
[1]

www.allitebooks.com

http://www.allitebooks.org

Mapbox Cookbook

Over 35 recipes to design and implement uniquely
styled maps using the Mapbox platform

Bill Kastanakis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mapbox Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1150316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-735-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Bill Kastanakis

Reviewer
Balkan Uraz

Commissioning Editor
Usha Iyer

Acquisition Editors
Vinay Argekar

Shaon Basu

Content Development Editor
Siddhesh Salvi

Technical Editors
Siddhesh Ghadi

Taabish Khan

Copy Editors
Shruti Iyer

Sonia Mathur

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bill Kastanakis has been a software engineer for over 15 years with experience in
desktop, mobile, and web application development. His love for the Mapbox platform
came from a project he worked on in 2010 to build a series of iOS tourist guide apps. With
maps being simplistic in appearance and their customization options being nearly zero,
he discovered the potential of a platform that allows the developer to totally customize the
appearance of maps and the experience of using them.

Bill currently owns MindBomb, which specializes in mobile apps for the iOS platform, and
he is a cofounder of nCoded+ Limited, which builds enterprise mobile and web applications
for casino accounting. He also works as an iOS team lead and architect for one of the most
popular apps in Ireland.

Bill often contributes to presentations as well as writing several mobile development blogs
about new mobile technologies.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Balkan Uraz is a city planner with a master's degree in Geographical Sciences. He has over
18 years of experience in the field of Geographic Information Systems.

Throughout his career, Balkan has worked on several projects with one thing in common:
GIS. In the early days of his career, he worked on projects involving municipal GIS and city
information systems. He has worked on major LBS projects for mobile operators in Turkey
that involve both software development and building data inventories. He cofounded a tech
company that specializes in navigation data collection and products. He has also been a GIS
consultant for major companies operating in the areas of field tracking and real estate. In all
his projects, he has worked around his one passion, which is building up spatial infrastructure.

Balkan is the coauthor of the book Google Maps JavaScript API Cookbook with Alper Dincer,
published by Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface	 iii
Chapter 1: Introduction to Mapbox	 1

Introduction	 1
Creating your own map	 9
Adding vector data	 12
Publishing your map	 18

Chapter 2: Mapbox Services	 23
Introduction	 23
Accessing styled tiles on your map	 26
Creating static images	 31
Finding coordinates for an address 	 33
Finding an address from coordinates	 36
Finding an address on a map click	 38
Getting directions	 40

Chapter 3: TileMill and Mapbox Studio	 45
Introduction	 45
Styling a map with TileMill	 62
Styling a map with Mapbox Studio	 85
Publishing your base map on your server with PHP	 98
Publishing your base map on your server with Node.js	 103

Chapter 4: Mapbox.js	 105
Introduction	 105
Creating a simple map	 106
Changing map properties programmatically	 109
Working with base layers	 114
Adding markers and popups	 118
Clustering markers to improve our map	 123

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Getting mouse coordinates	 129
Working with controls	 133
Adding interactivity to your map with UTFGrid	 137
Creating a choropleth map	 144
Creating a heat map	 151

Chapter 5: Mapbox.js Advanced	 155
Introduction	 155
Adding external data to your map	 156
Adding a time dimension to your map	 160
Comparing two maps at the same time	 168
Adding a WMS layer from GeoServer to your map	 171
Adding ArcGIS layers from a server or from online	 179
Adding Fusion Tables to your map	 186
Adding Foursquare data to your map	 196

Chapter 6: Mapbox GL	 203
Introduction	 203
Integrating your project with Mapbox GL	 204
Creating a basic map using Mapbox GL	 208
Switching between locations programmatically	 214
Adding markers to the map	 218
Switching map styles	 223
Loading GeoJSON and drawing a polyline	 232
Drawing polygons on the map	 237

Index	 245

www.allitebooks.com

http://www.allitebooks.org

iii

Preface
Maps are an essential element in today's location-aware applications, but they lack variation
and customization. The Mapbox platform offers the tools and APIs required to totally
customize, populate, and publish a map.

In this book, starting with the basics of Mapbox Editor for your first map styling steps, we
will take you all the way to building advanced web and mobile applications with completely
customizable map styles. The book focuses on the CartoCSS styling language as well as
Mapbox tools and its JavaScript API, which inherits from Leaflet and is one of the most
established, robust, and easy-to-use libraries.

We will then introduce two core Mapbox tools: TileMill and Mapbox Studio. Using them, we will
generate custom-styled map tiles and vector maps. We will then move on to how to publish
your custom maps using PHP, Node.js, and third-party tools such as GeoServer.

The next step is to start using the Mapbox JavaScript API and Leaflet to create different
visualization map styles, such as a choropleth map and a heat map, and add user interactivity
using UTFGrid.

We will continue with the advanced chapters and focus on integrating with third-party services
such as Foursquare, Google Fusion Tables, CartoDB, and Torque to help us populate and even
animate our maps.

Finally, we will end the book with a chapter dedicated to mobile devices. You will learn about
Mapbox GL and how to create a fully functional, location-aware mobile app, which will use the
map styles created in the earlier recipes.

This book is fast-paced, and the recipes are easy to follow. While it focuses on a recipe
approach, it dives into the core concepts and theory of the technologies used to help you
understand the theory required for GIS, web, and mobile development.

www.allitebooks.com

http://www.allitebooks.org

Preface

iv

What this book covers
Chapter 1, Introduction to Mapbox, shows how to style your own base map using Mapbox
Editor, add vector data, and publish your maps.

Chapter 2, Mapbox Services, shows how to use the lower-level Mapbox Web Services API
to access data from the Mapbox servers.

Chapter 3, TileMill and Mapbox Studio, shows how to create stunning custom raster and
vector maps using TileMill and Mapbox Studio.

Chapter 4, Mapbox.js, is an introduction to the Mapbox JavaScript API. This chapter will show
how to create custom layers, add vector and raster data, and create interactivity and custom
map styles such as choropleth and heat maps.

Chapter 5, Mapbox.js Advanced, shows how to use external data sources and integrate them
with datasets from third-party services.

Chapter 6, Mapbox GL, shows how to create a fully functional mobile app using Mapbox GL
for iOS.

What you need for this book
You require the following software:

ff A code editor, such as Sublime Text, Atom or Brackets

ff The latest versions of TileMill and Mapbox Studio

ff The latest version of Xcode and a Mac computer

ff GIS software, such as QGIS (this is optional)

ff A REST client, such as Postman for Chrome or PAW for Mac (this is optional)

Who this book is for
Whether you are a web developer looking to dive into the GIS world or a GIS professional
looking to create advanced web and mobile applications, this book is for you.

Preface

v

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

Preface

vi

A block of code is set as follows:

#layer {
line-color: #C00;
line-width: 1;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<iframe width='100%' height='500px' frameBorder='0'
src='https://a.tiles.mapbox.com/v4/nimrod7.k4adg5mg/attribution,zo
ompan,zoomwheel,geocoder,share.html?access_token=pk.eyJ1Ijoibmltcm
9kNyIsImEiOiJkNkw1WWRnIn0.pnQn9P2nbHyhKf2FY_XJog'></iframe>

Any command-line input or output is written as follows:

git clone https://github.com/mapbox/tilestream.git .

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Copy the clipboard copy icon
next to the Share textbox."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

vii

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/MapboxCookbook_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/MapboxCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MapboxCookbook_ColorImages.pdf

Preface

viii

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Introduction to Mapbox

In this chapter, we will cover the following recipes:

ff Creating your own map

ff Adding vector data

ff Publishing your map

Introduction
Most websites we visit every day use maps in order to display information about locations or
points of interest to the user. It is amazing how this technology has evolved over the past few
decades.

In the early days, with the introduction of the Internet, maps were static images. Users
were unable to interact with maps as they were limited to just displaying static information.
Interactive maps were available only to mapping professionals, accessed via very expensive
GIS software. Cartographers used this type of software to create or improve maps, usually for
an agency or an organization. Again, if information about a location was to be made available
to the public, there were only two options: static images or a printed version.

Improvements in Internet technologies opened up possibilities for interactive content. It
was a natural transition for maps to become live, respond to search queries, and allow user
interactions, such as panning and changing the zoom level.

Mobile devices were just beginning to evolve, and a new age of smartphones was about to
begin. It was natural for maps to become even more important to consumers. Interactive
maps are now in their pockets, and more importantly, they can tell a user's location and
display a great variety of data.

Introduction to Mapbox

2

In an age in which smartphones and tablets have become aware of location, information has
become even more important to companies. Smartphones use this information to improve
user experience in everything from general-purpose websites such as Google Maps, to more
focused apps such as Foursquare and Facebook. Maps are now a crucial component in the
digital world.

The popularity of mapping technologies is increasing over the years. A number of services
have become available to developers, from free open source solutions to commercial
services for web and mobile developers, and even services specialized for cartographers and
visualization professionals.

Currently, developers have the option to choose from a variety of services that will work better
for their specific tasks. The best part of all is that if some customers have increased traffic
requirements, most of them are offered free plans.

Getting started with Mapbox
The issue with most of the solutions available is that they look extremely similar. By observing
the most commonly used websites and services that implement a map, you can easily confirm
that they completely lack personality.

Maps have the same colors and present the same features, such as roads, buildings, and
labels. Currently, displaying road addresses on a specific website doesn't make sense.
Customizing maps is a tedious task, and that is the main reason that it's avoided. What if the
map provided by a web service does not work well with the color theme used in your website
or app?

Mapbox is a service provider that allows users to select from a variety of customization
options. This is one of the most popular features that set it apart from its competitors. The
power to fully customize your map in every detail, including the color theme, features you want
to present to the user, information displayed, and much more, is indispensable. Using the
tools provided by Mapbox, you can upload and publish your own datasets and integrate them
with Mapbox's own data.

Mapbox provides you with the tools to fully write in CartoCSS, the language behind Mapbox's
cartographic customization, SDKs, and frameworks, to integrate their maps into your website
with minimal effort, along with a lot more tools to assist you in your task and provide your
users with a unique experience.

Chapter 1

3

Data
Let's take a look at what Mapbox has to offer. We will begin with the three available datasets.

Mapbox Streets is the core technology behind Mapbox's street data. It's powered by Open
Street Maps and has an extremely vibrant community of 1.5 million voluntary cartographers
and users, who constantly refine and improve map data in real time.

For more information regarding the Mapbox and Open Street Maps partnership,
visit https://www.mapbox.com/guides/osm-and-mapbox/.
For more information regarding Open Street Maps, visit http://www.
openstreetmap.org.

https://www.mapbox.com/guides/osm-and-mapbox/
http://www.openstreetmap.org
http://www.openstreetmap.org

Introduction to Mapbox

4

Mapbox Terrain is composed of datasets fetched from 24 other datasets owned by 13
organizations. It enables you to access elevation data, hill shades, and topography lines, as
shown in the following figure:

Chapter 1

5

Mapbox Satellite offers high-resolution cloudless datasets with satellite imagery, as shown in
the following figure:

Introduction to Mapbox

6

Mapbox Editor
Mapbox Editor is an online editor with which you can easily create and customize maps. Its
purpose is for you to easily customize the map's color theme by choosing from presets or
creating your own styles. Additionally, you can add features such as markers and lines, or
define areas using polygons. Maps are also multilingual, and currently there are four different
languages as options to choose from while working with Mapbox Editor:

While adding data manually in Mapbox Editor is handy, it also offers the ability to batch import
data, and it supports the most commonly used formats.

The user interface is strictly visual. No coding skills are needed in order to create, customize,
and present a map. It is ideal if you want to quickly create and share maps. It also supports
sharing to all major platforms, such as WordPress, and embedding in forums or websites
using IFrames.

CartoCSS
CartoCSS is a powerful open source-style sheet language developed by Mapbox and widely
supported by several other mapping and visualization platforms. It's extremely similar to CSS,
and if you have ever used CSS, it will be very easy for you to adapt. Take a look at the following
code:

Chapter 1

7

#layer {
 line-color: #C00;
 line-width: 1;
}
#layer::glow {
 line-color: #0AF;
 line-opacity: 0.5;
 line-width: 4;
}

TileMill
TileMill is a free open source desktop editor that you can use to write CartoCSS and fully
customize your maps. This is done by adding layers of data from various sources and then
customizing layer properties using CartoCSS, a CSS-like style sheet language. When you
complete the editing of the map, you can export the tiles and upload them to your Mapbox
account in order to use the map on your website. TileMill was used as the standard solution
for this type of work, but it used raster data. This changed with the introduction of Mapbox
Studio, which uses vector data:

Introduction to Mapbox

8

Mapbox Studio
Mapbox Studio is the new open source toolbox created by the Mapbox team to customize
maps, and the plan is to slowly replace TileMill. The advantage is that it uses vector tiles
instead of raster. Vector tiles are superior because they hold infinite detail; they are not
dependent on the resolution found in a fixed-size image. You can still use CartoCSS to
customize the map, and as with TileMill, you can export and share the map to your website at
any point:

API and SDK
Accessing Mapbox data using various APIs is also very easy. You can use JavaScript or WebGL,
or simply access the data using REST service calls. If you are into mobile development,
separate SDKs are offered to develop native apps for iOS and Android that take advantage of
the amazing Mapbox technologies and customization while maintaining a native look and feel.

Mapbox allows you to use your own sources. You can import a custom dataset and overlay
the data on Mapbox Streets, Terrains, or satellite base maps. Another feature worth noting is
that you are not limited to fetching data from various sources, as you can also query the tile
metadata.

Chapter 1

9

Creating your own map
In this recipe, you will be introduced to the core functionality of Mapbox Editor. In the
beginning, we will explore the project management dashboard to create a new project. After
this, we will use the interactive color picker provided by Mapbox Editor's user interface to help
us style our new map.

The power of Mapbox Editor must not be underestimated. The functionality provided allows
us to experiment with color schemes and gives our map a unique personality without writing
a single line of code. The controls are simple, but at the same time there are options for
sophisticated color mixing, making our task easier than ever.

Even if you advance deeper into the book and learn the secrets of CartoCSS, the powerful
styling language that powers TillMill and Mapbox Studio, you will often use Mapbox Editor as a
scratchpad to experiment with new ideas and color schemes.

Getting ready
To start working with Mapbox, you need to create a user account. This account is needed
when you want to create a new project, use the editor, share data, and access the APIs for
development; it is used to get a unique access token that you will use in the future when
developing using the APIs.

Mapbox offers a free, non-time-limited plan that suffices for the scope of learning Mapbox
as long as you do not have any heavy traffic on your published maps. There are limitations,
especially when using Mapbox Studio, but you can start with a free plan and upgrade later
when needed.

Introduction to Mapbox

10

Head over to www.mapbox.com and click on Sign up in the upper-right corner. Follow the
instructions to create a new account. After you have created it, simply sign in and select
Projects from the menu:

How to do it…
The first step is to create a new project:

1.	 Once you have signed in, you will be transferred to the Projects screen. From here,
you can create new projects, edit them, or delete them. You will also see the default
API access token at the top of the screen, but we will get to that a bit later:

www.mapbox.com

Chapter 1

11

2.	 Click on the Create project button, and you will be transferred to Mapbox Editor,
where you can style or import data and save your map.

How it works…
You can pan simply by dragging the mouse on the map, and zoom using the mouse scroll
wheel or the plus and minus buttons in the lower-left corner of the screen. Next to the zoom
buttons, there is a handy box showing the current coordinates in latitude and longitude of the
region currently on the screen. In the upper-left corner of the screen, you will see your profile
picture and several buttons that give you access to the related sections. Next to the profile
picture is Style, which is used to select one of the predefined map styles:

Introduction to Mapbox

12

You can start customizing your map immediately by selecting one of the available preset
styles to get started with a predefined color style. You can select any of the 15 available styles
provided by Mapbox.

There was a time when Mapbox allowed us to customize the color theme
using Mapbox Editor.
Sadly, this functionality has now been removed, and Mapbox kindly reminds
us that we can use Mapbox Studio to customize our maps. Don't worry; in
the end, it's much more powerful to do it this way, and we will learn more
about it in Chapter 3, TileMill and Mapbox Studio.

Adding vector data

Getting ready
Most of the time, you will be presenting a map in order to guide the user to a specific location.
You can add a variety of vector data to your map, which can be markers if you want to show a
POI (point of interest) to the user; lines, which represent a route from one location to another;
and polygons, which can be used if you want to highlight an entire area.

How to do it…
There are a number of things that we can do with vector data in Mapbox. Here are a few of
them.

Creating a marker
The following steps need to be performed:

1.	 Click on Data.

2.	 Click on Marker and then click anywhere on the map. A marker will drop. You can
adjust the marker's position by dragging it and dropping it at a different location.

3.	 Add any title you like on the marker.

Chapter 1

13

4.	 For the description, you can use not only plain text, but also the and <a> tags.
Try adding the following code as the description:
Here is the location I told you about. Check out the
images. More information here. <img
src="http://lorempixel.com/400/200/city/">

5.	 Click on the Style tab. You can select a color of your choice for the marker and also
its size from three predefined sizes.

6.	 Click on the Symbol tab. Here, you can select an icon for your marker. Some
personality is never bad!

7.	 The last tab is Lat/Lon (Latitude/Longitude). You can type in the exact coordinate if
you feel so inclined.

Creating lines
Mapbox Editor gives you the ability to create lines. Routes, for example, are best represented
with lines. Perform the following steps:

1.	 Click on the Data tab.

2.	 Click on Line and start the line by clicking anywhere on the map.

Introduction to Mapbox

14

3.	 When you move the mouse, you will notice that Mapbox Editor shows you a dashed
line; click on the next point of the map.

4.	 You can continue clicking and expanding your path as long as you wish. To complete
the line, click on the last point again.

5.	 After you have completed the line, you can still modify each point by simply selecting
a point and dragging it to a different location. If you click between two points, Mapbox
Editor will create a new point.

6.	 Give your line a title and a description if you wish:

7.	 You can further customize the line style by selecting the Stroke option and choosing
a color, a line width, and the opacity:

Chapter 1

15

Creating polygons
There are times when you need to pinpoint a specific area to the user. While you can
somehow archive this to an extent by enclosing the area using lines, there is a better and
easier way, which is to use polygons:

1.	 Click on the Data tab.

2.	 Select Polygon.

3.	 Click anywhere in the map to start drawing the polygon.

4.	 Continue adding points on the map until you have the area of your choice selected. To
complete the polygon, click on the first point again.

5.	 You can add a title and description if you wish.

6.	 At the Stroke tab, you can select a color, the line width, and the opacity of the outline,
as with lines.

7.	 You can also select a fill color as well as the opacity of the filled color:

Modifying and deleting data
To modify a marker, line, or polygon, perform the following steps:

1.	 Simply select the hand tool and the item you want to adjust.

Clicking on the button with three horizontal lines on the right-hand side
of the Polygon tab (often called the Hamburger icon) displays a list of
features. If you can't select something, you can use this menu to find
the feature in question.

2.	 Mapbox Editor displays the properties of the selected objects and you can modify any
of them, such as the title, description, or colors.

3.	 To delete a marker, line, or polygon, you have to select it with the hand tool and click
on the small trash can icon in the lower-right corner.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Mapbox

16

There's more…

Importing data
We have seen how easy it is to add features such as markers, lines, and polygons. However,
each time, we have to create them one by one.

This would be tedious if we wanted to create several hundred or even thousands of them. The
import feature of Mapbox Editor does exactly this. It allows us to import several well-known
file formats, such as GeoJSON, CVS, KML, and GPS. Most GIS software, organizations, and
services out there are able to export in one of these formats; they are used widely in the GIS
and web-development landscape all over the world.

It's probably a good time to explain what these formats are:

ff GeoJSON: This is a format created to store vector data, such as points, lines, or
polygons. It's based on the JSON specification.

ff KML: This is used primarily by Google. It stores vector data as GeoJSON, but is based
on XML.

ff GPX: This is the format usually exported by GPS receivers.

ff CSV: This is a format commonly used in popular applications, such as Excel. It's
actually a comma-separated format, and in order to import a CVS file into Mapbox
Editor, it requires at least a latitude and longitude column.

Each file can contain multiple layers. By layer, we mean multiple features that are grouped
together.

We will import a GeoJSON file that contains earthquake data for the last seven days by
performing the following steps:

1.	 Start a new project.

2.	 Click on Discard Palette to choose a preset style, or style your map from scratch if
you prefer.

3.	 Ensure that the hand tool is selected. Directly below it, you will see Draw or import
.geojson, .cvs, .kml, or .gps files. Click on import.

4.	 You will be greeted with the Import features dialog box. The provided GeoJSON file
contains many different fields, such as the earthquake's magnitude, time, place, and
so on. We can specify which of these fields will be displayed in the title and description.
Ensure that Title is selected and select mag (magnitude) as the title field:

Chapter 1

17

5.	 Next, select the Description tab and then select the place field as the description.

6.	 In the Style tab, select your preferred color and marker size.

7.	 In the Symbol tab, select any symbol you prefer.

8.	 Click on Finish importing:

The map will zoom out, and the imported features will appear on the map with the fields that
we selected as the title and description.

Introduction to Mapbox

18

Editing imported data
You can access imported data by clicking on the hamburger icon on the data screen next
to the polygon button. You will be presented with a list of every feature you imported. This
section is composed of two tabs: the first one lists the features, and the other lists the layers.
GeoJSON and KML are formats that can contain features grouped into multiple layers:

Clicking on an item in the featured list allows us to edit it. We can change the title, description,
color, size, and icon of the feature where available, as different types of feature have different
attributes that we can modify.

Clicking on the trash can icon next to an item allows us to delete these specific features.

Publishing your map
Now that we have created our own map and added the features we wanted, it's time to show it
to the world.

In this recipe, we will learn how to publish our maps.

Getting ready
At this point, we have beautifully styled our map using Mapbox Editor and we have learned
how to create data from scratch or import it. Now it's time for the world to see what we have
created.

Chapter 1

19

Before publishing your map, it's wise to have an overview of some settings that may be useful:

ff Under Project | Settings, you can select the name of your project and its description

ff Under Project | Advanced, you can set and save the current map position

Mapbox Editor offers various options for sharing our map. If you have created markers, lines,
or polygons, or imported any data, you will be presented with an option to download them as
GeoJSON or KML. You can use these files to overlay the data on a map using JavaScript or
other APIs. We will take a look at how to do this in the next few chapters.

How to do it…
In order to share a Mapbox-hosted map, you will need to use the URL provided by Mapbox to
directly share your map. Before doing this, however, in order to share it you need to first save
the map:

1.	 Click on Save.

2.	 Copy the clipboard copy icon next to the Share textbox.

3.	 The URL will now be copied to the clipboard. Paste the link anywhere you want for the
world to see:

Introduction to Mapbox

20

The Map ID is used by Mapbox APIs to get access to this specific map.
We will see how we can use it in the next few chapters.

Downloading the example code
You can download the code files by following these steps:

ff Log in or register to our website using your e-mail address and
password.

ff Hover the mouse pointer on the SUPPORT tab at the top.
ff Click on Code Downloads & Errata.
ff Enter the name of the book in the Search box.
ff Select the book for which you're looking to download the code files.
ff Choose from the drop-down menu where you purchased this book from.
ff Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

ff WinRAR / 7-Zip for Windows
ff Zipeg / iZip / UnRarX for Mac
ff 7-Zip / PeaZip for Linux

There's more…

Embedding a map in a self-hosted page
If you have a self-hosted website, the easiest option is to share your map using IFrames.
You can also share to Wordpress, Tumblr, Drupal, and other platforms that support IFrames
(usually via plugins).

Mapbox Editor already provides the code to embed the map into HTML.

Below the embedded textbox there are checkboxes. These allow us to limit user interaction
in the embedded map. For example, you can disable pan and zoom, scroll wheel...., and
geocoding, which disables the magnifier icon that allows us to search for addresses and links.

Chapter 1

21

The code generated in the embed tag looks similar to this:

<iframe width='100%' height='500px' frameBorder='0'
src='https://a.tiles.mapbox.com/v4/nimrod7.k4adg5mg/attribution,zo
ompan,zoomwheel,geocoder,share.html?access_token=pk.eyJ1Ijoibmltcm
9kNyIsImEiOiJkNkw1WWRnIn0.pnQn9P2nbHyhKf2FY_XJog'></iframe>

Notice the width and height parameters. We can modify these to specify the size that will
work best with our design. You can explicitly set the width or height to a specific pixel value or
set a percentage.

Notice the frameBorder option. This generates a border around the IFrame to separate the
embedded map from the content of the webpage.

For this example, we will use a basic HTML file that contains boilerplate HTML code and some
extra elements. We will embed the map into HTML using IFrames.

From this point on, we will need to edit files and write code, usually HTML
and JavaScript, and we will need an editor to do so. While a simple plain text
editor, such as notepad on Windows and TextEdit on Mac, can do the job, it's
highly recommended that you use a specialized application for this purpose,
such as Sublime Text, which is available for Windows, Mac, and Linux. It can
make our task a lot easier with syntax highlighting.

Before we begin editing HTML, double–click on the chapter-1/example-1-begin/
index.html file, and it will open in your default browser. You will see our HTML page, which
contains some basic HTML elements such as <h1> and <divs> tags. Embed our map under
the <h3>Earthquakes in Iceland:</h3> element through the following steps:

1.	 Open the chapter-1/example-1-begin/index.html file with a text editor.

2.	 Copy the code contained within the embedded tag.

3.	 Adjust the width and height if needed, and add a frame border if you wish.

4.	 Directly under <h3>Our Location</h3>, paste the code we copied before.

5.	 Save the file.

Introduction to Mapbox

22

That's it. We have successfully embedded a map into a custom HTML page using the sharing
feature of Mapbox Editor and IFrames. Now, it's time to discuss what we created. We need
to open the file in a browser by either dragging the index.html file on a browser or double-
clicking on it (this behavior may be overwritten by your HTML editor):

23

2
Mapbox Services

In this chapter, we will cover the following recipes:

ff Accessing styled tiles on your map

ff Creating static images

ff Finding coordinates for an address

ff Finding an address from coordinates

ff Finding an address on a map click

ff Getting directions

Introduction
Mapbox web services are the lowest-level API available on the platform. Every other API
and functionality provided by Mapbox, such as the JavaScript API or Mapbox.js, is based on
services. It uses GET REST calls to fetch the data you require from Mapbox servers.

REST services are based on HTTP verbs to perform certain actions, such as reading, creating,
updating, and deleting records. GET requests are used to read data from the server; PUT
requests are used usually to update data; POST requests are used to create a new record;
and DELETE requests are used to delete a record. The Mapbox API is a read-only one, so we
only have access to GET requests to read data.

Mapbox supports both HTTP and HTTPS secure connections. When the REST call is invalid,
the server responds with the relative HTTP error code and a message in plain text, not a JSON
object as usual.

Mapbox Services

24

Access tokens
To get access to the services, we will need an access token. We discussed access tokens in
Chapter 1, Introduction to Mapbox, when we created a new project. This is a good moment to
explain what an access token is.

Access tokens are unique to each account and our ticket to using Mapbox services and APIs.
To be able to fetch data from Mapbox servers, the server has to identify us somehow, and
providing our credentials is not a proper way to do this.

Using an access token, Mapbox knows which user is requesting data, which services are
available to this user, and the bandwidth he/she uses. We are not supposed to share or
publish access tokens. They should remain hidden at all costs; however, unfortunately, this is
not always possible because in some cases—for example, when using JavaScript—the code,
and therefore the access token, is included in the code and is easily accessible.

For this reason, Mapbox provides two different access tokens: the public access token and
the secret access token. We use the public access token in places that will be exposed to
the public; it is easy to access and replace. A secret access token is supposed to be used in
places that remain secure and hidden, such as PHP code that will be evaluated on the server
side or apps that will be compiled; changing it requires us to go through an approval process.

In the Projects dashboard, you may already have seen the public access token:

Chapter 2

25

Clicking on the API access token link will open the Apps page, where you will find your secret
access token:

In this screen, you can find a list of applications that use the tokens.
You can also generate a new access token by clicking on the New
token button in the middle of the screen. A window will open, allowing
you to generate a public or secret access token, and in case of a secret
token, you can define the scope.

Finding the Map ID
The second element that we need to use throughout this chapter is the Map ID. Each time
we create a new map using Mapbox, it has a unique Map ID, and each time we perform a
request, we have to pass the Map ID to tell Mapbox which map we are interested in.

You can find your Map ID in two different places:

ff In the Projects dashboard, the Map ID is displayed directly below your map's name,
and you can click on the clipboard icon next to it to copy it

Mapbox Services

26

ff In Mapbox Editor, you can find it in the Project tab:

Accessing styled tiles on your map
We can use Mapbox services to fetch specific tiles from the service. To do so, we will use the
GET HTTP verb to request the tile from Mapbox servers.

The advantage with REST GET requests is that you don't even need special tools or knowledge
to call them.

I will present four methods that do not require coding, are easy to use, and will help us get
through the chapter.

How to do it…
Here are the four ways:

ff Copy and paste the URL in your browser: Yes, as simple as that! You can simply
paste the URL in the web browser, and it will automatically perform the request for
you. Although, it's not generally recommended to do it this way; I highly recommend
that you use a specialized tool for this task from the ones mentioned in the following
points.

Chapter 2

27

ff Use a third-party online tool: You can also use a third-party online tool, such as
https://www.hurl.it/, to do REST calls.

ff Use a browser extension: For Chrome, I suggest PostMan, which can be found at
https://chrome.google.com/webstore/detail/postman-rest-client/
fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en:

For Firefox, you may use the RestClient plugin, which can be found at https://
addons.mozilla.org/en-US/firefox/addon/restclient/.

https://www.hurl.it/
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/

Mapbox Services

28

ff Use a native OS app: For OS X, Paw by Lucky Marmot is an excellent choice, and you
can get this at https://luckymarmot.com/paw:

For a Windows system, you can try Fiddler from http://www.telerik.com/
download/fiddler.

How it works…
Let's dissect the following URL to better understand what goes on by examining each
parameter:

http://api.tiles.mapbox.com/v4/{mapid}/{z}/{x}/{y}.{format}?access_
token=<your access token>

ff http://api.tiles.mapbox.com: All requests to Mapbox services must begin
with http://api or https://api; then, we tell the services that we are interested
in fetching individual .tiles.

https://luckymarmot.com/paw
http://www.telerik.com/download/fiddler
http://www.telerik.com/download/fiddler

Chapter 2

29

ff v4: This is the version number of the API. This ensures that your app doesn't break if
the Mapbox team updates the API.

Mapbox services is an API, and APIs often change or improve. Changing an
API directly is not an option as it breaks every app out there that uses the
changed function(s).
The way it happens is usually by creating a new version of the API. Mapbox,
at this moment, is at version 4, so apps that use a lower version don't need
to be modified if they do not want to take advantage of the API functionality
provided in the newer version. We will use the fourth version of their API for
the examples in this book, which is the latest available at the moment.

ff {MapID}: Replace this parameter with your Map ID. Each map has a unique Map ID
that needs to be referenced here in order to access our styled tiles.

ff /z/x/y/: These are integers with the coordinates of the specific tile. They are not
latitude and longitude coordinates (which are two doubles, anyway), but these are
coordinates based on the XYZ tiling scheme. The z parameter is the zoom level, while
x and y are the tile numbers in the coordinate.

A valid question at this point is how to get the x and y coordinates for the
area you are interested in at a specific zoom level. There are numerous
ways to convert latitude and longitude into the XYZ scheme.
An excellent resource to get started is available at http://wiki.
openstreetmap.org/wiki/Slippy_map_tilenames. It explains
the mathematical equations behind the XYZ tiling scheme, provides code
to a huge variety of programming languages, and even scripts in Python
and Ruby that convert latitude and longitude to XYZ.
An easy, hassle-free way is to use the online tool at http://www.
maptiler.org/google-maps-coordinates-tile-bounds-
projection/.

ff {format}: You can choose the format of the tiles. Acceptable formats are PNG,
from 16 colors to 256 colors, and JPG, with compression levels 60, 70, and 80n. The
format can be prefixed with @2x for retina display.

http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

Mapbox Services

30

By retina display, we mean the high resolution screens of mobile (and
most recently desktop) devices, such as the iPhone. The retina term was
introduced back in 2010 with the release of iPhone 4, in which the device
display had a resolution of 640 x 960 pixels and a pixel density of 326 ppi
(pixels per inch).
A screen this small in size and, at the same time, so dense in pixels,
required special attention from developers. If an image with the original
resolution is displayed on this screen as is, it will appear very small, and if
it's scaled up at double size without doubling the number of pixels, it will
appear jagged or blurry.
For optimal results, developers needed to supply the image in two
different resolutions: the native (@1x) one and one that has twice the
number of pixels or is double the size (@2x). The OS frameworks at
runtime chose which resolution was appropriate for the specific display to
ensure optimal quality. Retina screens are not limited to mobile devices;
several laptops and screens from Apple and other manufacturers offer
retina display.
Our tiles are simply images, and displaying these images in retina display
would introduce the same issues.

ff access_token=<your access token>: Finally, you need to supply your access
token.

Now that you have understood how the GET request works, we can easily try it on a web
browser. Build the URL by replacing the Map ID with the one of the map you plan to display
and the access token with your own.

There's more…

Fetching a single tile
Fetching a single tile requires the following steps to be performed:

1.	 Find the tile you are interested in fetching.

2.	 Construct the HTTP GET request by providing the Map ID, tile, format, and access
token; for example, consider the following URL:
http://api.tiles.mapbox.com/v4/nimrod7.k4adg5mg/6/31/20.
png?access_token=pk.eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.
pnQn9P2nbHyhKf2FY_XJog

3.	 Paste this URL in the browser or in a REST client.

Chapter 2

31

Creating static images
Using Mapbox services, you can easily create static images in your map. Static images are
useful because you may want to limit the user from exploring other areas. Plus, if this is the
case, it will save bandwidth from your hosted Mapbox account.

How to do it…
Let's dissect the following Mapbox services request. Most of the request remains the same
as the individual tiles' requests in the previous recipe. One important difference is that this
time, we provide the latitude, longitude, and zoom level instead of individual tile numbers, as
follows:

http://api.tiles.mapbox.com/v4/nimrod7.k4adg5mg/{lon},{lat},{z}/
{width}x{height}.{format}?access_token=<your access token>

ff {lon}: This is the longitude; coordinates range from -180 to 180 using a decimal
separator.

ff {lat}: This is the latitude; coordinates range from -85 to 85 using a decimal
separator.

ff {z}: This is the zoom level supported by them and integer ranging from 1 to 19.

ff {width}: This is the image width in pixels. There are maximum 1280 pixels.

ff {height}: This is the image's height in pixels. There are maximum 1280 pixels.

Creating the static map
To do this, perform the following steps:

1.	 Find the latitude and longitude. One way is to use the Mapbox Editor to navigate to
the location you are interested in. The latitude and longitude are displayed at the
bottom of the map.

Another way is to use an online service, such as http://itouchmap.com/
latlong.html. This gives you the latitude and longitude for a specific point.

2.	 Construct the HTTP GET request by providing the Map ID, tile, format, and access
token.

http://itouchmap.com/latlong.html
http://itouchmap.com/latlong.html

Mapbox Services

32

3.	 Paste the URL in the browser or in a REST client:

Adding a marker
Mapbox offers the ability to add markers to your static maps. The format of the requests has
to be similar to the following:

{size}-{icon}+{color}({lon},{lat})

Here are the parameters you need to know:

ff {size}: This is the size of the marker. The value accepted in this parameter is
pin-s for small, pin-m for medium, and pin-l for large markers.

ff {icon}: This is the marker icon. You can choose from a variety of icons offered by
Mapbox services.

Check out the Maki icons to get an idea of which icons you can use on your
markers from https://www.mapbox.com/maki/.

ff {color}: This is the color value in hex format. It can be three or six digits.

ff {lon}: This is the longitude.

ff {lat}: This is the latitude.

https://www.mapbox.com/maki/

Chapter 2

33

The following are the steps you need to perform:

1.	 Construct the HTTP GET request as in the previous recipe.

2.	 Add the marker after {MapID}.

3.	 Paste the URL in the browser or in a REST client.

The complete request should look similar to the following example:

http://api.tiles.mapbox.com/v4/nimrod7.k4adg5mg/pin-l-danger+f00(-
6.240,53.348)/-6.245079,53.344731,14/800x600.png?access_token=pk.
eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.pnQn9P2nbHyhKf2FY_XJog

Finding coordinates for an address
There are times when you have an address or just a city or a country, and you try to find the
coordinates (latitude and longitude). The reverse is also true; you may have the latitude and
longitude and want to get an address. This process is called geocoding.

Reverse geocoding is useful if, for example, we create a marker using the latitude and
longitude and want to show the marker's address. Mapbox services also give you the ability
to get the coordinates (latitude and longitude) from an address; this process is called forward
geocoding.

Mapbox Services

34

How to do it…
The following steps need to be performed:

1.	 Construct a GET request by specifying the master source and query.

2.	 Paste the request in the browser or in a REST client.

You will get back a JSON with coordinates that match your query.

The format of the requests has to be similar to the following:

{dataset}/{lon},{lat}.json?access_token=<your access token>

A complete request will look similar to the following example:

http://api.tiles.mapbox.com/v4/geocode/mapbox.
places-v1/OConnel+Dublin+Ireland.json?access_token=pk.
eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.pnQn9P2nbHyhKf2FY_XJog

If you try to execute the query as it is here, you will notice that the geocoder returns an array
of results sorted by relevance, which is also the key name that has a float value. The result
appearing at the top is the one that matches your query the most and has a higher value,
while the others may have partial matches with your query:

Chapter 2

35

How it works…
We will look at it from two perspectives.

Query parameters
The first question to ask yourself is, what do you need exactly from the Mapbox services
geocoder? You may need just postcodes, or addresses, or the full stack, including every detail
for the specified coordinates.

First of all, let's dissect a forward geocoding request:

http://api.tiles.mapbox.com/v4/geocode/{master-source}/{query}.
json?access_token=<your access token>

The parameter to choose what you want back from the geocoder is called a master source.

The available master sources are the following:

ff mapbox.places-v1: This sends back every detail, including address, province,
postcode, and so on.

ff mapbox.places-country-v1: This sends back just the countries.

ff mapbox.places-province-v1: This sends back the provinces.

ff mapbox.places-postcode-v1: This sends back the postcodes. Postcodes are
separated by country; for example, you can use mapbox.places-postcode-fr-v1
to get back postcodes in France or mapbox.places-postcode-uk-v1 to get back
postcodes in the UK.

ff mapbox.places-city-v1: This sends back places, such as cities.

ff mapbox.places-address-v1: This sends back addresses.

The next parameter we need to know is the query itself. The query can be as detailed as
you want; for example, you can just specify Ireland as a parameter, the city Dublin through
Dublin+Ireland, O'Connel street through OConnel+Dublin+Ireland, or the street
number 432 through OConnel+432+Dublin+Ireland.

Depending on the accuracy of the query, the geocoder may return a single result or multiple
results as an array that matches the criteria you specified.

Returned results
You have probably noticed that this is the first time that we will get back data instead of
images. There is an important parameter in each request that defines the kind of format
Mapbox services will return to us.

The most common formats returned by REST services are XML (Extensible Markup
Language) and JSON (JavaScript Object Notation).

www.allitebooks.com

http://www.allitebooks.org

Mapbox Services

36

XML used to rule the world, but most services these days use JSON, which is faster to submit
and easier to process and read. Mapbox services, at the moment, support only the JSON
format.

Let's examine a partial JSON response from the geocoder, as follows:

{
 "id": "city.10560743",
 "type": "Feature",
 "text": "Dublin",
 "place_name": "Dublin, Dublin City, Ireland",
 "relevance": 0.48,
 "center": [
 -6.300364,
 53.333637
]
}

You will notice that there are curly brackets {} and square brackets []. The latter represents
an array of values, while the curly brackets represent an object. Each object may include other
arrays, objects, or just key-values.

Key-values are represented with the key first, then with a double colon (:),
and then with the value; here, the value may be a string, integer, float, or
array. Using this specific format is very easy and efficient because you can
simply ask to get the value using a key, which is the same in every request.
Using the preceding example, you can get the place name simply using this
specific key, and the returned object will be "Dublin, Dublin City, Ireland" or
the relevant value for other similar requests.

Finding an address from coordinates
The exact opposite of the process we saw just now is to provide the coordinates and get back
an address, which is called reverse geocoding.

Let's examine the request structure, which is as follows:

http://api.tiles.mapbox.com/v4/geocode/{index}/{lon},{lat}.
json?access_token=<your access token>

At this point, it won't trouble you any more to find what is needed. Apart from index, this time,
we need to provide the latitude and longitude.

Chapter 2

37

How to do it…
Perform the following steps:

1.	 Construct a GET request by specifying the master source, latitude, and longitude.

2.	 Paste the request in the browser or in a REST client.

You will get back a JSON file with coordinates matching your query.

A complete reverse geocoding query will look similar to this:

http://api.tiles.mapbox.com/v4/geocode/mapbox.
places-v1/-6.348457,53.712829.json?access_token=pk.
eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.pnQn9P2nbHyhKf2FY_XJog

Mapbox Services

38

Finding an address on a map click
Now that we are learning to construct a GET request using Mapbox services, it's time to apply
our knowledge in a real application.

We will use a simple JavaScript with Mapbox.js to make our lives easier. Don't worry about
Mapbox.js; we have an entire chapter dedicated to it.

How to do it…
Perform the following steps for this:

1.	 Inside the <script> tag, begin by creating a variable for the access token, as
follows:
var accessToken = 'pk.eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.
pnQn9P2nbHyhKf2FY_XJog';

2.	 Then, pass the access token to Mapbox using the following code:
L.mapbox.accessToken = accessToken;

3.	 Now, get the element that holds the address box using the following code:
var click = document.getElementById('click');

4.	 Next, create a Mapbox map object and pass the initial coordinates and the zoom level
by executing the following code:
var map = L.mapbox.map('map', 'nimrod7.k4adg5mg').
setView([51.492842, -0.131874], 16);

5.	 Create a click event on your map so that each time a user clicks on it, the included
code is triggered:
map.on('click', function(e) {

 // Insert code in here

});

6.	 Inside the click handler, get the longitude and latitude, and create a string
separated by a comma:
var latlong = e.latlng.lng + ',' + e.latlng.lat;

7.	 Construct a url variable using the base URL from the GET request, followed by the
latlong variable and accessToken:
var url = 'http://api.tiles.mapbox.com/v4/geocode/mapbox.
places-v1/'+ latlong +'.json?access_token=' + accessToken;

Chapter 2

39

8.	 Create a new xmlHttp request object. You can use it to submit the GET request, as
follows:
xmlHttp = null;
xmlHttp = new XMLHttpRequest();
xmlHttp.open("GET", url, false);
xmlHttp.send();

9.	 Get the response back from the service. It will be a string, so convert it to a JSON
object as follows:
var responseJSON = JSON.parse(xmlHttp.responseText);

10.	 Get the elements that are under the 'features' key, then the first object [0], and
finally the element under the 'place_name' key, as shown in the following line:
var placename = responseJSON['features'][0]['place_name'];

11.	 Pass placename to the innerHTML element with the following script:

window[e.type].innerHTML = placename;

That's it!

Open the HTML file in your browser and click on a location to get the address:

Mapbox Services

40

How it works…
In the example application, we will use Mapbox to display our map. When the user clicks on a
map, we will submit a GET request to the Mapbox geocoder. The GET request will include the
coordinates of the location that the user clicked on in the map.

Open chapter-2/example-2-begin/index.html in the HTML editor of your choice. The
example includes a basic HTML5 boilerplate code.

At <head>, we will link Mapbox.js and stylesheet using the following lines of code:

<script src='https://api.tiles.mapbox.com/mapbox.js/v2.1.4/mapbox.js'>
</script>
<link href='https://api.tiles.mapbox.com/mapbox.js/v2.1.4/mapbox.css'
rel='stylesheet' />

Then, at the <style> tag, we will do some basic styling for the map and the box that displays
the address.

We will use two <div> elements: one of them, with id='output', will hold the address box,
and the other, with id='map', will include our map.

Getting directions
The Directions API is still in development by Mapbox and currently experimental. It will most
likely evolve in the near future. For the moment, it supports only the driving directions.

At the moment of writing this chapter, the Mapbox Directions API is available
only when using a paid Mapbox plan.

How to do it…
You will need to perform the following steps:

1.	 Construct a GET request by specifying the profile and locations.

2.	 Paste the request in the browser or in a REST client.

You will get back a JSON file with coordinates matching your query.

Chapter 2

41

A complete request should look similar to the following one:

https://api.mapbox.com/v4/directions/mapbox.
driving/-6.260319,53.349786;-6.267706,53.340820.json?access_token=pk.
eyJ1IjoibWFwYm94cmVjaXBlcyIsImEiOiJjd3RhQmlzIn0.Wx0fWGCo3gs6fzta5QrLfw

How it works…
Let's dissect the following request:

http://api.tiles.mapbox.com/v4/directions/{profile}/{waypoints}.
json?access_token=<your access token>

ff {profile}: This currently supports mapbox.driving, mapbox.walking, or
mapbox.cycling as parameters:

�� mapbox.driving: This is great for motorcycle or car routing. This option is
used by people who prefer taking highways for higher speed.

�� mapbox.walking: This is ideal for pedestrian or hiking routing. It shows the
shortest path using sidewalks and trails.

�� mapbox.cycling: This is useful for bicycle routing. This option is used by
someone who avoids highways and prefers streets with bike lanes.

ff {waypoints}: Here, we will define a comma-separated list of locations. Each
location must have a longitude and latitude parameter. The minimum number of
waypoints is two: an origin and a destination. You can include more locations up to
the limit of 25 if you are planning a long trip!

The waypoint format should be longitude and latitude separated by a semicolon, as
follows: -6.260319, 53.349786;-6.2403, 53.340820

There are also a number of query parameters that you can define, which are as follows:

ff alternatives: This parameter is a Boolean one, and if it is set to true, it allows
the service to generate alternate routes.

ff instructions: This parameter sets the format of the instructions returned by the
service. It can be text or HTML.

ff geometry: This parameter can be GeoJSON, polyline, or false.

Mapbox Services

42

Query parameters are attached after the question mark character (?) in the
request, and each parameter must be separated from the other with the
ampersand (&) character. For example, if you want to use alternatives
and instructions, you need to attach &alternatives=true&instru
ctions=html at the end of the request, as follows:

?access_token=pk.
eyJ1Ijoibmltcm9kNyIsImEiOiJkNkw1WWRnIn0.
pnQn9P2nbHyhKf2FY_XJog&alternatives=true&instructions=h
tml

Have a look at the following screenshot:

In the preceding request, we performed a query to get driving directions from O'Connell Street
to Golden Lane in Dublin. We used Postman to perform the request and the server response
with the directions as a JSON object.

Chapter 2

43

The most important keys in the response are the following:

ff origin: This represents the starting point of the route. It may also contain a name.

ff destination: This represents the end point of the route.

ff waypoints: This is an array of objects representing the intermediate waypoints.

ff routes: This is an array of alternative routes. They are ordered by descending
recommendation ranks. They contain the following properties:

�� distance: This represents the distance in meters.

�� duration: This estimates the travel duration in seconds.

�� summary: This is a short summary of the route.

�� geometry: This represents the geometry of the route in a GeoJSON
LineString or Polyline format (depending on which geometry parameter is
set on the request).

�� steps: This is an array of route steps. A step is the smallest unit in a route;
for example, it could be a turn. The maneuver object in steps defines what
type of step it is. The steps object also contains the travel distance to the
subsequent step, the duration, the cardinal direction, and the heading.

45

3
TileMill and Mapbox

Studio

In this chapter, we will cover the following recipes:

ff Styling a map with TileMill

ff Styling a map with Mapbox Studio

ff Publishing your base map on your server with PHP

ff Publishing your base map on your server with Node.js

Introduction
Up until now, we have used Mapbox Editor to create and customize our maps. We have seen
how feature-rich and powerful it is and how, using just a web interface to customize your map,
it provides you with so many possibilities. We were able to totally customize the color theme,
add markers and features, and customize their appearance.

Although powerful, there are times when you need more control. What if we want to change
the widths of the lines that represent roads? What if we want to totally customize this width
over different zoom levels? What if we want a custom font, or even better, a different font (or
font size) at each zoom level? What if we want to hide or show features when a user zooms in
or out?

The possibilities are endless, and the power of unlocking this level of customization lies in
a language called CartoCSS. Well, it's not exactly a language like C++ or PHP, with objects
and complicated memory management, but it is a much more user-friendly, stylesheet-like
language that shares a lot of similarities with the well-known CSS.

TileMill and Mapbox Studio

46

Let's look at an overview of what we have just learned. We know that CartoCSS is an easy-to-
use language that allows us to fully customize our maps. Does this sound too good to be true?
There's more!

There are a lot of ways to write CartoCSS, and Mapbox provides us with two awesome tools
that help us create, edit, and share our maps.

The first one is called TileMill, which is a well-known solution that has been offered for a
number of years now. The other candidate is the new and shiny Mapbox Studio.

Let's begin by explaining what TileMill is and what it is useful for.

Understanding TileMill
TileMill is a standalone application that helps us add various layers of (map or vector) data,
write CartoCSS, preview the results, and finally export the tiles:

To better understand how it works, we will explain the workflow to create, customize, and
publish our own custom-styled map.

Chapter 3

47

If you open TileMill and create a new project, you will notice that it only shows a global map
with coastlines. If you try to zoom in, you will see that there are no roads, labels, or other
details—just a solid white color for land and blue for water. In order to start working with
TileMill, you need to import the data you need.

TileMill supports a variety of data from different sources; for example, it allows us to import
shapefiles, which contain geographical points, lines, or polygons. Using shapefiles, you
can import features such as roads, coastlines, and buildings. Shapefiles support a single
geometry type.

It also supports GeoJSON, a flexible file format that supports different geometry types. Many
agencies provide data in this format; for example, if you request data for earthquakes in
the last n days, you will receive a GeoJSON file that includes points indicating the recent
earthquake locations.

You can even create images, such as GeoTIFF files, with data that you may want to overlay
on your maps. This feature is extremely flexible; for example, you may want to overlay weather
data, such as clouds, on top of your maps.

KML is another supported format popularized by Google. However, TileMill does not support
many of the features of KML, such as images, flythroughs, and embedded styles, so keep this
in mind when importing KML files.

TileMill also supports importing data from databases such as SQLite and PostGIS, which is an
extension of PostgreSQL. You can connect directly from TileMill to a database and run queries.

Each separate file must be imported in a separate context, which TileMill calls a layer. Each
layer can then be separately styled using CartoCSS. We can use the attributes found in the
layer and style them differently. Once we have imported and styled all the layers, the last
step is to export the map in order to publish it. We cannot simply export a huge image from it
because, even for tiny areas with a zoom level of 15 or similar, it would export an immersive
image in a size that would not be possible for a normal computer to read due to memory
limitations.

For this reason, TileMill splits this huge image into separate tiny tiles. These tiles are then
uploaded to Mapbox and displayed to the user.

If you have ever noticed a map loading on a slow connection, you must have
seen tiles appearing as the map loads.

Well, at this point, I imagine that you have begun to understand how powerful the whole
process must be to import any data we want in different formats, combine them all together
using layers, and style them individually with absolute control!

TileMill and Mapbox Studio

48

Now that you understand how TileMill works and how awesome it is, it's time for us to discuss
the bad side of it. First of all, there is no easy way to import data that you want in it. You
cannot just say, "let's zoom to San Francisco and style the map". You will have to import
San Francisco into TileMill with all the features required, such as roads, water, labels, and
buildings. Well, TileMill understands specific formats, so finding the exact data needed or
extracting it from a source, such as OpenStreetMap, in a format that TileMill understands
may be a tedious task. Luckily for us, there are websites that do exactly this, at least for major
cities, so you may find everything you need on a website.

The second major drawback of TileMill is exporting the tiles. Exporting tiles even for small
areas at a reasonable zoom level may require thousands of images to be generated. These
images take time to be exported, consume large amounts of hard drive space, require huge
storage on the server that we plan to host them on (for example, Mapbox), and also require a
lot of time to upload hundreds of megabytes of tiles to this web server, especially if we have
a low upload speed. The overall process may take from minutes to hours and even days,
depending on the area's size and zoom level.

Luckily, we are talking about TileMill, which the Mapbox folks consider to be "old technology".
For this reason, they developed Mapbox Studio.

Let's now see what Mapbox Studio is all about and how it compares with TileMill.

Understanding Mapbox Studio
Mapbox Studio was released a while ago to the public, and it is supposed to replace TileMill
over time. Mapbox Studio uses vector data to represent maps, and, unlike TileMill, it's not
based on bitmap tiles:

Chapter 3

49

Let's find out how Mapbox Studio works.

We learned in the previous section that we need to import our data into TileMill. Well, this is
not the case with Mapbox Studio because we immediately have access to Mapbox Streets,
Mapbox Terrain, and Mapbox Satellite data. We do not need to search for the region of
interest, extract it, and use it, as we do in the case of TileMill. With this simple choice, we can
have access to data from the entire world down to the finest detail.

We can use Mapbox Streets as a source; this provides us with the vector data required to
build a map. We can also select one of the other sources of Mapbox, such as Mapbox Terrain
or Mapbox Satellite. We can even combine all these sources and overlay them one on top of
the other to use the features provided by these different sources.

You may ask, what if I want to import and use my custom data and then overlay it on top
of these maps? Well, this is easy too. You can import your own data into Mapbox Studio
by converting data from traditional formats, such as those supported by TileMill. Once it is
imported, you can then upload it to your Mapbox account, and it will immediately become
available for use as a source in Mapbox Studio. It can then be overlaid on top of other map
data.

Mapbox Studio works with vector tiles, and because of this, we do not need to export the
resulting styled map in separate tiles. With Mapbox Studio, we will simply upload our own
custom-created map into our Mapbox account—just like that! We don't have the hassle of
waiting for hours for the tiles to be exported, neither do we need tons of hard drive space, and
we are not required to have a high upload speed in order for the upload to be completed in
reasonable time. The whole process is nearly instantaneous.

In spite of the importing and exporting capabilities of Mapbox Studio and the differences from
TileMill in the technologies that it uses, such as the vector tiles, we still find a CartoCSS editor,
and we can style our map using CartoCSS just as with TileMill.

Another handy feature of Mapbox Studio is the ability to automatically adapt to high-resolution
displays (retina displays). In the case of TileMill, we need to export a separate double-sized
tileset to use with these displays, causing the exported time, hard drive space, and upload
time to double.

Mapbox Studio provides us with all the typography that we should need. It comes bundled
with 300 professional quality fonts to use on the maps.

Fonts are provided free of charge for exclusive use in maps with Mapbox
Studio. It's actually not allowed to use them in any other case.

TileMill and Mapbox Studio

50

What about exporting high-resolution images to print? Mapbox Studio has the capability to
export images up to 600 dpi with one click:

Now, we have come to a point where you may ask, "what's the catch?"

Using Mapbox Studio is not free; it's a paid service. There is a starter plan offered by Mapbox,
which is free, but it's very limited in what you can do with it. Mapbox plans are based mainly
on map views, storage, and the custom styles you can host.

The starter plan at the time of writing this book, apart from allowing 3,000 views per month
and 100 MB storage, has just one custom style, which means that we cannot have more
than one custom dataset overlaid on our vector maps. Luckily, Mapbox introduced a basic
plan for just $5 per month, which offers three styles, 1 GB storage, and 10,000 views per
month, so anyone can now start working with it without being limited. A while ago, Mapbox
had a standard plan for $49 per month. While this was not a showstopper if you planned to
use what Mapbox offers professionally, it was for people who just wanted to explore Mapbox
Studio's capabilities.

By this time, you may be thinking that if Mapbox Studio and other Mapbox technologies are
currently open source, what stops us from hosting the maps in our own servers? Well, nothing
stops us, but deploying the whole Mapbox stack to our own server is extremely complicated
and beyond most people's skills.

Chapter 3

51

Introducing CartoCSS
The time has come to explain how we can fully customize our maps to create the style we
want.

CartoCSS is a powerful stylesheet-like language powering TileMill and Mapbox. It's extremely
powerful and only limited by our imagination. If you are familiar with CSS for the Web, you will
feel right at home when you start working with CartoCSS. If you have never developed for the
Web, don't worry at all. Learning CartoCSS is extremely easy and fun.

Let's begin by explaining how it works.

How CartoCSS works
CartoCSS, like CSS, is based on selectors. A selector, for example, can be an ID of a specific
layer, a zoom range, or a layer class. An ID may be called #roads, which means that whatever
attributes we change within the closures will only affect roads.

Once we have our selector defined, we have to specify which attributes we want to modify in
this context. For example, we may want to change the street outlines to a different color, so
the attribute in this case is line-color.

Let's consider an example selector in action:

#sf-lines[highway="motorway"] {
 line-width: 5;
}

Now, let's dissect this example.

#sf-lines is the name of the layer. We can name the layers at the time we import them into
TileMill however we want.

In the square brackets, there is [highway="motorway"], which means that we want to find
the highway feature in this layer and select all the motorways.

Within the curly brackets (which are called closures) is what we want to modify. In this
example, it's all the motorways in the sf-lines layer.

The line-width: 5 part of the code means that we want to set the line
width to 5 pixels.

TileMill and Mapbox Studio

52

Have a look at the following screenshot:

Observe the #sf-lines layer name in the Layers management dialog in the lower-left corner
of the screen.

Certain attributes can only be applied to a specific type—which are called symbolizers—for
example, line-width and line-color. These refer to the thicknesses and colors of lines
and can obviously be applied to lines only, while others, such as fill-color, can only be
applied to polygons.

The style types are called symbolizers in the Mapbox language (which originates from Mapnik,
a technology used to render maps).

There are currently 10 symbolizers in TileMill, and each one can be applied to a certain type
of geometry. The symbolizers are as follows:

ff Line (lines and polygons)

ff Polygon (polygons only)

ff Point (points only)

ff Text (points, lines, and polygons)

ff Shield (points and lines)

Chapter 3

53

ff Line pattern (polygons)

ff Raster (rasters)

ff Marker (points, lines, and polygons)

ff Buildings

We can repeat this process to specify as many selectors as we want, and in each one, we can
change as many parameters as we want.

Filters
CartoCSS allows us to use filters in order to specify ranges; for example, we can use the
[zoom = 10] filter to apply styling only at zoom level 10.

Let's consider an example of how we can use zoom filters:

[zoom < 16] {
 #sf-lines[highway="primary"] {
 line-width: 3;
 }
}

In this example, the first selector is zoom < 16, which means only the instances when the
zoom is less than 16. From the #sf-lines layer, we select all the primary roads. Then we set
line-width to 3.

In the preceding example, we used zoom to adjust the line width of the roads. As you may
have noticed in various mapping services, maps usually display less detail as you zoom out,
which happens because they don't want to overwhelm the user by displaying information that
does not make sense at these zoom levels.

Imagine a map of the United States zoomed out to a level where every state is visible on the
screen. What would happen if we were to display, at this specific zoom level, every street
name down to the smallest walk path?

Comparisons
As you may have noticed in the preceding section, we used comparison filters to specify the
criteria. We have already used highway="motorway", which is a text filter, and [zoom <
16], which is a zoom level filter.

Let's take a look at some more examples to understand the power of filtering our content.

For zoom level filters, we can limit the zoom levels to a specific range using the following code:

#sf-lines[zoom=>5][zoom<=12]

TileMill and Mapbox Studio

54

This simply means the instances when the zoom is between 5 and 12.

We can do the same using numeric filters. Here's an example:

#earthquakes[magnitude > 4][magnitude < 7]

Here, from the earthquakes layer, we are selecting the points between magnitudes 5 and 6.
Note that the equals sign is missing.

For text comparisons, we can use the following code:

#sf-lines[highway != "primary"]

From the #sf-lines layer, select everything except primary highways. Alternatively, you can
use the =~ operator to specify a regular expression, as follows:

#sf-lines[highway =~ ".* Highway"]

In the preceding example, both major and secondary highways will be selected.

Working with colors
We can define a color by directly setting the value next to the property, as follows:

background-color: #b5e3ff

This will set the background color to blue. The color value is represented in hex.

To simplify our work and have an easier time when tweaking or fine-tuning our design,
CartoCSS allows us to use variables to define colors (and many other values), as follows:

@water: #b5e3ff;

Map {
 background-color: @water;
}

Water {
 fill-color: @water;
}

At the beginning, we defined a variable called @water with a hex value of #b5e3ff. We set
this variable as the color value for both the background and the fill color of water. This will
save us from replacing multiple values within the editor when we need to make a change.

Chapter 3

55

In the TileMill editor, colors are also represented with a color swatch directly below the text. You
can simply click on the swatch, a color palette will appear, and you can select a color you like.

Styling lines
Let's explore some common techniques of styling lines.

The attributes we already know for lines are line-color and line-width. Another useful
attribute is line-join. It changes how lines appear at the points where they join other lines.

Let's consider an example of how it looks if we don't set this attribute at all, which means that
it uses the default line-join parameter, miter:

TileMill and Mapbox Studio

56

Now, we will set line-join: round:

You can also try setting it to bevel and spot the differences as compared with the preceding
screenshots.

Another useful parameter is line-cap, which sets how lines look at the ends. You can set it
to butt (default), round, and square:

The line-dasharray property can take a comma-separated list of pixel widths as a value.
Each value represents a dash and a space in this order. For example, line-dasharray:
24, 12 will create a dash of 24 pixels and a space of 12 pixels.

Chapter 3

57

You can set as many values as you like to create more complex styles; for
example, line-dasharray: 24, 12, 15, 7, 12, 3 is perfectly
valid.

Note that we combined line-dasharray with line-cap and line-join to get the
rounded look.

Styling polygons
Polygons are filled areas. We usually style them with a solid color or pattern. Polygons can also
be styled with the attributes that we saw before, such as line-width and line-color, but
let's explore some new ones that work specifically for polygons.

The most common one is polygon-fill. It simply fills the polygon with a solid color. Take a
look at the following code:

#countries {
 polygon-fill: #aaa;
}

We can specify the opacity of the polygon using the polygon-opacity attribute, as follows:

#countries {
 polygon-fill: #aaa;
 polygon-opacity: 0.50;
}

If a layer is opaque, the layer behind it becomes visible. If there is no layer
behind it, the background color becomes visible.

TileMill and Mapbox Studio

58

We can fill a polygon using a texture or seamless pattern. We can also create our own patterns
using image processing software, such as Photoshop or Gimp. Another option is to download
patterns from a website such as http://subtlepatterns.com or http://www.
patterncooler.com/.

We can define the pattern we want to use using the polygon-pattern-file style. It takes
the URL of an image file as a parameter, as follows:

#countries {
 polygon-pattern-file:
 url("http://www.mysite.com/pattern01.png");
}

Have a look at the following screenshot:

This pattern is only applied to the polygon that we defined within our selector. To apply
patterns in the background, we can use the background-image property, as follows:

#countries {
 background-image: url("pattern01.png");
}

http://subtlepatterns.com
http://www.patterncooler.com/
http://www.patterncooler.com/

Chapter 3

59

Styling labels
It's almost certain that at some point, we will need to style labels. By this, we mean how the
text for road names, cities, or countries will look.

The most basic form of styling text can be found in the following example:

#countries {
 text-name: [NAME];
 text-face-name: 'Arial Bold;
}

First of all, we need to fetch text from our layer data. We can do this using text-name:
[NAME], where NAME is the attribute name of our layer.

We also need to specify text-face-name. This is the font name that will be used by TileMill
to display the text on the screen. This is not the font filename but how the font is named
internally. You can use the fonts browser within TileMill to browse the available fonts in your
system and see their internal names.

We can change the text color using the text-fill property and the text size with the text-
size property.

There is a property called text-halo-fill, which in simple words is the outline color of the
font; however, in order for it to be visible, you have to also specify the text-halo-radius
value with the radius in pixels.

A complete styled text will look similar to the following example:

#countries {
 text-name: [name];
 text-size: 16;
 text-fill: @text;
 text-face-name: "Arial Bold";
 text-halo-radius: 1;
 text-halo-fill: #AC8812;
}

TileMill and Mapbox Studio

60

Have a look at the following screenshot:

If we look at this screenshot, the street labels are not aligned with the streets. The map looks
a bit weird because in many cases we can't tell which label belongs to which street. It would
be much better if we could align the labels to the directions of the streets.

To do this, we can use the text-placement property. It takes four different parameters, but
the most commonly used one is line, which aligns the label in the line's direction:

Chapter 3

61

The complete selector can be found in the following example:

#countries {
 text-name: [name];
 text-size: 16;
 text-fill: @text;
 text-face-name: "Arial Bold";
 text-halo-radius: 1;
 text-halo-fill: #AC8812;
 text-placement: line;
}

Attachments
You may have noticed in the preceding screenshot that the selector contains another nested
selector that starts with two double colons (::). This type of selector is called attachments.

It's a way to instruct TileMill to draw the same element again, but this time, we will style it with
the properties modified within the selector closures.

If we start using two double colons, we must specify a name. This name can be whatever we
want; we can name it so as to remember what this attachment does. Then, in this context, we
can specify any properties that we want to modify.

Let's consider an example:

#countries {
 line-color: #0000ff;
 line-width: 6;
 polygon-fill: #dd0000;

 ::second-outline {
 line-color: #ff0000;
 line-width: 3;
 }
}

In the preceding example, TileMill draws an outline of the #countries layer, with a width of 6
pixels and the color blue. Then, at ::second-outline, it draws the layer again, but this time
with the color red and a width of 3 pixels.

TileMill and Mapbox Studio

62

As you can see in the following screenshot, it's a great way to generate glows and other types
of effects; the best part of it all is that you can redraw the layer as many times as you want!

The power of CartoCSS lies in the concepts that we explained in the preceding section.
By following these simple rules, you can transform your map to whatever you have in your
imagination.

Styling a map with TileMill
If you haven't downloaded TileMill yet, head over to the Mapbox website and download it right
now from https://www.mapbox.com/tilemill/.

The installation is pretty straightforward, and detailed instructions are provided in the page
you download TileMill from, for all supported operating systems—Windows, OS X, and Linux.

https://www.mapbox.com/tilemill/

Chapter 3

63

How it works…
Once TileMill is installed and you have opened it, you will be greeted with the templates
screen, where you can select one of the predefined templates, one of your previous projects,
or create a new one:

Go ahead and select any template you like. We will examine the user interface at this point.

TileMill and Mapbox Studio

64

After a template is selected, we will consider the main user interface of TileMill. It is separated
into different sections, with the most dominant section being our styled map:

The map will be a live preview, showing the data that we imported into TileMill.

At this point, it is worth mentioning again that TileMill is not connected to any mapping
service and does not fetch live map data. What we see in the map is the data that we (or the
template) imported into TileMill.

In an ideal situation, we could open TileMill, zoom to a region of our choice, and be able
to see and style all the features, such as the roads and the buildings. Sadly, however, this
is not the case. What we import is what TileMill displays and allows us to style. Remember
that it displays the changes after we save the project, not at the moment that the import is
completed.

In the preceding screenshot, on the right-hand side is the CartoCSS editor, which displays a
huge chunk of code. Don't be afraid; once we understand how CartoCSS works, parsing and
understanding this code will be a piece of cake. CartoCSS is not as complex as a full object-
oriented language. It's a matter of understanding some basic concepts and rules, that's all.

Chapter 3

65

On the left-hand side of the screen, you will see a dark gray area with some buttons aligned
vertically. Let's check them out one by one:

ff Editor: This is the first button; it brings you to the exact screen that you are currently
looking at.

ff Projects: This is the screen you saw when you first started TileMill. It is where you
select a template or your own project.

ff Manual: This is just a quick reference explaining the main functionality of TileMill.

ff Plugins: This allows you to download plugins with extra functionality, which will be
integrated directly into Mapbox.

ff Settings: This is where we set up everything ranging from where your projects are
saved, autoupdates, and other aspects of the application.

Let's head back to the Editor tab. In the lower-left corner of the screen, we will find another
group of buttons—the Editing Tools. Let's start exploring them:

ff Templates is the first button. Here, we can define various aspects of the map that we
are styling.

The first option allows us to set up a legend, and we can use HTML and inline CSS to
design our legend as we like. We can also set up a teaser that shows upon hovering
or when tapping on a mobile device. Next, there is a full description tab, and in the
end, we can set up the location to which we can also add a link:

TileMill and Mapbox Studio

66

ff Fonts is the next button. TileMill opens a window and displays the full list of fonts
installed in the system. Using this section, you can easily copy the font name and
paste it into the editor. It's kind of hard to remember the full font name, so this
section is very helpful:

ff After Fonts, you will notice an icon that looks like curly brackets. This is a reference to
CartoCSS. This is the Carto button.

Do not underestimate this button! It will be your friend while learning CartoCSS!
Especially at the beginning, remembering all CartoCSS parameters will be difficult. Do
not be afraid to go into this section if you are looking for help:

Chapter 3

67

ff The last button is the Layers button. The most important functionality of TileMill lies
here as it gives you access to layers.

Each group of data that you import goes into a layer, and from this section, you can
add, edit, or delete your layers. There is also a layer data inspector to view the layer
data in a spreadsheet-like screen.

TileMill and Mapbox Studio

68

How to do it…
Perform the following steps:

1.	 Download, or generate using GIS software, the map data required for the map.

2.	 Create a new TileMill project by clicking on New project.

3.	 Go to the Layers palette, click on Add Layer, and import the data into TileMill.

4.	 Style the map using CartoCSS.

Downloading the map data
Before we begin with TileMill, let's get the data needed for this recipe. We will download data
in an already extracted format. The data contains the shapefiles that we need to import into
TileMill. Perform the following steps:

1.	 A well-known website to get extracted map data is http://metro.teczno.com/.
Head over to this website now and select a city or region:

http://metro.teczno.com/

Chapter 3

69

2.	 From the region of your choice, you will need two shapefiles. Download the
coastline shapefile and the osm2pgsql shapefiles. The first one is only the
coastline, and osm2pgsql shapefiles include everything else that we will need,
such as roads, building labels, and other features.

We have downloaded the San Francisco files for this example; if you want, you can
follow our example, but it really doesn't matter. Any region will do just fine.

3.	 Extract the ZIP files in a folder of your choice.

4.	 Each ZIP file will extract several files with extensions such as .dbf, .prj, .shx,
and .shp.

Inspecting the downloaded files using QGIS
You can totally skip this step and just import everything we downloaded directly into TileMill.
However, I strongly suggest that you go through the process and learn how to inspect data.

TileMill shows the main attributes of the file in a spreadsheet-like form. We will use a free
open source GIS software to explore the files in detail and the attributes that they contain.
Perform the following steps:

1.	 Quantum GIS (QGIS) is an open source software that we can use if we want to take a
look at what kind of data a shapefile contains. It's available for every major platform,
and it's absolutely free, so go ahead and download it from http://www.qgis.org/
en/site/.

The installation instructions can be found on the QGIS website, and they are pretty
simple. Go ahead and install it now.

QGIS will install many applications, such as QGIS Desktop and QGIS Browser. We
need to open QGIS Desktop.

2.	 Go to the Layer menu, click on Add Layer, and then on Add Vector File. A dialog will
come up. Ensure that the Source type is File and then click on the Browse button to
choose a .shp file. I picked san-francisco.osm-line.shp:

http://www.qgis.org/en/site/
http://www.qgis.org/en/site/

TileMill and Mapbox Studio

70

3.	 Click on Open to import the layer into QGIS:

I will not go into a detailed explanation of how QGIS works, as it could be a book of its
own. For the purpose of this recipe, we just need to know how to navigate the map.

Clicking and dragging on the map area scrolls the map. We can use the scroll wheel
to zoom in or out.

Chapter 3

71

4.	 Click on the Open Attribute Editor icon in the toolbar. This will open a spreadsheet-
type editor, which displays all the attributes contained in this shapefile:

5.	 Observe the attributes, such as highway. We can see that it contains values such as
footway, path, residential, and so on. These are the attributes and values that we
will use in TileMill to style our map.

TileMill and Mapbox Studio

72

6.	 On the Attribute table, click on the Select Features Using an Expression button. The
Select by expression dialog box will pop up:

7.	 In this dialog box, we can select the values we want in two ways. The first option is to
type the expression directly in the Expression section at the bottom of the screen.

The second option is to select the Fields and Values category in the Function list
section on the left-hand side and then double-click on the attribute that you are
interested in—for example, highway. Note that the attribute appears in the expression
section at the bottom.

8.	 Next, select the equals (=) sign from Operators.

9.	 Click on the all unique button for Load values. All the values of the selected attribute
column will appear in the Field values list.

10.	 Double-click on the value (for example, motorway). The expression editor will display
"highway" = 'motorway'.

Chapter 3

73

11.	 Finally, click on the Select button and then on Close to close the dialog.

12.	 If you scroll to the attribute editor, you will notice that some rows are now selected;
these are all the rows where the highway attribute is equal to motorway. To view
the motorways highlighted in the map, click on the Zoom Map to the Selected Rows
button in the attribute editor toolbar. It's the one that looks like a magnifier. You can
also press Ctrl + J in Windows and Linux or Cmd + J on Mac.

13.	 Close the attribute editor, and you will see all the motorways highlighted in the map.

In case you do not understand what an attribute or value represents, head
over to http://wiki.openstreetmap.org/ and type the attribute
or value in the search box on the upper right-hand side. For example, you
can see all the values of the highway attribute that we just explored at
http://wiki.openstreetmap.org/wiki/Key:highway.

You have now learned a powerful way to inspect shapefiles and their attributes. If you are
in the GIS business, you probably already have this skill. If you are just a developer with the
ultimate purpose of creating the most beautiful maps in the world, then you may have never
encountered GIS software before.

I strongly encourage you to learn how to use QGIS or any other GIS software in this case.
There are many times that you may receive data from other sources in a non-standard format
with unknown attributes.

Without this type of software, it is extremely difficult to find which attribute represents which
feature on the map. Not having the capability to visualize shapefiles and find out what
features they contain is a huge drawback.

Importing downloaded data into TileMill
It's time to create a new project and import the data we downloaded earlier from the Metro
Extracts website into TileMill:

1.	 Fire up TileMill. You will be greeted with the Projects screen, where you can choose
one of the templates that come with TileMill, a previous project, or create a new
project.

2.	 Click on the New project button, and we will start from scratch.

3.	 In the New project dialog box, type any filename you want. The Name and
Description fields are optional. Ensure that the Image Format is PNG (24-bit).

4.	 Leave the Default data checkbox selected. This will import a world layer into the
project automatically. We don't need it, but it will help us to navigate, and we can
always get rid of it later.

http://wiki.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Key:highway

TileMill and Mapbox Studio

74

5.	 To close the dialog box and create our new project, click on the Add button.

6.	 Great! We are now into TileMill. You will see the world layer that we imported earlier
when creating the project. There is one style currently active—style.mss—which is
the one that gives the current map the blue background color representing the sea.
The countries are styled with line-color specified as a darker blue and line-
width of 2, and they are filled with a pure white using polygon-fill:

7.	 Open Layers. You will see the #countries layer that was imported by TileMill
automatically. Leave it for now, and click on the Add layer button to add a new layer:

Chapter 3

75

8.	 In the Add layer dialog box, select Browse and browse to the location of the extracted
ZIP files. We will import the polygons first. My file is called san-francisco.osm.
polygon.shp; yours may be different depending on the area that you download, but
the filename will always end with polygons.shp.

9.	 Click on Done to browse the dialog box to return to Add layer. The next thing we will
need to do is specify an ID. TileMill set mine as sanfrancisco automatically, but as
I will import more layers, this ID won't make sense, and it's better to select something
more appropriate. It will help us separate it from the lines and layers containing other
datatypes. I will set my ID to sf-polygons for the San Francisco polygons. Finally, click
on Save:

In most cases, you won't need to adjust the SRS field. However, in case it fails,
we have to provide the correct value in this field.
Spatial Referencing System (SRS) is a quick way to identify a spatial
referencing system using the PROJ.4 syntax. There are several ways to get
the PROJ.4 string, but one of the easiest is by searching on http://www.
spatialreference.org/.
You can find the PROJ.4 string for WGS 84 at http://www.
spatialreference.org/ref/epsg/4326/proj4/, which is the following:
+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
For more information regarding the PROJ.4 specification, visit http://trac.
osgeo.org/proj/.

http://www.spatialreference.org/
http://www.spatialreference.org/
http://www.spatialreference.org/ref/epsg/4326/proj4/
http://www.spatialreference.org/ref/epsg/4326/proj4/
http://trac.osgeo.org/proj/
http://trac.osgeo.org/proj/

TileMill and Mapbox Studio

76

10.	 You will return to TileMill. Note that #sf-polygons is now in the Layers list. Click on the
magnifier icon next to the #sf-polygons layer. The map will zoom in to the region that
the data is located on.

11.	 Repeat the procedure and import the other two layers san-francisco.osm-line.
shp and san-francisco.shp from the coastlines ZIP file. You can set up the
IDs as #sf-lines and #coast, respectively.

12.	 The layer order is very important in TileMill, and if you import the layers in the order
described previously, you will have the #sf-polygons layer at the bottom, #sf-
lines in the middle, and #coast at the top. The layer order specifies the order that
TileMill draws the layers in, and by this we mean that data may be covered by the
layers above it. In this case, our lines, which include the roads, will be covered by the
coastlines' polygons.

Notice that the icon next to each layer shows what type of data it contains. It may
show a line with two dots for line data and a filled polygon shape for polygon data.

You can drag this icon to change the layer order. Try it now and set the layer order with
#coast at the bottom, #sf-lines in the middle, and #sf-polygons at the top.

Styling data using CartoCSS
You need to perform the following steps:

1.	 First of all, let's set up our color palette. Clear the style.mss stylesheet of all code
and copy the following variables:
@water: #2f4145;
@water-outline: #384C51;
@land: #322f2e;
@streets: #D7AE26;
@streets-dark: #AC8812;
@buildings: #6D6765;
@text: #392C00;

Well, you are looking at hex values, and it is kind of difficult to decipher the colors just
by reading them.

Luckily, TileMill displays the colors used in CartoCSS in the color swatches at the
bottom of the screen. Clicking on a color swatch allows you to change this color using
a handy color picker.

Chapter 3

77

This is not the best way to build a color palette. Now is the perfect time to
talk about the tools that can help us build a really beautiful color scheme. We
want to design the most beautiful maps, after all!
One of the online tools we can use is Adobe Color (formerly, Adobe Kuler).
You can access it at https://color.adobe.com/, and it will help you
build your color scheme by selecting a color rule, such as monochromatic,
complimentary, triadic, compound, or even building a custom color palette.
We can save our color scheme and share it with the Adobe Color community,
as well as explore the color schemes designed by other people.

Another popular option is Paletton (http://paletton.com). It offers
almost the same features as Adobe Color.
There is also Color Sphere! from MadCube, which is a Chrome extension, and
there are even native applications such as ColorSchemer Studio 2 (http://
www.colorschemer.com/).

https://color.adobe.com/
http://paletton.com
http://www.colorschemer.com/
http://www.colorschemer.com/

TileMill and Mapbox Studio

78

2.	 Now, let's style the background and #coast, which is the coastlines shapefiles layer
imported earlier. It's a polygon layer, and we will use polygon-fill and line-
color to create a thin outline:
Map {
 background-color: @water;
}

#coast {
 polygon-fill: @land;
 line-color: @water-outline;
}

3.	 In order for TileMill to update the map, you will have to save, so ensure that you do
this by clicking on the Save button on the upper right-hand side of TileMill:

The keyboard shortcut to save is Ctrl + S for Windows and Cmd + S for OS X.

At this point, we should be able to see the styled coastline. If nothing is visible, open
Layers and click on the magnifier icon next to the coast. It will zoom to the region that
the coastline is in.

Chapter 3

79

Suppose you have an error in CartoCSS. In this case, TileMill will highlight
the line number in yellow and display an error message at the bottom of the
screen. Ensure that you fix all the errors and save again:

4.	 The next time we open the project, TileMill will not zoom automatically to the region
we are working with. It's a good time to do it now as we have styled the basic
coastline. Click on the Wrench icon in the upper right-hand side of the screen to go to
Project Settings.

5.	 You will probably see a blank dark blue map. Our region is there, but we are currently
at zoom level 1, and the whole world is visible. Using the zoom plus and minus
buttons and dragging around the map, try to find the region that you are working with.

6.	 When you zoom in to the region, shift and drag to enclose it in a rectangle. This
rectangle will define the area that we are working with and the one that TileMill will
eventually export the tiles of.

7.	 Click on the center of the region, and a marker will appear. This is the center of our
project.

TileMill and Mapbox Studio

80

8.	 When you have finished, click on Save:

9.	 Back in the editor, let's style the roads. We will set the colors of all roads to yellow and
then use different line widths for different types of roads by executing the following
code:
// Set the colors of all roads to @street
#sf-lines[highway != ""]{
 line-color: @streets;
}

// for motorways, and trunk set line width to 5
#sf-lines[highway="motorway"],
#sf-lines[highway="trunk"] {
 line-width: 5;
}

Chapter 3

81

// for primary roads, set line width to 3.
#sf-lines[highway="primary"] {
 line-width: 3;
}

// for secondary roads, set line width to 2
#sf-lines[highway="secondary"] {
 line-width: 2;
}

// for paths roads, set line width to 1, and use dashes
#sf-lines[highway="path"] {
 line-width: 1;
 line-dasharray: 5, 3;
 line-cap: round;
 line-join: round;
}

This is shown in the following screenshot:

TileMill and Mapbox Studio

82

10.	 To style the buildings, we will fill them with the color that we defined in the variable
and set the opacity to 0.35. This will mix the color of the buildings with the layer
behind—in this case, the coastline. Run the following code:
#sf-polygons[building != ""] {
 polygon-fill: @buildings;
 polygon-opacity: 0.35;
}

In case you forget what features a layer contains, you can go to the Layers
palette and click on the icon that looks like a spreadsheet next to the layer's
name. TileMill displays a table with all the features of a layer and the values
that they contain:

11.	 If you try to zoom out now, you will notice that the streets are very dense with a lot
of detail at lower zoom levels. We will fix this next. Reduce the opacity of all roads to
0.45 when the zoom level is less than 16 through the following code:
[zoom < 16] {
 #sf-lines[highway != ""] {
 line-opacity: 0.45;
 }
}

Chapter 3

83

12.	 Reduce the opacity of all roads to 0.25 when the zoom level is less than 14 with the
following script:
[zoom < 14] {
 #sf-lines[highway != ""] {
 line-opacity: 0.25;
 }
}

13.	 Use this code to hide the roads when the zoom level is less than 12:
[zoom < 12] {
 #sf-lines[highway != ""] {
 line-opacity: 0;
 }
}

14.	 When the zoom level is less than 16, set the line opacity to 1 by executing the
following code:
[zoom < 16] {
 #sf-lines[highway = "motorway"],
 #sf-lines[highway = "trunk"],
 #sf-lines[highway = "primary"],
 #sf-lines[highway = "secondary"],{
 line-opacity: 1;
 }
}

Remember that styles at the bottom overwrite the ones above them. So,
even if we set the opacity to 0.45 for zoom < 16 for all roads, motorways,
trunks, and primary and secondary roads, they will still have an opacity of
1. The rest will remain at the previous value.

15.	 When the zoom level is greater than 15, you can use the following code:
[zoom > 15] {

 #sf-lines[highway="primary"]{
 line-width: 10;
 }

 #sf-lines[highway = "secondary"] {
 line-width: 8;
 }

TileMill and Mapbox Studio

84

 #sf-lines[highway = "tertiary"],
 #sf-lines[highway = "unclassified"],
 #sf-lines[highway = "residential"] {
 line-width: 6;
 }
}

Great! Try to zoom in and out now and you will notice the difference. Observe how the
opacity of the roads reduces every time you zoom out and how certain features are
hidden.

16.	 Our map already looks great, but it doesn't have labels yet. A map without road
names will not be very popular! At the beginning of our style, directly below the
#coast styling, we have a section that sets all road colors to street colors. Execute
the following code:
#sf-lines[highway != ""]{
 line-color: @streets;
}

17.	 Let's add the label style in this selector. Replace CartoCSS in the preceding section
with the following code. As we explained in the introduction, we forced TileMill to
redraw the elements in the current selector with double colons :: (road-label
is just a name we defined to remember what this redrawn part does). We will fetch
road names from the [name] column. The rest of CartoCSS just consists of various
typography attributes. We will also set text-placement to line, so the labels will
be aligned with the lines of the roads:

#sf-lines[highway != ""]{
 line-color: @streets;

 ::road-label[zoom>15] {
 text-name: [name];
 text-size: 14;
 text-fill: @text;
 text-face-name: "Arial Bold";
 text-halo-radius: 1;
 text-halo-fill: @streets-dark;
 text-placement: line;
 }
}

Chapter 3

85

This is how it will look:

Styling a map with Mapbox Studio
In this recipe, we will style a map using Mapbox Studio. The biggest difference from TileMill is
the workflow, while other parts, such as CartoCSS, remain the same.

How it works…
If you haven't installed Mapbox Studio yet, head over to the Mapbox website and download it
now from https://www.mapbox.com/mapbox-studio/.

It's available for all major platforms, and the installation is pretty straightforward. Once
installed, open the application and prepare for an interface tour!

www.allitebooks.com

https://www.mapbox.com/mapbox-studio/
http://www.allitebooks.org

TileMill and Mapbox Studio

86

When you first start Mapbox Studio, you will be greeted with the Projects screen, just as in
TileMill.

You can start either by selecting a starter style (a template), or by creating a new style by
selecting a source from the ones provided by Mapbox. The sources provided by Mapbox are
Mapbox Streets, Mapbox Terrain, and Mapbox Satellite.

In case you want to overlay or import external data from other sources, you can create a new
source by clicking on the Blank Source button on the right-hand side.

Once you have selected a style, you will be transferred to the style editor. The interface is
separated into two parts, with the map on the left-hand side and the CartoCSS editor on the
right-hand side, just as in TileMill:

Chapter 3

87

On the left-hand side, you will find the Save as, Settings, Layers, Fonts, and Docs buttons:

ff Save as: This saves the project. You have to save each new project you create to your
local hard drive.

ff Settings: This allows you to configure the project settings, such as the available zoom
levels and other parameters.

ff Layers: This shows all the layers available at the source(s) that you select when you
create the project.

ff Fonts: This opens a window with a preview and the font names of the typefaces
available for use in your maps.

ff Docs: This opens a window with reference both to the user interface of Mapbox
Studio and CartoCSS.

At the top of the window, there is a toolbar with some buttons. Let's check them out from
left to right:

ff Search: This allows you to search for a specific location on the map. Try a city
or country to quickly jump to that location.

ff Full screen map: This shows or hides the CartoCSS editor, showing the map in
full screen.

ff + and – buttons: This zooms in or out of the map.

ff Inspector: This allows you to visualize all layer data contained in the sources.

In the far upper-right corner of the CartoCSS window, you will find the Export Image button. It
allows you to export images up to 600 ppi.

How to do it…
Perform the following steps:

1.	 Create a new project in Mapbox Studio by clicking on Projects and then on + New
project.

2.	 In the New project window, select the sources to be used in the map. The source
could be one of the Mapbox ones, such as Mapbox Streets, Mapbox Terrain, or
Mapbox Satellite, or a combination of them.

3.	 Style the map using CartoCSS.

TileMill and Mapbox Studio

88

Styling a map
Perform the following steps:

1.	 Create a new project in Mapbox Studio. We will not use a template; we will start from
scratch. At the bottom of the New projects screen, you will see a Create button; next
to it, ensure that it's mapbox.mapbox-streets-v5, which means that Mapbox Streets
will be used as source.

Remember, we do not import data into Mapbox Studio as we do with TileMill; instead,
we will use the standard Mapbox sources provided to us. We can create our own
sources if we want, and we can combine multiple sources together to create more
complex maps.

For now, we will use just Mapbox Streets, so click on the Create button:

2.	 The editor will pop up with some basic imported CartoCSS. The first thing you will notice
is that the Save as button in the upper-right corner is highlighted in blue. This means
that the project is unsaved. We won't get far without saving, so let's do it right now.

Chapter 3

89

Click on the Save as button, select a location on your hard drive, name the project as
you want, and click on Save.

3.	 Zoom in to a region of your choice and clean up all the CartoCSS from the style. Hit
Save again (Ctrl + S for Windows and Cmd + S for Mac). You will notice that the map is
now blank. Don't worry, there is an awesome way to visualize data in Mapbox Studio.

4.	 Let's finish with the project setup first before we do this. Head over to Settings and
increase Maxzoom to 22.

5.	 Among the icons arranged on the topmost bar above the map is the Inspector icon. It
looks like layers with a magnifier on top. Click on it now.

The map now shows the data that the layer contains. If your zoom range is below 15,
the data may be dense, so ensure that you zoom in until you get a clear picture of
what's going on.

If you click on various lines, you will see that a popup appears, showing you
information such as the kind of layer, class, type, and name:

TileMill and Mapbox Studio

90

6.	 Let's define some colors. At the beginning of the style, add the following variables:
@water: #046380;
@some: #002F2F;
@land: #E6E2AF;
@outlines: #EFECCA;
@text: #A7A37E;
@green: #002F2B;

7.	 Open Layers from the Mapbox Studio sidebar. You will see all the layer IDs available
in Mapbox Streets as we are using this source. Click on a layer ID to see what classes
it has; for example, click on #road, and you will see that it can be one of motorway,
motorway link, main, street, and so on.

8.	 We will begin by styling #water. First of all, set the background-color value,
which in this case actually represents the ground color, then style #water. Run the
following code:
Map {
 background-color: @land;
}

#water {
 polygon-fill: @water;
 line-width: 1;
 line-color: @outlines;
}

9.	 Click on Save when you have finished and inspect the map:

Chapter 3

91

10.	 Continue inspecting the layers and styling the IDs that you need one-by-one in the
same way that we did in TileMill. Here is the code for the complete style:

@water: #046380;
@some: #002F2F;
@land: #E6E2AF;
@outlines: #EFECCA;
@text: #A7A37E;
@green: #002F2B;

Map {
 background-color: @land;
}

#water {
 polygon-fill: @water;
 line-width: 1;
 line-color: @outlines;
}

/////////////////
/// ROADS ///
/////////////////

#road {

 line-color: @text;

 [type='motorway'], [type='motorway_link'] {
 line-width: 6;
 [zoom > 16] { line-width: 12 }
 [zoom < 14] { line-width: 3 }
 }

 [type='main'] {
 line-width: 5;
 [zoom > 16] { line-width: 8 }
 [zoom < 14] { line-width: 3 }
 }

TileMill and Mapbox Studio

92

 [type='street'], [type='street_limited'],
 [type='driveway'], [type='residential'] {
 line-width: 4;
 [zoom < 14] { line-width: 1 }
 }

 [type='unclassified'], [type='secondary'] {
 line-width: 4;
 [zoom < 14] { line-opacity: 0 }
 }

 [type="path"] {
 line-width: 1;
 line-dasharray: 5, 3;
 line-cap: round;
 line-join: round;
 [zoom < 16] { line-opacity: 0 }
 }
}

#road_label {
 text-name: [name];
 text-size: 18;
 text-fill: @text;
 text-face-name: "Meta Offc Pro Bold";
 text-halo-radius: 2;
 text-halo-fill: @land;
 text-placement: line;
}

/////////////////
/// BUILDINGS ///
/////////////////

#building {
 polygon-fill: @green;
 [zoom < 13] {
 polygon-opacity: 0.0;
 }

}

Chapter 3

93

Here's the final result:

There's more…
In the previous section, you learned how you can use and style data provided by Mapbox.

Now, we will continue from there and take a look at how to import our own data into Mapbox
Studio.

TileMill and Mapbox Studio

94

Perform the following steps:

1.	 Open Mapbox Studio. Click on Styles & Sources in the lower-left corner. We will need
to create our own source. Click on + New Style or Source at the top of the sidebar
that opens up. On the left-hand side of the New Style or Source window, there is a
Source section. Click on the Blank source button:

2.	 Now, we need to add our layers. The data that a layer can contain can be a shapefile;
can be in the .kml, .geojson, .gpx, .csv, .tif, and .vrt formats; or can even
be PostGIS and SQLite databases.

We will use a shapefile that contains the national parks in US. You can download the
file from http://www.naturalearthdata.com/downloads/10m-cultural-
vectors/parks-and-protected-lands/. It's a ZIP file, so we will need to extract
it somewhere on the hard drive.

3.	 Back in Mapbox Studio, click on the Browse button in the Add a New Datasource
window, and select ne_10m_parks_and_protected_lands_area.shp from the files
that we extracted in the previous step.

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/parks-and-protected-lands/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/parks-and-protected-lands/

Chapter 3

95

You will see that the shapefile has been imported correctly. Mapbox Studio now
shows us a preview, and we can already zoom and pan. You can even click on a
shape and a popup with the layer attributes will appear:

On the sidebar to the right, note that it correctly detected the projection and showed
it in PROJ.4, which is as follows:

+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

You can add as many layers as you want in a single source and even a
mix of shapes, GeoJSON, and other file types.

4.	 You can rename the layer if you want. Click on the Rename button below the filename
at the top of the sidebar to the right. I named mine national_parks for simplicity.

5.	 Before uploading our own data to Mapbox, we need to save the project locally. Press
Ctrl + S on Windows or Cmd + S on OS X, choose a filename, and store it somewhere
on your hard drive.

6.	 Now that the project is saved, click on Settings and then on Upload to Mapbox.
Mapbox Studio will initiate the process to upload the data to your Mapbox account.

TileMill and Mapbox Studio

96

7.	 Once the upload is completed, you can find the Map ID above the Upload to Mapbox
button. Copy the Map ID; we will need it in a while.

8.	 That's all that's needed to create a new data source to be used in Mapbox Studio.
Now, we need to open the map from the previous recipe. If you didn't complete the
previous recipe, any of the sample projects will do just fine.

9.	 Once the project is open, click on Layers and then on Change Source. In the Sources
window, before the Apply button is the source that we will use for this map, which is
mapbox.mapbox-streets-v5.

10.	 We will need to append our own source, which we just created. We have the Map
ID already copied to the clipboard, so add a comma (,) and paste the Map ID. The
complete string should look similar to the following:

mapbox.mapbox-streets-v5, mapboxrecipes.62340c1c

11.	 Click on Apply. Our own custom datasource will be added to the project.

You can make sure of this by opening the Layers palette. Note that there is a
#national_parks layer here. This is our own data source—the layer that we added
earlier.

Chapter 3

97

12.	 In order to see the layer, we need to style it first. For this layer, paste the following
CartoCSS code at the bottom of the style:
#national_parks {
 polygon-fill: @green;
 opacity: 0.5;
 text-name: [name];
 text-size: 32;
 text-fill: @text;
 text-face-name: "Meta Offc Pro Bold";
 text-halo-radius: 2;
 text-avoid-edges: true;
 text-halo-fill: @green;
 [zoom < 7] {
 text-size: 18;
 }
}

13.	 Save the project and enjoy our custom data overlaid on the Mapbox Street map data:

TileMill and Mapbox Studio

98

Publishing your base map on your server
with PHP

So far, we have successfully used the tools provided by Mapbox to style our maps. We have
also seen how easy it is to publish a map to the Mapbox platform, especially if we use Mapbox
Studio.

There are cases where we may need to host a map on our own server, and we will explore two
different ways of doing this.

In the first case, we will use PHP. While this is not the best option for this task, PHP can be
found installed on every server, and projects using PHP are easy to deploy.

How it works…
First of all, we will export our maps from TileMill. The format that we will export in will be
.mbtiles, which is actually a SQLite file containing the data and the tiles.

MBTiles is just a SQLite database that contains metadata information along
with PNG images. Its purpose is to have a single file that contains everything
needed to serve a map. In cases such as mobile applications, storing
thousands of tiles and metadata information in the app container can be
difficult to manage and can be extremely poor in performance.
The following is a screenshot showing the tables of the SQLite database along
with the table of PNG files:

Chapter 3

99

Reading SQLite files directly in PHP is not performant at all, so we will use MBUtil to convert
them into PNG files. Next, we will use a PHP tile server developed by Petr Pridal. Developing
our own tile server is not a hard task, but it is beyond the scope of this book. Finally, we will
set up a simple project and serve the tiles.

How to do it…
Perform the following steps:

1.	 Export MBTiles from TileMill by clicking on Export and choosing MBTiles as the
export option.

2.	 In Export Options, ensure that the zoom is configured and the center is within the
bounds of our map.

3.	 Click on Export, and once finished, click on Save to store MBTiles on the hard drive.

4.	 Convert the MBTiles (SQLite) files into regular PNG files using MBUtil.

5.	 Use one of the open source tile servers, such as the PHP tile server, to serve the
newly generated PNG files.

Exporting a map from TileMill
The steps are as follows:

1.	 Fire up TileMill and open the project you want to export. In the upper-right corner, you
will find an Export combo box. Select it and choose MBTiles.

2.	 Set up the region that you want to export by defending the bounding box in the map.
Also, ensure that the center is a location within the region.

TileMill and Mapbox Studio

100

3.	 Configure the zoom range to export. You will notice that as you increase the zoom, the
time and hard drive space required to export also dramatically increases:

4.	 Click on Export to export your tiles. You will then be transferred to the export queue,
and you will be able to monitor the progress and the time remaining:

5.	 Once finished, click on the Save button. TileMill will show you the location on your
hard disk to find the exported MBTiles.

Chapter 3

101

Converting an MBTiles database into regular PNG files
We will convert the MBTiles SQLite database into regular PNG files. The files have to follow a
specific folder structure and a naming schema for us to be able to use them in the tile servers.

For the task, we will need an external utility called MBUtil. It's a powerful tool that allows
us to specify our own naming scheme and even change the output format. In this case,
the default XYZ naming scheme will do just fine, and the default format is PNG, which is
exactly what we need.

Perform the following steps:

1.	 Let's download MBUtil. Head over to the repo and follow the instructions to set up
MBUtil globally at https://github.com/mapbox/mbutil.

2.	 Once installed, convert your files using the mb-util <inputfilename>
<outputfolder> command. A new directory will be created in the location you
specified containing the tiles in an XYZ format.

If you explore the folder exported by MBUtil, you will discover the file structure
in the XYZ format:

It uses a folder for each zoom level, with each column being a subdirectory
and each tile in the column a file. The other common format used in maps
is TMS. You can read more about the XYZ format at http://wiki.
openstreetmap.org/wiki/Slippy_map_tilenames.

https://github.com/mapbox/mbutil
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames

TileMill and Mapbox Studio

102

Creating a tile server PHP project
We will download the PHP tile server developed by Petr Pridal, and we will set up a simple
project that serves the tiles we exported in the previous recipe. Perform the following steps:

1.	 Create a new folder to host the project and get into it using the following command:
mkdir MapBoxPHPServer && cd MapBoxPHPServer

2.	 We will use tileserver-php. It's extremely simple to use, and the whole project is just a
single PHP file. Clone the project into the folder using the following command:
git clone https://github.com/klokantech/tileserver-php

3.	 Now, copy the exported folder from MBUtil into the same directory as the
tileserver.php file.

4.	 You can now access the tileserver.php file from a web browser at http://
localhost/tileserver.php:

That's it! We can now serve our maps from our own PHP server. Deploying the server is
extremely easy, and the only thing needed is to copy the files into the server. The best part is
that PHP is installed almost everywhere, and it is also very easy to find a cheap hosting service.

Chapter 3

103

Publishing your base map on your server
with Node.js

As we explained in the previous chapter, PHP is not the ideal technology to use to serve our
tiles. This is not because PHP is a bad language or anything similar; it's because there are
other technologies that excel in multithreading operations, which is exactly what's needed
when serving tiles at an enormous speed.

In this recipe, we will use TileStream, which is a high-performance tile server powered by
MBTiles. TileStream is maintained by Mapbox and uses Node.js and SQLite as the backend
technologies.

In the preceding PHP recipe, we converted the tiles to the XYZ format to squeeze out any
performance benefits while serving the tiles. Node.js doesn't have any performance issues
while reading the tiles directly from the MBTiles container, which is just a SQLite database, so
we don't need to convert the tiles in this case.

We can use the MBTiles we exported in the previous recipe. Then we will download TileStream
from GitHub, which is the tile server that we will use in this case.

Getting ready
TileStream requires Node.js v0.10.x or 0.8.x. It will not work with the most recent versions of
Node.js, so ensure that you have one of the preceding versions installed.

If you don't have Node.js installed yet, go ahead and install it. Ensure that you do not install
the latest build, but one of the versions required by TileStream.

How to do it…
Perform the following steps:

1.	 Export the MBTiles file from TileMill by clicking on Export and selecting MBTiles as
the export option.

2.	 In Export Options, ensure that the zoom is configured and the center is within the
bounds of our map.

3.	 Click on Export, and once finished, click on Save to store the MBTiles file on the hard
drive.

4.	 Use any one of the open source Node.js tile servers, such as TileStream, to directly
serve MBTiles.

TileMill and Mapbox Studio

104

Creating a tile server Node.js project
Perform the following steps:

1.	 Ensure that you have the correct version of Node.js installed. Open a terminal and
type node –version, and Node.js will print out the version.

2.	 Start by creating a new folder in your hard drive. I named mine MapBoxRecipes-
NodeServer.

3.	 Get into the folder and clone the TileStream repo using the following command:
git clone https://github.com/mapbox/tilestream.git .

The dot (.) at the end clones it into the folder that we are in without creating a new
subfolder.

4.	 Once installed, ensure that the server is working. Start the TileStream server
by typing ./index.js.

5.	 Let's copy the .mbtiles file into a location that TileStream expects them to be in.
The default directory is ~/documents/MapBox/tiles.

6.	 Head over to a browser and type http://localhost:8888/ to access
TileStream. You can access the map of your choice directly using http://
localhost:8888/#!/map/SanFrancisco:

That's it! We now have our custom MBTiles file exported from TileMill and served by our own
Node.js server. You can use a hosting service that supports Node.js, such as Heroku, to deploy
your project.

105

4
Mapbox.js

In this chapter, we will cover the following recipes:

ff Creating a simple map

ff Changing map properties programmatically

ff Working with base layers

ff Adding markers and popups

ff Clustering markers to improve our map

ff Getting mouse coordinates

ff Working with controls

ff Adding interactivity to your map with UTFGrid

ff Creating a choropleth map

ff Creating a heat map

Introduction
So far, we have investigated various ways to create and customize maps. At the beginning,
we used the Mapbox user interface to create some simple styling on the maps, and then we
explored recipes to utilize Mapbox services using PHP and Node.js. In the previous chapter,
we also introduced CartoCSS, the stylesheet language that will help us to customize a map
with absolute control.

None of the recipes, however, covered how to build dynamic maps and display features, such
as markers, on the fly. This is what we will do in this chapter, and our backing technology is a
JavaScript framework called Mapbox.js.

Mapbox.js

106

Mapbox.js inherits from another framework called Leaflet. Leaflet was created by Vladimir
Agafonkin and various other contributors, and it's extremely popular and simple to integrate
and use. It takes advantage of HTML5 and CSS3 in modern browsers but is also compatible
with older ones.

Leaflet's features include covering, displaying, and overlaying layers and creating markers,
popups, and vector layers. It's also capable of displaying GeoJSON data, image overlays, and
WMS layers. It's currently advertised as a mobile-friendly JavaScript framework, and this is
entirely true. It currently supports hardware acceleration on iOS, and it feels as smooth as a
native app. Performance-wise, it is very lightweight (around 34 KB of gzipped JS code) and
allows you to reduce the library size by excluding the features you don't want to use. It also
doesn't require any external dependencies, which simplifies the integration even further.
One of the advantages of Leaflet is the community support along with the myriad of plugins
developed to cover almost any case.

Mapbox.js inherits from Leaflet, but we don't have to worry about this.

Mapbox.js is a JavaScript framework. Basic knowledge of JavaScript
will greatly help to understand the recipes in this chapter. Also, basic
HTML5 and CSS skills are essential to be able to integrate the map into
a webpage.

Creating a simple map
In this recipe, we will explore how we can integrate Mapbox.js into a project. We will use the
absolute minimum code, and we will just display a simple map.

How to do it…
We have to create a simple HTML5 file that will include the necessary Mapbox.js JavaScript
and CSS files.

We will also create our own CSS file to create some basic styling for our #map div that will contain
the map. In main.js, we will initialize Mapbox.js and provide our Mapbox access token. Then,
we will create a simple map by providing the basic coordinates. Perform the following steps:

1.	 Open up the chapter-4-example1-starter folder. This folder contains an
HTML5 index.html file, a css folder with a style.css file, and a main.js file.
The project isn't linked to Mapbox.js yet; we will do this next.

The style.css file contains some basic styling for the #map div. It will style the div
with 100% width and 800px height, with no margins. This div will contain our map.

We will use main.js to write our JavaScript code and integrate Mapbox.js into the
project.

Chapter 4

107

2.	 Open index.html in your favorite editor. The files required are the mapbox.js file
and the stylesheet mapbox.css file.

Insert the following two lines inside <head></head> just before our main.js file:

 <script src='https://api.tiles.mapbox.com/mapbox.js/
 v2.1.5/mapbox.js'></script>
 <link href='https://api.tiles.mapbox.com/mapbox.js/
 v2.1.5/mapbox.css' rel='stylesheet' />

3.	 Now open main.js. You will see that we will initialize our map inside the window.
onload() function. This function is triggered when the window in our browser is
loaded.

First, we will need to pass our access token, as follows:
L.mapbox.accessToken = 'pk.
eyJ1IjoibWFwYm94cmVjaXBlcyIsImEiOiJjd3RhQmlzIn0.
Wx0fWGCo3gs6fzta5QrLfw';

Here, L comes from Leaflet, and .mapbox is actually a reference to the Leaflet
Mapbox plugin. You will notice that we frequently use either L.mapbox or L to refer to
general Leaflet functions. Remember that Mapbox.js is just a Leaflet plugin.

4.	 Create a new variable called mapboxTiles and set up a tile layer using
L.tileLayer, as follows:
var mapboxTiles = L.tileLayer('https://{s}.tiles.mapbox.com/v4/
mapboxrecipes.kk6jp52i/{z}/{x}/{y}.png?access_token=' + L.mapbox.
accessToken);

We dissected the Mapbox URL format in previous chapters, but let's do it one more
time:

�� /v4/: This is the API version. Currently, the API is in version 4.

�� mapboxrecipes.kk6jp52i: This is our Map ID.

�� /{z}/{x}/{y}.png: This is the tile format. At the moment, we are using
the XYZ .png format.

�� ?access_token=' + L.mapbox.accessToken: This indicates that we
are passing our access token.

5.	 Next, let's add the layer we created to the map via the following code:
var map = L.map('map').addLayer(mapboxTiles).setView([42.3610,
-71.0587], 15);

We get the map using ('map'), where 'map' is our #map div. Then we add
the layer we created earlier using addLayer(mapboxTiles). Finally, we use
setView([42.3610, -71.0587], 15) to set the coordinates and zoom levels.

Mapbox.js

108

6.	 Make sure that your modified main.js and index.html files are saved and then
open index.html in a browser.

7.	 That's it! We just integrated Mapbox.js in an empty project, and we displayed a map in
our #map div.

At this point, you will have already realized how simple it is to use JavaScript and Mapbox.js
in your project. With a few lines of code, we were able to create a basic map and add it to the
screen, as in the following screenshot:

The completed project can be found in the chapter-4-example1-completed folder.

How it works…
The most important class of Mapbox.js is L.map. It's used to create a map on a page and
manipulate it using various methods to modify the map state or listen for events such as
clicks and mouseovers.

Chapter 4

109

The map's core components are layers. You can create them dynamically, and there are
different types of layers, such as base layers and feature layers. Overlaying various types of
layers allows you to composite the final appearance of the map.

Changing map properties programmatically
Map properties are interaction handlers that allow you to customize how a user interacts
with the map at runtime. You can enable or disable certain features, such as zoom, dragging,
touch zoom, scroll wheel, and many more.

In this recipe, we will use our previous example and modify it to change the map properties
programmatically.

You will learn how to change the zoom and center of the map, pan to specific coordinates or
bounds, and restrict the movement to a region.

How to do it…
We will add a basic map with a base layer on the screen as in the previous recipe. Then we
will use the onClick handler on various screen elements to trigger the panTo or zoomIn
method in order to pan or zoom the map programmatically.

Panning the map programmatically
In this recipe, we will use the methods we discussed to change the map properties
programmatically. Perform the following steps:

1.	 Open the chapter-4-example2-starter folder in your favorite text editor. The
project is in exactly the same state as in the previous recipe.

I added <nav> with the relative CSS to create the buttons in the upper-left corner. We
will use these buttons to change the map properties programmatically.

2.	 Before the closing curly bracket in window.onload() and directly after var map =
L.map('map').addLayer(mapboxTiles).setView(latlong, 15), append
the following code:
map.getContainer().querySelector('#pan').onclick =
 function() {
 latlong[1] += 0.02;
 map.panTo(latlong, {animate: true, duration: 2.0});
};

Mapbox.js

110

Let's take a look at how this code works. We will first call getContainer() to get
the map container and then querySelector('#pan') to get the <a href='#'
id='pan'>Pan Right element from the HTML file. Then, we will attach an
onClick() handler in it. The onClick() handler will perform the following actions
each time the mouse button is clicked:

�� It will increase the longitude in the latlong variable by 0.02 degrees.

�� It will trigger panTo() and pass the new latlong variable along with some
options, which in this case sets the animate parameter to true and the
duration parameter to 2.0 seconds.

3.	 Open index.html in a web browser and click on the Pan Right button. The map will
pan 0.02 degrees to the right each time the button is pressed.

Zooming the map programmatically
Perform the following steps:

1.	 Before the closing bracket in the onLoad() function, add the following code:
var zoomIn = true;

map.getContainer().querySelector('#zoom').onclick =
 function() {
 if (zoomIn) {
 map.zoomIn(2, {animate: true});
 } else {
 map.zoomOut(2, {animate: true});
 }
 zoomIn = !zoomIn;
};

2.	 Here, we will use the same querySelector method to get the <a href='#'
id='zoom'>Toggle Zoom button element from the HTML file.

The zoom in the zoomIn(<Number> delta?, <zoom options> options?)
and zoomOut(<Number> delta?, <zoom options> options?) function is
used to adjust the map zoom by two levels, as follows:
map.zoomIn(2, {animate: true});

Again, we will use {animate: true} as options to animate the zoom adjustment.
The <zoom options> does not have a duration parameter.

3.	 Save the main.js file and open the index.html file in your browser. Click on the
Toggle Zoom button and observe the results.

Chapter 4

111

Zooming to a map region programmatically
Let's take a look at how we can zoom the map to Boston Airport using the fitBounds()
method. Here are the steps that you need to perform:

1.	 At the end of the previous section's code, before the closing bracket in the onLoad()
method, append the following code:
map.getContainer().querySelector('#fit').onclick =
 function() {
 var airportSW = [42.380261, -70.986013];
 var airportNE = [42.344492, -71.033392];
 var bounds = L.latLngBounds(airportSW, airportNE);
 map.fitBounds(bounds);
};

2.	 We will get the #fit element from the HTML file as before and generate a bounds
variable using the following line of code:

latLngBounds(<LatLng> southWest, <LatLng> northEast)

We will pass the airportSW coordinate as the southwest part of the region and the
airportNE variable as the northeast part.

Then we will use the fitBounds() method and pass the bounds we just created:

Mapbox.js

112

How it works…
In the previous recipe, we set the map view using the following method:

setView(<LatLng> center, <Number> zoom?, <zoom/pan options>
 options?)

In this method, we passed the coordinates and zoom level. It's important to know how to read
the documentation. In the preceding example, the first parameter is center, and it expects a
<LatLng>, which is the latitude and longitude. We can pass a simple array, as follows:

var latlong = [42.3610, -71.0587];

Alternatively, we can generate a latlong object and pass it instead, as follows:

var latlong = L.latLng(42.3610, -71.0587);
map.setView(latlong);

The next parameter is the zoom, and it expects a <Number>, but this one includes a question
mark (?), which means that this parameter is optional and not required.

The same goes for the last parameter, options. In the specific method's option, we may
pass animate to set whether the change is animated and the animation's duration using
duration, as follows:

map.panTo(latlong, {animate: true, duration: 2.0});

Let's explore another property called fitBounds:

fitBounds(<LatLngBounds> bounds, <fitBounds options> options?)

This method is used to fit a specific region of the map on the screen. It will set the center and
zoom to an appropriate value in order to fit the entire region on the screen.

A region, or bounds as it's called in Mapbox terminology, is a rectangle generated by two
points: one in the southwest and one in the northeast, as shown in the following screenshot:

Chapter 4

113

This method expects a <LatLongBounds>, which is a set of latitude and longitude
coordinates. The first coordinate is to the northeast edge of the region, and the second
is to the southwest edge, as follows:

 var airportSW = [42.380261, -70.986013];
 var airportNE = [42.344492, -71.033392];

At this point, you may pass the bounds directly as a simple array form, as you can note in
the following code:

map.fitBounds([
 airportSW,
 airportNE
]);

Mapbox.js

114

Alternatively, you can generate a bounds object using the latLngBounds method and pass
this instead, as follows:

 var bounds = L.latLngBounds(airportSW, airportNE);
 map.fitBounds(bounds);

Working with base layers
In this recipe, we will explore layers. Actually, we already added a base layer in the previous
recipes using the addLayer(<ILayer> layer) method.

One of the advantages of the Mapbox API is the power to add multiple overlaid layers at
runtime, which is an extremely useful feature that allows us to switch between different types
of data without using a different map.

How to do it…
We will add a base layer on our map. This layer will be displayed when the page is displayed
when first opening the browser.

Then, we will use hasLayer(<ILayer> layer) to check whether a layer is already on the
map, and if not, we will add it with addLayer(<ILayer> layer). In case a layer is already
on the map, we will remove it first using removeLayer(<ILayer> layer).

There are various types of layers. The first type is a base layer, which can display tiles from
various sources, such as Mapbox Street, Mapbox Terrain, or Mapbox Satellite. The second
type of layer is an overlay layer. Polygons, lines, and other shapes belong to this type of layer.
The third layer is again an overlay layer, but it contains other features, such as markers.

In Mapbox, layers appear in the order described here. This means that base layers are at the
bottom, followed by overlaid polygons and lines, and finally markers appear at the top:

Chapter 4

115

Using Mapbox.js, it is very easy to add as many layers as you want to display the data needed.
We can create as many base layers as we want and switch freely between them.

In this recipe, we will do just this: we will create three different layers and switch between
them. We will not use the other two types of layers, overlays and markers (we will do this
in a while), but we will create multiple base layers and switch between them.

Mapbox.js

116

Switching between layers
We will continue using a starter project similar to the one created in the previous recipe. The
starter project includes a base map layer and three buttons in the upper-right corner of the
screen that allow us to switch between the other two types of layers.

We will create a function that will allow us to check whether a layer is already added; if not, it
will add the layer on the screen. Perform the following steps:

1.	 Open the chapter-4-example3-starter project in your favorite text editor.

2.	 Jump into the main.js file. We will add a method to switch between the layers.

Outside the scope of window.onload(), create a new JavaScript function called
switchLayer(map, layer). In this function, we will pass the map variable and
the layer we want to add to the map, as follows:

function switchLayer(map, layer) {
 if (map.hasLayer(layer)) {
 map.removeLayer(layer);
 }
 map.addLayer(layer);
}

In this function, we used two new methods of the Mapbox.js API. The first one is
hasLayer(<ILayer> layer), and it simply checks whether the map already
contains that layer and returns true if this is the case.

The other one is removeLayer(<ILayer> layer). We do not want to indefinitely
add layers to the map. In case a layer is already there, we first have to remove it. This
method simply accepts a layer object to remove.

3.	 Within the window.onload() context, note that we already added the base layer to
the map using map.addLayer(baseLayer);.

As in the previous recipe, let's create an onClick() handler to switch to this layer in
case it is not on screen, as follows:
 map.getContainer().querySelector('#base')
 .onclick = function() {
 switchLayer(map, baseLayer);
 };

We will use the switchLayer(map, layer) function we created previously and we
will pass baseLayer to be added to map.

Chapter 4

117

4.	 Let's repeat the same procedure for the other two layers. Execute the following code:
 var highwaysLayer = L.mapbox.tileLayer
 ('mapboxrecipes.3327d9fa');

 map.getContainer().querySelector('#highways')
 .onclick = function() {
 switchLayer(map, highwaysLayer);
 };

 var terrainLayer = L.mapbox.tileLayer
 ('mapboxrecipes.6576d705');

 map.getContainer().querySelector('#terrain')
 .onclick = function() {
 switchLayer(map, terrainLayer);
 };

We added a variable called the highways layer that holds tileLayer with the Map
ID mapboxrecipes.3327d9f; then we added a handler to switch to this layer when
the #highways div is clicked on.

The same procedure is repeated for the terrain layer.

5.	 Now open index.html in a web browser and try switching between the three layers:

Mapbox.js

118

Adding markers and popups
In this recipe, you will learn how to add markers with popups dynamically. We will enhance
the previous recipe, which displays a map, and we will add a button that will open a popup
in which we can type coordinates.

When we click on the OK button, a new marker will be created, and the map will zoom and
pan to the location of this marker; if there are multiple markers, it will zoom to fit them all.

How to do it…
Perform the following steps:

1.	 Create a map and add a base layer.

2.	 Then add new markers to the map using L.marker([latitude, longitude]).
addTo(map);.

3.	 Use bindPopup('enter html content here') to bind a popup to the marker.

Adding a basic marker with a popup
Here are the steps to be performed:

1.	 Open the chapter-4-example4-starter project folder in your favorite text editor.
The project contains the map we used in other recipes with a New Marker button.
When this button is clicked on, it will trigger a new method that will open a prompt to
type the coordinates. Let's create this method now.

2.	 Outside the scope of window.onload(), create the following method:
function openDialog(map, layer) {

 var coordinates = prompt("Coordinates:", "42.3710,
 -71.0387");
 addNewMarker(coordinates, layer, map);

}

This will simply create a new prompt with the default coordinates
42.3710, -71.0387. When the user clicks on the OK button, it will call the
addNewMarker(coordinates, layer, map) function and pass the coordinates.
Let's create this method next.

Chapter 4

119

3.	 After openDialog(map, layer), create the following method:
function addNewMarker(coordinates, layer, map) {

 var coordinatesArray = coordinates.split(',');
 var coords = L.latLng(coordinatesArray[0],
 coordinatesArray[1]);

 var htmlContent = 'Coordinates: ' +
 coordinatesArray[0] + ', ' + coordinatesArray[1] +
 '</br>' + '';

 var marker = L.marker(coords, {
 icon: L.mapbox.marker.icon({
 'marker-color': '#aa0000',
 'marker-symbol': 'triangle'
 })
 }).bindPopup(htmlContent);

 marker.addTo(layer);
 map.fitBounds(layer.getBounds());

}

Let's explain what's going on in the preceding code:

�� In the coordinatesArray variable, we split the coordinates, which is
actually a comma-separated string, into an array.

�� We created a coords variable using L.latLng and by passing the
coordinates as in the previous recipes.

�� In the htmlContent variable, we created the content that will display the
coordinates along with a placeholder image in the marker popup.

�� Finally, we created the marker using L.marker and by setting the icon color
to red (#aa0000) and using the Maki symbol for triangle. We then bound
the htmlContent we created earlier using bindPopup(htmlContent);.

�� We added the marker to featureLayer using marker.addTo(layer).

In this recipe, we added our markers to featureLayer. Mapbox
allows us to combine and organize feature layers as we want. We
can use L.mapbox.featureLayer.addTo(mapOrLayer) to
add feature layers to other feature layers, creating our own hierarchy.

Mapbox.js

120

�� The last step is to pan and zoom the map to fit all the markers. We did this
with map.fitBounds(layer.getBounds());.

4.	 Finally, open index.html in your favorite web browser and try adding a couple of
markers:

Creating markers using the geocoder
In the previous section, you learned how to create markers with popups using Mapbox.js.

Let's expand the recipe so that instead of typing coordinates—which, by the way, is not very
user-friendly—it will also accept addresses, areas, or cities. To do this, we will use the Mapbox.
js geocoder. Perform the following steps:

1.	 Open main.js in your favorite text editor.

2.	 The first step is to improve the openDialog(map, layer) function to accept
coordinates and addresses and handle each case. We can do this via the following
code:
function openDialog(map, layer) {

 var coordinates = prompt("Coordinates:", "42.3710,
 -71.0387");
 var regEx = /^[-+]?([1-8]?\d(\.\d+)?|90(\.0+)?),\s*[-+]
 ?(180(\.0+)?|((1[0-7]\d)|([1-9]?\d))(\.\d+)?)$/;

 var isCoordinates = regEx.test(coordinates);

Chapter 4

121

 if (isCoordinates) {
 addNewMarker(coordinates, layer, map);
 } else {
 geocode(coordinates, layer, map);
 }
}

We added a new variable called regEx with a hugely complicated regular expression.
If you are not familiar with the regular expressions syntax, do not fear! You don't
need to understand it; just remember that we will use it to distinguish whether
the text entered into the prompt is an address or coordinates. This happens
directly below the isCoordinates variable. If the text is coordinates, we will call
addNewMarker(coordinates, layer, map) as before.

If the text is an address, we will call the geocode method and pass the coordinates
variable (which stores the address in this case), the layer, and the map.

3.	 Let's create this geocode function now. Run the following code:
function geocode(address, coordinates, map) {
 var geocoder = L.mapbox.geocoder('mapbox.places');
 geocoder.query(address, showMap);

}

Here we have created a new geocoder using L.mapbox.geocoder('mapbox.
places'). Then we passed the address and a callback function, showMap.

4.	 Let's create the geocoder showMap function now, as follows:
function showMap(err, data) {

 if (data.latlng) {
 var coordinates = String(data.latlng);
 addNewMarker(coordinates, featureLayer, map);
 }

}

The function will return data, which is a structure that also contains the coordinates
we need to create the marker or an error (err). We will handle this just in case
something comes back from the geocoder.

In this case, we will call addNewMarker(coordinates, featureLayer, map)
and pass the coordinates we got back from the geocoder.

Mapbox.js

122

5.	 That's all! You just learned how to create markers from coordinates and get back
coordinates from an address using geocoding. Open index.html in your browser
and try to type an address:

How it works…
We can create a new marker using L.marker(<LatLng> latlng, <Marker options>
options?). The essential parameter is latlng, which is a coordinate. In <options>, we
can set up various parameters to customize the appearance of the marker. I will explain the
most important ones here:

ff marker-symbol: This allows us to select the symbol that will appear on top of the
default marker icon. Note that this is not a custom icon. We will create one in the
following recipe.

Chapter 4

123

Symbols in Mapbox are provided in my Maki icon set. They are pixel-perfect
icons especially created for web cartography. At https://www.mapbox.
com/maki/, you can select a symbol, and it will show the string that
needs to be passed in marker-symbol in order to make the preceding
marker icon appear.

ff clickable: This disables the mouse events on the marker.

ff title: This shows text or HTML at the marker popup.

ff zIndexOffset: This is the depth order that the marker will appear in. When a
number passed in this parameter is higher than the numbers other markers have, it
will appear at the front.

Clustering markers to improve our map
As we already saw, creating markers and adding them to a map is not a difficult task at all.
There are circumstances in which creating the markers one by one may work; however, what
happens if the data we want to visualize has thousands of records?

Populating the map with large amounts of data is inefficient performance-wise, and the lag
dominates the user experience. The user will not be able to distinguish the markers and have
a clear picture of what is going on in this crowded map. Surely, this is a poor user experience.

In this recipe, you will learn how to use clustering to present data in a more efficient and
clean way.

How to do it…
Perform the following steps:

1.	 Import the Leaflet.markercluster plugin.

2.	 Create a new featureLayer and add the data you want to use as features.

3.	 Once the data in the featureLayer is loaded, create a clusterGroup and
add the features layer to it.

https://www.mapbox.com/maki/
https://www.mapbox.com/maki/

Mapbox.js

124

Creating markers
Perform the following steps:

1.	 Open the chapter-4-example6-starter directory's index.html file in a
browser. After a couple of seconds (depending on your Internet speed), several
hundreds of markers will appear on the screen:

This is how a large amount of data will be displayed without clustering. As you can
understand, it's not practical at all, so let's fix this now.

2.	 Jump into the index.html file. We will need to link the markercluster plugin first. We
will link the necessary JavaScript and CSS files.

After the links to Mapbox.js and CSS files, but before our main.js link, we will insert
the following code:

 <script src='https://api.tiles.mapbox.com/mapbox.js/
 plugins/leaflet-markercluster/v0.4.0/
 leaflet.markercluster.js'></script>
 <link href='https://api.tiles.mapbox.com/mapbox.js/
 plugins/leaflet-markercluster/v0.4.0/
 MarkerCluster.css' rel='stylesheet' />
 <link href='https://api.tiles.mapbox.com/mapbox.js/
 plugins/leaflet-markercluster/v0.4.0/
 MarkerCluster.Default.css' rel='stylesheet' />

Chapter 4

125

3.	 Jump into the main.js file. This time, we will not add the markers directly in
our map, but we will use a GeoJSON file. We will use the response data from
USGS to display the earthquakes occurring in the last month. After map.
addLayer(baseLayer), add the following code:
 featureLayer = L.mapbox.featureLayer().loadURL
 ('http://earthquake.usgs.gov/earthquakes/
 feed/v1.0/summary/1.0_month.geojson');

We will use the featureLayer.loadURL(url) function to load the data of the
GeoJSON file.

4.	 As loadURL(url) is an asynchronous function, we need to know when the GeoJSON
is loaded to generate the clusters. We will use on('ready', function(e) to do
this, as follows:
 featureLayer.on('ready', function(e) {

 });

5.	 Within the closures of the function, generate a new cluster group using
L.MarkerClusterGroup(), as follows:
 featureLayer.on('ready', function(e) {
 var clusterGroup = new L.MarkerClusterGroup();
 });

6.	 Then, loop through the layers and add each one to clusterGroup. Finally, add
the clusterGroup layer to the map. The complete function will be similar to the
following:
 featureLayer.on('ready', function(e) {

 var clusterGroup = new L.MarkerClusterGroup();

 e.target.eachLayer(function(layer) {
 clusterGroup.addLayer(layer);
 });

 map.addLayer(clusterGroup);

 });

Mapbox.js

126

7.	 That's it! Open index.html into your browser and observe the results of clustering.
Try to zoom in and out to see the clusters generated dynamically!

Creating a simple polyline and polygon
In this section, you will learn how to create polylines and polygons, and we will use two
methods. The difference between the two is that polygons are closed, while polylines are
open. An example of a use for polylines is to represent a path for driving directions; on the
other hand, we can use polygons to represent a closed area, such as the bounds of a park.

The first method you need to learn is L.polyline(<LatLng[]> latlngs, <Polyline
options> options?). It takes an array of <LatLng> from the first point to the last. Each
point will connect to the previous one.

Chapter 4

127

You must have guessed that we will pass the color, weight, and other useful attributes of the
polyline in <Polyline options>, right? If we inspect the documentation of <Polyline
options>, we will notice that it accepts just two parameters, and none of them seems to do
what we want. The trick is that L.Polyline extends the path, so <Polyline options>
inherits from <path-options>. If we check the documentation for this, we will discover that
it accepts color, weight, opacity, dashArray (if we are creating a dashed polyline), and
other parameters that will help us to style the polyline.

Similarly, we will use L.polygon(<LatLng[]> latlngs, <Polyline options>
options?) to draw a closed polygon. L.polygon inherits from L.polyline, and it will
accept the same options, even though some of them make more sense used in a polygon,
such as fill-color.

Perform the following steps:

1.	 Start by opening the starter project's chapter-4-example8-polylines-
starter folder and going directly to the main.js file. As in the previous recipes,
we will start with a simple full-screen map.

2.	 First, we will generate a <latlong> array to hold the coordinates for the polyline.
Run the following:
 var polylinePoints = [
 [42.366887, -71.058519],
 [42.364303, -71.063433],
 [42.362908, -71.063840],
 [42.361227, -71.063776],
 [42.361148, -71.069891]
];

3.	 Let's create the polyline options and hold them in a variable. It's easier to read the
code this way, as follows:
 var polylineOptions = {
 color: '#ff0000',
 weight: 12
 };

4.	 It's time to create our polyline. We will pass polylinePoints and
polylineOptions and add it to our map, as follows:
 var polyline = L.polyline(polylinePoints,
 polylineOptions).addTo(map);

Mapbox.js

128

5.	 Finally, let's adjust the bounds to fit the polylines in our map:
var boundsOptions = {padding: [100,100]};
map.fitBounds(polyline.getBounds(), boundsOptions);

That's it! Let's take a look at what we created:

6.	 Great, the polyline is there! Now, let's add the polygon. We will follow the exact same
steps. First, create some points and add them to a polygon variable, as follows:
 var polygonPoints = [
 [42.363051, -71.059613],
 [42.362866, -71.058959],
 [42.362478, -71.058379],
 [42.361582, -71.057575],
 [42.362153, -71.056513],
 [42.362454, -71.057049],
 [42.362779, -71.057510],
 [42.363548, -71.058347],
 [42.363698, -71.058369],
 [42.363230, -71.059211]
];

Chapter 4

129

7.	 Next, create polygonOptions. This time, we will set the color to green, as follows:
 var polygonOptions = {
 color: '#00aa00',
 weight: 12
 };

8.	 Finally, create polygon and add it to the map via the following lines:

 var polygon = L.polygon(polygonPoints,
 polygonOptions).addTo(map);

Let's have a look at the final result:

Getting mouse coordinates
One of the most important aspects of using maps is user interaction. Interacting with the map
can be done in various ways, which also depends on the device used; for example, you can
hover over a location using the mouse, but you can't do this using a touch-based device, such
as a smartphone. In smartphones, you can use multitap or perform gestures, and these user
interactions cannot be performed using the mouse.

In this recipe, you will learn how to use event listeners to trigger actions in order to implement
user interaction in your map.

Mapbox.js

130

How to do it…
The condensed steps to be performed are as follows:

1.	 Create a map with baseLayer.

2.	 Then create an event listener using map.on('mousemove',
mouseMovedCallback).

3.	 In the callback method, get the latitude and longitude.

4.	 Now, construct an HTML file that shows the latitude and longitude and inject the
HTML file into a div to display the mouse coordinates.

Let's perform these steps now:

1.	 Start by opening the starter project directory chapter-4-example10-
coordinates-starter in your favorite text editor. The project contains a simple
map with a base layer, featuresLayer (which will be used later), and a simple
HTML <div> element with some CSS to hold our mouse coordinates.

2.	 Jump into main.js. After featureLayer, let's create a variable and get this div:
 var coordinatesBox = document.getElementById
 ('coordinates');

3.	 Now let's create the listener using the following code:
 map.on('mousemove', function(e) {
 coordinatesBox.innerHTML = e.latlng.toString();
 });

We will register mousemove events and print the coordinates on the <div> element.

4.	 Add another listener to register click events, as follows:
 map.on('click', function(e) {
 coordinatesBox.innerHTML = "clicked: " + e.latlng.
 toString();
 });

5.	 Let's take a look at what we have:

Chapter 4

131

We successfully subscribed to mousemove events, and the coordinates are printed
inside the <div> element in the upper-left corner.

6.	 Let's create something more interesting than simply printing the coordinates. We
will subscribe to a click event, and each time the user clicks, we will create a new
marker, as follows:

 map.on('click', function(e) {

 var marker = L.marker(e.latlng, {
 icon: L.mapbox.marker.icon({
 'marker-color': '#aa0000'
 })
 }).bindPopup(e.latlng.toString());

 marker.addTo(featureLayer);
 map.fitBounds(featureLayer.getBounds());

 });

That's it!

Mapbox.js

132

Try clicking on the map. A new marker will be created each time you click, and the map will
zoom to fit the bounds of featureLayer.

Clicking on a marker will display a popup with the coordinates, as shown in the following
screenshot:

How it works…
We will use map events to get the mouse coordinates. You can listen to various types of
events. Let's explore the most important ones, as follows:

ff click: This refers to clicking the left mouse button or tapping on a mobile or
touchscreen device

ff dblclick: This refers to double-clicking the left mouse button or double tapping

ff mouseover: This is triggered when the mouse enters the map

ff load: This is triggered when the map is initialized

ff mousemove: This is triggered when the mouse moves over a layer of the map

ff dragstart: This is triggered when the user starts dragging a marker

ff drag: This is triggered repeatedly as long as the user drags the marker

ff dragend: This is triggered when the user stops dragging the marker

Chapter 4

133

There are other types of events you can subscribe to that don't have to do with user
interaction but are still extremely useful:

ff add: This is triggered when a marker is added to the map

ff remove: This is triggered when a marker is removed from the map

ff popupopen: This is triggered when a popup of a marker is opened

ff popupclose: This is triggered when a popup of a marker is closed

To subscribe to an event, you can simply use an event listener, such as
addEventListener(<String> type, <Function> fn, <Object> context?).

Luckily, Leaflet has an alias which is simpler to use; take a look at the following:

map.on('click', function(e) {
 alert(e.latlng);
});

If you are planning to remove the listener at a later stage, you can instead use a function, as
follows:

function onClickListener(e) {
 alert(e.latlng);
}

map.on('click', onClickListener);

map.off('click', onClickListener);

Working with controls
In this recipe, we will learn how to add controls to the map. Actually, our maps already use
controls. The zoom control in the upper-left corner and the attribution in the lower-right corner
are examples of controls.

How to do it…
We need to do the following:

1.	 Create a control and customize it by passing the options.

2.	 Add the control to the map.

Mapbox.js

134

Adding a zoom control to the map
Perform the following steps:

1.	 Open the chapter-4-example-13-controls folder in your favorite text editor.
The project is already configured and has a base layer.

2.	 In main.js, let's modify the map to disable the default controls via the following
code:
 var map = L.map('map', {
 zoomControl: false,
 attributionControl: false
 }).setView(latlong, 15);

This will disable the zoom and attribution controls. We will then add our own.

3.	 Let's add the zoom control first. Execute the following code:
 var zoomControl = L.control.zoom({position: 'topright',
 zoomInTitle: 'Click to zoom in', zoomOutTitle: 'Click
 to zoom out'});
 zoomControl.addTo(map);

In the control options, we set the position to topright and also set a custom
zoomInTitle and zoomOutTitle.

4.	 Next, we will customize the attribution control via the following script:
 var attributionControl = L.control.attribution
 ({position: 'bottomleft', prefix: '(c) 2015, MapBox
 Recipes'});
 attributionControl.addTo(map);

In this case, we simply passed plain text in the prefix parameter, but you are free to
pass HTML if you want.

5.	 Finally, we will add the L.control.layers(<Layer Config> baseLayers?,
<Layer Config> overlays?, <Control.Layers options> options?)
control. It accepts both base layers and overlaid layers in the parameters. Before
using it, we need to make some modifications to our project.

Chapter 4

135

6.	 First, let's add two more layers to our project. After the mapboxTiles variable, add
highwaysLayer and terrainLayer, as follows:
 var highwaysLayer = L.mapbox.tileLayer
 ('mapboxrecipes.3327d9fa');
 var terrainLayer = L.mapbox.tileLayer
 ('mapboxrecipes.6576d705');

7.	 Next, instead of adding a single layer to the map, we have the option to pass an array
of layers when creating the map variable. We can use the following code for this:
 var map = L.map('map', {
 zoomControl: false,
 attributionControl: false,
 layers:[terrainLayer, highwaysLayer, mapboxTiles]
 }).setView(latlong, 15);

8.	 Make sure you delete the following lines because we have already passed
baseLayer in the preceding array:
 var baseLayer = L.mapbox.tileLayer
 ('mapboxrecipes.kk6jp52i');
 map.addLayer(baseLayer);

9.	 Next, we will create an object to hold our layers, as follows:
 var baseLayers = {
 "Terrain Layer": terrainLayer,
 "Highways Layer": highwaysLayer,
 "Base Layer": mapboxTiles
 };

The string is just the text we will show in the layers control.

10.	 Add the layers control to the map and pass the object we just created:

 L.control.layers(baseLayers).addTo(map);

That's it! In the Working with base layers recipe, we already discussed a way to add and
remove layers to the map. We used more traditional methods to do this, but now you have
also learned that we can provide the same functionality using Mapbox controls.

Mapbox.js

136

Open index.html in your browser and try switching between the layers:

How it works…
Control is the base class of all controls. It optionally accepts <Control options>
options?. We can set the position property to specify where the control will appear on the
screen.

The Mapbox.js API has several different types of controls. Let's explore the most common
ones:

ff L.control.zoom(<Control.Zoom options> options?): This is the zoom
control we already know. You can customize it further by setting the position value
and what text it will show in the buttons.

ff L.control.attribution(<Control.Attribution options> options?):
This is the attribution control. In case you need to add an attribution to the map, you
can pass the HTML file in the prefix parameter.

ff L.control.layers(<Layer Config> baseLayers?, <Layer Config>
overlays?, <Control.Layers options> options?): This is a control we
haven't seen before. It allows us to switch between the base and overlaid layers.

Chapter 4

137

Adding interactivity to your map with
UTFGrid

In this recipe, we will create an interactive map using UTFGrid. The benefit of using UTFGrid
instead of markers is that UTFGrids can handle a lot more data than it is possible to handle
otherwise.

If your map needs to interact with several thousands of bits of data, it is no longer
viable to fetch this data in a single pass, then cache it in the browser, and generate markers
from it. It's inefficient performance-wise, but luckily, UTFGrid comes to the rescue in such
extreme cases.

How to do it…
The steps to be performed are as follows:

1.	 Create a map with TileMill. Use the templates section of TileMill to add interactivity to
the map.

2.	 Upload the map to Mapbox (or host it in your own server).

3.	 Create L.mapbox.gridLayer and pass the Map ID.

4.	 Then use the map.on('click', onClickCallback) handler to generate a
popup when a user clicks on a gridLayer.

Creating an interactive map using TileMill
Fire up TileMill. We will use it to create our interactive map. Perform the following steps:

1.	 Create a new project and give it a name.

2.	 Keep the default #countries layer with the default styling. We will not use the style
of this layer anyway, just the UTF data that we will embed in the tiles.

Mapbox.js

138

3.	 In the chapter-4-example10-utf-shape folder in the accompanying code bundle,
there is a shapefile containing the counties in the United States (this folder is also
hosted at https://bitbucket.org/billkastanakis/mapbox-cookbook/src).
Custom shapefiles can be created using QGIS or other GIS software, or they can be
downloaded from organizations and other service providers. You can open the shapefile
in QGIS to explore the data in it, as shown in the following screenshot:

4.	 Let's import it into TileMill. Go to the Layers palette and click on the Add Layer
button.

5.	 Give the new layer an ID (I named mine #counties) and select
County_2010Census_DP1.shp as the data source from the folder.

https://bitbucket.org/billkastanakis/mapbox-cookbook/src

Chapter 4

139

6.	 Click on Save.

7.	 Let's give the new layer some basic styling just to see where it's located via the
following code:
#counties {
 line-color: #e2e2e2;
 line-width: 2;
 polygon-fill: #006600;
}

8.	 Don't forget that we need to save after we finish typing the CartoCSS code to see the
changes on the live map.

9.	 Now let's add the interactivity. Click on the hand icon to open the Templates screen
and click on the Teaser tab. At the bottom of the screen, select the counties layer as
the interaction data layer.

10.	 The moment you select the interaction layer, the text field below it will be populated
with values containing the attribute names inside the so-called moustache tags!

You can find out more about the moustache templating language at
the official GitHub site at http://mustache.github.io/.

11.	 You can define the content you want to display for hover (or first tap on a mobile) in
the main text editor. The following section is just basic HTML with some inline CSS
to style the fixed width and height popup box. In the box, we will simply display the
county name that exists in the {{{NAMELSAD10}}} field:
<div style="text-align:center; width: 220px; height: 70px;
 font-size: 18px;">

 {{{NAMELSAD10}}}

</div>

http://mustache.github.io/

Mapbox.js

140

This is shown in the following screenshot:

12.	 Go back to the main TileMill screen and try letting the mouse hover over US. You will
see that the county is now displayed in the upper-right corner:

Chapter 4

141

13.	 The last step is to export the tiles and host them on the Mapbox servers. TileMill can
do both in one step. Click on Export in the upper-right corner and select MBTiles
from the export options. Don't forget to limit the zoom and region to manageable
levels, as you learned in the TileMill recipes in Chapter 3, TileMill and Mapbox Studio.
Set the center also somewhere in the United States:

Mapbox.js

142

Creating an interactive map using Mapbox.js
Now that we have the tiles exported and uploaded to Mapbox, let's take a look at how we can
use Mapbox.js to fetch the data embedded in the tiles using UTFGrid:

1.	 Open the chapter-4-example10-utf-starter folder in your text editor. As
usual, the project contains a base layer added using Mapbox.js.

2.	 In the main.js file, let's create our UTFGrid layer. After map.
addLayer(baseLayer), add the following lines:
 var gridLayer = L.mapbox.gridLayer
 ('mapboxrecipes.utftest');
 map.addLayer(gridLayer);

L.mapbox.gridLayer loads the UTFGrid tiles from the mapboxrecipes.utftest
Map ID and adds them to our map.

3.	 To access the interactive parts of the map, we need to use L.mapbox.
gridControl(layer, options). Let's add this now as follows:
var myGridControl = L.mapbox.gridControl
 (gridLayer).addTo(map);

4.	 Finally, let's create a popup for when a user clicks on a county by executing the
following code:

 gridLayer.on('click', function(e) {
 if (!e.data) return;
 var popup = L.popup().setLatLng(e.latLng).
 setContent(e.data.NAMELSAD10).openOn(map);
 });

That's it! We have now used Mapbox.js to fetch UTFGrid data from an interactive layer that
we created in TileMill. Using this powerful technique, we can have thousands of bits of data
available without significant overhead. Open index.html in your browser to take a look
at the result:

Chapter 4

143

How it works…
UTFGrid actually stores data in the tiles. The tiles currently displayed on the screen at this
specific region and zoom level have the data embedded in them.

There are rare cases in which a user needs to interact with data that is not displayed on the
screen. In these cases, this specific recipe does not work because those tiles are never loaded.

Mapbox.js

144

Creating a choropleth map
In this recipe, we will create a choropleth map. In this type of map, the shaded areas
represent the measurement of a variable—for example, population density, total population,
or temperature. Higher values in the variable are represented by a denser color.

We will now create a choropleth map that shows the education level in the United States.

How to do it…
The condensed steps are as follows:

1.	 Generate a map with a base layer.

2.	 Generate a GeoJSON that contains the data we want to display, as well as a polygon
of the area that the data represents.

3.	 Create a GeoJSON layer using L.geoJson. Enumerate through the data, and for
each feature, use style(<GeoJSON> featureData) to style the polygon.

Let's perform these steps now:

1.	 Start by opening the chapter-4-example11-choropleth-starter project in
your favorite text editor. There is already a configured base map, as in the previous
recipes. Open the index.html file.

2.	 We will import a states.js file using the following line:
 <script src='data/states.js'></script>

It's a GeoJSON file that contains the states' polygon data along with the state name
and the education level, as seen in the following example:

var data = {"type":"FeatureCollection","features":[
 {"type":"Feature","id":"01","properties":
 {"name":"Alabama","hs":82.1,"bd":22.0,"ad":7.7},
 "geometry":{"type":"Polygon","coordinates":
 [[[-87.359296,35.00118],[-85.606675,34.984749],
 [-85.431413,34.124869]….
]]}},

Chapter 4

145

3.	 Open the main.js file. Let's create some classes that will help us with our task. The
first one is a function that will just return a hex color when passing a value, as follows:
function returnColor(value) {

 if (value > 90) return '#081d58';
 else if (value > 90) return '#253494';
 else if (value > 88) return '#225ea8';
 else if (value > 85) return '#1d91c0';
 else if (value > 83) return '#41b6c4';
 else if (value > 82) return '#7fcdbb';
 else if (value > 81) return '#c7e9b4';
 else if (value > 80) return '#edf8b1';
 else if (value < 80) return '#ffffd9';

}

Color Brewer is a great website that will help you choose a color scheme.
Visit http://colorbrewer2.org/ to design you own color scheme!

4.	 The next function will generate a style for the states. It will use our previous function
to pick the color based on the feature.properties.hs value:
function style(feature) {

 return {
 weight: 2,
 opacity: 0.6,
 dashArray: '6',
 fillColor: returnColor(feature.properties.hs),
 color: 'white',
 fillOpacity: 0.75
 };

}

5.	 We are now ready to style the states. Within the onload function,
enumerate through the GeoJSON data and generate a style for each state based on
the feature.properties.hs value, as follows:
 geojson = L.geoJson(data, {
 style: style
 }).addTo(map);

http://colorbrewer2.org/

Mapbox.js

146

6.	 We are ready to preview our choropleth map. Open the index.html file in your web
browser:

Great! With a few simple steps, we already have a great map, but these colors mean
nothing at the moment. Let's add a legend.

7.	 Create a new function that will include the code to generate the legend, as
follows:
function generateLegend() {

 var legend = L.control({position: 'bottomright'});

 legend.onAdd = function (map) {

 var div = L.DomUtil.create('div', 'info legend'),
 grades = [90, 88, 85, 83, 82, 81, 79];

 div.innerHTML = '<i style="background:' +
returnColor(grades[0]) + '"></i>> 90
' +
 '<i style="background:' +
returnColor(grades[1]) + '"></i>88-90
' +
 '<i style="background:' +
returnColor(grades[2]) + '"></i>85-88
' +

Chapter 4

147

 '<i style="background:' +
returnColor(grades[3]) + '"></i>83-85
' +
 '<i style="background:' +
returnColor(grades[4]) + '"></i>81-83
' +
 '<i style="background:' +
returnColor(grades[5]) + '"></i>80-81
' +
 '<i style="background:' +
returnColor(grades[6]) + '"></i>< 80
';
 return div;

 }

 return legend;
}

8.	 In onload(), call the function and add the legend to the map, as shown in
the following code:
var legend = generateLegend().addTo(map);

Have a look at the map now:

Mapbox.js

148

9.	 Great, we now have a legend! However, it is still missing interaction. It will be great if
our visitors can hover over the states to view the education level details.

So, let's do this now. First of all, we will create three new functions that will be
triggered by our listeners on the mouseover, mouseout, and click events via the
following code:

function highlight(e) {

 var layer = e.target;

 layer.setStyle({
 color: '#fff',
 fillOpacity: 0.85,
 weight: 5
 });

 info.update(layer.feature.properties);

}

function reset(e) {

 geojson.resetStyle(e.target);
 info.update();

}

function zoomToFeature(e) {
 map.fitBounds(e.target.getBounds());
}

10.	 In the highlight function, we will set a thick outline, the reset function will reset
the style, and zoomToFeature will fit the map to the state bounds. Add a function
with listeners as follows:
function onEachFeature(feature, layer) {
 layer.on({
 mouseover: highlight,
 mouseout: reset,
 click: zoomToFeature
 });
}

Chapter 4

149

11.	 Don't forget to add the listeners to each state by modifying GeoJSON; use the
following code for this:
 geojson = L.geoJson(data, {
 style: style,
 onEachFeature: onEachFeature
 }).addTo(map);

12.	 If you preview the project now, you will be able to see the highlight effect when
you let the cursor hover over the states. The final step is to execute the following
code to show an information box with the education level. We already have a div
for this in the index.html file:
 <div id="info"></div>

The div has some basic CSS styling, as can be seen in the following script:

#info {
 padding: 6px 8px;
 font: 14px/16px Arial, Helvetica, sans-serif;
 background: white;
 box-shadow: 0 0 15px rgba(0,0,0,0.2);
 border-radius: 5px;
}

#info h4 {
 margin: 0 0 5px;
 color: #777;
}

13.	 In the onload function, it's time to add a control that will generate the content
displayed in the information box, as follows:
 info = L.control();

 info.onAdd = function(map) {
 this.infoDiv = document.getElementById('info');
 this.update();
 return this.infoDiv;
 };

 info.update = function (stateData) {
 this.infoDiv.innerHTML = '<h4>US Education Level</h4>' +
(stateData ?
 '' + stateData.name + '
'
 + stateData.hs + '% High School</br>'
 + stateData.bd + '% College</br>'

Mapbox.js

150

 + stateData.ad + '% University</br>'
 : 'Hover to show education level');
 };

 info.addTo(map);

14.	 Finally, modify the highlight(e) and reset(e) listeners to update the
information box via the following code:

function highlight(e) {
 ….
 info.update(layer.feature.properties);
}

function reset(e) {
 geojson.resetStyle(e.target);
 info.update();
}

That's it! Open the index.html file and enjoy your choropleth map!

Chapter 4

151

How it works…
The GeoJSON layer loads a file that contains the polygon data for the states, as well as the
state name and the percentage of those educated to high school, college, and university level.
To load the GeoJSON, we will use the following line:

L.geoJson(<Object> geojson?, <GeoJSON options> options?)

L.geoJson optionally accepts a GeoJSON object. We will pass the data we already have. The
method will parse the GeoJSON data and generate feature layers.

On creation, we will use style(<GeoJSON> featureData) to style the polygon. Then,
for each created feature layer, we will call onEachFeature(<GeoJSON> featureData,
<ILayer> layer) to add interactivity to the map.

Each time the mouse hovers over a state, we will highlight it, and on mouseout, we will reset
the style. A double-click handler can be added to zoom in to the state when the user performs
this action.

Creating a heat map
In this recipe, we will create a heat map. A heat map usually visualizes the data range
using a pseudo color, with the hotter colors being the higher values and the colder colors
representing the lower range values.

How to do it…
The plugin we will use requires the data to be in a specific format, which is an array of
[latitude, longitude, altitude]. It's unlikely that data in this format will be available from
services, so first of all, the task is to enumerate through the actual data and format it
as required.

Next, we have to create heatLayer, which is provided by the Leaflet.heat plugin, pass the
data and options, and add it to the map. We will perform the following steps in this recipe:

1.	 Start by opening the chapter-4-example12- heat-starter project and
opening the index.html file. We need to import the leaflet-heat plugin, so add
the following line after the Mapbox.js scripts:
 <script src='https://api.tiles.mapbox.com/
 mapbox.js/plugins/leaflet-heat/v0.1.3/
 leaflet-heat.js'></script>

Mapbox.js

152

2.	 We also need to import our data. Normally, you will fetch the data from an API or
other sources, but in this case, let's keep it simple and just import it using the
following line:
 <script src='js/earthquakes.js'></script>

The data comes from the USGS Earthquakes API. Here is an example request to fetch
earthquakes of magnitude 5 or larger for a date range:
http://earthquake.usgs.gov/fdsnws/event/1/query?format=geojson&sta
rttime=2015-04-26&minmagnitude=5

This is shown in the following screenshot:

Chapter 4

153

3.	 Now, open the main.js file. We need to enumerate through the data and generate
objects that Leaflet.heat would understand. Ideally, in this case, if the API were ours,
it would probably return the data format as required to avoid double processing in
large datasets.

Each object will have a longitude, latitude, and an altitude value:

 var data = Array();

 earthquakes.features.forEach(function(feature) {

 var heatData = [feature.geometry.coordinates[0],
 feature.geometry.coordinates[1],
 feature.properties.mag];
 data.push(heatData);

 });

4.	 Finally, we will use Leaflet.heat and pass the data array we just created. The plugin is
available at GitHub at https://github.com/Leaflet/Leaflet.heat.

It accepts various parameters, allowing you to customize the appearance of the heat
map even further. Let's consider some of the available options:

�� minOpacity: This allows you to set the minimum opacity of the heat

�� max: This is the maximum point of intensity

�� radius: This is the radius of each point on the heat map

�� gradient: This allows us to set a custom color gradient for the heat map

Add the following line of code after we parse our data:
var heat = L.heatLayer(data, {radius: 25, max: 0.01}).
 addTo(map);

We set the max: 001 value to make the heat map more intense.

https://github.com/Leaflet/Leaflet.heat

Mapbox.js

154

5.	 That's it! Open the index.html in your web browser to see the result, as shown in
the following screenshot:

How it works…
Leaflet is known for its very active community and great variety of plugins. We used a plugin
called Leaflet.heat to help us create the heat map. The plugin actually generates colored
semi-transparent markers and intelligently blends them, creating the illusion of a heat map.

155

5
Mapbox.js Advanced

In this chapter, we will cover the following recipes:

ff Adding external data to your map

ff Adding a time dimension to your map

ff Comparing two maps at the same time

ff Adding a WMS layer from GeoServer to your map

ff Adding ArcGIS layers from a server or from online

ff Adding Fusion Tables to your map

ff Adding Foursquare data to your map

Introduction
In this chapter, we will continue our exploration of Mapbox.js by using more advanced
examples and several different third-party plugins that will help us integrate with external
services and APIs.

Mapbox.js Advanced

156

Adding external data to your map
Leaflet (which Mapbox.js is based on) only supports the GeoJSON format out of the box. What
if we want to add other types of data to our maps? As we saw in the previous chapter, Leaflet
has an incredibly strong community that creates plugins. The plugin we are going to use, and
which is going to help us accomplish this task, is called Omnivore. Omnivore is capable of
loading several different file formats. We briefly discussed some of them in previous recipes:

ff Well-known text (WKT): This is a text markup language for representing vector
geometry. It supports points, lines, polygons, multipolygons, curves, surfaces, and
many other types of vector geometry. There is a binary equivalent of this format
called WKB.

ff Keyhole Markup Language (KML): This is an XML-based format used to display
geographic data. It is mostly used by Google.

ff GPX exchange format: This is an XML-based format that is mostly used to describe
waypoints, tracks, and routes. Most of the GPS found on the market can export in this
file format. The Google Directions API also returns GPX data.

ff Comma-separated values (CSV): This is a common format that stores tabular data in
plain text form. Most of the applications on the market can export in this format.

ff TopoJSON: This is an extension of the GeoJSON format that also encodes topology.

There are formats that are not mentioned in the preceding list, not
because they are not important, but mostly because we will need to
use the whole book to cover them all. Mapbox and Leaflet are great
and extensive platforms, with plugins to load almost anything you'll
ever need. One of the formats worth mentioning is GML.

How to do it…
1.	 Link Omnivore to your project.

2.	 Use omnivore.kml(url) or omnivore.gpx(url) to get a Leaflet layer back from
files.

3.	 Add the returned layer to your map.

4.	 Optionally, use event listeners such as .on('ready', function() {}) to handle
additional code when the file is loaded.

Chapter 5

157

Loading external data
Perform the following steps:

1.	 Open the chapter 5 - importing folder from the code files in your favorite text
editor. Head directly to the index.html file. The first thing that we need to do is link
the Omnivore plugin. Add the following line just before <script src='js/main.
js'></script>:
 <script src='https://api.tiles.mapbox.com/
 mapbox.js/plugins/leaflet-omnivore/v0.2.0/
 leaflet-omnivore.min.js'></script>

2.	 The project is already set up to include a Mapbox base map. Let's load a KML file
using Omnivore. It's easier to create a separate function:
function loadKML(map) {
 var kmlSample = omnivore.kml('/kml/KML_Samples.kml')
 .on('ready', function() {
 map.fitBounds(kmlSample.getBounds());
 }).addTo(map);
}

We simply use omnivore.kml(url) to load and parse a KML file. This method will
return a layer, so we can add that layer directly to our map.

Warning
Omnivore uses an AJAX request to get the file and parse it. The file must
be in the same domain with the project, otherwise it will require CORS
(Cross-Origin Resource Sharing) support for the server where the file
is hosted and for the user's browser. CORS is a mechanism that allows
resource files such as JavaScript and fonts to be shared between domains.

We also have the event handler 'ready' to make sure that the KML data is fully
loaded before we use .fitBounds to fit the KML to our map.

You can also use the .on('error', function() {}) event
handler to handle errors in case Omnivore can't load or parse the data.

3.	 Make sure you call the function inside the onLoad() scope, just after var map =
L.map('map').addLayer(mapboxTiles).setView(latlong, 15);:
loadKML(map);

Believe it or not, that's all that is needed to load an external KML file to Mapbox. It's
incredibly simple and powerful.

Mapbox.js Advanced

158

4.	 Make sure you save main.js, and open index.html in your web browser:

Loading a GPX file
We are going to use the same methodology to load a GPX file using Omnivore. Perform these
steps:

1.	 Let's continue from where we left in the previous section. Open the main.js file and
create a new function with the following code:
function loadGPX(map) {

 var customLayer = L.geoJson(null, {
 style: function(feature) {
 console.log(feature);
 return { color: "#cc0000", weight: 5, opacity: 0.95
 };
 }
 });

 var gpxSample = omnivore.gpx('/gpx/BogusBasin.gpx', null,
 customLayer)
 .on('ready', function() {
 map.fitBounds(gpxSample.getBounds());
 })

Chapter 5

159

 .addTo(map);
}

In this case, we will create a GeoJSON customLayer to style the Omnivore GPX file,
which we will load next.

To load the GPX file, follow almost the same steps as in the previous recipe. You can
still use var gpxSample = omnivore.gpx('/gpx/BogusBasin.gpx') without
passing the null and custom layer that we added, and the GPX will load just fine.

2.	 Replace loadKML(map) in onLoad with loadGPX(map).

3.	 Save and open index.html in your browser:

This is the end of the recipe. As you can see, Omnivore makes importing and styling various
formats really simple.

To load CSV, TopoJSON, and WPK files, use the following functions:
ff omnivore.wkt('a.wkt').addTo(map);
ff omnivore.csv('a.csv').addTo(map);
ff omnivore.topojson('a.topojson').addTo(map);

Mapbox.js Advanced

160

How it works…
Omnivore parses the supported formats internally, using parsers that are already well tested.
It uses https://github.com/mapbox/wellknown to parse WKT, https://github.
com/mapbox/csv2geojson to parse CSV, https://github.com/mapbox/togeojson to
parse GPX and KML, and https://github.com/mbostock/topojson to parse TopoJSON
files.

Omnivore is actually called a bridge plugin since it actually acts as a bridge between plugins
that are already available separately.

Adding a time dimension to your map
In this recipe, we will learn how to visualize data over time. For that purpose, we will use
CartoDB and a plugin called Torque. As an example, we are going to plot the paths of
airplanes as they depart from Miami International Airport.

How to do it…
The following steps need to be performed:

1.	 First of all, we need to transform the data that we want to import into CartoDB to a
format that is easy for the import tool to convert.

2.	 Click on your dataset and import your data into CartoDB.

3.	 Make sure that the imported data has a timestamp field and that it is correctly
georeferenced.

4.	 Link Torque to your project.

5.	 Create a Torque CartoCSS style to stylize the markers generated by the plugin.

6.	 Create a new torqueLayer and make sure that you pass the style, user account,
and the table.

Torque is the Leaflet plugin we are going to use in order to plot our data over time. Imagine
Torque data as a cube with the front side as a two-dimensional map, and the Z direction as
the time.

The way Torque works is that it fetches the data from the CartoDB database. It then looks for
the georeferenced fields defined in CartoDB to get the locations of the markers. The last step
is drawing the markers based on the date field defined in our dataset. The map behind Torque
markers can be any Mapbox map, including overlaid maps, with or without feature layers.

https://github.com/mapbox/wellknown
https://github.com/mapbox/csv2geojson
https://github.com/mapbox/csv2geojson
https://github.com/mapbox/togeojson
https://github.com/mbostock/topojson

Chapter 5

161

To style the markers, Torque uses a subset of CartoCSS with custom Torque-specific
properties. Apart from the usual size and color values, it also uses compositing blending
modes in order to style the final result over the maps. The results can be drawn using the
commutative mode, which plots the data over time without removing the previous data from
the map. Optionally, we can also turn off the cumulative mode and simply draw each frame,
clearing out the markers before the next frame is drawn.

To further customize the style, Torque allows us to define the style of the previous frames
independently, giving us the option to have unlimited styling options.

Importing the data to CartoDB
Perform the following steps:

1.	 First of all, we need to sign up and create an account with CartoDB. Head to
https://cartodb.com/ and click on SIGN UP. You don't need a credit card to
have an account at CartoDB. They offer a free plan with a limit of 50 MB, as well as a
trial if you need more. Both will serve us just fine for the scope of this recipe.

2.	 Log in, click on the Maps combo box next to your account name in the upper-left
corner of the screen, and select Your datasets.

3.	 Here you will see a list of the datasets that you have created already. Click on NEW
DATASET and you will be presented with an import screen.

You can import CSV, XLS, ZIP, MML, GPX, SHP, ODS, and other data files as well as
open files directly from Google Drive, Dropbox, or even MailChip!

I have already prepared a dataset for this recipe. It contains the flight data for
departures from Miami International Airport (ICAO: KMIA, 25.793333, -80.290556).

To generate the data, I have used a flight-tracking API called FlightStats. Other
services, such as FlightAware and FlightRadar24, also have an API for tracking flights.

Since we are going to import the data into CartoDB, they need to be formatted in
a specific way, and should be as simple as possible. Very complex files often don't
import correctly.

For this recipe, I am using a simple JSON file that contains an array of flights. Each
flight has the latitude, longitude, and timestamp fields, as well as the callsign, flight
ID, speed, and altitude fields which are not used here.

The latitude, longitude, and date fields are required in order to visualize the positions
of flights over time; without these three fields, this would not be possible.

4.	 It's now time to import the data. Select Data file and browse to the
50flightspermin.json file contained in the chapter5 – torque folder. Once
you have selected the file, click on CONNECT DATASET.

https://cartodb.com/

Mapbox.js Advanced

162

CartoDB will process the file, and you will be presented with a table of the data that
you have just imported.

5.	 From here, we can perform several operations if required. Let's rename the table first.
Click on table_50flightspermin displayed in the top-left corner of the screen, and
rename it flights.

6.	 Next we need to georeference (associate a data type with the location) the data. To
do that, click on the Edit combo box in the top-right corner and select Georeference.
Select the latitude and longitude column of the data table, and click on CONTINUE.

CartoDB offers several different ways to georeference data. You can use
city names, postal codes, addresses, and even IP addresses!

Chapter 5

163

7.	 Make sure that the date column is date type data. A string date will not work with
Torque. Most of the time, CartoDB can convert string data types to dates if you click
on the date column combo box, select Change data type, and then click on date.

In case CartoDB is unable to convert your string date to date type data,
there is another way to accomplish the task. You can use PostgreSQL
queries to manipulate the data. On the right sidebar, there is an SQL
button. Click on that, and write a query for modifying the date column
string data to an ISO 8601 date format. The following steps give an
example query. First, create a new column to store the new date:
ALTER TABLE flights ADD newdate TIMESTAMP;

Then convert the date:
UPDATE flights SET newdate = to_timestamp(olddate, 'MM/
DD/YY HH24:MI')

Modify 'MM/DD/YYHH24:MM' to the format used in the old date field.

Mapbox.js Advanced

164

8.	 Once you have modified the table and the date, click on MAP VIEW to visualize the
data:

If the georeferencing worked correctly, you will be able to view the data on the map. Our data
is now ready to be used in Torque.

Using torque to visualize data over time
Perform the following steps:

1.	 Open the chapter 5 - torque folder in your favorite text editor. The project
contains a preconfigured standard base layer map, as usual.

2.	 Append the following code after var map = L.map…:
 var style =
 'Map {' +
 '-torque-time-attribute: "date";' +
 '-torque-aggregation-function: "count(cartodb_id)";' +
 '-torque-frame-count: 760;' +
 '-torque-animation-duration: 5;' +
 '-torque-resolution: 2' +
 '}' +
 '#layer {' +
 ' marker-width: 1;' +

Chapter 5

165

 ' marker-fill: #b10026; ' +
 '}';

 var torqueLayer = new L.TorqueLayer({
 user: 'billkastanakis',
 table: "flights",
 cartocss: style,
 cumulative: true,
 });
 torqueLayer.addTo(map);
 torqueLayer.play();

That's the simplest way to visualize torque data over time. We are going to explain how that
code works, and we will enhance it after you've understood what's going on.

At this point, you can open index.html in a web browser to get a taste of what we have
created so far:

We first create a CartoCSS string with the style that will be used in the map. Let's dissect that
to understand what's going on in each part.

Torque uses a limited subset of CartoCSS, with some additional Torque-specific properties,
which always begin with the keyword -torque-.

Mapbox.js Advanced

166

At '-torque-time-attribute: "date";' is where we specify the table field that
contains the date data. As we mentioned in the previous section of the recipe, a string data
type will not work, and it's often the reason for frustration. Make sure that you specify a valid
table field name with a date data type.

At '-torque-aggregation-function: "count(cartodb_id)";' is where we define
the function to aggregate data for each cell.

'-torque-frame-count: 760;' is the number of steps/frames. In this example, we use a
single frame per row of data.

'-torque-animation-duration: 5;' means that the total duration is 5 seconds.

'-torque-resolution: 2;' is the spatial resolution in pixels. This value must be a power
of 2. A value of 1 means no spatial aggregation at all. Imagine that property as clustering. A
value of 2 means that the data will be clustered by two, while larger values will cluster more
data.

Next we have code that styles the markers:

 '#layer {' +
 ' marker-width: 1;' +
 ' marker-fill: #b10026; ' +
 '}';

We use a width of 1 and fill color. That completes the code needed to style the Torque data.

In the next part, we simply create a new torqueLayer, and pass the values for the CartoDB
user, the table, and the style fields that we have just created:

 var torqueLayer = new L.TorqueLayer({
 user: 'billkastanakis',
 table: "flights",
 cartocss: style,
 cumulative: true,
 });

Here, cumulative: true means that Torque will not clear the map at each frame. Instead,
it will overlay the new data over the old one. If we try to set that to false, we will notice that
the dots appear and disappear rather quickly. It may be hard to see this, but you can observe
it easily if you set the marker-width attribute to a higher value.

In the next two lines, we simply add the torqueLayer to our map, and lastly, we add
torqueLayer.play(); to start playing the animation:

 torqueLayer.addTo(map);
 torqueLayer.play();

Chapter 5

167

The next steps are as follows:

1.	 Now that we have created the basic functionality, we are going to enhance the styling
of the Torque data. Replace the style variable with the following code:
 var style =
 'Map {' +
 '-torque-time-attribute: "date";' +
 '-torque-aggregation-function: "count(cartodb_id)";' +
 '-torque-frame-count: 760;' +
 '-torque-animation-duration: 5;' +
 '-torque-resolution: 2' +
 '}' +
 '#layer {' +
 ' marker-width: 1;' +
 ' marker-fill-opacity: 1;' +
 ' marker-fill: #b10026; ' +
 ' [value > 2] { marker-fill: #b10026; }' +
 ' [value > 3] { marker-fill: #e31a1c; }' +
 ' [value > 4] { marker-fill: #fc4e2a; }' +
 ' [value > 5] { marker-fill: #fd8d3c; }' +
 ' [value > 6] { marker-fill: #feb24c; }' +
 ' [value > 7] { marker-fill: #fed976; }' +
 ' [value > 8] { marker-fill: #ffffb2; }' +
 ' [frame-offset = 1] { marker-width: 10; marker-fill-opacity:
0.05;}' +
 ' [frame-offset = 2] { marker-width: 20; marker-fill-opacity:
0.02;}' +
 '}';

In the preceding code, we use the following lines:
 ' [value > 2] { marker-fill: #b10026; }' +
 ' [value > 3] { marker-fill: #e31a1c; }' +

We are setting the marker color to change from red to a lighter yellow over time.

We can also use the zoom variable to change the
marker styling at different zoom levels.

Then, as shown in the following code, we set the two previous frames to a marker of
width 10 with reduced opacity. This will create a glow effect:
 ' [frame-offset = 1] { marker-width: 10; marker-fill-opacity:
0.05;}' +
 ' [frame-offset = 2] { marker-width: 20; marker-fill-opacity:
0.02;}'

Mapbox.js Advanced

168

2.	 In the torqueLayer object, add a new property:
 blendmode: 'lighter',

This property will give an intense additive compositing effect when a marker is above
another marker.

A great explanation of compositing operators can be found at
http://dev.w3.org/fxtf/compositing-1/#porterdu
ffcompositingoperators.

The following screenshot depicts the final result:

Comparing two maps at the same time
In this recipe, we are going to learn how to compare two maps at the same time. We can have
two maps that are styled differently and which display different features. For example, one
may use street data, while the other may use terrain or satellite imagery. The user will be able
to swipe between the two maps.

http://dev.w3.org/fxtf/compositing-1/#porterduffcompositingoperators
http://dev.w3.org/fxtf/compositing-1/#porterduffcompositingoperators

Chapter 5

169

How to do it…
The following steps need to be performed:

1.	 Add an HTML5 slider input control to the DOM.

2.	 Add an overlay map layer at the top of the base layer.

3.	 Calculate the clipping point based on the slider input value.

4.	 Create a rect, and apply that to the clip CSS property of the map container.

We first create an overlay map, and add it at the top of the base map. Next, we use a simple
HTML5 input control, a range slider. As the user drags the slider, the overlay map gets clipped.
All the magic happens in CSS. We have an overlay layer already in place, and we clip it based
on the input value of the range slider. The CSS property that we are tweaking on slider change
is called clip. The clip property accepts a rectangle, and we calculate that rectangle based
on the map size on the screen and the input of the range slider.

Comparing two maps
Perform the following steps:

1.	 Start by opening the chapter 5 – compare folder in your favorite editor. In the
index.html file, we will create an <input> field that will hold an HTML5 range
slider control:
 <input id='range' class='range' type='range' min='0'
 max='1.0' step='any' />

2.	 Now head over to main.js. We already have a base map, but we also need an
overlay layer to be at the top of the base map. This layer will hold the satellite map:
 var overlayLayer = L.mapbox.tileLayer
 ('mapboxrecipes.mjkd3a91').addTo(map);

3.	 Get the range input control from the DOM:
 var range = document.getElementById('range');

4.	 Now let's create the function that will clip the map:
function clip(map, layer) {

 var nw = map.containerPointToLayerPoint([0, 0]);
 var se = map.containerPointToLayerPoint(map.getSize());
 var clipX = nw.x + (se.x - nw.x) * range.value;

 layer.getContainer().style.clip = 'rect(' + [nw.y, clipX,
 se.y, nw.x].join('px,') + 'px)';

}

Mapbox.js Advanced

170

The first variable, nw, holds the northwest corner. It always points at 0,0. The next is
the se variable where we use getSize(), which gets the size of the map container.
With the third variable, called clipX, we do some math to find the position to clip the
map at.

Finally, we apply style.clip to the container, which is just a CSS property. The
clip CSS property accepts a rectangle, rect, and the values defined in the following
order: top, right, bottom, and left. We pass the clipX value that we created earlier
to the right value of the rectangle. px is attached as a suffix in each of the rect
values. The final rect that is passed to the clip looks like this:
rect(0px,973.5px,767px,0px)

5.	 Now that the clip function is ready, we create two event handlers. The first one is
range.onInput, which triggers whenever we change the value of the range input
control:
 range.oninput = function(e) {
 clip(map, overlayLayer)
 }

6.	 The second one is on map move. Whenever we move the map, we need to update the
clip CSS values:
 map.on('move', function(e) {
 clip(map, overlayLayer)
 });

7.	 Finally, we need to style the HTML slider input control, and position it at the top of the
map. Open css/style.css, and add the following:
.range {
 position:absolute;
 width:100%;
}

input[type='range'] {
 -webkit-appearance: none !important;
 background: black;
 opacity: 0.75;
 height: 30px;
}

input[type='range']::-webkit-slider-thumb {
 -webkit-appearance: none !important;
 background:white;
 height: 50px;
 width: 15px;
}

Chapter 5

171

That's all! Open index.html in your browser, and try to drag the map or the slider:

Adding a WMS layer from GeoServer to your
map

In the previous recipe, we learned how to use CartoDB georeferenced data and draw it over
time. In this recipe, we will learn how we can serve WMS layers using GeoServer.

While GeoServer is one of the most popular options, there are other
great alternatives for publishing spatial data and interactive mapping
applications, such as MapServer. You can find more information about
MapServer at the official website at http://mapserver.org.

GeoServer is an open source server for serving geospatial data. WMS is georeferenced
images used to display data that can't be easily represented using markers. An example is
meteorological data such as clouds, winds, or surface heat maps.

How to do it…
The steps to be performed can be categorized in the following sections.

http://mapserver.org

Mapbox.js Advanced

172

Adding WMS images from GeoServer to your map
First we will install GeoServer.

Installing GeoServer
We will first download and install GeoServer. It's freely available for Windows, Linux, and OS X.
Both stable and nightly builds are available. I recommend that you download the stable build
for this recipe:

1.	 Head over to http://www.geoserver.org/release/stable and download the
installer for the operating system you're using.

2.	 Install the downloaded file. Instructions may differ between platforms, but usually,
it is extremely easy to install it. You only need to run the downloaded installer. The
installer will ask for the GeoServer port (I used 9876 in my setup) as well as the
administrator password.

3.	 In case you've set up the installer to not start GeoServer automatically, you may need
to start it manually. Again, the way to start it differs in various operating systems,
but is pretty simple. On Windows, for example, there is a shortcut called Start
GeoServer; if you installed it as a service, you may need to open Services, and start
the GeoServer service.

If you have trouble installing or starting GeoServer, the article
at http://docs.geoserver.org/stable/en/user/
installation/index.html contains instructions for all
the available platforms.

4.	 Once installed and started, open a web browser, and head over to http://
localhost:9876/geoserver/web/. Note that I am using 9876 as the port in my
installation, but GeoServer defaults to the 8080 port. It's a good idea to change the
port number during the installation process since 8080 is used by many different
server applications.

5.	 Once you have access to the GeoServer web page, log in using the administrator
credentials:

http://www.geoserver.org/release/stable
http://docs.geoserver.org/stable/en/user/installation/index.html
http://docs.geoserver.org/stable/en/user/installation/index.html

Chapter 5

173

Creating a layer
Now that GeoServer is installed and running, we need to set it up to serve our data:

1.	 The first thing needed is to create a workspace. A workspace is used to group several
layers or layer groups together. In the left sidebar, under Data, click on Workspaces.
You will see that there is a list of workspaces set up already. Those are the default
workspaces installed with GeoServer, but we are going to create our own.

Mapbox.js Advanced

174

2.	 Click on Add New Workspace, and give your workspace a name and a URI. I
have named mine mapboxrecipes, and I have set the URI as http://www.
mapboxrecipes.com/mapboxrecipes. As an optional step, you can go ahead and
check the Default Workspace checkbox. When checked, any new stores or layers will
automatically be created under the default workspace. Click on Submit once done:

3.	 Now we need to add our data. In GeoServer, data is added as data sources under
stores. A store can handle various types of vector and raster formats. We can load
shapefiles (.shp), PostGIS databases, GeoTIFF, and several other formats.

In this recipe, we are going to load cloud data to display over our Mapbox map. The
data is in a GeoTIFF file.

Click on Stores in the left sidebar, and then on Add New Store. From the list of
supported data sources, choose GeoTIFF.

4.	 The workspace should already be set to mapboxrecipes since we have it as default.
Give a name to your data source, and set a description if you wish. Make sure that
the Enabled tab is checked. Once you have filled the required fields, click on Browse
next to the Connection Parameters URL, and choose the GeoTIFF from your hard
drive. Once done, click on Save.

Chapter 5

175

When we save our newly-created store, we have the option to publish it. This creates
a layer that is using that data source automatically.

5.	 If you didn't publish the store in the previous step, click on Layers in the left sidebar,
and choose Add New Resource. From the Add layer from combo box, select
mapboxrecipes:clouds. Click on Publish.

GeoServer references our stores using workspacename:storename.

6.	 We have just created a new layer that is using the store we created earlier. To make
sure that everything is correct, click on Layer Preview in the sidebar on the left, then
find the layer we just created.

Mapbox.js Advanced

176

There are multiple ways to preview the layer. GeoServer gives us the option to render
it to a file format such as JPG, GeoTIFF, PDF, KML, and many others, but in this case,
we will preview it live by clicking on OpenLayers under Common Formats:

That's it. We have used GeoServer to create a new store that uses our data, and then a
new layer.

Displaying WMS layers using Mapbox.js
The following steps need to be performed:

1.	 Go to the home page of the GeoServer interface at http://localhost:9876/
geoserver/web/ and copy the 1.3.0 link under WMS. That's the URL GeoServer
uses to serve WMS.

Chapter 5

177

2.	 Open the chapter 5 – geoserver folder in your favorite text editor, and head
directly to main.js. As usual, the project is already set up to use a Mapbox base
layer. After the map variable, type the following code:
var cloudLayer = L.tileLayer.wms('http://localhost:9876/
 geoserver/ows?service=wms&version=1.3.0&
 request=GetCapabilities', {
 layers: 'cloudscoverage',
 format: 'image/png',
 transparent: true
 }).addTo(map);

We create tileLayer.wms, passing the URL we copied earlier from GeoServer.

At layers:, we pass the layer that uses our cloud coverage data. At format:, we
request PNG files. And we set transparent to true in order for GeoServer to send
us transparent PNGs.

3.	 Open index.html in your favorite browser to preview the map:

4.	 Great! The WMS layer is overlaid on top of the base map, but we are not able to see
through the cloud layer.

5.	 Ideally, in case the tiles were transparent PNGs, there would be no issue at all since
we are using transparent: true, but in this case, we have to do something more
to complete the recipe.

In the previous recipe, we used a slider input HTML5 element to drive the clipping of
the map. We are going to do something similar here.

Mapbox.js Advanced

178

We will add a slider to drive the opacity of the WMS layer. Then we will be able to
control the mix with the base map. This is not the ideal solution, but since the server
is not returning transparent imagery, it's a perfectly valid way to visualize the cloud
layer over the base map.

6.	 Open index.html and add a slider range input control:
 <input id='range' class='range' type='range' min='0'
 max='1.0' step='any' />

7.	 Now open main.js and add the following code:
 var range = document.getElementById('range');

 range.oninput = function(e) {
 cloudLayer.setOpacity(range.value);
 }

It's similar to the previous recipe, with the only difference being that we now set the
opacity of cloudLayer with cloudLayer.setOpacity(range.value).

8.	 The last step is to position and style the HTML5 slider. Open css/style.css and
add the following code:

.range {
 position:absolute;
 width:15%;
}

input[type='range'] {
 -webkit-appearance: none !important;
 background: black;
 opacity: 0.75;
 height: 10px;
 top: 20px;
 right: 20px;
}

input[type='range']::-webkit-slider-thumb {
 -webkit-appearance: none !important;
 background: white;
 height: 40px;
 width: 15px;
}

Chapter 5

179

That's all! Open index.html in your browser. Now you can use the slider to mix cloudLayer
with the base map.

Adding ArcGIS layers from a server or from
online

ArcGIS is a platform for making, using, and sharing maps from any device, anywhere, and at
any time. This is how it's described on the ArcGIS website, and that's what it is, in a sentence.

Unlike QGIS, which we used in the previous chapters, ArcGIS is commercial software, and is a
very deep and complex platform used by the GIS professionals.

There is a 60-day free trial if you are interested in exploring
ArcGIS; it is available at http://www.esri.com/software/
arcgis/arcgis-for-desktop/free-trial.

The platform is composed of several different applications, including ArcGIS Desktop in three
different variations. It includes several applications, such as ArcMap, ArchToolbox, and others;
it also includes ArcReader to view and query maps and ArcGIS Server to create and manage
GIS web services, applications, and data.

http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial
http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial

Mapbox.js Advanced

180

Due to the complexity of the applications and server products, we are not going to dive deep
into them since it would require a couple of books to cover them. If you're interested in
learning more about ArcGIS, the following books by Packt Publishing will help you:

ff Administering ArcGIS for Server, Hussein Nasser (https://www.packtpub.com/
networking-and-servers/administering-arcgis-server)

ff ArcGIS for Desktop Cookbook, Daniela Christiana Docan (https://www.
packtpub.com/application-development/arcgis-desktop-cookbook)

ff Learning ArcGIS Geodatabases, Hussein Nasser (https://www.packtpub.com/
application-development/learning-arcgis-geodatabases)

Instead, we are going to create a recipe to learn how to access the data and layers created by
ArcGIS, and combine them with Mapbox maps using Mapbox.js and a Leaflet plugin. ArcGIS
has its own JavaScript API; the plugin we are going to use is not going to replace it, but will
help us combine ArcGIS technology with the Mapbox data we are using.

If you want to explore the ArcGIS API, the documentation can be found
at https://developers.arcgis.com/javascript/.

How to do it…
The following steps need to be performed:

1.	 Publish your own service using ArcGIS or use an online service. Acquire the URL from
the service.

2.	 Link the Esri Leaflet plugin to your project.

3.	 Open the URL and explore the layers and properties provided by the service.

4.	 Use esri.TileLayer and pass the URL. Add the layer to the map.

5.	 Generate an on-click event listener.

6.	 Create an L.esri.Tasks.IdentifyFeatures request to acquire the features at
the clicked latitude and longitude.

7.	 Parse the returned featureCollection, generate an HTML, and create a popup to
display the data.

In ArcGIS, you can create your maps using the ArcGIS Desktop ArcMap software. The process
is similar to the maps we created in the previous chapters using QGIS. They are composited by
layers and various types of datasets.

After the map is created, a service can be created using the ArcGIS Server software. The map
can be published using the service and shared with the world.

https://www.packtpub.com/networking-and-servers/administering-arcgis-server
https://www.packtpub.com/networking-and-servers/administering-arcgis-server
https://www.packtpub.com/application-development/arcgis-desktop-cookbook
https://www.packtpub.com/application-development/arcgis-desktop-cookbook
https://www.packtpub.com/application-development/learning-arcgis-geodatabases
https://www.packtpub.com/application-development/learning-arcgis-geodatabases
https://developers.arcgis.com/javascript/

Chapter 5

181

To get that data from the service, we have to use a Leaflet plugin called Esri Leaflet. It will help
us connect to the services and acquire the data we want easily. Esri Leaflet is an excellent
plugin and it can do a lot more. In the recipe, we will use a limited set of the functionality
provided by it, but with the knowledge acquired in this chapter, it will be easy enough to get
the most out of it without any trouble.

Adding ArcGIS layers from the server or from online
Perform these steps:

1.	 We are going to use the services available in the ArcGIS Services directory. Head
over to it and click on the Demographics folder, then on Demographics/USA_2000-
2010_Population_Change (MapServer).

A screen with the details will appear. It includes information about the layers used in
the server as well as details about the tiles and the supported operations:

Mapbox.js Advanced

182

There are multiple ways to preview the data. At the top of the page, there are several
View In options. Clicking on ArcGIS.com Map will open the map in your browser
directly:

If you have ArcMap installed on your machine, you can click on ArcMap in the View In
options. It will download a .lyr (layer) file, which you can double-click on to open it in
ArcMap.

Don't confuse a shape file (.shp) with an ArcGIS layer file. The
latter doesn't actually hold any data, but just a reference path to
the source dataset.

Chapter 5

183

Inside ArcMap, you can get information about the layers that the service contains,
and explore its features and properties:

In this instance, the service contains four layers: the Block Groups at index 1, the
Tracts at index 2, Counties at index 3, and States at index 4.

If you click on the States or Counties layers on the ArcGIS Services directory page or
in ArcMap, you will see that they contain fields such as the name of the state, land
area in square miles, as well as the growth by year ranges.

We are going to display this data in a popup later.

2.	 Now that we have an understanding of the data that is supplied by the service, it's
time to dive into our project. Open the folder chapter 5 – esri in your favorite
HTML editor. The project contains a basic setup like the previous recipes. In this
recipe, we are going to use Esri Leaflet. It will help us with loading Esri base maps
and feature services as well as tile, dynamic maps, and image services.

3.	 Open index.html and add the following line to link to the Esri Leaflet plugin:
 <script src="//cdn.jsdelivr.net/leaflet.esri/
 latest/esri-leaflet.js"></script>

Mapbox.js Advanced

184

4.	 Let's jump into the js/main.js file. We will first create a url variable. The address
will be the same as the services address that we used earlier:
var url = demographicsURL = "http://
 services.arcgisonline.com/arcgis/rest/services/
 Demographics/USA_2000-2010_Population_Change/MapServer";

5.	 Next we will add an Esri tile layer to the map. As a parameter, we just supply the
preceding url:
var layer = L.esri.tiledMapLayer(demographicsURL,
 {}).addTo(map);

6.	 Create an on-click event handler. We want to identify the features each time the user
clicks on the map:
 map.on('click', function(e) {

 });

7.	 Within the on-click context, add the following code:
 L.esri.Tasks.identifyFeatures({
 url: url
 })
 .on(map)
 .at(e.latlng)
 .layers('States')
 .run(function(error, featureCollection, response){
 // Add code to parse the featureCollection and
 response
 }

 });

Here, we call the identifyFeatures method from the Esri Leaflet plugin. We pass
map and latlng from the on-click handler. In the layers parameter, we pass one
of the layers provided by the service. We saw that they were four layers, of which one
was the States layer.

The last part is run, which executes the identifyFeatures request.

8.	 Within the run function context, after the // add code to parse… comment, add
the following code to generate a popup where the user clicks:

 if (response.results.length > 0) {

 var properties = featureCollection.features[0].
 properties;
 var html = '<h1>' + properties['Name'] + '</h1>' +

Chapter 5

185

 '<small>Square miles: ' +
properties['Land Area in Square Miles'] + '</small>' +
 '<p>Population: ' +
properties['2010 Total Population (U.S. Census)'] + '</p>' +
 '<p>2000-2010 growth: </
strong>' + properties['2000-2010 Population Annual Compound Growth
Rate (U.S. Census)'] + '</p>' +
 '<p>2010-2012 growth: </
strong>' + properties['2010-2012 Population: Annual Growth Rate
(Esri)'] + '</p>' +
 '<p>2012-2017 growth: </
strong>' + properties['2012-2017 Population: Annual Growth Rate
(Esri)'] + '</p>';

 var popup = L.popup()
 .setLatLng(e.latlng)
 .setContent(html)
 .openOn(map);

 }

What we are doing here is parsing: getting the data we want from featureCollection,
generating an HTML variable, and passing that to the popup, like in the previous recipes. And
you may ask, how do we know which fields are returned in featureCollection?

You can go to console.log and find out, or simply open the service URL in your browser and
the fields are provided at the bottom of the page under the States layer.

The following is what you will see:

Fields:

OBJECTID (type: esriFieldTypeOID , alias: OBJECTID)

Shape (type: esriFieldTypeGeometry , alias: Shape)

ID (type: esriFieldTypeString , alias: ID , length: 2)

NAME (type: esriFieldTypeString , alias: Name , length: 20)

ST_ABBREV (type: esriFieldTypeString , alias: State Abbreviation , length: 2)

LANDAREA (type: esriFieldTypeDouble , alias: Land Area in Square Miles)

TOTPOP_CY (type: esriFieldTypeInteger , alias: 2012 Total Population (Esri))

TOTPOP10 (type: esriFieldTypeInteger , alias: 2010 Total Population (U.S. Census))

Mapbox.js Advanced

186

POPGRW0010 (type: esriFieldTypeDouble , alias: 2000-2010 Population Annual
Compound Growth Rate (U.S. Census))

POPGRW10CY (type: esriFieldTypeDouble , alias: 2010-2012 Population: Annual Growth
Rate (Esri))

POPGRWCYFY (type: esriFieldTypeDouble , alias: 2012-2017 Population: Annual Growth
Rate (Esri))

That's it. We have managed to overlay ArcGIS layers over our own Mapbox base layer, and get
information from the tiles, with just a few lines of code.

Open index.html in your web browser to see the final result. Try clicking on a state to open
the demographics information popup:

Adding Fusion Tables to your map
Google Fusion Tables is a web service provided by Google for creating, visualizing, and
sharing data tables. The data is stored in tables that the users can view, copy, combine,
manipulate, and download.

In this recipe, we are going to combine two different Fusion Tables to get the data we want,
then we will see how we can access the data and populate a Mapbox base map.

Chapter 5

187

How to do it…
The following steps are required:

1.	 Generate a new Fusion Table, or use public data.

2.	 Get a Fusion Table API key for Google Developer Console.

3.	 Generate a SQL query to get the data you want from the Fusion Tables.

4.	 Use the Fusion Tables JavaScript API to send the request.

5.	 Parse the response, and populate the map.

Google calls Fusion Tables an experimental application, although that status has existed for
several years now. The web application provides functionality for visualizing the data on a map
or by using various types of chart such as bar charts, line plots, scatter plots, timelines, and so
on. The data tables can be generated from Google Sheets, or imported from various file formats,
such as .csv, .tsv, .kml, and others. While it's not a relational database, it is pretty similar
since there is a functionality to combine various Fusion Tables into one. To access the data, we
will need a Fusion Tables API key from Google Developer Console. Then we can use the Fusion
Tables API to query the tables using the Fusion Tables JavaScript API and get the data we want.
Once we have the data, we will use Mapbox.js to populate a base map.

Acquiring a Fusion Tables API key
We will need an API key to be able to use the JavaScript API:

1.	 Head over to https://console.developers.google.com/project
and create a project, or use an existing one.

2.	 Once in the project, click on API Manager in the left sidebar.

https://console.developers.google.com/project

Mapbox.js Advanced

188

3.	 You will find Fusion Tables API at the bottom under the Other popular APIs section.
Click on it.

4.	 Click on Enable.

5.	 Go to the Credentials section in the sidebar.

6.	 Click on Create credentials and then on API key.

7.	 Select Browser key, and click on Create.

8.	 Keep a note of the API key since we are going to use it later in the recipe.

Chapter 5

189

Creating a Fusion Table
Fusion Tables can be created from scratch using spreadsheets, but there is data available
publicly too. In this recipe, we are going to use two different public data Fusion Tables. We will
merge their content to create a third one that has the combined data:

1.	 Head over to https://research.google.com/tables. From here you can make
a query, and search for the data you want. There are two options in the sidebar,
Web Tables and Fusion Tables. Web tables are, as you've probably already guessed,
tabular data inside <table></table> tags. When you are searching, make sure
that Fusion Tables is selected here.

The first table we are going to use is crime statistics by postcode in England and
Wales. The table can be found at the following link: https://www.google.com/
fusiontables/DataSource?docid=1Nu5cyP1ulEWNilmZCgF4axei56fT8c
IV7-wutK8#rows:id=1.

Note that this is a public table, and it may not be available at the time you're
reading this recipe. You can search for a table that contains crime statistics,
and also includes a postcode, or a city name, or even latitude and longitude.
Any table like that will work just fine to get you through the recipe.

Note that the table has a postcode, but no actual latitude and longitude columns.
This is where the second table comes in. It will help us map the postcode to the
location coordinates.

If you want to import your own data, or create a new Fusion Table from
scratch, the process is extremely easy.
Just head to the File menu, and choose New table…. Here you will have
the option to load .csv, .tsv, .txt, or .kml files from your computer,
import from Google Sheets, or create an empty table.

2.	 Before taking a look at the other table, let's copy the Fusion Table into our account
first. Go to File, and choose Make a copy. After a few seconds, the table will be
copied into our account.

https://research.google.com/tables
https://www.google.com/fusiontables/DataSource?docid=1Nu5cyP1ulEWNilmZCgF4axei56fT8cIV7-wutK8#rows:id=1
https://www.google.com/fusiontables/DataSource?docid=1Nu5cyP1ulEWNilmZCgF4axei56fT8cIV7-wutK8#rows:id=1
https://www.google.com/fusiontables/DataSource?docid=1Nu5cyP1ulEWNilmZCgF4axei56fT8cIV7-wutK8#rows:id=1

Mapbox.js Advanced

190

Once done, click on View table to view the copied table:

3.	 Click on the table title, and you will get into table information. Change the name to
something that is easy to remember, such as UK Crime Rates.

4.	 Now it's time to have a look at the second table, the one that contains the postcode
and the location coordinates. It is available at https://www.google.com/
fusiontables/DataSource?docid=1GgAIBnxKzfs_ee2YwbHx2ur_5Km2EaVr
STadvA#rows:id=1.

5.	 Repeat the process to create a copy of the table, and rename the table as we did just
now.

6.	 Now let's merge the Fusion Tables. Click on File | Merge…, and from the list of
tables, select the UK Crime Rates table, which is the copy that we created earlier.
Once selected, click on Next.

https://www.google.com/fusiontables/DataSource?docid=1GgAIBnxKzfs_ee2YwbHx2ur_5Km2EaVrSTadvA#rows:id=1
https://www.google.com/fusiontables/DataSource?docid=1GgAIBnxKzfs_ee2YwbHx2ur_5Km2EaVrSTadvA#rows:id=1
https://www.google.com/fusiontables/DataSource?docid=1GgAIBnxKzfs_ee2YwbHx2ur_5Km2EaVrSTadvA#rows:id=1

Chapter 5

191

7.	 Next, we will be presented with a screen for specifying two matched columns. The
table will try to match the content in these columns and merge the data. Select
Postcode Location from This table and Postcode District from the UK Crime Rates
table, then click on Next:

8.	 The last step in the merge process is to choose the columns that we want to keep.
You can specify which of them to exclude by unchecking the checkboxes in the
column names. For this recipe, leave All selected, and click on Merge.

Once the merge is complete, you will receive a success message and the option to
view the table. Click on View table now.

9.	 Confirm that we have the merged data. Now our table contains both crime rates and
the location coordinates.

10.	 If you wish, you can change the name of the table like we did earlier, then click on
Tools | Publish….

11.	 In the Publish options box, choose Change visibility, then in the Who has access
section, click on the Private – Only you can access option's Change… link; from the
options, select On – Public on the web.

It is important for the newly-created Fusion Table data to be public, or else we will
have to authorize users to be able to access our data.

Mapbox.js Advanced

192

12.	 Since we are here, let's get the ID for the table. We are going to use the ID to link to
this table when using the Fusion Tables API.

There are two ways to get the ID. The first one is just by inspecting the URL, which is
https://www.google.com/fusiontables/data?docid=1pt-ezE2tlDLKP6M
bcQFP5GjLqa6tugMUqSHakSTo#rows:id=1.

The data after docid= until the hash character is the ID of the table. In this case, it
is 1pt-ezE2tlDLKP6MbcQFP5GjLqa6tugMUqSHakSTo.

The other way is to click on File, then choose About this table. The ID of the table is
at the bottom end of this About box.

That's it. We have now generated a new public Fusion Table from public data. Next, you are
going to learn how to present that data in our maps using Mapbox.js.

Adding Fusion Tables data to your map
Perform the following steps:

1.	 Open the chapter 5 - fusionTables folder in your favorite text editor.

2.	 The first function that we are going to create is the request to the Fusion Tables API:
function requestData() {

 var fusionTablesAPIKey = "AIzaSyBidVY6GUVnQE2cmpq_
phTZJ37ModYJKPE";
 var fusionTableID = '1BQkBcXZ4F_hDVs6uQUzKCfJ-CXN_eJnfFSuiCZFv';

 var query = encodeURIComponent("SELECT 'Postcode District',
AVERAGE('Estimated Population'), latitude, longitude, SUM('Violent
Crime Total'), SUM('Shoplifting Total'), SUM('Drugs Total'),
SUM('Public Disorder and Weapons Total'), SUM('Criminal Damage
and Arson Total') FROM " + fusionTableID + " GROUP BY 'Postcode
District', latitude, longitude");
 var url = 'https://www.googleapis.com/fusiontables/
v2/query?sql=' + query + '&key=' + fusionTablesAPIKey +
'&typed=false&callback=jsonp';
 var encodedURL = encodeURIComponent(url);

 $.ajax({
 url: url,
 dataType: 'jsonp',
 jsonpCallback: 'jsonp',
 success: parseFusionTableResponse,
 error: errorResponse
 });

}

Chapter 5

193

The first part in this function is the query variable. We construct an SQL query to
fetch the data that we want.

You have probably noticed that we are also using aggregate functions to count and
average several rows:
var query = encodeURIComponent("SELECT 'Postcode District',
AVERAGE('Estimated Population'), latitude, longitude, SUM('Violent
Crime Total'), SUM('Shoplifting Total'), SUM('Drugs Total'),
SUM('Public Disorder and Weapons Total'), SUM('Criminal Damage
and Arson Total') FROM " + fusionTableID + " GROUP BY 'Postcode
District', latitude, longitude");

What we are basically doing in the preceding query is grouping the results to have the
summaries that we need.

The Fusion Tables API supports the SELECT, INSERT, UPDATE, and DELETE SQL
clauses. We use SELECT here, and it supports the WHERE, GROUP BY, ORDER BY,
OFFSET, and LIMIT clauses. The aggregate functions supported are COUNT, SUM,
AVERAGE, MAXIMUM, and MINIMUM.

You can find more information for the SELECT clause in the Fusion
Tables API documentation at https://developers.google.com/
fusiontables/docs/v2/sql-reference#Select.

Note FROM " + fusionTableID. The table name is the Fusion Table ID we got earlier.

Make a note here about what is supported when generating your SQL query so that
you don't get any unexpected results or errors from the Fusion Tables API.

The SQL statement has to go through encodeURIComponent() to encode special
characters.

After the SQL statement is constructed, we generate the URL to query the API:
 var url = 'https://www.googleapis.com/fusiontables/v2/
 query?sql=' + query + '&key=' + fusionTablesAPIKey +
 '&typed=false&callback=jsonp';
 var encodedURL = encodeURIComponent(url);

Our Google fusionTablesAPIKey that we got from Google Developers Console is
passed here.

Once url is ready, we use jQuery AJAX to call the API:
$.ajax({
 url: url,
 dataType: 'jsonp',
 jsonpCallback: 'jsonp',
 success: parseFusionTableResponse,
 error: errorResponse
 });

https://developers.google.com/fusiontables/docs/v2/sql-reference#Select
https://developers.google.com/fusiontables/docs/v2/sql-reference#Select

Mapbox.js Advanced

194

In case we get a response, the success callback will be called, and that's what we
are going to do now.

3.	 We generate a function to parse the results from the Fusion Tables API. The
function will enumerate through the results, and it will create markers for each row.
The markers will be added to a new layer called crimeLayer:
function parseFusionTableResponse(data) {

 L.mapbox.accessToken = 'pk.eyJ1IjoibWFwYm94cmVja
 XBlcyIsImEiOiJjd3RhQmlzIn0.Wx0fWGCo3gs6fzta5QrLfw';
 var mapboxTiles = L.tileLayer('https://{s}.tiles.
 mapbox.com/v4/mapboxrecipes.mb2jjne3/{z}/{x}/{y}.png?
 access_token=' + L.mapbox.accessToken);

 var latlong = [51.5072, 0.1257];
 var map = L.map('map').addLayer(mapboxTiles).
 setView(latlong, 8);
 var crimeLayer = L.layerGroup().addTo(map);

 for (var i = 0; i < data.rows.length; i++) {

 var entry = data.rows[i];
 var html = generateHTMLForEntry(entry);

 if (entry[2] != "" || entry[3] != "") {

 var latlng = L.latLng(entry[2], entry[3]);

 var marker = L.marker(latlng, {
 icon: L.mapbox.marker.icon({
 'marker-color': '#d40000',
 'marker-symbol': 'danger',
 'marker-size': 'large'
 })

 }).bindPopup(html).addTo(crimeLayer);
 }

 }

}

This function is pretty similar to the one in the previous recipe, so not much
explanation is needed.

In the first few lines of the function, we create a base map and an extra layer called
crimeLayer. Then we loop through the results, generating markers and adding
them to crimeLayer.

Chapter 5

195

4.	 The last piece of the puzzle is to generate the HTML content of the markers:
function generateHTMLForEntry(entry) {

 var html = '<p>Postcode: ' + entry[0] + '<p>' +
 '<p>Population: ' + entry[1] + '<p>'
+
 '<p>Violent Crimes Total: ' +
entry[4] + '<p>' +
 '<p>Shoplifting Total: ' + entry[5]
+ '<p>' +
 '<p>Drugs Total: ' + entry[6] +
'<p>' +
 '<p>Public Disorder & Weapons Total: '
+ entry[7] + '<p>' +
 '<p>Criminal Damages Total: ' +
entry[8] + '<p>';

 return html;
}

5.	 Don't forget the onLoad function to call requestData():
window.onload = function() {
 requestData();
}

6.	 That's it. Open index.html in your favorite text editor:

Mapbox.js Advanced

196

Adding Foursquare data to your map
In this recipe, we are going to learn how to use the Foursquare API, and populate a Mapbox
base map with Foursquare data. We are going to populate the map with venues as we pan
and zoom.

How to do it…
The following steps need to be performed:

1.	 Create a developer account at Foursquare.

2.	 Create a new app to get your client ID and client secret.

3.	 Construct a request to the Foursquare venues endpoint. Make sure that you
are passing either the latitude and longitude using the ll parameter, or a city with
the near parameter.

The query parameter with a venue category, and the v parameter for the API
versioning are also required.

4.	 Once the request is constructed, use jQuery's getJSON function to call the endpoint.

5.	 Enumerate through the returned results, and for each venue, create a new marker.

6.	 Add all the markers to a new layer, and add the layer to the map.

Foursquare has a public API that is free to use as long as you have a developer account. It's a
RESTful API, and using the available endpoints, you can get information about venues, users,
check-ins, events, and much more. Since it's a kind of a headache to perform CORS requests
using JavaScript, we will recruit jQuery to help us with the API network requests. Once we get
back a response, we will enumerate through the results, and for each one, we will create a
marker on the map.

Getting Foursquare data to your map
Perform these steps:

1.	 First of all, we will need an account to use the Foursquare API. Head over to
https://developer.foursquare.com, and log in with your credentials or sign
up for a new account.

https://developer.foursquare.com

Chapter 5

197

2.	 The next step is to create a new app to use for this recipe. Click on My Apps from the
top menu, then on Create a new app. Give your app an app name; you will also need
to fill in the Web addresses sections with the URLs of your app. We are not going to
use them, and it isn't important to use real URLs for the purpose of this recipe.

Mapbox.js Advanced

198

3.	 Once your app is created, Foursquare will display your app's client ID and client
secret. We will need those to get access to the API.

4.	 Fire up your favorite text editor and open the chapter 5 - foursquare folder.
The project is already set up to use a Mapbox base map.

5.	 In this project, we are going to use the jQuery getJSON function to make it easier to
talk to the Foursquare API. We will need to link to jQuery, so add the following line to
your index.html file:
 <script src='https://code.jquery.com/jquery-1.11.0.
 min.js'></script>

6.	 Open main.js. To make the project easier to read, we are going to create
several functions. The first is called requestData(map, layer), and it will be
used to generate the Foursquare API request:
function requestData(map, layer) {

 var clientID = 'KX2DP4F0POK1RNWRFC1Y1QJ5Z2HRZMKIPBL
 CLEEFNRT51GXV';
 var clientSecret = '0BGHLLTMUIEXQMBCNMAWDM5NGDV
 UESEX4VKFBFZ1IJN1PFER';

 var url = 'https://api.foursquare.com/v2/venues/search' +
 '?client_id=' + clientID +
 '&client_secret=' + clientSecret +
 '&v=20150714' +

Chapter 5

199

 '&limit=50' +
 '&radius=100000' +
 '&ll=' + map.getCenter().lat + ',' + map.getCenter().lng +
 '&query=restaurant';

 $.getJSON(url, function(results, status) {

 if (status !== 'success') return alert('Request
 Failed');
 parseResults(layer, results);

 });

}

We use the venues/search endpoint to search for venues. Let's dissect the
preceding code.

In the first two lines, we create two variables to store the client ID and client secret:
 '?client_id=' + clientID +
 '&client_secret=' + clientSecret +

We pass a date to the parameter v. This is related to API versioning. It is a required
parameter, and the numbers next to it are simply a date in the YYYY/MM/DD format.
It means that Foursquare will use the latest API version available on that date, as
shown here:
 '&v=20150614' +

In the next two lines, we set the limit to return 50 venues, which is the maximum, and
the radius of the search is to be 100.000 meters:
 '&limit=50' +
 '&radius=100000' +

The other required parameters for this endpoint are ll or near. One or the other
is required, but you can't use both. The first one, ll, is used to pass the longitude
and latitude to search, and near is used to search near a specific address or city.
In this case, we use ll, and pass the center of the map as the longitude and
latitude values:
 '&ll=' + map.getCenter().lat + ',' +
 map.getCenter().lng +

Lastly, we pass the venues we are looking for, such as sushi, restaurant, or café,
to the query parameter :
 '&query=restaurant';

Mapbox.js Advanced

200

Once the request URL has been constructed, we use jQuery's getJSON function to
call the endpoint:
 $.getJSON(url, function(results, status) {

 if (status !== 'success') return alert('Request
 Failed');
 parseResults(layer, results);

 });

It will give us back results, which are venue objects, and a status. If we don't get a
'success' status, we display an alert with the error.

If the request returns results, we will create a function to parse those results.

7.	 For the moment, let's create a quick function to help us generate the HTML that we
will display in the popups:
function generateHTMLForVenue(venue) {

 var html = '<h2><a href="https://foursquare.com/v/' + venue.id +
'">' + venue.name + '</h2>' +
 '<h4>' + venue.categories[0].name + '</h4>' +
 '<p>' + venue.location.address + ', ' + venue.
location.city + '</p>' +
 '<p>CheckIns: ' + venue.stats.checkinsCount +
'</p>';

 return html;
}

This function is self-explanatory, and simply generates an HTML using data from
the returned venue objects. It displays a venue name that links to the Foursquare
page, then the category, the address, and the number of check-ins. We will use this
function next.

8.	 Now we are going to create the parseResults(layer, results)
function:
function parseResults(layer, results) {

 for (var i = 0; i < results.response.venues.length;
 i++) {

 var venue = results.response.venues[i];

Chapter 5

201

 var html = generateHTMLForVenue(venue);

 var latlng = L.latLng(venue.location.lat, venue.
 location.lng);

 var marker = L.marker(latlng, {
 icon: L.mapbox.marker.icon({
 'marker-color': '#d40000',
 'marker-symbol': 'restaurant',
 'marker-size': 'large'
 })
 }).bindPopup(html).addTo(layer);
 }

}

Let's dissect the function. We enumerate through results.response.venues,
and create three variables: one to hold the venue, one to generate the HTML for
the popup using the helper function that we created earlier, and one that stores
the latitude and longitude:
 var venue = results.response.venues[i];
 var html = generateHTMLForVenue(venue);
 var latlng = L.latLng(venue.location.lat, venue.
 location.lng);

Next, for each venue, we create a marker, pass latlng, and customize the marker
to be red, have the restaurant icon, and be large in size:
 var marker = L.marker(latlng, {
 icon: L.mapbox.marker.icon({
 'marker-color': '#d40000',
 'marker-symbol': 'restaurant',
 'marker-size': 'large'
 })
 }).bindPopup(html).addTo(layer);

We also bind a popup with the HTML that we generated earlier. Finally, we add each
marker to the layer, which will hold all of our Foursquare markers.

9.	 We are almost done. We just need to create the layer that will hold the
Foursquare markers, and call the requestData function. We will do that in
window.onload = function():
 var foursquareLayer = L.layerGroup().addTo(map);
 requestData(map, foursquareLayer);

Mapbox.js Advanced

202

10.	 Let's do something even cooler. Let's add an event to add more data when the user is
zooming or panning the map. The Mapbox moveend event handler is perfect for that:
 map.on('moveend', function(e) {
 requestData(map, foursquareLayer);
 });

11.	 Foursquare requires attribution. Let's comply with that, and add an attribution to
thank them for providing their data to us:
 map.attributionControl.addAttribution('Data powered by
Foursquare');

12.	 Save the file, and open index.html in your favorite browser. Try to scroll or zoom
around, and click on the markers to see the information about the venues:

203

6
Mapbox GL

In this chapter, we will cover the following recipes:

ff Integrating your project with Mapbox GL

ff Creating a basic map using Mapbox GL

ff Switching between locations programmatically

ff Adding markers to the map

ff Switching map styles

ff Loading GeoJSON and drawing a polyline

ff Drawing polygons on the map

Introduction
When I started writing this book, the best way to use Mapbox maps on the iOS platform was
the Mapbox iOS SDK. While the SDK itself was pretty powerful, it was based on raster tiles
and was significantly slower that modern vector map frameworks such as the Apple-owned
MapKit. There were other disadvantages too; for example, it was messy to integrate into a
project and generated tons of warnings.

Don't confuse the Mapbox GL mobile framework with Mapbox GL JS,
which is aimed at web developers. All the recipes in this chapter are for
Mapbox GL iOS.

Luckily for us, Mapbox introduced a new mobile SDK that replaced the now deprecated
Mapbox iOS SDK. It's called Mapbox GL, and it has significant strengths compared to its
predecessor. Mapbox GL is written in C++, based on the OpenGL ES 2.0 technology, and is
capable of displaying pixel-perfect vector maps without antialiasing or blurring issues. It's
hardware accelerated and optimized for mobile hardware.

Mapbox GL

204

I considered introducing both frameworks in this chapter, but as the Mapbox iOS SDK is now
deprecated, it would be a waste to start learning it now. Instead, I have chosen to dedicate
this chapter to Mapbox GL, which will be the obvious choice for the future.

In the first recipe, we will create a basic app that displays a map on the screen. In the
following recipes, we will explore how to zoom and pan the map programmatically, load
predefined and custom styles, and draw markers and polygons.

Let's begin by integrating Mapbox GL into our project. This chapter is a significant step from
the previous ones and uses a totally different language and tools. To be able to follow this
chapter, knowledge of Objective-C or Swift as well as Xcode is required. Additionally, Mapbox
GL uses raw C language features, such as structs, so knowledge of C will also help. You must
be able to navigate by yourself in Xcode and understand how to get around.

In the first few recipes, I will try to be as detailed as possible so that users that don't have
experience with iOS development have a chance to follow the recipes. However, if you have
zero experience with iOS development and have trouble following the steps to complete
the recipes, I strongly recommend that you read a beginner's guide that specializes in iOS
development before attempting to follow the recipes.

Integrating your project with Mapbox GL
In this recipe, we will discover how you can integrate your projects with Mapbox GL.

How to do it…
The easiest way to link to external libraries or frameworks on the iOS platform is via
CocoaPods. It's the most popular package manager and is built with Ruby, which is
preinstalled in OS X. Also, installing it is extremely easy, as shown:

1.	 Open a terminal.

2.	 Paste the following command:
sudo gem install cocoapods

3.	 After a few moments, CocoaPods will be installed. To make sure that everything is
working, you can check the version via the following command:

pod –version

We will get back something similar to this:

0.37.2

Chapter 6

205

You can learn more about CocoaPods at https://cocoapods.org.

Creating the Xcode project file and linking it to Mapbox GL
Perform the following steps:

1.	 Open Xcode, and from the templates, select Single View Application.

If you don't have Xcode installed, you can download it for free from the
Mac App Store at https://itunes.apple.com/us/app/xcode/
id497799835?ls=1&mt=12.

Before moving on, let's have a quick look at the Xcode user interface. If you are
already familiar with Xcode, feel free to proceed to Step 3.

https://cocoapods.org
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

Mapbox GL

206

Project Navigator displays your projects and the files contained in each of your
projects. You will see your source code classes there, as well as storyboards and
other resources such as image files. You will even find external files that we want our
project to have access to, such as GeoJSON. The storyboard is a file that contains
the user interface elements and their layout for an app. It can contain multiple
controllers, and how these controllers are connected to each other defines the flow of
the app. The Utilities Panel displays information depending on which file we selected
in Project Navigator. If a source file is selected in File Inspector, Quick Help is
displayed. If a storyboard is selected, then Attributes Inspector, Identity Inspector,
and others are displayed. The Pin button is used when you have a user interface
element selected to add AutoLayout constraints. They define how the layout appears
on screens of different sizes, such as on an iPhone or an iPad. Documents Outline is
visible only when you have a storyboard selected. It shows the elements contained in
the storyboard in a hierarchical manner.

Let's continue with the recipe.

2.	 Give your project a name and make sure that Objective-C is selected as the
language. We will use Objective-C throughout the book instead of Swift due to the fact
that Swift is still evolving too quickly and will probably break the recipes.

3.	 Select a folder for your project and take note of the folder location. We will need to
navigate to this folder using the terminal in the next steps.

4.	 Click on Create to create your project.

5.	 Now that the project is created, you can close Xcode.

We will use CocoaPods to link Mapbox GL to our project, and after this, we need to open
the workspace created by CocoaPods instead of the project file that is open now.

If you feel confused with the project and workspace terminologies in
Xcode, an easy way to explain it is that a workspace contains multiple
projects. In this case, our workspace will contain our project and the
Mapbox GL project.

6.	 Next, we need to open the terminal and use cd to go to our newly created project.
In my case, I typed the following command:
cd projects/mapboxrecipes/Recipe1-MapBoxGL

Chapter 6

207

7.	 We will create a Podfile for CocoaPods. The Podfile contains information about which
libraries or frameworks are linked in our project. The Podfile must be in the root folder
of our project. As we are already in this location, let's create the file as follows:
nano Podfile

8.	 The Nano text editor will open with an empty text file. Type the following text:
platform :ios, "7.0"
pod 'MapboxGL'
use_frameworks!

The first line, platform :ios, "7.0", means that the minimum iOS version
supported in our project is 7.0. Next, we will link to Mapbox GL using pod
'MapboxGL'. Finally, the use_frameworks! flag tells CocoaPods to integrate
your project using frameworks instead of static libraries.

9.	 To save the Podfile in the Nano editor, hit Ctrl + O and then Enter.

10.	 Exit Nano by pressing Ctrl + X.

11.	 The Podfile is created, and now we need to tell CocoaPods to download the
dependencies specified in the Podfile and link them to our project. Execute the
following command:
pod install

The terminal will display a handful of information messages as the dependencies are
being installed. If all the messages are green, then we are good to go. The messages
should end with an important piece of information such as the following:

[!] Please close any current Xcode sessions and use `Recipe1-MapBoxGL.
xcworkspace` for this project from now on.

As we explained earlier, opening the .project file in Xcode will not work because we
are now linked with external projects. We will have to open the .xcworkspace file
instead.

12.	 Open the .xcworkspace file. It can be found in your project's root folder in Xcode.

13.	 Go to the ViewController.m file. We need to import Mapbox GL. Add the following
line after #import "ViewController.h":
@import MapboxGL;

14.	 Build the project by hitting Cmd + B. If you get a successful message, then our project
is linked correctly.

Mapbox GL

208

Creating a basic map using Mapbox GL
In this recipe, you will learn how to create basic maps with the help of Mapbox GL.

How to do it…
Now that we have integrated Mapbox GL into our project, it's time to learn the basics of the
framework. In this recipe, we will create a basic app that shows a Mapbox GL map on screen.
Here are the steps:

1.	 We will continue from the last step of the previous recipe after we have successfully
linked and built our new project.

Open the Main.storyboard file. Storyboards allow us to visually create user
interfaces. The current storyboard already contains ViewController. We will add
a new MGLMapView.

2.	 Make sure that the Utilities sidebar is visible. If not, click on the Hide or Show Utilities
button in the upper-right corner of Xcode. In the lower half of the Utilities sidebar,
make sure that Objects are selected.

A list of the available UI elements will be visible. Find UIView and drag it into
UIViewController in the storyboard. As you drag UIView, you will notice that
guides appear to help you align the element. Make sure that UIView is centered
and fills the whole screen before releasing the mouse button:

Chapter 6

209

3.	 We will use a technology called AutoLayout to make sure that our new element
appears correctly in different screen sizes.

Make sure that the newly created UIView is selected (it will show up highlighted in
UIViewController within the storyboard and in the navigator sidebar on the left-
hand side.)

Click on the Pin button, highlight the leading, trailing, top, and bottom constraints,
disable the Constrain to margins option, and make sure that the values of all the
constraints are 0.

Click on Add 4 Constraints to add them. The element will now be centered and will
occupy the whole screen, no matter whether it's displayed on an iPad or iPhone in the
horizontal or vertical orientation.

Mapbox GL

210

4.	 As the element is still a regular UIView, we need to change the class to
MGLMapView. Click on Identity Inspector and in the Class combo box under
the Custom Class section, type MGLMapView. The view will display standard
MGLMapView instruction text. This means that everything is correct:

5.	 We need to be able to reference this element from code. For this, we have to create
IBOutlet, as follows:

1.	 Open Assistant Editor.

2.	 Make sure that one side shows the storyboard and the other side shows
ViewController.m.

3.	 Right-click and drag MGLMapView in View Controller to the empty area
between @interface ViewController and @end:

Chapter 6

211

4.	 Xcode will ask for the name of the outlet. We will name it mapView and click
on Connect. Xcode will automatically create a new IBOutlet, as follows:

@property (weak, nonatomic) IBOutlet MGLMapView *mapView;

6.	 The next step is to add our Mapbox GL access token to the project. In order to do this,
we have to add a new entry to a file called info.plist. The easiest way to do this is
by opening our target and adding a new entry. Perform the following steps:

1.	 Click on your project file in the upper-left corner of Project Navigator.

2.	 Click on the target under Targets. Mine is called Recipe-1-MapBoxGL, but it
depends on how we named the project.

3.	 Click on the info option, then select the last entry in Custom iOS Target
Properties and click on the + button.

Mapbox GL

212

4.	 This will add a new entry to the info.plist file. Fill the left-hand side (key)
with MGLMapboxAccessToken and the right-hand side (value) with the
actual access token; this will look something similar to the following:

pk.eyJ1IjoibWFwYm94cmVjaXBlcyIsImEiOiJjd3RhQmlzIn0.
Wx0fWGCo3gs6fzta5QrLfw

7.	 Mapbox requires you to add an option for users to opt out of the metrics. This can
be done either by creating a settings file or inside the app. In this case, we will add
a settings file. Mapbox was kind enough to prepare one for us, so we only need to
perform the following steps:

1.	 Download the file from https://github.com/mapbox/mapbox-gl-
native/releases/download/ios-v3.1.2/mapbox-ios-sdk-
3.1.2.zip.

2.	 Extract the zip folder.

3.	 Drag Settings.bundle into your project. It's best to drop it over the project
file (this is the one with the blue Xcode icon).

4.	 A dialog will appear. Make sure that Copy items if needed is selected and
then click on Finish:

https://github.com/mapbox/mapbox-gl-native/releases/download/ios-v3.1.2/mapbox-ios-sdk-3.1.2.zip
https://github.com/mapbox/mapbox-gl-native/releases/download/ios-v3.1.2/mapbox-ios-sdk-3.1.2.zip
https://github.com/mapbox/mapbox-gl-native/releases/download/ios-v3.1.2/mapbox-ios-sdk-3.1.2.zip

Chapter 6

213

8.	 Great! Now you can build and run the project to view the results, as in the following
screenshot:

Mapbox GL

214

Mapbox GL is now correctly linked, and we have built a simple app that displays a Mapbox
map! You can use normal gestures, such as panning and pinching, to navigate around this
map.

How it works…
The most important component of Mapbox GL is MGLMapView. The way it works is exactly how
Apple's own MapKit framework works as it uses the same concepts. Be patient; we will explain
much more on how it works in the next few recipes. To add it to the project, we will follow the
same rules as any UIView component. In order for Mapbox GL to work, we need to add our
access token to the project's info.plist file. The info.plist file is a file that exists in
every single app. It's often used to set various app settings, such as the version number, and
by external frameworks to add their own settings as well.

The last thing needed to integrate Mapbox GL is a settings file. When you open iOS settings,
except for the bundled Apple apps, you will often note that it includes third-party apps too.
In order to have our app appear in the settings, we need to create this Settings.bundle
file. We will use it to allow the user to opt out of the metrics, as this is required by Mapbox to
comply with privacy.

Switching between locations
programmatically

In this recipe, we will learn how to center the map on a specific location programmatically. We
will move faster from now on. We will not focus on the iOS SDK anymore, and we will describe
the steps related to general iOS development faster than the previous recipes. We will also
dedicate our efforts to explaining more about the framework itself.

How to do it…
Follow these steps:

1.	 Open the Chapter6-Recipe3-Begin folder and then the .xcworkspace file.

The project is already set up to be used with CocoaPods, but it doesn't
include the dependencies required. Before opening the .xcworkspace
file in Xcode, don't forget to run the pod install command in the root
of the project folder to download the dependencies.

Chapter 6

215

We will use this starter project to get through the recipe. In the storyboard, I added
UIToolBar, two UIButtonItem controls, and UISegmentedControl. All the
controls are linked to ViewController. In the info.plist file, I also added the
NSLocationWhenInUseUsageDescription key as it's required to get the user's
location.

You can find more information about the
NSLocationWhenInUseUsageDescription key in the
Apple documentation at https://developer.apple.com/
library/ios/documentation/General/Reference/
InfoPlistKeyReference/Articles/CocoaKeys.html#//
apple_ref/doc/uid/TP40009251-SW27.

2.	 Jump to the ViewController.m file. We will first have to tell Mapbox GL to show the
user's location on the map. In viewDidLoad(), add the following line:
 [self.mapView setShowsUserLocation:YES];

At the moment when our storyboard's viewController file is loaded, the app will
request permission from the user to show the user's location. If it's granted, it will
show the blue user location dot on the map. If it's not or if it's unable to get the user's
location, it will show nothing.

Geolocation-based apps are always better to test on a real device. If
you're testing the app in the iOS simulator, you can get it to simulate
the user's location by navigating to Debug | Location in the iOS
simulator menu. You can select from a list of predefined locations or
use Custom and type your own coordinates.

3.	 Now, we will create the functionality to switch between San Francisco and the user's
location. In the (IBAction)centerToLocation:(id)sender method, add the
following code:
- (IBAction)centerToLocation:(id)sender {

 if ([self.button.title isEqualToString:kButtonCenterTitle]) {

 [self.button setTitle:kButtonUserTitle];

 CLLocationCoordinate2D sanFrancisco =
CLLocationCoordinate2DMake(37.775934, -122.432499);

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW27
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW27
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW27
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW27

Mapbox GL

216

 [self.mapView setCenterCoordinate:sanFrancisco
zoomLevel:12 animated:YES];

 } else {

 [self.button setTitle:kButtonCenterTitle];

 CLLocationCoordinate2D userLocation = [self.mapView.
userLocation coordinate];
 [self.mapView setCenterCoordinate:userLocation zoomLevel:7
animated:YES];

 }
}

In the preceding code, if the button title is Center, we will create a new coordinate
using the CLLocationCoordinate2D struct.

The struct accepts latitude and longitude, and each one is CLLocationDegrees, as
follows:
typedef struct { CLLocationDegrees latitude; CLLocationDegrees
longitude; }

CLLocationDegrees is actually nothing more than a double type value. After we
have created our coordinate variable, we will use the following function:
setCenterCoordinate:zoomLevel:animated

This function will center the map at the coordinates passed and at a specific zoom
level, and we can choose whether we want it to animate the change from the old
location to the new one.

If you used Apple's own MapKit framework, you're probably already starting to
understand the benefits and the ease of use of Mapbox GL. In MapKit, you passed
MKCoordinateSpan to specify the zoom level, which represents the amount of
distance from north to south and east to west. In order to do something simple, such
as zooming to a specific zoom level—a familiar terminology for geolocation apps—we
had to do the math, and it was generally much harder than simply passing an integer.
After the else part, we repeated the process, but instead of passing coordinates, we
got the coordinates of the user's location from mapView, as follows:

CLLocationCoordinate2D userLocation = [self.mapView.userLocation
coordinate];

Chapter 6

217

4.	 This is all we need to zoom to a specific location programmatically. Build and run the
project on a device or in a simulator (don't forget to simulate the location) and click
on the Center button in UIToolBar.

How it works…
Let's explain in a little more detail what we can do with MGLMapView. We can use
centerCoordinate to get or set the center of mapView. It can also animate the transition
from the old center to the new one. We can use zoomLevel to set or get the zoom level
programmatically. Using visibleCoordinateBounds, we can get or set the bounds of the
map. We can also change the heading of the map using the setDirection:animated
method.

Mapbox GL

218

Adding markers to the map
A map without points of interest is less useful. In this recipe, you will learn how to generate
markers, or annotations as they are called in iOS terminology.

How to do it…
Follow these steps:

1.	 Open the Chapter6-Recipe4-Begin folder and then the .xcworkspace file in
Xcode. This project contains the project as it ended in the previous recipe.

2.	 The + button is already connected in the storyboard to our viewController.m file's
following method:
- (IBAction)addAnnotation:(id)sender

We first need to initialize a new annotation. We will first create a new
MGLPointAnnoation object. Within the – (IBAction)addAnnotation:(id)
sender context, add the following line:

MGLPointAnnotation *annotation = [[MGLPointAnnotation alloc]
init];

3.	 The next step is to pass the coordinates; run the following command for this:
[annotation setCoordinate:self.mapView.centerCoordinate];

Here, self.mapView.centerCoordinate will create the annotation at the center
of our map. It will always be at the center, even if we pan around the map before
creating the annotation.

4.	 Optionally, we can pass a title and subtitle as follows:
 [annotation setTitle:@"Here!"];
 [annotation setSubtitle:@"We have created an annotation"];

When you tap on the annotation, a callout will pop up with the title and subtitle.

Chapter 6

219

5.	 The last step is to add the annotation to the map. We will do this via the following:
 [self.mapView addAnnotation:annotation];

6.	 As we have a title and a subtitle, we have to instruct Mapbox GL that we want to show
callouts. For this, we need to conform to a specific MGLMapViewDelegate protocol
method. Therefore, execute the following command:
- (BOOL)mapView:(MGLMapView *)mapView annotationCanShowCallout:(id
<MGLAnnotation>)annotation {

 return YES;

}

Returning YES from mapView:annoationCanShowCallout:annotation
will show the callout for every annotation we create. The reason Mapbox GL uses
a delegate method for this is that we can easily use logic to show the callout on
selected annotations.

7.	 The last step is to make sure that our ViewController conforms to
MGLMapViewDelegate.

There are two ways to do this. The first is as follows:

1.	 Open the storyboard and in Document Outline, right-click on the MapView
object and drag a connection to the ViewController object.

2.	 Select Delegate, and the connection will be created.

The second way is as follows:

1.	 Add the following line in viewDidLoad:
[self.mapView setDelegate:self];

2.	 Make sure that viewController conforms to MGLMapViewDelegate.
You can add <MGLMapViewDelegate> in ViewController.h at the
@interface part or in the .m file:

 @interface ViewController () <MGLMapViewDelegate>

Mapbox GL

220

8.	 Build and run the project. Try to pan and zoom around the map. Click on the + button
to create new annotations, as shown in the following screenshot:

How it works…
We can add new annotations to the map using addAnnotation: or multiple markers using
addAnnotations:. The annotations added to the map will be stored to the MGLMapView
annotations array, which is a read-only property. We can use this if we want to get an
annotation that already exists on the map or check whether an annotation has already
been added. To remove annotations from the map, we can use removeAnnotation:
and removeAnnotations:, respectively.

MGLMapView conforms to the MGLMapViewDelegate protocol. Using this optional set of
methods, we can further customize how annotations react.

Chapter 6

221

For example, we will use (BOOL)mapView:(MGLMapView *)mapView annotationCanS
howCallout:(id<MGLAnnotation>)annotation to return if we want each annotation to
show a callout. The benefit of this is that we can add more logic in this method, for example, if
we want some annotations to show a callout as opposed to others.

Another delegate method we used in this recipe is the following:

- (nullable MGLAnnotationImage *)mapView:(MGLMapView *)mapView imageFo
rAnnotation:(id<MGLAnnotation>)annotation

The purpose again is that further logic can be added to have different images for different
annotations. This specific method uses a mechanism called dequeuing. What this does is
to recycle the annotation images to save resources. Once MGLAnnotationImage goes
offscreen, it can be dequeued and reused. You will learn more MGLMapViewDelegate
methods in the next few recipes.

There's more…
How about custom icons on the markers? The only thing needed is to conform to another
delegate method named mapView:imageForAnnotation.

Let's do this right now, as follows:

1.	 Open the ViewController.m file in Xcode.

2.	 Add the following code:

- (MGLAnnotationImage *)mapView:(MGLMapView *)mapView
imageForAnnotation:(id <MGLAnnotation>)annotation {

 MGLAnnotationImage *annotationImage = [mapView dequeueReusableAn
notationImageWithIdentifier:kMapShooping];

 if (!annotationImage) {

 annotationImage = [MGLAnnotationImage annotationImageWithImage
:[UIImage imageNamed:@"Repair"] reuseIdentifier:kMapRepair];

 }

 return annotationImage;
}

Let's explain what happens in this code. We first need to dequeue a new annotation.
Dequeuing is a common term used in iOS development; for example, it is heavily used in
UITableViews and UICollectionViews.

Mapbox GL

222

What it does is to help optimize the map in terms of memory usage and speed by reusing the
markers. When we pan or zoom the map and a marker goes offscreen, it becomes available
for reuse. In the first line, we asked mapView to dequeue a new MGLAnnotationImage,
as follows:

 MGLAnnotationImage *annotationImage = [mapView dequeueReusableAnnota
tionImageWithIdentifier:kMapShooping];

A map can use multiple kinds of markers, which are grouped by identifiers such as
UITableViewCells. In this case, we used a single type of marker and a single identifier.
The next step is to check whether the map returned MGLAnnotationImage. It will come
back empty in the following cases:

ff If this is the first object we created

ff If we didn't scroll or zoom due to which an object is outside the visible screen

In the next few lines, we can take care of this case:

 if (!annotationImage) {

 annotationImage = [MGLAnnotationImage
 annotationImageWithImage:[UIImage imageNamed:@"Repair"]
 reuseIdentifier:kMapRepair];

 }

So, if nothing comes back from the dequeuing process, we will create a new
MGLAnnotationImage with the image we want.

The icon images used in this project are contained in a file called asset
catalog (.xcassets). In this case, they are inside the MapIcons.
xcassets file.

Chapter 6

223

This is all we need to create a custom marker. Now, build and run the project:

Switching map styles
In this recipe, you will learn how to switch between different map styles. The project
contains UISegmentedControl with two states: light and dark. It's connected to the
switchMapStyle:sender IBAction of ViewController. We will implement the
functionality needed to switch between the light and dark styles.

Mapbox GL

224

How to do it…
Follow these steps:

1.	 We will continue with the project as we left it in the previous recipe. Jump over to the
ViewController.m file.

2.	 Replace the switchMapStyle:sender method with the following code:
- (IBAction)switchMapStyle:(id)sender {

 if ([sender isKindOfClass:[UISegmentedControl class]]) {

 UISegmentedControl *segmentedControl = (UISegmentedControl
*)sender;

 if (segmentedControl.selectedSegmentIndex == 0) {

 NSURL *lightStyle = [NSURL URLWithString:@"asset://
styles/light-v7.json"];
 [self.mapView setStyleURL:lightStyle];

 } else {

 NSURL *darkStyle = [NSURL URLWithString:@"asset://
styles/dark-v7.json"];
 [self.mapView setStyleURL:darkStyle];

 }

 }

}

Let's explain how this method works. Mapbox GL contains several predefined map
styles, which are as follows:

�� dark-v7.json: This a dark style map and is great for overlays with bright
markers or polygons

�� mapbox-streets-v7.json: This is the standard Mapbox Streets style
optimized for mobile devices

�� emerald-v7.json: This is a great style for terrain and transportation

�� satellite-v7.json: This is used for satellite imagery

�� light-v7.json: This is a light-themed style, which is great with dark
markers or polygons

Chapter 6

225

In the preceding code, we first checked whether the sender was our
UISegmentedControl, then we switched the style based on the button selection
by getting the NSURL of the style we wanted and passing it to mapView using
setStyleURL, as follows:

 NSURL *lightStyle = [NSURL URLWithString:@"asset://
styles/light-v7.json"];
 [self.mapView setStyleURL:lightStyle];

3.	 Build and run the project. Try to switch the segmented control to switch the style.

4.	 You may notice that the project starts with the default map style, which is mapbox-
streets-v7.json, while UISegmentedControl has the light-v7.json style
as the default.

In order for the project to open with the light style preselected, you can optionally
repeat the following lines of code in viewDidLoad:

 NSURL *lightStyle = [NSURL URLWithString:@"asset://
styles/light-v7.json"];
 [self.mapView setStyleURL:lightStyle];

Mapbox GL

226

There's more…
We have already discussed how we can select one of the predefined styles that comes with
Mapbox GL. Now, we will focus on how we can load raster tiles. We generated raster tiles
using TileMill in the previous chapters. Here are the steps:

1.	 We will continue from the point where we left off in the previous recipe. First, we need
to create a new file. In Xcode, go to the File menu and navigate to New | File.

2.	 The file dialog will open. Select the Other category and the Empty file.

3.	 Name the file rasterstyle.json and click on Create.

4.	 A new file will be created. Now, select this file and write the following JSON:
{
 "version": 7,
 "sources": {
 "tiles": {
 "type": "raster",
 "url": "mapbox://mapboxrecipes.utftest",
 "tileSize": 256
 }
 },
 "layers": [
 {
 "id": "tiles",
 "type": "raster",
 "source": "tiles"
 }
]
}

This file will instruct Mapbox GL on where to fetch the tiles. If the tiles are hosted on
the Mapbox server, this is how it is supposed to be. The most important value here is
that of url. Replace this value with your own Map ID.

Chapter 6

227

If the tiles are hosted on another server, you must create a JSON code,
as shown here:

{
 "version": 7,
 "name": "Raster Tiles",
 "sources": {
 "yourTileLayer": {
 "type": "raster",
 "tiles": [
 "https://1.tile.server/{z}/{x}/{y}.png",
 "https://2.tile.server/{z}/{x}/{y}.png"
],
 "tileSize": 256
 }
 },
 "layers": [{
 "id": "yourTileLayer",
 "type": "raster",
 "source": "yourTileLayer",
 "paint": {
 "raster-fade-duration": 100
 }
 }]
}

5.	 Save the file.

6.	 Head over to the ViewController.m file. In viewDidLoad:, copy the following
code:
 NSURL *styleURL = [NSURL URLWithString:@"asset://../../../
rasterstyle.json"];
 [self.mapView setStyleURL:styleURL];

 CLLocationCoordinate2D coordinate =
CLLocationCoordinate2DMake(39.452101, -100.986328);
 [self.mapView setCenterCoordinate:coordinate zoomLevel:5
animated:NO];

As in the previous recipe, we will use setStyleURL to set the map style. The
//../../../ may need to be adjusted based on your project structure.

As raster tiles are usually generated for a specific area and zoom level, we will center
the map at a location where the tiles are visible.

Mapbox GL

228

7.	 Build and run the project.

One more thing…
You learned how we can use the predefined map styles in Mapbox GL. While the predefined
styles may serve our purpose, there are cases where we need to customize the map style, as
we did in the previous chapters using CartoCSS with Mapbox Studio and TileMill.

Well, there is good news and bad news. The good news is that we can create our own custom
styles. The bad news is that the styling language, while it looks similar to CartoCSS, isn't the
same, and there is no editor similar to Mapbox Studio that can help us create our styles. At
the moment of writing this chapter, which is August 2015, Mapbox has already announced
that they are working on an editor, but it's not released yet.

Chapter 6

229

In this recipe, you will learn how we can create our own custom styles:

1.	 We will use the same project as in the previous recipe. Open it in Xcode, and inside
our application bundle, create a new empty JSON file as we did in the previous recipe.
Name the file customstyle.json.

2.	 Copy the following code into customstyle.json:
{
 "version": 1,
 "name": "customstyle.json",
 "constants": {
 "@water": "#66bbdd",
 "@land": "#ffffff"
 },
 "sources": {
 "mapbox-streets": {
 "type": "vector",
 "url": "mapbox://mapbox.mapbox-streets-v6"
 }
 },
 "layers": [{
 "id": "background",
 "type": "background",
 "layout": {
 "visibility": "visible"
 },
 "paint": {
 "background-color": "@land"
 }
 },
 {
 "id": "water",
 "source": "mapbox-streets",
 "source-layer": "water",
 "type": "fill",
 "paint":{
 "fill-color": "@water"
 }
 }
],
 "owner": "billkastanakis","id": "mapboxrecipes.000000"
}

Mapbox GL

230

To create the style of the map, we will use Mapbox GL Style Reference. It tells the
renderer from which sources to fetch the data, what to draw and in which order, and
how to style our layers.

The Mapbox GL Style Reference documentation can be found at
https://www.mapbox.com/mapbox-gl-style-spec/#symbol.

At the version and name keys, you can give any version and name to your custom
map. The constants key is used to create color constants to make our lives easier,
just as we did in CartoCSS. At the sources key, we will define which sources we
will use in this custom style. Sources can be mapbox.mapbox-terrain-v2,
mapbox://mapbox.mapbox-streets-v6, mapbox://mapbox.satellite,
or a combination of these. Version numbers also vary. At the layers key, we will
define which layers we will use in this custom style. We will use id to get the layer
ID from a specific source. Then, we can modify this layer's attributes the same way
as we did in CartoCSS.

3.	 Make sure you have saved your customstyle.json file.

4.	 In ViewController.m, we can load the custom style in the exact same way as we
defined the predefined and raster styles. Modify viewDidLoad: to do exactly this,
as follows:
 NSURL *styleURL = [NSURL URLWithString:@"asset://../../../
customstyle.json"];
 [self.mapView setStyleURL:styleURL];

 CLLocationCoordinate2D coordinate =
CLLocationCoordinate2DMake(39.452101, -100.986328);
 [self.mapView setCenterCoordinate:coordinate zoomLevel:2
animated:NO];

5.	 Build and run the project. Our custom style will be loaded as shown in the following
screenshot:

https://www.mapbox.com/mapbox-gl-style-spec/#symbol

Chapter 6

231

How it works…
In Mapbox GL, we can use predefined styles; there are four at the time of writing this chapter.

To use them, we will simply call setStyleURL: and pass NSURL of the style we want.
Additionally, we can fetch raster tiles. To do this, we need to create a new JSON object that
informs Mapbox GL where to find the tiles we want. We will then use the same setStyleURL
method to set the style to our custom JSON object.

The last option is to create our own custom style. To do this, we need to use Mapbox GL Style,
which is an object describing to Mapbox GL what to draw and in which order and how to style
the map. Due to the lack of tools at the time of writing, we again have to create a JSON object,
specify the sources we want to fetch the data from, and then customize the layers displayed.

Mapbox GL

232

Loading GeoJSON and drawing a polyline
In this recipe, you will learn how to parse a GeoJSON file and draw a polyline on the map using
Mapbox GL. This will be a great start if your purpose is to create applications that draw routes
on a map.

How to do it…
Perform the following steps:

1.	 Open the Chapter6-Recipe6-Begin folder and then the .xcworkspace file. This
project contains a basic Mapbox GL map. It uses the emerald style, which is the best-
looking style to display directions. The project also contains a route.geojson file.
Normally, you would fetch the data from a service, but for the purpose of this recipe,
we will use a file stored in our bundle.

2.	 Our first step is to parse the GeoJSON file and get the coordinates contained in the
geometry.coordinates array under the features. We will do this in a separate
method, as follows:
- (void)loadGeoJSONFile {

 dispatch_queue_t queue = dispatch_get_global_queue
 (DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(queue, ^{

 NSString *path = [[NSBundle mainBundle]
pathForResource:@"route" ofType:@"geojson"];

 NSData *geoJSONData = [NSData
dataWithContentsOfFile:path];

 NSDictionary *geoJSON = [NSJSONSerialization
JSONObjectWithData:geoJSONData options:0 error:nil];

for (NSDictionary *feature in [geoJSON valueForKey:@"features"]) {
 NSArray *coordinates = [feature
valueForKeyPath:@"geometry.coordinates"];
 [self drawPolylineWithCoordinates:coordinates];
 }

 });

}

Chapter 6

233

Let's dissect this method. We will use Grand Central Dispatch (GCD) to parse the
array into a background thread. We do not want to freeze the UI while parsing the
GeoJSON file, especially if the file is big.

Within the dispatch_async block, we will get the path to the GeoJSON file stored in
the app bundle via the following command:
 NSString *path = [[NSBundle mainBundle]
pathForResource:@"route" ofType:@"geojson"];

Next, we will load the data, as follows:
 NSData *geoJSONData = [NSData
dataWithContentsOfFile:path];

NSData dataWithContentsOfFile is a synchronous call. This means that the UI
will freeze while in progress. This is why we used the background thread.

Next, we will convert the data into NSDictionary. The NSJSONSerialization will
do the job for us, as follows:
 NSDictionary *geoJSON = [NSJSONSerialization
JSONObjectWithData:geoJSONData options:0 error:nil];

Now, we will enumerate through the features and create a new NSArray with the
coordinates under the geometry.coordinates key in the JSON file, as follows:

 for (NSDictionary *feature in [geoJSON
valueForKey:@"features"]) {
 NSArray *coordinates = [feature
valueForKeyPath:@"geometry.coordinates"];
 [self drawPolylineWithCoordinates:coordinates];
 }

Finally, we will call [self drawPolylineWithCoordinates:coordinates] and
pass the NSArray coordinates we just created.

The drawPolylineWithCoordinates method isn't created yet, so let's do this
now.

3.	 Let's create the drawPolylineWithCoordinates method. In this method, we will
pass the NSArray coordinates created previously, as follows:
 dispatch_async(dispatch_get_main_queue(), ^{

 int coordinatesCount = (int)[coordinatesArray count];
 CLLocationCoordinate2D coordinates[coordinatesCount];

 for (int i=0; i<coordinatesArray.count; i++) {

Mapbox GL

234

 NSArray *point = [coordinatesArray objectAtIndex:i];
 CLLocationCoordinate2D coordinate = CLLocationCoordina
te2DMake([point[1] doubleValue], [point[0] doubleValue]);
 coordinates[i] = coordinate;

 }

 MGLPolyline *polyline = [MGLPolyline polylineWithCoordinat
es:coordinates count:[coordinatesArray count]];
 [self.mapView addAnnotation:polyline];
 [self.mapView setVisibleCoordinates:coordinates
count:coordinatesCount edgePadding:UIEdgeInsetsMake(50, 50, 50,
50) animated:YES];

 });

First, we will use GCD again to execute the code in the main thread. For this, we will
use dispatch_async(dispatch_get_main_queue() and include the rest of the
code within the block.

Next, we will create an empty CLLocationCoordinates2D array.
CLLocationCoordinates2D is just a C struct that contains latitude and longitude,
as in the following lines:
 int coordinatesCount = (int)[coordinatesArray count];
 CLLocationCoordinate2D coordinates[coordinatesCount];

CLLocationCoordinate2D is actually a struct used by Apple's own
MapKit framework. One of the strengths of Mapbox GL is that it uses the
same concepts as Apple's native frameworks to make our lives easier, as
follows:

typedef struct {
 CLLocationDegrees latitude;
 CLLocationDegrees longitude;
} CLLocationCoordinate2D;

The next step is to loop through each point in coordinatesArray,
which we passed earlier, and fill the newly created coordinates[] with
CLLocationCoordinates2D:

1.	 We will get each point from NSArray; execute the following command:
NSArray *point = [coordinatesArray objectAtIndex:i];

Chapter 6

235

2.	 We will generate a new CLLocationCoordinate2D array, where we will
pass the second element as the latitude and the first as the longitude, as
our GeoJSON file contains these values in this order. Run the following:
CLLocationCoordinate2D coordinate = CLLocationCoordinate2DMa
ke([point[1] doubleValue], [point[0] doubleValue]);

3.	 Finally, we will add the CLLocationCoordinate2D array in the
coordinates[] array via the following line:

 coordinates[i] = coordinate;

Then, we will create a new MGLPolyline and pass the coordinates, which is just an
open line consisting of one or more points. The points are connected in the order that
they are provided. MGLPolyline needs the array of CLLocationCoordinates2D
as the first parameter and the count of the elements contained in the array as the
second parameter, as follows:
MGLPolyline *polyline = [MGLPolyline polylineWithCoordinates:coord
inates count:[coordinatesArray count]];

On the next line, we will add the polyline to the map, as follows:
 [self.mapView addAnnotation:polyline];

Finally, we will center and zoom the map to fit our polyline, as in the following lines:
[self.mapView setVisibleCoordinates:coordinates
count:coordinatesCount edgePadding:UIEdgeInsetsMake(50, 50, 50,
50) animated:YES];

The setVisibleCoordinates accepts an array of coordinates[] containing
CLLocationCoordinate2D elements as the first value. The count is the number
of elements contained in the array. The edgePadding is another C struct that
represents the top, left, bottom, and right edges in this order. The values are in
screen points; so, in this case, we will set a padding of 50 points on each side.

4.	 Finally, we will call [self loadGeoJSONFile] in the viewDidAppear method just
to make sure that the map is loaded and drawn on screen before we attempt to add
the polyline. Execute the following:
- (void)viewDidAppear:(BOOL)animated {

 [super viewDidAppear:animated];
 [self loadGeoJSONFile];

}

Mapbox GL

236

5.	 Next, in order to customize the color and line width of MGLPolyline, we need to
conform to the following MGLMapViewDelegate methods:
- (CGFloat)mapView:(MGLMapView *)mapView lineWidthForPolylineAnnot
ation:(MGLPolyline *)annotation {
 return 5.0f;
}

- (UIColor *)mapView:(MGLMapView *)mapView strokeColorForShapeAnno
tation:(MGLShape *)annotation {
 return [UIColor blueColor];
}

In the first method, which is mapView:lineWidthForPolylineAnnotation, we
returned a float to set the line width to 5.0. In the second method, which is mapView
:strokeColorForShapeAnnotation, we returned a UIColor value of blue.

6.	 This is all. Now build and run the project:

Chapter 6

237

How it works…
To create polylines, we need to create a new MGLPolyline object and pass an array
of CLLocationCoordinates2D structs. Each struct in the array represents a point
and contains the latitude and longitude. To add the polyline to the map, we used the
addAnnotation: method. As you probably noticed, whatever we add to the map is called
an annotation, no matter whether it's a marker, polyline, or polygon. We can then access
the polyline using the annotations array in the MGLMapView object. As the array is
read-only, we can't modify it directly, and to remove the polyline, we have to go through
removeAnnotation: if required. To customize the polyline appearance, we used the
MGLMapViewDelegate methods mapView:lineWidthForPolylineAnnotation:
and mapView:strokeColorForShapeAnnotation:. In the first one, we simply returned
a float as the width of the polyline, and in the second one, we used UIColor to set the color.

Drawing polygons on the map
In this recipe, you will learn how to draw polygons on the map. We will create an app that
allows the user to click on the map to add a point to a preexisting polygon.

How to do it…
Perform the following steps:

1.	 Open the Chapter6-Recipe7-Begin folder and then the .xcworkspace file.
The project contains the usual Mapbox GL map already set up in the storyboard.
Additionally, I added UITapGestureRecognizer and connected it to the following:
- (IBAction)tapgestureRecognizerTapped:(id)sender

When the gesture recognizer is tapped, it will trigger the action.

2.	 First, we need to create a basic polygon and add it to the map. We will do this in a
new function, as follows:
 - (void)drawInitialPolygon {

 CLLocationCoordinate2D coordinates[] = {
 CLLocationCoordinate2DMake(53.359016, -6.261907),
 CLLocationCoordinate2DMake(53.355994, -6.265082),
 CLLocationCoordinate2DMake(53.352510, -6.261392)
 };

 NSUInteger count = sizeof(coordinates) /
sizeof(CLLocationCoordinate2D);

Mapbox GL

238

 MGLPolygon *polygon = [MGLPolygon polygonWithCoordinates:coord
inates count:count];

 [self.mapView addAnnotation:polygon];

}

Let's dissect this function:

�� We first created a new coordinates[] array containing
CLLocationCoordinates structs, as we did in the previous recipe, via the
following lines:
 CLLocationCoordinate2D coordinates[] = {
 CLLocationCoordinate2DMake(53.359016, -6.261907),
 CLLocationCoordinate2DMake(53.355994, -6.265082),
 CLLocationCoordinate2DMake(53.352510, -6.261392)
 };

�� We counted the number of elements in coordinatesArray[], as follows:
NSUInteger count = sizeof(coordinates) /
sizeof(CLLocationCoordinate2D);

�� Then, we generated a new MGLPolygon:
MGLPolygon *polygon = [MGLPolygon polygonWithCoordinates:coo
rdinates count:count];

The MGLPolygon class represents a closed shape that consists of
one or more points. The points are connected in the order provided,
similar to MGLPolyline in the previous recipe. It accepts an array of
CLLocationCordinate2D structs as the first parameter and the count of
the array as the second parameter.

�� Finally, we added the MGLPolygon class to the map via the following:

 [self.mapView addAnnotation:polygon];

3.	 We need to call our new method to viewDidAppear to make sure that the map is
on screen before attempting to draw the polygon. We can do this by executing the
following:
- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 [self drawInitialPolygon];
}

Chapter 6

239

4.	 To customize the fill and stroke of the polygon, we need to conform to the following
MGKMapViewDelegate protocol methods:
- (CGFloat)mapView:(MGLMapView *)mapView lineWidthForPolylineAnnot
ation:(MGLPolyline *)annotation {
 return 5.0f;
}

- (UIColor *)mapView:(MGLMapView *)mapView strokeColorForShapeAnno
tation:(MGLShape *)annotation {
 return [UIColor blueColor];
}

- (UIColor *)mapView:(MGLMapView *)mapView fillColorForPolygonAnno
tation:(MGLPolygon *)annotation {
 return [UIColor colorWithRed:154.0f/255.0f green:58.0f/255.0f
blue:18.0f/255.0f alpha:0.5f];
}

We have already seen the first two methods. In the third one, mapView:fillCol
orForPolygonAnnotation:, we need to return UIColor as the fill color of the
annotation. We will return a semitransparent orange color.

5.	 At this point, you can build and run the recipe if you wish. The polygon will appear on
the screen as it does in the following screenshot:

Mapbox GL

240

6.	 Let's continue with the recipe. We need to add a new point to the already created
polygon when the user taps on the screen. We will do this inside the - (IBAction)
tapgestureRecognizerTapped:(id)sender method, so let's overwrite it with
the following code:
- (IBAction)tapgestureRecognizerTapped:(id)sender {

 // Get the tapped point from the view
 CGPoint point = [self.tapGestureRecognizer
locationInView:self.view];

 // Convert it into map coordinates
 CLLocationCoordinate2D tappedCoordinate = [self.mapView
convertPoint:point toCoordinateFromView:self.view];

 // Get the polygon from the map
 MGLPolygon *polygon = [self.mapView.annotations firstObject];

 // Create a new empty coordinates array with +1 elements
 NSUInteger count = [polygon pointCount];
 CLLocationCoordinate2D coordinates[count + 1];

 // Get the points from the polygons
 [polygon getCoordinates:coordinates range:NSMakeRange(0,
count)];

 // Add the new coordinate we just tapped.
 coordinates[count] = tappedCoordinate;

 // Remove the old polygon from the map.
 [self.mapView removeAnnotation:polygon];

 // Create a new polygon and add it again.
 MGLPolygon *newPolygon = [MGLPolygon polygonWithCoordinates:co
ordinates count:count + 1];
 [self.mapView addAnnotation:newPolygon];

}

Chapter 6

241

Let's dissect the preceding code:

�� First, we need to get the point that the user tapped; the following lines will
help us do this:
 CGPoint point = [self.tapGestureRecognizer
locationInView:self.view];

�� The point is in screen coordinates, so we need to convert it into
CLLocationCoordinate2D, which uses the WGS84 standard, as follows:
CLLocationCoordinate2D tappedCoordinate = [self.mapView
convertPoint:point toCoordinateFromView:self.view];

�� We already have a polygon on the map. Let's grab it via the following:
 MGLPolygon *polygon = [self.mapView.annotations
firstObject];

Our mapView object contains an array of the annotations we added. These
could be markers, polylines, polygons, or a mix of all three. Normally, we
should add some logic here to get the object we want, but in this case, we
only have a simple polygon.

�� Now, we need to create a new polygon; however, first, we will need a new
array to hold the coordinates. So, run the following:
NSUInteger count = [polygon pointCount];
CLLocationCoordinate2D coordinates[count + 1];

We had three elements before, so the new array will have the previous three
points plus the newly tapped coordinate for a total of four.

�� Let's grab the points from the polygon that is on screen via the following:
[polygon getCoordinates:coordinates range:NSMakeRange(0,
count)];

MGLPolygon inherits from GKLMultipoint, which has the
getCoordinates:range method. It will return the points as a C array
passed as the first parameter. The C array must have enough elements
to hold the number of coordinates returned by the function. In the range
parameter, you can specify how many points you want back, but in this case,
we will tell it to return all the elements.

Mapbox GL

242

�� At this point, we have the three elements stored in the coordinates array,
but we still need to add the newly created coordinate that was generated
when the user tapped on the screen. So we will execute the following:
coordinates[count] = tappedCoordinate;

�� Remove the polygon that is currently on screen through the following line:
[self.mapView removeAnnotation:polygon];

�� Finally, generate a new polygon and add it to the mapView object, as follows:

MGLPolygon *newPolygon = [MGLPolygon polygonWithCoordinates:
coordinates count:count + 1];
[self.mapView addAnnotation:newPolygon];

7.	 Build and run the project and try tapping on the screen at various locations of the
map:

Chapter 6

243

How it works…
MGLPolygon works in exactly the same way as MGLPolyline. It accepts an array of
CLLocationCoordinate2D structs as points to draw the closed polygon. We used
UIGestureRecognizer, which is defined in the storyboard. The gesture recognizer will
trigger the action we specified each time the user taps on the map. Once the user taps, we
will have the touch location in the screen's coordinate space. To convert it into latitude and
longitude, we will use convertPoint:toCoordinateFromView: of Mapbox GL and
pass the touch point and the view we want to convert from, respectively. If we want to do the
opposite, we can use convertCoordinate:toPointToView: to convert a map coordinate
into CGPoint.

Once we have the coordinates, we will get the MGLPolygon from the annotations array
of MGLMapView, and add the new latitude and longitude; then, we will remove the old
MGLPolygon from the map and add a new one that also contains the touch location.

245

Index
A
access token

about 24
public access token 24
secret access token 24
using 25

address
coordinates, obtaining for 33-35
obtaining, from coordinates 36, 37
obtaining, on map click 38-40

Adobe Color
URL 77

annotations 218
ArcGIS

URL 179, 180
ArcGIS layers

adding, from server 179-186
adding online 179-186

attachments 61, 62
Attributes Inspector 206

B
base layers

adding 114, 115
layers, switching between 116, 117

base map
map, exporting from TileMill 99, 100
MBTiles database, converting into regular

PNG files 101
publishing, on server with Node.js 103
publishing, on server with PHP 99
tile server PHP project, creating 102

basic map
creating, Mapbox GL used 208-214

bridge pluging 160

C
CartoCSS

about 2, 6, 45, 51
attachments 61, 62
colors, defining 54, 55
comparison filters, using 53, 54
filters, using 53
labels, styling 59-61
lines, styling 55-57
map data, styling with 76-84
polygons, styling 57, 58
working with 51-53

CartoDB
about 160
data, importing 161-164
URL 161

choropleth map
creating 144-151

CocoaPods
about 204
reference link 205

Color Brewer
about 145
URL 145

ColorSchemer Studio 2
URL 77

Comma-separated values (CSV) 156
commutative mode 161
comparison filters

using 53, 54
compositing operators

URL 168
controls

adding 133
coordinates

address, obtaining from 36, 37

246

obtaining, for address 33-35
query parameters 35
returned results 35, 36

CORS (Cross-Origin Resource Sharing) 157
CSV format 16
cumulative mode 161
custom icons

adding, on markers 221, 222
custom map

creating 9-12
embedding, in self-hosted page 20-22
publishing 18, 19

D
data, Mapbox

Mapbox Satellite 5
Mapbox Streets 3
Mapbox Terrain 4

DELETE requests 23
dequeuing 221
directions

obtaining 40-43
Documents Outline 206

E
Extensible Markup Language (XML) 35
external data

adding, to map 156
GPX file, loading 158-160
loading 157

F
Fiddler

URL 28
File Inspector 206
filters

using 53
FlightAware 161
FlightRadar24 161
FlightStats 161
forward geocoding 33
Foursquare data

getting, to map 196-202
URL 196

Fusion Tables
adding, to map 186
creating 189-192
data, adding to map 192-195
Fusion Tables API key, acquiring 187, 188
SELECT clause, URL 193
URL 187-190

G
geocoder

used, for creating markers 120-123
geocoding 33
GeoJSON

about 47
format 16
loading 232-237

GeoServer
installing 172
layer, creating 173-176
troubleshooting, URL 172
URL 172
WMS layer, adding to map 171

GeoTIFF files 47
GET requests 23
GML 156
GPX exchange format 156
GPX file

loading 158-160
GPX format 16
Grand Central Dispatch (GCD) 233

H
heat map

creating 151-154
Hurl.it

URL 27

I
Identity Inspector 206
interactive map

creating, Mapbox.js used 142, 143
creating, TileMill used 137-141
creating, UTFGrid used 137

247

J
JavaScript Object Notation (JSON) 35

K
Keyhole Markup Language (KML) 156
KML 47
KML format 16

L
labels

styling 59-61
layers

switching between 116, 117
Leaflet

about 106
features 106

Leaflet.heat plugin
about 151
URL 153

Leaflet.markercluster plugin 123
lines

styling 55-57
locations

switching between 214-217

M
Maki icons

URL 32, 123
map

external data, adding 156
Foursquare data, getting 196-202
Fusion Tables, adding 186
Fusion Tables data, adding 192-195
markers, adding to 218-221
markers, clustering 123
polygons, drawing on 237-243
styling, with Mapbox Studio 85-87
styling, with TileMill 62-68
time dimension, adding 160, 161
two maps, comparing at same time 168-171
WMS layer, adding from GeoServer 171

Mapbox
about 2

API 8
CartoCSS 6
data 3
SDK 8
TileMill 7
URL 3

Mapbox Editor
about 6
data, adding 6

Mapbox GL
project, integrating with 204
used, for creating basic map 208-214
Xcode project file, linking to 205-207

Mapbox GL Style Reference 230
Mapbox iOS SDK 203
Mapbox.js

about 105, 106
simple map, creating 106-108
used, for creating interactive map 142, 143
used, for displaying WMS layers 176-179

Mapbox Satellite 5
Mapbox Streets 3
Mapbox Studio

about 46, 48
custom data, importing 93-97
map, styling 88-93
URL 85
used, for styling map 85-87
working with 49, 50

Mapbox Studio 8
Mapbox Terrain 4
Mapbox web services 23
map click

address, obtaining on 38-40
map data

URL, for downloading 68
Map ID

about 25
obtaining 25

Mapnik 52
map properties

map, panning programmatically 109, 110
map region, zooming programmatically 111
map, zooming programmatically 110
modifying, programmatically 109-113

MapServer
URL 171

248

map styles
customizing 228-231
switching 223-228

map tiles
reference link 29

markers
about 218
adding 118
adding, to map 218-221
adding, with popups 118, 119
clustering, for map 123
creating 124-126
creating, geocoder used 120-123

master source
about 34, 35
mapbox.places-address-v1 35
mapbox.places-city-v1 35
mapbox.places-country-v1 35
mapbox.places-postcode-v1 35
mapbox.places-province-v1 35
mapbox.places-v1 35

MBTiles
about 98
database, converting into regular

PNG files 101
MBUtil

about 99
URL 101

mouse coordinates
obtaining 129-133

moustache templating language
URL 139

N
Node.js

tile server Node.js project, creating 104
used, for publishing base map on server 103

NSLocationWhenInUseUsageDescription key
reference link 215

O
Objective-C 204
Omnivore

about 156
URL 160

OpenStreetMap 48

P
Paletton

URL 77
patterns

URL, for downloading 58
Paw

URL 28
PHP

used, for publishing base map
on server 98, 99

point of interest (POI) 12
polygon

creating 126-129
drawing, on map 237-243
styling 57, 58

polyline
creating 126-129
drawing 232-237

popups
adding 118
markers, adding 118, 119

PostMan
URL 27

POST requests 23
PROJ.4

reference link 75
project

integrating, with Mapbox GL 204
Project Navigator 206
public access token 24
PUT requests 23

Q
Quantum GIS (QGIS)

about 69
downloaded files, inspecting 69-73
URL 69

query 34
Quick Help 206

R
RestClient plugin

URL 27
retina display 30
reverse geocoding 33

249

S
secret access token 24
self-hosted page

map, embedding 20-22
settings file, Mapbox

reference link 212
Slippy map tilenames

reference link 101
Spatial Referencing System (SRS)

about 75
URL 75

static images
creating 31
marker, adding 32, 33
static map, creating 31

static map
reference link 31

storyboard 206
styled tiles

accessing 26-30
single tile, fetching 30

Swift 204
symbolizers 52

T
TileMill

about 7, 46
data, styling with CartoCSS 76-84
downloaded data, importing 73-76
downloaded files, inspecting with QGIS 69-73
map data, downloading 68, 69
map, exporting 99, 100
map, styling 62-68
shapefiles, importing 47
URL 62
used, for creating interactive map 137-141
working with 47, 48

tile server Node.js project
creating 104

tile server PHP project
creating 102

TileStream 103
time dimension

adding, to map 160, 161
data, importing to CartoDB 161-164
torque, used for data visualizing 164-168

TopoJSON 156
torque

about 160
used, for visualizing data 164-168

U
UTFGrid

used, for creating interactive map 137
Utilities Panel 206

V
vector data

adding 12
data, deleting 15
data, importing 16, 17
data, modifying 15
imported data, editing 18
lines, creating 13, 14
marker, creating 12, 13
polygons, creating 15

W
Well-known text (WKT) 156
WKB 156
WMS images

adding, from GeoServer to map 172
WMS layers

adding, from GeoServer to map 171
displaying, Mapbox.js used 176-179

X
Xcode

about 204
download link 205

Xcode project file
creating 205-207
linking, to Mapbox GL 205-207

XYZ tiling scheme
reference link 29

Z
zoom control

adding 134, 135

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Mapbox
	Introduction
	Creating your own map
	Adding vector data
	Publishing your map

	Chapter 2: Mapbox Services
	Introduction
	Accessing styled tiles on your map
	Creating static images
	Finding coordinates for an address
	Finding an address from coordinates
	Finding an address on a map click
	Getting directions

	Chapter 3: TileMill and Mapbox Studio
	Introduction
	Styling a map with TileMill
	Styling a map with Mapbox Studio
	Publishing your basemap on your server with PHP
	Publishing your basemap on your server with Node.js

	Chapter 4: Mapbox.js
	Introduction
	Creating a simple map
	Changing map properties programmatically
	Working with base layers
	Adding markers and popups
	Clustering markers to improve our map
	Getting mouse coordinates
	Working with controls
	Adding interactivity to your map with UTFGrid
	Creating a choropleth map
	Creating a heat map

	Chapter 5: Mapbox.js Advanced
	Introduction
	Adding external data to your map
	Adding a time dimension to your map
	Comparing two maps at the same time
	Adding a WMS layer from GeoServer to your map
	Adding ArcGIS layers from a server or from online
	Adding Fusion Tables to your map
	Adding Foursquare data to your map

	Chapter 6: Mapbox GL
	Introduction
	Integrating your project with Mapbox GL
	Creating a basic map using Mapbox GL
	Switching between locations programmatically
	Adding markers to the map
	Switching map styles
	Loading GeoJSON and drawing a polyline
	Drawing polygons on the map

	Index

