivers as a platform
lies within its connection model, the company has integrated numerous tools—
such as Groups and Pages—to allow users to organize themselves into groups of
like-minded individuals.

Many other products and services integrate this type of grouping system because it
gives people the freedom to interact with the service and with other users in exactly the
ways they wish.

The simple one-to-few clustering examples are some of the easier to secure.
Users build their own groups or pages and then usually define a series of privacy and
visibility settings; for instance:

• How communications are sent (email digest, SMS, etc.)

• Whether someone outside the group can view group messages

• Whether administrators have to approve messages before posting

• Whether people requesting access to the group have to be accepted by the admin-
istrator(s) prior to being added

Users can manually tune these security and privacy controls to create a very closed
group environment or open it up so that the entire world can join in and view the
comments.

Example.

Privacy.

48 | Chapter 2: Mapping User Relationships with the Social Graph

Complex group model: Automatic clustering

Now that we have explored the simple version of the group model, let’s look at a more
complex iteration. It’s no secret that we naturally form clusters and groups for the
people that we choose to or need to interact with; we’ve already covered this in great
detail. We do this automatically in our real lives, placing people into different groups
and accordingly adapting the methods and approaches we use to interact with them.

This is the core concept behind the complex group model: automatic clustering of users
into communication channels where each group is shown different content depending
on the nature of that content and the group’s privileges. For instance, if you are posting
photos of a New Year’s Eve event at which you drank a little too much, you may want
to expose those photos only to your close friends—not to your boss.

When done right, automatic clustering can provide online users with a great deal of
privacy, security, and peace of mind. The tricky part is implementing it correctly and
erring on the side of caution when a message’s content is in dispute.

Before we began our discussion of models, we explored the real-life social
graph and the ways in which it relates to our online social graphs. When it comes to
the complex group model, the real-life social graph is the best example we have.

Even though companies such as Facebook and Google have attempted to build the
complex model into their graphs and users’ interactions, there’s currently no true,
complete representation of it in the sense of automatic, secure, private clustering that
allows users to interact with others in groups. A system would have to be smart enough
to recognize the intricacies of social relationships and the context of each user update
to correctly categorize them into an appropriate group or range of groups. Facebook is
definitely leading this charge with its privacy settings, Pages, and Groups—all of which
allow a user to manually define his own user clusters—but we’re still a long way from
being able to develop this type of interface.

Of all the models we have examined in these last few sections, this group model
contains the highest degree of complexity when automatic clustering is put in place,
meaning that it has the trickiest set of privacy settings in a (most likely) layered ap-
proach. In the past, companies have attempted to autocluster users based on commu-
nication frequency, where those users you speak with most frequently receive the
highest level of viewing privileges. This would be fine if the people you talk to most
often are the people you wish to share everything with (e.g., your boss). The problem
is that communication frequency alone is not the only determining factor for privileges.
Other considerations include:

• Location

• Relationship

• Political affiliation

Example.

Privacy.

Understanding Relationship Models | 49

• Place of work

• Shared interests

And the list goes on; there is an infinite amount of methods for clustering users. The
real challenge is finding methods for defining clusters without sacrificing user privacy
and security. With the complex group model, implementing privacy and security
measures can be truly tricky and should not be attempted without a solid plan in place.
Breaking the trust relationships with your users by accidentally leaking some of their
supposedly secure information to the wrong source can be an application killer.

Relationships Versus Entities
As we explore the concept of user relationships on the Web, we realize that a user’s
social graph extends far beyond her connections to other people and groups. A user
may interact with many more common interest sources on the Web, moving far beyond
a person-to-person relationship cluster. This is where the concept of entity relation-
ships comes into play.

Entities consist of any links to a root user’s behaviors, such as searches she conducts,
websites she visits, or online purchases she makes. We can map a user to these entities
with the intention of grouping her into additional targeted clusters. In doing so, we
extend the traditional model of the social graph into a rich, interwoven online person-
ality, thereby helping companies and applications personalize a user’s web experience
through highly funneled advertising or specially targeted products.

Let’s break down the entity and relationship links into a practical example. Suppose
we host an application on a social network that provides content and ads targeted to
each user. Suppose also that this social network provides web search capabilities, tracks
the searches that a user makes, and has a social graph providing links to her
family and friends. If we look at the user’s search history, we see that she searches for
fishing and camping equipment often. We now know that our user has some interest
in fishing and camping. If we then correlate that hobby with her relationships to find
any linked users who also like fishing or camping, we now have a highly targeted cluster
that we can drive content for. This is an extremely personalized state developed just
for that one user, all built without her ever knowing that her online habits and con-
nections have allowed the application to target her in a very singular way.

Regardless of whether all of these facilities are available to an application developer,
building a successful social application relies heavily on the developer’s understanding
of how to create a relevant social graph for a user. Developers can also take
advantage of information that users have entered within their social profiles by
mapping the levels of communications between a group of users or harnessing any
number of other social indices.

50 | Chapter 2: Mapping User Relationships with the Social Graph

A one-size-fits-all approach to online experiences no longer applies on the social web.
Content has always been promoted as king, but without any relevance to the user, it
may fall on deaf ears.

Building Social Relevance: Exploring the
Facebook Social Graph
Now that we have a good core understanding of many aspects of working with a social
platform and what makes up a user’s social interactions on it, let’s take a look at one
that has had quite a lot of success at developing the social web: Facebook. As a major
player in the social platform space, Facebook has a vastly relevant, rich social graph
that extends far beyond the confines of its site.

Even though Facebook has a lot of proprietary implementations on its platform, it also
supports and implements a wide array of open source initiatives, including (but by no
means limited to):

• OAuth 2

• The Open Graph Protocol

• Hadoop

The company has also contributed several projects to the community, including
HipHop for PHP, which transforms base PHP into highly optimized C++.

Facebook is the largest social network in the space, with a successful infrastructure
built around bringing an online presence to the real lives of its users. Therefore, it would
be neglectful of this book to not explore a few of the basic precepts behind how this
platform works to connect people, companies, and entities.

Building Upon Real Identity
One of the most important concepts to understand about the social graph on Facebook
is real identity. Facebook strongly believes in having its users build their profiles upon
their true, real-life identities.

Unlike many social networking sites, which allow a person to refer to himself using an
alias and withhold his personal information from the outside world, Facebook delivers
an experience that is actually enriched as users share more of their real identities.

During the signup process, Facebook does a good job of enforcing this core concept,
rejecting names that it suspects are aliases (Figure 2-3). Requiring users to input their
sex and birthday also reflects the site’s emphasis on delivering a real-world experience
to its user base.

Real identity is also a good concept to keep in mind when you’re building systems on
social networking containers. It is in your best interest to stick with leveraging profile

Building Social Relevance: Exploring the Facebook Social Graph | 51

systems that include information that can be traced back to an actual person, because
this is what allows you to not only target an application to a specific person, but also
to make it incredibly relevant for her.

Understanding the Viral Channels
When you’re building out applications that have their social features tied to a specific
social network, understanding that platform’s viral channels will help you increase your
user base and the number of engaged users.

A social networking container’s viral channels are those services that are available to a
developer to help you promote the application, message or invite users, and generally
put yourself front and center to people using the service.

Facebook uses many such channels for reaching out to people on the network, and
application developers can take advantage of them to build up their services and grow
their applications. These include:

• Pushing new activities (updates) to a user’s news feed to show an action that a user
has taken and attempt to enlist new users

Figure 2-3. Facebook signup screen, preventing an invalid user from creating an account

52 | Chapter 2: Mapping User Relationships with the Social Graph

• Promoting through the notification system to encourage a user to interact with the
application or service and with other users, thereby increasing his overall engage-
ment and time on site

Understanding and taking advantage of a platform’s available channels for growing
your application and increasing user engagement is an important component to devel-
oping a successful, high-quality application.

Building User Groups
Since our current social networks don’t yet allow for the autogeneration of user
clusters based on real-world relationships, providing users with a method to cluster
themselves based on shared interests or backgrounds will help them connect with oth-
ers as they wish.

Two main channels that Facebook uses for this purpose are Pages and Groups. These
mechanisms allow people to follow (or like) companies or topics that they are interested
in, as well as have a central discussion space to interact with people that share the same
interest.

Capitalizing on these group relationships is also a very important aspect of application
development. Groups and Pages, which are displayed as “entities” within the user’s
social profile, give a developer a wealth of knowledge about a person beyond what her
profile can tell you. This information will allow you to build a relevant social graph
within the application or site that you are constructing.

Avoiding Irrelevant Social Graphs
One major issue you might face with a social platform hosting applications that leverage
a user’s social profiles, friendships, and activities has to do with the nature of the social
graph these applications are building.

As a social platform creator, you want your users to add friends or connections that
have some relationship significance to them. In other words, you want to be able to use
a user’s relationships and connections to grow the platform; for example, by:

• Increasing the number of actionable activities that a person posts

• Increasing the number of group interactions through activities

• Promoting features or items through user relationships (i.e., word of mouth)

Basically, you want to gain as much as possible from a user’s simple interactions with
his friends and with the platform itself.

Now, if you don’t have these relationships to begin with and you start introducing
social games that require players to add friends to progress, then you get into a partic-
ular predicament. A user who lacks the existing relevant connections will seek out other
people who play the game but may otherwise have no shared interests or relationship

Building Social Relevance: Exploring the Facebook Social Graph | 53

to the user. This creates a graph that’s relevant within the game itself (since the users
have direct interactions in one way or another every time they play) but almost entirely
unusable for the rest of the platform.

To complicate matters, it’s difficult for a user to move from an irrelevant graph to a
relevant one by adding friends and connections, because his profile is already filled with
people he doesn’t really know on a personal level. For many people (not all, of course),
this prospect would make them hesitant to interact socially and share information
about themselves with perfect strangers.

Facebook is one example that has succeeded in building relevance in its social graphs
while introducing social applications to its users. The important thing to remember
here is that Facebook became known as a social engagement platform long before it
served applications. Building up your user base prior to launching social applications—
thus focusing your attention on social engagements—can greatly improve the relevance
of the social graph that users construct on your platform.

Defining Entity Likes and Dislikes Through
the OpenLike Protocol
Now that we have a good understanding of entities, let’s look at a practical open tool
that allows us to implement them: OpenLike.

The OpenLike protocol gives us a quick way to attach entities to our existing social
profiles. It is similar to the Facebook Like utility, but integrates a number of different
sharable sources within a small, easy-to-assemble package. By defining a standard way
for users to flesh out their social graphs with like and dislike preferences, OpenLike
expands the user/entity relationships on the Web.

We’ve already explored entities and relationships in depth, and how important they
are to the future of social interactions, so let’s get right into what the OpenLike
protocol comprises.

Integrating the OpenLike Widget
Now that we understand what OpenLike is and how you can use it, let’s take a look at
how to integrate the widget on your own sites. The process is quick and painless, and
at a base level, involves only three elements:

• An HTML page title

• The script include

• A JavaScript initialization call

Here’s what the code looks like:

54 | Chapter 2: Mapping User Relationships with the Social Graph

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>
<title>OpenLike Widget Example</title>
</head>
<body>
<!-- include the OpenLike JavaScript -->
<script type="text/javascript" src="http://openlike.org/v1/openlike.js"></script>

<!-- initialize the widget -->
<script type="text/javascript">OPENLIKE.Widget();</script>
<body>
</html>

Basically, we have a simple HTML page that includes the title that we want to use
for the like event as the shell. Next, we have the script include that introduces the
OpenLike library to the page. The source of the library should be http://openlike.org/
v1/openlike.js. Finally, we simply make a call to OPENLIKE.Widget() wherever we want
to render the widget.

Once you’ve installed the OpenLike widget, the user can “like” your page through a
number of different web sources. Figure 2-4 displays a simple implementation of nu-
merous different sharing mechanisms for the associated sites.

Figure 2-4. How the OpenLike widget renders

How the Shared Likes Appear
Once the user interacts with a site including the OpenLike widget and shares some
content by “liking” it, that action will be posted out to the appropriate source.

For instance, if you “like” the example implementation page shown in Figure 2-4
using the Facebook option, your Facebook profile will display a new like notification
(Figure 2-5).

Figure 2-5. An OpenLike activity event on Facebook

Defining Entity Likes and Dislikes Through the OpenLike Protocol | 55

http://openlike.org/v1/openlike.js
http://openlike.org/v1/openlike.js

The process is that simple. OpenLike is a base widget that builds upon any single
sharing or like functionality to allow users to push out notifications to whatever
source they choose.

Conclusion
Integrating social interactions on the Web, whether through a platform itself or an
application built on it, boils down to a few core concepts around how people interact
with one another in real life and online.

In a perfect world, we could interact with social features on the Web in the same way
that we do in our real lives, but online social interactions work differently depending
on the product or container in which they take place.

In this chapter, we’ve explored many features of a social container and how we interact
online. We’ve looked at the biggest player in the social container space, Facebook, and
have seen how one open source initiative, OpenLike, can help developers promote their
sites or services to many different sharing mechanisms and increase user growth.

Now that we understand these basic concepts, we can move on to practical social
container implementations and see how a container can be built from open source
initiatives.

56 | Chapter 2: Mapping User Relationships with the Social Graph

CHAPTER 3

Constructing the Foundation of a
Social Application Platform

Once you understand the core concepts behind an application platform, the next step
is to define the skeleton for your application and platform. Apache Shindig is a widely
accepted standard for creating the container infrastructure for hosting OpenSocial
gadgets. This infrastructure allows developers to use a simplified gadgets XML spec file
to mark up their gadgets.

What You’ll Learn
This chapter will focus on building the foundation of a social networking container.
In the following sections, we will explore several root technologies and concepts, in-
cluding:

• Using Apache Shindig to render gadgets

• Setting up a sample social networking website using Partuza

• Building and running a custom OpenSocial gadget using Shindig

At the end of the chapter, we will use the Shindig installation we’ve set up to build our
first OpenSocial gadget, applying the lessons we will learn in the following sections.

Apache Shindig
Shindig is an open source Apache project that functions as an OpenSocial container.
It allows developers to quickly and easily host OpenSocial gadgets by providing the
code to render gadgets and proxy requests, and to handle REST and RPC requests.

Shindig’s architecture is split into four separate parts, as shown in Figure 3-1 and de-
scribed in the list that follows it.

57

Gadget container JavaScript
The handler for managing an OpenSocial gadget’s security, communication, and
UI and JavaScript features

Gadget rendering server
Renders the gadget XML document (the definition for a gadget) into HTML and
JavaScript for the container JavaScript to expose

OpenSocial container JavaScript
The JavaScript environment that sits on top of the gadget container JavaScript to
provide OpenSocial API functionality

OpenSocial data server
Provides a mapping implementation of the container to the server interface so de-
velopers can implement their own data syncs

Shindig has a couple of core goals:

• To allow new sites to develop a mechanism for hosting gadgets with very minimal
effort.

• To become a language-neutral platform in which the container is provided in many
different languages. Currently, only container versions in PHP and Java are avail-
able and supported.

Setting Up Shindig
Before we begin setting up applications, using personal information from a container,
or syndicating social activities and notifications, we have to lay the foundation for
running applications on a server.

This process will guide you through setting up Apache Shindig on localhost (running
locally on your computer). There are prerequisites for installing Shindig in either
language.

Figure 3-1. Shindig’s architectural layers

58 | Chapter 3: Constructing the Foundation of a Social Application Platform

PHP:

• Apache web server with mod_rewrite enabled

• PHP 5.2.x with the JSON, simplexml, mcrypt, and curl extensions enabled

Java:

• Servlet container supporting Web Application 2.3 or above and JDK 1.5 or above

We will be implementing the PHP version of the Shindig environment, so the following
steps assume that the Apache web server is installed and PHP 5.2.x is available. We
will cover how to customize them both to meet the minimum requirements.

Installing Shindig on Mac OS X (Leopard)
This section guides you through installing Shindig on a local Apache server on Mac
OS X (Leopard). This installation will allow you to run OpenSocial gadgets using the
URL structure http://shindig/gadgets/ifr?url=gadget_url.

Requirements

This installation guide requires that you have the following server and program envi-
ronments installed on your machine:

• Apache HTTP Server (see the section “Installing Apache HTTP” Server in the Ap-
pendix [available online, see Preface for details] for installation instructions)

• PHP 5.2.x (see the section “Setting Up Your PHP Environment” in the Appendix
for installation instructions)

First, we need to create a directory to house the Apache Shindig code base. This direc-
tory structure should be set up at the root of the localhost directory. In most
instances, Apache comes preinstalled on Mac OS X, and the localhost directory
is /Library/WebServer/Documents.

Once we’ve created the directory and we cd into it, we can check out the Shindig source
code from the Subversion (SVN) repository. Load Terminal and run the following
commands:

mkdir /Library/WebServer/Documents/shindig
cd /Library/WebServer/Documents
svn co http://svn.apache.org/repos/asf/shindig/branches/2.0.x/ shindig

In this example, we are checking out the 2.0.x branch of Shindig rather
than trunk, since I used the 2.0.x branch to document this setup. If you
would like to download the most recent version of Shindig from the
trunk instead, use the following SVN checkout command:

svn co http://svn.apache.org/repos/asf/shindig/trunk/ .

Setting Up Shindig | 59

http://shindig/gadgets/ifr?url=gadget_url

Next, we have to add a hostname entry for Shindig in our hosts file, which Apache can
use to identify our new Shindig URL. This allows us to use http://shindig/ as the root of
our Shindig container instead of hijacking http://localhost for the task.

Our hosts file is located at /etc/hosts. Since it is also a system file, we need to use sudo
vi to edit it:

sudo vi /etc/hosts

Once the hosts file loads, there should already be an entry for localhost, such as:

127.0.0.1 localhost

We need to add the Shindig reference to this entry so we can reference our new shin-
dig directory. Your revised entry should look like this:

127.0.0.1 localhost shindig

Save your hosts file and exit. Next, we need to enable virtual hosts in Apache to allow
us to point to http://shindig/ and have it reference the shindig directory we set up in our
localhost directory. In addition, we will enable mod_rewrite (one of Shindig’s require-
ments) since this will be under the same file. Enabling mod_rewrite allows Shindig to
dynamically rewrite portions of a URL structure to point to other files within the Shin-
dig code base, without the developer having to worry about it.

sudo vi into your Apache httpd.conf file to get started:

sudo vi /etc/apache2/httpd.conf

A short distance into the file, you’ll see a list of LoadModule calls. Search for the reference
to rewrite_module in this list; it should look like this:

#LoadModule rewrite_module libexec/apache2/mod_rewrite.so

The # symbol at the beginning of the line is commenting out the mod_rewrite module
within Apache. Remove that # symbol to enable this functionality. The line should
now look like this:

LoadModule rewrite_module libexec/apache2/mod_rewrite.so

Next, we need to enable virtual hosts to be able to specify where http://shindig/ will
point. Look for the following line near the end of the same httpd.conf file:

#Include /private/etc/apache2/extra/httpd-vhosts.conf

As before, this line is commented out. Remove the # comment so that the line looks
like this:

Include /private/etc/apache2/extra/httpd-vhosts.conf

Save and close the httpd.conf file. Now that our virtual host file is available, we can add
in the entries for the folder that http://shindig/ will point to. Within the Apache directory
is an “extra” folder that houses the virtual hosts file. sudo vi into this file:

sudo vi /etc/apache2/extra/httpd-vhosts.conf

60 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://shindig/
http://localhost
http://shindig/
http://shindig/
http://shindig/

Unless you have previously edited this file, there will be a few example hosts in the file
after the following line:

NameVirtualHost *:80

These examples will prevent Apache from starting up, so remove every host reference
after that line (but not the line itself).

Now that we have a clean file, we need to add two new entries, one for localhost and
one for Shindig. We are adding in a reference for localhost because if a hostname typed
in a browser does not have an entry available (e.g., http://example/), Apache automat-
ically uses the first entry, which defaults to localhost. Add the following entries to the
bottom of the file, substituting the /Library/WebServer/Documents lines with the loca-
tion of your localhost public directory (if it’s not /Library/WebServer/Documents):

<VirtualHost *:80>
 ServerName localhost
 DocumentRoot /Library/WebServer/Documents
</VirtualHost>

<VirtualHost *:80>
 ServerName shindig
 DocumentRoot /Library/WebServer/Documents/shindig/php
 <Directory /Library/WebServer/Documents/shindig/php>
 AllowOverride All
 </Directory>
</VirtualHost>

Save and close the httpd-vhosts.conf file. Now that all of our Apache configurations are
in place, we need to satisfy PHP’s requirements—namely, by enabling the JSON, sim-
plexml, mcrypt, and curl extensions. JSON and simpleXML should already be active
in PHP, so we’ll just need to activate curl and mcrypt. While we’re at it, sudo vi into
the location housing your php.ini file (in the following example, /etc/php.ini):

sudo vi /etc/php.ini

We’re looking for two lines in the php.ini file, both preceded with semicolons. For
convenience, I’ve stacked them here, though they don’t appear this way in the file:

;extension=php_curl.dll
;extension=php_mcrypt.dll

Enable both lines by removing the semicolon at the beginning:

extension=php_curl.dll
extension=php_mcrypt.dll

Now that our required extensions are available, we need to check, and adjust as nec-
essary, a few last PHP configuration settings.

Search for the following lines within the php.ini file (as with the previous example, they
do not actually appear consecutively, and their values may be different).

Setting Up Shindig | 61

always_populate_raw_post_data = Off
short_open_tag = Off
magic_quotes_gpc = On

If any of your values match those in the preceding lines, you’ll need to change them to
their opposite values as follows:

always_populate_raw_post_data = On
short_open_tag = On
magic_quotes_gpc Off

Save and close php.ini. For all of our Apache and PHP changes to take effect, we’ll need
to restart our Apache server with the apache restart command:

sudo apachectl restart

Installing Shindig on Windows
This section guides you through installing Shindig on a local Apache server on Win-
dows, allowing you to run OpenSocial gadgets from http://shindig/gadgets/ifr?url=
gadget_url.

Requirements

This installation guide requires that you have the following server and program envi-
ronments installed on your machine:

• Apache HTTP Server (see the section “Installing Apache HTTP Server” in the Ap-
pendix [available online; see Preface for details] for installation instructions)

• PHP 5.2.x (see the section “Setting Up Your PHP Environment” in the Appendix
for installation instructions)

These installation instructions assume that Apache and PHP are installed to the fol-
lowing installation directories:

• PHP: C:\php

• Apache: C:\Program Files\Apache Software Foundation\Apache\

If your installation paths are different, swap all paths to files in these directories with
your own paths when proceeding through the following steps.

To begin the Shindig installation, we first need to obtain the source code for the project
from the Shindig trunk. Go into your localhost htdocs directory (by default, Apache
sets this to a path such as C:\Program Files\Apache Software Foundation\Apache
\htdocs), create a directory for Shindig, and check out the code using Subversion. Open
up a command shell and type in the following:

mkdir C:\Program Files\Apache Software Foundation\Apache\htdocs\shindig
cd C:\Program Files\Apache Software Foundation\Apache\htdocs\shindig
svn co http://svn.apache.org/repos/asf/shindig/trunk/ .

The source code will now download into your shindig directory.

62 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://shindig/gadgets/ifr?url=gadget_url
http://shindig/gadgets/ifr?url=gadget_url

If you don’t have Subversion installed on your Windows machine, refer
to the Appendix for installation instructions.

Our next task is to configure Apache correctly to meet Shindig’s requirements. Load
the Apache config file at C:\Program Files\Apache Software Foundation\Apache\conf
\httpd.conf.

Search for the reference to rewrite_module in this list. The line should look like this:

#LoadModule rewrite_module modules/mod_rewrite.so

The # symbol at the beginning of the line is commenting out the mod_rewrite module
within Apache. Remove that # symbol to enable this functionality. The line should
now look like this:

LoadModule rewrite_module modules/mod_rewrite.so

Next, we need to enable virtual hosts so we can specify where http://shindig/ will point.
Look for the following line near the end of the same httpd.conf file:

#Include conf/extra/httpd-vhosts.conf

As before, this line is commented out. Remove the # comment so that the line looks
like this:

Include conf/extra/httpd-vhosts.conf

Save and close httpd.conf. Within the same conf folder under your Apache directory is
another folder for “extra.” Load the httpd-vhosts.conf file in that folder at C:\Program
Files\Apache Software Foundation\Apache\conf\extra\httpd-vhosts.conf.

Unless you have previously edited this file, there will be a few example hosts in the file
after the following line:

NameVirtualHost *:80

These examples will prevent Apache from starting up, so remove every host reference
after that line (but not the line itself).

Now that we have a clean file, we need to add two new entries, one for localhost and
one for Shindig. We are adding in a reference for localhost because if a hostname typed
in a browser does not have an entry available (e.g., http://example/), Apache automat-
ically uses the first entry, which defaults to localhost. Add the following entries to the
bottom of the file, substituting the C:\Program Files\Apache Software Foundation
\Apache\htdocs lines with the location of your localhost public directory (if it’s not
C:\Program Files\Apache Software Foundation\Apache\htdocs):

<VirtualHost *:80>
 ServerName localhost
 DocumentRoot "C:\Program Files\Apache Software
 Foundation\Apache\htdocs"

Setting Up Shindig | 63

http://shindig/

</VirtualHost>

<VirtualHost *:80>
 ServerName shindig
 DocumentRoot "C:\Program Files\Apache Software
 Foundation\Apache\htdocs\shindig\php"
 <Directory>
 AllowOverride All
 </Directory>
</VirtualHost>

Save and close the httpd-vhosts.conf file. Now that the virtual host references are
in place, we can add the hosts reference to tell Windows that there is a virtual host
reference available for http://shindig/. Open your Windows hosts file at C:\Windows
\System32\drivers\etc\hosts.

Once the hosts file loads, there should already be an entry for localhost, such as:

127.0.0.1 localhost

We need to add the Shindig reference to this entry so we can reference our new shin-
dig directory. Your new entry should look like this:

127.0.0.1 localhost shindig

Save and close the hosts file. Our next step is to make our modifications to PHP to
enable Shindig’s required features. Load your php.ini file, located at C:\php\php.ini.

Search for the following extensions within the file. If any of the lines begin with a
semicolon, remove the semicolon to enable to extension:

extension=php_curl.dll
extension=php_mcrypt.dll
extension=php_openssl.dll

Now that our required extensions are available, we need to check, and adjust as nec-
essary, a few last PHP configuration settings.

Search for the following lines within the php.ini file (in the actual file, they are not
consecutive and their values may be different):

always_populate_raw_post_data = Off
short_open_tag = Off
magic_quotes_gpc = On

If any of your values match those in the preceding lines, you’ll need to change them to
their opposite values as follows:

always_populate_raw_post_data = On
short_open_tag = On
magic_quotes_gpc Off

Save and close php.ini. For all of our Apache and PHP changes to take effect, we’ll need
to restart our Apache server with the apache restart command. Open a command
prompt and enter the following (substituting the Apache path with your own):

64 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://shindig/

"C:\Program Files\Apache Software Foundation\Apache\bin\httpd.exe" -w -n
 "Apache" -k restart

Testing Your Shindig Installation
No matter which installation method you used, your Shindig implementation should
now be viewable using your new http://shindig/ virtual host. This host points to the
shindig/php directory created with the Shindig source code.

To display OpenSocial gadgets, we will point to http://shindig/gadgets/ifr within the
Shindig code base. An Apache RewriteRule loads the appropriate gadget parsing code
by accepting a GET parameter for the URL to the gadget to be parsed.

Now that we have installed and set up Shindig, we can test out the installation by
pointing our browser to:

http://shindig/gadgets/ifr?url=http://www.labpixies.com/campaigns/todo/todo.xml

You should see an OpenSocial gadget similar to Figure 3-2.

Figure 3-2. Sample OpenSocial gadget, running on Shindig

You can load any gadget this way by replacing the source of the URL with any valid
OpenSocial XML gadget file.

Setting Up Shindig | 65

http://shindig/
http://shindig/gadgets/ifr
http://shindig/gadgets/ifr?url=http://www.labpixies.com/campaigns/todo/todo.xml

With our Shindig installation up and running, we can load gadgets directly into the
browser. The Shindig installation is the backbone we’ll use to build and test all of the
OpenSocial application development features in the next few chapters.

Partuza
Now that we are able to load OpenSocial gadgets, what’s next? At this point, we are
still a long way from developing a fully featured social networking website; to do that,
we would need a user management system, registration, login, and a proper method to
load and display our new gadgets. Instead of going through the intricacies of social
networking application container development, let’s take a giant leap forward and build
out an example container with Partuza.

Partuza, shown in Figure 3-3, is an example OpenSocial social networking container
that works with Shindig. This example container has an abstraction layer for Shindig
built in, which allows users to seamlessly interact with OpenSocial gadgets by entering
in a URL to the gadget. The word “partuza” is Spanish slang for “party,” just as “shin-
dig” is American slang for the same.

Figure 3-3. Partuza

Installing Partuza will give you an immediate jumping-off point for working with
OpenSocial gadgets and creating a social networking container with minimal configu-
ration and engineering effort.

Requirements
This installation guide requires that you have the following server and program envi-
ronments installed on your machine:

• Apache HTTP Server

• PHP 5.2.x

— Apache Shindig

66 | Chapter 3: Constructing the Foundation of a Social Application Platform

See the Appendix (available online; see Preface for details) for installa-
tion instructions for the preceding requirements.

Installing Partuza on Mac OS X (Leopard)
This section will guide you through installing Partuza on a local Apache server on Mac
OS X (Leopard), which allows you to host the sample OpenSocial social networking
container at http://partuza/.

The first step is to obtain and configure the Partuza container code base. To obtain the
source code for Partuza, open Terminal and enter the following commands:

mkdir /Library/WebServer/Documents/partuza
cd /Library/WebServer/Documents/partuza
svn checkout http://partuza.googlecode.com/svn/trunk/ .

Once the checkout has completed, we need to change the permissions of the people
images directory. The web server runs under a different username and set of permis-
sions, so taking this step will allow it to write thumbnails to that directory:

chmod 777 partuza/html/images/people

Now we need to add the host entry so that the system can relate a virtual host entry
with localhost. Edit your hosts file to add this entry:

sudo vi /etc/hosts

There should be an existing entry for localhost and shindig, such as:

127.0.0.1 localhost shindig

We need to add the Partuza reference to this entry so we can reference our new shin-
dig directory. Your new entry should look like this:

127.0.0.1 localhost shindig partuza

Save and close this file. Now that the host entry is in place, we need to change the
configuration settings for http://partuza/ to our virtual hosts configuration file. Load
the virtual hosts file.

sudo vi /etc/apache2/extra/httpd-vhosts.conf

The entries for localhost and shindig should already exist in this file. After those two
entries, at the end of the file, add the following entry for Partuza:

<VirtualHost *:80>
 ServerName partuza
 DocumentRoot /Library/WebServer/Documents/partuza/html
 <Directory /Library/WebServer/Documents/partuza/html>
 AllowOverride All
 </Directory>
</VirtualHost>

Partuza | 67

http://partuza/
http://partuza/

Save and close that file. Now we’ll edit our PHP configuration to add in the extensions
and settings needed for Partuza. Load your php.ini file to begin adding them:

sudo vi /etc/php.ini

Search for “short_open_tag” and ensure that the value is set to On. Once you’ve verified
this, save and close the php.ini file.

Our next setup task is to download and configure MySQL on the system. If you already
have MySQL installed, you can skip this step. Go to http://www.mysql.com/downloads/
mysql/ and download the MySQL .dmg image for your system. Once it’s downloaded,
double-click the .dmg file to mount the image and view its contents.

Run the installer by double-clicking the mysql-5.1.50.osx10.5-x86_64.pkg file (or
whatever package name you downloaded). Go through the installation with the default
settings.

Once the installation has completed, double-click the MySQL.prefPane item in the
mounted image to add the MySQL preference pane to the system preferences panel.
Select the “Automatically Start MySQL on Startup” option and then click Start MySQL
Server.

To be able to execute MySQL commands from the Terminal, we need to add the
MySQL directory to our global system profile. From the Terminal, load the system
profile:

sudo vi /etc/profile

At the bottom of the file, add:

PATH=$PATH:/usr/local/mysql/bin
export PATH

Save and close the file, and then close and reopen the Terminal for the changes to take
effect. Our MySQL installation should now be complete. To test it out, type mysql on
the command line.

You will be presented with the MySQL Terminal interface, which allows you to edit
and configure your databases. To see the current databases on the system, type show
databases; after the mysql> prompt.

Once you press Enter, you will be presented with the current databases on your system,
which should look similar to this:

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

68 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://www.mysql.com/downloads/mysql/
http://www.mysql.com/downloads/mysql/

If everything was successful, type exit to leave the MySQL Terminal interface. We can
now create a database for Partuza to store user profile and social information. Within
the partuza folder is a file called partuza.sql, which we will use to import default settings
for the database. To accomplish this, we just need to run a few commands:

cd /Library/WebServer/Documents/partuza/
sudo mysqladmin create partuza
sudo mysql partuza < partuza.sql

The partuza database has now been created on your system. To access this database in
the future, run the following command:

sudo mysql partuza

We now need to configure Shindig to use the Partuza data handler. To do this, add a
new configuration file to the shindig directory as follows:

cd /Library/WebServer/Documents/shindig/php/config
vi local.php

Within the new local.php file, add the following PHP code:

<?php
$shindigConfig = array(
 'person_service' => 'PartuzaService',
 'activity_service' => 'PartuzaService',
 'app_data_service' => 'PartuzaService',
 'messages_service' => 'PartuzaService',
 'oauth_lookup_service' => 'PartuzaOAuthLookupService',
 'extension_class_paths' => '/Library/WebServer/Documents/partuza/Shindig'
);

Save and close the file, and then restart Apache. The values entered into local.php will
override those in container.php, allowing you to keep the SVN repository files intact.

Shindig is now fully set up and configured for you to use.

Installing Partuza on Windows
This section will guide you through installing Partuza on a local Apache server on
Windows, which allows you to host the sample OpenSocial social networking con-
tainer at http://partuza/.

Partuza requires a MySQL database installation, which is used to store all social and
user information for the container. Since this is the storage backbone for Partuza, this
is where we will start. If MySQL is already installed on your computer, you may skip
this step.

Go to http://www.mysql.com/downloads/mysql/ to download the recommended
MySQL MSI installer (either 32-bit or 64-bit, depending on your Windows version).
Once the download is complete, double-click the .msi file to begin the installation. On
the first screen that appears, click Next, which will take you to another screen where
you can select a configuration type. Select Standard Configuration from the options

Partuza | 69

http://partuza/
http://www.mysql.com/downloads/mysql/

and click Next; the installer will now create a general-purpose configuration, which
you can fine-tune later as needed.

Next, you will be presented with a screen where you set Windows options for the
installation. Select both “Install As Windows Service” and “Include Bin Directory in
Windows PATH.” The second option allows us to work with the MySQL instance
through the command line. Your configuration settings should look like Figure 3-4.

Figure 3-4. MySQL Server Instance Configuration Wizard

Once you’ve selected these options, click Next. The next screen presents security op-
tions for the MySQL installation. Make sure that Modify Security Settings is selected,
and enter in a new root password. There is no need to create an anonymous account
for this installation, so leave that option unchecked. Click Next and then click Execute
to finalize the installation.

MySQL is now installed, and your Start menu should include a MySQL directory.
Within that directory is an executable called MySQL Command Line Client, which
allows you to work with your MySQL databases through the command line. To test
the installation, load this program. You’ll be asked for the password you entered as the
root password during the installation. You should now be presented with the mysql>

70 | Chapter 3: Constructing the Foundation of a Social Application Platform

prompt, from which you can enter SQL commands. View your current databases by
entering show databases;.

Once you press Enter, you will be presented with a list of the current databases on your
system, which should look similar to this:

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

Now that you’ve verified the installation, you can close the MySQL command-line
utility.

The next step is optional but very much recommended for users who are not familiar
or comfortable with working in a command-line SQL environment, or for those who
prefer a richer set of tools. We will install a visualization utility called phpMyAdmin
on top of the MySQL installation; this utility will allow us to work quickly with data-
bases and tables, import database configuration settings, and explore a host of other
features. The next steps for installing Partuza will assume that phpMyAdmin has been
installed on the system.

Go to the phpMyAdmin download site at http://www.phpmyadmin.net/ and click the
option to download the most recent version of the tool (click the Download text instead
of the .zip/.gz text). This presents you with a number of download options for
phpMyAdmin. Download the .zip packages for all languages or just English. Once
you’ve downloaded the file, unzip it.

The content of the zip file is a folder containing all of the source and configurations
needed to run phpMyAdmin. Copy the folder over to the root of your localhost direc-
tory and rename the folder to phpmyadmin to make it easier to load from localhost.

phpMyAdmin has several core requirements for the PHP installation on the host it runs
on, including:

• PHP version 5.2.0 or newer with session support and the standard PHP library
(SPL) extension.

• zip extension to support uploading zip files.

• mbstring and type extensions to support multibyte strings (UTF-8, which is cur-
rently the default).

• gd2 extension to display inline thumbnails of JPEGs (“image/jpeg: inline”) with
their original aspect ratio.

• mcrypt extension if using the “cookie” authentication method. mcrypt is also
strongly suggested for most users and is required in 64-bit machines. In addition,
not using mcrypt will cause phpMyAdmin to load pages significantly slower.

Partuza | 71

http://www.phpmyadmin.net/

Now that we have our requirements down, let’s make the necessary adjustments to get
phpMyAdmin working. Load your php.ini file (e.g., C:\php\php.ini) for editing.

Search for the following lines and make sure they are enabled (i.e., remove any leading
semicolons from each line):

extension=php_bz2.dll
extension=php_mbstring.dll
extension=php_zip.dll
extension=php_mcrypt.dll

In addition, search for “short_open_tag” and ensure that its value is set to On. Close
the php.ini file and restart Apache.

We now meet the requirements for running phpMyAdmin, so let’s go ahead and
configure our database connections. Create a directory called “config” under the
phpadmin folder within localhost and make sure that it is not read-only (right-click it
and select Properties for details). This is a manual security step that will be used to
output the required database and system configuration settings.

In a browser, load http://localhost/phpmyadmin/setup/index.php to begin the visual
configuration of phpMyAdmin. On the page that loads, you will see that no servers
have been configured yet. Click New Server to add one. This new page provides you
with basic configuration settings for the server. Configure the server with the following
settings, leaving blank anything not listed:

• Server hostname: localhost

• Connection type: tcp

• PHP extension to use: mysqli (make sure the extension is turned on)

• Authentication type: cookie

• User for config auth: root

• Password for config auth: enter the password you used for the MySQL root account

Click Save to return to the previous screen, and click Save at the bottom of that screen
as well. Your config file will now be created in the config directory we set up earlier.
Move the config file from phpmyadmin/config/config.inc.php to phpmyadmin/con-
fig.inc.php so that phpMyAdmin can use it. Once you’ve moved the file, delete the
config directory.

phpMyAdmin should now be configured to work with your database. To test the in-
stallation, go to http://localhost/phpmyadmin/index.php in a browser (make sure you
have cookies enabled). To view the panel, log in with root and the password you entered
earlier. You should see something similar to Figure 3-5.

72 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://localhost/phpmyadmin/setup/index.php
http://localhost/phpmyadmin/index.php

Figure 3-5. The phpMyAdmin panel

Under “Create new database” below the “MySQL localhost” heading, enter partuza
(case sensitive). Click the drop-down box to the right of the input field, select
“utf8_unicode_ci” from the bottom of the list, and then click Create to create the da-
tabase that Partuza will use.

Once the database has been created, the database screen will come up. At the top of
the page, click the Import tab. At the top of the new screen, you’ll see a button to
“Browse” for a file to import. Click that button and select the partuza.sql file in your
partuza directory at C:\Program Files\Apache Software Foundation\Apache\htdocs
\partuza. Finally, click Go at the bottom right of the screen. This will import all the
tables Partuza requires into the new database. You should see a success message once
the import is complete.

Now that all the prerequisites are in place for Partuza, we can download and set up the
project on top of Shindig. We need to create a new directory within localhost for Partuza
and then download the source code to that directory. Open a command prompt and
input the following (substituting localhost paths for your own):

mkdir C:\Program Files\Apache Software Foundation\Apache\htdocs\partuza
cd C:\Program Files\Apache Software Foundation\Apache\htdocs\partuza
svn co http://partuza.googlecode.com/svn/trunk/ .

The code required to run Partuza will now download to the current directory. Once it
has completed, close the command prompt. Next, we have to add a virtual host entry
for Partuza to allow us to load it from http://partuza/. Edit the Apache virtual host file
at C:\Program Files\Apache Software Foundation\Apache\conf\extra\httpd-vhosts.conf
and add the following entry to the bottom of the file:

<VirtualHost *:80>
 ServerName partuza
 DocumentRoot "C:\Program Files\Apache Software
 Foundation\Apache\htdocs\partuza\html"
 <Directory>
 AllowOverride All
 </Directory>
</VirtualHost>

Partuza | 73

http://partuza/

Save and close the httpd-vhosts.conf file. Now we can add the hosts reference to tell
Windows that there is a virtual host reference available for http://partuza/. Open
your Windows hosts file at C:\Windows\System32\drivers\etc\hosts.

There should be an existing entry for localhost and shindig, such as:

127.0.0.1 localhost shindig

We need to add the Partuza reference to this entry so we can reference our new shin-
dig directory. Your new entry should look like this:

127.0.0.1 localhost shindig partuza

Save and close that file. There are a few Partuza configuration settings that we need to
adjust to get it working on localhost.

Within the downloaded Partuza files, edit partuza/html/index.php. Search for the fol-
lowing line:

$uri = $_SERVER["REQUEST_URI"];

And change it to:

$uri = PartuzaConfig::get('library_root') . $_SERVER["REQUEST_URI"];

This change enables Partuza to load files from the right path on your local machine.
Next, edit partuza/html/config.php. Search for the following line:

'db_passwd' => ''

and add your MySQL database password as the value. Now Partuza can connect to the
MySQL partuza database.

The final step is to configure Shindig to use Partuza. Navigate to your C:\Program Files
\Apache Software Foundation\Apache\htdocs\shindig\php\config directory and create a
new file called “local.php.” Edit this file and input the following code block:

<?php
$shindigConfig = array(
 'person_service' => 'PartuzaService',
 'activity_service' => 'PartuzaService',
 'app_data_service' => 'PartuzaService',
 'messages_service' => 'PartuzaService',
 'oauth_lookup_service' => 'PartuzaOAuthLookupService',
 'extension_class_paths' => 'C:\Program Files\Apache Software
 Foundation\Apache\htdocs\partuza\Shindig'
);

Save and close the file, and then restart Apache to have the settings take effect. This
new file will override the default Shindig configuration variables, which allows Partuza
and Shindig to play nicely together and work as one cohesive unit.

Partuza should now be configured to work with Shindig and MySQL.

74 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://partuza/

Testing the Partuza Installation
To try out your new social networking container, open a browser and navigate to http:
//partuza/. Once the container loads, click the Register link at the top of the page. Enter
some sample user data and click Register. If everything succeeded, you will now be
presented with the new user profile, which should look similar to Figure 3-6.

Figure 3-6. The Partuza test container

The OpenSocial Gadget XML Specification
While Shindig and Partuza are tools for building an OpenSocial container, the gadget
XML specification is a tool for building application gadgets to run within a container.
This XML specification file contains a series of configuration settings and data that
allows the container to load the application content and information.

A gadget XML file contains a few main nodes (or elements). The root Module node
contains three child nodes, ModulePrefs, UserPref, and a series of Content nodes.
ModulePrefsk defines the characteristics (metadata) about the application, UserPref al-
lows gadgets to define user-specific data, and the Content nodes contain the code for
the gadget views.

This is the standard format of a gadget XML file:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs ... />
 <UserPref ... />
 <Content ...>
 Gadget Content
 </Content>
</Module>

In the sections that follow, we’ll explore the content of each node and the possible
configurations for building out a gadget.

The OpenSocial Gadget XML Specification | 75

http://partuza/
http://partuza/

Configuring Your Application with ModulePrefs
The ModulePrefs node allows a developer to not only define metadata about a gadget
(such as a title and author), but also features and processing rules. This is core infor-
mation defined by a gadget developer, and it cannot be modified by gadget users.

ModulePrefs contains a number of attribute strings, all of which are elements that con-
tainers are required to support, but which are optional for developers to specify. These
attributes are listed in Table 3-1.

Table 3-1. ModulePrefs attributes

Attribute Description

author The author of the gadget.

author_email A working email address for the gadget’s author. Since gadgets for public social networking containers are

also public, there is potential for spam, so this should be a dedicated gadget email account, not a personal

one.

description A description of the application.

screenshot A publicly accessible URL that provides a screenshot of the application. This field is generally used in gadget

galleries or for invitations to applications.

thumbnail A publicly accessible URL that provides a thumbnail image for a gadget. This field is generally used in

conjunction with the title to display brief information for a gadget.

title The title of the application.

title_url A URL, such as a website or forum, linked from the title of the application.

A fully qualified ModulePrefs node can take the following form:

<ModulePrefs author="John Smith"
 author_email="john@smith.com"
 description="My application does all sorts of cool things"
 screenshot="http://www.myimage.com/ss.png"
 thumbnail="http://www.myimage.com/thumb.png"
 title="My Application"
 title_url="http://www.mysite.com">

Under ModulePrefs, there are a number of subnodes that provide additional configu-
ration settings for your gadget. Let’s explore them now.

Require/Optional
The Require (must include) and Optional (may include if available) elements denote
feature dependencies to be made available to a gadget. Both tags have a single attribute
available, feature, whose value denotes the feature that should be included. Within
the confines of an OpenSocial gadget, the Require and Optional statements are typically
used to indicate feature dependencies such as the OpenSocial version to use (e.g.,

76 | Chapter 3: Constructing the Foundation of a Social Application Platform

opensocial-1.0) or library-specific methods like the OpenSocial lightweight JavaScript
APIs (e.g., osapi).

Following are some sample Require or Optional elements within the ModulePrefs node:

<ModulePrefs>
 <Require feature="opensocial-0.9"/>
 <Require feature="osapi"/>
 <Require feature="dynamic-height"/>
 <Optional feature="shareable-prefs"/>
</ModulePrefs>

Preload
The Preload element is a great resource for improving your application’s performance
and load time by preloading external content prior to loading it through HTTP requests.
Including a Preload element instructs the container to fetch data from an external
source while the gadget is being rendered.

This element is used in conjunction with the OpenSocial JavaScript API method
gadgets.io.makeRequest, which fetches data from external sources. When used with
Preload, the gadgets.io.makeRequest method request will return the content instantly.

For example, if the gadget will be making a request to http://www.test.com and we want
to preload the content, we’d set up the Preload element in the following way:

<ModulePrefs>
 <Preload href="http://www.test.com" authz="signed" />
</ModulePrefs>

Preload has a few available attributes, listed in Table 3-2, that allow further levels of
customization.

Table 3-2. Preload attributes

Attribute Description

href The URL for the content that the container is to preload. This field is required.

authz The authorization type to use when requesting the content. This field is used in conjunction with the authorization

field of the gadgets.io.makeRequest method. The values for this field are none (default), signed, or

oauth. This field is optional.

Icon
The Icon element allows the developer to specify a 16×16-pixel thumbnail to be asso-
ciated with the gadget. Icons usually appear beside the gadget’s title in the context of
a gadget gallery. The content of the Icon element can be either a URL to a web-based
image or inline base64-encoded image data.

Configuring Your Application with ModulePrefs | 77

http://www.test.com

Icon may take the following form:

<ModulePrefs>
 <Icon>http://www.mysite.com/favicon.ico</Icon>
</ModulePrefs>

Table 3-3 lists the attributes available to you when specifying an Icon. Both are optional.

Table 3-3. Icon attributes

Attribute Description

mode The encoding you use for the image when embedding it. Only base64 is currently supported.

type The MIME type of the embedded icon text.

Locale
The Locale element specifies the locales, or regional language types, supported within
your gadget. There may be many Locale nodes within a single gadget if it supports many
international countries and languages.

Locale may take the following form:

<ModulePrefs>
 <Locale lang="en" country="us" />
</ModulePrefs>

In addition to basic locale identifiers, a number of attributes may be tied in with a
Locale node, as shown in Table 3-4.

Table 3-4. Locale attributes

Attribute Description

country The country associated with the locale supported. Countries are specified as two-

digit codes based on ISO 3166-1 standards; for more details, see http://en.wikipedia

.org/wiki/ISO_3166-1.

lang The language associated with the locale. This is an optional field, but one of either

country or lang must be present in a Locale node. Languages are specified as

Alpha-2 codes based on ISO 639-1 standards; for more details, see http://en.wikipedia

.org/wiki/List_of_ISO_639-1_codes.

language_direction The text-reading direction that the language dictates. The values for this field can

be either ltr (left to right) or rtl (right to left). This is an optional field with a

default value of ltr. For multidirection support, there are several substitution var-

iables you can use with rtl or ltf:

__BIDI_START_EDGE__

If the gadget is in left-to-right mode, the value is left; if it’s in right-to-left

mode, the value is right.

__BIDI_END_EDGE__

If the gadget is in left-to-right mode, the value is right; if it’s in right-to-left

mode, the value is left.

78 | Chapter 3: Constructing the Foundation of a Social Application Platform

http://en.wikipedia.org/wiki/ISO_3166-1
http://en.wikipedia.org/wiki/ISO_3166-1
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Attribute Description
__BIDI_DIR__

If the gadget is in left-to-right mode, the value is ltr; if it’s in right-to-left

mode, the value is rtl.

__BIDI_REVERSE_DIR__

If the gadget is in left-to-right mode, the value is rtl; if it’s in right-to-left

mode, the value is ltr.

messages A URL to an XML message bundle that contains translation strings for a given locale.

Even though you’re only required to specify one of either country or lang within a
Locale node, if you don’t include both, it’s assumed that the default value of an omitted
tag is * (ALL). In other words, if you specify a country but no language, it is assumed
that you support all languages associated with that country. Likewise, if you specify a
language but no country, it is assumed that you support all countries associated with
that language.

For Chinese characters, there are two exceptions to the language rules:

Simplified Chinese
The lang code is zh-cn and is typically used with a country code of cn (China).

Traditional Chinese
The lang code is zh-tw and is typically used with a country code of tw (Taiwan) or
hk (Hong Kong).

Locale is extremely important when you want to support multiple languages within
your gadget. It allows you to provide a direct line to your intended audience and may
be used by a container to filter an application gallery for specific regions and languages.

Link
The Link element allows a developer to take advantage of application life-cycle events
defined by a container. Such events might be application installs or uninstalls, or any
other event in the day-to-day life of a social application. The container supports these
features by sending relevant query parameters denoting the event to a URL endpoint
specified within the Link node.

A Link node may take the following form under the ModulePrefs element:

<ModulePrefs>
 <Link rel="event" href="http://www.mysite.com/ping.php" method="POST" />
 <Link rel="event.addapp" href="http://www.mysite.com/add_app.php" />
 <Link rel="event.removeapp" href="http://www.mysite.com/remove_app.php" />
</ModulePrefs>

As you can see in the preceding example, the Link node has several associated attributes.
They are listed in Table 3-5.

Configuring Your Application with ModulePrefs | 79

Table 3-5. Link attributes

Attribute Description

rel The string value that denotes the event being triggered. This value is required.

href The URL to make a request to once the event has been triggered. This value is required.

method The HTTP request method, either GET or POST, to use when making a request to the URL supplied in the href

attribute. The default request method is GET. This is an optional attribute.

If a Link node is specified with a rel of opensocialevent (e.g., rel="event"), then any
undefined life-cycle event types will be sent through to that href value by default. If
there are one or more Link nodes with a rel of opensocialevent.type (e.g., rel
="event.addapp"), then any container life-cycle event with a matching type will be for-
warded on to the href value specified in that node.

As shown in Table 3-6, there are currently four event types defined within the Open-
Social specification, which developers can use to handle life-cycle events.

Table 3-6. OpenSocial event types

Event Description

addapp Event triggered when one or more users install the application. The parameters attached with the event are:

id

Unique ID that identifies the users who have installed the application.

from

Identifies how the users installed the application. Defined values are invite, gallery, or external.

This parameter is optional.

remov

eapp

Event triggered when one or more users uninstall the application. The parameters attached with the event are:

id

Unique ID that identifies the users who have uninstalled the application.

app Event triggered when the developer or container changes the application state. The parameters attached with

the event are:

action

The action performed on the application to change its state. Defined values are enabled, disabled, or

approved.

reason

The reason that the action was taken. Defined values are policy, quota, or maintenance. This

parameter is optional.

invite Event triggered when someone has invited other users to install the application. The parameters attached with

the event are:

id

Unique ID that identifies the users who have been invited to the application.

from_id

Unique ID that identifies the user who sent the application invitation.

80 | Chapter 3: Constructing the Foundation of a Social Application Platform

The value of supporting life-cycle event notifications through tools such as Link nodes
cannot be stressed enough. Having an up-to-date database of user records and links
that is in sync with the actual application use on the container is vital for maintaining
a high-performance, targeted service. This is a low-cost measure for containers, but
even more importantly, both the container and the gadget developer reap the benefits
of offering applications with a greater degree of user control, making this a win-win
situation.

Defining User Preferences
You may need to save user preference variables persistently within an application’s
OpenSocial gadget. This is where the UserPref element comes into play. It allows you
to configure which variables you would like to store for a user. These configuration
variables, along with JavaScript features we will talk about in later sections, provide
simple key/value storage without requiring you to set up a database.

UserPref contains a number of configurable attributes, listed in Table 3-7.

Table 3-7. UserPref attributes

Attribute Description

datatype An optional string that denotes the date type present within the user preference variable. The value may

be string (default value), bool, enum, hidden (not visible or user-editable), or list (dynamic array

generated from user input).

default_value An optional string that stores a default value for a user preference in the event that the user does not

specify a variable configuration.

display_name An optional string that represents the user preference during editing. This value must be unique.

name The name of the user preference. This value is required and must be a unique value.

required An optional Boolean value (true/false) indicating whether the user preference variable is required

or not. The default value is false (not required).

urlparam If a Content section within an XML gadget has the type set to url, signifying a separate file from which

to load data, this optional parameter is passed along to that file as well if these preferences are set.

A UserPref element may take this form:

<UserPref name="zip_code",
 display_name="Zip Code"
 datatype="string"
 default_value="90210">

For practical examples of how to leverage these elements from the JavaScript layer, see
the section “Saving State with User Preferences” on page 108 in Chapter 4.

Defining User Preferences | 81

Enum Data Types
With the enum data type, a developer can include a number of user-specified values
within a single UserPref element. You can think of this type as an HTML drop-down
list that allows the user to select a value from several different choices.

For example, let’s say we’re building a movie-rating widget and want to allow users to
store movie ratings from 1–5 (with 0 meaning the user did not rate the movie). We
could increase the base UserPref node with our additional EnumValue nodes:

<UserPref name="rating" display_name="Rating" datatype="enum" default_value="0">
 <EnumValue value="1" display_value="Worst Movie Ever"/>
 <EnumValue value="2" display_value="I just wasted 2 hours of my life"/>
 <EnumValue value="3" display_value="Meh"/>
 <EnumValue value="4" display_value="That was pretty entertaining"/>
 <EnumValue value="5" display_value="Epic"/>
</UserPref>

We specify enum as our data type, and within the UserPref node we define the Enum
Value nodes for each rating value the user can choose from. Each node has a display
value that the user sees (e.g., “Epic”) and a value that the developer uses to denote the
chosen option (e.g., “5”).

Application Content
Content sections allow developers to define the content to be loaded for the different
views of a gadget. As described in Chapter 1, most containers include different views,
such as a small or large view, and Content sections are where those views are defined.

Content sections have several attributes available to them, all of which are optional
(Table 3-8).

Table 3-8. Content attributes

Attribute Description

href A destination URL for the content to be loaded. This is a proxied content-loading approach to defining

your gadget sections.

prefer

red_height

The initial height of the gadget in pixels.

prefer

red_width

The initial width of the gadget in pixels.

type The type of content to be loaded. The values can be either html (default) for content within the gadget,

or url for an external content URL specified with the href attribute.

view The view for which the content is to be loaded. Containers may offer multiple views, which can be

defined through these Content sections. Multiple view names are specified as comma-delimited

values (e.g., home, profile).

82 | Chapter 3: Constructing the Foundation of a Social Application Platform

Defining Content Views
The concept of views may be completely foreign to many application developers, but
it’s a critical one to understand when you’re developing gadgets for social networking
containers.

Having a cohesive view architecture is vital to an application’s success. There are
countless instances where an application with a good concept fails because its developer
expects people to use it from a specific view, so he neglects the other views by simply
putting an image of, or call to action to load, the larger view (or vice versa, if he develops
a small view but ignores the large).

The most important point here is that a user will never use your products in exactly the
way that you intended them to be used. For this reason, you must spend equal time
thinking about all of the views and how they interact, rather than focusing 99% of your
attention on a single view and leaving the others as an afterthought. Some users may
want to interact only with the subset of functionality defined in a small view, while
others want to use all of the views depending on the particular tasks they want to
complete at a given time. With this in mind, let’s explore view functionality in the
context of an application gadget.

Each container defines its own views and variations depending on its use for gadgets
(e.g., whether the container is inherently social in nature or geared to business appli-
cations). Table 3-9 outlines the view types that can be used in many of the available
containers.

Table 3-9. View types

View name Description

default Renders on any view that does not have a Content section currently associated with it.

profile Renders on the user’s profile. profile is visible to individuals viewing the user’s profile, even if they don’t have

the gadget installed. This view can be used as a call to action for a viewer to install the application.

home Renders within a smaller view, which is visible to the user only. This view is indicative of a gadget window and

usually contains numerous gadgets installed by the user.

canvas Renders within a larger “full” view. This view is typically used in conjunction with the smaller views (pro

file and home) and generally comprises a more extensive and fully featured version of the smaller views.

Many of the current containers implementing the OpenSocial standard are listed on
the OpenSocial wiki at http://wiki.opensocial.org/index.php?title=Containers. If you
click the links to view details, you’ll find some more container-specific information,
including the supported view names.

Now that you understand the container views, we’ll explore the numerous methods
for defining the views that you would like the gadget to build upon.

Application Content | 83

http://wiki.opensocial.org/index.php?title=Containers

Creating a Content section

If you are using inline markup within the Content nodes of your gadget
instead of loading markup from an external file, you should always wrap
the content in <![CDATA[... Content ...]] tags. This will prevent the
markup from being rendered as part of the gadget XML file—that is, as
gadget-specific tags—when it loads.

A base-level Content section within a gadget includes a few items. Within the Module
Prefs element, if you want to be able to work with views through the gadget JavaScript
layer, you will need to require the views feature by using the Require element. Following
that, you can define a Content element with the view you want to load the content for.
If you wish to inline your HTML, CSS, and JavaScript within the gadget, you should
wrap the code within the Content section in CDATA tags. This will prevent your HTML
elements from being treated as if they were part of the gadgets XML spec.

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 This text will show up in my larger canvas gadget
 view
]]>
 </Content>
</Module>

Creating multiple Content sections

We can build upon our definition of a single Content section by defining additional
sections the same way; we simply define a new Content element with another view.
These new Content elements may include either inline or proxied content and will be
treated in the same way as the original section.

 <Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 This text will show up in my larger canvas gadget view
]]>
 </Content>
 <Content view="home"
 type="url"
 href="http://www.site.com/index.php"
 />
</Module>

84 | Chapter 3: Constructing the Foundation of a Social Application Platform

Creating one Content section with multiple views

If you want one Content section to define the content for multiple sections, you may
define multiple comma-separated view names within the view attribute. This technique
is especially useful when you have multiple small views within a container (such as
home and profile) and wish to serve up the same content in each.

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="home, profile">
 <![CDATA[
 This text will show up in my home and profile gadget views
]]>
</Content>
</Module>

Creating cascading Content sections

There may be instances where you have pieces of content, such as a header, that should
appear in multiple views. Instead of repeating the same code within each Content sec-
tion for each view, you can create multiple Content sections with redundant views;
when the gadget is rendered, the Content sections are concatenated together into a single
code base for each section.

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 <div>This is the content of my larger canvas view</div>
]]>
 </Content>
 <Content view="canvas, profile">
 <![CDATA[
 This is my footer
]]>
 </Content>
</Module>

If we load the preceding example in a container’s profile view, it produces the following:

This is my footer

If we load the example in the canvas view, however, the two sections are concatenated
and give us the following:

This is the content of my larger canvas view
This is my footer

Application Content | 85

Navigating between views

In a social networking gadget container, Content sections are strictly tied to specific
pages on the site. For instance, if I had a profile on a site and a gadget loaded on that
profile, I would expect the Content section with the view attribute set to profile to load
in that view. This is how containers are able to delegate locations for each section of a
gadget. But this is not the only method for loading different Content sections—there
are also JavaScript methods available within your gadget to push users through from
one view to the next while keeping them in the context of your application. You enable
these JavaScript functions by adding a Require element for the views feature.

This following example defines two views, profile and canvas, and uses an onclick
handler to include a button within each view. These onclick handlers invoke the
OpenSocial JavaScript gadgets view method requestNavigateTo to forward the user
browser to the view specified as the function’s parameter:

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="profile">
 <![CDATA[
 <button onclick="gadgets.views.requestNavigateTo('canvas'); ">
 Click to navigate to the canvas view
 </button>
]]>
 </Content>
 <Content view="canvas">
 <![CDATA[
 <button onclick="gadgets.views.requestNavigateTo('profile'); ">
 Click to navigate to the profile view
 </button>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_3/navigating_be
tween_views.xml.

This functionality allows you to control the view flow for your application. You could
define a subset of functionality on the profile view, for instance, and include a call to
action for the user to click a button to go to the canvas view, where she can see the full
range of functionality for the application.

Passing data between views

While the navigation functionality is a valuable asset for controlling the flow of your
application, you may need to pass data between the views during the navigation

86 | Chapter 3: Constructing the Foundation of a Social Application Platform

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/navigating_between_views.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/navigating_between_views.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/navigating_between_views.xml

process. If the user were to set temporary state details in the profile view and then
navigate to the canvas view, for example, you would want to pass that state information
to the canvas view for processing.

You can pass information this way by extending the requestNavigateTo(...) parameter
list to include a second parameter. This second parameter is a string containing all of
the information to be passed to the next view:

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="profile">
 <![CDATA[
 <script type="text/javascript">
 function loadCanvas(postData){
 gadgets.views.requestNavigateTo('canvas', postData);
 }
 </script>
 <button onclick="loadCanvas('user123');">
 Click to navigate to the canvas view
 </button>
]]>
 </Content>
 <Content view="canvas">
 <![CDATA[
 <div id="postData"></div>
 <script type="text/javascript">
 var postVal = gadgets.views.getParams();
 document.getElementById('postData').innerHTML = postVal;
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_3/passing_data
_between_views.xml.

Our profile view button will call a function, passing in a string representing a user
variable. This variable is passed as the second parameter to our requestNavi
gateTo(...) method. The browser will then forward the user to the canvas view.
Once the canvas view content loads, we capture the data passed to the view with the
gadgets.views.getParams(...) method and insert it into a div in the view.

Creating and working with subviews

Subviews are a way to define different content pages (or slates) for a single view. They
allow the developer to switch the content of a particular view without having to control

Application Content | 87

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/passing_data_between_views.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/passing_data_between_views.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/passing_data_between_views.xml

that content flow with JavaScript. The developer will need JavaScript only to navigate
from a main view to the subview.

To define a subview, you create a Content section as you did previously, but you name
the view using the convention view.subviewname. For instance, if I want to create a
subview named “sub” that resides on the canvas view, I would set the view attribute to
canvas.sub. We can navigate to the subview by making a request to requestNavigate
To(...), as we’ve done before, and insert view.subviewname (e.g., canvas.sub) as the
first parameter:

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 <button onclick="gadgets.views.requestNavigateTo('canvas.sub');">
 Click to navigate to the canvas sub page
 </button>
]]>
 </Content>
 <Content view="canvas.sub">
 <![CDATA[
 This is the content of my subpage
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_3/working_with
_subviews.xml.

When the preceding code runs and the user is viewing the canvas view, she will see a
button asking her to click to navigate to the canvas subview. When she clicks this
button, the content of the canvas view will be replaced with the content defined in the
Content section with the view of canvas.sub.

Defining error view states

If you are implementing views that use a proxied content approach (i.e., that link to an
external file via the href attribute), the OpenSocial specification defines standard
methods for handling HTTP error states automatically within a gadget. Containers
should process these content views, but at the very least they should display meaningful
error messages to the user.

You should integrate an error view into your gadgets wherever possible. In an ideal
world, your code will always work and your servers will have 100% uptime, but this is
the real world—things break. An error fallback view, where you can display a pleasant

88 | Chapter 3: Constructing the Foundation of a Social Application Platform

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/working_with_subviews.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/working_with_subviews.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/working_with_subviews.xml

“something went wrong” message with relevant links or instructions, is always better
than an impersonal HTTP error message.

If containers encounter an error while trying to retrieve the proxied content, they
should obtain the error message from a view with a name of viewname.error. So, for
example, if the container gets a 404 Not Found error message when trying to retrieve
the content for the canvas view, it should display an error message from content ob-
tained from a view named canvas.error:

<Module>
 <ModulePrefs>
 <Require feature="views" />
 </ModulePrefs>
 <Content view="canvas" href="http://www.mysite.com/canvas.php" />
 <Content type="html" view="canvas.error">
 <![CDATA[
 An error occurred, please refresh the application window.
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_3/defining_error
_view_states.xml.

In the preceding example, should a request to http://www.mysite.com/canvas.php fail,
the container should display the message “An error occurred, please refresh the appli-
cation window” to the user instead of something like “HTTP 404 Error: Resource Not
Found.”

When a container supports these error views, they should be defined for each Con
tent section that uses a proxied content approach.

Inline Versus Proxy Content
As you have seen, the Content section may contain either inline content—including
HTML, CSS, and JavaScript—or you may use a proxy file to load the content. This
proxy file, which is the URL value of the href attribute, needs to be a file of type HTML,
XHTML, PHP, or any other server-side language. The proxy cannot be, for instance, a
link to a .swf Flash file, an image, or a .mov QuickTime movie. To embed these items,
you must wrap them in an HTML document and serve them via that file.

“Is it better to inline your content or have a proxy?” is usually one of the first questions
that comes up when developers start building their applications. As far as the accessi-
bility of container-specific features, there are really no differences between the two
methods. When a gadget is rendered, all Content sections are concatenated together in

Application Content | 89

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/defining_error_view_states.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/defining_error_view_states.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/defining_error_view_states.xml
http://www.mysite.com/canvas.php

a similar fashion. Choosing one method over another really comes down to maintain-
ability, number of server requests, and load time.

Most containers internally cache the gadget XML files that are uploaded to their systems
so they can serve up gadgets quickly. Once you make edits to a gadget XML file, these
containers will require you to reupload or update their cache by syncing the XML file.
This can be a tedious task depending on how the container handles caching, and if
you inline your content inside the gadget XML file, you will have to do it each time you
wish to view edits.

On the other hand, if you proxy your content using the href attribute, you will not
need to update the gadget XML spec file when you update that Content section. This
significantly improves the efficiency of your gadget-engineering practices and allows
you to work independently of the gadget architecture.

Another issue emerges when we look at how data is obtained for a proxy Content sec-
tion. Proxied content will mainly be fetched at the time of gadget rendering, when a
user is using your application. This means that a request to your server has to be made
each time the gadget loads if the container lacks a caching mechanism for proxied
content. If there isn’t a caching mechanism in place for storing Content section data,
this could result in a much higher server load. In this case, gadget implementers should
integrate a data-caching layer on their servers to decrease processing load.

Finally, you need to consider the speed at which the gadget will load. If you are serving
the gadget inline from a cached state, the gadget will render almost immediately. This
is the ideal situation. Under normal circumstances, having to make a server request for
data and wait for that response would make the proxied content method the clear loser.
But while we can’t prevent the server request, we can certainly control when the content
starts being fetched. If we specify the same proxy URL in a Preload element in the gadget
XML file, the data fetch begins immediately. This means that when processing begins
for the Content sections, the response should have already completed and the gadget
will render as though it were cached.

Table 3-10 summarizes the features and benefits for each request type.

Table 3-10. Inlined versus proxied content

 Inlined content Proxied content

Can work independently of the gadget XML file ✓

Takes advantage of container caching ✓

Quick rendering time ✓ ✓

It appears that we have a tie, but if we look closely at what each option does not do, we
can figure out which is the best approach for any gadget.

If you are developing a small-scale gadget that will have minimal server load, the best
approach may be to choose engineering and editing efficiency rather than taking ad-

90 | Chapter 3: Constructing the Foundation of a Social Application Platform

vantage of the container’s caching mechanisms. Let’s face it, though: in 99% of cases,
we will be developing applications that we believe will succeed and obtain a large
number of users, so we should plan for scale here. This means choosing inline content
to reduce server load allows you to serve more users at any given time.

To take advantage of both categories, we should ideally have two gadgets: a develop-
ment gadget and a production gadget. The development gadget should use proxied
content to allow us to work independently of the production-level gadget without hav-
ing to worry about it taking down the application. The production gadget should embed
those proxied scripts directly in the gadget, so that it may be served up as efficiently as
possible.

Putting It All Together

The full code for the samples in this section is available at https://github
.com/jcleblanc/programming-social-applications/blob/master/chapter_3/
chapter_final.xml.

In this chapter, we have examined several core concepts surrounding OpenSocial ap-
plication gadgets, including:

• Building an environment to host OpenSocial gadgets

• Expanding on that environment by applying a full social network on top of the
gadget host

• Having multiple gadget views, working with subviews, passing data between views,
and building error states into the views

• Comparing inline and proxied content within an OpenSocial gadget

Using the lessons we’ve learned from the previous sections, we will now build a base-
level gadget with the features usually implemented within an application and allowed
by a container. We will implement a ModulePrefs node to define the gadget’s metadata,
as well as some locality and link-based information, and then include a number of
Content sections to define the application’s content. We will create a Content section
that displays only the canvas view content; define a second Content section that will
act as a standard footer for the gadget in the canvas, home, and profile views; and then
define a final Content section to display an error fallback view should there be a problem
with any of our content:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs title="Chapter 3 rollup example"
 title_url="http://www.jcleblanc.com"
 description="Displays the concepts of viewes and module preferences"
 author="Jonathan LeBlanc">

Putting It All Together | 91

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_3/chapter_final.xml

 <Require feature="opensocial-0.9"/>
 <Require feature="views" />
 <Preload href="http://www.mysite.com/small.php" />
 <Locale lang="en" country="us" />
 <Link rel="event.addapp" href="http://www.mysite.com/add_app.php" />
 <Link rel="event.removeapp" href="http://www.mysite.com/remove_app.php" />
 </ModulePrefs>

Our first task is to define all of the module preferences that we need to use the appli-
cation, and any markup that we wish to include to document the application. Within
the ModulePrefs node, we define a title for a gadget, a URL to link the title to that
provides more details about the author or application, a description of what the gadget
does, and the gadget author info.

Now we need to define the OpenSocial JavaScript library features that we will need
when using the application. First, we define the OpenSocial version that we will be
working with. Since OpenSocial 0.9 is nearly identical in functionality to 1.0, and since
Shindig supports versions up to OpenSocial 0.9, we’ll specify version 0.9 of the spec.
In addition, since we’ll be working with navigating between views in the gadget, we
want to include support for views.

This gadget will use a mix of inline (within the gadget) and proxied (linked to a remote
source) content. To reduce the load time for the views using proxied content (in this
case, the profile and home views), we add a Preload tag, which will begin loading the
content right away instead of when the view begins loading.

We then specify the language/text support that we will be integrating into this appli-
cation. In this case, we support US English.

The final piece of the module preferences is the application life-cycle events. We specify
two Link nodes that will be triggered when the application is added or removed.
Once the Link nodes are triggered, the href associated with each event type will also
be triggered, allowing us to maintain personal statistics about the application’s current
user base.

With our module preferences out of the way, we can define our application’s different
views through multiple Content sections:

 <Content type="url" view="home, profile" href="http://www.mysite.com/small.php" />
 <Content type="html" view="canvas">
 <![CDATA[
 This is my standard large view
]]>
 </Content>
 <Content type="html" view="canvas, home, profle">
 <![CDATA[
 <!-- Standard footer for all content views -->
 <div id="footer">
 Navigation Options:
 Home |
 Profile |
 Canvas

92 | Chapter 3: Constructing the Foundation of a Social Application Platform

 </div>

 <style type="text/css">
 div.contentWrap, div#footer{ font:11px arial,helvetica,sans-serif; }
 div#footer{ font-size:10px;
 font-weight:bold;
 margin-top:10px;
 padding:10px;
 border-top:1px solid #e3e3e3; }
 div#footer a{ cursor:pointer; }
 </style>
]]>
 </Content>
 <Content type="html" view="canvas.error, profile.error, home.error">
 The application could not be loaded at the current time.
 </Content>
</Module>

The first Content section we specify is for our home and profile views. These views will
contain the same proxied content that is loaded from a remote source.

Our next Content section specifies the information that will be displayed in the larger,
canvas view of the container. This content is loaded inline within the gadget.

The third section specifies additional content for all three of our currently defined views.
As we talked about earlier, when the gadget is rendered, any Content sections with the
same view name will be merged together. Within this section, we define a global footer
for the application that allows the user to cycle through the different views. To cycle
through the views, we use the gadgets.views.requestNavigateTo('view') JavaScript
method. Note that views such as home or profile usually refer to part of the user profile
that has applications embedded in the page content, but the application is only a small
piece of the overall structure of the page.

Our last content section defines an error state view for all of our views. If supported
within a container, this section will be used if an error occurs within the application
flow.

What we’ve built in this complete example is the core architecture for a gadget. We
used the Content sections to reduce redundancy in our code, define methods for track-
ing install and uninstall events, and build an error state into the gadget’s flow to handle
unforeseen issues.

Now that we understand the fundamentals of a container and gadget, we are ready to
move on to more advanced features, visualizations, and functionality. Using the base
we’ve developed here as a starting point, Chapter 4 will explore how to expand our
gadgets into fully scalable projects.

Putting It All Together | 93

CHAPTER 4

Defining Features with OpenSocial
JavaScript References

Within the confines of an application, the OpenSocial specification defines a large
number of features that are available for containers to implement. Some of the Open-
Social specification’s more useful features are JavaScript libraries that contain helper
functions to aid developers with the construction of their applications—whether by
saving simple key/value pairs of data for a user without a database, or displaying mes-
sages that aren’t dismissed by pop-up blockers.

What You’ll Learn
This chapter focuses on the core features of the JavaScript libraries that may be included
within OpenSocial. We will explore how to use these to:

• Dynamically adjust the height of your application to remove whitespace.

• Insert Flash movies into your gadgets where restrictions are present.

• Display different types of messages to the user.

• Create and save simple state information for a user without a database.

• Set the title of the application dynamically.

• Build a tabbed gadget.

• Create your own JavaScript features.

The knowledge we gain throughout the chapter will allow us to build a rich client-side
feature set into our gadget in such a way that it will not only migrate between different
containers easily, but will also provide multibrowser support.

95

Including the OpenSocial Feature JavaScript Libraries
There is a series of JavaScript-based features available in the gadgets JavaScript speci-
fication to help you build out your application. The functionality these features offer
ranges from embedding Flash movies to creating simple tabs.

These JavaScript features include those that are built for server communication (e.g.,
content-rewrite) as well as for client communication (e.g., dynamic-height). This
means that your gadget can use these features to communicate directly with the hosting
server and to create client-based functionality.

As shown in the following example, you can include a specific feature by adding a
Require element in the gadget XML spec file. Once initialized, the feature may be
rendered via spec-defined JavaScript initialization calls that you include in a Content
section:

<ModulePrefs>
 <Require feature="tabs" />
</ModulePrefs>

A number of JavaScript features are currently available through the gadgets spec; these
are listed in Table 4-1.

Table 4-1. JavaScript features

Attribute Description

dynamic-height Gives a gadget the ability to resize itself automatically. This is useful if you’re inserting or replacing

content via AJAX requests and the height of your gadget changes.

flash Embeds a .swf Flash movie in your gadget.

minimessage Displays within your gadget a small message window, which can be dismissed by the user.

setprefs Allows you to programmatically save key/value pair state information for a user.

settitle Allows you to set the gadget’s title programmatically. You can use this to personalize the state of the

gadget for each user.

tabs Allows you to create a tabbed interface in your applications.

Let’s explore some of these features in more depth and see how they can help person-
alize the gadget experience.

Dynamically Setting the Height of a Gadget View
The JavaScript definitions for setting a dynamic height allow the gadget developer to
automatically resize the user’s current view. Many social networking containers that
host gadgets define a maximum gadget height by default and do not automatically resize
it once the content in the view has changed. This can lead to excessive whitespace or
cropped content, frustrating developers and users alike. The Content sections of a
gadget XML file do provide a parameter for preferred_height, which the developer can

96 | Chapter 4: Defining Features with OpenSocial JavaScript References

use to specify the initial height in pixels of the particular view, but that parameter does
not allow for dynamic resizing of the view when content changes.

There are two steps for executing a call to dynamically resize the current view’s height
to the current height of the application content:

1. Within the ModulePrefs node of the gadget spec file, add a Require element to
enable the dynamic-height JavaScript library.

• Include: <Require feature="dynamic-height"/>

2. When you wish to dynamically resize the height of the current view, call the
adjustHeight() method of the gadgets.window object.

• Method call: gadgets.window.adjustHeight();

It is important that you call this method immediately after the application content has
changed, such as right after making an AJAX request for new content and embedding
it into the page:

<Module title="Module to make AJAX request and dynamically resize view">
 <ModulePrefs>
 <Require feature="dynamic-height" />
 </ModulePrefs>
 <Content view="canvas" preferred_height="300px">
 <![CDATA[
 <div id="updateNode">This is my initial content to be updated</div>
 <button onclick="makeRequest();">Update Page Content</button>

 <script type="text/javascript">
 function makeRequest(){
 //make AJAX request to get new page content using OpenSocial AJAX methods
 osapi.http.get({'href':'http://example.com/sendResp.php'}).execute(function
 (result){

 //update div with new content obtained from request
 document.getElementById('updateNode').innerHTML = result.content;

 //dynamically resize the view height to the new content height
 gadgets.window.adjustHeight();
 });
 }
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/setting_gadget
_height.xml.

Dynamically Setting the Height of a Gadget View | 97

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_height.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_height.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_height.xml

In the preceding example, we start with the Require statement in ModulePrefs, which
indicates that we would like to enable the functionality for dynamically resizing the
gadget height. This is followed by a Content section, in which we set the canvas view’s
starting height to 300px. The Content section has a div node with some starting content
and a button with a click event to initiate the data fetch and resize. When a user clicks
that button, the makeRequest function will initiate. The first thing the makeRequest func-
tion will do is perform an AJAX get request to fetch data from http://example.com/
sendResp.php. In this example, that URL returns new HTML content to be embedded
within the canvas view. Once that AJAX request completes and returns the result
object, we set the innerHTML of the default div to the new content returned, and then
immediately make a request to gadgets.window.adjustHeight() to resize the canvas
view’s height to the height of the new content. If we didn’t execute the adjustHeight
method call, the canvas height would have remained at the 300px that we initially set
it to, and our new content would be cropped at that point.

Inserting Flash Movies in Your Gadget
The JavaScript feature libraries also offer you the capability to embed a .swf Flash video
into your gadget. Doing so allows you to quickly, and with minimal code, include a
standards-compliant Flash movie.

To integrate this feature, you need to take the following steps:

1. Within the ModulePrefs node of the gadget spec file, add a Require element to
enable the JavaScript flash library.

• Include: <Require feature="flash"/>

2. When you wish to insert a new Flash movie into your gadget, call the embed
Flash() method of the gadgets.flash object.

• Method call: gadgets.flash.embedFlash(...);

The flash library also includes several methods under gadgets.flash for working with
and displaying Flash movies, listed in Table 4-2.

Table 4-2. Methods included under gadgets.flash

Method Description

embedFlash Embeds a .swf Flash movie, loaded from a provided URL, into a specified DOM node

within the gadget. Parameters include:

url (string)

A URL to a .swf flash movie

container (string)

The ID of the container in which to insert the Flash movie

params (object)

Returns true if successful; false if unsuccessful

98 | Chapter 4: Defining Features with OpenSocial JavaScript References

http://example.com/sendResp.php
http://example.com/sendResp.php

Method Description

embedCachedFlash Embeds a cached Flash movie into the specified DOM node. Parameters and return

type are the same as embedFlash.

getMajorVersion() Returns the major version of the Flash player or 0 if not available.

<Module>
 <ModulePrefs>
 <Require feature="flash" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 <div id="insertFlash">Loading Flash Movie ...</div>

 <script type="text/javascript">
 if (gadgets.flash.getMajorVersion() === 0){
 //flash player not available
 var msg = "Flash player check failed - please download flash player";
 document.getElementById('insertFlash').innerHTML = msg;
 } else {
 //flash player available
 var flashURL =
 "http://developer.yahoo.com/yui/examples/swf/assets/SWFExampleSimple.swf";
 gadgets.flash.embedFlash(flashURL, "insertFlash", {
 swf_version: 9,
 id: "flashObj",
 width: 400,
 height: 350
 });
 }
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/inserting_flash
_in_gadget.xml.

In this example, we include the Require node to load the flash library for us to use.
The Content section contains a default div node in which we will attempt to insert the
Flash movie. We then check to see if Flash player is currently available on the user’s
system. If not, we insert a “Please download Flash” message; if so, we embed a Flash
movie into the div node.

Inserting Flash Movies in Your Gadget | 99

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/inserting_flash_in_gadget.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/inserting_flash_in_gadget.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/inserting_flash_in_gadget.xml

Displaying Messages to Your Users
The minimessage library enables the developer to display a message window to a user.
This is a valuable feature when you’re trying to obtain user input or display status
messages to a user that autodismiss after a short interval.

To integrate this feature, take the following steps:

1. Within the ModulePrefs node of the gadget spec file, add a Require element to
enable the minimessage JavaScript library.

• Include: <Require feature="minimessage"/>

2. Within the gadget JavaScript layer, insert an initialization function for the mini-
message features.

• Method call: var message = new gadgets.MiniMessage(__MODULE_ID__);

3. When you wish to create a new message window, call one of three message window
request methods.

• Dismissible message: message.createDismissibleMessage("My Message", call
back);

• Static message: message.createStaticMessage("My Message");

• Timer message: message.createTimerMessage("My Message", 3, callback);

As noted in step 3, there are three different message types that a gadget implementer
may specify:

Dismissible message
Remains visible until the user manually closes the window.

Static message
Remains visible until the code-specified event occurs. This message may be dis-
missed only via the gadget code.

Timer message
Remains visible until a predefined timeout occurs. These messages will autoclose
when the allotted time expires.

Moving from basic concepts into functional examples, next we’ll explore how to build
and customize message windows using the available JavaScript library methods.

Creating a Message
As we just discussed, there are three different message types that we can create within
a gadget, each of which has its own specific expiration criteria. Let’s go over them in
more depth.

100 | Chapter 4: Defining Features with OpenSocial JavaScript References

Dismissible messages

The dismissible message window is a standard alert that, if it’s not programmatically
set to close, requires the user to interact with the window dismiss controls (generally
an “x” in the top-right corner) to close it. These messages are generally developed to
alert the user of changes within the gadget—such as new messages for her, or profile
detail changes requesting an accept or cancel action from her.

We can create a dismissible mini-message simply by following the requirements de-
scribed previously:

<Module title="Gadget to display a mini-message">
 <ModulePrefs>
 <Require feature="minimessage" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 <div id="msgDisplay"></div>

 <script type="text/javascript">
 //message dismissal callback
 function msgCallback(){
 document.getElementById("msgDisplay").innerHTML = "Message window closed";
 }

 //create new dismissible mini-message
 var message = new gadgets.MiniMessage(__MODULE_ID__);
 message.createDismissibleMessage("My dismissible mini-message", msgCallback);
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/creating_mes
sage_dismissible.xml.

We add in our Require element to enable the minimessage JavaScript library; then,
within the Content section that will load the message, we add the required JavaScript
to create a new MiniMessage gadget object and initialize the message. The message cre-
ation method has an optional second parameter, a callback function reference. When
the message window is dismissed, this callback function will be executed and display
a message to the user.

Static messages

Like the dismissible message window, the static message is displayed to the user, but
it differs in that it can only be dismissed programmatically, allowing the developer to
dictate under what circumstances the window will be closed. Dismissing the message

Displaying Messages to Your Users | 101

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_dismissible.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_dismissible.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_dismissible.xml

window requires a call to the minimessage library method gadgets.MiniMessage.dis
missMessage(...). Static messages are valuable when the user’s input is required for
him to continue using the application, as with a username and password. They take
the form of a modal background overlay, which prevents background application in-
teraction and displays the message window in the front.

Using the preceding dismissible message gadget code, we can replace the scripts within
the Content section to give us a dismissible message with a link to close the window:

<Content view="canvas">
 <![CDATA[
 <button onclick="dismissWindow();">Close Window</button>

 <script type="text/javascript">
 //create new dismissible mini-message
 var message = new gadgets.MiniMessage(__MODULE_ID__);

 //dismiss window function
 function dismissWindow(){
 gadgets.MiniMessage.dismissMessage(message);
 }

 //create new static message window
 message.createStaticMessage("This is my static mini-message");
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/creating_mes
sage_static.xml.

In this code sample, we have generated a static message. In addition, we’ve included a
button on the page that will call the dismissWindow() function, which in turn will close
the window by calling the gadgets.MiniMessage.dismissMessage() method.

Timer messages

The timer message is the final message type available for displaying a user prompt. It
is a message window with a setTimeout applied to the window close event, so after the
specified interval, the window will automatically close; no user or developer action is
required to dismiss it. These types of messages are very handy when you want to alert
a user that his actions had a particular effect, such as confirming that a message was
sent out from the gadget.

If we take the core gadget we generated for the dismissible message example and replace
the Content section, we can set up a timer message:

<Content view="canvas">
 <![CDATA[

102 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_static.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_static.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_static.xml

 <div id="msgDisplay"></div>

 <script type="text/javascript">
 //create new timer message window
 var message = new gadgets.MiniMessage(__MODULE_ID__);
 message.createTimerMessage("This is my timer mini-message", 3, function(){
 document.getElementById("msgDisplay").innerHTML = "Message Dismissed");
 });
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/creating_mes
sage_timer.xml.

As with the previous examples, we first start by creating a new MiniMessage object. To
initialize the timer message, we call the createTimerMessage message, passing in the
message string to display as the first parameter, and the number of seconds before
the window automatically closes as the second parameter. As the optional third pa-
rameter, the callback will be executed once that close event happens, displaying the
text “Message Dismissed” within the gadget.

Positioning the Message Windows
Displaying a message to your gadget users is a great way to inform them of pertinent
changes, upsell items for in-app purchases, and more. Many times, you’ll want to po-
sition those windows in a specific spot in your application to prevent the default
pop-up location from being used and supplemental content from being covered.

There are a few methods available for positioning single windows or all windows at
once.

Positioning a single message

If you have multiple mini-message windows that you want to position at different lo-
cations, or if you only have a single message in the gadget that you would like to posi-
tion, then it may be easiest to position one window at a time.

In addition to allowing plain text for the content of a message window, the createDis
missibleMessage() method also accepts a DOM node reference that denotes the win-
dow’s HTML-based content.

Again taking the dismissible message gadget sample as our foundation, we can change
the Content section to dictate the position on the page that a message window should
be displayed, based on where the DOM node is placed:

Displaying Messages to Your Users | 103

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_timer.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_timer.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_message_timer.xml

<Content view="canvas">
 <![CDATA[
 <style type="text/css">
 #msgWindow{ width:200px; float:right; }
 </style>

 <div id="msgWindow">
 This is my message header

 Visit my site for more details.
 </div>

 <script type="text/javascript">
 //create new mini-message object
 var message = new gadgets.MiniMessage(__MODULE_ID__);

 //get the message node and create a new dismissible mini-message
 var msgWindow = document.getElementById("msgWindow");
 message.createDismissibleMessage(msgWindow);
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/position_single
_message.xml.

In the preceding example, we create a message context node with an id of msgWindow.
This div contains our message window’s content and has style constraints to position
it. The window is floated to the right of the canvas view and is constrained to 200 pixels
wide.

In the script block below that, we start by creating our MiniMessage object. We then
get the message window content by obtaining the DOM node reference for the HTML
we created. Finally, we create a new dismissible mini-message window from that con-
tent; it will be displayed at the same location as the msgWindow node.

Positioning all messages

In your gadget, you might have a series of messages that will be displayed to a user at
different points, but you want them all displayed in the same location, such as a mes-
saging box construct.

This type of implementation requires a slightly different approach than the single po-
sitioning flow. Instead of using the content of a DOM node as the HTML displayed in
the message window, we use a DOM node for just the box positioning:

<Content view="canvas">
 <![CDATA[
 <div id="msgWindow"></div>

104 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_single_message.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_single_message.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_single_message.xml

 <script type="text/javascript">
 //call mini-message constructor with DOM node to position messages to
 var msgWindow = document.getElementById("msgWindow");
 var message = new gadgets.MiniMessage(__MODULE_ID__, msgWindow);

 //create a new dismissible mini-message
 message.createDismissibleMessage("First Message");
 message.createDismissibleMessage("Second Message");
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/position_all
_messages.xml.

In the preceding sample, we create a div to act as our positioning node. When we call
the mini-message constructor we pass in, as a second parameter, the DOM node ref-
erence to that positioning div. When we then create our dismissible message windows,
they will be inserted into the div that we specified. Messages will be displayed in the
order in which they were added.

Styling the Message and Window
We’ve explored how to create message windows using simple text constructs to pop-
ulate their content, but if this messaging system is to have any real value, we need to
be able to customize it as we see fit. So, next we’ll cover ways to apply custom styling
to the message window’s content as well as the message window itself.

Styling message content

In addition to plain text, a message window accepts an HTML DOM node structure
as its content. Since the message window will not exist in the DOM, the new node will
be appended to the window.

Using our dismissible message gadget as our base, we can revise the Content section to
use a DOM node we create instead of the text message specified:

<Content view="canvas">
 <![CDATA[
 <script type="text/javascript">
 //create div node for message
 var msgNode = document.createElement("div");
 msgNode.innerHTML = "See My Site for more details";

 //set mouse events on message content
 msgNode.onmouseover = function(obj){ obj.style.color = "#da1d1d"; }
 msgNode.onmouseout = function(obj){ obj.style.color = "#000"; }

Displaying Messages to Your Users | 105

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_all_messages.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_all_messages.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/position_all_messages.xml

 //create new dismissible mini-message
 var message = new gadgets.MiniMessage(__MODULE_ID__);
 message.createDismissibleMessage(msgNode);
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/style_message
_content.xml.

We first create the DOM node, a div, which will house our message. We insert the
content of the div and a few mouseover events to change the text color. When we create
a new dismissible message window, instead of passing in the text of the message con-
tent, we pass the DOM node we created. This will create the message window with the
div as the appended content.

Styling a single message window

Not only can you style the content of a message window, you can also style each mes-
sage as it is being created, giving you a lot of design control over the window itself.

You can do this by using the return value of our message window creation functions,
such as createDismissibleMessage(). The return value of these functions is an HTML
element, meaning that we can use the return value as we would any other DOM node
we create.

Working from our dismissible gadget, we can explore how to do this with some new
Content JavaScript:

<Content view="canvas">
 <![CDATA[
 <script type="text/javascript">
 //create new dismissible mini-message and capture returned node
 var message = new gadgets.MiniMessage(__MODULE_ID__);
 var msgObj = message.createDismissibleMessage("My message content");

 //style the message window
 msgObj.style.color = "#da1d1d";
 msgObj.style.backgroundColor = "#c0c0c0";
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/style_single
_message_window.xml.

106 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_message_content.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_message_content.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_message_content.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_single_message_window.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_single_message_window.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_single_message_window.xml

We create the message window just as we have before, but this time when we make a
call to createDismissibleMessage(), we capture the return value—an HTML element—
in a variable. Using that variable, we adjust the window’s font color and background
color.

This is a simple method for customizing the message windows in your gadgets on a
one-off basis. Next, we’ll go over how to style all the windows in your gadget simulta-
neously.

Styling all displayed message windows

Editing each generated message window individually makes sense if you want to cus-
tomize every one with different styles, but in many instances, you may just want to set
the styles to personalize all the messages at once. To this end, there are a few classes
that you apply to the message window content. These include:

mmlib_table

The root class for the message window itself. Child nodes underneath may be
targeted using this class.

mmlib_xlink

Class applied to the “x” link on a dismissible message window only.

Using this information, we can apply a few global styles to override the standard mes-
sage window classes:

<Content view="canxvas">
 <![CDATA[
 <style type="text/css">
 .mmlib_table{
 font: bold 11px arial,helvetica,sans-serif;
 background-color: #000;
 color: #fff;
 }
 .mmlib_xlink{
 font-weight: bold;
 color: #da1d1d;
 cursor: pointer;
 }
 </style>

 <script type="text/javascript">
 //create new dismissible mini-message and capture returned node
 var message = new gadgets.MiniMessage(__MODULE_ID__);
 var msgObj = message.createDismissibleMessage("My message content");
 </script>
]]>
</Content>

Displaying Messages to Your Users | 107

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/style_all_mes
sage_windows.xml.

In the preceding example, we create our standard dismissible message window as we
have previously. The main difference is in the style block right before the scripts. We
define the mmlib_table style for the window to change the font specifications, back-
ground color, and font color. Following that, we define the mmlib_xlink class to set the
“x” dismissal icon to a boldfaced, red font and to display a cursor when a user hovers
her mouse over it.

Saving State with User Preferences
In many instances, you may need to persistently store small amounts of personalization
information for a user. One of the features available within the OpenSocial gadgets
JavaScript libraries provides a facility to help you do just that.

To integrate this feature, you need to take a few steps:

1. Within the ModulePrefs node of the gadget spec file, add a Require element in-
cluding setprefs to enable the flash JavaScript library.

• Include: <Require feature="setprefs"/>

2. Add a UserPref node with the value matching the user preference element you wish
to persistently store.

3. When you wish to set a new user preference, you will need to call the set() method
of the gadgets.Prefs object.

• Method call: set(...);

There are several methods available that provide user preference getting and setting
abilities, listed in Table 4-3.

Table 4-3. User preference methods

Method Description

set Allows you to set the persistent state of a user preference variable. Parameters include:

Variable name (string)

The name of the UserPref variable to set for the current user

Value (mixed)

The value of the UserPref variable

getString Obtains a UserPref string. Parameters include:

Variable name (string)

The name of the UserPref variable to get for the current user

108 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_all_message_windows.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_all_message_windows.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/style_all_message_windows.xml

Method Description

getInt Obtains a UserPref integer. Parameters are the same as the getString method.

getBool Obtains a UserPref Boolean. Parameters are the same as the getString method.

<Module>
 <ModulePrefs>
 <Require feature="setprefs" />
 </ModulePrefs>
 <UserPref name="count" default_value="0" datatype="hidden" />
 <Content view="canvas">
 <![CDATA[
 <div id="myNum">0</div>
 <button onclick="increment();">Add 1</button>
 <button onclick="decrement();">Subtract 1</button>

 <script type="text/javascript">
 var outputContainer = document.getElementById('myNum');
 //set prefs variable
 var prefs = new gadgets.Prefs();

 function increment(){
 //capture current UserPref value
 var count = prefs.getInt("count");

 //set new user pref and increment counter
 prefs.set("count", count + 1);
 outputContainer.innerHTML = count + 1;
 }

 function decrement(){
 //capture current UserPref value
 var count = prefs.getInt("count");

 //set new user pref and decrement counter
 prefs.set("count", count - 1);
 outputContainer.innerHTML = count - 1;
 }
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/saving_state
_with_userprefs.xml.

The preceding example demonstrates the process by which you get and set user pref-
erence variables. We create buttons to call our increment and decrement functions and,
once hit, each function captures the current user preference count variable and either
increments or decrements it.

Saving State with User Preferences | 109

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/saving_state_with_userprefs.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/saving_state_with_userprefs.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/saving_state_with_userprefs.xml

Setting Your Gadget Title Programmatically
In certain circumstances, you may need to programmatically reset the title of your
gadget—for example, if you are attempting to personalize all elements of the applica-
tion to the current user’s profile. In this case, you may want to capture profile infor-
mation about the user, such as his name, and reset the gadget title to something like
“Erik’s Task List.”

To integrate this feature, take these steps:

1. Within the ModulePrefs node of the gadget spec file, add a Require element to
enable the settitle JavaScript library.

• Include: <Require feature="settitle"/>

2. When you wish to reset the gadget title, call the setTitle() method of the gadg
ets.window object.

• Method call: gadgets.window.setTitle();

<Module>
 <ModulePrefs>
 <Require feature="settitle" />
 </ModulePrefs>
 <Content view="canvas"><![CDATA[
 <form name="titleForm">
 Input new gadget title

 <input type="text" name="newTitle">

 <button onclick="setTitle();">Set New Title</button>
 </form>

 <script type="text/javascript">
 function setTitle(){
 //capture user title input
 var newTitle = form.newTitle.value;

 //set the gadget title
 gadgets.window.setTitle(newTitle);
 }
 </script>
]]></Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/setting_gadget
_title.xml.

In the preceding example, we include the Require statement to initialize the settitle
library. Within the Content section, we set up a simple form with an input box and
button. The input box allows the user to enter a new title; when he clicks the “Set New
Title” button, the setTitle function executes. setTitle captures the input from the

110 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_title.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_title.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/setting_gadget_title.xml

form and then calls the gadgets.window.setTitle() method, passing through the title
as the parameter to set the gadget title.

Integrating a Tabbed Gadget User Interface
The OpenSocial JavaScript libraries define several easy methods for creating a tabbed
environment within your gadgets.

To integrate the tabbed UI feature set, you need to take a few steps:

1. Within the ModulePrefs node of the gadget spec file, add a Require element to
enable the tabs JavaScript library.

• Include: <Require feature="tabs"/>

2. Within the gadget JavaScript layer, insert a TabSet constructor method call for the
tabbed UI features.

• Method call: var tabs = new gadgets.TabSet(__MODULE_ID__, "Default Tab
ID");

3. To create a new tab within the TabSet, call the addTab() method of the tabs Java-
Script library.

• Method call: tabs.addTab(tabName, optParams);

The addTab() method accepts the following parameters:

tabName (string)
The name identifier for the tab to be created.

optParams (object)
A series of optional parameters that may be used to customize the tab being created.
This object may be replaced with a string to signify the id for the tab. The add
Tab() optional parameters include:

callback (function reference)
A reference to a JavaScript function to be called when a tab is selected. The
tab id is passed in as a parameter to the callback function when executed.

contentContainer (DOM node reference)
A reference to an HTML entity node out of which the tab content is created.
This parameter can be the result of obtaining an element using document
.getElementById("ID"). If the DOM node does not exist, it will be created.

index (number)
The numeric index at which the new tab should be inserted. If this value is not
included, the new tab will be inserted at the end of the tab list.

tooltip (string)
A tool tip that is displayed to a user when she hovers her mouse over a tab.

Integrating a Tabbed Gadget User Interface | 111

The addTab() method contains enough abstraction to allow developers to define the
tab and its content in many different ways within their gadgets.

The Basic Gadget
Here is the gadget we will use as a foundation for the tab examples that follow:

<Module title="Tabs Example">
 <ModulePrefs>
 <Require feature="tabs" />
 </ModulePrefs>
 <Content view="canvas">
 <![CDATA[
 ... Content ...
]]>
 </Content>
</Module>

This gadget includes a Require element that will integrate the OpenSocial tabs Java-
Script library and a Content section for a canvas view.

Creating a Tab from Markup
One method for defining a tab’s content is to create a tab out of an existing HTML
DOM node, such as a div. This is an excellent tab method to use if you are trying to
promote Model-View-Controller (MVC) design patterns, which separate markup from
programming logic.

Applying what we have learned thus far about the tab creation methods in a gadget
XML spec, we can build out a tab using a base HTML node as our foundation:

<Content view="canvas">
 <![CDATA[
 <div id="tab1" style="display:none;">This is the content of Tab 1</div>
 <div id="tab2" style="display:none;">
 Heading for Tab 2

 See more details on my site.
 </div>

 <script type="text/javascript">
 //create a new tabset object with the default tab set
 var tabs = new gadgets.TabSet(__MODULE_ID__, "Second Tab");

 //create two tabs out of our markup
 tabs.addTab("First Tab ", "tab1");
 tabs.addTab("Second Tab", "tab2");
 </script>
]]>
</Content>

112 | Chapter 4: Defining Features with OpenSocial JavaScript References

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/creating_tabs
_from_markup.xml.

In this example, we create two tabs, one with just plain text and another with additional
HTML markup within the div node. To prevent a jarring UI switch, we set the display
for both tabs to none to hide them until they’re built.

Within the script block, we create a new TabSet object with the module ID as the first
parameter and the name of the default tab as the second parameter. This optional
second parameter specifies which tab loads first by default. Finally, we call the add
Tab(...) method for both new tabs, passing in the tab name as the first parameter and
the tab ID as the second parameter. This tab ID is the same ID we used in our div nodes,
which ensures that they’re treated as the content of the tab.

This example gives us two tabs using our HTML markup as the content.

Creating a Tab from JavaScript
Another method for creating tab content is to generate it from the JavaScript layer rather
than working with HTML markup like we did in the previous example. This approach
can be beneficial when your content is generated based on data obtained through an
AJAX request to some server-side logic, or when JavaScript logic is required.

Using our base tab gadget, we’ll edit the Content section to build tabs using JavaScript
logic:

<Content view="canvas">
 <![CDATA[
 <div id="tabObject"></div>

 <script type="text/javascript">
 //callback to be executed when tab is selected
 function runCallback(tabID){
 var selectedTab = document.getElementById(tabID);
 selectedTab.style.color = "#da1d1d";
 }

 //create a new tabset object
 var tabs = new gadgets.TabSet();

 //create new tabs
 var tab = tabs.addTab("My Tab ", {
 callback: runCallback,
 contentContainer: document.getElementById("tabObject"),
 tooltip: "Select this tab for more details"
 });
 tabs.addTab("Content Tab");

 //alter the content of the tab

Integrating a Tabbed Gadget User Interface | 113

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_markup.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_markup.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_markup.xml

 var tabContent = "My New Tab";
 document.getElementBy(tab).innerHTML = tab1Content;
 </script>
]]>
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/creating_tabs
_from_javascript.xml.

In this example, we start by creating a div node, which will house one of our tabs. In
the script block, we initialize a new TabSet object. Following this, we create two tabs.

With the first tab, we capture the return value of the addTab() method. This return
value is the ID for the newly created tab, and may be used to change the tab content.
Within the first addTab() method, we specify an object for the second parameter,
meaning that we want to further customize the tab. In the object, we set a callback
function (to runCallback()), which will be executed when the tab is selected; a content
container (our initial div node), which is where the tab will be created; and a tool tip
to be displayed when a user hovers his mouse over the tab.

The second tab is much simpler. We just call the addTab() method with the name of
the tab. Since we don’t specify an HTML DOM node to house the tab, the node will
be automatically created on our behalf.

Now that we have created our tabs, we can begin editing the content. At the bottom
of the script block, we create a new string of content for the first tab. Since we already
have the ID of the first tab from the return value of addTab(), we set the innerHTML of
that node to our new content.

In addition to setting the content at load time, we have also attached a callback to the
first tab (runCallback()), which is executed when the tab is selected and passes in
the selected tab ID as a parameter to the callback. When that tab is selected and the
callback executes, we capture the tab node selected and set the tab’s text color to red.

Using any combination of this JavaScript-based functionality, you can create highly
scalable and dynamic tab sets.

Getting and Setting Information About the TabSet
In the previous examples, we explored a rich layer of customization for building tabs.
In addition to this functionality, OpenSocial defines many helper methods for obtaining
and setting information about the current TabSet. You can think of a TabSet as a con-
tainer for one or more tabs, whereas a tab is just a single piece of the whole set. These
helper methods enable you to vastly extend your tab functionality.

114 | Chapter 4: Defining Features with OpenSocial JavaScript References

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_javascript.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_javascript.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/creating_tabs_from_javascript.xml

The examples that follow assume that you have already created this TabSet object:

var tabs = new gadgets.TabSet();

Aligning tabs

Should you need to align the tabs to a different horizontal position on the TabSet, you
can use the alignTabs(...) method. The first parameter is the string position (left, right,
or center), and the second optional parameter is the numeric offset from that position
(in pixels):

tabs.alignTabs("right", 50);

Showing and hiding tabs

The displayTabs() method allows you to show or hide the TabSet tabs. The only pa-
rameter is a Boolean that specifies whether you want the tabs displayed (true) or not
(false):

tabs.displayTabs(false);

Obtaining the parent container

To obtain the parent container of the TabSet, use the getHeaderContainer() method.
This method returns the HTML element containing the TabSet:

var headerContainer = tabs.getHeaderContainer();

Obtaining the currently selected tab

To get the currently selected tab, you can use the getSelectedTab() method. This
method returns an OpenSocial tab object, from which you can learn further informa-
tion about the tab, as described in the upcoming section “Getting and setting infor-
mation about a tab” on page 116:

var tab = tabs.getSelectedTab();

Obtaining all tabs

The getTabs() method returns all TabSet tabs as an array of OpenSocial tab objects:

var allTabs = tabs.getTabs();

Removing a tab

To programmatically remove a tab from a TabSet, use the removeTab() method. This
method accepts one parameter, the numeric tab index of the tab to be removed:

tabs.removeTab(2);

Integrating a Tabbed Gadget User Interface | 115

Setting the selected tab

You can use the setSelectedTab() method to programmatically change the currently
selected tab. This method accepts one parameter, the numeric tab index of the tab to
be selected. When the tab is selected, the callback for it (if defined) will be fired unless
the tab was already selected:

tabs.setSelectedTab(1);

Swapping tab positions

Should you want to swap the positions of two tabs, you can use the swapTabs() method.
This method takes two parameters, the numeric tab indexes of the two tabs to be
swapped. During the swap, the selected tab will not change, and no callback functions
will be executed:

tabs.swapTabs(2, 3);

Getting and setting information about a tab

When you have an OpenSocial tab object available, you can run a series of methods
against the object to provide additional levels of customization. You can obtain a tab
object through the TabSet methods getSelectedTab() or getTabs().

The following examples assume that we have already obtained an OpenSocial tab
object:

var tabs = new gadgets.TabSet();
... Build Tabs ...
var tab = tabs.getSelectedTab();

Getting the callback of a tab

Using the getCallback() method, you can obtain a reference to the callback function
that’s associated with selecting a tab. You can use this method to execute a callback
function programmatically without actually selecting the tab:

var callback = tab.getCallback();

Obtaining the content container

To obtain the HTML element that contains the tab content, use the getContentCon
tainer() method:

var tabContainer = tab.getContentContainer();

Obtaining the tab position

For some of TabSet’s tab manipulation methods, you must pass the numeric tab index
for the tab you want to remove or swap. Using the getIndex() method returns the
index number of the tab:

var tabIndex = tab.getIndex();

116 | Chapter 4: Defining Features with OpenSocial JavaScript References

Obtaining the tab name

To obtain a tab name, you can use the getName() method. This method returns a string
containing the tab name:

var tabname = tab.getName();

Obtaining the tab label

Using the getNameContainer() method returns the HTML element that contains the
tab label:

var labelContainer = tab.getNameContainer();

Extending Shindig with Your Own JavaScript Libraries

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_4/countdown_fea
ture.

In Chapter 3, we discussed the process of installing Shindig to run your own OpenSocial
container to host applications. Thus far, this chapter has outlined the “out of the box”
JavaScript components that are available to you in a Shindig container, but what if
you want to create your own JavaScript libraries and features to extend those native
offerings?

As with the default feature libraries, adding new JavaScript libraries and features to
Shindig in order to make them available to your gadget is a simple, multistep process.
Let’s look at a practical example to showcase how to do this. We’ll add a new JavaScript
library feature to create a countdown clock that’s displayed in a gadget.

First, from the root of your Shindig installation directory, go to the JavaScript fea-
tures directory:

cd features/src/main/javascript/features

This is where the JavaScript features we’ve explored thus far are housed, and where
we’ll create a new one. Create a new directory called “countdown” and then move into
it:

mkdir countdown
cd countdown

Now we need to create the files that will define our JavaScript library feature. Create a
new file called countdown_base.js. This file will house the JavaScript that will run our
countdown clock. Within the JavaScript file, add the following code:

gadgets['countdown'] = (function(){
 var time_left = 10; //number of seconds for countdown

Extending Shindig with Your Own JavaScript Libraries | 117

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_4/countdown_feature
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_4/countdown_feature
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_4/countdown_feature

 var output_element_id = 'countdown'; //node to output time to
 var keep_counting = 1; //whether to keep counting
 var no_time_left_message = "Time's Up!!!"; //message to display when time's up

 //decrement time left and check whether time has expired
 function countdown() {
 if(time_left < 2) {
 keep_counting = 0;
 }

 time_left = time_left - 1;
 }

 //add leading 0's on single digit numbers
 function add_leading_zero(n) {
 if(n.toString().length < 2) {
 return '0' + n;
 } else {
 return n;
 }
 }

 //format countdown output string
 function format_output() {
 var hours, minutes, seconds;
 seconds = Math.floor(time_left % 60);
 minutes = Math.floor(time_left / 60) % 60;
 hours = Math.floor(time_left / 3600);

 seconds = add_leading_zero(seconds);
 minutes = add_leading_zero(minutes);
 hours = add_leading_zero(hours);

 return hours + ':' + minutes + ':' + seconds;
 }

 //display time left
 function show_time_left() {
 document.getElementById(output_element_id).innerHTML = format_output();
 }

 //display time expired message
 function no_time_left() {
 document.getElementById(output_element_id).innerHTML = no_time_left_message;
 }

 return {
 //countdown function
 count: function () {
 countdown();
 show_time_left();
 },

 //control timer
 timer: function () {

118 | Chapter 4: Defining Features with OpenSocial JavaScript References

 this.count();

 if(keep_counting) {
 setTimeout("gadgets.countdown.timer();", 1000);
 } else {
 no_time_left();
 }
 },

 //counter initialization
 init: function (t, element_id) {
 time_left = t;
 output_element_id = element_id;
 this.timer();
 }
 };
})();

The first thing that we need to do to define our core JavaScript is to assign the func-
tionality to a custom gadgets object, gadgets['countdown']. We then include any Java-
Script functionality that is necessary to run the feature but is not accessible by calling
directly into the JavaScript feature. Next, we issue a series of functions in the return
object. These are the functions that we will make requests to in order to initialize the
JavaScript feature; for example, we’ll make a request to the init(...) function to create
the countdown feature.

Since we assigned the return functionality to a gadgets object, returning these functions
allows us to initialize the countdown by calling gadgets.countdown.init(...).

Now we need to create a new file, taming.js, which will allow us to make certain meth-
ods available to a gadget if Caja is being employed:

var tamings___ = tamings___ || [];
tamings___.push(function(imports){
 ___.grantRead(gadgets.countdown, 'init');
 ___.grantRead(gadgets.countdown, 'timer');
 ___.grantRead(gadgets.countdown, 'count');
});

We specify that we want to make our three return functions available when Caja is
being employed.

Our last file, feature.xml, names the feature and specifies the files that provide the code
(namely, our JavaScript) needed to run that feature:

<feature>
 <name>countdown</name>
 <dependency>globals</dependency>
 <gadget>
 <script src="countdown_base.js"/>
 <script src="taming.js"/>
 </gadget>
 <container>
 <script src="countdown_base.js"/>

Extending Shindig with Your Own JavaScript Libraries | 119

 <script src="taming.js"/>
 </container>
</feature>

We name the feature “countdown” and state that countdown_base.js and taming.js
should be used for the container and gadget.

Now we just need to add our new feature to the list of features to be loaded by the
container. Go to the features directory and open the features.txt file:

cd features/src/main/javascript/features
vim features.txt

Add the following line to the file:

features/countdown/feature.xml

If you don’t want to manually edit the file, you can run the following command from
the features directory:

ls -R1a **/*.xml > features.txt

At this point, we are ready to start using our new feature in our gadget. To integrate
our countdown feature into one of our existing gadgets, we simply need to add the
Require node with the appropriate feature name:

<Require feature="countdown"></Require>

When we expand this out into a full-fledged sample gadget, we see how the feature is
used:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
 <ModulePrefs title="Countdown Application">
 <Require feature="countdown"/>
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <div id="countdown">...</div>

 <script type="text/javascript">
 //calculate time left from current to future time
 var currentTime = new Date();
 var futureTime = new Date("September 26, 2011 17:55:00");
 var timeLeft = (futureTime - currentTime) / 1000;

 //initialize counter
 gadgets.countdown.init(timeLeft, 'countdown');
 </script>
]]>
 </Content>
</Module>

In the ModulePrefs node, we have included our Require statement. The countdown
feature functionality is loaded within the Content node. We include the div node where
we want to render the counter. Next, in the script block, we calculate the time between

120 | Chapter 4: Defining Features with OpenSocial JavaScript References

the current time and some date in the future. We can then initialize the feature by calling
the gadgets.countdown.init(...) method, passing in the time remaining and a string
representing the ID of the node in which the countdown should be rendered.

Using this method, you can create and use custom JavaScript library features.

Putting It All Together

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_4/chapter_final
.xml.

At this point, you should now have Shindig set up to host OpenSocial gadgets and
understand the XML markup that is used as the foundation for defining those gadgets.
You may have also installed Partuza to see the architecture of a full end-to-end social
networking container. Let’s combine all of these lessons to create a real gadget using
our Shindig installation and OpenSocial gadget knowledge.

We will integrate the following OpenSocial concepts and techniques in our gadget:

• Building a gadget XML spec, including using views

• Setting and getting user state information with user preferences

• Building tabs using the OpenSocial tabs library

• Displaying messages with the OpenSocial minimessage library

Building the Gadget XML File
The first element of the sample to set up is the core gadget architecture that will be used:

<Module>
 <ModulePrefs title="Chapter 4 Example"
 description="Displays some of the key concepts
 learned in chapter 4"
 author="Jonathan LeBlanc"
 author_link="http://www.jcleblanc.com">
 <Require feature="opensocial-0.9"/>
 <Require feature="tabs" />
 <Require feature="minimessage"/>
 <Require feature="setprefs"/>
 <Locale lang="en" country="us" />
 </ModulePrefs>
 <UserPref name="contactMethod"
 default_value="email"
 datatype="hidden" />
 <UserPref name="contactEmail"
 default_value="None Entered"
 datatype="hidden" />

Putting It All Together | 121

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_4/chapter_final.xml

 <UserPref name="contactTwitter"
 default_value="None Entered"
 datatype="hidden" />
 <Content type="html" view="canvas, home, profile">
 <![CDATA[

]]>
 </Content>
</Module>

Within the ModulePrefs node, we set our metadata about the gadget and then define
the JavaScript libraries required to run the gadget. These match the features we are
using, which include OpenSocial 0.9, tabs, minimessage, and setprefs. Next, we indi-
cate support for US-based English in our Locale element.

Since we will be using stored user preferences, we set the UserPref elements next, spec-
ifying the three strings we would like to temporarily store (contact method, email, and
Twitter). All three strings have default values set (in case the user doesn’t input his
contact information) and are hidden.

Last, we create a Content section to host the HTML, CSS, and JavaScript of the gadget
inline to the XML file. This single Content element will display similar content between
three views (canvas, home, and profile).

Now that we have our architecture established, we have to fill the Content section with
the CSS and HTML markup needed for the gadget:

<style type="text/css">
.tablib_table{ margin-top:10px; }
#messageWindow{ padding:5px;
 margin:5px; }
#tabSetting, #tabInfo{ padding:5px; }
#displayPrefs{ background-color:#eaeaea;
 margin:10px 5px;
 padding:5px;
 display:none; }
</style>

<div id="tabSetting">
 <div id="messageWindow">
 Please click on the "More Information" tab for helpful links
 </div>
 <form name="contactInfo">
 <p>
 <input type="radio" name="contactMethod" value="twitter" />
 Twitter

 <input type="radio" name="contactMethod" value="email" />
 E-Mail
 </p>

 <p>
 <label for="contactEmail">Email Address: </label>
 <input type="text" id="contactEmail" />

122 | Chapter 4: Defining Features with OpenSocial JavaScript References

 </p>

 <p>
 <label for="contactTwitter">Twitter Address: </label>
 <input type="text" id="contactTwitter" />
 </p>

 <button onclick="savePrefs();return false;">Save Preferences</button>
 <button onclick="showPrefs();return false;">Show Preferences</button>

 <div id="displayPrefs">
 User Preferences:

 Contact Method:

 E-Mail Address:

 Twitter Address:
 </div>
 </form>
</div>
<div id="tabInfo">
 More information about features in this chapter:

 OpenSocial: http://www.opensocial.org/
 OpenSocial Wiki: http://wiki.opensocial.org/
 Shindig: http://shindig.apache.org/
 Partuza: http://code.google.com/p/partuza/

</div>

We start the gadget markup by adding a few styles for our containers. These are just
standard markup styles, but there’s one point to make here about the tablib_table
class. When an OpenSocial message, tab, or any other JavaScript library–generated
component is rendered, there are classes assigned to the markup, which means that
new classes and styles can be applied to those components. In the case of
tablib_table, we are adding a top margin to the tab set.

The HTML markup that follows contains the content of the two tabs that we will
display in the application. The first one, the settings tab, contains a message window
that will display information about the second tab. The second tab is a form element
containing buttons that will allow a user to pick her preferred contact method, as
well as two input boxes that will allow her to input her email address and Twitter
handle. At the bottom are two buttons to control how user preferences are set and
displayed. These two buttons will execute their respective JavaScript functions to ex-
ecute the required set or get method. Below the buttons is a box, hidden by default,
that will display the user’s preferences. The second tab will simply display a series of
links to additional resources.

Now that we have the XML architecture, styles, and markup ready, we can put every-
thing to work by applying the appropriate OpenSocial JavaScript library methods:

<script type="text/javascript">
var prefs = new gadgets.Prefs();

Putting It All Together | 123

//get user preferences and save them
function savePrefs(){
 var method = "email";

 //loop through all options to see which contact methods was checked
 for (var i=0; i < document.contactInfo.contactMethod.length; i++){
 if (document.contactInfo.contactMethod[i].checked){
 method = document.contactInfo.contactMethod[i].value;
 }
 }
 var email = document.contactInfo.contactEmail.value;
 var twitter = document.contactInfo.contactTwitter.value;

 //set preferences
 prefs.set("contactMethod", method);
 prefs.set("contactEmail", email);
 prefs.set("contactTwitter", twitter);

 if (document.getElementById("displayPrefs").style.display == "block"){
 showPrefs();
 }
}

//display preferences from stored values
function showPrefs(){
 document.getElementById("displayPrefs").style.display = "block";
 document.getElementById("listMethod").innerHTML =
 prefs.getString("contactMethod");
 document.getElementById("listEmail").innerHTML =
 prefs.getString("contactEmail");
 document.getElementById("listTwitter").innerHTML =
 prefs.getString("contactTwitter");
}

//create a new tabset object with the settings tab set
var tabs = new gadgets.TabSet("tabSet1", "Setting Configuration");
tabs.alignTabs("left", 50);

//create two tabs
tabs.addTab("More Information", {
 contentContainer: document.getElementById("tabInfo"),
 tooltip: "Select this tab for more details"
});
tabs.addTab("Setting Configuration", "tabSetting");

//display message window about more information
var message = new gadgets.MiniMessage("message1");
message.createTimerMessage(document.getElementById("messageWindow"), 2);
</script>

The first two functions within our JavaScript block set and get user preferences, and
are triggered from the markup buttons. The savePrefs() function will capture the user
preferences entered in the settings form and then, using the setPrefs JavaScript library
functions, will temporarily store those session values via the prefs.set() method. If

124 | Chapter 4: Defining Features with OpenSocial JavaScript References

the preference display box is currently visible, the showPrefs() method will be executed
to update the values.

The showPrefs() function sets the preference display box to a visible status and then
calls the prefs.getString() method to capture the previously stored user preferences.
These preferences will be input into their matching value objects in the preference
display box. If user preferences were not previously stored in the system, the default
values set in the UserPref elements of the XML spec will be displayed instead.

The first automatic code block that will be executed creates the TabSet to hold the two
tabs we will create with our markup, and specifies the settings tab as the default tab to
open. Once we’ve created the object, we align the tabs horizontally on the left and offset
them from the left by 50 pixels. We then begin generating our tabs.

The first block will generate the “More Information” tab with a configuration object.
The object sets the HTML block (contentContainer) that will be used to generate the
content of the tab, and then adds a tool tip to the tab so that when a user hovers her
mouse over it, a short alternative-text note will appear. The second tab just sets the title
of the same tab, and the second parameter matches the div node that contains the tab
content.

Now that our tabs are created, we display a brief timer-status message to the user to
inform her of the second tab’s content. Using the OpenSocial minimessage JavaScript
library, we create a new message window object. Finally, we call createTimerMessage
() to generate a timed message, which we set to expire after two seconds, and use the
message object we created in the settings tab as the message content.

Displaying the Gadget Using Shindig
Our gadget XML file is now ready to be displayed within an OpenSocial container. Our
next task is to place it in a location where Shindig can access it. You can upload the
XML file to a personal web server, use a social coding site like github (linking to the
raw code URL, such as http://github.com/jcleblanc/programming-social-applications/
raw/master/opensocial-gadgets/ch3_tabbed_preferences.xml), or put the XML file
within your localhost web server to be served from there (e.g., http://localhost/ch3_tab
bed_preferences.xml). In this example, we’ll place the XML file within our localhost
directory and serve it from there.

Open a web browser. The URL syntax for our local Shindig container is http://shindig/
gadgets/ifr?url=XML_URL. We can run that URL with our localhost file location to
load the gadget, which gives us a URL like http://shindig/gadgets/ifr?url=http://localhost/
ch3_tabbed_preferences.xml (assuming we named the file ch3_tabbed_preferen-
ces.xml). Navigate to that URL.

Putting It All Together | 125

http://github.com/jcleblanc/programming-social-applications/raw/master/opensocial-gadgets/ch3_tabbed_preferences.xml
http://github.com/jcleblanc/programming-social-applications/raw/master/opensocial-gadgets/ch3_tabbed_preferences.xml
http://localhost/ch3_tabbed_preferences.xml
http://localhost/ch3_tabbed_preferences.xml
http://shindig/gadgets/ifr?url=XML_URL
http://shindig/gadgets/ifr?url=XML_URL
http://shindig/gadgets/ifr?url=http://localhost/ch3_tabbed_preferences.xml
http://shindig/gadgets/ifr?url=http://localhost/ch3_tabbed_preferences.xml

You should be presented with a gadget with two tabs, as displayed in Figure 4-1, with
the “Setting Configuration” tab opening by default. Once that initial tab loads, the
timed yellow message will be displayed. The second tab should display a series of links
to more information.

Figure 4-1. Chapter 4 gadget rendered

This example sums up many of the core lessons we’ve learned in this book thus far.
We’ve created a gadget that successfully loads a user interface and interacts with a
simple data store and the OpenSocial JavaScript libraries.

126 | Chapter 4: Defining Features with OpenSocial JavaScript References

CHAPTER 5

Porting Applications, Profiles,
and Friendships

As we dive further into the social and profile features of the OpenSocial specification,
this chapter will look into using a container user’s social information to personalize
applications. We’ll also explore how the social details between containers differ, how
to port them from one social container to the next, and how to balance client- and
server-side components in this context. After breaking down the social profile into its
individual parts, I’ll provide code to show you how to use the JavaScript APIs.

What You’ll Learn
This chapter will focus on the core concepts behind capturing and using a user’s social
profile information, making external data requests from a container, and porting ap-
plications from one container to another. Our specific focus areas will be:

• Porting a Facebook application to an OpenSocial container, and porting applica-
tions between different OpenSocial containers

• Accessing and using user profile information

• Increasing an application’s base with user friendships

At the end of the chapter, we will roll the lessons we’ve learned into a project to build
a full social application that promotes user growth.

Evaluating OpenSocial Container Support
Since OpenSocial is an open source specification for social containers, it has been im-
plemented across many sites with differing levels of integration. This text generally
refers to OpenSocial 1.0 or 0.9, so we will focus on containers that support that Java-
Script API version. OpenSocial 0.9 contains the same engineering specifications as 1.0,

127

but 1.0 contains new definitions on how to split up the specification to be more appli-
cable to each container environment.

There are a number of containers available that currently implement these JavaScript
API specification versions. They are listed in Table 5-1.

Table 5-1. OpenSocial application development containers

Container OpenSocial version Developer site

Creyle 0.9 http://developer.creyle.jp/

Cyworld 0.9 http://devsquare.nate.com

Google Friend Connect 0.9 http://code.google.com/apis/friendconnect

GROU.PS 0.9 http://grou.ps/groupsdev

iGoogle 0.9 http://code.google.com/apis/igoogle/

iWiW 0.9 http://dev.iwiw.hu/

MySpace 1.0 http://developer.myspace.com/

XING 0.9 https://www.xing.com/net/opensocialpartner

Yahoo! 0.9 http://developer.yahoo.com/yap

VZ-Netzwerke 0.9 http://www.studivz.net/Developer

These containers have different localization support, depending on their country of
origin and user reach.

Many other containers currently implement older versions of the OpenSocial specifi-
cation, including those listed in Table 5-2.

Table 5-2. Containers implementing older versions of the OpenSocial specification

Container OpenSocial version Developer site

Avatars United 0.8.1 http://developer.avatarsunited.com/

Friendster 0.7 http://www.friendster.com/developer

goo Home 0.8.1 http://developer.home.goo.ne.jp/

hi5 0.8 http://developer.hi5.com/

Hyves 0.7 http://trac.hyves-api.nl/

itimes 0.8 http://www.itimes.com/os_sandbox.php

LinkedIn 0.8 http://developer.linkedin.com/index.jspa

Lonely Planet 0.8 http://lplabs.com/groups/

Netlog 0.8 http://en.netlog.com/go/developer

Ning 0.8.1 http://developer.ning.com/

orkut 0.8.1 http://sandbox.orkut.com/

Socialtext 0.8 http://www.socialtext.net/open/index.cgi?socialtext_widgets

128 | Chapter 5: Porting Applications, Profiles, and Friendships

http://developer.creyle.jp/
http://devsquare.nate.com
http://code.google.com/apis/friendconnect
http://grou.ps/groupsdev
http://code.google.com/apis/igoogle/
http://dev.iwiw.hu/
http://developer.myspace.com/
https://www.xing.com/net/opensocialpartner
http://developer.yahoo.com/yap
http://www.studivz.net/Developer
http://developer.avatarsunited.com/
http://www.friendster.com/developer
http://developer.home.goo.ne.jp/
http://developer.hi5.com/
http://trac.hyves-api.nl/
http://www.itimes.com/os_sandbox.php
http://developer.linkedin.com/index.jspa
http://lplabs.com/groups/
http://en.netlog.com/go/developer
http://developer.ning.com/
http://sandbox.orkut.com/
http://www.socialtext.net/open/index.cgi?socialtext_widgets

Container OpenSocial version Developer site

Sonico 0.8 http://sandbox.sonico.com/app_dev_pres.php

Webjam 0.8.1 http://www.webjam.com/developers/opensocial

Webon 0.8 http://team.webonsites.com/

Implementations of the specification are also expanding into enterprise-level software,
which provides an internalized social network for employees of a company. Examples
are listed in Table 5-3.

Table 5-3. OpenSocial containers in the enterprise space

Container OpenSocial product integration

Alfresco Alfresco Share

Atlassian, Inc. JIRA (Bug Tracker) and Confluence (Enterprise Wiki)

Cisco Cisco Pulse

eXo Platform eXo Portal Product

IBM IBM Rational, Lotuslive

Jive Jive Apps Framework

SAP 12sprints, SAP Social Network Analyzer (SNA)

SocialText Dashboard module

Core Components of the OpenSocial Specification
In the early days of OpenSocial, its sole intention was to offer developers portability
between containers and the ability to build gadgets to run on many different containers
simultaneously. This works well if all of the containers, sites, and companies imple-
menting OpenSocial have the same goals.

As OpenSocial implementers became more diverse, exploring new realms such as mov-
ing the social experience into enterprise-level software, this narrow definition no longer
sufficed. Because the ways in which people used the OpenSocial specification were
changing, the specification itself needed to change to meet the community’s needs.

As of OpenSocial 1.0, the specification offers five models that define differing levels of
integration and provide, in most cases, a subset of features from the global specification:

Core API server
A subset implementation for containers that want to provide a method for exposing
their data through standard web services

Core gadget container
Enables a container to render gadgets, but does not provide functionality for ac-
cessing social details

Core Components of the OpenSocial Specification | 129

http://sandbox.sonico.com/app_dev_pres.php
http://www.webjam.com/developers/opensocial
http://team.webonsites.com/

Social API server
A subset implementation for containers that want to provide a method for exposing
their social data through standard web services

Social gadget container
A subset implementation that allows a container to render gadgets and grants those
gadgets access to social information from the container

OpenSocial container
A fully implemented social container that includes the complete feature set of the
social API server and the social gadget container

Each specification provides a certain subset of the OpenSocial specification—whether
that is enabling social features, data retrieval, or RESTful HTTP access to social URI
endpoints.

Core API Server Specification
You can use the core API server specification to enable a RESTful request architecture
within a container to get and set core data. This feature set does not provide the social
data references included in the social API server or social gadget container implemen-
tations.

This portion of the specification includes REST and RPC standards for making requests
and providing a uniform response structure back from the request.

This implementation can be valuable for publishers who want to provide a standardized
method for developers to collect and syndicate stories or articles to their sites, but whose
sites do not include a social container with user logins, profiles, and communication
methods between individuals.

Full specification requirements for the core API server implementation are available at
http://opensocial-resources.googlecode.com/svn/spec/1.0/Core-API-Server.xml.

Core Gadget Container Specification
The core gadget container specification gives a container the means to host OpenSocial
gadget applications. This feature set includes all the functionality associated with how
a gadget renders and collects data, but does not include the social functionality and
integration built into the social gadget container specification.

There are a number of features and functions included in the core gadget container,
such as:

• The core gadget XML file definitions for creating an application, as well as features
for accessing proxied content, content rewriting, and data pipelining

• Making and handling OAuth and signed requests

130 | Chapter 5: Porting Applications, Profiles, and Friendships

http://opensocial-resources.googlecode.com/svn/spec/1.0/Core-API-Server.xml

• The OpenSocial JavaScript API implementations not relating to social interaction,
including the gadgets specification and subsets of the opensocial and osapi speci-
fications

• Localization support and a series of recommended features of the JavaScript API
gadget specification

This option is valuable for implementers who want to allow third-party developers to
build applications and host content on their sites in a standard way, but without access
to social features such as profile information, activity streams, or social engagement.

Traditionally, applications of this type are closed Flash games without social hooks, or
business applications that provide a window into some user data from a company’s
core site, such as a SlideShare application that displays your recent presentations with-
out providing your full profile interaction.

Full specification requirements for the core gadget container implementation are avail-
able at http://opensocial-resources.googlecode.com/svn/spec/1.0/Core-Gadget.xml.

Social API Server Specification
The social API server specification is used for containers that wish to provide a devel-
oper the means to leverage their social data, but do not wish to host applications
themselves.

This implementation means that containers provide a RESTful method for developers
to get, update, insert, and delete their social data. This social data may include:

• OpenSocial Person information (the user profile), including a user’s friendships
and relationships

• Activity information and actions taken by the user

• Direct messages sent or to be sent by a user

• Group information associated with the user

• Albums and media items

This option is best suited for containers that have a social experience built in but have
no desire to integrate applications. These containers may include sites that allow geo-
location for their users and commenting about status updates—data that developers
can then link to programmatically. Even though the container does not host applica-
tions itself, this implementation lends itself well to building applications on mobile
devices or other sites that leverage the container’s data sources.

Full specification requirements for the social API server implementation are available
at http://opensocial-resources.googlecode.com/svn/spec/1.0/Social-API-Server.xml.

Core Components of the OpenSocial Specification | 131

http://opensocial-resources.googlecode.com/svn/spec/1.0/Core-Gadget.xml
http://opensocial-resources.googlecode.com/svn/spec/1.0/Social-API-Server.xml

Social Gadget Container Specification
The social gadget container specification includes a complete standardization of
the feature set that allows a container to host OpenSocial applications that leverage
its social data, but does not include the API server specifications of a social
implementation.

This portion of the specification provides the functionality of the core gadget container
specification, but does not exclude the social features. The features and functions in
this specification include:

• The core gadget XML file definitions for creating an application, and features for
accessing proxied content, content rewriting, templating, and data pipelining

• Making and handling OAuth and signed requests

• The OpenSocial JavaScript API implementations, including the full gadgets, the
opensocial and osapi specifications for providing data-request and -manipulation
tools, and functions to extract and modify social information

• Localization support and a series of recommended features of the JavaScript API
gadget specification

This implementation is best for OpenSocial containers that want to allow developers
to build applications within them but do not want to allow those developers to pull
their social information onto third-party sites.

Full specification requirements for the core API server implementation are available at
http://opensocial-resources.googlecode.com/svn/spec/1.0/Social-Gadget.xml.

OpenSocial Container Specification
To meet the requirements of the OpenSocial container specification, a container must
implement the specifications for a social API server as well as a social gadget container
(both of which have been described in detail in the preceding sections).

The main capabilities of a full OpenSocial container implementation are:

• Allowing developers to build applications within the container that can leverage
its social data

• Providing a means by which users can pull data (social or otherwise) from the
container and onto third-party sites or applications

Cross-Container Development and Porting
Although the OpenSocial specification was originally meant to allow developers to port
applications fairly easily from one OpenSocial container to the next, it has evolved to
provide containers with the flexibility to implement only the particular social or im-
plementation features they need. What this means for developers is that there are

132 | Chapter 5: Porting Applications, Profiles, and Friendships

http://opensocial-resources.googlecode.com/svn/spec/1.0/Social-Gadget.xml

generally a few implementation differences when working between distinct OpenSocial
containers.

In the sections that follow, we’ll discuss some development practices you can use in
your applications to expedite cross-container porting.

Use a Blended Client-Server Environment
Other than employing iframes to protect application content from malicious code at-
tacks, several containers add layers of protection by securing client-side code and
markup. One such project, Caja (see Chapter 8), aims to mitigate concerns over the
security of iframes. Securers like Caja work by rewriting the client-side code base to a
secure version, causing a larger code base to be used. These securers increase load time
beyond the natural overhead imposed by the loading of the container itself.

On the other hand, loading an initial social data set and visual layer through a server-
side implementation, executing requests to REST social endpoints, will decrease load
time on application startup.

Once the application has loaded, using AJAX functionality through either the Open-
Social toolset or standard AJAX requests will allow it to communicate seamlessly with
the server as the user interacts with it.

Decouple Social Features from Mainstream Application Code
One difficult aspect of migration is understanding the differences between the social
features and the request methods or endpoints of each container. This problem is com-
pounded when social request logic is deeply ingrained in the core application code base.

Decoupling social logic from the main visualization and controller code is one method
for easing the pain of migration. You can start this process by mapping the social end-
points, or social data request code, to variables and creating separate function logic for
parsing container-specific social structures. At the end of this process, you will have
functionality that resembles a container’s API, where functions can be defined for ob-
taining and parsing connections, activities, or any number of other social features. Us-
ing logic like this allows you to include simple function calls in your mainstream code,
meaning that if you need to make changes to that functionality, you have to update
only those modularized functions.

Avoid Using Container-Specific Tags
It goes without saying that if abstraction eases the pain of migration, then using
container-specific tags to implement functionality like commenting widgets or tabs will
only worsen it. Although container-specific tags and markup will initially ease feature
integration, once entrenched in program development logic, they’ll make migration a
not-so-trivial task. Not only will the developer have to reimplement the functionality

Cross-Container Development and Porting | 133

behind the tags using a new container’s architecture, but he’ll need to have a deeper
understanding of their social hooks—such as whether the widget sends an activity
update, parses friendship data, etc.

You should avoid any container-specific markup or client-side code if you’ll potentially
be porting the application to a new container.

Porting Applications from Facebook to OpenSocial
As developers search for new mediums to push their applications to, at some point
they’ll probably ask themselves, what are the differences between Facebook and Open-
Social platforms, and how do I port applications from one container to the next? While
the Facebook and OpenSocial platforms have mainly incompatible development prac-
tices, there are many techniques you can employ to ease the transition between the two.
We’ll cover these next.

Employ iframes for Non-Social-Application Constructs
Many developers choose a very easy approach when creating applications to be portable
from one container to the next: serving up the entire application in a single iframe. With
this method, the application being loaded is a page on the developer server. Both Face-
book and OpenSocial allow developers to use a standard HTML iframe, which means
that when the application is ported from Facebook to OpenSocial, none of the code
needs to be modified to serve it up.

The major problem with this approach emerges when you try to leverage the client-
side methods and constructs, as well as potential container-specific tags, within the
iframe content. By simplifying the cross-container development efforts, you lose
the easy-to-use features that containers provide for accessing a user’s social details,
such as the OpenSocial JavaScript libraries and methods. There are methods you can
use to pass along OAuth access tokens to the iframe to sign requests to the container
REST URIs, but working with social profile data becomes far more complicated.

You can think of iframes in an application in a similar way to a surgeon’s tools. The
surgeon has a few options available to her; she can use a butter knife or a scalpel. Both
tools will eventually do the job, but one is much messier than the other. The butter-
knife approach in our scenario is encasing the entire application in an iframe. Using
the scalpel approach, we can selectively introduce iframes where appropriate.

This raises the question: when is the appropriate time to use an iframe? The simple
answer is that you should use iframes to wrap sections that do not require the container
user’s social data—for example, when generating nonsupported HTML or JavaScript
constructs in Facebook.

134 | Chapter 5: Porting Applications, Profiles, and Friendships

Abstract Facebook Function Logic
If your development practice is to use server-side languages to make RESTful requests
to Facebook servers for social data, then configuring social endpoint mappings will
make swapping containers a much easier process. You should map all container-
specific social endpoints within configuration files, as well as the paths to required
social data within the returned social constructs. If the container changes, you’ll need
to update these mappings to match the paths of the new container.

Separate Visual Markup from Programming Logic
In a normal application, employing programming design pattern concepts such as
Model-View-Controller (MVC) allows developers to separate programs into logical
chunks. In MVC’s case, program logic is separated into the base data sources (model),
the data visualization (view), and the program event handlers, data request, and flow
logic (controller). If you follow design pattern precepts, switching containers with dif-
ferent visual/markup standards simply means having to swap out the view—instead of
having to rewrite program logic, event handlers, and data transitioning flows, as would
be the case with an embedded visual/programming logic.

Use REST Endpoints, Not FQL
While the Facebook Query Language (FQL) might be easy to work with (since it has
an SQL-like syntax and provides easy access to users’ social data), if you use FQL in
your application, you’re in for a major overhaul when porting it from Facebook to an
OpenSocial container.

This reiterates the point covered earlier in the “Abstract Facebook Function Logic”
section. All social reference feeds should be pulled from a container’s REST endpoints,
and all container-specific paths should be mapped into a series of configuration varia-
bles so that they can be easily updated for a new container when the application is
ported.

Employ a Server-Side Heavy Code Implementation
If your Facebook application does not employ an iframe approach to client-side de-
velopment, then you’ve most likely developed (or will be developing) it using the
Facebook HTML and JavaScript subsets, FBML and FBJS. This approach provides a
secure subset of client-side code functionality for developers to build their applications.
But what it means for porting application between Facebook and OpenSocial contain-
ers is that you’ll have to rewrite the entire client-side markup and scripts to standard
HTML and JavaScript.

When developing applications to be portable between containers, you should never
introduce proprietary implementations when open, standard methods are available.

Porting Applications from Facebook to OpenSocial | 135

Facebook is migrating away from this FBML/FBJS approach and has a plan in place to
move toward using iframes exclusively for Facebook application development. How-
ever, older applications implementing FBML/FBJS will continue to be supported.

Personalizing Applications with Profile Data
As social networking sites become more deeply ingrained in our daily lives, it is in-
creasingly obvious that many people don’t have any qualms about publishing all kinds
of information—personal details, photos, their physical location, and more—to their
profiles. While this is a mounting concern from a privacy and “good sense” perspective,
for an application developer it’s a wealth of knowledge that you can use to personalize
applications. This personalization can include anything from demographically targeted
ads to gender-specific marketing. With all of this information readily available, the
benefit here is quite clear.

Let’s look at this from another angle. One thing that many users no longer tolerate is
having to build multiple profiles for every application or social network they use. If
someone is using an application on a popular social network like Facebook or MySpace,
why should he have to input the exact same information in that application that he has
already painstakingly entered into his profile? The simple fact is he doesn’t have to—
and that’s why it’s vital to capture and use his profile information to precustomize his
experience in your application.

The Person Object
Within the confines of an OpenSocial container, a human being is represented by a
Person object. The Person object is used to collect a user’s history, personality, and
information in a single place. Depending on the container implementing the Person
object, there may be a wide variation in what information makes up the Person object
for a particular user. OpenSocial defines an array of data points for the user, as well as
a series of helper methods for easily accessing that data, all of which are available from
the global Person object.

Person Data Extraction Methods
The helper methods defined for extracting Person data are:

• opensocial.Person.getAppData

• opensocial.Person.getDisplayName

• opensocial.Person.getField

• opensocial.Person.getId

• opensocial.Person.isOwner

• opensocial.Person.isViewer

136 | Chapter 5: Porting Applications, Profiles, and Friendships

The OpenSocial specification includes a number of alternate, streamlined methods for
capturing a lot of the same social data you would through the aforementioned methods.
These are embedded within the lightweight JavaScript API references.

Each method listed in the following sections supports several parameters, which are
used to specify the data to be returned by the REST request to the container’s social
endpoints.

osapi.people.get

get is the generic call within the lightweight JavaScript API methods to collect a user’s
data, and can be used to retrieve most of the social details you will want to leverage.

The osapi.people.get(...) method accepts a JSON object to define the type of infor-
mation you want, and takes the form:

osapi.people.get(params)

The params list may consist of:

auth (AuthToken)
An optional authorization token for requesting data.

Example value: HttpRequest.Authorization

userId (string or array of strings)
A string or array of strings that defines the user about whom you want to collect
data. You may use short identifiers such as @me, @viewer, or @owner.

Example value: '@owner' or ['@me', '@owner']

groupId (string)
A string defining a group of people about whom you want to collect data. This
value is especially useful when you’re trying to collect profile information for
friends of the viewer or owner. You may use short identifiers such as @self or
@friends.

Example value: '@friends'

fields (array of strings)
An array of strings identifying the Person fields you want to collect.

Example value: ['name', 'gender']

count (integer)
The number of results to be returned from the request.

Example value: 10 (return 10 results)

startIndex (integer)
The offset from the beginning at which results should be returned. You can use
this parameter to skip starting results if they’re unwanted.

Example value: 5 (start at the fifth result)

Parameter list.

Personalizing Applications with Profile Data | 137

startPage (integer)
An integer value that defines the first page you want results returned for. This
option is useful when you’re trying to improve loading performance by reducing
the processing time for Person data requests.

Example value: 2 (start at the second page of results)

Using the preceding parameters as a guide, we can put together a simple
request to capture the application owner’s name and gender. We use the userId key
with a value of @owner and then input name and gender under the fields key.

Finally, we bundle the request with the execute method to initiate the REST request to
the container’s social endpoints.

//opensocial person data request
osapi.people.get({userId: '@owner', fields: ['name', 'gender']}).execute(
 function(result){
 var name = (result.name) ?
 result.name.givenName + " " + result.name.familyName : "";
 var gender = (result.gender) ? result.gender : "Unknown";
 }
);

The execute method accepts a function reference to call once the REST request com-
pletes. The function will be called with the result set, after which we can parse the
results to capture the data values we requested.

osapi.people.getViewer

The getViewer request is a convenience method to allow a developer to capture Per
son information for the person currently viewing the application. This method is the
same as using the osapi.people.get(...) method with the following parameters set:

osapi.people.get({userId: '@viewer'})

The parameters available in the getViewer method are:

auth (AuthToken)
An optional authorization token for requesting data

Example value: HttpRequest.Authorization

fields (array of strings)
An array of strings identifying the Person fields you want to collect

Example value: ['name', 'gender']

As with the previous get method, we can use the getViewer method to
capture social details. Since the request is targeted to the current application user, we
don’t need to specify the userId parameter and only need the fields list:

//capture viewer data
osapi.people.getViewer({fields: ['name']}).execute(function(result){
 var name = (result.name) ? result.name.givenName + " " + result.name.familyName : "";
});

Example request.

Parameter list.

Example request.

138 | Chapter 5: Porting Applications, Profiles, and Friendships

osapi.people.getViewerFriends

The getViewerFriends request is a convenience method to allow a developer to capture
Person information for the friends or connections of the person currently viewing the
application. This method is the same as using the osapi.people.get method with the
following parameters set:

osapi.people.get({userId: '@viewer', groupId: '@friends'})

The parameters available in the getViewerFriends method are:

auth (AuthToken)
An optional authorization token for requesting data.

Example value: HttpRequest.Authorization

fields (array of strings)
An array of strings identifying the Person fields you want to collect.

Example value: ['name', 'gender']

count (integer)
The number of results to be returned from the request.

Example value: 10 (return 10 results)

startIndex (integer)
The offset from the beginning at which results should be returned. You can use
this to skip starting results if they’re unwanted.

Example value: 5 (start at the fifth result)

startPage (integer)
An integer value that defines the first page you want results returned for. This
option is useful when you’re attempting to improve loading performance by re-
ducing the processing time for Person data requests.

Example value: 2 (start at the second page of results)

In this next example, we make a request to collect the friends of the
current application viewer. Using the count parameter, we limit the number of friends
returned to 10. These friends are returned as Person objects:

//get viewer friends
osapi.people.getViewerFriends({count: 10}).execute(function(result){
 var friends = result.list;
 var html = '';
 for (var i = 0; i < friends.length; i++){
 html += friends[i].name.givenName + ' : ' + friends[i].profileUrl + '
';
 }
});

Once the request returns, we store the friends array (result.list) in a variable. We
then loop through the friends array, storing each friend’s name and profile URL.

Parameter list.

Example request.

Personalizing Applications with Profile Data | 139

osapi.people.getOwner

The getOwner request is a convenience method to allow a developer to capture PERSON
information for the application owner, not the current viewer. This method is the same
as using the osapi.people.get(...) method with the following parameters set:

osapi.people.get({userId: '@owner'})

The parameters available in the getOwner method are:

auth (AuthToken)
An optional authorization token for requesting data

Example value: HttpRequest.Authorization

fields (array of strings)
An array of strings identifying the Person fields you want to collect

Example value: ['name', 'gender']

Much like we did for the getViewer call, we will capture the name for
the person (in this case, the application owner) but will extend it with the nickname.
In many social networks, the nickname is the text identifier by which the person
has chosen to be addressed. This nickname identifier is generally more publicly exposed
than the full name:

//capture owner data
osapi.people.getOwner({fields: ['name', 'nickName']}).execute(function(result){
 var name = (result.name) ? result.name.givenName + " "
 + result.name.familyName : "";
 name += (result.nickName) ? " : " + result.nickName : " : no nickname";
});

Once the request returns, we can capture the owner’s full name and nickname.

osapi.people.getOwnerFriends

The getOwnerFriends request is a convenience method to allow a developer to capture
Person information for the friends of the application’s owner, not the current viewer’s
friends. This method is the same as using the osapi.people.get(...) method with the
following parameters set:

osapi.people.get({userId: '@owner', groupId: '@friends'})

The parameters available in the getOwnerFriends method are:

auth (AuthToken)
An optional authorization token for requesting data.

Example value: HttpRequest.Authorization

fields (array of strings)
An array of strings identifying the Person fields you want to collect.

Example value: ['name', 'gender']

Parameter list.

Example request.

Parameter list.

140 | Chapter 5: Porting Applications, Profiles, and Friendships

count (integer)
The number of results to be returned from the request.

Example value: 10 (return 10 results)

startIndex (integer)
The offset from the beginning at which results should be returned. You can use
this to skip starting results if they’re unwanted.

Example value: 5 (start at the fifth result)

startPage (integer)
An integer value that defines the first page you want results returned for. This
option is useful when you’re attempting to improve loading performance by re-
ducing the processing time for Person data requests.

Example value: 2 (start at the second page of results)

In this next example, we will collect the friends of the application’s
owner. We will do so much like we did for the getViewerFriends call, but this time we
will be capturing only the thumbnailUrl and only the second page of friend results, given
a count of 10 friends. This means that we will be capturing friends 11–20:

//get owner friends
osapi.people.getOwnerFriends({'count': 10,
 'startPage': 2,
 'fields': ['thumbnailUrl']}).execute(function(result){
 var friends = result.list;
 var html = '';
 for (var i = 0; i < friends.length; i++){
 html += '';
 }
});

Once the results have been returned, we loop through the array and store images for
thumbnails of all the friends returned.

Fields Available Within the Person Object
A Person object contains a series of fields that are used to define a user’s preferences,
personal information, location-based details, or interests and hobbies within a social
networking container. While most containers do not support the full list of potential
object definitions, having numerous key data markers is core to an effective social
container.

opensocial.Person.Field.ABOUT_ME

Container support:
Optional

Example request.

Personalizing Applications with Profile Data | 141

Return type:
String

Interchangeable with short identifier:
aboutMe

Description:
Contains a personalized statement about the user, such as a quote, byline, or series of tags.

Example of return:
'I am a manager working with Company A'

opensocial.Person.Field.ACTIVITIES

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
activities

Description:
Contains a list of the user’s favorite activities.

Example of return:
['hiking', 'fishing', 'air guitar', 'diving']

opensocial.Person.Field.ADDRESSES

Container support:
Optional

Return type:
Array of OpenSocial Address objects

Interchangeable with short identifier:
addresses

Description:
These are physical locations associated with the user such as her work, home, or school ad-
dresses. The addresses are returned as an array of OpenSocial Address objects.

Example of return:
See “Addresses (opensocial.Address)” on page 162 in the upcoming section “Extending the
Person Object”.

142 | Chapter 5: Porting Applications, Profiles, and Friendships

opensocial.Person.Field.AGE

Container support:
Optional

Return type:
Number

Interchangeable with short identifier:
age

Description:
The user’s age as a numeric identifier in years.

Example of return:
25

opensocial.Person.Field.BODY_TYPE

Container support:
Optional

Return type:
OpenSocial BodyType object

Interchangeable with short identifier:
bodyType

Description:
Characteristics about the body type of the user, such as muscular, normal, etc., specified as
an OpenSocial BodyType object.

Example of return:
See “Body type (opensocial.BodyType)” on page 163 in the upcoming section “Extending
the Person Object”.

opensocial.Person.Field.BOOKS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
books

Description:
The user’s favorite books.

Personalizing Applications with Profile Data | 143

Example of return:
['Pride and Prejudice and Zombies', 'Sense and Sensibility and Sea Monsters']

opensocial.Person.Field.CARS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
cars

Description:
The user’s favorite cars.

Example of return:
['56 mustang', '2010 Dodge Charger', 'Subaru WRX STI']

opensocial.Person.Field.CHILDREN

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
children

Description:
Information about the user’s children (if applicable), such as names, ages, etc.

Example of return:
'Hansel and Gretel'

opensocial.Person.Field.CURRENT_LOCATION

Container support:
Optional

Return type:
OpenSocial Address object

Interchangeable with short identifier:
currentLocation

144 | Chapter 5: Porting Applications, Profiles, and Friendships

Description:
This is a static address object identifying the current location of the user, as he has specified.
This may include any address (or part of an address) including home, work, school, etc., and
is specified as an OpenSocial Address object.

Example of return:
See “Addresses (opensocial.Address)” on page 162 in the upcoming section “Extending the
Person Object”.

opensocial.Person.Field.DATE_OF_BIRTH

Container support:
Optional

Return type:
Standard Date object

Interchangeable with short identifier:
dateOfBirth

Description:
The user’s date of birth, specified as a standard date object.

opensocial.Person.Field.DRINKER

Container support:
Optional

Return type:
OpenSocial Enum object

Interchangeable with short identifier:
drinker

Description:
The user’s drinking status, such as whether she drinks or not, and if so, how often. This data
is returned as an OpenSocial Enum object.

Example of return:
See “Enum (opensocial.Enum)” on page 164 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.EMAILS

Container support:
Optional

Personalizing Applications with Profile Data | 145

Return type:
Array of OpenSocial Email objects

Interchangeable with short identifier:
emails

Description:
Email addresses that the user has associated with his profile. This data is represented as an
array of OpenSocial Email objects.

Example of return:
See “Email (opensocial.Email)” on page 163 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.ETHNICITY

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
ethnicity

Description:
The user’s ethnicity.

Example of return:
'Caucasian'

opensocial.Person.Field.FASHION

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
fashion

Description:
The user’s views on fashion or any number of fashion-related topics.

Example of return:
'Betsey Johnson is the rock star of fashion for women'

146 | Chapter 5: Porting Applications, Profiles, and Friendships

opensocial.Person.Field.FOOD

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
food

Description:
The user’s favorite foods, including food types or specific items.

Example of return:
['Cuban', 'Pluots', 'Orbitz']

opensocial.Person.Field.GENDER

Container support:
Optional

Return type:
OpenSocial Enum object

Interchangeable with short identifier:
gender

Description:
The user’s gender, specified as an OpenSocial Enum object.

Example of return:
See “Enum (opensocial.Enum)” on page 164 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.HAPPIEST_WHEN

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
happiestWhen

Description:
When or under what circumstances the user is happiest. This may be an action, place, thing,
or any number of other criteria.

Personalizing Applications with Profile Data | 147

Example of return:
'in the city'

opensocial.Person.Field.HAS_APP

Container support:
Optional

Return type:
Boolean

Interchangeable with short identifier:
hasApp

Description:
A true or false value indicating whether the user has used the current application.

Example of return:
True

opensocial.Person.Field.HEROES

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
heroes

Description:
The user’s personal or professional heroes.

Example of return:
['That guy from that movie', 'Judge Fudge']

opensocial.Person.Field.HUMOR

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
humor

148 | Chapter 5: Porting Applications, Profiles, and Friendships

Description:
Personal humor, jokes, favorite comedians, or comedy styles that the user likes.

Example of return:
'Steve Carell is awesome'

opensocial.Person.Field.ID

Container support:
Required

Return type:
String

Interchangeable with short identifier:
id

Description:
The permanent, unique identifier that the container uses to identify the user. This is a required
field for all containers. If capturing an anonymous profile (as in the case of a user who is not
signed in), the container must use −1 as the user ID.

Example of return:
'NJFIDHVPVVISDXZKT7UKED2WHU'

opensocial.Person.Field.INTERESTS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
interests

Description:
The user’s hobbies, interests, or passions.

Example of return:
['wine', 'art']

opensocial.Person.Field.JOB_INTERESTS

Container support:
Optional

Return type:
String

Personalizing Applications with Profile Data | 149

Interchangeable with short identifier:
jobInterests

Description:
The user’s professional skills, career goals, or general job requirements.

Example of return:
'Yahoo! Developer Network'

opensocial.Person.Field.JOBS

Container support:
Optional

Return type:
Array of OpenSocial Organization objects

Interchangeable with short identifier:
jobs

Description:
The user’s job history, including organizational information, contact data, and address de-
tails. Data is returned as an array of OpenSocial Organization objects.

Example of return:
See “Organization (opensocial.Organization)” on page 166 in the upcoming section “Ex-
tending the Person Object”.

opensocial.Person.Field.LANGUAGES_SPOKEN

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
languagesSpoken

Description:
Languages the user speaks, represented as ISO 639-1 codes (for more details, see http://en
.wikipedia.org/wiki/List_of_ISO_639-1_codes).

Example of return:
['en', 'fr']

150 | Chapter 5: Porting Applications, Profiles, and Friendships

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

opensocial.Person.Field.LIVING_ARRANGEMENT

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
livingArrangement

Description:
The user’s living arrangement, such as who she lives with or the type of place she lives in.

Example of return:
'roommates'

opensocial.Person.Field.LOOKING_FOR

Container support:
Optional

Return type:
Array of Enum objects

Interchangeable with short identifier:
lookingFor

Description:
Why the user is interested in using the container or why he is interested in meeting people.
Many social networks represent this data as a drop-down list that allows the user to specify
whether he is interested in friends, professional connections, dating, etc.

Example of return:
See “Enum (opensocial.Enum)” on page 164 under the upcoming section “Extending the
Person Object”.

opensocial.Person.Field.MOVIES

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
movies

Description:
The user’s favorite movies.

Personalizing Applications with Profile Data | 151

Example of return:
['Dawn of the Dead', 'Children of Men']

opensocial.Person.Field.MUSIC

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
music

Description:
The user’s favorite music.

Example of return:
['The Lonely Planet', 'The Beatles']

opensocial.Person.Field.NAME

Container support:
Required

Return type:
OpenSocial Name object

Interchangeable with short identifier:
name

Description:
The name of the person returned as an OpenSocial Name object. For anonymous viewers, the
container can return a user-friendly name string such as guest or anonymous, which changes
based on internationalization or locale requirements.

Example of return:
See “Name (opensocial.Name)” on page 165 under the upcoming section “Extending the
Person Object”.

opensocial.Person.Field.NETWORK_PRESENCE

Container support:
Optional

Return type:
OpenSocial Enum object

152 | Chapter 5: Porting Applications, Profiles, and Friendships

Interchangeable with short identifier:
networkPresence

Description:
The user’s current networking status.

Example of return:
See “Enum (opensocial.Enum)” on page 164 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.NICKNAME

Container support:
Required

Return type:
String

Interchangeable with short identifier:
nickname

Description:
The nickname by which the user prefers to be identified, such as a shortened version of his
full name. For anonymous users, the container designates a user-friendly nickname such as
guest or anonymous, which changes based on internationalization or locale requirements.

Example of return:
'Jon'

opensocial.Person.Field.PETS

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
pets

Description:
The person’s pets.

Example of return:
'cat'

Personalizing Applications with Profile Data | 153

opensocial.Person.Field.PHONE_NUMBERS

Container support:
Optional

Return type:
Array of OpenSocial Phone objects

Interchangeable with short identifier:
phoneNumbers

Description:
Phone numbers that the user has designated as associated with her profile.

Example of return:
See “Phone (opensocial.Phone)” on page 167 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.POLITICAL_VIEWS

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
politicalViews

Description:
The user’s political affiliation or views. Many containers represent this value as a drop-down
list of political parties based on locale.

Example of return:
'Moderate'

opensocial.Person.Field.PROFILE_SONG

Container support:
Optional

Return type:
OpenSocial Url object

Interchangeable with short identifier:
profileSong

154 | Chapter 5: Porting Applications, Profiles, and Friendships

Description:
The user’s chosen profile song. This data is returned as an OpenSocial Url object. One prac-
tical example is MySpace, which allows a user to choose a song that plays when other users
visit her profile.

Example of return:
See “Url (opensocial.Url)” on page 167 in the upcoming section “Extending the Person Ob-
ject”.

opensocial.Person.Field.PROFILE_URL

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
profileUrl

Description:
The URL by which someone can visit the user’s profile directly.

Example of return:
'http://pulse.yahoo.com/_NJFIDHVPVVISDXZKT7UKED2WHU'

opensocial.Person.Field.PROFILE_VIDEO

Container support:
Optional

Return type:
OpenSocial Url object

Interchangeable with short identifier:
profileVideo

Description:
A personalized video associated with the user’s profile. This data is served as an OpenSocial
Url object.

Example of return:
See “Url (opensocial.Url)” on page 167 in the upcoming section “Extending the Person Ob-
ject”.

Personalizing Applications with Profile Data | 155

http://pulse.yahoo.com/_NJFIDHVPVVISDXZKT7UKED2WHU

opensocial.Person.Field.QUOTES

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
quotes

Description:
Favorite quotes defined by the user.

Example of return:
['Everything is relative. After all, sloths think turtles are hyperactive.']

opensocial.Person.Field.RELATIONSHIP_STATUS

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
relationshipStatus

Description:
The user’s current relationship status.

Example of return:
'married'

opensocial.Person.Field.RELIGION

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
religion

Description:
The user’s religion or religious views.

Example of return:
'agnostic'

156 | Chapter 5: Porting Applications, Profiles, and Friendships

opensocial.Person.Field.ROMANCE

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
romance

Description:
The user’s views on romance or general comments on the subject.

Example of return:
'go love go'

opensocial.Person.Field.SCARED_OF

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
scaredOf

Description:
The user’s fears and phobias.

Example of return:
'arachnophobia'

opensocial.Person.Field.SCHOOLS

Container support:
Optional

Return type:
Array of OpenSocial Organization objects

Interchangeable with short identifier:
schools

Description:
List of schools that the user has attended, including high schools and colleges, or any
other educational experience. This information is returned as an array of OpenSocial
Organization objects.

Personalizing Applications with Profile Data | 157

Example of return:
See “Organization (opensocial.Organization)” on page 166 in the upcoming section “Ex-
tending the Person Object”.

opensocial.Person.Field.SEXUAL_ORIENTATION

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
sexualOrientation

Description:
The user’s sexual orientation or preferences.

Example of return:
'Straight'

opensocial.Person.Field.SMOKER

Container support:
Optional

Return type:
OpenSocial Enum object

Interchangeable with short identifier:
smoker

Description:
The user’s smoking preferences, defined as an OpenSocial Enum object.

Example of return:
See “Enum (opensocial.Enum)” on page 164 in the upcoming section “Extending the Person
Object”.

opensocial.Person.Field.SPORTS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
sports

158 | Chapter 5: Porting Applications, Profiles, and Friendships

Description:
The user’s favorite sports.

Example of return:
['hockey', 'football', 'baseball']

opensocial.Person.Field.STATUS

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
status

Description:
Short status message, headline, or user state. This is much like updates on Twitter or news
feed posts on Facebook.

Example of return:
'Currently writing a book'

opensocial.Person.Field.TAGS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
tags

Description:
Arbitrary tags associated with the user, identifying some group or current communication
channel she’s affiliated with. These are much like hashtags on Twitter.

Example of return:
['engineer', 'evangelist']

opensocial.Person.Field.THUMBNAIL_URL

Container support:
Required

Return type:
String

Personalizing Applications with Profile Data | 159

Interchangeable with short identifier:
thumbnailUrl

Description:
The URL to the thumbnail image of the user, defined as a fully qualified absolute URL. For
anonymous users, or users who are not signed in, the container can present a link to a default
image representation of a profile.

Example of return:
'http://create.img.avatars.yahoo.com/users/1psAsuhxtAAEBCCNmHA11FhkB.128.png'

opensocial.Person.Field.TIME_ZONE

Container support:
Optional

Return type:
String

Interchangeable with short identifier:
timeZone

Description:
The user’s current time zone. The time zone information returned is the difference in minutes
between Greenwich Mean Time (GMT) and the user’s local time.

Example of return:
'GMT −7'

opensocial.Person.Field.TURN_OFFS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
turnOffs

Description:
The user’s personal turn-offs.

Example of return:
['people taller than me', 'abstract art']

160 | Chapter 5: Porting Applications, Profiles, and Friendships

http://create.img.avatars.yahoo.com/users/1psAsuhxtAAEBCCNmHA11FhkB.128.png

opensocial.Person.Field.TURN_ONS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
turnOns

Description:
The user’s personal turn-ons.

Example of return:
['people who have a height <= my own', 'non-abstract art']

opensocial.Person.Field.TV_SHOWS

Container support:
Optional

Return type:
Array of strings

Interchangeable with short identifier:
tvShows

Description:
The user’s favorite TV shows.

Example of return:
['Eureka', 'South Park']

opensocial.Person.Field.URLS

Container support:
Optional

Return type:
Array of OpenSocial Url objects

Interchangeable with short identifier:
urls

Description:
URLs that the user has associated with her profile—generally personal websites, blogs, or
profiles on other sites.

Personalizing Applications with Profile Data | 161

Example of return:
See “Url (opensocial.Url)” on page 167 in the section “Extending the Person Object”.

Extending the Person Object
While exploring the Person object, you might have noted a need for additional layers
of data to help you drill down to exactly the information you want to use. Fortunately,
OpenSocial defines extensions to several Person fields to allow developers to obtain
more specific details. These extensions are broken down into the following subsections.

Addresses (opensocial.Address)

The OpenSocial Address object is a standardized way to display an address in an Open-
Social application. Address information may contain street information, data about the
type of place, and geographically relevant plotting data. For example:

"address": {
 "country": "United States",
 "latitude": 37.371609,
 "longitude": −122.038254,
 "locality": "Sunnyvale",
 "region": "California",
 "streetAddress": "701 First Avenue",
 "type": "work"
}

Depending on the container’s needs or implementation specifications, an OpenSocial
Address object may contain a number of different fields. These are listed in Table 5-4.

Table 5-4. Address object fields

Key Description

opensocial.Address.Field.COUNTRY (string) The country of the address. May be used interchange-

ably with country.

opensocial.Address.Field.EXTENDED_ADDRESS (string) The extended address specified as a string. May be used

interchangeably with extendedAddress.

opensocial.Address.Field.LATITUDE (number) The latitude of the address. May be used interchange-

ably with latitude.

opensocial.Address.Field.LOCALITY (string) The address locality. May be used interchangeably with

locality.

opensocial.Address.Field.LONGITUDE (number) The latitude of the address. May be used interchange-

ably with longitude.

opensocial.Address.Field.PO_BOX (string) The P.O. box of the address, if available. May be used

interchangeably with poBox.

opensocial.Address.Field.POSTAL_CODE (string) The postal/zip code. May be used interchangeably

with postalCode.

162 | Chapter 5: Porting Applications, Profiles, and Friendships

Key Description

opensocial.Address.Field.REGION (string) The address region. May be used interchangeably with

region.

opensocial.Address.Field.STREET_ADDRESS (string) The full street address. May be used interchangeably

with streetAddress.

opensocial.Address.Field.TYPE (string) The type of address or address label (e.g., work, home).

May be used interchangeably with type.

opensocial.Address.Field.UNSTRUC

TURED_ADDRESS (string)

The unstructured address that the user entered as a

string. May be used interchangeably with unstruc

turedAddress.

Body type (opensocial.BodyType)

The OpenSocial BodyType object is used to define physical information about a person
within the confines of the container. For example:

"bodyType": {
 "build": "average",
 "eyeColor": "blue",
 "hairColor": "brown",
 "height": 1.905,
 "weight": 83.91
}

A container may return a number of fields, listed in Table 5-5, for a bodyType query.

Table 5-5. BodyType object fields

Key Description

opensocial.BodyType.Field.BUILD (string) The user’s physical build (e.g., muscular, thin, average). May

be used interchangeably with build.

opensocial.BodyType.Field.EYE_COLOR (string) The user’s eye color. May be used interchangeably with

eyeColor.

opensocial.BodyType.Field.HAIR_COLOR (string) The user’s hair color. May be used interchangeably with

hairColor.

opensocial.BodyType.Field.HEIGHT (number) The user’s height in meters. May be used interchangeably with

height.

opensocial.BodyType.Field.WEIGHT (number) The user’s weight in kilograms. May be used interchangeably

with weight.

Email (opensocial.Email)

A container may provide email address information about a user through an
OpenSocial Email object. (However, many containers have restrictions on this data due
to privacy and security concerns.) For example:

"email": {
 "address": "user@mysite.com",

Personalizing Applications with Profile Data | 163

 "type": "work"
}

The object itself is small, having only two available fields (Table 5-6).

Table 5-6. Email object fields

Key Description

opensocial.Email.Field.ADDRESS

(string)

The email address, specified as a string. May be used interchangeably with

address.

opensocial.Email.Field.TYPE (string) The email type (e.g., work, home, personal). May be used interchangeably

with type.

Enum (opensocial.Enum)

The Enum objects provide a way for containers to use constants for fields that usually
have a common set of values. For example:

opensocial.Enum.Gender = "MALE"

There are a number of potential fields that are defined for use as Enum types (Table 5-7).

Table 5-7. Enum object fields

Key Description

opensocial.Enum.Drinker (string) Whether the user drinks and the frequency at which he drinks. The

possible values for this field are:

• opensocial.Enum.Drinker.HEAVILY

• opensocial.Enum.Drinker.NO

• opensocial.Enum.Drinker.OCCASIONALLY

• opensocial.Enum.Drinker.QUIT

• opensocial.Enum.Drinker.QUITTING

• opensocial.Enum.Drinker.REGULARLY

• opensocial.Enum.Drinker.SOCIALLY

• opensocial.Enum.Drinker.YES

opensocial.Enum.Gender (string) The user’s gender. The possible values for this field are:

• opensocial.Enum.Gender.FEMALE

• opensocial.Enum.Gender.MALE

opensocial.Enum.LookingFor (string) What the user is looking for from the site. The possible values for this

field are:

• opensocial.Enum.LookingFor.ACTIVITY_PART

NERS

• opensocial.Enum.LookingFor.DATING

• opensocial.Enum.LookingFor.FRIENDS

• opensocial.Enum.LookingFor.NETWORKING

164 | Chapter 5: Porting Applications, Profiles, and Friendships

Key Description
• opensocial.Enum.LookingFor.RANDOM

• opensocial.Enum.LookingFor.RELATIONSHIP

opensocial.Enum.Presence (string) The user’s current state of engagement. The possible values for this field

are:

• opensocial.Enum.Presence.AWAY

• opensocial.Enum.Presence.CHAT

• opensocial.Enum.Presence.DND

• opensocial.Enum.Presence.OFFLINE

• opensocial.Enum.Presence.ONLINE

• opensocial.Enum.Presence.XA (eXtended Away)

opensocial.Enum.Smoker (string) Whether the user smokes and the frequency at which he smokes. The

possible values for this field are:

• opensocial.Enum.Smoker.HEAVILY

• opensocial.Enum.Smoker.NO

• opensocial.Enum.Smoker.OCCASIONALLY

• opensocial.Enum.Smoker.QUIT

• opensocial.Enum.Smoker.QUITTING

• opensocial.Enum.Smoker.REGULARLY

• opensocial.Enum.Smoker.SOCIALLY

• opensocial.Enum.Smoker.YES

Name (opensocial.Name)

OpenSocial defines a standardized method for relaying the user’s name through the
OpenSocial Name object. This object provides individual pieces, or full strings, of the
name and other related fields. For example:

"name": {
 "familyName": "LeBlanc",
 "givenName": "Jonathan",
 "unstructured": "Jonathan LeBlanc"
}

In addition to basic first and last name data, the OpenSocial Name object may contain
a number of other fields (Table 5-8), depending on container implementation.

Table 5-8. Name object fields

Key Description

opensocial.Name.Field.ADDI

TIONAL_NAME (string)

An additional name for the user (e.g., maiden name). May be used

interchangeably with additionalName.

opensocial.Name.Field.FAMILY_NAME

(string)

The user’s last name (surname). May be used interchangeably with

familyName.

Personalizing Applications with Profile Data | 165

Key Description

opensocial.Name.Field.GIVEN_NAME

(string)

The user’s first name. May be used interchangeably with givenName.

opensocial.Name.Field.HONORIFIC_PRE

FIX (string)

An honorific prefix for the user (e.g., Mr., Dr.). May be used inter-

changeably with honorificPrefix.

opensocial.Name.Field.HONORIFIC_SUF

FIX (string)

An honorific suffix for the user (e.g., Jr.). May be used interchangeably

with honorificSuffix.

opensocial.Name.Field.UNSTRUCTURED

(string)

The user’s unstructured name as a string. May be used interchangeably

with unstructured.

Organization (opensocial.Organization)

The OpenSocial Organization object provides an extensive look into a user’s history of
work, education, or organizational involvement. This object is used to define a period
of time in which the person was involved with some company, school, or organization.
For example:

"organization": {
 "name": "ACME Bread Makers",
 "title": "Senior Director",
 "description": "Managed a group of 15 bakers",
 "startDate": "2008-07-01",
 "endDate": null
 "address": {
 "country": "United States",
 "latitude": 37.416422,
 "longitude": −122.097408,
 "locality": "Mountain View",
 "region": "California",
 "streetAddress": "846 Independence Ave",
 "type": "work"
 }
}

As you can see from the preceding sample, in addition to the Organization object fields,
the OpenSocial Address object is included in the return value. This presents a clear view
into the organization, including details like its business address. Other than the
Address object, several fields are supported in the Organization object. These are listed
in Table 5-9.

Table 5-9. Organization object fields

Key Description

opensocial.Organiza

tion.Field.ADDRESS (OpenSo

cial.Address)

The organization’s oaddress, specified as an OpenSocial.Address object.

May be used interchangeably with address.

opensocial.Organiza

tion.Field.DESCRIPTION (string)

A description of the work the user did at the organization (e.g., projects/course

work). May be used interchangeably with description.

166 | Chapter 5: Porting Applications, Profiles, and Friendships

Key Description

opensocial.Organiza

tion.Field.END_DATE (date)

The date the user stopped working at the organization. A Null value means that

he is still currently with the organization. May be used interchangeably with

endDate.

opensocial.Organiza

tion.Field.FIELD (string)

The organization’s field of work. May be used interchangeably with field.

opensocial.Organiza

tion.Field.NAME (string)

The organization’s name. May be used interchangeably with name.

opensocial.Organiza

tion.Field.SALARY (string)

The user’s salary while he was at the organization. May be used interchangeably

with salary.

opensocial.Organiza

tion.Field.START_DATE (date)

The date the user started working at the organization. May be used interchange-

ably with startDate.

opensocial.Organiza

tion.Field.SUB_FIELD (string)

The organization’s subfield (if applicable). May be used interchangeably with

subField.

opensocial.Organiza

tion.Field.TITLE (string)

The title the user held at the organization. May be used interchangeably with

title.

opensocial.Organiza

tion.Field.WEBPAGE (string)

The organization’s web page. May be used interchangeably with webpage.

Phone (opensocial.Phone)

The OpenSocial Phone object outlines information about the user’s phone number. For
example:

"phone": {
 "number": "867-5309",
 "type": "home"
}

As with the OpenSocial Email object, the Phone object contains only two fields for de-
fining the phone number and type, as you can see in Table 5-10.

Table 5-10. URL object fields

Key Description

opensocial.Phone.Field.NUMBER

(string)

The user’s phone number. May be used interchangeably with number.

opensocial.Phone.Field.TYPE (string) The type of phone number (e.g., work, home, cell). May be used inter-

changeably with type.

Url (opensocial.Url)

The OpenSocial Url object provides information for denoting URL structures. For
example:

"url": {
 "address": "http://www.jcleblanc.com",

Personalizing Applications with Profile Data | 167

 "linkText": "Personal Website",
 "type": "website"
}

The Url object contains three fields for defining a URL structure, as shown in Ta-
ble 5-11.

Table 5-11. URL object fields

Key Description

opensocial.Url.Field.ADDRESS

(string)

The address of the link. May be used interchangeably with address.

opensocial.Url.Field.LINK_TEXT

(string)

The text or title associated with the link. May be used interchangeably with

linkText.

opensocial.Url.Field.TYPE (string) The type of link, such as blog, work, or website. May be used

interchangeably with type.

Capturing the User Profile
Due to the vast array of methods, social access functions, and container social hooks
available, a developer has numerous options for accessing a user’s profile data. Two of
the most popular consist of standardized AJAX request methods; both provide the
same results, but they have radically different ways of getting there.

Old method

The traditional AJAX social request method—used as the primary request functionality
up until OpenSocial 0.9—is newDataRequest. Even though it is more laborious, this
method is widely used because it is backward compatible.

While method names and parameters for different data fetches change, you still have
to call standard methods to set up a data request. When making a get request, we first
set up our data request object using the newDataRequest method, as follows:

var req = opensocial.newDataRequest();

Now that the data request container object is available, we can create the key value
parameter list to define the profile data that we capture. Our key indicates that we
want to capture PROFILE_DETAILS, and the value array contains the list of OpenSocial
Person fields that we want to capture. In this example, we are capturing the user’s name
and thumbnail URL:

var params = {};
params[opensocial.DataRequest.PeopleRequestFields.PROFILE_DETAILS] = [
 opensocial.Person.Field.NAME,
 opensocial.Person.Field.THUMBNAIL_URL
];

We then add a newFetchPersonRequest call to our initial data request to indicate that
we want to capture Person data from a profile. We will pass in two parameters to this

168 | Chapter 5: Porting Applications, Profiles, and Friendships

function: VIEWER and params. VIEWER defines the person about whom we would like to
capture data. This will normally be either VIEWER (the person using the application) or
OWNER (the person who created the application). The params list is the object we created
earlier in the script that lists the fields we would like to capture. The second parameter
of the add function is the label for the request:

req.add(req.newFetchPersonRequest('VIEWER', params),
 'viewer_profile');

We then send that request to our response handler (personCallback). This method will
issue an AJAX request to capture the data required:

req.send(personCallback);

Much like with a standard AJAX request, the callback function will take in a parameter
(data) that is the object sent back from the container servers. You could parse this object
to find the data that you are looking for, but that would require unnecessary effort;
there are helper methods set up within OpenSocial to parse the returned data structure,
after all, and we should take advantage of them:

//response handler
function personCallback(data){
 var viewer = data.get('viewer_profile').getData();
 var name = viewer.getDisplayName();
 var thumb = viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
}

First, we can retrieve the data structure that we are looking for by using the
data.get(...) method with the syntax of data.get('label').getData(), where label
is the text that we assigned to the data request in the previous sample. This will return
the response data object to us. There are a few commonly used data sets that have their
own methods—such as getDisplayName() to return the name of the user (which we
have used in the preceding sample) or getId() to capture the user ID—but for the most
part, we’ll use the getField() method to capture specific Person details. From our call-
back, we pull out these details by calling getField on our response data object, followed
by specifying the field that we want to capture as the parameter. With all of that, you
can now capture any user profile details.

New method

With the introduction of the lightweight JavaScript APIs in OpenSocial 0.9 came new
and easier methods to streamline the development process and reduce code bloat.

We can accomplish our data retrieval task quickly and easily using OpenSocial’s get
Viewer or getOwner methods:

//opensocial person data request
osapi.people.getViewer({fields: ['name']}).execute(function(data){
 alert('Hello ' + data.name);
});

Personalizing Applications with Profile Data | 169

To request details about a person, you need to take a few steps (all chained nicely
together, though). Breaking down the request into its individual parts, we have three
distinct sections:

• osapi.people.getViewer(...) is the method specifying that we want to capture the
viewer’s profile information. The parameter that we pass into this method is a
JSON structure, which defines the fields that we want to return from the profile.
In this case, we want to capture the viewer’s name.

• execute(...) will initialize the viewer data request.

• The callback, listed as the parameter in the execute function, will be hit when the
viewer data request completes, and will contain the Person object returned (result
parameter). From this result, we can use standard dot notation to get at the data
we requested.

Comparing the old and new methods, we can see that the lightweight JavaScript APIs
produce a smaller code footprint with additional layers of method chaining.

Using Friendships to Increase Your Audience
The friendships or connections that a user creates compose a great portion of her social
graph, which you can leverage to increase your application’s user base and ramp up
application activity. Friendships are a reciprocated link between two users. For a de-
veloper, friendships provide a way to take advantage of full profile details from a much
larger audience of users. In short, when a user creates this type of link with another
user, she is telling the container that she knows and trusts the other person with her
profile and personal information. This trust relationship permeates the social graph,
and developers can build off this trust to get more profile information for people rele-
vant to the original user. These concepts work equally well in a follower model such
as Twitter; you’re looking for a means of using a physical connection (like a friendship
or work contact) to your advantage.

Many of us who belong to any of the popular social networks have either generated or
received annoying messages from one of the virally popular games, requesting that you
help the user out in some fashion by installing the application. Looking closer at such
games, we can see that one major reason they have “gone viral” is because of the huge
relevant social graph that they build.

The important word here is relevant—something that many social networks struggle
with at times. Most social platform users add many people to their social graph other
than close friends and family—coworkers, the postman, the cousin of the neighbor you
say hi to while getting the paper in the morning—and these connections aren’t really
what we’d call relevant to the user. These nonrelevant friendships dissolve the social
graph into a confusing mass of 1 to 1 people links, which are much more difficult to
use to drive user interest.

170 | Chapter 5: Porting Applications, Profiles, and Friendships

This means that, for the social container itself, a link between nonrelevant users has
far less value than one where the users know each other and interact on a regular basis.
This same concept applies to your application: when you are building links between
the people who use your application, you must give them a way to interact with, and
drive activity from, each other on a regular basis for them to be of any use to you.

Making a Request to Capture User Friendships
Much like our previous Person request, we can make a simple get request to capture
owner friends:

//get owner friends
osapi.people.get({userId: '@owner', groupId: '@friends', count: 10})
 .execute(function(result){
 if (!result.error){
 var friends = result.list;
 var html = '';
 for (var i = 0; i < friends.length; i++){
 html += friends[i].name.formatted + '';
 }
 }
});

Again, this request can be split up into three individual sections:

• osapi.people.get(...) is a standard get method that can be used to capture any
user data. In this case, we indicate within the JSON passed into this function that
we would like to capture information from the owner of the application where the
groupId is friends. These are simple strings stating that we would like to capture
the owner’s friends.

• execute(...) will initialize the owner friend data request.

• The callback, listed as the parameter in the execute function, will be hit when the
owner friend data request completes, and contains all friend Person objects for
the owner (friends parameter). From this result, we can get the number of friends
returned using .totalResults or loop through the list of Person objects for each
friend.

Putting It All Together

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_5/chapter_final
.xml.

Now that we understand the importance of the Person object in an OpenSocial con-
tainer and the quantity of information that we can obtain from a user’s friendships, we

Putting It All Together | 171

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_5/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_5/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_5/chapter_final.xml

can look more closely into these features and fit them neatly together into an Open-
Social gadget.

To showcase these features, we will create a gadget with the following requirements:

• Display profile information for the current viewer, including name, photo, gender,
profile URL, and any relevant links associated with the user.

• Display a list of the current viewer’s friends.

• When the profile image for a viewer’s friend is clicked, that friend’s profile will be
displayed in place of the original viewer’s information.

Let’s look at the pieces that will need to be in place to build this gadget.

The Gadget Specification
Our first task, much like with any other gadget, is to implement the XML gadget wrap-
per for the application markup and content:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs title="Chapter 5 rollup example"
 title_url="http://www.jcleblanc.com"
 description="Displays the profile information for the
 current user and user friends"
 author="Jonathan LeBlanc">
 <Require feature="opensocial-0.9"/>
 <Require feature="osapi" />
 </ModulePrefs>

We add in the gadget metadata for author, description, title, and the associated title
URL. In this gadget, we will be using the OpenSocial lightweight JavaScript library
osapi and will not need any other libraries along with this feature. To include osapi,
we add in two Require nodes—one for OpenSocial 0.9, which is the lowest OpenSocial
version needed for osapi, and one for the osapi library itself.

The Content Markup
The gadget’s Content section will contain all the gadget markup inline. We will define
the style block to add visual appeal to the application and include the DOM containers
we’ll drop all of our content in:

<Content type="html"><![CDATA[
 <style type="text/css">
 div#gadget{ font:11px arial,helvetica,sans-serif; }
 div#gadget div.header{ background-color:#858585;
 color:#fff;
 font-weight:bold;
 font-size:12px;
 padding:5px;
 margin:5px; }
 div#gadget div#railRight{ width:360px;

172 | Chapter 5: Porting Applications, Profiles, and Friendships

 float:right;
 border:1px solid #858585;
 margin:0 0 15px 15px;
 padding:10px;
 background-color:#eaeaea; }
 div#gadget div#railRight span{ margin:5px; }
 div#gadget div#railRight div#friendLinks img{ border:0;
 margin:5px;
 width:50px;
 height:50px;
 cursor:pointer; }
 div#gadget div#updates{ margin-left:5px;
 margin-right:390px; }
 div#gadget div#updates div.header{ font-size:15px;
 margin:0; }
 div#gadget div#updates div#profileContent img{ margin:10px; }
 div#gadget div#updates div#profileContent div{ font-size:14px;
 margin:5px 10px; }
 div#gadget div#updates div#profileContent span{ font-weight:bold; }
 </style>

 <div id="gadget">
 <div id="railRight">
 <div class="header">Other Profiles</div>
 Click on an image below to load the profiles of
 your connections
 <div id="friendLinks"></div>
 </div>
 <div id="updates">
 <div class="header">Current Profile</div>
 <div id="profileContent"></div>
 </div>
 </div>

Between the style block and our DOM objects, we are building out an application that
consists of two columns to display our required data fields. We will use an interface
that looks like Figure 5-1 to build this application.

Figure 5-1. Architecture of the Chapter 5 social gadget

Putting It All Together | 173

Our left column will consist of a display pane for the currently selected user—either
the current viewer or any of his chosen friends. A larger version of his profile image will
appear at the top, followed by the user’s core profile information.

Our right column will contain a view of the application viewer’s friends, represented
by their profile images. When a profile image is clicked, the left column’s display pane
will update with the most recently selected profile.

This will be the core of our application visualization.

The JavaScript
The JavaScript layer will act as our controller for the application, providing the data-
fetching methods to access profiles and friendships:

<script type="text/javascript">
var socialController = {
 //fetch profile photos for friends
 fetchConnections: function(insertID){
 osapi.people.get({userId: "@viewer",
 groupId: "@friends",
 count: 36}).execute(function(result){
 var friends = result.list;
 var html = '';
 for (var i = 0; i < friends.length; i++){
 html += "<img src='" + friends[i].thumbnailUrl + "'onclick=
 'socialController.loadProfile(\"" + friends[i].id + "\");' />";
 }
 document.getElementById(insertID).innerHTML = html;
 });
 },

 //load profile for a given user
 loadProfile: function(uid){
 osapi.people.get({userId: uid}).execute(function(result){
 if (!result.error){
 //build basic profile information
 var name = result.name.givenName + " " + result.name.familyName;
 var html = "<img src='" + result.thumbnailUrl
 + "' alt='profile image' />"
 + "<div>Name: " + name + "</div>"
 + "<div>Gender: " + result.gender + "</div>"
 + "<div>Profile URL: <a href='"
 + result.profileUrl + "'>" + result.profileUrl
 + "</div>
"
 + "<div class='header'>Profile URLs</div>";

 //load all urls for the user
 for (var i = 0; i < result.urls.length; i++){
 html += "<div>" + result.urls[i].type + ": "
 + ""
 + result.urls[i].value + "</div>";
 }

174 | Chapter 5: Porting Applications, Profiles, and Friendships

 //add new markup to the application
 document.getElementById("profileContent").innerHTML = html;
 }
 });
 }
};

//load friend list
socialController.fetchConnections("friendLinks");

//load viewer profile information
socialController.loadProfile("@viewer");
</script>
]]></Content>
</Module>

Our first function, fetchConnections(...), is tasked with fetching the current user’s
friends and building out the content of the application’s right column. We issue a call
to the osapi.people.get(...) method, passing in a configuration object stating that
we want to collect data from the viewer; then qualify that by specifying that we want
to access the viewer’s friends group; and finally quantify that by stating that we want
to pass back 36 results (or friends). Once that request returns, we build out the profile
images for each friend with an onclick event to call the socialController.loadPro
file(...) function. That markup is then injected into the DOM node we have set up
for the right column.

Our next function, loadProfile(), accepts a user identifier as its single parameter. We
issue another request to osapi.people.get(), but this time just pass in the userId as our
configuration object, stating that we want to get the profile of that particular user. When
that request completes, we build the markup for the user’s name, gender, and profile
URL, extracted from the result set returned from our people request. We then loop
through each OpenSocial URL object in the profile, adding each one to our return
object. Once all of the markup has been generated, we inject it into the left column of
our application.

Our last piece of script, below our functions, contains the request methods that we
need to call to get our initial markup payload for the application. We call our
fetchConnections(...) function to grab the viewer’s friends; next, we call the loadPro
file(...) function, passing in the ID of the profile to fetch as the @viewer object, which
will grab the current user’s profile.

Running the Gadget
Once you’ve loaded the gadget in the container of your choice (or through a local
Partuza install), you’ll be able to see the full application, providing all of the function-
ality that we outlined in our requirements, in your browser. It should look like what
you see in Figure 5-2.

Putting It All Together | 175

Figure 5-2. The Chapter 5 social gadget

176 | Chapter 5: Porting Applications, Profiles, and Friendships

CHAPTER 6

OpenSocial Activities, Sharing,
and Data Requests

One of the biggest challenges with building social applications is figuring out how to
promote your applications and leverage external data sources to build in a rich feature
set that will keep users’ attention and drive a loyal customer base.

Many developers integrate application sharing and activity hooks only as an after-
thought; the overall architecture for increasing application use is of little importance
to them. The simple fact is that the standard methods that containers set up to promote
applications, such as galleries, are not effective drivers of user installs. In many
instances, these galleries are oversaturated with thousands of applications and are built
to surface the most popular applications at the top. For a new developer, this means
not only having to compete with the gallery’s numerous applications, but also having
to start at the bottom of the pile. This concept is similar to a person’s credit history—
having no credit is the same as having bad credit.

This is where promoting your application with activities through a regimented sharing
process comes into play. Doing so allows you to surface links to your application
directly in the user’s day-to-day activity stream. In addition, properly augmenting your
application with fresh content via data requests will help to draw and keep users’ at-
tention, increasing not only your number of installs, but also your daily active users.

What You’ll Learn
In Chapter 5, we covered how to customize applications with user profile information
and promote application growth through user friendships. This chapter will expand
upon those concepts, exploring OpenSocial activities and how to create highly cus-
tomized applications by building extensive data sources through third-party data re-
quests. Our focus areas in this chapter are:

177

• Personalizing an application state to a user through social activities

• Increasing application installs by producing activities

• Understanding passive sharing versus direct sharing

• Making data requests to provide rich data sources and increase the number of daily
active users

• Making signed data requests to provide security by validating user credentials and
data sources

Once you grasp these concepts, you will be well positioned to build highly
customizable social applications that promote user growth.

Promoting Your Applications with OpenSocial Activities
A powerful tool for social application developers is the ability to send updates to a
user’s activity stream (or update stream). The activity stream, shown in Figure 6-1, is
the central news area for the application user and her connections, and is a main com-
munication channel for container users. Using this medium to promote your applica-
tion with a call to action ensures that you reach the maximum number of users, and
can prompt a much higher number of application installs than simply relying on an
application gallery.

Figure 6-1. An OpenSocial activity stream with images and comments

On most social networking containers, an activity includes these key pieces of data:

• A title describing the action taken by the user.

• A link to the originating source of the update, such as the application itself.

• A description providing more information about the update, or a call to action for
other users to add the application.

• An optional media include, such as a video or image, to provide additional visuals
to draw in users.

• Comments or likes from the user’s friends.

178 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

Understanding an activity’s components will allow a developer to utilize the activity
stream to its maximum potential. OpenSocial provides two utilities for interacting
with activity updates—one that allows developers to use existing activities to person-
alize an application experience, and the other for developers who want to produce new
activities to drive traffic back to the application itself.

Personalizing an Application Experience by Consuming Activity Updates
Whereas the user’s profile comprises the data that she chooses to share and reflects
how she sees herself, the user’s activity stream shows the reality of what that user does
and likes. The activity stream contains information such as application installs, appli-
cation updates, status and profile information, as well as a gold mine of additional data,
all of which can give you insight into the user’s online habits, likes, and dislikes. When
used in conjunction with the user’s profile information, the activity stream gives a de-
veloper a great opportunity to target content and advertising directly to that user.

The defining truth in any social network is the user’s activity stream. When the user
sends messages, the person she’s contacting, what she’s doing, and what applications
she’s using all become accessible to a developer via the activity stream.

OpenSocial defines a standard method for capturing these user details:

//capture viewer activities
osapi.activities.get({userId: '@viewer ', count: 20}).execute(function(result){
 if (!result.error){
 var activities = result.list;
 var html = ' ';

 //build title and url for each discovered activity
 for (var i = 0; i < activities.length; i++){
 html += 'Activity Title: ' + activities[i].title +
 'Activity URL: ' + activities[i].url;
 }
 }
});

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/activities_cap
ture.js.

In this request, we are making a call to osapi.activities.get(...), indicating that we
want to return someone’s activity stream. The JSON object provided as the parameter
to this request denotes that we want the activities for a userId that matches that of the
current application viewer, and we want to return only 20 activities.

Once this request completes, we can parse each activity and use it however we’d like.

Promoting Your Applications with OpenSocial Activities | 179

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_capture.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_capture.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_capture.js

Driving Application Growth by Producing Activity Updates
Sadly, many social networking containers are usually oversaturated with applications
from their galleries, causing them to relegate applications to undesirable locations to
prevent many of their core social features from being overrun by application windows.
This raises a major problem for application developers: if your applications are being
placed on subtabs or other less-than-prime locations in the container, how will they be
surfaced to new users?

One of the best methods you can use to encourage user growth in your application is
to promote it through the user’s activity stream. The activity stream is one of the few
gateways to users that developers can still access if a container does not provide prime
real estate for application windows. When a developer taps into the activity stream by
setting new updates that draw the user’s attention, he generally sees a larger influx of
users than he would by just relying on gallery installs.

Thankfully, OpenSocial defines a simple JavaScript method for pushing new activities
to this stream, allowing a developer to promote his application through targeted
messages.

Pushing an activity to the user activity stream

The method used as of OpenSocial 0.9 to push an update to a user’s activity stream is
osapi.activities.create(...). This method allows a developer to quickly output a
message from an application to an activity stream or any available activity consumption
channel provided by the container.

The osapi.activities.create(...) method accepts one parameter, a JSON object
containing the activity request parameters listed in Table 6-1.

Table 6-1. Activity request parameters for osapi.activities.create

Parameter Description

activity An OpenSocial Activity object that defines the content of the activity to be sent.

auth An AuthToken object that defines the authorization type (e.g., HttpRequest.Authorization).

appId The application ID string that denotes the application from which the update was sent. A container may use the

application ID to display application details and links back to the application automatically within the update.

groupId The group string to which the update should be sent (e.g., @self).

userId The user to which the update should be attributed (e.g., @me, @viewer, @owner). This may be either a string

or an array of strings.

Using the parameters listed in Table 6-1 as a base, we can build a JavaScript block to
enable us to push out an update to the user’s activity stream:

//insert new activity for the current viewer
osapi.activities.create({
 userId: "@viewer",

180 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

 groupId: "@self",
 activity: {
 title: "My application does all sorts of cool things",
 body: "Click here for more information",
 url: "http://www.mysite.com/"
 }
}).execute();

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/activities_cre
ate.js.

To generate the update, we make a request to osapi.activities.create(...) with our
JSON object as the parameter. In the update, we specify that the activity stream to
which the update should be pushed is that of the current application viewer, and the
group to push to is self; then, we define an activity object to specify the content.
Within our activity object, we include a title, the URL that the title will link to, and
the description (body) of the update. The body of an activity accepts a small subset of
HTML tags, including , <i>, <a>, and . Executing this code will push an update
to the user’s activity stream.

Setting an update priority

When pushing out an activity for a user, you need to ensure that application activities
can be posted on the user’s behalf, even if she has not explicitly granted the application
permission to do so. This is where the activity priority comes into play.

You can include an optional flag, priority, in an activity push to set the activity’s
priority. This is a Boolean field that contains a value of 0 (low priority) or 1 (high
priority). The value depends on whether the user who is about to push an activity has
granted your application permission to do so, and on the container implementation. If
you define a high priority (1) and the user has not granted your application permission
to push out activities on her behalf, the application will attempt to load an authenti-
cation flow to prompt her to allow the activity. If you set a low priority (0) and the user
has not granted your application permission, the update is ignored and no authenti-
cation flow will be presented to provide her the option to permit the update to her
activity stream.

You can set an activity with a priority flag simply by placing the value in the JSON
object passed to the push request:

//insert new activity for the current viewer with a high priority
osapi.activities.create({
 userId: "@viewer",
 activity: {
 title: "Get more information on my blog",
 url: "http://www.nakedtechnologist.com/",
 priority: 1

Promoting Your Applications with OpenSocial Activities | 181

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create.js

 }
}).execute();

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/activities_cre
ate_with_priority.js.

The preceding example requests the user’s permission to push out the activity if she
has not already granted the application permission to do so. This may come up if a user
has not allowed the application access to her social data, or if she is viewing the appli-
cation in a preview state.

Including visual media in an update

Adding visual media to an activity that will be displayed to other users will promote
richer degrees of interaction with its content, capture user attention more so than
standard text and links, and ultimately increase the number of people viewing and
installing your application.

An activity push request includes an optional field for mediaItems, through which the
developer can embed images, audio, or video into the activity’s content.

The method available for creating a media item within OpenSocial is opensocial.new
MediaItem(...), which accepts a MIME type defining the media and a URL to the media
item itself, such as an image:

//create a new media item for an image
var imageUrl = "http://www.mysite.com/image.jpg";
var mediaImg = opensocial.newMediaItem("image/jpeg", imageUrl);
var mediaObj = [mediaImg];

//build parameter list for the activity
var params = {};
params[opensocial.Activity.Field.TITLE] = "Posting my image";
params[opensocial.Activity.Field.URL] = "http://www.myserver.com/index.php";
params[opensocial.Activity.Field.BODY] = "Testing 1 2 3";
params[opensocial.Activity.Field.MEDIA_ITEMS] = mediaObj;
var activityObj = opensocial.newActivity(params);

//make request to create a new activity
osapi.activities.create({
 userId: "@viewer",
 activity: activityObj
}).execute();

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/activities_cre
ate_with_media.js.

182 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_priority.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_priority.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_priority.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_media.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_media.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/activities_create_with_media.js

The process of including a media object in the preceding example comprises three steps.
The first task is to create a new media item object, making a request to opensocial.new
MediaItem(...) to create the structure. The first parameter specified, image/jpeg, is the
MIME type denoting what type of data we are creating. The second parameter is
the string specifying the URL to our image. As is typical when embedding media into
an activity, we then create an array out of that object.

The second step is to create our activity object to house all of our activity’s data,
including the media object. The activity parameters can be specified as a JSON object
or by calling the opensocial.newActivity(...) method to generate the required struc-
ture. We create entries for the title, body, and URL as the base text data to populate
the activity. We then add the media item via the opensocial.Activity.Field

.MEDIA_ITEMS entry, inputting the array containing the media object we created in the
previous step. Next, we call the opensocial.newActivity(...) method to generate the
activity structure.

In the final step, we make a request to create the activity. We pass in the userId of the
user we would like the activity to be posted for—in this case, the current viewer—and
then insert our activity based on the object we created earlier.

These steps will post out an activity containing an image. You can follow the same
process to insert a video or audio stream—just keep in mind that you’ll have to set the
URL and a correct MIME type for the data being presented.

Direct Sharing Versus Passive Sharing
There are two main categories for the methods a developer can employ to promote his
applications: direct sharing and passive sharing. These two options dictate under what
circumstances an activity will be published on a user’s behalf and whether that user is
aware of the update being posted.

There are a few schools of thought where sharing is concerned. As we’ve discussed,
many developers promote application notifications to the user’s activity stream, thus
displaying the notification to all of the user’s friends, and believe that more notifications
equals more visibility. Let’s assume that a user has five or more applications installed,
all promoting out as many activities as they can and all being broadcast to that user’s
friends. But what if the container provides a means by which a user can hide all appli-
cation notifications in case they become too invasive and overrun his activity streams?
The fact is, almost every container supporting applications does provide a way for users
to hide such notifications, so application developers need to be careful about which,
and how many, notifications they send. This is where direct and passive sharing come
into play. Each option has some drawbacks and benefits, which we’ll examine next.

Direct Sharing Versus Passive Sharing | 183

Direct Sharing
Direct sharing is the concept of setting up applications to share activities based on the
user’s actions, with that user’s knowledge and consent. The user gives consent when
she accepts an option to share the application, asks for help in an application, or pro-
motes some goal or accomplishment she has achieved in the application.

The main reason why implementers employ a direct sharing mechanism is because the
user is aware of the actions that the application is taking on her behalf, and is therefore
less likely to either turn off (hide) application sharing (via the container or application
configuration) or to uninstall the application because she feels her trust has been vio-
lated. Maintaining this trust relationship is very important when you are trying to build
a community around your application. You want users to feel confident that they can
use your application without having it do things that they view as malicious or unwar-
ranted.

The biggest disadvantage to direct sharing is the number of activities that will be pro-
duced by the application. Unless the application is set up such that it strongly encour-
ages a user to share an activity, many users will not wish to post activities to their
streams, which would promote the application to their friends. Social networking con-
tainer users have quickly become disenchanted with the flood of application activities
being posted by their friends. And because most containers provide a mechanism for
users to block application activities from their streams, this presents another challenge
for the application developer attempting to promote his application.

To mitigate these issues, selective promotion of application events takes into account
both the user on whose behalf the activity is being posted as well as her friends who
will be seeing the update. Oversaturating a user’s stream with your activities is a sure-
fire way to have her block your application. Push activities in moderation.

Direct sharing may be as simple as providing a call to action and an incentive for a user
to share to her activity stream:

<div id="msgNode"></div>
<div id="shareMsg">
 Tell your friends that you've updated your profile and earn 5 app bucks!

 <button onclick="addActivity();">Share</button>
</div>

<script type="text/javascript">
//make request to create a new activity
function addActivity(){
 osapi.activities.create({
 userId: "@viewer",
 activity: {
 title: "I've updated my profile - click to see the updates",
 url: "http://www.container.com/myapp"
 }
 }).execute(function(){
 //activity has been shared - display success message

184 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

 document.getElementById("msgNode").innerHTML = "Your message has been shared";
 document.getElementById("shareMsg").style.display = "none";

 //logic to add 5 app bucks to user profile
 });
}
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/sharing_direct
.html.

Breaking down this example, we can see that the user is presented with some text and
a button requesting that she share the fact that she has updated her profile. Once the
user clicks on the share button, the activity is pushed to her stream and she receives
confirmation of the update.

Passive Sharing
In contrast to direct sharing, passive sharing is the process of pushing out activities on
a user’s behalf without his direct knowledge that the activity is being posted. We see
this in action in social applications like Foursquare or Gowalla, which automatically
post out locations where the user has checked in. The user is aware that he has granted
such applications permission to push activities on his behalf, but he is not involved in
the process of actually pushing out each individual activity.

This method of sharing has its benefits and drawbacks. A user has technically allowed
your application permission to push out activities on his behalf, so that gives you the
freedom to define how you’ll actually use that permission. The main benefit here is
that, unlike with the direct sharing method, you can guarantee that certain user actions
will produce certain activities. This allows you to increase the number of activities
posted from your application in the hopes of reaching a much larger audience.

The main drawback to this method is the same as the benefit: numerous activities can
be posted out on the user’s behalf without him actually being involved in or aware of the
process. There are a couple of key negatives here:

• A user has a prearranged trust relationship set up with your application, whereby
the application may access his social profile and do things on his behalf. Abusing
that trust relationship by posting numerous activities can result in the user hiding
all your activities, revoking permission to post out activities on his behalf, or un-
installing your application altogether.

Direct Sharing Versus Passive Sharing | 185

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_direct.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_direct.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_direct.html

• There are many applications posting numerous activities to the user’s stream.
These activities are visible to the user’s connections. If one application oversatu-
rates the user’s stream with activities, his connections will tend to hide activities
from that application or uninstall the application altogether. This means you lose
the potential to expand your application’s user base.

The most important rule—with either form of sharing—is moderation. Do not take
advantage of your user’s trust by posting an inordinate number of activities, or the user
will be more likely to turn against the application.

A passive sharing event may be introduced as a simple profile update that in turn sends
an activity stating that an update has been posted:

<!-- INSERT: Form elements to update the profile -->
Update your profile
<button onclick="updateProfile();">Update Profile</button>

<script type="text/javascript">
//function to update the user profile
function updateProfile (){
 //INSERT: request scripts to update user profile

 //make request to update profile
 osapi.activities.create({
 userId: "@viewer",
 activity: {
 title: "I've updated my profile - click to see the updates",
 url: "http://www.container.com/myapp"
 }
 }).execute();
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/sharing_pas
sive.html.

This example is similar to the one we looked at for direct sharing. The subtle difference
here is that the activity share push is tied to the profile update without the user being
aware of the action or being notified when it has taken place.

The example has a number of form fields that allow the user to update his profile and
click a button to save his changes. Once the user clicks the button, the function called
will make a server request to update his profile. Once the request is sent, an update is
pushed out on the user’s behalf, without giving him any notification or warning.

Balanced Sharing
One way to reap the benefits but avoid the drawbacks of the direct and passive sharing
approaches is to attempt to integrate both into a balanced sharing mechanism. If

186 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_passive.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_passive.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/sharing_passive.html

employed correctly, this technique guarantees you a certain number of activities posted
per user action while maintaining the trust relationship you’ve established with the
user.

The balanced sharing technique is built on a few main concepts. The first is the use of
passive sharing and determining the appropriate actions to tie it to. If passive shares
are tied to heavily trafficked user actions, you will end up flooding the user’s activity
stream with an abundance of messages that she knows nothing about. Passive sharing
should be used only for major actions, such as the user completing a lengthy task,
earning a badge, or making major upgrades to her profile or application content. This
will ensure that a certain number of activities are promoted without monopolizing the
user’s stream.

The direct sharing technique, on the other hand, should be tied to every other instance
for which you would like the application to post out messages. This could be invite
flows, requests for help or content from friends, sharing content from the application,
and more. You can make your calls to action more enticing to users by providing
benefits—such as virtual currency or promotional upgrades—for posting the updates.

Using moderation and maintaining the trust relationship you have with your users can
help you build out a rich activity-promotion base within your application. In this way,
your users do all of the application promotion for you by publishing activities to their
friends and connections.

Making AJAX and External Data Requests
During normal program flow, you may need to modify your application or augment
the server data sources, such as a database, with new content. To meet this need,
OpenSocial makes available an http request method through the standard JavaScript
library.

Developers can use this method to make RESTful requests (GET, PUT, POST, DE-
LETE) between the application and the server to alter their state without impacting the
user experience.

The methods you can use to make these requests are all under the osapi.http object
and include:

• osapi.http.get(url, params)

• osapi.http.put(url, params)

• osapi.http.post(url, params)

• osapi.http.delete(url, params)

In addition to the URL to make the http request to, there are a number of parameters
you can introduce within these request calls. They are listed in Table 6-2.

Making AJAX and External Data Requests | 187

Table 6-2. http request parameters

Parameter Description

authz (string) The authorization method to use when sending data to the server. This value

may be none (default), signed, or oauth.

body (string) For PUT and POST requests. The data to be sent to the server from the request.

format (string) The format of the data returned. This value may be json (default) or text.

headers (string/array of strings) Optional headers to send with the data request.

oauth_service_name (string) The service element in the gadget spec to use for the request. Default is an

empty string (" ").

oauth_token_name (string) The OAuth token to use in the request. Default is an empty string (" ").

oauth_request_token (string) A token that is preapproved by the provider for accessing the content of the

request.

oauth_request_token_secret (string) The secret associated with the request_token.

oauth_use_token (string) Should the OAuth token be used in the request? Possible values are always,

if_available, or never.

refreshInterval (integer) Period of time for which the container may cache the return data.

sign_owner (Boolean) Should the request be signed and pass the owner ID? Default is true.

sign_viewer (Boolean) Should the request be signed and pass the viewer ID? Default is true.

Many of the requests used for insecure data will include only a small portion of these
parameters, including format, body for POST or PUT requests, and refreshInterval to
increase performance.

The authz, sign_*, and oauth_* parameters may be introduced to the request if you
need to make a secure data request and verify the sender’s identity.

Making Standard Data Requests
Unless you’re building a site that requires a secure data transfer, you’ll access the ma-
jority of your data through standard RESTful server requests. You can make these
standard requests through osapi.http.method, where method is get, put, post, or delete.

Since we are using the osapi JavaScript functionality, we will need to add a Require
statement to make the request methods available for us to use. Once the methods are
available, we can use them to build out a functional example to capture data from an
external source and display the content within the application.

The following example will make a GET request to Flickr via the Yahoo! Query Lan-
guage (YQL) to return photos that match the search term “Montreal.” Those results
are then parsed, and tags are generated based on the results of each photo and
displayed within the application:

<?xml version="1.0" encoding="utf-8"?>
<Module>

188 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

 <ModulePrefs title="GET Request to Flickr via YQL">
 <Require feature="osapi"/>
 </ModulePrefs>
 <Content type="html" view="canvas">
 <![CDATA[
 <div id="imgContainer"></div>

 <script type="text/javascript">
 //GET request callback
 function requestCallback(response){
 var photolist = response.content.query.results.photo, html = "";

 //loop through each image and create an tag
 for (var i in photolist){
 if (photolist.hasOwnProperty(i)){
 html += "<img src='http://farm" + photolist[i].farm +
 ".static.flickr.com/" + photolist[i].server +
 "/" + photolist[i].id +
 "_" + photolist[i].secret +
 ".jpg' alt='" + photolist[i].title +"' />
";
 document.getElementById('imgContainer').innerHTML = html;
 }
 }
 }

 //make GET request
 var url = "http://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20
 flickr.photos.search%20where%20text%3D%22Montreal%22&format=json";
 osapi.http.get({
 "href": url,
 "format": "json"
 }).execute(requestCallback);
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/data_request
.xml.

The first thing that we define here is the gadget specifications needed to run the
example—namely, the Require element for the osapi library under ModulePrefs. We
then create the Content section to display the application’s canvas view.

Our program execution starts at the bottom of the Content section. We define the URL
that we will call—in this case, a URL to YQL with the Flickr search string. We then
call our osapi.http.get(...) method to initiate the call. We pass the URL as the href
parameter and specify that we are expecting JSON to be returned. Last, we execute the
request with the execute(...) method, passing in the callback function reference we
want to call when the request completes.

Making AJAX and External Data Requests | 189

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request.xml

Once the request completes, the requestCallback function will be executed, passing
in the data response object as the parameter to the function. We drill down to the start
of the repeating photo return values, and then loop through each object in that repeat-
ing list.

For each photo that we find in the list, we use the data that is returned from the request
to generate tags for each Flickr URL. Once the HTML content is generated for
all images, we dump the content into the div node we set up at the top of the Content
section.

Pushing Content with Data Requests
When making data requests, you may sometimes need to push content to the server to
which you are connecting—for example, if you are pushing new user configuration
settings to your server in order to update the database record for the user:

<label for="user"></label>
<input type="text" name="user" id="user" />

<label for="pass"></label>
<input type="hidden" name="pass" id="pass" />
<button onclick="updateRecord();">Update User</button>
<div id="response"></div>

<script type="text/javascript">
function updateRecord(){
 //set up url and post data
 var url = "http://www.mysite.com/updateUser.php";
 var postData = "user=" +
 encodeURIComponent(document.getElementById("user").value) + "&pass=" +
 encodeURIComponent(document.getElementById("pass").value);

 //POST data object to URL
 osapi.http.post({
 "href": url,
 "body": postData,
 "format": "text"
 }).execute(function(response){
 document.getElementById("response").innerHTML = "Data Posted";
 });
}
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/data_request
_content.html.

In our POST request, we set up the markup to allow a user to input her username and
password. These values represent the information that we will pass to the server to
update the user record. We also set up a div to display a confirmation that the message

190 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request_content.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request_content.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/data_request_content.html

was sent. When the user clicks the button, the updateRecord() function will be
executed.

In the updateRecord() function, we set the URL that we will be calling and then put
together the POST key/value pairs based on the input fields. These are ampersand-
separated pairs of data.

Finally, we make an HTTP POST request using the osapi.http.post(...) method,
passing in the href, format, and the POST data that we want to send with the request.
The execute() method initiates the request, executing the callback when complete. The
callback then pushes a simple success message to our message div.

Using Signed Requests to Secure a Data Connection
With a normal HTTP request sent via an application using the osapi.http methods,
the container itself acts as a proxy, forwarding any parameters passed through a request
directly to the server to which the request is being made without modifying them
(Figure 6-2).

Figure 6-2. A user making a request to an external website through the container without OAuth
authorization

When you’re collecting data from an external source where security is not an issue or
where user validation is not a concern, this insecure method of data transference may
suffice.

But let’s take a look at a different use case for making a request. Instead of just collecting
some random insecure data, let’s say we are now making a POST request to a server to
update the configuration information for a user. All of the parameters passed to the
server are set within the application itself, including the user identifier. Since this re-
quest is completely exposed, a user simply running Firebug or modifying the request
can spoof his identifier to alter or get information on a different user. Figure 6-3 shows
the request to the server, which still appears completely valid despite the fact that a
malicious user has now been granted access to information about another user.

Making AJAX and External Data Requests | 191

Figure 6-3. A malicious user making a request to an external website, successfully posing as a valid
user without OAuth authorization

This is the exact use case that signed requests within the OpenSocial osapi.http request
methods aim to address. Signed requests will still allow developers to pass parameters
and requests from the application to a server, but the container now takes a more
active role. When a signed request is proxied through the container, as displayed in
Figure 6-4, it validates the user sending the request and appends her identifier. In ad-
dition to the identifier, the request includes a cryptographic hash that allows the third-
party server to validate that the identifier passed is legitimate.

Figure 6-4. A user making a request to an external website through the container with OAuth
authorization

With this validation step in place, any malicious user attempting to spoof his identifi-
cation on a server by passing credentials for another user will have those credentials
overwritten with his actual values. Viewer and owner identifiers, in addition to param-
eters such as the application ID, may also be passed along with the request, provided
the user credentials were verified as valid (Figure 6-5).

192 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

Figure 6-5. A malicious user making a request to an external website, unsuccessfully posing as a valid
user with OAuth authorization

When you’re making a signed request, the server to which the request is being made
always receives the following parameters:

opensocial_owner_id

The unique identifier for the application’s owner

opensocial_app_url

The qualified URL of the application making the server request

Other than these required parameters, containers can optionally send additional veri-
fication data sources, including:

opensocial_viewer_id

The unique identifier for the current viewer of the application.

opensocial_instance_id

Should the container support multiple instances of an application, you can include
this identifier to specify the application instance sending the request. Between this
variable and the opensocial_app_url, you can identify the instance of a particular
application in a container.

opensocial_app_id

A unique identifier for the application. This parameter is generally used to maintain
backward compatibility with version 0.7 of the OpenSocial specification.

xoauth_public_key

The public key used to sign the request. If a container does not use public keys to
sign requests, or if it has another means of distributing keys with the request server,
this parameter may be omitted.

In addition to these parameters, the server will also be sent a series of OAuth credentials
to verify the signed request. These parameters include:

• oauth_consumer_key

• oauth_nonce

Making AJAX and External Data Requests | 193

• oauth_signature

• oauth_signature_method

• oauth_timestamp

• oauth_token

Simply making a signed request does not guarantee that the request will be tamper-
proof. The server to which the request is being made will need to take the additional
step of validating the signed request to ensure the legitimacy of the data transferred.

Making a signed request

You can easily make signed requests by using the request syntax we have already learned
in conjunction with the authz parameter:

//make a signed HTTP GET request
osapi.http.get({
 'href' : 'http://www.mysite.com/editUser.php',
 'format' : 'json',
 'authz' : 'signed'
}).execute(callback);

Within the GET request, we define the URL that we wish to make a signed request to,
specify the data format and, most importantly, state that the authentication (authz) will
be signed. This will initiate a signed HTTP GET request.

Validating a signed request on the server

As noted previously, simply making a signed request to the server is not enough to
ensure that the request is actually valid. A person with malicious intent may attempt
to spoof a signed request to the server. This is where a developer may use OAuth sig-
nature validation to verify that a signed request actually came from the correct source.

There are a few things that we’ll need in order to validate the request:

• The OAuth library from http://code.google.com/p/oauth/, which is used in the
server-side file validation. This example uses the PHP OAuth 1.0 Rev A library at
http://oauth.googlecode.com/svn/code/php/.

• If the container uses a public key certificate as a validation method, we will need
that public key certificate. For a list of the numerous public key certificates for
different containers and links to the certifications, go to https://opensocialresources
.appspot.com/certificates/. Note, however, that this is just a convenience site and is
not supported or approved by the containers. To integrate the best security
measures, you should check the container’s documentation to find the most cur-
rent public key certificate.

The validation of a signed request comprises two parts. First, within the client-
side code, we need to make a signed request to a server-side script. Then, we take the

194 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

http://code.google.com/p/oauth/
http://oauth.googlecode.com/svn/code/php/
https://opensocialresources.appspot.com/certificates/
https://opensocialresources.appspot.com/certificates/

parameters sent to the server-side script and validate them using the OAuth library.
We’ll detail this two-part process next.

Making a signed request within the JavaScript layer
embedded in the gadget XML Content section will pass along OAuth, container, and
user credentials that can be used to validate the request.

Setting up such a request is as simple as making a signed osapi.http.get request to
the server-side script, as we saw in the earlier section “Making a signed re-
quest” on page 194:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs title="Validating a Signed AJAX Request">
 <Require feature="opensocial-0.9"/>
 <Require feature="osapi"/>
 </ModulePrefs>
 <Content type="html" view="canvas">
 <![CDATA[
 <div id="validationResponse"></div>

 <script type="text/javascript">
 function dataCallback(response){
 document.getElementById("validationResponse").innerHTML =
 "Request was verified as: " + response.data.validation;
 }

 osapi.http.get({
 "href" : "http://www.mysite.com/validate.php",
 "format" : "text",
 "authz" : "signed"
 }).execute(dataCallback);
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/request_signed
.xml.

The gadget itself contains the Require statements for the osapi.http.get(...) request
and the required Content section to host the scripts. In the Content section, we have a
div node to display the validation message from the callback, and the callback from
the HTTP request itself. In a production application, you could check the validation
message coming back from the server. If the response is valid and contains new markup,
you can insert it on the page. If the response is invalid, you should display a message
to this effect, stating that the request could not be completed at this time.

Making the signed JavaScript request.

Making AJAX and External Data Requests | 195

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed.xml

The osapi.http.get(...) request following the callback will then make the signed GET
request to the server-side script.

Once the request
has passed through the container proxy layer and hits the server-side script (in this
example, http://www.mysite.com/validate.php), the parameters should now hold all the
container, user, and OAuth credentials needed to validate the request.

Many of the most popular social networking containers use public key certificates
to validate a request via RSA-SHA1. In this example, we use one of these certificates to
validate the request.

If the container in question does not use public key certificates to vali-
date the requests, or if you wish to use HMAC-SHA1 rather than RSA-
SHA1, you will need to set up a secret key with the container and use
that instead of the public key certificate.

<?php
require_once("OAuth.php");

class buildSignatureMethod extends OAuthSignatureMethod_RSA_SHA1 {
 public function fetch_public_cert(&$request) {
 return file_get_contents("http://www.fmodules.com/public080813.crt");
 }
}

//construct request method based on POST and GET parameters
$request = OAuthRequest::from_request(null, null, array_merge($_GET, $_POST));

//create new signature method from created class & public key certificate
$signature_method = new buildSignatureMethod();

//validate signature
@$signature_valid = $signature_method->check_signature($request, null, null, $_GET
["oauth_signature"]);

$response = array();
if ($signature_valid) {
 //validated signed request - send valid message
 $response['validation'] = "valid";
} else {
 //invalid signed request - send invalid message
 $response['validation'] = "invalid";
}

//print response object
print(json_encode($response));
?>

Validating the signed request on the server (RSA-SHA1 with public key certificate).

196 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

http://www.mysite.com/validate.php

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/request_signed
_validate_rsa_sha1.php.

The require_once(...) statement at the beginning of the example is the OAuth file that
we downloaded earlier from http://oauth.googlecode.com/svn/code/php/.

The first thing to note about the validation script is the class buildSignatureMethod at
the beginning. This class extends the RSA_SHA1 OAuth signature method of the
OAuth.php file and simply contains a function to fetch and return the contents of a
public key certificate file. You should not make a request to capture this file’s data each
time a signed request needs to be validated. Instead, the contents should be added to
a key cache based on the values of several parameters passed to the server-side file, and
only updated when these values change. These parameters include:

• xoauth_signature_publickey

• oauth_consumer_key

• oauth_signature_method

Next, we build a new OAuth request object based on the GET and POST parameters
sent via the request. These parameters contain the OAuth and container parameters
from the container proxy script used during the signed data request. This OAuth re-
quest object will be used to validate the signature provided. Using our public key cer-
tificate fetching class, we build a new signature based on that public key certificate.

Using the check_signature(...) method, we then verify that the signature provided is
valid and store the result. Based on that signature’s validation, we store either a valid
or invalid message and return a JSON object of the response back to the client-side
script.

If a public key certificate is not availa-
ble for the container you are working with, you can take a different approach for vali-
dating the signed request on the server. Rather than using RSA-SHA1, we will validate
via HMAC-SHA1.

Instead of using a public key certificate as our method for validating the request, we
can build a new OAuth request object from the OAuth data that was sent through the
signed request:

<?php
require_once("OAuth.php");

$key = "KEY HERE";
$secret = "KEY HERE";

//Build a request object from the current request
$request = OAuthRequest::from_request(null, null, $_REQUEST);
$consumer = new OAuthConsumer($key, $secret, null);

Validating the signed request on the server (HMAC-SHA1).

Making AJAX and External Data Requests | 197

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_rsa_sha1.php
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_rsa_sha1.php
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_rsa_sha1.php
http://oauth.googlecode.com/svn/code/php/

//Initialize signature method
$sig_method = new OAuthSignatureMethod_HMAC_SHA1();

//validate passed oauth signature
$signature = $_GET['oauth_signature'];
$valid_sig = $sig_method->check_signature(
 $request,
 $consumer,
 null,
 $signature
);

//check if signature check succeeded
if (!$valid_sig) {
 //SIGNATURE INVALID - Produce appropriate error message
} else{
 //SIGNATURE IS VALID - Continue with normal program execution
}
?>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/request_signed
_validate_hmac_sha1.php.

Much like with the previous example, we start by including our PHP OAuth library
(available at http://oauth.googlecode.com/svn/code/php/). This will allow us to create our
OAuth request object and consumer object, and validate the signature. In addition to
the library, we include our OAuth consumer and secret as variables in order to construct
a new OAuth consumer.

Our next task is to build our request and consumer OAuth objects. We first make a
request to OAuthRequest::from_request(...) to build the request object. We set the
first and second parameters to null, as they are not required. These parameters repre-
sent the HTTP method and HTTP URL, respectively. The third parameter is the
$_REQUEST object, which will contain all the OAuth request information we need to
build the object. We then create a new OAuthConsumer object, passing in the OAuth key
and secret. The third parameter in this request method, which we set to null, is the
callback URL for the OAuth process.

Our next task is to build a new signing object by creating a new instance of OAuth
SignatureMethod_HMAC_SHA1(). We’ll then be able to run comparisons between it and
the signature that was passed through the signed request in order to ensure that the
latter is valid.

We begin the next block by collecting the OAuth signature that was passed through
the signed request. Once we’ve obtained that signature, we use our new signature in-
stance to make a request to the check_signature(...) method. For the parameters list,

198 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_hmac_sha1.php
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_hmac_sha1.php
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/request_signed_validate_hmac_sha1.php
http://oauth.googlecode.com/svn/code/php/

we pass through the OAuth request object and OAuth consumer object, set the token
value to null (since it isn’t needed), and finally, add the signature passed through the
request for comparison.

Now we can use the value passed back from that request to verify whether the signature
comparison completed successfully (i.e., whether the signature passed through was
valid). If so, we can continue processing the signed request as needed. If not, an error
message should be published.

Putting It All Together

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_6/chapter_final
.xml.

Now that you have the knowledge you need to leverage a gadget’s social features, we’ll
put it to use in a sample gadget. This gadget will display the activity stream of the
viewer’s friends, display their profile images, and then provide a method for the viewer
to add a new activity to his stream.

First, we need to build the gadget markup. In this example, we’ll just need the light-
weight osapi JavaScript library, so we’ll include that feature in the gadget. We then
define the view in which the Content node will be loaded:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
 <ModulePrefs title="Chapter 4 Example"
 description="Display social information fetch and push abilities">
 <Require feature="opensocial-0.9"/>
 <Require feature="osapi" />
 </ModulePrefs>
 <Content type="html" view="canvas">
 <![CDATA[
 <!-- view content -->
]]>
 </Content>
</Module>

We now need to include our styles and markup in the Content node. For this example,
we use styles to position the page elements and set their font, colors, and spacing. This
markup will build a container with two columns. The left column will display the recent
updates of the viewer’s friends, and the right column will display profile images for 12
of those friends. Below the photos is a form to allow the user to input a title, description,
and URL to push out a new activity to his stream:

<style type="text/css">
div#gadget{ font:11px arial,helvetica,sans-serif; }
div#gadget div.header{ background-color:#858585;

Putting It All Together | 199

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_6/chapter_final.xml

 color:#fff; font-weight:bold;
 font-size:12px;
 padding:5px;
 margin:5px; }
div#gadget div#railRight{ width:360px;
 float:right;
 border:1px solid #858585;
 margin:0 0 15px 15px;
 padding:10px;
 background-color:#eaeaea; }
div#gadget div#railRight div#friendLinks img{ border:0;
 margin:5px;
 width:50px;
 height:50px; }
div#gadget div#railRight form{ margin:10px 5px; }
div#gadget div#railRight form label{ font-weight:bold; }
div#gadget div#railRight form input{ width:300px; }
div#gadget div#updates{ margin-left:5px;
 margin-right:390px; }
div#gadget div#updates div.header{ margin:0; }
</style>

<div id="gadget">
 <div id="railRight">
 <div class="header">Other Profiles</div>
 <div id="friendLinks"></div>
 <div class="header">Update Your Friends</div>
 <form name="addActivity" onSubmit="return false;">
 <label for="title">Title:</label>

 <input type="text" name="title" id="title" />

 <label for="description">Description:</label>

 <input type="text" name="description" id="description" />

 <label for="url">URL:</label>

 <input type="text" name="url" id="url" />

 <button onclick="socialController.addActivity();">Add Activity</button>
 </form>
 </div>
 <div id="updates">
 <div class="header">Updates From Your Connections</div>
 <div id="updateContent"></div>
 </div>
</div>

The last piece of the gadget is the JavaScript layer. This section contains three functions
to handle the getting and setting of the gadget’s social data. These functions act as
constructors for the social data sources and promote application data to the user’s
friends:

<script type="text/javascript">
var socialController = {
 //fetch profile photos for friends
 fetchProfile: function(insertID){
 //make GET request for 12 viewer friend profiles

200 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

 osapi.people.get({userId: "@viewer",
 groupId: "@friends",
 count: 12}).execute(function(result){
 var friends = result.list;
 var html = '';

 //for each friend found, create a profile image linked to their profile
 for (var i = 0; i < friends.length; i++){
 html += "<img src='"
 + friends[i].thumbnailUrl + "' />";
 }
 document.getElementById(insertID).innerHTML = html;
 });
 },

 //fetch update stream for friends
 fetchUpdates: function(insertID){
 //make GET request for 30 viewer friend activities
 osapi.activities.get({userId: "@viewer",
 groupId: "@friends",
 count: 30}).execute(function(result){
 var activities = result.list; var html = '';

 //for each activity, create a title linked to their source
 for (var i = 0; i < activities.length; i++){
 html += "<p>"
 + activities[i].title + "
</p>";
 }
 document.getElementById(insertID).innerHTML = html;
 });
 },

 //insert a new activity for the current viewer
 addActivity: function(){
 osapi.activities.create({userId: "@viewer", groupId: "@self",
 activity: {
 title: document.getElementById("title").value,
 body: document.getElementById("description").value,
 url: document.getElementById("url").value
 }
 }).execute();
 }
};

//initialize data requests
socialController.fetchProfile("friendLinks");
socialController.fetchUpdates("updateContent");
</script>

The fetchProfile() function captures profile photos and profile URLs for the viewer’s
friends. This information is then used to create a series of image tags and insert that
HTML into the gadget markup.

The fetchUpdates() function captures updates from the viewer’s friends, creates
markup for the linked titles, and inserts that markup into the application’s left column.

Putting It All Together | 201

The last function, addActivity(), inserts a new activity into the viewer’s stream when
he enters a title, description, and URL for that activity in the right column.

The last two lines of the JavaScript call the social data fetch functions to populate the
application once it loads. When the gadget is loaded, it will render with the social
features we’ve defined in our div nodes, appearing like Figure 6-6.

Figure 6-6. The Chapter 6 example gadget, showcasing activity and social profile capabilities

This application contains some of the core social features that you can use to promote
application growth and user customization. Using even a subset of these features will
help you target user preferences, get the users to promote your application for you, and
draw users’ social friendships into the application context.

202 | Chapter 6: OpenSocial Activities, Sharing, and Data Requests

CHAPTER 7

Advanced OpenSocial and
OpenSocial Next

Using OpenSocial techniques and tools, developers can create very extensible applica-
tions and utilities. This chapter will explore those features in more depth and cover
what is coming up for OpenSocial in the future.

What You’ll Learn
In this chapter, we will examine some of the more advanced features for building
OpenSocial gadgets. In addition to technical implementations, we will dive into some
upcoming improvements to the specification and how they’ll work with different dis-
tributed web frameworks in the future.

The topics that we will explore include:

• Building data sources with data pipelining

• Creating an extensible markup layer with templating

• Extending features with OSML

• Exploring the OpenSocial REST APIs

• The new specification and improvements over current functionality

• How distributed web frameworks will play a major role in the future of OpenSocial

Once we understand the core features discussed in this chapter, we will apply the les-
sons we have learned to build out the architecture of an advanced OpenSocial gadget.

Data Pipelining
There comes a time in every developer’s career when he realizes that embedding a data
source directly into the application markup makes for an application that is not only
hard to maintain and debug, but is also not scalable in the long run. Separating out a

203

data source—such as a JSON or XML object obtained from a third-party resource—
from the page markup, or visual layout, is key to building applications that are modular,
easy to maintain, and highly scalable.

The first part of this process involves the data retrieval methods that make the raw
information available to your application, which is where we’ll begin our discussion of
data pipelining. Data pipelining allows developers to pull in a data source from some
third-party resource and make it available within the gadget code base. The reasoning
behind such an implementation is twofold:

• It provides developers with an easy and scalable method for accessing a raw data
source, without them having to embed a mechanism to make and handle the re-
quest.

• The data source can be used in a multitude of ways to build a rich data source/
template interaction.

Before data pipelining became available within the OpenSocial specification, develop-
ers had to make the request through standard HTTP requests and handle the data
source themselves:

<script type="text/javascript">
function requestCallback(response){
 var data = response.content;
 //build data source
}

//define URL to make GET request to
var url = "http://www.mysite.com/dataSource.php";

//make GET request
osapi.http.get({
 "href": url,
 "format": "json"
}).execute(requestCallback);
</script>

To fetch the data source, we make the HTTP GET request to a defined URL, specifying
the format that needs to be returned. Once the request completes, our callback is hit
and we can begin to handle the data results that are returned.

While this is not an extensive amount of code, and the HTTP GET request function
can be repurposed for a multitude of application request needs, the simple fact is that
the majority of developers will be making data requests to capture some raw informa-
tion as soon as the application loads. Unless you’re feeding your users static content
without customizing their experience through a data source, these data requests will
be integral to your initial load.

This is where data pipelining comes into play. We can easily shrink down the previous
request and make the raw data source available to us using the following method:

204 | Chapter 7: Advanced OpenSocial and OpenSocial Next

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="myData" href="http://www.mysite.com/dataSource.php" />
</script>

To define our data source and initiate the HTTP request, we just have to embed a few
nodes within the gadget code. We create a script node with two attributes:

type

Defines the type of request to be embedded in the script node. To specify a data
pipelining source, set this value to text/os-data.

xmlns:os

The XML namespace markup definition for the os namespace. This value should
be set to http://ns.opensocial.org/2008/markup.

We then define an HTTP data request using the os:HttpRequest node, which is one of
the data request methods that can be used as a data pipe.

We can also make available multiple data requests within the context of a data pipe by
embedding the calls together with different keys:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="myData" href="http://www.mysite.com/dataSource.php" />
 <os:ViewerRequest key="viewerProfile" fields="name, gender, age, status" />
</script>

Using such requests, we make the data source available to the gadget. To use the data
pipelining library functionality, we need to add a Require statement to load in the re-
quired library, opensocial-data. When we put these concepts together, we get a base-
level gadget that integrates an external data source:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
 <ModulePrefs title="Loading data via Data Pipelining">
 <Require feature="opensocial-data" />
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="myData" href="http://www.mysite.com/dataSource.php"/>
 </script>
]]>
 </Content>
</Module>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_pipelin
ing.xml.

The preceding gadget sample integrates the Require feature="opensocial-data" node
to make available the OpenSocial JavaScript library functions for data pipelining. It

Data Pipelining | 205

http://ns.opensocial.org/2008/markup
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_pipelining.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_pipelining.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_pipelining.xml

defines a Content section to display when the gadget loads. In the Content section, we
integrate a script node to make an HTTP request to our data source, using the key
myData to store the result set.

The real value in using data pipelining emerges when the data object is tied into a
template via OpenSocial templating, which we’ll discuss in the upcoming section
“OpenSocial Templating” on page 218.

Data Request Types
A developer may want to request several types of data to help build his application
base. For example, he might want the user’s profile information or a series of activities
from the user’s friends, or he might want to simply make a remote data request for a
raw JSON feed. Fortunately, OpenSocial defines a series of data request types that
allows developers to easily load social, private, or public data sources for use within
their applications.

Container requests with <os:DataRequest>

Within the OpenSocial social API server and core API server specifications (described
in Chapter 5), there are several definitions for REST endpoints to collect data from the
container. This data may be social in nature, such as a user’s profile or activity infor-
mation (in the case of the social API server), or simply be container-specific data not
tied to the user’s social information (as in the case of the core API server). The Data
Request tag provides a method for developers to collect this information easily, mak-
ing it available within their program flow.

Much like with any other data pipelining feature, the developer must add the Require
feature="opensocial-data" tag in the gadget XML file in order to use the DataRequest
tag. Once the feature is available, pulling in the data source is a trivial matter of spec-
ifying the REST method that you would like to fetch and the parameters that should
be sent to that endpoint:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:DataRequest key="userFriends" method="people.get" userId="@viewer"
 groupId="@friends" startIndex="20" count="10"/>
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_container.xml.

The preceding sample shows one type of request you can make—in this case, to capture
the friends of the current application viewer. The container REST endpoints to collect
data may all be used in the context of this request. There are several defined attributes
that you can specify for the DataRequest tag, as listed in Table 7-1.

206 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_container.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_container.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_container.xml

Table 7-1. DataRequest attributes

Attribute Description

key (string) A name to serve as the root node of the data source.

method (string) The REST endpoint and operation to be called, such as people.get or activities.get.

The .update, .create, and .delete operations are not supported.

Dynamic attributes Any other attributes that may be specified for the REST endpoint, such as startIndex, count, etc.

All dynamic attributes will be passed as strings to the endpoint.

Using the dynamic attributes available for each REST endpoint in conjunction with the
method itself will allow you to easily bring in the container’s core data set (social or
otherwise).

External data requests with <os:HttpRequest>

If you are an application developer who wants to leverage some third-party data source
to populate dynamic content upon the loading of your application, you’ll use the
HttpRequest tag to accomplish that. Functioning in a way similar to a standard
osapi.http.get request, HttpRequest lets developers access third-party sources, make
signed requests, and verify those requests via OAuth credentials:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="myData" href="http://www.mysite.com/dataSource.php"
 format="text" />
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_external.xml.

At a base level, a simple HttpRequest tag can simply query a data source and make it
available to the rest of the gadget code. This tag offers an extensive amount of func-
tionality that builds upon core features to allow developers to add security levels,
request-source checks, and caching layers. Table 7-2 lists the attributes you can specify
for HttpRequest.

Table 7-2. HttpRequest attributes

Attribute Description

authz (string) The authorization method to use when sending data. The values may be

none (default), signed, or oauth.

format (string) The format of the data to be returned. Values may be json (default) or text.

href (string) The URL to make the request to.

key (string) A name to serve as the root node of the data source.

Data Pipelining | 207

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_external.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_external.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_external.xml

Attribute Description

method (string) The HTTP method to use for the request, either get (default) or post. If the

params attribute is set, making a post request will send the params with a

content type of application/x-www-form-urlencoded. If you’re

making a get request with params, they will be appended to the URL.

params (string) Parameters to be sent to the URL endpoint. The parameters should be

ampersand delimited and follow the format param1=a¶m2=b.

oauth_request_token (string) A request token that is preapproved by the provider to permit resource access.

oauth_request_token_secret

(string)

The secret key associated with the request token.

oauth_service_name (string) The service element in the gadget spec to be used when making the request.

Default value is "".

oauth_token_name (string) Identifies the OAuth token to be used to make the request. Default value is "".

oauth_use_token (string) Value to determine whether an OAuth token should be used to make the request.

Available values are always, if available, or never.

refreshInterval (integer) The amount of time that the container can cache the data for.

sign_owner (Boolean) Whether to sign the request and include the current viewer ID. Defaults to true.

sign_viewer (Boolean) Whether to sign the request and include the owner ID. Defaults to true.

Using this extensive list of attributes, you can verify the source of a signed request based
on OAuth parameters, and have the container cache the data obtained for a certain
amount of time, which improves performance if the data source does not change fre-
quently.

People data requests with <os:PeopleRequest>

If you are building a social application, in many instances you will need to get profile
information for one person, more than one person, or for entire groups. The People
Request tag provides you with this functionality, enabling you to highly customize
the data that will be returned by the request:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:PeopleRequest key="viewerFriends" userId="@viewer" groupId="@friends"
 startIndex="10" count="20"/>
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_people.xml.

Developers making requests using the PeopleRequest tag can capture the complete
profile information for a set of users, or only a subset. Prior to returning, this profile

208 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_people.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_people.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_people.xml

information may be sorted to display content in the form you need. The attribute tags
listed in Table 7-3 give you this sorting capability.

Table 7-3. PeopleRequest attributes

Attribute Description

count (integer) The number of people to return.

filterBy (string) The type of filter to be applied against the retrieved users. This matches the REST specification.

filterOp (string) The type of filter to be applied against the retrieved users. This matches the REST specification.

filterValue (string) The type of filter to be applied against the retrieved users. This matches the REST specification.

fields (list of strings) A comma-delimited list of OpenSocial Person fields to return.

groupId (string) The group of users that should be returned. The values may be @self (default) to return the users

listed in the userId attribute, @friends to get user friend profiles, or any string representing a

group.

key (string) A name to serve as the root node of the data source.

sortBy (string) The name of the field to be used to sort the returned people. This is used in conjunction with the

sortOrder parameter to determine sort order.

sortOrder (string) The sort order of the results. This may be either ascending (default) or descending.

startIndex (integer) The numeric start index for the result set.

userId (list of strings) A comma-delimited list of user IDs to use with the groupId attribute. Besides a user ID, this value

can be @me, @viewer, or owner.

A PeopleRequest is valuable when you’re building applications to promote user growth
through viewer friendships, which may take the form of inviting people to use the
application or sharing application content with links back to the application itself.

Viewer and owner data requests with os:ViewerRequest and os:OwnerRequest

For any social application, it is important to personalize your content for the current
viewer in order to prefill form configurations, customize the user experience, and/or
leverage user preferences to target advertising or upsell products. Owner information
can include a profile for the application creator, which means the developer can build
a profile view of himself in his application. Both viewer and owner profile information
can be easily obtained through a respective pair of tags. Here, we capture a portion of
data from a viewer using the ViewerRequest tag:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ViewerRequest key="viewerData" fields="nickname, gender"/>
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_viewer.xml.

Data Pipelining | 209

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_viewer.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_viewer.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_viewer.xml

Likewise, we can obtain the application owner’s profile information using a similar
syntax, but with the OwnerRequest tag:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:OwnerRequest key="ownerData" fields="name, birthday"/>
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_owner.xml.

These two tags have a couple of attributes available, listed in Table 7-4, that allow you
to collect just the subset of profile information needed for the data source.

Table 7-4. ViewerRequest and OwnerRequest attributes

Attribute Description

fields (list of strings) A comma-delimited list of OpenSocial Person fields to return.

key (string) A name to serve as the root node of the data source.

This pair of tags provides a simple method for capturing data for the current viewer or
the application owner, allowing you to personalize the user experience with profile
content.

Activity data requests with <os:ActivitiesRequest>

The last type of data request available is the ActivityRequest tag, used for collecting
activity data for a user or group of users. This tag is simple to implement but provides
an extensive amount of functionality:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ActivitiesRequest key="ViewerActivities" userid="@viewer" startIndex="40"
 count="20"/>
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_activities.xml.

Developers can return full activity streams or only portions, depending on the fields
available in the OpenSocial Activity object, and define paging and return limits on the
activities fetched. Table 7-5 lists the supported attributes for the ActivityRequest tag.

210 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_owner.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_owner.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_owner.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_activities.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_activities.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_activities.xml

Table 7-5. ActivitiesRequest attributes

Attribute Description

activityIds (list of

strings)

A comma-delimited list of activity IDs to retrieve. If this is set, the userId and groupId attributes

will be ignored.

appId (string) The application ID for which activities should be returned. The default value is the current application.

count (integer) The number of activities to return.

fields (list of strings) A comma-delimited list of OpenSocial Activity fields to return. If this is set, the userId and

groupId attributes will be ignored.

groupId (string) The group of users that should be returned. The values may be @self (default) to return the users

listed in the userId attribute, @friends to get user friend activities, or any string representing

a group.

key (string) A name to serve as the root node of the data source.

startIndex (integer) The starting index to start returning data results from.

startPage (integer) The page to return results for. If 20 results are returned in each request, and there are 40 results,

page 1 would be defined as 1–20, and page 2 would be defined as results 21–40.

userId (list of strings) A comma-delimited list of user IDs to use with the groupId attribute. Besides a user ID, this value

can be @me, @viewer, or owner.

Activity stream information gives developers an opportunity to customize the user ex-
perience based on the content of user’s activities. You can use this information to find
when users have installed applications, which people they have followed, or to review
the user’s friends’ activities to get an encapsulated look at the user’s social graph.

Making Data Available to Proxied Data Requests
We talked about the differences between using proxied and inline content within a
gadget in Chapter 3 in the section “Inline Versus Proxy Content” on page 89. Depend-
ing on the architecture and needs of their application development environment, many
developers may prefer the proxied content approach for its ease of use.

If the markup for the Content sections of your gadget is defined with a proxied data
source, the way you make container data sources available to that file is very similar to
the methods we have used in earlier sections:

<Content type="url" view="canvas" href="http://www.mysite.com/canvas.php">
 <os:PeopleRequest key="ownerFriends" userId="@owner"
 groupId="@friends" startIndex="10" count="20"
 fields="name,nickname,gender,birthday" />
</Content>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/data_request
_proxied.xml.

Data Pipelining | 211

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_proxied.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_proxied.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/data_request_proxied.xml

We define our Content node, with our proxied content being loaded through the file
specified in the href attribute. Normally, when using proxied content, we would have
a self-closing Content node, but to add the container data we instead embed the data
source that we are looking for—in this case, a subset of the application owner’s friends.

Once the proxied content source is fetched, all of the data sources requested will be
passed to the file as POSTed JSON objects. If the container cannot also send the open
social_owner parameter (which contains the unique identifier for the owner) to the
third-party server, then references to @owner will return a 403 forbidden HTTP error.
The same would hold true if we were using the @viewer or @me values and the container
could not send the opensocial_viewer parameter.

Working with Pipelined Data on the Client
There are several methods for working with pipelined data within the defined gadget.
One method is defining a template to render the content of a data pipe, which we will
discuss later in this chapter. Another method is to use the JavaScript APIs defined for
working with data pipes.

The data sources for a gadget are stored within the gadget context, which we can obtain
using a simple method call:

opensocial.data.getContext();

Using this as our base data, we can call methods to get data, set data, and build data
change listeners around the data sources. We’ll go over these actions next.

Getting data objects

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/pipeline_get
_data.xml.

Now that you understand the gadget context concept, we can use a series of methods
to manipulate the data sources. To start, you can easily set up the method for obtaining
an object from a data pipe, getDataSet(), using the following format:

opensocial.data.getContext().getDataSet(key);

There is one parameter that is passed in to the getDataSet() method:

key (string)
The data pipe key where the new object should be inserted

Let’s assume that the gadget we are building will capture a small set of fields from the
current application viewer as well as the same set of fields from the viewer’s friends.
Our first task is to set up the data pipelining request to load the data sources:

212 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_get_data.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_get_data.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_get_data.xml

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ViewerRequest key="viewerData" fields="name, nickname, gender"/>
 <os:PeopleRequest key="viewerFriends" userId="@viewer"
 groupId="@friends" count="50"
 fields="name, nickname, gender" />
</script>

Once our data sources are available, we can use the OpenSocial data pipe JavaScript
fetch function, getDataSet(), using the key defined for the data pipe to work with the
information sources that we obtained:

var viewerSrc = opensocial.data.getContext().getDataSet('viewerData');
var viewerFriendSrc = opensocial.data.getContext().getDataSet('viewerFriends');
var viewerName = viewerSrc.name;

Using our gadget context in conjunction with the getDataSet function, we can pass in
the key that we defined for our data sources to store the JSON return object from the
requests; then, we can pull out the information we requested from the object.

Adding content to an existing data object

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/pipeline_add
_data.xml.

Getting content from a set container data source is a great method for adding custom-
izations and features geared toward a specific user or group of users. There may be
times, though, when you want to take the initial set of data provided by the container
and augment it based on another service’s data source. The putDataSet() method helps
you do just that. This method allows for a few parameters to be passed in and takes
the following form:

os.data.getDataContext().putDataSet(key, json)

The parameters that can be passed in are:

key (string)
The data pipe key where the new object should be inserted

json (object)
The new JSON object to be inserted into the result set of the data pipe

Let’s look at a practical example. Let’s say you have a product store that you want to
search based on the application user’s interests to help you surface products that the
user may like. We can start with a data pipe that captures the user’s interests:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ViewerRequest key="viewerInterests" fields="interests"/>
</script>

Data Pipelining | 213

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_add_data.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_add_data.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_add_data.xml

This generates an array of strings listing all of the current application user’s interests.
If we were to then use those interests to query our product database, we could return
a number of products based on those interests, giving us a new object structure:

var newData = {
 "product1": "http://www.mysite.com/product.php?id=123",
 "product2": "http://www.mysite.com/product.php?id=456",
 "product3": "http://www.mysite.com/product.php?id=789"
};

We can then store the new product JSON object that we created with the original viewer
interests that were returned from our search:

os.data.getDataContext().putDataSet('viewerInterests', newData);

We call the putDataSet method, passing in the key viewerInterests, which is the same
key we used for the original data pipe. We then pass through the JSON object as our
second parameter.

Listening for changes to the data object

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/pipeline_listen
_data_changes.xml.

If you have changes being made dynamically to a data pipe, you might need to integrate
a check to perform an action within the gadget once the data set has changed.

The registerListener() method provides a way for developers to listen to changes to
one, several, or all data pipes within the gadget. The method takes the following format:

os.data.getDataContext().registerListener(keys, callback(keys))

The parameters you can add to the method are:

keys (string or array of strings)
The data pipe key that the listener should be attached to. This value may be either
a string (for a single data pipe) or an array of strings (for multiple data pipes).
Wildcards (*) may be used here to attach listeners to all data pipes in the current
gadget context.

callback (function reference)
The function to be called when the information in a data pipe has changed. The
parameter passed through to the function is an array of strings including all keys
whose data source has changed.

Looking at a practical example for this functionality, let’s say that we have a data pipe
that captures all of the user’s profile information:

214 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_listen_data_changes.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_listen_data_changes.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_listen_data_changes.xml

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ViewerRequest key="viewerData" />
</script>

We then take this information in our gadget and display a form field for a new profile,
prefilled with all of the user’s social information we have just obtained. The user has
the option to edit this information and resubmit it. If she submits changes to her profile,
we call the putDataSet() method to add an amendment of the user’s profile information.
Once this change has been made, we want to be able to show the user that the new
data has been added to her profile. This is where we can use a listener to trigger a user
notification:

opensocial.data.getDataContext().registerListener('viewerData', function(keys){
 //get hidden div with a success message
 var successMsg = document.getElementById('Message');

 //display the success message
 successMsg.style.display = 'block';
});

Using these methods, we can create a full notification loop for the user: first, we provide
her with an autogenerated profile that she can update and save; once she has saved her
edits, we fire an event handler to alert her that the change has been made.

Handling Errors Produced by the Data Pipe
When using data pipelining, you may encounter instances when the container cannot
provide the information the gadget requested. Errors can result if invalid data pipe
requests are being made, if the container failed to generate the data, if the current
permission level granted to the application by the user is insufficient, or for any number
of other possible reasons. No matter what the event that triggered the error might be,
the error state should be handled within the gadget.

Let’s explore a practical example of an error case. Assume that we are trying to set up
two data pipes—one to collect an external data source, and another to obtain the ac-
tivities of the current viewer’s friends:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:ActivitiesRequest key="viewerActivities" userid="@viewer"
 count="20" groupId="@friends" />
 <os:HttpRequest key="dataStore" href="http://www.mysite.com/storedData.php"
 format="json" refreshInterval="500" />
</script>

If the application does not have permission to access the activities of the viewer’s friends
and our external server for the stored data is down, an error will result. There is a
standard error response that should be sent within all containers to display an error
message. In the case of our preceding example, a JSON object will contain both
error responses (one for the standard error message and one for the down server):

Data Pipelining | 215

{ viewerActivities: {
 error: {message: 'Server error', code: 500}
},
dataStore: {
 error: {message: 'Server error', code: 500}
}}

The error messages will differ depending on how we have set up the data sources for
our gadget’s Content sections, either as proxied or inline markup:

Proxied content
The error message will be sent as POST parameters to the URL defined in the
href attribute of the Content section.

Inline content
If a portion of the data return contains an error, those errors will not be modified.
If the entire request fails, the error will be cloned in each item, modifying the request
object.

Dynamic Parameters
Dynamic parameters refer to the ability to build a data request’s parameters based on
the response structure of another request or on standard gadget view parameters or
user preferences.

There are several cases where using dynamic parameters would be incredibly useful
when you’re making requests for data from the container or from an external source:

• If you are using variables passed from the container or into the view to control the
type of information to be obtained

• If there were custom user preferences set during the program flow that need to be
used to capture particular information from the source

• If the information used in the attributes of one data pipe request (e.g.,
os:DataRequest()) should be based upon the result set of another, earlier data pipe
request (e.g., os:PeopleRequest())

Dynamic parameters may be applied to a number of attributes within the data pipe
tags. Creating a data pipe from a DataRequest call allows the developer to include dy-
namic parameters in any attribute of the tag, with the exceptions of key and method.
Other than a DataRequest call, dynamic parameters may be included in a number of
alternate attributes for other calls, as shown in Table 7-6.

Table 7-6. Dynamic parameter attributes

Attribute Request types implementing

activityIds os:ActivitiesRequest

count os:PeopleRequest, os:ActivitiesRequest

fields os:PeopleRequest, os:ViewerRequest, os:OwnerRequest, os:ActivitiesRequest

216 | Chapter 7: Advanced OpenSocial and OpenSocial Next

Attribute Request types implementing

filterBy os:PeopleRequest

filterOp os:PeopleRequest

filterValue os:PeopleRequest

groupId os:PeopleRequest, os:ActivitiesRequest

params os:HttpRequest

sortBy os:PeopleRequest

sortOrder os:PeopleRequest

startIndex os:PeopleRequest, os:ActivitiesRequest

userId os:PeopleRequest, os:ActivitiesRequest

These attribute parameters can add an entirely new dimension of customization to a
gadget—whether you are passing in social data as parameters to a data request in order
to process customized solutions for particular users, or building paging attributes to
obtain chunks of a larger data set.

When you’re using dynamic parameters as the attribute values within a tag, you can
combine them with other dynamic parameters, static text, or both. All mixed string
values within an attribute will be concatenated when the attribute is evaluated.

Let’s explore a few ways that you can use these types of dynamic data sets to affect the
end result set for a gadget.

Using values from UserPrefs and ViewParams as attributes

Per the data pipelining specifications, UserPrefs and ViewParams are reserved keywords,
meaning they’re sets of data that are supplied to a gadget:

• ViewParams refers to any parameters that are passed in to the gadget rendering
process. This object refers to the same data set that you would obtain by making
a gadget data request to the gadgets.views.getParams() method.

• UserPrefs refers to the user preferences that are defined within a gadget and may
include any number of stored data sets. Making a request to get a user preference
by calling ${UserPrefs.PREF} will obtain the same data source as if you made a
gadget data request to gadgets.Prefs.getString("PREF").

With these data sets so openly available to us, we can use ViewParams or UserPrefs to
control data paging requests, counts, or any other control mechanisms we require:

<os:PeopleRequest key="viewerFriends"
 userId="@viewer"
 groupId="@friends"
 startIndex="${ViewParams.nav.first}"
 count="30"/>

Data Pipelining | 217

In the preceding example, we control data paging based on the ViewParams that are
passed in to the gadget. This allows us to capture subsets of the viewer’s friends instead
of making a larger data request for the results.

Using values from a data pipe as attributes

Besides injecting dynamic attribute values into your gadget based on data that is passed
in to it, you may pass parameters through to data requests based on the result set of
another request.

Let’s assume that our previous request for viewer friends returned a data set containing
the IDs of the individuals. We can use the results of that data pipe to alter the results
of our new data pipe:

<os:HttpRequest href="http://www.mysite.com/process?ids=${viewerFriends.ids}"/>

Here, we make an external data request to our processing script at http://www.mysite
.com/process, passing in a query parameter, ids. The value of ids is the result set re-
turned by our previous request with the key of viewerFriends.

OpenSocial Templating
As you’ve seen in many of the OpenSocial gadgets in the earlier chapters, two of the
most widely used and accepted approaches to developing the visualization layer within
a gadget are to insert new content directly into the innerHTML of a DOM node, or to
dynamically create new nodes and inject them into the DOM structure through the
JavaScript layer. One major issue with these approaches is that you mix your markup
and script layers, which makes the code base difficult to maintain, very hard to reuse,
and unwieldy.

As we talked about in the section “Porting Applications from Facebook to OpenSo-
cial” on page 134 in Chapter 5, one key to making a portable application is to separate
visual markup from programming logic. In the traditional approaches to gadget devel-
opment I just mentioned, markup and programming logic is not split. This means that
application portability is a major concern, and you risk limiting the reach of your ap-
plication within different containers.

OpenSocial templating provides a way for developers to create a UI that is driven by a
data source, such as through data pipelining. This approach separates out program-
ming logic from the markup layer, extending all of the benefits of portability that come
with that separation. In addition, this approach gives you a code base that is easily
maintainable, reusable, and that reduces code bloat with redundant functions and
code blocks.

OpenSocial templates offer several features for defining a markup layer on top of a data
object, further reducing the markup required to define the sections and functionality

218 | Chapter 7: Advanced OpenSocial and OpenSocial Next

http://www.mysite.com/process
http://www.mysite.com/process

we need. These features include embeddable expressions, special variables, conditional
content, special tag definitions, and a host of other tools.

Templates are not a replacement for JavaScript and do not provide the full range of
functionality that you get from a JavaScript layer. For advanced functionality or user
interaction, the gadget should still provide the JavaScript controller layer to handle the
required features.

To integrate OpenSocial templating within your gadget, you must first include the
Require node for the feature within the ModulePrefs of the gadget:

<ModulePrefs>
 <Require feature="opensocial-templates" />
</ModulePrefs>

Now you can use the template structure within the gadget Content sections. Creating
a template in the content that leverages a data structure or pipe takes only a small
amount of effort.

To specify an OpenSocial template within your markup, wrap the markup in a
script block with a type of text/os-template. This indicates that the enclosed markup
should be treated as a template block. Inside the block, we can place any markup we
wish, adding data sources by using the format ${source}:

<script type="text/os-template">

</script>

The data source reference used here, Viewer.urls.address, has a structure representa-
tive of the root JSON data that was returned for that source:

${Viewer.urls.address}

and renders down to the following JSON attribute:

Viewer["urls"]["address"]

Data pipelining requests or custom data objects are typically used within these blocks
to make rich data sources available to the template.

The OpenSocial specification reserves several attributes for future use, including:

• autoRender

• id

• name

A Different Approach to Markup and Data
As we’ve just discussed, OpenSocial templating is a different approach for handling the
visualization of data sources. Let’s take a practical look at what this means. Let’s assume
that we have set up a data request that captures user profile information, and that source
returns a JSON structure with the viewer’s profile details:

OpenSocial Templating | 219

var userData = {
 name: "John Smith",
 gender: "Male",
 thumbnailUrl: "http://www.johnsmith.com/img/profile.jpg",
 profileUrl: "http://www.container.com/johnsmith"
}

Now that we have a data source, we want to use it to build out a user badge. We have
a few options for how we can do this, which we’ll cover next.

Dynamically creating the DOM nodes

One approach that is used frequently within the context of gadget construction is to
create any required DOM nodes dynamically within the JavaScript layer. This means
that all styles, content, and node sources are built using the node property setters:

<div id="profile"></div>
<script type="text/javascript">
var profileNode = document.getElementById("profile");

//build profile image
var imgThumb = document.createElement("img");
imgThumb.src = userData.thumbnailUrl;
imgThumb.setAttribute("style", "float:left; margin-right:10px;");
profileNode.appendChild(imgThumb);

//build profile content text node
var spanProfile = document.createElement("span");
spanProfile.innerHTML = "Name: " + userData.name + "
Gender: "
 + userData.gender + "
Profile: ";
profileNode.appendChild(spanProfile);

//build profile link
var linkProfile = document.createElement("a");
linkProfile.href = userData.profileUrl;
linkProfile.innerText = "Click Here";
profileNode.appendChild(linkProfile);
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/node_creation
_dynamic.html.

You probably noticed one issue immediately with this code: its bulk. For each newly
created DOM node, we need individual calls to set all of its properties, such as href,
styles, and any others we require.

On top of that, building out nodes dynamically this way does not lend itself to code
reuse. Each line of code is set up to build out a specific element or property, so it
becomes difficult to reuse whole sections of the code for other purposes.

220 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_dynamic.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_dynamic.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_dynamic.html

Finally, this approach embeds the markup so tightly into the JavaScript functionality
that it makes it hard to maintain the code and parse the relevant differences between
each section. Just having a few nodes does not make for an extremely complicated code
base, but let’s say that we use this type of functionality extensively to build out several
sections of our gadget. This leads to a bloated, complex code base that is very difficult
to maintain and debug.

Building an InnerHTML string

Our next approach, and arguably one of the most popular ones, is to inject new DOM
node markup into the gadget through a DOM node’s innerHTML method. This method
involves specifying a string that contains the markup that should be injected into the
gadget, and then setting the innerHTML of another node currently on the page to the
markup specified in that string:

<div id="profile"></div>
<script type="text/javascript">
//create html string
var profileHtml = "<img src='" + userData.thumbnailUrl + "' style='float:left; "
 + "margin-right:10px;' />Name: " + userData.name + "
Gender: "
 + "userData.gender
Profile: <a href='" + userData.profileUrl"
 + "'>Click Here";

//insert html into profile node
document.getElementById("profile").innerHTML = profileHtml;
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/node_creation
_innerhtml.html.

While this approach is very simple to implement, we’re once again embedding our
markup layer directly into the JavaScript portion of the code. We can attempt to indent
the markup structure to make it easier to maintain, but once we start applying content
load conditionals—wrapping the content into individual blocks—the scripts become
bloated and difficult to parse and debug.

The OpenSocial templating approach

The OpenSocial templating approach seeks to remove the necessity of embedding
markup within JavaScript by providing some simple methods for creating markup with
template syntax instead:

<script type="text/os-template">

 Name: ${userData.name}

 Gender: ${userData.gender}

OpenSocial Templating | 221

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_innerhtml.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_innerhtml.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_innerhtml.html

 Profile: Click Here
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/node_creation
_os_templating.xml.

Here we have a specialized script block that tells the OpenSocial container that this
markup should be treated as a template. The markup is not mixed with any JavaScript
constructs, so it’s easier to maintain because it is visually one complete structure. This
templating approach provides us with a much cleaner way to work with our data,
markup, and script layers by separating them out into their logical pieces.

Rendering Templates
OpenSocial templates can be rendered in two ways:

• Automatic rendering of the template on gadget load

• Rendering the template via the JavaScript API

The first method listed, automatic rendering of the template, is the more widely ac-
cepted. Containers may disable the use of the JavaScript API for rendering templates
on one, more, or all of their available views if they so choose. If this is the case, then
only the automatic rendering method will be available. Despite this possibility, we’ll
look at the implementation requirements for both types of template rendering. We’ll
explore the concepts behind automatic rendering of templates next, and we’ll discuss
using the template JavaScript API to work with and control templates via JavaScript
methods later in the chapter, in the section “JavaScript API” on page 244.

Automatic rendering

Template markup placed within a script block with the type set to text/os-template
is automatically rendered when the gadget loads. Should you want to prevent template
blocks from automatically rendering, you can set a Param node within the Require ele-
ment for the opensocial-templates feature to be disabled, as follows:

<Require feature="opensocial-templates">
 <Param name="disableAutoProcessing">true</Param>
</Require>

By default, the template markup will be inserted into the gadget in the location where
the script block is placed within the gadget.

Should we want to embed a template within our existing HTML markup to display a
welcome message to the current viewer, we can set up a template to pull the name from
a data pipe with the key of Viewer:

222 | Chapter 7: Advanced OpenSocial and OpenSocial Next

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_os_templating.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_os_templating.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/node_creation_os_templating.xml

<div>
 <script type="text/os-template">
 Hello ${Viewer.name}!
 </script>
</div>

Once the gadget loads, the template will render down to the request data and markup:

<div>
 Hello Mary!
</div>

You can obtain data sources for templates from several different places in the gadget.
For instance, you can create a data pipe that will make itself available to the root data
context for the gadget, or you can use the JavaScript API opensocial.data.DataCon
text.putDataSet() method within the data pipelining section of the specification.

When working with templates, you
may have times when you want to initialize a template only if certain data sets are
available for it to process. Templates have an attribute available to them for exactly this
use case: require.

The require attribute accepts a string of comma-separated keys that refer to their as-
sociated data sets, generated through sources like data pipes. If any of the required data
sets are not available, the template rendering process will be deferred until a time when
they are all available:

<script type="text/os-template" require="Viewer, Ratings">
 Welcome ${Viewer.name}

 You most recently rated ${Ratings.last.title} with a rating
 of ${Ratings.last.rating}
</script>

In the preceding example, we require the data objects with keys set to Viewer and
Ratings to be available before the template is rendered.

As we have already covered in our discussion
of data pipelining, data pipes may be updated with the opensocial.data.DataCon
text.putDataSet(...) JavaScript method. This means that our core data can change at
a whim, but we have not yet explored a method for updating the templates that im-
plement that data.

Templates can be set to automatically update when a data source they are implementing
changes. This provides wonderful functionality, because it means that we don’t have
to manually update the HTML nodes when we need to update a piece of the data.

To activate the auto-update functionality, we add a new attribute, autoUpdate, to our
template script block and set its value to true. Now, when the data pipes implemented
in the template are updated via the opensocial.data.DataContext.putDataSet(...)
method, our template will automatically rerender its content based on the new data set:

<script type="text/os-template" require="Viewer" autoUpdate="true">
 Hello ${Viewer.name}!

Ensuring that data is available for a template prior to loading.

Rerendering templates with updated data sources.

OpenSocial Templating | 223

</script>

<p>Welcome to our site</p>

<script type="text/javascript">
 //update the viewer object
 function updateViewer(viewerObj) {
 opensocial.data.DataContext.putDataSet("Viewer", viewerObj);
 }
</script>

In the preceding example, a greeting will be displayed to the current viewer. When the
Viewer data pipe is updated via the updateViewer function, the template will be rendered
and its markup updated. Any markup outside the template’s bounds—in this case,
<p>Welcome to our site</p>—will not be updated.

Template structures provide a number of features and
functionality to reduce code bloat, promote usability, and enable code reuse. At the
same time, embedding all content within a single template block is not always the most
ideal setup for debugging code structure.

Within a template, developers can add XML references to include custom tags. These
custom tags give the developer a way to define blocks of markup and functionality—
such as button sets, template structures, message functions, and many other
features—that can be reused easily within other sections of the template. This provides
a clean working interface for the code, allowing for quicker development with a focus
on modularity.

You can implement a custom tag quickly using a few features. The custom tag’s look
and feel is similar to the standard development of other OpenSocial templates:

<script type="text/os-template"
 tag="app:login"
 xmlns:app="http://www.mysite.com/app">
 <form action="login.php" method="post">
 <p>
 <label for="username">Username:</label>
 <input type="text" name="username" />
 </p>
 <p>
 <label for="password">Password</label>
 <input type="hidden" name="password" />

 </p>
 <p>
 <input type="submit" value="Login" />
 <input type="reset" value="Reset" />
 </p>
 </form>
</script>

The main difference in this implementation is the tag attribute attached to the script
node, which indicates that the block of markup following it will be created and used

Rendering data using custom tags.

224 | Chapter 7: Advanced OpenSocial and OpenSocial Next

as a custom tag. In the preceding example, we create a login tag to allow us to display
a username/password login at any point in our application.

Custom tags must be implemented within a namespace. In addition to the preceding
method, which contains a custom URL for the app namespace, you can create these
namespaces using the following syntax:

os.createNamespace("app", "http://www.mysite.com/app");

Creating custom tags in the default HTML namespace is not allowed, so you must
employ one of the two implementations I’ve described.

When you wish to incorporate the custom tag in your template markup, you can simply
include the XML node of the same name as the custom tag namespace:

<script type="text/os-template">
 <app:login/>
</script>

In addition to containing blocks of HTML, custom
tags also support parameter structures within their definition. This helps in allowing
code to be reused at different places within a gadget. These parameters are passed back
through to the template being used and can be set up as XML attributes or elements to
leverage the stored data sets:

<script type="text/os-template">
 <app:preferences name="Lucas Bell">
 <template theme="dark" />
 <template language="EN" />
 </app:preferences>
</script>

We can set access to this stored data within our visual template:

<script type="text/os-template"
 xmlns:app="http://www.mysite.com/app"
 tag="app:preferences">
 <div id="themeWrap" class="${My.template.theme}">
 Theme preferences for: ${My.name}

 Language Requested: ${My.template.language}
 </div>
</script>

Much like creating custom tags to reuse markup throughout your application sections,
here you create custom tags to reuse stored data sets throughout the template building
process. This is also an excellent way to separate data and visualization layers, pro-
moting debugging ease and code readability.

Expressions
In the context of OpenSocial templates, expression refers to an evaluation of some data
source that is embedded directly into a markup structure.

Passing parameters through custom tags.

OpenSocial Templating | 225

Expressions can be rendered in a template using a simple syntax:

${Expression}

Expressions may be embedded inside text nodes and attributes, but will not be honored
by an implementing container if they are inside custom tags and attribute names—a
subject we will explore later in this chapter.

In addition to basic data rendering, most standard arithmetic expressions and data
comparison features can be applied to expressions:

Next Index: ${Index + 1}

The functionality of these expressions is based on a modified version of the JSP ex-
pression language. Even though there are definitions for these arithmetic and compar-
ison features, some operators use an XML escaped alternative for comparisons, such
as when implementing OpenSocial template os:If statements. These escaped versions
are listed in Table 7-7.

Table 7-7. Escaped versions of comparison operators

Conditional Escaped string Description

< lt Less than

> gt Greater than

<= lte Less than or equal to

>= gte Greater than or equal to

&& and And

== eq Equals

!= neq Not equals

|| or Or

! not Not

By default, expressions are evaluated as escaped strings before they are inserted into
the HTML document. Expressions are the basis for the majority of what we do with
OpenSocial templates, so it’s crucial that you have a basic understanding of them.

Special Variables
OpenSocial has a set of reserved special variables for working with template data objects
and processing the template. These variables—Context, Cur, My, and Top—each have
different groups of data that they can access and a different order of precedence during
loading. With the exception of ${Context}, special variables are not required when
you’re referencing data. Since the variables are not required, expressions will be eval-
uated against the available special variables using the following precedence load order:

1. ${Cur}

226 | Chapter 7: Advanced OpenSocial and OpenSocial Next

2. ${My}

3. ${Top}

Context

The ${Context} variable contains additional information—relating to currently pro-
cessed data objects and identifiers for the template—that is used during the processing
of the current template. This information provides context for the data that is being
processed or rendered.

${Context} contains three variables:

Count

The total number of results available in the current data object being processed
within a repeater structure. This alters the flow of a repeater element based on the
total number of results.

Use: ${Context.Count}

Index

The current numeric index being processed within a repeater structure. Much like
the Count variable, Index allows you to alter the flow of the loop based on the current
object index processed.

Use: ${Context.Index}

UniqueId

Provides a unique identifier for the current template. This value can be used to
generate custom IDs for DOM nodes in the template markup.

Use: ${Context.UniqueId}

Cur

The ${Cur} variable refers to the current data object being processed in the OpenSocial
templating process. One of its main uses is to refer to the current item being iterated
over during a loop through a data structure with repeating sources.

<div repeat="${userData.profile}">

 Name: ${Cur.name}

</div>

When you’re working with multiple data objects or large amounts of data, ${Cur} is a
handy variable to use to maintain context with the currently processed object. You can
also use this approach to promote code reuse if you’ll be processing multiple objects
with a similar structure.

Should you wish to set the scope of the data to which
${Cur} maps, you can set that value explicitly using the cur attribute.
Explicitly setting the source of cur.

OpenSocial Templating | 227

For instance, if we have the application owner’s friends stored in a data object, owner
Friends, we can set ${Cur} to reference a particular friend, and then we can use that to
iterate through the URLs associated with the user.

<div cur="${ownerFriends[2]}">
 User Website Associations for ${Cur.name}:

 <li repeat="${Cur.urls}">
 ${Cur.linkText}: ${Cur.address}

</div>

This code will display the URLs for the owner’s third friend.

My

${My} allows developers to access data objects that are passed in to the template by
using a custom tag on the OpenSocial template script block.

<script type="text/os-template"
 xmlns:app="http://www.mysite.com"
 tag="app:userProfile">

The ${My} variable will be available only within script blocks that are invoked using
these custom tags. When you use a data object via ${My}, the template will first check
for the object reference within the data that is passed through via the tag. If it can’t find
the object, the template will then look for an element with the same key name.

<script type="text/os-template" xmlns:app="http://www.mysite.com"
 tag="app:userQuestionnaire">
 User: ${My.user.name}

 Question 1: ${My.questions.q1.title}

 Answer: ${My.questions.q1.response}
</script>

This variable provides an additional way to access groups of data structures within a
template. If any of these data references were not available within the custom tag, the
template would search for the data in the main objects.

Top

${Top} is a variable that provides references to all of the data available within the current
template, accessible by the data source key. This reference variable makes it easy to
mash up data sources, compare objects, and perform a number of other functions.

<div If="${Top.Viewer.name == 'John Smith'}">
 Hello ${Top.Viewer.name}! This is a personal message for you.
</div>

228 | Chapter 7: Advanced OpenSocial and OpenSocial Next

Conditionals
Using conditional statements, a developer can create portions of the template markup
that will be displayed only if certain criteria are met. These statements are valuable for
creating content targeted to a specific user base and can be used to build out a scalable,
engaging template system within the application.

Conditional statements are evaluated as Boolean values, meaning that null or empty
strings will be evaluated as false and content within the node will not be rendered. In
addition, conditionals may be applied to any variable or node within an OpenSocial
template, with the exception of the os:If and os:Repeat variables.

There are two methods for defining a conditional statement within an OpenSocial
template. In this example, let’s assume that we are starting with a data pipe that contains
some user-based rating information about a series of movies.

movies: [
 {
 title: "The Social Network",
 release: "October 1, 2010",
 rating: 5
 },
 {
 title: "Dinner For Schmucks",
 release: "July 30, 2010",
 rating: 2.5
 },
 {
 title: "Alone in the Dark",
 release: "January 28, 2010",
 rating: 1
 }
];

Using this as our base, next we’ll explore how to create conditional statements to gen-
erate markup for the movies, with optional content sections for good or bad movies.

Method 1: Escaped values

The first method is to build a conditional structure where the data values within the
block are output as escaped strings. This means that if the data value is:

<i>Text</i>

then the output of the data tag will also be:

<i>Text</i>

instead of:

Text

In other words, rather than having the text rendered with the bold and italics applied
to it, we want to just display the string representation of the markup.

OpenSocial Templating | 229

Using this method, we can easily add a conditional to any DOM node in our template
markup. For instance, let’s assume we have a loop structure set up to iterate through
each movie object. Within each loop, the movie information for the current object is
displayed; but if the movie receives either a high or low rating, a message appears,
recommending that users see the movie or steering them away from it, respectively.
The content of each loop in the template would look something like the following:

<div if="${Cur.rating == 1}">
 ${Cur.title} received a rating of 1 out of 5 stars and is most
 likely a poor movie to see.
</div>
<div if="${Cur.rating == 5}">
 ${Cur.title} received a rating of 5 out of 5 stars and would
 be a great movie to see.
</div>
<div>
 Movie Title: ${Cur.title}

 Release Date: ${Cur.release}

 Rating: ${Cur.rating}/5 stars
</div>

The preceding example has two div sections with if attributes applied to them. These
attributes allow us to specify the conditions under which the div and its content will
be loaded. In this case, we are checking to see if the rating of the current movie object
is a 5 (good movie) or a 1 (bad movie) and providing the corresponding feedback to
the user in each case.

Method 2: Nonescaped values

The second method is to encase the markup inside a conditional statement block us-
ing os:If. This will output any data values rendered within the block as nonescaped
strings, so the markup values within the content will be maintained.

We can easily adjust our example from the first method to fit the new block style of the
os:If variable:

<os:If condition="${Cur.rating == 1}">
 <div>
 ${Cur.title} received a rating of 1 out of 5 stars and is most
 likely a poor movie to see.
 </div>
</os:If>
<os:If condition="${Cur.rating == 5}">
 <div>
 ${Cur.title} received a rating of 5 out of 5 stars and would
 be a great movie to see.
 </div>
</os:If>
<div>
 Movie Title: ${Cur.title}

 Release Date: ${Cur.release}

 Rating: ${Cur.rating}/5 stars
</div>

230 | Chapter 7: Advanced OpenSocial and OpenSocial Next

The main difference from the first method is that the os:If variables are elements on
their own, as opposed to being embedded in a DOM node in the template. In addition,
the use of if or repeat attributes within the os:If variable is not supported.

Rendering content on the existence of a value

As we’ve seen in the previous examples, using conditionals can be an excellent way to
display content if some sort of criteria returns true, but what if you simply want to
check for the existence of an object? To accomplish this, we can specify the variable
reference as the condition to be checked:

<os:If condition="${Cur.title}">
 Movie Title: ${Cur.title}

 Release Date: ${Cur.release}

 Rating: ${Cur.rating}/5 stars
</os:If>

In this instance, the movie information will be displayed only if the title for the currently
iterated object is available. If null or a blank string is returned, the condition will
evaluate to false.

Looping Content
When you’re working with large quantities of user social data, one question naturally
arises in the context of OpenSocial templating: how do you handle repeating content,
such as a list of friends or any measure of activity data? We certainly won’t be creating
a markup definition for each repeating node in the template, will we? The short answer
is no.

Content looping in OpenSocial allows a developer to define a block of markup to be
used to render a series of repeating elements, without having to resort to handling each
repeating node as a separate instance of markup. There are a few ways to define a loop
structure within an OpenSocial template specification, which we’ll go over next.

Method 1: Escaped values

The first method is to build a loop structure that outputs the value of a piece of data
as an escaped string, much like we saw with conditional statements. Let’s say that we
have a customized subset of activity data that is returned to us through a data pipe
request:

activities: [
 {
 title: "Jonathan just added a new comment on Twitter",
 body: "See what Jonathan is saying by adding him to Twitter",
 url: "http://www.twitter.com/jcleblanc"
 },
 {
 title: "Michael updated his profile",
 body: "See more about what Michael is doing",

OpenSocial Templating | 231

 url: "http://www.container.com/profiles/michael"
 },
 {
 title: "Diane just posted a comment on your wall",
 body: "Reply to Diane's message",
 url: "http://www.container.com/messages"
 }
];

This content structure has several repeating nodes within the object that we can use to
build out a complimentary repeating block within an OpenSocial template:

<script type="text/os-template">

 <li repeat="${activities}">

 ${Cur.title}

 ${Cur.body}

</script>

We wrap our template content in our script block with the specialized type definition
to start out the template declaration. The markup within the script block first defines
an unordered list to display the activities. Instead of defining a list item for each element,
we simply define a single that contains the repeat declaration:

<li repeat="${activities}">

Here we’ve stated that this element and its content should be repeated based on the
objects contained within activities, which we defined earlier. Within the repeated
element, we can easily refer to the current object being exposed in the loop by using a
provided reference variable:

${Cur.title}

${Cur} allows us to refer to the current object in the loop in question. In this way, we
can create an entire markup construct with a smaller code base than we would by
defining straight markup. Given the preceding loop, the application would render the
complete markup structure for all repeated objects that we iterated over:

 Jonathan just added a new comment on Twitter

 See what Jonathan is saying by adding him to Twitter

 Michael updated his profile

 See more about what Michael is doing

232 | Chapter 7: Advanced OpenSocial and OpenSocial Next

 Diane just posted a comment on your wall

 Reply to Diane's message

Method 2: Nonescaped values

The alternate method for looping within an OpenSocial template is to use the
os:Repeat tag. This will instruct the template to render any code within the data objects
being displayed as actual markup—not just the string representations of the markup.

The looping structure is essentially the same as the previous example, but instead of
applying a repeat attribute to the block of markup to be repeated, we wrap the entire
block in the os:Repeat tag. If we modify our previous example, the repeat tag would
look like:

<script type="text/os-template">

 <os:Repeat expression="${activities}">

 ${Cur.title}

 ${Cur.body}

 </os:Repeat>

</script>

This produces the same results as the previous example. In addition to the standard
repeat syntax, you can use the var attribute to assign a different variable name to the
repeater:

<os:Repeat expression="${activities}" var="myActivities">

 ${myActivities.title}

 ${myActivities.body}

</os:Repeat>

Working with nested repeaters

When working with repeaters, you may need to nest multiple loop structures together
to get the desired visual results. But nesting repeaters has its own challenges when it
comes to accessing the current result object in the loop using ${Cur}.

Variable naming is an excellent method for obtaining the desired object data if you’re
using nested repeaters. It allows you to access the current object of the current or parent

OpenSocial Templating | 233

loop (if the parent is subsequently named). When you specify a var attribute, the object
being iterated over will be stored in the variable name (e.g., ${MyActivities}) as well
as within ${Cur}.

For instance, let’s assume that we have the same activity data within the activities
object for each one of the user’s friends, stored in the variable friends. Our friend
data object contains the name of the friend and an association to the activity data. We
may want to display an unordered list of activities for each friend, using multiple
repeaters:

<div repeat="${friends}" var="myFriends">
 Activities for ${myFriends.name}
 <div repeat="${activities}" var="myActivities">

 ${myActivities.title}

 ${myActivities.body}
 </div>
</div>

Using var names, not only can we ensure that we are accessing the exact data that we
want, but we also keep our template code readable so that when we’re working with
it later, we can follow the object references more easily than if we’d used ${Cur}
throughout.

Specifying an index variable for the repeater

Using the ${Context} special variable is handy for capturing the index of the current
object being iterated over, but what if you are working with nested repeaters and want
to access the indices for both loops within the inner loops? Support for this type of
functionality is valuable if you are working with a grid interface for your application,
separating loops into x and y planes.

This type of problem is exactly what custom indices attempt to solve. Using the
index attribute on a repeater will allow you to access that variable at any point within
the loop structure:

<div repeat="${xplane}" index="x">
 <div repeat="${yplane}" index="y">

 Current grid index is ${x} : ${y}

 </div>
</div>

We apply CSS styles to build a visual grid of our divs. Using the index values, we can
then keep track of which grid section we are currently in. These indices can be applied
to the id attributes of the divs, for instance, to give us tracking capabilities.

234 | Chapter 7: Advanced OpenSocial and OpenSocial Next

Looping with context

During the course of a loop, you may need to use or collect the current index of, or the
total number of results available within, the looped object. This is the purpose of
the special variable ${Context}. As we discussed earlier, ${Context} contains three ref-
erence objects you can use within the context of a loop:

UniqueId

A unique identifier for the current template being processed

Index

The index number of the current object being iterated over

Count

The total number of objects to be iterated over

Using this special variable, you can add another dimension to the markup to be gen-
erated from the loop:

 <li repeat="${activities}">
 Activity ${Context.Index + 1} of ${Context.Count}

 ${Cur.title}

 <div id="${Context.UniqueId}-${Context.Index}">${Cur.body}</div>

In the preceding template, we apply the ${Context} variable to the existing template
markup that we built earlier. When this result renders, the user will be presented
with markup containing the current index number (e.g., Activity 1 of 10) above every
activity that is generated:

 Activity 1 of 3

 Jonathan just added a new comment on Twitter

 <div id="tpl1234-1">
 See what Jonathan is saying by adding him to Twitter
 </div>

 ...

Looping with conditionals

One of the best methods for customizing a loop structure is to apply conditional state-
ments to the loop itself, specifying that you want the loop to run only if a specific
condition has been met. Repeaters will be evaluated before conditionals, meaning that
when a conditional is used within a repeater, the conditional will be applied to each

OpenSocial Templating | 235

result within the repeating data set, much like running a standard loop with an if
statement embedded:

for (var i = 0; i < result.length; i++){
 if (result[i] === "value"){
 //render markup
 }
}

Our first method, using the repeat attribute on the block to be repeated, applies the
conditional statement directly within the same node:

<li repeat="${activities}" if="${Cur.url == 'http://www.container.com/messages'">

 ${Cur.title}

 ${Cur.body}

This would render the markup only for any object whose URL is http://www.container
.com/messages.

If we want to use this same type of conditional loop on an os:Repeat tag, we have to
implement it in a slightly different manner. os:Repeat does not support repeat or if
attributes, so we will need to embed them within the repeater block:

<os:Repeat expression="${activities}">
 <os:If condition="${Cur.url == 'http://www.container.com/messages'">

 ${Cur.title}

 ${Cur.body}

 </os:If>
</os:Repeat>

These two statements are equivalent in the order of their execution. Using this mix of
repeaters and conditionals, developers can build scalable template designs suited to
their application needs.

Marrying Data Pipelining and Templating

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/pipeline_with
_templating.xml.

We’ve explored the vast potential and power in both data pipelining and templates,
which integrate rich data sets and visualization templates, respectively, into a gadget.

236 | Chapter 7: Advanced OpenSocial and OpenSocial Next

http://www.container.com/messages
http://www.container.com/messages
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_with_templating.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_with_templating.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/pipeline_with_templating.xml

Alone, each feature is a wonderful addition to any gadget, but their power really lies in
being married into one cohesive unit.

Let’s take a look at an example of how we can merge these two technologies together
to build out a data set based on the result set of an external data source. In this example,
we want to scrape the main page of http://www.reddit.com to capture its top headlines.
Using this data source, we want to display all links within our gadget.

Our first task is to build out the ModulePrefs section of our OpenSocial gadget, inte-
grating all data pipelining and templating requirements:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs title="Reddit Headline Fetch"
 title_url="http://www.jcleblanc.com"
 description="Obtains reddit.com headlines via YQL using data
 pipelining and visualizes using OS templates"
 author="Jonathan LeBlanc">
 <Require feature="opensocial-0.9"/>
 <Require feature="opensocial-data" />
 <Require feature="opensocial-templates" />
 </ModulePrefs>

Within the ModulePrefs node, we need to set up the Require elements for the features
that we will need in our gadget. For this use case, we need to implement at least Open-
Social version 0.9 (opensocial-0.9) as well as the OpenSocial data (opensocial-data)
and OpenSocial templates (opensocial-templates) features.

The next section, where we actually use these features, is our Content section. This is
where we make an external data request to scrape http://www.reddit.com and loop
through all headlines to display them in the gadget:

 <Content type="html">
 <![CDATA[
 <script type="text/os-data"
 xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="reddit" href="http://query.yahooapis.com/v1/public/
 yql?q=select%20*%20from%20html%20where%20url%3D%22http%3A%2F%2F
 www.reddit.com%22%20and%0A%20%20%20%20%20%20xpath%3D'%2F%2Fa%5B
 %40class%3D%22title%22%5D'&format=json"/>
 </script>
 <script type="text/os-template" require="reddit">

 <li repeat="${reddit.content.query.results.a}">
 ${Cur.content}

 </script>
]]>
 </Content>
</Module>

The first script block in our Content section is the data pipelining feature. Within the
data pipe, we make an os:HttpRequest to get an external data source and set the key

OpenSocial Templating | 237

http://www.reddit.com
http://www.reddit.com

for the return data to reddit. The href source of our data is an HTML page-scrape
query using the Yahoo! Query Language (YQL). This query obtains the HTML from
http://www.reddit.com, drills down to the headlines using an XPath string, and returns
all headline results as a JSON object.

Once the data returns, the reddit variable should comprise an array of anchor objects.
This data source will look something like the following:

"a": [
 {
 "class": "title",
 "href": "http://www.youtube.com/watch?v=Lk3ibIGKTYA",
 "rel": "nofollow",
 "content": "\"Your\ncar has a broken headlight and, oh no, pack of wolves
 coming down\nthe road\""
 },
 {
 "class": "title",
 "href": "http://imgur.com/6DfnY.png",
 "content": "I'm not sure which system\nthis is referring to [PIC]"
 },
...

We then define a second script block for our template, requiring our reddit variable
in order to render the template. Our markup sets up an unordered list and then repeats
the tags for each anchor tag returned in our result set. Each will then contain
an anchor tag pointing to the headline URL and display the text of the headline for the
link.

With just a minimal amount of effort, we have laid the foundation for a gadget that is
based on a dynamic list of data, providing users with new results each time they visit
the gadget. In doing so, we are building our gadget to update its content without us
ever having to lift a finger after the initial construction is complete.

Other Special Tags
In addition to the special tags we have already seen, os:Repeat and os:If, OpenSocial
templates define a couple of reserved tags to enable developers to display data objects
that are richer than simple strings. These special tags are os:Html and os:Render.

os:Html

When rendering data within escaped expressions or loops (i.e., not os:Repeat or
os:If blocks), developers run into the issue that because all data is displayed as strings,
they’re prevented from using a lot of rich data sets. When you’re using third-party data
sources that are not necessarily trusted, this practice is a good option for sanitizing
content. When a part of the source data is trusted, however, we need a means of ren-
dering that data with the markup intact. This is where the os:Html tag comes in handy.

238 | Chapter 7: Advanced OpenSocial and OpenSocial Next

http://www.reddit.com

os:Html provides a means for a developer to render a block of data without having it
automatically escaped and displayed as a string. The markup is rendered intact and
applied to the template.

You use os:Html through the code attribute of the tag. Any data values within the
code attribute are evaluated as a string and then rendered as HTML. For instance, if
you have an object containing the viewer’s friends, and in that object you also have a
name and a badge that contains HTML, you can easily render the badge HTML using
the os:Html tag as follows:

<div repeat="${Top.ViewerFriends}">
 Name: ${Cur.name}

 Badge:

 <os:Html code="${Cur.badge}" />
</div>

Once rendered, name will be displayed as an escaped string and badge will be displayed
as markup.

os:Render

When working with custom tags containing reusable blocks of content, you may need
to render that content within the template markup. You can do this using the os:Ren
der tag.

os:Render allows you to define a location from which to pull the custom block of con-
tent using the content attribute of the tag. The value of the content attribute in this case
should be an immediate child of an os-template block.

For example, let’s say we are building an application that has multiple page structures
but maintains a universal header and footer. We can use the os:Render tag to specify
the sections where we want to integrate this content:

<script type="text/os-template"
 tag="app:pageTemplate"
 xmlns:os="http://opensocial.org/templates"
 xmlns:pageTemplate ="http://www.mysite.com/app">
 <div class="header"><os:Render content="header"/></div>
 This is the content of my current page, using a universal
 header and footer
 <div class="footer"><os:Render content="footer"/></div>
</script>

Within an os-template script block, we define the XML namespaces that will be used,
and then insert the tag attribute to refer to the custom tag that we will use to define the
header and footer. We then implement the content of our template. At the beginning
and end of the content block, we have two div nodes. These nodes contain our os:Ren
der tags, which specify the node that will need to be inserted into that section.

In an alternate script block, we can define the custom tag nodes that will be used for
the content of the header and footer sections:

OpenSocial Templating | 239

<script type="text/os-template"
 xmlns:app="http://www.mysite.com/app"
 <app:pageTemplate>
 <app:header>
 <div id="navItems">
 Home |
 Profile |
 Tasks
 </div>
 </app:header>
 <app:footer>
 <div id="copyright">
 Copyright © 2011
 </div>
 <app:footer>
 </app:pageTemplate>
</script>

Our script block defines the XML namespace that we will use for the custom tags, and
then defines the custom tag that should be used for these values, app:pageTemplate.
Within app:pageTemplate, we specify our header and footer nodes with their associated
content, which is what will be inserted via the os:Render tags. If there were multiple
child nodes with the same name (e.g., two header nodes), the results of both nodes
would be merged and returned as one block.

When rendered, the template will generate the following markup:

<div class="header">
 <div id="navItems">
 Home |
 Profile |
 Tasks
 </div>
</div>
 This is the content of my current page, using a universal
 header and footer
<div class="footer">
 <div id="copyright">
 Copyright © 2011
 </div>
</div>

Using os:Render and custom tags can help increase code reuse, general usability, and
ease of debugging. When you’re building out a large-scale application, tags like these
can vastly reduce the amount of time spent on development and on repairing bugs.

Template Libraries
Creating inline markup within an OpenSocial template can be an excellent option for
small-scale applications, where developing simple tags may help provide some measure
of reusability in the code base. Even though this is a fine approach, as the application
logic increases in complexity and you create more and more custom tags, you may need

240 | Chapter 7: Advanced OpenSocial and OpenSocial Next

to separate out a gadget’s reusable logic even further. Template libraries can help you
do this.

Template libraries are standalone XML files that provide a gadget with functionality
such as:

• Global JavaScript functions

• Global styles

• Simple custom tags with simple markup

• Complex custom tags with markup, local CSS, and local JavaScript

Template libraries provide a central location for global JavaScript, CSS, and tags that
may be reused throughout the program flow. Using them can help to reduce code bloat,
make the gadget easier to work with, and make debugging easier.

Creating a template library

A template library is a standalone XML file containing a number of sections that you
can use to define fully enclosed custom tags or global functionality for the gadget. The
XML template file follows a standardized template syntax with a number of potential
sections and functions:

<Templates xmlns:temp="http://www.mysite.com/temp">
 <Namespace prefix="temp" url="http://www.mysite.com/temp"/>

 <Style>
 <!-- global library styles -->
 .inlineText { font:11px arial,helvetica,sans-serif;
 color:#c0c0c0; }
 </Style>

 <JavaScript>
 <!-- global library functions -->
 function makeRequest(url){
 //make cross-domain request
 };
 </JavaScript>

 <!-- simple declarative tag temp:customTag -->
 <Template tag="temp:footerTag">
 <!-- markup for temp:footerTag -->
 <div class="footer">Copyright © 2011</div>
 </Template>

 <!-- complex tag temp:headerTag with local CSS and JavaScript -->
 <TemplateDef tag="temp:headerTag">
 <Template>
 <!-- markup for temp:headerTag -->
 <div class="header">
 Home
 </div>
 </Template>

OpenSocial Templating | 241

 <Style>
 <!-- local CSS styles for temp:headerTag -->
 .error{ color:#d41a1a;
 font-weight:bold; }
 </Style>
 <JavaScript>
 <!-- local JavaScript functions for temp:headerTag -->
 function processTemplateData(){
 //javascript to process template data
 };
 </JavaScript>
 </TemplateDef>
</Templates>

The root node of the template, Templates, defines all of the namespaces that will be
used in the template file, including those for all custom tags. Your namespaces should
take the form of xmlns:prefix="namespace url". For instance, should we need to
integrate any OpenSocial tags under the os namespace, we would include
xmlns:os="http://www.opensocial.org/" here.

We then have to add in a Namespace node to declare the custom namespace for the
OpenSocial Templates API. Only one namespace should be defined for each library
file. The Namespace node includes two attributes: the prefix of the namespace and its
associated URL.

Our next two node sections are Style and JavaScript. These sections define global CSS
styles and JavaScript functions that will be made available anywhere the template is
used.

The Template node defines a simple custom tag that may be used within a template.
This node will contain simple, reusable markup.

The TemplateDef node is a more complex version of the Template node. A Template
Def node may contain its own Template node to define the markup to be used by
the tag, local styles to be made available to the custom tag through the Style node, and
local JavaScript to be made available to the custom tag through the JavaScript node.

Let’s look at a practical example that puts these features to good use. Say we want to
define a template structure for our application within the template file definition. This
would provide us with all of the custom tags, functions, and styles that we need to
maintain a reusable header and footer in our application:

<Templates xmlns:temp="http://www.mysite.com/template">
 <Namespace prefix="template" url="http://www.mysite.com/template"/>

 <Style>
 .nodeSpacer{ margin:10px 0;
 padding:5px; }
 .textSmall{ font-size:9px; }
 </Style>

 <JavaScript>
 //swap the visibility of one page

242 | Chapter 7: Advanced OpenSocial and OpenSocial Next

 function switchNode(activate, deactivate){
 //get page nodes to swap
 var showNode = document.getElementById(activate);
 var hideNode = document.getElementById(deactivate);

 //switch the display properties of the two pages
 hideNode.style.display = "none";
 showNode.style.display = "block";
 };
 </JavaScript>

 <Template tag="template:footer">
 <div id="footer" class="nodeSpacer textSmall">
 Copyright © 2011
 </div>
 </Template>

 <TemplateDef tag="template:header">
 <Template>
 <div id="header" class="nodeSpacer">
 Home |
 Profile |
 Canvas
 </div>
 </Template>
 <Style>
 #header{ border-top:1px solid #000; }
 a{ cursor:pointer;
 color:#d41a1a; }
 </Style>
 <JavaScript>
 //navigate to a new container view
 function requestNavigate(view){
 gadgets.views.requestNavigateTo(view);
 };
 </JavaScript>
 </TemplateDef>
</Templates>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/template_li
brary.xml.

In the first two nodes, we define the XML namespace prefix that we will use throughout
the template file as template and set the namespace URL.

We start out our global definitions by adding in our global CSS styles. The styles include
spacers for our header and footer tags and a small text style for our footer.

Within our global JavaScript block, we create one function to be made available to
any template block that implements this XML template file. It is not being used in this
template file but contains functionality to swap the visibility between two nodes.

OpenSocial Templating | 243

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/template_library.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/template_library.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/template_library.xml

Next, we define the custom tags to use throughout the application. Our first tag is a
Template node containing simple markup. We just create a div node, attach the global
style classes, and insert a copyright message.

Our last node is a TemplateDef element that acts as our header. This is a more complex
node that requires its own CSS and JavaScript. We include a Template node to hold our
gadget header markup; this is simply a series of links that call a local JavaScript function
to swap the gadget’s current view. We also include the same nodeSpacer global style as
we did for the footer node. We then define a Style node that contains the local styles
to be applied to all anchor tags within this custom header tag. Our last node, Java
Script, contains the function that the anchor tags call to switch the gadget’s current
view. These styles and scripts are available only to the custom tag in which they are
placed, as they are not needed globally.

Properly implemented template files are a powerful tool and give developers a highly
scalable foundation upon which to build their applications.

Loading template libraries

Should you require a template library in your gadget, you can add references to the files
in the gadget XML file when the Require statement for the opensocial-templates feature
is set to use templating.

For example, to define our required template files, we can add one or multiple Param
nodes in the Require feature="opensocial-templates" node with a name of require
Library. The content of the node is the URL to a publicly available template XML
file. If you use a relative URL, an absolute URL will be generated based on the URL of
the gadget XML file:

<Require feature="opensocial-templates">
 <Param name="requireLibrary">http://www.mysite.com/template1.xml</Param>
 <Param name="requireLibrary">http://www.mysite.com/template2.xml </Param>
</Require>

JavaScript API
Throughout this chapter, we have explored how to work with templates that auto-
matically render during gadget processing. Autorendering is an excellent method for
building an extensible structure for your gadget when it first loads, but it does not cover
the extent of functionality that you may require when working with templates.

The templating JavaScript API seeks to address this shortcoming, allowing developers
to programmatically render a template into the HTML document of a gadget through
the JavaScript layer, as needed. This functionality allows the developer to enjoy the rich
functionality and feature set of OpenSocial templates while still maintaining a great
amount of freedom in her development practices.

244 | Chapter 7: Advanced OpenSocial and OpenSocial Next

Before we dive into the individual methods of the JavaScript API, note that each ex-
ample assumes you have the following template defined:

<script type="text/os-template"
 tag="gadget:restaurants"
 xmlns:gadget="http://www.mysite.com/gadget">
 <h1>Local Restaurants</h1>

 <li repeat="${restaurants}">
 Name: ${Cur.place}

 Address: ${Cur.address}

 Website:
 ${Cur.href}

</script>

As well as the following data source for the template:

var restaurants = [
 { place: "Lovely Sweets & Snacks",
 address: "9 32 E El Camino Real, Sunnyvale CA",
 href: "http://local.yahoo.com/info-21337048-lovely-
 sweets-snacks-sunnyvale" },
 { place: "Vitos Famous Pizza",
 address: "1155 Reed Ave, Sunnyvale CA"
 href: "http://local.yahoo.com/info-21332026-vitos-
 famous-pizza-sunnyvale" },
]
);

Obtaining and processing the template

The opensocial.template namespace object exposes a number of methods for obtaining
and processing templates defined in the gadget.

To work in a defined template or to apply a data source to the
template, you must first obtain the template object. You do so by making a request to
the following method:

opensocial.template.getTemplate(tag)

The getTemplate(...) method accepts one attribute to be passed, tag, which is a string
containing the template tag name with qualifying XML namespace:

//obtain the defined gadget:restaurants template
var template = opensocial.template.getTemplate("gadget:restaurants");

This method will return the template object registered with tag, or null if the template
does not exist.

The opensocial.template.process() method is used to initially
process or reprocess currently used templates in a gadget. This method will initiate
processing for templates that are ready:

Obtaining the template.

Processing the template.

OpenSocial Templating | 245

opensocial.template.process()

There is no return value for this method.

Should you wish to control when template processing
occurs (instead of allowing the gadget rendering to control it for you), you can disable
template autoprocessing within the gadget. This is the same as setting the disable
AutoProcessing attribute within a template:

opensocial.template.disableAutoProcessing()

Once autoprocessing is disabled, you will need to manually initiate template processing
by calling the opensocial.template.process() method:

//call process() method to begin template processing
function processTemplates(){
 opensocial.template.process();
}

//disable auto-processing of templates
opensocial.template.disableAutoProcessing();

//when required, call processTemplates() function to process templates
processTemplates();

This method will throw an exception if the processing has already occurred.

There is no return value for this method.

Rendering the template

Once you’ve obtained a template through the opensocial.template.getTemplate(...)
method, you can control where in the gadget’s DOM structure the processed template’s
markup will render. Two methods are available to specify this, as described next.

The opensocial.template.Template.render(...)

method renders an associated template with the data source provided within the gadget
markup at the location where the method was called:

opensocial.template.Template.render(data)

If you do not include the data source, opensocial.data.DataContext is used by default:

//obtain the defined gadget:restaurants template
var template = opensocial.template.getTemplate("gadget:restaurants");

//render the template with our JSON object
var domNode = template.render(restaurants);

The return value of the render(...) method contains the DOM element into which the
template markup was inserted.

Much like with the render() method, opensocial.tem
plate.Template.renderInto(...) is responsible for rendering template data into a
gadget’s HTML. The difference between the two functions is that renderInto(...)

Disabling templating autoprocessing.

Rendering the template to a variable.

Rendering the template to a DOM node.

246 | Chapter 7: Advanced OpenSocial and OpenSocial Next

allows the developer to set a location where the template markup will be inserted, via
a DOM node reference:

opensocial.template.Template.renderInto(element, data)

Using this method, you gain a great deal of control over where the markup generated
from a template will go:

//obtain the defined gadget:restaurants template
var template = opensocial.template.getTemplate("gadget:restaurants");

//capture the DOM node that will house the template markup
var insertNode = document.getElementById("restaurantNode");

//render the template with our JSON object
var domNode = template.renderInto(insertNode, restaurants);

The return value of the renderInto(...) method contains the DOM element into which
the template markup was inserted.

A practical example

Now that we understand how templates work with the JavaScript API, let’s explore
how we can implement the API’s features in our own projects to control the template
rendering functionality programmatically as needed, instead of autorendering on
gadget load.

In our example, we have a series of world headlines that are to be built on the fly. We
want to have a standard template UI to visualize the headline data. We’ll apply that
template to the visual markup and then insert it within the gadget when ready.

Our first task in this process is to define the OpenSocial template custom tag that will
be used to visualize the headlines data set:

<script type="text/os-template"
 tag="app:headlines"
 xmlns:app="http://www.mysite.com/app">
 <h1>Current News Headlines</h1>

 <li repeat="${headlines}">
 Headline Rank: ${Context.Index + 1}

 ${Cur.title}

</script>

As with our other custom tag template examples, we first start with the os-template
script block. Within the script element, we define the tag, app:headlines, that we’ll
use to denote this template block. We then define the XML namespace that we will use
throughout the template process: app.

OpenSocial Templating | 247

Within the markup, we include a header, followed by an unordered list to house all of
the headlines. The element is set to repeat for each headline. Within the , we
display the headline rank based on the order processed in the array, and we show a
linked headline title.

Now that our template is in place, we need to set up the JavaScript functionality that
will take our raw data source, apply the template, and insert the template back into the
gadget markup:

<script type="text/javascript">
 //captures the headline template, applies data and inserts into DOM node
 function displayHeadlines(headlineObj, insertNode) {
 var template = opensocial.template.getTemplate("app:headlines");
 var JSONObj = {
 headlines: headlineObj
 }
 var insertObj = document.getElementById(insertNode);
 template.renderInto(insertObj, JSONObj);
 }

The JavaScript functionality consists of a single function, displayHeadlines(...). This
function requires two attributes to be passed:

headlineObj

The JSON object containing an array of headline objects

insertNode

A string representing the ID of the DOM node in which our newly built headline
markup will be inserted

Our first task in the JavaScript layer is to capture the raw template that we defined
earlier into a variable using the opensocial.template.getTemplate(...) method. The
attribute that we pass to this method is the tag name for the template.

We then wrap the JSON in another object, associating the raw headlines data source
with its data set name, headlines.

Once that data and the template information are stored in variables, we then capture
the DOM node into which we’ll insert the content by using the ID passed in to the
function; then, we render the template into that node using the renderInto(...)
method.

Once the template rendering function is in place, we can begin building both the gadget
markup that will house the template and the raw headlines data source:

 <div id="currentHeadlines"></div>

 //build headline JSON object
 var headlineObj = [
 { title: "31 of 33 Chile miners released from hospital",
 href: "http://www.cnn.com/2010/WORLD/americas/10/15/
 chile.miners.rescue/index.html" },
 { title: "Yemen posts reward for al Qaeda suspects",

248 | Chapter 7: Advanced OpenSocial and OpenSocial Next

 href: "http://www.cnn.com /2010/WORLD/meast/10/15/
 yemen.al.qaeda.reward/index.html" },
 { title: "Rights group questions fairness of Cuban spy trial in U.S.",
 href: "http://www.cnn.com /2010/CRIME/10/15/
 cuba.imprisoned.agents/index.html" },
]
);

 //call function to render headlines into template
 displayHeadlines(headlineObj, "currentHeadlines");
</script>

We start our markup layer by defining a DOM node that will house the final template.
Following that, we define the JSON object that will list off the headlines to be displayed.
Our headline objects consist of a title and a link for each result.

Last, we call the rendering function, displayHeadlines(...), passing in the headlines
JSON object and the ID of the div in which to insert the headline content.

A Few More Tags: The OpenSocial Markup Language
The OpenSocial Markup Language, or OSML, is a direct subset of OpenSocial tem-
plating. We have already seen many expression tags and custom tag definitions used
within the gadget template context, but now we’ll take that a little bit further and
explore some of the other functional tags that are available using this functional tem-
plate subset.

OSML includes several standard tags that may aid you in your development, including:

os:Name

Used to display the name of a particular person

os:PeopleSelector

Used to display a person selector box

os:Badge

Used to display a standard badge for a user

os:Get

Used for loading external HTML content to insert into the gadget

To be able to render and use these tags, the gadget must include a Require statement
to pull in the necessary JavaScript functionality:

<Require feature="osml" />

As I already mentioned, OSML is a direct subset of OpenSocial templating. Thus, if we
have already included the templating Require element, we will not have to include the
OSML feature element just described:

<Require feature="opensocial-templates" />

A Few More Tags: The OpenSocial Markup Language | 249

There are two separate Require statements available for including OSML tags because
of the restrictions some containers impose on which views a gadget can implement
templating on (due to potential performance issues).

The main value in any container-defined tags like these is that they provide secure access
to a user’s personal information without requiring the user’s permission to do so. Since
the container will be rendering the content of these tags and the gadget will not be
collecting the social data itself, this can give you a quick and easy way to access social
details about a user without actually having to handle her personal information.

Let’s explore the functionality of these tags a little bit further.

Displaying a Person’s Name: os:Name
The os:Name tag allows the container to render the user’s name. This name may be
linked to his profile or additional container capabilities such as hover state. You add
this tag using the following format:

<os:Name person="${Viewer}" />

The person attribute may be a Person object or a DataContext key referring to the user
whose name should be displayed (e.g., ${Viewer}, ${Owner}).

Creating a Person Selector: os:PeopleSelector
With the os:PeopleSelector tag, a developer can add a container-styled drop-down list
that allows users to select from a group of people. The tag will also set a form field with
the associated value from the drop-down. This tag should be added using syntax similar
to the following:

<os:PeopleSelector group="${ViewerFriends}" multiple="false" max="10"
 inputName="viewerFriends"/>

The os:PeopleSelector tag has several attributes that may be assigned to it, as listed in
Table 7-8.

Table 7-8. os:PeopleSelector attributes

Attribute Description

group (string or object) The group that should be displayed in the drop-down. This may either be an array of OpenSocial

Person objects, or a DataContext key that refers to an array of Person objects. This field is

required.

inputName (string) The name of the input box that will be used to store the selected IDs.

max (number) The maximum number of people that may be selected.

multiple (Boolean) Whether multiple people may be selected.

onselect (string) The JavaScript function to invoke when a new person is selected.

var (string) The top-level DataContext key that is set with the selected IDs.

250 | Chapter 7: Advanced OpenSocial and OpenSocial Next

You add the os:PeopleSelector tag to a gadget using markup similar to the following:

<form action="inviteFriends" method="POST">
 <os:PeopleSelector group="${ViewerFriends}"
 multiple="true"
 inputName="viewerFriends"/>
</form>

Display a Person’s Badge: os:Badge
Using the os:Badge tag, a developer can display a standard badge for a user, styled by
the container. The badge will usually contain information such as full name, profile
link, and badge image. This tag should have syntax similar to the following:

<os:Badge person="${Owner}"/>

The person attribute may be a Person object or a DataContext key referring to the user
whose name should be displayed (e.g., ${Viewer}, ${Owner}).

Loading External HTML: os:Get
The os:Get tag inserts HTML content from an external source into the gadget’s DOM.
Loaded content will be sanitized prior to insertion and must be completely inline. Ex-
ternal CSS and JavaScript includes will be ignored during insertion. Add this tag using
syntax similar to the following:

<os:Get href="http://www.mysite.com/getUserData?uid=${viewer.uid}"/>

The href attribute should be a URL providing the HTML to be inserted.

Localization Support with Message Bundles
In earlier chapters, we looked at the XML elements that make up the core of an Open-
Social gadget. This is where the concept of localization in gadgets was first introduced.
Expanding upon this topic, we’ll reiterate the importance of localization in targeting a
worldwide audience, and discuss how to build localization support for multiple lan-
guages into your gadgets.

As anyone who has developed frontend systems to be implemented across multiple
countries undoubtedly knows, porting a system between languages when it was not
developed to handle multiple languages can require major style, formatting, and con-
tent revisions. This is especially true when you’re working with English character sets
and moving to 8-bit.

If you don’t intend for your application to ever grow beyond your country of origin,
localization support is probably not high on your list of important tasks. Really think
about this for a moment—if your application, which currently uses US English, sud-
denly finds a huge audience in China, will you turn away the additional traffic and
monetization potential, or will you work overtime to support that audience’s needs?

Localization Support with Message Bundles | 251

When taken into consideration before construction of a new application begins, local-
ization doesn’t have to be a challenging, time-consuming effort. This is where message
bundle definitions come into play. By providing a means through which developers can
define support for sentence structures in multiple languages, message bundles help to
remove the barrier of entry for your application users who speak different languages.

In addition, with the extensive number of existing tools in the marketplace that offer
highly refined language conversion capabilities, supporting multiple languages is now
easier than ever.

Let’s start exploring message bundles by looking at their core syntax. Message bundles
are simply an XML file with a few nodes defined:

<messagebundle>
 <msg name="message">Localized Text</msg>
</messagebundle>

The root node of a bundle is messagebundle, which consists of a series of msg nodes.
These msg nodes contain an attribute, name, that acts as the message identifier when
used in the gadget. The node content is the text in the language that the bundle was
developed for.

Let’s look at a practical example of this type of implementation. Assume for a moment
that we want to build a gadget that will define messages in two languages, English and
French. We would define two XML files for these bundles and store them on our server:

• English message bundle: http://www.mysite.com/mbundle_en.xml

<?xml version="1.0" encoding="UTF-8" ?>
<messagebundle>
 <msg name="greeting">Hello ${viewer.name}</msg>
 <msg name="thankyou">Thank you for using our service</msg>
</messagebundle>

• French message bundle: http://www.mysite.com/mbundle_fr.xml

<?xml version="1.0" encoding="UTF-8" ?>
<messagebundle>
 <msg name="greeting">Bonjour ${viewer.name}</msg>
 <msg name="thankyou">Merci d'utiliser notre service</msg>
</messagebundle>

Now we need to tell the gadget that we want to use these message bundles to define
content to support the two languages. We can do this by embedding a Locale node
within our gadget ModulePrefs element:

<ModulePrefs>
 <Locale messages="http://www.mysite.com/mbundle_en.xml" />
 <Locale lang="fr" messages="http://www.mysite.com/mbundle_fr.xml" />
</ModulePrefs>

These Locale nodes can include a few attributes, including lang, country, and mes
sages (see Chapter 3 for more information on the Local node). The messages attribute
contains the URL to the XML message bundle file.

252 | Chapter 7: Advanced OpenSocial and OpenSocial Next

http://www.mysite.com/mbundle_en.xml
http://www.mysite.com/mbundle_fr.xml

Alternately, we can embed the message bundles directly into the gadget ModulePrefs
element instead of linking to an external file:

<ModulePrefs>
 <Locale>
 <messagebundle>
 <msg name="greeting">Hello ${viewer.name}</msg>
 <msg name="thankyou">Thank you for using our service</msg>
 </messagebundle>
 </Locale>
 <Locale lang="fr" country="fr">
 <messagebundle>
 <msg name="greeting">Bonjour ${viewer.name}</msg>
 <msg name="thankyou">Merci d'utiliser notre service</msg>
 </messagebundle>
 </Locale>
</ModulePrefs>

This approach can be beneficial for performance reasons, depending on the gadget
caching policy of the container that you are working in. If the container hardcaches the
gadget, then having everything inline can give you a small performance boost when
the gadget loads.

The main issue with running inline message bundles is maintainability. If the gadget
integrates only a few key messages that you want to display to users, such as greetings
in different languages, then this approach will not be unwieldy. Flickr (http://www.flickr
.com) is one example of this approach; it gives users greeting messages such as:

Labas Jonathan C LeBlanc!
Now you know how to greet people in Lithuanian!

or:

Bună Ziua Jonathan C LeBlanc!
Now you know how to greet people in Romanian!

These are good examples of a manageable localization approach. If we are trying to
support a message bundle with dozens or hundreds of messages, however, using inline
message bundles makes for a poor development experience.

No matter which method you choose to include your message bundles, messages will
be available through the ${Msg} variable:

${Msg.greeting}
Welcome to our service

This code displays the greeting for the current locale. The greeting in our bundle con-
tains a reference to ${viewer.name}, which will be evaluated at the time that the message
bundle is rendered.

Localization support such as message bundles can help you deliver key content across
multiple countries and languages. It is an important factor to think about before you
begin the construction of an application, since supporting it early will spare you the
future time and engineering effort required to integrate support into an existing project.

Localization Support with Message Bundles | 253

http://www.flickr.com
http://www.flickr.com

The OpenSocial REST API Libraries
Complementing the OpenSocial client-side JavaScript API are the OpenSocial REST
client libraries for server-to-server communication. These are a series of server-side APIs
for accessing a user’s social data much like we would from the JavaScript layer.

Even though we are talking about the OpenSocial REST APIs for the
sake of completeness, it’s important to note that their support on cur-
rent providers that allow their use is divided and may not be entirely
implemented. New providers may wish to use these libraries as a means
of building quick APIs for their platforms, but application developers
should use APIs set up by the provider, OpenSocial JavaScript, or OAuth
for implementations.

Although many provider implementations of these APIs are not complete (if imple-
mented), they are a great starting point for those who wish to set up their own Open-
Social container. Instead of expending the effort to design and develop custom APIs
for your platform, consider these libraries, which are available in many popular lan-
guages and are a great way to build a quick implementation with community support.

Which Libraries Are Available
OpenSocial defines a series of languages with corresponding libraries that developers
may use for their websites or services. These include:

• .NET: http://code.google.com/p/opensocial-net-client/

• ActionScript: http://code.google.com/p/opensocial-actionscript-client/

• Java: http://code.google.com/p/opensocial-java-client/

• Objective-C: http://code.google.com/p/opensocial-objc-client/

• Perl: http://search.cpan.org/~lyokato/Net-OpenSocial-Client-0.01_05/lib/Net/Open
Social/Client.pm

• PHP: http://code.google.com/p/opensocial-php-client/

• Python: http://code.google.com/p/opensocial-python-client/

• Ruby: http://code.google.com/p/opensocial-ruby-client/

• Smalltalk: http://code.google.com/p/opensocial-pharo-client/

More information about the client libraries is available on the OpenSocial wiki: http://
wiki.opensocial.org/index.php?title=Client_Libraries.

OpenSocial Next: Areas of Exploration
As we explore the inner workings of an OpenSocial container system and the social
aspects behind these containers, we can see the rich network of relationships developing

254 | Chapter 7: Advanced OpenSocial and OpenSocial Next

http://code.google.com/p/opensocial-net-client/
http://code.google.com/p/opensocial-actionscript-client/
http://code.google.com/p/opensocial-java-client/
http://code.google.com/p/opensocial-objc-client/
http://search.cpan.org/~lyokato/Net-OpenSocial-Client-0.01_05/lib/Net/OpenSocial/Client.pm
http://search.cpan.org/~lyokato/Net-OpenSocial-Client-0.01_05/lib/Net/OpenSocial/Client.pm
http://code.google.com/p/opensocial-php-client/
http://code.google.com/p/opensocial-python-client/
http://code.google.com/p/opensocial-ruby-client/
http://code.google.com/p/opensocial-pharo-client/
http://wiki.opensocial.org/index.php?title=Client_Libraries
http://wiki.opensocial.org/index.php?title=Client_Libraries

around the online lives of individuals. OpenSocial is taking the first steps toward truly
understanding and defining who a person is on the Web—what he does and what’s
important to him. We all have different personalities, needs, and wants, so why can’t
we map a personality profile to a user and extend that to everything he does on the
Web? Why must we limit our interaction with our profiles to only the social
networking containers that host them?

These are difficult questions to try to answer. In a traditional business model, any
information that the company and users shared was tightly protected. Technologies
and advancements were not shared between companies, which led to many proprietary
solutions for similar products.

The open source movement helped to change these viewpoints, but we are a long way
from truly being an open web society—where a single profile, a single activity stream,
and a single relationship graph defines our online lives.

OpenSocial is moving in the right direction by embracing open web technologies and
exploring the tools that people use online. This exploration has uncovered several areas
where individuals interact on a regular basis and tools to help share the social state
among the containers.

Enterprise Containers
Normally, when you talk about enterprise-level software approaches, you are not talk-
ing about open source in any form of the term. The OpenSocial foundation is working
to change this approach by looking into providing a specification that is well defined
enough to serve internal business models and still provide security.

In many workplaces, proprietary software governs our email, company profiles, and
even our interaction with other members of the organization through messaging sys-
tems. There is no reason why a company profile cannot be driven by an OpenSocial
container; why the tools you use to create expense reports, add vacation time, or even
deliver presentations cannot be OpenSocial applications; or why messaging systems
cannot be built using activity streams and messaging systems defined through Open-
Social. This area of development has exciting implications for application developers,
presenting them with the opportunity to build productivity tools for businesses in the
same way they build applications on open social networks.

Mobile Transitions
It’s no surprise to anyone that mobile interaction with social information on the Web
is on the rise. The real question here is, do our mobile applications need to function in
a silo, preventing us from using a standardized profile for our mobile experiences? The
simple answer is no.

OpenSocial Next: Areas of Exploration | 255

OpenSocial defines a series of RESTful URIs that allow any application developer to
leverage a single social network of friendships, activities, and profile information from
the mobile environment.

Mobile interactions with an OpenSocial framework are currently being explored, in-
cluding the ability to deliver a container environment to the mobile web.

Distributed Web Frameworks
OpenSocial does a tremendous job of attempting to standardize the way that we interact
with our online selves and the way that this social data is defined. At the same time,
movements that complement these interactions are taking root within online com-
munities. These distributed web frameworks can provide us with a standardization of
activity data, a protocol for syndicating activities to sources outside a container, or even
a means for linking our social selves with traditionally static entities.

Due to the incredible capabilities of these frameworks to define methods for expanding
a container’s reach and access to social data outside the container, the OpenSocial
foundation is exploring methods for integrating them into the specification.

Distributed web technologies, and their benefits, are the subject of the next section.

OpenSocial and Distributed Web Frameworks
As OpenSocial matures into a comprehensive product offering, its architecture is start-
ing to overlap that of many emerging distributed web frameworks. As a result,
OpenSocial is exploring the frameworks’ technologies and methodologies as possible
alternatives to the ways in which it currently handles its data, requests, and content
syndication.

There are several distributed web frameworks that overlap with the OpenSocial spec
by defining alternative and standardized methods for accomplishing similar tasks. Be-
fore we fully dive into these technologies in Chapter 10, let’s explore the core concepts
behind a few of the frameworks that will change how OpenSocial defines its practices.

Activity Streams
The Activity Streams specification provides a unified, standard method for working
with user activity data across any social container or other place where user comment-
ing or updating may occur. It attempts to provide any possible verbs that an activity in
any context may require. This may cover social sites, commenting widgets on news
sites, or even enterprise-level software that takes advantages of user updates, interac-
tion, or commenting.

Verbs, and the cordoning of content into logical blocks, are the basis for how Activity
Streams works. A single activity stream may consist of several logical blocks, including

256 | Chapter 7: Advanced OpenSocial and OpenSocial Next

sections such an actor (information about the person performing the activity), object
(the thing being acted upon), or target (trackback information from the activity to the
source). Verbs are used to define the type of activity that is being shared, such as whether
the user “liked” something, “shared” something, “posted” something, and so on.

How would this change OpenSocial?

As we have seen in previous chapters, OpenSocial defines a standard method for how
it outputs activity data for a user action. If Activity Streams were adopted into the
OpenSocial specification, this method would be directly affected; the definition of an
opensocial.Activity object would change dramatically, providing a much richer data
set than is currently implemented.

PubSubHubbub
PubSubHubbub is a protocol that defines a method for updates, comments, or posts
to be easily syndicated and shared between a root site and any subscriber sites that
syndicate the content of articles, posts, or any other data from the root site.

PubSubHubbub accomplishes this through the use of relaying hubs. A topic site or feed
URL declares the hub to be used within its RSS or ATOM feed file as a link element.
This hub may be hosted by the feed publisher or on a community platform hub that
provides services for anyone. A subscriber would then fetch the publisher feed, read
the hub information, and then subscribe to the hub in order to get updates. This will
allow the subscriber to subscribe to the particular feed that she is interested in seeing
updates for. When the publisher updates or changes the feed content, it would ping
the hub stating that there is a change. The hub then fetches the content and multicasts
the new or changed content out to all subscribers.

In effect, this protocol enables syndication of activities, publications, articles, or any
other piece of social data out of the hosted container. This can effectively widen the
reach of the social network to a host of subscribers.

How would this change OpenSocial?

An OpenSocial container, for the most part, can be considered a social silo. A container
defines its social information for only its site and, unless other means are built in, it
may only allow off-site access to that information through the use of RESTful endpoints
for the social data. This can be inefficient because the external service has to periodically
poll the endpoints to check for updates to the data source.

PubSubHubbub can effectively eliminate the need for third-party services to do this.
By subscribing to particular feeds from the social container, a service can be notified
as changes occur. Building the ability to define update hubs for data would readily
change the way in which activities or updates are managed through OpenSocial.

OpenSocial and Distributed Web Frameworks | 257

In addition, the capability to define a syndication hub could be integrated into the
specification to make the process as seamless as possible.

Salmon Protocol
With services like PubSubHubbub, a publisher can ping a hub stating that a feed has
changed. That hub would then fetch the updated content and aggregate it out to all
hub subscribers. The Salmon protocol works on the upstream of this interaction. Let’s
say a hub subscriber makes a new comment on an article that was published. With the
Salmon protocol in place, that comment can be pushed back up to the publisher site.
The publisher then adds the comment to its version of the article. Once the article is
updated, the publisher pings the hub, which then fetches the new comment and pushes
the update to all subscriber sites.

The main benefit here is that there is no longer only a one-way relationship between a
publisher and subscribers. You build, in effect, a link between all publishers and all
subscribers, unifying the social experience among many different sites.

How would this change OpenSocial?

Much like with PubSubHubbub, the real benefits for OpenSocial to integrate the
Salmon protocol come from expanding the social network far beyond the bounds of
the root container. Not only can you push out new content and updates from the social
container, but you can now also accept new updates from some third-party source.
Basically, you would be able to create a social networking ecosystem composed of the
root social network and numerous third-party sites and services.

To integrate such a service, OpenSocial would need to define the ability to push content
and activities out to subscribers, such as through a protocol like PubSubHubbub. It
would then need to be able to receive updates to that content from subscribers and
verify the data. Finally, the updates would need to be pushed out to any feed
subscribers.

The real challenge in this whole scenario is security and trust relationships. At some
point in this process—either when subscribing to a hub or when validating updates
from subscribers—the host container must ensure that the information coming back
is from a trusted source, is not spam, and is a valid update. This may require the inte-
gration of permission levels for subscribers and proper authentication to work securely.

Open Graph Protocol
The Open Graph protocol is built upon the core precepts that a user’s social graph can
extend far beyond simple relationships with other people. As we interact on the social
web, we leave our footprints wherever we go—on particular accounts, websites, or any
other social linkage. These links, called entity relationships, can vastly enrich the user’s

258 | Chapter 7: Advanced OpenSocial and OpenSocial Next

social graph, delivering whole new unstructured content and user information that,
just a few years ago, was really not available to us.

The Open Graph protocol seeks to give structure to those unstructured entities that
are associated with a person, by providing an open, standard, and uniform method for
working with these links to access an individual’s social data. It accomplishes this
standardization through the use of semantic-based metatagging, which provides basic
to advanced customization options for a site. At a base level, the Open Graph protocol
defines simple information like the page title, the type of object that is on the page, a
standard image, or a trackback URL. It then builds upon that core data by defining
geographically significant information (e.g., restaurant locations), contact information
for the site, and numerous object types that help further refine categories for a site.

The Open Graph protocol aligns itself very readily with a user’s existing social graph
in an OpenSocial container.

How would this change OpenSocial?

If the Open Graph protocol is integrated within the OpenSocial specification, we may
see an expansion of how a user’s social graph functions. Currently, a user’s social graph
is viewed merely as a list of relationships with other people. This is basically a one-to-
many mapping (i.e., between one OpenSocial Person object and many other Person
objects).

To shift the paradigm defining what a social relationship is, the OpenSocial specifica-
tion would need to provide different sources of relationship mapping. At minimum,
the user’s social graph should be able to return a mix of person-to-person relationships
as well as person-to-object relationships.

Putting It All Together

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_7/chapter_final
.xml.

Now that we’ve examined data pipelining and templating, one thing should be blatantly
obvious: these two features of the OpenSocial specification can significantly reduce the
amount of code that you need to write, create a highly modularized environment to
promote multiuser development, and generally simplify debugging and data retrieval
to allow you to focus on more important aspects of your gadget, such as monetization
and social features.

Up until now, we’ve explored the individual specifications for accessing and working
with data. Now we will put together a few of the lessons that we have learned into a

Putting It All Together | 259

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/chapter_final.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_7/chapter_final.xml

fully functional example that showcases some of the major uses for templating and data
pipelining.

In this example, we’ll look at:

• Capturing data sources through data pipelining HTTP Requests

• Integrating data pipes into templates

• Using expressions

• Using loop structures

• Using special variables

Our sample code will use the data pipelining specification to pull in two RSS feeds, one
from www.reddit.com and the other from the San Francisco local news section of www
.craigslist.org. Following that, we’ll create two separate pages that can be switched back
and forth by tabs. These pages will use the templating specification to display the title,
link, and date from these two feeds as styled, unordered lists. The general visual form
that we will use for this application will mimic Figure 7-1.

Figure 7-1. Architecture of this chapter’s example, showcasing HTTP requests through an OpenSocial
gadget

First, we have to look at the foundation of our gadget XML file and the requirements
that we need to include:

<?xml version="1.0" encoding="utf-8s"?>
<Module>
 <ModulePrefs title="Chapter rollup example"
 title_url="http://www.jcleblanc.com"
 description="Displays templating and data pipelining
 specifications"
 author="Jonathan LeBlanc">
 <Require feature="opensocial-0.9"/>
 <Require feature="opensocial-data" />
 <Require feature="opensocial-templates" />
 </ModulePrefs>

260 | Chapter 7: Advanced OpenSocial and OpenSocial Next

Since the sample gadget that we are building will integrate functionality from data
pipelining as well as templating, we need to require these features in our gadget:

• At the very minimum, we should include version 0.9 of the OpenSocial specifica-
tion as opensocial-0.9. (This is the minimum version that is needed to run both
the features from data pipelining and templating.)

• The data pipelining specification as opensocial-data.

• The templating specification as opensocial-templates.

Now that our JavaScript feature requirements are in place in our core gadget, we can
focus on the Content section that will house our gadget functionality:

<Content type="html">
 <![CDATA[
 <style type="text/css">
 #nav{ margin:5px 0 5px 15px;
 padding-top:10px; }
 #nav a{ background-color:#e8f0f4;
 border:1px solid #0c7099;
 border-bottom:0;
 color:#000;
 padding:6px 8px;
 margin-top:5px; }
 #nav a{ cursor:pointer;
 font-weight:bold; }
 #nav a.navOff{ background-color:#0c7099;
 color:#fff; }
 #nav, .page{ font:12px arial,helvetica,sans-serif; }
 .page{ margin:5px 0;
 padding:5px;
 margin:0 10px 15px;
 background-color:#e8f0f4;
 border:1px solid #0c7099; }
 .page li{ list-style-type:none;
 padding:3px 10px 3px 0; }
 .textSmall{ font-size:10px; }
 .hide{ display:none; }
 </style>

We first need to specify the styles that will be used in the gadget. These styles will define
the look of the anchor tags that are used for the page tabs, the layout for the pages, and
the formatting of the data pipes as unordered lists.

Following the styles, we define the navigation of the gadget, which will allow us to
switch between the two feed pages:

<div id="nav">
 <a id="linkCraigslist"
 onclick="switchNode('pageCraigslist', 'pageReddit', this)">
 Craigslist Local
 <a id="linkReddit"
 onclick="switchNode('pageReddit', 'pageCraigslist', this)"

Putting It All Together | 261

 class="navOff">Reddit
</div>

Our navigation system consists of a div wrapping two anchor tags that are styled to
look like tabs. To visualize the tab’s off state, we can set a class of navOff. Other than
that, our anchor tags contain an onclick event that, when triggered, will call the switch
Node(...) function to swap between the current page and the other page.

Our next task is to define the data pipe that will pull in the RSS feeds from www.red-
dit.com and www.craigslist.org:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/2008/markup">
 <os:HttpRequest key="feeds" href="http://query.yahooapis.com/v1/public/yql?
 q=select%20*%20from%20yql.query.multi%20where%20queries%3D%22select%20
 *%20from%20rss%20where%20url%3D'http%3A%2F%2Fwww.reddit.com%2F.rss'%3B
 select%20*%20from%20rss%20where%20url%3D'http%3A%2F%2Fsfbay.craigslist.
 org%2Fvnn%2Findex.rss'%22&format=json&debug=true"/>
</script>

As with some of our previous examples, we use the os:HttpRequest element to pull in
our data feeds, using the Yahoo! Query Language to aggregate the sources. The YQL
URL makes the request to the service, which in turn makes two separate RESTful
requests to the two RSS sources and then binds the results into a single data pipe in
JSON format. Our pipe is set to a key of feeds.

Next we will cover the visualization of these data sources through the templating
specification:

<script type="text/os-template" require="feeds">
 <div id="pageReddit" class="page hide">

 <li repeat="${feeds.content.query.results.results[0].item}">
 ${Cur.title[0]}

 ${Cur.link}

 ${Cur.pubDate}

 </div>
 <div id="pageCraigslist" class="page">

 <li repeat="${feeds.content.query.results.results[1].item}">
 ${Cur.title[0]}

 ${Cur.link}

 ${Cur.date}

 </div>
</script>

Our template script block contains the require attribute stating that if the feeds data
pipe is not available, the template should not be rendered with the data.

If feeds is available, the template will set up two div nodes, one set as visible and the
other as hidden. Within these div nodes, or pages, we set up an unordered list. Then

262 | Chapter 7: Advanced OpenSocial and OpenSocial Next

we use the repeat attribute of the templating specification to create an node in the
unordered list for each object in the associated RSS feed. Within each list item, we
create markup to display the title, link, and current date for the appropriate RSS feed
item.

Our last task is to define our JavaScript functionality to enable us to swap between the
two different pages that we have defined:

 <script type="text/javascript">
 //swap the visibility of one page
 function switchNode(activate, deactivate, linkObj){
 //get page nodes to swap
 var showNode = document.getElementById(activate);
 var hideNode = document.getElementById(deactivate);

 //switch the display properties of the two pages
 hideNode.className = "page hide";
 showNode.className = "page";

 //swap link tab classes
 var linkAlt = (linkObj.id == "linkCraigslist") ?
 document.getElementById("linkReddit") :
 document.getElementById("linkCraigslist");
 linkObj.className = "";
 linkAlt.className = "navOff";
 };
 </script>
]]>
 </Content>
</Module>

Our JavaScript functionality layer consists of a single function, switchNode(...), which
accepts three parameters:

activate

The ID of the page to be switched to a display status.

deactivate

The ID of the page to be hidden.

linkObj

The DOM node object representing the tab that was clicked. This determines the
tab visualization states.

This is a simple function that has two responsibilities: swap the state of the pages, and
swap the state of the tabs. We start out by swapping the pages, removing the hide class
from the page to be displayed and adding the class to the page to be hidden. We then
determine the tab that was clicked and the one that wasn’t, and swap the classes for
those tabs as well.

When we render, we should be presented with a tabbed interface like Figure 7-2, which
contains a basic application that allows you to read up on current news and topics.

Putting It All Together | 263

Figure 7-2. This chapter’s example, showcasing HTTP requests in OpenSocial gadgets

264 | Chapter 7: Advanced OpenSocial and OpenSocial Next

CHAPTER 8

Social Application Security Concepts

When we start discussing applications that host and work with users’ personal infor-
mation, the conversation will naturally lead to user security. How do we protect users’
personal data? Should the container hosting the applications be responsible for that
information, or should the onus be on the application developers?

Besides the question of how to best protect end users, we must ask ourselves how strict
we should be about content developed by third parties. How restrictive can we be before
developers seriously consider not developing on the platform or site in question? How
far can we go to protect end users before we begin to alienate our developers?

Finally, once we have a security model in place, how will it impact application per-
formance? Will the overhead imposed by the security mechanism significantly slow
down load times to the point where it causes timeouts or forces users to leave the
platform?

These are the questions this chapter will address as we explore some of the available
open source security technologies that allow us to host third-party code securely within
a site or application container.

What You’ll Learn
This chapter will focus on the development of secure models for hosting third-party
code or applications on an existing site or container. We will explore currently available
tools that provide a sandboxed environment in which to run third-party code on an
existing site. Specifically, we will look into two technologies:

• Caja (pronounced “ka-ha”)

• ADsafe

In addition to these two technologies, we will look at one of today’s most used ap-
proaches for sandboxing code, iframes, and what security issues their use introduces.

265

Hosting Third-Party Code Through iframes
The current security strategy employed by many sites and services that allow third-
party code is to contain the application content within an iframe. In the case of appli-
cation development on a social networking site, many applications must first go
through a review process to ensure that they’re not malicious before being approved
for use on the site. Application developers can then generally update their application
as they see fit and have the changes appear in the live version immediately.

The iframe approach nullifies a number of different attacks that a malicious application
developer may launch against the host site, but it does nothing to protect the user
working in the application. The content of the iframe is not sanitized, which means
that the same security issues that exist in any site on the Internet still exist in this
context.

This is where other security implementations such as Caja and ADsafe come into play.
They attempt to remove the majority of the attack vectors that an application developer
may employ against a user. We will explore some of the specific attacks in the next
section as part of our larger discussion of Caja.

A Secure Approach: The Caja Project
The Caja project has emerged as a means for securing third-party frontend code
(HTML, CSS, and JavaScript) to protect both the container on which that code is hosted
as well as the end user who is exposed to it.

In simple terms, Caja works by encasing the third-party code in a container, such as a
div node, that provides a sanitized version of the DOM. When the third-party code
then calls a DOM method, it is not accessing the true DOM of the root page. This
means that the Caja sanitization system can control every DOM request that is being
made and can either grant or deny access to certain functionality.

Taking that a step further, the project works by employing a two-part sanitization
system. When the third-party code is first rendered on the page, it will go through the
server-side cajoler, which will sanitize the code and remove anything that it deems
malicious. Next, if new code is injected into the application via a JavaScript method
(e.g., innerHTML), that code will be pushed through the client-side sanitizer. This client-
side sanitizer is a much stricter system, usually allowing only approved HTML and CSS
while removing JavaScript content.

This is the core functionality of the Caja project. We’ll explore each component in more
depth as we walk through the implementation of a Caja-protected application.

266 | Chapter 8: Social Application Security Concepts

Why Use Caja?
Some readers may be wondering why to use Caja at all since it seems more restrictive
for developers. And they’re completely correct—Caja does restrict the actions and im-
plementations of developers who are building code on top of an existing site or appli-
cation container. Developers will have to go through extra steps and stick to a set of
good programming practices when building out systems to run under Caja.

But the simple fact is that any developer worth his salt who wants to build something,
will—especially in a stable rewriting environment such as the one Caja provides. And
developers should not be the main concern for this implementation, anyway; rather,
the focus should be on the people who are using the site or application, who don’t have
the background, knowledge, or inclination to protect themselves from malicious at-
tacks from outside sources.

This is the main reason to implement Caja—to protect your end users from the po-
tentially malicious code and sources that you are exposing them to by allowing third-
party content to be hosted on your site or container. When it really comes down to it,
the success of a product relies on the trust relationship between that product or com-
pany, and the people who use it on a regular basis. A user who doesn’t trust a product
will be far less inclined to use it.

Another clear advantage to Caja is that it enforces web standards. Sloppy development,
corner cutting, and potentially malicious code that was employed to save time and
effort will all be caught when the cajoler or sanitizer gets hold of it.

Attack Vectors: How Caja Protects
Browsers are powerful tools that enable a wide range of utilities for a user interacting
with websites and web applications. Even with these powerful tools in place, browsers
are still insecure beasts, full of security flaws and issues despite the extensive updates
integrated within the HTML5 standard.

This is where Caja can help. There are numerous attack vectors that are exploitable in
browsers that Caja aims to safeguard against. We will take a look at a few of these attack
vectors to identify the exploitable browser components that Caja aims to protect
against.

For a full list of attack vectors that Caja checks for, see http://code.google.com/p/google
-caja/wiki/AttackVectors.

Redirecting Users Without Their Consent
One of the simplest attack vectors that may impact a user is an automatic redirection
without her consent. The main issue here is that any frame can redirect any other named

Attack Vectors: How Caja Protects | 267

http://code.google.com/p/google-caja/wiki/AttackVectors
http://code.google.com/p/google-caja/wiki/AttackVectors

frame to another location automatically, meaning that the user may not be fully certain
that the page that she is redirected to is the page she intended to view.

Let’s look at a practical example of this issue. Say an application that we are running
is intended to load third-party code in an iframe from http://www.mybank.com, allow-
ing users to log in to their bank accounts, see their balances, and make transfers. Since
the intended content of the iframe is known, the application could automatically redi-
rect the user to another site—say, http://www.attacker.com/stealbank—without her
knowledge or input, mimicking the view and functionality of http://www.mybank
.com with the intention of stealing her bank account information:

window.top.location = "http://www.attacker.com/stealbank";

This is a major phishing concern for users, as that automatic redirection can happen
without the user even being aware of it.

Mining a User’s Browser History
Browsers natively integrate the ability to track the URLs that a user visits. They use this
information to autocomplete links in the URL bar and to alter the color of clicked links.
Malicious developers can take advantage of this native tracking functionality to help
figure out which sites a user has visited, allowing them to launch more targeted phishing
attacks against him.

In addition to the standard color of links within a web page, many sites implement link
styles to change a link’s appearance when the user has visited it:

<style type="text/css">
 a:visited{ color:#c0c0c0; }
 a:link{ color:#000; }
</style>

In this scenario, attackers can check the link’s color to mine the browser history of the
current user visiting the site. For instance, assume we have a few links defined on our
site that link to other sources:

Yahoo!

Facebook

Using the standard getComputedStyle JavaScript function, a developer can capture the
color styling of those links to determine the user’s visited status:

<script type="text/javascript">
 var compStyle = getComputedStyle(document.getElementById("link1"), "")
 var color = compStyle.getPropertyValue("color");
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/attack_vector
_history_miner.html.

268 | Chapter 8: Social Application Security Concepts

http://www.mybank.com
http://www.attacker.com/stealbank
http://www.mybank.com
http://www.mybank.com
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_history_miner.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_history_miner.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_history_miner.html

Using these simple techniques as a base, malicious developers can take advantage of
link styles to mine a user’s visited history.

Arbitrary Code Execution with document.createElement
If the third-party code has access to the page’s root DOM but has restrictions on the
scripts being loaded, it can execute arbitrary code blocks that have access to the page’s
global object.

The premise behind this attack vector is to create script blocks that can capture user
information, such as site cookies:

var script = document.createElement("script");
script.appendChild(
 document.createTextNode(
 var userCookie = document.cookie;
 //use user cookies
)
);
document.body.appendChild(script);

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/attack_vector
_code_execution.js.

Using document.getElement, you can create a new script block, attach a block of code
to hijack user information, and then attach that code to the body of the DOM to au-
tomatically render it, executing the malicious block within.

Logging the User’s Keystrokes
If the third-party application has the ability to access the true DOM of a page, then it
can log the user’s keystrokes. The severity of this attack can range from a simple nui-
sance all the way to a major security issue if the root page contains password fields or
user-specific information.

A probable attack vector for this type of code is to capture the user’s username and
password fields. Since a password field would prevent direct access to its value, logging
the user’s keystrokes can provide the attacker with all of the information he needs.

For instance, say we have a site that hosts third-party code. On this site, you have a
username and password field to allow you to log in. Should this third-party code attach
a keypress event on the body of the root page document, then it can log any keys that
you press while you are on the page.

Attack Vectors: How Caja Protects | 269

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_code_execution.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_code_execution.js
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_code_execution.js

This type of attack can be perpetrated by any script that can essentially “phone home”
by accessing the parent page that it is being presented on, much like the following
sample:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Key Logger Attack</title>
</head>
<body>
<!-- username field -->
<label for="username">Username:</label>
<input type="text" name="username" />

<!-- password field -->
<label for="password">Password:</label>
<input type="password" name="password" />

<!-- node to dump logged keys to -->
<div id="dumpNode"></div>

<script type="text/javascript">
var lastSend = Date.now();

//attach keypress event to the document body
document.body.onkeypress = function(event){
 //get current key pressed
 var keyCode = event.which || event.keyCode;
 var string = "";

 //was key pressed within 1 second of last press
 if (Date.now() - lastSend < 1000){
 string += String.fromCharCode(keyCode);
 } else {
 string = "
" + String.fromCharCode(keyCode);
 }

 //dump last key pressed and update time
 var dumpNode = document.getElementById("dumpNode");
 dumpNode.innerHTML += string;
 lastSend = Date.now();
};
</script>
</body>
</html>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/attack_vector
_keystroke_logger.html.

270 | Chapter 8: Social Application Security Concepts

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_keystroke_logger.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_keystroke_logger.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/attack_vector_keystroke_logger.html

In our document markup, we set up three fields: a username, a password, and a third
node that we’ll use to dump our logged keypresses.

As we get into the script, we first get the current time, which we will use to arbitrarily
track when the user has moved on to a new word. We then attach an onkeypress event
onto the body of the page. This will ensure that when the user presses a key anywhere
within the page, her keys will be logged to our logger function.

When the event is triggered, we capture the key that was pressed. The if statement
compares the last keypress event time to the current time. If the latest keypress event
was less than a second after the last, then the key is assumed to be part of the same
word and attached to the same line as the last key. One second is simply an arbitrary
amount of time to wait; if the delay is longer than a second, we drop the new character
to the next line.

Last, we dump the new character to our div node to display on screen.

The keys that are logged are based on the decimal representations outlined at http://en
.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

This attack is one representation of what can occur if a script has the ability to access
the root DOM of the page that it exists on. The simplistic nature of this attack under-
scores the importance of building in at least some measure of security to prevent the
third-party code from accessing the DOM, or having the third-party code running in a
sandbox to prevent it from reaching outside its defined working area in the root page.

Setting Up Caja
Before we can test the Caja system against some actual files and gadgets, we need to
obtain the Caja source from the project trunk and then build it.

First, we need to ensure that we have all of the prerequisites in place to download,
build, and test the installation. Caja has the following minimum requirements:

• Subversion (SVN) to download the source files from the trunk and to keep the
downloaded project files up to date.

• Java Development Kit (JDK) 6.

• Apache Ant 1.7 for the build system.

• JUnit for the testing framework. Once you’ve obtained it, simply place the
junit.jar file in the $ANT_HOME/lib directory you set up for Ant.

Once we’ve met the prerequisites, we can start the process by obtaining the source code
for the Caja project from the SVN trunk. Simply navigate to the folder location where
you would like to load Caja and then run the following command:

svn checkout http://google-caja.googlecode.com/svn/trunk/ caja

Setting Up Caja | 271

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

This code issues an SVN checkout command against the Caja trunk and specifies our
output directory to be the caja folder.

Next, we need to build the project using Ant. Simply navigate into the caja directory
and run the ant command. This will initiate the Ant build process for the project:

cd caja
ant

After the build.xml script is loaded and the build process begins, you should be pre-
sented with the following output if the process is proceeding correctly:

Buildfile: build.xml

dirs:
.
.
.
BUILD SUCCESSFUL
Total time: 35 seconds

This series of build messages states what part of the build script is currently being
processed, and gives you a BUILD SUCCESSFUL message to confirm that the process com-
pleted successfully.

Once the build has completed, you should see a series of new ant-* directories in the
root of the Caja project directory:

ant-docs
The javadocs output

ant-jars
All the jar files needed to run the cajoler

ant-lib
The compiled classes and resources

ant-reports/tests/index.html
Unit test status and logs

ant-reports/coverage/index.html
Unit test coverage reports

ant-www
Output of demos

You should be aware of a number of important directories within the Caja project. The
folder structure that you will be integrating with is:

caja
|
+--bin : executable files for compiling from the command line
|
+--docs : documentation files.
|
+--src : source code (java and javascript)

272 | Chapter 8: Social Application Security Concepts

| |
| +--com
| |
| +--google
| |
| +--caja
| |
| +--lexer : Tokenization and escaping
| |
| +--parser : Parsers and tree implementations
| | |
| | +--ParseTreeNode.java : Main parse tree interface
| | |
| | +--quasiliteral : Syntactic sugar for parse tree xforms
| |
| +--opensocial : Dealing with Gadget specs
| |
| +--plugin : Transformations
| | |
| | +--PluginCompilerMain.java : main class
| | |
| | +--stages : Parse tree transforms
| |
| +--reporting : Error and warning messaging.
|
+--tests : test files and resources

We will be working primarily with the contents of the bin directory at the root of the
project. This is where we will compile mixed HTML/JavaScript files and OpenSocial
gadgets from the command line—a topic we will explore next.

Cajoling Scripts from the Command Line
Caja secures your frontend code by sanitizing (or cajoling, in Caja terms) it through the
command-line JavaScript compiler. In the sections that follow, we will explore how to
take a mixed HTML/JavaScript file source and build out a cajoled, safe version of the
code.

Once we see how to cajole our code, we will look at methods for reducing the weight
of our JavaScript files.

Cajoling HTML and JavaScript
Before we begin compiling our mixed HTML and JavaScript documents into a safe code
subset, we need to look at the tools that we will be using.

In the caja directory that we created for the project, you’ll see a directory containing
the scripts that we will use to compile our code. The cajole_html script is specific to the
task of cajoling standard HTML and JavaScript, and it’s the script we’ll use here to

Cajoling Scripts from the Command Line | 273

cajole our standard code. After the cajoling process completes, we will have two output
files:

• An HTML output file containing the markup of our script, divorced from any
embedded JavaScript blocks. This HTML file will contain secure, directly embed-
dable markup that we can insert within a site. All unsafe markup tags, such as
iframes, will be stripped from the final derived markup.

• The cajoled JavaScript file. The JavaScript will be a secured version of what we
started with, stripping out any insecure script.

To run the mixed HTML/JavaScript command-line cajoler, we can simply go to the
root of the caja directory from which we checked out the SVN source and run the
appropriate cajole_html script with a few parameters:

cd caja
bin/cajole_html -i <htmlInputFile> -o <outputTarget>

cajole_html allows us to specify an input file to cajole (htmlInputFile) and an output
filename to dump our two cajoled files to (outputTarget). htmlInputFile can be an
absolute URL of a file to be cajoled or a direct reference to a file on the local system.
outputTarget is simply the string name to call the output files, along with the file path
to build them to. The two output files will be named:

• {outputTarget}.out.html

• {outputTarget}.out.js

These are the two files that you should expect to be generated when you run the cajoler
against a source file with mixed HTML and JavaScript.

Running the cajoler

Let’s look at an example of the cajoling process:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Caja Sample HTML</title>
</head>
<body>

<h1>Sample Redirection Script</h1>
Click to Redirect

<script type="text/javascript">
//redirect user to new site
function goRedirect(){
 var redirects;
 with(redirects){
 var href = "http://www.yahoo.com"
 window.location = href;
 }

274 | Chapter 8: Social Application Security Concepts

}
</script>

</body>
</html>

When we cajole this mixed HTML/JavaScript file via the command line, we get the
following messages:

1 notseveral-lm:caja jleblanc$ bin/cajole_html -i
 ../git/programming-social-applications/caja/ch9_caja_sample_html.html
 -o caja_sample
2 LOG : Checkpoint: LegacyNamespaceFixupStage at T+0.113971 seconds
3 LOG : Checkpoint: ResolveUriStage at T+0.12005 seconds
4 LOG : Checkpoint: RewriteHtmlStage at T+0.124126 seconds
5 LINT : ch9_caja_sample_html.html:16+42: Semicolon inserted
6 LOG : Checkpoint: InlineCssImportsStage at T+0.204033 seconds
7 LOG : Checkpoint: SanitizeHtmlStage at T+0.204083 seconds
8 WARNING: ch9_caja_sample_html.html:2+1 - 23+8: folding element html into parent
9 WARNING: ch9_caja_sample_html.html:3+1 - 5+8: folding element head into parent
10 WARNING: ch9_caja_sample_html.html:4+1 - 32: removing disallowed tag title
11 WARNING: ch9_caja_sample_html.html:6+1 - 22+8: folding element body into parent
12 LOG : Checkpoint: ValidateCssStage at T+0.206399 seconds
13 LOG : Checkpoint: RewriteCssStage at T+0.222766 seconds
14 LOG : Checkpoint: HtmlToBundleStage at T+0.222807 seconds
15 LOG : Checkpoint: OptimizeJavascriptStage at T+0.279367 seconds
16 LOG : Checkpoint: ValidateJavascriptStage at T+0.279401 seconds
17 ERROR : ch9_caja_sample_html.html:15+5 - 18+6: "with" blocks are not allowed
18 LOG : Checkpoint: ConsolidateCodeStage at T+0.553624 seconds
19 LOG : Checkpoint: CheckForErrorsStage at T+0.561566 seconds

For the sake of this example, we will ignore the LOG messages—they are just notifications
at different stages of the cajoling process. We are, however, interested in the LINT,
WARNING, and ERROR messages, as those are pertinent to our build process.

The LINT message on line 5 states that a semicolon was inserted. This message was
generated because we forgot a semicolon at the end of the line when we defined our
url parameter in our HTML sample code. By default, JavaScript tries to help developers
by automatically inserting a semicolon if one was omitted. But because this process
can sometimes insert semicolons where you do not want them—causing errors in the
program flow—messages like this are produced.

Next, we have the WARNING messages on lines 8 through 11. Since Caja is building
an HTML and JavaScript file to be inserted on an existing page (such as a gadget), the
html, head, and body tags are all folded up into the parent and thus removed from
the output in the HTML file. In addition, the title element is also removed because
the code base is running in an existing container.

Last is the ERROR message on line 17, which tells us that with blocks in JavaScript are
not allowed in compiling. This error will stop the cajoling process and not produce
output files.

Cajoling Scripts from the Command Line | 275

If we were to remove the with block in question from our code, we would be able to
produce cajoled files. This involves changing our script block to the following:

<script type="text/javascript">
//redirect user to new site
function goRedirect(){
 var href = "http://www.yahoo.com";
 window.location = href;
}
</script>

If we were to then recajole the scripts:

notseveral-lm:caja jleblanc$ bin/cajole_html -i
../git/programming-social-applications/caja/ch9_caja_sample_html.html
-o caja_sample

We would get the following two output files:

caja_sample.out.html
The sanitized HTML of our file

caja_sample.out.js
The cajoled JavaScript of our original file, with the added layers of Caja security

Next, we’ll explore these files to see what content is produced.

The cajoled HTML

When we look at the content of the caja_sample_out.html file, we see the following:

<h1>Sample Redirection Script</h1>
Click to Redirect

Our html, head, and body elements have all been removed from the output. Since the
content of a cajoled file is meant to exist within the body of some container, it will exist
in the same DOM as that container and thus must not include competing root nodes.
The content of our HTML file is stripped down to our h1 and the redirect <a> tag. Within
the <a> tag, our onclick event is silently stripped out of the HTML content. When Caja
runs into tags that are not allowed and it can safely remove those tags without com-
promising valuable output, the cajoler will silently strip them out and output usable
files.

If you are embedding onclick handlers directly into your markup layer,
Caja will most likely strip them from the returned HTML, depending
on how strict your implementation is. To avoid this, you should attach
JavaScript event handlers after the page content has loaded by using the
traditional methods of working between object.onclick, object

.attachEvent, or object.addEventListener.

276 | Chapter 8: Social Application Security Concepts

The cajoled JavaScript

Next let’s look at the JavaScript file compiled during the cajoling process, caja_
sample.out.js. If we open this file, we see a much larger JavaScript construct than we
defined in our functional script block:

{
 ___.loadModule({
 'instantiate': function (___, IMPORTS___) {
 return ___.prepareModule({
 'instantiate': function (___, IMPORTS___) {
 var $v = ___.readImport(IMPORTS___, '$v', {
 'getOuters': { '()': {} },
 'initOuter': { '()': {} },
 'cf': { '()': {} },
 'ro': { '()': {} }
 });
 var moduleResult___, $dis, el___, emitter___, c_1___;
 moduleResult___ = ___.NO_RESULT;
 $dis = $v.getOuters();
 $v.initOuter('onerror');
 {
 emitter___ = IMPORTS___.htmlEmitter___;
 el___ = emitter___.byId('id_2___');
 c_1___ = ___.markFuncFreeze(function (event, thisNode___) {
 $v.cf($v.ro('goRedirect'), []);
 });
 el___.onclick = function (event) {
 return plugin_dispatchEvent___(this, event,
 ___.getId(IMPORTS___), c_1___);
 };
 emitter___.setAttr(el___, 'id', 'redirect-' +
 IMPORTS___.getIdClass___());
 el___ = emitter___.finish();
 }
 return moduleResult___;
 },
 'cajolerName': 'com.google.caja',
 'cajolerVersion': '4319',
 'cajoledDate': 1288626955029
 })(IMPORTS___), ___.prepareModule({
 'instantiate': function (___, IMPORTS___) {
 var $v = ___.readImport(IMPORTS___, '$v', {
 'getOuters': { '()': {} },
 'initOuter': { '()': {} },
 'so': { '()': {} },
 's': { '()': {} },
 'ro': { '()': {} },
 'dis': { '()': {} }
 });
 var moduleResult___, $dis;
 moduleResult___ = ___.NO_RESULT;
 $dis = $v.getOuters();
 $v.initOuter('onerror');
 try {

Cajoling Scripts from the Command Line | 277

 {
 $v.so('goRedirect', ___.markFuncFreeze(function () {
 var goRedirect;
 function goRedirect$_caller($dis) {
 var href;
 href = 'http://www.yahoo.com';
 $v.s($v.ro('window'), 'location', href);
 }
 goRedirect$_caller.FUNC___ = 'goRedirect$_caller';
 goRedirect = $v.dis(___.primFreeze(goRedirect$_caller),
 'goRedirect');
 return goRedirect;
 }).CALL___());
 }
 } catch (ex___) {
 ___.getNewModuleHandler().handleUncaughtException(ex___,
 $v.ro('onerror'), 'ch9_caja_sample_html.html', '13');
 }
 return moduleResult___;
 },
 'cajolerName': 'com.google.caja',
 'cajolerVersion': '4319',
 'cajoledDate': 1288626955094
 })(IMPORTS___), ___.prepareModule({
 'instantiate': function (___, IMPORTS___) {
 var moduleResult___;
 moduleResult___ = ___.NO_RESULT;
 {
 IMPORTS___.htmlEmitter___.signalLoaded();
 }
 return moduleResult___;
 },
 'cajolerName': 'com.google.caja',
 'cajolerVersion': '4319',
 'cajoledDate': 1288626955121
 })(IMPORTS___);
 },
 'cajolerName': 'com.google.caja',
 'cajolerVersion': '4319',
 'cajoledDate': 1288626955128
 });
}

The reason this new JavaScript block is so much more extensive than the code we
started with is that the cajoled code applies error checks and security layers on top of
our original code. Our original functionality is highlighted in the preceding example,
now with secured access to our redirection code.

Modifying the Cajoler Rendering Format
The cajoling script gives us the option to alter the cajoling output through a few ren-
dering methods. In the following command, besides the input and output files that we

278 | Chapter 8: Social Application Security Concepts

have already talked about, you’ll see an -r option at the end. This option allows us to
specify the rendering method that we want to use during the cajoling process:

bin/cajole_html -i <htmlInputFile> -o <outputTarget> -r <rendererOption>

There are a number of attributes that we can set as our renderOption, as listed in
Table 8-1.

Table 8-1. renderOption attributes

Attribute Description

minify Specifies whether to return the cajoled code as a minified file or not. It is best to output the cajoled code as a

minified block if you are planning on displaying it in a production environment.

pretty This option is the cajoler’s default output. It will display the cajoled output in a human-readable format.

sidebyside Displays the original source code in comments above the cajoled code. This is extremely helpful for identifying

where in the final cajoled code base your original content was rewritten to.

debugger Displays a series of debugging output at the bottom of the cajoled JavaScript file.

These rendering options will help you read and understand the code produced by the
cajoling process.

Running Caja from a Web Application

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/caja_web_ap
plication.html.

We’ve seen how to take a mixed HTML and JavaScript document and cajole it into
two files made up of the sanitized markup and cajoled JavaScript of the original code.
Taking that knowledge as our base, we’ll now explore how to cajole content from a
web source.

The SVN source that we obtained for Caja includes a sanitization JavaScript file that
will allow us to run a cajoling function against some provided web content. The file is
located at src/com/google/caja/plugin/html-sanitizer.js within the caja directory.

The other file we will need is a whitelist of all of the available HTML tags, which the
sanitizer will use to determine which tags should be left alone, which should be sani-
tized, and which should be removed completely. A sample file (html4-defs.js) with this
type of structure is available at https://github.com/jcleblanc/programming-social-appli
cations/tree/master/caja/web_sanitizer_simple/ and provides an aggressive parsing
whitelist that we will use in our example.

With these two files in hand, we can begin building out the markup and JavaScript to
create a simple parsing mechanism:

Running Caja from a Web Application | 279

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_web_application.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_web_application.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_web_application.html
https://github.com/jcleblanc/programming-social-applications/tree/master/caja/web_sanitizer_simple/
https://github.com/jcleblanc/programming-social-applications/tree/master/caja/web_sanitizer_simple/

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Simple Web Application Cajoler</title>
</head>
<body>
<script src="html4-defs.js"></script>
<script src="../../src/com/google/caja/plugin/html-sanitizer.js"></script>

<h1>Original Content</h1>
<div id="original"></div>

<h1>Cajoled Content</h1>
<div id="cajoled"></div>

<script>
//build mixed HTML / JavaScript content string
var content = '<h2>Testing Web Cajoler</h2>\n'
 + ''
 + '\n'
 + 'test\n'
 + '<script src="http://attacker.com/snifftraffic.js"><\/script>';

//display original content before cajoling
document.getElementById("original").innerText = content;

//display cajoled content
document.getElementById("cajoled").innerText = html_sanitize(content);
</script>
</body>
</html>

The first elements that we set up in the body of our sample are the links to the two files
just described. The html-sanitizer.js file contains the function html_sanitize(...),
which we will use to sanitize code within our web application. The html4-defs.js file
contains the HTML and script nodes, plus their associated attributes, that will help
the cajoler understand how to parse the content that we will push through to the
html_sanitize(...) function.

Next, we set up two div nodes to hold the output of our sample. The first, with an id
of original, is the nonsanitized code that we will use for comparison. The second, with
an id of cajoled, is the same code after being run through the cajoler.

As we start our script block, we first build the mixed HTML/JavaScript string that
we want to use as our test content for the cajoler. In that test content, we embed a
standard <h2> tag, an tag that has an <a> link with an embedded JavaScript alert,
a standard link, and finally a script include that attempts to load some undesirable
content.

We then output the content of that string into the div node that we set up to hold the
original code prior to cajoling.

280 | Chapter 8: Social Application Security Concepts

In the last element, we output the cajoled content of the same code to our cajoled div
node. This process uses the html_sanitize(...) function in the html-sanitizer.js file to
cajole the content that we set up based on the whitelisted tags in the html4-defs.js file.

When we load the sample file in our browser, we are presented with the output that
was loaded into both div nodes.

Our original content is a direct insertion of the content string that we set up. There is
nothing special of note here, with the exception of being able to use the output in a
direct comparison with the cajoled content:

Original Content
<h2>Testing Web Cajoler</h2>

 test

<script src="http://www.attacker.com/snifftraffic.js"></script>

The cajoled content is much more interesting. It’s the same content as the previous
code, but it has been sanitized to remove anything that the whitelist deemed a potential
security risk to a user viewing the content:

Cajoled Content
<h2>Testing Web Cajoler</h2>
<a>
<a>test

The sanitization process performed the following actions:

1. Attribute removal: The href attributes have been removed from both anchor tags,
as the whitelist deems them potentially harmful due to URI security concerns.

2. Attribute removal: The src of the tag has been removed due to security con-
cerns about the URI.

3. Element removal: Script src elements have been deemed harmful and have thus
been removed.

You can manipulate the whitelist structure to allow additional tags through in this
example. The whitelist object we’ve used in this case is a much more aggressive parsing
mechanism than the one embedded in the standard cajoling process.

Running Caja with an OpenSocial Gadget
As we’ve seen, the command-line scripts in the Caja bin directory include a script to
run the command-line cajoler on an input file. There used to be another option here
for cajoling a gadget automatically, cajole_gadget, but that has been removed from
Caja’s base functionality and has instead been integrated into the Shindig core as a

Running Caja with an OpenSocial Gadget | 281

user-enabled extension. Thus, the cajole_gadget script is no longer an option for com-
mand-line cajoling of OpenSocial gadgets.

So, in the next sections, we will explore other ways to integrate Caja into an existing
gadget to secure the gadget rendering process.

Adding Caja to a Gadget
To add Caja capabilities into an OpenSocial gadget, we can leverage the feature to
include abilities in the gadget XML specification. We do this by embedding a Require
statement for the Caja feature within the ModulePrefs of an OpenSocial gadget.

<ModulePrefs>
 <Require feature="caja" />
</ModulePrefs>

This will include the Caja JavaScript libraries that provide the capability to cajole a
gadget’s views.

Caja is a standard feature available within Apache Shindig 1.1.

A Practical Example

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/caja_openso
cial_gadget.xml.

Now that we know how to initialize the cajoler within an OpenSocial gadget, let’s
explore a real gadget to see how this is implemented in practice.

Our gadget’s function is to display a numeric value on the screen that defaults to 0. We
will then offer a series of buttons to increment or decrement that value:

<?xml version="1.0" encoding="utf-8"?>
<Module>
 <ModulePrefs title="Caja Sample"
 title_url="http://www.jcleblanc.com"
 description="Displays a simple content section to cajole"
 author="Jonathan LeBlanc">
 <Require feature="opensocial-0.9"/>
 <Require feature="caja" />
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <div id="number">0</div>

282 | Chapter 8: Social Application Security Concepts

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_opensocial_gadget.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_opensocial_gadget.xml
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_opensocial_gadget.xml

 <button onclick="changeNum('+')">+</button>
 <button onclick="changeNum('-')">-</button>

 <script type="text/javascript">
 //increment or decrement the counter
 function changeNum(changeType){
 var num = document.getElementById("number");
 num.innerHTML = (changeType == "+") ?
 parseInt(num.innerHTML) + 1 :
 parseInt(num.innerHTML) - 1;
 }
 </script>
]]>
 </Content>
</Module>

Our gadget includes the Caja feature that makes the JavaScript libraries for the cajoling
process available in the gadget. The gadget’s Content section is what will be cajoled
when the gadget is rendered in a container that supports Caja.

Once the container has cajoled our gadget’s content, the Content section will likely
remind you of the HTML/JavaScript cajoled scripts from earlier in the chapter:

try {
 {
 $v.so('changeNum', ___.markFuncFreeze(function () {
 var changeNum;
 function changeNum$_caller($dis, changeType) {
 var num;
 num = $v.cm($v.ro('document'), 'getElementById', [
 'number']);
 $v.s(num, 'innerHTML', changeType == '+'?
 $v.cf($v.ro('parseInt'), [$v.r(num, 'innerHTML')]
) + 1: $v.cf($v.ro('parseInt'), [$v.r(num,
 'innerHTML')]) - 1);
 }
 changeNum$_caller.FUNC___ = 'changeNum$_caller';
 changeNum = $v.dis(___.primFreeze(changeNum$_caller),
 'changeNum');
 return changeNum;
 }).CALL___());
 }
} catch (ex___) {
 ___.getNewModuleHandler().handleUncaughtException(ex___,
 $v.ro('onerror'), 'redirection.html', '7');
}

The preceding snippet contains only the subset of the code output that directly relates
to our original content, instead of the entire block of cajoled JavaScript as we saw
previously in the HTML/JavaScript example.

Running Caja with an OpenSocial Gadget | 283

Using JSLint to Spot JavaScript Issues Early
JSLint will hurt your feelings.

—Douglas Crockford

JSLint is a tool developed by Douglas Crockford* to compile source JavaScript and
inform the user of any potential security and rendering issues that are present in the
code. The compiler itself is written in JavaScript, so it’s a fully encapsulated JavaScript
environment.

You can access the JSLint tool at http://www.jslint.org. The site lets you
select what types of issues you would like to search for and report on.

For instance, take the following JavaScript code, which calculates a timestamp based
on a provided year, month, and day:

function toTimestamp(year, month, day){
 var datum = new Date(Date.UTC(year,month-1,day));
 return datum.getTime()/1000
}

tstamp = toTimestamp(2011, 5, 15);

If we run this code block through the JSLint process, we will receive a series of messages
listing all of the things that are wrong with our code:

Error:
 Problem at line 3 character 31: Missing semicolon.
 return datum.getTime()/1000
 Implied global: tstamp 6

In this message, we can see that we are missing a semicolon in our function’s return
statement. In addition, our tstamp variable is not specified with a var at any point, so
it is referenced as an implied global.

Now, if we run the same code through the cajoling process instead, we can see that it
reports similar issues:

LOG Checkpoint: InlineCssImportsStage at T+0.548912216 seconds:
LOG timestamp.html:4+31: Semicolon inserted:history.html:4:
 return datum.getTime()/1000
LOG Checkpoint: RewriteHtmlStage at T+0.096969253 seconds:

* Douglas Crockford is well known for his work with the JSON specification and his efforts to define a
professional subset of JavaScript that engineers should use as a standard. If you’d like further information,
his book JavaScript: The Good Parts (O’Reilly; http://oreilly.com/catalog/9780596517748) is an excellent
resource.

284 | Chapter 8: Social Application Security Concepts

http://www.jslint.org
http://oreilly.com/catalog/9780596517748

The preceding portion of LOG messages shows that the semicolon insertion issue has
been caught. The Caja sanitization process has silently handled the global variable
reported by the JSLint process.

JSLint is an excellent tool for debugging JavaScript before passing it through the Caja
cajoling process. It provides extensive details on potentially unsafe JavaScript practices
and attempts to help developers process issues with their code prior to implementing
it in any production-ready products.

Before passing JavaScript through the Caja cajoler, you should resolve
all errors reported in the JSLint process. If Caja is generating generic
error messages, JSLint can also make an excellent debugging tool.

Playing in the Caja Playground
Caja Playground (Figure 8-1) was developed by Google to test the cajoling process for
scripts in a sandboxed environment. It can be accessed at http://caja.appspot.com/ and
contains a number of predefined scripts and sites that can help a developer who’s just
getting started with Caja.

Figure 8-1. The Caja Playground

This utility is the perfect tool for testing out script blocks in a safe environment prior
to migrating over to a fully cajoled environment. You will be able to test out modular
blocks of code or entire sites by cajoling them, testing the rendered output, and noting
any associated errors or warnings that crop up during the process.

Playing in the Caja Playground | 285

http://caja.appspot.com/

Tips for Working in a Caja Environment
Developers who are working with Caja for the first time usually have one of two
mindsets:

• The JavaScript I write is secure and will pass through Caja without a problem.

• Caja is going to prevent any of my code from working.

Caja can seem daunting, but with an understanding of working with JavaScript in an
application environment and a few tips on building in this environment, you’ll find the
process much easier.

Implement Code Modularity: Don’t Cajole an Entire Project

Testing code often by passing it through the cajoling process can help
eliminate issues early and give developers a good idea of their project’s
progress.

One of the worst things that a developer can do when cajoling a block of code is to
attempt to cajole a large amount of JavaScript at once. (If you are new to Caja, doing
this might traumatize you.) Most likely what will be produced is an extensive number
of warnings and errors about issues with the code, many of which may be reported due
to other errors or warnings in the code. This will tend to scare away many developers
and may not be a very accurate representation of the code’s issues.

Developing code in a modular fashion—e.g., building encapsulated reusable blocks in
standard functions—is the first step in ensuring that it can be tested in blocks. The goal
to this approach is the ability to integrate function by function into the script that is
being cajoled, so you can deal with errors and warnings from the cajoling process in a
much more manageable way.

When migrating an existing code base to an environment that runs Caja, you can use
this approach as well. Working with small blocks of code instead of attempting to debug
an entire code base can help you manage the output of the cajoling process.

Use Precajoled JavaScript Libraries
JavaScript libraries such as YUI, JQuery, Prototype, and Dojo have become core tools
in website and application development. Numerous library developers have made
strides in providing at least a subset of their libraries that can be cajoled without gen-
erating errors. The YUI, JQuery, and Prototype libraries currently have the most de-
velopment work completed toward cajoling subsets of their functionality.

286 | Chapter 8: Social Application Security Concepts

The YUI 2.8 (http://developer.yahoo.com/yui/2/) library has the most documentation
on its availability within a cajoled environment. It marked the first attempt by the cross-
functional YUI, Caja, and Developer Network teams at Yahoo! to provide a subset for
use within Caja. As of YUI 2.8, any version 2 of the library can be cajoled if needed.
YUI 3 is currently not tested within a Caja environment.

During development, the teams were able to release a large subset of 2.8’s functionality,
including the following components:

• YUI core

— YAHOO global object (base requirement for all YUI components)

— DOM collection (convenience methods for DOM interactions)

— Event utility (event normalization and custom events)

• YUI library utilities

— Animation utility

— Connection manager (for XHR/AJAX)

— DataSource utility

— Drag and drop utility

— Element utility

— ImageLoader utility

— Resize utility

— Selector utility

• YUI library controls/widgets

— AutoComplete

— Button

— Container (including Module, Overlay, Panel, Tooltip, Dialog, and SimpleDialog)

— Menu

— TabView

— TreeView

The source and tests for the YUI 2.8 cajoling effort are available at https://github.com/
jcleblanc/yui-caja and can help provide a richer degree of functionality to an existing
application in this type of environment.

Having the ability to use JavaScript libraries can help alleviate some of the tricky parts
of working with Caja. To increase performance, the container may also provide pre-
cajoled versions of the libraries so that the overhead of running the cajoler will not
impact the third-party code each time it loads within the container or website.

Tips for Working in a Caja Environment | 287

http://developer.yahoo.com/yui/2/
https://github.com/jcleblanc/yui-caja
https://github.com/jcleblanc/yui-caja

Don’t Rely on Firebug or the Cajoled JavaScript Source Code
As we’ve seen in the cajoled scripts we’ve built thus far, the cajoled JavaScript is not
output in a very human-readable form. This means that traditional frontend engineer-
ing methods for parsing scripts, such as Firebug, are no longer very effective unless
you’re really familiar with the functionality of the cajoled code.

Some of the best methods available for working with the functionality of the JavaScript
layer are those that we have already explored: JSLint and the Caja Playground. JSLint
will allow you to test the viability of the JavaScript for the Caja process, and the Caja
Playground will allow you to test the individual functions and features of a JavaScript
block.

Don’t Embed Events in Markup
Many newer developers (or those trying to cut corners) tend to embed the JavaScript
event handler directly in the markup of their application or site, such as:

Process Form

While this may work perfectly fine in an unprotected environment, adding event han-
dlers like this may cause Caja to strip them out of the final output in many containers
or sites. Although restrictions are imposed on the server-side cajoler that runs when
the code first loads, the client-side sanitizer that runs against code inserted after the
initial load—such as through an innerHTML call—is much stricter about what code it
allows through.

The practice of not embedding events in markup is especially valuable when you are
obtaining content from another source, such as through an AJAX request, where that
source has embedded JavaScript events, and then you attempt to load it into the existing
content through an innerHTML call. In most instances, the client-side sanitizer will strip
all JavaScript from the AJAX return value, leaving you with a nonfunctional node
structure. In this case, once an AJAX request returns, you can immediately file off a
function to assign click handlers to required DOM nodes.

There are a few methods you can employ to attach event handlers to DOM nodes. In
Caja’s early days, when the onclick method was restricted, using addEventListener or
attachEvent (depending on the browser) was one of the best options available. Both
methods are now viable for adding events to nodes:

<div id="method1">Clicking here will do something!</div>
<div id="method2">Clicking here will do something too!</div>

<script type="text/javascript">
//method 1 click handler
function handler1(sender){
 document.getElementById('method1').innerHTML = "Method 1 Clicked";
}

288 | Chapter 8: Social Application Security Concepts

//method 2 click handler
function handler2(sender){
 document.getElementById('method2').innerHTML = "Method 2 Clicked";
}

//attach click events for method 1
var myClickEl = document.getElementById('method1');
if(myClickEl.addEventListener){
 myClickEl.addEventListener('click', handler1, false);
} else if(myClickEl.attachEvent){
 myClickEl.attachEvent('click', handler1);
}

//attach click events for method 2
var myClickEl2 = document.getElementById('method2');
myClickEl2.onclick = handler2;
</script>

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_8/caja_working
_event_handlers.html.

We have a few pieces to look at in the preceding code. First, we set up the div nodes
that we will add our events to. At the top of our script block, we then set up the two
event handlers for each node, which will change the innerHTML content of the nodes
when clicked.

We then get down to method 1, adding our first event handler. Using addEvent
Listener and attachEvent, we bind a click event to our first div node. We have both
methods in place to support all browsers, new and old. The second event handler uses
the standard onclick approach to bind the event to a handler function.

Using this approach, you can bind any events in a cajoled environment, regardless of
the security policy restrictions on where JavaScript events can be bound.

Centralize JavaScript: Request Data and Markup Only

Separating out your JavaScript, HTML, and CSS layers can help alleviate
many of the issues that Caja introduces in a fully embedded system.

As we have touched on once or twice already, the Caja client-side sanitizer can be a
much stricter system than the server-side cajoler. This client-side part of Caja tends to
strip out all JavaScript and any potentially malicious HTML and CSS from the data
being pushed on the site or application.

Tips for Working in a Caja Environment | 289

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_working_event_handlers.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_working_event_handlers.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_8/caja_working_event_handlers.html

This issue will surface when the developers are trying to make HTTP requests—such
as a standard AJAX request—to another source to obtain new content for the web
application. The client-side sanitizer springs into action when the request completes
and the content is about to be inserted into the application via an innerHTML call,
through creating new DOM nodes and appending them to the application, or by way
of any other similar insertion utility.

Let’s say we have an application that has multiple pages. When a user clicks on a new
page, an AJAX request fetches new markup for the page from the server and then re-
places the current page when the request completes. Some developers might tend to
encapsulate each page as a single unit, including the required JavaScript to run that
particular page right in the markup that is returned to the application. This is where
the trouble will arise, since the client-side sanitizer will strip all of that JavaScript from
the return.

One of the best options for implementing this type of application structure is to cen-
tralize all JavaScript and load it when the application first loads, putting it under the
less restrictive server-side cajoler parsing utility. When I say “centralize,” I am referring
to the load time, not a single file—JavaScript files should be broken up into logical
sections, preferably minified.

Questions often arise from this discussion about attaching events to markup if inline
JavaScript markup such as onclick, onkeypress, or the like is removed. Once the new
markup is inserted into the application, events can be attached to their logical points.
Our last tip, “Don’t Embed Events in Markup,” outlines the steps you should take to
insert events into existing markup.

Many developers may argue that these are general best practices anyway, which should
be followed even when they’re not under the umbrella of Caja’s cajoler and sanitizer.

A Lighter Alternative to Caja: ADsafe
ADsafe is a system that first gained popularity as a utility for cordoning off ads running
on a page, since ads are simply one form of self-inflicted cross-site scripting (XSS) attack.

ADsafe’s premise is to prevent a developer from using markup that is deemed unsafe,
restrict access to the global page object, and limit access to variable types from the third-
party code. Essentially, this creates a sandbox that protects the root site or container
from third-party code by limiting the functionality that can exist within an application.

ADsafe removes the following features from JavaScript:

Global variables
Variables that are defined in the global scope are not allowed within ADsafe.
ADsafe does, however, permit limited access to the Array, Boolean, Number,
String, and Math global objects of the page.

290 | Chapter 8: Social Application Security Concepts

this

Since the use of this within a function request maintains a binding to the global
object, it is restricted in ADsafe.

eval

eval provides access to the global scope, much like many of our other restricted
tags, and also provides a mechanism for executing insecure code at runtime.

arguments

Access to the arguments pseudo array is restricted.

with

Since with modifies the scope chain, its use is restricted.

Dangerous methods and properties
Due to capability leakage in some browsers, arguments, callee, caller, construc
tor, prototype, stack, unwatch, valueOf, and watch are not allowed in ADsafe when
implemented using dot notation.

Names starting or ending with an underscore (_)
This is restricted due to dangerous properties or methods that may be defined with
a dangling underscore in some browsers.

Date and Math.random objects
These objects are restricted to make it easier to determine the widget’s behavior.

[] subscript

May be used only with a positive numeric value or a literal string.

Although the ADsafe service has a number of restrictions, it also provides numerous
functions for accessing and working with the DOM safely. We will explore many of
these functions in the following sections.

ADsafe Versus Caja: Which One Should You Use?
We have taken a thorough look at the Caja system for protecting a root site or container
(and its associated users) from third-party code being hosted on it. Now that we are
looking at a lighter solution to the same issue—ADsafe—we will inevitably need to
answer the question of which one we should use. Let’s look at our choices in a little
more depth.

I categorize ADsafe into the semitrust bucket. What I mean by this is that ADsafe does
a good job of removing many of the major tools that a malicious developer could use
to attack a user. This does not mean that ADsafe takes into account and adjusts for
all attack vectors; it just means ADsafe takes away a lot of the sharpest knives from the
developer. When I say semitrust bucket, I am referring to the level of trust you have in
the third-party code being hosted. ADsafe makes a great system if you partially trust
the code that will be hosted, as you would in the case of ads. You trust that the source
is a legitimate ad company, but you may not be entirely confident that it will never have

ADsafe Versus Caja: Which One Should You Use? | 291

an issue with its ads that affects your site (i.e., the site that the ads are hosted on). This
is the perfect use case for ADsafe: when you have a limited trust relationship with the
source of the content being hosted, and you know where the content may be coming
from. The impact on developers building code to exist within an ADsafe object is min-
imal, and users are fairly well protected from malicious code.

On the other hand, I categorize Caja into a no-trust bucket. This means that Caja is a
perfect tool for hosting code from sources that you don’t know and developers that
you have not built a trust relationship with. Since Caja’s aim is to remove any malicious
attack vectors from the third-party code being hosted and rewrite the entire code base
into a secure version, it ensures that most of the malicious code that developers im-
plement has been removed before the user ever interacts with it. This is a much more
secure system for the user, but presents more challenges to the developer building out
the code for the site or container.

Overall, ADsafe and Caja both have their target markets. Though they may overlap a
bit, their primary developer audiences are quite different, which makes both ADsafe
and Caja very acceptable solutions depending on the problem at hand.

How to Implement ADsafe
There are a few general guidelines and steps for wrapping third-party code, and thus
adding in the protective checks, in the ADsafe container.

Our first task is to attach the ADsafe JavaScript library file into the page. This file can
either link directly to a hosted version that is available in the Github ADsafe project
(adsafe.js in https://github.com/douglascrockford/ADsafe), or it can be a local copy if you
prefer:

<script src="http://www.ADsafe.org/adsafe.js"></script>

Once the script include is in place, we can make requests to create a new ADsafe object,
encapsulating the application code from the third-party source:

"use strict";
ADSAFE.go("APPNAME_", function(dom){
 //application code
});

Let’s explore this object in more depth to see the markup required around the go
request.

Setting Up the ADSafe Object
To create the simplest ADsafe object we can use to encapsulate third-party code, we
must follow this basic syntax:

<div id="APPNAME_">
 application markup

292 | Chapter 8: Social Application Security Concepts

https://github.com/douglascrockford/ADsafe

 <script>
 "use strict";
 ADSAFE.go("APPNAME_", function(dom){
 //application functions and code
 });
 </script>
</div>

This code requirement starts with a div node that wraps the entire object. The div node
has a few requirements itself:

• The div node must contain an id.

• The id must be made up of only uppercase ASCII letters.

• The id must have a trailing underscore (_) character.

At the root of the div node, we define the markup required to render the application:

<div id="APPNAME_">

 ...
</div>

Any subnodes that are defined with an id property must follow the same id naming
criteria as the root div node, but the id must be made up of the root div node’s id and
the name of the node itself. If the markup IDs do not follow this naming convention,
you will be presented with the following log message if you try to collect the node via
a query:

ADsafe error: ADsafe: Bad query:#test

Next, the ADSAFE.go(...) method provides the application with a DOM object that
extends a limited subset of functionality to the main DOM.

The ADsafe object contains several methods that give developers additional function-
ality to allow DOM selection, event handling, and a number of other utilities. These
are listed in Table 8-2.

Table 8-2. ADsafe object methods

Method Description

create(object) Creates a new object.

get(object, name) Obtains the value of an object’s name property.

go(id, function) Starts the ADsafe widget. id must match the ID of the div node that it is contained within.

function provides the access object for the DOM subset.

id(id) Defines the widget. id must match the ID of the div node that it is contained within.

isArray(value) If the value is an array, this method will return true.

later(function, milli

seconds)

The later method functions like the setTimeout JavaScript function. It will call func

tion at a defined time in the future, in milliseconds.

lib(name, 23function) Creates an ADsafe library with a specified name. The function wraps the content of the library.

How to Implement ADsafe | 293

Method Description

log(string) Outputs a string to the browser log. In Firefox, this would be the Firebug console; in Chrome,

this would be the console in the developer tools.

remove(object, name) Removes a name property from an object.

set(object, name,

value)

Sets a name property of an object with a specified value.

This is a simple implementation of the core ADsafe requirements for a basic application.
We’ll use this as a foundation to explore the features that can be implemented within
the ADsafe object we’ve defined within the ADsafe.go(...) method.

The DOM Object
The DOM object has a series of methods through which you can obtain information
about the document tree and manipulate it as you see fit. After capturing an object from
the DOM, you will be able to run a series of methods on it. These methods are listed
in Table 8-3.

Table 8-3. DOM object methods

Method Description

.append(bunch) Appends the objects in bunch to the end of the dom object. This method returns the

concatenated dom object:

var dom = dom.append(dom.q("#APPNAME_NODEID"));

.combine(array) Combines an array of bunches into a single bunch:

var bunch1 = dom.q("a");
var bunch2 = dom.q("p");
var combinedBunch = dom.combine([bunch1, bunch2]);

.count() The count method run against the DOM object will always return 1.

var domCount = dom.count();

.ephemeral(bunch) Removes all nodes set as ephemeral when:

• The mouse button moves up.

• The escape key is pressed.

• Another bunch is set as ephemeral.

//set ephemeral state for all dom nodes
var parentDiv = dom.ephemeral();

.fragment() Creates a new HTML document fragment with the intention of attaching it to the

currently visible document tree. This object may be a container of nodes and will

disappear once appended to the live document tree.

//create new document fragment
var fragment = dom.fragment();

.prepend(bunch) Prepends the nodes in bunch before the first element in the DOM tree. The DOM will

be provided back as the return value of the method request.

294 | Chapter 8: Social Application Security Concepts

Method Description
//move all images to the top of the DOM tree
var moveBunch = dom.q("img");
var newDOM = dom.prepend(moveBunch);

.q(query) Allows you to search the DOM tree for specific nodes based on hunter and pecker

selectors (described in the next section). The method will always return a bunch

object containing 0 to many nodes. An exception will be thrown if the query is

malformed or if a hunter selector is not the first selector.

//capture all paragraph nodes with a class of textNode
var bunch = dom.q("p.textNode");

.remove() Removes all nodes from the current DOM object, rendering the ADsafe widget useless.

//remove all nodes from dom
dom.remove();

.row(array) Creates a new HTML <tr> node. Each array item in the method call should be a text

node. These text nodes will be inserted into the <tr> as <td> nodes, and a bunch

containing the <tr> node will be returned. The row object will not be automatically

attached to the document tree.

//create 2 text nodes and build row using them
var textNode1 = dom.text("My first td node");
var textNode2 = dom.text("My second td node");
var row = dom.row([textNode1, textNode2]);

.tag(tagName, type, name) Allows you to create a new HTML node that will not be attached automatically to the

document tree. The tagName parameter is the node that you are trying to create.

If tagName is set to button or input, you can supply the optional second type

parameter to define the text for the object. The optional third parameter, user

name, will allow you to supply a name for the new node, which is helpful for grouping

radio buttons together.

//create new input text box node to hold a username
var node = dom.tag("input","text","username");

.text(string) Creates a new text node that will not be attached to the DOM tree. A bunch object

will be returned with the newly created node. If an array of strings was provided to

the method, then an array of nodes will be returned in the bunch.

//create new text node and attach to DOM
var textNode = dom.text("My new text node");
dom.prepend(textNode);

These DOM manipulation and targeting methods allow you to process large numbers
of structures at once, instead of having to drill down to individual nodes or bunches of
nodes.

Should you need to drill down to specific nodes in the DOM, there is a querying struc-
ture available for you to use, which we will explore next.

DOM Selection with the Query Method
One fantastic feature that ADsafe makes available for third-party code developers is a
simple method, q, for performing DOM selection tasks. With this method, you can

How to Implement ADsafe | 295

return one or more node elements and use id or tagName selectors with additional levels
of criteria to filter that data into smaller subsets depending on your requirements.

Given that a new ADsafe widget has been instantiated with the go(...) method and
uses a variable dom within the function that wraps the third-party code, providing
limited access to the true DOM of the root page:

ADSAFE.go("APPNAME_", function(dom){ ... }

we can use the q method, made available through the dom variable, to perform DOM
selection on elements within the third-party widget code:

dom.q("#APPNAME_NODEID");

The hunter selector #APPNAME_NODEID is just one way to capture an element within the
DOM based on a provided ID. The q(...) method provides a number of other hunter
selectors that we can use for the same task, as shown in Table 8-4.

Table 8-4. Query method hunter selectors

Selector Description

id Return the node whose ID matches that located in the selector.

dom.q("#APPNAME_DATA");

tagName Return all nodes that match the tag name in the selector.

dom.q("span");

+ tagName Select all immediate sibling nodes with a matching tag name.

dom.q("+p");

> tagName Select all immediate child nodes with a matching tag name.

dom.q(">div");

/ Select all immediate child nodes.

dom.q("/");

* Select all descendent nodes.

dom.q("*");

DOM selection through the query method in ADsafe is the foundation for effectively
working with the application or site’s markup. It allows us to attach events to nodes,
obtain values for properties and user-entered data, and set new values and properties
dynamically.

The hunter selectors listed in Table 8-4 are just the start of what we can do with the
query method. Concatenating query hunter selectors with specific pecker selectors will
allow us to filter the query method to return a wide array of results, depending on the
specific needs of the application or site.

296 | Chapter 8: Social Application Security Concepts

Working with pecker selectors

Pecker selectors are additional search parameters that allow you to filter the query
method to search for node properties, attributes, or even the state of the nodes them-
selves. Using these features, we can set up a network of advanced querying features to
drill down to only the specific nodes that we are looking for.

Using property selectors allows us to filter a query and its resulting
bunch object for a broad list of matching nodes based on the node class, name, and
type. These selectors, shown in Table 8-5, will often come up in queries that are run
against the markup of the ADsafe application or site.

Table 8-5. Property selectors

Selector Description

.class Keeps nodes with a specific class name.

//keep all div nodes with a class of nodeClass
dom.q("div.nodeClass");

&name Keeps nodes with a specific name attribute.

//keep all input nodes with a name of username
dom.q("input&username");

_type Keeps nodes with a matching type.

//keep all radio input nodes
dom.q("input_radio");

Using these pecker selectors as our base, we can begin adding selector features to build
up our advanced queries.

Getting into more specific pecker selectors now, we can use attribute
selectors (Table 8-6) to search for nodes with attributes that do or do not contain spe-
cific values. These searches are much like using a regex search algorithm against a string
in that they allow you to return a bunch containing only nodes that have a value, don’t
have a value, start or end with a value, contain a value, or meet a number of other search
parameters.

Table 8-6. Attribute selectors

Selector Description

[attribute] Keeps nodes with the specified attribute.

//keep all input nodes that have a type attribute
dom.q("input [type]");

[attribute = value] Keeps nodes with the specified attribute that matches a provided value.

//keep all input nodes that have a type of text
dom.q("input [type = text]");

[attribute != value] Keeps nodes with the specified attribute that does not match a provided value.

//keep all input nodes that do not have a type of radio
dom.q("input [type != radio]");

Property selectors.

Attribute selectors.

How to Implement ADsafe | 297

Selector Description

[attribute *= value] Keeps nodes with the specified attribute that contains a provided value.

//keep all image nodes that have alt text containing logo
dom.q("img [alt *= logo]");

[attribute ̂ = value] Keeps nodes with the specified attribute that starts with a provided value.

//keep all span nodes that have a class attribute starting with small
dom.q("span [class ^= small]");

[attribute $= value] Keeps nodes with the specified attribute that ends with a provided value.

//find all .gif format images
dom.q("img [src $= gif]");

[attribute ~= value] Keeps nodes with the specified attribute that contains a provided value as an element in a

space-separated list. This is the same as using the .class pecker selector.

//keep all div nodes that contain the class of large
dom.q("div [class ~= large]");

[attribute |= value] Keeps nodes with the specified attribute that contains a provided value as an element in a

hyphen-separated list.

//keep all div nodes with a margin style (inc. margin-left, etc.)
dom.q("div [style |= margin]");

These highly targeted attribute search features will give you fine-grained control over
the results returned in the bunch from your query.

Our last group of pecker selector is state selectors (Table 8-7), which allow
you to take your queries down to an even deeper level of specificity. The main types of
searches you can perform using the state pecker selectors are those that need to return
only a specific number of nodes in the bunch object; only nodes that have a specific
enabled, visible, checked, or focused status; or only nodes of a specific type.

Table 8-7. State selectors

Selector Description

: first Keeps the first node in the bunch.

: rest Keeps all nodes in the bunch except for the first one.

: even Keeps half of the nodes in the bunch, starting with the second node.

: odd Keeps half of the nodes in the bunch, starting with the first node.

: hidden Keeps all nodes in the bunch that are currently hidden.

: visible Keeps all nodes in the bunch that are currently visible.

: disabled Keeps all nodes in the bunch that are in a disabled state.

: enabled Keeps all nodes in the bunch that are in an enabled state.

: checked Keeps all nodes in the bunch that are checked (e.g., checkbox).

: unchecked Keeps all nodes in the bunch that are unchecked.

: focus Keeps the node that currently has focus.

State selectors.

298 | Chapter 8: Social Application Security Concepts

Selector Description

: blur Keeps all nodes that do not currently have focus.

: text Keeps all text nodes.

: tag Keeps all nontext nodes.

: trim Keeps nontext nodes with no values.

State selectors offer you a deeper range of search utilities on top of the property and
attribute searches described previously.

Now that we have covered the myriad of hunter and pecker selectors available to us
for our searches, we can begin to build out advanced queries to return nodes using
highly targeted algorithms.

Building advanced querying methods with hunter and pecker selectors

Even though the basic selectors we’ve discussed will allow you to capture the majority
of the nodes that you want to work with in a page, you can also take advantage of some
advanced selection options (Table 8-8) that are made available by concatenating several
selectors together.

Table 8-8. Advanced selectors

Selector Description

*_text Select all nodes with their type parameter set to text (type=text).

*:text Select all text nodes.

div + span * : text Select the text that is within span tags that immediately follow div tags.

input [value*=profile] Select all input tags that have a value containing the word “profile”.

form input_hidden Select all hidden fields in a form.

form input:hidden Select all input fields that are hidden within a form.

input_radio&date:unchecked Select any radio buttons that have a name property of date and are unchecked.

div.container.color Select all div nodes that have a class containing both container and color.

#profileForm button_submit Select the submit button within the form with the ID of profileForm.

ol//:enabled:hidden Selects all hidden, enabled tags that are grandchildren within an ordered list.

Using advanced selection options will allow you to drill down to exactly the nodes that
you want to work with.

Working with Bunch Objects
ADsafe uses a wrapper object on top of DOM nodes called a bunch object. Bunch objects
allow the user to easily capture one or multiple DOM nodes under a single bunch and
then manipulate all or some of it as needed.

How to Implement ADsafe | 299

Bunch objects are the cornerstone of all data fetching and manipulation that you will
do through ADsafe. They increase code modularity, reduce code bloat, and improve
overall application performance.

Within the bunch node wrapper are a series of methods that allow you to capture
information about the nodes in the bunch, change and manipulate their attributes and
values, and perform actions like cloning the nodes or stripping them from the bunch.

Bunch GET methods

Fetching data about the nodes that are contained within a bunch is the most-often used
functionality for bunch objects, and ADsafe makes a series of GET methods available
for developers to do this. Depending on the number of nodes contained within the
bunch, the return values and structures from the GET method calls will differ, as out-
lined here:

• If a bunch contains no nodes, then the methods return undefined.

• If a bunch contains one node, a single value is returned (usually as a string).

• If a bunch contains more than one node, an array of values is returned.

There are a number of GET helper methods, described in Table 8-9, available for
obtaining information about the bunch nodes returned from a query request.

Table 8-9. Bunch GET methods

Selector Description

getCheck() Obtains the checked value of the node.

var radioBtn = dom.q("input_radio");
var isChecked = radioBtn.getCheck();

getClass() Obtains the class attribute of the node.

var divNode = dom.q("div.data");
var class = divNode.getClass();

getEnable() Obtains the enable value of the node. The return value is a Boolean.

var btnSubmit = dom.q("input.submit");
var submitEnabled = btnSubmit.getEnable();

getMark() Obtains the mark from the node.

//get a mark from a node with the id of CONTAINER_DATA
var mark = dom.q("#CONTAINER_DATA").getMark();
console.log(mark);

getName() Obtains the name attribute from the node.

var inputText = dom.q("input_text");
var inputName = inputText.getName();

getOffse

tHeight()

Obtains the offsetHeight of the nodes. The offsetHeight is calculated by the actual height

of the node including the node border but excluding the node margin. This is especially helpful for

calculating the positioning nodes in an absolute-positioned environment.

300 | Chapter 8: Social Application Security Concepts

Selector Description
var divNode = dom.q("#innerDiv");
var divHeight = divNode.getOffsetHeight();

getOffset

Width()

Obtains the offsetWidth of the nodes. The offsetWidth is calculated by the actual height of node

including the node border but excluding the node margin. This is especially helpful for calculating the

positioning nodes in an absolute-positioned environment.

var divNode = dom.q("#innerDiv");
var divWidth = divNode.getOffsetHeight();

getParent() Obtains the parent of the node, formatted as a bunch. This request will return duplicate entries if the

parent of two sibling nodes is requested. If the node whose parent is being requested is the root node,

getParent() will throw an exception.

try{
 var node = dom.q("#divWrapper");
 var nodeParent = node.getParent();
} catch(err) {
 //exception thrown - root node
}

getSelec

tion()

Obtains the text selected by the user in a textarea or input text node.

var input = dom.q("input_text");
var selected = input.getSelection();

get

Style(name)

Obtains the name CSS style of the node (i.e., where name is the CSS style type, such as position,

float, or color).

var div = dom.q("div.positioned");
var divPosition = div.getStyle("position");

getTagName() Obtains the tag name of the node.

var node = dom.q("*.content");
var tags = node.getTagName();

getTitle() Obtains the title of the node.

//get title from node with an id of CONTAINER_DATA
var title = dom.q("#CONTAINER_DATA").getTitle();
console.log(title);

getValue() Obtains the value of the node. If the node requested doesn’t have a value associated with it but has a

child text node with a value, then that value will be used. If a password field is requested, undefined

will be returned.

var input = dom.q("input.username").getValue();
var value = input.getValue();

By using these GET methods, you will greatly reduce the amount of code required to
fetch data from DOM nodes within the ADsafe wrapper.

Bunch SET methods

ADsafe makes available a series of SET methods to allow you to manipulate markup,
events, and text within your ADsafe application. These incredibly valuable helper
methods are in place to make your life easier.

How to Implement ADsafe | 301

Many of these SET methods work in conjunction with the GET methods that we have
just reviewed. Implementing a good mix of the two will allow you to take advantage of
some of the advanced bunch manipulation features.

Using these methods combined with some advanced DOM queries executed through
the q() method, you can develop highly targeted modules with a minimal amount of
code.

Table 8-10 shows the full list of SET methods available to you.

Table 8-10. Bunch SET methods

Selector Description

append(appen

dees)

Appends an appendees bunch as children to an existing bunch. If there is more than one appendee, they

will be deeply cloned before insertion.

//append CONTAINER_TEXT node to CONTAINER_DATA node
var data = dom.q("#CONTAINER_TEXT");
var appended = dom.q("#CONTAINER_DATA").append(data);

blur() Removes the focus from a node.

//remove focus for input box with an id of CONTAINER_USER
dom.q("#CONTAINER_USER").blur();

check(value) Sets the checked state (on or off) for radio or checkbox inputs.

//auto-check checkbox with a class name of checker
var checkBtn = dom.q("input_checkbox.checker").check(true);

each(func) Allows you to loop through a series of nodes in a bunch. The func argument is a function that takes a

bunch argument.

//loop through all <div> nodes in the application
var dataNode = dom.q("div");
dataNode.each(function(bunch){
 console.log(bunch.getClass());
});

empty() Removes all children from a node.

//remove all children of node with id of CONTAINER_PARENT
var parentDiv = dom.q("#CONTAINER_PARENT");
var emptyParent = parentDiv.empty();

enable(boo

lean)

Sets the enabled status of a node. boolean is set to true for enabled or false for disabled.

//disable submit button
var submitBtn = dom.q("input_submit").enable(false);

ephemeral() Removes all nodes when:

• The mouse button moves up.

• The escape key is pressed.

• Another bunch is set as ephemeral.

//set ephemeral state for node with and id of CONTAINER_PARENT
var parentDiv = dom.q("#CONTAINER_PARENT").ephemeral();

fire(event) Fires an event on the node. The event argument may be:

• A string (e.g., click, keypress.)

302 | Chapter 8: Social Application Security Concepts

Selector Description
• An object with an event property (e.g., {"event": "click"})

//fire click event for button with an id of
CONTAINER_BUTTON
var button = dom.q("#CONTAINER_BUTTON");
button.fire("click");

focus() Sets focus to the selected node.

//set focus for input box with an id of CONTAINER_USER
dom.q("#CONTAINER_USER").focus();

klass(string) Sets the CSS class of a node to that added as the string argument to the method.

//set class for node with an id of CONTAINER_DATA to
"red"
var dataObj = dom.q("#CONTAINER_DATA").klass("red");

mark(value) Sets a mark on all nodes in a bunch. This essentially just allows you to tag nodes with data or notes, such

as text or JSON structures. These marks can later be consumed with the getMark() bunch GET method.

//set mark on node with an id of CONTAINER_DATA
var mark = dom.q("#CONTAINER_DATA").mark("value123");

off(even

tName, func)

Removes event handlers from provided nodes. The options for removing specific events are:

• bunch.off() with no arguments will remove all event handlers from the nodes.

• bunch.off("eventName") will remove all eventName events from the nodes.

• bunch.off("eventName", function) will remove a specific eventName event from

the bunch.

//remove click event for node with an id of CONTAINER_BUTTON
var button = dom.q("#CONTAINER_BUTTON");
button.off("click");

//try to fire event - fire will cause exception
try{
 button.fire("click");
} catch(err) {
 console.log("click event failed: event
 removed");
}

on(eventName,

func)

Adds an event handler to a node.

//attach click event to button with an id of CONTAINER_BUTTON
var button = dom.q("#CONTAINER_BUTTON");
button.on("click", function(e){
 console.log("Button Clicked");
});

prepend(pre

pendees)

Prepends an appendees bunch to an existing bunch. If there is more than one appendee, they will be

deeply cloned before insertion.

//prepend CONTAINER_TEXT node to CONTAINER_DATA node
var data = dom.q("#CONTAINER_TEXT");
var prepended = dom.q("#CONTAINER_DATA").prepend(data);

protect() Protects the provided nodes. When a node is protected, calls to getParent will throw an exception

instead of providing access to the node’s parent. In addition, events will not bubble up past a protected

node.

How to Implement ADsafe | 303

Selector Description
//protect node with an the id of CONTAINER_PROTECT
var node = dom.q("#CONTAINER_PROTECT").protect();

select() Sets focus and selects the text within a given input or textarea node. If the bunch provided does not

contain exactly one node, an exception is thrown.

//when button clicked, select textarea
var button = dom.q("#CONTAINER_TAREABTN");
button.on("click", function(e){
 var textarea = dom.q("#CONTAINER_TEXTAREA").select();
});

selec

tion(string)

Swaps out the user-selected text from a text input or textarea node with the value of the string

argument.

//attach click event to button with id of
CONTAINER_MODIFY
var button = dom.q("#CONTAINER_MODIFY");
button.on("click", function(e){
 //when button clicked, change selected text for input
 //with an id of CONTAINER_SEL
var modInput = dom.q("#CONTAINER_SEL").selection("updated");
});

style(name,

value)

Sets the CSS name style of a node to a particular value.

//set background color and font color for node
var text = dom.q("#CONTAINER_TEXT");
text.style("background-color", "#000");
text.style("color", "#fff");

title(value) Sets the title of a node.

//set title for node with an id of CONTAINER_DATA
var title = dom.q("#CONTAINER_DATA").title("My data div");

value(value) Sets the value of a node.

//set default value text for all text input nodes
var inputs = dom.q("input_text").value("default text");

As we can see from this table, there is an extensive list of features that are available to
you for manipulating the bunch objects that ADsafe uses as wrappers for DOM nodes.

Bunch miscellaneous methods

In addition to the standard GET and SET methods that are available for working with
and manipulating bunch objects, ADsafe also makes available a number of miscella-
neous methods (i.e., methods that don’t specifically fit in one of the getter or setter
blocks). Table 8-11 lists these methods.

Table 8-11. Bunch miscellaneous methods

Selector Description

clone(deep, num

ber)

Clones the nodes in the provided bunch. The new clone is not attached to the document tree. Should

the deep argument be set to true, all child nodes will be cloned as well. If a numeric identifier is

set as the number argument, then an array of number clones will be created and returned.

304 | Chapter 8: Social Application Security Concepts

Selector Description
//make three deep clones of node
var parentNode = dom.q("#CONTAINER_PARENT");
var clones = parentNode.clone(true, 3);

count() Returns the number of main nodes in a bunch, excluding the child nodes.

//get number of nodes in the bunch search for all div
//nodes
var numNodes = dom.q("div").count();

explode() Creates an array of bunches that each contain one node from an original bunch of nodes.

//break all div nodes into individual bunch objects
var node = dom.q("div");
var nodeArray = node.explode();

fragment() Creates a new HTML document fragment.

//create new fragment from bunch with id of
//CONTAINER_PARENT
var fragment = dom.q("#CONTAINER_PARENT").fragment();

q(query) Allows you to perform a subquery on the nodes within an already obtained bunch.

//find all div nodes located within a node with
//an id of CONTAINER_PARENT
var parentNode = dom.q("#CONTAINER_PARENT");
var childNode = parentNode.q("div");

remove() Removes the node and all children from the DOM. This call also removes all events of the node and

its children.

//remove node with the id of CONTAINER_PARENT
var removedNode = dom.q("#CONTAINER_PARENT").remove();

replace(replace

ment)

Replaces a node with a bunch object or an array of bunch objects. The replaced node must have a

parent node; otherwise, it will not be replaced by the request. If replacement is empty, the node

is removed.

//replace node with id of CONTAINER_OLD with all div

//nodes that have a class of replacement
var replaceNodes = dom.q("div.replacement");
dom.q("#CONTAINER_OLD").replace(replaceNodes);

tag(tagName,

type, name)

Creates a new tagName. If the tag is an input field or button, you may specify the type field to be

able to set the appropriate input type. If the input type requires a name, you should specify name to

group the fields together. This method will return a bunch containing the text node, not attached

to the document tree.

//create new radio button and append to DOM
var insertNode = dom.q("#CONTAINER_PARENT");
var newNode = insertNode.tag("input", "radio", "optCheck");
 insertNode.append(newNode);

text(string) Creates a new text node if a string was specified, or a series of text nodes if an array of strings was

specified. This method returns a bunch with the text node(s), not attached to the document tree.

//create two new text nodes and append to DOM
var insertNode = dom.q("#CONTAINER_PARENT");
var newNodes = insertNode.text(["text node 1",
 "text node 2"]);
insertNode.append(newNodes);

How to Implement ADsafe | 305

The purpose of the GET, SET, and miscellaneous methods is to provide an abstraction
layer on top of the complexity of the secure ADsafe system object. Using their combined
power, you can create complex manipulation utilities with simple code constructs.

Attaching Events
As we discussed briefly in the section “Bunch SET methods” on page 301, there are
methods available to help you easily and quickly fetch a node, or series of nodes, and
attach event handlers to the bunch object that is returned. These methods are the query
method, q(), to fetch the nodes, and the event attach method, on(), to insert the events:

//get node through the query method
var bunch = dom.q("QUERY");

//attach event onto the returned bunch object
bunch.on("EVENT", function(e){ ... }

In this example, we can see how to attach a click handler to a submit button to pop up
an alert message:

var objSubmit = dom.q("#btnSubmit");
objSubmit.on("click", function(e){
 alert("You have just clicked the button - you win a prize");
});

The click event is just one of many DOM events that are supported through the event
attach method. If we explore the full list of available events shown in Table 8-12, we
see that there are several user-initiated features that we can account for in our programs.

Table 8-12. DOM events supported through the event attach method

Event Description

blur The focus on the element has been lost.

change The user has changed the value of an input, select, or textarea field.

click The user has clicked on the object with her mouse.

doubleclick The user has clicked on the object twice with her mouse.

enterkey The user has pressed the Enter key while in a focused element.

escapekey The user has pressed the Escape key while in a focused element.

focus The user has given an object focus.

keypress The object currently in focus has received keyboard input from the user.

mousedown The mouse button has been pressed down while the mouse is over the element.

mouseout The mouse has moved off the element.

mouseover The mouse has moved over the element.

mouseup The mouse button has been released while the mouse is over the element.

specialclick The user has clicked the alternative mouse button while hovering her mouse over the element.

306 | Chapter 8: Social Application Security Concepts

There are two instances in which the event handlers for these events may be triggered:

• The user has performed an action that has triggered the event.

• The developer has programmatically triggered the event without user interaction.

If the developer triggers the events without user interaction, the browser’s default action
will not be triggered. For the default browser action to be triggered when the event is
triggered, the user must be the event initiator.

When the event is triggered, the function that is associated with the event will be
triggered:

objSubmit.on("click", function(e){ ... }

The function that is triggered will contain one argument, the event object. This event
object can contain a number of properties that allow you to determine information
about the event programmatically once it has been triggered. This object will help you
to modularize your event handler so that you have a single handler for all events that
uses the information from the event object to determine what action it should take.

Table 8-13 lists all of the properties that may be set within an event object.

Table 8-13. Event object properties

Property Description

altKey The state of the Alt key (pressed or not), represented as a Boolean.

ctrlKey The state of the Control key (pressed or not), represented as a Boolean.

key If a key was pressed to trigger the event, key will contain the code of the key pressed.

shiftKey The state of the Shift key (pressed or not), represented as a Boolean.

target A bunch that contains the target of the event.

that A bunch that contains the node that is handling the event. This value may be the same as the target, or it may

be a parent if bubbling occurs.

type The event type displayed as a string.

x The horizontal position of the mouse cursor relative to the target container.

y The vertical position of the mouse cursor relative to the target container.

As you can see, there are many event features available for us to work with. This ex-
tensive list will help us to build highly targeted applications and sites that allow specific
handling for user events and actions.

Defining Libraries
Should you wish to create library files to reuse over multiple widgets, or even if you
simply want to keep your code base modularized and neat, then ADsafe libraries are a
good starting point.

How to Implement ADsafe | 307

Libraries are simply script includes with some ADsafe architecture pieces thrown in. If
we take a look at a base-level widget, we can see where the library files may be included:

<div id="APPNAME_">
 application markup

 //library file includes by name
 <script src="library.js"></script>

 <script>
 "use strict";
 ADSAFE.go("APPNAME_", function(dom, lib){
 //application functions and code
 });
 </script>
</div>

The script include must be placed after any call to set the ID of the widget (e.g., id
method: ADSAFE.id("APPNAME_")) but before the call to the go method.

To access the content of the return object from a library file, we include the lib pa-
rameter in the ADSAFE.go(...) method call. We can then access functions by making
requests to lib.name.

The library files themselves follow a simple ADsafe syntax:

ADSAFE.lib("name", function (lib){
"use strict";
 //code for the library module

 return {
 //return object
 };
});

Within the library file, you include a call to ADSAFE.lib(...), specifying the library
name. The anonymous function that is defined as the second parameter includes two
pieces:

The code for the module
This is the base code and functionality for the library module. It will not have access
to the document unless the widget code passes the dom parameter to its methods.
Including the lib parameter gives it access to the currently loaded libraries.

The return object
This is the object that allows the widget to access the library’s privileged methods
through the lib.name request.

By using the practices outlined here, you will build up comprehensive generic libraries
that contain functionality that you can reuse throughout different widgets.

308 | Chapter 8: Social Application Security Concepts

Putting It All Together

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_8/chapter_final/.

Now that we’ve explored some of the technologies used to secure third-party code on
a site or container, let’s put them to good use and build out a tool to showcase how
one of our tools, Caja, strips content from an original, mixed HTML/JavaScript file.

What we’ll do is set up a script that utilizes Caja’s web parsing mechanism to provide
a side-by-side comparison of raw and rendered results from both the original content
and the cajoled content. Our basic visual format will look like Figure 8-2.

Figure 8-2. Architecture of our Caja rendering application

We will set up an input to allow you to specify a file location and then load the file.
Once loaded, the file content will be dumped immediately into the original rendered
and raw source boxes since it doesn’t require any parsing. After that, the content will
be run through the web cajoler script, and the resulting value will be dumped into the
raw and rendered cajoled content boxes on the right.

The Data Source
First, we need to specify the source file that we will use to test our side-by-side com-
parison tool. For this example, we will load in this simple script as a proof of concept:

<h1>test 1 2 3</h1>
<div>this is a test</div>

<iframe src="http://www.yahoo.com" width="100%" height="200px">
 iframes not available
</iframe>

Putting It All Together | 309

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_8/chapter_final/
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_8/chapter_final/

<script type="text/javascript">
 alert("I can alert to you!");
</script>

This mixed HTML/JavaScript markup will simply display a header and div, load an
iframe, and then attempt to load an alert message to the user.

What we expect from the cajoled side of the content is the modification of this script
to remove the iframe, which can load malicious pages, and display the alert message.

The Head: Script Includes and Styles
We start with the head of our document. This is where we will load in all of the script
includes and styles that we’ll use in the example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>
<title>Web sanitization with Caja</title>
<script src="jquery.min.js" type="text/javascript"></script>

<!-- caja cajoler script and whitelist definitions -->
<script src="../../src/com/google/caja/plugin/html-sanitizer.js"></script>
<script src="html4-defs.js"></script>

<style>
.contentBox{ width:400px;
 padding:5px;
 float:left;
 border:1px solid #868686;
 margin-right:10px; }
.contentRendered{ height:400px;
 overflow:hidden; }
.contentRaw{ height:200px;
 overflow:auto; }
.contentBox *, form *{ font:12px arial,helvetica,sans-serif; }
.header{ background-color:#868686;
 color:#fff;
 font-size:16px;
 font-weight:bold;
 text-align:center;
 padding:5px; }
.clear{ clear:both;
 height:10px; }

#file{ width:300px; }
#errorMsg{ color:#d32424;
 font-weight:bold;
 display:none; }
</style>
</head>

310 | Chapter 8: Social Application Security Concepts

First, let’s look at the script includes that we are adding:

jquery.min.js
This is the minified JQuery base file we’re loading in. We will use the JQuery
JavaScript library for DOM selection, for AJAX requests, and for inserting the text/
HTML into their appropriate boxes in the example. We’re using a local file, but
you could instead link to the CDN hosted file from http://docs.jquery.com/Down
loading_jQuery.

html-sanitizer.js
This is the Caja web sanitization script that we are loading in from our local version
of Caja. It provides the functionality to cajole the content that we will load in.

html4-defs.js
This is the HTML definitions file used by Caja to specify which nodes should be
removed. This is a highly restrictive list and represents the client-side sanitizer
technique imposed by a true Caja container.

Following those includes, we define the styles that will make the file markup look
presentable for our needs.

The Body: Markup Layer
Now that we have our script includes and styles, let’s take a quick look at the markup
that we will be generating for this example:

<body>
<form action="javascript:void(0);">
 <div id="errorMsg"></div>
 <input type="text" name="file" id="file" />
 <input type="submit" value="Load File" onclick="getFile()">
</form>

<div class="contentBox contentRendered">
 <div class="header">Original Content: Rendered</div>
 <div id="original_rendered"></div>
</div>
<div class="contentBox contentRendered">
 <div class="header">Cajoled Content: Rendered</div>
 <div id="cajoled_rendered"></div>
</div>

<div class="clear"></div>

<div class="contentBox contentRaw">
 <div class="header">Original Content: Raw</div>
 <div id="original_raw"></div>
</div>
<div class="contentBox contentRaw">
 <div class="header">Cajoled Content: Raw</div>
 <div id="cajoled_raw"></div>
</div>

Putting It All Together | 311

http://docs.jquery.com/Downloading_jQuery
http://docs.jquery.com/Downloading_jQuery

This content consists of two parts:

• The form that includes an input box to enter the file location from which we will
load our example content. When the user clicks the submit button, the get
File() function will be called to collect the file content. This form also includes an
error messaging node that we’ll use to display a basic message to the user if there
is a problem loading the file.

• The div nodes that make up the four quadrants of our example:

— The rendered original content (top left).

— The raw original content (bottom left).

— The rendered cajoled content (top right).

— The raw cajoled content (bottom right).

Now that we have the markup layer defined, we can take a look at the JavaScript layer,
which will provide our script with its file fetching and parsing functionality.

The Body: JavaScript Layer
Our final layer is the JavaScript content. This script block includes only the get
File() function that will load and parse our content:

<script type="text/javascript">
function getFile(){
 var errorMsgNode = $('#errorMsg');
 errorMsgNode.css("display", "none");

 var filePath = $('#file').val();

 if (filePath.length > 1){
 $.ajax({
 url: filePath,
 success: function(data){
 //load unmodified code
 $('#original_raw').text(data);
 $('#original_rendered').html(data);

 //load cajoled content
 var cajoled_data = html_sanitize(data);
 $('#cajoled_raw').text(cajoled_data);
 $('#cajoled_rendered').html(cajoled_data);
 },
 error: function(request){
 var errorMsg = "Failed to load file"
 + "
Status: " + request.status
 + "
Error: " + request.statusText;

 errorMsgNode.css("display", "block");
 errorMsgNode.html(errorMsg);
 }

312 | Chapter 8: Social Application Security Concepts

 });
 }
}
</script>
</body>
</html>

When the user enters a file location for the mixed HTML/JavaScript content that he
would like to load and then clicks Submit, the getFile() function jumps into action.

Since we want to provide the user with some form of error messaging if something goes
wrong, we first capture our error message node and ensure that it is hidden in case the
previous attempt to load a file produced an error message that is still being displayed.

We then capture the file path that the user entered and, if it isn’t blank, we make an
AJAX request to get the content of that file. There are a few configuration options set
up to handle different eventualities when we’re running the request, including:

url

The URL to which we are making the request.

success

If the AJAX request succeeds and returns a valid HTTP response, we first load the
unmodified return content into the original raw and rendered nodes by using
the jQuery .text or .html methods on the respective nodes. We then take the raw
data and run it through the html_sanitize method to strip out any nodes that may
be malicious, as defined by the html4-defs.js include. Once the data is cajoled, we
load that modified content into the respective raw and rendered nodes.

failure

If the AJAX request failed with an invalid HTTP response, we create an error mes-
sage string made up of a static error node, the HTTP status code, and the HTTP
status text. We then place that string into our error message node and set it to a
visible status.

That makes up the meat of our example, providing all of the functionality we need to
run a side-by-side comparison that shows how Caja sanitizes an original source to
prevent malicious attacks.

The Final Result
Once we render the load in the test file that we specified earlier in our example, we are
presented with both a visual and source code comparison of the content, as shown in
Figure 8-3.

The original content loads our iframe, header, div, and (when run) the script block
that we included to display a pop up to the user. The original content raw dump is an
unmodified version of the loaded file.

Putting It All Together | 313

The right column on the Caja side is a much different story. The header and div are
preserved in the rendered version, but the iframe is stripped and a second alert is absent.
When we look at the raw content of the cajoled file, we can see why. The iframe and
script block have been removed from the file that we attempted to load.

This is just a simple sanitization script from Caja, so although it presents a useful peek
into the Caja process, it’s important to note that doesn’t represent the server-side
cajoler’s full content manipulation capacity.

Conclusion
Throughout this chapter, we have explored a few different options that are currently
available for securing social applications and third-party code within a container. We’ve
looked at the implications of using iframes as a security model and have delved into
iframe alternatives Caja and ADsafe.

Even if you do not implement these particular standards, working with them and un-
derstanding why a lot of code is filtered or disallowed within them has hopefully given
you a better grasp of the security implications of allowing unmanaged, third-party code
to exist on your site or service.

Preparing yourself for the eventuality of attacks from malicious developers or sloppy
development practices will help you provide a safe experience for your end users. While
these practices may require additional development work, they will help you achieve
the ultimate goal: protecting those who use the services that you are hosting.

Figure 8-3. The Caja rendering application

314 | Chapter 8: Social Application Security Concepts

CHAPTER 9

Securing Social Graph
Access with OAuth

Open Authentication (OAuth) is an open standard for authorizing applications to ac-
cess data on a user’s behalf. Through OAuth, we can secure a user’s personal and social
graph information.

We will start this chapter by looking at a simple method that many provider sites em-
ploy to secure private resources: basic authentication. We will explore the pros and
cons behind this type of implementation from the perspectives of the provider, the
application, and the user.

With that exploration completed, we will jump into OAuth 1.0a, and the newer revision
OAuth 2.0, which both offer a secure and open way to protect users’ privileged profiles
and data. We will look at how the authorization flows of these two standards
work, and then dive into end-to-end examples to showcase the power behind the
specifications.

By the end of this chapter, we will have a comprehensive understanding of how OAuth
can be used to protect private data and resources.

Beyond Basic Auth
To start our exploration of OAuth, we’ll first look into what basic authentication (basic
auth, for short) is and how OAuth presents a more mature iteration of it. You may have
seen basic auth being used by many companies, and you may have even worked with
it before; if you have, you understand how easy it is to implement. But “easy” by no
means implies “secure,” and it certainly doesn’t mean that basic auth should be em-
ployed just to increase the speed at which resources are returned.

Let’s explore some basic auth fundamentals as well as a few of the potential pitfalls of
using it, implementing it in an application, or providing it.

315

Basic Auth Implementation: How It Works
Basic auth is very simply implemented through traditional HTTP request methods. You
just pass a username and password as login credentials through to the provider from
which you are trying to obtain the privileged user information.

Let’s say, for example, that we want to pull down some resources from a social URI
endpoint that is designated by a provider site. We start out by making a simple HTTP
GET request to the provider URI endpoint to capture that data:

GET /private/user/me HTTP/1.1
Host: server.example.com

Now let’s say that the provider requires basic authentication (username and password
for validation). Since we didn’t include those login credentials with the request, the
provider will return a simple HTTP error response stating that additional authorization
is required:

HTTP/1.1 401 Authorization Required
Date: Fri, 17 Dec 2010 02:27:34 GMT
Server: Apache
Location: http://server.example.com/private/user/me
Cache-Control: max-age=300
Expires: Fri, 17 Dec 2010 02:32:34 GMT
Vary: Accept-Encoding
Content-Length: 148
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>Error: Unauthorized</title>
</head><body>
<h1>401 Unauthorized</h1>
</body></html>

Let’s assume that this provider accepts basic authentication requests. We’ll use an
HTTP POST request including a username, password, and any arbitrary parameters
that the URI endpoint requires to denote which resources to return. This POST request
will look similar to the following:

POST /private/user/me HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

username=joe_smith
&password=pass1234
¶m1=myparameter1
¶m2=myparameter2

The provider will then respond with the resources from the URI endpoint to which you
made the request.

316 | Chapter 9: Securing Social Graph Access with OAuth

As you can see, you can get a good view of the basic auth process by simply tracking
HTTP requests and responses. Even though the process is easy to implement, there is
a whole range of reasons why you may want to avoid basic auth as a mechanism to
protect your private resources. These include everything from the inconvenience of
having to send the username and password with every request to concerns about se-
curity for storing that data.

The Reasons Against Using Basic Authentication
As we’ve covered, basic authentication is a very easy standard to understand and im-
plement. Simply send the user’s username and password as parameters in the HTTP
request, and the provider site will verify the login credentials with every request, re-
turning the requested resources if the credentials are authorized or an HTTP error
response if not.

With any standard that is so easy to implement, you will invariably run into security
or implementation concerns, and basic auth is no different. There are numerous
reasons why you wouldn’t want to implement basic auth as your sole mechanism for
securing protected resources. Let’s take a look at a few.

The client needs to store login information

The primary reason against using basic authentication for securing private resources
is that the client application needs to somehow store the user’s login information if it
is to continue making requests on his behalf (i.e., without asking him for his username
and password each time).

There are a few inherent concerns here:

• First and foremost, as I have mentioned, every company or application that re-
quests user login credentials needs to store that information, either for the current
session or permanently in its database. Users trust that the company is properly
encoding those values and has extensive security procedures in place to protect
their information. But, unfortunately, there have been numerous cases where com-
panies storing usernames and passwords haven’t used proper encoding practices
(i.e., by storing login credentials as cleartext) and their databases have been hacked
by malicious parties who then easily scanned the actual usernames and passwords
stored within.

• If the user changes his password, he will have to reauthenticate with the client
application so that it can acquire the new login credentials. This means that any
headless actions performed by the client application in the meantime (that is, be-
fore reauthentication) will fail.

These are just a couple of the fundamental issues in an authentication system that works
with a user’s raw login credentials rather than a token-based, user abstraction system
(which we’ll cover shortly).

Beyond Basic Auth | 317

Having to send login information with every request

The next strike against basic auth is that with every request to the provider site, the
client application needs to send along the login credentials. This may not be as much
of an issue if a user has a secure HTTPS connection with the provider site, which means
he’s passing through encrypted versions of the credentials, but this is by no means the
typical implementation.

It is often the case that the provider site with which the client application is commu-
nicating transfers data as unencrypted cleartext. This type of transfer system makes
users vulnerable to malicious hackers, who can “sniff” the information being transfer-
red to obtain a user’s login credentials.

Users can’t control or view which applications have their information

With a token-based system, the provider (Yahoo!, Twitter, Google, etc.) issues tokens
to the client application instead of just validating a series of login credentials. What
this means is that the provider itself can track what tokens have been issued and to
whom they were issued.

This token-based process has two very clear benefits:

• The provider can display a list of all of the applications to which the user has
granted access to his private information. This will allow the user to see where his
information is being used and by whom.

• The provider can revoke the user permission that allows the application to
access his private information. Since the tokens are controlled and maintained by
the provider, it essentially controls which applications have access to private
information.

These benefits are not available when you use basic auth as your security mechanism.
There is no way for a user to see which client applications are storing his personal
information, and there is no way to revoke that access and delete the information from
the application systems, unless the client provides that ability itself. In any event, this
information is not centralized, so the user will have to recall all of the applications to
which he provided his login credentials and work with them individually if he wants
to modify that relationship.

The OAuth 1.0a Standard
Before we discuss the newest OAuth standard, OAuth 2, we must do our due diligence
and cover the version of the standard used by many of the top Internet-based companies
(e.g., Yahoo!, Google): OAuth 1.0a.

The OAuth 1.0a standard was developed to give providers a way to implement a user
authorization model, in which a user authorizes an application to access privileged
information on her behalf from her profile and friends.

318 | Chapter 9: Securing Social Graph Access with OAuth

OAuth offers some major improvements over traditional models such as basic auth,
including:

• Instead of having to send the user’s username and password to the provider with
every authentication request, you are working with abstract access tokens that do
not share any of the user’s passwords.

• Since tokens are issued from a provider site, they can be revoked at any time, put-
ting more control into the user’s hands. Several providers also implement a token
expiration mechanism that requires an application to periodically renew the access
token to continue making requests for user data.

• Users can see the tokens that they have active (i.e., which applications can access
their data) on the provider site, meaning they can manually revoke access to an
application. Since the application does not have a user’s login credentials, it cannot
make further requests for her data once she has revoked authorization.

Now that we’ve covered its benefits, let’s continue our exploration of OAuth 1.0a by
looking at how the token exchange process works for a user, an application, and a
provider.

OAuth 1.0a Workflow
First, let’s look at OAuth’s general workflow behind the scenes as we get the authori-
zation for a user and acquire a token so we can access her privileged information:

1. Obtain a consumer key and secret from the service provider that we are trying to
access data from.

2. Make a request to the service provider to obtain a request token to permit us to
seek permissions from the user.

3. Forward the user to the provider’s login and permission screens in order to obtain
her authorization to use her personal information.

4. Exchange the verified request token object for an access token, which allows us to
make requests on the user’s behalf.

Let’s break down these steps further to see what is going on at a more granular level.

Obtain a consumer key and secret

To complete the OAuth workflow and start collecting a user’s social information, the
first thing we need to do is to obtain a consumer key and secret from the provider from
which we are trying to access data (e.g., Yahoo!, Google, Twitter). These keys are nor-
mally issued when we’re creating applications through the provider’s developer pro-
grams, such as:

• The Yahoo! Application Platform: http://developer.yahoo.com/yap

• Twitter Applications: http://developer.twitter.com/apps/new

The OAuth 1.0a Standard | 319

http://developer.yahoo.com/yap
http://developer.twitter.com/apps/new

• FourSquare Applications: http://foursquare.com/apps/

• Google Apps: http://www.google.com/apps/

There is a simple, standard process that you will follow when creating these applications
to obtain the secret and key, as shown in Figure 9-1.

Figure 9-1. OAuth 1, step 1: Application owner obtains a consumer key and secret

You should never expose your consumer key and secret publicly (such
as within JavaScript code), as this information would allow an attacker
to do things on your application’s behalf, such as acquiring the personal
information of any users who have given your application permission
to access their data.

Once you’ve created an application, you should be provided with the consumer key
and secret that will allow you to begin the programmatic aspects of your application
development.

If you are building a Flash application and embedding your consumer
key and secret within the ActionScript code layer, keep in mind that
Flash objects could be retrieved from their web source and decompiled
by an unknown party. This would, in turn, expose your embedded con-
sumer key and secret.

Many application providers, especially those associated with social networks, have
numerous data types that can be collected for a user, such as her profile, friends, or
recent activities. For this reason, the provider may display a permissions screen to allow
you to select the type of information that you want to obtain from the user when she
permits your application to access or set her personal information. These permissions
are normally bound to the consumer key that you are issued.

When the user first uses your application, she will be presented with a screen asking
her to accept these permissions prior to using the application. When she accepts, she
will be returned to your application to complete the OAuth flow. The URI to which
she is forwarded is defined during the call to fetch a request token. To preserve the

320 | Chapter 9: Securing Social Graph Access with OAuth

http://foursquare.com/apps/
http://www.google.com/apps/

security of the token exchange environment, the application provider will most likely
have you preregister the callback URI that you intend to use when you’re creating the
application. This callback will be bound to the application, and when a call is made to
fetch a request token, it will be verified against the callback URI specified in the object
used to fetch the request token.

Get the request token

Now that we have the consumer key and secret for our application, we can initiate the
first stage of our token exchange requests: capturing a request token.

We can break down this process into a simple handshake between the application and
the provider. We will be using the consumer key and secret to make a request to the
provider site to capture a request token. This process will validate where the request is
coming from (your application) and set the callback URI for where to forward the user
after she permits the application to access and set her protected information.

Once the provider validates the request, it will respond with a request token object
containing all of the data that we will need in order to forward the user to the provider
for verification, as shown in Figure 9-2.

Figure 9-2. OAuth 1, step 2: Application obtains a request token from the provider

The HTTP request for making a request to capture a new request token will look
something like the following:

GET /get_request_token?oauth_version=1.0
 &oauth_nonce=4f7cbc67b835fbe59920377f81cc3a53
 &oauth_timestamp=1291159360
 &oauth_consumer_key=dj0yJHIzTWZmVXBmJmQ9WVdrOWFGZEhhMFozT...
 &oauth_callback=http%3A%2F%2Fwww.client.com%2Fcomplete.php
 &oauth_signature_method=HMAC-SHA1
 &oauth_signature=ItMr5tJNiobZX5iDIZj2%2FCJSkoI%3D
 HTTP/1.1
Host: server.example.com

If we break down the request object into its individual parameters (Table 9-1), we can
see what each key brings to the overall request structure.

The OAuth 1.0a Standard | 321

Table 9-1. Request parameters for the request token

Request parameter Description

oauth_version The OAuth version being used. This should be set to 1.0.

oauth_nonce A random string to be used with the request.

oauth_timestamp The current timestamp of the request. This will be validated when the request token is issued.

oauth_consumer_key The consumer key that was issued when you created your OAuth-based application on the

provider site, prior to implementation.

oauth_callback The URI to return the user to once she has authorized your application to access her privileged

information.

oauth_signa

ture_method

The name of the signature method that should be used to sign the request to the provider.

oauth_signature The secret key issued when you first created your OAuth application.

The oauth_callback parameter you specify in the request URI sent to
fetch the request token must match the one you set as the “return to”
URI when you obtained the consumer key and secret. Otherwise, do-
main mismatch errors will be generated when the key provider performs
domain verification checks.

After the request is initiated, the provider site will verify the submitted data, and if
everything checks out, will issue a response containing the elements required to gen-
erate an unverified request token.

An unverified request token has not gone through the user authorization
process. Once the user authorizes the application with the request to-
ken, the provider will issue a verification code to turn that unverified
request token into a verified one.

The response that comes back from the provider will look something like the following:

oauth_token=kced47h
&oauth_token_secret=eb086a06b3f11a52fe7
&oauth_expires_in=3600
&oauth_callback_confirmed=true

The provider is required to send back the oauth_token and oauth_token_secret param-
eters. These will allow you to build the request token object. There are some additional
parameters that a provider may pass back in the response object, depending on its
requirements (Table 9-2). Breaking down the key/value pairs in the preceding sample
response, we can see the specific uses for each parameter in the OAuth token exchange
flow.

322 | Chapter 9: Securing Social Graph Access with OAuth

Table 9-2. Response parameters for the request token

Response parameter Description

oauth_token The token to be used during the authorization phase to make an exchange request for an

access token.

oauth_token_secret The token secret to use in conjunction with the oauth_token to make an exchange for

an access token.

oauth_expires_in The lifetime of the request token. This value will be presented in seconds.

oauth_callback_con

firmed

This value should always be set to true. It signifies that you are using OAuth Revision A

(see the following note).

Some background on the required oauth_callback_confirmed parame-
ter: Revision A of the OAuth 1.0 specification included a security patch
for a well-documented man-in-the-middle attack. This change also
moved the callback_url parameter to the first token-exchange step (i.e.,
attempting to obtain a request token).

With our response object returned to us, we can now construct the request token object.
This object is what we need to forward the user to the provider site so she can grant us
access to her data, and to obtain a verified request token (which will in turn be used to
acquire our access token).

So let’s move on to obtaining that verified request token.

Get the user-verified request token

At this point, we have an unverified request token object available to us. What we will
do now is to use this request token to forward the user to the authorization page on
the provider site. From there, she can accept the permissions we’ve specified for our
application to access her privileged information.

There are a few things that we need to do to forward the user to the provider site to
begin the authorization process:

1. We have to obtain the provider site URL to which we will forward the user by
extracting it from the request token object.

2. We need a way to pass the request token and secret through the authorization
process to the callback URL. We’ll use a cookie to accomplish this.

We don’t want to simply attach the token parameters in the query string
as we forward the user through the authorization flow, because the cus-
tom parameters will likely be removed when the user is forwarded to
the callback URL defined when we first made the request for a request
token.

The OAuth 1.0a Standard | 323

Once we have the redirect URL as well as the token and secret stored via a cookie (or
some other method), we just need to send the user’s browser to the redirect location.

After the user is redirected, she will be presented with a provider page, which prompts
her to sign in (unless she’s already signed in to the service) and accept the permissions
of the application. The provider page will specify what privileged information the ap-
plication will have access to. This may be something like the particular data from her
profile the application wants to access, whether the application wants to set new up-
dates for the user, or whether the application can leverage her connections to get
friends’ profiles.

Once the user has either accepted or denied the request for the application to use her
information, she will be forwarded to the callback URL location that we specified when
we created the request token in the first step of the OAuth process.

This entire process will look something like Figure 9-3.

Figure 9-3. OAuth 1, step 3: Application obtains a verified request token from the provider

If the process was successful, once the user has been forwarded to the callback location
on the application site, we should have a verified request token.

324 | Chapter 9: Securing Social Graph Access with OAuth

A verified request token object is constructed with the request token,
request token secret, and a verification code that is passed to the callback
once the user has accepted the application permissions.

Now that we have the verified request token, we can move to the next step: exchanging
it for an access token.

Exchange the verified request token for an access token

For the last step in our authorization process, you will learn how to convert your verified
request token to an access token and begin making authorized requests for data on
behalf of the user who granted the application permission.

First, we extract the request token and token secret from the cookie (or whatever
method you chose) that we created before we redirected the user to the provider’s
authorization page. Next, we extract the verifier parameter (verification code) that was
passed to us from the provider (usually on the query string) and then use all three pieces
to construct a verified request token object.

Next, we use that verified request token to make a request back to the provider to
swap that request token for an access token that we can then use to make verified
requests on the user’s behalf. The provider site will either grant or deny the verified
request token. If it grants the verified request token, the provider will return the access
token information as the response object.

We will then use that return object to create an access token object, and in turn use
that object to obtain the user’s privileged information.

This process is illustrated in Figure 9-4.

When we make the request to exchange the verified request token for an access token—
in this case, to Yahoo! as our provider—the request URI will look something like the
following:

https://api.login.yahoo.com/oauth/v2/get_token
 ?oauth_consumer_key=drOWFGZE9Y29uc3VtZXJzZWNyZXQmeD1hYw...
 &oauth_signature_method=PLAINTEXT
 &oauth_version=1.0
 &oauth_verifier=svmhhd
 &oauth_token=gugucz&oauth_timestamp=1228169662
 &oauth_nonce=8B9SpF
 &oauth_signature=5f78507cf0acc38890cf5aa697210822e90c8b1c%261fa6

If we break down the individual parameters that are passed to the URI (shown in
Table 9-3), we can see what purpose each one serves.

The OAuth 1.0a Standard | 325

Table 9-3. Request parameters for the access token

Request parameter Description

oauth_consumer_key The consumer key provided when you first created your OAuth application on the provider site.

oauth_signa

ture_method

The name of the signature method to be used with the request.

oauth_version The OAuth version being used. This should be set to 1.0.

oauth_verifier The verifier parameter that was sent to the callback URL, denoting that the user has authorized

the application to use her private information.

oauth_token The request token.

oauth_nonce A random string.

oauth_signature A concatenated string consisting of the consumer secret and token secret parameters.

Once the provider sends back a response object, if the exchange succeeded, it should
look something like the following:

oauth_token=A%3DxiraOmPvtwHafRZOU0epGHTkBJhh63fh4crKlGJc57JBD...
&oauth_token_secret=a8f1fb99c205104af72f6ba45896d33c5b3b9949
&oauth_expires_in=3600

The oauth_token and oauth_token_secret parameters are required in the successful
response object, and are the parameters we really need to be concerned with. But the
provider may also send back additional parameters, as is the case in the preceding string.
For example, although many providers do not implement an expiration time on their
access tokens, some do. In such cases, the provider may attach an additional
oauth_expires_in parameter containing the access token’s expiration time in seconds.

Figure 9-4. OAuth 1, step 4: Application exchanges verified request token for an access token

326 | Chapter 9: Securing Social Graph Access with OAuth

Providers may also send another parameter with this object, oauth_authorization
_expires_in, as shown in Table 9-4.

Table 9-4. Response parameters for the access token

Response parameter Description

oauth_authorization_expires_in The lifetime of the oauth_session_handle in seconds

oauth_expires_in The lifetime of the token in seconds

Once we’ve created an access token object out of the provider’s response, our appli-
cation can start making signed requests to the provider to leverage the user’s privileged
information.

The End-User Experience
When OAuth is being used within an application, the experience for the end user who’s
interacting with the application is far less intrusive and complicated than the process
that the developer has to go through to implement it.

Implementations of the permission screen, where users accept that the application will
perform actions on their behalf, can vary widely depending on the platform on which
it is implemented, but the basic principle is the same. The platform displays a page
containing basic information about the application and providing a means by which
users can permit or deny that application to use their personal data.

Let’s explore what this screen looks like on some of the platforms that currently use
OAuth. Twitter’s implementation is as simple as it gets: it presents information about
the application requesting access to the user’s profile and provides a simple allow or
deny option, as shown in Figure 9-5.

Figure 9-5. The Twitter OAuth authorization screen

The OAuth 1.0a Standard | 327

Now let’s take a look at an OAuth implementation that is more descriptive. The Yahoo!
OAuth process first has the user log in to his Yahoo! account to verify his identity—
before even presenting a permission screen to prompt him to accept or decline the
application information requirements. This can be a good practice if, for example, a
user has set his Yahoo! session to expire every two weeks and someone else uses his
computer during that time. Without the Yahoo! verification login screen, that other
person would be able to authorize applications to access the already logged-in user’s
personal information.

Although there is a clear security benefit to adding a login feature to the
OAuth process, every authorization page that the user is presented with
will increase the drop-off rate (sometimes as much as 20%). This means
that fewer users who start the OAuth process will actually finish and
authenticate the application.

When the user signs in, he will be forwarded to the permission screen. This screen
displays the application’s title and breaks down the permissions that the application is
requesting, including personal information like the user’s address book (Yahoo! Con-
tacts), his http://pulse.yahoo.com profile (Profiles), his activities (Yahoo! Updates), as
well as numerous other options that the developer might have set when creating the
application. The application will also display where application activities (i.e., news
feeds items posted from the application) will be displayed. Depending on the applica-
tion, this may include Yahoo! activity stream feeds, Facebook, or Twitter. Once the
user accepts these permissions (shown in Figure 9-6), he will be forwarded to the ap-
plication that he just authorized.

Figure 9-6. The Yahoo! OAuth application authorization screen

Even though the OAuth process is complex to implement from the developer’s per-
spective, the OAuth permission screens that the end user sees are normally kept as

328 | Chapter 9: Securing Social Graph Access with OAuth

http://pulse.yahoo.com

simple as possible. The fact that users have to manually allow an application to do
something on their behalf can sometimes scare them away, increasing the drop-off rate.
Keeping the flow easy and mimicking simple acceptance screens that the user may see
on a regular basis can help to minimize drop-off.

Two-Legged Versus Three-Legged OAuth
We’ve already explored the standard, three-legged (application, provider, user) method
for using OAuth 1.0a, stepping through the token-exchange workflow to gain an access
token. Although this is how OAuth was originally intended to be used, some providers
employ another method, two-legged OAuth, to allow application developers to collect
private data with aggregated sources such as firehose feeds.

The implementation of two-legged OAuth mimics typical client-server communication
relationships and removes the need to involve users in the process. This is a good way
for providers to allow applications to access data on their systems while being able to
track the amount of data that the application is requesting, mostly for rate-limiting and
abuse-prevention purposes.

A good way to think about two-legged OAuth is as the first and last steps
of the three-legged OAuth process (getting the request token and ex-
changing that for an access token), eliminating the middle pieces in
which the user authorizes the application.

The workflow for the two-legged OAuth process is:

1. The application owner creates a new OAuth application on the provider site to
obtain a consumer key and secret.

2. The application will make requests to the provider site to access private data.

This process is much easier, but doesn’t fulfill the need for an intermediary user au-
thorization step when you’re requesting privileged user information.

Now let’s take a look at a practical example of the two-legged OAuth scenario.

Implementing two-legged OAuth in JavaScript

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/blob/master/chapter_9/oauth1-java
script-2legged.html.

Let’s see what a two-legged OAuth example looks like when being used to make an
actual request to a provider site. There are a few things that I need to spell out about
this example before we begin:

The OAuth 1.0a Standard | 329

https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_9/oauth1-javascript-2legged.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_9/oauth1-javascript-2legged.html
https://github.com/jcleblanc/programming-social-applications/blob/master/chapter_9/oauth1-javascript-2legged.html

• We will be making a request through the Yahoo! Query Language (YQL) service
to access a firehose feed from the Yahoo! update stream. These updates will contain
notifications of any and all actions that are taken on the sites or services around
Yahoo!.

• We will need to create an OAuth application through the Yahoo! Developer Net-
work dashboard at http://developer.yahoo.com/dashboard to obtain our OAuth
consumer key and consumer secret to sign the request.

• We will be making our cross-domain AJAX request using JQuery.

There are not many end-to-end samples available in JavaScript because
of the security issues behind embedding your OAuth keys in the Java-
Script layer. Be aware that if you employ a JavaScript implementation,
you’ll need to protect your keys to prevent others from using them
without your knowledge.

With those preliminaries out of the way, let’s jump right into this short example.

The first thing to do, besides setting up the top of the HTML document, is
specify the following includes:

oauth.js
The OAuth library for generating our signature

sha1.js
The signing library

jquery.min.js
The minified JQuery base object

This will be the base of our example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>OAuth JavaScript Sample Application</title>
</head>
<body>

<!-- OAuth libraries and JQuery base -->
<script src="http://oauth.googlecode.com/svn/code/javascript/oauth.js"></script>
<script src="http://oauth.googlecode.com/svn/code/javascript/sha1.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5/jquery.min.js"></script>

Next let’s look at the function that will generate the OAuth request URI.

The function to generate the OAuth request URI will
accept three parameters: the OAuth consumer key and secret, and the URI endpoint
to which we will make our two-legged OAuth requests. We will use those parameters
to build a signed URL request:

The includes.

Constructing the OAuth request URI.

330 | Chapter 9: Securing Social Graph Access with OAuth

http://developer.yahoo.com/dashboard

<script type="text/javascript">
/***
 * Function: Build OAuth Request
 * Description: Builds a 2-legged OAuth signed request URI using a given OAuth
 * key and secret with a specified URI endpoint
 **/
var buildOAuthRequest = function(key, secret, url){
 //create accessor and message objects
 var accessor = { consumerSecret:secret, tokenSecret:"" };
 var message = { action:url, method:"GET",
 parameters:[["oauth_version", "1.0"],
 ["oauth_consumer_key", key]]};

 //set timestamp, nonce and signature method
 OAuth.setTimestampAndNonce(message);
 OAuth.SignatureMethod.sign(message, accessor);

 //build signature URL
 var baseString =
 OAuth.decodeForm(OAuth.SignatureMethod.getBaseString(message));
 var signature =
 OAuth.getParameter(message.parameters, "oauth_signature");
 var signatureURL = baseString[1][0] + "?" + baseString[2][0]
 + "&oauth_signature=" + encodeURIComponent(signature);

 return signatureURL;
};

We start by creating two objects to build the request. The first is an accessor object
that will contain the consumer secret from the OAuth application and a blank token
secret value. The second is the message object that acts as our request object and con-
tains the URI endpoint to which we’re making a request, the method type, and the
OAuth consumer key and version as parameters.

Once we’ve created these objects, we generate a new OAuth timestamp and nonce
using the message, and then sign the message using the accessor object.

Next, we build our base string and signature variables. Using those variables, we then
generate the signature URI that will contain all of the necessary OAuth parameters to
make a two-legged OAuth request. That final URI is returned from the function.

We can then use this function to make our request to YQL.

We start out by storing the OAuth key and secret that we
obtained when creating the OAuth application with the provider (in this case, Yahoo!).
In addition, we store the URI to the firehose feed in YQL. This search query will look
for any updates about hockey.

Once we have the variables in place, we generate the OAuth signed URI by making a
request to our buildOAuthRequest(...) function that we covered earlier. With that in
place, we can make our request and parse the returned data:

//OAuth keys and YQL query URI
var key = 'dj0yJmk9bTBDQzlLQUZ5NGpEVdHbzlNVEUyTmpRek5EazJNZy0tJnM9jZQ--';

Making and parsing the request.

The OAuth 1.0a Standard | 331

var secret = 'c74a018f7db1d8de5ab2664ef5ab';
var url = 'http://query.yahooapis.com/v1/yql
 ?q=select%20*%20from%20social.updates.search%20
 where%20query%3D%22hockey%22&format=json';

//obtain 2-legged OAuth request URL using key, secret and YQL URL
var yqlURL = buildOAuthRequest(key, secret, url);

//make cross-domain AJAX request against OAuth signed URI
$.getJSON(yqlURL, function(data){
 response = '';

 //check if there are any results available
 if (data.query.count > 0){
 results = data.query.results.update;

 //loop through all results and display poster and title with links
 for (var i = 0; i < results.length; i++){
 response += '<p>From: <a href="'
 + results[i].profile_profileUrl + '">'
 + results[i].profile_nickname + '
<a href="'
 + results[i].link + '">'
 + results[i].loc_longForm + '</p>'
 }
 //if no response is present, display appropriate message
 } else {
 response = 'No results were found';
 }

 //print message to screen
 document.write(response);
});
</script>

</body>
</html>

We use the getJSON(...) JQuery method to make our cross-domain request to YQL.
Once the request completes, we should get a response object containing the result set
that we searched for.

If there are results available, we loop through all update elements and display who the
update is from, linked to their profiles, followed by the title of the update, linked to
the update source. If there are no results, we display an appropriate message.

Using this basic practice, we can generate two-legged OAuth requests to any provider
or service.

Three-Legged OAuth Implementation Example
Now that we have examined the particulars of the OAuth 1.0a process, let’s look at a
practical implementation of what we’ve learned to see how to build out an end-to-end
project using OAuth.

332 | Chapter 9: Securing Social Graph Access with OAuth

In this example, we’ll use OAuth to connect to Yahoo! on a user’s behalf and then post
out an activity to that user’s update stream. This update stream will be available
throughout the site—most notably, on http://mail.yahoo.com, http://pulse.yahoo.com,
and through Yahoo! Messenger. This process will display that we have authenticated
on a user’s behalf and used read/write access permissions to push our new data to the
user’s private stream.

To start out this process, we need to create a new application on the Yahoo! system.
Follow these steps to create the base application:

1. Go to https://developer.apps.yahoo.com/projects to load the application dashboard.

2. Click New Project at the top of the page that opens. When prompted, select a
Standard application (not a YAP application, as those are applications that run on
Yahoo-specific dropzones like http://my.yahoo.com).

3. Once you’ve selected the preceding options and the domain has been verified (if
needed), you will be presented with a new, blank application.

Within the application window, you’ll see a section under a Permissions header. This
is where we will select the type of personal data access we want to bind to our appli-
cation. For our needs, since we will simply be outputting a new activity to a user’s
update stream, we just need to set read/write access for the Yahoo! Updates permission
set, as shown in Figure 9-7.

Figure 9-7. Yahoo! OAuth application permissions, bound to the application

Once you’ve saved the changes, a new consumer key and secret will be generated for
your application. These keys are what we need to initiate development of our OAuth
code.

At the top of the application page, you will see a page like the one in Figure 9-8, showing
some direct information about the current application.

Figure 9-8. OAuth information for your Yahoo! application

The OAuth 1.0a Standard | 333

http://mail.yahoo.com
http://pulse.yahoo.com
https://developer.apps.yahoo.com/projects
http://my.yahoo.com

We are specifically interested in three pieces of information here:

• The consumer key

• The consumer secret

• The application ID below the title of the application. We will use this ID in the
Yahoo! process to identify the calling application.

Implementing OAuth 1.0a in PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_9/oauth1-php
-3legged.

Now that we have the application set up, our keys obtained, and a good understanding
about how the process should work, let’s explore how to implement this programmat-
ically by looking at an example written in PHP using the associated PHP OAuth library.

We’re going to take a full end-to-end example in PHP and split it up into its individual
files and sections to see how we can apply the abstract steps from the OAuth process
we walked through earlier in a program implementation.

Let’s start with our file that will store all of the required
URI endpoints, keys, and common methods. We’ll call this one common.php:

<?php
$key = 'drOWFGZEhhMFozTldNbWNHbzlNQS0tJnM9Y29uc3VtZXJzZWNyZXQmeD1hYw--';
$secret = 'f803bc90f1b4b1086158d1b3c4f';
$appid = 'hWGkw5';

$debug = true;
$base_url = "http://www.jcleblanc.com/projects/oauth/complete.php";
$request_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_request_token';
$authorize_endpoint = 'https://api.login.yahoo.com/oauth/v2/request_auth';
$oauth_access_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_token';

/***
 * Function: Run CURL
 * Description: Executes a CURL request
 * Parameters: url (string) - URL to make request to
 * method (string) - HTTP transfer method
 * headers - HTTP transfer headers
 * postvals - post values
 **/
function run_curl($url, $method = 'GET', $headers = null, $postvals = null){
 $ch = curl_init($url);

 if ($method == 'GET'){
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 } else {

Common variables and functions.

334 | Chapter 9: Securing Social Graph Access with OAuth

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-php-3legged
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-php-3legged
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-php-3legged

 $options = array(
 CURLOPT_HEADER => true,
 CURLINFO_HEADER_OUT => true,
 CURLOPT_VERBOSE => true,
 CURLOPT_HTTPHEADER => $headers,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_CUSTOMREQUEST => $method,
 CURLOPT_TIMEOUT => 3
);
 curl_setopt_array($ch, $options);
 }

 $response = curl_exec($ch);
 curl_close($ch);

 return $response;
}
?>

In our common.php file, we store a number of values. First, we’re storing the consumer
key, secret, and application ID to variables so that we can use them in our OAuth
process. We also set a debug flag, which we will use to output some debugging data at
the end of the OAuth process. The next stored set of variables comprises the endpoints
we’ll need to make requests to during the process, including:

base_url

The URL to return the user to after she accepts the application permissions. This
is the step that completes the OAuth process.

request_token_endpoint

The Yahoo! endpoint to which we will make a request to obtain a request token.

authorize_endpoint

The Yahoo! endpoint to which the user is forwarded to sign in and accept the
application permissions so that we can post updates on her behalf.

oauth_access_token_endpoint

The Yahoo! endpoint that we will call in order to exchange the request token and
oauth_verifier for an access token.

Last, we have our cURL function, which will make the majority of our data and token
exchange requests. This function will be used to process simple GET requests as well
as POST/PUT requests that we’ll need to set headers and POST data.

Now that we have our common variables
and functions in place, let’s get started with the actual OAuth token fetch requests.
This is the file that starts the entire OAuth process, so we’ll name it index.php for this
example.

Let’s break down the file into its major sections, starting with the first request to fetch
the request token from Yahoo!:

Request token fetch and authorization forwarding.

The OAuth 1.0a Standard | 335

<?php
require_once "OAuth.php"; //oauth library
require_once "common.php"; //common functions and variables

//initialize consumer
$consumer = new OAuthConsumer($key, $secret, NULL);

//prepare to get request token
$sig_method = new OAuthSignatureMethod_HMAC_SHA1();
$params = array('oauth_callback' => $base_url);

//sign request and get request token
$req_req = OAuthRequest::from_consumer_and_token($consumer, NULL, 'GET',
 $request_token_endpoint,
 $params);
$req_req->sign_request($sig_method, $consumer, NULL);
$req_token = run_curl($req_req->to_url(), 'GET');

The first item on our list is to attach the required files for the process:

OAuth.php
The OAuth library for signature generation and processing. For this example, we’re
using a standard library created by Andy Smith. The OAuth.php file is available
from the Google code repository at http://oauth.googlecode.com/svn/code/php/.

common.php
Our common variable and function file that we defined earlier in the section
“Common variables and functions” on page 334.

Now we have to build the objects that will be used to fetch our request token. We start
by creating a new OAuth Consumer, passing in our consumer key and secret. This ba-
sically creates a hash of the values that can be passed along with the request.

Next, we prepare some of the other elements that will be part of the request token fetch.
We create a new instance of OAuthSignatureMethod_HMAC_SHA1 to store the signature
method that we will use for the request. (This can be an HMAC-SHA1 signature or
plain text, but for our example we’ll use HMAC-SHA1.)

We then create the parameter set that will be attached to the request token. We create
this associative array containing the oauth_callback, which is the URL to which the
user is forwarded after she authenticates and accepts the application permissions.

As mentioned previously, to safeguard against a known man-in-the-
middle security vulnerability, Revision A of OAuth 1.0 requires that the
oauth_callback parameter be attached at the RequestToken endpoint.

With our data structures in place, we build the request structure that will be used as
the base for fetching our request token (OAuthRequest::from_consumer_and_token

336 | Chapter 9: Securing Social Graph Access with OAuth

http://oauth.googlecode.com/svn/code/php/

(...)). We then sign the request with the sign_request(...) method, using the signa-
ture method we specified.

Last, we initiate a cURL GET request to the URI specified in our request object. The
response from this request will either be the request token or an error.

Once we have the request token in hand, we can extract the pieces that we need and
forward the user to the Yahoo! login page, where she can sign in to her account
and accept the application permissions.

//if fetching request token was successful we should
//have oauth_token and oauth_token_secret
parse_str($req_token, $tokens);
$oauth_token = $tokens['oauth_token'];
$oauth_token_secret = $tokens['oauth_token_secret'];

//store key and token details in cookie to pass to complete stage
setcookie("requestToken",
 "token=$oauth_token&token_secret=$oauth_token_secret");

//build authentication url following sign-in and redirect user
$auth_url = $authorize_endpoint . "?oauth_token=$oauth_token";
header("Location: $auth_url");
?>

There are two pieces of information that we need to extract from the request token
and store when forwarding the user off-site to Yahoo: the oauth_token and
oauth_token_secret. Once the user has accepted the application permissions, we will
be using these, along with the oauth_verifier, to exchange our request token for an
access token.

We start by parsing the request token return object into an associative array. We then
store the oauth_token and oauth_token_secret values into variables.

Next, we create a new cookie called requestToken and set its value to the token and
token_secret. We are using a cookie simply as a mechanism for passing these values
from the originating site, through the Yahoo! authorization page, and back to the orig-
inating site. This feature may be implemented in many different ways.

Once the cookie is set, we forward the user to the authorization URL on the Yahoo!
site to sign in and accept the permissions of the application.

After the user has accepted the permissions, she will be forwarded to the complete URL,
where we can obtain and use the access token.

Let’s summarize where we are at this point in the
process:

• We have obtained a request token and stored the token information within a cookie
titled requestToken.

• The user has completed the sign-in and authorization steps to allow our application
to access and set her personal information.

Request token exchange and data requests.

The OAuth 1.0a Standard | 337

• The user has been forwarded to the callback URL we specified when obtaining the
request token. In addition, an oauth_verifier param has been passed along to allow
us to exchange our request token for an access token.

Now we can take our last few steps to exchange the verified request token for an access
token and make a request with that token. Let’s start by looking at the exchange step:

<?php
require_once "OAuth.php"; //oauth library
require_once "common.php"; //common functions and variables

//get request token params from cookie and parse values
$request_cookie = $_COOKIE['requestToken'];
parse_str($request_cookie);

//create required consumer variables
$test_consumer = new OAuthConsumer($key, $secret, NULL);
$req_token = new OAuthConsumer($token, $token_secret, NULL);
$sig_method = new OAuthSignatureMethod_HMAC_SHA1();

//exchange authenticated request token for access token
$params = array('oauth_verifier' => $_GET['oauth_verifier']);
$acc_req = OAuthRequest::from_consumer_and_token($test_consumer, $req_token, 'GET',
 $oauth_access_token_endpoint,
 $params);
$acc_req->sign_request($sig_method, $test_consumer, $req_token);
$access_ret = run_curl($acc_req->to_url(), 'GET');

//if access token fetch succeeded, we should have oauth_token and
//oauth_token_secret parse and generate access consumer from values
$access_token = array();
parse_str($access_ret, $access_token);
$access_consumer = new OAuthConsumer($access_token['oauth_token'],
 $access_token['oauth_token_secret'], NULL);

We begin by including the OAuth library, our common variables, and our cURL func-
tion, as we did previously.

With those in place, we extract the value of the request token from our requestToken
cookie and parse it out into the individual variables. With this done, we now have the
$token and $token_secret variables available to us.

Now we have to create the objects needed to exchange our request token for an access
token. We start by creating a hash of the standard key and secret of our application
($test_consumer). We then create another one for the request token that we passed
through. Finally, we set the signature method that we want to use.

We now have all of the pieces in place to do the exchange. The next step mimics the
procedure that we used to obtain the request token, but with different parameters. We
create an extra parameter object containing the oauth_verifier that signifies that the
user accepted the application permissions.

338 | Chapter 9: Securing Social Graph Access with OAuth

Next, we call the from_consumer_and_token(...) method to generate our request object,
passing in the standard consumer object, our request token object, the request token–
to–access token URI endpoint on Yahoo, and the oauth_verifier parameter object.
Once it’s constructed, we sign the request using our signature method, standard con-
sumer object, and request token object.

Last, we make a cURL request to the exchange endpoint. If all succeeded, $access
_ret should now contain the access token values we need to make requests.

Now we just need to make a consumer object out of the access token return values,
and we’re done with the exchange. We parse out the return values from the cURL
request to get the access token object and store them in $access_token. We then create
a new OAuthConsumer instance, passing in the oauth_token and oauth_token_secret from
the access token object. We now have the access consumer.

Now we can take a look at making that activity stream update request to Yahoo! using
our newfound access consumer:

//build update PUT request payload
$guid = $access_token['xoauth_yahoo_guid'];
$title = ': Visit my site'; //activity title
$description = 'Current articles, updates and events'; //activity description
$link = 'http://www.jcleblanc.com'; //title link
$source = 'APP.'.$appid; //source of the update
$date = time(); //activity timestamp
$suid = $appid.time(); //unique activity ID
$body = array(
 'updates' => array(
 array(
 'collectionID' => $guid,
 'collectionType' => 'guid',
 'class' => 'app',
 'source' => $source,
 'type' => 'appActivity',
 'imgURL' => 'http://jcleblanc.com/images/page.png',
 'imgHeight' => '80',
 'imgWidth' => '80',
 'suid' => $suid,
 'title' => $title,
 'description' => $description,
 'link' => $link,
 'pubDate' => (string)$date
)
)
);

//build update PUT request URL
$url = sprintf("http://%s/v1/user/%s/updates/%s/%s",
 'social.yahooapis.com',
 $guid,
 $source,
 urlencode($suid)
);

The OAuth 1.0a Standard | 339

//build and sign request
$request = OAuthRequest::from_consumer_and_token($test_consumer,
 $access_consumer,
 'PUT',
 $url,
 array());

$request->sign_request(new OAuthSignatureMethod_HMAC_SHA1(),
 $test_consumer,
 $access_consumer
);

//define request headers
$headers = array("Accept: application/json");
$headers[] = $request->to_header();
$headers[] = "Content-type: application/json";

//json encode request payload and make PUT request
$content = json_encode($body);
$resp = run_curl($url, 'PUT', $headers, $content);

There are a few elements in play within this section of the code. Let’s go through each
of the major sections to assess its significance.

The first large block being generated is the object that we will send to Yahoo! to define
what the activity’s content and background are. We won’t go through all of the pa-
rameters being added here; there are a few standard parameters required for the update,
as listed here: http://developer.yahoo.com/social/rest_api_guide/Single-update-resource
.html. The one item of note is that the Yahoo! access token object embeds an
xoauth_yahoo_guid parameter, which is the unique identifier for the user that has cur-
rently authenticated. This is what we use to target the activity to a specific user.

With our object built out, we can now generate the PUT request URI that we will be
calling to send the new activity through. Yahoo! defines the following URI structure
for making PUT requests to its Updates API:

http://social.yahooapis.com/v1/user/{guid}/updates/{source}/{suid}

This URI contains a few custom values, including the unique identifier for the user
(guid), the source of the update in the format APP.{appid}, and any unique identifier
for the update (suid). We generate this URI based on the values that we have already
processed when building out the payload that will be sent with the request.

We now take a familiar step: we generate the OAuth request object using the from_con
sumer_and_token(...) method, passing in our application consumer object, the access
token consumer object, and the URI that we will be making the request to. Once we
have built it, we sign the request object using the same HMAC-SHA1 signature method
that we have employed previously.

340 | Chapter 9: Securing Social Graph Access with OAuth

http://developer.yahoo.com/social/rest_api_guide/Single-update-resource.html
http://developer.yahoo.com/social/rest_api_guide/Single-update-resource.html

Our next step is to define the headers that will be sent with the request. Here we state
that JSON will be the content type that is accepted and sent, and will pass in the request
headers.

Last, we JSON-encode the request payload and initiate an OAuth signed PUT request
to the Yahoo! Updates API in order to insert a new activity in the user’s stream.

Now that our payload is sent and the new activity has been generated on the Yahoo!
side, we may want to dump some debugging information (remember that debug flag
we set way back in the common.php file?):

//if debug mode, dump signatures & headers
if ($debug){
 $debug_out = array('Access token' => $access_token,
 'PUT URL' => $url,
 'PUT headers' => $headers,
 'PUT content' => $content,
 'PUT response' => $resp);

 print_r($debug_out);
}
?>

If the debug flag was set to true, we’ll be dumping out some data about the last request
we made. We will print out:

• The content of the access token.

• The URI that was called to make the PUT request.

• The headers that were sent with the PUT request.

• The JSON-encoded body that was sent with the PUT request.

• The response from the PUT request.

Dumping out signatures and responses, and being able to validate the content of a
request object, are incredibly important debugging tools when you’re working with
OAuth. They help you identify the problem areas when trouble arises, and the output
signatures will allow you to see if there are missing parameters or improperly encoded
structures.

Once the OAuth process completes and the activity PUT request succeeds, we can see
our new update at http://pulse.yahoo.com by going to the activity stream for the user
we set the activity for (http://pulse.yahoo.com/y for your own profile). You should see
a new activity posted for the user, with the content that we sent to be posted. It should
look something like Figure 9-9.

Once you have your access token available, you can make any number of requests to
a service, depending on its APIs and offerings.

The OAuth 1.0a Standard | 341

http://pulse.yahoo.com
http://pulse.yahoo.com/y

Implementing OAuth 1.0a in Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_9/oauth1-python
-3legged.

Now that we have gone through the PHP implementation of OAuth 1.0a, let’s look at
a Python version. In this example, we will walk through the same type of implemen-
tation as the one from the PHP example, following these steps in the OAuth authori-
zation token exchange:

1. Capture a request token object.

2. Forward the user to the authorization page on the provider site to grant the appli-
cation access to her privileged information.

3. Exchange the verified request token for an access token.

4. Make signed requests to the provider for the user’s profile information.

Now let’s start breaking down the files that we will use for this request, starting with
our application configuration file.

Since this example uses Google App Engine, we will use a YAML con-
figuration file to load it. This file looks like the following:

application: oauth-python
version: 1
runtime: python
api_version: 1

handlers:
- url: /index.py
 script: index.py
- url: /complete.py
 script: complete.py

In this example, we have only a few endpoints that we will be worrying about for
implementation:

Configuration file.

Figure 9-9. Example activity output from our Yahoo! OAuth 1 application

342 | Chapter 9: Securing Social Graph Access with OAuth

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-python-3legged
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-python-3legged
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth1-python-3legged

index.py
Begins the authorization process by requesting a new request token, then forward-
ing the user to the authorization page on the provider site to accept the application
permissions.

complete.py
Completes the authorization process by taking the verified request token and ex-
changing it for an access token that is used to make requests for privileged user
information on the provider site.

Now that we understand the makeup of the example and how it flows, let’s dig in to
the common variable file that both index.py and complete.py will be using: common.py.

The common variables file will hold the OAuth credentials that we
obtained when we first created our application on the provider site, as well as several
links that we will need throughout the OAuth process. In our case, this file is called
common.py:

import os

#set oauth consumer / secret keys and application id
consumer_key = 'djJmQ9WVdrOVFqRjBZMEpOTjJzbWNM9Y29uc3VtZXJzZWNyZXQmeD1kYg--'
consumer_secret = '2308040af65e07fa0a9b9727e01a06e0d'
appid = 'B1reBR7k'

#application urls
callback_url = 'http://%s/complete.py' % (os.environ['HTTP_HOST'])

#oauth access token endpoints (Yahoo!)
request_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_request_token'
authorize_endpoint = 'https://api.login.yahoo.com/oauth/v2/request_auth'
oauth_access_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_token'

At the top, we have our required consumer key and secret. Additionally, we store the
application ID (also generated by the provider when the application was created), as
we need it to identify certain PUT/POST requests to the provider.

We then store the absolute URL to the callback file. This is where the user will be
redirected once she has authorized the application.

Last, we have the OAuth token exchange endpoints that we will need throughout the
process:

• The endpoint from which we obtain a request token.

• The authorization endpoint to which we forward the user to have her authorize
the application.

• The access token endpoint where we exchange the verified request token for an
access token.

We’ll use all of these pieces at different intervals throughout the application. With those
in place, we can take the first steps in the token exchange process.

Common variables.

The OAuth 1.0a Standard | 343

Our next task is to focus on
acquiring the OAuth request token that we’ll use, along with the provider’s authori-
zation endpoint, to have the user authorize the application to perform actions and
obtain information on her behalf. This file is stored as index.py.

Besides the standard libraries, we are importing the OAuth library that we installed and
our common variables file. We then get into the crux of the program through main():

import os
import cgi
import time
import urllib
import oauth.oauth as oauth
import common
import Cookie

'''
' Function: Main
' Description:
'''
def main():
 #build base consumer object with oauth keys and sign using HMAC-SHA1
 base_consumer = oauth.OAuthConsumer(common.consumer_key,
 common.consumer_secret)
 signature_method_hmac_sha1 = oauth.OAuthSignatureMethod_HMAC_SHA1()

 #create and sign request token fetch request object
 request_rt = oauth.OAuthRequest.from_consumer_and_token(base_consumer,
 callback=common.callback_url, http_url=common.request_token_endpoint)
 request_rt.sign_request(signature_method_hmac_sha1, base_consumer, None)

 #obtain request token
 token_read = urllib.urlopen(request_rt.to_url())
 token_string = token_read.read()

 #parse request token into individual parameters
 token_params = cgi.parse_qs(token_string)
 oauth_token = token_params['oauth_token'][0]
 oauth_token_secret = token_params['oauth_token_secret'][0]

 #generate cookie with request token key and secret to pass through
 #authorization process
 cookie = Cookie.Cookie()
 cookie_token = 'token=%s&token_secret=%s' % (oauth_token, oauth_token_secret)
 cookie['request_token'] = cookie_token
 cookie['timestamp'] = time.time()
 print cookie

 #redirect user to authorization endpoint
 print "Location: %s?oauth_token=%s" % (common.authorize_endpoint, oauth_token)

if __name__ == '__main__':
 main()

Fetching the request token and forwarding the user for authorization.

344 | Chapter 9: Securing Social Graph Access with OAuth

We start out by creating the base-level OAuth objects that will be used for our requests.
These are our base consumer (a consumer object containing the OAuth consumer key
and secret for our application) and the signature method (HMAC-SHA1) that we will
be using.

Next, we create the request object to obtain the request token. We make a request to
the from_consumer_and_token(...) method to do this, passing in the base consumer
object, the callback URL that we want to forward the user to after she authorizes the
application, and the http_url that contains the request token URI on the provider site
that we will need to contact. We then call sign_request(...) to sign the request object
using our signature method object and base consumer.

We then make a request to the request token URI and read back the response from the
provider site. This should be a string containing our request token and all associated
parameters. We take this response string and split it into its individual parameters.
From the token parameters, we then extract the request token and request token secret.

Now we need to find a way of passing the request token and request token secret
parameters through the authorization process. For our needs, we will use a cookie. We
create a new cookie object and store the token, secret, and timestamp as parameters
for the cookie.

Last, we redirect the user to the authorization endpoint with the oauth_token parameter
in order to have her authorize the application to access and set information on her
behalf.

Once the user authorizes the application, she is forwarded to the callback URL that
was defined in our request token object.

The user should now be for-
warded to our complete.py file following authorization. This is where we will take the
request token and validation code (validated request token) and exchange it for an
access token to request the user’s privileged information. Much like our previous file,
we are including a number of standard libraries as well as the Python OAuth library
and common.py file that holds our common variables and endpoints.

Before we jump into the final token exchange process, notice that at the top of the file
there is a dotdict class, which accepts a dictionary object. We are using this class so
we can refer to dictionary objects using dot notation (e.g., object1.object2), which is
functionality required by the Python OAuth library we are using.

Now let’s take a closer look at main() to see the token exchange process:

import os
import cgi
import sys
import Cookie
import urllib
import oauth.oauth as oauth
import common

Token exchange and making authenticated private data requests.

The OAuth 1.0a Standard | 345

'''
' Class: Dot Notation Insertion
' Description: Adds dot notation capabilities to a dictionary
'''
class dotdict(dict):
 def __getattr__(self, attr):
 return self.get(attr, None)
 __setattr__= dict.__setitem__
 __delattr__= dict.__delitem__

'''
' Function: Main
' Description:
'''
def main():
 #create new smart cookie to extract request token
 cookie = Cookie.SmartCookie()

 #if a cookie is available, load it
 if os.environ.has_key('HTTP_COOKIE'):
 cookie.load(os.environ['HTTP_COOKIE'])

 #if the request token cookie is available, load and parse it
 if cookie.has_key('request_token'):
 request_token = cookie.get('request_token').value
 rt_params = cgi.parse_qs(request_token)

 #parse query string parameters into dictionary
 qs_params = {}
 string_split = [s for s in os.environ['QUERY_STRING'].split('&') if s]
 for item in string_split:
 key,value = item.split('=')
 qs_params[key] = value

 #create base consumer and signature method objects
 base_consumer = oauth.OAuthConsumer(common.consumer_key,
 common.consumer_secret)
 signature_method_hmac_sha1 = oauth.OAuthSignatureMethod_HMAC_SHA1()

 #build dictionary of request token and secret to exchange for
 #access token
 req_token = dotdict({'key': rt_params['token'][0], 'secret':
 rt_params['token_secret'][0]})

 #build request token to access token exchange request object and sign it
 oauth_request = oauth.OAuthRequest.from_consumer_and_token(
 base_consumer, token=req_token,
 verifier=qs_params['oauth_verifier'],
 http_url=common.oauth_access_token_endpoint)
 oauth_request.sign_request(signature_method_hmac_sha1, base_consumer,
 req_token)

 #obtain request token as string and dictionary objects
 token_read = urllib.urlopen(oauth_request.to_url())

346 | Chapter 9: Securing Social Graph Access with OAuth

 token_string = token_read.read()
 token_params = cgi.parse_qs(token_string)

 #create access token object out of access token string
 access_token = oauth.OAuthToken.from_string(token_string)

 #create url to Yahoo! servers to access user profile
 guid = token_params['xoauth_yahoo_guid'][0]
 url = 'http://%s/v1/user/%s/profile' % ('social.yahooapis.com', guid)

 #create new oauth request and sign using HMAC-SHA1 to get profile of
 #authorized user
 oauth_request = oauth.OAuthRequest.from_consumer_and_token(
 base_consumer, token=access_token, http_method='GET', http_url=url)
 oauth_request.sign_request(signature_method_hmac_sha1, base_consumer,
 access_token)

 #make request to get profile of user
 profile_read = urllib.urlopen(oauth_request.to_url())
 profile_string = profile_read.read()
 print 'Content-Type: text/plain'
 print ''
 print profile_string
 else:
 #if request token cookie was not available, end
 print 'Request token cookie not found - exiting'
 sys.exit()
 else:
 #if cookies were not available, end
 print 'Request token cookie not found - exiting'
 sys.exit()

if __name__ == '__main__':
 main()

We start by checking whether HTTP_COOKIE can be obtained. If not, we display an ap-
propriate error message and stop program execution. If so, we check for the existence
of the cookie that we set in the index.py file containing our request token. If that cookie
is absent, we display an appropriate error and stop program execution. If the cookie is
present, we capture it and parse it into its individual parameters.

We then go through the step of obtaining all parameters from the query string, splitting
them into their keys and values, and then placing them into a dictionary object.

We continue in a way similar to how the last file started, by defining our base_
consumer and signature_method_hmac_sha1 variables, which are objects to hold our ap-
plication’s consumer key and secret and the signing method that we will be using,
respectively.

Now we need to create a request token dictionary object out of the request token and
secret that we extract from the cookie we set in index.py. Through our dotdict class,
we also specify that this dictionary can be referenced using dot notation.

The OAuth 1.0a Standard | 347

Next we need to construct an OAuth request object that we will use to request that the
provider site exchange the validated request token for an access token. We do this by
making a request to from_consumer_and_token(...), passing in our base consumer, the
request token, verifier parameter from the query string signifying that the user has
authorized the application, and finally the access token exchange URI endpoint on the
provider site. Once we’ve created it, we sign the request with the signature method we
set up, the base consumer object, and the request token object.

We can now exchange the validated request token for an access token. We make a
request to the access token endpoint and read back the access token response. This
should be a series of parameters, so we parse those into a lookup object. We then create
the access token object by calling from_string(...), passing in the token string that
was returned. Now we can start making requests for privileged user data.

We may want to create a token_params lookup object out of the access
token string, because some providers might send back additional pa-
rameters in the token exchange request. These parameters may be ig-
nored and removed from the access token object when it’s created.
These additional parameters could be only informational, or they might
contain elements such as a unique user identifier that can be used to
make specific data requests to the provider site.

We can accomplish this type of request by first generating the URI to which we will be
making the signed request. We extract the globally unique identifier (GUID) for the
user from the access token object that we created. From that, we create the URI to
Yahoo! in order to obtain the user’s profile.

When we have the URI, we construct a new OAuth request using from_consumer
_and_token(...). We pass in the base consumer object, access token, HTTP method
(in this case, GET), and the URI to obtain the profile that we just created. We then sign
the request with the base consumer and access token objects.

Once ready, we simply make another request to the profile URI on the provider, read
the response, and dump it to the screen.

This completes the steps needed to make an OAuth 1.0a signed request to a provider
for privileged user resources.

Tools and Tips for Debugging Signature Issues
In this section, we’ll dive into the most common OAuth issues and go over tips and
tricks to address them.

348 | Chapter 9: Securing Social Graph Access with OAuth

Missing or duplicate parameters

One of the single most frustrating experiences you’ll run into when working with
OAuth is to see a “signature mismatch” or “signature invalid” response sent back from
a request. If you haven’t encountered this error very often, you might end up spending
hours trying to debug signatures to figure out where the problem lies.

In most cases, invalid signature errors are produced for two reasons:

• You have forgotten a parameter in the request.

• You have duplicated a parameter in the request.

In the case of forgotten parameters, there are two techniques that work well to help
you debug the signature issues. The first, and easiest, is to compare the invalid signature
parameters against those expected at the OAuth stage where the error was produced.
You can compare these parameters against those listed earlier in this chapter in the
section “OAuth 1.0a Workflow” on page 319. You should be able to determine fairly
quickly whether a missing parameter is the cause.

The other method involves comparing exact signatures. If you have access to valid
signatures from the same platform (either through docs or another application), you
can compare them to your invalid signatures to pinpoint discrepancies. This method
comes in handy if you are aiding a development team that’s encountering issues when
you have an existing, functional application.

Double encoding the signature parameters

Another issue that developers who are new to authentication systems like OAuth often
face is double-encoding parameter sets in the OAuth signatures.

Many people may say that this would never happen to them, that they’re careful in
their development. The truth of the matter is that this happens quite a bit. When you’re
working with complex signature generation, you may inadvertently URL-encode an
entire list of parameters instead of just the values of those parameters. This will
invalidate the signature because the individual signature parameters cannot be parsed
(since the ampersands separating the parameters are encoded).

Most issues involving double encoding usually surface when the developer is con-
structing his own OAuth libraries, which he might do when a language he’s using does
not have a supported library or if the library requires editing for use (such as when
OAuth 1.0 was upgraded to OAuth 1.0a).

Whenever possible, use standard OAuth libraries from http://oauth.net/code/.

Incorrect URI endpoints

One issue that comes up quite often when you’re working with a new service is speci-
fying an incorrect or incomplete URI for either the signature stages when capturing the

The OAuth 1.0a Standard | 349

http://oauth.net/code/

request or access tokens, or when using the access token to make a signed request to a
URI endpoint on the provider to obtain privileged information.

When it comes to the OAuth token exchange, remember that you will need to specify
several URIs for each stage, including URIs for:

• Fetching the request token.

• Forwarding the user to the provider site to log in and go through the permission
screen.

• Forwarding the user back to your site or application after he has signed in and given
the application permission to access his personal information.

• Exchanging the verified request token for an access token.

The potential problems around using endpoints don’t stop as soon as you obtain the
access token. When you make OAuth requests to a URI endpoint defined by the pro-
vider as a means to access social data, there are a couple of things that can generally go
awry.

The first is the incorrect URI endpoint. When large amounts of social documentation
are available for obtaining a user’s personal information, or when providers use a single
URI with slightly different parameters to access the majority of their social information,
this issue may come up. Dump out the URI that you are attempting to call and match
it up against the documentation for the service that you want to use. This is the easiest
way to verify that your URI endpoint is correct.

The second is the incomplete URI endpoint. When working with large amounts of data
exchange, such as through the OAuth process, it is common for parameters to get left
off the fully qualified URI. This can happen due to parameter overwriting, incorrect
variable naming, or a host of other causes that may generate a bad URI response from
the provider.

For instance, Yahoo! defines a URI for setting a user update (activities) that contains a
number of dynamic attributes that you need to add before making a request:

http://social.yahooapis.com/v1/user/{guid}/updates/{source}/{suid}

Besides the static attributes in the URI, there are a few pieces of custom data that are
required:

guid

The globally unique identifier of a user

source

The application source that the request originates from

suid

A unique identifier for the update

350 | Chapter 9: Securing Social Graph Access with OAuth

Let’s say that we have just made some changes to our OAuth flow for passing the GUID
of a user and are suddenly seeing provider responses stating that the incorrect URI
endpoint was used. This can be due to a single parameter missing from the URI:

http://social.yahooapis.com/v1/user//updates/APP.1234/app1043324

If we look closely, we can see the double slashes and a missing GUID parameter. This
is a common cause of errors in the OAuth flow and also one of the easiest to diagnose.

Invalid signature method

Another common occurrence in the world of OAuth signatures is receiving a message
stating that the signature method you are using is not valid.

If you think back to the practical OAuth example we went through, where we inserted
a new activity to the user’s stream, you may remember that right before making requests
to fetch the request token, or exchange the verified request token for an access token,
we had to sign the request using our chosen signature method (in our case, it was
HMAC-SHA1).

If you see this type of an error, it is often due to using a signature method that is not
accepted by the provider, such as plain text in many cases. You can easily remedy this
issue by checking to ensure that the signature method that you are using is valid.

When in doubt, use HMAC-SHA1.

Token expiration

While the majority of providers do not expire their tokens—meaning that you can use
a single access token until it is revoked—some do add an expiration extension on top
of their OAuth 1.0a implementations. The expiration timeframe in these cases is usually
a few weeks.

If, after you’ve used an access token for a period of time, you get errors that say some-
thing along the lines of “token expired” or “token rejected,” it could be that the token
has expired.

When you’re obtaining an access token, if the token has an expiration attached to it,
the expiration time will generally be embedded in the token string response. It may
look something like the following:

{
 'oauth_token_secret': ['1ce460d4d5f8c10883b0e60e3d4a2d0d45'],
 'oauth_expires_in': ['3600'],
 'oauth_session_handle': ['AKX0oEw_Qns9ToVxJMsdcm3eYlqc_q4Zdm5yk-'],
 'oauth_authorization_expires_in': ['849662194'],

The OAuth 1.0a Standard | 351

http://social.yahooapis.com/v1/user//updates/APP.1234/app1043324

 'oauth_token': ['A=Qc9767HOtQMbzN8tbiAEVjJiLzbubnxN_...']
}

Parameters referring to expiration will give you an idea of how long you have until the
token expires when you first obtain it.

If you are facing a token expiration, the provider will usually have documentation that
explains the process through which you can exchange the expired access token. In most
cases, you do this by making a new OAuth request to the same URI endpoint you used
when exchanging the verified request token for the original access token, only passing
in the expired access token instead of the request token.

OAuth 2
We have looked at the standard that has been employed by many of the top providers
in the industry, OAuth 1.0a. Now it’s time to look at the emerging revision to that
standard, OAuth 2, which has already been implemented by companies such as Face-
book (to secure its Graph API) and Gowalla (to access its check-in services).

OAuth 2 is not compatible with the OAuth 1.0a workflow or token
system. It is a complete revision to the specification.

There are a few major revisions to the specification that implementers should be aware
of. Instead of having signing libraries such as those we used in the OAuth 1.0a
examples, in OAuth 2, all requests are made via HTTPS requests. There is no longer
any need to go through complex signing procedures in order to perform token
exchange.

Another major difference has to do with the ease of implementation. Due to its reduced
complexity, OAuth 2 will take far less time and effort to implement.

To understand this specification and how it works, let’s start by going through the
OAuth 2 workflow.

OAuth 2 Workflow

While the OAuth 2 specification drafts are clear about the parameters
that are required in the exchange requests and responses at each stage,
implementers may have slight discrepancies in the parameter lists that
they support, even going so far as to not request or provide required
parameters or to change the expected values for given parameters. Be
aware of the fields that are required and the responses provided by any
service that you are using. You can find this information in the OAuth
implementation docs for each service.

352 | Chapter 9: Securing Social Graph Access with OAuth

The OAuth 2 workflow is a rather simple set of back-and-forth requests between a
client and the provider site. The user is still involved in the process to authorize the
application to access his privileged information, but in general the interaction is be-
tween the client and provider, which exchange simple verification resources in order
to issue (provider) and obtain (client) a final access token to make privileged requests.
This entire flow is illustrated in Figure 9-10.

Figure 9-10. OAuth 2 authorization workflow

The OAuth 2 authorization flow consists of a few exchange requests. The flow depicted
in Figure 9-10 contains the back-and-forth requests for obtaining the access token for
a user and then making a request back to the provider’s resource server to obtain some
protected data.

In short, the OAuth 2 authorization flow consists of the following elements:

1. The client (your script) forwards the user to the resource owner (provider) in order
to have him accept the permissions of the application, thereby allowing it to access
his protected data.

2. Once the user accepts the permissions of the application, the resource owner for-
wards him to the callback location that was passed in with the original request to
the resource owner. The resource owner also sends a verification code parameter
(via the query string to the callback) denoting that the user has accepted the per-
missions.

3. Once the callback URL is called, the client then sends a request to the authorization
server to get an access token for the user, passing along the verification code with
the request.

4. The authorization server then sends back an access token object with an optional
refresh token, depending on whether the service specifies a lifespan for the access
token.

OAuth 2 | 353

5. From this point, the client can make signed OAuth requests with the access token
to the resource server in order to get protected resources about the user.

This is the general flow that the client (your application) will need to follow in order
to begin accessing a user’s private data.

Let’s explore what requests and responses would look like for each stage of this process.

Steps 1–2: Client requests authorization, and provider grants access

cURL is one of the best tools available for working with the OAuth 2
process, as it allows a high degree of customization in the requests.

The first request/response batch that is run in the OAuth 2 process is the authorization
request in which the client forwards the user to the resource owner to accept the ap-
plication permissions, followed by the resource owner responding with an access grant.
This is shown in Figure 9-11.

Figure 9-11. OAuth 2, steps 1–2: Client requests authorization from provider

When the client forwards the user to the resource server, it will also send a few addi-
tional parameters for identification and forwarding requirements. The structure of the
URI request may look something like the following:

https://server.example.com
 ?response_type={type}
 &client_id={key}
 &redirect_uri={callback_uri}

which gives us an HTTP request similar to the following:

GET /authorize?response_type=code
 &client_id=s6BhdRkqt3
 &redirect_uri=https%3A%2F%2Fmysite%2Ecom%2Fcb
 HTTP/1.1
Host: server.example.com

The additional query parameters may include those listed in Table 9-5.

354 | Chapter 9: Securing Social Graph Access with OAuth

Table 9-5. Authorization request parameters

Parameter Description

response_type

(required)

The type of response that you are expecting. The value of this parameter must be either:

token

Requesting access token

code

Requesting an authorization code

code_and_token

Both of the above

In the case of this step—the authorization request—the appropriate response_type is code.

client_id (required) The key that was issued when you first created your application.

redirect_uri (re-

quired)

The URI to which to forward the user after he has granted the application permission to access his

protected information. The service that is being called should have required you to preregister your

callback URI, so the preregistered value and the redirect_uri parameter should match.

scope (optional) A list of space-delimited access scopes, defined by the authorization server. These scopes contain

the type of protected data that a client can request from an end user (e.g., profiles or connections).

state (optional) Used to maintain state between the request and callback stages. This value is passed along (usually

as a query string parameter) when the end user is forwarded to the callback URI.

Once the user has been forwarded to the resource owner site, presented with a screen
asking him to grant the application access to his protected data, and accepted those
permissions, the resource owner will forward him to the callback URL with a verifica-
tion code parameter on the query string:

http://www.mysite.com/oauth2/complete.php
 ?code=6e55f7019d56cb8bcd05c439890dacd6sdf

There are a few possible parameters available at this stage, listed in Table 9-6.

Table 9-6. Authorization response parameters

Parameter Description

code (required) The verification code that was generated by the authorization server. This will be used when making a

request to fetch the access token.

state (required) This parameter is required if a state parameter was sent in the authorization request for the user to

accept the application permissions. If set, it is identical to the state that was sent in the request.

In short, the code parameter denotes that the user has accepted the client permissions
and, thus, tells the provider’s authorization server that it may grant an access token for
the client.

OAuth 2 | 355

Steps 3–4: Client requests access token, and provider grants access token

Many services that implement OAuth 1.0a offer SDKs in different lan-
guages to mitigate the complexity of the OAuth process and provide an
easy mechanism for accessing their data API endpoints. This is not as
prevalent a practice with the OAuth 2 specification due to the ease of
implementing the client. In many cases, though, services will offer SDKs
to reduce the amount of code that you need to write. These are generally
“kitchen sink” implementations that contain all the functionality you
could ever want from the service.

Our next request/response step, outlined in Figure 9-12, consists of using the code
parameter from our last step (along with a few other values) to make a request to an
authorization server to fetch an access token, which we’ll then use to make requests to
access a user’s protected data.

Figure 9-12. OAuth 2, steps 3–4: Client requests access token from provider

This is the simple method you should employ when making a request to receive an
access token. You’ll be making an HTTP POST request to the authorization server,
passing in the code parameter and numerous client credentials as POST parameters.
The response object that is returned will either be an error or the access token that you
are looking for.

The URI you’ll use to make this request depends on the service being used. If an SDK
is not provided by the service, it will more than likely provide comprehensive OAuth
request instructions within its developer documentation.

The POST request follows the general form of the following HTTP request:

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code
&client_id=5b14dbe141dfa7b8daa7601
&client_secret=4e624625c4b853c8f9eb41e
&code=6e55f7019d56cb8bcd05c439890dacd6sdf
&redirect_uri=https%3A%2F%2Fmysite%2Ecom%2Fcb

As we can see from this request, there are a number of POST fields that will be required
at this step in order for us to obtain an access token. These are listed in Table 9-7.

356 | Chapter 9: Securing Social Graph Access with OAuth

Table 9-7. Access request parameters

Parameter Description

grant_type

(required)

The grant type that you are making a request for. The value must be one of the following:

• authorization_code

• password

• refresh_token

• client_credentials

At this stage of the process, the appropriate value for grant_type is authorization_code.

client_id (re-

quired)

The key that was provided when you created your client (application) on the provider site.

client_secret

(required)

The secret that was provided when you created your client (application) on the provider site.

code (required) The authorization code that was passed to your callback_url as a GET parameter following the

user’s authentication of your client’s permissions.

redirect_uri

(required)

The URI to forward the user to after she has granted the application permission to access her

protected information. The service that is being called should have required you to preregister your

callback URI, so the preregistered value and the redirect_uri parameter should match.

If the authorization server responds successfully from the request, you’ll be provided
with an object containing the access token and all the data pieces you need to manage
the access token and make requests for protected data.

The object will look something like the following:

object(stdClass)#1 (6) {
 ["expires_in"]=> int(1209474)
 ["expires_at"]=> string(31) "Wed, 22 Dec 2010 00:35:18 −0000"
 ["scope"]=> string(4) "read"
 ["access_token"]=> string(32) "4ced4e671b83f40a2e014c357ed7bad9"
 ["refresh_token"]=> string(32) "11ca1de7a26169963f2d6cdce3b4856b"
 ["username"]=> string(9) "jcleblanc"
}

There are a number of parameters that may be included in the access token object that
is returned from the request. These are listed in Table 9-8.

Table 9-8. Access response parameters

Parameter Description

access_token

(required)

The access token that was issued by the authorization server. This is the value that you will use to

make signed requests for protected end-user data.

expires_in (op-

tional)

If the provider sets a lifetime (expiration) on the access token, the expires_in parameter will be

set to the amount of time, in seconds, until the access token expires (e.g., 3600 = 1 hour).

OAuth 2 | 357

Parameter Description

refresh_token

(optional)

Much like the expires_in parameter, if the provider has set an expiration time on the

access_token, the refresh_token parameter should be present. This value can be used to

request a new access token when the original expires.

scope (optional) This parameter contains the scopes of the access token as a list of space-delimited strings, defining

what protected data the client has access to. Authorization servers should set this value if the scopes

of the access token are different from the scopes the client originally requested when forwarding the

end user to the resource owner to accept the client application permissions.

token_type (re-

quired)

token_type contains the type of token that was issued. This provides the client with the details

it needs to understand how to make requests for protected resources from the end user.

Once we’ve obtained the access token object and now that we understand what all
of the pieces do, we can begin making requests for those prized end-user protected
resources.

Steps 5–6: Client requests protected resources, and provider grants protected resources

The last step in the OAuth 2 process (which comprises the initial request up to obtaining
protected resources) is to actually make a request that uses the access token to capture
the end user’s protected data.

Once the client sends a request to the resource server with the access token in tow, if
the access token is valid and has the correct permissions set, the resource server will
respond with an object containing the protected result set that was requested. Fig-
ure 9-13 shows this flow.

Figure 9-13. OAuth 2, steps 5–6: Client requests protected user resources from provider

The resource server will generally employ one of these three methods to pass the access
token to a specific URI to make the protected resources accessible:

• Passing the access token through the query string as an HTTP GET parameter:

GET /user/jcleblanc?oauth_token=4ced4e671b83f40a2e014c357ed7bad9

• Passing the access token through the HTTP request header:

GET /user/jcleblanc
Authorization: Token oauth_token="4ced4e671b83f40a2e014c357ed7bad9"

• Passing the access token to the resource URI via an HTTP POST request:

358 | Chapter 9: Securing Social Graph Access with OAuth

POST /user/friends
oauth_token=4ced4e671b83f40a2e014c357ed7bad9
&user_id=jcleblanc

The resource server will validate the URI request and access token, then send back
either the expected protected resource object or an error response if there was an issue
processing the request or token. There are a number of HTTP error responses that
might be returned from the resource server when it comes to OAuth 2 request. Some
of the most common are listed in Table 9-9.

Table 9-9. Common access request error responses

Error Description

insuffi

cient_scope

The request for protected end-user resources requires a higher level of privileges than what has been

granted to the access token. The provider should respond with a 403 (Forbidden) HTTP status code.

If you receive this error, check to ensure that the scopes you initially set for your application are sufficient

for accessing the data that you’re requesting.

inva

lid_request

This error is produced when the request is malformed in some way. The provider should respond with

a 400 (Bad Request) HTTP status code.

Some of the reasons for a malformed request may be:

• The request is missing parameters that are required by the provider.

• There are unsupported parameters or parameter values in the request. If the request includes a

parameter or parameter value that the provider doesn’t recognize, this error may result.

• There are repeated parameters in the request object.

Check the provider documentation to verify the parameters it expects when the request is being made.

invalid_token This error is produced when the access token that has been provided (not the full request as with

invalid_request) is malformed in some way. The provider should respond with a 401 (Unau-

thorized) HTTP status code.

Some of the reasons for a malformed access token include:

• The access token has expired. Check the expires_in parameter provided with the access

token object to see if it has expired. If it has, used the refresh_token parameter to request

a new access token.

• The access token has been revoked by the provider. This may be due to some sort of abuse by

the client. If you get this error, check the provider’s terms of use to see if you have violated any

of the terms.

If you plan your development for both an expected end-user protected resource as well
as a host of potential error codes, you should be able to appropriately handle most of
the situations that arise. In doing so, you can minimize the impact on the end user and
reduce your application’s drop-off rate.

Even though we now have a means of accessing protected resources, we still have one
last aspect of the token and resource exchange to address. If the provider you’re working
with to extract the protected end-user resources has a lifespan set on its access tokens,

OAuth 2 | 359

you’ll need to be able to determine when your access token expires and how to refresh
it. We’ll cover this final step next.

Optional steps 7–8: Refreshing the access token

The expires_in parameter returned within an access token object
should provide you with the means to verify whether the access token
for a user has expired. When using the access token to request protected
user resources, you should note any error messages stating that the ac-
cess token has expired; this helps you appropriately handle the instance
where an access token expires during regular use.

Depending on the security requirements of the provider that you are working with, the
provider may expire the access token after a short period of time, such as a week or
two. Once the token expires, your application client will receive errors stating that the
access token is no longer valid. At this point, you’ll need to refresh the access token
with the provider for another one to two weeks (or however long the provider sets as
the token’s lifespan).

You can refresh the access token without involving the user. The user doesn’t need to
go through the authorization and permission acceptance step again, as she did when
we fetched our initial access token. You will simply need to make another POST request
to the provider with some information about the application and the refresh token.
This request is very similar to the one we used to fetch the initial access token, and
follows this general form:

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token
&client_id=5b14dbe141dfa7b8daa7601
&client_secret=4e624625c4b853c8f9eb41e
&code=6e55f7019d56cb8bcd05c439890dacd6sdf
&refresh_token= da2e3e192bf68f3656eafa87d8
&redirect_uri=https%3A%2F%2Fmysite%2Ecom%2Fcb

As I mentioned earlier, the main differences between a request to fetch an access token
for the user and one to refresh the access token after it has expired are the new grant
type and the new refresh_token POST parameter.

The response object that is returned after you send the refresh token HTTP POST
request should look very familiar at this point:

object(stdClass)#2 (5) {
 ["expires_in"]=> int(1209599)
 ["expires_at"]=> string(31) "Thu, 23 Dec 2010 22:45:59 −0000"
 ["refresh_token"]=> string(32) "6437242c178efec9e36e1d74db2586e9"
 ["access_token"]=> string(32) "31d8412c11bcef9a973529029262b14f"

360 | Chapter 9: Securing Social Graph Access with OAuth

 ["username"]=> string(9) "jcleblanc"
}

It is simply an access token with another expiration time, refresh token string, and
access token to allow us to make further protected-resource requests.

A well-built application will require the end user to accept the applica-
tion permissions only once. The access token can then be stored (se-
curely, please!) for later use when the user logs in or uses the application
again. Basically, as soon as you know who the end user is and can verify
that you have an existing access token for her, you shouldn’t need to
involve her again.

Implementation Example: Facebook
Now that we understand how the OAuth 2 process works, let’s take a look at a practical
example of the specification: the Facebook OAuth 2 implementation. In this example,
we’ll step through the process again to capture an access token, use that access token
to capture protected user resources, and refresh the access token if its lifespan is
specified.

This process contains several steps, including:

1. Constructing our common variables and functions to use in the process.

2. Making a request to have the user authorize the application.

3. Exchanging the user authorization grant for an access token.

4. Making requests for protected user data using the access token.

These steps will give us a good overall view of how OAuth 2 functions.

Creating your application

Before we explore integrations of OAuth 2 using the Facebook platform and leveraging
its Graph API, we need to start by creating a new application on Facebook to obtain
the OAuth 2 keys we need to actually implement the example.

First, we’ll go to the Facebook developer page to create our new application. In your
browser, navigate to http://www.facebook.com/developers/. At the top of that page,
you’ll see a button to allow you to set up a new application, as shown in Figure 9-14.
Click that button to begin. This should be in the same section that lists the applications
that you have already created with Facebook (if any).

OAuth 2 | 361

http://www.facebook.com/developers/

Figure 9-14. Facebook’s Set Up New App button

Enter in the application name and any other essential information to begin creating the
application. Once you’ve completed the initial step, you should see a full application
page asking for further details and information about your application. Fill in all in-
formation that is pertinent to and required for the application.

Once you’ve done that, we need to get our OAuth 2 keys that will allow us to begin
the actual development of our application. On the side of the application window, you
should see a section labeled Web Site. Click on this label to display the OAuth 2 keys,
as shown in Figure 9-15.

Figure 9-15. Facebook application OAuth 2 credentials

You will be given the application ID and secret, and asked for an application URL and
domain. Fill out this information, ensuring that the domain and site URL match the
location where the application will reside.

Once you’ve done this and saved the changes, copy the application ID and secret. This
brings us to our next step—starting the implementation.

Let’s begin by exploring a simple OAuth 2 integration to capture a user’s friends from
the Facebook Graph API.

Implementing OAuth 2 using PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_9/oauth2-php
-facebook.

362 | Chapter 9: Securing Social Graph Access with OAuth

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-php-facebook
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-php-facebook
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-php-facebook

The first integration example that we will look at is PHP. As we go through the example,
I’ll lay out the content of each file that we are working with to explain how the inte-
gration will capture our current user’s friends.

The first file we need to look at is the one containing the common variables and func-
tions that we will be using at each stage of this process.

We start by implementing the common variables and func-
tions that we will be using throughout the program. We’ll call this file common.php:

<?php
$key = 'b719d03bfca6cd9a91aa41995a080f8e';
$secret = 'fce944cdab7de45ef03a2dee37733ee8';

$callback_url = "http://www.mysite.com/oauth2-php-facebook/complete.php";
$authorization_endpoint = "https://graph.facebook.com/oauth/authorize";
$access_token_endpoint = "https://graph.facebook.com/oauth/access_token";

/***
 * Function: Run CURL
 * Description: Executes a CURL request
 * Parameters: url (string) - URL to make request to
 * method (string) - HTTP transfer method
 * headers - HTTP transfer headers
 * postvals - post values
 **/
function run_curl($url, $method = 'GET', $postvals = null){
 $ch = curl_init($url);

 //GET request: send headers and return data transfer
 if ($method == 'GET'){
 $options = array(
 CURLOPT_URL => $url,
 CURLOPT_RETURNTRANSFER => 1
);
 curl_setopt_array($ch, $options);
 //POST / PUT request: send post object and return data transfer
 } else {
 $options = array(
 CURLOPT_URL => $url,
 CURLOPT_POST => 1,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_RETURNTRANSFER => 1
);
 curl_setopt_array($ch, $options);
 }

 $response = curl_exec($ch);
 curl_close($ch);

 return $response;
}
?>

Common variables and functions.

OAuth 2 | 363

Then we define the keys needed for the application, which were provided when we
created the application.

The next block contains the URLs that we will use during the token exchange process.
These are:

The callback URL
Where the user will be forwarded after he authorizes the application to access his
personal information.

The authorization endpoint
The URL where the user will be forwarded on the Facebook site in order to au-
thorize the application.

The access token endpoint
On the callback page, this is the endpoint that will be called to exchange the au-
thorization code for an access token.

Last, we have a cURL function that will allow us to make GET, POST, and PUT requests
to the authorization endpoints as needed.

Now that we have our common variables and functions
file in place, we can begin the OAuth 2 process to get an access token for the user. As
we begin this process, we first need to forward the user to the Facebook authorization
endpoint so that he can accept the application permissions to access his protected
account information. In this example, the file is saved as index.php:

<?php
require_once "common.php";

//construct Facebook auth URI
$auth_url = $authorization_endpoint
 . "?redirect_uri=" . $callback_url
 . "&client_id=" . $key
 . "&scope=email,publish_stream,manage_pages,friends_about_me";

//forward user to Facebook auth page
header("Location: $auth_url");
?>

We include our common.php file for our standard variables and functions, and then
construct the authorization URL and query parameters that we will need to forward
the user to for him to authorize the application. The authorization URL is constructed
of:

• The authorization endpoint.

• The redirect URL—the location to forward the user to once he has accepted the
application permissions.

• The client ID—the key that was provided for the application when it was created.

Making the authorization request.

364 | Chapter 9: Securing Social Graph Access with OAuth

• Scopes—an optional string of additional data that you would like to be able to
access from a user, such as his email address, his news feed, or data about his
friends. We will explore the extent of the information that we can obtain using
scopes in the section “Implementation Example: Requesting More User Informa-
tion in the Facebook OAuth Process” on page 372, later in this chapter.

Once the endpoint and query parameters are concatenated, we forward the user to that
location so he can authorize our application. He will be presented with an accept screen
telling him what the application will have access to.

Once the user clicks the Allow button, he will be redirected to the callback URL that
we specified when forwarding the user to this authorization page.

If the user does not accept our application permissions, then the provider should for-
ward him back to the application page designated when the application was created.

Now that the user has authorized the application to access his
protected information, we can take the verification code that was sent as a query string
parameter to the callback page and exchange that for an access token. The callback
file, for the purpose of this example, is stored as complete.php:

<?php
require_once "common.php";

//capture code from auth
$code = $_GET["code"];

//build access token request URI
$token_url = $access_token_endpoint . "?client_id=$key&"
 . "redirect_uri=" . urlencode($callback_url) . "&"
 . "client_secret=$secret&"
 . "code=$code";

//get access token & expiration - parse individual params
$token_obj = explode('&', run_curl($token_url, 'GET'));
$token = explode('=', $token_obj[0]);
$token = $token[1];

After we insert our common.php file, we capture the verification code parameter that
was sent to this callback file as a query string parameter. This code represents the user’s
authorization and is what we’ll use to obtain an access token.

We then construct the URI that will contain the data to be sent along with the request
to fetch the access token via the query string. This object will include several parame-
ters, including:

• The verification code parameter that we obtained from the query string when the
user was forwarded from the permissions screen.

• The redirect URI, which is a direct copy of the callback URL used to get us to this
callback file.

• The client secret provided when we first created our application.

Obtaining the access token.

OAuth 2 | 365

We now need to make a request to get the access token and parse the parameters
returned. We make a cURL GET request to the URI we just built and then split the
return value of that request on the ampersands (&). We now have an array of variables
containing several parameters from the original string, which looked something like
the following, including the access token and expires parameters:

access_token=120037154734088|2.XPJGiXHQdc0xarTZWnjxlg__.3600.1297213200-796545577|
 -qlKX1pcIPb9YQT9x2KnaimKq-Y&expires=6543

Our access token string will be available in the first array location, so we split the key
and value based on the equals sign (=). We then obtain the access token value from
that final split.

We now have our access token we’ll use to make data requests on a user’s behalf,
accessing his protected data on the platform.

With our access token in hand, now it’s time to make some of
those protected data requests that we have been talking about. To accomplish this, we
use the access token that we have already obtained and make cURL requests to defined
Facebook URI endpoints. For this example, we will make a request to capture the
friends of the currently logged-in user:

//construct URI to fetch friend information for current user
$friends_uri = "https://graph.facebook.com/me/friends?access_token=" . $token;

//fetch friends of current user and decode
$friends = json_decode(run_curl($friends_uri, 'GET'));

//print friends
echo "<h1>CURRENT USER FRIENDS</h1>";
var_dump($friends)
?>

The first thing that we need to do is to construct the URI to the friends endpoint of the
Facebook graph API, attaching the access token to the end as a parameter.

Next, we will issue the cURL request to the Facebook endpoint to get the required data.
We issue a HTTP GET cURL request and then store the JSON-decoded return string
into a new variable.

We now have the object containing all of the current user’s friends. We simply display
an appropriate header and dump out the friend object that was returned back to us. In
a real implementation, the information acquired from the friend graph can be used to
obtain and display profiles for the user’s friends, thereby increasing the social element
of the containing site or service.

In this implementation, the $friends variable should contain the response friend ob-
jects for the current user, which will look something like the following:

object(stdClass)#1 (1) {
 ["data"]=>
 array(160) {

Making signed requests.

366 | Chapter 9: Securing Social Graph Access with OAuth

 [0]=>
 object(stdClass)#2 (2) {
 ["name"]=> string(13) "Eric Miraglia"
 ["id"]=>string(6) "212467"
 }
 [1]=>
 object(stdClass)#3 (2) {
 ["name"]=> string(11) "Paul Tarjan"
 ["id"]=> string(6) "218471"
 }
 [2]=>
 object(stdClass)#100 (2) {
 ["name"]=> string(13) "Erik Eldridge"
 ["id"]=> string(9) "668324387"
 }
 .
 .
 .
 [159]=>
 object(stdClass)#161 (2) {
 ["name"]=> string(10) "Yvan Aubut"
 ["id"]=> string(15) "100002041133104"
 }
 }
}

You can mimic this process for any of the URIs that Facebook defines in its developer
documentation for accessing a user’s protected information.

Implementing OAuth 2 using Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_9/oauth2-python
-facebook.

Now that we have covered a PHP example, let’s look at the same type of OAuth 2
implementation in Python to show how easy it is to build out this process across dif-
ferent languages and development environments.

Let’s dive right into the code to uncover the Python process for accessing an end user’s
protected resources on Facebook. I’ll take our implementation script and break it down
into logical pieces, describing the steps that we will take from beginning to end.

Before we jump into the code, let’s look at the configura-
tion file that we are using for Google App Engine:

application: oauth2-facebook
version: 1
runtime: python
api_version: 1

The App Engine configuration file.

OAuth 2 | 367

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-python-facebook
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-python-facebook
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_9/oauth2-python-facebook

handlers:
- url: /.*
 script: index.py

Since we have only one file that handles the complete OAuth 2 flow, index.py, all our
requests to the application will leverage that single file.

When running the application example, we deploy this script to the App Engine
project.appspot.com location. We’ll use this to register a callback URL with Facebook
when we create the application to get our key and secret for the OAuth process.

Now let’s jump into the index.py file.

The first section of our example code contains our
import statements, common variables, and the Facebook and OAuth endpoints that
we will use during the individual steps of the program flow:

import cgi
import urllib
import json

#client OAuth keys
key = 'e141c565a48ea5502714df288'
secret = '3df893c8c9c953a374fcb8'

#Facebook URIs and application callbacks
callback_url = "http://oauth2-facebook.appspot.com/index.py"
authorization_endpoint = "https://graph.facebook.com/oauth/authorize"
access_token_endpoint = "https://graph.facebook.com/oauth/access_token"

Our import statements provide us with a number of functions we’ll use throughout the
program flow:

cgi

The Common Gateway Interface (cgi) module provides a number of utilities for
CGI scripts. For our sample code’s requirements, we are using the cgi module to
be able to parse the query string. This will help us determine what stage of the
OAuth process we’re currently in.

urllib

This module allows us to perform GET and POST requests to the Facebook APIs
in order to obtain an access token and send a request to the provider for protected
user resources.

json

The JSON module allows us to parse the JSON string that is sent back by Facebook
from our access token request.

We then store our common variables—the key and secret that were provided when we
created our application. These will allow the provider to identify our application.

Modules, common variables, and paths.

368 | Chapter 9: Securing Social Graph Access with OAuth

Last, we define the callback URI to which we’ll return the end user once he accepts the
application permissions, as well as the authorization and access token endpoints that
will allow us to make requests against the provider for the token exchange process.

Now that we have the
common variables and endpoints set up, we can begin looking into the actual program
flow. This flow comprises the initial forwarding of the end user to the Facebook au-
thorization endpoint, capturing the access token once he has accepted the application
permissions, and making OAuth signed requests to Facebook to capture his friends:

#get query string parameters
params = cgi.FieldStorage()

"""
" If a code parameter is available in the query string then the user
" has given the client permission to access their protected data.
" If not, the script should forward the user to log in and accept
" the application permissions.
"""
if params.has_key('code'):
 code = params['code'].value

 #build access token request URI
 token_url = "%s?client_id=%s&redirect_uri=%s&client_secret=%s&code=%s" %
 (access_token_endpoint, key, urllib.quote_plus(callback_url),
 secret, code)

 #make request to capture access token
 f = urllib.urlopen(token_url)
 token_string = f.read()

 #split token string to obtain the access token object
 token_obj = token_string.split('&')
 access_token_obj = token_obj[0].split('=')
 access_token = access_token_obj[1]

 #construct URI to fetch friend information for current user
 friends_uri = "https://graph.facebook.com/me/friends?access_token=%s" %
 (access_token)

 #fetch friends of current user and decode
 request = urllib.urlopen(friends_uri)
 friends = json.read(request.read())

 #display access token and friends
 print 'Content-Type: text/plain'
 print ''
 print "<h1>Access Token String</h1>"
 print token_string
 print "<h1>Friends</h1>"
 print friends
else:
 #construct Facebook authorization URI
 auth_url = "%s?redirect_uri=%s&client_id=%s&scope=email,publish_stream,

Obtaining authorization, acquiring the access token, and making requests.

OAuth 2 | 369

 manage_pages,friends_about_me,friends_status,friends_website,
 friends_likes" % (authorization_endpoint, callback_url, key)

 #redirect the user to the Facebook authorization URI
 print "Location: " + auth_url

The first thing we’re doing in the preceding script is capturing the query parameters, if
any, from the address bar. We do this because, as we’ve discussed, when the user is
forwarded to the callback URI (this same file) once he has accepted the application
permissions, the query string returned will include a verification code parameter that
we’ll need to acquire an access token.

We then have the if/else statement to handle the two states of the program:

• The initial forwarding of the user to the permissions endpoint.

• The callback URI after the user has accepted the application permissions.

Let’s begin with the else part of the statement, as that will handle the first state that
we are looking for. We start out by constructing the URI endpoint to the Facebook
permissions page to allow the user to grant the application permission to access his
protected information. Besides the base URI, there are a few parameters that we pass
along:

redirect_uri

The URI to which the end user is forwarded once he has accepted the permissions
of the application. This URI must match the URI that you designated as the redirect
URI when you created the application.

client_id

The key that was provided when you first created the application. This will identify
your application in the request.

scope

Besides the basic information, these scopes will enable your application to pull
and set additional information on the user’s behalf. We will explore Facebook
scopes in more detail later in this chapter, in the section “Implementation Example:
Requesting More User Information in the Facebook OAuth Process”
on page 372.

Once the URI is constructed, we forward the user to the permissions page.

Now let’s focus on the initial part of the if statement. Once the user is forwarded back
to the script from the permissions page, the code parameter will be in the query string.
This moves the script into the if statement. We start the if statement by capturing our
code parameter. We then need to construct the request to capture the access token.
This request will need to be made via HTTP GET, so we build our GET string with the
fields required for capturing the access token:

370 | Chapter 9: Securing Social Graph Access with OAuth

client_id

The key that was provided to you when you first created the application. This will
identify your application in the request.

client_secret

The secret that was provided to you when you first created the application.

code

The verification parameter that was attached to the query string. It signifies that
the user has accepted the application permissions.

redirect_uri

The URI to which the end user is forwarded once he has accepted the application
permissions. This URI must match the URI that you designated as the redirect URI
when you created the application.

We then initiate our GET request to the access token fetch URI. The results from the
request will include a string containing the access token and an expiration parameter,
listed in key/value pairs separated by ampersands, so we simply need to parse that
string.

We separate the string first by the ampersands, giving us the key/value pairs for the
access token and expiration parameters. We then split the first key/value pair, the access
token, by the equals sign.

The value of the access token is now available to us. It will allow us to make requests
for the user’s protected data. If you print out the access token object, it should look
something like the following:

access_token=199195400097233|2.4O3o8hqlgtJirbF4NpllbQ__.3600.1297281600-796545577|
 XXPD1WUDwiy1wm2N8S5DAHRlFdY&expires=3962

Note that the access token format returned from the provider may differ from service
to service. For instance, when we go through the OAuth 2 process to connect to Gowalla
servers, Gowalla responds back with a JSON object similar to the following:

{
 'username': 'jcleblanc',
 'access_token': '79b256c764618d1b8260a10c0',
 'expires_in': 1209580,
 'expires_at': 'Fri, 31 Dec 2010 19:19:57 −0000',
 'scope': 'read',
 'refresh_token': 'b259f5d4fa280a9687b18dfa57b2'
}

Nevertheless, with the access token that we now have available, we can begin con-
structing requests to the Facebook Graph API for the user’s social information.

We construct the URI to capture the current user’s friends, attaching the access
token to the end of the URI as a query string parameter. We then make an HTTP GET
request to that URI and capture the JSON return value containing the friends.

OAuth 2 | 371

The last part of the script simply dumps our access token object and the friend object
returned to us.

You can mimic this request for the current user’s friends to instead capture the user’s
profile, update his stream, modify his pages, or any number of other data sources that
Facebook defines in its Graph API. You can find more information on the Facebook
Graph API (and the data that may be obtained) at http://developers.facebook.com/docs/
reference/api.

This full example is available via Github at https://github.com/jcleblanc/
oauth/tree/master/oauth2-python-facebook.

Implementation Example: Requesting More User Information
in the Facebook OAuth Process
I mentioned at a few points throughout the OAuth 2 Facebook examples that we would
dive deeper into the topic of scopes. You might remember that we used the scope pa-
rameter in the URI where the user was forwarded to go through the authorization flow:

//construct Facebook auth URI
$auth_url = $authorization_endpoint
 . "?redirect_uri=" . $callback_url
 . "&client_id=" . $key
 . "&scope=email,publish_stream,manage_pages,friends_about_me";

The purpose of the scope parameter is to allow an application to request certain social
information from a user.

Some providers bind these scopes directly to the application ID or key
issued when you first create your application instead of dynamically in
the initial OAuth request token request. This means that they do not
require a scope parameter in that initial request. Providing the scope
parameter, such as in this Facebook implementation, allows you to de-
fine scopes in a very dynamic manner.

Facebook includes an extensive number of scopes that we can include as a comma-
separated list in the authorization request.

Data permissions

Data permissions will allow your application to access information about a user, or a
user’s friends (in the form of a friend request), as shown in Table 9-10.

372 | Chapter 9: Securing Social Graph Access with OAuth

http://developers.facebook.com/docs/reference/api
http://developers.facebook.com/docs/reference/api
https://github.com/jcleblanc/oauth/tree/master/oauth2-python-facebook
https://github.com/jcleblanc/oauth/tree/master/oauth2-python-facebook

Table 9-10. Data permissions

User permission Friend permission Description

ads_management Not available Enables your application to manage ads

and call the Facebook Ads API on the user’s

behalf.

email Not available The user’s primary email address.

read_friendlists manage_friendlists Gives your application read access to the

user-created friend lists.

read_insights Not available Gives your application read access to the

data insights for user-owned pages, ap-

plications, and domains.

read_mailbox Not available Gives your application read access to the

user’s mailbox.

read_requests Not available Gives your application read access to the

user’s friend requests.

read_stream Not available Gives your application read and search ac-

cess to all posts in the user’s news feed.

user_about_me friends_about_me The About Me section of the user’s profile.

user_activities friends_activities Recent user news feed activities.

user_address Not available The address listed in the user’s profile.

user_birthday friends_birthday The birthday listed in the user’s profile.

user_checkins friends_checkins The user’s checkins.

user_education_history friends_education_history Education information listed in the user’s

profile.

user_events friends_events List of events the user is attending.

user_groups friends_groups List of groups the user is involved in.

user_hometown friends_hometown The hometown listed in the user’s profile.

user_interests friends_interests Interests listed in the user profile.

user_likes friends_likes Pages that the user has liked.

user_location friends_location The user’s last known location.

user_mobile_phone Not available The user’s mobile phone number.

user_notes friends_notes Any notes the user has added to her

profile.

user_online_presence friends_online_presence The user’s online/offline status.

user_photo_video_tags friends_photo_video_tags Photos/videos the user has been tagged

in.

user_photos friends_photos The photos that the user has uploaded.

user_relation

ship_details

friends_relation

ship_details

The user’s relationship preferences.

OAuth 2 | 373

User permission Friend permission Description

user_relationships friends_relationships The user’s family and personal

relationships.

user_religion_politics friends_religion_politics The user’s religious and political

affiliations.

user_status friends_status The most recent user status message.

user_videos friends_videos Videos that the user has uploaded.

user_website friends_website The URLs listed in the user’s profile.

user_work_history friends_work_history The work history listed in the user’s

profile.

xmpp_login Not available Enables applications that integrate

Facebook chat to log in users.

Publishing permissions

Publishing permissions (Table 9-11) enable the application to push or modify content
on the user’s behalf. These permissions are important when you’re attempting to use
viral channels to promote your application to new users or to keep current users
engaged.

Table 9-11. Publishing permissions

Permission Description

create_event Allows your application to create and modify events on the user’s behalf.

offline_access Allows your application to make requests for privileged user information at any time. This permission

makes any access tokens long-lived, as opposed to the standard short-lived access token that is

provided through OAuth.

publish_checkins Enables your application to perform checkins on the user’s behalf.

publish_stream Enables your application to publish content, comments, and likes to the user’s news feed at any time.

rsvp_event Allows your application to RSVP to events on the user’s behalf.

sms Enables your application to send text messages to the user and allows it to respond to messages from

the user via text messaging.

Page permissions

Page permissions (Table 9-12) have a simple task: to provide access tokens for pages.
This will allow the application to capture and set data in that context.

Table 9-12. Page permissions

Permission Description

manage_pages Allows the application to obtain access tokens for pages that the user is the administrator of.

374 | Chapter 9: Securing Social Graph Access with OAuth

Implementation Example: End-User Experience
No matter which development implementation example you chose—PHP or Python—
the experience for the end user is the same.

During the first phase of the OAuth 2 process, the end user is forwarded to the provider
site, where she can log in (unless she is already signed in) and accept the application
permissions, much like what we’ve seen in our Facebook examples and what is shown
in Figure 9-16.

Figure 9-16. Facebook OAuth 2 application authorization screen

Generally, a provider will display any number of the following pieces of information
on the permissions page:

• The application title, defined by the application creator.

• A description of what the application will do, defined by the application creator.

• A chosen thumbnail (usually, a company or product logo), defined by the appli-
cation creator.

• Details on the type of protected information the application is requesting access
to. The application creator generally selects the permissions, but the provider de-
fines the specific text that is displayed to the end user.

• Links to a privacy policy or methods for revoking access for the application, defined
by the provider.

On this permissions screen, the end user will generally have two options:

• She can allow the application to access her protected information and perform
actions on her behalf. When she accepts these permissions, she will be forwarded

OAuth 2 | 375

to the redirect_uri defined by the application creator when he created the
application.

• She can deny the application access to her protected information. This will imme-
diately cease the OAuth process, and the user will typically be forwarded back to
the main application or information site denoted by the application creator.

If the user accepts the permissions, she will then be presented with the application that
she has just granted access.

Tips for Debugging Request Issues
While OAuth 2 provides a much simpler approach to authorization than its predeces-
sor, OAuth 1.0a, you still might encounter signature issues and provider errors when
going through the workflow to generate or work with an access token. Fortunately,
there are some processes, tricks, and tips to help us develop scalable authorization
flows that can appropriately handle most of the errors or use cases that come up.

Checking your request data

As with the OAuth 1.0a token exchange process, one of the best debugging methods
that you can implement is simply to compare the data that you are sending via GET,
POST, or the HTTP request header to the service provider. The solution to a signature
mismatch issue can be as easy as dumping the payload that you are sending along, but
the most important thing you can do to prevent this error is to ensure that the data that
you are sending at each step matches the content that the provider requires.

There are several common payload issues to watch out for, including:

• Misspelling one or more of the required keys. This is a simple issue to resolve but
comes up quite often.

• Implementers of the OAuth 2 specification may veer away from the specification
requirements (and what is listed in this overview) by implementing a slightly dif-
ferent required key set or key naming convention, or even an older version of the
draft specification. This can create situations where you send along the keys re-
quired for a particular step in the process, only to have the provider require different
or additional information. Be aware of the requirements of the provider that you
are working with before beginning integration.

• Inputting bad values for keys. Numerous keys in the payloads being sent to the
provider require specific values to be set, such as the grant_type or response
_type parameters that are required at different steps of the process. Ensure that the
values that you are setting for your keys meet the specifications set forth by the
provider.

The easiest way to protect yourself against such issues is to simply understand what’s
required by the provider you are working with. In the early stages of a specification,

376 | Chapter 9: Securing Social Graph Access with OAuth

some implementers tend to pick and choose the features they want to integrate into
their version of the core implementation. This doesn’t mean that those features are
incorrect, it simply means that they are nonstandard and will require some additional
effort to implement.

Tracking access token expiration

The process through which we can refresh our access tokens has been mentioned a few
times already in the OAuth 2 section. When working with a provider that imposes a
lifespan on its access tokens, you must keep track of your access tokens’ status in your
client implementation.

There are a few things we need to check when determining whether to attempt to refresh
the access token. First, when we exchange our code parameter for an access token, we
are provided with an expires_in parameter that specifies the time until our token
expires. If you’re storing the access token for a user for later use (and you should be,
to make the application easier to work with for repeat users), then you can use this
parameter to extrapolate when the token will expire and store this value as well. When
we next use the access token, we can check the expiration to see if it is time to refresh
the token for the user.

The other aspects to watch for are the errors that are returned from the provider. If we
check the expiration when we first use the access token, we can find out when it expires,
but what if we’ve validated an access token and it expires while we are making requests
to the provider for protected resources? That’s where checking the errors produced by
the provider comes into play. If you watch for an error stating that the access token is
invalid, that’s your cue to try to refresh it. This way, instead of sending back an error
to the user saying that the request could not be processed, you can try to acquire a new
token and make the request again. Since you do this without user interaction, she will
never know that there was a problem.

Responding to error codes

I cannot stress enough that you have to be precise when filling out your
client details for a new OAuth application on a provider site, especially
when registering a redirect URI. Some providers perform an exact match
comparison between the details you’ve entered and what is being used
in the program flow, so any discrepancy may generate client errors. For
instance, exact URI checks for the redirect URI may produce an error if
you’ve registered your redirect as server.example.com but you’re for-
warding the user to http://server.example.com. Be precise—it can save
you a lot of headaches.

Generally, most providers will support a number of potential errors when you’re mak-
ing requests to the authorization server. Accounting for these errors and acting upon

OAuth 2 | 377

them with appropriate output or follow-up steps is key to building a well-rounded
product:

HTTP/1.1 401 Unauthorized
Content-Type: application/json
Cache-Control: no-store
{
 "error":"invalid_grant",
 "error_description":"The access grant has expired"
}

There are a few defined fields for generating error messages, listed in Table 9-13.

Table 9-13. Error message parameters

Parameter Description

error (required) The error that was triggered. This parameter can contain only one error. Possible errors are

available in Table 9-14.

error_description

(optional)

Additional information about the error that was produced. The description should provide

human-readable information on the cause and potential resolution of the error.

error_uri (optional) Expanding on error_description, error_uri provides a URL to a site with additional

human-readable information about the error that was produced.

There are a number of error parameters that may be generated by the provider. These
are listed in Table 9-14.

Table 9-14. Provider error messages

Error Description

access_denied When the end user is forwarded to the resource owner (provider) site to authorize the client

application, she has a choice of accepting or denying that request. In addition, users may revoke

permission for your application to access their personal information at any time. These two events

can be a root cause of an access_denied error.

This error message can also be generated if the authorization server has denied the request.

Although access_denied may be used as a generic server message for a multitude of errors,

some providers may offer additional details on the error’s nature. One common reason for the

server denying a request involves rate limiting. Providers may limit the number of server requests

that you can make to them within a certain span of time. A rate limiting error will usually have

additional details to let you know that this is the problem.

invalid_client This error is normally produced when the client that you are claiming to be does not exist from

the provider’s standpoint. One of the chief causes of this error is that the client_id parameter

that was attached with the requests is not a valid ID with the provider (e.g., perhaps due to a

copy/paste error). Check to ensure that the client_id parameter you’re using matches the key

you were issued when you set up your application on the provider site.

invalid_request The invalid_request message is produced due to a malformed request from the client. There

are a few reasons why a request may be deemed malformed:

• The request is missing a required parameter. Check that you’ve included all of the

parameters that the provider requires in your request.

378 | Chapter 9: Securing Social Graph Access with OAuth

Error Description
• The request contains an unsupported parameter or parameter value. If you are using a

parameter (or a parameter value) that is not supported by the provider, the provider will

produce this error response. Ensure that the parameters and values you’ve used are ac-

ceptable to the provider.

• The request is somehow otherwise malformed. There may be issues with the request being

double-encoded, having additional characters, or including some other element that it

should not. Dump your request string and visually inspect it for such malformations.

In short, this error means something is wrong with the parameters, values, or the request object

that you have used. Check your provider’s requirements and input only those parameters and

parameter values that the provider deems acceptable.

invalid_scope Many providers will allow you to pick from a number of scopes when you create your application

(unless they just use a blanket scope for every implementation). These scopes relate to blocks of

protected information that your client application may wish to access, such as profile details and

friends.

If the provider requires the scopes parameter when you’re forwarding the user to its authori-

zation site and this error is produced, one of the following is usually the culprit:

• You chose the wrong scopes when setting up the client application (e.g., you chose the

profile scope, but your client is trying to access user friends). This case sometimes comes

up when scopes are preregistered with the provider rather than defined manually by

the client. Ensure that the scopes you chose are adequate for the data that you’re trying to

access.

• The scopes parameter is missing. Since the scopes parameter is optional according to

the OAuth 2 specification, check the provider documentation to see if the provider requires

it.

• The scopes provided in the scopes parameter are incorrect or malformed; check to ensure

that any scope entered is exactly what is required by the provider.

redirect_uri_mis

match

This error is generated when the redirect_uri parameter that you specify in your requests

does not match the redirect URI that you preregistered with the provider when creating your

application. These two must match exactly, or you will see this type of error.

unauthorized_cli

ent

This error is produced when the client does not have significant privileges to use the

response_type that is being requested when the user is forwarded to the resource owner for

an access grant.

In many instances, this error will be produced if your client cannot access the token from the

request (through either the token or code_and_token values for the response_type

parameter).

A client needs only the response_type of code to complete the flow and be granted an access

token, so restrict what you are requesting in the response_type to only what you need.

unsuppor

ted_response_type

When you’re forwarding the end user to the resource owner for an access grant, one of the

required parameters in your request is response_type, which may be code, token, or

code_and_token. This error means that the provider does not support the response type that

you used. Check to ensure that the response type you’ve used is correct and is supported by the

provider.

OAuth 2 | 379

Many providers also implement a number of error responses beyond those defined by
the OAuth 2 specification. Understanding what these error responses mean and react-
ing to them appropriately can help you reduce the amount of debugging required when
issues arise.

Conclusion
In this chapter, we have explored the simple process through which many providers
traditionally allowed an application to access their services—the username and pass-
word login architecture of basic authentication. Although basic auth provided appli-
cation developers with an incredibly easy, fast, and high-performance implementation
backbone, it asked users to expose their personal login information through a username
and password. When this type of architecture is mixed with external developers, there
are bound to be security ramifications to exposing that data.

We then explored the two current OAuth implementations being used today, OAuth
1.0a and the emerging OAuth 2 standard. By examining workflow diagrams and sample
implementations, we have seen firsthand the vast improvement these specifications
represent over the basic authentication model. Working with tokens instead of user
credentials puts control into the hands of the user—who can thus see who has access
to their private data—and the provider that issued the tokens. Having this control
means that if something malicious or unwanted happens in a client application, the
user or provider can simply revoke the access token linking the user to the application.

The evolution of the OAuth standard demonstrates how open source authorization
models are working to increase implementation and ease of use, encouraging adoption
of the specification by reducing the complexity and effort required to implement it.

380 | Chapter 9: Securing Social Graph Access with OAuth

CHAPTER 10

The Future of Social: Defining Social
Entities Through Distributed

Web Frameworks

Expanding upon our exploration of online social graphs, in this chapter we will look
at several protocols that are trying to change the face of social media and sharing. With
a constantly expanding user graph, sites employing these protocols are now using
comment sharing, pulling social references from URLs or email addresses, and trying
to standardize actions users perform on a site to derive rich reference data. In this
chapter, you’ll find out how.

What You’ll Learn
This chapter will explore several specifications and protocols that are attempting to
take what we currently know about user social graphs and expand it far beyond the
bounds of any single site or container. These distributed web frameworks show us how
leveraging user interactions with any content on the Web can help us build a rich
network of customizations for a person. They allow for a much wider range of social
graph development than is possible with traditional social networking containers such
as Facebook, YAP, Orkut, and LinkedIn.

These are the topics that we will cover in our exploration:

• How to use the Open Graph protocol to turn any traditional website into a rich
source of entity information.

• How the Activity Streams specification allows developers to create a unified format
for broadcasting user activities to the rest of the Web, and how to determine what
information should be displayed in these streams.

• WebFinger, which lets us use a simple email address to build out an extensive
network of entity objects in a social graph.

381

• How OExchange defines methodologies that enable us to share any URL with any
other service on the Web.

• PubSubHubbub, which leverages commenting and user feedback on a website and
shows us how to build out a network of interconnected syndication sites for that
feedback, pushing information from a parent source to a series of child listener
sites.

• How the Salmon protocol expands upon the concepts of PubSubHubbub by ena-
bling us not only to publish user comments and feedback downstream to a series
of child listeners, but also to publish the content back upstream to the parent
source.

Once we explore these social enhancement specifications, we will dive into some ad-
vanced social graphing examples and learn how to implement these technologies to
extend a user’s social graph beyond any single site or container.

The Open Graph Protocol: Defining Web
Pages As Social Entities
In many of the previous chapters, we have discussed the fact that social graphs comprise
two elements: relationships to people (your human social graph) and relationships to
things (your entity social graph). The Open Graph protocol focuses on the latter,
building web pages to become rich information entities in our social graph.

Entity relationships are vitally important in defining who a user is and what her interests
are and help us determine, for example, products that she may be more inclined to
purchase or other things she may be interested in. Entity relationships can help us target
everything from applications to ads directly to the user’s social profile—that is, to who
she is on the Web. The more information that is available in a user graph, the more
relevant our targeting can be for that user.

Let’s explore how the Open Graph protocol works to define user entities, learn how to
implement the metadata behind the protocol, and view some practical examples of the
protocol being used in the wild.

The Rise and Fall of Metadata
When metadata programming was in its infancy over a decade ago, it had a noble goal—
to bring cohesion to the Web so that someone could extract rich information about a
website easily and in a standardized way. This lofty goal never really made it to fruition,
due in large part to inadequate adoption of its practices and the lack of fully standar-
dized implementations. Simply put, sites implementing rich data tags did so for their
own goals, not to enrich the Web as a whole.

382 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Since the Open Graph protocol has come on the scene, there’s been a resurgence in the
usefulness of site metatagging, chiefly due to the Facebook Like button.

The Facebook Like button is a means by which third-party sites allow
a user to “like” their page, which sends a message back through to the
user’s Facebook activity stream. The Open Graph protocol is the back-
bone of this technology in that it allows Facebook to extract title, de-
scription, media data, and more from the third-party site.

When a third-party site integrates the Facebook Like button, it needs to also integrate
OpenLike protocol metatagging for Facebook to extract the most information about
its page. Because application developers want to tap into Facebook’s increasingly large
audience, adoption rates of these metaprogramming standards have increased. The two
elements metaprogramming lacked in its unsuccessful infancy were purpose and con-
sistency, both of which are delivered by the Facebook Like button.

Even though the largest adoption of these standards comes through the Facebook im-
plementation, the metadata derived from a page integrating the Open Graph protocol
is open to anyone. There is no reason why you should not take advantage of the col-
lateral benefits of the Facebook success story.

How the Open Graph Protocol Works
The Open Graph protocol uses <meta> tag markup to deliver a comprehensive view of
a web entity within a user’s social graph. These <meta> tags provide data about what is
being described on a page or web source, such as a business, movie, actor, or sports
team.

Besides the type of information that describes what is being displayed on the page, you
can also include geographic information and contact details.

The Open Graph ecosystem comprises two main elements:

An Open Graph producer
This is the site that includes <meta> tag information about the entities being de-
scribed.

An Open Graph consumer
This is a developer or site that consumes that <meta> tag information placed on a
site—for example, the Facebook Like button integration.

These are the basics of the Open Graph protocol. The web application, or consumer,
makes a request to the website for information about the site. The site, or producer,
will respond with the metadata about itself. This process is depicted in Figure 10-1.

Next, we’ll explore how to work with and implement the Open Graph protocol.

The Open Graph Protocol: Defining Web Pages As Social Entities | 383

Implementing the Open Graph Protocol
Since the Open Graph protocol uses a simple implementation based on metadata,
incorporating it into your site is fairly straightforward and requires only some <meta>
tags—the exact number depending on how much data you are looking to expose—in
the <head> of your web pages.

Since this is a simple format, the main things we’ll explore in this technology have to
do with what information you can expose and how to expose it. The potential data you
can expose can be broken up into page metadata, geographic information, contact
information, and object types. Let’s explore what these tags look like.

Defining page metadata

Page metadata is the foundation for transforming a web page into a rich data object in
a user’s social graph. The Open Graph protocol defines a number of metadata prop-
erties that are required for implementation. These are listed in Table 10-1.

Table 10-1. Required page metadata properties

Property Description

og:image An image to be associated with the object, such as a thumbnail or screenshot.

og:title A title describing the site object, much like using the standard HTML <title> tag.

og:type The type of object being represented on the page, such as a sports team or business.

og:url The URL to the information page for the object.

Let’s look at a practical example of how metadata is represented on a Yelp product
review page for the Restaurant at Wente Vineyards in Livermore, CA:

<html xmlns:og="http://ogp.me/ns#">
<head>
<title>The Restaurant at Wente Vineyards - Livermore, CA</title>
<meta property="og:url" content="http://www.yelp.com/biz/gATFcGOL-q0tqm9HTaXJpg">
<meta property="og:type" content="restaurant">
<meta property="og:title" content="The Restaurant at Wente Vineyards">
<meta property="og:image"
 content="http://media2.px.yelpcdn.com/bphoto/iVSnIDCj-fWiPffHHkUVsQ/m">
...
</head>

Figure 10-1. Open Graph protocol request/response workflow

384 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

...
</html>

In addition to the required tags, there are several tags whose implementation is optional
but recommended for any site. These are listed in Table 10-2.

Table 10-2. Optional page metadata properties

Property Description

og:description An arbitrary description (which could be several sentences long) of the object being represented on the

site.

og:site_name The root site that the page is associated with. For instance, a single movie page on IMDb.com would set

the content of the og:site_name <meta> tag to IMDb.

Let’s go back to our previous Yelp example. Should Yelp wish to extend that review
with the additional metadata properties from Table 10-2, it might look like this:

<meta property="og:site_name" content="Yelp">
<meta property="og:description" content="The award winning Restaurant at Wente
 Vineyards is truly a feast for the senses! The open architecture is inviting
 and the air alive with rich, savory aromas.">

Specifying Yelp as our site name indicates that this page is a small piece of the overall
entity graph that is Yelp.com, comprising many reviews. The site_name offers a link to
the richer social graph, and the description provides more detail about a page.

Specifying geolocation data

The Open Graph protocol supports the ability to define geographical information
within the metadata tags. This is a valuable option for any site that is representing
something with a real-world location, such as the restaurant we just looked at in the
Yelp example.

There are a number of properties available for defining geographical information, from
address information to latitude and longitude. These are specified in Table 10-3.

Table 10-3. Geolocation properties

Property Description

og:country-name The country name associated with the real-world object.

og:latitude The geographical latitude of the real-world location represented on the page.

og:locality The city/town/village associated with the real-world object.

og:longitude The geographical longitude of the real-world location represented on the page.

og:postal-code The postal or zip code associated with the real-world location.

og:region The state or province associated with the real-world location.

og:street-address A free-form text address associated with the real-world location.

The Open Graph Protocol: Defining Web Pages As Social Entities | 385

http://yelp.com

Going back to our previous Yelp example, let’s extend the page metadata tags with our
new geographical information:

<html xmlns:og="http://ogp.me/ns#">
<head>
<!-- INSERT: Required OGP Tags -->
<meta property="og:latitude" content="37.6246361">
<meta property="og:longitude" content="-121.7567068">
<meta property="og:street-address" content="5050 Arroyo Rd" />
<meta property="og:locality" content="Livermore" />
<meta property="og:region" content="CA" />
<meta property="og:postal-code" content="94550" />
<meta property="og:country-name" content="USA" />
...
</head>
...
</html>

These tags are tremendously valuable for any site that represents a physical location,
such as a business. It not only provides immediate address information, but it also
integrates latitude and longitude coordinates that can be used to plot locations on
mapping products or provide directions from a viewer’s current location.

Specifying contact information

Taking the available metadata even further, let’s assume that you are a business owner
or that you provide some type of content where you want people to be able to contact
you or your company. This is where contact <meta> tags come into play.

Using these tags (shown in Table 10-4), a site owner can include main contact infor-
mation that people viewing the site can use.

Table 10-4. Contact properties

Property Description

og:email A contact email address for the business or site. Since this information is made publicly available, you

should always use a dedicated email address for only the site in question.

og:fax_number A contact fax number for the business or site.

og:phone_number A contact phone number for the business or site.

If we expand even further on our previous Yelp restaurant review page to now include
contact information, the new section may look something like this:

<html xmlns:og="http://ogp.me/ns#">
<head>
<!-- INSERT: Required OGP Tags -->
<meta property="og:email" content="restaurant@wente.com" />
<meta property="og:fax_number" content="925-456-2301" />
<meta property="og:phone_number" content="925-456-2300" />
...
</head>

386 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

...
</html>

Implementing contact information in conjunction with geographic data can provide
enough data for any site to define a profile page for your business, such as how Yelp
supplements its data with business contact information and an associated map to show
the location.

Attaching video data

If you want to attach video data on your page and have it reflected in the Open Graph
protocol metadata, you’ll employ the og:video tag and its children.

There are a number of tags available for specifying a video file, as shown in Table 10-5.

Table 10-5. Video properties

Property Description

og:video The URL to the video file that you have embedded on the page.

og:video:height (optional) The height of the video in pixels.

og:video:type (optional) The MIME type for the video. If no type is specified, the parser should attempt to infer the

type. The Open Graph protocol suggests using a default of application/x-shock

wave-flash until HTML5 video is more common.

og:video:width (optional) The width of the video, in pixels.

If we look at what these features look like as <meta> tags, we can see the implementation
potential:

<html xmlns:og="http://ogp.me/ns#">
<head>
<!-- INSERT: Required OGP Tags -->
<meta property="og:video" content="http://www.example.com/keyboardcat.flv" />
<meta property="og:video:height" content="450" />
<meta property="og:video:width" content="550" />
<meta property="og:video:type" content="application/x-shockwave-flash" />
...
</head>
...
</html>

Using video metatagging for individual pages can help to surface videos underneath a
root site, helping site viewers more easily discover its video content.

Attaching audio data

Much like the og:video tag, og:audio allows a site promoting audio content to tag
information about the music being played on a particular page. Table 10-6 lists the
available tags.

The Open Graph Protocol: Defining Web Pages As Social Entities | 387

Table 10-6. Audio properties

Property Description

og:audio The absolute URL to the audio track being presented.

og:audio:album (optional) The album name.

og:audio:artist (optional) The artist name.

og:audio:title (optional) The audio track title.

og:audio:type (optional) The MIME type of the audio track. If no type is specified, the parser should attempt to infer

the type.

Here’s how these <meta> tags look in context:

<html xmlns:og="http://ogp.me/ns#">
<head>
<!-- INSERT: Required OGP Tags -->
<meta property="og:audio" content="http://www.example.com/song.mp3" />
<meta property="og:audio:album" content="My amazing album" />
<meta property="og:audio:title" content="The greatest song ever" />
<meta property="og:audio:artist" content="The best band" />
<meta property="og:audio:type" content="application/mp3" />
...
</head>
...
</html>

Implementing tagging for individual audio tracks on pages provides the same benefits
as it does for video tags. You are able to surface individual pages more readily to indi-
viduals who are searching your content and provide them with the general information
they need to get an idea of what is offered on your site.

Defining products using object types

Every element in an entity social graph is by definition a type of object. At a base level,
that’s all an entity is—an object describing the user interaction and any relevant infor-
mation about it.

Defining an object type within the Open Graph protocol adds the entity to a specific
section of the site (i.e., organizes the site by category). You define an object type using
the following syntax:

<meta property="og:type" content="activity" />

The property value remains og:type, but you’ll change the content value to whatever
object type best defines the page. The types can be further grouped into individual
categories. For example, the first category we’ll look at, activities, should be used when
the page content relates to sporting events, outings, physical activities, conferences, or
the like.

388 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Activities

activity sport

The next category, businesses, encompasses sites that contain information about com-
panies, such as restaurants, company websites, or any other business presence on the
Web.

Businesses

bar café restaurant

company hotel

Use group types when delivering content to people who are interested in specific
sporting information or certain causes. Pages that might include these object types are
football, baseball, or hockey team or league sites; sites that are attempting to gain
community support for causes or events, such as marches for cancer; and rally or protest
sites.

Groups

cause sports_league sports_team

Organization object types are intended for groups that are not included under busi-
nesses, such as schools, nonprofits, and federal or local government sites.

Organizations

band non_profit university

government school

If the site content is devoted to a specific person, using the people object types will
ensure that the site is placed in the appropriate category within the graph. This category
may include fan pages, sites including biographical data for individuals, or campaign
sites for political candidates.

People

actor director politician

athlete musician public_figure

Place objects target pages that contain geographical, map, or location-based data. This
may include landmarks such as the Statue of Liberty, city informational websites, or
sites that provide information on specific countries.

The Open Graph Protocol: Defining Web Pages As Social Entities | 389

Places

city country landmark

Products and entertainment objects cover a number of the remaining page attributes
and include items like books, movie sites, and TV shows. Should the product page
include a UPC or ISBN, you may use the og:upc or og:isbn object types to better specify
the page content.

Products and entertainment

album food product

book game song

drink movie tv_show

Finally, the websites group is used to denote many social media outreach channels that
do not fit into the products and entertainment category. These include articles, blogs,
and generic websites. The website type can be used as a generic attribute for sites that
do not fit in above categories.

Websites

article blog website

Using this extensive list of object types, you can specify the kind of information con-
tained within your page, properly categorizing the elements of a user’s online entity
graph and thus providing a rich extension to the standard definition of a social graph.

A Real-World Example: The Facebook Open Graph
The Facebook implementation of the Open Graph protocol (http://developers.facebook
.com/docs/opengraph) allows a site owner to represent his site, business, or product
page as if it were a Facebook page, without it actually residing in the social network.

The Facebook Open Graph consists of a few pieces, implemented by a site owner:

• The Open Graph protocol <meta> tags to define the site object

• A few Facebook administration tags

• The Facebook Like button

It currently only supports web pages that represent real-world things such as sports
teams, movies, actors, restaurants, etc.

The Facebook Like button is a simple page implementation that displays a button with
the word Like on it. When a user likes a page, his name and profile—as well as those

390 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://developers.facebook.com/docs/opengraph
http://developers.facebook.com/docs/opengraph

of any of his friends who have liked the same page—is displayed, as shown in
Figure 10-2.

Figure 10-2. The Facebook Like button on a website

Once the user clicks Like, he is connected to the page containing the Like button, and
the like instance is subsequently published on his profile. The Like button is included
on a page via either an iframe or the Facebook JavaScript API and the <fb:like> XFBML
tag.

Under the likes and interests sections of the user’s profile, the new like instance will be
displayed, and under his news feed’s recent activity, a like notice will be posted
(Figure 10-3).

Figure 10-3. How a Facebook like instance appears on a Facebook profile

When a user likes a page, he enables the liked page source to publish updates, much
as if it were a real Facebook page.

The markup

Now that we understand how the Facebook Open Graph works from start to end, let’s
take a look at what the code looks like within a website. We will use the Open Graph
protocol website as the source of our markup: http://opengraphprotocol.org/.

The first pieces of markup information that we want to look at are the <meta> tags that
will add the Like button so we can build an entity profile for the page. If we view the
page source, we are presented with the following Open Graph tags:

<meta property="og:title" content="Open Graph Protocol" />
<meta property="og:type" content="website" />
<meta property="og:url" content="http://opengraphprotocol.org/" />
<meta property="og:image"
 content="http://opengraphprotocol.org/open_graph_protocol_logo.png" />
<meta property="og:description" content="The Open Graph protocol enables any

The Open Graph Protocol: Defining Web Pages As Social Entities | 391

http://opengraphprotocol.org/

 web page to become a rich object in a social graph. " />
<meta property="fb:admins" content="706023" />

We’ve already talked about the standard Open Graph tags, but the Facebook Open
Graph adds a few administrative tags that we need to go over.

You can create a Facebook application from its setup site at http://devel
opers.facebook.com/setup/. This will allow you to associate a series of
Open Graph–defined pages with a single umbrella application.

The fb:admins <meta> tag enables you to associate a Facebook Like button with an
account or page that you own. This gives you access to Facebook’s well-associated
graph of entity information and allows for trackback to an internal Facebook page
where users can collect more information about your page.

<meta property="fb:admins" content="USER_ID1, USER_ID2, ..." />

The other administrative tag is the Facebook application ID, which provides a way for
you to associate a series of pages with a single application. This allows you to treat all
sources as if they were under the application umbrella.

For example, let’s say that you have a news site with thousands of pages that all have
Facebook Like buttons on them. With the fb:app_id tag, you can associate all of those
pages with a single application ID, allowing you to programmatically publish updates
to individuals who have liked any of the pages under that application ID umbrella.

<meta property="fb:app_id" content="143306585343"/>

The last piece of markup required can either be the JavaScript API and the <fb:like>
XFBML tag, or an iframe that loads the actual Like button. This markup allows you to
create a direct link for already signed-in users to like a page without having to go through
their Facebook accounts.

<iframe src="http://www.facebook.com/plugins/like.php?href=http%3A%2F%2F
 opengraphprotocol.org%2F&layout=standard&show_faces=true&
 width=450&action=like&colorscheme=light" scrolling="no"
 frameborder="0" allowtransparency="true" style="border:none; overflow:hidden;
 width:450px; height:80px;"></iframe>

The Facebook Open Graph is definitely the biggest implementation of the Open Graph
protocol. As such, it is pushing adoption of the protocol, allowing developers who don’t
necessarily care about the Facebook implementation to take advantage of the same
metadata tags that those who do use it have implemented on their sites.

Practical Implementation: Capturing Open Graph Data from a Web Source
We’ve discussed, at length, the topic of how you can make any site a producer of Open
Graph information—that is, a rich provider of entity-based social data. Now that we
understand that, let’s look into the process of creating an Open Graph consumer.

392 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://developers.facebook.com/setup/
http://developers.facebook.com/setup/

We will explore similar implementations of this process in two languages: PHP and
Python. The end product is the same, so you can use either one you prefer.

PHP implementation: Open Graph node

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/opengraph
-php-parser.

First, let’s explore an Open Graph protocol parser implementation using PHP. In this
example, we’ll develop a class that contains all of the functionality we need to parse
Open Graph tags from any web source that contains them.

So what do want to get out of this class structure? If we break it down into a few
elements, at a base level our only requirements are that it:

• Includes a method for capturing and storing all <meta> tags with a property attribute
starting with og: from a provided URL.

• Provides one method for returning a single Open Graph tag value, and another for
returning the entire list of obtained tags.

Now let’s see how these simple requirements play out when implemented in an actual
PHP class structure:

<?php
/***
 * Class Name: Open Graph Parser
 * Description: Parses an HTML document to retrieve and store Open Graph
 * tags from the meta data
 * Useage:
 * $url = 'http://www.example.com/index.html';
 * $graph = new OpenGraph($url);
 * print_r($graph->get_one('title')); //get only title element
 * print_r($graph->get_all()); //return all Open Graph tags
 **/
class OpenGraph{
 //the open graph associative array
 private static $og_content = array();

 /***
 * Function: Class Constructor
 * Description: Initiates the request to fetch OG data
 * Params: $url (string) - URL of page to collect OG tags from
 **/
 public function __construct($url){
 if ($url){
 self::$og_content = self::get_graph($url);
 }
 }

The Open Graph Protocol: Defining Web Pages As Social Entities | 393

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-php-parser
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-php-parser
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-php-parser

 /***
 * Function: Get Open Graph
 * Description: Initiates the request to fetch OG data
 * Params: $url (string) - URL of page to collect OG tags from
 * Return: Object - associative array containing the OG data in format
 * property : content
 **/
 private function get_graph($url){
 //fetch html content from web source and filter to meta data
 $dom = new DOMDocument();
 @$dom->loadHtmlFile($url);
 $tags = $dom->getElementsByTagName('meta');

 //set open graph search tag and return object
 $og_pattern = '/^og:/';
 $graph_content = array();

 //for each open graph tag, store in return object as property : content
 foreach ($tags as $element){
 if (preg_match($og_pattern, $element->getAttribute('property'))){
 $graph_content[preg_replace($og_pattern, '',
 $element->getAttribute('property'))] =
 $element->getAttribute('content');
 }
 }

 //store all open graph tags
 return $graph_content;
 }

 /***
 * Function: Get One Tag
 * Description: Fetches the content of one OG tag
 * Return: String - the content of one requested OG tag
 **/
 public function get_one($element){
 return self::$og_content[$element];
 }

 /***
 * Function: Get All Tags
 * Description: Fetches the content of one OG tag
 * Return: Object - The entire OG associative array
 **/
 public function get_all(){
 return self::$og_content;
 }
}
?>

Analyzing our code by individual sections, we can see that within the class the following
methods are available:

394 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

__construct

This is the class constructor that is run when you create a new instance of the class
using the code new OpenGraph(). The constructor accepts a URL string as the single
parameter; this is the URL that the class will access to collect its Open Graph
metadata. Once in the constructor, if a URL string was specified, the class og_con
tent property will be set to the return value of the get_graph method—i.e., the
associative array of Open Graph tags.

get_graph

Once initiated, the get_graph method will capture the content of the URL as a
DOM document, then further filter the resulting value to return only <meta> tags
within the content. We then loop through each <meta> tag that was found. If the
<meta> tag contains a property attribute that starts with og:, the tag is a valid Open
Graph tag. The key of the return associative array is set to the property value (minus
the og:, which is stripped out of the string), and the value is set to the content of
the tag. Once all valid tags are stored within the return associative array, it is re-
turned from the method.

get_one

Provides a public method to allow you to return one Open Graph tag from the
obtained graph data. The single argument that is allowed is a string representing
the property value of the Open Graph tag. The method returns the string value of
the content of that same tag.

get_all

Provides a public method to allow you to return all Open Graph tags from the
obtained graph data. This method does not take any arguments from the user and
returns the entire associative array in the format of property: content.

Now that we have our class structure together, we can explore how to use it in a practical
implementation use case. For this example, we are revisiting our old Yelp restaurant
review example from earlier in the chapter. In a separate file, we can build out the
requests:

<?php
require_once('OpenGraph.php');

//set url to get OG data from and initialtize class
$url = 'http://www.yelp.com/biz/the-restaurant-at-wente-vineyards-livermore-2';
$graph = new OpenGraph($url);

//print title and then the entire meta graph
print_r($graph->get_one('title'));
print_r($graph->get_all());
?>

We first set the URL from which we want to scrape the Open Graph metadata. Fol-
lowing that, we create a new Open Graph class object, passing in that URL. The class
constructor will scrape the Open Graph data from the provided URL (if available) and
store it within that instance of the class.

The Open Graph Protocol: Defining Web Pages As Social Entities | 395

We can then begin making public method requests against the class object to display
some of the Open Graph data that we captured.

First, we make a request to the get_one(...) method, passing in the string title as the
argument to the method call. This signifies that we want to return the Open Graph
<meta> tag content whose property is og:title.

When we call the get_one(...) method, the following string will be printed on the page:

The Restaurant at Wente Vineyards

We then make a request to the public get_all() method. This method will fetch the
entire associative array of Open Graph tags that we were able to pull from the specified
page. Once we print out the return value from that method, we are presented with the
following:

Array
(
 [url] => http://www.yelp.com/biz/gATFcGOL-q0tqm9HTaXJpg
 [longitude] => −121.7567068
 [type] => restaurant
 [description] =>
 [latitude] => 37.6246361
 [title] => The Restaurant at Wente Vineyards
 [image] => http://media2.px.yelpcdn.com/bphoto/iVSnIDCj-fWiPffHHkUVsQ/m
)

You can obtain the full class file and sample implementation from https://github.com/
jcleblanc/programming-social-applications/tree/master/open-graph/php-parser/.

You can use this simple implementation to scrape Open Graph data from any web
source. It will allow you to access stored values to obtain rich entity information about
a web page, extending the user social graph beyond the traditional confines of a social
networking container or any single web page.

Python implementation: Open Graph node

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/opengraph-py
thon-parser.

Now let’s look at the same Open Graph protocol tag-parsing class, but this time using
Python. Much like the PHP example, we’re going to be creating a class that contains
the following functionality:

• Includes a method for capturing and storing all <meta> tags with a property attribute
starting with og: from a provided URL.

• Provides one method for returning a single Open Graph tag value, and another for
returning the entire list of obtained tags.

396 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

https://github.com/jcleblanc/programming-social-applications/tree/master/open-graph/php-parser/
https://github.com/jcleblanc/programming-social-applications/tree/master/open-graph/php-parser/
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-python-parser
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-python-parser
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/opengraph-python-parser

Let’s take a look at how this implementation is built.

The following Open Graph Python implementation uses an HTML/
XML parser called Beautiful Soup to capture <meta> tags from a provided
source. Beautiful Soup is a tremendously valuable parsing library for
Python and can be downloaded and installed from http://www.crummy
.com/software/BeautifulSoup/.

import urllib
import re
from BeautifulSoup import BeautifulSoup

"""
" Class: Open Graph Parser
" Description: Parses an HTML document to retrieve and store Open Graph
" tags from the meta data
" Useage:
" url = 'http://www.nhl.com/ice/player.htm?id=8468482';
" og_instance = OpenGraphParser(url)
" print og_instance.get_one('og:title')
" print og_instance.get_all()
"""
class OpenGraphParser:
 og_content = {}

 """
 " Method: Init
 " Description: Initializes the open graph fetch. If url was provided,
 " og_content will be set to return value of get_graph method
 " Arguments: url (string) - The URL from which to collect the OG data
 """
 def __init__(self, url):
 if url is not None:
 self.og_content = self.get_graph(url)

 """
 " Method: Get Open Graph
 " Description: Fetches HTML from provided url then filters to only meta tags.
 " Goes through all meta tags and any starting with og: get
 " stored and returned to the init method.
 " Arguments: url (string) - The URL from which to collect the OG data
 " Returns: dictionary - The matching OG tags
 """
 def get_graph(self, url):
 #fetch all meta tags from the url source
 sock = urllib.urlopen(url)
 htmlSource = sock.read()
 sock.close()
 soup = BeautifulSoup(htmlSource)
 meta = soup.findAll('meta')

 #get all og:* tags from meta data
 content = {}

The Open Graph Protocol: Defining Web Pages As Social Entities | 397

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

 for tag in meta:
 if tag.has_key('property'):
 if re.search('og:', tag['property']) is not None:
 content[re.sub('og:', '', tag['property'])] = tag['content']

 return content

 """
 " Method: Get One Tag
 " Description: Returns the content of one OG tag
 " Arguments: tag (string) - The OG tag whose content should be returned
 " Returns: string - the value of the OG tag
 """
 def get_one(self, tag):
 return self.og_content[tag]

 """
 " Method: Get All Tags
 " Description: Returns all found OG tags
 " Returns: dictionary - All OG tags
 """
 def get_all(self):
 return self.og_content

This class structure will make up the core functionality behind our parser. When in-
stantiated, the class object will fetch and store all Open Graph <meta> tags from the
provided source URL and will allow you to pull any of that data as needed.

The OpenGraphParser class consists of a number of methods to help us accomplish our
goals:

__init__

Initializes the class instance. The init method accepts a single argument, a string
whose content is the URL from which we will attempt to obtain Open Graph
<meta> tag data. If the URL exists, the class property og_content will be set to
the return value of the get_graph(...) method—i.e., the Open Graph <meta> tag
data.

get_graph

The meat of the fetch request, get_graph accepts one argument—the URL from
which we will obtain the Open Graph data. This method starts out by fetching the
HTML document from the provided URL, then uses Beautiful Soup to fetch all
<meta> tags that exist within the source. We then loop through all <meta> tags, and
if they have a property value that begins with og:(signifying an Open Graph tag),
we store the key and value in our dictionary variable. Once all tags are obtained,
the dictionary is returned.

get_one

Provides a means for obtaining the value of a single Open Graph tag from the stored
dictionary property. This method accepts one argument, the key whose value
should be returned, and returns the value of that key as a string.

398 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

get_all

Provides a means for obtaining all Open Graph data stored within the class in-
stance. This method does not accept any arguments and returns the dictionary
object containing all Open Graph data.

Now that we have the class in place, we can begin to fetch Open Graph data from a
given URL. If we implement our new class, we can see how this works:

from OpenGraph import OpenGraphParser

#initialize open graph parser class instance with url
url = 'http://www.nhl.com/ice/player.htm?id=8468482';
og_instance = OpenGraphParser(url)

#output since description and entire og tag dictionary
print og_instance.get_one('description')
print og_instance.get_all()

We first import the class into our Python script so that we can use it. Then we need to
initialize an instance of the class object. We set the URL that we want to obtain (in this
case, the NHL player page for Dany Heatley) and create a new class instance, passing
through the URL to the class __init__ method.

Now that we have the Open Graph data locked in our class object, we can begin ex-
tracting the information as required. We first make a request to the get_once(...)
method, passing in description as our argument. This will obtain the Open Graph tag
for og:description, returning a string similar to the following:

Dany Heatley of the San Jose Sharks. 2010-2011 Stats:
19 Games Played, 7 Goals, 12 Assists

The next method that we call is a request to get_all(). When this method is called, it
will return the entire dictionary of Open Graph tags. When we print this out, we should
have something similar to the following:

{
 u'site_name': u'NHL.com',
 u'description': u'Dany Heatley of the San Jose Sharks. 2010-2011
 Stats: 19 Games Played, 7 Goals, 12 Assists',
 u'title': u'Dany Heatley',
 u'url': u'http://sharks.nhl.com/club/player.htm?id=8468482',
 u'image': u'http://cdn.nhl.com/photos/mugs/thumb/8468482.jpg',
 u'type': u'athlete'
}

You can obtain the full class file and sample implementation from https://github.com/
jcleblanc/programming-social-applications/tree/master/open-graph/python-parser/.

Using this simple class structure and a few lines of setup code, we can obtain a set
of Open Graph tags from a web source. We can then use this data to begin to define a
valuable source of entity social graph information for users, companies, or
organizations.

The Open Graph Protocol: Defining Web Pages As Social Entities | 399

https://github.com/jcleblanc/programming-social-applications/tree/master/open-graph/python-parser/
https://github.com/jcleblanc/programming-social-applications/tree/master/open-graph/python-parser/

The Shortcomings of the Open Graph Protocol
The simplicity of the Open Graph protocol makes it incredibly easy to implement and
parse. Unfortunately, this same simplicity can also translate to some shortcomings
you’ll likely encounter when you’re working with the specification, ranging from im-
plementation differences between sites to the risk of inaccurate generalizations made
about entire pages since tiered object types are not provided. We’ll discuss a couple of
these inherent Open Graph issues next.

Inability to implement tiered definitions to differentiate similar objects

One issue that has surfaced within the Open Graph protocol is being unable to differ-
entiate objects with similar characteristics.

With several objects that have a real-world location, this is not a problem. We can
differentiate the objects by utilizing additional geographical information—for example,
if we have reviewed the same chain restaurant at different locations around a city.

But say we’re not looking at something with a real-world location—for example, a
movie review for Fight Club. There are two movies with the same name in this case,
one from 1999 and another from 2006. Therein lies the problem. When we enter in all
of the Open Graph information for both movies, they will be almost identical, except
perhaps the description. However, since the description is an arbitrary string with no
defined structure, we can rule this out as a differentiator.

The inability to provide tiered or secondary object definitions can create confusion
when you’re building out your entity social graph. You need to take into account the
lack of further layers of customization when implementing the Open Graph protocol.
The good news is that, since the protocol is simple in nature, implementing a parser
that can handle multiple object definitions is not a major feat.

Page versus object definitions

The Open Graph protocol works by defining metadata at a page level. For web pages
that display only one type of defined data, this works perfectly fine, but what if you are
displaying multiple objects on a single page?

This is the second shortcoming on our list. Since the Open Graph protocol does not
provide a method to allow you to break down a page into multiple defined objects, the
extent to which you can define objects on a page is limited.

Fortunately, as with the previous issue of differentiating like objects, the protocol is
simple enough that it would not be a labor-intensive process to integrate functionality
for this use case.

400 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Activity Streams: Standardizing Social Activities
With so many different social sites pushing updates, activities, and status changes for
users, developers and implementers of applications that consume these streams will
naturally run into the challenge of attempting to consolidate them into a single product.

The premise behind the Activity Streams specification is to define a method for ex-
pressing activities. This specification was created because existing activity-producing
sites (e.g., FourSquare, Gowalla) fulfill the requirements for their own services, but do
not capture the rich, comprehensive view of the activity.

Thinking of an activity as a collection of objects and defined sections allows us to
encapsulate its full breadth, including the people who are creating the activity and the
target for which it is being generated.

Why Do We Need to Define a Standard for Activities?
The reason why a standard like Activity Streams not only exists, but is also absolutely
necessary, is obvious when we consider the number of sources that produce some type
of activity or update for users.

Let’s say that we are the average social Internet citizens and use a number of sites to
keep in contact with friends, family, coworkers, and users with interests similar to ours.
This might mean that we use Facebook to keep in contact with friends and family,
Twitter to quickly disseminate large amounts of activities from like-minded people and/
or for business outreach, and Gowalla or Foursquare for location checkins.

Now let’s say we want to build a site that shows all of this data, or we want to feed all
of the data into a single source and have it make sense. If every site and service out there
implements its own methods for creating activities, we’ll have to go through a rigorous
process to merge everything. Even when we do that, some sites may include a large
amount of data in their activities, while others may include only a few minor strings to
represent the activity.

This is the reason for the Activity Streams standard; it makes consuming data across
many platforms and services a much easier process. Even though services may take the
Activity Streams specification and enhance it to fit their particular needs and data (e.g.,
adding new verbs or object types in the response data), the core implementation and
standards will still be in place to encapsulate the total picture of an activity. This ac-
tivities standard can go a long way if implemented by many of the major activity-
creation sources.

Activity Streams: Standardizing Social Activities | 401

Implementing Activity Streams
An activity comprises a number of elements such as the person creating the activity,
the object being acted upon, and the target of the activity. For instance, consider the
following sentence:

Mary added to a new photo into her collection.

If we break this sentence down by Activity Stream standards, we can describe the fol-
lowing items:

Mary
The actor of the activity. We may create an actor object for Mary that links back
to her profile or provides additional information about her.

photo
The object of the activity. The photo may be a structure that contains media in-
formation such as a URI, width, and height.

collection
The target of the activity. This target may be composed of many different objects
such as photos and videos. The collection can be expanded with additional infor-
mation or objects.

The Activity Streams specification goes beyond defining just a few simple constructs,
attempting to build out a comprehensive model for developers and companies to struc-
ture their updates and activities according to the data they contain:

{
 "items" : [
 {
 "verb": "post",
 "published": "2011-02-18T16:26:43Z",
 "generator": {
 "url": "http://example.com/activities-app"
 },
 "provider": {
 "url": "http://providersite.com/activity-stream"
 },
 "title": "Mary added a new photo to her album.",
 "actor": {
 "url": "http://providersite.com/mary",
 "objectType": "person",
 "id": "tag:provider.com,20110218,162643:mary",
 "image": {
 "url": "http://providersite.com/mary/image",
 "width": 125,
 "height": 125
 },
 "displayName": "Mary Smith"
 },
 "object" : {
 "url": "http://providersite.com/mary/album/my_place.jpg",
 "objectType": "http://activitystrea.ms/schema/1.0/photo",

402 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

 "id": "tag:provider.com,20110218,162643:my_place",
 "image": {
 "url": "http://providersite.com/mary/album/my_place_thumb.jpg",
 "width": 100,
 "height": 100
 }
 },
 "target": {
 "url": "http://targetsite.com/mary/album/",
 "objectType": "http://activitystrea.ms/schema/1.0/photo-album",
 "id": "tag:example.org,20110218,162643:album4323",
 "displayName": "Mary's Photo Album",
 "image": {
 "url": "http://providersite.com/mary/album/thumbnail.jpg",
 "width": 100,
 "height": 100
 }
 }
 }
]
}

This basic example shows how an activity (or stream of activities) may be presented on
a platform. It contains our major activity sections and provides an extensive amount
of information about each individual source.

Table 10-7 shows the main fields we can set within an activity.

Table 10-7. Main settable sections within an activity

Property Type Description

actor object A single object containing the person or entity that performed the activity. Each activity must

contain one actor property.

content

(optional)

string A human-readable HTML string that describes the activity. Thumbnail images may also be

included in the markup.

generator

(optional)

object An object that describes the application or provider that generated the activity.

icon (op-

tional)

string An IRI (Internationalized Resource Identifier) that identifies an image that represents the activity

that is produced. The image should have an aspect ratio of height equal to width (e.g., 20×20

square) and should be legible at small sizes (i.e., for use as a small icon associated with the

activity).

id (optional) string A permanent, universally unique identifier for the activity in the form of an absolute IRI. In the

case where an id is not present, the URL may be used as a less reliable identifier.

object object The primary object that is being described in an activity. For example, in the sentence, “Erik just

purchased a new phone on Amazon,” the object of the activity is the phone. If this field is not

present, the object may be inferred from the context of the activity.

published date-

time

The date and time at which the activity occurred. This may be different from the time that it

was published on the associated site—for example, if there was a posting delay. This field must

be present in an activity.

Activity Streams: Standardizing Social Activities | 403

Property Type Description

provider

(optional)

object An object that describes the application or provider that published the activity. This may not be

the same as the source that created the activity, but should be a single object in either case.

target

(optional)

object The object that is the target of the activity. For instance, if the activity is “Erik just added a new

item to his Amazon wish list,” the target of the activity is the “Amazon wish list.” This should

be a single direct target, not an indirect target source.

title

(optional)

string A human-readable string that may contain HTML and that is used as a title or headline for the

activity.

updated

(optional)

date-

time

If an activity has been modified, this field should include the date and time at which the

modification occurred.

url (optional) string An IRI that links to an HTML representation of the activity.

verb string The verb string that describes the type of action in the activity and is required for each activity

posted. Relative string representations other than a simple name (e.g., post) are not allowed.

These are the main, top-level items that we can set. Some of them have specific types
that may also be set, such as string or date-time; however, many of them have a type
set to object. This means that the item in question (e.g., actor or target) represents a
larger topic that may be expanded. Each item in Table 10-7 that has a type set to object
may have alternate attributes defined by the JSON Activity Streams specification, as
you can see in the following example of an object comprising the actor element:

"actor": {
 "url": "http://providersite.com/mary",
 "objectType": "person",
 "id": "tag:provider.com,20110218,162643:mary",
 "image": {
 "url": "http://providersite.com/mary/image",
 "width": 125,
 "height": 125
 },
 "displayName": "Mary Smith"
},

Table 10-8 provides more details on the optional JSON attributes that may comprise
an object.

Table 10-8. Optional object attributes

Attribute Type Description

attachments array of

objects

One or more objects that are related or relevant to the activity being generated (similar

to the concept of attaching files in an email message).

author object An entity representing the person who created or authored the object. The entity is itself

represented as an object, and an object may include a single author object.

The person who authored the object may differ from the person who published the object.

content string A description of the object, provided in natural languages. This field may introduce HTML

elements, including image representations such as thumbnails.

404 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Attribute Type Description

displayName string A human-readable, plain-text name for the object. This display name must not contain

HTML markup.

downstreamDu

plicates

array of

strings

One or more absolute IRIs that reference duplicate objects in the activity. These may be

duplicates in different systems (e.g., if the provider has multiple, separate places that

display activities) and may prompt the implementer to launch an object deduplication

effort.

id string Provides a permanent and universally unique identifier for the object. The id should be

presented in the form of an IRI. If an id is not present in the object, the consumer of the

object may use the URL as a less reliable identifier.

image media link A human-consumable visual representation of the object. (The media link type will be

described further shortly.)

objectType string A string displaying the type of object that is being presented. This may be either the short

form of the type or the full IRI representation of the type.

published date-time The date and time when the object was published.

summary string A human-readable string containing a summary of the object. This string may include

HTML markup and images.

updated date-time If an update to an object is published, this field should include the date and time when

the update occurred.

upstreamDupli

cates

array of

strings

Much like downstreamDuplicates, this contains objects that are duplicates of the

current object. Instead of duplicates that already exist, however, these are objects that

the provider knowingly duplicates after posting with a new id.

url string A string that contains an IRI pointing to an HTML-based page that provides more details

about the object. For instance, if the object is a Facebook page, url would point to it.

Now we have a clearer definition of what an object is. All of the attributes listed in
Table 10-8 break down into individual media types, such as string or additional objects.
But there is also a new type introduced in the table—media link.

A media link type defines an object that is geared toward presenting image, audio, and
video content. For example, if we return to our previous actor object, the image element
contains the media link object that displays a photo of our actor:

"actor": {
 "url": "http://providersite.com/mary",
 "objectType": "person",
 "id": "tag:provider.com,20110218,162643:mary",
 "image": {
 "url": "http://providersite.com/mary/image",
 "width": 125,
 "height": 125
 },
 "displayName": "Mary Smith"
},

Activity Streams: Standardizing Social Activities | 405

You can define any element that has a type of media link by using a series of predefined
attributes in the Activity Streams specification, as listed in Table 10-9.

Table 10-9. Media link object attributes

Attribute Type Description

duration (optional) int The duration of the media object in seconds. This should be included where it makes sense

(e.g., video and audio files).

height (optional) int The height of the media object in pixels. Height should be included where it makes sense

(e.g., videos or images).

url string The IRI of the media link resource. This must be included within a media link object.

width (optional) int The width of the media object in pixels. Width should be included where it makes sense

(e.g., videos or images).

All of these elements define a base-level activity via the Activity Streams JSON speci-
fication. Implementers of the specification will work from this foundation to define
their applications and extend it with their own verbs, object types, and additional ele-
ments beyond the defaults shown here.

Object Types
Within each object construct is an objectType string value. This defines the type of data
that is being presented in the object, which helps a consumer determine what to do
with the data and how to process it. The Activity Streams specification includes several
object types that you can insert as the value of the objectType parameter.

Objects types may be referenced using their type name (e.g., article, review, video, etc.)
or by the absolute URI to the schema, which also uses the type name as the last part of
the URI: http://activitystrea.ms/schema/1.0/type.

So, for instance, an object with the type of person may use either of the following strings
for the verb:

• person

• http://activitystrea.ms/schema/1.0/person

There are many different type categories available in the specification. Let’s look at
them now.

General object types

The Activity Streams specification defines a number of basic types, as shown in Ta-
ble 10-10. These general types make up the vast majority of the object types that you
will be using or consuming when working with an activity.

406 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://activitystrea.ms/schema/1.0/type
http://activitystrea.ms/schema/1.0/person

Table 10-10. General object types

Type Description

article The object is an article such as a news article, blog entry, or publication. Objects of this type usually consist of

paragraphs of text with optional images and links.

audio The content of the object is some sort of audio content.

badge Represents a badge or award granted to the object.

bookmark The object is a pointer to some URL, usually a web page. You can think of this in the same context as

bookmarking a page in a browser; the object isn’t the site URL itself but rather a pointer to the URL.

collec

tion

A collection contains an arbitrary number of generic objects of any type, such as photos in an album.

comment This type of object represents a text response to some other object, such as a person commenting on the content

of a blog article. This type must not be used for other types of replies, such as video replies or reviews.

event The event type represents an object that refers to something happening at a particular place within a certain

interval of time.

file This type of object is a file or some other document with no additional machine-readable semantics.

group The group type should be used to represent a collection of people, such as a Facebook group. The construct

of a group should allow a person object to join and leave.

image An image type represents a graphical image object.

note The note type represents a short-form text message, such as in a microblogging platform like Tumblr. These

are often plain-text messages that are shorter than an article and whose useful lifespan is shorter than that of

a blog entry.

person The person object represents the account of a real person or sometimes a company entity.

place A place is a geographically traceable location on Earth, such as a point containing an address or latitude/

longitude coordinates.

product A commercial good or service.

question This is generally a representation of a poll or question.

review Unlike a comment, the review type contains objects that are straightforward responses to another article,

written as critiques or commentaries.

service A service type may represent some entity (e.g., company, website, blog, etc.) that either performs service

or work for another object (e.g., person) or acts as a container for other objects.

video The video type contains video content, usually consisting of a video and audio track.

Verbs
The JSON Activity Streams specification defines one base verb that is used to indicate
the type of activity being produced: post. The specification permits implementers to
define their own verbs or pull them from some of the other defined specifications, such
as the standard Activity Streams specification or the Atom specification.

Activity Streams: Standardizing Social Activities | 407

Before we look into some of the other potential verbs that implementers may use, let’s
go through the verbs that are defined within the base Activity Streams specification.
These verbs provide a good starting point for working with an activity.

Verbs may be referenced using their verb name (e.g., post, follow, join, etc.) or by the
absolute URI to the schema, which also uses the verb name as the last part of the URI:
http://activitystrea.ms/schema/1.0/verb.

So, for instance, an object with the type of share may use either of the following strings
for the verb:

• share

• http://activitystrea.ms/schema/1.0/share

As with the object types, verbs are defined into a few categories, ranging from general
verbs to more specialized verb categories. Let’s start with general verbs.

General verbs

The defined general verbs (Table 10-11) will deliver the vast majority of the function-
ality that you will need for an activity.

Table 10-11. General verbs

Verb Description

add Indicates that the actor has added the object to the target, such as adding a series of photo objects to an

album target.

cancel The actor has canceled the object, such as canceling an event.

checkin The actor has checked in to the object—for example, checking in to a place object.

delete The actor has deleted the object. The implication of this verb is that the object has been permanently

destroyed, but this is not necessarily the case.

favorite Also known as the “mark as favorite” verb, this indicates that the activity actor has marked the object as

something that he is interested in and may wish to revisit at a later date. Activities containing this verb may

contain a collection of objects that the actor has added to his favorites.

follow Also known as the “start following” verb, this indicates that the actor has begun following the activities of

the object, usually a person or entity that produces activities. This is a one-way, nonreciprocated follower

relationship.

give Indicates that the actor is giving the object to the target. For instance, this may indicate an action such as an

actor giving a product object to another person (target).

ignore Indicates that the actor has ignored the object, such as when a person ignores a friend request.

invite Indicates that the actor has sent an invite to the object, such as when a person (actor) sends an invite (object)

to another person (target).

join Indicates that the actor has become a member of the object, usually a group.

leave Indicates that the actor has left the object—for example, if a person leaves a group or membership.

408 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://activitystrea.ms/schema/1.0/verb
http://activitystrea.ms/schema/1.0/share

Verb Description

like Operating similarly to a Facebook like, this “mark as liked” verb indicates that the actor likes the content of

the object.

make-

friend

Unlike the follow verb, the make-friend verb indicates a two-way, reciprocated friendship link

between the actor and the object, usually another person. This is like adding a new friend on Facebook.

play Indicates that the actor has interacted with the object for an interval of time, such as in the case of a person

playing a song or watching a video.

receive Indicates that the actor is receiving the object, such as if the actor receives a product object.

remove Indicates that the actor has removed the object from the target.

remove-

friend

Indicates that the actor has removed the object from the collection of friends.

request-

friend

Indicates that a friendship has been created, but is not yet reciprocated by the object (alternate party).

rsvp-maybe This “possible RSVP” verb indicates that the actor has made a tentative RSVP for the object, such as stating

that he may or may not be attending an event. This has neither a positive or negative connotation.

rsvp-no This “negative RSVP” verb indicates that the actor has made a negative RSVP for the object, such as stating

that he will not be attending an event.

rsvp-yes This “positive RSVP” verb indicates that the actor has made a positive RSVP for the object, such as stating

that he will be attending an event.

save When using the “save” verb, the actor is indicating that they are taking the action of indicating that they

would like to store a reference to the object for a later date as it is of particular interest for the actor primarily.

share Indicates that the actor is promoting the object to other readers, such as his followers or friends. This does

not necessarily mean that the actor created the object; it may simply indicate that he is calling attention to

the object.

stop-fol

lowing

Denotes that the actor has stopped following the object that is being displayed.

tag The action of adding a target inside another object, such as when tagging a friend in a photo. You are

specifying additional link information about the object.

unfavorite Indicates that the actor has removed the object in question from a collection of favorite items.

unlike Indicates that the actor has removed the object in question from a collection of liked items.

unsave Indicates that the actor has removed the object in question from a collection of saved items.

update Indicates that the object referenced has been modified, such as in the case of a person updating his profile.

Using verbs beyond (and more specific than) the standard post verb defined within the
JSON specification will allow implementers to create rich activities that consumers can
easily parse based on the information that the activities contain.

Activity Streams: Standardizing Social Activities | 409

WebFinger: Expanding the Social Graph Through
Email Addresses
The WebFinger protocol has its basis in Unix, where someone can run a finger com-
mand on an email address identifier to gain information about a user. WebFinger has
modernized this functionality for the Web 2.0 world, defining a standard for providers
to associate metadata with a user’s email address to access her profiles, activities, and
much more.

Some examples of information providers might associate with a user’s email addresses
include:

• Links to public profiles for the user.

• Direct profile data, such as a nickname or profile photo.

• Other linked services for the email address, such as Facebook, Twitter, or Flickr
accounts.

These are just a few of the possible links that a provider may implement for metadata,
but WebFinger is more focused on building a specification simply to ensure that this
metadata is available. The providers themselves determine the amount of information
to tie to an email address.

Finger to WebFinger: The Origin of WebFinger
Back in 1971, the finger program was created with the intention of enabling people to
obtain information about other users in the network. This information can be any data
that people choose to make public. Users access data through email addresses, running
a command similar to the following:

finger username@company.com

Unfortunately, finger did not last as an implementation standard for many of our Web
2.0 protocols. It did, however, inspire the initial concept for the WebFinger protocol.
After all, using an email address as a means for easily extracting a user’s public profile
information is an interesting idea. On many of the most popular sites we interact with
on a daily basis (e.g., Yahoo!, Google, Facebook), we associate our email addresses
with our user accounts—that is, our email addresses are directly tied to our profiles on
these sites.

Now, with protocols such as OpenID—which allow users to sign in on any site using
their email addresses from a few root providers—email addresses are more valuable
than ever in defining a user’s public profile.

410 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Implementing WebFinger
Working with the WebFinger protocol is actually very easy. You simply make a series
of cURL requests to a provider that implements WebFinger, which subsequently re-
turns all of the information we need, as shown in Figure 10-4.

Figure 10-4. How WebFinger works

When a web application or service makes a request to a web source that uses WebFinger
in order to obtain user information from that site, the web source will return either
user record details or error information in the event that no user data was located.

As an example, let’s take a look at extracting profile information using Google’s Web-
Finger implementation. First, we will make a request to the /.well-known/host-meta file
on Google to obtain more data about how Google’s WebFinger implementation works
to extract profile information based on users’ email addresses. From a command
prompt, we enter the following:

curl http://gmail.com/.well-known/host-meta

When implementing this procedure in a product or service, you can use
the PHP cURL library (http://php.net/manual/en/book.curl.php) or
PycURL for Python (http://pycurl.sourceforge.net/).

The response that is returned will contain data about the URI template format that
Google uses to obtain the user’s profile from her email address:

<?xml version='1.0' encoding='UTF-8'?>
<!-- NOTE: this host-meta end-point is a pre-alpha work in progress.
 Don't rely on it. -->
<!-- Please follow the list at http://groups.google.com/group/webfinger -->
<XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'
 xmlns:hm='http://host-meta.net/xrd/1.0'>
 <hm:Host xmlns='http://host-meta.net/xrd/1.0'>gmail.com</hm:Host>
 <Link rel='lrdd'
 template='http://www.google.com/s2/webfinger/?q={uri}'>
 <Title>Resource Descriptor</Title>
 </Link>
</XRD>

WebFinger: Expanding the Social Graph Through Email Addresses | 411

http://php.net/manual/en/book.curl.php
http://pycurl.sourceforge.net/

From the preceding response object, we can see that the URI format Google uses is
http://www.google.com/s2/webfinger/?q={uri}. Now, if we make another request to
Google using that URI, substituting the uri parameter with our email address, we
should be able to get a user’s profile data.

We make the following request from the command line:

curl http://www.google.com/s2/webfinger/?q=nakedtechnologist@gmail.com

When we run this, we’ll get the profile response from Google that will deliver the user’s
public profile data:

<?xml version='1.0'?>
<XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'>
 <Subject>acct:nakedtechnologist@gmail.com</Subject>
 <Alias>http://www.google.com/profiles/nakedtechnologist</Alias>
 <Link rel='http://portablecontacts.net/spec/1.0'
 href='http://www-opensocial.googleusercontent.com/api/people/'/>
 <Link rel='http://portablecontacts.net/spec/1.0#me'
 href='http://www-opensocial.googleusercontent.com/api/
 people/118167121283215553793/'/>
 <Link rel='http://webfinger.net/rel/profile-page'
 href='http://www.google.com/profiles/nakedtechnologist'
 type='text/html'/>
 <Link rel='http://microformats.org/profile/hcard'
 href='http://www.google.com/profiles/nakedtechnologist'
 type='text/html'/>
 <Link rel='http://gmpg.org/xfn/11'
 href='http://www.google.com/profiles/nakedtechnologist'
 type='text/html'/>
 <Link rel='http://specs.openid.net/auth/2.0/provider'
 href='http://www.google.com/profiles/nakedtechnologist'/>
 <Link rel='describedby'
 href='http://www.google.com/profiles/nakedtechnologist'
 type='text/html'/>
 <Link rel='describedby'
 href='http://www.google.com/s2/webfinger/?
 q=nakedtechnologist%40gmail.com&fmt=foaf'
 type='application/rdf+xml'/>
 <Link rel='http://schemas.google.com/g/2010#updates-from'
 href='https://www.googleapis.com/buzz/v1/activities/
 118167121283215553793/@public' type='application/atom+xml'/>
</XRD>

From the return object, we can extract some data about the user:

The user profile
http://www.google.com/profiles/nakedtechnologist

The portable contacts link
http://www-opensocial.googleusercontent.com/api/people/
118167121283215553793/

The public Google Buzz feed
https://www.googleapis.com/buzz/v1/activities/118167121283215553793/@public

412 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://www.google.com/s2/webfinger/?q={uri}
http://www.google.com/profiles/nakedtechnologist
http://www-opensocial.googleusercontent.com/api/people/118167121283215553793/
http://www-opensocial.googleusercontent.com/api/people/118167121283215553793/
https://www.googleapis.com/buzz/v1/activities/118167121283215553793/@public

We can continue this process for any users that may have a public profile.

We can use this same approach to access similar data from other implementers of the
WebFinger protocol. For instance, to access data from Yahoo!, we would make cURL
requests to the following URIs:

• Information on WebFinger URI template: http://www.yahoo.com/.well-known/host
-meta

• Obtaining user public information: http://webfinger.yahooapis.com/?id={%id}

This process is standard among implementers.

The Shortcomings of the WebFinger Protocol
While the WebFinger protocol’s simplicity and ease of use is a tremendous boon for
developers who simply want to capture some public profile information about a user,
the protocol also has a number of shortcomings that we should address.

Public data

The WebFinger protocol is built around the concept of consuming user public data
that the provider has decided to give out.

Think of this concept in the same way as viewing the Facebook profile
of a user whom you are not friends with and who doesn’t share his
information with anyone but his friends. You might see a basic badge
containing his nickname and profile picture, but you will not be
provided with all the privileged data that you might if you were using a
protocol such as OAuth.

This concept is perfectly fine if you’re just looking for account links or some basic profile
information about a user to provide additional data about him—this is specifically what
WebFinger should be used for.

The shortcomings arise when you want to access information outside the public realm.
Understanding the limits of the protocol—and the fact that it is not a back door into
a user’s profile—will help you avoid being frustrated by the type of data that is returned
to you.

Provider implementation differences

As mentioned at the beginning of our WebFinger discussion, there are several types of
data that providers may make available through the WebFinger protocol, but it doesn’t
enforce these within the specification itself. In other words, WebFinger’s purpose is
enabling consumers to access public social information through well-known provider
channels, not in dictating the kind of information that the providers need to make

WebFinger: Expanding the Social Graph Through Email Addresses | 413

http://www.yahoo.com/.well-known/host-meta
http://www.yahoo.com/.well-known/host-meta
http://webfinger.yahooapis.com/?id={%id}

available. What this means in practice is that each provider may return different infor-
mation, links, and data when you call their service.

This is not a problem when you’re working with a single provider and expecting certain
information back from it, but it becomes an increasingly complex issue when you’re
collecting data from multiple providers, as the response objects may be different.

Simply being aware of the content that a provider returns, and understanding that there
will be differences from provider to provider, will help alleviate the issue of nonmatch-
ing response structures.

OExchange: Building a Social Sharing Graph
OExchange is an open protocol that can be used to share any URL-based content with
any service on the Web. Put simply, OExchange is trying to build a standard way to
share content from a publisher site to many different service providers like Twitter,
Yahoo!, and Google (among others).

In a traditional integration model, if you have a site that includes content that you
would like your users to be able to share with other services, you would need to integrate
with these services individually. Normally, this would mean implementing just the top
sharing services, such as Twitter, and would likely involve many tedious integrations
just to make those few services available to your users. The questions that OExchange
seeks to answer are:

• Why are we still integrating with services individually?

• Why don’t we have a standard way to send updates to a sharing source?

• Why can’t we add new services dynamically?

OExchange attempts to address these questions by delivering a standardized mecha-
nism for sharing among content systems, giving the service provider more content and
the publisher new outlets for its content.

How Does OExchange Work?
There are a few steps we must complete to get the entire OExchange process in place.
There are two main actors that we will be working with here:

Service provider
This is the site or service that allows users to share content (e.g., Twitter’s “Tweet
this” button for sharing a story on its site).

Publisher
This is the site or service that implements a way for its users to share content from
it to a service provider (e.g., the site that integrates the “Tweet this” button).

414 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Here are the steps (illustrated in Figure 10-5), from a high level, that each actor will
need to take to implement an end-to-end OExchange solution:

1. The service provider (target) integrates discovery and publishing tools.

The service provider opens up an endpoint on its system to allow content to be
posted through the OExchange process. It also integrates a discovery file contain-
ing all the information that a publisher needs to implement the provider’s service
and add discovery mechanisms on its site.

2. The publisher (source) performs discovery on the service provider.

The publisher uses a variety of discovery methods to obtain the discovery file from
the service provider. This enables the publisher to implement the service provider’s
sharing mechanism.

3. The publisher sends a content offer to the service provider.

Once a user chooses to share some content through the service provider, the pub-
lisher will forward the user’s browser session to the offer endpoint on the server
provider site.

Figure 10-5. How OExchange works

At the end of the process, the user will be routed to the service provider site to share
the offered content.

The Uses of OExchange
There are two primary uses for the OExchange protocol. For the service provider, it
delivers a means of permitting other sites to push content to its site or service. When
other sites integrate the service provider’s sharing mechanism, they are sending more
unique content to the service each time a user shares it.

For the publisher, it provides a simple means of offering its existing users new ways to
share content with their favorite service providers and also attracts new users by pulling
them from those services back to the publisher site—and it does all of this in a very
standardized way, without the publisher having to integrate sharing methods for each
service provider.

For instance, there are a number of “Share to [service]” widget systems currently avail-
able that implement the types of systems that OExchange seeks to standardize, such

OExchange: Building a Social Sharing Graph | 415

as AddThis (http://www.addthis.com; shown in Figure 10-6) and ShareThis (http://www
.sharethis.com).

Figure 10-6. The AddThis sharing widget

While these are definitely extreme examples of service integrations, we can see how a
publisher site could use the OExchange protocol to discover sharing information about
a service provider in order to share its content with that service.

Using systems like OExchange, a site can generate many alternative outlets for its con-
tent, sharing out articles or documentation (or anything else it serves up) to many prime
services, which may in turn deliver views and new users back to the site.

Implementing OExchange
Now that we have a broad understanding of how OExchange works and what its uses
are, let’s revisit the steps that we looked at in the section “How Does OExchange
Work?” on page 414 and see how we can programmatically implement them.

We’ll be looking at both the service provider and publisher implementations. While
both sides provide a full overview of the steps, they may not both be required for every
implementation—for example, if you’re just consuming OExchange data from a service
provider, or if you’re the service provider yourself, providing the information to other
publishers.

Let’s start by looking at the service provider implementation.

1. Service provider (target) integrates discovery and publishing tools

If you are using an existing service provider rather than implementing
your own, there is no need to build your own OExchange service pro-
vider logic.

The service provider’s first step in the OExchange process is to open up an endpoint
on its service to which the publisher will forward the user’s browser session via an
HTTP GET request, passing through a number of different query string parameters.

This endpoint may look something similar to the following:

http://www.example.com/share.php?url={URI}

416 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://www.addthis.com
http://www.sharethis.com
http://www.sharethis.com
http://www.example.com/share.php?url={URI}

The service provider can define its endpoint in any fashion it chooses (depending on
factors such as whether the web stack uses file extensions), so it does not need to change
its service architecture. This means that the endpoints may look like:

• http://www.example.com/offer/share

• http://www.example.com/share.php?url={URI}

• http://www.example.com/share/?url={URI}

or any number of other iterations, depending on what suits the service provider’s web
stack.

Next, the service provider needs to make its offer endpoint discoverable. We will use
two methods to make this happen. First, we need to construct an eXtensible Resource
Descriptor, or XRD, file (e.g., oexchange.xrd) that will allow a publisher to obtain icons,
title, description, and a number of other values about a service.

This file will look something like the following:

<?xml version='1.0' encoding='UTF-8'?>
<XRD xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
 <Subject>http://www.oexchange.org/demo/linkeater</Subject>

 <Property type="http://www.oexchange.org/spec/0.8/prop/vendor">
 OExchange.org
 </Property>
 <Property type="http://www.oexchange.org/spec/0.8/prop/title">
 A Service that Eats Links
 </Property>
 <Property type="http://www.oexchange.org/spec/0.8/prop/name">
 LinkEater
 </Property>
 <Property type="http://www.oexchange.org/spec/0.8/prop/prompt">
 Send to LinkEater
 </Property>

 <Link rel= "icon"
 href="http://www.oexchange.org/images/linkeater_16x16.png"
 type="image/png" />
 <Link rel= "icon32"
 href="http://www.oexchange.org/images/linkeater_32x32.png"
 type="image/png" />

 <Link rel= "http://www.oexchange.org/spec/0.8/rel/offer"
 href="http://www.oexchange.org/demo/linkeater/offer.php"
 type="text/html" />
</XRD>

The first element and following property information will contain the subject of the
service, vendor, title, name, and prompt for sending the user to the service. This will
be followed by two link elements for the icons that a publisher may use on its sites to
allow sharing to the service provider—one 16×16-pixel icon and one 32×32–pixel icon.
The final link element contains the offer endpoint that the service provider has opened

OExchange: Building a Social Sharing Graph | 417

http://www.example.com/offer/share
http://www.example.com/share.php?url={URI}
http://www.example.com/share/?url={URI}

up on its service to allow a publisher to submit a content offer. This file may be stored
anywhere on the service provider.

To help you easily create an XRD file, OExchange has a discovery re-
source generator tool available at http://www.oexchange.org/tools/dis
coverygen/. You simply enter in the basic information about the service,
and the XRD file is automatically generated.

To make this XRD file discoverable, you can add an HTML <link> tag to any page on
your site or service that points to the specific XRD file:

<link rel="http://oexchange.org/spec/0.8/rel/related-target"
 type="application/xrd+xml"
 href="http://www.example.com/linkeater/oexchange.xrd" />

Finally, the service provider may add a link for the XRD file to the site’s /.well-known/
host-meta file. This will allow third-party services to retrieve a reference to the XRD file
from the service provider’s hostname. This host-meta file may look something like the
following:

<?xml version='1.0' encoding='UTF-8'?>
<XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'
 xmlns:hm='http://host-meta.net/xrd/1.0'>
 <hm:Host>www.oexchange.org</hm:Host>

 <!--
 An OExchange Target is available on this host
 -->
 <Link
 rel="http://oexchange.org/spec/0.8/rel/resident-target"
 type="application/xrd+xml"
 href="http://www.oexchange.org/demo/linkeater/oexchange.xrd" >
 </Link>
</XRD>

Even though the discovery pieces are optional, it is recommended that you make the
discovery services available to allow publishers and developers to locate and use your
service.

2. Publisher (source) performs discovery on service provider

The next stage in the process takes place when a publisher wants to test whether a
service provider that it is interested in extending a content offer to even supports the
OExchange specification.

418 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://www.oexchange.org/tools/discoverygen/
http://www.oexchange.org/tools/discoverygen/

To allow you to easily discover whether a site or service implements
OExchange and has an available XRD file, you can use the OExchange
discovery test harness tool at http://www.oexchange.org/tools/discovery
harness/. This tool also allows you to extract all data from an XRD file
directly.

There are several defined methods for determining whether a service provider supports
OExchange and for obtaining the title, icons, and offer endpoint that will be required
in order to integrate it into another site or service.

The first method that a publisher can employ to gather informa-
tion about the service provider’s offer endpoint is directly through the XRD file that
the provider has set up, assuming the publisher has the direct discovery link, such as
http://twitter.com/oexchange.xrd.

Even though the XRD file may be placed at any location on its site, a provider should
maintain that file at a consistent location, since it is the most direct method publishers
can use to obtain the data required for the OExchange process.

The second method a publisher may employ is using the .well-
known/host-meta file on a site, such as http://twitter.com/.well-known/host-meta. This
is an XRD file a service provider creates to describe the services that it makes available
through simple HTTP requests on that host.

As we saw in the service provider setup section, the service provider may integrate a
link to the OExchange XRD file, such as:

<Link rel="http://oexchange.org/spec/0.8/rel/resident-target"
 type="application/xrd+xml"
 href="http://www.oexchange.org/demo/linkeater/oexchange.xrd" >
</Link>

A publisher can thus obtain the XRD file and perform discovery to acquire all the
information required to integrate a service provider in its offer listing.

The final option we’ll cover is for a service provider to
integrate an HTML <link> within the pages on its site. This method would allow a
publisher to poll a particular page on a site on which it would like to perform discovery,
and obtain a link to the OExchange XRD file in the same way as with the .well-known/
host-meta file option.

The <link> tag would look something like the following:

<link rel="http://oexchange.org/spec/0.8/rel/related-target"
 type="application/xrd+xml"
 href="http://www.example.com/linkeater/oexchange.xrd" />

Directly via the XRD file.

Through hostname discovery.

Through individual page discovery.

OExchange: Building a Social Sharing Graph | 419

http://www.oexchange.org/tools/discoveryharness/
http://www.oexchange.org/tools/discoveryharness/
http://twitter.com/oexchange.xrd
http://twitter.com/.well-known/host-meta

3. Publisher sends content offer to service provider

Now that the publisher has performed discovery on the service provider that it would
like its users to be able to share content with, it can enable its users to send content
offers to the service provider. This allows the users to share the publisher’s site-specific
information with that service, such as how clicking a “Tweet this article” button on a
news site may post the article’s title and link out to Twitter.

Since we have already obtained the offer URL on the provider from the XRD file during
discovery, we simply need to forward the user’s browser session to the offer URL,
passing along any parameters that may be needed to define the content offer.

Looking at this further, from the provider’s XRD file we have obtained the following
piece of information about the offer URL:

<Link rel= "http://www.oexchange.org/spec/0.8/rel/offer"
 href="http://www.oexchange.org/demo/linkeater/offer.php"
 type="text/html" />

Using the offer URL, http://www.oexchange.org/demo/linkeater/offer.php, we will build
an HTTP GET URL string containing the parameters that define the content offer via
the query string. Our final URL string will look similar to the following:

http://www.oexchange.org/demo/linkeater/offer.php?url=http://example.com/...

There are a number of parameters that we can apply to the URL string in order to define
the content of the offer. These are listed in Table 10-12.

Table 10-12. Content offer parameters

Parameter Description

url (required) The URL that uniquely identifies the content being shared. This should be navigable from within a

browser.

title (optional) A human-readable string denoting the title of the content, much like the <title> meta tag of a web

page.

description

(optional)

A human-readable string denoting the description of the content, much like the <description>

meta tag of a web page.

tags (optional) A comma-delimited list of additional parameters that a target can use to further define the content

being provided.

Note that parameters containing a comma must be placed in double quotes (e.g., foo, bar, “San

Francisco, CA”).

ctype (optional) Additional information on the type of the content being shared. The default is link.

The content type of an offer depends on the presence or absence of the ctype parameter.
If this parameter is present, then the offer will accept additional parameters, which are
dictated by the type being defined. These may additionally include other related URLs.
If the ctype parameter is absent from the offer, then its value will default to link.

420 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://www.oexchange.org/demo/linkeater/offer.php

Even though the ctype parameter is optional, properly defining the type of content
being shared will help the target site integrate it in a proper fashion (e.g., embedding
shared image content within an tag).

There are a number of types that may be defined for the ctype parameter, as listed in
Table 10-13.

Table 10-13. Possible values for the ctype parameter

ctype Description

flash A Flash movie object that may be directly embedded by the target once received. This ctype definition supports

the following additional parameters:

swfurl

The direct URL to the actual Flash resource, including any additional parameters required.

screenshot

A URI for an image representation of the Flash content. The image should be able to be rendered at the same

size as the Flash object.

height

The preferred height of the Flash object.

width

The preferred width of the Flash object.

iframe This ctype denotes that the content can be directly embedded within an iframe on the target side, such as an

HTML source page. iframe supports the following additional parameters:

iframeurl

The URL that should be used as the source of the iframe.

screenshot

A screenshot representation of the iframe content. The image should be suitable for being displayed at the

same size as the iframe.

height

The preferred height of the iframe.

width

The preferred width of the iframe.

image The image ctype defines a simple web-renderable image. It supports the following additional parameters:

imageurl

The direct URL to the image resource.

height

The preferred height of the image.

width

The preferred width of the image.

link Since this is the default value, its definition is not required. It denotes that the content is limited to the user-

browsable URL defined in the content offer.

OExchange: Building a Social Sharing Graph | 421

Once the full URL has been defined, the publisher will forward the user to the service
provider URL via the browser. At this point, the service provider will have control over
the browser session and can utilize the content as it sees fit. Generally, this will involve
confirming that the user is logged in and having her verify the content of the post prior
to publication.

Even though the user must be forwarded to the service provider, the
specification does not dictate how. The publisher may simply forward
the user from its site to that of the service provider, launch a new tab or
window through the use of a _blank link, open a pop-up window, or
any number of other methods.

PubSubHubbub: Content Syndication
The PubSubHubbub (Publisher-Subscriber Hub) protocol seeks to define how content
systems syndicate user correspondence from a source site to a number of subdelivery
sites. Using this method, sites can augment their comments with syndicated feeds from
other sites, giving their users a much wider range of social interaction than they would
experience from a single source.

Applying a distributed approach to server-to-server communication, a centralized hub
between a provider and subscriber acts as a communication channel between the two.
This makes it easier for a single provider to produce updates to content, as those updates
will be syndicated out to many different subscribers at the same time, keeping each
source in sync.

How Does PubSubHubbub Work?
The functional process outlined in the PubSubHubbub specification is fairly simple,
involving only a series of requests and responses among these three parties:

Publisher
The site or service that is publishing content that someone may want to syndicate
at a different location.

Hub
The middle layer between the publisher and subscriber. All communication be-
tween subscriber and publisher is routed through the hub.

Subscriber
The site(s) that are interested in the content being produced or updated from the
publisher.

422 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

The hub acts as a mechanism for syndicating content updates from a
publisher out to one or more subscribers. Thus, the publisher avoids
repeated polling for new or updated content.

With our players in place, we can look at how they interact with one another. The
PubSubHubbub process comprising these parties is not time based, so it might take
place over a long period of time. This subscription flow takes us through several steps,
which we’ll cover next.

1. Subscriber polls publisher’s feed

Our starting point looks exactly like the traditional flow of a subscriber polling a pub-
lisher to obtain new or updated content, as shown in Figure 10-7.

Figure 10-7. PubSubHubbub, step 1: Subscriber polls publisher’s feed

The difference here is in the response object that the publisher sends back to the sub-
scriber. This response will include a forward link to the hub—which the subscriber will
use in the future to obtain updates from the publisher—in the Atom or RSS XML file.
This link is in the form <link rel="hub" ...>.

2. Subscriber requests subscription to the publisher’s feed updates from the hub

Now that the subscriber has the link to the hub, it issues an HTTP POST request to
that URI. Figure 10-8 illustrates this transaction.

Figure 10-8. PubSubHubbub, step 2: Subscriber subscribes to publisher’s hub

PubSubHubbub: Content Syndication | 423

In this step, the subscriber requests a subscription to the publisher’s updates. In the
POST request, the subscriber specifies an endpoint URI indicating where the hub
should POST new updates to.

3. Hub verifies subscriber and request

To protect itself against malicious requests, such as DoS (Denial of Service) attacks, the
hub will first make a POST request back to the subscriber to verify its identity prior to
processing the subscription. The subscriber sends a confirmation response back to the
hub to prove that it is a valid subscriber party, demonstrated in Figure 10-9.

Figure 10-9. PubSubHubbub, step 3: Hub verifies subscriber’s subscription request

At this point, the subscriber has subscribed to the hub and will be notified when there
are new updates from the publisher. There may be many subscribers that go through
this process, meaning that there is a one-to-many relationship between the publisher
and its subscribers.

4. Publisher notifies hub of content updates

Once the publisher has some new content that it wants to syndicate out to all of its
subscribers, it notifies the hub by issuing a POST request containing the updated feed
URLs to the hub. The hub then makes a request back to the publisher requesting the
content delivered at the feed URL locations. The publisher responds with the requested
content. Figure 10-10 shows this flow.

Figure 10-10. PubSubHubbub, step 4: Publisher pushes new content to the hub

424 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

If the publisher does not inform the hub when content changes have been made, the
hub will periodically poll the publisher’s feed for new updates. Either way, we now
have the updated content on the hub.

5. Hub shares new content with subscribers

Once the hub receives the updates from the publisher, it can notify all subscribers that
are subscribed to the feed for updates. Figure 10-11 shows this flow; the hub issues a
POST request containing the update to the endpoint that the subscriber specified when
it first subscribed.

Figure 10-11. PubSubHubbub, step 5: Hub pushes updated content to subscribers

We now have updates pushed from the publisher to the subscriber.

The Benefits: From Publishers to Subscribers
The PubSubHubbub specification offers a number of benefits to both publishers and
subscribers for using a distributed hub-based system. Let’s take a look at a few.

Publisher: No repeated polling from multiple sources

The major benefit that publishers gain from this type of system is the fact that sub-
scribers no longer need to periodically poll the publisher to check for updates to content
they are interested in. A single subscriber making requests at regular intervals does not
incur a lot of load, but if there are thousands of subscribers all continually requesting
updated content from the publisher at regular intervals, it’s easy to imagine how heavy
the load can get on the publisher’s side.

This burden on the publisher wouldn’t be so bad if subscribers only made single re-
quests once the content has changed, but the only way for subscribers to know that is
to make a request to the provider, creating a Catch-22 situation. This is the point, and
role, of the hub in this specification. Subscribers subscribe to the hub only once for a
given feed, and when the publisher pushes updates to the hub, it will in turn notify the
subscribers of the update. Although the hub may periodically poll the publisher’s feeds
if the publisher does not notify the hub of updates, this is only a single request source
for a potentially large number of subscribers.

PubSubHubbub: Content Syndication | 425

Subscriber: No need for repeated polling

On the other side of the fence, the largest benefit from the subscriber side is exactly the
same as that of the publisher: there is no need to repeatedly poll the publisher for new
updates.

In the past, if the subscriber wanted to get updated content from a publisher, it would
need to periodically poll the publisher to obtain the content that it was interested in.
In this polling request, the content may or may not have changed, so it was up to the
subscriber to determine whether any update action was needed on its side. This is a
highly inefficient system that wastes requests and processing resources for content that
may not have even changed.

With the hub in place, however, the subscriber only needs to make a single request to
subscribe to a publisher’s feeds, specifying the update URI that the hub should POST
updates to when the publisher updates any content. The subscriber simply waits for
something to be POSTed to that endpoint and processes it once it arrives.

Publisher and subscriber: Identical content across multiple subscribers

Another core benefit to the distributed hub system stems from the fact that the hub
will push out the same updated content to all subscribers. This means that any changes
to the content will be viewed in the exact same way, no matter which source the user
chooses to view that content with.

To put this in practical terms, let’s say we have two subscribers subscribing to an article
and comment thread on a provider site. Without a hub to control the flow of updates
to all of the interested parties, it is up to the subscribers to manage how often they look
for new comments on the article. This might mean that one of the parties is seeing vastly
different comments from the other, creating individual silos out of each site.

With the hub in place, once new comments are posted or updates to the article are
introduced, the provider can simply update the hub, which in turn updates all sub-
scribers to that content.

This model creates a uniform series of sites that all reap the benefits of sharing identical
content.

Hosted Hubs and Implementation Services
Implementers of the PubSubHubbub specification can create their own hosted hub
solutions, but for those who would like to work off what is currently available in the
market, there are a number of hubs and implementation services to choose from.

Anyone can create a PubSubHubbub server, and if an open hub is available, anyone
can use it. Here are several of the implementation services and hosted hubs currently
available:

426 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

• Google App Engine reference hub: http://pubsubhubbub.appspot.com/

• Superfeedr hosted hub: http://superfeedr.com/hubbub

• SubHub Django integrated hub: https://code.launchpad.net/subhub

• Ayup hosted hub: http://ayup.us/

• WordPress plug-in: http://wordpress.org/extend/plugins/pushpress/

• RabbitHub erlang implementation: https://github.com/tonyg/rabbithub/#readme

• Wolverine Twisted Python implementation: https://github.com/progrium/wolver
ine#readme

• WebGlue Ruby implementation: https://github.com/zh/webglue#readme

• Subfeedr Perl implementation: https://github.com/miyagawa/Subfeedr#readme

• PubSubHubbub: https://github.com/barinek/pubsubhubbub-rb#readme

These are excellent starting points for both leveraging hosted open hub solutions and
utilizing current implementation examples of the project.

Workflow Libraries
There are a number of current libraries that allow you to quickly and easily build out
the subscriber or publishers pieces of the PubSubHubbub workflow.

Subscriber clients

These subscriber clients will allow you to subscribe a site or service, via the hub, to a
feed from the publisher:

• .NET: http://code.google.com/p/npubsubhubbub/

• Haskell: http://hackage.haskell.org/package/pubsub-0.10

• Java: http://code.google.com/p/pubsubhubbub-java/downloads/

• PHP: http://github.com/lxbarth/PuSHSubscriber

• Ruby on Rails: http://github.com/empika/Superfeedr-PubSubHubbub-Rails-Plugin

• Scala: http://github.com/kafecho/scala-push

For more information on the subscribers and alternative frameworks and CMS systems,
visit http://code.google.com/p/pubsubhubbub/wiki/SubscriberClients.

Publisher clients

There are also a number of publisher clients available for use. These will allow you to
implement feeds on a site that subscribers will be able to subscribe to via a hub. They
will work to notify the hub of new updates from the publisher.

• C#: http://code.google.com/p/pubsubhubbub-publisherclient-csharp/

• Haskell: http://hackage.haskell.org/package/pubsub-0.10

PubSubHubbub: Content Syndication | 427

http://pubsubhubbub.appspot.com/
http://superfeedr.com/hubbub
https://code.launchpad.net/subhub
http://ayup.us/
http://wordpress.org/extend/plugins/pushpress/
https://github.com/tonyg/rabbithub/#readme
https://github.com/progrium/wolverine#readme
https://github.com/progrium/wolverine#readme
https://github.com/zh/webglue#readme
https://github.com/miyagawa/Subfeedr#readme
https://github.com/barinek/pubsubhubbub-rb#readme
http://code.google.com/p/npubsubhubbub/
http://hackage.haskell.org/package/pubsub-0.10
http://code.google.com/p/pubsubhubbub-java/downloads/
http://github.com/lxbarth/PuSHSubscriber
http://github.com/empika/Superfeedr-PubSubHubbub-Rails-Plugin
http://github.com/kafecho/scala-push
http://code.google.com/p/pubsubhubbub/wiki/SubscriberClients
http://code.google.com/p/pubsubhubbub-publisherclient-csharp/
http://hackage.haskell.org/package/pubsub-0.10

• Java: http://code.google.com/p/pubsubhubbub-java/

• Perl: http://search.cpan.org/~bradfitz/Net-PubSubHubbub-Publisher/

• PHP: http://code.google.com/p/pubsubhubbub/source/browse/#svn/trunk/publisher
_clients/php

• Python: http://pypi.python.org/pypi/PubSubHubbub_Publisher/1.0

• Ruby: http://github.com/igrigorik/PubSubHubbub/tree/master

For more information on the publisher clients and alternative plug-ins that are availa-
ble, visit the publisher list at http://code.google.com/p/pubsubhubbub/wiki/Publisher
Clients.

Building a Publisher in PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/pubsubhub
bub-publisher-php.

For a closer look at this specification, let’s explore how to implement a publisher in the
PubSubHubbub workflow using PHP.

We’ll start with the Publisher class, which will provide us with all of the feed publishing
functionality that we will need for this process. In this example, this file is stored as
publisher.php:

<?php
/*
 * Class: PubSubHubbub Publisher
 * Description: Allows for the publishing of new updates to the hub
 */
class Publisher{
 private $regex_url = '|^https?://|i'; //simple URL string validator
 private $hub = ''; //hub URL

 //constructor that stores the hub and callback URLs for the subscriber
 public function __construct($hub){
 if (preg_match($this->regex_url, $hub)){ $this->hub = $hub; }
 else{ throw new Exception('Invalid hub URL supplied'); }
 }

 //makes request to hub to subscribe / unsubscribe
 public function publish($feeds){
 //set up POST string with mode
 $post_string = 'hub.mode=publish';

 //loop through each feed provided
 foreach ($feeds as $feed){
 //if feed is valid, add to POST string
 if (preg_match($this->regex_url, $feed)){

428 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

http://code.google.com/p/pubsubhubbub-java/
http://search.cpan.org/~bradfitz/Net-PubSubHubbub-Publisher/
http://code.google.com/p/pubsubhubbub/source/browse/#svn/trunk/publisher_clients/php
http://code.google.com/p/pubsubhubbub/source/browse/#svn/trunk/publisher_clients/php
http://pypi.python.org/pypi/PubSubHubbub_Publisher/1.0
http://github.com/igrigorik/PubSubHubbub/tree/master
http://code.google.com/p/pubsubhubbub/wiki/PublisherClients
http://code.google.com/p/pubsubhubbub/wiki/PublisherClients
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-php

 $post_string .= '&hub.url=' . urlencode($feed);
 } else {
 throw new Exception('Invalid hub URL supplied');
 }
 }

 //set up cURL request
 $ch = curl_init($this->hub);
 $options = array(
 CURLOPT_HEADER => true,
 CURLINFO_HEADER_OUT => true,
 CURLOPT_VERBOSE => true,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_POSTFIELDS => $post_string,
 CURLOPT_CUSTOMREQUEST => 'POST'
);
 curl_setopt_array($ch, $options);

 //make request to hub
 $response = curl_exec($ch);
 curl_close($ch);

 //return response
 return $response;
 }
}
?>

The Publisher class contains two methods: the constructor and the method to publish.
When a new instance of the class is created and the constructor is called with a URL
for the hub, it will simply check to ensure that the hub URL is valid and then store it.

When we call the publish method, we will start out by setting a base for our POST
string that will be sent with the publish request to the hub. The hub expects a couple
of parameters:

hub.mode

This should be set to publish for the publishing action.

hub.url

For each feed that should be updated, there should be a hub.url parameter.

We set the mode first, since it is a static value. We then loop through all feeds provided
to the publish method, checking if each is a valid URL. If the URLs are valid, a new
hub.mode parameter will be appended to the POST string; if invalid, an exception will
be thrown.

We then make a cURL POST request, passing in the POST string, to the hub URL and
return the response. A valid HTTP code response from the hub should be 204, but
anything in the 2xx range will be accepted.

Now let’s look at a quick implementation of this class:

PubSubHubbub: Content Syndication | 429

<?php
include("publisher.php");

//define hub and feeds
$hub = 'http://pubsubhubbub.appspot.com/';
$feeds = array('http://www.example.com/feed1.xml',
 'http://www.example.com/feed2.xml',
 'http://www.example.com/feed3.xml');

//create new subscriber
$publisher = new Publisher($hub);

//publish feeds
$response = $publisher->publish($feed);

//print response
var_dump($response);
?>

After including the Publisher class file, we define our hub URL and an array of the feeds
that we would like to publish updates for. We then create a new instance of the Pub
lisher class, passing in our hub URL variable. Once we’ve created this new instance,
we can simply call the publish(...) method, passing in our feeds. The response from
that method call should tell us the success state. For this example, we dump that
response.

Building a Publisher in Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/pubsubhub
bub-publisher-python.

Now that we have looked at a publisher implementation in PHP, let’s explore the same
implementation using Python for an alternate vantage point.

For this example, the classes that make up the publisher are stored in a file named
publisher.py:

import re
import urllib
import urllib2

'''
' Class: Publishing Error
' Description: Custom error class for publishing exceptions
'''
class PublishError(Exception):
 def __init__(self, value):
 self.value = value
 def __str__(self):

430 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-publisher-python

 return repr(self.value)

'''
' Class: Publisher
' Description: Provides ability to publish updates for feeds
'''
class Publisher:
 regex_url = re.compile('^https?://') #simple URL string validator

 #constructor that stores the hub for the publisher
 def __init__(self, hub):
 if self.regex_url.match(hub): self.hub = hub
 else: raise PublishError('Invalid hub URL supplied')

 #makes request to hub to update feeds
 def publish(self, feeds):
 #set the POST string mode
 post_string = 'hub.mode=publish'

 #add each feed as a URL in the POST string, unless invalid URL
 for feed in feeds:
 if self.regex_url.match(feed):
 post_string += '&hub.url=%s' % (urllib.quote(feed))
 else:
 raise PublishError('Invalid feed URL supplied: %s' % (feed))

 try:
 #make request to hub
 file = urllib2.urlopen(self.hub, post_string)
 return True
 except (IOError, urllib2.HTTPError), e:
 #process http conditions in 2xx range as valid
 if hasattr(e, 'code') and str(e.code)[0] == '2':
 return True

 #process alternative error conditions
 error = ''
 if hasattr(e, 'read'):
 error = e.read()
 raise PublishError('%s, Response: "%s"' % (e, error))

This file contains two classes, PublishError and Publisher. The purpose of Publish
Error is simply to provide a custom exception class to push out exceptions in the
publisher flow.

The Publisher class mirrors that of the PHP example, providing us with a constructor
and a method to publish our feeds. Once a new instance of the class is instantiated, the
constructor will simply check that the hub URL provided is valid. If it is, the URL will
be stored; otherwise, an exception is thrown.

When we call the publish method, we will start out by setting a base for the POST
string that will be sent with the publish request to the hub. The hub expects a couple
of parameters:

PubSubHubbub: Content Syndication | 431

hub.mode

This should be set to publish for the publishing action.

hub.url

For each feed that should be updated, there should be a hub.url parameter.

We then loop through each feed provided in the feeds list. We check to ensure that the
feed is valid and, if so, append a new hub.url parameter to the end of the POST string.
If the feed is invalid, an exception is thrown.

Last, we try to make a POST request to the hub URL, passing in the POST string. If
there were no errors produced, we simply return True. If errors are produced, we check
whether the HTTP response was in the 2xx range. If so, we treat this as a valid response.
If not, we throw an appropriate exception.

Now let’s see how we can use the Publisher class:

from publisher import *

#define hub and feeds
hub = 'http://pubsubhubbub.appspot.com/'
feeds = ['http://www.example.com/feed1.xml',
 'http://www.example.com/feed2.xml',
 'http://www.example.com/feed3.xml']

#create new publisher
publisher = Publisher(hub)

#publish feed updates: response == True on success
response = publisher.publish(feeds)

#print message on success
if (response == True):
 print 'Content-Type: text/plain'
 print ''
 print 'Update successful'

We start the example by importing the class file and then defining the hub URL and
the URLs for the feeds that we want to publish updates for. We then create a new
instance of the Publisher class, passing in the hub URL, and then call the publish
(...) method, passing in the feed list. If the response from that call is True, then the
process completed successfully and we print out the appropriate message.

Building a Subscriber in PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/pubsubhub
bub-subscriber-php.

432 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-php

At this point, we’ve already explored how to set up publishers in both PHP and Python,
so let’s change gears now and build a subscriber in both languages. We’ll start with
PHP.

For this example, the subscriber file is stored as subscriber.php:

<?php
/*
 * Class: Subscriber
 * Description: Provides ability to subscribe / unsubscribe from hub feeds
 */
class Subscriber{
 private $regex_url = '|^https?://|i'; //simple URL string validator
 private $hub = ''; //hub URL
 private $callback = ''; //callback URL

 //constructor that stores the hub and callback URLs for the subscriber
 public function __construct($hub, $callback){
 if (preg_match($this->regex_url, $hub)){ $this->hub = $hub; }
 else{ throw new Exception('Invalid hub URL supplied'); }

 if (preg_match($this->regex_url, $callback)){ $this->callback = $callback; }
 else{ throw new Exception('Invalid callback URL supplied'); }
 }

 //initiates a request to subscribe to a feed
 public function subscribe($feed){
 return $this->change_subscription('subscribe', $feed);
 }

 //initiates a request to unsubscribe from a feed
 public function unsubscribe($feed){
 return $this->change_subscription('unsubscribe', $feed);
 }

 //makes request to hub to subscribe / unsubscribe
 public function change_subscription($mode='subscribe', $feed){
 //check if provided feed is a valid URL
 if (preg_match($this->regex_url, $feed)){
 //set the post string for subscribe / unsubscribe
 $post_string = "hub.mode=$mode
 &hub.callback={$this->callback}
 &hub.verify=async
 &hub.topic=$feed";

 //set up cURL request
 $ch = curl_init($this->hub);
 $options = array(
 CURLOPT_HEADER => true,
 CURLINFO_HEADER_OUT => true,
 CURLOPT_VERBOSE => true,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_POSTFIELDS => $post_string,
 CURLOPT_CUSTOMREQUEST => 'POST'
);

PubSubHubbub: Content Syndication | 433

 curl_setopt_array($ch, $options);

 //make request to hub
 $response = curl_exec($ch);
 curl_close($ch);

 //return response
 return $response;
 } else {
 throw new Exception('Invalid feed URL supplied');
 }
 }
}
?>

The Subscriber class contains a number of methods that we will be using. When the
class is first instantiated with a hub and callback URL, the constructor will be called.
The purpose of the constructor is simply to check that the hub and callback are valid
URLs. If they are valid, they are stored; otherwise, the appropriate exception message
is thrown.

The purpose of both the subscribe(...) and unsubscribe(...) methods is simply to
act as helper methods for an implementer. They will accept a feed on which the action
should be taken and then call the change_subscription(...) method with the appro-
priate subscription mode, either subscribe or unsubscribe.

When unsubscribe is called, we ensure that the feed parameter is a valid URL. If it is,
we start constructing the POST string that will be sent to the hub. This will consist of:

hub.mode

The subscription mode to run, either subscribe or unsubscribe

hub.callback

The callback URL on the subscriber site, to which new feed updates from the
publisher should be POSTed

hub.verify

The verify mode, either sync or async

hub.topic

The feed URL

We then initiate a cURL POST request to the hub to perform the action against the
hub. The response from the request is returned.

Now let’s see this class in use:

<?php
include("subscriber.php");

//define hub, callback and feed
$hub = 'http://pubsubhubbub.appspot.com/';
$callback = 'http://www.example.com/publish';
$feed = 'http://www.example.com';

434 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

//create new subscriber
$subscriber = new Subscriber($hub, $callback);

//subscribe / unsubscribe methods
$response = $subscriber->subscribe($feed);
//$response = $subscriber->unsubscribe($feed);

//print response
var_dump($response);
?>

We include the class file and then define the URLs for the hub, callback, and feed. We
then create a new Subscriber(...) object, passing in the hub and callback. Once the
object is created, we can call either our subscribe or unsubscribe method, passing in
the feed URL. The response from either method will be dumped out.

Building a Subscriber in Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_10/pubsubhub
bub-subscriber-python.

Now let’s explore the same subscriber implementation, but now using Python. For this
example, the subscriber classes are stored in a file name subscriber.py:

import re
import urllib
import urllib2

'''
' Class: Subscription Error
' Description: Custom error class for subscription exceptions
'''
class SubscribeError(Exception):
 def __init__(self, value):
 self.value = value
 def __str__(self):
 return repr(self.value)

'''
' Class: Subscriber
' Description: Provides ability to subscribe / unsubscribe from hub feeds
'''
class Subscriber:
 regex_url = re.compile('^https?://') #simple URL string validator

 #constructor that stores the hub and callback URLs for the subscriber
 def __init__(self, hub, callback):
 if self.regex_url.match(hub): self.hub = hub
 else: raise SubscribeError('Invalid hub URL supplied')

PubSubHubbub: Content Syndication | 435

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_10/pubsubhubbub-subscriber-python

 if self.regex_url.match(callback): self.callback = callback
 else: raise SubscribeError('Invalid callback URL supplied')

 #initiates a request to subscribe to a feed
 def subscribe(self, feed):
 return self.change_subscription('subscribe', feed)

 #initiates a request to unsubscribe from a feed
 def unsubscribe(self, feed):
 return self.change_subscription('unsubscribe', feed)

 #makes request to hub to subscribe / unsubscribe
 def change_subscription(self, mode, feed):
 #check if provided feed is a valid URL
 if self.regex_url.match(feed):
 #set the post string for subscribe / unsubscribe
 post_string = 'hub.mode=%s&hub.callback=%s&hub.verify=async&hub.topic=%s'
 % (mode, self.callback, urllib.quote(feed))

 try:
 #make return to hub
 file = urllib2.urlopen(self.hub, post_string)
 return True
 except (IOError, urllib2.HTTPError), e:
 #process http conditions in 2xx range as valid
 if hasattr(e, 'code') and str(e.code)[0] == '2':
 return True

 #process alternative error conditions
 error = ''
 if hasattr(e, 'read'):
 error = e.read()
 raise SubscribeError('%s, Response: "%s"' % (e, error))
 else:
 raise SubscribeError('Invalid feed URL supplied')

Just like with the Python publisher, the subscriber file has a custom exception class,
SubscribeError, whose purpose is to output exceptions that are encountered during
the execution of the subscription.

When a new instance of the Subscriber class is created, the constructor will be called.
The constructor’s purpose is to accept URLs for the hub and callback, check that they
are valid, and store them if valid or display exceptions if they’re not.

The subscribe(...) and unsubscribe(...) methods are helper methods that accept a
feed URL and then call the change_subscription(...) method with the appropriate
mode for the action to be taken, either subscribe or unsubscribe.

change_subscription(...) is used to make the request to the hub to subscribe to a feed.
We start by checking if the feed URL provided is valid. If so, we start constructing the
POST string that will be sent to the hub. It will consist of:

436 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

hub.mode

The subscription mode to run, either subscribe or unsubscribe

hub.callback

The callback URL on the subscriber site, to which new feed updates from the
publisher should be POSTed

hub.verify

The verify mode, either sync or async

hub.topic

The feed URL

We then issue a POST request to the hub URL, passing in the POST string. If the request
completes successfully, we return True. If an error is thrown, we handle it by first
checking the HTTP response code. If the code is in the 2xx range, we treat it as a valid
response and return True. A valid response should be an HTTP 202 code, but anything
in the 2xx range is a success. If the code isn’t in that range, we throw an exception with
the appropriate error response.

Now let’s see how we can use these classes to build a subscriber:

from subscriber import *

#define hub, callback and feed
hub = 'http://pubsubhubbub.appspot.com/'
callback = 'http://www.example.com/publish'
feed = 'http://www.example.com'

#create new subscriber
subscriber = Subscriber(hub, callback)

#subscribe / unsubscribe methods: response == True on success
response = subscriber.subscribe(feed)
#response = subscriber.unsubscribe(feed)

#print message on success
if (response == True):
 print 'Content-Type: text/plain'
 print ''
 print 'Request successful'

We start by importing the subscriber file that we created earlier and then define the
URLs for our hub, callback, and the feed that we will be performing the action on.
Next, we create a new Subscriber object, passing in the hub and callback. Using that
new object, we call either the subscribe(...) or unsubscribe(...) methods, passing in
the feed URL. Last, we check the response from the called method and, if True, display
a message stating that the request was successful.

PubSubHubbub: Content Syndication | 437

The Salmon Protocol: Unification of Conversation Entities
Aimed at extending the benefits while mitigating the shortcomings of social aggregation
systems like PubSubHubbub, the Salmon protocol seeks to unify the conversation
threads from source publishers through to distributed layers and subscribers.

Where publishers may use protocols like PubSubHubbub to easily and efficiently syn-
dicate their content out to many different subscribers, Salmon seeks to further unify
these sources by building a communications network where the conversations hap-
pening across many different networks can be synced.

The Salmon Protocol Workflow
The Salmon protocol itself simply defines methods for unifying conversations and up-
dated content among a series of sites or services. Its workflow includes two main actors
that will be communicating back and forth:

Publisher (source)
The site or services containing the content and conversation entities that other sites
subscribe to or aggregate

Subscriber (aggregator)
The sites or services that aggregate the content and conversations from the pub-
lisher, syndicating out that content on their own sites

The communication between these two entities spans several different steps, which
we’ll cover next.

1. Publisher pushes updated content to subscriber

At the first stage of the process, the publisher updates its content or has updates to its
discussion threads. It pushes these updates through to its subscribers via a communi-
cation method such as PubSubHubbub so that the subscribers may update their con-
tent. Figure 10-12 shows this full flow—from the publisher through the hub to the
subscribers.

438 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

Figure 10-12. Salmon, step 1: Publisher pushes updated content to subscribers through hub (e.g.,
PubSubHubbub)

This step mirrors the communication step between publisher and subscriber that we
saw in the PubSubHubbub protocol, where a centralized hub controls the flow of up-
dates from publisher to subscriber.

When the content is pushed to the subscriber, it contains a link parameter with a call-
back URI on the publisher side that will be used to push content back upstream from
subscriber to publisher.

The subscriber takes the new content and updates the version on its site or service so
that it is in sync with the publisher. The callback URI provided in the update feed is
stored for later use.

Subscriber pushes updated content back upstream to publisher

Once the content on the subscriber site or service is updated (e.g., new comments), the
subscriber will retrieve the Salmon callback URI for the publisher and push its updated
content back to the publisher via an HTTP POST request, as shown in Figure 10-13.

The Salmon Protocol: Unification of Conversation Entities | 439

Figure 10-13. Salmon, step 2: Subscriber pushes updated content to publisher through hub

At this point, the publisher will need to implement a verification mechanism to ensure
that the subscriber is a trusted source. If the subscriber is indeed trusted, then the
publisher will integrate the changes back into its content.

Publisher pushes updated content to all subscribers

Once the new content is integrated back into the publisher site or service, that publisher
will issue another call to all subscribers with the new updates so that they may all update
their versions to the new unified content. Figure 10-14 shows this transaction.

Figure 10-14. Salmon, step 3: Publisher pushes updated content from the single subscriber out to all
subscribers

440 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

As with the first step, the publisher may use mechanisms such as PubSubHubbub to
push content through to a series of subscribers.

Building on the Foundation of PubSubHubbub
We’ve already seen how the PubSubHubbub protocol can be used to easily push out
updates from a publisher to a series of subscribers, but there is one piece missing in its
flow.

Let’s use a practical example to identify this issue. Say a news publisher has a comment
widget placed on each news story to allow people to discuss the topic being displayed.
This publisher uses a centralized PubSubHubbub hub to push out updates to the con-
tent and any recent comments on the article to all subscribers to its feed.

This process works perfectly well to ensure that all of the feed subscribers have the
most up-to-date content from the publisher, but what happens if the subscriber site
uses the updated comments to augment its existing comment flow? The subscriber may
have users of its own that are continuing the conversation beyond what is reflected on
the publisher site. If there are many subscribers, this equates to many different con-
versations seeded with comments from the feed of a publisher that isn’t aware of what
is being said in those conversations.

This is one such instance where the Salmon protocol can play a vital role. It can unify
the conversation threads between the publisher and a series of trusted subscribers. In
doing so, it aggregates these fragmented conversations into a single discussion within
an interrelated network of sites.

Abuse and Spam Protection
One of the largest challenges with this protocol has to do with preventing abuse and
spam when the subscribers communicate updates back to the publisher. There are a
few concerns that we need to address here:

1. How can the publisher ensure that the updated content is coming from a trusted
source?

2. How can the publisher prevent spam or abuse if it is accepting content from a
number of subscribers?

3. How can the publisher ensure the quality of the updates?

The Salmon protocol seeks to solve these problems by providing information about the
source of the update through the upstream request. Specifically, each Salmon request
has a verifiable author and user agent that the publisher can use to determine trusted
content sources.

The Salmon Protocol: Unification of Conversation Entities | 441

At a basic level, a publisher can follow certain steps to determine if the source of the
Salmon update is valid. Let’s look at a simple example to showcase what this security
flow may look like:

1. A subscriber site, subscriber.example.com, sends a Salmon request to the content
publisher. The subscriber authors and signs the request with acct:johndoe
@subscriber.example.com.

2. The publisher receives the Salmon request and uses protocols such as WebFinger,
XRD, or LRDD (Link-based Resource Descriptor) to discover the identity pro-
vider (IdP) for acct:johndoe@subscriber.example.com. If the IdP turns out to be
owned by subscriber.example.com, then the publisher will continue with the veri-
fication process.

3. The publisher then verifies the signature using retrieved public keys. If it checks
out, the publisher may accept the Salmon request and integrate the updated con-
tent. The publisher should then return an HTTP 200 response back to the
subscriber.

This is a simple example showcasing how a publisher may verify the source of a Salmon
request. This can be extended even further to include any trusted third-party
Salmon verification service, where the publisher would simply call the verifier to de-
termine whether a source can be trusted.

Implementation Overview
We’ve explored the Salmon protocol from a few different angles at this point, including
an overview of its stages and how to protect against abuse and spam. Now let’s focus
on what each stage of the protocol looks like from a programmatic view.

The Salmon protocol process starts when the publisher, or source, makes an update to
its content and pushes the information out to all of its subscribers (through an RSS/
Atom-based HTTP POST request). Within the feed, the publisher includes a Salmon
link with an href value pointing to some URI endpoint on its side where it can accept
Salmon requests from subscribers:

<link rel="salmon" href="http://example.org/salmon-endpoint"/>

The subscriber will process the updates from the publisher as it normally would, and
will store the Salmon endpoint on its side for future use.

Once an update (e.g., a comment) has been posted to that feed, the subscriber will store
the comment on its side as usual, but will then send an HTTP POST request to the
Salmon endpoint on the publisher containing a Salmon version of the update:

POST /salmon-endpoint HTTP/1.1
Host: example.org
Content-Type: application/atom+xml

<?xml version='1.0' encoding='UTF-8'?>

442 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

mailto:acct:johndoe@subscriber.example.com

<me:env xmlns:me="http://salmon-protocol.org/ns/magic-env">
 <me:data type='application/atom+xml'>
 PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPGVudHJ5IHhtbG5zPS
 dodHRwOi8vd3d3LnczLm9yZy8yMDA1L0F0b20nPgogIDxpZD50YWc6ZXhhbXBsZS5jb20s
 MjAwOTpjbXQtMC40NDc3NTcxODwvaWQ-ICAKICA8YXV0aG9yPjxuYW1lPnRlc3RAZXhhbX
 BsZS5jb208L25hbWUPHVyaT5hY2N0OmpwYW56ZXJAZ29vZ2xlLmNvbTwvdXJpPjwvYXV0a
 G9yPgogIDx0aHI6aW4tcmVwbHktdG8geG1sbnM6dGhyPSdodHRwOi8vcHVybC5vcmcvc3l
 uZGljYXRpb24vdGhyZWFkLzEuMCcKICAgICAgcmVmPSd0YWc6YmxvZ2dlci5jb20sMTk5O
 TpibG9nLTg5MzU5MTM3NDMxMzMxMjczNy5wb3N0LTM4NjE2NjMyNTg1Mzg4NTc5NTQnPnR
 hZzpibG9nZ2VyLmNvbSwxOTk5OmJsb2ctODkzNTkxMzc0MzEzMzEyNzM3LnBvc3QtMzg2M
 TY2MzI1ODUzODg1Nzk1NAogIDwvdGhyOmluLXJlcGx5LXRvPgogIDxjb250ZW50PlNhbG1
 vbiBzd2ltIHVwc3RyZWFtITwvY29udGVudD4KICA8dGl0bGUU2FsbW9uIHN3aW0gdXBzdH
 JlYW0hPC90aXRsZT4KICA8dXBkYXRlZD4yMDA5LTEyLTE4VDIwOjA0OjAzWjwvdXBkYXRl
 ZD4KPC9lbnRyeT4KICAgIA
 </me:data>
 <me:encoding>base64url</me:encoding>
 <me:alg>RSA-SHA256</me:alg>
 <me:sig>
 EvGSD2vi8qYcveHnb-rrlok07qnCXjn8YSeCDDXlbhILSabgvNsPpbe76up8w63i2f
 WHvLKJzeGLKfyHg8ZomQ
 </me:sig>
</me:env>

The Salmon protocol utilizes the Magic Signatures specification to generate signatures
for the request, as explained in the specification documentation at http://salmon-proto
col.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html.

Once the publisher has gone through the validation steps to ensure that the content is
from a trusted source, it will respond back to the subscriber with standard HTTP re-
sponse codes. These response codes will depend on the status of the update, as follows:

2xx
Request was successful.

4xx
There was an input problem.

5xx
There was a source/server error.

If the Salmon request is valid, the publisher will publish the update (and syndicate it
out to all other subscribers), moderate it, or discard it.

Conclusion
Whether you are seeking a standard way to publish and consume activities through
the Activity Streams protocol or building an advanced provider/subscriber comment-
sharing network via PubSubHubbub and the Salmon protocol, it’s obvious that dis-
tributed web frameworks help us standardize the way we handle many of our regular
social interactions.

Through our exploration of these protocols in this chapter, we have:

Conclusion | 443

http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html

• Learned how we can turn a traditional website into a rich source of entity metadata
by using the Open Graph protocol

• Explored how to standardize and consume activities through the use of Activity
Streams, which enables us to pull detailed information about all parties involved
in an activity

• Discovered how the WebFinger protocol turns a simple email address into a useful
source of a user’s social information

• Examined how we can build a standard method for sharing URL-based content
with any other service on the Web

• Built complex provider/subscriber systems that allow for a rich network of cross-
communication between numerous sites via PubSubHubbub and the Salmon
protocol

These open protocols define methods that can help you increase your social influence
on the Web and go a long way toward delivering truly engaging social networks between
multiple sites and services.

444 | Chapter 10: The Future of Social: Defining Social Entities Through Distributed Web Frameworks

CHAPTER 11

Extending Your Social
Graph with OpenID

When you’re constructing a service that is intended for a base of users or provides a
mechanism for giving people privileged access to certain resources, the issue of au-
thenticating (allowing users to log in) naturally comes up.

Building an entire membership system and login infrastructure for this task can seem
daunting, but it doesn’t need to be. OpenID allows a website or service owner to quickly
integrate a login system that builds off many of the top membership systems currently
in use and is a great alternative to a traditional, home-brewed model.

This chapter will focus on OpenID’s core features, covering examples and methods to
show you how to leverage this standard to quickly integrate a user authentication
system.

The OpenID Standard
OpenID provides sites and services with a decentralized protocol for authenticating
users through a wide variety of providers. What this means is that a site integrating
OpenID can allow its users to log in using, for example, their Yahoo!, Google, or AOL
accounts. Not only can the consuming site avoid having to create a login system itself,
but it can also take advantage of the accounts that its users already have, thereby in-
creasing user registration and login rates.

In addition to simple authentication, OpenID also offers a series of extensions through
which an OpenID provider can allow sites to obtain a user’s profile information or
integrate additional layers of security for the login procedure.

In the sections that follow, we’ll take a closer look at these core elements of the OpenID
standard.

445

Decentralization Is Key
What makes OpenID so intriguing is the fact that it offers a standard that is fully de-
centralized from the providers and consumers. This aspect is what allows a single con-
suming site to allow its users to log in via Yahoo! and Google, while another site may
want to allow logins via Blogger or WordPress. Ultimately, it is up to the OpenID
consumer (your site or service) to choose what login methods it would like to offer its
user base.

Improvement over Traditional Login
We’ve touched on the differences between OpenID and a traditional login flow. In
short, OpenID provides a number of advantages over a home-grown solution.

One of OpenID’s greatest benefits over the traditional login flow is how accounts are
created. With OpenID, since you are leveraging the user’s existing account on a dif-
ferent site, you don’t need to require her to create a new account when she first visits
your site or service.

Using the login of another site as your base, you can create a default profile for the user
with her linked account information and email address. With that, you can allow her
to use your service and prompt her to flesh out the base profile with the rest of her
details.

The topic of filling out the user profile brings us to our next point: using OpenID to
build a rich social graph.

Accessing the Existing Membership Database and Social Graph
Many of the OpenID providers through which a user can log in to your site or service
may have a large amount of existing data about the user and his linked account.

Using OpenID extensions, providers can permit an implementing site to pull profile
information from their memberships systems, allowing the implementer to prepopulate
its own user profile system. This is another important benefit of OpenID and increases
the service’s ease of use.

These extensions allow a consumer site to not only leverage a user’s existing profile
information, but the profile may also link to additional user accounts and interactions
with other sites, services, or users. Having access to these sources will help you deliver
a comprehensive social graph for the user right when he starts using your service.

446 | Chapter 11: Extending Your Social Graph with OpenID

Do I Already Have an OpenID? How Do I Sign Up for One?
Before we jump too far down the rabbit hole with OpenID specifics and implementa-
tions, let’s start out by answering a very simple question: how do I know if I already
have an OpenID account, and if I don’t have one, how do I get one?

Let’s tackle the first part of that question first: do you already have an OpenID? The
answer is most likely yes. There are numerous companies, serving everything from
social profiles to email, that already act as OpenID providers. For instance, if you have
accounts with any of the following companies, you already have an OpenID account:

• Yahoo!

• Google

• Blogger

• AOL

• WordPress

• Hyves

There are many other providers also currently available. The OpenID website maintains
a list of the most popular OpenID providers at http://openid.net/get-an-openid/.

Now let’s address the second part of the question: if you don’t already have an OpenID
account, how can you get one? The answer to this is, again, very simple. Just pick your
favorite site from the host of OpenID providers and create an account. You can now
use that account login to authenticate through the OpenID process when an OpenID
consumer prompts you to sign in to its service.

If you don’t already have an account with providers like Yahoo! or Goo-
gle, it is a good idea to create an account with one of them for use with
OpenID logins. They are two of the most popular providers that con-
sumers integrate in their authentication process. After all, an OpenID
provider is only useful if you can use it.

In addition to having an OpenID provider account, it is also a good idea to populate
that profile with any information you would like to follow you from site to site, such
as your name, email, location, etc. This will help prepopulate a profile for you when
you sign in to a new service with an OpenID login.

The OpenID Authentication Flow
Much like OAuth (which we explored in Chapter 9), OpenID maintains a standardized
flow by which a user can authenticate on a third-party relaying site to an OpenID
provider such as Yahoo! or Google.

The OpenID Authentication Flow | 447

http://openid.net/get-an-openid/

There are three participants in the OpenID authentication flow that we will be working
with and describing in this chapter:

The user
This is the end user who is attempting to sign in to a site or service using one of
the OpenID providers.

The relaying party
This is the OpenID consumer site that is implementing an OpenID provider login
in order to allow users to authenticate their accounts.

The OpenID provider
This is the site or service that has the membership database that the relaying party
will authenticate against and through which the user will log in.

With that said, the OpenID authentication process will take us through four different
steps, starting from when the user chooses which provider to use to sign in and ending
with the authentication pass/fail returned by the provider when the user attempts to
authenticate. These steps are:

1. Request user login by passing an OpenID identifier URI.

2. Perform discovery on the OpenID endpoint.

3. Require the user to authenticate his account.

4. Provide a pass/fail state based on the authentication.

Let’s break these down to see what happens between the user, relaying party, and
OpenID provider at each stage.

Step 1: Request Login with OpenID Identifier
At the first stage, we will focus on the initial steps that the user and relaying party
need to take in order to begin the authentication process. Essentially, we need to pick
an OpenID provider that we would like to authenticate with and ensure that it has a
valid OpenID provider identifier. This process is illustrated in Figure 11-1.

First, the user will provide the relaying party with the OpenID identifier that she wants
to use for authentication. This does not necessarily need to be the exact string URL for
the provider; the relaying party should ideally offer the user a list with some visible
identifiers, such as logos or links, from which the user can choose an OpenID provider.

Making the initial choice as easy as possible for a user (such as through
the use of a logo) will help to increase the sign-in rate on your site or
service.

Once the user has selected an OpenID provider, the relaying party will begin performing
discovery of the OpenID identifier URL. Before we do this, we need to normalize the

448 | Chapter 11: Extending Your Social Graph with OpenID

supplied URL to ensure that discovery occurs correctly—that is, we need to transform
the provided identifier into a canonical URL so that we can determine whether it
matches the selected provider.

Once we complete the URL normalization process, we can move on to the discovery
step.

Step 2: Perform Discovery to Establish the Endpoint URL
The process of performing discovery on an OpenID provider identifier will take us
through a couple of substeps, both involving communication between the relaying
party and the OpenID provider. Our goal in this stage is to perform discovery on the
OpenID identifier to:

1. Determine whether the OpenID identifier is valid.

2. If it is valid, extract the endpoint URL to which the user will be forwarded for
authentication.

This exchange is demonstrated in Figure 11-2.

Using the normalized URL from the last step, the relaying party will make a request to
the provided OpenID identifier URL. If the identifier is valid, the provider will respond
with the endpoint URL that is used either to redirect the user or to request the markup
that sends the user through the authentication step.

Step 3: Request User Authentication
Depending on the version of OpenID being used (OpenID version 1 or 2), the request
for user authentication will take one of two courses from a programmatic perspective.
The code will either:

Figure 11-1. OpenID, step 1: User requests login with an OpenID identifier

The OpenID Authentication Flow | 449

• Redirect the user to the endpoint established in the previous step (OpenID v1)

or:

• Obtain the authentication form markup from the provider endpoint and print it
out to the screen for the user (OpenID v2)

In both cases, the process that occurs between the relaying party and the user looks the
same, as shown in Figure 11-3.

Figure 11-3. OpenID, step 3: Provider requests user authentication

In general terms, the relaying party will display the authentication form to the user to
have him authenticate herself against the OpenID provider (through either the form or
redirect method).

When the relaying party establishes the request between the user and provider for
authentication, the request will include a number of OpenID parameters, including
those listed in Table 11-1.

Figure 11-2. OpenID, step 2: Relaying party performs discovery on OpenID identifier

450 | Chapter 11: Extending Your Social Graph with OpenID

Table 11-1. Authentication request parameters

Request parameter Description

openid.ns The OpenID namespace URI to be used. For instance, this should be http://specs.openid.net/

auth/2.0 for OpenID 2.0 transactions.

openid.mode The transaction mode to be used during the authentication process. The possible values

are checkid_immediate or checkid_setup.

If the user should be able to interact with the OpenID provider, then checkid_setup

should be used.

openid.claimed_id

(optional)

The claimed OpenID identifier, provided by the user.

openid.identity (optional) The local OpenID provider identifier. If http://specs.openid.net/auth/2.0/identifier_select

is used as the identity, then the provider should choose the correct identifier for the user.

openid.assoc_handle

(optional)

A handle for an association between the relaying party (implementing site) and the OpenID

provider that should be used to sign the request.

openid.return_to (op-

tional)

The location where the user should be returned, with the OpenID response, after authen-

tication has taken place.

Many web-based providers require this field. If it is not included, it indicates that the relaying

party does not want to return the user after authentication.

openid.realm (optional) The URL pattern for the domain that the user should trust. For instance, *.mysite.com.

Note, if openid.return_to is omitted from the request, openid.realm is a

required parameter.

The user, once presented with the form, will either authenticate or not. In either case,
the user’s response will be returned to the relaying party. This response object that is
returned will include the parameters listed in Table 11-2.

Table 11-2. Authentication response parameters

Response parameter Description

openid.ns The OpenID namespace URI.

openid.mode The current authentication mode. This value will be id_res at this point.

openid.op_endpoint The endpoint URI of the OpenID provider to which the user was sent.

openid.claimed_id (optional) The claimed OpenID identification URI for the user on the provider site.

In the response object, openid.claimed_id and openid.identity will either

both be present or absent.

openid.identity (optional) The local identifier for the user on the provider site. For some providers, this value will

usually be identical to the openid.claimed_id parameter.

openid.return_to An exact copy of the return_to parameter provided in the original user authenti-

cation request.

openid.response_nonce A unique string of 255 characters or fewer. The nonce will start with the current server

time.

The OpenID Authentication Flow | 451

http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0/identifier_select

Response parameter Description

openid.invalidate_handle

(optional)

This will include an invalidation handle from the server if one was produced.

openid.assoc_handle The handle for the association that was used to sign this assertion.

openid.signed A comma-separated list of the fields that were signed with the request. This list

must contain at least op_endpoint, return_to, response_nonce,

assoc_handle, and, if present in the response, claimed_id and identity.

openid.sig The base 64–encoded signature.

The relaying party and OpenID provider will then communicate with each other to
complete the authentication process and provide the appropriate approval state.

Step 4: Provide Passed or Failed State
Once the user has interacted with the authentication form and submitted, he should
be forwarded to the specified callback location. Everything should be in place at this
point for the relaying party to communicate with the OpenID provider to complete the
authentication process.

This step is outlined in Figure 11-4.

Figure 11-4. OpenID, step 4: OpenID provider issues passed/failed response for user authentication
back to relaying party

Once the user is forwarded to the callback location, the relaying party will attempt to
complete the authentication process. It will send a complete request to the OpenID
provider with the variables passed to the callback location.

The OpenID provider will attempt to complete authentication with the provided data.
It will issue either a fail state (authentication failed) or an approved state. If it provides
an approved state, the response returned back to the relaying party will also hold the
unique user identifier and any data requested from attached OpenID extensions.

452 | Chapter 11: Extending Your Social Graph with OpenID

At this point, the relaying party may use the returned data to process the user login.

OpenID Providers
Each OpenID provider has an OpenID URI associated with its authentication system
to enable the discovery method required for the OpenID process.

When making an initial request to a provider in order to have a user authenticate her
account, you will submit the URI of the provider. For instance, the following list details
some of the more popular OpenID providers and their OpenID URIs:

• Yahoo: https://me.yahoo.com

• Flickr: http://www.flickr.com

• Google: https://www.google.com/accounts/o8/id

• WordPress: https://username.wordpress.com/

• MyOpenID: https://www.myopenid.com/

• MySpace: http://www.myspace.com/username

• AOL: http://openid.aol.com/username

• LiveJournal: http://username.livejournal.com/

• ClaimID: https://claimid.com/username

• Blogger: http://blogname.blogspot.com

• Hyves: http://hyves.net

• Orange: http://orange.fr

• Mixi: http://mixi.com

We’ll explore how to use these in the OpenID authentication process later in this
chapter.

Bypassing Domain Discovery Errors in OpenID
As part of their OpenID process, some providers require the relaying party to implement
a domain discovery mechanism for when an end user transitions through the authen-
tication screens. If this mechanism is not in place, these providers display warning
messages to the user stating that they could not verify the relaying website. Fig-
ure 11-5 shows an example of this on Yahoo!.

Displaying domain discovery warnings in your OpenID process can
dramatically increase the drop-off rate of users logging in through your
site.

Bypassing Domain Discovery Errors in OpenID | 453

https://me.yahoo.com
http://www.flickr.com
https://www.google.com/accounts/o8/id
https://username.wordpress.com/
https://www.myopenid.com/
http://www.myspace.com/username
http://openid.aol.com/username
http://username.livejournal.com/
https://claimid.com/username
http://blogname.blogspot.com
http://hyves.net
http://orange.fr
http://mixi.com

Depending on the provider that you are working with for your OpenID implementa-
tion, you may be required to create an XRDS domain verification file, which allows you
to define yourself as the site owner and in turn allows the provider to verify your site.

Creating one of these documents is a multistep process that requires you to have access
to the root of your domain. The XRDS file itself will be a short XML document with a
custom content-type header applied.

Before we go through these steps, let’s look at what an XRDS file might look like. In
this example, the XRDS file is saved as xrds.php.

<?php
header('Content-Type: application/xrds+xml');

$xrd = '<?xml version="1.0" encoding="UTF-8"?><xrds:XRDS xmlns:xrds="xri://$xrds"
 xmlns:openid="http://openid.net/xmlns/1.0" xmlns="xri://$xrd*($v*2.0)">' .
 '<XRD>' .
 '<Service xmlns="xri://$xrd*($v*2.0)">' .
 '<Type>http://specs.openid.net/auth/2.0/return_to</Type>' .
 '<URI>http://server.example.com/openid/complete.php</URI>' .
 '</Service>' .
 '</XRD>' .

Figure 11-5. Yahoo! OpenID authentication screen

454 | Chapter 11: Extending Your Social Graph with OpenID

 '</xrds:XRDS>';

echo $xrd;
?>

In the preceding XRDS file, we are simply setting the content-type header as follows:

Content-Type: application/xrds+xml

We then create the XML part of the document and print it out. When implementing
your own XRDS document, simply change the value within the <URI> node to point to
the OpenID complete file on your server. This file is where the user should be forwarded
after he has authenticated on the provider site in order to complete the OpenID process
(we will explore this further in upcoming examples).

Once you have created that XRDS file, simply copy it to a location on the same server
where the OpenID process will be initiated.

Next, on the root page of your domain (e.g., /index.html), add a new <meta> tag in the
<head> of the document that links to the XRDS file that you just put on the server. This
<meta> tag will look something like the following, with a different content link:

<meta http-equiv="X-XRDS-Location"
 content="http://www.mysite.com/auth/xrds.php" />

The domain discovery process should now be implemented on your site, thus the pro-
vider can verify the domain and remove the warning message that end users see during
the OpenID authentication process.

Most providers do not require the domain discovery mechanism, but if you are inte-
grating one that displays warnings during the authentication process, it is a good idea
to take the preceding steps to mitigate the drop-off issues that can result from having
those warnings displayed to users.

OpenID Extensions
Many OpenID providers support extensions beyond the basic pass/fail state delivered
through the standard OpenID implementation. These extensions allow an OpenID
consumer to obtain some general information about the user authenticating through
the service from her profile or to add levels of security to the authentication process.

Before using an OpenID extension, you should ensure that your chosen
provider supports the extension and full functionality that you are trying
to implement. Even though many providers support the same exten-
sions, some support different subsets of data within those extensions—
meaning that you may not get all of the results you’re expecting.

OpenID Extensions | 455

Besides the OAuth hybrid extension (which we will explore in much greater detail in
the next chapter), the main OpenID extensions, and those that we will examine in this
chapter, are:

Simple Registration (SREG)
Allows the relaying party to capture very basic personal information about a user,
where available through her profile or the OpenID provider itself

Attribute Exchange (AX)
Enables the relaying party to capture more extensive personal information about
a user, including the information delivered through Simple Registration

Provider Authentication Policy Extension (PAPE)
Allows the relaying party and provider to apply certain previously agreed-upon
policies to the OpenID authentication process

Now that we have seen a brief overview of what each extension offers, let’s drill down
into them to learn what they are all about.

Simple Registration Extension
If your service requires only a small amount of information from an OpenID provider
(such as a thumbnail, profile link, name, and some other basic public badge informa-
tion), Simple Registration is a wonderful extension that delivers that information to the
application after the user has logged in to the provider site.

The Simple Registration extension defines nine common user profile fields that a pro-
vider may be requested to supply through the OpenID authentication process. Note,
however, that the Simple Registration specification does not require a provider to sup-
port all nine fields; the provider may support any number of them.

Many providers opt to support the Attribute Exchange extension in lieu of Simple
Registration because Attribute Exchange defines not only the fields supported by the
Simple Registration extension, but also a large number of others. This does not mean
that no OpenID providers support Simple Registration; it simply means that some opt
to support only the more comprehensive extension instead of both.

To this end, Table 11-3 shows the nine fields that Simple Registration supports and
then, for comparison, ties in the matching supported field URIs for the Attribute Ex-
change extension.

Table 11-3. SREG supported fields and corresponding AX type URIs

Label SREG property AX type URI

Alias/Username openid.sreg.nickname http://axschema.org/namePerson/friendly

Country openid.sreg.country http://axschema.org/contact/country/home

Date of birth openid.sreg.dob http://axschema.org/birthDate

Email openid.sreg.email http://axschema.org/contact/email

456 | Chapter 11: Extending Your Social Graph with OpenID

http://axschema.org/namePerson/friendly
http://axschema.org/contact/country/home
http://axschema.org/birthDate
http://axschema.org/contact/email

Label SREG property AX type URI

Full name openid.sreg.fullname http://axschema.org/namePerson

Gender openid.sreg.gender http://axschema.org/person/gender

Postal code openid.sreg.postcode http://axschema.org/contact/postalCode/home

Primary language openid.sreg.language http://axschema.org/pref/language

Time zone openid.sreg.timezone http://axschema.org/pref/timezone

The Label column in Table 11-3 contains the fields that are supported through the
Simple Registration process. The “SREG property” column includes that property
names that you will use when integrating Simple Registration into your OpenID code
base to denote the end-user fields that you want to capture. Finally, the “AX type URI”
column contains the matching Attribute Exchange extension URIs that you would use
to request those same fields through the Attribute Exchange extension code in your
OpenID implementation.

Now that we have seen the base fields that are available through the Simple Registration
extension, let’s look at the additional fields offered through Attribute Exchange.

Attribute Exchange Extension
If your service requires more extensive user profile details than those provided by the
Simple Registration process, Attribute Exchange may be the right mechanism for your
needs. Support for the extension and (if it is supported) the specific attribute types
available will depend on your particular provider. More details are available at the
following websites:

Attribute Exchange 1.0
http://openid.net/specs/openid-attribute-exchange-1_0.html

Types
http://www.axschema.org/types/

In addition to the standard types, which we will discuss in the next few sections, there
are several experimental types: http://www.axschema.org/types/experimental/.

Attribute exchange types: Addresses

The first category of Attribute Exchange types we will look at is address types. The AX
extension defines a number of address identifiers for a default address (such as a home
or personal shipping location) and a business address, as shown in Table 11-4.

OpenID Extensions | 457

http://axschema.org/namePerson
http://axschema.org/person/gender
http://axschema.org/contact/postalCode/home
http://axschema.org/pref/language
http://axschema.org/pref/timezone
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://www.axschema.org/types/
http://www.axschema.org/types/experimental/

Table 11-4. AX address types

Label Type URI

Address http://axschema.org/contact/postalAddress/home

Address line 2 http://axschema.org/contact/postalAddressAdditional/home

City http://axschema.org/contact/city/home

Country http://axschema.org/contact/country/home

State/Province http://axschema.org/contact/state/home

Postal code http://axschema.org/contact/postalCode/home

Business address http://axschema.org/contact/postalAddress/business

Business address line 2 http://axschema.org/contact/postalAddressAdditional/business

Business city http://axschema.org/contact/city/business

Business state/Province http://axschema.org/contact/state/business

Business country http://axschema.org/contact/country/business

Business postal code http://axschema.org/contact/postalCode/business

These are great fields for companies to support or leverage if they need to store or
request data from a user for shipping purposes. For instance, if an online merchant
implemented OpenID for site sign-in using a provider that supported these AX
attributes, it could prepopulate all of a user’s shipping details.

Attribute exchange types: Audio and video greetings

The next category comprises audio and video greeting types. Depending on the service
context in which they were created, these fields may include audio greetings, like those
you set up on your phone, or short video greetings (Table 11-5).

Table 11-5. Audio and video greeting types

Label Type URI

Audio greeting http://axschema.org/media/greeting/audio

Spoken name http://axschema.org/media/spokenname

Video greeting http://axschema.org/media/greeting/video

A practical use case for this information is in the field of telephony, where someone
might record audio and spoken name greetings—i.e., voice mail messages—for callers
trying to reach him. Video greetings take this concept a step further, as in the case of
video conferencing.

Attribute exchange types: Date of birth

The Attribute Exchange extension also provides definitions for the user’s date of birth.
Most providers that supply this information support only the full date of birth, but as

458 | Chapter 11: Extending Your Social Graph with OpenID

http://axschema.org/contact/postalAddress/home
http://axschema.org/contact/postalAddressAdditional/home
http://axschema.org/contact/city/home
http://axschema.org/contact/country/home
http://axschema.org/contact/state/home
http://axschema.org/contact/postalCode/home
http://axschema.org/contact/postalAddress/business
http://axschema.org/contact/postalAddressAdditional/business
http://axschema.org/contact/city/business
http://axschema.org/contact/state/business
http://axschema.org/contact/country/business
http://axschema.org/contact/postalCode/business
http://axschema.org/media/greeting/audio
http://axschema.org/media/spokenname
http://axschema.org/media/greeting/video

you can see in Table 11-6, there are types defined for the individual components de-
noting the day, month, and year as well.

Table 11-6. Date of birth types

Label Type URI

Birth day http://axschema.org/birthDate/birthday

Birth month http://axschema.org/birthDate/birthMonth

Birth year http://axschema.org/birthDate/birthYear

Full birth date http://axschema.org/birthDate

Date of birth information is perfect for sites that have certain age restrictions or those
that require a user to certify that he is old enough to purchase a product (such as a game
company). Even if the individual numeric values are not provided, the full birth date
can be easily parsed into its individual components (just be aware of the short formats
that other countries use, such as MM/DD/YYYY in the United States versus DD/MM/
YYYY in Canada).

Attribute exchange types: Email

The next category, and our smallest by far, is email. The only field that is supported
here is that of the user’s email address (Table 11-7). This is probably one of the most
popular requests for social data, however, and an area of contention among companies
providing this data. It is a prime viral channel for social developers to reach out to their
user base, but this potential benefit is tempered by the risk of a service using the data
for malicious spamming or phishing attempts. OpenID providers that support this type
try to make their users aware that they will be sharing this data with the third-party site
or service, thereby putting the onus on the user to understand the potential harm in
sharing this particular piece of information.

Table 11-7. Email type

Label Type URI

Email http://axschema.org/contact/email

The email field is a valuable resource for all developers. It provides a prime communi-
cation channel to the user who has authenticated your site or service. Many of the
most popular OpenID providers support this field through the Attribute Exchange
extension.

Attribute exchange types: Images

Images are a popular feature in any site or service that provides profile systems for its
user base. These images are made available through the Attribute Exchange extension
with a number of potential size fields, including the default user image, different aspect

OpenID Extensions | 459

http://axschema.org/birthDate/birthday
http://axschema.org/birthDate/birthMonth
http://axschema.org/birthDate/birthYear
http://axschema.org/birthDate
http://axschema.org/contact/email

ratios, tiny favicons, and a square image that provides determinable sizes for the images.
These are listed in Table 11-8.

Table 11-8. Image types

Label Type URI

3:4 Aspect ratio image http://axschema.org/media/image/aspect34

4:3 Aspect ration image http://axschema.org/media/image/aspect43

Default image http://axschema.org/media/image/default

Favicon image http://axschema.org/media/image/favicon

Square image http://axschema.org/media/image/aspect11

These fields are ideal for populating a user image in a profile without requiring the user
to upload or link to an existing image. This method also syncs the user image between
your site or service and the provider site through which the user logged in.

Attribute exchange types: Instant messaging

Another communication channel that the Attribute Exchange extension provides is
that of the user’s linked messenger accounts. The most popular messaging platforms
are included in the specification (as shown in Table 11-9), providing the OpenID re-
laying site with a whole host of communication methods and account links about a user.

Table 11-9. Instant messaging types

Label Type URI

AOL IM http://axschema.org/contact/IM/AIM

ICQ IM http://axschema.org/contact/IM/ICQ

Jabber IM http://axschema.org/contact/IM/Jabber

MSN IM http://axschema.org/contact/IM/MSN

Skype IM http://axschema.org/contact/IM/Skype

Yahoo! IM http://axschema.org/contact/IM/Yahoo

While most OpenID consumers may not want to use the user’s messenger accounts as
a direct means of communication (which could easily be construed as a form of spam
or an invasion of user privacy), providing these account links in the user profile allows
your users to link additional accounts to their profiles, helps you search for new con-
nections to the user, and delivers a number of other social functions that give users an
easy way to build up their profiles.

Attribute exchange types: Name

Along with the user’s email address, the name provided through the AX extension is
an excellent starting point for the construction of a user’s profile. Many OpenID pro-

460 | Chapter 11: Extending Your Social Graph with OpenID

http://axschema.org/media/image/aspect34
http://axschema.org/media/image/aspect43
http://axschema.org/media/image/default
http://axschema.org/media/image/favicon
http://axschema.org/media/image/aspect11
http://axschema.org/contact/IM/AIM
http://axschema.org/contact/IM/ICQ
http://axschema.org/contact/IM/Jabber
http://axschema.org/contact/IM/MSN
http://axschema.org/contact/IM/Skype
http://axschema.org/contact/IM/Yahoo

viders allow for some basic name information to be obtained during the authentication
process—most commonly, the user alias or nickname because that is how the user has
chosen to be identified and it is usually part of a user’s public profile, which anyone
can obtain without authentication.

Public profiles usually consist of a simple user badge comprising the user nickname,
profile picture, direct profile link, and some sort of primary network. The public profile
may also contain a primary URL defined by the user and a selection of the user con-
nections. Figure 11-6 is an example of a simple public badge.

Figure 11-6. Example of a Facebook public badge

There are a number of name fields available for us to use, listed in Table 11-10.

Table 11-10. Name types

Label Type URI

Alias/Username http://axschema.org/namePerson/friendly

Full name http://axschema.org/namePerson

Name prefix http://axschema.org/namePerson/prefix

First name http://axschema.org/namePerson/first

Last name http://axschema.org/namePerson/last

Middle name http://axschema.org/namePerson/middle

Name suffix http://axschema.org/namePerson/suffix

As mentioned earlier, the name information is the perfect starting point for developing
a user profile. Since you are already having the user go through the process of authen-
ticating her account, you should at least make it as easy as possible for her to create a
user profile on your site. Prepopulating users’ profiles for them with information such
as their names will go a long way toward decreasing the drop-off rate that you may
otherwise see during the user signup process.

OpenID Extensions | 461

http://axschema.org/namePerson/friendly
http://axschema.org/namePerson
http://axschema.org/namePerson/prefix
http://axschema.org/namePerson/first
http://axschema.org/namePerson/last
http://axschema.org/namePerson/middle
http://axschema.org/namePerson/suffix

Attribute exchange types: Telephone

Another set of fields that an OpenID provider may support through the AX extension
is the user profile types for contact phone numbers (shown in Table 11-11), which
deliver an alternate means of physical communication.

Table 11-11. Telephone types

Label Type URI

Phone (preferred) http://axschema.org/contact/phone/default

Phone (home) http://axschema.org/contact/phone/home

Phone (work) http://axschema.org/contact/phone/business

Phone (mobile) http://axschema.org/contact/phone/cell

Phone (fax) http://axschema.org/contact/phone/fax

Direct lines of communication are beneficial fields for companies with physical user
support centers, or for those who may need to contact the user at some point in the
future. If you have a service that ships physical goods or provides some sort of prolonged
user service (such as an ISP), accessing alternate contact methods from the OpenID
authentication process can come in very handy.

Attribute exchange types: Websites

The available website fields (Table 11-12) comprise a list of the more popular services
that a user may link to his profile, including one default source for a custom site like a
personal home page.

Table 11-12. Website types

Label Type URI

Amazon http://axschema.org/contact/web/Amazon

Blog http://axschema.org/contact/web/blog

del.icio.us URL http://axschema.org/contact/web/Delicious

Flickr URL http://axschema.org/contact/web/Flickr

LinkedIn URL http://axschema.org/contact/web/Linkedin

Personal web page http://axschema.org/contact/web/default

Linking alternate sites for a user is always a good idea when creating a profile for him
on your site. Many services that provide listings of user activities (and those of user
connections) may also provide a method to aggregate feeds from other networks into
that activity stream. These linked accounts are a vital piece of that process.

462 | Chapter 11: Extending Your Social Graph with OpenID

http://axschema.org/contact/phone/default
http://axschema.org/contact/phone/home
http://axschema.org/contact/phone/business
http://axschema.org/contact/phone/cell
http://axschema.org/contact/phone/fax
http://axschema.org/contact/web/Amazon
http://axschema.org/contact/web/blog
http://axschema.org/contact/web/Delicious
http://axschema.org/contact/web/Flickr
http://axschema.org/contact/web/Linkedin
http://axschema.org/contact/web/default

Attribute exchange types: Work

To provide a small amount of data about the work background of the person going
through the authentication process, the company name and job title types are available
(Table 11-13). These fields help you flesh out the user’s profile—and the more infor-
mation that you have about her, the easier it is to target offers, ads, and services spe-
cifically to her, increasing your monetization potential on a per-user basis.

Table 11-13. Work fields

Label Type URI

Company name http://axschema.org/company/name

Job title http://axschema.org/company/title

If you cannot obtain the user’s industry, being able to parse her company name and
job title will help you determine the appropriate knowledge bucket to assign her to.
This is especially valuable when you have no distinguishing interest indicators available
for the user.

Attribute exchange types: Other personal details and preferences

Last but not least, the other personal details and preferences fields that are listed in
Table 11-14 will allow the OpenID consumer to extract additional user information
such as a short biography, gender, native language, and time zone.

Table 11-14. Other personal details and preferences types

Label Type URI

Biography http://axschema.org/media/biography

Gender http://axschema.org/person/gender

Language http://axschema.org/pref/language

Time zone http://axschema.org/pref/timezone

Geography-, language-, and gender-based user targeting to invoke regionalized and
personalized product interest is an excellent strategy for any consumer to employ.

Provider Authentication Policy Extension
The Provider Authentication Policy Extension defines a series of previously agreed-
upon authentication policies that the OpenID provider applies when authenticating an
end user through a relaying party (i.e., the site or service that is requesting the user
authentication through something like a “Sign in with Yahoo” request). The PAPE
mechanism also enables the OpenID provider to inform the relaying party of which
authentication policies were used during the authentication process, which in turn
enables the relaying party to determine how secure the authentication was. We will

OpenID Extensions | 463

http://axschema.org/company/name
http://axschema.org/company/title
http://axschema.org/media/biography
http://axschema.org/person/gender
http://axschema.org/pref/language
http://axschema.org/pref/timezone

look at the methods for setting and obtaining this information in our upcoming OpenID
example.

The PAPE policies that we will explore include:

• Phishing-resistant authentication

• Multifactor authentication

• Physical multifactor authentication

These three authentication policies are being discussed only as starting
points to cover the most common use cases—additional policies may
be applied as needed.

In addition, PAPE provides a mechanism by which the relaying party may request that
the OpenID provider inform it of the levels of authentication assurance (known as NIST
assurance levels) that were used.

The three most common PAPE policies include numerous technologies that can be
employed during the authentication process. Table 11-15 breaks these methods down
by each policy in which they apply.

Table 11-15. Authentication methods available within each PAPE policy

Method Phishing-resistant Multifactor Physical multifactor

Password via HTTPS

Visual secret via HTTPS

PIN and digital certificate via HTTPS ✓ ✓

PIN and “soft” OTP token via HTTPS ✓

PIN and “hard” OTP token via HTTPS ✓ ✓

PIN and “hard” crypto token via HTTPS ✓ ✓ ✓

Information card via HTTPS ✓ ✓

With all of that information in hand, now let’s explore what the authentication policies
and the NIST assurance levels actually mean in practice.

Phishing-resistant authentication

The phishing-resistant authentication works to prevent the relaying party from being
able to capture enough information about the user to be able to authenticate to the
user-selected OpenID provider as if it were the user himself. In basic terms, this au-
thentication process prevents a site that you may not trust from pretending to be you
when you are signing in using your OpenID account.

464 | Chapter 11: Extending Your Social Graph with OpenID

Multifactor authentication

Multifactor authentication means that the user will be authenticating the OpenID
process using multiple authentication factors.

The authentication factors that are usually employed are:

• Something you know

• Something you have

• Something you are

For instance, passwords are a commonly used authentication factor (something you
know). In the case of this policy type, multiple authentication factors may include the
user password as well as a digital certificate.

Physical multifactor authentication

Much like the multifactor authentication policy, the physical multifactor authentica-
tion policy means that the user will need to authenticate using multiple authentication
factors. The difference here is that one of those authentication factors must be a physical
factor such as a hardware device or some piece of biometric data.

Also like the multifactor authentication policy, this policy usually employs the three
common authentication factors (or some combination) listed previously—something
you know, have, or are. For instance, the user may authenticate using his password and
a hardware token.

NIST assurance levels

The National Institute of Standards and Technology (NIST) defines a series of guide-
lines for the levels of assurance protection that should be in place when services attempt
to authenticate users over open networks. These recommendations indicate certain
levels of protection that PAPE puts in place while authenticating users. In this section,
we’ll look into a few specific token types and protections that are employed at each
defined NIST assurance level.

First, we’ll look at the types of tokens that can be used at each authentication assurance
level (Table 11-16). As we increase NIST assurance levels, we can see that the less secure
token types (that is, the easiest to break) are removed.

Table 11-16. Token types for each NIST assurance level

Token type Level 1 Level 2 Level 3 Level 4

Hard crypto token ✓ ✓ ✓ ✓

One-time password device ✓ ✓ ✓

Soft crypto token ✓ ✓ ✓

Passwords and PINs ✓ ✓

OpenID Extensions | 465

So now we’ve outlined the token types that are applied, but what kind of protections
will we receive at the different levels? It’s especially important to understand this aspect
of the NIST assurance levels, since this will help us determine which level is the most
appropriate for what we are trying to accomplish. In many use cases, level 4 assurance
contains a far higher degree of security than most common implementations will need.
Table 11-17 details the attack protections offered at each level.

Table 11-17. Protections at each NIST assurance level

Protect against Level 1 Level 2 Level 3 Level 4

Online guessing ✓ ✓ ✓ ✓

Replay ✓ ✓ ✓ ✓

Eavesdropper ✓ ✓ ✓

Verifier impersonation ✓ ✓

Man-in-the-middle ✓ ✓

Session hijacking ✓

Let’s break down the assurance levels a little further by defining the attacks they protect
against:

Online guessing
This is an attack wherein the malicious party attempts to guess the user’s password.

Replay
In this type of attack, the malicious party (most likely the relaying party) purposely
repeats or delays the user authentication process. A common attack vector for this
is a spoofing attack whereby the relaying party may masquerade as the user who
is attempting to authenticate.

Eavesdropper
This is an attack in which the malicious party eavesdrops on two parties that use
an anonymous key exchange protocol to secure their conversation.

Verifier impersonation
In this attack, the malicious party impersonates the legitimate verifier in an effort
to learn valuable information—for example, the user’s password.

Man-in-the-middle
This is a type of active eavesdropping attack wherein the malicious party makes a
connection with the user and relays messages between the user and the attacker.
In other words, the attacker impersonates the legitimate service to obtain the user’s
private information or attempts to hijack the user session to gain access to that
information.

Session hijacking
This attack involves the malicious party taking control (or impersonating) of a valid
session between the user and the intended, valid web server source. These sessions

466 | Chapter 11: Extending Your Social Graph with OpenID

are usually controlled by a session token, which is what this attack uses. In one
possible scenario, the malicious party sniffs a valid session to gain the session token,
and then sends that token to the web server to open a new valid session, imperso-
nating the user. Cross-site scripting is another possible method for the attacker to
gain access to the session token.

Now that we understand the basics of the tokens and attack protections that are in
place, let’s take a quick look at the minimum number of authentication factors required
at each NIST authentication level. Table 11-18 lists them.

Table 11-18. Minimum number of authentication factors required at each NIST level

Level Factors

1 1

2 1

3 2

4 2

Some OpenID providers do not support the NIST assurance protection
levels in their implementation. In some of these cases, the provider may
return a NIST level response of 0 to denote that the service should not
be used for any secure transactions such as online payments. If you re-
quire a high level of security, you should always check the NIST level
returned at the end of the OpenID authentication process before pro-
ceeding with secure transactions.

When we combine all of this information, we have the foundation for the NIST
assurance-level security mechanisms employed within PAPE. Since we will always be
dealing with user authentication within OpenID, it’s important to be able to determine
the current security level that we are authenticating into and to understand how we
should be managing user privacy and security.

Extensions Currently Under Development
In addition to the OpenID extensions that we have already explored, there are several
extensions that are currently under development and contain draft proposals for ad-
ditional features that providers may make available within their OpenID authentication
process. We’ll cover a few of them now.

OpenID user interface work group proposal

The gist of the OpenID user interface work group proposal is to load the OpenID
authentication process within a pop-up window instead of redirecting the entire
browser window.

OpenID Extensions | 467

The main benefit here is the customization potential of the pop-up window itself. In
the traditional OpenID model, the relaying party contacts the OpenID provider to
handle the user authentication using a default authentication form and implementa-
tion; it’s usually an entire login page that mimics its membership login system.

Using this proposed model, however, a provider site can determine that the authenti-
cation procedure should load in a pop-up window, meaning that it can display an
authentication form of a certain size to best fit that window. The provider may want
to resize the pop-up window as well in order to fit it to the required size of the authen-
tication form. The onus here is on each provider, not on the relaying party, to pick a
correct pop-up size. If the entire browser window is being taken up by the membership
form, having a resize event just does not make sense.

The next benefit to the OpenID user interface work group proposal involves the failure
state during the authentication process. Let’s assume that the user is on the authenti-
cation page and hits the cancel button. Instead of sending a fail state back to the return
URL of the relaying party, the provider site can simply close the window, giving the
user a better experience.

For a final potential benefit to this proposal, let’s now say that the user is visiting an
English-based site and then tries to sign in via an OpenID provider. The provider will
display its default authentication form based on the user’s language preference—for
this example, let’s say this is set to Chinese. Pushing your user through language shifts
just to authenticate makes for a poor user experience. Using this pop-up method, how-
ever, default language preferences can be set so that the language presented at each
stage of the process is uniform.

Full information on this extension is available on the OpenID website at http://wiki
.openid.net/w/page/12995202/OpenID-User-Interface-Work-Group-Proposal.

Contract exchange

The contract exchange extension proposal seeks to allow arbitrary parties to create and
exchange a digitally signed “contract” during the authentication process.

This would introduce a new method of integrating additional security and accounta-
bility features into the authentication process, especially in the case of exchanging sen-
sitive user information, such as banking information or credit card numbers, during
authentication.

Full information on the contract exchange extension is available on the OpenID website
at http://wiki.openid.net/w/page/12995142/Contract-Exchange.

OpenID and OAuth hybrid extension

The OpenID and OAuth hybrid extension combines the authentication flexibility of
OpenID with the authorization capabilities of OAuth to allow an application to request
a user’s permission to access and set privileged resources.

468 | Chapter 11: Extending Your Social Graph with OpenID

http://wiki.openid.net/w/page/12995202/OpenID-User-Interface-Work-Group-Proposal
http://wiki.openid.net/w/page/12995202/OpenID-User-Interface-Work-Group-Proposal
http://wiki.openid.net/w/page/12995142/Contract-Exchange

We will explore this extension in depth in Chapter 12 (available online; see Preface for
details), which includes extensive descriptions and examples to show you how to in-
tegrate these two technologies.

Full information on the hybrid extension is available on the OpenID website at http://
wiki.openid.net/w/page/12995194/OpenID-and-OAuth-Hybrid-Extension.

Implementation Example: OpenID
Now that we understand how OpenID works to connect relaying sites to different
provider companies so they can leverage those providers’ user databases for their login
flow, let’s look at a practical example of an OpenID implementation. This example can
be used to connect to different providers and uses the different extension capabilities
that we have discussed: Simple Registration, Attribute Exchange, and PAPE policies.

This example will be broken down into a number of files, ranging from our initial
HTML form that starts the process to our OpenID control files and those files that
allow the service provider to perform site discovery on the domain in which they are
being hosted.

To implement OpenID, you will need to either create your own OpenID library or
utilize one of the many libraries already available from the developer site at http://openid
.net/developers/libraries/. Unless you have a specific reason for creating your own li-
brary, I recommend that you not reinvent the wheel and instead use what is currently
available.

When you are integrating OpenID on a new site, it is a good practice to
have your XRDS domain discovery file in place to prevent certain pro-
viders, such as Yahoo!, from displaying domain verification errors to
users during the OpenID process.

Implementing OpenID Using PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_11/openid-php.

Our first practical OpenID implementation example will use PHP. Our intention is to
build out an end-to-end implementation that will allow a user to input the OpenID
provider that she wants to use, after which the program will allow her to log in with
that provider service and deliver information about her at the end of the authentication
process.

Implementation Example: OpenID | 469

http://wiki.openid.net/w/page/12995194/OpenID-and-OAuth-Hybrid-Extension
http://wiki.openid.net/w/page/12995194/OpenID-and-OAuth-Hybrid-Extension
http://openid.net/developers/libraries/
http://openid.net/developers/libraries/
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_11/openid-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_11/openid-php

In addition to obtaining a pass/fail state for whether the user authenticated, we will
acquire additional information and levels of security by implementing the previously
discussed OpenID extensions:

• Simple Registration for acquiring basic user information

• Attribute Exchange for acquiring more extensive user information

• PAPE for providing additional security levels

At the end, we will have a solid understanding of how OpenID functions from a pro-
grammatic perspective.

The discovery form

Let’s start off the process by building out the form that will allow the user to input the
provider OpenID URL she wants to use and select some of the PAPE policies that she
would like to send along as well.

In a real-world implementation, you would not provide the user with a
form field to have her input the OpenID provider URL or the policies
that she would like to use. As mentioned earlier, you would add icons
(or some other identifying marker) for each provider option in order to
allow the user to initiate the login process by choosing one. When the
user clicks an icon, you would then determine the corresponding
OpenID URL for the selected provider and add in the policies that you
need, without requiring further user interaction.

For the sake of this example, the following file will be named index.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>OpenID Sample Application</title>
</head>
<body>
<style type="text/css">
 form{ font:12px arial,helvetica,sans-serif; }
 #openid_url { background:#FFFFFF url(http://wiki.openid.net/f/openid-16x16.gif)
 no-repeat scroll 5px 50%;
 padding-left:25px; }
</style>

<form action="auth.php" method="GET">
 <input type="hidden" value="login" name="actionType">
 <h2>Sign in using OpenID</h2>
 <input type="text" style="font-size: 12px;" size="40" id="openid_url"
 name="openid_url">
 <input type="submit" value="Sign in">

 <small>(e.g. http://username.myopenid.com)</small>

470 | Chapter 11: Extending Your Social Graph with OpenID

 PAPE Policies (Optional)

 <input type="checkbox" name="policies[]" value="PAPE_AUTH_MULTI_FACTOR_PHYSICAL" />
 PAPE_AUTH_MULTI_FACTOR_PHYSICAL

 <input type="checkbox" name="policies[]" value="PAPE_AUTH_MULTI_FACTOR" />
 PAPE_AUTH_MULTI_FACTOR

 <input type="checkbox" name="policies[]" value="PAPE_AUTH_PHISHING_RESISTANT" />
 PAPE_AUTH_PHISHING_RESISTANT

</form>
</body>
</html>

The beginning of our file is quite standard and includes the styles that we will be using
for the form, including an OpenID logo image.

The real piece that we will focus on is the form itself. First, when the user clicks the
submit button to process the form, she will be forwarded to our auth.php file to generate
the authentication requests for her to sign in to the provider.

Next, we have an input box to allow the user to enter the OpenID discovery URL for
the provider that she would like to sign in to. In practice, this step usually includes a
series of provider images (e.g., Yahoo!, Google, etc.) from which the user can select so
that she does not have to know the discovery endpoint herself.

Last, we have a block of inputs to allow the user to select the different PAPE policies
that she would like to use for the request.

Once the user fills out the form and submits it, she will be forwarded to our auth.php file.

The common includes, functions, and globals

All files involved in the discovery and processing of the OpenID functions and func-
tionality in this example use a common set of includes, functions, and global defini-
tions, which are stored in a file named includes.php.

Let’s take a brief look at the common elements that we will use throughout this
example:

<?php
require_once "Auth/OpenID/Consumer.php"; //openid consumer code
require_once "Auth/OpenID/FileStore.php"; //file storage
require_once "Auth/OpenID/SReg.php"; //simple registration
require_once "Auth/OpenID/PAPE.php"; //pape policy
require_once "Auth/OpenID/AX.php"; //attribute exchange

define('FILE_COMPLETE', 'complete.php');
define('STORAGE_PATH', 'php_consumer');

/**
 * Function: Get Consumer
 * Description: Creates consumer file storage and OpenID consumer
 **/
function get_consumer() {

Implementation Example: OpenID | 471

 //ensure file storage path can be created
 if (!file_exists(STORAGE_PATH) && !mkdir(STORAGE_PATH)){
 print "Could not create FileStore directory '". STORAGE_PATH ."'.
 Please check permissions.";
 exit(0);
 }

 //create consumer file store
 $store = new Auth_OpenID_FileStore(STORAGE_PATH);

 //create and return consumer
 $consumer =& new Auth_OpenID_Consumer($store);
 return $consumer;
}
?>

There are three distinct blocks of functionality in our common includes file that we
need to go over.

First, the required file includes at the top introduce the OpenID files that we must have
to process the OpenID example. These are:

Consumer.php
OpenID consumer code

FileStore.php
The functionality to store

SReg.php
The Simple Registration extension that enables us to obtain simple profile infor-
mation about the user

PAPE.php
The PAPE policy definition file that enables us to use the associated functionality

AX.php
The Attribute Exchange file that enables us to obtain extended public profile in-
formation about the user

The next block contains our global path definitions:

FILE_COMPLETE
The filename (under the APP_ROOT folder) where the provider should forward
the user once she has logged in to the provider

STORAGE_PATH
The relative path to store the OpenID consumer objects

Finally, we have our get_consumer function, which allows us to obtain a new OpenID
consumer object and a consumer file storage mechanism that we will use later in the
program.

472 | Chapter 11: Extending Your Social Graph with OpenID

Now that we have an overview of the common file that we’ll use throughout our pro-
gram flow, let’s jump into the authentication request file that the initial form forwards
the user to.

The authentication request

Support for extensions such as Attribute Exchange or Simple Registra-
tion fully depends on the provider that you are attempting to use. Each
provider supports its own set of extensions and defines its own data sets
that can be obtained. Be sure to check for support prior to using
extensions.

The auth.php file contains a series of functions to initiate the authentication process
and attach the three extensions that we are exploring in this example.

We’ll first start a new PHP session and integrate our includes.php file that we just went
over.

We can then jump into the make_request function, which will be the controller for this
section of the authentication process:

<?php
require_once "includes.php"; //configurations and common functions

/**
 * Function: Make Request
 * Description: Builds out the OpenID request using the defined
 * request extensions
 **/
function make_request(){
 //get openid identifier URL
 if (empty($_GET['openid_url'])) {
 $error = "Expected an OpenID URL.";
 print $error;
 exit(0);
 }

 $openid = $_GET['openid_url'];
 $consumer = get_consumer();

 //begin openid authentication
 $auth_request = $consumer->begin($openid);

 //no authentication available
 if (!$auth_request) {
 echo "Authentication error; not a valid OpenID.";
 }

 //add openid extensions to the request
 $auth_request->addExtension(attach_ax()); //attribute exchange
 $auth_request->addExtension(attach_sreg()); //simple registration
 $auth_request->addExtension(attach_pape()); //pape policies

Implementation Example: OpenID | 473

 $return_url = sprintf("http://%s%s/%s", $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']),
 FILE_COMPLETE);
 $trust_root = sprintf("http://%s%s/", $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']));

 //openid v1 - send through redirect
 if ($auth_request->shouldSendRedirect()){
 $redirect_url = $auth_request->redirectURL($trust_root, $return_url);

 //if no redirect available display error message, else redirect
 if (Auth_OpenID::isFailure($redirect_url)) {
 print "Could not redirect to server: " . $redirect_url->message;
 } else {
 header("Location: " . $redirect_url);
 }
 //openid v2 - use javascript form to send POST to server
 } else {
 //build form markup
 $form_id = 'openid_message';
 $form_html = $auth_request->htmlMarkup($trust_root, $return_url, false,
 array('id' => $form_id));

 //if markup cannot be built display error, else render form
 if (Auth_OpenID::isFailure($form_html)){
 print "Could not redirect to server: " . $form_html->message;
 } else {
 print $form_html;
 }
 }
}

At the top of the function, we first check to make sure that the user (or our program,
for that matter) has defined an OpenID provider URL for us to initiate the authentica-
tion request against. Once we confirm that, we obtain the URL and create a new
OpenID consumer object, as well as an OpenID consumer file storage mechanism.

We then call the authentication begin function against our OpenID consumer, passing
along the OpenID URL. This step performs the URI discovery to validate that the
specified URL is indeed a valid OpenID endpoint. If that succeeds, we can start at-
taching our extensions.

Calling the addExtension(...) method against our authentication request object for
each extension, we pass in the return value of our extension generation functions as
the attribute. These will simply be objects that define the type of data that we want or
the process that we want to use. We’ll look at these functions in more detail shortly.

Now we need to define a few URLs for the remainder of the process. The return_url
variable is the absolute URL to the complete file that will be called once the user has
logged in through the authentication process. The trust_root parameter is used to

474 | Chapter 11: Extending Your Social Graph with OpenID

define a trusted location to validate that the authentication process is going through
the expected channels.

Now, depending on the version of OpenID being employed, we will handle the request
for authentication in different ways. We use the shouldSendRedirect() method against
our authentication object to determine whether we should redirect the user (OpenID
1) or use a form POST (OpenID 2).

To redirect the user, we build a redirect URL with our trust_root and redirect_url,
and then call Auth_OpenID::isFailure(...) to ensure that the redirect URL is valid. If
so, we redirect the user.

To send a form POST request, we create a form ID and the form HTML markup using
the htmlMarkup(...) method. We then call the Auth_OpenID::isFailure(...) method
to ensure that the form markup can be displayed. If it can, we print it out for the user
to authenticate with a login.

Now that you understand this process, let’s take a closer look at the functions that
generate the OpenID extension objects that we are sending along with our authenti-
cation request. We’ll start by looking at the Attribute Exchange function:

/**
 * Function: Attach Attribute Exchange
 * Description: Creates attribute exchange OpenID extension request
 * to allow capturing of extended profile attributes
 **/
function attach_ax(){
 //build attribute request list
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(
 'http://axschema.org/contact/email', 1, 1, 'email');
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(
 'http://axschema.org/namePerson', 1, 1, 'fullname');
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(
 'http://axschema.org/person/gender', 1, 1, 'gender');
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(
 'http://axschema.org/media/image/default', 1, 1, 'picture');

 //create attribute exchange request
 $ax = new Auth_OpenID_AX_FetchRequest;

 //add attributes to ax request
 foreach($attribute as $attr){
 $ax->add($attr);
 }

 //return ax request
 return $ax;
}

The AX function contains a fairly simple process for defining the user profile values
that we want to obtain from the user once she has logged in to the provider site.

Implementation Example: OpenID | 475

We first create an array of Attribute Exchange attribute information objects. We do so
by making requests to Auth_OpenID_AX_AttrInfo::make(...) with several parameters to
denote the piece of information that we are trying to obtain. These include:

type_uri (string)
The URI for the OpenID type that defines the attribute.

count (integer)
The number of values to request for the type. You might have a count greater than
1 if, for example, you are trying to obtain employment information from a user’s
profile when multiple jobs may be defined.

required (Boolean)
Whether the type should be marked as required in the OpenID request, and is
required to complete the request.

alias (string)
The name alias to be attributed to the type in the request.

Now that we have defined the attributes we want to obtain, we create a new attribute
exchange request object by calling the constructor for Auth_OpenID_AX_FetchRequest.
We then loop through the array of attributes that we just created and add them to the
new attribute exchange request object. Once this is complete, we return the object.

Next, let’s look at attaching the functionality for the Simple Registration extension:

/**
 * Function: Attach Simple Registration
 * Description: Creates simple registration OpenID extension request
 * to allow capturing of simple profile attributes
 **/
function attach_sreg(){
 //create simple registration request
 $sreg_request = Auth_OpenID_SRegRequest::build(
 array('nickname'),
 array('fullname', 'email'));

 //return sreg request
 return $sreg_request;
}

The Simple Registration extension process is even simpler than the Attribute Exchange
process. We create the Simple Registration object at the same time that we define which
user profile fields we’d like to obtain. We make a request to Auth_OpenID_SRegRequest
::build(...), passing in the fields that we would like to obtain as arrays of strings.
Attributes that are passed in as the first array of strings are marked as required for the
completion of the process, while attributes in the second array of strings are optional
and may not be returned.

476 | Chapter 11: Extending Your Social Graph with OpenID

If you are unsure whether the provider you are working with makes
available a certain user profile attribute that you are trying to obtain,
then it is best to set its return requirement as optional and then be pre-
pared to catch the case where the data may not be returned.

Now that we have set up our Simple Registration flow, let’s define our PAPE policies
for the request:

/**
 * Function: Attach PAPE
 * Description: Creates PAPE policy OpenID extension request to
 * inform server of policy standards
 **/
function attach_pape(){
 //capture pape policies passed in via openid form
 $policy_uris = $_GET['policies'];

 //create pape policy request
 $pape_request = new Auth_OpenID_PAPE_Request($policy_uris);

 //return pape request
 return $pape_request;
}

//initiate the OpenID request
make_request();
?>

Our attach_pape() function follows the same type of flow as the SREG and AX exten-
sions. We first obtain all selected PAPE policies from the query string that the user
selected in the original form. These will be the authentication policies that we will use
for the request.

We can then simply call the constructor for Auth_OpenID_PAPE_Request(), passing in
the policies obtained from the form and return the object back. It’s that simple.

Now that all of our functions are defined, we call make_request() to begin the authen-
tication process.

The authentication callback

No matter which method we’re using to authenticate the user (either forwarding the
user on to the provider domain or printing out the authentication process as a form),
the user will be presented with a login screen that allows her to log in to the service
provider of her choice. Once she has entered in her username and password and has
clicked to log in, she will be sent to the authentication callback location that is associ-
ated with the process. For our example, we have this file saved as complete.php. This
file will allow us to complete the authentication process and pull out all of the data that
we are requesting from our extensions.

Implementation Example: OpenID | 477

Let’s break down the callback into the logical blocks that we set up in the initial request,
our primary OpenID authentication, and the extensions that we requested.

The first thing that we are going to work with now
is the OpenID response. We need to ensure that the user did not cancel the process
and that there wasn’t a failure at some point in the request:

<?php
require_once("includes.php");

//get new OpenID consumer object
$consumer = get_consumer();

//complete openid process using current app root
$return_url = sprintf("http://%s%s/complete.php", $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']));
$response = $consumer->complete($return_url);

//response state - authentication cancelled
if ($response->status == Auth_OpenID_CANCEL) {
 $response_state = 'OpenID authentication was cancelled';
//response state - authentication failed
} else if ($response->status == Auth_OpenID_FAILURE) {
 $response_state = "OpenID authentication failed: " . $response->message;
//response state - authentication succeeded
} else if ($response->status == Auth_OpenID_SUCCESS) {
 //get the identity url and capture success message
 $openid = htmlentities($response->getDisplayIdentifier());
 $response_state = sprintf('OpenID authentication succeeded:
 %s', $openid, $openid);

 if ($response->endpoint->canonicalID){
 $response_state .= '
XRI CanonicalID Included: '
 . htmlentities($response->endpoint->canonicalID);
 }

We start the process by including our includes.php file that we detailed earlier. From
this set of includes, we create a new OpenID consumer object that we can use to com-
plete the OpenID process.

To complete the OpenID process, we need to do two things. We first construct the
absolute URL to the complete.php file (where we currently are), which we will use to
verify the complete state location. We then call the complete(...) method of our
OpenID consumer, passing in the current URL. This method will interpret the server’s
response to our OpenID request. The absolute URL that we specified will be compared
against the openid.current_url variable to confirm a match. If a match cannot be made,
the OpenID complete(...) method will return a response of FAILURE. In any event, the
response object returned from this method will provide us with all of the information
that we need to process the OpenID server response.

Checking the OpenID authentication state.

478 | Chapter 11: Extending Your Social Graph with OpenID

We start that process by checking the string status of the OpenID complete(...) re-
sponse object, $response->status. Depending on the response from this parameter, we
will proceed in different ways:

Auth_OpenID_CANCEL

The authentication process was cancelled. There is no information to obtain from
the response.

Auth_OpenID_FAILURE

The authentication process failed at some point. The message parameter in the
response object will have more information about the failure, so we display the
“Something went wrong” string with that message.

Auth_OpenID_SUCCESS

The process completed successfully. We call getDisplayIdentifier() in the re-
sponse object to obtain the profile URL of the user who authenticated, and then
display that in a success message to the user.

The case that we will explore for the callback is the SUCCESS response. If there is a
CANCEL or FAILURE instance, we’ll need to handle those appropriately, but for the scope
of this example we’ll see how to pull our user information from an OpenID SUCCESS case.

After we have displayed the OpenID user identifier for the user in our SUCCESS case, we
check the endpoint to see whether there is a CanonicalID field available. This field will
be available if the verified identifier is an XRI (Extensible Resource Identifier). If avail-
able, the CanonicalID field that is discovered from the XRD (Extensible Resource De-
scriptor) should be used as the key lookup field when we’re storing information about
the end user.

Now that we have the simple OpenID information for the user, let’s look at how we
can extract further information from the extensions that we defined. We’ll take a look
at the Simple Registration extension first.

Using the Simple Registration extension from
our OpenID request, we can capture some profile, contact, and geographical informa-
tion about a user through our existing OpenID process.

Within the SUCCESS instance of the OpenID response in our sample, we can display the
information that the provider has returned from the Simple Registration extension:

//display sreg return data if available
$response_sreg =
 Auth_OpenID_SRegResponse::fromSuccessResponse($response)->contents();
foreach ($response_sreg as $item => $value){
 $response_state .= "
SReg returned $item with the value:
 $value";
}

Using the Auth_OpenID_SRegResponse::fromSuccessResponse(...) method, we can cap-
ture the Simple Registration object from the OpenID response. Against that object, we
can call the contents() helper method to return only the Simple Registration data.

Capturing values returned by Simple Registration.

Implementation Example: OpenID | 479

(This method is really just returning the “data” structure inside the Simple Registration
return object.)

The object that you are working with might look something like the following:

array(7) {
 ["openid.sreg.email"]=> array(1) {
 [0]=> string(17) "jontest@yahoo.com"
 }
 ["openid.sreg.nickname"]=> array(1) {
 [0]=> string(3) "Jon"
 }
 ["openid.sreg.gender"]=> array(1) {
 [0]=> string(1) "M"
 }
 ["openid.sreg.dob"]=> array(1) {
 [0]=> string(10) "1980-12-06"
 }
 ["openid.sreg.country"]=> array(1) {
 [0]=> string(2) "US"
 }
 ["openid.sreg.language"]=> array(1) {
 [0]=> string(2) "en"
 }
 ["openid.sreg.timezone"]=> array(1) {
 [0]=> string(18) "America/Los_Angeles"
 }
}

Once we have obtained that object, we then loop over each key and display the content
from the process so that we can see what the provider has returned.

Now that we have processed the content from the Simple Registration extension, we
can begin to look at the PAPE policy extension values.

Depending on the support the provider offers for PAPE pol-
icies and what we designated at the beginning of our OpenID example, we can display
the PAPE policy responses from the provider to see how they affected the OpenID
process:

//display pape policy return data if available
$response_pape = Auth_OpenID_PAPE_Response::fromSuccessResponse($response);
if ($response_pape){
 //pape policies affected by authentication
 if ($response_pape->auth_policies){
 $response_state .= "
PAPE returned policies which affected
 the authentication:";

 foreach ($response_pape->auth_policies as $uri){
 $response_state .= '- ' . htmlentities($uri);
 }
 }

 //server authentication age
 if ($response_pape->auth_age){

Checking the PAPE policy states.

480 | Chapter 11: Extending Your Social Graph with OpenID

 $response_state .= "
PAPE returned server authentication age with
 the value: " . htmlentities($response_pape->auth_age);
 }

 //nist authentication level
 if ($response_pape->nist_auth_level) {
 $response_state .= "
PAPE returned server NIST auth level with the
 value: " . htmlentities($response_pape->nist_auth_level);
 }
}

We first call the Auth_OpenID_PAPE_Response::fromSuccessResponse(...) method
against our OpenID response object to return our PAPE data. If a PAPE response object
exists, we can display the processing information.

We start by checking the policies that affected the authentication process. For each
policy found, we display the URI.

Next, we tackle server authentication age. We display the age, if available, that was
returned from the provider.

Last, we check the NIST authentication level that was used for the OpenID request.
We return back the level that was used, if available.

The final extension that we will process is Attribute Exchange.

If we specified that we wanted to use the At-
tribute Exchange extension in our request, we can easily process the data that is re-
turned from the provider:

 //get attribute exchange return values
 $response_ax = new Auth_OpenID_AX_FetchResponse();
 $ax_return = $response_ax->fromSuccessResponse($response);
 foreach ($ax_return->data as $item => $value){
 $response_state .= "
AX returned $item with the value:
 {$value[0]}";
 }
}

print $response_state;
?>

We fetch the Attribute Exchange structure from the OpenID response object by cre-
ating a new instance of Auth_OpenID_AX_FetchResponse and then calling the fromSuc
cessResponse(...) method against the new instance, passing in the OpenID response
object. We should now have an object that contains the Attribute Exchange informa-
tion that we requested at the beginning of the OpenID process. This object should look
something like the following:

array(4) {
 ["http://axschema.org/contact/email"]=> array(1) {
 [0]=> string(17) "jontest@yahoo.com"
 }
 ["http://axschema.org/namePerson"]=> array(1) {

Capturing values returned by Attribute Exchange.

Implementation Example: OpenID | 481

 [0]=> string(16) "Jonathan LeBlanc"
 }
 ["http://axschema.org/person/gender"]=> array(1) {
 [0]=> string(1) "M"
 }
 ["http://axschema.org/media/image/default"]=> array(1) {
 [0]=> string(111) "https://a323.yahoofs.com/coreid/4ca0e24
 cibc9zws131sp2/VXtMnow7dKiKol09_NI9bAeW
 Ig--/7/tn48.jpeg?ciAgZ3NBvexVYA_D"
 }
}

Once we’ve obtained this object, we loop through each returned element and add it to
our response object to be displayed.

Once all OpenID elements and extension structures have been processed for the
SUCCESS state, we print out the information to complete the example.

We should now have a functional example that will authenticate the user and capture
some general profile information about her.

Implementing OpenID Using Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_11/openid-py
thon.

We’ve explored the OpenID implementation using PHP as the backing server-side
language, so now let’s see what shape the implementation takes when Python is used
as the main delivery language. We will cover the same type of implementation as
before—one that gives us a program that can perform discovery on a number of dif-
ferent OpenID providers and allow the user to sign in using their services. We will also
integrate our same three OpenID extensions to provide additional security and user
information during the process:

• Simple Registration for basic user information

• Attribute Exchange for more extensive user information

• PAPE for additional security levels

At the end of the example, we will have a complete end-to-end program that allows
users to log in using a range of OpenID providers.

Getting the required OpenID library

For this example, we are using the Janrain OpenID Python library, which you can find
in Janrain’s list of libraries at http://www.janrain.com/openid-enabled. Before we begin
implementing the code for this example, we first need to install the OpenID library.

482 | Chapter 11: Extending Your Social Graph with OpenID

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_11/openid-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_11/openid-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_11/openid-python
http://www.janrain.com/openid-enabled

Before running the python setup.py install command to install the
OpenID library, you will need to have the distutils module installed.
This is part of the Python standard library, but some distributions pack-
age it separately in a “python-dev” package.

To install this library, follow these steps:

1. Download the Janrain OpenID Python library from https://github.com/openid/py
thon-openid/downloads. For this example, we use the “2.2.5.zip” download
version.

2. Decompress the file that you just downloaded and then navigate into the directory
via the command line.

3. From the root of the directory, run the command python setup.py install.

This should begin the installation of the OpenID Python library that we will use. Once
it’s installed, we can start building our OpenID sample.

The markup file

For this example, we are using Google App Engine to run the Python code against
localhost. So, our first step is to create the YAML file that App Engine will use to set
up the application. Our file, app.yaml, contains everything we need to successfully run
the example:

application: openid
version: 1
runtime: python
api_version: 1

handlers:
- url: /index.py
 script: index.py
- url: /auth.py
 script: auth.py
- url: /complete.py
 script: complete.py

There are three file paths defined in the YAML file:

index.py
This prints out the initial form in which a user inputs the OpenID provider URI
that he would like to use and then selects whether he also wants to use a PAPE
phishing filter for the request.

auth.py
This file is where we will initiate the OpenID discovery and authentication pro-
cesses based on the information input by the user in the aforementioned form.

Implementation Example: OpenID | 483

https://github.com/openid/python-openid/downloads
https://github.com/openid/python-openid/downloads

complete.py
This file will complete the OpenID authentication process and then display the
information that was obtained through the process.

With that YAML file as our base, we can begin constructing the pieces that make up
everything from the form to our completion script.

The discovery form

With our App Engine configuration file in place, let’s turn our attention to the discovery
form that a user interacts with before authenticating his user account for a given
provider.

As noted in the OpenID PHP example, this example requires that a user
enter the OpenID provider discovery URI himself. While this is a good
practice for testing, you should never require site users to know this
information. In lieu of the form input, for each provider you should
display an image or link that will automatically supply your scripts with
the necessary information.

print '''\
Content-type: text/html; charset=UTF-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>OpenID Sample Application</title>
</head>
<body>
<style>
form{ font:12px arial,helvetica,sans-serif; }
#openid_url { background:#FFFFFF url(http://wiki.openid.net/f/openid-16x16.gif)
 no-repeat scroll 5px 50%; padding-left:25px; }
</style>

<form action="auth.py" method="GET">
 <input type="hidden" value="login" name="actionType">
 <h2>Sign in using OpenID</h2>
 <input type="text" style="font-size: 12px;" value="" size="40" id="openid_url"
 name="openid_url">
 <input type="submit" value="Sign in">

 <small>(e.g. http://username.myopenid.com)</small>

 PAPE Policies (Optional)

 <input type="checkbox" name="policy_phishing"
 value="PAPE_AUTH_PHISHING_RESISTANT" /> PAPE_AUTH_PHISHING_RESISTANT

</form>

484 | Chapter 11: Extending Your Social Graph with OpenID

</body></html>
'''

The discovery form consists of a few pieces—besides the styling and layout—that we
should focus on. The driver for this file is the form wrapping the contents. A user will
interact with the form as follows:

1. He will input the OpenID provider discovery URI that he would like to use to
authenticate himself with.

2. He will select from the optional PAPE options whether he wants to apply a phishing
resistance filter on the provider side when the request is made.

3. He will submit the form to begin the authentication process.

Once those steps are taken, we will submit this form to the auth.py file, passing the
parameters via the query string, to begin our form processing and authentication step.

The authentication request

Now that the form has been submitted, we are at the auth.py file endpoint to begin
authentication. At this stage, the user should have submitted the discovery form spec-
ifying the provider endpoint URI he wants to use and whether he wants to have the
PAPE phishing filter applied during the process.

The authentication request file will take those form results, perform discovery on the
provider endpoint URI to ensure its validity, prepare an authentication request with
our requested OpenID extensions, and finally, either print out the authentication form
or forward the user to the form on the provider site (depending on the OpenID version).

To see how we will accomplish all of this, let’s break apart the OpenID authentication
request file into several logical steps, starting with the identifier discovery.

Let’s begin by importing the libraries that we
will need for the request. We set up the imports for our standard libraries—sys, cgi,
and os—and then import the OpenID library elements that we will need for this
example.

Following this, we begin the authentication request file example by defining the
main() function that will be the main element of our request:

import sys
import cgi
import openid
import os

from openid.consumer import consumer
from openid.extensions import pape, sreg, ax

'''
' Function: Main
' Description: Initiates the OpenID authentication process
'''

OpenID identifier discovery and request setup.

Implementation Example: OpenID | 485

def main():
 #get query parameters
 params = cgi.FieldStorage()

 #check if an OpenID url was specified
 if not params.has_key('openid_url'):
 print_msg('Please enter an OpenID Identifier to verify.', 'text/plain')
 else:
 #capture OpenID url
 openid_url = params['openid_url'].value

 #create a base consumer object
 oidconsumer = consumer.Consumer({}, None)

 try:
 request = oidconsumer.begin(openid_url)
 except:
 print_msg('Error in discovery: ' + openid_url, 'text/plain')
 else:
 if request is None:
 print_msg('No OpenID services found', 'text/plain')
 else:
 #build trust root and url to return to
 trust_root = 'http://%s/' % (os.environ['HTTP_HOST'])
 return_to = 'http://%s/complete.py' % (os.environ['HTTP_HOST'])

Within our main() function, we first get the query string parameters that were passed
to us from the previous form. These include the OpenID provider URI to use and the
optional PAPE extension for protecting against phishing attacks.

We then check to see whether there was even an OpenID provider URI entered by the
user. If not, we simply print an error to the user. If the URI was specified, we capture
the string value to verify and then create an empty OpenID consumer object to perform
discovery.

We then attempt to perform discovery on the OpenID provider URI. We display an
error if an exception was thrown. If an exception was not thrown, we make sure that
the request variable is not None; if it’s not, we have a valid request object.

If the value is valid, we construct these two variables for later use:

The trust root URI
The root of your OpenID sample from which the application is being run

The return to URL
The absolute path to the file that the user will be forwarded to once he has au-
thenticated his account

Now we can begin attaching our OpenID extensions on top of our request object.

As with our PHP example, we will attach these three
extensions to our OpenID request:
Setting up the OpenID extension requests.

486 | Chapter 11: Extending Your Social Graph with OpenID

• Simple Registration

• Attribute Exchange

• PAPE phishing policy

Let’s break these down into the individual extensions:

 #simple registration extension request
 sreg_request = sreg.SRegRequest(required=['nickname'],
 optional=['fullname', 'email'])
 request.addExtension(sreg_request)

 #attribute exchange extension request
 ax_request = ax.FetchRequest()
 ax_request.add(ax.AttrInfo('http://axschema.org/contact/email',
 required=False, alias='email'))
 ax_request.add(ax.AttrInfo('http://axschema.org/namePerson',
 required=False, alias='fullname'))
 ax_request.add(ax.AttrInfo('http://axschema.org/person/gender',
 required=False, alias='gender'))
 ax_request.add(ax.AttrInfo('http://axschema.org/media/image/default',
 required=False, alias='picture'))
 request.addExtension(ax_request)

 #pape policy extension request
 if params.has_key('policy_phishing'):
 pape_request = pape.Request([pape.AUTH_PHISHING_RESISTANT])
 request.addExtension(pape_request)

We start out with Simple Registration to attempt to capture a few pieces of information
about the user. Using our Simple Registration library, we call the SRegRequest(...)
method to create a new request object. To that function, we pass in the fields that are
required for the request (the nickname) as well as those that are optional (the full name
and email address). Once our request object is ready, we call the addExtension(...)
method, passing in the Simple Registration request object that we just created in order
to add the extension to the authentication request.

Next, we need to set up the Attribute Exchange request. We start by generating a new
request object by calling the FetchRequest() method within our Attribute Exchange
library. We then add to that request object (using the add(....) method) each piece of
information that we hope to capture about the user, generated as an attribute info
object. This information includes the user’s email address, full name, gender, and de-
fault profile image. Once we’ve added every piece of information to the Attribute Ex-
change request object, we then add that object to the OpenID authentication request,
again using the addExtension(...) method.

Last, we need to set up our PAPE request to apply the phishing resistance filter. If the
user has chosen to include this option, we call the Request(...) method within our
PAPE library to generate the request object, passing in an array of the filters that we
would like to apply—in this case, just the phishing resistance filter. We then add that
object to the overall OpenID request.

Implementation Example: OpenID | 487

Now let’s finalize the authentication build process and see how to generate the required
page that the user will need to validate his user account.

We now have a fully qualified request object that we can
use to authenticate the user session, but first we need to display the form through which
this authentication takes place:

 #openid v1 - send through redirect
 if request.shouldSendRedirect():
 redirect_url = request.redirectURL(
 trust_root, return_to, immediate='immediate')
 print "Location: " + redirect_url
 #openid v2 - use javascript form to send POST to server
 else:
 form_html = request.htmlMarkup(
 trust_root, return_to,
 form_tag_attrs={'id':'openid_message'})

 print_msg(form_html, 'text/html')

In the preceding block of the code, we have two sections depending on the version of
OpenID that is being used. We make a call to shouldSendRedirect() against the request
object to determine whether the form should be printed out to screen or whether the
user should be redirected to the provider site.

If we’re using OpenID 1, we capture the redirect URL that we should send the user to,
using the trust_root and return_to variables that we set up earlier. We then print out
a location redirect to send the browser to the required page.

If we’re using OpenID 2, we simply print out the authentication page. We make a
request to htmlMarkup(...) against the request object, passing in the trust_root and
return_to variables that we set up earlier. This will capture the markup that we need
to display to the user. We then print out the content to the screen using a content type
declaration of text/html.

That concludes the core of the sample, but there are still a few pieces that we need to
look at for the authentication request component.

Our last piece of this part of the script is
the print helper function and the code that initiates the execution of the main() function:

'''
' Function: Print Message
' Description: Print a message with a provided content type
' Inputs: msg (string) - The message to be displayed
' type (string) - The content type to use (e.g. text/plain)
'''
def print_msg(msg, type):
 if msg is not None:
 print 'Content-Type: %s' % (type)
 print ''
 print msg

Displaying the authentication login.

Printing messages and initiating program execution.

488 | Chapter 11: Extending Your Social Graph with OpenID

#initiate load of main()
if __name__ == '__main__':
 main()

The print_msg(...) function is a simple tool to print messages to the screen with the
correct content type applied. We pass in the message string that we want to print as
the first parameter, and the content type that we want to use as the second parameter.
As long as the message has some sort of content, it will be printed to the screen with
the content type we’ve defined.

Now that all of our functions are defined, we set up a little code block at the end to
initiate a request to the main() function once the program executes.

Once this file executes, either the user will be redirected to the provider for authenti-
cation or the authentication form will be printed out to screen. In either event, the user
will be given the option to authenticate his user account. If he accepts the authentication
step to verify himself, then we will be forwarded over to the authentication callback,
defined by the return_to variable that we populated earlier in the program.

The authentication callback

At this point, the user should have authenticated his account and been redirected to
the return_to callback URL. In the case of this example, that file is complete.py.

We will complete a number of tasks once the user reaches this page:

• Parsing the OpenID parameters passed along the query string

• Completing the authentication process using those parameters to provide us with
a success or failure message

• Parsing the responses from each OpenID extension

• Printing out all obtained objects

We will be printing out the objects that are returned to us simply as a “getting started”
end-to-end example of how OpenID works. Dumping out the end objects will allow
you to work with different OpenID providers to see what type of information and which
OpenID extensions are supported in their particular implementations. When working
with a practical implementation to be used for actual end users—such as when
prepopulating a form with the user information obtained from the Attribute Exchange
extension request—you should always show only the base values of the results to the
user.

With that disclaimer out of the way, let’s jump into the code for the complete.py file.
We’ll split up the file into its logical pieces, just like we did with the auth.py file.

Let’s start by capturing the OpenID parameters and using them to complete
authentication.

Our first tasks here are to capture the OpenID parameters that
have been passed through to us via the query string, put them into a dictionary, and
Completing authentication.

Implementation Example: OpenID | 489

then complete the authentication process to get a success or failure message for the user
authentication. After we import all of the required standard and OpenID libraries
needed for this process, we begin by defining our main() function:

import sys
import cgi
import openid
import urllib
import os

from openid.consumer import consumer
from openid.extensions import pape, sreg, ax

'''
' Function: Main
' Description: Completes OpenID authentication process and prints results
'''
def main():
 #create a base consumer object
 oidconsumer = consumer.Consumer({}, None)

 #create return to url
 url = "http://%s/complete.py" % (os.environ['HTTP_HOST'])

 #print page content type
 print 'Content-Type: text/plain'
 print ''

 #parse query string parameters into dictionary
 params = {}
 string_split = [s for s in os.environ['QUERY_STRING'].split('&') if s]
 for item in string_split:
 key,value = item.split('=')
 params[key] = urllib.unquote(value)

 #complete OpenID authentication and get identifier
 info = oidconsumer.complete(params, url)
 display_identifier = info.getDisplayIdentifier()

The first thing we do within main() is to create a new base OpenID consumer object,
from which we will be able to complete the authentication process. We then need to
define the value of the return_to URL, which just so happens to be the absolute URL
to the current file, complete.py. Since we will be printing all of our results to the current
page, we also print out the content type that we will use for this page. In this case, that
will be simply text/plain since there will be no associated HTML.

Now we need to build our dictionary of OpenID parameters. We create a new diction-
ary object, params, and then split all parameters in the query string into a new object
based on the ampersand. For each entry found, we split the key and value apart based
on the equals sign. We then store the parameters in the dictionary as unescaped strings.

Now that we have our dictionary of OpenID parameters, we complete the authentica-
tion process by calling complete(...) against the OpenID consumer object that we

490 | Chapter 11: Extending Your Social Graph with OpenID

created, passing in the dictionary of OpenID parameters and the return_to absolute
URL. If all goes well, we should get a response object filled with everything that was
returned from the OpenID process.

The last piece of this part of the puzzle is to capture the OpenID identifier for the user.
From the info variable, we call getDisplayIdentifier() to extract this information.

Now let’s move on to extracting the OpenID extension responses that we requested
during the user authentication.

At a base level, the OpenID exten-
sions that we requested (Simple Registration, Attribute Exchange, and PAPE) are fairly
easy to capture. The OpenID library includes a set of helper methods that allows us to
extract the data we want from the OpenID return object:

 #get simple registration extension response
 sreg_resp = sreg.SRegResponse.fromSuccessResponse(info)

 #get pape extension response
 pape_obj = pape.Response.fromSuccessResponse(info)
 pape_resp = '';
 if pape_obj is not None:
 for policy_uri in pape_obj.auth_policies:
 pape_resp += cgi.escape(policy_uri) + ' | '

 #build attribute exchange response object
 ax_response = ax.FetchResponse.fromSuccessResponse(info)
 if ax_response:
 ax_items = {
 'email': ax_response.get('http://axschema.org/contact/email'),
 'fullname': ax_response.get('http://axschema.org/namePerson'),
 'gender': ax_response.get('http://axschema.org/person/gender'),
 'picture': ax_response.get('http://axschema.org/media/image/default')
 }

Let’s start by collecting the simple responses from Simple Registration and PAPE.
To collect the Simple Registration response, we call SRegResponse.fromSuccess
Response(...) against the sreg extension library, passing in the info object that holds
the OpenID response.

Responses from OpenID extensions are contingent upon the OpenID
provider site supporting the fields that you are requesting. For instance,
if you are requesting a user’s email address through Simple Registration
and the provider doesn’t support either that field or the Simple Regis-
tration extension altogether, the response returned when we try to cap-
ture the object will be None.

For the data that we requested in the auth.py file, the Simple Registration response
object will look something like the following:

{
 'openid.sreg.email': ['jbrown@yahoo.com'],

Capturing the return values of the OpenID extension requests.

Implementation Example: OpenID | 491

 'openid.sreg.nickname': ['John '],
 'openid.sreg.fullname': ['John Brown']
}

Now we turn our focus to the PAPE response object. Calling Response.fromSuccess
Response(...) against the pape extension library, passing in the OpenID info object
responses again, will return us the policies that were returned back by the provider (if
supported). We loop through the policies by going through pape_obj.auth_policies
and then add the values to the PAPE response object.

Finally, let’s get our Attribute Exchange information. We call FetchResponse.from
SuccessResponse(...) against the ax extension library, again passing in the OpenID info
object response. If a response is available, we create a new dictionary filled with the
individual values that we requested by calling get(...) and passing in the required
schema value.

Once this process is complete, our dictionary should look something like the following:

{
 'gender': ['M'],
 'fullname': ['John Brown'],
 'email': ['jbrown@yahoo.com'],
 'picture': ['https://a323.yahoofs.com/coreid/4ca0e24cibc9zws131
 sp2/NI9bAeWIg--/7/tn48.jpeg']
}

Now that we have completed the OpenID authentication process and obtained the
values from all our extensions, we just need to do one more thing—print it all out.

This last step simply checks all of our responses and prints
out the appropriate notification so that we can see whether our requests succeeded or
not:

 print ax_items

 #print all OpenID responses
 print display_identifier

 if sreg_resp is not None:
 print sreg_resp

 if pape_resp is not None:
 print pape_resp

 if info.status == consumer.FAILURE and display_identifier:
 message = "Verification failed"
 elif info.status == consumer.SUCCESS:
 message = 'Success'
 elif info.status == consumer.CANCEL:
 message = 'Verification cancelled'
 elif info.status == consumer.SETUP_NEEDED:
 message = 'Setup needed'
 else:
 message = 'Verification failed.'

Printing out our response objects.

492 | Chapter 11: Extending Your Social Graph with OpenID

 print message

if __name__ == '__main__':
 main()

We start by printing the response object we built from the Attribute Exchange
response. This will be printed only if there was a response object built.

Next, we print the display identifier for the user. This is the unique absolute URI that
is associated with the user who authenticated. This identifier will look something like
the following:

https://me.yahoo.com/a/dV.URBo4t84y.G4v0jMmdeznx3OotpS4

If we navigate to that provided URI, we see a screen like the one shown in Figure 11-7.

Figure 11-7. Example of unique absolute URI contents on Yahoo

Now we check whether the responses from the Simple Registration and PAPE exten-
sions were valid, and if so, print them out.

Last, we check the status of the OpenID authentication response by checking info
.status. This value tells you whether the OpenID authentication process succeeded or
failed, and is one of the following responses:

consumer.FAILURE

The authentication process failed at some point.

consumer.SUCCESS

The authentication process succeeded. At this point, we can begin processing all
of the responses.

consumer.CANCEL

The authentication process was cancelled and not completed.

consumer.SETUP_NEEDED

Additional setup is required in the authentication request.

Any other response
If any other response was returned, we should gracefully handle this with a “Some-
thing went wrong” message.

Once the message has been printed, all that remains is the if statement at the bottom
of the file, which will initiate the main() function and start the process.

Implementation Example: OpenID | 493

https://me.yahoo.com/a/dV.URBo4t84y.G4v0jMmdeznx3OotpS4

That completes the OpenID sample using Python. Using this as a base, you can create
a comprehensive end-to-end product offering that allows users to sign in using their
OpenID-enabled accounts.

Common Errors and Debugging Techniques
As is the case with any open protocol or service that allows you to leverage a large
number of different provider companies, you may encounter issues during the discov-
ery, authentication, or data retrieval phases. If the provider does not return clear error
responses—other than “Something went wrong”—implementers may not know where
the problem lies.

We’ll explore some of the common issues that you may face when you’re implementing
and working with OpenID, as well as a few debugging steps that you can employ to
resolve them.

Callback URL Mismatch
One common OpenID issue arises when you are attempting to perform discovery on
an OpenID provider endpoint and have to construct a redirect URL (where to send the
end user after she has authenticated) built off a trust root (the current root of the ap-
plication) and the callback (where to send the end user).

The OpenID domain verification process is quite strict for most providers, requiring
an exact match to the root domain. For instance, the following domains will not match:

• http://jcleblanc.com

• http://www.jcleblanc.com

If there is a callback URL mismatch, you will be presented with something along the
lines of Figure 11-8.

You will need to ensure that there is a direct domain match when building your redirect
URL (i.e., that the domain that you are constructing the callback from matches the
current domain that the user is on).

While this is a common issue for new users of OpenID, it can be remedied quickly if
you simply ensure that there is an exact domain match between the trust root and the
callback to which you will forward the end user after authentication.

Undiscoverable OpenID Identifier
Another issue that you may encounter—and one that may cause you some frustration
if you can’t immediately determine what the problem is—has to do with the inability
to complete the discovery process for a given OpenID identifier URL.

494 | Chapter 11: Extending Your Social Graph with OpenID

http://jcleblanc.com
http://www.jcleblanc.com

For instance, consider the following URLs:

• http://www.jcleblanc.com

• http://jcleblanc.com/

• http://jcleblanc.com

• http://jcleblanc.com

When entered into a browser, they would all load the same source site and would not
present any challenge in determining what site we are looking for. However, when it
comes to OpenID implementations, especially those of older specifications, these dif-
ferences may create issues during the discovery process.

The problem of the undiscoverable OpenID identifier generally comes up with custom
provider implementations of OpenID, where normalization is not being properly ap-
plied to a given identifier.

From the consumer point of view, there are two ways to resolve the issue:

• If you have control over the identifier URL that is being sent to the provider (that
is, if the user doesn’t enter it herself), then you can simply change the URL to exactly
what the provider requires.

• You can also normalize the URL yourself prior to performing discovery.

Figure 11-8. Example of callback URL mismatch error screen

Common Errors and Debugging Techniques | 495

http://www.jcleblanc.com
http://jcleblanc.com/
http://jcleblanc.com
http://jcleblanc.com

Conclusion
OpenID enables any consumer site to quickly implement a membership login mecha-
nism for its users by leveraging the massive account systems of many of the top profile
providers. Expanding upon simple registration systems and authentication, OpenID
delivers a means by which consumers can extract profile information from users, in-
cluding their email addresses, general profile details, and linked accounts. This allows
users to carry over their profile systems from site to site without having to register a
new account each time they log in. For a consumer site, using this login infrastructure
can help reduce the pain of registration for its users, which in turn keeps the site’s drop-
off rates to a minimum and its social graph robust and thriving.

Security, ease of implementation, and extensibility are always key issues when you’re
working with authentication. Through our OpenID discussions, you can see how this
open specification aims to address all of these issues with a single implementation.

496 | Chapter 11: Extending Your Social Graph with OpenID

CHAPTER 12

Delivering User-Centric Experiences
with Hybrid Auth

Taking the next step in our exploration of the authentication and authorization features
of different open standards, we will now look at an extension that combines two of
those standards: the OpenID OAuth hybrid.

In this chapter, weâ€™ll cover the specifics of how to implement this extension, explore
why you may want to work with it, and delve into the extensive control you gain from
using it. Letâ€™s start by defining what the hybrid auth extension is and who some of
its implementers are.

The OpenID OAuth Hybrid Extension
At this point, we have already discussed the value of implementing the OpenID au-
thentication model to allow users to sign in using a variety of existing accounts, as well
as the extensive amount of data and control that the OAuth standard gives you.

Now that we understand the individual specifications, weâ€™ll look into combining
them to enable us to take advantage of the best parts of each in a single implementation:
hybrid auth.

With the OpenID OAuth hybrid extension, we can allow a relaying party to capture a
userâ€™s identity information using the OpenID implementation and then employ
OAuth functionality so that the relaying party can request permission from the user to
capture and set his privileged data on his behalf, giving us a much more comprehensive
amount of social information from the implementation.

Next letâ€™s take a look at the implementers of hybrid auth.

497

Current Implementers
There are a few major companies that currently implement the OpenID OAuth hybrid
extension, two of which are Yahoo! and Google. These companiesâ€™ implementa-
tions allow you to authenticate using their associated membership databases and then
access their usersâ€™ privileged information using the OAuth authorization aspects.

When Should I Use OpenID Versus Hybrid Auth?
You might be wondering when itâ€™s appropriate to use a standard OpenID approach
versus a hybrid OpenID/OAuth model. There are different answers to this question
depending on your particular project flow. Obviously, the hybrid auth approach will
deliver a lot of extra personal information from a user, but it also incurs additional
overhead and technical depth. OpenID will enable a user to sign in to a site with a single
login, which may not originate from the service that she is signing in to; then, using the
OAuth specification, you can extract her extensive profile and personalization infor-
mation. At the end of the day, you have to ask yourself what the best approach is for
you and your service.

Questions to Ask Yourself Before Choosing
Before you embark upon a particular implementation path, you should ask yourself
some questions about what you need in your specific application and whatâ€™s avail-
able to you from a particular provider that you are trying to integrate.

Does the provider I am working with support hybrid auth? Where can I find out?

The first question that you should ask yourself before embarking upon any approach
is â€œWhat does my provider support?â€ Clearly, if youâ€™re working with a service
thatâ€™s an OpenID provider but does not offer OAuth, you should not be looking
into a hybrid auth approach.

When working with a standard OpenID implementation, you simply need to find out
two things:

• Is the company that I am trying to allow a login for an OpenID provider?

• What is that companyâ€™s discovery URL? (For a refresher on this topic, see the
section “OpenID Providers” on page 453 in Chapter 11.)

If the first answer is â€œyes,â€ and you have the discovery URL, youâ€™re ready to
begin integrating OpenID authentication into your site.

Now, if youâ€™re looking into a hybrid auth approach, youâ€™ll not only need to
answer the preceding questions about OpenID, but also a number about OAuth and
hybrid auth, such as:

498 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

• Does the provider Iâ€™m working with support OAuth?

• Does the provider Iâ€™m working with support hybrid auth to allow me to obtain
a preapproved request token from OpenID, in order to exchange it for an OAuth
access token?

If the answers to the preceding questions are also â€œyes,â€ then you are ready to
leverage the powerful authentication and authorization functionality of a hybrid auth
implementation.

If you answered â€œI donâ€™t knowâ€ to any of the preceding questions, then you
should check the providerâ€™s documentation for the OpenID and OAuth specifica-
tions. Specifically, youâ€™ll need an OpenID method for obtaining a preapproved
request token at the end of the authentication process in order to implement a hybrid
auth approach.

What information about the user am I trying to obtain?

Your next question when deciding between the different standards should be, â€œW-
hat information about the user do I actually need?â€ This is an important question for
a few reasons:

• If you simply want to offload user authentication to another provider without hav-
ing to store user credentials, or want to avoid the privacy concerns associated with
storing those details, then there is absolutely no reason for you to incur the over-
head and effort of implementing OAuth. If, on the other hand, you want to leverage
an existing user social graph, then the OAuth implementation is your best option
for accessing a great deal of data.

• The provider that you are working with will most likely have a â€œTerms of Useâ
€ document that outlines what information about its users you are allowed to store
in your own systems, and for how long. If you try to store every piece of information
about a user permanently (through the OAuth process), you will more than likely
be violating the providerâ€™s terms of use.

Beyond the terms of use and authentication offload considerations, you should also be
concerned about incurring an overhead that you simply may not need. Weâ€™ve
touched on this already, but the point should be stressed. So, letâ€™s take a look at
this factor in a little more detail by comparing the pros and cons of each implementa-
tion.

Pros and Cons: Standard OpenID
First, weâ€™ll look at the pros and cons of using a straight OpenID implementation
without the second, more extensive, OAuth steps that we will explore momentarily in
the hybrid auth pros and cons list.

When Should I Use OpenID Versus Hybrid Auth? | 499

Pros:

• You can offload the authentication of a user to an OpenID provider such as Yahoo!
or Google. Using this method, you can take advantage of the providerâ€™s large
membership and security systems to log your users in to your site.

• You will not need to store user login credentials in your own database systems;
rather, you simply map the OpenID user on the provider site with whatever infor-
mation your application or site stores about that user.

• The straight OpenID approach is more lightweight than the hybrid auth
implementation.

Cons:

• OpenID is simply an authentication service for verifying a user account state, not
an authorization system like OAuth, which allows an application or service to
perform actions on the userâ€™s behalf once authorized. What this means is that
a simple OpenID integration will not be able to make signed requests to the pro-
vider site to get, set, or delete a userâ€™s social information.

• The support for OpenID extensionsâ€”such as Simple Registration, Attribute Ex-
change, and PAPEâ€”is inconsistent from provider to provider. Some providers
support all of the most popular extensions, while others support none. In addition,
the personal information that you can obtain through such extensions varies
among providers. Some providers may return a userâ€™s email address, full name,
profile image, and similar information, while others may return only a single piece
of data such as the email address.

To summarize, OpenID is the best choice when you are simply looking to implement
an authentication system to log users in, without needing to gain access to the vast
majority of their social profile or graph. Extensions like Attribute Exchange and Simple
Registration offer you a means to access additional basic data about the user if needed.

Pros and Cons: Hybrid Auth
Now letâ€™s take a look at the more extensive implementationâ€”the OpenID OAuth
hybrid approachâ€”to see how it compares to the straight OpenID integration that we
just discussed.

Pros:

• Since you are using OAuth for your authorization model, you will have access to
a much wider array of information from user profiles. In addition to the extensive
data comprising the profile systems, OAuth providers usually supply several social
APIs that allow you to get, set, and delete a significant quantity of the userâ€™s
profiles, connections, and activities.

500 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

• By storing the access token provided from the OAuth process, applications and
services may generally run headless requests* to process user data for the duration
that the access token is valid.

• Since you are already leveraging the OpenID process, you also gain all of its pros,
with the exception of its lightweight implementation.

Cons:

• When you integrate the OAuth libraries, you incur quite a large overhead in your
implementation code base. Instead of the process completing when the user au-
thenticates the application (like in OpenID), once the user signs in to authorize
your application, you still need to perform all of the token exchange steps required
to obtain a valid OAuth access token.

• To integrate OAuth in the hybrid auth approach, you have to set up an application
with the provider in order to obtain the consumer key and secret needed for the
OAuth process. This means that you will also need to implement a mechanism to
manage the keys for the application.

When we put all of these factors together, we can see how having an OpenID OAuth
hybrid approach can be especially beneficial. Even though integrating the OAuth li-
braries makes for a more heavyweight implementation, having the userâ€™s authori-
zation for your application or website to fetch, update, and delete information on her
behalf can be very powerful. The only limits to our hybrid auth approach depend on
the number of social APIs that the provider makes available for accessing and modifying
user data.

The OpenID OAuth Hybrid Auth Flow
Letâ€™s take a look at the flow that makes up the OpenID OAuth hybrid extension.
By breaking down the different exchanges that take place in this overall flow, we will
be able to see how the individual OpenID and OAuth processes combine to generate
this model.

As with the separate OpenID and OAuth flows, there are three participants in the
OpenID OAuth hybrid flow that we will be working with and describing throughout
this chapter:

The user
This is the end user who is attempting to sign in to a site or service using one of
the OpenID providers and allow the application to access and/or set his personal
information on his behalf.

* Within the OAuth process, when an application stores a valid access token for a user once he authorizes the
application, and then at a later date makes calls to modify his data without involving him again (such as
through a cron job), this is referred to as a headless request.

The OpenID OAuth Hybrid Auth Flow | 501

The relaying party
This is the hybrid auth consumer site that implements the OpenID login to the
provider in order to allow a user to authenticate his account, and the OAuth au-
thorization to access and set additional information for that user.

The hybrid auth provider
This is the site or service that contains the membership database that the relaying
party will authenticate against to log in and authorize the user to access and set his
personal information.

Now that weâ€™re reacquainted with the players in this exchange, letâ€™s start our
hybrid auth overview by looking at the first two steps of the process, which mirror our
initial OpenID steps from Chapter 11.

Step 1â€“2: Perform Discovery (OpenID Steps 1â€“2)
The first steps of the hybrid auth process will seem very familiar to you from the
OpenID authentication flow overview, so weâ€™ll just briefly touch on them:

1. Request login with an OpenID identifier.

2. Perform discovery on that identifier to establish an endpoint URL from which the
auth process may be displayed to the user.

At step 1, the user will provide the relaying party with the OpenID identifier of the
provider that he wants to use to authenticate with (i.e., which site he wants to sign in
using). Through this exchange, the relaying party will normalize and perform discovery
on the identifier URL before authentication begins.

The relaying party will make a request to the provider, sending it the normalized URL
from the previous step. The provider will determine whether the OpenID identifier is
valid and, if so, itâ€™ll return the endpoint URL to which the user should be redirected
in order to sign in and accept the permissions that the application is requesting.

Step 3: Request User Authentication Permissions
Once the relaying party has performed discovery on a given OpenID provider identifier
(and assuming everything went according to plan), it should now have the endpoint
URI to which to forward users so they can accept the application permissions to access
their data.

Using this endpoint, we will now go through the process of pushing the user through
the auth screens to either allow or deny the relaying party from accessing his private
data, as shown in Figure 12-1.

The process is fairly simple: the user is presented with a page on the provider site that
displays the permissions that the relaying party would like to access, such as the userâ

502 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

€™s profile, friends, activities, or Attribute Exchange values from the OpenID
process.

The user will either grant or deny that request and then be forwarded back to the
relaying party to either process his user information or not (depending on his choice).

The initial request that the relaying party makes to the provider site includes a number
of OpenID parameters (as we discussed in Chapter 11) as well as two or three OAuth-
specific hybrid parameters tacked on the end to signal that it wants to trigger a hybrid
auth request. Table 12-1 lists these parameters.

Table 12-1. Hybrid request parameters

Request parameter Description

openid.ns The OpenID namespace URI to be used. For instance, this should be http://specs.openid.net/

auth/2.0 for OpenID 2.0 transactions.

openid.mode The transaction mode to be used during the auth process. The possible values are

checkid_immediate or checkid_setup.

If the user should be able to interact with the OpenID provider, then checkid_setup

should be used.

openid.claimed_id

(optional)

The claimed OpenID identifier, provided by the user.

openid.identity (optional) The local OpenID provider identifier.

If http://specs.openid.net/auth/2.0/identifier_select is used as the identity, then the provider

should choose the correct identifier for the user.

openid.assoc_handle

(optional)

A handle for an association between the relaying party (implementing site) and the OpenID

provider that should be used to sign the request.

openid.return_to (op-

tional)

The location where the user should be returned, with the OpenID response, after authen-

tication has taken place.

Many web-based providers may require this field. If this field is not included, it indicates

that the relaying party does not want to return the user after authentication.

Figure 12-1. Hybrid auth, step 3: Provider requests user authentication

The OpenID OAuth Hybrid Auth Flow | 503

http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0/identifier_select

Request parameter Description

openid.realm (optional) The URL pattern for the domain that the user should trust. For instance, *.mysite.com.

If openid.return_to is omitted from the request, openid.realm is a required pa-

rameter.

openid.ns.oauth The OpenID OAuth extension namespace. This value should be set to http://specs.openid

.net/extensions/oauth/1.0.

openid.oauth.consumer The consumer key provided when you create a new OAuth application with the provider.

openid.oauth.scope

(optional)

Scopes (the data that the application would like to access from the user) that may be required

for the OAuth process.

Some providers may bind scopes directly to the consumer key once the application is created,

in which case this parameter is not required.

Many of the parameters required for the request are familiar from the OpenID authen-
tication flow. For the hybrid auth flow, the three additional request parameters are:

• openid.ns.oauth

• openid.oauth.consumer

• openid.oauth.scope

The user will be forwarded to the provider site to accept the permissions being reques-
ted from him, which brings us to the next step in the process.

Step 4: Provide OpenID Approved/Failed State and Hybrid Extension
Parameters
The next step in the hybrid auth process is for the provider to deliver an approved or
failed state back to the relaying party so that the relaying party knows whether it can
exchange the preapproved OAuth request token for an access token to complete the
hybrid process.

The components of this step are identical to those of the OpenID process. The user has
gone through the authentication process in step 3 and will now be forwarded to the
callback with the response state from the provider, as displayed in Figure 12-2.

The OpenID provider will first process the user authentication and generate a response
to the provider site. This response will either include an approved state or one of several
possible failed states, depending on the outcome of the user authentication.

If the provider returns an approved state, the response object (generally sent via query
string parameters) will include all parameters required to complete the OpenID
process as well as any OpenID extension responses.

Besides the OpenID response, the parameter passed to the return_to location that we
really care about for the OAuth piece of the puzzle is openid.oauth.request_token. This

504 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

http://specs.openid.net/extensions/oauth/1.0
http://specs.openid.net/extensions/oauth/1.0

is the preapproved OAuth request token from the provider that we will need to ex-
change for an access token next, in step 5.

Step 5: Exchange the Preapproved Request Token for an Access Token
Assuming that the OpenID providerâ€™s response was an approved state containing
the preapproved request token, we can now go through the process of exchanging that
request token for an access token. This will allow us to make requests to the provider
for privileged user resources.

The exchange between the relaying party and provider in this step looks something like
Figure 12-3.

Figure 12-2. Hybrid auth, step 4: Provider returns OpenID approved/failed response

Figure 12-3. Hybrid auth, step 5: Relaying party exchanges the preapproved request token for an
access token from the provider

The OpenID OAuth Hybrid Auth Flow | 505

The relaying party will issue a request to the provider to exchange the preapproved
request token for an access token. With the exception of the differences in creating a
request token object, this step is identical to the request token/access token exchange
in the standard OAuth flow.

The provider will check to ensure that the request and token are valid and then return
an access token string to the relaying party. The relaying party can then turn that string
into an access token object and use it to make signed requests for the userâ€™s privi-
leged data.

Step 6: Make Signed Requests for Privileged User Data
The last step of the hybrid auth process involves the relaying party taking the access
token object generated from the token exchange in step 5 and making signed requests
to the provider in order to obtain privileged resources from a user, such as his profile
information, friend data, or activity stream updates.

The process looks similar to Figure 12-4.

The relaying party will generate a signed HTTP request to a URI endpoint on the pro-
vider site that is set up to return the resources that we are looking for. This request will
include the access token parameters from the object we generate.

Different providers accept the OAuth access token parameters in dif-
ferent ways. Some may require that data be sent via the HTTP headers,
while others may accept the data in the POST body. You should check
with the provider you are working with to ensure that you are passing
the token information through in the way it expects and requires.

Figure 12-4. Hybrid auth, step 6: Relaying party makes privileged user data requests through the
provider

506 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

The provider will receive that request, validate the access token, and issue the requested
information as a response object back to the relaying party, provided that the OAuth
scopes associated with the request are sufficient for accessing the requested data.

Implementation Example: OpenID, OAuth, and Yahoo!
We saw in Chapter 11 how OpenID works in a simple end-to-end example, so in this
chapter letâ€™s take that example further and see how OpenID works in conjunction
with OAuth to perform a standard task: using a provider such as Yahoo! to capture an
end userâ€™s full profile.

Weâ€™ve already seen how we can capture a userâ€™s simple profile data using
standard OpenID with the Simple Registration and Attribute Exchange extensions, but
tacking on OAuth to the process will allow us to capture much more data than we can
through OpenID alone. In this implementation example, weâ€™ll apply these two
technologies as follows:

• OpenID authentication will allow our end users to sign in through different
providers.

• OAuth 1.0A authorization will enable us to capture or set any private user infor-
mation that we may need in our application.

For this example, weâ€™ll cut out two of the OpenID extensions (Simple Registration
and PAPE) that we used in our straight OpenID example in Chapter 11.

Application Setup: Getting Your OAuth Keys for the Hybrid Auth Process
Since we are now using a hybrid auth approach, we need to create an OAuth application
with the provider of our choice (in this case, Yahoo!) to obtain the required OAuth
consumer and secret keys.

For this example, we will follow these steps to set up a new OAuth application through
the Yahoo! Developer Network (YDN):

1. Go to https://developer.apps.yahoo.com/projects to see your current YDN projects.

2. Click the New Project button at the top of your project listing.

3. In the screen that comes up, select the option for a standard OAuth application,
not a YAP (Yahoo! Application Platform) application.

4. You will be presented with a blank application form asking you to fill in details
about your application. Enter the data, ensuring that the application URL and
domain match the location where the hybrid auth code will be running from.

5. Under Access Scopes, select â€œThis app requires access to private user dataâ€ to
indicate that we want to capture privileged user information. There are several

Implementation Example: OpenID, OAuth, and Yahoo! | 507

https://developer.apps.yahoo.com/projects

personal information scopes that you can select, but for this example we require
only read access to Profiles within the Social Directory section.

6. Click to agree to the terms of service and then click the button to get your API key.
Unless you previously verified the domain, you might now have to go through a
verification step. Simply follow the instructions on screen.

7. Once verification is complete, you will be presented with the consumer key and
consumer secret that weâ€™ll use during the hybrid auth process.

Now that you have the keys for the hybrid auth process, weâ€™ll look at a couple of
practical implementation examples.

Implementing Hybrid Auth Using PHP

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_12/hybrid-php.

Since we now have everything we need for hybrid auth, we can begin to explore a full
end-to-end example of how OpenID 2.0 and OAuth 1.0A fit together into this process.

We will build upon the base example that was introduced in Chapter 11, taking the
user through the process of entering an OpenID provider identifier URL and granting
the application permission to capture her personal profile information, and then finally
capturing her data and displaying it on screen.

Our first task in this process is to look at the discovery form.

The discovery form

Letâ€™s start out by exploring the HTML that will compose the OpenID form in which
the user inputs the OpenID URL that she wants to sign in to. As mentioned in our
Chapter 11 example, in a production-level product, you should never require a user to
input the OpenID discovery URL for the service that she is trying to sign in to. One
proper method is to display the logo of the company (or companies) for which you
offer a sign-in option and then initiate the OpenID process for the userâ€™s selected
provider without requiring her to enter any further information.

For the purposes of testing different services, though, we will build out a form that does
require the user to know her preferred providerâ€™s discovery URL. This form is stored
as index.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

508 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_12/hybrid-php
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_12/hybrid-php

<title>OpenID / OAuth Hybrid Sample Application</title>
</head>
<body>
<style type="text/css">
form{ font:12px arial,helvetica,sans-serif; }
#openid_url{ background:#FFFFFF url(http://wiki.openid.net/f/openid-16x16.gif)
 no-repeat scroll 5px 50%;
 padding-left:25px; }
</style>

<form action="auth.php" method="GET">
 <input type="hidden" value="login" name="actionType">
 <h2>Sign in using OpenID / OAuth</h2>
 <input type="text" style="font-size: 12px;" value="" size="40"
 id="openid_url" name="openid_url">
 <input type="submit" value="Sign in">

 <small>(e.g. http://username.myopenid.com)</small>

</form>

</body></html>

Much like our standard OpenID example from Chapter 11, in our hybrid approach we
build out a form with a single input box to allow the end user (or developer) to enter
the provider discovery URL that she would like to use. Once she enters that URL, the
end user simply submits the form to begin the authentication process. There isnâ€™t
really much more to the form than that, since we removed the options to utilize the
OpenID PAPE policies.

The common includes, functions, and globals

Once the form is submitted, the user is pushed to auth.php to begin the OpenID au-
thentication process. Before diving into auth.php, however, weâ€™re going to look at
includes.php, which is used throughout the OpenID process to provide general varia-
bles, definitions, and commonly used functions for the authentication flow:

<?php
require_once "Auth/OpenID/Consumer.php"; //openid consumer code
require_once "Auth/OpenID/FileStore.php"; //file storage
require_once "Auth/OpenID/AX.php"; //attribute exchange
require_once "OAuth.php"; //oauth library

define('APP_ROOT', 'http://www.mysite.com/auth/');
define('FILE_COMPLETE', 'complete.php');
define('STORAGE_PATH', 'php_consumer');

define('CONSUMER_KEY', 'YOUR KEY');
define('CONSUMER_SECRET', 'YOUR KEY');
define('APP_ID', 'YOUR APPLICATION ID');

$debug = true;
$base_url = 'http://www.mysite.com/auth/complete.php';
$request_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_request_token';
$authorize_endpoint = 'https://api.login.yahoo.com/oauth/v2/request_auth';

Implementation Example: OpenID, OAuth, and Yahoo! | 509

$oauth_access_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_token';

/***
 * Function: Run CURL
 * Description: Executes a CURL request
 * Parameters: url (string) - URL to make request to
 * method (string) - HTTP transfer method
 * headers - HTTP transfer headers
 * postvals - post values
 **/
function run_curl($url, $method = 'GET', $headers = null, $postvals = null){
 $ch = curl_init($url);

 if ($method == 'GET'){
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 } else {
 $options = array(
 CURLOPT_HEADER => true,
 CURLINFO_HEADER_OUT => true,
 CURLOPT_VERBOSE => true,
 CURLOPT_HTTPHEADER => $headers,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_CUSTOMREQUEST => $method,
 CURLOPT_TIMEOUT => 3
);
 curl_setopt_array($ch, $options);
 }

 $response = curl_exec($ch);
 curl_close($ch);

 return $response;
}

/**
 * Function: Get Consumer
 * Description: Creates consumer file storage and OpenID consumer
 **/
function get_consumer() {
 //ensure file storage path can be created
 if (!file_exists(STORAGE_PATH) && !mkdir(STORAGE_PATH)){
 print "Could not create FileStore directory '". STORAGE_PATH . "' .
 Please check permissions.";
 exit(0);
 }

 //create consumer file store
 $store = new Auth_OpenID_FileStore(STORAGE_PATH);

 //create and return consumer
 $consumer =& new Auth_OpenID_Consumer($store);
 return $consumer;

510 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

}
?>

This single file contains a lot of functionality for us to examine, so letâ€™s start at the
top with all of our includes and definitions.

We start the file with the OpenID includes that we will need for the process, including
our OpenID consumer, file storage, and Attribute Exchange. In addition to these, we
have an include for OAuth.php, which, if you remember from Chapter 9, is the OAuth
file we need to create the authorization requests.

Our next block contains all of the standard definitions weâ€™ll use in the OpenID
OAuth hybrid flow. Weâ€™ve seen the first three before in our OpenID example: our
application root, the file to load after the end user has authenticated the application,
and the file storage location for the OpenID consumer object. New to the file are our
OAuth definitionsâ€”that is, our consumer key, consumer secret, and application ID.
Once the OpenID authentication process has completed, we will exchange the preap-
proved request token that we obtain for an OAuth access token that allows us to capture
private user data.

Next, we have our block of common variables for the program. These include our debug
mode flag (for displaying some general signature and request information at the end of
the application) and the base URL for our complete.php file (where we will exchange
the verified request token from OpenID for the OAuth access token). We then have
the endpoints that we will use for the OAuth process: the fetch request token,
authorization, and fetch access token endpoints.

Last, we have two functions that we will use throughout the program flow,
run_curl(...) and get_consumer(...). The run_curl() function will allow us to make
GET, PUT, and POST HTTP requests to the services that we need to leverage. The
get_consumer(...) function allows us to capture a new OpenID consumer object and
build a file storage mechanism.

The authentication request

Now that we have an overview of the include file that we will be using, letâ€™s take a
look at the auth.php file to which the initial form will forward the user in order to begin
the OpenID authentication process:

<?php
error_reporting(E_ERROR);
session_start();

require_once "includes.php"; //configurations and common functions

/**
 * Function: Make Request
 * Description: Builds out the OpenID request using the defined
 * request extensions
 **/

Implementation Example: OpenID, OAuth, and Yahoo! | 511

function make_request(){
 //get openid identifier URL
 if (empty($_GET['openid_url'])) {
 $error = "Expected an OpenID URL.";
 print $error;
 exit(0);
 }

 $openid = $_GET['openid_url'];
 $consumer = get_consumer();

 //begin openid authentication
 $auth_request = $consumer->begin($openid);

 //no authentication available
 if (!$auth_request) {
 print "Authentication error; not a valid OpenID.";
 }

 //add openid extensions to the request
 $auth_request->addExtension(attach_ax()); //attribute exchange

 //generate redirect url
 $return_url = sprintf("http://%s%s/%s", $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']),
 FILE_COMPLETE);
 $trust_root = sprintf("http://%s%s/", $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']));
 $redirect_url = $auth_request->redirectURL($trust_root, $return_url);

 //attach oauth extension parameters to redirect url
 $hybrid_fields = array(
 'openid.ns.oauth' => 'http://specs.openid.net/extensions/oauth/1.0',
 'openid.oauth.consumer' => CONSUMER_KEY
);
 $redirect_url .= '&'.http_build_query($hybrid_fields);

 //if no redirect available display error message, else redirect
 if (Auth_OpenID::isFailure($redirect_url)) {
 print "Could not redirect to server: " . $redirect_url->message;
 } else {
 header("Location: " . $redirect_url);
 }
}

/**
 * Function: Attach Attribute Exchange
 * Description: Creates attribute exchange OpenID extension request
 * to allow capturing of extended profile attributes
 **/
function attach_ax(){
 //build attribute request list
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(
 'http://axschema.org/contact/email', 1, 1, 'email');
 $attribute[] = Auth_OpenID_AX_AttrInfo::make(

512 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

 'http://axschema.org/media/image/default', 1, 1, 'picture');

 //create attribute exchange request
 $ax = new Auth_OpenID_AX_FetchRequest;

 //add attributes to ax request
 foreach($attribute as $attr){
 $ax->add($attr);
 }

 //return ax request
 return $ax;
}

//initiate the OpenID request
make_request();
?>

If youâ€™ve completed the straight OpenID example from Chapter 11, this file will
look familiar to you, with a few exceptions. Letâ€™s start with the make_request()
function.

We start the make_request() function by running several data checks. We check
whether the user specified an OpenID URL, and if so, capture that URL and construct
a new OpenID consumer object.

Next, we begin the authentication process with the provided OpenID URL. If it isnâ
€™t valid, we display an appropriate message to the end user.

We then jump into OpenID extensions. Instead of using Simple Registration, PAPE,
and Attribute Exchange as we did in the Chapter 11 example, we set up a request only
for the Attribute Exchange extension in our code here.

The Attribute Exchange function, attach_ax(), simply specifies that we want to capture
the end userâ€™s email address and photo, creates a new OpenID Attribute Exchange
fetch request, adds the attributes to the request object, and then returns the request
object.

Even when youâ€™re using hybrid auth, which gives you the power to
access a wider array of private user data, OpenID extensions can still
come in handy. For example, in many instances accessing a userâ€™s
email address can be tricky (or can require an additional HTTP request)
through standard OAuth. If you attach that request in the OpenID au-
thentication process through the Attribute Exchange extension, how-
ever, it can save you another request down the road.

Now we need to build the redirect URL that we will call following the authentication
process. We create our return URL (the complete.php file) and our trust root (to ensure
that we are not implementing any redirect attacks) and then construct the redirect URL
by calling the redirectURL(...) method against our OpenID object.

Implementation Example: OpenID, OAuth, and Yahoo! | 513

Nextâ€”and this is primarily where this file differs from the straight OpenID
exampleâ€”we set up the OAuth extension parameters that will be attached to the
OpenID authentication process. This step is how we indicate that we will need to be
issued a preapproved request token after the authentication request so that we can
exchange it for an OAuth access token. We attach the OAuth extension spec URI and
our OAuth request token that we obtained from our provider when we set up our
OAuth application (as described in Chapter 11). These parameters are then appended
to the OpenID redirect URI.

The last part of the file is the redirect. Instead of our straight OpenID exampleâ€”where
we were checking whether to redirect or print the authentication formâ€”we now have
a combined OpenID OAuth hybrid URI, so weâ€™re going to redirect the user. We
check to confirm that a redirect is possible and then initiate it.

At the end of the script, we initiate the request to the make_request() function. Any
preprocessing or non-OpenID-related tasks should be inserted prior to this call.

The user is forwarded to the hybrid OpenID OAuth screen to accept the permissions
for the application that will be requesting her information (just like we saw in Chap-
ter 11)â€”and once she accepts, she is forwarded on to our complete.php file (the call-
back).

The authentication callback

Now, letâ€™s take a look at the complete.php file to see how we capture the OpenID
return values and transform them into an OAuth access token to make requests for
private end-user data. This file contains a number of final steps that we must take in
order to capture user data beyond what is provided from the OpenID process.

Our first task in the callback file is to run the final steps of
the OpenID process. We do this by capturing and filtering the objects that were re-
turned, and then running a complete check against an OpenID consumer:

<?php
session_start();
require_once("includes.php");

$filters = array(
 'openid_ax_value_email' => FILTER_SANITIZE_ENCODED,
 'openid_identity' => FILTER_SANITIZE_ENCODED,
 'openid_oauth_request_token' => FILTER_SANITIZE_ENCODED
);
$attributes = filter_var_array($_REQUEST, $filters);

$consumer = get_consumer();

//complete openid process using current app root
$return_url = sprintf("http://%s%s/complete.php",
 $_SERVER['SERVER_NAME'],
 dirname($_SERVER['PHP_SELF']));
$response = $consumer->complete($return_url);

Completing the OpenID process.

514 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

We first set up the objects that we want to run filters against and specify which filters
to run; then, we call filter_var_array(...) to return a filtered set of the GET and POST
parameters.

When youâ€™re working with authentication and authorization sys-
temsâ€”or anything with user input parameters, for that matterâ€”itâ
€™s a good idea to filter the unknown values prior to using them.

Following this, we create a new OpenID consumer object by calling get_consumer().
Next, we construct the complete.php absolute path to run a comparison against, and
then initiate a request to complete(...) against the OpenID consumer to compare the
complete URL. We then check the response state to determine whether we have a valid
object that we can use to complete the hybrid auth process.

The value of $response-
>status is the response state of the authentication process, providing us with feedback
on whether authentication succeeded or not. We can use this status to control what to
display to the end user, handle fail states, and trigger OpenID extension-processing
and token-swapping functions:

//response state - authentication cancelled
if ($response->status == Auth_OpenID_CANCEL) {
 $response_state = 'OpenID authentication was cancelled';
//response state - authentication failed
} else if ($response->status == Auth_OpenID_FAILURE) {
 $response_state = "OpenID authentication failed: " . $response->message;
//response state - authentication succeeded
} else if ($response->status == Auth_OpenID_SUCCESS) {
 //get the identity url and capture success message
 $openid = htmlentities($response->getDisplayIdentifier());
 $response_state = sprintf('OpenID authentication succeeded:
 %s', $openid, $openid);

 if ($response->endpoint->canonicalID){
 $response_state .= '
XRI CanonicalID Included: '
 . htmlentities($response->endpoint->canonicalID);
 }

 //get attribute exchange return values
 $response_ax = new Auth_OpenID_AX_FetchResponse();
 $ax_return = $response_ax->fromSuccessResponse($response);
 foreach ($ax_return->data as $item => $value){
 $response_state .= "
AX returned $item with the value:
 {$value[0]}";
 }

There are three response states that we will be integrating into our complete file:

Checking the OpenID response and processing the Attribute Exchange data.

Implementation Example: OpenID, OAuth, and Yahoo! | 515

Auth_OpenID_CANCEL

The authentication process has been cancelled. In this case, we should give the user
a way to use the application without having to log in, such as by delivering public-
only profile content. For this example, we simply display a failure message to the
user.

Auth_OpenID_FAILURE

Something went wrong during the authentication process. In this case, ideally youâ
€™d give the user a way to attempt reauthentication and provide some basic, user-
readable error information. For this example, we simply display an error message
to the user.

Auth_OpenID_SUCCESS

The authentication process succeeded. At this point, we can process the OpenID
extensions and begin to convert the preauthorized request token to an OAuth ac-
cess token.

For the purposes of this example, weâ€™ll assume an application SUCCESS state and
proceed accordingly.

In the object that is returned from the OpenID authentication process, we first extract
the display identifier for the end user by making a request to getDisplayIdentifier()
against the response object. This is the unique identifier for the end user.

We then check if a canonical ID was returned in the object. As mentioned in the
Chapter 11 OpenID example, if the CanonicalID field is available from the XRD (Ex-
tensible Resource Descriptor), we should use it as the key lookup field when storing
information about the end user.

Next, we turn our attention to the Attribute Exchange extension response object. We
obtain the Attribute Exchange information from the OpenID response object by cre-
ating a new fetch response object, instantiating a new instance of Auth_OpenID_AX_Fet
chResponse(). Then, we call the fromSuccessResponse(...) method against that fetch
response object, passing in the OpenID response. This will give us the values that were
returned from the Attribute Exchange request. In our case, these values should hold
the userâ€™s email address and photo, assuming that the providerâ€™s Attribute Ex-
change process allows these response objects. We then iterate over the data that was
returned to capture the values required.

Now that we have our Attribute Exchange data, we can focus on exchanging the pre-
approved request token returned from the OpenID process for an OAuth access token
that will enable us to request additional private end user information.

Weâ€™ve already ex-
plored the OAuth process of exchanging a verified request token for an access token
in Chapter 9. The hybrid process is not much different, since we should have been
provided with a preapproved request token in the object that was returned from the
OpenID authentication process.

Turning the OpenID preapproved request token into an OAuth access token.

516 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

We simply need to follow the same steps as we did in Chapter 9â€™s OAuth process:

 //if pre-approved request token available, start OAuth process at step 4
 //reference: http://developer.yahoo.com/oauth/guide/request-token.html
 if(isset($attributes['openid_oauth_request_token'])){
 $consumer = new OAuthConsumer(CONSUMER_KEY, CONSUMER_SECRET, APP_ID);
 $sig_method = new OAuthSignatureMethod_HMAC_SHA1();

 //manually generate request token object
 $req_token = new stdclass();
 $req_token->key = $attributes['openid_oauth_request_token'];
 $req_token->secret = '';

 //generate access token object
 $acc_req = OAuthRequest::from_consumer_and_token($consumer, $req_token,
 "GET", $oauth_access_token_endpoint, array());
 $acc_req->sign_request($sig_method, $consumer, $req_token);
 $access_ret = run_curl($acc_req->to_url(), 'GET');

 //if access token fetch succeeded, we should have oauth_token and
 //oauth_token_secret. Parse and generate access consumer from values
 $access_token = array();
 parse_str($access_ret, $access_token);
 $access_consumer = new OAuthConsumer($access_token['oauth_token'],
 $access_token['oauth_token_secret'], NULL);

The first thing that we do is to check that a request token was indeed returned from
the authentication process. If you remember, at the top of the complete.php file we ran
the following line of code to filter the GET and POST parameters passed to this page:

$attributes = filter_var_array($_REQUEST, $filters);

Now weâ€™ll start extracting some of the parameters from that object. The preap-
proved request token that we will exchange for an OAuth access token is available
under the value openid_oauth_request_token, so we check to ensure that this value is
present before we attempt the OAuth process.

If the value is available, we construct a new OAuth consumer object using the OAuth
consumer key, secret, and application ID we obtained when we set up our OAuth
application (as described in Chapter 9). We also set up the signature method object
(HMAC-SHA1) that we will be using in our OAuth requests.

Now we have a request token value but not a request token object like what would be
available in a standard OAuth process, so we need to create one ourselves. We create
a new standard class, set a key value to the request token key from our attributes object,
and then set a blank value for the secret (since we donâ€™t have one).

With our request token now in hand, we can begin the exchange process to obtain an
access token that will allow us to access and set private end-user information on her
behalf. We create a new OAuth request object using the from_consumer_and_

token(...) method from the OAuthRequest class, passing in a few values, including:

• Our OAuth consumer object that we created ($consumer).

Implementation Example: OpenID, OAuth, and Yahoo! | 517

• The request token object that we manually constructed ($req_token).

• The HTTP request method required for the request (GET).

• The provider URI to which we make a request to obtain the access token
($oauth_access_token_endpoint).

• Optional parameters to attach to the request. We donâ€™t have any, so this will
be a blank array.

We then sign the request using the signature method object that we set up, and make
a cURL GET request to fetch the access token object from the provider.

Assuming that all went according to plan, we should have everything that we need to
construct the final access token to enable us to make private data requests.

We create an empty array for the access token and then populate it with the return
values from our request. Once weâ€™ve done that, we create a new OAuth consumer
object, passing in a few values:

• The access token ($access_token['oauth_token'])

• The access token secret ($access_token['oauth_token_secret'])

• The callback URL (we donâ€™t need one here, so we set this value to NULL)

With that, we can begin constructing requests to access private end-user data far be-
yond what we would get from a straight OpenID authentication process.

Letâ€™s start putting together a request to ac-
cess profile information for a Yahoo! user. We have our access token consumer object
that enables us to make those private requests, so letâ€™s see how to actually get that
data:

 //build profile GET request URL
 $guid = $access_token['xoauth_yahoo_guid'];
 $url = sprintf("http://%s/v1/user/%s/profile",
 'social.yahooapis.com',
 $guid
);

 //build and sign request
 $request = OAuthRequest::from_consumer_and_token($consumer,
 $access_consumer,
 'GET',
 $url,
 array());
 $request->sign_request(new OAuthSignatureMethod_HMAC_SHA1(),
 $consumer,
 $access_consumer
);

 //make GET request
 $resp = run_curl($request->to_url(), 'GET');

 //if debug mode, dump signatures & headers from OpenID / OAuth process

Making requests with the OAuth access token.

518 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

 if ($debug){
 $debug_out = array('OpenID Response' => $response_state,
 'Access token' => $access_token,
 'GET URL' => $url,
 'GET response' => htmlentities($resp));

 print_r($debug_out);
 }
 }
}
?>

Some providers that support OAuth will attach additional identification parameters
with their access tokens to denote a particular user on their network. You can use these
parameters to make private data requests for that specific userâ€™s data. In Yahooâ
€™s case, the xoauth_yahoo_guid parameter (globally unique identifier) provides the
alphanumeric identifier for the user on Yahoo! networks.

Unsure whether the providers you are working with attach additional
values in their access token? Simply dump the object and look for pa-
rameters that are not standard for an access token, such as any that do
not start with oauth_.

This xoauth_yahoo_guid is what weâ€™ll start with to construct our data request to the
Yahoo! social APIs. To utilize this parameter, we build out the URI to which we will
make the request to obtain the userâ€™s profile. This URI includes the userâ€™s
GUID, as follows:

http://social.yahooapis.com/v1/user/GUID/profile

Next, we need to create a new OAuth request object and sign it. We make a request to
from_consumer_and_token(...) in the OAuthRequest class, passing in our basic consumer
object, the access consumer, the HTTP request type, the URL to make the request to,
and a blank array to signify that we arenâ€™t passing in any additional parameters.
We then sign that request using HMAC-SHA1 by calling the sign_request(...)
method.

Last, we simply need to make a cURL request to the social URI endpoint we specified
in order to obtain our profile object. The response from the cURL request (the $resp
variable) should be the profile object of the user, provided that there wasnâ€™t an error
during the request.

If we set a debug flag in our test program, we go ahead and dump out a series of objects
to screen.

Implementation Example: OpenID, OAuth, and Yahoo! | 519

http://social.yahooapis.com/v1/user/GUID/profile

Signature and object verification is a key element of OAuth debugging,
so itâ€™s good to get used to seeing these signature and response ob-
jects.

Finally, if the provider you are working with requires that you create an XRDS file to
allow verification of your domain, you will also need to go through the step of creating
that file, as described in the section “Bypassing Domain Discovery Errors in
OpenID” on page 453 in Chapter 11.

Implementing Hybrid Auth Using Python

The full code for this sample is available at https://github.com/jcleblanc/
programming-social-applications/tree/master/chapter_12/hybrid-py
thon.

Now that weâ€™ve looked at a hybrid OpenID OAuth implementation in PHP, letâ
€™s explore a similar implementation using Python.

In this example, weâ€™ll take the OpenID example that we explored in Chapter 11
and modify it by introducing a request to fetch a preapproved request token when
having the user authorize the application. We will then exchange this preapproved
request token for an OAuth access token, which will allow us to make requests on the
userâ€™s behalf.

Weâ€™ll start this process by identifying the library dependencies we need to build
out this project. Then weâ€™ll proceed by jumping into the YAML file that we will
use to load the example on Google App Engine, which will run our program.

If you are running this Yahoo! example in App Engine on localhost, you
should be aware that if you create an application on Yahoo! (and nu-
merous other services) to obtain the necessary OAuth keys, you may be
required to verify your domain. This verification will fail on localhost
and may prevent you from completing your application. You should
deploy applications running within App Engine prior to executing so
that your production environment can be verified.

Library dependencies

Before we begin this project, we need to define the libraries that weâ€™ll use to com-
plete the OAuth OpenID hybrid auth process.

This example uses the Python OpenID 2.0 library created by Janrain. To install
this library, please see the section “Getting the required OpenID library” on page 482
in the Python example in Chapter 11.

OpenID.

520 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_12/hybrid-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_12/hybrid-python
https://github.com/jcleblanc/programming-social-applications/tree/master/chapter_12/hybrid-python

For this example, we use the Python OAuth 1.0A library created by Leah Culver.
You can obtain this library by following these instructions:

1. The OAuth code libraries are all available at http://oauth.net/code/. Go to that lo-
cation and scroll down to the Python section.

2. Click the Leah Culver â€œlibrary in Python 2.3â€ link to go to the file hosting
locationâ€”or alternatively, go directly to http://oauth.googlecode.com/svn/code/py
thon/oauth/.

3. Download the OAuth.py file and place it in the project directory. In this example,
thatâ€™s the oauth directory.

Weâ€™ll use this OAuth file in this example to exchange the preapproved request
token from the OpenID process for an access token, which weâ€™ll then use to
make private data requests on the userâ€™s behalf.

The markup file

The markup file that App Engine will use to run this example is fairly simple, comprising
only three files. For the sake of this example, we store the YAML file as app.yaml:

application: openid-oauth-hybrid
version: 1
runtime: python
api_version: 1

handlers:
- url: /index.py
 script: index.py
- url: /auth.py
 script: auth.py
- url: /complete.py
 script: complete.py

Here are the three files that make up the application:

index.py
The form loader that enables the user to input the OpenID provider URI that he
wants to use to authorize the application

auth.py
Creates the initial OpenID request with the required OAuth hybrid extension fields
and then redirects the user to authorize the application

complete.py
Completes the OpenID process, collects the information from all extensions, and
then exchanges the preapproved request token for an OAuth access token to make
private data requests on the userâ€™s behalf

Now that we understand the core of the program, letâ€™s start with the request form,
index.py, which allows the user to select the provider that he would like to use.

OAuth.

Implementation Example: OpenID, OAuth, and Yahoo! | 521

http://oauth.net/code/
http://oauth.googlecode.com/svn/code/python/oauth/
http://oauth.googlecode.com/svn/code/python/oauth/

The request form

Using index.py, we will build out the form in which the user will input the OpenID
provider service he would like to connect through and authorize to get and set infor-
mation on his behalf via OAuth requests. This form is simply HTML content that has
the required sections. Unlike the OpenID example in Chapter 11, we have removed
the OpenID PAPE extension options, since theyâ€™re unnecessary in this example.
Letâ€™s see what this form looks like:

print '''\
Content-type: text/html; charset=UTF-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>OpenID Sample Application</title>
</head>
<body>
<style>
form{ font:12px arial,helvetica,sans-serif; }
#openid_url { background:#FFFFFF url(http://wiki.openid.net/f/openid-16x16.gif)
 no-repeat scroll 5px 50%; padding-left:25px; }
</style>

<form action="auth.py" method="GET">
 <input type="hidden" value="login" name="actionType">
 <h2>Sign in using OpenID</h2>
 <input type="text" style="font-size: 12px;" value="" size="40"
 id="openid_url" name="openid_url">
 <input type="submit" value="Sign in">

 <small>(e.g. http://username.myopenid.com)</small>
</form>

</body></html>
'''

The form is simply an input box allowing the user to enter his OpenID provider URL.
When he clicks the submit button, the user will be forwarded to auth.py to begin
OpenID discovery.

Now letâ€™s start looking at the foundation of the OpenID process, beginning with
the file that holds the common variables that will be used for the OpenID authentication
and OAuth authorization processes that we will send the user through.

Common variables

The common variables file, common.py, will simply store the variables and URLs that
are needed throughout our hybrid process:

import os

#set oauth consumer key and consumer secret keys

522 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

consumer_key = 'dj0yJmk9TWI3cno3UWJnM9Y29uc3VtZXJzZWNyZXQmeD1kYg--'
consumer_secret = '28041f6af657807faa9b9727e0a0669e0d'

#oauth access token endpoint (Yahoo!)
oauth_access_token_endpoint = 'https://api.login.yahoo.com/oauth/v2/get_token'

#trust root and return to urls for openid process
trust_root = 'http://%s/' % (os.environ['HTTP_HOST'])
return_to = 'http://%s/complete.py' % (os.environ['HTTP_HOST'])

These include:

consumer_key

The OAuth consumer key issued when you created a new OAuth application with
the provider

consumer_secret

The OAuth consumer secret issued when you created a new OAuth application
with the provider

oauth_access_token_endpoint

The URI to exchange a preapproved request token (from the OpenID authentica-
tion process) for an access token (for OAuth private data requests)

trust_root

The trust root URI (current application folder) needed for the OpenID process

return_to

The callback URI (the callback.py file) where the hybrid auth process should for-
ward the user after authorization

Now letâ€™s check out the auth.py file that the user will be forwarded to once he
submits the request form.

The authentication request

The authentication request file, auth.py, enables us to do the following:

• Perform discovery on the OpenID provider that the user specified to determine
whether it is a valid provider.

• Set up the OpenID request itself and attach any desired OpenID extensions (in this
case, the Attribute Exchange extension) to that request.

• Attach any OAuth request variables to the URI to which the user will be forwarded
in order to accept the application permissions.

• Forward the user to the provider to accept the application permissions, which detail
the type of information that the application will be able to access on his behalf.

To dig a little deeper, letâ€™s break down the auth.py file into a few subcategories,
starting with the step to perform discovery on the OpenID provider URI and build the
initial OpenID request object.

Implementation Example: OpenID, OAuth, and Yahoo! | 523

This is our first step in the con-
struction of an OpenID OAuth hybrid authorization request. For this piece, weâ€™ll
perform discovery on the OpenID URI that the user specified in the aforementioned
request form. Basically, weâ€™re validating whether the URI that the user provided is
valid and, if so, we will use it as the redirect URI to send him to, in order to have him
accept the application permissions. Weâ€™ll then add our extensions on top of this
request and apply the OAuth hybrid parameters to the redirect callback location con-
tained within the request object we obtained via discovery:

import cgi
import openid

import common

from openid.consumer import consumer
from openid.extensions import ax

'''
' Function: Main
' Description: Initiates the OpenID authentication process
'''
def main():
 #get query parameters
 params = cgi.FieldStorage()

 #check if an OpenID url was specified
 if not params.has_key('openid_url'):
 print_msg('Please enter an OpenID Identifier to verify.', 'text/plain')
 else:
 #capture OpenID url
 openid_url = params['openid_url'].value

 #create a base consumer object
 oidconsumer = consumer.Consumer({}, None)

 try:
 request = oidconsumer.begin(openid_url)
 except:
 print_msg('Error in discovery: ' + openid_url, 'text/plain')
 else:
 if request is None:
 print_msg('No OpenID services found', 'text/plain')
 else:

First, we import the libraries and files that we will need for this script. Besides the
standard library imports, we also include our previously mentioned common.py file and
the OpenID consumer and Attribute Exchange extension libraries.

To start building out our main() function, we first get the query parameters that were
entered into the form, which in this case are simply the OpenID URI. We then check
if that URI exists. If it doesnâ€™t exist, we print out an appropriate failure message. If
it does exist, we capture the value.

Performing discovery and building an OpenID consumer object.

524 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

We then create a new base OpenID consumer object that will give us the functionality
required to perform discovery. With this object, we call the begin(...) method, passing
in the provided OpenID URI to begin discovery. If there was an error, we print out an
appropriate message. If the process was successful, we make sure that the request object
is not None. If it is, we print out the appropriate message. If itâ€™s not, we continue
with the next step, attaching any desired OpenID extensions and the OAuth parameters
needed for the hybrid auth process.

Now weâ€™ll attach everything that we
need for the OpenID request and OAuth hybrid pieces of the process:

 #attribute exchange extension request
 ax_request = ax.FetchRequest()
 ax_request.add(ax.AttrInfo('http://axschema.org/contact/email',
 required=False, alias='email'))
 ax_request.add(ax.AttrInfo('http://axschema.org/media/image/default',
 required=False, alias='picture'))
 request.addExtension(ax_request)

 #add oauth hybrid extension parameters to redirect url
 redirect_url = request.redirectURL(common.trust_root, common.return_to)
 redirect_url += '&openid.ns.oauth=http%3A%2F%2Fspecs.openid.net%2F
 extensions%2Foauth%2F1.0
 &openid.oauth.consumer=' + common.consumer_key

 #print_msg(redirect_url, 'text/plain')
 print "Location: " + redirect_url

We start with the OpenID Attribute Exchange extension. We create a new request
object by calling FetchRequest(), which will hold all of the particular fields that we will
be requesting. To that request object, we add a request to get the userâ€™s email
address and default image (neither of which is required), just like we did in the Chap-
ter 11 OpenID example. Once weâ€™ve defined all our extensions, we add that At-
tribute Exchange object to the overall OpenID request object.

Even though using OAuth will give you access to a vast amount of user
informationâ€”far more than what you could obtain with OpenIDâ
€”using the Attribute Exchange extension can provide you with certain
data that you canâ€™t access with OAuth or data that would require
an extra HTTP request, depending on how the provider has set up its
social API structures.

Next, we construct the redirect URL where we will be sending the user to accept the
application permissions. We build this URI by making a call to redirectURL(...),
passing in our trust_root (the current absolute folder path to the application) and the
return_to location (the callback file).

Attaching extensions and OAuth hybrid parameters.

Implementation Example: OpenID, OAuth, and Yahoo! | 525

Now that we have the URL, we attach two additional query string parameters to signify
that we want to obtain a preapproved request token at the end of the hybrid auth
process:

opened.ns.oauth

The OpenID OAuth hybrid extension namespace URI. This should be a URL-
encoded version of the namespace: http://specs.openid.net/extensions/oauth/1.0.

opened.oauth.consumer

The consumer key issued when we set up our application with the provider. This
will allow the provider to attach the appropriate application to the auth request.

With those parameters attached to the redirect URL, we redirect the user to that pro-
vider location to proceed through the hybrid auth process.

Before we move on to the next file, the callback location, there are just a few helper and
initialization aspects at the bottom of this script to go over.

There are a few last pieces of this file that we should talk
aboutâ€”the print_msg function and the program initialization functionality:

'''
' Function: Print Message
' Description: Print a message with a provided content type
' Inputs: msg (string) - The message to be displayed
' type (string) - The content type to use (e.g. text/plain)
'''
def print_msg(msg, type):
 if msg is not None:
 print 'Content-Type: %s' % (type)
 print ''
 print msg

#initiate load of main()
if __name__ == '__main__':
 main()

The print_msg(...) function accepts a string message and a string content type, which
it will use to print out a message to the user.

At the bottom of the file, we simply initiate the loading of main() to start the program
execution.

At this point, the user should be going through the hybrid auth process, accepting the
permissions of the application. Once he accepts them, he will be forwarded to our
authentication callback file, complete.py.

The authentication callback

The authentication callback, stored in this example as complete.py, is where the user is
forwarded once he has granted the application permission to access his personal in-
formation. The crux of this content is exchanging the preapproved request token that

Helpful function and initialization.

526 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

http://specs.openid.net/extensions/oauth/1.0

will be passed back from the hybrid auth process for an access token that we can use
to obtain the userâ€™s private information, much like we saw back in Chapter 9.

More specifically, this file will process the following steps:

1. Extracting all passed parameters from the auth process.

2. Completing the OpenID process to capture the OpenID display identifier for the
user as well as all attributes from the Attribute Exchange extension.

3. Exchanging the preapproved request token for an OAuth access token.

4. Using the access token to make a private data request to get the current userâ€™s
profile information.

Letâ€™s break down this file into several different sections to explore how we will
accomplish each task, starting with extracting all passed data and creating a new
OpenID consumer object in order to complete the OpenID process.

At the beginning of
the file, we capture and prepare the information that will be used throughout the rest
of the hybrid auth complete script.

At the top, we include several standard libraries as well as the OAuth library, OpenID
consumer and extension libraries, and the common variables needed to run the pro-
gram. We also add the dotdict class at the top of the file. This class will provide dot-
notation functionality within a dictionary object, which the OAuth library will use
during the token exchange part of the process. Basically, dotdict allows you to not only
refer to an item in the dictionary like:

token['item1']

but also using the dot-notation method:

token.item1

With that done, we then jump into the main() function and begin to capture all required
values passed to the form and create any required consumer objects:

import cgi
import openid
import urllib
import os
import oauth.oauth as oauth

import common

from openid.consumer import consumer
from openid.extensions import ax

'''
' Class: Dot Notation Insertion
' Description: Adds dot notation capabilities to a dictionary
'''
class dotdict(dict):

Capturing response objects and preparing the OpenID consumer request object.

Implementation Example: OpenID, OAuth, and Yahoo! | 527

 def __getattr__(self, attr):
 return self.get(attr, None)
 __setattr__= dict.__setitem__
 __delattr__= dict.__delitem__

'''
' Function: Main
' Description: Completes OpenID authentication process and prints results
'''
def main():
 #create a base consumer object
 oidconsumer = consumer.Consumer({}, None)

 #print page content type
 print 'Content-Type: text/plain'
 print ''

 #parse query string parameters into dictionary
 params = {}
 string_split = [s for s in os.environ['QUERY_STRING'].split('&') if s]
 for item in string_split:
 key,value = item.split('=')
 params[key] = urllib.unquote(value)

We start the main() function by creating a new base OpenID consumer object. This
will allow us to complete the OpenID process by providing us with a response stating
whether it was successful or not.

Next, we print out the page content-type headers for displaying debugging information
(basically, variable dumps) back to the person running the script.

We then loop through all query string parameters (split on the ampersand) and split
the strings again on the equals sign to get the key and value. We store the results in a
dictionary object.

We can then move on to completing the OpenID process and extracting the userâ€™s
OpenID display identifier and the Attribute Exchange extension values.

Using the variables that we created in
the last chunk of code, we can complete the OpenID process and extract any informa-
tion returned:

 #complete OpenID authentication and get identifier
 info = oidconsumer.complete(params, common.return_to)
 display_identifier = info.getDisplayIdentifier()

 #build attribute exchange response object
 ax_response = ax.FetchResponse.fromSuccessResponse(info)
 if ax_response:
 ax_items = {
 'email': ax_response.get('http://axschema.org/contact/email'),
 'picture': ax_response.get('http://axschema.org/media/image/default')
 }

 #print attribute exchange object

Completing the OpenID process and extracting the data.

528 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

 print 'Attribute Exchange Response Object:'
 print ax_items

 #print openid display identifier
 print '\n\nOpenID Display Identifier: \n' + display_identifier

We start by using the OpenID consumer object that we created and call the complete
(...) function on it, passing in the query string parameters dictionary object that we
created and the return_to URL (this file location) from the common.py file. This should
provide us with the return object full of information about the user.

From the returned object, we call getDisplayIdentifier() to extract the unique
OpenID display identifier URI for the user.

We then start pulling out the data from the Attribute Exchange extension request. We
fetch the response object by calling FetchResponse.fromSuccessResponse(...) within
the ax library, passing in the returned OpenID object. This will provide us with the
required set of return elements for Attribute Exchange. If that return object exists, we
create a new dictionary object, ax_items, composed of the email and picture that we
requested.

Last, we print out the Attribute Exchange object and display identifier. This is basically
just a debugging step so that when you first set up the example, you can assess whether
the data was returned correctly.

We can now focus on determining whether the status was returned correctly, and ex-
changing the preapproved request token from the OpenID OAuth extension parame-
ters for a valid OAuth access token to capture user information.

With the extracted OpenID data, we
can check the OpenID status response and then begin the token exchange process for
OAuth:

 #check the openid return status
 if info.status == consumer.FAILURE and display_identifier:
 message = "\n\nOpenID Response:\nVerification failed"
 elif info.status == consumer.CANCEL:
 message = '\n\nOpenID Response:\nVerification cancelled'
 elif info.status == consumer.SETUP_NEEDED:
 message = '\n\nOpenID Response:\nSetup needed'
 elif info.status == consumer.SUCCESS:
 message = '\n\nOpenID Response:\nSuccess'

 #build base consumer object with oauth keys and sign using HMAC-SHA1
 base_consumer = oauth.OAuthConsumer(common.consumer_key,
 common.consumer_secret)
 signature_method_hmac_sha1 = oauth.OAuthSignatureMethod_HMAC_SHA1()

 #build dictionary of pre-approved request token and blank secret to
 #exchange for access token
 req_token = dotdict({'key': params['openid.oauth.request_token'],
 'secret': ''})

Checking the OpenID status and obtaining the access token.

Implementation Example: OpenID, OAuth, and Yahoo! | 529

 #create new oauth request and sign using HMAC-SHA1 to access token endpoint
 #to exchange request token for access token
 oauth_request = oauth.OAuthRequest.from_consumer_and_token(base_consumer,
 token=req_token, verifier=None,
 http_url=common.oauth_access_token_endpoint)
 oauth_request.sign_request(signature_method_hmac_sha1, base_consumer,
 req_token)

 #make request to exchange request token for access token string
 token_read = urllib.urlopen(oauth_request.to_url())
 token_string = token_read.read()

 #parse access token string into parameters and extract user guid
 token_params = cgi.parse_qs(token_string)
 guid = token_params['xoauth_yahoo_guid'][0]

 #create new access token object to make permissioned requests
 access_token = oauth.OAuthToken.from_string(token_string)

First, we check the status of the OpenID exchange object. Possible values are:

consumer.FAILURE

The authentication process failed at some point.

consumer.SUCCESS

The authentication process succeeded. At this point, we should begin processing
all of the responses.

consumer.CANCEL

The authentication process was cancelled and not completed.

consumer.SETUP_NEEDED

Additional setup is required in the authentication request.

Any other response
If we encounter any other response, we should gracefully handle this as a â
€œSomething went wrongâ€ case.

SUCCESS is the response that weâ€™ll assume here in order to continue with our token
exchange process. We call OAuthConsumer(...) within the oauth library, passing in the
consumer key and secret for our OAuth application from the common.py file. We then
create a new HMAC-SHA1 signature object by calling OAuthSignatureMethod_

HMAC_SHA1() within the oauth library so that we can sign the requests that we will be
making.

Now we need to go through the process of exchanging the preapproved request token
for an access token, but we only have the request token key that was passed through
the query string parameters to this file. To get the request token object, we create a
dictionary object comprising a key parameter with the value of the preapproved request
token, and a secret parameter with a blank value (since it isnâ€™t needed).

Next, we create the token exchange request. To accomplish this, we make a call to
OAuthRequest.from_consumer_and_token(...) within the oauth library, passing in the

530 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

base consumer object, request token object, a blank value for the verifier, and the access
token endpoint on the provider where the switch will occur. We then sign the request
by calling sign_request(...), passing in the signature method object (HMAC-SHA1), base
consumer object, and the request token object.

The oauth_verifier is not required for the request object because we
have a preapproved request token from the hybrid auth process.

We can then make the request to do the token exchange. We open the OAuth request
URL, which we obtain by calling to_url() within the oauth_request object, and then
read the contents returned into a variable string.

Next, since the token string that is returned mimics query string parameters
(item1&item2&...), we call cgi.parse_qs(...) to create a dictionary out of the param-
eters returned. From the parameters, we can then extract the globally unique identifier
(GUID) of the user that Yahoo! returned in the object.

The primary reason for creating an object out of the parameters is to
extract any extra data that the service might attach in the token string
that we can use, such as user identifiers. A simple way to check for
additional parameters in a service is to examine the token string
returned from the request token/access token exchange process.

Now we just need to construct an access token object out of the string that was
returned from the token exchange process. To accomplish this, we call OAuthToken
.from_string(...) in the oauth library and pass in the token string.

Now that we have the access token object in hand, we can begin making authenticated
requests to the provider to obtain protected user resources.

The process for making a signed request
using the access token is fairly straightforward. Just as we did with the request token/
access token exchange, we simply need to create a request object, sign it, and then use
that to make the requests:

 #create url to Yahoo! servers to access user profile
 url = 'http://%s/v1/user/%s/profile' % ('social.yahooapis.com', guid)

 #create new oauth request and sign using HMAC-SHA1 to get profile of
 #authorized user
 oauth_request = oauth.OAuthRequest.from_consumer_and_token(base_consumer,
 token=access_token, http_method='GET', http_url=url)
 oauth_request.sign_request(signature_method_hmac_sha1, base_consumer,
 access_token)

 #make request to get profile of user

Making signed requests for protected user resources.

Implementation Example: OpenID, OAuth, and Yahoo! | 531

 profile_read = urllib.urlopen(oauth_request.to_url())
 profile_string = profile_read.read()

 #print profile response object
 message += '\n\nProfile Response Object:\n' + profile_string
 else:
 message = '\n\nOpenID Response:\nVerification failed.'
 print message

if __name__ == '__main__':
 main()

We first construct the URL to which we want to make requests to obtain privileged
user data from the provider site. In this case, the URL used is for extracting the current
userâ€™s full profile.

The next step is to construct an OAuth request object by calling OAuthRequest.from_
consumer_and_token(...), passing in the base consumer object, access token object,
HTTP method (in this case, GET), and the URL to which we want to make a request.
We then call sign_request(...) to sign the request, passing in the HMAC-SHA1 sig-
nature object, base consumer, and access token.

Next, we open the resource URL by calling oauth_request.to_url() and store the re-
sponse string as a separate string. This is the response string from the request and
should contain the userâ€™s full profile.

Finally, we simply print out the resource object so that we can explore the string that
was ret urned to us.

Conclusion
Now that weâ€™ve concluded our exploration of OpenID, OAuth, and the hybrid auth
extension, we can clearly see how combining specifications delivers both the rich ca-
pabilities of an authentication sign-in model and the extensive amount of data and viral
channels that are available through the authorization standards.

In this chapter, we have identified the questions you should ask yourself before imple-
menting the hybrid auth extension and delved into practical implementation examples
to see how these two standards are combined.

We have now experienced firsthand the extensive capabilities that are available in both
specifications, and discovered the potential they offer us for creating efficient and pow-
erful login and personalization systems.

532 | Chapter 12: Delivering User-Centric Experiences with Hybrid Auth

APPENDIX

Web Development Core Concepts

Throughout this book, we have talked about many open source and web service stand-
ards. This appendix will explore the core concepts behind much of the technologies,
standards, and services that we have worked with in each chapter.

A Brief Tour of Open Source Standards
Most major Internet-based companies implement some measure of open source
standards. Whether itâ€™s authentication and authorization technologies such as
OpenID and OAuth, or the simple metadata tagging of the Open Graph protocol to
integrate a Facebook Like button, the industry has embraced the value of open source
standards and what they offer to its businesses.

In the sections that follow, weâ€™ll try to answer a few of the most common questions
that arise on the topic of open source standards.

What Are the Benefits and Drawbacks of Using Open Source Standards?
Why should we even consider using open source standards? This is a question that usually
comes up when a company first begins embarking along the open source path, and itâ
€™s one of the most valid to ask before starting integrations.

Letâ€™s look at some of the benefits and drawbacks of open standards to help imple-
menters decide if it is the correct approach for them.

Benefits

The benefits are numerous, but weâ€™ll focus on just a few main points. Usually, open
source initiatives that have any measure of success in the community have support from
some major company. These companies often contribute heavily to the specifications
and have a genuine business reason for doing so. In other words, these companies (e.g.,
Yahoo, Facebook, Google) are driving the future of the specification to fill some specific
business need. This means that for the most part you, as an implementer, will be using

533

a fully vetted specification that is geared toward improving that particular business
need.

In addition to major company contributions, open source specifications tend to have
a large contributor network composed of people who either have a passion for the
technology or have a specific reason for contributing. In either scenario, you will be
drawing from a large development pool of engineersâ€”who are often some of the best
in their fieldsâ€”without having to expend your own resources to develop a custom
solution to the same problem. You will reap the rewards of a continually updating
product that will go through regular release cycles. This means that the engineering
time and effort required to implement the solution is drastically reduced, to the point
where youâ€™ll simply need to integrate the technology into your web stack.

Drawbacks

The main disadvantage to open source initiatives is the fact that the development of
the project can be completely beyond the implementerâ€™s control. Even though an
open source initiative may be in place to solve a specific problem, it tends to include a
lot of additional features that different companies require for their particular imple-
mentations. While the projects generally attempt to maintain a platform-agnostic view,
they still aim to address some specific concerns from many of the implementing com-
panies. For an implementer who was not involved in the project construction, this
means that the solution will not be custom built for his web stack and may contain
feature bloat from added functionality he doesnâ€™t need for his particular integra-
tion.

Are Open Source Standards the Solution to Everything?
The simple answer to this question is no. Open source is not a silver bullet that will
solve all of your problems, but itâ€™s a good starting point.

The reason why open source standards are not the â€œend all, be allâ€ solution is
because they are built to solve a specific set of problems, and thus can sometimes have
a very narrow focus in their implementation. Although the solution that is delivered by
the open source initiative youâ€™re implementing may get you 90% of the way toward
reaching your end goal, itâ€™s rare when you donâ€™t have to develop any tweaks or
technology bridges to integrate the solution into your existing web stack and product.

You should think of open source as a great jumping-off point for your project, much
like if someone came along and said, â€œHere, I have 90% of the work completed for
the task youâ€™re working on.â€ Your main goal should be to see how that standard
fits into your stack and integrate it.

Letâ€™s face it, when a company integrates an open source initiative, there is usually
some core business reason behind the implementation, whether that can be directly
monetized or not. For open source to be valuable for these companies, and thus reach

534 | Appendix: Web Development Core Concepts

the masses, these products need to make business sense. Open source initiatives rarely
discuss the business aspects of their implementations, so itâ€™s usually up to the im-
plementing party to integrate that value.

Web Service APIs
Web services that wish to make their data, tools, or features available for developers
and clients tend to open up their system through application programming interfaces
(APIs).

In the Web 2.0 world, APIs usually follow a RESTful architecture model, where the
service will open up a series of URI endpoints to which developers make requests in
order to get or set data from that web service system. Depending on the context of the
data, these endpoints may be publicly available, or protected through authorization
mechanisms such as OAuth.

In any case, these APIs communicate through the HTTP layer: the client will issue an
HTTP request to the service, and the service will process the request and return
standard response codes.

HTTP Response Status Codes
When youâ€™re working with web services and the APIs of companies whose data
you would like to use, it is important to understand the method these services use to
communicate with youâ€”HTTP response status codes.

When issuing requests to these services, you may receive any number of responses back
in different address ranges. These codes will help you determine whether there were
any major issues, if there was something expected by the service that was not present
in the request, or if everything was sent and processed successfully.

In the response structure that a service sends back, you should be able to extract the
HTTP response, which generally comprises the response code and a description that
explains it.

There is a vast number of possible response codes, but the address ranges that will be
returned will allow you to pinpoint any issues or decide whether you can process the
response as a success case. These ranges include:

1xx range
The request has been received and processing is in progress.

2xx range
The request has been received, understood, accepted, and processed successfully.

3xx range
The request has been received, but the client needs to take additional actions to
complete the request.

HTTP Response Status Codes | 535

4xx range
There was an error in the request sent by the client. The response from the server
should indicate the specific issue encountered.

5xx range
The request was received and appears to be valid, but an error occurred while the
server was attempting to process it.

Understanding common HTTP response status codes and approximate ranges will help
you implement systems that can handle problems during processing, delivering a much
less error-prone product.

Understanding the Same-Origin Policy
The same-origin policy is important to keep in mind when youâ€™re working with
client-side scripting languages (such as JavaScript) and it is a core implementation in
modern browsers. Its basic premise is that scripts that are running on a site should have
access to that siteâ€™s properties and methods within reasonable limits, but those
same scripts should not have access to properties and methods on other sites.

How Is Origin Determined?
Browsers will compare two URLs to determine the origin based on a number of factors.
These factors include the domain name, the application layer protocol, and in many
browsers, the port used.

For example, say that we are making AJAX requests from a script on http://www.site
.com/page1.html to access resources on other pages. Table A-1 outlines the results for
several different URLs.

Table A-1. Results of making an AJAX request from a script on http://www.site.com/page1.html

URL requested Outcome Reason

http://www.site.com/page2.html Success Same host and protocol

http://www.site.com:8888/page2.html Fail Different port

https://www.site.com/page2.html Fail Different protocol (https)

http://site.com/page1.html Fail Different host (not an exact match)

http://sub.site.com/page1.html Fail Different host (subdomain)

Understanding these rules when youâ€™re working with client-side scripting lan-
guages like JavaScript will save you a lot of headaches when development begins.

536 | Appendix: Web Development Core Concepts

http://www.site.com/page1.html
http://www.site.com/page1.html
http://www.site.com/page1.html
http://www.site.com/page2.html
http://www.site.com:8888/page2.html
https://www.site.com/page2.html
http://site.com/page1.html
http://sub.site.com/page1.html

Bypassing the Same-Origin Policy Requirements
When running into issues with the same-origin policy, developers implement some of
the following methods to bypass these browser restrictions:

• Using a server-side proxy script. For instance, your JavaScript file can make a re-
quest to some PHP or Python script that it has access to, which in turn can facilitate
server-to-server communication to some cross-domain source.

• Implement a Flash transport layer. In the same way that the server-side proxy
works, some developers have used Flash to proxy requests to overcome the limits
imposed by the same-origin policy.

• Generating iframes to pass data from a source site through to another location
where the iframe is loaded.

There are numerous other ways to bypass the issue of communication between sites
due to the same-origin policy restrictions, but these are a few of the most commonly
implemented.

REST Requests
Representational Transfer (REST) is a style of software architecture that defines a way
for clients and servers to communicate using HTTP requests.

REST is a standard and widely implemented architecture that many companies employ
to construct their web services so that developers can access their tools and data sour-
ces. REST offers a methodâ€”HTTP requestsâ€”for companies to embed the ability to
create, update, retrieve, and delete resources within their systems.

There are a number of methods that are widely used within this architecture. Letâ€™s
explore some of the ones that are implemented most often.

GET Request
A GET request is one of the most straightforward request types. You are simply making
a request to a URI endpoint and expecting some data to be returned to you.

In PHP, we can use a simple cURL request:

<?php
$url = 'http://www.example.com/request.php';

$ch = curl_init($url);
$options = array(
 CURLOPT_URL => $url,
 CURLOPT_RETURNTRANSFER => 1
);
curl_setopt_array($ch, $options);
$response = curl_exec($ch);

REST Requests | 537

curl_close($ch);
?>

Within the cURL option, we are specifying that we want to call a specific URL
(CURLOPT_URL) and would like to receive the response data from the request (CURLOPT
_RETURNTRANSFER).

In Python, we can simply use urllib from the standard library:

import urllib

url = 'http://www.example.com/request.py'
f = urllib.urlopen(url)
response = f.read()

We open the specified URL and then read back the response from the request.

POST Request
For the most part, HTTP POST requests are used to update existing resources on a
server. You will be making a request to a service and passing along a POST payload,
which the server then uses to denote the update resource or hold the content to be
updated.

In PHP, we can use cURL to issue a POST request:

<?php
$url = 'http://www.example.com/request.php';
$postvals = 'firstName=John&lastName=Smith';

$ch = curl_init($url);
$options = array(
 CURLOPT_CUSTOMREQUEST => 'POST',
 CURLOPT_URL => $url,
 CURLOPT_POST => 1,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_RETURNTRANSFER => 1
);
curl_setopt_array($ch, $options);
$response = curl_exec($ch);
curl_close($ch);
?>

As with the GET request, we are making the call to a specified URL, but this time we
are creating a POST string that we will send. In addition to the cURL options from the
GET request, we use CURLOPT_CUSTOMREQUEST and CURLOPT_POST to state that we want to
make a POST request and CURLOPT_POSTFIELDS to attach the data to send in the POST.

In Python, we can once again use urllib for the POST request:

import urllib

url = 'http://www.example.com/request.py'
postvals = {'first_name': 'John', 'last_name': 'Smith'}

538 | Appendix: Web Development Core Concepts

params = urllib.urlencode(postvals)
f = urllib.urlopen(url, params)
response = f.read()

As with the GET request, we are making the request to a specific URL. This time,
though, we create the object that we want to POST, encode it, and pass it along when
we call urlopen(...).

PUT Request
Even though there are many web services that support only a subset of the RESTful
architectureâ€”GET and POST requestsâ€”fully RESTful services include PUT and
DELETE requests as well.

PUT requests are a method for inserting new resources into a service. This request type
is very similar to a POST request in technical implementation, and the two requests are
often confused with each other.

In PHP, we will once again use a cURL request with some options set:

<?php
$url = 'http://www.example.com/request.php';
$postvals = 'firstName=John&lastName=Smith';

$ch = curl_init($url);
$options = array(
 CURLOPT_CUSTOMREQUEST => 'PUT',
 CURLOPT_URL => $url,
 CURLOPT_POST => 1,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_HTTPHEADER => array('Content-Length: ' . strlen($postvals)),
 CURLOPT_RETURNTRANSFER => 1
);
curl_setopt_array($ch, $options);
$response = curl_exec($ch);
curl_close($ch);
?>

This request mimics that of the POST request, except that we set a different CURL
OPT_CUSTOMREQUEST value (PUT). In this example, we can also set an HTTP header with
the content length of the POSTed fields if required.

In Python, this request is a little trickier because there are a few quirks to making
requests with urllib2:

import urllib
import urllib2

url = 'http://www.example.com/request.py'
postvals = {'first_name': 'John', 'last_name': 'Smith'}
params = urllib.urlencode(postvals)

opener = urllib2.build_opener(urllib2.HTTPHandler)

REST Requests | 539

request = urllib2.Request(url, data=params)
request.add_header('Content-Type', 'application/json')
request.get_method = lambda: 'PUT'
f = opener.open(request)
response = f.read()

The following code in the urllib2 standard library helps us determine which HTTP
method to use in a request:

def get_method(self):
 if self.has_data():
 return 'POST'
 else:
 return 'GET'

As you can see, it doesnâ€™t exactly support any types other than GET and POST, so
we need to make a few adjustments. We first generate our URL that will be called, and
then build and encode the parameters to send with the PUT request. We then create
our HTTP handler opener and generate the request to our URL with the parameter
object through the urllib2.Request(...) request. Then, we add a Content-Type header
for the request. Now we need to override the method that urllib2 will use in the request
by manually setting the get_method to PUT. Finally, we open the URL location from the
request object and read back the response.

DELETE Request
As you may have guessed, an HTTP DELETE request is used to remove resources from
some web service.

Since cURL is the de facto method for making HTTP requests in PHP, we will once
again use it for our DELETE request:

<?php
$url = 'http://www.example.com/request.php';
$postvals = 'firstName=John&lastName=Smith';

$ch = curl_init($url);
$options = array(
 CURLOPT_CUSTOMREQUEST => 'DELETE',
 CURLOPT_URL => $url,
 CURLOPT_POST => 1,
 CURLOPT_POSTFIELDS => $postvals,
 CURLOPT_FOLLOWLOCATION => 1,
 CURLOPT_HEADER => 0,
 CURLOPT_RETURNTRANSFER => 1
);
curl_setopt_array($ch, $options);
$response = curl_exec($ch);
curl_close($ch);
?>

540 | Appendix: Web Development Core Concepts

In this case, we will send along some POST values to denote the resource to be deleted,
so this request will very much mimic a PUT or POST. We simply set the CURLOPT_
CUSTOMREQUEST to DELETE.

As with our PUT request, in Python we will use urllib2:

import urllib
import urllib2

url = 'http://www.example.com/request.py?id=1234'

request = urllib2.Request(url)
request.get_method = lambda : 'DELETE'

f = urllib2.urlopen(request)
response = f.read()

Our Python request will follow a pattern similar to our PUT requestâ€”we will need to
manually set the get_method, this time to DELETE. We then make our request with
urlopen(...) and read back the server response.

HEAD Request
The last request type that we will look at is the HTTP HEAD request. Think of this one
like an HTTP GET request but without any response body returned. The value in
making this request is in ensuring that a resource is available prior to using it.

For instance, letâ€™s say we scrape the content of a site and retrieve a series of image
links, some of which have relative URLs in different formats, and others that are ab-
solute URLs to the specific resource. We perform some logic to generate absolute URLs
for the relative links so that we can use them from any site. We can then use HEAD
requests to verify that the URLs that we have generated are valid and will return a
resource prior to implementing them on a page. Since these requests donâ€™t return
back the actual image, we can perform this action quickly, as opposed to having to
obtain the resource from a GET or simply integrating the image on a page without first
ensuring that the link is valid.

A HEAD request in PHP is a simple process and mimics the corresponding GET request
in many ways:

<?php
$url = 'http://www.example.com/image.jpg';

$ch = curl_init($url);
$options = array(
 CURLOPT_URL => $url,
 CURLOPT_HEADER => 1,
 CURLOPT_NOBODY => 1,
 CURLOPT_RETURNTRANSFER => 1
);
curl_setopt_array($ch, $options);
$response = curl_exec($ch);

REST Requests | 541

curl_close($ch);
?>

The important cURL parameter to note here is CURLOPT_NOBODY. This parameter ensures
that the request being made is a HEAD request because no body content will be
returned.

The Python example looks like that of the GET request as well. For this instance, we
will use the urllib2 library instead of urllib:

import urllib2

request = urllib2.Request('http://www.example.com/image.jpg')
request.get_method = lambda : 'HEAD'

f = urllib2.urlopen(request)
response = f.info().gettype()

Much like we did for the PUT and DELETE requests, we simply need to override the
get_method parameter prior to making our request. When obtaining the resource, in-
stead of calling the read() method to get the response, we can simply call info().get
type() to obtain the content type of the resource being requested. If the content type
is what is expected, then the resource exists.

Microformats and the Semantic Web
A microformat is a web-based method for implementing page semantics through the
use of common HTML or XHTML tags and the attributes within those tags (e.g., a
 tag with an appropriate class). These tags convey metadata about the page or a
particular object on the page.

For instance, with the defined geo microformat specification, we can use tags
with an appropriate class, geo, to denote that we are specifying a geographical location:

 45.512280,
 -73.554390

Semantic markup is a core concept of technologies such as those we explored in the
Open Graph protocol in Chapter 10. Microformats are simply a way of contributing
to the semantic web.

This type of semantic markup helps when you are attempting to programmatically
parse a site to extract as much usable information about its content as possible. If that
page has all of its relevant information tagged through microformat specifications, then
extracting its relevant data should be a simple task.

In addition to providing a way to extract data easily, tagging through microformat
specifications allows the site developer to denote the relevant content of the page rather

542 | Appendix: Web Development Core Concepts

than having a site parser attempt to infer that information itself. This will ensure a
consistent experience when the content is integrated at another location.

There are a number of microformat specifications available to help you implement
microformat tagging on your sites:

hAtom
To mark up Atom feeds within standard HTML.

hCalendar
To tag event-based information.

hCard
For contact information. This includes:

adr
For address-based information.

geo
For geographical coordinates such as latitude and longitude.

hMedia
To mark up audio and video content.

hNews
To denote news-based content on a page.

hProduct
For products.

hRecipe
For recipes and information relating to foodstuffs.

hResume
For resumes or CVs.

hReview
For any type of review content.

rel-directory
For distributed directory creation and inclusion.

rel-enclosure
For multimedia attachments to web pages.

rel-license
For the specification of a copyright license.

rel-nofollow
An attempt to discourage third-party content spam.

rel-tag
For decentralized tagging.

xFolk
For tagged links.

Microformats and the Semantic Web | 543

XHTML Friends Network (XFN)
For social-based relationship data.

XOXO
For lists and outlines.

Following these specifications will help you build semantically relevant pages and sites.
For more information on microformat specifications, see http://microformats.org/.

Installing Subversion (SVN)
Throughout this book, we have used Subversion to obtain the most up-to-date code
repositories to build projects or work with new features. Having it installed will make
your life a lot easier as you continue working through and extending these examples.

The following two sections describe the methods for obtaining and installing Subver-
sion on Mac OS X and Windows, respectively.

Installing on Mac OS X
We will use MacPorts in order to install Subversion on our systems. If you donâ€™t
have MacPorts installed, you can obtain the .dmg install file from its project install page
at http://www.macports.org/install.php.

The first thing we will do is to update MacPorts if needed. Open a terminal window
and type in the following command:

sudo port -v selfupdate

Once MacPorts has updated, we will install the three Subversion dependencies. From
the terminal window, enter:

sudo port install sqlite3
sudo port install apr-util
sudo port install neon

When those have finished installing, you can install Subversion with the following
command:

sudo port install subversion

You are now ready to begin making Subversion requests from the terminal window.

Installing on Windows
Installing Subversion on Windows is just a matter of following these few steps:

1. Go to the Apache Subversion project packages page at http://subversion.apache.org/
packages.html and scroll to the bottom for the Windows packages.

544 | Appendix: Web Development Core Concepts

http://microformats.org/
http://www.macports.org/install.php
http://subversion.apache.org/packages.html
http://subversion.apache.org/packages.html

2. For this installation, we will use the Win32Svn package. Click that option and
then, on the page that loads, click the Download button to obtain the .msi installer
file.

3. Once the .msi file has downloaded, double-click it to begin installation. You may
go through the installation with the default choices.

Once the installation has completed, you will be able to run SVN commands from the
Windows command prompt.

Installing Apache HTTP Server
One helpful utility to have installed on your system is the Apache HTTP server. This
will allow you to run scripts locally on your computer without requiring a web-based
server environment.

In the initial chapters of this book, when we set up Apache Shindig and Partuza for
OpenSocial development, we use a local HTTP server installation to run all of our
scripts.

Installing on Mac OS X
If youâ€™re using a Mac, Apache is already installed on your system; itâ€™s just
probably not enabled. Since this is the typical case, weâ€™ll just go through the steps
of enabling it rather than installing a whole new instance.

First, go to System Preferences on your Mac. Under Internet & Network, youâ€™ll see
an option for Sharing, as shown in Figure A-1. Click this option.

Installing Apache HTTP Server | 545

Figure A-1. The Sharing option under System Preferences in Mac OS X

In the Sharing panel that opens, simply ensure that the Web Sharing option is selected
(Figure A-2) to enable the Apache HTTP server.

Figure A-2. Web Sharing option under Sharing settings on Mac OS X

546 | Appendix: Web Development Core Concepts

Now, if you go to http://localhost in a browser, you should see a default page for your
server. The Apache HTTP server should load files from the default document location
on your Mac, /Library/WebServer/Documents.

Installing on Windows
The Apache HTTP server does not come preinstalled on Windows systems, so we need
to go through a few steps to download and install it:

1. In a browser, go to the Apache HTTP Server download page at http://httpd.apache
.org/download.cgi and select the current stable release from the list.

2. From the list of available packages, pick the Win32 binary download link (this
example uses the â€œWin32 Binary including OpenSSL 0.9.8oâ€ version).

3. Once youâ€™ve downloaded the package, double-click the .msi file to begin the
installation. You can either go through the installation process with the default
choices or modify paths and attributes as needed.

4. Once youâ€™ve installed the package, go to the HTTP server installation directory
and then into the bin folder. Double-click the httpd.exe file to start the HTTP server.

You will now be able to go to http://localhost in a browser to view the default page for
your server. Files for the server environment will be available in the /htdocs folder within
the Apache HTTP server install directory.

Setting Up Your PHP Environment
Now that we have our Apache HTTP server environment set up, we can begin obtaining
and setting up PHP so that we can run files with the .php extension through http://
localhost.

Installing on Mac OS X
As with Apache HTTP server, PHP comes preloaded on a Mac. We simply need to go
through a few steps to enable it and integrate it with the Apache HTTP server
environment.

First, we need to modify the HTTP server configuration file. The default location of the
server should be /private/etc/apache2. Weâ€™ll head to that location and then edit the
httpd.conf file using the following command:

cd /private/etc/apache2
sudo vi httpd.conf

When youâ€™ve opened the httpd.conf file, search for the following line:

#LoadModule php5_module libexec/apache2/libphp5.so

Setting Up Your PHP Environment | 547

http://localhost
http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi
http://localhost
http://localhost
http://localhost

This is the line that allows PHP 5 to run within the HTTP server. To enable it, remove
the initial pound sign (#), giving you:

LoadModule php5_module libexec/apache2/libphp5.so

Save and exit the httpd.conf file. Now weâ€™re going to move on to enabling PHP by
setting up our php.ini configuration file. Weâ€™ll go to our /private/etc folder and
rename the default configuration file as follows:

cd /private/etc
sudo cp php.ini.default php.ini

Now we simply need to restart the Apache HTTP server, which we can do by going to
Web Sharing within System Preferences and disabling and reenabling the server.

Once weâ€™ve done this, we should be able to use PHP files by navigating to them in
a browser at http://localhost/~username/file.php.

Installing on Windows
Once the Apache HTTP server has been installed, we can download PHP and make it
available for the environment. Simply follow these steps to be able to run files from
http://localhost:

1. To download the source files for PHP, go to http://windows.php.net/download/ and
click the Zip option under the Thread Safe versions for the latest stable release.

Make sure that you download the Thread Safe version for PHP;
otherwise, the required .dll files for Apache will not be present.

2. Once the files are downloaded, unzip them to C:\php.

3. Go to the C:\php directory and rename php.ini-production to php.ini. This will be
the configuration file for PHP.

4. Now go to your Apache HTTP server installation directory and into the /conf
folder. Open httpd.conf for editing. This is the configuration file for the server.

5. Add the two following lines where applicable in the file (with the other Load
Module lines):

LoadModule php5_module "c:/php/php5apache2_2.dll"
AddHandler application/x-httpd-php .php

Make sure that the appropriate php5apache2_2.dll file is present
within the C:\php directory before adding it. There may be permu-
tations on the filename. The appropriate file should be a .dll that
starts with php5apache2.

6. Restart your Apache server.

548 | Appendix: Web Development Core Concepts

http://localhost/~username/file.php
http://localhost
http://windows.php.net/download/

You will now be able to run .php files from the Apache HTTP server. For instance, if
you create test.php in the HTTP server /htdocs directory, you will be able to load it at
http://localhost/test.php from your browser.

Setting Up Your Python Environment
When it comes to hosting and running projects quickly, the Google App Engine envi-
ronment is an excellent tool. For the most part, the Python examples in this text are all
run from App Engine, using a simple YAML file for configuration.

To install App Engine:

1. Go to http://code.google.com/appengine/ and sign up for an App Engine account.

2. Head to the download page and select your appropriate system download to install
the App Engine SDK: http://code.google.com/appengine/downloads.html. This will
be the environment in which you can run Python programs off localhost.

Using the SDK, you can simply load a YAML configuration file for the project, start the
project, and then head to localhost with the appropriate project port in a browser
window.

If you would like to run Python via a terminal window, you can install it simply by
heading to the Python project download page at http://www.python.org/download/,
picking the appropriate installer for your system, and then going through the installa-
tion steps from the installer.

Another option for working in a terminal window is ActivePython, available at http://
www.activestate.com/activepython. The community edition is free and has a number of
advantages over the standard download from http://www.python.org.

Setting Up Your Python Environment | 549

http://localhost/test.php
http://code.google.com/appengine/
http://code.google.com/appengine/downloads.html
http://www.python.org/download/
http://www.activestate.com/activepython
http://www.activestate.com/activepython
http://www.python.org

Glossary

activity

An activity is a piece of content (e.g., text,
image, video) that a user shares through a
consumable stream of activities. This stream
may consist of the activities of a single user
or an amalgamation of many people, sorted
by criteria such as friendships or location
(for example, a userâ€™s Facebook news
feed contains a series of activities from her
friends).

AJAX

AJAX is an acronym for Asynchronous Java-
Script and XML, although many implemen-
tations favor JSON over XML. It defines a
series of interrelated web development tech-
nologies that allow developers to construct
dynamic web applications.

More information: http://en.wikipedia.org/
wiki/Ajax_(programming).

connection

In terms of a social profile, a connection is a
reciprocated relationship between two indi-
viduals. Both parties have to accept this â
€œfriendshipâ€ link to build a connection.
Being part of a connection usually gives both
individuals additional privileges to view and
consume more information about each
other from their respective profiles.

container

Container is the term used to describe a so-
cial networking site that allows developers
to build applications on top of it. Well-
known social networking containers are
Facebook, YAP, iGoogle, and Orkut.

distributed web framework

Distributed web frameworks, as used in this
text, refer to a series of open protocols and
specifications that promote the syndication
of content and entity cross-communication
on the Web.

gadget

In the context of OpenSocial, all applica-
tions that follow the gadget XML specifica-
tion are considered gadgets.

headless request

Headless requests are processes that run
without requiring user interaction. In the
case of services such as OAuth, the term
headless refers to a process in which a user
authorizes the application once and then the
service, in subsequent requests, makes
changes to or performs some action on the
userâ€™s data without him being involved.
The service does this by storing his access
token and using it to make additional re-
quests for the duration of time that the token
is valid.

IRI

An Internationalized Resource Identifier is a
generalization of a URI. Instead of being
limited to the use of the ASCII character set,
an IRI may contain characters from the uni-
versal character set (Unicode/ISO 10646).

More information: http://en.wikipedia.org/
wiki/Internationalized_Resource_Identifier.

551

http://en.wikipedia.org/wiki/Ajax_(programming
http://en.wikipedia.org/wiki/Ajax_(programming
http://en.wikipedia.org/wiki/ISO_10646
http://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
http://en.wikipedia.org/wiki/Internationalized_Resource_Identifier

LRDD

Link-based Resource Descriptor Discovery is
an open protocol that defines methods for
obtaining information about a resource
through the use of a URI, much like how
WebFinger is used to obtain information
about a person through the use of her email
address. The latest specification documen-
tation for LRDD is available at http://tools
.ietf.org/html/draft-hammer-discovery-06.

owner

In the context of a social networking appli-
cation, such as an OpenSocial gadget, the
owner is the individual or company who
created the application being used by a
viewer.

Partuza

Partuza is an example social networking site
that is built off OpenSocial and Apache
Shindig. The project home for Partuza is
http://code.google.com/p/partuza/.

REST/RESTful

Representational State Transfer is a specifi-
cation that defines an HTTP communica-
tion architecture to which web-based
services should conform. When a service
implements the REST architecture, it is said
to be RESTful.

More information: http://en.wikipedia.org/
wiki/Representational_State_Transfer.

RPC

A remote procedural call is a type of protocol
that allows one computer to execute some
program or script on another computer,
even outside its own address space. This al-
lows the client machine to leverage the ex-
isting programs on the server computer. The
server will execute the requested script and
return back the result of the execution to the
client machine.

More information: http://en.wikipedia.org/
wiki/Remote_procedure_call.

same-origin policy

Those working with client-side languages
such as JavaScript should have an intimate

understanding of the same-origin policy. At
a basic level, this policy states that scripts
can access the methods and properties on
their own domain but are restricted from
accessing those methods and properties on
other domains.

More information: http://en.wikipedia.org/
wiki/Same_origin_policy.

semantics/semantic web

The semantic web is essentially the utiliza-
tion of specified metadata on a web page to
allow machines to more effectively parse its
content. Semantic markup allows for a
much richer understanding of the pageâ€™s
content (i.e., what it is attempting to serve
up to users) and helps construct a deep â
€œweb of data.â€

More information: http://en.wikipedia.org/
wiki/Semantic_web.

Shindig

Shindig is an OpenSocial container that al-
lows a developer or site owner to quickly
begin hosting OpenSocial gadgets on his
site. This is the de facto method for inte-
grating OpenSocial gadgets in a service.
Shindig is an Apache project whose home is
located at http://shindig.apache.org/.

social network

A social network is a site that allows users
to engage with one another online and uses
an extensive profile system to identify users
within the system. One popular example is
Facebook.

social graph

Social graph is the term generally used to
denote the links between two or more
individuals within a social network. A user
may have numerous interconnected social
graphs that span many different social
networks.

More information: http://en.wikipedia.org/
wiki/Social_graph.

social entity

A social entity is a construct that resides
within a userâ€™s social graph. Unlike the

LRDD

552 | Glossary

http://tools.ietf.org/html/draft-hammer-discovery-06
http://tools.ietf.org/html/draft-hammer-discovery-06
http://code.google.com/p/partuza/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Semantic_web
http://en.wikipedia.org/wiki/Semantic_web
http://shindig.apache.org/
http://en.wikipedia.org/wiki/Social_graph
http://en.wikipedia.org/wiki/Social_graph

â€œpersonâ€ links that are traditionally as-
sociated with a social graph, an entity is a
website, team, cause, or any number of
other â€œthingsâ€ that a user has indicated
that she is a fan of or involved in. It is a ge-
neric container to denote additional infor-
mation about a user other than friendship
links.

viewer

In the context of a social networking appli-
cation, such as an OpenSocial gadget, the
viewer is the individual who is currently us-
ing the application constructed by the
application owner.

XRDS

eXtensible Resource Descriptor Sequence is
an XML format whose purpose is to provide
metadata about some resource. The main
use of this type of discovery, besides pro-
viding data about the resource, is to deliver
services that are associated with the
resource.

More information: http://en.wikipedia.org/
wiki/XRDS.

XRI

eXtensible Resource Identifier is a scheme
that defines a method for creating struc-
tured, self-describing identifiers that may be
extended to many uses by including direct
metadata about an object. The standard
syntax and discovery format is domain-, lo-
cation-, application-, and transport-inde-
pendent, meaning that it can be shared
among different domains, directories, and
protocols.

More information: http://en.wikipedia.org/
wiki/XRI.

viral

The term viral stems from application de-
velopment, and generally means an applica-
tion that maintains greater than a 1:1
growth. If each user of an application invites
two people, then it will experience a viral
growth trend, or in more popular parlance,
â€œgo viral.â€

More information: http://en.wikipedia.org/
wiki/Viral_phenomenon.

YAML

YAML is an acronym for Yet Another
Markup Language. Within the confines of
Google App Engine, where YAML is refer-
enced, it is used as an application configu-
ration and control file.

More information: http://en.wikipedia.org/
wiki/YAML.

YAP

YAP is an acronym for Yahoo! Application
Platform. It is an OpenSocial 0.9â€“compli-
ant container that showcases user-built ap-
plications across many of the Yahoo! sites
and services.

More information: http://developer.yahoo
.com/yap.

YAP

Glossary | 553

http://en.wikipedia.org/wiki/XRDS
http://en.wikipedia.org/wiki/XRDS
http://en.wikipedia.org/wiki/XRI
http://en.wikipedia.org/wiki/XRI
http://en.wikipedia.org/wiki/Viral_phenomenon
http://en.wikipedia.org/wiki/Viral_phenomenon
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML
http://developer.yahoo.com/yap
http://developer.yahoo.com/yap

Index

Symbols
! (not) operator, 226
!= (not equals) operator, 226
&& (and) operator, 226
401 (Unauthorized) HTTP status code, 359
403 (Forbidden) HTTP status code, 212
< (less than) operator, 226
<= (less than or equal to) operator, 226
== (equals) operator, 226
> (greater than) operator, 226
>= (greater than or equal to) operator, 226
|| (or) operator, 226

A
access tokens

exchanging for request tokens, 325–327,
337–341, 345–348

fetching, 356–358, 365
granting protected resources, 358
refreshing, 360
request error responses

insufficient_scope, 359
invalid_request, 359
invalid_token, 359

request parameters
client_id, 370
client_secret, 371
code, 371
grant_type, 357
oauth_consumer_key, 326
oauth_nonce, 326
oauth_signature, 326
oauth_signature_method, 326
oauth_token, 326, 339

oauth_token_secret, 326, 339
oauth_verifier, 326, 337, 338
oauth_version, 326
redirect_uri, 370

response parameters
access_token, 357
expires_in, 357
oauth_authorization_expires_in, 327
oauth_expires_in, 327
refresh_token, 358
scope, 358, 370
token_type, 358

tracking expiration, 377
ActionScript libraries, 254
activities

capturing user details, 179
data requests for, 210
defining standards for, 401
general verbs

add, 408
cancel, 408
checkin, 408
delete, 408
favorite, 408
follow, 408
give, 408
ignore, 408
invite, 408
join, 408
leave, 408
like, 409
make-friend, 409
play, 409
receive, 409
remove, 409

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

555

remove-friend, 409
request-friend, 409
rsvp-maybe, 409
rsvp-no, 409
rsvp-yes, 409
save, 409
share, 409
stop-following, 409
tag, 409
unfavorite, 409
unlike, 409
unsave, 409
update, 409

HTML tag support, 181
key pieces of data, 178
main fields

actor property, 403
content property, 403
generator property, 403
icon property, 403
id property, 403
object property, 403
provider property, 404
published property, 403
target property, 404
title property, 404
updated property, 404
url property, 404
verb property, 404

promoting applications with, 178–183
pushing to activity streams, 180, 184
pushing updates, 180–183

activity streams
about, 3, 4, 178
feed application use case, 25
personalizing application experiences, 179
pushing activities to, 180, 184
pushing activity updates, 180–183

Activity Streams specification
about, 256, 401
implementing, 402–406
object types, 406
reasons for, 401
verbs, 407–409

ActivityRequest tag (see os:ActivityRequest
tag)

addapp event, 80
AddThis system, 416
ADsafe

about, 290
bunch objects and, 299–306
Caja versus, 291
defining libraries, 307
dom object and, 294–295
implementing, 292
querying methods and, 295–299
securing applications, 11
setting up ADsafe object, 292–294

ADsafe events
blur, 306
change, 306
click, 306
doubleclick, 306
enterkey, 306
escapekey, 306
focus, 306
keypress, 306
mousedown, 306
mouseout, 306
mouseover, 306
mouseup, 306
specialclick, 306

ADsafe object
create method, 293
get method, 293
go method, 293, 296, 308
id method, 293
isArray method, 293
later method, 293
lib method, 293, 308
log method, 294
remove method, 294
set method, 294
setting up, 292

AJAX (Asynchronous JavaScript and XML)
about, 133
making requests, 187

and (&&) operator, 226
AOL

OpenID support, 447
website, 453

Apache Ant tool, 271
Apache HTTP Server, 62, 66
apache restart command, 62
Apache Shindig (see Shindig)
app event, 80
application containers (see social application

containers)

556 | Index

application development
application content, 82–91
application model case studies, 26
application model issues, 21–26
application permission concepts, 17
application views and, 12–17
basic questions to ask, 21
building gadget example, 91–93
building in black box, 7–9
client-server considerations, 19–21
cross-container, 132–134
defining user preferences, 81–82
design patterns and, 135
external applications and, 11
implementing code modularity, 286
OpenSocial container support, 128
proprietary versus open standards, 5–7
quick-start tips, 36–38
security considerations, 9–11

application models
copycat view applications, 23
feed applications, 25
location-based applications case study, 32–

36
oversharing applications, 24
portable flash applications, 21
product sales applications case study, 30–

32
social gaming application case study, 26–

30
underdeveloped views, 22
unmonetized applications, 24

application permissions, 17
application views (see views)
Asynchronous JavaScript and XML (AJAX)

about, 133
making requests, 187

attack vectors
arbitrary code execution, 269
Caja recognized, 267
logging keystrokes, 269
mining browsing history, 268
redirecting users, 267

Attribute Exchange (AX) extension, 456, 457–
463

attribute selectors (querying methods), 297
authentication (see OAuth; OpenID)
authorization

application permissions, 18

exchanging request tokens for access
tokens, 325–327, 337–341, 345–
348

fetching access tokens, 356–358, 365
getting request tokens, 321–323, 335–337,

344
getting user-verified request tokens, 323–

325
implementing user-based model, 318
making requests, 364
making signed requests, 366
OAuth 2 workflow, 354
obtaining, 369–372
obtaining consumer key and secret, 319
refreshing access tokens, 360
request parameters

client_id, 355
redirect_uri, 355
response_type, 355
scope, 355
state, 355

response parameters
code, 355
state, 355

AX (Attribute Exchange) extension, 456, 457–
463

Ayup hosted hub, 427

B
balanced sharing, 186
basic authentication

about, 316
OAuth and, 319
reasons against using, 317–318

black box environment
building in, 7–9
security considerations, 9–11

Blogger
OpenID support, 447
website, 453

browsers
attack vectors in, 267–271
mining browser history, 268
security considerations, 10, 267–271

bunch objects
about, 299
GET helper methods

about, 300
getCheck method, 300

Index | 557

getClass method, 300
getEnable method, 300
getMark method, 300
getName method, 300
getOffsetHeight method, 300
getOffsetWidth method, 301
getParent method, 301
getSelection method, 301
getStyle method, 301
getTagName method, 301
getTitle method, 301
getValue method, 301

miscellaneous methods
about, 304
clone method, 304
count method, 305
explode method, 305
fragment method, 305
q method, 305, 306
remove method, 305
replace method, 305
tag method, 305
text method, 305

SET helper methods
about, 301
append method, 302
blur method, 302
check method, 302
each method, 302
empty method, 302
enable method, 302
ephemeral method, 302
fire method, 302
focus method, 303
klass method, 303
mark method, 303
off method, 303
on method, 303, 306
prepend method, 303
protect method, 303
select method, 304
selection method, 304
style method, 304
title method, 304
value method, 304

C
Caja

ADsafe versus, 291

attack vectors recognized, 267–271
cajoling scripts from command line, 273–

279
iframes and, 133
installation requirements, 271
reasons for using, 267
running from web applications, 279–281
running with OpenSocial gadgets, 281–283
securing applications, 11, 266, 309–314
setting up, 271–273
tips for working in, 286–290

Caja Playground, 285
canvas view

about, 15
building gadget XML file, 122
Content node and, 83
defining, 86

CityVille game, 27
ClaimID website, 453
client-server environment

application development and, 19–21
basic authentication and, 317
code implementation considerations, 135
cross-container development, 133
data pipelining and, 212–215
OAuth 2 workflow, 354, 358
token-based systems and, 318
two-legged OAuth and, 329

clustering users
about, 41
automatically, 41, 49
building groups, 53
establishing trust, 42
group model and, 48, 49
one-to-few cluster, 41, 48
privacy considerations, 42
security considerations, 42

code development (see application
development)

comparison operators, escaped versions, 226
conditional statements

about, 229
escaped values method, 229
looping with, 235
nonescaped values method, 230
rendering content on existence of values,

231
connection model

about, 44, 46

558 | Index

example of, 46
privacy considerations, 46

connections (see friends and connections)
contact information, 386
contact methods

group model and, 48
social gaming applications, 29
Twitter, 45

containers, defined, 2
(see also social application containers)

Content node (gadget XML file)
about, 75, 82
building gadget example, 91
building gadget XML file, 122
Caja example, 283
canvas view, 83
creating cascading Content sections, 85
creating Content section, 84
creating multiple Content sections, 84
creating section with multiple views, 85
creating subviews, 88
default view, 83
defining content views, 83–89
defining error view states, 88
home view, 83
href attribute, 82, 212
inline versus proxy content, 84, 89–91, 216
making signed requests, 195
navigating between views, 86
passing data between views, 86
preferred_height attribute, 82, 96
preferred_width attribute, 82
preview view, 83
profile view, 83
putting social information together, 172–

174
templating support, 219
type attribute, 82
view attribute, 82, 85

content offers
about, 420
ctype parameter, 420
description parameter, 420
tags parameter, 420
title parameter, 420
url parameter, 420

$(Context) variable
about, 226, 227
looping content and, 234, 235

copycat view applications, 23
core API server specification

about, 129, 130
implementation requirements, 130

core gadget container specification
about, 129, 130
implementation requirements, 131

Crockford, Douglas, 284
cross-site scripting (XSS), 10
$(Cur) variable, 227

D
data permissions

about, 372
friend permissions

friends_about_me, 373
friends_activities, 373
friends_birthday, 373
friends_checkins, 373
friends_education_history, 373
friends_events, 373
friends_groups, 373
friends_hometown, 373
friends_interests, 373
friends_likes, 373
friends_location, 373
friends_notes, 373
friends_online_presence, 373
friends_photos, 373
friends_photo_video_tags, 373
friends_relationships, 374
friends_relationship_details, 373
friends_religion_politics, 374
friends_status, 374
friends_videos, 374
friends_website, 374
friends_work_history, 374
manage_friendlists, 373

user permissions
ads_management, 373
email, 373
read_friendlists, 373
read_insights, 373
read_mailbox, 373
read_requests, 373
read_stream, 373
user_about_me, 373
user_activities, 373
user_address, 373

Index | 559

user_birthday, 373
user_checkins, 373
user_education_history, 373
user_events, 373
user_groups, 373
user_hometown, 373
user_interests, 373
user_likes, 373
user_location, 373
user_mobile_phone, 373
user_notes, 373
user_online_presence, 373
user_photos, 373
user_photo_video_tags, 373
user_relationships, 374
user_relationship_details, 373
user_religion_politics, 374
user_status, 374
user_videos, 374
user_website, 374
user_work_history, 374
xmpp_login, 374

data pipelining
about, 203–206
adding content to data objects, 213
client-server environment and, 212–215
data request types, 206–211
dynamic paramers, 216–218
error handling, 215
getting data objects, 212
listening for changes to data objects, 214
marrying with templating, 236, 259–263
proxied data requests and, 211
using values as attributes, 218

data requests, 366
(see also signed requests)
for activity data, 210
AJAX, 187
checking, 376
for container data, 206
defining, 205
dynamic parameters, 216–218
error message parameters

error, 378
error_description, 378
error_uri, 378

external data, 187, 207
making and parsing, 331
osapi.http class and, 187–188

owner data, 209
for people data, 208
provider error messages

access_denied, 378
invalid_client, 378
invalid_request, 378
invalid_scope, 379
redirect_uri_mismatch, 379
unauthorized_client, 379
unsupported_response_type, 379

pushing content with, 190
securing data connections, 191–199
sending login information with, 318
standard, 188–190
three-legged OAuth example, 337–341,

345–348
tracking access token expiration, 377
viewer data, 209

DataRequest tag (see os:DataRequest tag)
debugging

OpenID issues, 494–495
request issues, 376–380
signature issues, 348–352

default view
about, 16
Content node and, 83

deferred loading approach, 20
DELETE request, 187
direct relationships, 40
direct sharing

about, 184
balanced sharing and, 186
passive sharing versus, 183

dismissible messages
creating, 101
defined, 100

distributed web frameworks
about, 256, 381
Activity Streams specification, 256, 401–

409
future considerations, 256
OExchange protocol and, 382, 414–422
Open Graph protocol and, 258, 382
PubSubHubbub protocol and, 257, 422–

437
Salmon protocol and, 258, 438–443
WebFinger protocol and, 381, 410–414

document.createElement method, 269
Dojo library, 286

560 | Index

DOM nodes
dynamically creating, 220
innerHTML method, 221
positioning messages, 103

dom object
about, 294
append method, 294
combine method, 294
count method, 294
ephemeral method, 294
fragment method, 294
prepend method, 294
q method, 295–299
remove method, 295
row method, 295
tag method, 295
text method, 295

drive-by downloads, 11
dynamic parameters, 216–218
dynamic-height JavaScript library, 96–98

E
email addresses (see WebFinger protocol)
email, integrating social channels through, 29
embedded applications

building, 7–9
security considerations, 9–11

endpoints
about, 11
FQL and, 135
Link element and, 79
mapping, 133, 135
OpenID authentication flow, 449
signature issues, 349

entities, 382
(see also Open Graph protocol; Salmon
protocol)
defined, 50
defining likes and dislikes, 54–56
relationships versus, 50

entity relationships, 50
enum data type, 82
EnumValue element (UserPref node), 82
eq (equals) operator, 226
error handling, data pipelining, 215
event handlers, triggering, 307
event object

about, 307
altKey property, 307

ctrlKey property, 307
key property, 307
shiftKey property, 307
target property, 307
that property, 307
type property, 307
x property, 307
y property, 307

events, attaching, 306–307
expressions

about, 225
templating and, 225

eXtensible Resource Descriptor (XRD), 417,
419

external data
integrating outside containers, 11
making requests, 187, 207

F
Facebook

about, 51
Activity Streams specification and, 401
as connection model, 46
distributed web frameworks and, 381
as group model, 48, 49
Like button, 54, 383, 390
location-based applications and, 33
OAuth 2 implementation, 361–372
OAuth support, 12, 328
open source initiatives, 51
Pages and Groups mechanisms, 53
porting applications to OpenSocial, 134–

136
proprietary technology and, 6
requesting more social information, 372–

374
site metatagging, 383
social graph example, 51–54

Facebook Query Language (FQL), 135
FarmVille game, 27, 28
<fb:like> XFBML tag, 391, 392
feed applications, 25
feedback, providing and getting, 31
finger command, 410
Flash

inserting into gadgets, 98–99
portable flash applications, 21

flash JavaScript library, 96, 98–99
Flickr

Index | 561

making data requests to, 188–190
message bundles and, 253
OpenID support, 453

follower model
about, 44, 45
example of, 45
privacy considerations, 45

401 (Unauthorized) HTTP status code, 359
403 (Forbidden) HTTP status code, 212
FourSquare

Activity Streams specification and, 401
location-based applications case study, 33–

36
OAuth support, 320

FQL (Facebook Query Language), 135
friends and connections

increasing audience with, 170
social graph and, 4, 54
as social information, 3

friendship-based social gaming (see social
gaming applications)

G
gadget XML specification

about, 75
building gadget XML file, 121–125
Content node, 75, 82–91
creating gadget example, 172
displaying gadget using Shindig, 125
displaying messages to users, 100–108
dynamically setting view height, 96–98
extending Shindig, 117–121
including JavaScript libraries, 96
inserting Flash movies into gadgets, 98–99
integrating tabbed user interface, 111–117
Module node, 75
ModulePrefs node, 75, 76–81
running Caja, 281–283
saving state with user preferences, 108–109
setting titles programmatically, 110
UserPref node, 75, 81–82

gadgets.flash class
embedCachedFlash method, 99
embedFlash method, 98
getMajorVersion method, 99

gadgets.io.makeRequest method, 77
gadgets.Minimessage class

createDismissibleMessage method, 100,
103, 106

createStaticMessage method, 100
createTimerMessage method, 100, 125
dismissMessage method, 102

gadgets.Prefs class
getBool method, 109
getInt method, 109
getString method, 108, 125
set method, 108, 124

gadgets.Tab class
getCallback method, 116
getContentContainer method, 116
getIndex method, 116
getName method, 117
getNameContainer method, 117

gadgets.TabSet class
addTab method, 111, 113, 114

optParams parameter, 111
tabName parameter, 111

alignTabs method, 115
building gadget XML file, 125
displayTabs method, 115
getHeaderContainer method, 115
getSelectedTab method, 115, 116
getTabs method, 115, 116
removeTab method, 115
setSelectedTab method, 116
swapTabs method, 116

gadgets.views class
getParams method, 87
requestNavigateTo method, 86, 87, 93

gadgets.window class
adjustHeight method, 97, 98
setTitle method, 110

geolocation data, 385
GET request, 187, 204, 316
getComputedStyle function, 268
getDataSet function, 213
getJSON method, 332
gifting services, 32
github social coding site, 125
Google

Caja Playground and, 285
as group model, 48, 49
OAuth support, 318, 320
OpenID support, 447, 453
token-based systems and, 318
WebFinger implementation, 411–413

Google App Engine, 367, 427
Gowalla

562 | Index

Activity Streams specification and, 401
location-based applications case study, 33–

36
greater than (>) operator, 226
greater than or equal to (>=) operator, 226
group model

about, 44, 47
automatic clustering, 49
examples of, 48, 49
privacy considerations, 48, 49
user-defined groups, 48

Groupon (company), 30–32
gt (greater than) operator, 226
gte (greater than or equal to) operator, 226

H
Hadoop framework, 51
height, resizing for current view, 96–98
HMAC-SHA1 signature, 197–199
home view

about, 13
building gadget XML file, 122
Content node and, 83
creating Content sections, 85

hostname discovery, 419
hosts file, 60
HTML tags

activity support, 181
data requests and, 188
passing parameters through custom tags,

225
rendering data with custom tags, 224

HTML, cajoling scripts in, 273–278
HTTP status codes, 212, 359
httpd.conf file, 63
HttpRequest tag (see os:HttpRequest tag)
hubs

about, 422
hosted, 426
PubSubHubbub protocol and, 423–425

hunter selectors (querying methods), 296, 299
Hyves

OpenID support, 447
website, 453

I
Icon element (ModulePrefs node)

about, 77

mode attribute, 78
type attribute, 78

IdP (identity provider), 442
iframes

benefits of, 10
drive-by downloads and, 11
malicious content and, 133
non-social-application constructs and, 134
security considerations, 266, 268
views and, 13

iGoogle, 12
indirect relationships, 40
inline versus proxy content, 84, 89–91, 216
Internationalized Resouce Identifier (IRI), 403
invite event, 80
IRI (Internationalized Resouce Identifier), 403

J
Java Development Kit (JDK), 271
Java language

OpenSocial support, 254
Shindig prerequisites, 59

JavaScript API
data pipelining and, 212
rendering templates and, 222
templating support, 244–249

JavaScript language
ADsafe and, 290
Caja considerations, 273–278, 288, 289
implementing two-legged OAuth, 329–332
JSLint and, 284–285
portable flash applications, 21
putting social information together, 174

JavaScript libraries
dynamic-height, 96–98
extending Shindig, 117–121
flash, 96, 98–99
including, 96
minimessage, 96, 100–108, 122, 125
setprefs, 96, 108–109, 122
settitle, 96, 110
tabs, 96, 111–117
working with Caja, 286

JDK (Java Development Kit), 271
Jive Software, 2
JQuery library, 286
JSLint tool

about, 284
spotting JavaScript issues, 284–285

Index | 563

JSON specification, 284, 404
(see also Activity Streams specification)

JSP expression language, 226
JUnit testing framework, 271

K
keystrokes, logging, 269

L
large views

about, 13
canvas view, 15, 83, 122
default view, 16, 83
preview view, 16, 83
as underdeveloped view, 22

leaderboards, 34
less than (<) operator, 226
less than or equal to (<=) operator, 226
libraries, defining, 307
like promotion, 35
Link element (ModulePrefs node)

about, 79
building gadget example, 92
href attribute, 80, 92
method attribute, 80
rel attribute, 80

Link-based Resource Descriptor (LRDD), 442
LinkedIn site, 381
LiveJournal website, 453
Living Social (company), 30
Locale element (ModulePrefs node)

about, 78
country attribute, 78, 252
lang attribute, 78, 252
language_direction attribute, 78
message bundles and, 252
messages attribute, 79, 252

localization support with message bundles,
251–253

location-based applications
ad targeting, 35
case study overview, 32
local business promotions, 35
meeting friends, 33
offering competition, 34
opt-in sharing model and, 43
providing badges and points, 33

logging keystrokes, 269

login information
sending with requests, 318
storing, 317
token-based systems and, 318

looping content
about, 231
escaped values method, 231–232
looping with conditionals, 235
looping with context, 235
nested repeaters and, 233
nonescaped values method, 233
specifying index variable for repeater, 234

LRDD (Link-based Resource Descriptor), 442
lt (less than) operator, 226
lte (less than or equal to) operator, 226

M
Mac OS X (Leopard) environment

installing Partuza, 67–69
installing Shindig, 59–62

Mafia Wars game
about, 27
allowing user interaction, 28
monetizing, 29
social graph in, 28

malicious content
drive-by downloads, 11
iframes and, 133

man-in-the-middle attack, 323, 466
markup layer

Caja considerations, 288, 311
templating and, 19

mayorships, 34
message bundles

about, 252
localization support, 251–253

messages
creating, 100–103
displaying to users, 100
positioning in windows, 103–105
styling content, 105–108

<meta> tag
about, 383
fb:admins property, 392
og:audio property, 388
og:audio:album property, 388
og:audio:artist property, 388
og:audio:title property, 388
og:audio:type property, 388

564 | Index

og:country-name property, 385
og:description property, 385
og:email property, 386
og:fax_number property, 386
og:image property, 384
og:latitude property, 385
og:locality property, 385
og:longitude property, 385
og:phone_number property, 386
og:postal-code property, 385
og:region property, 385
og:site_name property, 385
og:street-address property, 385
og:title property, 384, 396
og:type property, 384, 388
og:url property, 384
og:video property, 387
og:video:height property, 387
og:video:type property, 387
og:video:width property, 387

metadata
audio data, 387
contact information, 386
defining products using object types, 388–

390
geolocation data, 385
page, 384
rise and fall of, 382
video data, 387

minimessage JavaScript library
about, 96, 100
building gadget XML file, 122, 125
creating messages, 100–103
positioning message windows, 103–105
styling messages and windows, 105–108

Mixi website, 453
mmlib_table class, 107
mmlib_xlink class, 107
Model-View-Controller (MVC) design

patterns, 112, 135
models (see application models)
Module node (gadget XML file), 75
ModulePrefs node (gadget XML file), 76

(see also Require element (ModulePrefs
node))
about, 75
author attribute, 76
author_email attribute, 76
building gadget example, 91

building gadget XML file, 122
configuring applications with, 76–81
description attribute, 76
Icon element, 77
Link element, 79, 92
Locale element, 78, 252
marrying data pipelining and templating,

237
message bundles and, 253
Optional element, 76
Preload element, 77, 90, 92
screenshot attribute, 76
thumbnail attribute, 76
title attribute, 76
title_url attribute, 76

monetizing applications
quick-start tips, 37
social gaming applications, 29
unmonetized approach, 24

$(Msg) variable, 253
MVC (Model-View-Controller) design

patterns, 112, 135
$(My) variable, 228
MyOpenID website, 453
MySpace

OAuth support, 12
OpenID support, 453

MySQL databases
MSI installer, 70
Partuza requirements, 69

N
namespaces, template libraries, 242
National Institute of Standards and Technology

(NIST), 465
navigating between views, 86
neq (not equals) operator, 226
.NET platform, 254
newDataRequest method, 168
news feeds (see activity streams)
NIST (National Institute of Standards and

Technology), 465
not (!) operator, 226
not equals (!=) operator, 226
notifications, integrating social channels

through, 29

Index | 565

O
OAuth (Open Authentication)

application permissions, 18
combining OpenID with, 12
iframes and, 134
OpenID and, 468
popularity of, 12
signed requests and, 193–199

OAuth 1.0a standard
about, 318
debugging signature issues, 348–352
end-user experience, 327–329
three-legged implementation example, 332–

348
two-legged versus three-legged, 329–332
workflow process

about, 319
exchanging request tokens for access

tokens, 325–327
getting request tokens, 321–323
getting user-verified request token, 323–

325
obtaining consumer key and secret, 319

OAuth 2 standard
about, 352
debugging request issues, 376–380
end-user experience, 375
Facebook implementation example, 361–

372
Facebook support, 51
requesting more social information, 372–

374
workflow process

about, 353
fetching access tokens, 356–358, 365
granting protected resources, 358
making signed requests, 366
refreshing access tokens, 360
requesting authorization, 354, 364

object attributes
attachments, 404
author, 404
content, 404
displayName, 405
downstreamDuplicates, 405
duration, 406
height, 406
id, 405
image, 405

objectType, 405
published, 405
summary, 405
updated, 405
upsteramDuplicates, 405
url, 405, 406
width, 406

object types
about, 406
defining products using, 388–390
general types

article, 407
audio, 407
badge, 407
bookmark, 407
collection, 407
comment, 407
event, 407
file, 407
group, 407
image, 407
note, 407
person, 407
place, 407
product, 407
question, 407
review, 407
service, 407
video, 407

Objective-C language, 254
OExchange protocol

about, 382, 414
implementing, 416–422
primary uses for, 415
process overview, 414

onclick event handler, 86
one-to-few cluster, 41, 48
onkeypress event, 271
Open Authentication (see OAuth)
Open Graph consumers, 383, 392
Open Graph producers, 383, 392
Open Graph protocol

about, 258, 382
capturing data from web sources, 392–399
Facebook example, 390–392
Facebook support, 51
implementing, 384–390
main elements, 383
metadata and, 382

566 | Index

shortcomings, 400
open standards

benefits of, 6
drawbacks of, 6

OpenID (Open Identification)
about, 12, 445–446
Attribute Exchange extension, 456, 457–

463
authentication flow

about, 447
performing discovery, 449
providing passed or failed state, 452
requesting authentication, 449–452
requesting login, 448

bypassing domain discovery errors, 453–
455

checking account existence, 447
combining OAuth with, 12
common errors, 494–495
debugging, 494–495
decentralization and, 446
extensions under development, 467–469
implementation example, 469
implementing using PHP, 469–482
implementing using Python, 482–494
Provider Authentication Policy Extension,

456, 463–467
provider support, 453
signing up for accounts, 447
Simple Registration extension, 456

openid.assoc_handle request parameter, 451
openid.assoc_handle response parameter, 452
openid.claimed_id request parameter, 451
openid.claimed_id response parameter, 451
openid.identity request parameter, 451
openid.identity response parameter, 451
openid.invalidate_handle response parameter,

452
openid.mode request parameter, 451
openid.mode response parameter, 451
openid.ns request parameter, 451
openid.ns response parameter, 451
openid.op_endpoint response parameter, 451
openid.realm request parameter, 451
openid.response_nonce response parameter,

451
openid.return_to request parameter, 451
openid.return_to response parameter, 451
openid.sig response parameter, 452

openid.signed response parameter, 452
openid.sreg.country property, 456
openid.sreg.dob property, 456
openid.sreg.email property, 456
openid.sreg.fullname property, 456
openid.sreg.gender property, 456
openid.sreg.language property, 456
openid.sreg.nickname property, 456
openid.sreg.postcode property, 456
openid.sreg.timezone property, 456
OpenLike protocol

about, 54
integrating widget, 54
shared likes and, 55

opensocial class
newActivity method, 183
newDataRequest method, 168
newMediaItem method, 182

OpenSocial container specification, 136
(see also Person class)
about, 130, 132
capturing user profile, 168–170
cross-container development and porting,

132–134
evaluating container support, 127–129
future considerations, 255
porting applications from Facebook, 134–

136
PubSubHubbub and, 257
templating approach, 221

OpenSocial Markup Language (OSML), 249–
251

OpenSocial specification, 95
(see also gadget XML specification;
JavaScript libraries; Person class)
about, 12
Activity Streams specification and, 257
addapp event, 80
app event, 80
building gadget example, 92
capturing user profile, 168–170
core components, 129–132
cross-container development and porting,

132–134
displaying gadgets, 65
distributed web frameworks, 256–259
evaluating container support, 127–129
future considerations, 254–256
gadget XML specification, 75

Index | 567

invite event, 80
JavaScript API and, 244–249
Open Graph protocol and, 259
porting applications from Facebook, 134–

136
PubSubHubbub and, 257
removeapp event, 80
REST client libraries and, 254
running Caja with gadgets, 281–283
Salmon protocol and, 258
Shindig support, 57, 62
templating approach, 221
wiki location, 83

opensocial.Activity.Field.MEDIA_ITEMS, 183
opensocial.Address class

about, 162
fields available

COUNTRY, 162
EXTENDED_ADDRESS, 162
LATITUDE, 162
LOCALITY, 162
LONGITUDE, 162
POSTAL_CODE, 162
PO_BOX, 162
REGION, 163
STREET_ADDRESS, 163
TYPE, 163
UNSTRUCTURED_ADDRESS, 163

opensocial.BodyType class
about, 163
fields available

BUILD, 163
EYE_COLOR, 163
HAIR_COLOR, 163
HEIGHT, 163
WEIGHT, 163

opensocial.Email class
about, 163
fields available

ADDRESS, 164
TYPE, 164

opensocial.Enum class
about, 164
fields available

Drinker, 164
Gender, 164
LookingFor, 164
Presence, 165
Smoker, 165

opensocial.Name class
about, 165
fields available

ADDITIONAL_NAME, 165
FAMILY_NAME, 165
GIVEN_NAME, 166
HONORIFIC_PREFIX, 166
HONORIFIC_SUFFIX, 166
UNSTRUCTURED, 166

opensocial.Organization class
about, 166
fields available

ADDRESS, 166
DESCRIPTION, 166
END_DATE, 167
FIELD, 167
NAME, 167
SALARY, 167
START_DATE, 167
SUB_FIELD, 167
TITLE, 167
WEBPAGE, 167

opensocial.Person class (see Person class)
opensocial.Phone class

about, 167
fields available

NUMBER, 167
TYPE, 167

opensocial.template namespace object
about, 245
disableAutoProcessing method, 246
getTemplate method, 245, 246, 248
process method, 245

opensocial.template.Template class
render method, 246
renderInto method, 246

opensocial.Url class
about, 167
fields available

ADDRESS, 168
LINK_TEXT, 168
TYPE, 168

opt-in sharing model, 43
opt-out sharing model, 44
Optional element (ModulePrefs node)

about, 76
feature attribute, 76

or (||) operator, 226
Orange website, 453

568 | Index

Orkut
distributed web frameworks and, 381
OAuth support, 12

os namespace, 242
<os:ActivityRequest> tag

about, 210
activityIds attribute, 211, 217
appId attribute, 211
count attribute, 211, 217
fields attribute, 211, 217
groupId attribute, 211, 217
key attribute, 211
startIndex attribute, 211, 217
startPage attribute, 211
userId attribute, 211, 217

osapi.activities class
create method, 180

activity parameter, 180
appId parameter, 180
auth parameter, 180
groupId parameter, 180
userId parameter, 180

get method, 179
osapi.http class

delete method, 187, 188
get method, 187, 188, 195
post method, 187, 188, 191
put method, 187, 188
request parameters

authz, 188
body, 188
format, 188
headers parameter, 188
oauth_request_token, 188
oauth_request_token_secret, 188
oauth_service_name, 188
oauth_token_name, 188
oauth_use_token, 188
refreshInterval, 188
sign_owner, 188
sign_viewer, 188

osapi.people class
get method, 137, 171
getOwner method, 140, 169
getOwnerFriends method, 140
getViewer method, 138, 169
getViewerFriends method, 139

<os:Badge> tag, 249, 251
<os:DataRequest> tag

about, 206
dynamic attributes, 207
key attribute, 207
method attribute, 207

<os:Html> tag, 238
<os:HttpRequest> tag

about, 205, 207
authz attribute, 207
format attribute, 207
href attribute, 207
key attribute, 207
marrying data pipelining and templating,

237
method attribute, 208
oauth_request_token attribute, 208
oauth_request_token_secret attribute, 208
oauth_service_name attribute, 208
oauth_token_name attribute, 208
oauth_use_token attribute, 208
params attribute, 208, 217
refreshInterval attribute, 208
sign_owner attribute, 208
sign_viewer attribute, 208

<os:If> tag
conditional statements and, 229, 230
escaped versions of comparison operators,

226
OSML (OpenSocial Markup Language), 249–

251
<os:Name> tag, 249, 250
<os:OwnerRequest> tag

about, 209
fields attribute, 210, 217
key attribute, 210

<os:PeopleRequest> tag
about, 208
count attribute, 209, 217
fields attribute, 209, 217
filterBy attribute, 209, 217
filterOp attribute, 209, 217
filterValue attribute, 209, 217
groupId attribute, 209, 217
key attribute, 209
sortBy attribute, 209, 217
sortOrder attribute, 209, 217
startIndex attribute, 209, 217
userId attribute, 209, 217

<os:PeopleSelector> tag
about, 249, 250

Index | 569

group attribute, 250
inputName attribute, 250
max attribute, 250
multiple attribute, 250
onselect attribute, 250
var attribute, 250

<os:Render> tag, 239–240, 249, 251
<os:Repeat> tag

conditional statements and, 229
looping content and, 233, 236

<os:ViewerRequest> tag
about, 209
fields attribute, 210, 217
key attribute, 210

oversharing applications, 24
OwnerRequest tag (see os:OwnerRequest tag)

P
page metadata, 384
page permissions

about, 374
manage_pages, 374

PAPE (Provider Authentication Policy
Extension), 456, 463–467

Partuza
about, 66
installation requirements, 66
installing on Mac OS X, 67–69
installing on Windows, 69–74
testing installation, 75

passive sharing
about, 185
balanced sharing and, 186
direct sharing versus, 183

pecker selectors (querying methods), 296–299
PeopleRequest tag (see os:PeopleRequest tag)
Perl language, 254
permission scopes, defined, 17
permissions

application, 17
data, 372
page, 374
publishing, 374

Person class, 137
(see also osapi.people class)
about, 136
data extraction methods

getAppData method, 136
getDisplayName method, 136

getField method, 136
getId method, 136
isOwner method, 136
isViewer method, 136

field extensions
opensocial.Address fields, 162
opensocial.BodyType fields, 163
opensocial.Email fields, 163
opensocial.Enum fields, 164
opensocial.Name fields, 165
opensocial.Organization fields, 166
opensocial.Phone fields, 167
opensocial.Url fields, 167

fields available
about, 141
ABOUT_ME, 142
ACTIVITIES, 142
ADDRESSES, 142
AGE, 143
BODY_TYPE, 143
BOOKS, 143
CARS, 144
CHILDREN, 144
CURRENT_LOCATION, 145
DRINKER, 145
EMAILS, 146
ETHNICITY, 146
FASHION, 146
FOOD, 147
GENDER, 147
HAPPIEST_WHEN, 147
HAS_APP, 148
HEROES, 148
HUMOR, 149
ID, 149
INTERESTS, 149
JOBS, 150
JOB_INTERESTS, 150
LANGUAGES_SPOKEN, 150
LIVING_ARRANGEMENT, 151
LOOKING_FOR, 151
MOVIES, 151
MUSIC, 152
NAME, 152
NETWORK_PRESENCE, 152
NICKNAME, 153
PETS, 153
PHONE_NUMBERS, 154
POLITICAL_VIEWS, 154

570 | Index

PROFILE_SONG, 154
PROFILE_URL, 155
PROFILE_VIDEO, 155
QUOTES, 156
RELATIONSHIP_STATUS, 156
RELIGION, 156
ROMANCE, 157
SCARED_OF, 157
SCHOOLS, 157
SEXUAL_ORIENTATION, 158
SMOKER, 158
SPORTS, 158
STATUS, 159
TAGS, 159
THUMBNAIL_URL, 160
TIME_ZONE, 160
TURN_OFFS, 160
TURN_ONS, 161
TV_SHOWS, 161
URLS, 161

PHP language
building publishers in, 428–430
building subscribers in, 433–435
cURL library, 411
implementing OAuth 1.0a, 334–341
implementing Open Graph, 393–396
implementing OpenID, 469–482
OpenSocial support, 254
Partuza requirements, 66
phpMyAdmin requirements, 71
Shindig prerequisites, 59, 62

PHP OAuth library, 198
phpMyAdmin utility, 71
pipelining (see data pipelining)
porting applications

cross-container, 132–134
from Facebook to OpenSocial, 134–136
portable flash application use case, 21

POST request, 187, 190, 316
preferences (see user preferences)
Preload element (ModulePrefs node)

about, 77
authz element, 77
building gadget example, 92
href element, 77
proxy content and, 90

preview view
about, 16
Content node and, 83

privacy considerations
clustering users and, 42
connection model, 46
follower model, 45
group model, 48, 49

product sales applications
case study overview, 30
feedbackup support, 31
gifting services, 32
innovation in, 31
reasons for success, 31

profile view
about, 14
building gadget XML file, 122
Content node and, 83
creating Content sections, 85
defining, 86

promoting
applications with activities, 178–183
local businesses, 35

property selectors (querying methods), 297
proprietary implementations, 5
Prototype library, 286
Provider Authentication Policy Extension

(PAPE), 456, 463–467
proxy versus inline content, 84, 89–91, 216
public key certificates, 196
publishers

benefits, 425
building in PHP, 428–430
building in Python, 430–432
performing discovery, 418
publisher clients, 427
PubSubHubbub protocol and, 422–425
Salmon protocol workflow and, 438–441
sending content offers, 420–422
service providers and, 416–418

publishing permissions
about, 374
create_event, 374
offline_access, 374
publish_checkins, 374
publish_stream, 374
rsvp_event, 374
sms, 374

PubSubHubbub protocol
about, 257, 422
benefits, 425
building publishers in PHP, 428–430

Index | 571

building publishers in Python, 430–432
building subscribers in PHP, 433–435
building subscribers in Python, 435–437
hosted hubs, 426
implementation services, 426
process overview, 422–425
Salmon protocol and, 441
workflow libraries, 427

PUT request, 187
putDataSet method, 213, 223
Python language

building publishers in, 430–432
bulding subscribers in, 435–437
implementing OAuth 1.0a, 342–348
implementing OAuth 2, 367–372
implementing Open Graph, 396–399
implementing OpenID, 482–494
OpenSocial support, 254
PycURL library, 411

Q
querying methods

attribute selectors, 297
DOM selection and, 295
hunter selectors, 296, 299
pecker selectors, 296–299
property selectors, 297
state selectors, 298

R
RabbitHub erlang implementation, 427
real identity, 51
registerListener method, 214
relationship models

about, 44
connection model, 44, 46–47
follower model, 44, 45–46
group model, 44, 47–50

relationships
categorizing in relevance tiers, 40
direct, 40
entities versus, 50
indirect, 40
one-to-few cluster, 41
privacy and security considerations, 42
social graph and, 41–43

remote procedure call (RPC), 130
removeapp event, 80

Representational State Transfer (REST)
client libraries, 254
core API server specification and, 130

request tokens
exchanging for access tokens, 325–327,

337–341, 345–348
getting, 321–323, 335–337, 344–345
getting user-verified, 323–325
request parameters

callback_url, 323
oauth_callback, 322, 336
oauth_consumer_key, 322
oauth_nonce, 322
oauth_signature, 322
oauth_signature_method, 322
oauth_timestamp, 322
oauth_version, 322

response parameters
oauth_callback_confirmed, 323
oauth_expires_in, 323
oauth_token, 323, 337
oauth_token_secret, 323, 337

requests (see data requests)
Require element (ModulePrefs node)

about, 76
adding Caja to gadgets, 282
creating Content section, 84
dynamic-height JavaScript library, 97
extending Shindig with JavaScript libraries,

120
feature attribute, 76, 205
flash JavaScript library, 98
including JavaScript libraries, 96
marrying data pipelining and templating,

237
minimessage JavaScript library, 100
osapi namespace and, 188
setprefs JavaScript library, 108
settitle JavaScript library, 110
tabs JavaScript library, 111
templating support, 219

REST (Representational State Transfer)
client libraries, 254
core API server specification and, 130

ReWriteRule configuration directive (Apache),
65

RPC (remote procedure call), 130
RSA-SHA1 signature, 196–197
RSS feeds, 25

572 | Index

Ruby language, 254

S
Salmon protocol

about, 258, 438
abuse and spam protection, 441
implementation overview, 442–443
PubSubHubbub protocol and, 441
workflow process, 438–441

same-origin policy, 10
<script> tag

type attribute, 205, 219, 222
xmlns:os attribute, 205

security, 11
(see also ADsafe; Caja)
clustering users and, 42
cross-site scripting, 10
drive-by downloads, 11
embedded applications and, 9–11
iframes and, 266, 268
older browsers and, 10
permission scopes and, 17
same-origin policy, 10
securing applications, 11
signed requests and, 191–199

service providers
content offers and, 420–422
OpenID support, 453
performing discovery on, 418
publishers and, 416–418

services
gifting, 32
like promotion, 35
quick-start tips, 37
social graphs and, 40
trust relationship with, 42

setprefs JavaScript library
about, 96, 108–109
building gadget XML file, 122

setTimeout function, 102, 293
settitle JavaScript library, 96, 110
ShareThis system, 416
sharing data

balanced sharing, 186
direct versus passive, 183–187
opt-in sharing model, 43
opt-out sharing model, 44
oversharing applications, 24

Shindig

about, 57
Caja support, 282
displaying gadgets, 125
extending with JavaScript libraries, 117–

121
installation prerequisites, 58
setting up, 58–64
testing installation, 65

signature issues
double encoding parameters, 349
incorrect URI endpoints, 349
invalid methods, 351
token expiration, 351
“signature invalid” response, 349
“signature mismatch” response, 349

signed requests
making, 194, 366
oauth_consumer_key parameter, 193, 197
oauth_nonce parameter, 193
oauth_signature parameter, 193
oauth_signature_method parameter, 193,

197
oauth_timestamp parameter, 193
oauth_token parameter, 193
opensocial_app_id parameter, 193
opensocial_app_url parameter, 193
opensocial_instance_id parameter, 193
opensocial_owner_id parameter, 193
opensocial_viewer_id parameter, 193
securing data connections with, 191–194
validating on servers, 194–199
xoauth_public_key parameter, 193
xoauth_signature_publickey parameter,

197
Simple Registration (SREG) extension, 456
small views

about, 12
default view, 16, 83
home view, 13, 83, 85, 122
preview view, 16, 83
profile view, 14, 83, 85, 122
as underdeveloped view, 22

Smalltalk language, 254
social API server specification

about, 130, 131
implementation requirements, 131

social application containers
about, 2
additional code examples, 2

Index | 573

Apache Shindig support, 57–66
application content, 82–91
application model case studies, 26–36
application model issues, 21–26
application permission concepts, 17
application views, 12–17
building gadget example, 91–93
categories of information in, 3
client-server considerations, 19–21
configuring applications with ModulePrefs,

76–81
deferred loading approach, 20
defined, 1
defining user preferences, 81–82
embedded application security, 9–11
embedded applications, 7–9
external applications and, 11
gadget XML specification, 75
issues affecting, 8
news feed in, 3, 4
OpenSocial support, 75
Partuza support, 66–75
promoting applications with activities, 178–

183
proprietary versus open standards, 5–7
quick-start tips, 36–38
securing applications, 11
social graph in, 3, 4
user profile in, 3

social entities (see entities)
social gadget container specification

about, 130, 132
implementation requirements, 132

social gaming applications
allowing user interaction, 28
building up a social graph, 27
case study overview, 26
contact methods in, 29
monetizing, 29
providing benefits for actions in, 28
user targeting, 27

social graph, 382
(see also OExchange protocol; Open Graph
protocol; OpenID; WebFinger protocol)
about, 3, 4, 39–41
applying online, 41–43
avoiding irrelevant, 53
building in social gaming applications, 27
building social relevance, 51–54

defining entity likes and dislikes, 54–56
Facebook example, 51–54
relationship models and, 44–50
relationships versus entities, 50
sharing private user data, 43–44

social information, 136
(see also Person class)
capturing user profile, 168–170
categories of, 3
creating gadget example, 171–175
cross-container development and porting,

132
evaluating OpenSocial container support,

127–129
Facebook OAuth process, 372–374
future considerations, 255
OAuth workflow and, 319
OpenSocial specification core components,

129–132
personalizing applications, 136
porting applications from Facebook to

OpenSocial, 134–136
social scopes, defined, 18
special variables

$(Context) variable, 226, 227, 234, 235
$(Cur) variable, 227
$(My) variable, 228
templating and, 226
$(Top) variable, 228

SREG (Simple Registration) extension, 456
standards, proprietary versus open, 5–7
Starbucks partnership example, 35
state

providing during authentication flow, 452
saving with user preferences, 108–109

state selectors (querying methods), 298
static messages

creating, 101
defined, 100

Subfeedr Perl implementation, 427
SubHub Django integrated hub, 427
subscribers

benefits, 425
building in PHP, 433–435
building in Python, 435–437
PubSubHubbub protocol and, 422–425
Salmon protocol workflow and, 438–441
subscriber clients, 427

Subversion version control system, 271

574 | Index

subviews, creating, 87
Superfeedr hosted hub, 427
SurveyGizmo app, 2

T
tabbed user interface

basic gadget, 112
creating tabs from JavaScript, 113–114
creating tabs from markup, 112
getting and setting information, 114–117
integrating, 111

tablib_table class, 123
tabs JavaScript library, 96, 111–117
tags, avoiding container-specific, 133
targeting, user

location-based applications, 35
quick-start tips, 36
social gaming applications, 27

template libraries
about, 240
creating, 241–244
loading, 244

templating
about, 218–219
approaches to markup and data, 219–222
conditional statements and, 229–231
expressions and, 225
JavaScript API, 244–249
looping content and, 231–236
markup layer and, 19
marrying data pipelining with, 236, 259–

263
OSML support, 249–251
rendering templates, 222–225
special tags, 238–240, 249–251
special variables and, 226–228
template libraries, 240–244

testing
JUnit testing framework and, 271
Partuza installation, 75
Shindig installation, 65

three-legged OAuth
implementation example, 332–348
two-legged versus, 329–332

timer messages
creating, 102
defined, 100

titles, setting programmatically, 110
token-based systems

about, 318
exchanging request tokens for access

tokens, 325–327, 337–341, 345–
348

fetching access tokens, 356–358, 365
getting request tokens, 321–323, 335–337,

344–345
getting user-verified request token, 323–

325
granting protected resources, 358
making signed requests, 366
obtaining authorization, 369–372
obtaining consumer key and secret, 319
refreshing access tokens, 360
requesting authorization, 354, 364
signature issues, 351

$(Top) variable, 228
trust relationship

with services, 42
with applications, 185
with users, 187

Twitter
Activity Streams specification and, 401
as follower model, 45
OAuth support, 319, 328
token-based systems and, 318

two-legged OAuth
implementing in JavaScript, 329–332
workflow process, 329

U
unmonetized applications, 24
update streams (see activity streams)
user clustering (see clustering users)
user preferences

defining, 81–82
saving state with, 108–109

user profile, 168
(see also Person class; social profile)
about, 3
capturing, 168–170
OpenID accessing information from, 446

user targeting
location-based applications, 35
quick-start tips, 36
social gaming applications, 27

UserPref node (gadget XML file)
about, 75, 81
building gadget XML file, 122

Index | 575

datatype attribute, 81
default_value attribute, 81
display_name attribute, 81
EnumValue element, 82
name attribute, 81
required attribute, 81
saving state with user preferences, 108
urlparam attribute, 81

UserPrefs reserved word, 217

V
validating signed requests, 194–199
ViewerRequest tag (see os:ViewerRequest tag)
ViewParams reserved word, 217
views

canvas view, 15, 83
copycat view applications, 23
creating Content section with multiple, 85
creating subviews, 87
default view, 16, 83
defining error states, 88
defining for content, 83–89
dynamically setting height of, 96–98
home view, 13, 83, 85
navigating between, 86
passing data between, 86
preview view, 16, 83
profile view, 14, 83, 85
quick-start tips, 37
types of, 12
underdeveloped, 22

viral channels, 52

W
web applications, running Caja from, 279–

281
WebFinger protocol

about, 381, 410
additional information, 413
implementing, 411–413
origin of, 410
shortcomings, 413

WebGlue Ruby implementation, 427
Windows environment

installing Partuza, 69–74
installing Shindig, 62–64

Wolverine Twisted Python implementation,
427

WordPress
OpenID support, 447, 453
PubSubHubbub and, 427

X
xmlns: prefix, 242
XRD (eXtensible Resource Descriptor), 417,

419
XRDS file, 454–455
XSS (cross-site scripting), 10

Y
Yahoo!

OAuth support, 318, 328, 333
OpenID support, 447, 453
token-based systems and, 318

Yahoo! Application Platform (YAP)
distributed web frameworks and, 381
OAuth support, 12, 319

Yahoo! groups, 48
Yahoo! Query Language (YQL)

data requests and, 188
query example, 238
two-legged OAuth and, 330

YAML configuration file, 342
YAP (Yahoo! Application Platform)

distributed web frameworks and, 381
OAuth support, 12, 319

YQL (Yahoo! Query Language)
data requests and, 188
query example, 238
two-legged OAuth and, 330

YUI library, 286

Z
Zynga social gaming company, 27–30

576 | Index

About the Author
Jonathan LeBlanc is a principal technology evangelist and Emmy award–winning
software engineer. Specializing in open source initiatives around the implementation
of social engagement services, Jonathan works with and promotes emerging technol-
ogies to aid in the adoption and utilization of new social development techniques. In
this realm, he has worked on the OpenSocial foundation board. As a software engineer,
Jonathan works extensively with social interaction development on the Web, engaging
in new methods for targeting the social footprint of users to drive the ideal of an open
Web.

Colophon
The animal on the cover of Programming Social Applications is a Diana monkey (Cer-
copithecus diana), an endangered monkey found in areas of West Africa, including
Liberia, Sierra Leone, Ghana, and Côte d’Ivoire. Its name comes from the characteristic
white stripe (or browband) across its forehead, which was thought to resemble the bow
of Diana, the Roman goddess of the hunt. Its dark, sleek fur is contrasted by this telltale
browband, as well as a white throat, underarms, and stripes on the thighs. It is con-
sidered one of the most beautiful of the Old World monkeys.

Diana monkeys dwell in primeval forests. They do not make nests, though they retreat
to higher levels of the trees at night. They’re rarely found on the ground, as they’re able
to sustain their diet of insects, fruit, invertebrates, young leaves, and flowers at all levels
of the canopy. The monkeys’ main predators include leopards, crowned hawk-eagles
and other birds of prey, chimpanzees, and humans. To protect themselves from pred-
ators, Diana monkeys dwell in groups, usually consisting of one male and around 10
reproducing females and their offspring. In addition to alerting their fellow group
members to danger, Diana monkeys sound distinct alarm calls for different predators.
Their reproductive biology isn’t very well understood, but it is known that their mating
system is polygynous, breeding takes place year round, and females generally produce
one offspring at a time.

Diana monkeys are classified as vulnerable by the International Union for Conservation
of Nature (IUCN), mostly due to destruction of habitat and hunting. Like most pri-
mates, they can carry diseases like tuberculosis and yellow fever and spread them to
humans; however, they’re still hunted for food, medical research, and as pets.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	Contents of This Book
	Using an Open Source Technology Stack
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Social Application Container Core
 Concepts
	What Is a Social Application Container?
	The User Profile
	User Friends and Connections
	The User Activity Stream

	Implementing Proprietary Versus Open Standards
	Proprietary Implementation
	Open Source Implementation
	Why This Book Covers Open Standards

	The Embedded Application: Building in a Black Box
	Embedded Application Security
	Cross-Site Scripting
	Same-Origin Policy and Older Browsers
	Drive-by Downloads
	Securing Applications

	The External Application: Integrating Social Data Outside the Container
	Application Views
	The Home View (Small View)
	The Profile View (Small View)
	The Canvas View (Large View)
	The Default View (Any View)

	Application Permission Concepts
	Client-Side Versus Server-Side Applications
	Using Template Systems for the Markup Layer
	Using a Blended Server and Client Environment
	Deferring the Loading of Noncritical Content

	When Good Applications Go Bad
	The Portable Flash Application
	The Underdeveloped View
	The Copycat View Application
	The Oversharing Application
	The Unmonetized Application
	The Feed Application

	Application Model Case Studies
	Case Study: Friendship-Based Social Gaming
	Understanding user targeting
	Building a relevant graph in the game
	Allowing connections to interact with one another in the game
	Providing clear benefits for actions taken in a game
	Integrating social channels through email, notifications, and activities
	Monetizing through the sale of virtual goods

	Case Study: Product Sales Applications
	It’s not all about games
	Taking an old idea and making it new
	Opening up discussions to get and provide feedback
	Gifting a service

	Case Study: Location-Based Applications
	Meeting friends
	Providing badges and points
	Offering competition (mayorships and leaderboards)
	Location- and profile-based ad targeting
	Offering promotions through local businesses

	Quick-Start Tips
	Understand Your Audience
	Build Social Integration Points Early
	Build with Monetization in Mind
	Create Comprehensive Views That Play Off One Another

	Chapter 2. Mapping User Relationships with the
 Social Graph
	The Online Social Graph
	Applying the Real-Life Social Graph Online
	Clustering Users Automatically
	Privacy and Security
	Establishing Trust

	Sharing Private User Data: Opt-in Versus Opt-out
	The Opt-in Sharing Model
	The Opt-out Sharing Model

	Understanding Relationship Models
	The Follower Model
	Example
	Privacy

	The Connection Model
	Example
	Privacy

	The Group Model
	Simple group model: User-defined groups
	Example
	Privacy

	Complex group model: Automatic clustering
	Example
	Privacy

	Relationships Versus Entities
	Building Social Relevance: Exploring the Facebook Social Graph
	Building Upon Real Identity
	Understanding the Viral Channels
	Building User Groups
	Avoiding Irrelevant Social Graphs

	Defining Entity Likes and Dislikes Through the OpenLike Protocol
	Integrating the OpenLike Widget
	How the Shared Likes Appear

	Conclusion

	Chapter 3. Constructing the Foundation of a Social Application Platform
	What You’ll Learn
	Apache Shindig
	Setting Up Shindig
	Installing Shindig on Mac OS X (Leopard)
	Requirements

	Installing Shindig on Windows
	Requirements

	Testing Your Shindig Installation

	Partuza
	Requirements
	Installing Partuza on Mac OS X (Leopard)
	Installing Partuza on Windows
	Testing the Partuza Installation

	The OpenSocial Gadget XML Specification
	Configuring Your Application with ModulePrefs
	Require/Optional
	Preload
	Icon
	Locale
	Link

	Defining User Preferences
	Enum Data Types

	Application Content
	Defining Content Views
	Creating a Content section
	Creating multiple Content sections
	Creating one Content section with multiple views
	Creating cascading Content sections
	Navigating between views
	Passing data between views
	Creating and working with subviews
	Defining error view states

	Inline Versus Proxy Content

	Putting It All Together

	Chapter 4. Defining Features with OpenSocial JavaScript References
	What You’ll Learn
	Including the OpenSocial Feature JavaScript Libraries
	Dynamically Setting the Height of a Gadget View
	Inserting Flash Movies in Your Gadget
	Displaying Messages to Your Users
	Creating a Message
	Dismissible messages
	Static messages
	Timer messages

	Positioning the Message Windows
	Positioning a single message
	Positioning all messages

	Styling the Message and Window
	Styling message content
	Styling a single message window
	Styling all displayed message windows

	Saving State with User Preferences
	Setting Your Gadget Title Programmatically
	Integrating a Tabbed Gadget User Interface
	The Basic Gadget
	Creating a Tab from Markup
	Creating a Tab from JavaScript
	Getting and Setting Information About the TabSet
	Aligning tabs
	Showing and hiding tabs
	Obtaining the parent container
	Obtaining the currently selected tab
	Obtaining all tabs
	Removing a tab
	Setting the selected tab
	Swapping tab positions
	Getting and setting information about a tab
	Getting the callback of a tab
	Obtaining the content container
	Obtaining the tab position
	Obtaining the tab name
	Obtaining the tab label

	Extending Shindig with Your Own JavaScript Libraries
	Putting It All Together
	Building the Gadget XML File
	Displaying the Gadget Using Shindig

	Chapter 5. Porting Applications, Profiles, and
 Friendships
	What You’ll Learn
	Evaluating OpenSocial Container Support
	Core Components of the OpenSocial Specification
	Core API Server Specification
	Core Gadget Container Specification
	Social API Server Specification
	Social Gadget Container Specification
	OpenSocial Container Specification

	Cross-Container Development and Porting
	Use a Blended Client-Server Environment
	Decouple Social Features from Mainstream Application Code
	Avoid Using Container-Specific Tags

	Porting Applications from Facebook to OpenSocial
	Employ iframes for Non-Social-Application Constructs
	Abstract Facebook Function Logic
	Separate Visual Markup from Programming Logic
	Use REST Endpoints, Not FQL
	Employ a Server-Side Heavy Code Implementation

	Personalizing Applications with Profile Data
	The Person Object
	Person Data Extraction Methods
	osapi.people.get
	Parameter list

	osapi.people.getViewer
	Example request
	Parameter list
	Example request

	osapi.people.getViewerFriends
	Parameter list
	Example request

	osapi.people.getOwner
	osapi.people.getOwnerFriends
	Parameter list
	Example request
	Parameter list

	Fields Available Within the Person Object
	opensocial.Person.Field.ABOUT_ME
	Example request

	opensocial.Person.Field.ACTIVITIES
	opensocial.Person.Field.ADDRESSES
	opensocial.Person.Field.AGE
	opensocial.Person.Field.BODY_TYPE
	opensocial.Person.Field.BOOKS
	opensocial.Person.Field.CARS
	opensocial.Person.Field.CHILDREN
	opensocial.Person.Field.CURRENT_LOCATION
	opensocial.Person.Field.DATE_OF_BIRTH
	opensocial.Person.Field.DRINKER
	opensocial.Person.Field.EMAILS
	opensocial.Person.Field.ETHNICITY
	opensocial.Person.Field.FASHION
	opensocial.Person.Field.FOOD
	opensocial.Person.Field.GENDER
	opensocial.Person.Field.HAPPIEST_WHEN
	opensocial.Person.Field.HAS_APP
	opensocial.Person.Field.HEROES
	opensocial.Person.Field.HUMOR
	opensocial.Person.Field.ID
	opensocial.Person.Field.INTERESTS
	opensocial.Person.Field.JOB_INTERESTS
	opensocial.Person.Field.JOBS
	opensocial.Person.Field.LANGUAGES_SPOKEN
	opensocial.Person.Field.LIVING_ARRANGEMENT
	opensocial.Person.Field.LOOKING_FOR
	opensocial.Person.Field.MOVIES
	opensocial.Person.Field.MUSIC
	opensocial.Person.Field.NAME
	opensocial.Person.Field.NETWORK_PRESENCE
	opensocial.Person.Field.NICKNAME
	opensocial.Person.Field.PETS
	opensocial.Person.Field.PHONE_NUMBERS
	opensocial.Person.Field.POLITICAL_VIEWS
	opensocial.Person.Field.PROFILE_SONG
	opensocial.Person.Field.PROFILE_URL
	opensocial.Person.Field.PROFILE_VIDEO
	opensocial.Person.Field.QUOTES
	opensocial.Person.Field.RELATIONSHIP_STATUS
	opensocial.Person.Field.RELIGION
	opensocial.Person.Field.ROMANCE
	opensocial.Person.Field.SCARED_OF
	opensocial.Person.Field.SCHOOLS
	opensocial.Person.Field.SEXUAL_ORIENTATION
	opensocial.Person.Field.SMOKER
	opensocial.Person.Field.SPORTS
	opensocial.Person.Field.STATUS
	opensocial.Person.Field.TAGS
	opensocial.Person.Field.THUMBNAIL_URL
	opensocial.Person.Field.TIME_ZONE
	opensocial.Person.Field.TURN_OFFS
	opensocial.Person.Field.TURN_ONS
	opensocial.Person.Field.TV_SHOWS
	opensocial.Person.Field.URLS

	Extending the Person Object
	Addresses (opensocial.Address)
	Body type (opensocial.BodyType)
	Email (opensocial.Email)
	Enum (opensocial.Enum)
	Name (opensocial.Name)
	Organization (opensocial.Organization)
	Phone (opensocial.Phone)
	Url (opensocial.Url)

	Capturing the User Profile
	Old method
	New method

	Using Friendships to Increase Your Audience
	Making a Request to Capture User Friendships

	Putting It All Together
	The Gadget Specification
	The Content Markup
	The JavaScript
	Running the Gadget

	Chapter 6. OpenSocial Activities, Sharing, and Data
 Requests
	What You’ll Learn
	Promoting Your Applications with OpenSocial Activities
	Personalizing an Application Experience by Consuming Activity Updates
	Driving Application Growth by Producing Activity Updates
	Pushing an activity to the user activity stream
	Setting an update priority
	Including visual media in an update

	Direct Sharing Versus Passive Sharing
	Direct Sharing
	Passive Sharing
	Balanced Sharing

	Making AJAX and External Data Requests
	Making Standard Data Requests
	Pushing Content with Data Requests
	Using Signed Requests to Secure a Data Connection
	Making a signed request
	Validating a signed request on the server
	Making the signed JavaScript request
	Validating the signed request on the server (RSA-SHA1 with public key certificate)
	Validating the signed request on the server (HMAC-SHA1)

	Putting It All Together

	Chapter 7. Advanced OpenSocial and OpenSocial
 Next
	What You’ll Learn
	Data Pipelining
	Data Request Types
	Container requests with <os:DataRequest>
	External data requests with <os:HttpRequest>
	People data requests with <os:PeopleRequest>
	Viewer and owner data requests with os:ViewerRequest and os:OwnerRequest
	Activity data requests with <os:ActivitiesRequest>

	Making Data Available to Proxied Data Requests
	Working with Pipelined Data on the Client
	Getting data objects
	Adding content to an existing data object
	Listening for changes to the data object

	Handling Errors Produced by the Data Pipe
	Dynamic Parameters
	Using values from UserPrefs and ViewParams as attributes
	Using values from a data pipe as attributes

	OpenSocial Templating
	A Different Approach to Markup and Data
	Dynamically creating the DOM nodes
	Building an InnerHTML string
	The OpenSocial templating approach

	Rendering Templates
	Automatic rendering
	Ensuring that data is available for a template prior to loading
	Rerendering templates with updated data sources
	Rendering data using custom tags

	Expressions
	Special Variables
	Context
	Cur
	Explicitly setting the source of cur

	My
	Top

	Conditionals
	Method 1: Escaped values
	Method 2: Nonescaped values
	Rendering content on the existence of a value

	Looping Content
	Method 1: Escaped values
	Method 2: Nonescaped values
	Working with nested repeaters
	Specifying an index variable for the repeater
	Looping with context
	Looping with conditionals

	Marrying Data Pipelining and Templating
	Other Special Tags
	os:Html
	os:Render

	Template Libraries
	Creating a template library
	Loading template libraries

	JavaScript API
	Obtaining and processing the template
	Obtaining the template
	Processing the template

	Rendering the template
	Disabling templating autoprocessing
	Rendering the template to a variable
	Rendering the template to a DOM node

	A practical example

	A Few More Tags: The OpenSocial Markup Language
	Displaying a Person’s Name: os:Name
	Creating a Person Selector: os:PeopleSelector
	Display a Person’s Badge: os:Badge
	Loading External HTML: os:Get

	Localization Support with Message Bundles
	The OpenSocial REST API Libraries
	Which Libraries Are Available

	OpenSocial Next: Areas of Exploration
	Enterprise Containers
	Mobile Transitions
	Distributed Web Frameworks

	OpenSocial and Distributed Web Frameworks
	Activity Streams
	How would this change OpenSocial?

	PubSubHubbub
	How would this change OpenSocial?

	Salmon Protocol
	How would this change OpenSocial?

	Open Graph Protocol
	How would this change OpenSocial?

	Putting It All Together

	Chapter 8. Social Application Security Concepts
	What You’ll Learn
	Hosting Third-Party Code Through iframes
	A Secure Approach: The Caja Project
	Why Use Caja?
	Attack Vectors: How Caja Protects
	Redirecting Users Without Their Consent
	Mining a User’s Browser History
	Arbitrary Code Execution with document.createElement
	Logging the User’s Keystrokes

	Setting Up Caja
	Cajoling Scripts from the Command Line
	Cajoling HTML and JavaScript
	Running the cajoler
	The cajoled HTML
	The cajoled JavaScript

	Modifying the Cajoler Rendering Format

	Running Caja from a Web Application
	Running Caja with an OpenSocial Gadget
	Adding Caja to a Gadget
	A Practical Example

	Using JSLint to Spot JavaScript Issues Early
	Playing in the Caja Playground
	Tips for Working in a Caja Environment
	Implement Code Modularity: Don’t Cajole an Entire Project
	Use Precajoled JavaScript Libraries
	Don’t Rely on Firebug or the Cajoled JavaScript Source Code
	Don’t Embed Events in Markup
	Centralize JavaScript: Request Data and Markup Only

	A Lighter Alternative to Caja: ADsafe
	ADsafe Versus Caja: Which One Should You Use?
	How to Implement ADsafe
	Setting Up the ADSafe Object
	The DOM Object
	DOM Selection with the Query Method
	Working with pecker selectors
	Property selectors
	Attribute selectors
	State selectors

	Building advanced querying methods with hunter and pecker selectors

	Working with Bunch Objects
	Bunch GET methods
	Bunch SET methods
	Bunch miscellaneous methods

	Attaching Events
	Defining Libraries

	Putting It All Together
	The Data Source
	The Head: Script Includes and Styles
	The Body: Markup Layer
	The Body: JavaScript Layer
	The Final Result

	Conclusion

	Chapter 9. Securing Social Graph Access with
 OAuth
	Beyond Basic Auth
	Basic Auth Implementation: How It Works
	The Reasons Against Using Basic Authentication
	The client needs to store login information
	Having to send login information with every request
	Users can’t control or view which applications have their information

	The OAuth 1.0a Standard
	OAuth 1.0a Workflow
	Obtain a consumer key and secret
	Get the request token
	Get the user-verified request token
	Exchange the verified request token for an access token

	The End-User Experience
	Two-Legged Versus Three-Legged OAuth
	Implementing two-legged OAuth in JavaScript
	The includes
	Constructing the OAuth request URI
	Making and parsing the request

	Three-Legged OAuth Implementation Example
	Implementing OAuth 1.0a in PHP
	Common variables and functions
	Request token fetch and authorization forwarding
	Request token exchange and data requests

	Implementing OAuth 1.0a in Python
	Configuration file
	Common variables
	Fetching the request token and forwarding the user for authorization
	Token exchange and making authenticated private data requests

	Tools and Tips for Debugging Signature Issues
	Missing or duplicate parameters
	Double encoding the signature parameters
	Incorrect URI endpoints
	Invalid signature method
	Token expiration

	OAuth 2
	OAuth 2 Workflow
	Steps 1–2: Client requests authorization, and provider grants access
	Steps 3–4: Client requests access token, and provider grants access token
	Steps 5–6: Client requests protected resources, and provider grants protected resources
	Optional steps 7–8: Refreshing the access token

	Implementation Example: Facebook
	Creating your application
	Implementing OAuth 2 using PHP
	Common variables and functions
	Making the authorization request
	Obtaining the access token
	Making signed requests

	Implementing OAuth 2 using Python
	The App Engine configuration file
	Modules, common variables, and paths
	Obtaining authorization, acquiring the access token, and making requests

	Implementation Example: Requesting More User Information in the Facebook OAuth Process
	Data permissions
	Publishing permissions
	Page permissions

	Implementation Example: End-User Experience
	Tips for Debugging Request Issues
	Checking your request data
	Tracking access token expiration
	Responding to error codes

	Conclusion

	Chapter 10. The Future of Social: Defining Social Entities Through Distributed
 Web Frameworks
	What You’ll Learn
	The Open Graph Protocol: Defining Web Pages As Social Entities
	The Rise and Fall of Metadata
	How the Open Graph Protocol Works
	Implementing the Open Graph Protocol
	Defining page metadata
	Specifying geolocation data
	Specifying contact information
	Attaching video data
	Attaching audio data
	Defining products using object types

	A Real-World Example: The Facebook Open Graph
	The markup

	Practical Implementation: Capturing Open Graph Data from a Web Source
	PHP implementation: Open Graph node
	Python implementation: Open Graph node

	The Shortcomings of the Open Graph Protocol
	Inability to implement tiered definitions to differentiate similar objects
	Page versus object definitions

	Activity Streams: Standardizing Social Activities
	Why Do We Need to Define a Standard for Activities?
	Implementing Activity Streams
	Object Types
	General object types

	Verbs
	General verbs

	WebFinger: Expanding the Social Graph Through Email Addresses
	Finger to WebFinger: The Origin of WebFinger
	Implementing WebFinger
	The Shortcomings of the WebFinger Protocol
	Public data
	Provider implementation differences

	OExchange: Building a Social Sharing Graph
	How Does OExchange Work?
	The Uses of OExchange
	Implementing OExchange
	1. Service provider (target) integrates discovery and publishing tools
	2. Publisher (source) performs discovery on service provider
	Directly via the XRD file
	Through hostname discovery
	Through individual page discovery

	3. Publisher sends content offer to service provider

	PubSubHubbub: Content Syndication
	How Does PubSubHubbub Work?
	1. Subscriber polls publisher’s feed
	2. Subscriber requests subscription to the publisher’s feed updates from the hub
	3. Hub verifies subscriber and request
	4. Publisher notifies hub of content updates
	5. Hub shares new content with subscribers

	The Benefits: From Publishers to Subscribers
	Publisher: No repeated polling from multiple sources
	Subscriber: No need for repeated polling
	Publisher and subscriber: Identical content across multiple subscribers

	Hosted Hubs and Implementation Services
	Workflow Libraries
	Subscriber clients
	Publisher clients

	Building a Publisher in PHP
	Building a Publisher in Python
	Building a Subscriber in PHP
	Building a Subscriber in Python

	The Salmon Protocol: Unification of Conversation Entities
	The Salmon Protocol Workflow
	1. Publisher pushes updated content to subscriber
	Subscriber pushes updated content back upstream to publisher
	Publisher pushes updated content to all subscribers

	Building on the Foundation of PubSubHubbub
	Abuse and Spam Protection
	Implementation Overview

	Conclusion

	Chapter 11. Extending Your Social Graph with
 OpenID
	The OpenID Standard
	Decentralization Is Key
	Improvement over Traditional Login
	Accessing the Existing Membership Database and Social Graph

	Do I Already Have an OpenID? How Do I Sign Up for One?
	The OpenID Authentication Flow
	Step 1: Request Login with OpenID Identifier
	Step 2: Perform Discovery to Establish the Endpoint URL
	Step 3: Request User Authentication
	Step 4: Provide Passed or Failed State

	OpenID Providers
	Bypassing Domain Discovery Errors in OpenID
	OpenID Extensions
	Simple Registration Extension
	Attribute Exchange Extension
	Attribute exchange types: Addresses
	Attribute exchange types: Audio and video greetings
	Attribute exchange types: Date of birth
	Attribute exchange types: Email
	Attribute exchange types: Images
	Attribute exchange types: Instant messaging
	Attribute exchange types: Name
	Attribute exchange types: Telephone
	Attribute exchange types: Websites
	Attribute exchange types: Work
	Attribute exchange types: Other personal details and preferences

	Provider Authentication Policy Extension
	Phishing-resistant authentication
	Multifactor authentication
	Physical multifactor authentication
	NIST assurance levels

	Extensions Currently Under Development
	OpenID user interface work group proposal
	Contract exchange
	OpenID and OAuth hybrid extension

	Implementation Example: OpenID
	Implementing OpenID Using PHP
	The discovery form
	The common includes, functions, and globals
	The authentication request
	The authentication callback
	Checking the OpenID authentication state
	Capturing values returned by Simple Registration
	Checking the PAPE policy states
	Capturing values returned by Attribute Exchange

	Implementing OpenID Using Python
	Getting the required OpenID library
	The markup file
	The discovery form
	The authentication request
	OpenID identifier discovery and request setup
	Setting up the OpenID extension requests
	Displaying the authentication login
	Printing messages and initiating program execution

	The authentication callback
	Completing authentication
	Capturing the return values of the OpenID extension requests
	Printing out our response objects

	Common Errors and Debugging Techniques
	Callback URL Mismatch
	Undiscoverable OpenID Identifier

	Conclusion

	Chapter 12. Delivering User-Centric Experiences with Hybrid Auth
	The OpenID OAuth Hybrid Extension
	Current Implementers

	When Should I Use OpenID Versus Hybrid Auth?
	Questions to Ask Yourself Before Choosing
	Does the provider I am working with support hybrid auth? Where can I find out?
	What information about the user am I trying to obtain?

	Pros and Cons: Standard OpenID
	Pros and Cons: Hybrid Auth

	The OpenID OAuth Hybrid Auth Flow
	Step 1â€“2: Perform Discovery (OpenID Steps 1â€“2)
	Step 3: Request User Authentication Permissions
	Step 4: Provide OpenID Approved/Failed State and Hybrid Extension Parameters
	Step 5: Exchange the Preapproved Request Token for an Access Token
	Step 6: Make Signed Requests for Privileged User Data

	Implementation Example: OpenID, OAuth, and Yahoo!
	Application Setup: Getting Your OAuth Keys for the Hybrid Auth Process
	Implementing Hybrid Auth Using PHP
	The discovery form
	The common includes, functions, and globals
	The authentication request
	The authentication callback
	Completing the OpenID process
	Checking the OpenID response and processing the Attribute Exchange data
	Turning the OpenID preapproved request token into an OAuth access token
	Making requests with the OAuth access token

	Implementing Hybrid Auth Using Python
	Library dependencies
	OpenID

	The markup file
	OAuth

	The request form
	Common variables
	The authentication request
	Performing discovery and building an OpenID consumer object
	Attaching extensions and OAuth hybrid parameters

	The authentication callback
	Helpful function and initialization
	Capturing response objects and preparing the OpenID consumer request object
	Completing the OpenID process and extracting the data
	Checking the OpenID status and obtaining the access token
	Making signed requests for protected user resources

	Conclusion

	Appendix. Web Development Core Concepts
	A Brief Tour of Open Source Standards
	What Are the Benefits and Drawbacks of Using Open Source Standards?
	Benefits
	Drawbacks

	Are Open Source Standards the Solution to Everything?

	Web Service APIs
	HTTP Response Status Codes
	Understanding the Same-Origin Policy
	How Is Origin Determined?
	Bypassing the Same-Origin Policy Requirements

	REST Requests
	GET Request
	POST Request
	PUT Request
	DELETE Request
	HEAD Request

	Microformats and the Semantic Web
	Installing Subversion (SVN)
	Installing on Mac OS X
	Installing on Windows

	Installing Apache HTTP Server
	Installing on Mac OS X
	Installing on Windows

	Setting Up Your PHP Environment
	Installing on Mac OS X
	Installing on Windows

	Setting Up Your Python Environment

	Glossary
	Index

