Wireshark®
Network Analysis

The Official Wireshark Certified Network Analyst Study Guide

Second Edition
Laura Chappell

Leam insider tips and tricks to spot the cause of lousy network performance

Discover basic through advanced Wireshark techniques to quickly
identify evidence of discovery processes and breached hosts

Analyze real world case studies to see how network
problems have been solved by IT professionals
just like YOU!

http://www.allitebooks.org

>
m
w
o
w
>
=
=2

CHAPPELL

Wireshark® Network Analysis
The Official Wireshark Certified Network Analyst™ Study Guide
2" Edition (Version 2.1b)

Laura Chappell
Founder, Chappell University™
Founder, Wireshark University™

Readers interested in this book may also be interested in the associated Wireshark Certified Network
Analyst

Official Exam Prep Guide — Second Edition.

10-digit ISBN: 1-893939-90-1

13-digit ISBN: 978-1-893939-90-5

>
=
w
o
w
=
=z
=2

CHAPPELL

Wireshark® Network Analysis
The Official Wireshark Certified Network Analyst™ Study Guide
2 Edition (Version 2.1b)

Copyright 2012, Protocol Analysis Institute, Inc, dba Chappell University. All rights reserved. No part of this
ebook, or related materials, including interior design, cover design and contents of the referenced book
website, www.wiresharkbook.com, may be reproduced or transmitted in any form, by any means (electronic,
photocopying, recording or otherwise) without the prior written permission of the publisher.

To arrange bulk purchase discounts for sales promotions, events, training courses, or other purposes, please
contact Chappell University at the address listed on the next page.

Book URL: www.wiresharkbook.com
Paperback Book 13-digit ISBN: 978-1-893939-94-3
Paperback Book 10-digit ISBN: 1-893939-94-4

Distributed worldwide for Chappell University through Protocol Analysis Institute, Inc.

For general information on Chappell University or Protocol Analysis Institute, Inc, including information on
corporate licenses, updates, future titles or courses, contact the Protocol Analysis Institute, Inc at 408/378-

7841 or send email to info@chappellU.com.
For authorization to photocopy items for corporate, personal or educational use, contact Protocol Analysis

Institute, Inc at email to info@chappellU.com.

Trademarks. All brand names and product names used in this book or mentioned in this course are trade
names, service marks, trademarks, or registered trademarks of their respective owners. Wireshark and the
"fin" logo are registered trademarks of the Wireshark Foundation. Protocol Analysis Institute, Inc is the

[vww allitebooks.cond

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
mailto:info@chappellU.com
mailto:info@chappellU.com
http://www.allitebooks.org

exclusive developer for Chappell University.

Limit of Liability/Disclaimer of Warranty. The author and publisher have used their best efforts in
preparing this book and the related materials used in this book. Protocol Analysis Institute, Inc, Chappell
University and the author(s) make no representations or warranties or merchantability or fitness for a
particular purpose. Protocol Analysis Institute, Inc and Chappell University assume no liability for any damages
caused by following instructions or using the techniques or tools listed in this book or related materials used in
this book. Protocol Analysis Institute, Inc, Chappell University and the author(s) make no representations or
warranties that extend beyond the descriptions contained in this paragraph. No warranty may be created or
extended by sales representatives or written sales materials. The accuracy or completeness of the information
provided herein and the opinions stated herein are not guaranteed or warranted to produce any particular
result and the advice and strategies contained herein may not be suitable for every individual. Protocol
Analysis Institute, Inc, Chappell University and author(s) shall not be liable for any loss of profit or any other
commercial damages, including without limitation special, incidental, consequential, or other damages.

Always ensure you have proper authorization before you listen to and capture network traffic.

Copy Protection. In all cases, reselling or duplication of this book and related materials used in this training
course without explicit written authorization is expressly forbidden. We will find you, ya know. So don't steal it
or plagiarize this book.

This book and the book website, www.wiresharkbook.com, references Chanalyzer Pro software created by
MetaGeek (www.m k.net/wiresharkbook).

This book and the book website, www.wiresharkbook.com, references Geolite data created by MaxMind,
available from www.maxmind.com.

PhoneFactor™ SSL/TLS vulnerabilities documents and trace files referenced on the book website,
www.wiresharkbook.com, were created by Steve Dispensa and Ray Marsh (www.phonefactor.com).

This book and the book website, www.wiresharkbook.com, references trace files from Mu Dynamics
(www.pcapr.net).

This book references rules released by Emerging Threats Copyright © 2003-2012, Emerging Threats. All rights
reserved. For more information, visit emergingthreats.net.

Protocol Analysis Institute, Inc.
5339 Prospect Road, # 343
San Jose, CA 95129 USA
www.wiresharkbook.com

Also refer to Chappell University at the same address
inf h llU.com
www.chappellU.com

Cover: Fractal image, Waves Envisioned during Late Nights at Work, by Scott Spicer
Created with Apophysis 2.09

Dedication
This Second Edition is dedicated to Gerald Combs, creator of Wireshark (formerly Ethereal) and a good friend.

Twelve years ago, | sent Gerald a note—just out of the blue—"may I include Ethereal on my CD? | want to
give it away at conferences.” Expecting some pushback—after all, he didn’'t know who the heck | was—I was
amazed and thrilled to receive his response stating "sure, go ahead—that would be great!"

Gerald is more than the creator of Wireshark. Gerald is one of us. He struggled with a problem. He formulated
a solution. Then he did something extraordinary—he shared his solution with the world. In his typical unselfish
mode, Gerald opened up his project for the contribution and participation of others.

Ethereal morphed into Wireshark, and Wireshark continued to mature. Wireshark has surpassed every other
network analyzer product in the industry to become the de facto standard for network traffic analysis.

In 2011 Wireshark was voted the #1 Security Tool on the SecTools.org Top 125 Network Security Tools survey
(conducted by Gordon Lyons, creator of Nmap). This is a much deserved recognition that Wireshark and
packet analysis is a must-have skill for IT security professionals.

Throughout Wireshark’s rise in popularity, Gerald has remained one of the most honest, humble, dedicated

[vww allitebooks.cond

http://www.wiresharkbook.com/
http://www.metageek.net/wiresharkbook
http://www.wiresharkbook.com/
http://www.maxmind.com/
http://www.wiresharkbook.com/
http://www.phonefactor.com/
http://www.wiresharkbook.com/
http://www.pcapr.net/
http://emergingthreats.net/
http://www.wiresharkbook.com/
mailto:info@chappellU.com
http://www.chappellu.com/
http://sectools.org/
http://www.allitebooks.org

professionals in our field.

loyad)

Thank you Gerald.

p.s. Again | want to express very special thanks to Gerald’s wife, Karen, and their absolutely cute-beyond-
belief, I-have-my-Daddy-wrapped-around-my-little-finger, smarty-pants-who-melts-your-heart daughter!
Gerald always beams when he talks about you two very special ladies and it is a treat spending time with you
both <girl power!>. | am grateful for the love, support and inspiration you have provided Gerald. Your
tremendous humor and joie de vivre inspires me!

ACKs

There are many people who were directly and indirectly involved in creating the First and Second Editions of
this book.

First and foremost, | would like to thank my children, Scott and Ginny, for your patience, support and humor
during the many hours | was huddled over my computer to complete this book. Your words of encouragement
really helped me balance work and life during some long days and nights of deadlines. It will be a treat to
write that "Cooking Badly" book with you someday!

Mom, Dad, Steve and Joe—ahh... yes, the "fam." You guys have given me so much humorous material for
my presentations! Can't wait for "take your daughter to work day,” Mom!

Special thanks to Brenda Cardinal and Jill Poulsen who have worked with me for over 10 years each—you
masochists! | am fortunate to have both of you around to brighten my days and put life in perspective.

To Colton Cardinal, who provided humorous distractions, smiles and, giggles—thanks for all the time staring
at the clocks during the past year and a half. | feel very fortunate to have the chance to watch you grow up!

Joy DeManty—I'm sure you're sick of reading this book over and over and over again! | appreciate your keen
eye in reviewing this second edition. Let’s agree on this - no more 1,000 page books!

Lanell Allen—again you really pulled through for us on this project! Your tireless hours of work put into
finding my typos, half-sentences and dangling prepositions (he he) was invaluable. Thank you for taking on
this project.

Gerald Combs—what can | say? You have selflessly shared with us a tremendous tool and | am so very
grateful for your devotion to Wireshark. The first and second editions of this book are dedicated to you.

The Wireshark developers—what a group! It has been a pleasure meeting so many of you in person at the
Sharkfest conferences. Your continued efforts to improve and enhance Wireshark have helped so many IT
professionals find the root of network issues. Thank you for the many hours you have dedicated to making
Wireshark the world’s most popular network analyzer solution! You can find the developer list at Help |
About Wireshark | Authors. | hope this book accurately explains the features you have spent so many
hours implementing. If | missed anything you'd like included in future editions of this book, please let me
know.

Gordon "Fyodor" Lyon—the creation of the First Edition of this book was triggered when you released
"Nmap Network Scanning"—an excellent book that every networking person should own. | appreciate your
time and effort looking over the network scanning section. | look forward to working with you on some future
projects—there are so many possibilities!

Ryan Woodings and Mark Jensen of MetaGeek—it has been a pleasure collaborating with you folks on
ideas and microwave popping methods (g)! It has been a blast showing Wi-Spy/Chanalyzer Pro at conferences
and sharing these hot products with the IT community. | look forward to more brainstorming sessions. Special
thanks to Trent Cutler for reviewing the WLAN chapter and sending on some great feedback.

Steve Dispensa and Marsh Ray of PhoneFactor (www.phonefactor.com)—thank you both for kindly
allowing me to include your Renegotiating TLS document and trace files at www.wiresharkbook.com. You two
did a great job documenting this security issue and your work benefits us all.

Stig Bjerlykke, Wireshark Core Developer—you came up with so many great additions to the First Edition
of this book and recent versions of Wireshark! Your understanding of the inner workings of Wireshark as well

[vww allitebooks.cond

http://www.phonefactor.com/
http://www.wiresharkbook.com/
http://www.allitebooks.org

as the areas that often perplex people helped make this book much more valuable to the readers. We all
appreciate your development efforts to make Wireshark such a valuable tool!

Sean Walberg—Thanks for being such a great resource on the VolP chapter. You really have such a
wonderful talent explaining the inner workings of VolP communications. | loved your presentation at Sharkfest
—funny and geeky at the same time! | appreciate your efforts to clarify the VolP chapter in this book.

Martin Mathieson, Wireshark Core Developer—I| am so grateful for the fixes and tips you provided for
the VolP chapter and the time you took to explain the duplicate IP address detection feature you added to
Wireshark. | appreciate you providing the RFC references to be included and understanding that the readers
may be new to VolP analysis. The time and energy you have put into enhancing Wireshark are a benefit to us
all!

Jim Aragon—Thanks so much for your tremendous feedback on the First Edition of this book and providing
the tip on capturing traffic. It's always great to read your ideas and suggestions and you've given me loads of
ideas for future tips and training.

Sake Blok, Wireshark Core Developer—Don't you ever sleep? <g> Thanks for your feedback and
corrections on the First Edition of this book. It's great having your case study, The Tale of the Missing ARP (in
Chapter 16: Analyze Address Resolution Protocol (ARP) Traffic). | really appreciate the changes you made to
Wireshark regarding the "field not in use, but existent" issue. Yippie!

Ron Nutter—Hey, buddy! Hard to believe we’ve known each other for a zillion years, eh? Thanks for adding
the Cisco spanning instructions in this Second Edition. I know the readers will appreciate that you shared your
tips for setting up an efficient capture with Cisco equipment.

Jeff Carrell—You jumped right in to clean up my messy draft of IPv6 introductory materials. You did a great
job refocusing me to ‘show them the packets.” No wonder people love your IPv6 classes! Thank so much for
helping out over the holidays. | know you were working away on the "Guide to TCP/IP" book and your time is
precious these days.

Betty DuBois—Thanks for all your review time and talent—not only on this book project, but also on the
Wireshark University Instructor-Led courses and the WCNA Exam. It's always great to talk/work with a fellow
packet-geekess!

Keith Parsons—Thanks for clarifying the concepts in the WLAN chapter and adding the awesome "To
DS/From DS" graphic and table! You always have great ideas and teaching methods—and you're truly the
"geek toy king" as well!

Anders Broman, Wireshark Core Developer—Thanks for taking the time to look through the VolP chapter
and ensure the information was accurate and presented clearly. Thank you so much for all your efforts as a
Wireshark core developer and making so many of the changes I've whined about.

The pcapr Team—I appreciate you allowing me to provide readers with several trace files from your online
repository at www.pcapr.net. Thank you to Mu Dynamics (www.mudynamics.com) for supporting the
pcapr.net project.

David Teng—Thanks for your thorough read through of the first edition and the numerous edits and
suggestions you provided. It is difficult to imagine the effort you put into translating this huge book to Chinese,
but | do hope to see it in print someday.

My Students—Sincere thanks to the hundreds of thousands of students who have taken my online
training courses, instructor-led courses and self-paced courses over 20 years of teaching. I've gotten to know
so many of you as friends. Your honest and direct feedback has always helped me hone my training materials
(and my jokes).

Gary Lewis—you wild guy, you! If anyone out there needs graphic design services, Gary is the "go to" guy
with a great (and somewhat twisted) sense of humor. Thanks for a great cover design on the First Edition—
and a lovely rework of the Second Edition!

Case Study/Tip Submitters—Case studies were submitted from all around the world. Thanks to all of you
who overloaded my email with your Wireshark success stories. The following individuals provided case studies
that were included in this book to offer a glimpse into how folks use Wireshark to save time and money.

LabNuke99 - P.C. - Jim Aragon - Roy B. - Martin B. - Bill Back - Sake Blok - Jeff Carrell - Coleen D. - Todd
DeBoard and Team - Mitch Dickey - Thanassis Diogos - Steve Dispensa - Todd Dokey - Vik Evans - Russ F. -
Allen Gittelson - Richard Hicks - Rob Hulsebos - Mark Jensen - Jennifer Keels - Christian Kreide - Todd Lerdal -

[vww allitebooks.cond

http://www.pcapr.net/
http://www.mudynamics.com/
http://www.allitebooks.org

Robert M. - Jim McMahon - Ron Nutter - Karl R. - Mark R. - Guy Talbot - Delfino L. Tiongco - Sean Walberg -
Christy Z.

And of course—Finally, I'd like to thank those folks who create lousy applications, cruddy TCP/IP stacks,
scummy operating systems, pathetic interconnecting devices and sad default configurations and the users who
bring their muck onto the network— you make life so interesting!

If I've missed anyone in this ACK section, | apologize and plead brain-drain at this point!

Contents at a Glance

Chapter 1: The World of Network Analysis
Chapter 2: Introduction to Wireshark

Chapter 3: Capture Traffic
Chapter 4: Create and Apply Capture Filters
Chapter 5: Define Global and Personal Preferences
Chapter 6: Colorize Traffic
h r 7: Define Time Val nd Interpr mmari

Chapter 8: Interpret Basic Trace File Statistics
Chapter 9: Create and Apply Display Filters

Chapter 10: Follow Streams and Reassemble Data
Chapter 11: Customize Wireshark Profiles

Chapter 12: Annotate, Save, Export and Print Packets
Chapter 14: TCP/IP Analysis Overview

h r 15: Analyze Domain Nam m_(DNS) Traffi
h r 16: Analyze Addr Resolution Pr | (ARP) Traffi
hapter 17: Analyze Internet Protocol (IPv4/1Pv6) Traffi

Chapter 18: Analyze Internet Control Message Protocol (ICMPv4/ICMPV6) Traffic
Chapter 19: Analyze User Datagram Protocol (UDP) Traffic

Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic

Chapter 21: Graph 10 Rates and TCP Trends

Chapter 23: Analyze Hypertext Transfer Protocol (HTTP) Traffic
h r 24: Analyze File Transfer Pr | (FTP) Traffi

Chapter 25: Analyze Email Traffic

hapter 26: Intr tion t 2.11 (WLAN) Analysi
Chapter 27: Introduction to Voice over IP (VolP) Analysis
Chapter 28: Baseline "Normal" Traffic Patterns
Chapter 29: Find the Top Causes of Performance Problems
Chapter 30: Network Forensics Overview

h r 33: Effectiv f Command Line Tool
Appendix A: R r n the Book Websi

All Access Pass Training Offer
Table of Contents

Contents at a Glance

List of Tips

MMMM—NMKJM{ I AAP T —

Dedication

ACKs

Forewor ral m

Preface

About This Book

Wireshark Certified Network Analyst™ Program Overview
Wireshark University™ and Wireshark University™ Training Partners

[vww allitebooks.cond

http://www.allitebooks.org

h r 1: The World of Network Analysi

Define Network Analysis
Follow an Analysis Example
Walk-Through of a Troubleshooting Session
Walk-Through of a Typical Security Scenario (aka Network Forensics)
Understand Security Issues Related to Network Analysis
X heckl : s I

nderstand Network Traffic Flow:

Launch an Analysis Session
: Pruning the "Puke"
tudy: The " rely Invisible™ Network
Summary

Practice What You've Learned

Review Questions
Revi : .

h r2: Intr ion to Wireshark
Wireshark Creation and Maintenance
re Pack n Wir r Wirel Network
Open Various Trace File Types
Understand How Wireshark Processes Packets
Use the Start Page
Identify the Nine GUI Elements

Use the Main Toolbar for Efficiency
F E r with the Filter Toolbar
Make the Wireless Toolbar Visibl

Work Faster Using RightClick Functionality
Sign Up for the Wireshark Mailing Lists
Join ask.wireshark.org!

Know Your Key Resources
Get Some Trace Files

Case Study: Detecting Database Death
Summary

Practice What You've Learn

Review Questions

Answers to Review Questions

Chapter 3: Capture Traffic
Know Where to Tap Into the Network
Run Wireshark Locally
: Traffi Switched I

Analyze Routed Networks
Analyze Wireless Networks
r Two L ions (Dual r

Select the Right Capture Interface

Capture on Multiple Adapters Simultaneousl
Interface Details (Windows Only)

Capture Traffic Remotely

Automatically Save Packets to One or More Files
Qmmmmmwd—mw T

: Dual re Points the Finger
Case Study: Capturing Traffic at Home

[vww allitebooks.cond

http://www.allitebooks.org

Summary

Practice What You've Learned
. -

REM'EMLQUBSIJQDSE - : .

h r4:Cr nd Appl re Filter

The Purpose of Capture Filters
Apply a Capture Filter to an Interface
Build Your Own Set of Capture Filters
Filter by a Protocol
Filter Incoming Connection Attempts
.
Mmmwmw. . i I
rator mbin re Filter
Create Capture Filters to | ook for Byte Values
Manually Edit th re Filters Fil
Share Capture Filters with Others
Case Study: Kerberos UDP to TCP Issue
Summary
Practice What You've Learned
. 5
Rﬂ'EMLQUESIMSE . : .

Chapter 5: Define_ Global and Personal Preferences

Find Your Configuration Folder
t Gl | and Personal Configurations

Customize Your User Interface Settings

Define Your Capture Preferences

Automatically Resolve IP and MAC Names

Plot IP Addresses on a World Map with GeolP
Resolve Port Numbers (Transport Name Resolution)
Resolve SNMP_Information

Configure Filter Expressions

Configure Statistics Settings

Define ARP, TCP, HTTP/HTTPS and Other Protocol Settin
Configure Protocol Settings with RightClick

Case Study: NonStandard Web Server Setup

Summary
Practice What You've Learned

Review Questions
Answers to Review Questions

Chapter 6: Colorize Traffic
Use Colors to Differentiate Traffic Types
Disable One or More Coloring Rules
Share and Manage Coloring Rules
Identify Why a Packet is a Certain Color
: nE " Coloring Rule f TIP E

Temporarily Mark Packets of Interest

Alter Stream R mbl lorin
: Colorizing SharePoin nnections During Login
Summary
Practice What You've Learned
Review Questions
Answers to Review Questions

[vww allitebooks.cond

http://www.allitebooks.org

Chapter 7: Define Time Values and Interpret Summaries
: :
Use Time to Identify Network Problems
Identify Del with Time Val

Identi lien rver and Path Del

View mmary of Traffic R Pack iz nd Overall B Transferr
tudy: Tim lumn ts Del ACK

Summary

Practice What You've Learned

Review Questions
Revi : .

h r 8: Interpret Basic Tr Fil isti
Launch Wireshark Statistics
Identify Network Protocols and Application
Protocol Settings Can Affect Your Results
Identify the Most Active Conversations
List Endpoints and Map Them on the Earth
Spot Suspicious Targets with GeolP

Evaluate Packet | engths

List All IPv4/1Pv6 Addresses in the Traffic
List All Destinations in the Traffic

List UDP and TCP Usage

Analyze UDP Multicast Streams

Graph the Flow of Traffic
Gather Your HTTP Statistics

Examine All WLAN Statistics

- o . L . ™
QaﬂuMpplmaImAna&s&AMmzﬂLetM&Acsﬁlﬁtale o i
Summary
Practice What You've Learn
Review Questions
Answers to Review Questions

Chapter 9: Create and Apply Display Filters

; g

uﬂdmmmﬂw ; 5 -

MMMDQM isol i

Use Expressions for Filter Assistance

Make Display Filters Quickly Using RightClick Filtering

Filter on Conversations and En in

Filter on the Protocol Hierarchy Window

Understand Display Filter Syntax

Combine Display Filters with Comparison Operators

Alter Display Filter Meaning with Parentheses

MMX&MI i X I

Find Key Words in r or Lower

More Interesting Regex Filters

Let Wireshark Catch Display Filter Mistakes

Use Display Filter Macros for Complex Filtering

Avoid Common Display Filter Mistakes

Manually Edit the dfilters File

Case Study: Using Filters and Graphs to Solve Database Issues

[vww allitebooks.cond

http://www.allitebooks.org

Case Study: The Chatty Browser

Case Study: Catching Viruses and Worms
Summary

Practice What You've Learned

Review Questions

Answers to Review Questions

h r 10: Follow Streams and R mble D
The Basics of Traffic Reassembly
Follow and Reassemble UDP Conversations
Follow and Reassemble TCP_Conversations
Follow and Reassemble SSL Conversations
Reassemble an SMB Transfer
Case Study: Unknown Hosts ldentified
Summary
Practice What You've Learn
Review Questions
Answers to Review Questions

Chapter 11: Customize Wireshark Profiles
Summary
Practice What You've Learn
Review Questions
Answers to Review Questions

Chapter 12: Annotate, Save, Export and Print Packets
| : "

Save Filtered, Marked and Ranges of Packets
Export Packet Content for Use in Other Programs
Expor LK

v nversations, En ints, | raphs and Flow Graph Information

Export Packet Bytes
Case Study: Saving Subsets of Traffic to Isolate Problems
Summary
Practice What You've Learned
. 5
REM'EMLQUBSIJQDSE . : .

Chapter 13: Use Wireshark’s Expert System
Let Wireshark’s Expert Information Guide Y
Understand TCP Expert Information
Case Study: Expert Info Catches Remote Access Headaches
Summary
Practice What You've Learned
. ,
Rﬂm&uesljgns_ .

h r 14: TCP/IP Analysis Overview
TCP/IP_Functionality Overview
Build the Packet
Case Study: Absolving the Network from Blame
Summary

[vww allitebooks.cond

http://www.allitebooks.org

Practice What You've Learned

Review Questions
. : .

The Purpose of DNS

Analyze Normal DN ries/R n
Analyze DNS Problems

Dissect the DNS Packet Structure
Filter on DNS/MDNS Traffic

Case Study: DNS Killed Web Browsing Performance

;iummaLy
Practice What You've Learned
Review Questions
Answers to Review Questions
h r 16: Analyze Addr R lution Pr | (ARP) Traffi

Identify the Purpose of ARP
Analyze Normal ARP Requests/Responses
Analyze Gratuitous ARPs
Analyze ARP Problems
Dissect the ARP Packet Structure
Filter on ARP Traffic
: Death by ARP
: The Tale of the Missing ARP
Summary
Practice What You've Learned
Review Questions
Answers to Review Questions

Identify the Pur flP

Analyze Normal IPv4 Traffic

Analyze 1Pv4 Problem

Dissect the IPv4 Packet Structure
An_Introduction to IPv6 Traffic

Dissect the IPv6 Packet Structure

Basic IPv6 Addressing

Set Your IPv4 Protocol Preferences

Tr lesh Encr mmunication
Filter on IPv4 Traffic

Filter on IPv6 Traffic

Case Study: Everyone Blamed the Router
Case Study: It's Not the Network’s Problem!
Case Study: IPv6 Addressing Mayhem

Summary
Practice What You've Learned
: -
Answers to Review Questions
Chapter 18: Analyze Internet Control Message Protocol (ICMPv4/1CMPV6)
Traffic

The Purpose of ICMP
Analyze Normal ICMP Traffic

Analyze ICMP Problems
Dissect the ICMP Packet Structure

Basic ICMPv6 Functionality

Fil ICME | ICMPY6 Traffi
Case Study: The Dead-End Router
Summary

Practice What You've Learn
Review Questions

Answers to Review Questions

Chapter 19: Analyze User Datagram Protocol (UDP) Traffic

The Purpose of UDP
Analyze Normal UDP Traffic
Analyze UDP Problem
Dissect the UDP Packet Structure
Filter on UDP Traffic
tudy: Troubleshooting Tim nchronization
Summary

Practice What You've Learned

Review Questions
5 : .

The Purpose of TCP
Analyze Normal TCP Communications

Analyze TCP Problems
Dissect the TCP Packet Structure

Filter on TCP Traffic

Set TCP Protocol Preferences
Summary

Practice What You've Learn
Review Questions

Answers to Review Questions

hapter 21: Graph 10 Rat nd TCP Tren
Use Graphs to View Trends
Generate Basic 10 Graphs
Filter 10 Graphs
mpare Traffic Trends in | raph
raph Round Trip Tim
Graph Throughput Rates
Graph TCP Sequence Numbers over Time
Case Study: Watching Performance Levels Drop

Case Study: Graphing RTT to the Corporate Office
Case Study: Testing QoS Policies

Summary
Practice What You've Learned
Review Questions
Answers to Review Questions
Chapter 22: Analyze Dynamic Host Configuration Protocol

(DHCPv4/DHCPV6) Traffic
The Purpose of DHCP

Analyze Normal DHCP Traffic

Analyze DHCP Problems
Dissect the DHCP Packet Structure

An_Introduction to DHCPv6

Filter on DHCP/DHCPv6 Traffic
: Declining Clien

Summary

Practice What You've Learned

Review Questions

Answers to Review Questions

The Purpose of HTTP
Analyze Normal HTTP Communications

Analyze HTTP Problems
Dissect HTTP Packet Structures

Filter on HTTP or HTTPS Traffic
Export HTTP Objects

Display HTTP Statistics

Graph HTTP Traffic Flows

Set HTTP Preferences

Analyze HTTPS Communications
Case Study: HTTP Proxy Problems
Summary

Practice What You've Learn
Review Questions

Answers to Review Questions

Chapter 24: Analyze File Transfer Protocol (FTP) Traffic

The Purpose of FTP
Analyze Normal FTP Communications

Analyze FTP Problems
Dissect the FTP Packet Structure

Filter on FTP Traffic
Reassemble FTP Traffic

Case Study: Secret FTP Communications

Summary
Practice What You've Learned
Revi : -

Answers to Review Questions

Chapter 25: Analyze Email Traffic
The Purpose of POP
Analyze Normal POP Communications

Analyze POP Problems
Dissect the POP Packet Structure

Filter on POP Traffic
The Purpose of SMTP

Analyze Normal SMTP Communications
Analyze SMTP Problem

Dissect the SMTP Packet Structure
Filter on SMTP Traffic
Case Study: SMTP Problem—Scan2Email Job

Summary
Practice What You've Learned

Review Questions
Answers to Review Questions

Analyze WI AN Traffic
Analyze Signal Strength and Interferen

Capture WLAN Traffic
Understand 802.11 Traffic Basics

Analyze Normal 802.11 Communications

Dissect the 802.11 Frame Structure

Filter on All WLAN Traffic

Analyze Frame Control Types and Subtypes
- Cr Bar mmunication

Case Study: Cooking the WLAN

Summary

Practice What You've Learn

Review Questions

Answers to Review Questions

| >7- | . . lvsi
Understand VolP Traffic Flows
Session Bandwidth and RTP Port Definition
Analyze VolP Problems
Examine SIP Traffic
Examine RTP Traffic
Play Back VolP Conversations

RTP Player Marker Definitions
Create a VolP Profile

Filter on VolP Traffic

Case Study: L ost VoIP Tones
Summary

Practice What You've Learn
Review Questions

Answers to Review Questions

Chapter 28: Baseline "Normal" Traffic Patterns
Understand the Importance of Baselining
Case Study: Login Log Jam
Summary
Practice What You've Learn
Review Questions
Answers to Review Questions

Chapter 29: Find the Top Causes of Performance Problems
Troubleshoot Performance Problems
lentify Hial ;
Point to Slow Processing Times
Practice Working with Time Issues
Find the Location of Packet Loss
Watch Signs of Misconfigurations
Analyze Traffic Redirections
Watch for Small Payload Sizes
Look for Congestion

Identify Application Faults
Note Any Name Resolution Faults
An Important Note about Analyzing Performance Problems

Case Study: One-Way Problems

Case Study: The Perfect Storm of Network Problems
Summary

Practice What You've Learn

Review Questions

Answers to Review Questions

Chapter 30: Network Forensics Overview
Compare Host vs. Network Forensics
Gather Evidence
Avoid D ion
Handle Evidence Pr rl
R nize Un | Traffic P n
Color Unusual Traffic Patterns
Check Out Complementary Forensic Tools
Case Study: SSL/TLS Vulnerability Studied

Summary

Practice What You've Learned

Revi : -

Answers to Review Questions
h r31: D Network nning and Di very Pr

The Purpose of Discovery and Reconnaissance Pr
Detect ARP Scans (aka ARP Sweeps)
Detect ICMP Ping Sweeps

Detect Various Types of TCP Port Scans
Detect UDP Port Scans

Detect IP Protocol Scans
Understand Idle Scans

Know Your ICMP T n

Try Th Nm n Comman

Analyze Traceroute Path Discovery

Detect Dynamic Router Discovery
Understand Application Mapping Processes
Use Wireshark for Passive OS Fingerprinting
: \ctive OS Fi —

Identi fed Addr in n
: Learning th nficker L n
Summary
Practice What You've Learn
Review Questions
Answers to Review Questions

Chapte_r 32: Analyz_e Suspect Traffic

1] f)
Identify Vulnerabilities in the TCP/IP_Resolution Pr
Identi n le Traffi
Build Filters an loring Rules from IDS Rul

Case Study: The Flooding Host

Case Study: Catching Keylogging Traffic
Case Study: Passively Finding Malware
Summary

Practice What You've Learned

Review Questions
. : .

nderstand the Power of Command-Line Tool
Wireshark.ex mmand-Line Launch

Capture Traffic with Tshark

List Trace File Details with Capinfos
Edit Trace Files with Editcap

Merge Trace Files with Mergecap

Convert Text with Text2pcap
fic witl
Understand Rawshark
: ing GETS an
Summary

Practice What You've Learn

Review Questions
Answers to Review Questions

i . | | bsi
Video Starters
hanalyzer Pro/Wi- Recordin wsx Fil
MaxMin IP D Fil) Fil
PhoneF r SSL/TLS Vulnerabilities Documents/Tr Fil
Wireshark Customized Profiles
Practice Trace Files

List of Tips
Download the Supplements from www.wiresharkbook.com
reshark i I .
Avoid Prison Tim
Notifi f New Wireshark Rel
A he Wireshark Developer Gui

No Interface? No Capture!
Avoid File | Merge Issues
Frames vs. Packets
Overloading HTTP Object Export
Packet Marki : ity | ing F

Don't L et Wireshark Fl DN rver
Editing Wireshark’ rvi File is OK
mpare Packets with Side-by-Side View:
Practi mping Between Corr nding Packet

See Packet Counts Without Capturing Anything
Disabling a Protocol May Blind You

Reassemble Streams for Faster Interpretations
Mﬁnﬂmww ires| : Resid
The Packet Number Never Changes

Don't Kill Wireshark Performance

Easily Resolv ingle IP_Addr
Notified When New Wireshark Versions are Rel
Hubs are Only a Half-Duplex Option

Watch Timestamp Issues on Multiple NIC Captures
Cheating on Your Spanning [Contributor: Jim Aragon]

Monitor Mode Blocks Other Connectivity
Toggle Capture Interface Information to IPv4 Addresses

Experiment with Remote Capture Traffic
el Multiole Criteria for C :
nderstand Why There are Checksum Errors on YOUR Traffic Onl
Wireshark "Where," Not Alw: "Why"
re Filter ringly and Display Filter nerousl

Avoid host Capture Filters with Web Browsing Sessions

When to Use MAC Capture Filters Instead of IP Address Filters
Make Wireshark More Efficient

Add a TCP Window Size Field Column to Spot Problems

Be Careful when Hiding Interfaces
I luti iresharl I
Warnin in ial Wireshark h Fil
Warnin NMP i Di ion r
New Filter Expression B ns for F r Troubleshootin

hecksum Validation Settin

Checksum Errors and Coloring Rules
Coloring Rules are Processed in Order Top to Bottom
Use Packet Marking to Save Non-Contiguous Packets
shakes Provid Nice S I [
Database Communications are Weird_Interesting!
ARP Packets Do Not Match IP Addr Filter
Flow Graph Web Browsing |
Your Display Filters in Command Lin tur

How to Ensure Your Display Filter is Saved
Understand Wireshark Warnings on Using

Add an Inclusion Field with Exclusion Field Filters
MMMM : M Profile Ei
Be Careful Sharing Profiles

Import Some Profiles
Avoid the "Needle in the H k1 " vin

Print Packet Summaries in Lan M

Use Your Own Screen Capture Utility

Check out Cascade Pilot™ for Graphing
Check Expert Notes AND Warnings
AMMKEM i E ion F
What Makes an Item a Warning vs. a Note?

When nsider Trashin Tr Fil
Window Packets Wer lorized Incorrectl rior to Wireshark 1.
Disable Wireshark’s Expert F re... with ion

Use the Best TCP Setting for Analyzing HTTP Traffic
Quickly Detect DNS Errors
ARP is Local Only
Watch Out for Proxy ARP

; .
LBBJMLD—MMMM t Cl | Thei faul .

IPv6 Addr nitization

Measure Round Trip Time Using an ICMP Filter
You Should Know About Jon Postel

Extending ICMP

FIN Doesn't Mean "Shut Up"

Follow Along with the Trace File
Move Wireshark Around when Packet Loss is Identified

Send Buffers and Application Limitation Issues

The TCP Window Size > Zero Can Still Stop Data Transfer
Watch for SYN/ACKs After a Full Handshake

Filter on the TCP Flags Summary Line

Watch Out for Altered Options

Watch Out for Bytes in Flight Values During SACK

Wireshark's TCP Tim mp for Tr leshootin
Em raphs May Indi Y | he Wrong Pack

Red is Bad, Green is Good—Using Color Assumptions
Consider Using a Logarithmic Scale on Your 10 Graph

Use the 10 Graph to Prioritize Your Troubleshooting Focus
Understand and Plot TCP Packet Loss Recovery Processes
Screen Capture those TCP Time-Sequence Graphs

The Time-Sequence Graph Reigns Supreme

i . is.) .time del
Disabl ream R mbl HTTP More Clearl
Watch Out For he-L Web P

Don't Troubleshoot Large Delays before FIN or Reset Packets
Don't Use the http Filter to Analyze Web Browsing

Create a Flow Graph to Spot Web Site Dependencies

Foll I i TTPS shat vsi

Delays Before Encrypted Alerts May be OK
Is There a Worm in the Trace File?

Rul he Wired Network to Poin he WLAN
Get Help Setting Up WLAN Capture

The Missing Details Button
Let Wireshark Resolve WLAN Decryption Key Conflicts
Put Most Often Used Decryption Keys on Top of the Key List
Use a Radiotap or PPl Header to Filter on WLAN Channels
Translate WL AN Type/Subtype Values to Hex for Easy Filtering
Beware of frame.time delta displayed

Packet Markin Your Tr leshootin

.1en Column to Easil Payl iz

4 NOPS Expert Warning

Use Nmap on Your Network (with Permission)
Watch for Microsoft-Limited Connection Attempts
Don't Create a Black Hole

Generate Your HTTP UserAgent Value

You Need to Order the Nmap Book... Now!
Anyone Can Spoof a MAC Address!

Filter on Upper OR Lower Case Characters

Filter on the Macof Signature
Catch the Traffic When You Run Malicious Tools

Add Wireshark to Your Path

View Numerous Statistics with One Tshark Command Line
Use Editcap to Split a Large Trace into File Sets

Merge Traces to Compare Them Side by Side in an 10 Graph

Foreword by Gerald Combs, Creator of Wireshark

Wireshark was created to answer a question: "What's on my network?"

As our society relies more and more on network connectivity this question has increased in importance. You
can't effectively manage, troubleshoot, and secure a network if you don't know what it's doing at a

fundamental level. That's why it's important for you (yes, you!) to be well-versed in protocol analysis.
Fortunately there's help.

Wireshark has a large ecosystem of users, developers, educators, and companies dedicated to finding out
exactly what's happening on the network. Professionals in every branch of networking have contributed code
and ideas to Wireshark to make it work better in their environment. | am continually amazed by their talent,
wisdom, and skill.

Laura is a vital part of this ecosystem. She is the best instructor I've ever met. Each time I've had the
opportunity to see her teach I've been impressed with her ability to convey the most arcane technical details in
an easy-going, down-to-earth way. She has a unique talent for making protocol analysis accessible and fun.

This book reflects her knack for presenting packet analysis in an accessible way while at the same time
inspiring the excitement and thrill of discovery from finding out how your network really works. It's also
comprehensive, which is readily apparent if you try to lift a paper copy.

My heartfelt thanks go to Laura for her integral part in building Wireshark's user community and for being such
a great friend.

Preface
Wireshark is a FIRST RESPONDER tool that should be employed immediately when the cries of "the network is
slow" or "l think my computer is infected" echo through the company halls.

In the first case, you are using Wireshark to quickly identify the cause of performance issues. In the second
case you are using network forensics to look for evidence of a security breach. In both cases you are looking
for signatures in the traffic or packets—the ultimate purpose being isolation of unusual or unacceptable
patterns.

I've used the phrase "the packets never lie" for years now. It is true.

Twenty years ago | presented a session on ARCnet communications to a group of peer instructors. | delved
into the idea of packet structure and the mythical belief at that time that everyone cared. Somehow though, |
related the ARCnet networking rules and limitations to Sister Gerald, the militant no-nonsense nun who was
the head of discipline at my Catholic boarding school... and | got a few laughs. Imagine that... networking can
be funny!

Now—before you think I'm going to mention any of the other nuns, my techno-challenged father, my WoWw-
addicted son (go Alliance!), my iPhone toting daughter (who | hope will grow up and make iTunes a less
pathetic application) and my Pavlovian response to a trace file filled with hideous communications issues and
delicious security flaws—this book is not a breezy stroll through the world of packets.

This book is packed with basic through advanced techniques, tips and tricks to analyze a variety of network
types. It is designed to get you from point A to point Z (or perhaps | should say point 0x00 to point OxFF) as
fast as possible with a solid understanding of the processes, protocols, and putrid things that occur under our
noses (or under our feet or over our heads).

If you don’t have Wireshark loaded on every computer within reach, stop now! Wireshark is the best
girlfriend/boyfriend, wife/husband, mother/father, sister/brother, dog/cat or lover your network will ever have.

Who is always there to listen to you with a patient and understanding silence when you are crying in your latte
because the users keep complaining about network performance?

Wireshark!
Who never threatens to fire you if you don't get those file transfers to occur at ‘acceptable speeds’ before
lunch today?

Wireshark!

Who smiles and sits around all day long just waiting for the moment you say "I need help"?
Wireshark!

That's right!

So... it's time to elevate your copy of Wireshark from "network wallflower" to network powerhouse. It's time to
roll up your sleeves, get rid of the training wheels, put on your helmet and reflective gear, tell everyone to get
the hell out of your way, get on that bike—and ride!

By the way—you have no idea how difficult it was to refrain from adding humor (or at least what I call humor)
to this book. It crept in at various points—some | left in, most | simply moved aside for a later book that might
focus on the humorous side of packet analysis. We will have to wait and see...

Laura Chappell
Founder, Chappell University
Founder, Wireshark University

About This Book

Wireshark Network Analysis: the Official Wireshark Certified Network Analyst™ Study Guide—Second Edition
offers you a solid foundation in the key skills of network analysis, troubleshooting, optimization and security.
By purchasing this book, you have indicated your desire to learn packet-level communications and develop
skills necessary to analyze, troubleshoot and secure networks more efficiently and achieve the Wireshark
Certified Network Analyst certification.

@Download the Supplements from www.wiresharkbook.com.

Each chapter concludes with a "Practice What You've Learned" section that references traffic files (trace files),
configuration files and other files related to the current chapter. These files are available for download at
www.wiresharkbook.com. Before delving into this book, it is recommended that you install the latest version of
Wireshark www.wireshark.org[1] and download the trace files from www.wiresharkbook.com. Create a \traces
directory on your local system and copy these trace files into that directory.

Who is This Book For?

This book offers an ideal reference for information technologists responsible for key network tasks including:
« identify poor network performance due to high path latency

locate internetwork devices that drop packets

validate optimal configuration of network hosts

analyze application functionality and dependencies

optimize application behavior for best performance

learn how TCP/IP networks function

analyze network capacity before application launch

verify application security during launch, log in and data transfer

identify unusual network traffic indicating potentially compromised hosts

studying for the Wireshark Certified Network Analyst Exam

How is This Book Organized?

Chapter 1: The World of Network Analysis explains the key uses of network analysis and provides lists of tasks
used for troubleshooting, securing and optimizing network traffic. This chapter also provides insight into the
"needle in the haystack issue" that overwhelms many new network analysts.

Chapter 2: Introduction to Wireshark details Wireshark internals, the elements of the Wireshark graphical
interface and functions of the Main Menu, Main Toolbar, Filter Toolbar, Wireless Toolbar, and Status Bar. In
addition, this chapter offers a list of resources recommended for network analysts.

The next eleven chapters (Chapter 3 through Chapter 13) focus on Wireshark functionality with numerous
examples of use and references to trace files available at www.wiresharkbook.com. If you are new to
Wireshark, focus on these sections to obtain foundational skills used in later chapters.

Chapter 14 through Chapter 25 concentrate on the key protocols and applications of the TCP/IP suite including
ARP, DNS, IPv4/IPv6, TCP, UDP, and ICMPv4/ICMPV6. Identifying or absolving TCP/IP as part of the
troubleshooting process helps isolate the cause of performance issues and locate security holes. In addition,
these are the chapters you should focus on if you are troubleshooting DHCP-based configurations or
HTTP/HTTPS sessions.

Chapter 26: Introduction to 802.11 (WLAN) Analysis explains how to capture wireless traffic, identify basic

WLAN problems caused by RF (radio frequency) interference, WLAN retries and access point availability. This

[vww allitebooks.cond

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wireshark.org/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.allitebooks.org

chapter also provides tips on filtering on specific WLAN traffic. This is an introductory chapter and does not
delve deeply into WLAN analysis techniques as such detail would likely require an additional 500 pages.

Chapter 27: Introduction to Voice over IP (VolP) Analysis offers an overview of call setup and voice traffic. In

addition, this chapter explains the use of Wireshark’s key VolP analysis features including RTP stream analysis
and call playback. This is also an introductory chapter and does not offer an exhaustive resource on VolP
analysis—that also would require an additional 500 pages.

Chapter 28: Baseline "Normal" Traffic Patterns and Chapter 29: Find the Top Causes of Performance Problems
offers details on baselines that should be created before network problems arise and examples of traffic

patterns indicating delays along a path, faulty internetworking devices, misconfigured hosts and other issues
affecting performance.

Chapter 30 through Chapter 32 focus on the security application of Wireshark including an overview of network
forensics and analysis of network discovery processes that often preclude a security breach. In Chapter 31:
Detect Network Scanning and Discovery Processes, we used Nmap[2] to generate a variety of scans against a

target as we analyzed the signatures of this type of traffic. Chapter 32: Analyze Suspect Traffic examines
evidence of compromised hosts and unsecure application traffic.

Chapter 33: Effective Use of Command Line Tools details the use of the command-line tools used to split trace
files, alter trace file timestamps, automatically start the GUI version of Wireshark with specific parameters,
capture traffic with minimal overhead and merge trace files.

Appendix A: Resources on the Book Website includes a list of all the files available at www.wiresharkbook.com
at the time of publication (content may be added over time). This includes a comprehensive list of the trace
files that you will use in the "Practice What You've Learned" section at the end of each chapter.

How Can 1 Find Something Fast in This Book?

We know this book is a monster. We don’t want you to wear your fingers to the bone flipping through pages to
find the information you desperately need. Download the Second Edition Index/Table of Contents/List of Tips
document (PDF) from www.wiresharkbook.com and use the search feature to look for specific terms in the
book and quickly locate their page numbers.

What Do Those Icons Mean?
Icons used to denote special information included throughout this book.

% Tip, Trick or Techniqgue—examples of using a Wireshark feature for faster problem resolution, isolation of
security flaw or other communication feature—stop and try these tips out!

s« sCase Study—example of how Wireshark was used in the real world (many case studies were submitted by
Wireshark users and developers)—do the problems sound familiar? How would you have attacked the
problem? Can you implement some of the steps described?

@ Nmap Syntax—tips on launching the Nmap scans analyzed in Chapter 31: Detect Network Scanning and
Discovery Processes—the best way to know how an application really functions is to analyze it as it runs. We
analyzed Nmap scans and also Aptimize Website Accelerator™ in this book.

“| Trace File Annotation—This icon is located in Appendix A and indicates that the trace file contains an
annotation. To view the trace file annotation click on the Trace File Annotation button (next to the Expert Info
button on the Wireshark Status Bar) or select Statistics | Summary.

t'Packet Comments— This icon is located in Appendix A and indicates that there is a comment on one or
more packets in the trace file. To view all the packet comments at one time, click the Expert Info button (left
side of the Wireshark Status Bar) and select the Packet Comments tab.

Trace Files Used in This Book (.pcapng Format)

You can follow along with trace files used in this book. Many of the figures contain the name of the trace file
used in the caption. In addition, the trace files used in each chapter are listed on the chapter title page.

All the trace files are defined in Appendix A and available online at www.wiresharkbook.com.

It is recommend that you run the latest version of Wireshark and open the recommended trace files while you
are reading this book. The trace files are available in the new pcap-ng format—you will need to run Wireshark
1.7 (development version) or 1.8 (stable release) or later to view the packet comments and trace file

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

comments contained in those files.

What'’s Online at www.wiresharkbook.com?

There are numerous references and resources referred to in this book at www.wiresharkbook.com. These files
include:

« Hundreds of trace files are referenced in images throughout the book. The entire set of trace files is listed
with descriptions in Appendix A.

e Chanalyzer recordings (.wsx files) to evaluate RF interference from a pocket jammer and an A/V
transmitter. The list of the Chanalyzer recordings is included in Appendix A. For more information on using
Chanalyzer to identify RF interference, refer to Ch r 26: Intr ion 2.11 (WLAN) Analysis and
visit www.m k.net/wireshark

¢ MaxMind® GeolP® database files (.dat files) as well as an installation and use video (mp4 format). For
more information on GeolP, refer to Chapter 17: Analyze Internet Protocol (IPv4/1Pv6) Traffic and visit
www.maxmind.com.

e PhoneFactor™ SSL/TLS vulnerabilities documents and trace files created by Steve Dispensa and Ray Marsh
from PhoneFactor (see the case study written by Steve Dispensa in Chapter 30: Network Forensics
Qverview) and visit www.phonefactor.com.

« Wireshark customized profiles created for use on various network types. For more information on using

Wireshark profiles, refer to Chapter 11: Customize Wireshark Profiles.

You can download individual sets of files or grab the entire set in ZIP or ISO image format. Please review the
usage restrictions on the materials before you use them. Thanks.

Which Version of Wireshark Did You Use to Write This Book?

Wireshark is a moving target—constantly changing and evolving with new features, bug fixes and more
dissectors. This book was written using several versions from the Wireshark 1.6 trunk (stable release at the
time) and several versions from the Wireshark 1.7 trunk (the development releases leading to Wireshark 1.8).
You can live on the bleeding edge and access the development versions at
www.wireshark.org/download/automated or grab the most recent stable release at
www.wireshark.org/download.html.

Wireshark was created using the GIMP Toolkit (GTK+). GTK+ offers a toolset for creating graphical interfaces
that are cross platform compatible. In most cases the steps shown throughout this book can be used if you are
working on *nix or MAC OS X platforms. There are few differences between the Windows version and other
Wireshark versions. Most of these differences are due to the GTK+ capabilities on those underlying operating
systems.

Which WCNA Exam Version Does This Book Cover?
This book will help you prepare for the WCNA-Exam 100.x and WCNA-Exam 102.x versions. Both exam
versions contain questions based on the 33 sections of this book. For more information on exam topics and

requirements, visit www.wiresharktraining.com.

How Can 1 Submit Comments/Change Requests for This Book?

Wireshark is a "moving target" because it is updated often. The 1.6 version of Wireshark went through ten
release versions from June 2011 to May 2012 (including the first two release candidate versions). You can view
the list of Wireshark release versions at www.wireshark.org/download.html (select your OS version and view
the all-versions directory). Periodically you may find information about major functionality changes at
www.wiresharkbook.com. In addition, you can provide your comments or change requests for future book

editions by sending email to updates@wiresharkbook.com.

Wireshark Certified Network Analyst™ Program Overview

The Wireshark Certified Network Analyst ("Wireshark CNA") Exam is a globally-available, proctored exam to
meet the secure and widely available delivery requirements desired by candidates.[3]

Visit www.wiresharktraining.com for additional information on the Wireshark CNA Certification Program.
Questions regarding your Wireshark CNA Certification status may be directed to info@wiresharktraining.com

Why Should I Pursue the Wireshark CNA Certification?

Successful completion of the Wireshark CNA Certification Exam indicates you have the knowledge required to
capture network traffic, analyze the results and identify various anomalies related to performance or security

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.metageek.net/wiresharkbook
http://www.maxmind.com/
http://www.phonefactor.com/
http://www.wireshark.org/download/automated
http://www.wireshark.org/download.html
http://www.wiresharktraining.com/
http://www.wireshark.org/download.html
http://www.wiresharkbook.com/
mailto:updates@wiresharkbook.com
http://www.wiresharktraining.com/
mailto:info@wiresharktraining.com

issues.

How Do | Earn the Wireshark CNA Certified Status?
To earn the Wireshark CNA status, you must pass a single exam—the WCNA-100.x Exam or WCNA-102.x
Exam. For details on preparing for your exam or booking your exam to be taken at a testing center or online,

visit www.wiresharktraining.com/certification.

Upon completion of the Wireshark CNA Certification Exam, an individual will receive a pass/fail score.
Candidates who successfully pass the Wireshark CNA Certification Exam will receive their Wireshark CNA
Certification Exam certificate and WCNA Portal access details via mail. The Wireshark CNA Certification Exam
Confirmation contains the candidate’s certificate, additional information regarding analysis resources and
details on maintaining Wireshark CNA status. For more information on the Wireshark CNA program, visit

www.wiresharktraining.com/certification.
Questions regarding Wireshark CNA Certification status may be directed to info@wiresharktraining.com.

Wireshark CNA Exam Objectives
Each chapter title page in this book provides a list of exam objectives for the Wireshark CNA program. For

additional information regarding exam preparation, visit www.wiresharktraining.com.
Wireshark University™ and Wireshark University™
Training Partners

After numerous talks with Gerald Combs, Wireshark University was launched in March 2007.

The goal of Wireshark University is to provide education on how to analyze, troubleshoot, secure and optimize
network communications using Wireshark.

Wireshark University is responsible for creating and maintaining the Wireshark Certified Network Analyst Exam
and Wireshark Certified Network Analyst Members Program, Wireshark University Certified Training Partner
Program, Wireshark University Certified Instructor Program, and the Wireshark University Certified Training
Materials.

S SR
WIRESHARK

UNIVERSITY

Currently, Wireshark University courses are offered in instructor-led format throughout the world and in self-
paced format through Chappell University (www.chappellU.com).

For more information on Wireshark University, visit www.wiresharktraining.com or send email to

Schedule Customized Onsite/Web-Based Training

If you are interested in training a team in a fast, effective, hands-on course environment, contact us directly.
Customized courses can be developed and delivered by Laura Chappell. Customized courses are based on your
network traffic. Course lengths can run from 2 days to 10 days and even include a web-based delivery option
to meet the training needs of geographically dispersed students.

Contact us at info@chappellU.com for more information on scheduling customized training for your
organization or visit www.chappellU.com.

Online recorded courses are available (All Access Pass) from Chappell University (www.chappellU.com).

Chapter 1
The World of Network Analysis

Define Network Analysis

http://www.wiresharktraining.com/certification
http://www.wiresharktraining.com/certification
mailto:info@wiresharktraining.com
http://www.wiresharktraining.com/
http://www.chappellu.com/
http://www.wiresharktraining.com/
mailto:info@wiresharktraining.com
mailto:info@chappellU.com
http://www.chappellu.com/
http://www.chappellu.com/

Network analysis is the process of listening to and analyzing network traffic. Network analysis offers an insight
into network communications to identify performance problems, locate security breaches, analyze application
behavior, and perform capacity planning. Network analysis (aka "protocol analysis") is a process used by IT
professionals who are responsible for network performance and security.

Whether you are completely new to network analysis or just returning after a hiatus of setting up servers,
architecting your company’s security plan, deploying Voice over IP, or jumping through hoops to get WLAN
issues fixed... Welcome and welcome back!

Network analysis is not brain surgery. Anyone can analyze network communications. You do, however, need to
acquire three basic skills to be a top notch network analyst who can spot the cause of performance problems,
evidence of breached hosts, misbehaving applications or the impending overload of the network.

1. A solid understanding of TCP/IP communications

2. Comfort using Wireshark

3. Familiarity with packet structures and typical packet flows

Many of you have probably installed and configured TCP/IP networks—in fact, | imagine many of you have set
up hundreds if not thousands of TCP/IP clients and servers. Excellent! You already understand TCP/IP
addressing and realize the role that DNS and DHCP servers play on your network.

From a network analyst's perspective, you need to understand the purpose of those devices and protocols and
how they interact. For example, how exactly does a DHCP server offer an IP address and configuration
information to a DHCP client? What if there is a relay agent in use? What happens when the user’'s address
lease time expires? How does the user learn the destination IP address when the user wants to reach
www.wireshark.org? What happens if the local name server does not have the answer? What happens if the
name server is down?

Seeing these processes in action at packet level is a fast way to learn the inner workings of your network. You
build your baseline of understanding—the baseline is your foundational knowledge of how the processes are
supposed to work.

Network analyzer tools are often referred to as "sniffers” and may be sold or distributed as a hardware-plus-
software solution or as a software-only solution. Wireshark is distributed as an open source software-only
solution, but there are add-on adapters that can enhance Wireshark’s capabilities. The AirPcap adapter from
Riverbed Technology[4] is an example of a hardware add-on. The AirPcap adapter is used on Windows hosts
running Wireshark to listen in to wireless traffic in Monitor Mode.[5]

Follow an Analysis Example

The typical network analysis session includes several tasks:
o Capture packets at the appropriate location
o Apply filters to focus on traffic of interest
« Review and identify anomalies in the traffic

You can follow along with the analysis of a web browsing session or watch your own traffic as you browse to

www.wireshark.org/download.html to grab the latest copy of Wireshark. Alternately you can open http-

wiresharkdownload-slow.pcapng to see how the process works.
This is what you might see in your traffic:

Your system requests the IP address of www.wireshark.org. If your system supports IPv4 and IPv6, you will
see two DNS requests—one for the IPv4 (A record) and one for the IPv6 (AAAA record). Hopefully, the DNS
server responds with the information you need and then you're off!

Your client makes a TCP connection to www.wireshark.org and then sends an HTTP GET request asking for the
default page (GET /) as shown in Figure 1.

http://www.wireshark.org/download.html

W hep-wiresharkdoamioad-sow peapng o
Ele Edit Wew Go Capture Anahyze Statistics Telephory Took Jnternals Help

RN Bx@a ca++eFrEEaqaan #D8 % B
Fates: | Exprenion.. -

No. Time source Oestinaticn Protocol Length Info

1 0. 00 24.6.173.220 68.87.76.182 DNS 77 Standard query Ox1c7l A www.
2 0.015371000 68.87.76.182 24.6.173.220 DNS 93 Standard guery response Oxlci
3 0.015816000 24.6.173.220 68.87.76,182 ONS 7/ Standard query OxeS01 AAAA v
|4 0.036920000 68.87.76.182 24.6.173.220 ONS 105 Standard query response Oxes(
5 0.037077000 24.6.173.220 68.87.76.182 DR 77 Standard query OxeS01 AAAA v
6 0.049064000 68.87.76.182 24.6.173.220 105 standard query response Oxed(

20 67,228,110, 127Ch 66 28325 » hitp S seqc0 wins
p.12:24.6.173.220 TCP 66 http > 28325 [SVN, ACK] Seq=(
R20 67.228.110.12(TCP 54 28325 > http [Ack] Seq=1 Ack:
the ul HTTP GET reques! DTS pR SR ST poB2: o TPIT. 1

Expand the Hypertext
Transfer Protocol e to view

o | fame 10: 823 bytes on wire (6584 bits), 823 bytes captured (6584 bits) on interfac-
@/ fthernet II, Src: Hewlett-_a7:bf:a3 (d4:85:64:a7:bf:a3), Dst: Cadant_31:bb:cl (00:(
syfnternet Protocol Version 4, Src: 24.6.173.220 (24.6.173.220), Ost: 67.228.110.120
‘Transmission Control Fromml, Src Port: 28325 (28325), Dst Port: http (80), Seq:]
Hypertext Transfer Protocol

+ GET / HTTP/LIINF\R.

Accept: application/x-ms-application, image/jpeg, application/xamlexml, image/gif

Accept-Language: en-US\rin

User-Agent: Mozilla/4.0 (compatible; MSIE §.0; Windows NT 6.1; WOW64: Trident/4.C

Accept-Encoding: gzip, deflate\rin

Host: www.wireshark.orgirin

Connection: Keep-Alive\rin

© 7| Fle"Craces-pespngsetisp. pespng .. | Packets 29123 Displayed: 23123 .| Profile Defoult

Figure 1. The client requests the Wireshark default page [http-wiresharkdownload-slow.pcapng]

If all goes well up to this point, you will see the HTTP server respond with a 200 OK response and the page
download begins. You will see various GET requests sent from your system—you are requesting the style
sheets for the page and graphics and other elements required to build the page.

When you click on the Download Wireshark button, your system sends a request for /download.html. Again,
you will see traffic related to building that page. Now you click the link to download one of the Wireshark
versions listed. Your system may do a DNS query to find the IP address of the download server before making
a new TCP connection to that IP address and finally sending a GET request for the Wireshark file as shown in
Figure 2.

Bl tipmineshackdownioad-ow pcspng ke) ot
Fde Edt Mew Go Capture Anshyze Sutitics Telephony Tooks Jntemals Help
Geged m@XRe nersaFe @ ecan @08 % @
Fiter, | Expression... Gl Appyy S
No. Tame Source Destination Pau\(c Length lnfo il
554 10.315803000 24.6:173.220 66.87.76.182 ONS 91 Standard quéry 0X6790 A wirt
555 10340119000 68.87.76.182 24.6.173.220 ON5' 107 Standard query response Ox67¢
1556 10.340646000 24.6.173.220 66.87.76.182 ONS 91 Standard query 0x3e8 AMM v
557 10.361559000 68.87.76.182 24.6.173.220 DNS 142 Standard query response Ox3e:
558 10362364000 24.6.173.220 69.4.231.52 TCP GG 28357 > http [SYN] Seq=0 Win:
559 10.448509000 69.4.231.52 24.6.173.220 TCP 66 http > 28357 [S¥N, ACK] Seq=(
56D 073000 73.220 69.4.231.52 LT R
22 Bb.

3
-4

70449200000 .220 69.4.231.52 HIIP_ B Wi reshark /wini6a/wi res hai
a2 10539637000 G 4 291 50 26 113 70 ht(p A T
563 10.541585000 69.4.231.52 24.6.173.220 TCP 1514 [T(P segment uf a r{assemh'!e(-

@ Frame 561: 863 bytes on wire (6904 bits), 863 bytes captured (6904 bits) on intzrf;—
@ Ethernet II, Src: Hewlett-_a7:bf:ad (d4:85:64:a7:bf:a3), Dst: Cadant_31:bbicl (00:(
o Internet Protocol Version 4, Src: 24.6.173.220 (24.6.173.220), Ost: 68.4.231.52 (6¢
@ Transmission CGHU‘UI Procucol Src Port: 28357 (28357), Dst Port: http (80), Seq:]
Hypertext Transfer Protocel =
+ GET /wireshark/winGd/ui reshark-win64-1.6.4.exe HTTP/L.I\r\n
Accept: application/x-ms-application, image/jpeg, applicationgeamlexml, image/gif
Referer: http://ww.wireshark.org/dosnload. html\rin
Accept-Language: en-us\rin
User-Agent: Mozilla/d4.0 (compatible; MSIE 8.0; Windows b
Accept-Encoding: gzip, deflate\rin
Host: wiresharkdownloads . riverbed. com\rin

The client connects to the
doinioad him page and
requests Ihe exe file

© & Fie"C peapng” .. |Packets B123 Dispiayed TITT T TPIORIEDE

Figure 2. You request the Wireshark executable [http-wiresharkdownload-slow.pcapng]

You can watch the process as the file is transferred to your local system. It all makes perfect sense. It is all
quite logical.

What might you feel like if there is a communications problem however?

You might sit patiently waiting for the download to finish—tapping your fingers ever so irritatingly on your
desk. Your eyes may wander... looking for some distraction that will make the time pass more quickly.
Waiting... waiting... waiting... until finally you just can’'t stand it anymore.

You type a new URL and decide to come back to the www.wireshark.org site later to get the latest copy of
Wireshark. The other site loads quickly (oh... yeah... speed is good). You find another open source software
package that is on your ‘must have’ list. You begin the download process and are filled with excitement at the
thrill of taking charge and grabbing software at blazing speed (after all, your company did pay big money to
upgrade that Internet connection)... until...

Your heart sinks...
This is taking waaaaay too long. At this rate you will miss lunch, dinner and potentially your summer vacation!

Maybe it's not www.wireshark.org that's having the problem. Maybe it's your WAN link (heaven forbid!) or your
network (shivers!) or your DNS server (unthinkable!) or your desktop system (impossible!).

Well? Which is it?

If you'd been running Wireshark in the background, you'd have known the answer long before | typed in that
comment about your summer vacation. The packets never lie. They always point to where the problem is.

Network analysis adds an indispensable tool to the network—just as an x-ray is an indispensable tool to the
hospital emergency room.[6]

Network analysis allows us the opportunity to look inside the network communication system. We can pull back
the curtains and watch the packets travel back and forth. We can SEE the DNS query being sent out and catch
the timely DNS response providing an answer. We can watch our local system send a TCP connection request
packet to www.wireshark.org. We can measure how long it takes www.wireshark.org to answer and get a
general feel for the round trip time to that site. We proudly beam as our system sends the HTTP GET request
for the file—just as a good system should. Then time begins to move slowly as the download appears to
"stick" at a specific point. The clock is ticking... and your day just turned ugly.

Well... you'll just have to look at the packets to know the cause of the problem. You can then point the finger!
In the world of finger pointing, it's only the network analyst’s finger that counts.

In this book we cover several reasons why file transfers slow to a crawl. Let’'s get you started right away by
looking at a troubleshooting and a security session using Wireshark.

Walk-Through of a Troubleshooting Session

This is based on an actual customer visit where the complaint dealt with poor performance when clients upload
files to a server from a branch office to the corporate headquarters. When things were good the upload
process took about 3 minutes. Now the upload process takes from 10 to 15 minutes.

Three IT staffers were gathered to assist with the analysis process: the infrastructure IT manager, the client IT
manager and the server IT manager.

Here are the steps involved in isolating the cause of the problem:

Step 1: Plan

We discussed the situation with the IT staff; focused on identifying the best place to start capturing the traffic.
This is key to ensuring we would be able to witness the problem. The IT team pointed repeatedly to one user
who complained on a regular basis—we'll call him Mike. We planned to start capturing as close to Mike's

machine as possible. [Reference: Know Where to Tap Into the Network]

Next we had to figure out how best to set up Wireshark for capture. We could not install Wireshark on Mike’s
machine and no full-duplex tap was available. Fortunately the customer did have switches that supported port
spanning so we decided to connect Wireshark to Mike's upstream switch and span Mike’s port so we could
listen in to the traffic. We ran a test or two to ensure the span command worked properly and we could see

Mike's traffic. [Reference: Set up Port Spanning/Port Mirroring on a Switch]

Step 2: Capture
We began capturing all traffic without any filter in place. We asked Mike to begin performing a file upload to
show us the performance issue.

Watching the traffic as we were capturing, we saw numerous packets marked with a black background and red
foreground—Bad TCP packets. After Mike finished the painfully slow upload process we stopped capturing and

began the analysis process. [Reference: Let Wireshark’s Expert Information Guide You]

Step 3: Analyze
In the trace file we isolated the file upload conversation by looking at the TCP conversations, sorting on the
highest byte count and filtering on this conversation. We would focus on this communication first. [Reference:

Identify the Most Active Conversations]

We looked at the TCP connection to get a feel for round trip wire latency time—all good here at 65ms. We also
looked inside the TCP handshake packets to determine connection capabilities of Mike’s machine and the
server. [References: Identify High Latency Times and The Establishment of TCP Connections]

Next we created an 10 Graph to see if there were sudden drops in 10 rate (we'd want to focus on those first)
or if the 10 rate was lousy all the way through. It certainly was lousy all the way through with an average
around 2.5 Mbps. [Reference: Generate Basic 10 Graphs]

Next we examined the Expert Infos window. Over 12% of the traffic was marked as bad for some reason. Out
of the 20,000 packets we captured during the test, there were over 1,000 Retransmissions and Fast
Retransmissions. Hundreds of Duplicate ACKs indicate the receiver (the server) noticed much of the packet
loss. This is what we would focus on first. [Reference: Understand TCP Expert Information]

We did not see any Previous Segment Lost indications in the trace file. This indicates that Wireshark saw the

original packet and the retransmission. Packet loss had not occurred yet (not surprising as data was being sent
from Mike's system right in front of us to the server and packet loss typically occurs at infrastructure devices—
this traffic had only crossed a single switch so far).

When we looked at the retransmissions we noticed that Mike's machine was resending every packet from the
lost packet forward. What? Not an expected recovery if the hosts were using Selective Acknowledgments
(SACK). [Reference: Improve Packet L Recovery with Selective Acknowledgments]

This is why | recommend looking at the TCP handshake process early in the analysis process—we noticed
Mike's machine indicated it supported this feature, but the server did not. Significant packet loss will have a
severe impact on performance without SACK in place. [Reference: The Establishment of TCP Connections]

It appears packet loss is the ultimate issue here, but the lousy recovery is making the situation unbearable. We
needed to address two questions:

* Where is packet loss occurring?

e Why didn’t the server support SACK?

The client was behaving properly by retransmitting data packets after the server asked for them (Duplicate
ACKs). The client IT manager was off the hook.

Since 99.999999% of the time packet loss occurs at an interconnecting device we knew we had to start
capturing closer to the server. [Reference: How TCP Recovers from Packet Loss]

Step 4: Repeat
We talked about our findings and decided to set up a Wireshark system just off the server to see what the

data upload looked like from that perspective. [Reference: Capture at Two L ocations (Dual Captures)]

We spanned the server’s port of that switch and again we began capturing, but this time we applied a capture
filter for Mike's IP address (host x.x.x.x). We asked Mike to repeat the upload process. [Reference: Create

MAC/IP _Address or Host Name Capture Filters]

We started by looking at the TCP handshake process—what? It appeared that Mike's handshake packet did not
indicate his system supported SACK. Instead we saw an illogical padding in the TCP header options area. This
is a sign that a router likely stripped out some information and replaced the information with padding. Since
the server believed that Mike couldn’t support SACK, the server would not talk about it. The server was
behaving properly in this case.

We spent some time looking through the company’s infrastructure to see which device could have altered the
TCP handshake Options field. We captured trace files at different points along the path and eventually found a
security device along the path that was removing this option from the handshake. Working with the vendor
who supplied the device, we eventually realized it was a feature (bug) that could be resolved with a software

update and reconfiguration. [Reference: What Triggers 4 NOPs in a Row?]

We verified that the performance improved substantially after the update and reconfiguration process. We still
had packet loss, but the recovery process using SACK made the packet loss almost imperceptible.

“Wireshark is Constantly Changing

It was this particular case (presented at Sharkfest 2010) that prompted the Wireshark developers to add an
Expert Info warning for "4 NOPS in a row" (the padding that replaced the SACK option). This means that
identifying this problem with the current version of Wireshark is much faster.

Walk-Through of a Typical Security Scenario (aka
Network Forensics)

This is based on an actual customer issue prompted by a user who noticed their system was acting strangely—
from slow performance to an inability to shut down the machine or place it into hibernate mode.

One IT staffer, Colton, was focused on capturing the traffic to determine the cause of this behavior.
Here are the steps involved in isolating the cause of the problem:

Step 1: Plan
Colton began the analysis process with proper evidence handling considerations in mind. [Reference: Handle

Evidence Properly]

Colton decided to capture traffic close to the complaining host, SUSPECT1 to determine if there was any
unusual traffic to or from that host. Colton had baselines of normal activity and knew the protocols SUSPECT1

typically used. [Reference: Baseline Protocols and Applications]

Colton did not want to install Wireshark on SUSPECT1 in case the machine was infected with something and
the issue went to Court. It's always best to be unobtrusive during this process. Colton connected a full-duplex
tap to SUSPECT1 and connected Wireshark to the tap. Colton set up Wireshark in stealth mode. [References:
Use a Test Access Port (TAP) on Full-Duplex Networks and Avoid Detection]

Step 2: Capture
Colton began capturing all traffic without any filter in place. He wanted to see every packet to or from

SUSPECTL1. [Reference: The Purpose of Capture Filters]

Watching the traffic during the capture process, Colton began to see a huge number of TCP SYN packets to
TCP port 135 (NetBIOS Session Service) and port 445 (NetBIOS Directory Service). There also appeared to be

some ICMP traffic. [References: Detect Various Types of TCP Port Scans and Know Your ICMP Types and
Codes]

While letting Wireshark continue to capture traffic, Colton began the analysis process.

Step 3: Analyze
In the traffic Colton saw SUSPECT1 connect to an outside server on an unusual port (TCP port 18067).

[Reference: Catch Unusual Protocols and Applications]

Following that TCP stream, Colton noticed some recognizable commands—USeR, NiCK and JOIN. These
commands are used in Internet Relay Chat (IRC) communications although they were not using all caps likely
to avoid case-sensitive IDS/firewall detection rules. The fact that the commands were altered and the port was
nonstandard was a good indication the program generating them was trying to be sneaky. [References: Build
Filters and Coloring Rules from IDS Rules and Follow and Reassemble TCP Conversations]

Further analysis revealed the IRC channel was being used to download a malicious application. We also
learned the host name of the IRC server. It did appear that SUSPECT1 was infected with something.

Using all the evidence available—host name, downloaded file name, port number in use, etc., Colton learned
he was up against a bot. He also learned which security flaw enabled that host (and likely other hosts on the
network) to become vulnerable.

Step 4: Secure

Colton isolated the host from the network and began the process of cleaning that host. In addition, Colton
began watching all network traffic to see which other hosts might be infected. By cutting off access to the IRC
server he mitigated further damage from connections to that IRC server while he began to clean other hosts.

Colton found and applied patches to the operating systems of all hosts to mitigate further threat from this
vulnerability.

Step 5: Document

Colton documented his findings and his process to educate (1) users on the symptoms experienced, (2)
management on his concerns of future vulnerabilities and (3) other IT staff members on his procedures for
network cleanup.

Troubleshooting Tasks for the Network Analyst

Troubleshooting is the most common use of Wireshark and is performed to locate the source of unacceptable
performance of the network, an application, a host or other element of network communications.
Troubleshooting tasks that can be performed with Wireshark include, but are not limited to:

Locate faulty network devices

Identify device or software misconfigurations

Measure high delays along a path

Locate the point of packet loss

Identify network errors and service refusals

Graph queuing delays

Security Tasks for the Network Analyst
Security tasks can be both proactive and reactive and are performed to identify security scanning
(reconnaissance) processes or breaches on the network. Security tasks that can be performed with Wireshark

include, but are not limited to:
» Perform intrusion detection
Identify and define malicious traffic signatures
Passively discover hosts, operating systems and services
Log traffic for forensics examination
Capture traffic as evidence
Test firewall blocking
Validate secure login and data traversal

Optimization Tasks for the Network Analyst
Optimization is the process of contrasting current performance with performance capabilities and making
adjustments in an effort to reach optimal performance levels. Optimization tasks that can be performed with
Wireshark include, but are not limited to:

¢ Analyzing current bandwidth usage

« Evaluating efficient use of packet sizes in data transfer applications

» Evaluating response times across a network

« Validating proper system configurations

Application Analysis Tasks for the Network Analyst
Application analysis is the process of capturing and analyzing the traffic generated by a network application.
Application analysis tasks that can be performed with Wireshark include, but are not limited to:

» Analyzing application bandwidth requirements

« ldentifying application protocols and ports in use

« Validating secure application data traversal

Understand Security Issues Related to Network Analysis

Network analysis can be used to improve network performance and security—but it can also be used for
malicious tasks. For example, an intruder who can access the network medium (wired or wireless) can listen in
on traffic (think "Starbucks" or "Gogo Inflight Internet). Unencrypted communications (such as clear text user
names and passwords) may be captured and thus enable a malicious user to compromise accounts. An
intruder can also learn network configuration information by listening to the traffic—this information can then
be used to exploit network vulnerabilities. Malicious programs may include network analysis capabilities to sniff
the traffic.

Define Policies Regarding Network Analysis

Companies should define specific policies regarding the use of a network analyzer. Your company policies
should state who can use a network analyzer on the network and how, when and where the network analyzer
may be used. Ensure these policies are well known throughout the company.

If you are a consultant performing network analysis services for a customer, consider adding a "Network
Analysis" clause to your non-disclosure agreement. Define network analysis tasks and be completely
forthcoming about the types of traffic that network analyzers can capture and view.

Files Containing Network Traffic Should be Secured
Ensure you have a secure storage solution for the traffic that you capture because confidential information
may exist in the traffic files (referred to as trace files).

Protect Your Network against Unwanted "Sniffers"

As you will learn in Chapter 3: Capture Traffic, switches make network analysis a bit more challenging. Those
challenges can be overcome using taps or redirection methods. Basic switches are not security devices. Unused
network ports and network ports in common areas (such as building lobbies) should be deactivated to
discourage visitors from plugging in and listening to network traffic.

The best protection mechanism against network sniffing is to encrypt network traffic using a robust encryption
method. Encryption solutions will not protect the general network traffic that is broadcast onto the network for
device and/or service discovery however. For example, DHCP clients broadcast DHCP Discover and Request
packets on the network. These packets contain information about the client (including the host name,
requested IP address and other revealing information). These DHCP broadcasts will be forwarded out by all

ports of a switch. A network analyzer connected to that switch is able to capture the traffic and learn
information about the DHCP client.

Be Aware of Legal Issues of Listening to Network Traffic
We aren't lawyers, so consult your legal counsel on this issue.

In general, Wireshark provides the ability to eavesdrop on network communications—have you heard the
terms "wiretapping" or "electronic surveillance"? Unauthorized use of Wireshark may be illegal. Certain
exceptions are in place to cover government use of wiretapping methods in advance of a crime being
perpetrated.

In the U.S., Title I of the ECPA (Electronic Communications and Privacy Act), often referred to as the Wiretap
Act, prohibits the intentional, actual or attempted interception, use, disclosure, or "procure[ment] [of] any
other person to intercept or endeavor to intercept any wire, oral, or electronic communication."

Title I offers exceptions for operators and service providers for uses "in the normal course of his employment
while engaged in any activity which is a necessary incident to the rendition of his service" and for "persons
authorized by law to intercept wire, oral, or electronic communications or to conduct electronic surveillance, as
defined in section 101 of the Foreign Intelligence Surveillance Act (FISA) of 1978." Cornell University Law
School provides details of Title | at www.law.cornell. 1 > sup 01 18 10 | 20 119.html.

In the European Union, the Data Protection Directive, Directive 95/46/EC of the European Parliament and of
the Council of 24 October 1995 (a draft update was defined in January 2012), defines the protection of
individuals with regard to the processing of personal data and on the free movement of such data requires
Member States to ensure the rights and freedoms of natural persons with regard to the processing of personal
data, and in particular their right to privacy, in order to ensure the free flow of personal data in the

Community. For details on the EU Data Protection Directive, visit ec.europa.eu/justice _home/fsj/privacy/.

“Avoid Prison Time

Company policies may also forbid unauthorized tapping into network communications. Disregard for these
policies may result in disciplinary actions or termination.Tom Quilty, CEO of BD Consulting and Investigations
(www.bdcon.net), offered this note:

"If they are capturing traffic with Personally Identifiable Information (PII), HIPAA (health records), or other
protected information, the trace files should not leave the facility. If lost, it may require that the client report a
data breach, which could be very costly for the person capturing the traffic. They should also ensure that they
have an appropriate General Liability and Errors & Omissions rider. I would recommend that they understand
what information is going across the wire (or air) and review the client’s Data Breach Policies and Response
Plan (assuming they have one—most don't). They may also have to testify about how they protected any
information captured (hopefully, they have developed procedures for this before this comes up)."

Many countries have similar laws in place regarding protection of information—make sure you understand your
local laws and look into professional insurance... just in case.

Overcome the "Needle in the Haystack Issue"

Many times new analysts capture thousands (or millions) of packets and are faced with the "needle in a
haystack issue"—the feeling that they are drowning in packets. Several non-pharmaceutical analysis
procedures can be used to avoid or deal with this situation:

« Place the analyzer appropriately (covered in Chapter 3: Capture Traffic)
« Apply capture filters to reduce the number of packets captured (covered in Ch r4: Cr nd Appl

Capture Filters)

» Apply display filters to focus on specific conversations, connections, protocols or applications (covered in
Chapter 9: Create and Apply Display Filters)

¢ Colorize the conversations in more complex multi-connection communications (covered in Chapter 6:
“olorize Traffic)

» Reassemble streams for a clear view of data exchanged (covered in Chapter 10: Follow Streams and
Reassemble Data)

¢ Save subsets of the captured traffic into separate files (covered in Chapter 12: Annotate, Save, Export and
Print Packets)

« Build graphs depicting overall traffic patterns or apply filters to graphs to focus on particular traffic types as

shown in Figure 3 (covered in Chapter 8: Interpret Basic Trace File Statistics and Chapter 21: Graph 10
Rates and TCP Trends).

[vww allitebooks.cond

http://www.law.cornell.edu/uscode/18/usc_sup_01_18_10_I_20_119.html
http://ec.europa.eu/justice_home/fsj/privacy/
http://www.bdcon.net/
http://www.allitebooks.org

[l Wireshark: Export File X

Savein: [] Excel CSV Flles =t BB
B Name 2 Date modified Type
=3 No items match your search
Recent Places TS
| a5 "CSV" (Comma Separated Values packet summary) file...
Deskiop
= After adding the desired column in the Packet List
Libraries pane, we have selected File | Export Packet
iy Dissections | as "CSV" file and then indicated

> we are interested in the Packet summary line

7Y
Network
File name [beacars csv e
Save astype: [csV (Comma Separated Values summany) "cs1 | Cancel
Help
Facket Range Packet Format -
" Captured =’ Displayed ¥ Packet suimary line
& Al packsts 563 4563 I Pad]
€ Selected packet 1 e
£ Waiked packels])
YU s e I™ Packel Bytes
Corege] | 2 I~ Each packet on a new page

Figure 3. Use filters in graphs to identify traffic patterns [sec-nessus.pcapng]

Throughout this book we will work with trace files obtained and manipulated using these techniques.

Review a Checklist of Analysis Tasks

Analysis tasks can be considered proactive or reactive. Proactive methods include baselining network
communications to learn the current status of the network and application performance. Proactive analysis can
also be used to spot network problems before they are felt by the network users. For example, identifying the
cause of packet loss before it becomes excessive and affects network communications helps avoid problems
before they are even noticed.

Reactive analysis techniques are employed after a complaint about network performance has been reported or
when network issues are suspected. Sadly, reactive analysis is more common.

The following lists some of the analysis tasks that can be performed using Wireshark:

Find the top talkers on the network

Identify the protocols and applications in use

Determine the average packets per second rate and bytes per second rate of an application or all network
traffic on a link

List all hosts communicating

Learn the packet lengths used by a data transfer application

Recognize the most common connection problems

Spot delays between client requests due to slow processing

Locate misconfigured hosts

Detect network or host congestion that is slowing down file transfers
Identify asynchronous traffic prioritization

Graph HTTP flows to examine website referrals rates

Identify unusual scanning traffic on the network

Quickly identify HTTP error responses indicating client and server problems
Quickly identify VolP error responses indicating client, server or global errors
Build graphs to compare traffic behavior

Graph application throughput and compare to overall link traffic seen
Identify applications that do not encrypt traffic

Play back VolP conversations to hear the effects of various network problems on network traffic
Perform passive operating system and application use detection

Spot unusual protocols and unrecognized port number usage on the network
Examine the startup process of hosts and applications on the network
Identify average and unacceptable service response times (SRT)

Graph intervals of periodic packet generation applications or protocols

Networks vary greatly in the traffic seen. The number and type of network analysis tasks you can perform

depends on your network traffic characteristics.

Understand Network Traffic Flows

Let's start at the packet level by following a packet as it makes its way from one host to another. We'll start by
looking at where we can capture the traffic (more in-depth information on capturing traffic can be found in
Chapter 3: Capture Traffic). We will examine how a packet is encapsulated, then stripped nearly naked by
some high-priced router only to be re-encapsulated and sent on its way again just before hypothermia sets in.
Let’'s chat about packets whizzing past switches so quickly there really isn’'t even time for a proper introduction.
Then we will peek at the effect that Quality of Service (QoS) has on our traffic and where devices and
technology puff up their chests, whip out their badges and throw up roadblocks that make us fear for our little
packet lives.

Switching Overview

Switches are considered Layer 2 devices—a reference to Layer 2 of the Open Systems Interconnection (OSI)
model—the data link layer which includes the Media Access Control (MAC) portion of the packet, such as the
Ethernet header.

TCR/IP Stack Switching TCP/IP Stack
1P: 10.0.0.1 Mechanism IP; 1_0‘0,0.2
‘ {error checking, filtering, "

NIC Driver address lookup, NIC Driver

1 packet forwarding, etc.)

‘ NIC MAC: A | ‘ Port 1 H Port 2 ‘ NIC MAC: D ‘

From MAC: A From MAC: A
IP:10.0.0.1 1P:10.0.0.1

To MAC:D To MAC:D
1P:10.0.0.2 IP:10.0.0.2

Figure 4. Switches do not alter the MAC or IP address in a packet

Switches forward packets based on the destination MAC address (aka the destination hardware address)
contained in the MAC header (such as the Ethernet header). As shown in Figure 4, switches do not change the
MAC or IP addresses in packets.[7]

When a packet arrives at a switch, the switch checks the packet to ensure it has the correct checksum. If the
packet’'s checksum is incorrect, the packet is considered "bad" and the packet is discarded. Switches should
maintain error counters to indicate how many packets they have discarded because of bad checksums.

If the checksum is good, the switch examines the destination MAC address of the packet and consults its MAC
address table to determine if it knows which switch port leads to the host using that MAC address. If the
switch does not have the target MAC address in its tables, it will forward the packet out all switch ports in
hopes of discovering the target when it answers.

If the switch does have the target MAC address in its tables it forwards the packet out the appropriate switch
port. Broadcasts are forwarded out all switch ports. Unless configured otherwise through a technology such as
Internet Group Management Protocol (IGMP) snooping, multicasts are also forwarded out all switch ports.

To learn about the challenges of and solutions for capturing traffic on a switched network, refer to Capture
Traffic on Switched Networks.

Routing Overview

Routers forward packets based on the destination IP address in the IP header. When a packet is sent to the
MAC address of the router, that router examines the checksum to ensure the packet is valid. If the checksum
is invalid, the packet is dropped. If the checksum is valid, the router strips off the MAC header (such as the
Ethernet header) and examines the IP header to identify the "age" (in Time to Live) and destination of the
packet. If the packet is too "old" (Time to Live value of 1), the router discards the packet and sends an ICMP
Time to Live Exceeded message back to the sender.

If the packet is not too old, the router consults its routing tables to determine if the destination IP network is
known. If the router is directly connected to the target network, it can send the packet on to the target. The
router decrements the IP header Time to Live value and then creates and applies a new MAC header to the
packet before forwarding it, as shown in Figure 5.

~— Network 10.88 — +— Network 10.35 ——

TCP/IP Stack Routing TCP/IP Stack
1P:10.88.0.1 Mechanism | [P:1053.02
'- (error checking, filtering, "

NIC Driver routing table lookup, NIC Driver
l packet forwarding, etc.) t

[il
NIC MAC: A NIC MAC:B { NIC MAC: C l | NIC MAC: D |
L

From MAC:C
1P:10.88.0.1

From MAC:A
1P: 10.88.0.1

To MAC: 8
IP:10.99.0.2

To MAC:D
1P:10.99.0.2

Figure 5. Routers change the destination MAC address to the target (if the target is local) or next router (if the target is remote)

If the target is not on a locally connected network, the router forwards the packet to the next-hop router that
it learned about when consulting its routing tables.

Routers may contain rules that block or permit packets based on the addressing information. Many routers
provide firewall capabilities and can block/permit traffic based on other characteristics.

Proxy, Firewall and NAT/PAT Overview
Firewalls are created to examine the traffic and allow/disallow communications based on a set of rules. For

example, you may want to block all TCP connection attempts from hosts outside the firewall that are destined
to port 21 on internal servers.

Basic firewalls operate at Layer 3 of the OSI model—the network layer to forward traffic. In this capacity, the
firewall acts like a router when handling network traffic. The firewall will forward traffic that is not blocked by
the firewall rules. The firewall prepends a new MAC header on the packet before forwarding it. Additional
packet alteration will take place if the firewall supports added features, such as Network Address Translation
(NAT) or proxy capabilities.

NAT systems alter the IP addresses in the packet as shown in Figure 6. This is often used to hide the client’s
private IP address. A basic NAT system simply alters the source and destination IP address of the packet and
tracks the connection relationships in a table to forward traffic properly when a reply is received. Port Address
Translation (PAT) systems also alter the port information and use this as a method for demultiplexing multiple
internal connections when using a single outbound address. The IP addresses you see on one side of a
NAT/PAT device will not match the IP addresses you see on the other side of the NAT/PAT device. To correlate
the communications on both sides of a NAT device, you will need to look past the IP header to identify
matching packets.

Proxy servers also affect traffic. Unlike the communications seen when you use a standard firewall, the client
connects to the proxy server and the proxy server makes a separate connection to the target. There are two
totally separate connections to examine when troubleshooting these communications.

TCP/IP Stack i 1P: 83.150.67.33
IP: 10.57.0.1 Firewall + NAT

‘ IP: 130.57.0.1 —
e (filtering rules, ’

proxy process)

| NIC MAC: A | NIC MAC: B L NIC MAC: C .
L

From MAC:A
1P:10.57.0.1

From MAC:C
IP:130.57.0.1

To MAC: B
IP: 83.150.67.33

To MAC: D
1P: 83.150.67.33

Figure 6. The firewall uses NAT to hide the true source IP address

Other Technologies that Affect Packets

There are numerous other technologies that affect network traffic patterns and packet contents.

Virtual LAN (VLAN) tagging (defined as 802.1Q) adds an identification (tag) to the packets. This tag is used to
create virtual networks in a switched environment. Figure 7 shows a VLAN tag in an Ethernet frame. In this
case, the sender belongs to VLAN 32.

Multiprotocol Label Switching (MPLS) is a method of creating virtual links between remote hosts. MPLS packets
are prefaced with a special header by MPLS edge devices. For example, a packet sent from a client reaches an
MPLS router where the MPLS label is placed on the packet. The packet is now forwarded based on the MPLS
label, not routing table lookups. The MPLS label is stripped off when the packet exits the MPLS network.

I vian-gerensipeapry 1
Bl fdit View Go Copture nabae Sufisis Telepho
CE L AN Brx&a «

Qe ensE B
Fier: E

fo. Time o0 th_Info -
1 0600000000 131 151.32.125 TH.151.32.21 wn . 1348 Requests: FreePixmap, Freef
2 0.000105000 131.151.32.129 131.151.32.21 X11 650 Requests: Configurewindow

3 0.007671000 131.151.32.129 131.151.32.21 X11 1518 Requests: Configurewindow,

4 0.007756000 131.151.32.129 131.151.32.21 X11 350 Regquests: Configurewindow

S 0.008329000 131.151.32.21 131.151.32.12¢TCP 70 6000 > health-trap [ACK] Se
6 0.009617000 131.151.32.21 131.151.32.12¢x11 1518 Event: ConfigureNotify, Exp

0009662000 131.151.32.21 131.151.32.12X11 638 Event: ConfigureNotify

8 0.009802000 131.151.32.129 131.151.32.21 TCP 70 health-trap > 6000 [ACK] Se
9 0.009888000 131.151.32.129 131.151.32.21 TcP 70 health-trap > 6000 [AcK] Se
10 0. 014138000 131.151.32.21 131.151.32.12¢x11 1094 Event: ConfiqureNotify, (ur'

| Frase 1: 1518 bytes on wire (12144 bits), 1518 bytes captured (12144 bits) on intel -
EtilernE{ II, Src: AniCommu_40:ef:24 (00:40:05:40:ef:24), Dst: 3co 00:60: -
| = bL:f3 (00:60:08:9F:b1:f3)
£:24 (00:40:05:40:ef:24)
0)

The vaiue 0x8100 in the
Ethernet Type field indicates
a VLAN tag is next

| - The senderison VLAN 32)
| Type: 1P (0x080D) 1
| Internet protocol version 4, Src: 131.151.32.129 (131.151.32.129), Ost: 131.151.32. |
| Transmission Control Pr'otucol Src Port: health-trap (1162), Dst Port: 6000 (ﬁoou) -
|« |
© | B0 Vimu LAN (v, 4 bytes Packets: 139 Disployed: 133 Mark... | Profile: Defsait

Figure 7. VLAN tags separate virtual networks [vlan-general.pcapng]

Warnings about "Smarter" Infrastructure Devices

You paid a bunch of money for those brilliant infrastructure devices and you didn’t expect them to be the cause
of your network problems, did you? Numerous "security devices" do more than route packets based on simple
rules—they get in there and mess up the packets. For example, Cisco’s Adaptive Security Appliance (ASA)
performs "TCP normalization." The ASA devices are billed as stateful firewalls and VPN concentrators, but these
lovely boxes had a little problem that caused them to strip off some TCP functionality during the connection
process. In essence, an ASA device forced TCP hosts on both sides of it to go back to pre-2006 capabilities.[8]

Wide Area Network (WAN) optimization techniques can also alter the packet and data stream process by
compressing traffic, offering locally-cached versions of data, optimizing TCP or prioritizing traffic based on
defined characteristics (traffic "shaping").

The best way to know how these technologies affect your traffic is to capture the packets before and after
they pass through a traffic-altering device.

Launch an Analysis Session

You can start capturing and analyzing traffic right now. Follow these steps to get a feel for analyzing traffic on
a wired network first.

Step 1
Install Wireshark (refer to the System Requirement information at

www. ereshark org/docs/wsug_html_ chunked/ChlntroPIatforms html). Visit
html for details on installing Wireshark on

numerous platforms

Step 2

Launch Wireshark and click on your wired network adapter listed in the Interface List on the Start Page and
click Start. Wireshark should be capturing traffic now. (If your adapter is not listed, you cannot capture traffic.
Visit wiki.wireshark.org/CaptureSetup/NetworklInterfaces for assistance.)

Step 3

If you have browsed to www.chappellU.com recently, clear your browser cache before this step. Refer to your
browser Help for details on how to clear your browser cache. In addition, consider clearing your DNS cache.[9]
While Wireshark is capturing traffic, launch your browser and visit www.chappellU.com.

Step 4
Select Capture | Stop on the Main Menu or click the Stop Capture button [#] on the Main Toolbar.

Step 5

Look through the captured traffic. You should see a DNS query (unless you did not clear your DNS cache in
Step 3). If your system supports both IPv4 and IPv6 you may see two DNS queries—one for the IPv4 address
(A record) of www.chappellU.com and one for the IPv6 address (AAAA record) of www.chappellU.com. After
you make a connection to the site, your browser would send a GET request to the server as shown in Figure 8.

http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html
http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html
http://wiki.wireshark.org/CaptureSetup/NetworkInterfaces

1 i choppeiinl pesng Wi s s a dual-stack client e) i
Ede Edit Miew Go Capture Analyae becs NS quenes - one for

> 6c ver for an AAMA record =
DEAN @R ki TR

Fiter, | Expression...
0. Teme Source Destnation Prathy info
24.6:173.220 68.87.76.182 DNS i Standard query Oxf9c5 A wwwchapp

0.000000
0.112487 68.87.76.182 24.6.173.220 ONS Standard query response 0xf3cs A
0.113597 24.6.173.220 68.87.76.182 ONS Standard guery Oxcfb8 AAAA www.ch
0.139229 68.87.76.182 24.6.173.220 DNS Standard query response Oxcfb
0.141276 24.6.173.220 198.66.239.145 TCP 26385 > http [SYN] Seq=0 Win=g192
0.162647 198.66.239.146 24.6.173.220 TcP http > 26385 [SYN, ACK] Seq=0 Ack-

0.162835 24.6.173.220 198.66.239.146 TCP 26385 > http [ACK] Seq=1 Ack=1 Win

He
%
2z
3
&
5
6
7

% Frame 8: 427 bytes on wire (3416 bits), 427 bytes captured (3416 bits) on interfact ‘
Ethernet II, Src: Hewlett-_a7:bf:a3 (d4:85:64:a7:bf:ad), Dst: Cadant_31:bb:cl (00:(
Internet Protocol Version 4, Src: 24.6.173.220 (24.6.173.220), Dst: 198.66.239.146
Transmission Control Protecol. Src Port: 26385 (26385), Dst Port: http (80), Seq:]

Hypertext Transfer Protocol

The client makes a request for the
main page at www.chappelll.com

; #9.2.18) Gecko/20 |
Accept: text/html,application/xhtml<xml,application/anl;q=0.9, /% q=0.8\r\n
Accept-Language: en-us,en;q=0.5\r\n

(deflate\rin

© 1 Fie:"Claraces-peapngsetap-chappell01L peapng” L1é KB000... | Packets: 195 Dirplayed: 195 Mark.._ Puofile Defaait

Figure 8. The client makes a GET request for the main page [http-chappellu2011.pcapng]

You may see traffic from other processes in the trace file. For example, if your browser performs a website
blacklist check to identify known malicious sites, you will see this traffic preceding connection to
www.chappellU.com. Display filters can be used to remove unrelated traffic from view so you can focus better
on the traffic of interest. For more information on display filtering, refer to Chapter 9: Create and Apply Display
Filters.

Step 6

Select File | Save and create a \mytraces directory. Save your file using the name chappellu.pcapng
(Wireshark automatically appends the file extension..pcap or .pcapng, depending on which file format is set in
your Wireshark preferences—we recommend saving your trace files in pcap-ng format to support packet and
trace file annotations.)

You did it! Well done. You are well on your way to learning network analysis—one of the most valuable and
fundamental skills of network management and security.

-

Case Study: Pruning the "Puke"
Submitted by: Mitch Dickey, Frederick County Public Schools, VA

Our school district is comprised of 24 buildings and roughly 50 VLANS. Generally speaking, each campus has
one VLAN for data and one for voice. For the most part each campus is its own VLAN, with some smaller sites
sharing a single VLAN. We operate in a NetWare environment with at least one NetWare server at each
campus. Each campus links back to an aggregate location before it is sent on to the router; what some like to
call "Router on a Stick."

I use Wireshark on a regular basis to monitor traffic patterns and remove unnecessary traffic from the VLANs
that | manage. Two types of traffic that | have eliminated are NetBIOS and SMB. Since we are in a NetWare
environment we use NDPS for our printing services and do not require Windows File and Printer Sharing.
Because of this | turn off NetBIOS and SMB on the machines that | manage. | recently sampled four other
VLANSs (out of my control) by taking a five minute PCAP. After the capture, | sifted through the traffic using
filters to determine what percentage of traffic was NetBIOS and SMB. Although the results are lower than what
I expected, trimming what I did find could be beneficial to switch/router processing, and most of all security.
» A capture containing 50,898 packets returned a combined total of 1,321 packets or 2.5% NetBIOS/SMB
traffic.
¢ A capture containing 175,824 packets returned a combined total of 16,480 packets or 9% NetBIOS/SMB
traffic.
¢ A capture containing 295,911 packets returned a combined total of 14,102 packets or 5% NetBIOS/SMB
traffic.
¢ A capture containing 115,814 packets returned a combined total of 333 packets or less than 1%
NetBIOS/SMB traffic.

I have used Wireshark to track down and remove other unnecessary protocols like SNMP and SSDP as well. We
only use SNMP on Cisco equipment so eliminating it from network printers has cleaned up the network.

Case Study: The "Securely Invisible" Network

One customer’s network consisted of 22 buildings in a campus-style setting. Management complained that the
network was slow at times and had asked a consultant to come onsite to determine the cause of poor network
performance.

Upon arrival, | was asked to sign a legal document stating that |1 would not listen to the network traffic to
isolate the problem (you, as | do, must question why they called me).

The management at this company was concerned that confidential data may traverse their network in an
unencrypted form.

The management was ignoring the fact that there are many ways for someone to tap into their network. If
their data is visible to a network analyst, it would be best to verify that and fix the problem, not just assume
that no one is listening.

It took several meetings with various individuals to convince management that they were a bit "off" on their
thinking.

Once | began listening to their network traffic it became evident that they had good reason to be concerned.
Their Lotus Notes implementation was misconfigured—all emails traveled through the network in clear text.

Over the next few hours of listening to the network traffic we found several applications that sent sensitive
data across the network. By the time | left they had a list of security enhancements to implement on the
network.

Summary

Network analysis offers an insight into network communications. When performance problems plague the
network, guesswork can often be time-consuming and lead to inaccurate conclusions costing you and your
company time and money. A full understanding of the network traffic flows is necessary to (a) place the
analyzer properly on the network and (b) identify possible causes of network problems.

At this point it is recommended that you follow the procedures listed in Launch an Analysis Session and review
the section entitled Follow an Analysis Example.

Practice What You’ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
There are many trace files and other book supplement files available on the book website. Consider copying
them all to your drive now.

In Wireshark, open gen-googlemaps.pcapng. This trace file contains the traffic from a web browsing session to
maps.google.com.

Our client is 192.168.0.106. Our default gateway, 192.168.0.1, offers DNS services as well.

Answer the following questions about this trace file.
+ What is the hardware address of the client that is browsing to maps.google.com?
e What is the IP address of the DNS server (which is also the router)?
* What is the hardware address of the DNS server/router?
« What IP addresses are associated with maps.google.com?

.....

P who has 192.168.0.17 Tell 192.168
192.166.0.1 15 at 00:13:46:ccias:e,

Standard query A maps.google.com

Standard query response CNAME map

G 0 Asust
#2°0.000572 D-Linl
\)3 0.000006 192.1
4 0.016206 192.168.0.1
5 0.003039 192.168.0.106 74.125.19.147 TCP twsdss > http [SYN] Seq=0 win= 555}

192.168.0.106

3)6 0.014638 74.125.19.147 192.168.0.106 TCP http > twsdss [SYN, ACK] Seq=U Acl

7 0.000030 192.166.0.106 74.125.19.147 TCP twsdss > http [ack] seq=l AcksL wi
\)8 0.000224' 192.168.0.106 74.125.19.147 HTTP GET / HTTI

9 0.016988 74.125.19.147 192.168.0.106 TcP http > msdss Eacxj saq 1 Mk 888
10 0.047942 74.125.19.147 192.168.0.106 TCP [TCP s d POU]
11 0.000928 74.125.19.147 192.168.0.106 Tcp [Tcr segmm: of a reassgmb!ed POU
12 0.000045 192.168.0.106 74.125.19.147 TCP twsdss > http [ACK] Seq=388 Ack=28
13 0.000108 74.125.19.147 192.168.0.106 TCP [TCP segment of a reassembled Pou]
14 0.000022 74.125.19 147 192.168.0.106 [TcP_segment of a reassembled POU

1. The first two packets—ARP packets—obtain the hardware address of the DNS server. What can we learn
just from these two packets? Well—the client is 192.168.0.106. The DNS server is at 192.168.0.1. The
hardware addresses of the client and the DNS server are listed in the Source and Destination columns (the
first three bytes of the hardware address—the OUI value—and "broadcast" has been resolved to a more

http://www.wiresharkbook.com/

readable format by Wireshark). The hardware address of the client is listed as AsustekC_b0:30:23 in the
Packet Info pane and 00:17:31:b0:30:23 in the Ethernet Il summary line and inside the ARP packet.

2. Packets 3 and 4 are the DNS query/response packets. The client is trying to get the IP address of
maps.google.com. The DNS query packet is addressed to the hardware address and IP address of the DNS
server (this DNS server is local to the client). The DNS server provides 7 records—one record indicates that
maps.google.com’s real name (CNAME) is maps.l.google.com. Six addresses are listed for
maps.l.google.com. The first address listed is 74.125.19.147.

3. The client makes a TCP connection to maps.google.com at 74.125.19.147 in packets 5, 6 and 7. The client
sends the packet to the hardware address of the router (which is also the DNS server on this client's
network this trace file) and the IP address of maps.google.com (maps.l.google.com). The client is using a
dynamic source port number (3012) for the connection. This port number is listed as twsdss in Wireshark's
services file.

4. In packet 8 the client asks for the main page (GET HTTPL1.1). In packet 9, the server acknowledges receipt
of that request. In packet 10 the server begins sending the main page to the client.

The following table lists the trace files you worked with and a few other trace files at www.wiresharkbook.com
that you might want to review.

gen-googlemaps.pcapng: This trace file depicts a simple web browsing session to www.google.com. The
client performed an ARP query to get the hardware address of the DNS server and then sent a query to that
DNS server to resolve the IP address for www.google.com. After receiving a successful response, the client
makes a TCP connection to the server on port 80 and requests to GET the main page. The page is downloaded
successfully.

http-chappellu2011.pcapng: We are browsing to the www.chappellU.com website, but we're getting a 404
error. The browser requires several connections to download the page elements so the best way to know what
is "Not Found" is to follow the stream on the 404 response.

http-wiresharkdownload.pcapng: Gerald had a bit of fun with the wireshark.org site — check out the X-
Slogan text in packet 6. That's not the only slogan coming down the line. Apply an http.response.code display
filter to find the other message from Gerald. The request to download the Wireshark file is seen in packet 33.
It took just over 30 seconds for the download.

http-wiresharkdownload-slow.pcapng: This is the trace file referred to in this chapter. The request to
download the Wireshark file is seen in packet 561. It took over 60 seconds for the download.

icmp-ping-basic.pcapng: This is the simplest of all ping operations—it begins with the DNS resolution
process for the target name and continues to an IPv4 Echo Request followed by an ICMP Echo Reply.

sec-nessus.pcapng: Nessus (www.nessus.org), the penetration testing tool, doesn't try to be sneaky. Use
the Find feature to search for the string 'nessus' in this trace file (do not search case sensitive). You'll find the
‘nessus' signature all over in this trace file. In addition, you'll see the unusual ping packet (packet 3) used by
Xprobe2 when the Nessus scan runs.

telnet.pcapng: Someone makes a telnet connection to a Cisco router to run the show version command
which is echoed back, as is the exit command. The password, however, is not echoed back. Follow the DO,
DON'T, WILL and WON'T command as the client and server negotiate the connection behavior.

vlan-general.pcapng: This trace shows an X11 communication on a VLAN. You can see the VLAN tag
directly after the Ethernet header and before the IP header.

Review Questions

Q1.1
What is the purpose of network analysis?

Q1.2
Name at least three troubleshooting tasks that can be performed using network analysis.

1.
2.
3.
Q1.3

Why is network analysis considered a security risk by some companies?

Answers to Review Questions

Q1.1
What is the purpose of network analysis?

Al
Network analysis offers an insight into network communications to identify performance problems, locate
security breaches, analyze application behavior, and perform capacity planning.

Q1.2
Name at least three troubleshooting tasks that can be performed using network analysis.

Al.2

1.Locate faulty network devices
2.Measure high delays along a path
3.Locate the point of packet loss

Q1.3
Why is network analysis considered a security risk by some companies?

Al.3

Some companies consider network analysis to be a security risk because it involves tapping into network
traffic and eavesdropping on communications. These companies fear that unencrypted information (data,
email, etc.) may be seen by the network analyst. In reality, however, the network analyst can identify
unsecure network communications to prevent unauthorized eavesdroppers from gaining insight into
confidential communications.

Chapter 2
Introduction to Wireshark

Wireshark Creation and Maintenance

Wireshark is the world’s most popular network analyzer. Available for free to all as an open source tool,
Wireshark runs on a variety of platforms and offers the ideal ‘first responder’ tool for IT professionals.

In 1997, the analysis world was dominated by commercial network analyzers that ranged in price from $5,000
to $20,000. The cost was prohibitive to most business and information technologists. Gerald Combs was one of
these technologists who felt the budget constraints of the expensive commercial tools. Prior to creating
Ethereal™, Gerald Combs was lugging around a Sniffer™ portable at the University of Missouri in Kansas City.
The budget issues at his next job at a small Internet service provider limited his tools to tcpdump and snoop.

He decided to create his own network analyzer program.

Gerald Combs originally released his network analyzer program under the name Ethereal (version 0.2.0) on
July 14, 1998 although Gerald's original development notes are dated several months earlier (late 1997).[10]
When Gerald began working with CACE Technologies in June 2006, trademark ownership issues of the name
Ethereal forced the development efforts to move to the new name, Wireshark[11]. CACE Technologies was
purchased by Riverbed Technology in 2010.

Wireshark is maintained by an active community of developers from all over the world. For more information

on the Wireshark developers, see Thank he Wireshark Developers or select Help | About Wireshark |
Authors from the Main Menu.

Obtain the Latest Version of Wireshark

Wireshark is available for numerous operating systems including Windows, Apple Mac OS X, Debian GNU/Linux,
FreeBSD, Gentoo Linux, HP-UX, Mandriva Linux, NetBSD, OpenPKG, Red Hat Fedora/Enterprise Linux, rPath
Linux, Sun Solaris/i386, Sun Solaris/Sparc and Ubuntu.

Visit www.wireshark.org/download.html to locate the appropriate Wireshark version for your operating system.
Wireshark is released under the GNU (pronounced guh-new) General Public License (referred to as the GNU

GPL). For information on the GNU GPL, visit www.gnu.org/licenses/gpl-faqg.html. To view the Wireshark

License, choose Help | About Wireshark | License as shown in Figure 9. For details on the estimated cost
to develop Wireshark, see Calculating the Val f the Wireshark

Figure 9. The Wireshark license

Compare Wireshark Release and Development Versions
The most recent stable version of Wireshark is available at www.wireshark.or wnload.html while the recent
development release versions can be found at www.wireshark.org/download/automated.html.

The version number used for stable releases contain an even number after the first decimal point (such as
1.6.x and 1.8.x) while development release version numbers contain an odd number after the decimal point
(such as 1.5.x and 1.7.x). In addition, "SVN" in the title indicates the release subversion number.

“Get Notified of New Wireshark Releases
Sign up for the Wireshark-announce mailing list at www.wireshark.org/lists to receive notification of releases.

Thanks to the Wireshark Developers!

Currently there are approximately 700 developers credited with building and enhancing Wireshark. There are
between 10 and 20 active developers at any given time. Wireshark’s capabilities and resulting popularity is a
direct result of the tireless efforts of the development team.[12]

The list of "Core Developers" is maintained at wiki.wireshark.org/Developers. The complete list of contributors
is available at Help | About Wireshark | Authors. At the time this book was written, the core developers
are listed as:

Olivier Abad - Olivier Biot - Stig Bjarlykke - Graham Bloice - Sake Blok - Hannes Boehm - Anders Broman -
Gerald Combs[13] - Laurent Deniel - Gerasimos Dimitriadis - Mike Duigou - Stephen Fisher - Jeff Foster - Uwe
Girlich - Jun-ichiro itojun Hagino - Mike Hall - Guy Harris - Jaap Keuter - Tomas Kukosa - Alexis La Goutte - Ulf
Lamping - Graeme Lunt - Martin Mathieson - Joerg Mayer - Christopher Maynard - John McDermott - Bill Meier
- Stefan Metzmacher - Greg Morris - Jeff Morriss - Ashok Narayanan - Nathan Neulinger - Luis Ontanon - Pascal
Quantin - Tim Potter - Kovarththanan Rajaratnam - Gilbert Ramirez - Balint Reczey - Lars Roland - Irene
Ringeler - Ronnie Sahlberg - Richard Sharpe - Sebastien Tandel - Michael Tuexen - Richard Van Der Hoff -
Alejandro Vaquero - Jelmer Vernooij - Ed Warnicke - Jim Young - Jakub Zawadzki

Calculating the Value of the Wireshark Code

SLOCCount (sourceforge.net/projects/sloccount/, developed by David A. Wheeler, is a tool used to count
source lines of code and estimate development cost and time. According to SLOCCount[14], Wireshark contains
2,272,715 lines of code (LoC) and has taken 668.96 person-years to develop at an estimated development cost
of $ 90,367,829. Wireshark’s automated build system generates a report after each check in at
www.wireshark.or wnl m l nt.txt.

Report a Wireshark Bug or Submit an Enhancement

Wireshark uses the Bugzilla bug tracking system at bugs.wireshark.org/bugzilla (Figure 10). Sometimes things
just don’t seem right in Wireshark. Maybe a field doesn’t seem to be decoded properly or a button is only
partially visible—you can view the entire list of open bugs to see if someone else feels your pain or if the bug
is being worked on.

Bugs can be reported on the Wireshark GUI, Tshark, Dumpcap, Editcap, Mergecap, Capinfos, Text2pcap and

http://www.wireshark.org/download.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.wireshark.org/download.html
http://www.wireshark.org/download/automated.html
http://www.wireshark.org/lists
http://wiki.wireshark.org/Developers
http://sourceforge.net/projects/sloccount/
http://www.wireshark.org/download/automated/sloccount.txt
http://bugs.wireshark.org/bugzilla

other related utilities. The bug tracking system also supports the Wireshark web sites, including
www.wireshark.org, wiki.wireshark.org, and anonsvn.wireshark.org. Problems with other network services such
as Subversion, mail, FTP, and rsync should be reported here as well.

Click Show Open Bugs to see a list of all the open bugs for Wireshark. Click once on the Sev heading to view
the list sorted by severity. You can also search for a bug based on a keyword, submit a new bug or request
product enhancements here as well.

“ Wireshark Bug Database — Main Page
reshart e | e | S [search [0

Check out the open
bugs sorted by severity.
priority, status, etc.

Open a new account to
report a bug

Search for a bug by its

number ora term

Figure 10. You can view all open bugs in Wireshark's Bugzilla bug database

You will need to create an account and login before you can file a bug. You do not need to create an account
or login to search for a bug or show open bugs. To learn more about using Bugzilla, visit

https: .wireshark.or zilla/ and select Bugzilla User's Guide.

Following Export Regulations

Wireshark has the ability to decrypt DCERPC, IPsec, ISAKMP, Kerberos, SNMPv3, SSL/TLS, WEP, WPA/WPA2
and a number of other protocols. Wireshark’s primary distribution point is in the United States through the
www.wireshark.org site, and subsequently falls under U.S. encryption export regulations.

Export regulation issues are covered in the Wireshark FAQ:

"To the best of our knowledge, Wireshark falls under ECCN 5D002 and qualifies for license exemption TSU
under Section 734.3(b)(3) of the EAR. Downloading Wireshark in Cuba, Iran, North Korea, Libya, Sudan, and
Syria is prohibited."

The FAQ references a document written by Frank Hecker that details Mozilla's Export Control Classification
Number used for U.S. encryption export control regulations. The document is located at

hecker.org/mozilla/eccn.
Identifying Products that Leverage Wireshark’s Capabilities

Numerous products either embed Wireshark within their product offerings or provide complementary services
based on Wireshark.
« AirPcap adapters by Riverbed Technology enable simultaneous 802.11 a/b/g/n capture and dissection by

Wireshark (www.riverbed.com/us/products/cascade/airpcap.php)
¢ Cascade Pilot® by Riverbed Technology offers long-term trending of network traffic and export of selected

sections of traffic directly into Wireshark (www.riverbed.com/us/products/cascade/cascade_pilot.php)

 Cisco’s Nexus 7000 Series switches includes Wireshark as a built-in protocol analyzer

(www. cisco.com/en/US/products/ps9402)
Capture Packets on Wired or Wireless Networks

When Wireshark is connected to a wired or wireless network, traffic is processed by either the WinPcap,
AirPcap or libpcap link-layer interface, as illustrated in Figure 11.

Capture Engine

Capture Filters

WinPcap; AirPcap - libpcap

Network

[vww allitebooks.cond

http://www.wireshark.org/
http://wiki.wireshark.org/
http://anonsvn.wireshark.org/
https://bugs.wireshark.org/bugzilla/
http://www.wireshark.org/
http://hecker.org/mozilla/eccn
http://www.riverbed.com/us/products/cascade/airpcap.php
http://www.riverbed.com/us/products/cascade/cascade_pilot.php
http://www.cisco.com/en/US/products/ps9402
http://www.allitebooks.org

Figure 11. Traffic capture process

Libpcap
The libpcap library is the industry standard link-layer interface for capturing traffic on *NIX hosts. Information
regarding patches related to libpcap can be found at www.tcpdump.org.

WinPcap

WinPcap is the Windows port of the libpcap link-layer interface. WinPcap consists of a driver that provides the
low-level network access and the Windows version of the libpcap API (application programming interface). Visit
www.winpcap.org for more information on WinPcap and WinPcap-capable utilities.

AirPcap
AirPcap is a link-layer interface and network adapter to capture 802.11 traffic on Windows operating systems.
AirPcap adapters operate in passive mode to capture WLAN data, management and control frames. Visit

www.riverbed.com/us/products/cascade/airpcap.php for more information on AirPcap adapters.
Open Various Trace File Types

WinPcap, AirPcap and libpcap interfaces are not used when opening trace files. Opened trace files are
processed through the Wireshark Wiretap Library as illustrated in Figure 12.

F anef.
eretalehmry "“""‘ ol

i

Drive

Figure 12. The Wiretap Library is used when you open trace files

The Wireshark Wiretap Library enables Wireshark to read a variety of trace file formats including
Wireshark/tcpdump-libcap, Microsoft NetMon, Endace ERF capture, AIX tcpdump-libcap, Network General
Sniffer, TamoSoft CommView, RedHat 6.1 tcpdump-libpcap, NI Observer, Shomiti/Finisar Surveyor, SUSE 6.3
tcpdump-libpcap, Sun snoop, WildPackets *Peek and more.

To view the entire list of trace file formats in the Wireshark Wiretap Library, launch Wireshark and select File |

Open. Open the Files of Type drop down list. Try it yourself. Open ftp-dir.enc (one of the older Sniffer file
formats).

“Access the Wireshark Developer Guide
Wireshark is open source—anyone can contribute to the code. We didn't get into developing dissectors in this
book, but you can obtain information on creating dissectors for Wireshark at

www.wireshark.org/docs/wsdg html chunked/. You should attend the Sharkfest Conference if you are serious
about developing for Wireshark. For more information, visit sharkfest.wireshark.org.

Understand How Wireshark Processes Packets

Trace files that are processed by libpcap, WinPcap or AirPcap or are opened up with the Wiretap Library are
processed in the core engine as shown in Figure 13.

Graphical Toolkit (GTK)

Dissectors — Plugins — Display Filters

Core Engine

Figure 13. Packet processing elements

Core Engine
The core engine is described as the ‘glue code that holds the other blocks together.’

Dissectors and Plugins and Display Filters
Dissectors (also referred to as decodes), plugins (special routines for dissection) and display filters (used to

http://www.tcpdump.org/
http://www.winpcap.org/
http://www.riverbed.com/us/products/cascade/airpcap.php
http://www.wireshark.org/docs/wsdg_html_chunked/
http://sharkfest.wireshark.org/

define which packets should be displayed) are applied to the traffic at this time. Dissectors decode packets to
display field contents and interpreted values (if available).[15]

When a packet comes in, Wireshark detects the frame type first and hands the packet off to the correct frame
dissector (Ethernet, for example). After breaking down the contents of the frame header, the dissector looks
for an indication of what is coming up next. For example, in an Ethernet header the value 0x0800 in the Type
field indicates that IP is coming up next. The Wireshark Ethernet dissector hands the packet off to the IP
dissector. The IP dissector works its magic on the IP header and looks to the Protocol field in the IP header to
identify the next portion of the packet. If the value is 0x06 (TCP), the IP dissector hands the packet off to the
TCP dissector. This process continues until there are no further indications of another possible dissection.

GIMP Toolkit (GTK+)

GIMP GTK+ is the graphical toolkit used to create the graphical user interface for Wireshark and offers cross-
platform compatibility. For more information on GTK+, visit www.gtk.org.

Use the Start Page

A Start Page was added to Wireshark when it reached version 1.2.0.[16]

Bl The Wireshark Network Ansiyzee X
Ede fdt Yew Go Capture Anabze Sutisies Telephony Iools Jotemuis Help
B@oeN EEAXEA vesaTL (EE eaan @08 B

£ Website

Open Recent: % User's Guide
e ey st e

Figure 14. The Wireshark Start page

There are four sections on the Start Page as shown in Figure 14.
(1) Capture Area
(2) Files Area
(3) Online Area
(4) Capture Help Area

The Capture Area

The Capture Area contains an Interface List link which you can click on to learn more about the current
traffic rates seen by the interfaces. In addition, the Start link begins capture after you select one or more
interfaces listed in the interface list shown in this area. Finally, the Capture Options link opens the Capture
Options window to define a capture filter, specify capture stop conditions, activate/deactivate name resolution
methods and more. Capture methods and options are covered in Chapter 3: Capture Traffic.

“No Interface? No Capture!

Wireshark cannot begin capturing traffic on an interface that is not listed. If you are certain an interface is
available on your system, but Wireshark does not display it on the active interface list, consider restarting
Wireshark. If the interface still does not appear in the list, try rebooting your system—most likely there is a
problem with libpcap, AirPcap or WinPcap.

The Files Area

The Files Area consists of three sections: Open, the Open Recent list and a link to Sample Captures. Click
Open to browse your drive and select a trace file to open. Click on one of the files listed in the Open Recent
list to open that file immediately. If no files are listed we must assume trace files have not been opened yet or
someone has cleared the Recent List (File | Open Recent | Clear the Recent Files List). Click on the

http://www.gtk.org/

Sample Captures link to launch a browser and view wiki.wireshark.org/SampleCaptures, the Wiki page that
contains sample trace files.[17] Click on the Network Media link to view

http://wiki.wireshark.org/CaptureSetup/NetworkMedia which displays a table of network types and platforms
supported by Wireshark.

The Online Area

The Online Area contains links to the main Wireshark website, the User's Guide and the Wireshark security
page at wiki.wireshark.org/Security. The link to the User's Guide will open up the local copy of the User's Guide
if it is available.[18]

The Capture Help Area
The Capture Help Area contains links to two locations—the How to Capture page at
wiki.wireshark.org/CaptureSetup and the Network Media page at

Identify the Nine GUI Elements

When you open an existing trace file or begin a capture session, you are now working in the main Wireshark
window. There are nine distinct sections in the main Wireshark window:

(2) Title

(2) Menu (text)

(3) Main Toolbar (icons)

(4) Filter Toolbar

(5) Wireless Toolbar

(6) Packet List Pane

(7) Packet Details Pane

(8) Packet Bytes Pane

(9) Status Bar

|l sop-yourubeLpcapng 1>
Ele Edit Yew Go CoptOW® Anshze Statistcs Telephony Tooks Intemals

e Br@a A

0 .1.04 TP h:tp > 49727 [svw A
0.015396 192.168.0. 104 208.65.153.251 TCP 49727 > http [ACK] S
0.015980 192.168.0.104 208.65.153.251 TCP [TCP segment of a re
0.016029 192.168.0.104 208.65.153.251 HTTP GET / HTTP/L.1

6 0.044557 208.65.153.251 192.168.0.104 TCP http » 49727 [AcK] §
7 0.115874 208.65.153.251 192.168.0.104 TCP [TCP segment of a re -

EETT oyt

ame 1: 116 bytes on wire (928 bits), 116 bytes captured (928 bits]-|
diotap Header vO, Length 24
= IEEE 802.11 pata, Flags: TC
= Logical-Link Control
Internet Protocol Version 4, src: 192.168.0.104 (192.168.0.104), Dst
|- Transmission Control Protocol, Src Port: 49727 (49727), Dst Port: h\-‘

ag 00 00 18 00 ee 58 00 00 10 6c 6c 09 c0 00 dS 9c X.. .11
60 00 00 39 % ec 77 53 08 01 2c 00 00 13 46 cc "..9..wS ..,
0020 a3 ea 00 18 de d0 27 d7 00 1346 cc a3 ea707b'. ..F~
& e -Cimscerpaprgeins 0oL Pk 2108 ity 208 ke DLonat. Protie Dok D) |

Figure 15. The Wireshark view of a saved trace file [app-youtubel.pcapng]

Add the Wireshark Version to the Title Bar

It's always a good idea to display the Wireshark version information in the Title Bar. This is especially true if
you have installed multiple versions of Wireshark on your system. Select Edit | Preferences | User
Interface and enable Welcome screen and title bar shows version.

The title bar can be customized further by selecting Edit | Preferences | Layout and filling in the Custom
windowv title field. Your custom title will be placed after the trace file name or interface information (during a
live trace process) and precede the Wireshark version information.

Displaying the Wireless Toolbar (Windows Only)

Wireshark includes a Wireless Toolbar that is used when you connect an AirPcap adapter to a Windows host
running Wireshark. To view the Wireless Toolbar, select View | Wireless Toolbar. For more information on
wireless analysis, see Chapter 26: Intr tion t 2.11 (WLAN) Anal

Opening and Closing Panes
There may be times when you want to alter which panes (Packet List, Packet Details, Packet Bytes) are open.
On the menu, select View and check or uncheck the pane that you want to display/hide. The most common

http://wiki.wireshark.org/SampleCaptures
http://http//wiki.wireshark.org/CaptureSetup/NetworkMedia
http://wiki.wireshark.org/Security
http://wiki.wireshark.org/CaptureSetup
http://http//wiki.wireshark.org/CaptureSetup/NetworkMedia

pane to open/close is the Packet Bytes pane to allow more space for the Packet List and Packet Details
panes.[20]

B soreutubeLocasng Py)
fle ot Yew Go Copture Amalyme Sutistcs Telephory Tools fotemals Help

Bwe bar TR T2 EE QB @08 % B
f thy } e Sav

3

LmmooobaoR
< <o

Protoce
:2(; " dg;;‘,’ E Packit 1t v ||
¢ 49727 > http [At e 4
251 TCP [TCP segment of a r:assmbhd FDU]
251 WTTP GET / HTTP/1.1
*104 TeP http > 49727 [ACK] Seq=1 Ack=2220
*104 TCP [TCP segment of a reassembled PDU]
o4 TCP [7CP segment of a reassembled PDU] -

ccooesooy

. | 116 bytes captured (928 bits) on interface 0

Packet Details pane

s 168.0.104 (192.168.0.104), Dst: 208.65.153. 251‘
» fEE749727 [(49727), D5t Porty hittp (80), Seq: O ‘

* 09 c0 00 d5 9c
;100 00 13 48 cc
a3l 0

" 2f 7e 00 00 r.
02 52 41560 o

Show Packet in New Window

CEILM ackets: rof
O & Baosd Cuter MEOZA3 | Packets: 2106 Displayedt: 2108 M... |Profie: Defoult

Figure 16. Select View to hide and show the Packet List, Details and Bytes panes [app-youtubel.pcapng]

Interpreting the Status Bar

The Status Bar at the bottom of the Wireshark window consists of five elements: the Expert Info button, the
trace file annotation button, the file information column, the packets information column and the profile
column.

Expert Info Button

Wireshark includes an Expert system that can help you identify the cause of performance problems. Like all
other "expert systems" included with analysis tools, you should verify the information provided by examining
the actual traffic—don't just rely on the Expert system alone. The Expert Info button is color coded as follows:

Red: The highest level is Errors

Yellow: The highest level is Warnings

Cyan: The highest level is Notes

Blue: The highest level is Chats

Green: There are packet comments, but no Errors, Warnings or Notes
Grey: There are no Expert Info items

As of Wireshark 1.8, you can enable LEDs in the Expert Infos dialog tab labels" in the Wireshark User Interface
preferences area (Edit | Preferences). This adds the coloring button to the Expert Infos tabs.

Trace File Annotation Button

You can add, edit or cancel a comment about the entire trace file by clicking on the Annotation button (next
to the Expert Info button). The trace file comment is also visible in the Summary page (Statistics |
Summary). This feature can only be used on pcapng files. For more information on this feature, see Chapter

12: Annotate, Save, Export and Print.

File Information Column

As you capture packets, Wireshark saves the packets to a temporary file—these are unsaved trace files. The
file information column indicates the directory and file name of the unsaved trace file or opened trace file. The
file information column indicates the file size and time duration of the unsaved or opened trace file.

N e
0010 6(3 [0 DU 39°9b ec 77 53 08 ﬂl
0020 a3 ea 00 18 de d0 27 d7 00 13
|© 7 Fie:“Calwaces-pespngsetiapp-youtubel. peapng’ 1918 KE 0002:43

Figure 17. The Expert Info and File Information portion of the Status Bar

Packet Information Column
The packet information column includes the total count of packets in the saved or unsaved trace, the count of
displayed packets if a display filter is set, the count of marked packets (if any) and the number of dropped
packets (relevant for packets captured through the capture engine only).[21] If you have used the "ignore"
feature, the number of ignored packets will be displayed here as shown in Figure 18.

T S ’ZW’?

e | Packets 2108 Displayed: 2108 Marked: 0 Ignored: 2 Load time: 0:00.385

Figure 18. The packet information column indicates if packets are filtered, marked or ignored

Profile Column

You can create profiles to customize Wireshark for a specific situation. For example, if you are analyzing HTTP
traffic, you may create a profile that includes a coloring rule for all HTTP 4xx (client error) or 5xx (server error)
responses. You may also consider adding a column for the HTTP Host field value. The active profile is
displayed in the right column of the Status Bar as shown in Figure 19. Click on the Profile column to select
another profile from the list (if one exists).

10 6¢c 6c 09 c0 00 €9 9c .
Q8 02 2c 00 00 18 de d0 R
~00 13 46 cc a3 ea 60 39 "
:/45 20 00 28 30 63 40 00
~N -0 NN £0 NN EN -9 2E

Main Lab Network

%-,zd-?iﬂﬁMarhd-n!gnnlm-), Profie: Defauit ({4 Secuhy Anslysis o

Figure 19. The current profile is listed at the right of the Status Bar

Right click on the Profile column or use Edit | Configuration Profiles to create a new profile, edit an
existing profile name, make a copy of an existing profile or delete a profile. By default, Wireshark stores
profiles in a \profile folder in your Wireshark Personal Configuration directory. As you work with that profile to
add capture, display or coloring rules, additional files are placed in the profile’'s directory.[22] Refer to Chapter
11: Customize Wireshark Profiles for more information on customizing Wireshark.

Navigate Wireshark’s Main Menu

The Main Menu consists of eleven sections. Unlike the Main Toolbar, Filter Toolbar, Wireless Toolbar and
Status Bar, you cannot hide the Main Menu.

File Menu Items
The items in the File menu are covered at

www.wireshark.or wsug_html chunk hUseFileMen ion.html. In this Study Guide, we provide a

bit more depth on several items and focus on the uses of these items.

File] Open

When you select File | Open, Wireshark refers to your User Interface preferences to determine which
directory to open. You can configure Wireshark to remember the last directory trace files were opened from or
to look in a specific directory.

File | Open Recent

Select Edit | Preferences and enter a number in the "Open Recent" max list entries section to configure
the number of items listed in the Open Recent menu option. The default value is 10.[23] To clear this recent
files list, select File | Open Recent | Clear the Recent Files List.

File

4 Open.. 0

Open Recent [2] lg=

MF'E"-E‘E" Ci\traces-peapngsetihitp-espn2012.pcapng

erge...

;win C‘\tra(es-pcapngsEt\http-w\resharkdtvwn\nacjéowp(apng
% -Closa Chlsw Ci\traces-pcapngset\app-youtubel peapng

= Ci\traces-pcapngsetiapp-norton-update2012.pcapng.peapng
B Save Ctrl+S
& Sovehs Shifts Cules | & Clear the recent files list

File Set » -

- Select Edit | Preferences to setthe

Bapit Speclied Pack ek Open Recent max list entries count

Export Packet Dissections >

Export Selected Packet Bytes... CtrleH

Export SSL Session Keys..

Export Objects 3
£ Print... Ctrl+P
& Quit Ctrl+Q

Figure 20. The File menu items

File | Merge

There may be times when you want to merge multiple trace files together. In addition, you can merge trace
files at the command line using Mergecap (see Chapter 33: Effective Use of Command Line Tools).

“Avoid File | Merge Issues

When you use File | Merge to combine two or more trace files, Wireshark will not order the packets according
to their arrival times. This makes your lovely dualcapture traces sit back to back—not an ideal situation. Use

http://www.wireshark.org/docs/wsug_html_chunked/ChUseFileMenuSection.html

Mergecap to merge two or more trace files chronologically. For more information on using Mergecap, see
Merge Trace Files with Mergecap.

File | Import

Wireshark’s Import feature can be used to import an ASCII text file and save that file in pcap or pcap-ng
format. This import feature can also append dummy headers if the ASCII file did not contain such headers.
This feature is only used when opening ASCII text files that you want to analyze in Wireshark—you do not
need to use this feature when opening trace files captured by other analyzers as Wireshark’s Wiretap Library
understands so many formats. Just use File | Open for trace files.

File | File Set

Wireshark may be just too slow to deal with when you work with a single large trace file. Using Wireshark’s
Capture Options, you can save to a file set—a series of files linked together by Wireshark. When you work with
these file sets, select File | File Set | List Files to move quickly between the files. For more information on
capturing to file sets, see Create File Sets for Faster Access.

Practice working with trace file sets. Open booktcpset 00001 _20110219103004.pcapng and select File | File
Set | List Files. You will see the list of related files as shown in Figure 21.

“Frames vs. Packets

The terms "frame" and "packet" are both used in Wireshark. In Figure 15, the Packet Details Pane uses the
term "Frame" as the heading at the top of each packet. The term "packet" is used throughout most of the
other areas of Wireshark. In this book we use the term "packet" and only use the term "frame" when referring
to the Frame summary line or data link frame structure. If you are new to networking, the terms "frame" and
"packet" are bantered about with varying accuracy. An IP "packet" is carried in an Ethernet "frame."

[Wiresharic 11 Fies n Set ey
Filename Created Last Modified Size
booklcpset 00000_20110219102738 pcapng. 201102191 § 0120329165415 48333876 B
@ booktcpset 000DL_20110219103008.pcapng X
bookicpset 00002_20110219103250 scapng 20
beoktcpset 00003 0110219103555 pcapng
booklcpset 00004 0110219103850 pcapng
beokicpset 00005 TL0ZINMI4E peapng 2
booktcpset 00008 11021S1MAL peapn
booktcpset 00007_20110219104737.pcapng

Figure 21. The Files in Set View window [booktcpset_*.pcapng]

File | Export (Numerous Options)

The export feature offers the ability to export the entire trace file into another format and define the packets
to be included in the export. Using this feature you can easily create a subset of the trace file that you are
viewing. If you have selected a field in a packet, the Selected Packet Bytes option is available. For
information on exporting HTTP objects, see Export HTTP Objects.

B Wiresharkc HTTP object st L= B
Cantent Type Bytes Filename
text/html 71
E pt 26247 mboxj
18 266044
132 7461 closs-espntesmssdjcss
178 300254 bin-toggle-tablet.css
130 39 brieflurshttp:7FlFesp
.1 javescript 431067 sider 201112021227
Er om imagerineg 491 by fontpage rediog
EP 9% sundadimbodiestzespn -
Hep | [svess | [swerr | [gomca

Figure 22. The exported HTTP object list [http-espn2012.pcapng]
“Overloading HTTP Object Export

When you capture a trace file of HTTP communications that contains a large number of HTTP options, be
patient using the Save All feature of HTTP object export. There are times when this has crashed Wireshark.

The export feature also allows you to export SSL Keys, HTTP, DICOM and SMB objects. We used this feature

to export a Server Message Block (SMB) object in Figure 23.

[l smb-flexfer.pcapng o[E ﬂ-ﬂ
File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
= Gpen. w0 B @ 9T L aaan @Ems% 8

Open Recent »

R [] Epression... ciear Apply save

Import.. A
% Close cirl+W lesponse, QUERY_PATH_INFO -
B save Chivs B = S — bl

. esponse, FIND_FIRST2, Files: bigfiles

& SaveAs.. Shift= Ctrl+S

equest, QUERY_PATH_INFO, Query File Basic Info,

esponse, QUERY_PATH_INFO

lequest, FIND_FIRST2, Pattern: \jsilva\bigfiles\-
] *

File Set

Export Specified Packets...

Export Packet Dissections »
Export Selected Packet Bytes... cul«H | (1376 bits), 172 bytes captured (1376 bits) on -
Export SSL Session Keys... d:fd (00:14:22:be:9d:fd), Dst: AsustekC _8a:0e:3 ;|
Export Objects r HTTP 168 = 192.16
B CtrlP DICOM & Select File | Export Objects | SMBto Jt: m
SME list files
4 Quit Cul+Q Ft-ds (485)
+ | [l Wireshark: SMB abject fist o= 3 o
OC| | Packet numHostname Content Type Bytes Filename <E:
gE 134 \\TREEID_2050 FILE (19693568/1540503€7) R [12.78%] 19824640 000_24.1 SolarisSparc_install_en-US.tar.gz X. .
e
0c |
gE Help | [Savels | [Seveay Cancel

\

Select Save As or Save All to
reassemble files

009U UU UU §U UU UU UU UU UU UU UU UU UU UU ZE U

0070 00 00 00 00 0O O1 00 O1 00 31 00 00 00 00 16
O | File: "Citraces-peapngsetismb-filaferpcapng’ 20 MB00:0009 | Packets: 21193 Displayed?

= -1

Figure 23. You can export and reassemble SMB objects transferred across the network [smb-filexfer.pcapng]

Edit Menu Items

The items in the Edit menu are covered at

www.wireshark.or wsug_html_chunk hUseEditMen jon.html. In this Study Guide we provide a
bit more depth on several items and focus on the uses of these items.

Edit
Copy »
\ Find Packet... CleF
Find Next Curiel
Find Pregious CtileB

Mark Packet {toggle) CrsM
ayed Packets H

Ignore Packet (toggle)

© Set Time Reference (toggle)
Un T ; I Pockets

@ Time shift.. ShiftsCtri+ T
i) Edit or Add Packet Comment...

Cenfiguration Profiles... ShifteCtleA
Preferences... Shifts Ctr+ P

Figure 24. The Edit menu items
Edit | Mark Packets

Marked packets are displayed with a black background and white foreground in the Packet List pane. Packet
marking is a temporary setting—when you reopen the trace file, the packet marking is gone.

To mark a packet, select Edit | Mark Packet. Marks are toggled on and off. To unmark a packet, repeat the

steps. In addition, you can right click on a packet in the Packet List pane and select Mark Packet. To mark an
entire set of packets, apply a filter on the packets first and then select Mark All Displayed Packets.

CtrlI+M is a Wireshark Accelerator Key. Wireshark Accelerator Keys enable you to use Wireshark more
effectively.

“Use Packet Marking to Identify Interesting Packets

Packet marking is a feature that allows you to highlight and quickly navigate among interesting packets. When
you examine a trace file, consider marking packets of interest to review later. Remember, however, packet
marking is only temporary. When you close the trace file, packet marking is removed.

Edit | Ignore Packets

Ignoring packets offers a quick way to remove packets from view. When you are working with a large, complex
trace file, remove the distracting packets to focus in on the interesting traffic. In Figure 25 we have ignored
some packets so we can just view the packets of interest. The Status Bar indicates that we have ignored 3

http://www.wireshark.org/docs/wsug_html_chunked/ChUseEditMenuSection.html

packets.

To quickly restore the ignored packets, click the Reload button on the Main Toolbar.
W Fp-goooksenrchpeopng (=)

Blo Edt View Go' Coptwe Amlyse Sutinics Tekphony Tools Itemals Help

B BEREZE A ra T 'iﬂ‘(lE W8 g B

T Protocel 5
T 0000000 346,173,220 74125 224 10HTTP GET /complete/searchPoutputsFi refosse -
2 0.046579 74.125.224.10'24.6.173.220 HTTP HITP/1.1 ZDO oK ((ex(/javascrlp[}

3 0.246978 24.6.173.220 74.125.224.10°TCP 49771 > b <397 Wil
4 10.25984863.245.200.93 24.6.173.220 TCP. http > 4 Rignt cickto select
S
6
7
8

10.26002024.6.173.220 63.245.209.93 TCP 49831 >| ignore Packet {toggle)
21.52888324.6.173.220 63.245.209.93 TCP 49831 > =
21,54792863.245.209.93 24.6,173.220 TCP hitp > 4983 2RI 5eq Win=7s
26. 229360

N, ACK] Seq=1 Ack=1 W
. ACK] Seqsl Ack=2 W
Seqs2 Ack=2 Win=16 -

17 36,52847924.6.173,220 74,125.224.83 TCP 49795 > http
18 36.56569674.125.224.83 24.6.173.220 TCP hitp > 49795 [
19 36.56587624.6.173.220 74.125.224.83 TCP 49795 > http [A

I 8: 736 CACGICNELUT R YT TSR] WARNING: This may cause
[“4Th¥s Frame 16 marked a5 ignored more Bad TGP packet coloring

O 1 Frame frame), 73 btes: Packetss 277 Displayed 277 Marked: 0 lgnored: 3 Losd .. Prfils Defouh

Figure 25. You can ignore packets that are of no interest [http-googlesearch.pcapng]

Edit | Time Reference
The Time Reference setting is also toggled on and off and is only temporary. When you reopen the file, the
current Time column setting will be in effect and no time references will be set.

Time Reference is used to measure the time from one packet to another in a trace file. For example, if a trace
file contains 1,000 packets and packets 23 through 340 contain a login sequence that you want to measure
from start to end, select packet 23 and press Ctrl+T. Wireshark enters the value REF in the Time column
and sets the time as 0.000000. The Time column value after the REF indicates when packets arrived compared
to the arrival time of the Time Reference packet. When you jump to packet 340, the Time column displays the
time difference between packet 23 and packet 340.

If you are interested in measuring the time from the end of one packet to the end of another packet, consider
adding a delta time column or changing the current Time column value to Seconds since Previous Displayed

Packet. Refer to Identify Delays with Time Values for more information on working with time in trace files.[24]

Edit | Time Shift

Available as of Wireshark 1.8, Time Shift is used to alter the timestamps of packets in a trace file. In Figure 26
we have shifted the arrival time by +3.2 seconds. The original arrival time was Jul 7, 2011
14:36:59.111290000. This is a great feature to use when you want to merge two trace files taken a long time
apart in order to graph their contents.

To quickly restore the original time value, click the Reload button on the Main Toolbar.

Il nttp-googlesearch peapng =
F Tel 1

Fle Edt Wew Go Capture Anahyze Sutisics .‘epm E Tool [PTre—— : =
BEHMAN S@BRTE NE 9D hePacketlisipaneto || W HD M5 @
e select Time Shift |

No. Time Seurce Destnation Protocel Y/ =
1 0.000000 24.6.173.220 74.125.224.105 WTTP 4GET /complete/search?output=fire -

! This packet armived 3.2
Frame 1: 735 bytes on wire (5880 bits), 735 bytes captured (§ seconds earhe: 1
Interface id:
WTAP_ENCAP: 1
Arr‘\\aW Time:)lﬂ 7‘ 2011]4 37:02. 3112’50000 Pd(\flc Dayhght Time

T T f

; For_this packet:
Epoch T1m! 13100/45 r3 3] P" =
L 4 &

[Time delta from previous | Bl Wessburi: Time shit =4
[Time delta from previous || -
[Time since reference or fi| @ Shiftallpackets
Frame Number: 1 Time offst in the format {+{htclmrclesl ddd] =32
Frame Length: 735 bytes (%]
Capture Length: 735 bytes Setpacketto time
[Frame is marked: Falsel |f o, mmber
[Frame is ignored: Falsel
[Protocols in frame: eth:il s
[coloring Rule Name: WTTPI|(
[Coloring Rule String: httl| © Setpacketctotmeand etispolate

@ Ethernet II, Src: Hewlett-_a| packet number

Internet Protocol Version 4

s Transmission Control Protoc

[Hypertext Tunsfer BEGEOCOT| | Pocket number

et packet to time [YVYY-MM-DD] hhmrssl deld)

0‘ ‘Tirme shift applied to this pac... Packets: | it

Undo st hilts

prr

The Time Shift window
offers many gptions for
altenng packet imes

Set packet 1o time [YYYY-Mid-DD] himmisl.dd] ,J

res sy | [g |

Figure 26. Use Time Shift to change the time setting of packets [http-googlesesarch.pcapng]

Edit | Edit or Add Packet Comment

This is a fabulous new feature in Wireshark 1.8. Created by Anders Broman and added to the Wireshark
development release in February 2012, use this feature to add a comment to a packet. The trace file must be
saved in pcap-ng format to retain the comment. Share the file with someone else who is using a version of
Wireshark that supports pcap-ng and they can see your packet comments. You can also right click on a packet
in the packet list summary and select Add or Edit Packet Comment from the menu that appears.

Edit | Configuration Profiles

You can customize Wireshark to work more effectively by creating a series of profiles for the various network
environments you work in. For example, you could create a WLAN Analysis profile that contains columns of
interest for WLAN sessions such as frequency/channel, WLAN retries and signal strength columns.

When you create a new profile, a folder with your profile name is created under \profiles in your Personal
Configuration directory.[25] When you close Wireshark or load another profile, a file called recent is placed in
your new profile directory. This file contains the general Wireshark window settings, such as visible toolbars,
timestamp display, zoom level and column widths.

If you create capture filters, display filters and coloring rules while working in a custom profile, additional files
will be created and stored in your custom profile’s directory (cfilters, dfilters and colorfilters, respectively). For

more information on creating custom profiles, refer to Chapter 11: Customize Wireshark Profiles

Edit | Preferences
The Preferences item opens the Global Configuration settings for Wireshark. These settings include:

¢ User Interface—General Wireshark interface settings, such as the "Always Start in" directory which
Wireshark accesses when you select File | Open, the number of files to retain for the "recent files" list, the
number of display filters to retain for the display filter drop-down list and whether to wrap to the beginning
of a trace file. In addition, this is the area for configuring the layout of the panes (Packet List, Packet
Details and Packet Bytes), columns displayed in the Packet List pane, font style and type and colors for
marked packets and followed streams.

+ Capture—Default capture interface, update list of packets in real time and automatic scrolling during
packet capture.

¢ Printing—The output format and target when you select to print packets or a trace file.

+« Name Resolution—Enable or disable MAC name resolution, transport (port name) name resolution,
network (host) name resolution, SMI (Structure of Management Information) resolution for Simple Network
Management Protocol (SNMP) traffic and the GeolP database location[26].

 Filter Expressions—(as of Wireshark 1.8) Save your favorite display filters as buttons on the filter
toolbar.[27]

 Statistics—Define the number of channels that should display in the RTP (Realtime Transport Protocol)
player.

+ Protocols—This key area contains individual configurations for many of the Wireshark protocol dissectors.
For an example of altering a protocol configuration, refer to Set TCP Protocol Preferences.

View Menu ltems
The items in the View menu are covered at

www.wireshark.org/docs/wsug_html chunked/ChUseViewMenuSection.html. In this Study Guide, we provide a
bit more depth on several items and focus on the uses of these items.

o

You can also click on the Main Toolbar icons to enable coloring, enable autoscroll, zoom in/out/1:1/resize and
access the coloring rules. The View menu allows you to hide/show the various toolbars[28], the Status bar, the
Packet List, Packet Details and Packet Bytes panes.

The zooming and resizing options enable you to improve viewing ease.

View | Time Display Format
By default, Wireshark sets the Time column to "Seconds since Beginning of Capture” where each packet
timestamp is based on the arrival time since the first packet in the trace file.

The Time Display Format setting is maintained in the "Recent" file in the Wireshark Personal Configuration
folder or the current Profile directory. The entry for the Time Display Format is shown below.

Timestamp display format.
One of: RELATIVE, ABSOLUTE, ABSOLUTE_WITH_DATE, DELTA, DELTA DIS, EPOCH
gui.time_format: RELATIVE

For more details on using timestamps when analyzing traffic, refer to Use Time to ldentify Network Problems.

http://www.wireshark.org/docs/wsug_html_chunked/ChUseViewMenuSection.html

Wirelass Toolbar
¥ Stotusbar
v Packet List
« Packet Detaits
v Packetfytes

Chrie s
Ct-
Cirte=
EJ Resize All Columns ShidteCelsR

Displayed Columns v

Expand All Ctris Right
Coltapse 211 Crrls Left

Colorize Conversation G

Figure 27. The View menu items

“Use the Perfect Time Display Format for Troubleshooting

This is one of the most important settings to understand and use when troubleshooting performance.
Capturing a user’s traffic as they perform tasks and setting the time display to "Seconds Since Previous
Displayed Packet" enables you to sort the Time column and identify large gaps in time.

View | Name Resolution

The basic name resolution processes offered by Wireshark are MAC layer, network layer (host name) and
transport layer (port name) resolution. By default, Wireshark resolves first three bytes of MAC addresses and
the port number in use. It does not resolve IP addresses to host names (network name resolution).

In Figure 28 we have captured the DNS PTR queries generated by Wireshark when we opened http
pcaprnet.pcapng with Network Name Resolution enabled. In order to capture this traffic we launched two
iterations of Wireshark—in one window we set name resolution on and opened up http-pcaprnet.pcapng and in
the other window we just looked at DNS traffic generated by the first instance.

“Don’t Let Wireshark Flood a DNS Server

Be careful of enabling network name resolution as this causes Wireshark to send a DNS PTR (pointer) query
for every IP address identified in the trace file (unless the name is located in a hosts file). DNS PTR queries
generated by Wireshark are shown in Figure 28. We can now resolve just a single address rather than use this
setting and flood the DNS server with PTR queries. Right click on an IP address in the IP header of a packet
and choose Resolve Name. A DNS PTR query will be sent for just that one IP address. This resolution is only
temporary however—when you reload the trace file it will be gone.

] g trom Realtek PCle FE Family = \Ded (6ETIFECO-Fl i [
Ble ' Yew Go Coplure Amalpze Satistcs Telephony
R Fi xe

We have applied a dns display
0 view the DNS queries to

429525579097 38.5-173.220 7 .75 DNS rd query C PIR 220.173.
(4296 25.579715 24.6.173.220 75, 75 S(andard query GKSHE PTR 172.18.8
4297 25.580028 24.6.173.220 75.75.75.75 DNS Standard query 0x267e PTR 82.213.1
4298 25.580341 24.6.173.220 75.75.75.75 DNS Standard query OxSe82 PTR 254.18.2
4299 25.580703 24.6.173.220 75.75.75.75 ODNS Standard query Ox39e¢7 PTR 82.127.1
4302 25592282 75.75.75.75 24.6.173.220 DNS Standard query response OxB0fc PTR
4303 25.596018 75.75.75.75 24.6.173.220 ONS Standard query response Ox5e82 No s

4304 25.620383 75.75.75.75 24.6.173.220 ONS Standard query response 0x39¢7 PTR -

| = Frame 4205: 85 bytes on wire (680 bits), 85 bytes captured (680 bits) on interface O
» Ethernet IT, Src: Wewlett-_a7:bf:a3 (d4:85:64:a7:bfa3), Dst: Cadant_31:bbicl (0001
5 Internet Protoco] Version 4, Src: 24.6.173.220 (24.6.173.220), Dst: 75.75.75.75 (75.
User Datagran Protocol, Src Port: 65116 (65116), DSt Port: domain (53)

Domain Name System (query)
[Response To: 43021
Transaction ID: Ox80fc

[iN": PTR quenes are generated by a Wireshark

3 Ox0100; sEsndard query hest when opening a tiace file with Edit| Name
Resolution | Enable Network Layer set

ns: 1
RRs: 0
ty RRs: 0
nal RRs: O

quer
e 220.173.6.24.n-addr.arpa: Type PTR, class IN

(@) Dormsin Harme Seric s, .| Packes: 16539 Diplayet 10 Marked: 0 e Ocfouh

Figure 28. Wireshark sends DNS PTR queries if network name resolution is enabled

Transport name resolution uses Wireshark’s services file[29] and converts a port number, such as 80, to a
name—in this case HTTP. The services file is based on IANA’'s Well Known Port Number list at
www.iana.org/assignments/portnumbers. Many people find the transport name resolution process confusing as
it will resolve ephemeral (temporary) port numbers which are often used as source port numbers to a
registered IANA port number, even though the communications are not related to the registered service. You
can edit Wireshark’s services file if desired.

vww allitebooks.conl

http://www.iana.org/assignments/port-numbers
http://www.allitebooks.org

“Editing Wireshark’s Services File is OK, but...

It is possible to edit Wireshark’s services file to remove some of the entries, but we suggest you make a copy
of the original file in case you totally mess it up and want to restore it someday. Alternately, you can copy the
services file from another Wireshark host.

View | Displayed Columns

Hide and display columns as needed — this gives you great flexibility when analyzing traffic. If you find yourself
wading endlessly through packets for a specific field, consider adding the field as a column. Hide the column
when not in use.[30]

View | Colorize Conversations

To make specific conversations (based on characteristics such as Ethernet address, IP address or transport port
number) more visible in a trace file, consider colorizing a conversation. These are temporary colorizations only,
but will be applied each time you open that trace file—until you restart Wireshark or switch to another profile.
If you want consistent colorization every time you start Wireshark, build a coloring rule.

When you are working with complex communications using numerous connections (such as your login process
or perhaps a web browsing session to www.espn.com or maybe a SharePoint communication), consider
colorizing the conversations to separate them visually. This will save you a LOT of time and confusion when
wading through your trace files.

To remove this temporary conversation colorizing, select View | Reset Coloring 1-10.

View | Coloring Rules
Coloring rules are persistent settings maintained in the colorfilters file. You can have a unique set of coloring
rules in each profile. As shown in Figure 29, Wireshark consists of several default coloring rules.[31]

The coloring rule for Bad TCP changed as of Wireshark 1.8. Window Update is now excluded from Bad TCP.
This is a great change as Window Updates are welcome in network communications. For more information on

Window Updates, refer to What Triggers Window Update?.

8 Wieshark Coloring Rutes - Profile: Troubleshaoting

1

Order

Help i Q& || ety Gancel

Figure 29. Wireshark contains several default coloring rules

Toggle coloring rules on and off using the Colorize Packet List button on the Main Toolbar or select View |
Colorize Packet List.

For more details on using packet colorization to analyze traffic more efficiently, refer to Chapter 6: Colorize
Traffic.[32]

View | Show Packet in a New Window

Showing individual packets in new windows is one technique used to compare the contents of two or more
packets in a trace file. You can also simply doubleclick on a packet in the Packet List pane to open a packet
in a new window.

“Compare Packets with Side-by-Side Views

If you want to compare two packets to identify differences, simply doubleclick on each packet to open new
packet windows.

View | Reload

The most common reason to reload a trace file is when you alter the name resolution setting when viewing a
trace file. There are some other settings that may require you to reload a trace file. There is a reload button
on the Main Toolbar as well.

Go Menu Items
The items in the Go menu are covered at

www.wireshark.org/docs/wsug html chunked/ChUseGoMenuSection.html. In this Study Guide, we provide a

bit more depth on several items and focus on the uses of these items.

[l The Wireshark Network Anslyzer
Ele Edt View Go Capture Analyze Statisties
SWeew Bx2s

Filter:

You can also use the Main Toolbar to quickly navigate forwards/backwards through packets, jump to specific
packets or go to the top/bottom of the trace file.

Go
Back AlteLeft

% GotoPacket.. CtleG

Previous Packet CutsUp
b Next Packet Ctrt+Oown

b Nest Packet In Conversation e

Figure 30. The Go menu items

Go | Go to Corresponding Packet
Most items in the Go menu are self-explanatory and available on the Main Toolbar, but the Go to
Corresponding Packet requires some explanation.

Wireshark attempts to link related packets, such as ACKs to data packets and Duplicate ACKs. This item will be
grayed out unless you have selected a packet that contains a link to another packet. In Figure 31, Wireshark
contains a link to another packet—packet 415. In this example, we are examining the trace file called http-
download-bad.pcapng.

“Practice Jumping Between Corresponding Packets

This trace file (http-download-bad.pcapng) is available at www.wiresharkbook.com. When you open this trace
file, go to packet 417 and expand the TCP SEQ/ACK Analysis section to see the corresponding packet
information shown in Figure 31. Doubleclick on the "Duplicate to the ACK in frame: 415" line to jump directly
to packet 415. Although you can use the View | Go to Corresponding Packet method, the link embedded in the
packets allows you to doubleclick inside the packet to jump to the linked packet.

T ro-dommiond-bed paaprg By
Blo o Wow Go' Coplwe Amiyze Sativics Telephony

Beuee m@RR2s Lo

u Frame 417: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0 |

» Ethernet I, Src: Sony_f4:3a:09 (08:00:46:F4:3a:09), Dst: 3Com cd:51:b6 (00:04:75:cd:

Protocol Version 4, Src: 10.0.52.164 (10.0.52.164), Dst: 61.8.0.17 (61.8.0.7

don Control Protocal, Src Port: ads (2550), Dst Port: http (80), Seq: 446, 4
oree port; ads (25503 |

Destination port: http (80)

[strean index: 0]

Sequence number: 446 (relative sequence nunber)

Acknonledgrent number: 318610 (relative ack nurber)

H&ad th: 3

Expand the SEQ/ACK analysis secton
inthe TGP header to see frame links

= Checksum: Qxlﬁf([validation di
5 options: (12 bytes), No-Ge——oveh
[SEQ/ACK analysis]
[TCP Analysis Flags]
[This is a TCP duplicate ack]
 [ouplicate ack #: 1)
b

NOP), No-Operation (NOP), SACK

Double click to jump
to packet 415

in f

© [‘ peapng._ |Packets: 7198 Displayedt time- 00 | Profile: Detauk

Figure 31. Use Go To Corresponding Packet when a link is available [http-download-bad.pcapng]

Capture Menu lItems
The items in the Capture menu are covered at

. In this Study Guide, we

provide a bit more depth on several |tems and focus on the uses of these |tems

http://www.wireshark.org/docs/wsug_html_chunked/ChUseGoMenuSection.html
http://www.wiresharkbook.com/
http://www.wireshark.org/docs/wsug_html_chunked/ChUseCaptureMenuSection.html

T e Wireshark Network Ansbyzer

Use the Main Toolbar to quickly list interfaces, show capture options, start a new capture, stop a running
capture, restart a running capture or view the capture filters.

The Capture Menu items are mostly self-explanatory. Capture Interfaces, Options and Capture Filters are
covered in detail in Chapter 4: Create and Apply Capture Filters.

Copture
B Interfaces... Ctriv]
Options... CrleK
& Start CtrlsE
8 stog sk
@ Restort

#l Capture Fiters...

Figure 32. The Capture menu items

Capture | Capture Interfaces

Select Capture Interfaces to view the interfaces that Wireshark recognizes. If no interfaces are shown,
Wireshark cannot capture traffic from a wired or wireless network. In the Capture Interfaces window you can
select one or more interfaces to start capture immediately, set capture options or view interface details (if

shown).[33]
For more information on the Capture Interfaces window, read Select the Right Capture Interface.

“See Packet Counts Without Capturing Anything

The Capture Interfaces window depicts a running packet count indicating which interfaces "see" packets.
During the count process, however, packets are not being captured or buffered. This is a valuable method for
identifying interfaces on the most active network segments. For example, if you have two wired interfaces
listed, you can identify which one is seeing the most traffic before beginning your capture.

Capture | Capture Options

The Capture Options window enables you to set the capture interface, multiple file capture options, ring buffer
options, stop capture options, display options, name resolution and wireless settings (if using AirPcap adapters)
and remote capture settings (if connecting to a host running rpcapd, the remote packet capture daemon). You
can also define a capture filter in this window. For more details on the Capture Options window and capabilities

as well as remote capture methods, refer to Chapter 3: Capture Traffic.

Capture | Start, Stop and Restart Capturing
These three menu options are not the fastest way to start capturing—examine Capture Toolbar Icons to use
the icons on the menu toolbar to start, stop and restart faster.

Capture | Capture Filters
This menu option opens the Capture Filters window allowing you to create or edit capture filters. For more

details on these filters, read Chapter 4: Create and Apply Capture Filters.

Analyze Menu Items
The items in the Analyze menu are covered at

. In this Study Guide, we provide

Only one item is duplicated on the Main Toolbar—Display Filters. You can also open the Display Filters window
by clicking the Display button to the left of the Display Filter window.

http://www.wireshark.org/docs/wsug_html_chunked/ChUseAnalyzeMenuSection.html

Analyze
[Display Fiters
Display Fittes

Apply 25 Column
Apply s Filter
Prepare a Filter '

Shifts CtrisE

Follow TCP Stream

¢ Expertinfo
Conversation Filter 0

Figure 33. The Analyze menu items

Analyze | Display Filters

Display filters are applied to focus on a specific conversation, protocol or other feature of traffic. Effective use
of display filters decreases the time required to identify the cause of poor network performance, unusual
network traffic patterns or other traffic of interest.

There are over 105,000 possible display filters available. Of course, these filters are not all listed on the Display
Filter window, but they are accessible through the auto-complete display filter feature and the Expressions
feature.

Display filters can be applied during a live capture or when viewing a saved trace file.

With a few exceptions, display filters do not use the same syntax as capture filters. Display filters do use the
same syntax as coloring rules. For more details on how to use display filters effectively, refer to Chapter 9:

Create and Apply Display Filters.
Analyze | Display Filter Macros

This item allows you to create macros for more complex display filters. The macros contain the syntax and
structure of the display filter and the argument placement. For more details on how to create and use display

filter macros, refer to Use Display Filter Macros for Complex Filtering.

Analyze | Apply as Column

This feature is only available after you select a field in the Packet Details pane.[34] You can also simply right
click on a field in the Packet Details pane and select Apply as Column. A new column is added to the Packet
List pane to the left of the Info column. You can click and drag to move the new column, right click on the new
column heading to change alignment, rename or delete the column.

Once you create a new column in the Packet List pane, it is easy to right click on that column heading and hide
or display the column again. You don't have to recreate columns each time you want to see them.

Right click on a column heading and select Edit Column Details to change the column name, type of column,
field name and occurrence of the field. Occurrence is a handy setting when you have a field name that
appears more than once in a packet. For example, eth.addr matches both the source and destination MAC
address field. Setting the Occurrence to 0 displays all field values separated by a comma. Change the
Occurrence value to 1 to only view the first MAC address in a packet—the destination MAC address. Change
the Occurrence value to 2 to only view the second MAC address in a packet—the source MAC address.

Analyze | Apply as Filter/Prepare a Filter
These two options are applied faster by right clicking on a packet in the Packet List pane or a heading or field
in the Packet Details pane.

When you chose Apply as Filter, the filter is immediately listed in the display filter field and applied to the
traffic. When you select Prepare a Filter, the filter is immediately listed in the display filter field, but it is not
applied to the traffic. This allows you to alter the syntax of the display filter before applying it.[35]

Analyze | Enabled Protocols
Using this item, you can enable or disable certain protocol dissectors. Your setting is retained even after you
restart Wireshark.

e r—

disabie the DHCP
hark indicates that
dissector apphed

Ele £t Yiew Go Copture Amalze Stalistics Telephony
S 2@RTS
Fiter

No. Time Source Destination

3 19.128670 D-Link_bb:82:32 Broadcast ARP who has 192.168.0.101? Tell 18
4 19921677 Cis :15:80 Broadeast ARP Who has 10.190.2.17 Tell 10.1%
5 21.919832 Cis 5 Broadcast ARP who has 10.190.2.17 Tell 10.1¢
6 230000 20200 203 ban T S P e
7 23.919937 Cisco 9a:15:80 Broadcast ARP who has 10.190.2.17 Tell 10.1%
& 25920044 Cisco_9a:15:80 Broadcast ARP. who has 10.190.2.17 Tell 10.1¢
9 27.920151 Cisco_9a:15:80 Broadcast ARP who has 10.190.2.17 Tell 10.1%
10 29.920260 Cisco_9a:15:80 Broadcast ARP who has 10.190.2.17 Tell 10.1¢
11 31.920366 Cisco_9a:15:80 Broadcast ARP who has 10.190.2.17 Tell 10.1%-

Frame 6: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface (
@ Ethernet II, Src: CompalCo_9a:ab:94 (00:16:d4:9a:ab:94), Dst: Broadcast (ff:ff:ff:ff:

Internet Protocol Version 4, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.2
4 Data (308 bytes)s,

Since the DHCP dissector is not

applied, Witeshark displays data
after the IPv4 header

@ ¥ | Fie:"Citraces perpngset b irplayect 955 ime: (00022 Profile Defoukt

Figure 34. Disabling UDP also disables the DHCP dissector [dhcp-addressproblem.pcapng]

“Disabling a Protocol May Blind You

Be careful with this setting. If you disable a protocol, higher protocols and applications will not be decoded.

For example, if you disable UDP, then applications that use UDP (such as DHCP and DNS) will not be decoded
either as shown in Figure 34.

Analyze | Decode As

This item is used to force Wireshark to use a specific dissector on the traffic based on the highest layer
recognized.

In Figure 35, we opened sec-sickclient.pcapng (available at www.wiresharkbook.com), selected an undissected
packet (packet 14), and opened the Decode As window. We are applying the Internet Relay Chat (IRC)
dissector to all traffic on port 18067.

This is a temporary setting—we can apply it each time we see this traffic, but our setting will be reset when
we close Wireshark or change to another profile. Access User Specified Decodes (explained in the next section)
to save your Decode As setting.

W Wiresherk: Decode A =)
Link] Network Transpen
TS
i psICTL
Do not decede
P — This is only a temparary sefting unti
L you select Analyze | User
Cleat Specified Decodes and click Save
Ll (IS dpply Glose.

Figure 35. Decode As forces a dissector to be applied [sec-sickclient.pcapng]

Analyze | User Specified Decodes
This feature is used in conjunction with the Decode As item. If we applied the IRC dissector to traffic on port

18067, this setting is shown in the User Specified Decodes window (with a titlebar of "Decode As: Show") in
Figure 36.

[l Wireshatkc Decode As: Show [E=eT==)

Select Analyze | User Specified
Decodes (o view Decode As seffings
and save setings inthe current profile)

sop [ok][swe Slen

Figure 36. User Specified Decodes correspond to the Decode As setting and can now be saved

Prior to Wireshark 1.8, the Decode As settings were temporary—they would be removed each time you shut
down Wireshark or move to another profile. Now we can keep these settings using the Save button in the User
Specified Decodes window.

In some cases (such as HTTP), we can enter additional port numbers in the application preference window
(Edit | Preferences | Protocols). In all other cases, we can use this feature to quickly force Wireshark to
dissect applications running over nonstandard port numbers.

http://www.wiresharkbook.com/

Analyze | Follow UDP, TCP or SSL Streams
This feature is very useful when you are interested in seeing the commands and data that are exchanged
between hosts and you are not interested in the various protocol headers.

“Reassemble Streams for Faster Interpretations

If you find yourself constantly focused on the ASCII interpretations shown in the Packet Bytes pane, consider
following the stream for faster interpretations.

When you choose to follow a UDP stream, Wireshark creates a filter based on source/destination IP addresses
and source/destination port numbers. When you choose to follow a TCP stream or SSL stream, Wireshark
creates a filter based on the stream number. For more information on following streams, refer to Chapter 10:
Follow Streams and Reassemble Data.

Analyze | Expert Info
Wireshark can identify unusual or interesting traffic in a trace and apply a categorization and colorization to
this traffic. In addition, Wireshark tracks the interesting traffic in the Expert Infos window.

The button on the far left of the Status Bar links to the Expert Infos window. For more information on
Wireshark’s Expert Info capabilities and uses, refer to Chapter 13: Use Wireshark’s Expert System.[36]

Analyze | Conversation Filter
The Conversation Filter item can only be used to identify PROFINET/IO (PN-10) traffic. PROFINET/IO is an
open industrial standard for an advanced version of Ethernet. For more information on PROFINET, visit

www. profibus.com.

Statistics Menu lItems
The items in the Statistics menu are covered at

www.wireshark.or wsug_html_chunk h isticsMen jon.html. In this Study Guide, we

provide a bit more depth on several items and focus on the uses of these items.

The Statistics Menu consists of many of the powerful interpretation features of Wireshark. Many of the items
fall into the category of basic traffic statistics and are relatively self-explanatory. The majority of these
statistics items are covered in more detail in other chapters, as referenced in the sections that follow.

For more information on using and interpreting Wireshark Statistics, refer to Chapter 8: Interpret Basic Trace
File Statistics.

Conversation List
Endpoint List '
Service Response Time

ANCP
BACnet
BOOTP-DHCP..
Collectd..
Compare..

L4 Flow Graph...
HART-P

Figure 37. The Statistics menu items

Statistics | Summary

The Summary window provides an overview of the packet and byte counts, time elapsed and capture filter (if
applied). This summary displays trace file annotations, capture interface and capture filter information (if
used). This summary also provides basic information on all packets captured, displayed packets and marked
packets. For more information on using and interpreting summary statistics, refer to Chapter 7: Define Time
Values and Interpret Summaries.

Statistics | Protocol Hierarchy

This item is particularly useful in detecting protocol anomalies in a trace file (refer to Chapter 32: Analyze

Suspect Traffic). Wireshark indicates the packet count, byte count and percentage of all traffic in the trace file
or, if a display filter has been applied, the packet count, byte count and percentage details on the filtered

http://www.profibus.com/
http://www.wireshark.org/docs/wsug_html_chunked/ChUseStatisticsMenuSection.html

traffic. Get to know the applications and protocols used on your network.

Statistics | Conversations and Endpoints

A conversation is a pair of hardware or software elements communicating with each other. An endpoint is one
side of a communication. For example, if 10.1.1.1 is browsing to 10.2.2.2, their communication is seen as a
conversation whereas 10.1.1.1 and 10.2.2.2 are seen as separate endpoints. When you are working with a
large trace file that contains many hosts communicating, the conversations and endpoints traffic can be sorted
to identify the most active hosts or conversations. GeolP mapping (if enabled in Edit | Preferences) is available
from the Statistics | Endpoints | 1Pv4 or IPv6 window. See List Endpoints and Map Them on the Earth for
details on GeolP mapping.

Statistics | Packet Lengths

Packet lengths are an important characteristic to watch in any data transfer process. Transferring a file using
small packet sizes is much less efficient than using full packet sizes. For more details on using this feature, see
Evaluate Packet Lengths.

Statistics | 10 Graphs
10 (or Input/Output) graphs offer a view of the total amount of bytes in a saved or unsaved trace file. This
graph can be run while capturing traffic to see a dynamic view of the bytes captured by Wireshark.

10 Graphs are very powerful in telling a story about the traffic by applying display filters, altering the styles
and X and Y axis values. Using advanced 10 Graphs, you can also use functions such as MIN, MAX and AVG.
Figure 38 shows an 10 Graph that compares all traffic in a trace file with TCP Duplicate ACK packets. For more
information on basic and advanced 10 Graphing, refer to Ch r21: Graph IO R nd TCP Tren

I Wresharc 0 Graphas ip-downlont-bad capog

i
| i
I H‘\

‘. . ALJ;WLHU[A.II..L

Figure 38. An 10 Graph depicts all traffic and the Duplicate ACKs [http-download-bad.pcapng]

Statistics | Conversation and Endpoint Lists
This is a quick way to view specific conversations or endpoints—it is faster than loading Statistics |
Conversations or Statistics | Endpoints and then choosing IP, TCP, UDP or another criteria.

Statistics | Service Response Time
This option provides graphs of minimum, maximum and average service response times (SRT) for many
processes including SMB, SMBv2, LDAP and NCP.[37]

Statistics | ANCP

Wireshark can provide statistics for Access Node Control Protocol (ANCP). ANCP provides a control channel for
communication between broadband remote access servers (BRAS) and access nodes. The default TCP port for
ANCP traffic is 6068. For more information on this feature and a sample ANCP trace file, see
wiki.wireshark.org/ANCP.[38]

Statistics | BACnet
BACnet (Building Automation and Control Network) is a protocol used to control the automation of building
elements such as heating, lighting control and fire detection systems. For more information on BACnet analysis,

see wiki.wireshark.org/Protocols/bacnet.

Statistics | BOOTP-DHCP

This statistic simply lists the type of BOOTP-DHCP packets captured. This is a useful statistic to examine when
you are looking for the cause of DHCP problems in a large trace file that includes the DHCP startup sequences
of hundreds of hosts.

Statistics | Collectd
Collectd is an open source project that includes a daemon that collects system performance information using

http://wiki.wireshark.org/ANCP
http://wiki.wireshark.org/Protocols/bacnet

a series of over 90 plugins to track information such as CPU usage, DNS traffic types, connection information,
disk data, email statistics, cache usage and more. Collectd was created by Florian Forster and can be
downloaded at collectd.org. The Collectd statistics displays information about statistics traffic captured and sent
across the network from the Collectd daemon.

Statistics | Compare

At the time this Second Edition was written, the Compare feature was a bit "clumsy" to use. In essence, you
should capture traffic on both ends of a file transfer and merge the two trace files (using Mergecap). When
you open the new merged trace file and select Statistics | Compare, this feature uses the IP ID field to
match up packets. At the time of this writing, however, this feature alerted us to IP header checksum errors
although we had disabled this protocol calculation. To compare two trace files right now, you can open two
instances of Wireshark and compare the trace files side-by-side. Updated information on this feature will
available at Mﬂmesha[kamk,gam when it becomes available. You can find some mformatlon about this
feature at

Statistics | Flow Graphs
Flow graphs create a packet-by-packet interpretation of the traffic, separating source and target hosts by
columns. This is particularly useful when interpreting HTTP traffic. Flow graphs are covered in more detail in

Chapter 8: Interpret Basic Trace File Statistics.

Statistics | HART-IP
HART-IP stands for Highway Addressable Remote Transducer over IP. This statistic only shows a count of
HART-IP requests, responses and error packets.

Statistics | HTTP

The HTTP statistics includes three sections—load distribution information, packet counter and requests. Load
distribution lists HTTP requests by server host and server address. The packet counter information breaks
down the HTTP request types (such as GET and POST) with the HTTP response codes (such as 200, 403 or
404). Finally, the HTTP requests lists out every target HTTP server and every file requested from each server.

HTTP statistics are covered in more detail in Chapter 23: Analyze Hypertext Transfer Protocol (HTTP) Traffic.

Statistics | IP Addresses and IP Destinations
These are somewhat self-explanatory. These items provide counts and percentages for each subject. Consider
using the Conversations List and Endpoints List for more useful information.

Statistics | IP Protocol Types
The IP Protocol Types item lists packet count and percentages for UDP and TCP traffic.[39]

Statistics | ONC-RPC Programs
This statistic displays the minimum, average and maximum service response time for the Open Network
Computing (ONC) variation of Remote Procedure Call (RPC).

Statistics | Sametime

This protocol is used for real-time communication and collaboration. The default TCP port for Sametime traffic
is 1533. For more information on Sametime, see wiki.wireshark.org/SAMETIME and www-
01.ibm.com/software/lotus/sametime/.

Statistics | TCP Stream Graphs
This is one of the most impressive (and unfortunately one of the least understood) features of Wireshark. You
must select a TCP-based packet in the Packet List pane in order to use TCP Stream Graphs. These five TCP
graphs are covered in Ch r21: Graph IO R nd TCP Tren

¢ Round Trip Time Graphs

¢ Throughput Graphs plot

+ Time-Sequence Graph (Stevens)

* Time-Sequence Graph (tcptrace)

¢ Window Scaling Graph

Each of these graphs is a unidirectional graph requiring that you select your TCP packet carefully before
building TCP graphs. For more information on building TCP graphs, refer to Graph TCP Sequence Numbers
over Time.

Statistics | UDP Multicast Streams
As multicasting (sending packets to a group of hosts based on a target multicast address) has become more
popular for uses such as video streaming, the UDP multicast streams item becomes more valuable. For more

http://www.wiresharkbook.com/
http://www.wireshark.org/docs/wsug_html_chunked/ChStatCompareCaptureFiles.html
http://wiki.wireshark.org/SAMETIME
http://www-01.ibm.com/software/lotus/sametime/
http://www-01.ibm.com/software/lotus/sametime/

information on multicast analysis, refer to Chapter 8: Interpret Basic Trace File Statistics and Chapter 19:
Analyze User Datagram Protocol (UDP) Traffic.

Statistics | WLAN Traffic

This item discovers WLAN traffic in a saved or unsaved trace file and provides basic information about that
WLAN traffic. This information includes the SSID, channel, packet count and packet type as shown in Figure
39. If you are interested in getting your feet wet analyzing 802.11 networks, refer to Chapter 26: Introduction
to 802.11 (WLAN) Analysis.

Seected Heswork:
= %Packets DataSent ¢ Dota Rectived 4 Probefeq ¢ ProbeResp # Auth ¢ Desuth ¢ Other 4 Commen 4
o

Puimeast 0000004u JT557 %

Pubmeast feA7397 [4525

[
]
]
[
[

7 Mame resolusion Limi to dieplay filtes Ok thow exiting networks

Help Copy [Glose

Figure 39. WLAN traffic information includes the SSID and active WLAN hosts
[wlan-ipad-start-sleep.pcapng]

Telephony Menu Items
The Telephony Menu items are shown in Figure 40. This is a good indication of the popular use of Wireshark

as a VolP analysis tool. For more information on VolP analysis, refer to Chapter 27: Introduction to Voice over
IP_(VolP) Analysis. In addition, see wiki.wireshark.org/VolP_calls.

Three key areas in this list are VolP Calls, SIP and RTP.

Telephony
ANSt ’
GSM

H225..

e

ISUP Messages

LTE

MTP3

BIP

RTSP:

SCTP

..
SMPPOperstions

UCP Messoges

YolP Calls
WAP-WISP.

Lol

Figure 40. The Telephony menu items

Telephony | RTP

The RTP (Realtime Transport Protocol) item displays and analyzes RTP streams and indicates if there are
possible problems in a unidirectional RTP stream (as denoted by the somewhat unusual "Pb?" column). The
RTP window defines packet loss and jitter rate information.

“When Wireshark Doesn’t Recognize RTP Traffic

If you have captured an RTP stream and not the Session Initiation Protocol (SIP) call setup traffic or Wireshark
did not understand the signaling traffic, Wireshark may not recognize your traffic as RTP traffic. In this case,
select Edit | Preferences | Protocols | RTP and enable "Try to Decode RTP Outside of Conversations".

Telephony | SIP

SIP, or Session Initiation Protocol, is used to set up and manage the call such as INVITE and ACCEPT methods
and the numerical response codes indicating success, redirection, client errors, server errors and global
failures. The SIP Statistics window lists all SIP response codes in the trace file, SIP request methods and call
setup time information. A display filter can be applied to the SIP statistics to focus on a specific call, if desired.

Telephony | VolP Calls

This is an area that thrills many VolP analysts[40] as it enables the playback of some unencrypted VolP calls.
First Wireshark automatically detects VolP calls (remember, if Wireshark does not detect call setup traffic it
may not detect the call either), then it builds a table with the start/stop time of the call, the initial speaker,

http://wiki.wireshark.org/VoIP_calls

information on the source and destination of the call as well as the protocol used for the call setup.

Select Telephony | VolIP Calls | <select a call> and click on Flow to graph the VolP traffic in a trace file
as shown in Figure 41.

W o exerion peagng - Graph Analss =

192168510 192168520

0333337
034352
353282
0359355
L=

Figure 41. Wireshark graphs out VolIP traffic [voip-extension.pcapng]

For more information on analyzing VolP traffic, refer to Chapter 27: Introduction to Voice over IP (VolP)
Analysis.

Tools Menu Items
There are only two items on the Tools menu, the Firewall ACL (Access Control List) Rules item and Lua.
Tools

Manual
Wiki

Figure 42. The Tools menu items

Tools | Firewall ACL Rules
Access Control List (ACL) rules are used by various firewall products to block or allow certain traffic based on
some characteristic seen in packets. After clicking on a packet or field and selecting Tools | Firewall ACL
Rules, Wireshark builds a Cisco 10S (Standard) firewall rule based on the source IP address in the packet. You
can click the arrow in the product area to change this rule to another rule type as shown in Figure 43.

B Frewa ACLRules (=@

Product |Cisco 10S (extended) [=] Fier (192168510 [+] @iwbound (@ Deny

! Cisco 10S (extended)
access-list NUMBER deny ip host 192.163.5.10 any.

| Hep Copy | [sove Cancel

Figure 43. Wireshark can automatically create ACL rules

Wireshark can create ACL rules for the following firewall formats:
Cisco 10S (standard and extended)

IP Filter (ipfilter)

IPFirewall (ipfw)

Netfilter (iptables)

Packet Filter (pf)

Windows Firewall (netsh)

Once you create the desired filter, simply click the Copy button and paste the filter into your firewall
configuration.

Tools | Lua

Lua is "a powerful, fast, lightweight, embeddable scripting language" (www.lua.org). Lua can be used to add
functionality to applications. Lua scripts can be created to prototype a dissector—Wireshark dissectors are
written in C. Lua scripting is beyond the scope of this book—for more information on using Lua with Wireshark,

see wiki.wireshark.org/Lua.

Internals Menu Items
The Internals menu contains two items: Dissector Tables and Supported Protocols.

[vww allitebooks.cond

http://www.lua.org/
http://wiki.wireshark.org/Lua
http://www.allitebooks.org

Intamnals
Dissector tables
Supported Protocsls (slow)

Figure 44. The Internals menu items

Internals | Dissector Tables

The dissector tables are now available from the Wireshark Main Menu. Probably one of the most interesting
areas in the dissector tables is the TCP port mapping listed under the Integer Tables tab as shown in Figure
45,

Wl Dissector tables |

String tables | Integer tables | Heuristic tables.

estReplyDatalntersce Handle
¥ SendUritData Interface Handle

& Sever fectzerver
T.124 H221 Send Data Dissectors adsd
TCP port tepport

7 ECHO

13 DAYTIME
] FTP-DATA
a FTP

n S8H

Figure 45. The Integer Tables tab lists known TCP port numbers

Internals | Supported Protocols

This menu item lists over 1,100 protocols and packet types supported by Wireshark. In previous versions of
Wireshark, this item was listed under the Help Menu. The Display Filter Fields tab lists all of the individual
protocol and packet type fields recognized by Wireshark. This is an interesting reference area. However, if you
want to know if Wireshark can dissect a certain protocol, a simple Internet search may yield more information.
When creating display filters, click on Expression... in the Display Filter area to view and create filters.

Help Menu Items
You can quickly launch Wireshark’s Help from the Main Toolbar.

-

ze Statistcs Telephony Tooks [t

The items in the Help menu are covered at
www.wireshark.or wsug_html chunk hUseHelpMen ion.html.

Help
B Contents 1
ManuzlPages »

& Website
FAQs
Downloads

@ Wiki
Sample Captures

B About Wireshark.
Figure 46. The Help menu items

Identify Wireshark Capabilities and Version Information

Most items in the Help menu are self-explanatory. One of the key items in the Help menu is the About
Wireshark section. Click on About Wireshark to determine your current version information and Wireshark
capabilities as shown in Figure 47.

This window is really quite important. One user complained that they could not dissect Structure of
Management Information (SMI) details in Simple Network Management Protocol after upgrading to the 64-bit
version of Wireshark on a Windows platform. Examining the information in Figure 47 reveals that this version
was compiled "without SMI."

Information on the Wireshark mailing list provided some details:

"There is at present no 64-bit windows version of libsmi. The 32-bit version of Wireshark should run on 64-bit
windows and has libsmi included. The worst case would be copy the pcap to any other platform where
Wireshark runs (Win32, Linux, etc.) and decode there. [Andrew Hood]"

http://www.wireshark.org/docs/wsug_html_chunked/ChUseHelpMenuSection.html

B oo ok [~

Wireshark | Authors| Fasders | Pruging | License

Versionand
information

=

Figure 47. Select Help | About Wireshark to identify the capabilities of your copy of Wireshark

Locate Wireshark Configuration and Program Folders
Click on the Folders tab to learn where Wireshark elements are located. In Figure 48 you can see that the
Folders area includes a short list of the typical files contained in each folder and links to each the folders.

“Learn Where Your Wireshark Components Reside

It is important to know where the Wireshark program file resides as well as the location of your Personal
Configuration folder. Wireshark can be installed in any directory on a system—this is a quick way to locate
those files.

Figure 48. The Folders tab indicates the location of key Wireshark files

Use the Main Toolbar for Efficiency

The Main Toolbar contains the icon-based navigation for Wireshark which provides a faster method to perform
many common tasks. The Main Toolbar is separated into seven sections as shown and defined below.
Toolbar Icon Definitions

Capture Toolbar Icons
B oW e e

From left to right, List Interfaces, Capture Options, Start Capture, Stop Capture and Restart Capture

Restart Capture is very useful when you began capturing too early. Use Restart Capture so you don't need to
stop the capture and go through the capture setup process again.

Trace File and Print Toolbar Icons
EEX28

Open File, Save File, Close File, Reload File, Print
Many temporary settings (such as ignored packets) can be cleared by clicking Reload File.

Navigation Toolbar Icons
Qe s 9T

Find, Go Back, Go Forward, Jump To, Go to First Packet, Go to Last Packet
« Find locates a packet based on a display filter, hex value or string
« Back returns to last packet located by Find, Go To, First or Last
« Next is only active after Back has been used
¢ Go To takes you to a specific packet number

« First jumps to the first packet in the trace file based on the current sorting order
o Last jumps to the last packet in the trace file based on the current sorting order

“The Packet Number Never Changes
The packet number value never changes for a packet, regardless of how columns are sorted.

Finding a Packet
Use the Find button on the Main Toolbar or Ctrl+F to open the Find Packet window as shown in Figure 49.
You can locate packets based on a display filter value, hex value contained in the packet or an ASCI|I

string.[41]

B8 Wire:haric Find Packet e C
Find

By) Display fikter) Hexvalue © Suing

iter: | nesss
Searchin String Options

Packetlist Case sensitive

Packet details | Character set: | ® Down

@ [Packet bytes| || ASCIlUnicode & Non-Unicode |~ |

Help [Fne Caneel |

Figure 49. You can find packets based on display filter, hex value or string

If desired, searching can be limited to summary information in the Packet List pane, the decoded values in the
Packet Details pane or the entire packet contents in the Packet Bytes pane. You can also choose the direction
your search should use—up or down from the currently-selected packet.

"Wrap to end/beginning of the file during a Find" is set in the Edit | Preferences | User Interface area.

The String option is used to perform a case sensitive search and define the character set as ASCII Unicode &
Non-Unicode (default), ASCII Unicode or ASCII non-Unicode. The string options section is only applicable when
performing a string search.

Color and Scroll Toolbar Icons

Packet Coloring (toggle on/off), Auto Scroll (toggle on/off)

Auto scroll is most useful when you have applied a capture filter to limit the number of packets that scroll
across the screen. If Wireshark is dropping packets, consider turning off auto scroll and packet coloring. If that
doesn’t help enough, disable "Update list of packets in real time" in Edit | Preferences | Capture.

Viewer Toolbar Icons
aQaan

Zoom In, Zoom Out, Zoom 100%, Resize All Columns

As you add more columns and adjust the contents of those columns, click the Resize Columns, Zoom in,
Zoom out or 1:1 (100926) buttons to set the column sizes for best visibility.[42]

Filter, Color and Configuration Toolbar Icons
EEm R

Capture Filter Editor, Display Filter Editor, Coloring Rules Editor, Global Preferences

These icons offer a quick way to view and edit your saved capture and display filters as well as coloring rules.
Click the Global Preferences icon to define protocol settings, Filter Expressions settings and more.

Help Toolbar Icon
B

Help Window

Focus Faster with the Filter Toolbar

The Filter Toolbar consists of a Display Filter button (marked just "Filter"), the display filter area, the display
filter drop-down, Expression, Clear and Apply and the recently-added Save buttons as shown in Figure 50.

Wireshark includes an display filter auto-complete feature. Begin typing in the display filter area and Wireshark
lists all possible filters beginning with that string. Color coding helps avoid common display filter mistakes.

Display filtering is covered in detail in Chapter 9: Create and Apply Display Filters.

[l Reztek PCle FE Family Controller: \Device\NPF_{BE78FECO-FF79-4970-96E4-EEFF 300A989F)

File Edt View Go Capture Analyze Statistics "!D!phnnz I‘n‘uls “]r\[;mah Help
BEeed BEEX2L acsvaT 2 EE aaan
Filter: | tep. ljapmmn“. Clear Apply Save
tep.ack
tep.analysis.ack_lost_segment
tepanalysis.ack it
tep.analysis.acks_frame
tep.analysis.bytes_in flight
tepanalysis.duplicate,sck
tepanalysis.duplicate_ack_frame

tepanalysis.duplicate_ack_num

tepanalysisfast setransmission

Figure 50. Wireshark offers auto-complete when you type a portion of a filter in the display filter area

Set the number of recently used display filters that Wireshark remembers in the Edit | Preferences | User
Interface | Filter display list max. entries setting. The display filter auto-complete feature and use of
Expressions is covered in detail in Chapter 9: Create and Apply Display Filters.

As of Wireshark 1.8 you can create a set of buttons on the filter toolbar to quickly load your favorite display
filters. This is a fabulous feature! In Figure 51 we have added three filter expression buttons using Preferences.
Only one is visible on the filter toolbar—we must click >> to view additional filters that do not fit on the filter
toolbar. We can click one of the buttons to quickly apply our key display filters. Filter Expressions can be built
inside the Preferences area or by creating a display filter and clicking Save in the display filter area.

I bt dowrload ad peapng Chick Save to tum a display fiker 15
Fle Edt View Go Coptwe Amabyze Sutimics Teephony into & Filter Expression Butan

BB EAREE A w T " < m% B
Fotes | tepindow.sie < 1400 B —— T

Ho Tome

Seurce Destination Protacel Info

© Frame 374: 54 bytes on wire (432 bits), 54 bytes captured (432
= Ethernet II, Src: Sony_f4:3a:09 (08:00:46:f4:3a:09), Dst: 3Com©:
= Internet Protocol Version 4, Src: 10.0.52.164 (10.0.52.164), DS
Transmission Control Protocel, Src Port: ads (2550), Dst Port:
Source port: ads (2550)
Destination port: http (80)
[stream index: O
Sequence number: 446 (relative sequence
Acknowledgment number: 298170 (relative
Header length: 20 bytes
Flags: 0x010 (ACK)
Window size value: 0
[caleulated window size: 0]
[window size scaling factor: 4]
Checksum: 0x34489 [validation disabled]
+ [SEQ/ACK analysis]
@ [Timestamps]

Click a Fitter Expression Buton
10 quickly apply saved fiters 1o
your trace file — click the
arrows e additional Filter
Expression Buttons that do not

fit on the display fifer toabar

© | Fie: "Chtroces-peapngicttp-download- b peapng” S | Pockets: 1195 Dispa.._|Profile: Troubleshooting

Figure 51. The new Filter Expression preference creates buttons based on display filters

[http-download-good.pcapng]

Filter expression button settings are saved in the Preferences file in your profile. You can have separate
buttons for each profile. For more information on customizing Wireshark with profiles, refer to Chapter 11:
Customize Wireshark Profiles.

Make the Wireless Toolbar Visible

The Wireless Toolbar can be used to select the WLAN channel, define decryption keys to use on wireless traffic
and indicate whether a pseudoheader should be applied to incoming wireless packets. Many of the Wireless
Toolbar options are only available if Wireshark detects that an AirPcap adapter is connected to the local
system.

The Wireless Toolbar is hidden by default. To view the Wireless Toolbar, select View | Wireless Toolbar.
The Wireless Toolbar consists of six sections, as shown in Figure 52. The 802.11 Channel, Channel Offset, FCS
Filter, Wireless Settings and Decryption Keys fields are only available if you have an AirPcap adapter connected
to your Wireshark system.[43]

Channel Offset for

AirPcap NINx Decryption Method ~ Opens Wireshark
Adapters to create (None, Wireshark Decryption Key
a "wide channel” or Driver) Window
|snn1cmm 2462 (86 11] = Channel Offset (0~ |FCS Filter Al Frames |« | Wiseshask [«] Wiless Sattingss. Decryption Kays..,)l
Channel to Capture all frames Opens Advanced
capture on or valid or invalid Wireless
frames only Configuration
Window

Figure 52. The Wireless Toolbar consists of six sections

The details of the Wireless Toolbar sections are covered in Chapter 26: Introduction to 802.11 (WLAN)
Analysis.

Work Faster Using RightClick Functionality

Many Wireshark tasks can be completed quickly using rightclick functionality. Different rightclick options are
available for the Packet List pane, Packet Details pane and Packet Bytes pane. Different rightclick windows
appear depending on where you clicked in each pane as well.

Figure 53 shows functions available when you right click on a packet in the Packet Details pane. Figure 54
shows the rightclick functions available when you right click on a packet in the Packet List pane. Hex view and

bits view are the only two rightclick options available in the Packet Bytes pane.

Il hti-esp0lLpcapng
D T T
BEIAN ERARSE Qe EIR

Fnae

to Tme source Destination Srotocal
1 0.000000 24.6.173.220 68.87.76.182 DNS
« Frame 5: 66 bytes on wire (528 bits), 66 bytes
Ethernet 1L, src: uewhtt- a7:bf:a3 (d4:85: 64

| Trnn;m ssion control ?mocal src Port: 5781
Source port: 57817 (S?Sl?)
| Destination po
[Straam index:

ber:
Header length: 32 bt
- Flags: 0x002 (SYN)
window size value: |
[calculated window |
@ Checksum: 0x12b9 [wi |
= Options: (12 bytes)

Iz Copy
w o Sekcted Packet Byt

@ Wiki Protocel Page

Figure 53. Different rightclick options are available when you select a field in the Packet Details pane [http-espn2011.pcapng]

Right Click | Edit or Add Packet Comment...
Annotation is a great addition to Wireshark 1.8. Right click on any packet in the Packet List pane and select
Edit or Add Packet Comment as shown in Figure 54. Your packet comments are embedded in the trace file

as long as you save the trace file in pcap-ng format.

Packet comments are shown above the Frame section. The packet comment field is named pkt_comment. You
can create filters, columns and coloring rules based on this field.

<=1 S i

B e-poonrereng
Fie Bt Vew Go Coptore Abze Sutiics Telephony Toois htemis Help

B m@RPE AeveTiL EEFaaqn #0DRE @
Fer, [=] expresian... clear nppty Sove
fo. Time Source: estination Frotocol lalo

0.000000 192.168.1.102 192 168.1.1 IGPEf Rignt click onapacket in the

0.000797 192.168.1.1 192.168.1.102 ToMp
1.130488 192.168.1,103 192.168.1.1 1P

1

: Packet List pane and select
|4 10131382 192.168.1.1 192.168.1.103 Iowp

5

6

8

Edit or Add Packet Comment

1.133280 192.168.1.1 192.168.1.103 1o
1 13455n Amhn_mc aa:af: BRuntap_d‘J 0d:db _ ARP
:af:g ATC

Packet comments reside above
the Frame section of the packet

Open the Expert Infos window and select
the Packet Comments tab toview and jump
to all packet comments in the trace file

:d0: 59:aa:af :80)

@ 7 FleChlsenL yments\2030 - Wireshark Uni... | Packets: 20 Displayed: 20 Marked: 0 Load time... | Profiles Defauit

Figure 54. Rightclick functionality offers a faster way to quickly perform certain operations

[arp-poison.pcapng]

Right Click | Copy

One time saving option available on the rightclick window is the Copy option.

window that appears when you select the Copy option.[44]

Right-Click on Packet List Right-Click on Packet Details

Summary (Text) Description
Summary (€5V) Fieldname
As Filter Value
Bytes » | Offset Hex Text s Filter
DHsE He Bytes » Offset Hex Text
Printable Text Only S
Hex Stream Printable Text Only
Binary Stream o S
Binary Stresm

Figure 55 shows the additional

Figure 55. The Copy options available when you click on a field in the Packet List pane (left) and Packet Details pane (right)

The following section shows the values buffered when you use various Copy options on a DNS packet in the
Packet List pane.

An example of the Summary (text) value is shown below.

9 21.825414 192.168.0.113 192.168.0.1 DNS
76 Standard query A d.getdropbox.com

An example of the Summary (CSV) is shown below.

9","21.825414","192.168.0.113","192.168.0.1","DNS",
"76","Standard query A d.getdropbox.com"

If you right click on a specific column and row in the Packet List pane, Wireshark detects that location and
uses that information for the rightclick Copy function. For example, if you right click on a Destination column
row that contains the value 192.168.0.1 and select Filter As, Wireshark will buffer the following information.

ip.dst==192.168.0.1

The following section shows the values buffered when you use various Copy options on a UDP header in the
Packet Details pane.

» Description: Length: 310

e Fieldname: udp.length

e Value: 310

e As Filter: udp.length==310

Right Click | Apply As Column

This option offers a fast way to add a column to the Packet List pane. Figure 56 shows the Packet List pane
with a new column showing the TCP calculated window size value. In packets 10 through 14 the new column is
blank because no TCP window size information is contained in these DNS packets.[45]

To add the column shown in Figure 56, simply open a trace file that contains a TCP conversation. Right click
on the Calculated Window size field in the TCP header and select Apply As Column.

If you don’t have a good TCP trace to use for this, use http-espn2011.pcapng that is available in the Download
section at www.wiresharkbook.com.

Right click on a column heading to align left, center or right, rename the column or remove the column.

Bl hipesped0iLpcapng <) i
Fde Edt Mew Go Capture Anshze Sutitics Telephony Tooks Intemals Help

BN mERDL B aaan @8 |

No. Time Seurce Destiration ot Dic .
1 0.000000 24.6.173.220 68.87.76.182 DNS S———Standard query

2 0.021790 68.87.76.182 24.6.173.220 DNS Standard query

3 0.022487 24.6.173.220 68.87.76.182 DNS standard query

4 0.039288 6B.87.76.182 24.6.173.220 DNS Standard query

5 0.040191 24.6.173.220 199.181.132.250 TCP 8192 57817 > http [<
6 0.071917 199.181.132.250 24.6.173.220 e

7 0.072103 24.6.173.220 199.181.132.250 TCP 65700 57817 > http [1
8 0.072822 24.6.173.220 199.181.132.250 HTTP 85700 GET / WTTP/1.1

9 0.111113 199.181.132.250 24.6.173.220 HTTP 4748 HTTP/1.1 301 Mc
10 0.114988 24.6.173.220 68.87.76.182 DNS Standard query.
11 0.133150 68.87.76.182 24.6.173.220 DNS standard query
12 0.134055 24.6.173.220 ©68.87.76,182 DNS Standard query.
13 0.165878 24.6.173.220 68.87.76.182 DNS standard query -

Transmission Control Protocol, Src Port: 57817 (S7E17). Dst Port: http (80), Seq: (-
Soul 7817 (57817) |
rt: http (80)
0

r: 0 (relative sequen:
32 bytes

Barked: 0 Load — | Profile: Default

7 The scsted window size f scaling has been used) 1cp.. | Packet: 276 Dispayee:

Figure 56. Add columns to the Packet List pane using right click | Apply As Column [http-espn2011.pcapng]

Besides altering the alignment, name or other property of your column, you can right click on the column
heading to define the occurrence of a field for your column. For example, an ICMP Destination Unreachable
message contains two IP headers (and two sets of all the IP header fields). By default Wireshark will show the
value of each duplicate field. If you only want to see the value of the first occurrence, right click on a column
heading and select Edit Column Details as shown in Figure 57. You can also right click on a column heading
and choose to Hide or Display columns. This is much faster than recreating the column which requires
reprocessing of the entire trace file.

“Don’t Kill Wireshark Performance

To display custom columns, Wireshark must look inside packets to locate the desired field and extract the
contents of that field to display in the Packet List pane. All this work adds overhead to Wireshark and may slow

http://www.wiresharkbook.com/

down the process of displaying trace file contents or update the list of packets in real-time while capturing. In
my opinion there are some instances where giving up this performance is necessary to speed up the overall
troubleshooting process. For example, | would never try to troubleshoot TCP communications without a
Calculated Window Size field column.

e (=10 e
Fle Edit Mew Go Capture Anshze Sustistics

Sedes mERTE X

i
o B

00201}
1d=0x020¢
d=0x020¢

face 0 -

0.4.88.¢

(version: 4
Header th: 20 bytes }

@ Differentiated Sefgay. oo T oo T T (not
Total Length: 60 | B el i"lm-m v
|

Identification: 0
@ Flags: 0x00

Fraguent offser: {

Time to Vive: 32 || fug

Protocol: Iowp (1}

Header checksum: {
Source: 10.2.10.2
Destin

estination: 10.4.|
[Source GeoIP: UnKrmrs

Figure 57. Right click on a column heading to edit its properties [icmp-dest-unreachable.pcapng]

Right Click | Wiki Protocol Page (Packet Details Pane)

Wireshark has links to the related Wiki pages from the protocol summary line and protocol fields in the Packet
Details pane. For example, click on the Hardware Size field in an expanded ARP packet. Select Wiki
Protocol Page and click OK on the information pop-up. Your default browser will display the related protocol
page (if one exists).

Right Click | Filter Field Reference (Packet Details Pane)

Right click on any field in any packet and select Filter Field Reference to open the Wireshark display filter
list in your default browser. For example, click on the Header Length field in a TCP packet and select Filter
Field Reference—Wireshark opens the list of available TCP display filter fields as shown in Figure 58.

Display Filter Reference: Transmission Control Protocol
Protoc cp

Description
Acknowledgement number|
ACKed Lost Packel

The RTT to ACK the segme:
was

. ThsisanACKto e
segment In frame

s BieSin fight

Dupiicate ACK
r Dupiicate to the ACK In fr

Figure 58. You can quickly load the display filter reference by right clicking in the Packet Details pane

Right Click | Resolve Name (Packet Details Pane)

Right click on an IP address in any packet in the Packet Details pane and select Resolve Name to launch
Wireshark’s inverse DNS query process to resolve just that one IP address. The host name information is not
saved when you close the trace file.

“Easily Resolve a Single IP Address

This rightclick | Resolve Name feature is great! You don’t need to resolve all the names in the trace file and
potentially hit your DNS server with a ton o’ lookups. The information is not retained, however. When you
reload the trace file you will lose the name information.

Right Click | Protocol Preferences

Many of the protocols and applications dissected by Wireshark have preference settings that can be altered
using Edit | Preferences | Protocols. You can also right click on a summary line as shown in Figure 59. The
protocol preference settings defined using the rightclick method are saved and in effect the next time you start
Wireshark.

E

1 rito-cspn2012 peagng
Ele Edt Yiew Go Capture Andbze Statistics Telephony Tools intemls Help

Seses s@x@8 anevnTi Eeaan @08 % &
Filtes: Expression... Cleas Apgly Save
bio, . Tome ctocel ot

Source Destinaticn o -
5 0.030245 24.6.173.220 199.181.132.250 TCP 19941 > http [SYN] Seg=0 Win=8J
6 0.061580 199.181.132.250 24.6.173.220 TCP http >'19941 [SYN, ACK] Seq=0 /
7 0.081706 24.6.173.220 199.181.132.250 TCP 19941 > http [ACK] Sea=l Ack=1l -

ire (528 bits), 66 bytes captured (528 bits) on interface 0 -
jett-_a7:bf:a3 (d4:85:64:a7:bf:43), Dst: Cadant_31:bb:cl (00:(
P e M7 Y A VW) §.173 89.181.112.25(
Expand Subtrees 1 (19941), DSt Port: http (80), Sea: (|
Source port: 199 Bpsadal

Destination port Colapseal |
[Stream index: 0 .\ cuum Al
Sequence number:
Header length: 3
< Flags: 0x002 (5%
window size valu

s Frame 5: 66
@ Ethernet II,

number)

[calculated wind e
Checksum: 0x12b9 Follow UD? Sire
[Good checksum
[Bad Checksum:
= options: (12 byt
Maxinum segmen
Kind: Mss si
Length: 4

Copy
Expor Selected Packst Bytes..

Righ! click on a protocol summary fine
or field to quickly ew and edit the:
Protocol Preferences

@ Wi Brotocel Page

O ¥ Inernet Protocel Version «

Imtecpret Reserved flag as Security flag (REC 3514)

Figure 59. Quickly set protocol preferences by right clicking on a protocol line in the Packet Details pane
[http-espn2012.pcapng]

Sign Up for the Wireshark Mailing Lists

You should become familiar with the various sections on the Wireshark website and consider registering for
one of the five Wireshark mailing lists defined below.

Wireshark-announce: Announcements about releases (low volume)

Wireshark-users: Community-driven support for Wireshark (high volume)[46]

Wireshark-dev: Developer discussion for Wireshark (high volume)

Wireshark-commits: SVN (subversion) repository commit messages (high volume)

Wiresharkbugs (for masochists): Bug tracker comments (high volume)

“Get Notified When New Wireshark Versions are Released

Join the Wireshark-announce mailing list to learn when new versions are released. You typically will want to
stay up with the current version. The other mailing lists are not as important for the typical user and the
Wireshark-users should be scratched in favor of ask.wireshark.org.

Join ask.wireshark.org!

At the end of 2010, Gerald Combs launched ask.wireshark.org, a question and answer site to support
Wireshark. The site offers a wonderful repository of information on how to use Wireshark and interpret trace

files.
WRESHARK

]
All Questions active

RGN | oos | | wsers | | bodges | | unansweres
* questions © tags © users
19 tan wireshark be installed on an iPad or iPhone?

o 1 59 How toget the .txt file back to wireshark?
s i sask

o o 26 Mo Interfaces - Windows

Rt U O R o o W 0 L o

Figure 60. FABULOUS! Look up topics on ask.wireshark.org

Know Your Key Resources
There are numerous sites that provide assistance with Wireshark functionality or resources for network
analysis.

www.wireshark.org: Main Wireshark home page
www.wireshark.org/docs: Wireshark documentation links

wiki.wireshark.org: Wiki page for Wireshark support

ask.wireshark.org: Wireshark Q&A Forum

www.wireshark.org/download: Download page (current and development versions—the development
version is under the automated subdirectory)

http://www.wireshark.org/
http://www.wireshark.org/docs
http://wiki.wireshark.org/
http://ask.wireshark.org/
http://www.wireshark.org/download

blog.wireshark.org/: The Sniff Free or Die Wireshark blog by Gerald Combs
bugs.wireshark.org/bugzilla/: Wireshark bug list home page

www.wiresharktraining.com: Wireshark University home page and Wireshark Certified Network Analyst
certification exam information

www.winpcap.org: WinPcap home

www.tcpdump.org: libpcap/tcpdump home
www.iana.org: Internet Assigned Numbers Authority (IANA)

www.ietf.org: Internet Engineering Task Force (IETF)

Get Some Trace Files

The best way to learn how TCP/IP works is by capturing your own traffic as you perform various tasks (web
browse, send an emalil, etc.).

There are also numerous trace file resources online. Check these out and you will be swimming in packets.
o www.wiresharkbook.com: Visit the Downloads section to obtain the trace files referred to in this book. The
list of trace files (along with quick descriptions of each) are contained in Appendix A. The trace files
available at www.wiresharkbook.com are in pcap-ng format and contain trace file comments and packet
comments as noted in Appendix A.

o www.pcapr.net: The pcap repository at www.pcapr.net was launched in early 2009. The site has grown to
become the largest repository for network captures with over 6,500 users and over 60 million packets
available for collaboration and download.

» openpacket.org: OpenPacket.org is a Web site whose mission is to provide a centralized repository of
network traffic traces for researchers, analysts, and other members of the digital security community.
Openpacket.org was conceived by Richard Bejtlich and is currently maintained by JJ Cummings.

-

Case Study: Detecting Database Death

Submitted by: Bill Bach, Goldstar Software, Inc.

I was troubleshooting an application problem for a client, which started as a simple "Database Version 6 or
Higher Required" message for a given file. More interesting were the facts: A) the database files was already in
version 6 format, and B) the error only spewed spontaneously, about 1/10 of the time, and sometimes it would
report on a different database file.

After working on this issue for a while and quadruple-checking all the usual suspects, we were stumped and
decided to enable the database vendor's trace feature. This feature is very handy because it reports to a
simple text file every database request and every corresponding reply -- a great troubleshooting aid for
unusual problems like this. Of course, that text file grows VERY rapidly in a production environment and really
takes a toll on performance, so we had to use it sparingly.

After several attempts of testing at random, we finally managed to capture a series of events with the
"Database Version..." message getting returned. Whew.

Upon digging through an 80MB trace file, we were able to locate the database request where the version
number was requested. Interestingly, the application had provided a 0 value for one of the parameters, instead
of a -1 (which indicates that the file version should be returned). With the 0 in there, no file version was
returned, which explains why a 0 got returned for the file version, and subsequently the program complained
about the version number.

So, we complained to the application vendor, who dug through the code and could find NO instances of ever
passing a 0 -- they ALWAYS passed a "-1" to get the database version. Strange.

Back to the database trace file again, we watched a "normal” application launch and indeed confirmed that 19
times out of 20, the database file version was being requested, but only periodically was the parameter a 0.
More strange!

On a lark, we decided to capture traffic from the same application startup process, capturing both a trace with
the version request working and one with it not working. As expected, when the version request worked, we
saw the -1 value getting passed from the application to the server. However, when the version request failed,
we saw -- a -1 value! Most strange!

http://blog.wireshark.org/
http://bugs.wireshark.org/bugzilla/
http://www.wiresharktraining.com/
http://www.winpcap.org/
http://www.tcpdump.org/
http://www.iana.org/
http://www.ietf.org/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.pcapr.net/
http://www.pcapr.net/
http://openpacket.org/

We took another trace on the server side.

Again, we duplicated the problem. This time, though, we had EVERYTHING running at the same time. We
watched as the application sent a -1 for the version request, the -1 was seen in the workstation-side trace file,
the -1 was seen on the serverside trace file, and a 0 was seen by the database vendor trace file.

Aha! Finally, indisputable proof!

When we provided this information to the database vendor, they did a detailed review of their own networking
code and indeed found a case where some functions (and the version request was one of them) could have
parameters overwritten with a 0. Since it was occurring in the communications module, the database feature
only saw the 0 value and responded accordingly. Of course, the database trace feature was implemented in
the engine, so it also reported the 0 value. For most applications, this would be completely transparent as they
typically don't care which database version they are running on, but because this application DID rely on the
return value, it failed because of it. The next week, we had a new communications module from the developer
and things were working once again.

What did we learn?

A) You need to involve the application developer, the backend developer, AND a networking professional to
troubleshoot some issues.

B) You may need multiple network traces (at the client and at the server) to watch packets going through the
network.

C) Just because a vendor provides a trace log, doesn't mean that you can rely on it!

Summary

From its humble beginnings as Ethereal, Wireshark has matured to a feature rich tool for analyzing wired and
wireless network traffic. As long as you stay within the laws and corporate policies that regulate use of
Wireshark, you can troubleshoot and secure your network more efficiently with an inside look at network
communications.

All versions of Wireshark use packet capture drivers to capture traffic on wired and wireless networks and the
Wiretap Library to open various types of trace files. Wireshark supports a common interface across multiple
platforms with menu-based, icon-based or rightclick functionality for trace file manipulation and interpretation.

Practice What You’'ve Learned

6 Download the practice trace files available from the Download section on the book website,
www.wiresharkbook.com. Use these trace files to practice what you've learned in this chapter.

1. In Wireshark’s Start Page, select File | Open and select ftp-dir.enc. This trace file was captured and saved
by a host running an old DOS version of Network General’s Sniffer product. That version saved files with
the .enc format. Wireshark used the Wiretap Library to open that trace file.

2. Scroll through the trace file to see the traffic generated from a File Transfer Protocol (FTP) session. In this
FTP session the user logged in to an FTP server with the user name "Fred" and the password "Krueger." In
packet 22, the user typed in "dir" at the command line and their FTP software generated the LIST
command to the FTP server.

3. Examine the Status Bar at the bottom of the window. On the left side you can see the path and name of
the trace file you loaded. You can also see the file is 4,297 bytes in size and the total packet time is 37
seconds.

5

S TRteThet Protocsl arsTon Z

0000 00 20 78 el 5a 80 00 00 65
0010 00 2¢ 2b 01 40 00 20 06 b6,
0020 le 01 04 O1 00 15 00 24 30
0030 20 00 ca 4f 00 00 02 04 05

@ 1 | File “Citraces peapngsetftp-di.enc” 4297 Bytes 000031

4. To jump quickly to packet 39 in the trace file, click the Go To Packet button on the Main Toolbar. Enter 39
and click Jump To. Packet 39 is highlighted in the Packet List pane (top pane) and dissected in the Packet
Details pane (middle pane).

[vww allitebooks.cond

http://www.wiresharkbook.com/
http://www.allitebooks.org

5. Right click on the Frame line in the Packet Details pane and select Expand All. Wireshark is now showing
you all the dissected fields of the FTP packet.

6. Scroll down and right click on Frame Length: 73 bytes (584 bits) and select Apply as Column. In the
Packet list pane you should now have a new column entitled "Frame length on the wire." If you want to
remove a column, right click the column heading and select Remove Column.

7. On the Packet List pane (top pane), right click on packet 39 and select Follow TCP Stream. You should
clearly be able to read client FTP commands in red and server responses in blue.

Find the following answers using the information contained in this chapter:
What is the highest level of Expert Information contained in this trace file?
What profile has been applied?

What is the time display format setting?

Did Wireshark resolve IP addresses to names?

How many capture interfaces are currently available on your system?

Each of these items can be determined through the Wireshark Status Bar or Main Menu system.
Practice navigating Wireshark’s interface with the following trace files:

app-youtubel.pcapng: Time to do some application analysis—how much bandwidth does a YouTube video
consume? Create an 10 Graph and set the Y axis to bits/tick. Refer to the application analysis process shown

in Chapter 8: Interpret Basic Trace File Statistics.

booktcpset *.pcapng: This trace file set lets you see how much faster it is to work with a series of smaller
trace files than one big fat one. If you want to put them back into a single file use Mergecap. Refer to Chapter

3: Capture Traffic, and Chapter 33: Effective Use of Command Line Tools.

arp-poison.pcapng: Sketch the communication with pen and paper watching the MAC header as well as the
advertised MAC address in the ARP packets. Using a combination of ARP and ICMP Echo requests, a system is
poisoning and testing the poison process. Can you determine the IP address of the poisoner? Refer to Chapter
32: Analyze Suspect Traffic for more information about ARP poisoning.

dhcp-addressproblem.pcapng: Something went wrong with the DHCP server—who is trying to get an
address and who has one that works just fine? Rebooting the DHCP server solved this problem. Refer to

ftp-dir.enc: This trace was saved in Sniffer DOS file format (.enc). Why is this trace included in a Wireshark
book? Well—when you open this trace file you are using the Wiretap Library to make the conversion to a

format Wireshark can recognize. Refer to Chapter 24: Analyze File Transfer Protocol (FTP) Traffic.

http-download-bad.pcapng: The client complains that there is a problem with the Internet connection—
they are trying to download the OpenOffice binary, but it is just taking too long. Use the Expert Infos window

to identify the problems in this trace file. Refer to Chapter 13: Use Wireshark’s Expert System for information
on identifying problems quickly.

http-espn2011.pcapng: Compare this trace file to http-espn2007.pcapng and http-espn2010.pcapng. Has
the ESPN website loading process improved over the years? Do you notice that we're now using a dual-stack
client? Does this increase the number of DNS queries? Create a filter for DNS to compare the trace file to the

previous years’ traces. Refer to Chapter 9: Create and Apply Display Filters

http-espn2012.pcapng: Compare this trace file to http-espn2011.pcapng. Compare 10 Graphs. The periodic
52-byte data transfer later in the trace file is triggered by a flashing "Live" notice on the page. Create a filter

for DNS to compare the trace file to the previous years’ traces. Refer to Chapter 9: Create and Apply Display
Filters and Ch r21: Graph IO R nd TCP Tren

http-googlesearch.pcapng: Whoa... | thought that Google Suggestions was a good thing. This trace file
shows the bizarre behavior of this feature. Apply a filter for all GET responses: http.request.method=="GET".
This will really bring up the strange behavior of Google Suggestions. Refer to Chapter 9: Create and Apply
Display Filters.

http-microsoft.pcapng: This is a sample web browsing session to www.microsoft.com. Ensure your packet
colorization is enabled to distinguish between DNS and HTTP. Refer to Chapter 6: Colorize Traffic.

http-pcaprnet.pcapng: This is a great trace file that illustrates problems at the server side of life. We notice
that the server receives our requests and responds with an ACK pretty fast. Then we have to wait... and wait...

and wait... for the data. What's up with that? Refer to Chapter 7: Define Time Values and Interpret
Summaries.

icmp-dest-unreachable.pcapng: The client is trying to ping 10.4.88.88, but it appears that the local router
can't locate the device on the next network. The local router sends an ICMP Destination Unreachable/Host
Unreachable message indicating that it tried to ARP for the target, but didn't receive an answer. You MUST
learn ICMP in depth to secure, optimize and troubleshoot your network effectively! Refer to Chapter 18:
Analyze Internet Control M Protocol (ICMPv4/ICMPV6) Traffi

icmp-standardping.pcapng: This trace shows a standard ICMP-based ping process. By default, the ping.exe
file sends a separate ICMP Echo Request packet out at approximately 1 second intervals. Refer to Chapter 18:
Analyze Internet Control Message Protocol (ICMPv4/ICMPV6) Traffic.

sec-nmapscan.pcapng: This trace depicts an Nmap scan. Open the Statistics | Conversations window
and examine the TCP conversations. Do you see any common port number used by Nmap to perform this

scan? Did Nmap hit any ports more than once? Refer to Ch r31:D N rk nning and Di
Processes for more information on Nmap detection.
sec-sickclient.pcapng: This client connects to an IRC server as user | | | | (four lowercase "L"s separated by

spaces) (packet 14) and later begins to do a scan on the network for anyone with port 139 open. Feels like a
bot looking for other systems to infect. [Note: Turn off the colorization on this trace or your head may
explode. We ran this trace through an IP address cleaner program but it didn't recalculate the checksums.)

Refer to Chapter 32: Analyze Suspect Traffic.

smb-filexfer.pcapng: This trace shows the file transfer process between a Microsoft client and server using
SMBvL1. The file transferred is OOo_2.4.1 SolarisSparc_install_en-US.tar.gz. You can see the periodic SMB
Read ANDX Request and Read ANDX Response interruptions during the file download process. Refer to
Chapter 21: Graph 10 Rates and TCP Trends.

voip-extension.pcapng: This VolP communication begins with a SIP call setup process. The call is directed
to the VolP server (operator). Later in the trace file the user enters extension 204. This was just a test call.
Refer to Ch r 27: Intr ion to Voi ver IP (VolP) Anal

wlan-ipad-start-sleep.pcapng: We're checking out the 802.11 management and control frames when an

iPad starts up and then goes to sleep on the WLAN. Refer to Chapter 26: Introduction to 802.11 (WLAN)
Analysis for more details on WLAN traffic analysis.

Review Questions
Q2.1
What is the purpose of WinPcap?

Q2.2
What is the purpose of Wireshark’s dissectors?

Q2.3
What is the purpose of the Wiretap library?

Answers to Review Questions

Q2.1
What is the purpose of WinPcap?

A2.1
WinPcap is the Windows port of the libpcap link-layer interface. WinPcap provides the low-level network
access for packet capture on a Windows host.

Q2.2
What is the purpose of Wireshark’s dissectors?

A2.2
Wireshark dissectors decode packets to display field contents and interpreted values (if available). An
HTTP packet will use several dissectors—Ethernet, IP, TCP and HTTP.

Q2.3
What is the purpose of the Wiretap library?

A2.3

The Wireshark Wiretap Library enables Wireshark to read a variety of trace file formats such as the
formats used by Microsoft's Network Monitor, Network General Sniffer and WildPackets OmniPeek
products.

Chapter 3
Capture Traffic

Know Where to Tap Into the Network

The most common reason people avoid analyzing network traffic is total and utter confusion at the hundreds of
thousands of packets whizzing by. This is a sure sign that the analyst is embroiled in the "Needle in the
Haystack" issue.

Given a large enterprise network where numerous users are complaining about network performance, placing
the analyzer in the right spot is just as important as applying the right filters to focus on traffic of interest and
interpreting traffic correctly.

Consider the network diagram shown in Figure 61. Client A is complaining.

ClientA Client8 ClientC ClientD ClientE ClientF

Figure 61. Basic network diagram—consider the user complaints when determining where to place the analyzer.

Begin by placing your analyzer as close to Client A as possible to identify traffic issues from Client A’s
perspective.[47] By capturing at this location you can measure round trip time and identify packet loss at the
point where Client A connects into the network. If everyone connecting to Server A is complaining, you may
still want to capture traffic from the client's perspective. If you find the problem is packet loss, you can move
Wireshark closer to Server A until you find the location where packets are being dropped.[48]

Run Wireshark Locally

One option for capturing traffic is simply to run Wireshark or Tshark on the system that you want to capture
traffic to or from. Since Wireshark runs on most operating systems, this is a simple solution. This solution is
not employed very often because of the common need to bypass security measures in order to get Wireshark
or Tshark installed on the user machine and the hesitation to load another application on that machine,
especially if it is a server.[49]

Portable Wireshark
Portable Wireshark can be installed onto a PortableApps-enabled device—this lets you run Wireshark on a host
without installing Wireshark on that host. You can learn more about the PortableApps Suite and download the

latest version from portableapps.com.

The host still must have WinPcap installed on the host in order to capture traffic—if Wireshark does not detect
WinPcap on the host, it will attempt to install it. You can change this behavior by setting the
wiresharkportable.ini file entry DisableWinPcapInstall=true.[50]

wirersharkPortable.ini - settings for configure the rumning of
wiresharkPortable

#
$1d: wiresharkPortable.tmpl 28880 2009-06-29 13:01:542 gal §

[wiresharkportable]

wiresharkDirectory=App/wireshark
wiresharkExecutable=wireshark. exe
AdditionalParameters=

By defautt, Wireshark will try to install
WinPcap on the local host and
uninstall WinPcap when Wireshark is
shut down

DisablewinPcapInstall=false =%
winPcapInstaller=winPcap_4_1_2.exe

http://portableapps.com/

Figure 62. A sample.ini file is available in portableapps\wiresharkportable\other\wiresharkportablesource

Figure 63 shows the PortableApps menu—note that Portable Wireshark has been added to the menu. You do
not need to install Wireshark inside the PortableApps menu system; Portable Wireshark can be run as a
separate portable application by simply copying it into a directory on the Portable Apps device.

To download Portable Wireshark, visit www.wireshark.org/download/automated. Currently, Portable Wireshark
is only supported on 32-bit operating systems. For more information on Portable Wireshark, visit

wiki.wireshark.org/WiresharkPortable.

Install the PortableApps Suite on a USB stick. Next visit www.wireshark.org/download.html and select
Windows PortableApps (32-bit). Run the executable—a wizard installs the package on your USB flash
device in the PortableApps\WiresharkPortable directory. When you launch startportableapps.exe or start.exe on
your USB device, the menu item for Wireshark will appear on the PortableApps menu as shown in Figure 63.

Wireshark is
installed, but

Figure 63. Wireshark can be run as a portable application

Wireshark U3

U3 devices can auto-launch applications—they are specially formatted USB flash drives that adhere to the U3
specification. U3 smart drives use the U3 Launchpad that works with recent Windows systems only.

Capture Traffic on Switched Networks

You bought a switch to help control and isolate network traffic, thereby allowing more efficient use of the
bandwidth. This is a great technique for reducing unnecessary traffic on connected ports, but it creates
anguish for the protocol analyst.

When you connect Wireshark to a switch port, you will only see up to four types of traffic by default:
» Broadcast traffic
¢ Multicast traffic (if forwarded by the switch)
« Traffic to and from your own hardware address
¢ Traffic to an unknown hardware address

Traffic from one device connected to a switch flows directly to the destination device on another switch port.
In Figure 61, Client A’s traffic flows up through Switch A, Router A, Router B and Switch C on the way to
Server A. Client A’s traffic is not sent down any other switch ports on Switch A.

If you plug Wireshark into Switch A, you won't be able to listen to Client A’'s communications because Switch A
is doing what it should be doing—it is isolating local conversations based on hardware addresses.[51]
* There are several ways to capture network traffic on a switched network.
Hub into half-duplex traffic
e Tap into half or full-duplex traffic
e Span a switch port
« Install Wireshark on a target system

Use a Simple Hub on Half-Duplex Networks

Standard hubs can be used to monitor half-duplex network traffic by connecting the hub in-line between half-
duplex devices. Hubs are dumb devices that simply forward bits that arrive on one hub port out all other hub
ports.

.

http://www.wireshark.org/download/automated
http://wiki.wireshark.org/WiresharkPortable
http://www.wireshark.org/download.html

Hubs are Only a Half-Duplex Option
I've rarely seen any half-duplex networks in the last 7 years or so. This option is only good for those rare
networks. If you place a half-duplex hub into your full-duplex environment you now have a mismatch on your
network. This can cause absolutely horrid problems in communicating on a network. Avoid using a hub if you
are a full-duplex shop—use full-duplex devices instead (see Test A Port (TAP) on Full-D
Networks).

If you plan to use a hub to monitor half-duplex networks, ensure you test the hub. Numerous manufacturers
have sold devices described as hubs that are, in fact, switches. To test an alleged hub, connect two half-
duplex test stations and Wireshark to the hub as shown in Figure 64. Ping one test station from the other test
station. If Wireshark can see the ping traffic, the hub really is a hub and it is forwarding traffic down all ports.
If Wireshark does not see the ping traffic, the hub is likely a switch and should not be used for traffic
monitoring.[52]

ClientA Wireshark ClientC
10.1.1.1 10.2.2.2

\ #

Ping 10.2.2,2

Figure 64. Test your hubs before using them to monitor half-duplex traffic

Use a Test Access Port (TAP) on Full-Duplex Networks

Network taps can be used on half and full-duplex networks to listen in on the traffic between a client or server
and a switch or router. Taps are passive devices that are placed in-line (in the path) between devices. Unlike
spanned switch ports, taps can forward packets that contain physical layer errors (such as CRC errors) to the
monitor port(s).

Taps do not introduce delays or alter the contents of traffic flowing through them. In addition, taps should "fail
open” so they will not disrupt traffic if power to the tap is lost.

(= : ———
e |
[

=

N®-

Figure 65. A Net Optics 10/100/1000BaseT Non-aggregating tap

Tap Installation
Tap installation procedures vary depending on the tap features. Figure 66 shows the configuration of a non-
aggregating tap and two systems running Wireshark.

receive tra
separate ports

Wireshark #1 Wireshark #2

Figure 66. Setting up a non-aggregating tap and two Wireshark systems

Non-Aggregating Taps

Non-aggregating taps pass full-duplex communications out two separate ports. A device running Wireshark
requires two network interface cards to receive traffic from the two monitor ports. Wireshark would be
configured to capture on both interfaces simultaneously. Alternately, two separate devices running Wireshark
can be connected to the two ports.

Use File | Merge or Mergecap to combine the separate trace files captured on non-aggregating taps.

“Watch Timestamp Issues on Multiple NIC Captures

When configuring a single computer with two network interface cards to listen to traffic from both the monitor
ports on a non-aggregating tap, be aware of the timestamp differences between the two network interface
cards. If one of the network interface cards is USB-based, delays may be significant enough to cause problems
when merging the two trace files together to get a complete picture of the communications.

Aggregating Taps

Aggregating taps combine the bidirectional traffic into a single outbound port. Devices with only one network
interface card can be connected to the aggregating tap to listen into full-duplex communications. Figure 67
shows a tap with gigabit fiber ports. Tap port A would be connected to a server and tap port B would be
connected to a switch. Tap port A/B would be connected to a gigabit fiber port on your Wireshark system.
Since this is an aggregating tap, only one Wireshark system and a single adapter is required to listen in on the
traffic.

Aggregating taps
combine and send the

transmit and receive
traffic out a single port

Wireshark #1

Figure 67. Net Optics Gigabit Aggregating Fiber Tap (www.netoptics.com)

Regenerating Taps

Regenerating taps are used when you have more than one monitoring tool for listening in on traffic. For
example, perhaps you want to analyze the traffic with Wireshark and perform intrusion detection with another

tool, such as Snort (www.snort.org) or Suricata (www.openinfosecfoundation.org). Regenerating taps have

more than one outbound port, allowing connection of two (or more) monitoring devices.
Figure 68 shows a regenerating tap with fiber ports. The first 8 ports on the left are regeneration ports. The

two ports on the right are the inline ports. If you were using this tap to monitor traffic between a server and
switch, one inline port on the right side would connect to the server and the second would connect to the

switch.

Regeneraton ports
duplicate the traffic to
muttiple monitar ports

¥

Wireshark ke
Snort Suricata

Figure 68. Net Optics 10 Gigabit Regeneration Tap (www.netoptics.com)

Link Aggregation Taps

Link aggregation taps are used when you have more than one link to monitor. For example, if you want to
monitor the traffic to and from two separate servers. Instead of using multiple taps, a single link aggregation
tap can be connected to both servers. The link aggregating tap combines the traffic from these links and sends
the stream out one or more monitoring port.

Figure 69 shows a link aggregation tap configured to monitor numerous servers. Notice that this link
aggregation tap also includes multiple regeneration ports.

http://www.netoptics.com/
http://www.snort.org/
http://www.openinfosecfoundation.org/
http://www.netoptics.com/

[Link aggregating
taps allow

accessto the
traffic of mutiple
devices-these

are often seen in
server fooms

Muitiple monitoring devices
can be listening ta the traffic
when they are connected to the
regeneration ports

Wireshark Snort Suricata
Figure 69. Net Optics Link Aggregation tap (www.netoptics.com)
Intelligent Taps

Intelligent taps can make decisions on inbound traffic, provide timestamps for each packet received, filter
packets and more. The features available depend on the intelligent tap solution. Net Optics is a global
manufacturer of passive access with network taps, aggregator taps, regeneration taps, converter taps and
bypass switches. For more information, visit www.netoptics.com.

Using Analyzer Agents for Remote Capture

Analyzer agents are used by distributed analyzers. These agents are typically software programs that are
loaded on switches to enable them to capture traffic from all ports and send the data to a management
console. Analyzer agents may enable you to manage switched traffic from a central location. Unfortunately,
however, you might get caught up in a proprietary solution or find that this type of feature makes the switch
too expensive. For more information on remote capture methods, see Capture Traffic Remotely.

Set up Port Spanning/Port Mirroring on a Switch

Some vendors call this technique port spanning (SPAN stands for switched port analysis), others call it port
mirroring. In this book we use the term port spanning. Cisco also uses the term port snooping when referring
to this feature on Catalyst 8500 switches.

In a switched environment port spanning is used to configure a switch to send a copy of any port's traffic
down a monitor port—the port that a Wireshark system would be connected to. This method of analyzing
switched networks can only be used if the switch supports this functionality.

SPAN Terminology
The following table lists common SPAN terminology.

Source SPAN Port: The source SPAN port is a port that is monitored by the SPAN feature. In Figure 70, port
4 is the source SPAN port.

Source SPAN VLAN: The source SPAN VLAN is a VLAN whose traffic is monitored by the span feature.

Destination Span Port or Monitor Port: The Destination SPAN port or Monitor port is the port that
monitors source ports—in Figure 70, port 1 where Wireshark is connected is the destination span port or
monitor port.

Ingress Traffic: Ingress traffic is traffic that is flowing into the switch. Some switches require that you define
if you are interested in monitoring ingress and egress traffic or just ingress traffic to a port.

Egress Traffic: Egress traffic is traffic that is flowing out of the switch. Some switches require that you define
if you are interested in monitoring ingress and egress traffic or just egress traffic from a port.

Switch A

Wireshark #1 ClientA

Figure 70. Port 4 traffic is spanned to port 1
As shown in Figure 70, the traffic from port 4 is copied down to port 1 where Wireshark is located.

Example of Span Commands

http://www.netoptics.com/
http://www.netoptics.com/

Ron Nutter, an old friend of mine, provided an example of spanning.

"If you are using 10S on your Cisco switches and need to setup a mirrored port or port spanning, identify the
switch port of the traffic you want to monitor (the source interface) and a port for your Wireshark laptop to
use (the destination interface).

monitor session 1 source interface fa4/7
monitor session 1 destination interface fa4/1

Replace fa4/7 with the name of the source port you want to monitor. Replace fa4/1with the name of the
destination port where Wireshark is listening.

The 1 after the session command identifies the particular port span configuration you are working with. You
can have multiple spans setup at the same time. Be careful about this as you can overload a switch just
handling the span traffic.

To see if you have any port monitor sessions configured on a switch, type show monitor session all to list all
sessions. In this way you can prevent the accidental overwrite of one port spanning session with another.

When you are finished with using the port spanning configuration, do conf t and then no monitor session
and the session number that you want to remove (i.e. no mon ses 1).

You can do spans across switches or even a WAN (if you are using Cisco 6509's at each end, for example). Be
careful when spanning across switches as you can saturate an already busy link with extra traffic and cause
problems in addition to what you are trying to resolve.

When it comes to monitoring VLAN traffic or monitoring traffic to or from other interfaces, run the following
command to display available interfaces for traffic capture:
monitor session 1 source ?

The interfaces displayed depend on the capabilities of your switch."

Ronald Nutter
Help Desk Editor
Network World

For more details on configuring spanning on a switch, refer to your manufacturer documentation.

Spanning VLANs

You can use a tap or span a port to listen to VLAN traffic. In order to span the traffic to or from devices in a
VLAN, span the port of a device in the VLAN. Define the destination port as the one that Wireshark is
connected to on the switch. In order to see VLAN tags, do not configure Wireshark’s interface connected to the
switch as a member of a VLAN.There is still no guarantee you will be able to see VLAN tags, however, because
different operating systems and drivers handle VLAN tags in different manners.

If the VLAN tag is handled by the network interface card or driver on the system that Wireshark is loaded on,

the tag will not be handed up to Wireshark and you won't be able to see the tag when you analyze the traffic.
If the card or driver passes the VLAN tag to the upper layer on the Wireshark system, you will be able to see

and analyze the VLAN tag field, as shown in Figure 71. For more details on spanning VLAN ports, refer to the

manufacturer’'s documentation.

I vian-genentocapng

Fle Edt Yiew Go Goptore Analze Sttitics Telephomy ook lnte
SGedee BEEXEE e aF
Fier:

G L

» Clesr Agply Save
Mo, Time Source Destination rotocol -
1 0.000000 131.151.32.129 131.151.32.21 X11 Requests: FreePixmap, FreePixmap, -

© Frame 1: 1518 bytes on wire (12144 bits), 1518 bytes captured (12144 bits) on inter -
AniConmu_40: ef:24 (00:40:05:40:ef:24), Dst: 3com 9f:bl:f3 (00:60:
om_9f:b1:f3 (00:60:08:9F:b1:F3)
24 (00:40:05:40:ef:24)
N (0x8100)

The Ethernet Type value of 0x8100
indicates a VLAN tag follows

& ity: Best Effort (defau ()
o 4 Canonical (0)
2% 6066 6vid dod = tos 32
Type: IP (0x0800) -
In

ternet Protocolyersion 4, Src: 13 31,151 320dd9) g Dst:

Figure 71. Wireshark decodes VLAN fields if the card and driver pass them up [vlan-general.pcapng]

“Cheating on Your Spanning [Contributor: Jim Aragon]

"Sometimes we don’t have access to the production switches. That’s when we bring in our own inexpensive
switch that is capable of doing port mirroring. We insert it between the client computer and the wall jack or

on-site production switch." [53]

Analyze Routed Networks

Routers isolate traffic based on the network address, such as an IP address. If you place Wireshark on one
side of a router, you will only see traffic that is destined to or coming from that network.

Figure 72 consists of two networks (10.1.0.0 and 10.2.0.0 and 10.3.0.0, subnetted 255.255.0.0). Traffic
between the clients and servers on network 10.1.0.0 will not be visible to Wireshark #2 on network 10.2.0.0.

Wireshark #1 is configured through port spanning to listen to the port connecting to Router A. This enables
Wireshark #1 to listen in on traffic to and from Clients A, B and C and network 10.2.0.0.

Wireshark #2 is connected to an aggregating tap that connects Server B to Switch C. This Wireshark system
would only be able to see traffic to and from Server B and the local and remote networks.

Network 10.1.0.0 Network 10.2.0.0

Network

Wireshark #1 10.3.0.0
Router A Router B

T

CliamtArClisatas Cliantc ServerA ServerB Wireshark#2

Figure 72. Placing Wireshark on each side of a router

Analyze Wireless Networks

Start from the bottom and move up through the protocol stack when analyzing WLAN environments. "From the
bottom" in the WLAN environment means to analyze the strength of radio frequency (RF) signals and look for
interference.

Wireshark cannot identify unmodulated RF energy or interference. Use a spectrum analyzer to identify these
problems. MetaGeek makes an excellent affordable set of WLAN spectrum analyzer adapters and software. For
more information, visit www.metageek.net/wiresharkbook.

Wireshark’s location on a wireless network is similar to the location in a wired network—start as close as

possible to the complaining user. You want to learn the signal strength, packet loss rate, WLAN retry rate and
round trip latency time at the location of the user who is complaining.

Figure 73 shows a portion of a network where a user, Client C, is complaining of performance problems. We
have placed Wireshark close to that user.

Once you have determined that interference is not an issue, move up to the packet level to examine the WLAN
traffic such as the connection process and authentication. Examine the WLAN control and management
processes to make sure everything is functioning properly before inspecting the data packets.

If everything is fine up to this point, you are now following the same steps as you would follow with traditional
wired network analysis. To effectively analyze WLAN traffic, your Wireshark system should have a WLAN card
and driver that can be put into both promiscuous mode and monitor mode.

Client A

ClientB APO1

s O

Wireshark ClientC
Figure 73. Place Wireshark close to the client to analyze traffic from the client's perspective
Monitor Mode
Monitor mode and promiscuous mode are not the same.

Promiscuous mode enables a network card and driver to capture traffic that is addressed to other devices on
the network, not just to the local hardware address.

http://www.metageek.net/wiresharkbook

In promiscuous mode only (without monitor mode), an 802.11 adapter only captures packets of the SSID the
adapter has joined. Although it can receive, at the radio level, packets on other SSID's, those packets are not
forwarded to the host.

In order to capture all traffic that the adapter can receive, the adapter must be put into "monitor mode”,
sometimes called "rfmon mode". In this mode, the driver doesn’'t make the adapter a member of any service
set.

“Monitor Mode Blocks Other Connectivity

In monitor mode, the adapter won'’t support general network communications (web browsing, email, etc.). It
only supplies received packets to a packet capture mechanism, not to the network stack.

In monitor mode, an adapter and driver pass all packets of all SSIDs from the currently selected channel up to
Wireshark.

Monitor mode is not supported by WinPcap (so it doesn’'t work with Wireshark or TShark on Windows). Monitor
mode is supported, for at least some network interface cards, on some versions of Linux, FreeBSD, NetBSD,
OpenBSD, and Mac OS X. You will have to test your network interface cards/drivers on these platforms to see
if they will work in monitor mode.

Due to this limitation (particularly in the Windows environment), CACE Technologies (now owned by Riverbed
Technology) developed AirPcap adapters. These adapters can capture data, management and control frames
and perform multi-channel monitoring. The AirPcap aggregating adapter allows you to capture on multiple
AirPcap adapters (and therefore multiple channels) simultaneously.

Figure 74. The AirPcap adapter was designed for WLAN capture

Refer to Ch r 26: Intr ion 2.11 (WLAN) Analysis for details on configuring capture channels,
WLAN decryption and interpretation.

Native Adapter Capture Issues
You can capture on your native WLAN adapter as long as Wireshark displays that adapter in the interfaces list.

You may find, however, that your trace files only contain data packets (and no WLAN control or management
packets) and have an Ethernet header on each packet. These are fake Ethernet headers applied to the packet
in place of the 802.11 header.

These fake headers are put on the packets by the native 802.11 network interface card or driver after stripping
off the original 802.11 header. These adapters won't pass up the management or control frames. Your ability
to analyze WLAN issues is quite limited.

For more information on capturing WLAN traffic, visit wiki.wireshark.org/CaptureSetup/WLAN. For details on
analyzing WLAN traffic, refer to Chapter 26: Intr tion t 2.11 (WLAN) Analysi

Launch Wireshark and determine (a) if your native WLAN adapter is recognized by Wireshark in the interface
list, (b) what happens when you attempt to capture on this interface and (c) what you can capture, if
anything.

Capture at Two Locations (Dual Captures)

There are times when two or more Wireshark systems may be required to capture traffic on the network. For
example, if you find that there is packet loss during a file download process you can set up Wireshark at the
client and along the path to determine where packet loss is occurring.

It is important to consider the following issues when performing dual captures:

« Traffic can be captured using Tshark, Dumpcap or the Wireshark GUI interface

¢ Both analyzer systems should be time synchronized using Network Time Protocol (NTP)—visit www.ntp.org
for information on Network Time Protocol

« Editcap may be used to alter timestamps if Wireshark systems are not synchronized

» Mergecap can be used to combine trace files

« Capture filters may be used to define specific traffic of interest

http://wiki.wireshark.org/CaptureSetup/WLAN
http://www.ntp.org/

« Display filters may be used to identify the same traffic stream at each location

Refer to the Case Study at the end of this chapter for an example of using two Wireshark systems to analyze
network problems.

Select the Right Capture Interface

Open the Capture Interfaces window to verify packets are being seen on the desired interface. Select Capture
| Interfaces or click the Capture Interfaces button to view the interfaces that Wireshark recognizes as
shown in Figure 75.

If no interfaces are shown, there is likely a problem with libpcap (on *nix platforms) or the AirPcap or WinPcap
driver (Windows platform). It is recommended that you first restart Wireshark and, if your interfaces are still
not appearing on the interfaces list, consider restarting your system.

WA Wiresharic Capture Iovertaces [l]
D tion
71]"1" Bieap Mutti-Channel Aggregator none 7508 31 [Detois

» Packets Packets/s

" AirPeap USE wireless caf

adapter nr. 00 nene 502 0 [Detais
" AiPeap USB wireless capture adapter nr. 01 nene 2508 1 Detils |
2] Microsoft FeB0:5caa:3c93:HI8596T Details |

9] 2] Reaitek PCla FE Family Controller FeD-5083650cTafT:2ael 3871 1| Detsils|

Felp Start it Qptions Ciose |

Figure 75. The Interfaces List shows traffic activity without capturing traffic

Figure 75 shows the Capture Interfaces window on a host that has two AirPcap adapters connected via USB
hub.

The interfaces shown in Figure 75 are listed below:

 AirPcap Multi-Channel Aggregator—capture on both AirPcap adapters simultaneously

« AirPcap USB wireless capture adapter nr. 00—capture on the first AirPcap adapter which is configured (via
the AirPcap Control Panel) to capture traffic on channel 1

« AirPcap USB wireless capture adapter nr. 01—capture on the second AirPcap adapter which is configured
(via the AirPcap Control Panel) to capture traffic on channel 6

+ Microsoft—capture on the native wireless adapter—this would yield no results as the native wireless adapter
is not connected to any network and therefore does not see any traffic

« Realtek PCle FE Family Controller—capture traffic on the native Ethernet adapter

“Toggle Capture Interface Information to I1Pv4 Addresses

If you have IPv4 and IPv6 enabled on your Wireshark system, Wireshark may show the IPv6 address of the
local interface when you would prefer to see the IPv4 address. Simply click on the IPv6 address in the
Interface Options window to toggle the view to show an IPv4 address.

Capture on Multiple Adapters Simultaneously

Simultaneous multiple adapter capture was added to Wireshark 1.8 and later. In Figure 75, we are using
Wireshark 1.8 to capture on our AirPcap Multi-Channel Aggregator and our Ethernet adapter (Realtek PCle FE
Family Controller) simultaneously.

Interface Details (Windows Only)

The Interfaces Detail window shown in Figure 76 lists interface and link type characteristics and statistics and
task offload capabilities. This information is provided by the network interface card driver and is subject to the
driver's accuracy.

[l Wireshark: Interface Details

Statistics
Transmit OK
Transmit Error
Receive OK
Receive Emor
Receive but no Buffer
Directed bytes transmitted w/o errors
Directed packets transmitted w/o errors
Multicast bytes transmitted

Multicast packets transmitted w/!

\\les transmitted wfo eror

[Charscteristics | Statistics | 8023 (Ethemet)| 5021

(=] & e
NLAN) | Task Offioad

1887528
0
10338539
L}

0
146255154
1878171
1234479
8585
98040

Figure 76. The Interface Details window

Capture Traffic Remotely

There may be times when you want to capture traffic at a remote location, but analyze that traffic locally.

Some switches offer a remote spanning capability—referred to as rspan. Consult your switch manufacturer
documentation to learn more about these capabilities.

One simple option for remote capture is to run Wireshark and remote control software on the target. UltraVNC
(free), Logmein and Anyplace Control are three examples of remote control software programs.

You can also use the remote capture abilities included with WinPcap (on a Windows host). WinPcap includes
rpcapd.exe, a capture daemon that can be run on a remote host to capture and send packets to a local
Wireshark host. The rpcapd.exe file is copied to the \mecap directory durlng WinPcap installation.

\uww«a Capture Options

W 230 e martsces

Fipes [Local Interfaces | Remote interfaces
Remete Interfaces

Figure 77. Performing remote capture using rpcapd

Figure 77 shows the configuration for remote capture when we are running rpcapd —n on a remote Windows
host (the —n parameter indicates that we are not using authentication between Wireshark and remote capture
host). Select Capture | Options | Manage Interfaces | Add. Enter the IP address of the target and the
desired port—port 2002 is the default port used to transfer the captured packets from the remote host to
Wireshark. Consider using the —I parameter with rpcapd to define which hosts can connect to the rpcap
daemon.

Configuration Parameters for Remote Capture with rpcapd.exe
The following section lists the rpcapd.exe parameters that can be used to configure the remote host for packet
capture.

Usage: rpcapd [-b <address>] [-p <port>] [-6]
[—I <host_ |ISt>{ [-a <host, port>]
-n] [-v] [-d] s <file>] [-T <file>]

-b <address>

The address to bind to (either numeric or literal). Default: it binds to all local IPv4 addresses

-p <port>

The port to bind to. Default: it binds to port 2002

-4

Use only IPv4 (default both IPv4 and IPv6 waiting sockets are used)

-1 <host_list>

A file that keeps the list of the hosts which are allowed to connect to this server (if more than one, list them
one per line). It is suggested to use literal names (instead of numeric ones) in order to avoid problems with
different address families

-n

Permit NULL authentication (usually used with -1)

-a <host,port>

Run in active mode when connecting to host on port. If port is omitted, the default port (2003) is used
-V

Run in active mode only (default: if -a is specified, it accepts passive connections as well)

-d

Run in daemon mode (UNIX only) or as a service (Win32 only). Warning (Win32): this switch is provided
automatically when the service is started from the control panel

-s <file>

Save the current configuration to file as shown in Figure 79.

-f <file>

Load the current configuration from file; all the switches specified from the command line are ignored
-h

View the rpcapd help screen

“Experiment with Remote Capture Traffic

Remote capture is one of the features that you should experiment with before you need it. Note that you will
be adding a significant amount of traffic to the network as rpcapd.exe sends the remotely captured traffic to
Wireshark.

The —1 parameter enables you to list ‘allowed’ Wireshark hosts. If your <host_list> file does not contain the
information from a host attempting to connect for remote capture, the connecting host will receive an error
response. Figure 78 shows the error popup window.

[The Wireshark Network Analyzer _l‘b,:"aa@ﬂ!ﬁ
[
| an't get list of interfaces: The host is not in the

Can't g f interfaces: The h h
| allowed host fist. Connection refused.
i i

Figure 78. The Wireshark host is not listed in the <host_list> file on the system running rpcapd

Remote Capture: Active and Passive Mode Configurations
Configure the remote capture device to run in Active Mode to enable the remote host to initiate the connection
to the Wireshark host for packet transfer.

If you specify the —a parameter, include at least the host information for the system running Wireshark. If you
do not include port information, port number 2003 will be assumed. Port 2003 is Wireshark's listening port for
rpcapd communications. Port 2002 is the remote host's listening port for rpcap comuniactions.

Save and Use Remote Capture Configurations

You can create a file called rpcapd.ini that includes the configuration commands and launch this configuration
file using the —F parameter. You can automatically create a configuration file using the -s <file> parameter.
The daemon parses all the parameters used and saves them into the specified configuration file. Figure 79
shows the contents of a configuration file that was automatically generated using the command rpcapd -a
192.168.0.105,2003 —n -s amode.txt.

oot Noteond =l
Fie 0 Fomat Vew Hop - '
Configuration file help.

Hosts which are allowed to connect to this server (passive mode)
Format: PassiveClient e or address>

|# Hosts to which this s

o (active mode)
|# Format: ActiveClient T

s ni 0 connect t
or address>, <port | DEFAULT>
|Activeclient = 192.168.0.105, 2003

|# permit NULL authentication: VES or NOT

INullAuthPermit = YES

Figure 79. Use the -s <filename> parameter to automatically save configurations to a file

Automatically Save Packets to One or More Files

When you need to capture a large amount of traffic, consider capturing to a file set and possibly using a ring
buffer. File sets are opened and manipulated with File | File Set.

Create File Sets for Faster Access
File sets are contiguous files that are saved to disk. File sets can be individually opened and examined faster
than individual files.

If you create a file set using the file name corp01.pcapng, the files will be named using the corp01 stem, a
five-digit sequential number, the year, hour (24-hour time value), minute, seconds and the .pcapng extension.

File sets taken at a five minute interval on May 25", 2012 would have names similar to the following:
e corp01_00001_20120525191348.pcapng

e corp01_00002_20120525191848.pcapng

e corp01_00003 20120525192348.pcapng and so on...

To create file sets, select Use multiple files in the capture options window as shown in Figure 80. If you use

select multiple files, you must define criteria for the creation of the next file.

Next file criteria can be based on file size (kilobytes, megabytes, gigabytes) or time (seconds, minutes, hours,
days).

Capture File(s)
File: Ausersiloura\Documentsitrace-filesicorpll | [Browse.|
) Use multiple files 7] Use peap-ng format
¥ Netfileevery |10 %l megebyte(s)]
Ne file every !
) Ring bufer with |2 2 fes
Stop capture after | 1
Stop Capture ..
e after

V) ... after a0 mi’nu(\s;;‘ ?
Figure 80. Capture Options for file sets and stop criteria

“Select Multiple Criteria for Capture Stop

If you select hoth file size and time criteria, the first criteria matched will trigger a new file to be created. For
example, if you defined that the next file should be created when a file reached 10 megabytes and 20 seconds
have elapsed and the network traffic consists of minimum size packets, you will likely hit the 20 second criteria
before the 10 megabytes criteria. The new file would be created after 20 seconds and the previous file would
not contain 10 megabytes of packets.

Use a Ring Buffer to Limit the Number of Files Saved

A ring buffer limits the number of files saved and helps avoid filling a hard drive during an unattended capture
session. For example, a ring buffer of two, as set Figure 80, would only save the last two files in the set,
maintaining the sequential numbering scheme.

The files saved would begin with corp01 and be followed with the file number and the date/timestamp. If the
entire capture process created 90 files, only the last two would be saved.

Define an Automatic Stop Criteria

Stop criteria can be based on the number of files created, the number of packets captured, the captured file
size or time.

In Figure 80, Wireshark will stop capturing after 40 minutes. There will only be two files since we have
configured a ring buffer setting of two files.

Optimize Wireshark to Avoid Dropping Packets

If you are capturing on a very busy network, you might consider optimizing Wireshark to avoid dropping
packets. Dropped packets may be noted on the Wireshark Status Bar. Any configuration that consumes extra
processing power should be examined to determine if it can be disabled or if another capture method should
be used.

First and foremost, consider shutting down other applications while you are capturing traffic. Running a full
virus scan while watching Jaws 111 will negatively affect your capture process. If the configuration options in
this section do not help with capture overload, perhaps it is time to get a better machine (higher processing
speed and more memory), configure one laptop with all your network analysis tools and use it exclusively for
network analysis, or capture using Tshark or Dumpcap.

Consider a Dedicated Analyzer Laptop

Sometimes one machine can't be used for all tasks. Over the years it's become evident that having a dedicated
analyzer laptop can help avoid many of the pitfalls of a "one laptop for all needs" solution. Lanell Allen (who
edited this book and has been working with Wireshark for years) explains her solution below.

"I've done this with my Netbook. Soooooooo handy, small, lightweight...I love it. Some installation programs
require a higher screen resolution than the Netbook has for installation purposes only, such as a Cisco VPN
client. | attach a monitor to the VGA port and the client install program is happy. The client doesn't need the
higher screen resolution for VPN to establish a session, just for installation. Just be sure the Netbook has an
RJ-45. I'm using an HP Mini 110-1031NR. It has 3 USB ports, 160 GB hard drive, 1 GB RAM. So far the screen
resolution issue is the only limitation I've encountered. The small screen may get in your way for serious
analysis, but for quick and dirty stuff, it's fine.

It may not big enough to connect to a switch port on a busy network, but to take out to Fred's desk for a
second "lightweight" tool, it's perfect. | paid about $250 2 years ago for this one."

Capture Options for Optimization
The following capture options can affect Wireshark’s efficiency.
 Disable Update List of Packets in Real Time (default: enabled)
» Disable Network Name Resolution (default: disabled)
« Capture to file sets (consider 50MB a good top trace file size to start)
¢ Increase the buffer size in Capture Options (Windows only; default: 1 MB)

Display Options for Optimization
The following display options can affect Wireshark’s efficiency.
¢ Reduce the number of columns in the Packet List pane (even if hidden)
« Disable coloring rules (default: enabled)
« Disable unnecessary protocol tasks (disable TCP’s reassembly feature, for example)

“Easily Remove Duplicate Packets in Your Capture

At one customer site all the traffic they captured had duplicates—just packets sent from their local Wireshark
hosts were duplicated. In essence, they would see

SYN-SYN-SYN/ACK-ACK-ACK for the three-way TCP handshake initiated from their systems. It turned out that
a VPN client program (Global VPN Client) caused the problem. See
wiki.wireshark.org/CaptureSetup/InterferingSoftware for details of other interfering programs. If you have this
problem, use Editcap with the —d parameter to remove duplicates.

Conserve Memory with Command-Line Capture

Consider one of the command-line capture methods to capture packets at the command line if you consistently
experience packet loss when using the Wireshark GUI to capture traffic. Three command-line capture tools are
included with Wireshark:

¢ Tshark

e Dumpcap

* Rawshark

Another popular tool, tcpdump, is not included with Wireshark but offers command-line capture. For more
information on tcpdump, visit www.tcpdump.org/tcpdump _man.html. Most likely you will look at either Tshark
or Dumpcap for capturing traffic at command-line. Tshark offers greater flexibility through more parameters,
but it also uses more resources. In fact, Tshark relies on Dumpcap so you will see both Dumpcap and Tshark
launched when you've just loaded Tshark.

Dumpcap uses much less memory as you can see from the table below. If memory usage and performance is
an issue, Dumpcap is the right choice. If functionality and capability is most important to you, then Tshark is
the right choice.

Dumpcap Memory (Private Working Set)
requirements: 3,572 Kb

Tshark Memory (Private Working Set)
requirements: 3,540 Kb (Dumpcap) + 39,800 Kb

For details on Dumpcap and Tshark parameters, refer to Chapter 33: Effective Use of Command Line Tools.
“Understand Why There are Checksum Errors on YOUR Traffic Only[54]

What if your Wireshark system captures traffic perfectly well—except that each packet from your host appears
to contain checksum errors? If you receive responses to your TCP connection attempts, web browsing requests
and other requests, your packets are getting through in acceptable shape. Likely, your network interface
card/driver uses checksum offloading (task offloading) which calculates some checksums on the card, after
Wireshark has obtained a copy of the outbound packet. Consider disabling the Checksum Error coloring rule or
disabling checksum validation in your protocol preferences if this bothers you.

http://wiki.wireshark.org/CaptureSetup/InterferingSoftware
http://www.tcpdump.org/tcpdump_man.html

-

Case Study: Dual Capture Points the Finger
Submitted by: Karl R., Systems Integrator

Our client was complaining about performance when downloading files from Server B. When analyzing the
traffic close to Client A, we noticed that there is a significant delay before each file is received at the client.

We decided to capture traffic at both the client and the server to compare traffic flows at both locations.

The image below shows the basic network with two Wireshark systems. Wireshark #1 is connected to a
spanned port listening to the traffic to/from Client A. Wireshark #2 is connected to an aggregating tap and is
listening to the traffic to and from Server B.

Network 10.1.0.0 Network 10.2.0.0

Wireshark #1
—T RouterA

Switch A

Wireshark #2

|
!
|
|
!

Switch €

25

o
| =
ServerA Server8

CRCRC

ClientA ClientB ClientC

In this case, the analyst merged the trace files together. Upon doing so, the trace consisted of duplicate
packets throughout. Comparing the timestamps in the duplicate packets revealed that packets containing file
requests were delayed, whereas ACK packets were not.

The next step was to move the Wireshark #1 system along the path towards the server to identify the point at
which delays were incurred. The culprit was Router B—statistics at that router showed that it had a large
number of packets in the queue. Working with the vendor we identified several configuration errors that had
given high priority queuing to all traffic destined to Server A and low priority to all traffic to server B. We
reconfigured the router and things were back to normal.

“Wireshark Says "Where," but Not Always "Why"

Although Wireshark could identify the location where this problem occurred, it could not identify the cause of
the problem. This is often the case in network analysis. Cooperation with IT members responsible for the
devices along the path is imperative to identify the actual reason the problem occurred.

-

Case Study: Capturing Traffic at Home
Submitted by: Rob Hulsebos

Several years ago my first broadband internet modem gave me trouble—every 15 minutes my connection was
closed, causing all sorts of errors on my PC.

According to the internet provider's remote diagnostics there was nothing wrong with the modem.

But even after reinstalling Windows, using different PC's, removing the wireless router used and making a
wired connection, the problem remained. | then used an Ethernet tap to check the network traffic between the
modem and my provider, with my wife's PC running Wireshark to intercept the traffic from my PC.

It then turned out that the modem closed the connection regularly, apparently because it thought it was using
a dial-up line which it disconnected automatically if there was no network traffic for 1 minute—this to save on
telephone costs. But the modem was not configured to do that—I had a fixed fee line, no need to disconnect.
Apparently | ran into a firmware bug where it ignored the fixed line setting.

So | reinstalled the modem's firmware, and from that moment on it all worked fine.

If it wasn't for Wireshark | would have believed the modem's webpage showing me that it was configured for
a fixed line, while actually it ignored that configuration setting.

Summary

Before you can analyze network traffic, you need to capture it. Tapping into the network at the most

appropriate location can help capture the traffic that will help you the most in your analysis processes.

When working on switched networks—the most common network configuration—you have the option of
running Wireshark locally, spanning a switch port or using a full-duplex tap. You have several options for
remote capture as well—you can use open source or commercial remote control software, remote spanning (if
your switch supports this function), or rpcapd which is included with the WinPcap download.

When you are capturing WLAN traffic, you should use an adapter/driver that can function in monitor mode to
listen into traffic on all SSIDs within range. If you are using a native adapter to capture WLAN traffic, it may

substitute the 802.11 header with an Ethernet 1l header and not capture and display management or control
traffic or traffic from other WLAN devices.

If you need to capture a large amount of traffic, consider saving to file sets to make the trace files more
manageable. If the Wireshark GUI cannot keep up with the traffic, optimize Wireshark or consider using a
command-line capture tool such as Tshark or Dumpcap.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
Use these trace files to practice the tasks and tricks contained in this book.

Here is a list of tasks that you should practice at this point:

« Capture web browsing traffic on your local system—Iearn what you can capture without port spanning or
using a full-duplex tap.

 Select Capture | Interfaces and wait a few moments to see which interface(s) are seeing traffic. Click
the Start button to begin capturing on one of these interfaces.

¢ Launch your web browser and browse to www.wiresharkbook.com.

» After the page has loaded, select Capture | Stop or click the Stop Capture button on the Main Toolbar.
Select File | Save and call your trace file wiresharkbookl.pcapng.

« If you have a wireless adapter on your system, start a capture using that WLAN interface. If you receive an
error message indicating that the "capture session could not be initiated (failed to set hardware filter to
promiscuous mode)", close the alert window and select Capture | Options and choose your WLAN
adapter in the Interface section. Disable (uncheck) Capture packets in promiscuous mode and click
Start. Browse to www.wiresharkbook.com and then stop your capture session. Examine the traffic to see
what data link header was placed on your traffic. For more information on WLAN capture options using
promiscuous and monitor mode, refer to Chapter 26: Introduction to 802.11 (WLAN) Analysis.

« If you have a switch, practice spanning a port that connects to a system configured as a testing host. To
ensure your spanning works properly, use that testing system to browse to www.wiresharkbook.com. If
your spanning process worked correctly you should be able to see all traffic to or from your testing host.

« If you have a tap, connect the tap between a switch and your testing host. Connect your Wireshark host to
the tap as well. Browse to www.wiresharkbook.com from that host and verify that you captured all traffic to
and from the testing host.

« Perform a remote capture test by installing WinPcap on another network host and running rpcapd —n on
that host. On your local Wireshark system, open Capture | Options and select Remote in the Interfaces
option. Define the IP address of the host running rpcap. Select the remote interface to capture from and
begin capturing. Analyze the traffic you have captured from the remote host to verify the process worked.

 Practice capturing your own traffic to file sets. Name your capture files testsetl.pcapng and use multiple
files—create the next file every 30 seconds. Use a ring buffer to save the last 5 files and stop capturing
after 10 files. Start your capture and begin browsing a number of web sites for the next 7 minutes or so.
Check to determine if Wireshark automatically stopped capturing and identify your five files of the file set.
Their names should begin with testsetl 00006, testsetl 00007, testsetl 00008, testsetl 00009, and
testsetl_00010.

Practice navigating Wireshark’s interface with the following trace file:

vlan-general.pcapng: This trace shows an X11 communication on a VLAN. You can see the VLAN tag
directly after the Ethernet header and before the IP header.

Review Questions
Q3.1

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

If you connect a Wireshark host directly into a switch, what traffic can you expect to see by default?

Q3.2
What is the difference between monitor mode and promiscuous mode?

Q3.3
What is the purpose of file sets?

Answers to Review Questions

Q3.1
If you connect a Wireshark host directly into a switch, what traffic can you expect to see by
default?

A3.1

By default, switches forward all broadcast packets, multicast packets (unless configured to block multicast
forwarding), packets destined to the Wireshark host's hardware address and packets destined to unknown
hardware addresses.

Q3.2
What is the difference between monitor mode and promiscuous mode?

A3.2
In monitor mode, the driver doesn’t make the adapter a member of any service set. In this mode, an
adapter and driver pass all packets of all SSIDs from the currently selected channel up to Wireshark.

Promiscuous mode enables a network card and driver to capture traffic that is addressed to other devices
on the network, not just to the local hardware address.

Q3.3
What is the purpose of file sets?

A3.3

File sets are used to create a contiguous set of trace files during a capture process. Instead of opening
and navigating through one large trace file (which may be a slow process), you can create file sets and
move faster among the smaller trace files.

Chapter 4
Create and Apply Capture Filters

The Purpose of Capture Filters

Capture filters limit the packets saved in either the \temp location while capturing or to another directory when
you save a trace file. Capture filters cannot be applied to existing trace files—they are applied during live
capture processes only. Capture filters are very useful in limiting the packets you capture when you are on a
busy network or you are focusing in on a specific type of traffic. Packets that pass the capture filter criteria are
passed up to the Wireshark capture engine as shown in Figure 81.

Capture filters use the Berkeley Packet Filtering (BPF) syntax, the same filter syntax used by tcpdump.
Capture filters are not as flexible and granular as display filters.

To view saved capture filters, select Capture | Capture Filters or click the Capture Filters icon on the
Main Toolbar.

Capture Engine

.

WinPcap— AirPcap - libpcap

Network

Figure 81. Capture Filters are only applied to packets arriving from the network

“Use Capture Filters Sparingly and Display Filters Generously

When you filter out traffic with capture filters, you cannot get the discarded packets back. They were dropped
before being handed up to the capture engine. Capture all packets and apply and remove display filters to
focus on certain traffic. You can easily save subsets of the traffic based on display filters.

Wireshark’s default capture filters include the following:

Ethernet address 00:08:15:00:08:15
ether host 00:08:15:00:08:15

Ethernet type 0x0806 (ARP)
ether proto 0x0806

No Broadcast and no Multicast
not broadcast and not multicast

No ARP
not arp

IP only

1p

IP address 192.168.0.1
host 192.168.0.1

IPX only
ipx
TCP only
tcp

UDP only
udp

TCP or UDP port 80 (HTTP)
port 80

HTTP TCP port (80)
tcp port http

No ARP and no DNS
not arp and port not 53

Non-HTTP and non-SMTP to/from www.wireshark.org
not port 80 and not port 25 and host www.wireshark.org

Wireshark includes a set of default capture filters that are kept in the Wireshark program file directory. The
capture filter file name is cfilters. You may have multiple cfilters files on your system. When you create a

profile (covered in Ch rii: mize Wireshark Profiles) and create a new capture filter while using that

profile, a new cfilters file is created in the profile directory.

For example, if you create a WLAN profile, you might consider creating a series of WLAN-specific capture
filters, such as a filter for 802.11 traffic to and from the MAC address of an access point or a capture filter for

beacon frames only (see Chapter 26: Introduction to 802.11 (WLAN) Analysis for more filter options). A new

cfilters file with your WLAN capture filters will now exist in your WLAN profile directory.

Apply a Capture Filter to an Interface

In Wireshark 1.6 and earlier, you could apply a Capture Filter by typing it in directly inside the Capture Options
window as shown in Figure 82.

[Wiresharic Capture Options =)]

Figure 82. The capture area appears in the Capture Options window in earlier versions of Wireshark

Beginning with Wireshark 1.8 we can now capture simultaneously on multiple interfaces. Changes had to be

applied to the Capture Options window to enable you to apply a different capture filter to each interface.
Doubleclick on the Capture Filter column to bring up the Interface Settings window as shown in Figure 83.

The Interface Settings window can also be used to view each network address defined for an interface, alter
the link-layer type in some cases[55], alter promiscuous mode setting, limit packet sizes and alter the capture
buffer setting.

Regardless of which Wireshark version you are using, you can click on the Capture Filter button to select an
existing capture filter or create a new one as shown in Figure 84. In this example we have created a capture
filter for traffic to and from a specific Ethernet address.

Wireshark applies error detection when you type a capture filter directly into the capture filter area. It does not
(as of Wireshark 1.7.2) offer that error detection in the Capture Filter window (shown in Figure 84). Perhaps
this will be added in a later version.

[Wiresharkc Capture Options])
Capture

Ehemet

In Wireshark 1.7 and later
you must double-click the
Capture Filter column to
open the Edit Interface
Settings window

Interface: Realtek PCie FE Family Controller, \Device\NPF_(SE7SFECO-FFT9-4970.9664-EEFfBnaassr)
1P address | 4005083650307 20ed
517320

themet =]

Link-layer header
v

Compile 89F

| ke Loex Cancel

Figure 83. As of Wireshark 1.8, each interface can support a different capture filter

[l Wiresharic Capture Filter - Profile: Default Lo |

Edt

How

1P address 19216801
TPX only
TCP anly
UDP only
TCP o UDP port2) (HTTP)
Delete] | | HTTP TCP port B0}
Mo AR

Properties
Filter name: hyMac

There is no error
detection mechanism

Filter string: | ether host D4:3564:A7-BF.A3 inthisarea

tielp [cancel |

Figure 84. Create and save your favorite capture filters

Build Your Own Set of Capture Filters

You can easily create your own capture filters and change the default capture filters. You can create and save
new capture filters by clicking the Capture Filters icon on the toolbar or selecting Capture | Capture Filters.
Capture filters consist of identifiers and qualifiers.

Identifiers
The identifier is the element for which you are filtering. In a capture filter for traffic to or from port 53, "53" is
the identifier. The identifier can be a decimal or hexadecimal nhumber or an ASCII string.

Qualifiers

There are three qualifiers used in capture filters:
e Type

e Dir

e Proto

Type Qualifier

The type of qualifier indicates the type of name or number to which the identifier refers. For example, in a
capture filter for traffic to or from port 53, "port" is the type qualifier. Host, net and port are three type

qualifiers.

Dir (Direction) Qualifier

The direction qualifier is used to indicate the flow of traffic in which you are interested. Two commonly used
direction qualifiers are dst and src. If a direction qualifier is not provided, it is assumed that dst or src is
desired.

Proto (Protocol) Qualifier

The protocol qualifier is used to limit the captured traffic to a particular protocol such as tcp or udp. An

example of using a protocol qualifier would be udp net 10.2 where udp is the protocol qualifier, net is the type

qualifier and 10.2 is the identifier. If you removed the protocol qualifier and created a capture filter of net 10.2

then all protocols to or from IP addresses beginning with 10.2 would be captured.

Primitives

Primitive keywords can also be used. The following list defines primitives available for use in capture filters:
e dst host host
¢ src host host

host host

ether dst ehost

ether src ehost

ether host ehost

gateway host

dst net net

src net net

net net

net net mask netmask

dst port port

src port port

less length

greater length

ip proto protocol

ip6 proto protocol

ip6 protochain protocol

ip protochain protocol

ip broadcast

ether multicast

ip multicast

ip6 multicast

ether proto protocol

decnet src host

decnet dst host

decnet host host

ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp, ipx, netbeui

lat, moprc, mopdl

vlan vlan_id

tep, udp, icmp

portrange [startnum]-[endnum]

tcp portrange [startnum]-[endnum]

clnp, esis, isis

iso proto protocol

proto[expr:size]

For more detail on the primitives shown above, refer to the tcpdump man page at

www.tcpdump.org/tcpdump _man.htmland the various protocol chapters in this book. For information on
proto[expr:size], see Create Capture Filters to L ook for Byte Values.

Filter by a Protocol

Filtering by protocol uses primitives. For example, to filter on all ICMP traffic, the syntax is simply icmp.
Wireshark interprets this filter as "look at the Protocol field in the IP header for the value 0x01" (the protocol

http://www.tcpdump.org/tcpdump_man.html

number used to indicate that ICMP is next in the packet). [56]

If a protocol does not have a primitive, you will need to build the filter based on a distinct field value used by
that protocol or use a filter based on offsets and byte values.

Common protocol filters are tcp, udp, ip, arp, icmp and ip6.[57]
Filter Incoming Connection Attempts

You can extend your TCP protocol filter by referencing the TCP flags settings. For example, if you want to

capture all TCP connection attempts (whether successful or not), use the following capture filter.
tep[tepflags] & (tcp-syn) 1= 0

Another example shown at www.tcpdump.org/tcpdump man.html “captures the start and end packets (the
SYN and FIN packets) of each TCP conversation that involves a non-local host." The syntax is shown below.
tep[tepflags] & (tcp-syn]tcp-fin) = 0 and not src and dst net localnet

Refer to the next section for more information on using capture filters based on network addresses.

Create MAC/IP Address or Host Name Capture Filters

When you want to capture traffic to and/or from a specific network device, base your capture filter on either a
hardware address, IP address or host name as shown in the list below.

dst host host
dst host www.wireshark.org

Traffic to the IP address associated with www.wireshark.org

dst host host
dst host 67.228.110.120

Traffic to 67.228.110.120

src host host
src host www.google.cn

Capture traffic from the IP address associated with www.google.cn.

host host
host www.espn.com

Capture traffic to or from the IP address associated with www.espn.com.

ether dst ehost
ether dst 08:3f:3d:03:32:03

Capture traffic to the Ethernet address 08:3f:3d:03:32:03.

ether src ehost
ether src 08:3f:3d:03:32:03

Capture traffic from the Ethernet address 08:3f:3d:03:32:03.

ether host ehost
ether host 08:3f:3d:03:32:03

Capture traffic to or from the Ethernet address 08:3f:3d:03:32:03.

gateway host
gateway rtrmain0Ol

[Requires that a host name is used and can be found by the local system’s name lookup process.] Capture
traffic to or from the hardware address of rtrmain01, but not to the IP address of rtrmaino1. This filter
captures traffic going through the specified router. Another option for creating this using MAC and IP
addresses is listed next.

ether host ehost and not host
ether host 00:13:46:cc:a3:ea and not host 192.168.0.1

Capture traffic flowing to or from the hardware address defined but not to or from the IP address defined—
this is an alternate to using the gateway primitive and more suitable if name resolution is not available—the
ether host <address> would be the hardware address of the router and the host <address> would be the IP
address of the router.

dst net net
dst net 192.168

Capture traffic to IP addresses starting with 192.168. This filter will also capture ARP packets that have
192.168.*.* in the Target IP Address field.

http://www.tcpdump.org/tcpdump_man.html

src net net
src net 10.2.2

Capture traffic from any IP address starting with 10.2.2. This filter will also capture ARP packets that have
10.2.2.* in the Source IP Address field.

net net
net 130.57

Capture traffic to or from IP addresses starting with 130.57.

net net mask netmask
net 172.16 mask 255.240.0.0

Capture traffic to or from IP addresses starting with 172.16 through 172.31.
net net/len

net 172.16/12

Capture traffic to or from IP addresses starting with 172.16 through 172.31.
wlan host ehost

wlan host 00:22:5f:58:2b:0d

Capture traffic from the WLAN source address 00:22:5f:58:2b:0d.

When creating capture filters for addresses, host can be defined as a number or a name. For example, host
67.228.110.120 and host www.wireshark.org would capture the same traffic as long as www.wireshark.org is
resolved to that IP address.

“Avoid host Capture Filters with Web Browsing Sessions

In Chapter 23: Analyze Hypertext Transfer Protocol (HTTP) Traffic you learn about web site redirection. If you
use a capture filter such as host www.espn.com, Wireshark captures traffic to the IP address associated with
that location. If you are redirected to another site, the traffic to the next site won't be captured. It is more
effective to use a capture filter for port 80.

Use a "My MAC" Capture Filter for Application Analysis

When you are analyzing an application, be careful of making assumptions regarding the protocols and ports
used by that application. When you run an application on your own system and want to analyze just the traffic
to and from your system to identify the traffic generated by that application, use a filter based on your MAC
address, not your IP address. This ensures you get all traffic to or from your hardware address including
packets that do not have an IP header (such as ARP traffic).

When you are analyzing an application running on another host, consider filtering on the traffic to and from the
hardware address of the test system.

An example of a capture filter for your own traffic is ether host 00:21:97:40:74:D2 (if that is your MAC
address).

“When to Use MAC Capture Filters Instead of IP Address Filters

We recommend creating this filter based on MAC address instead of IP address as IP addresses may change as
you move from one network to another or you may have a dual-stack system that communicates from IPv4
and IPv6 addresses. Remember that these MAC address filters only work if you are on the same network as
defined in the MAC address filter. MAC address information is stripped off and reapplied by routers.

Filter Your Traffic Out of a Trace File (Exclusion Filter)

When you are capturing background traffic from other hosts on a network, you may want to filter your own
traffic out of the trace file so you can browse the internet, send and receive email and continue working in the
background while not having your own traffic show up in the trace files. This is called an "exclusion filter"
because you are excluding packets from being captured.

In this case you might create a "Not my MAC" filter that captures all traffic except the traffic to or from your
hardware address. The syntax for an exclusion filter for a hardware address is not ether host <ehost> Or not
ether host 00:21:97:40:74:D2 referencing the example in Figure 85.

Wireshark #1
MAC: 00-21-97-40-74-D2

.

Router A

SwitchA

ClientA

Figure 85. Consider filtering out traffic to or from your MAC address

Capture One Application’s Traffic Only

Application filtering is performed using primitives for the port number the application uses. Once you know the
port number that your application uses, you can build your capture filter to look for your application traffic over
UDP or TCP, focus on one transport type or capture traffic flowing in a single direction.

For example, DNS queries and responses typically run over UDP on port 53. DNS zone transfers, however, run
over TCP on port 53.
« To filter on all DNS traffic (over UDP or TCP) that uses port 53, use the capture filter port 53. Since you
have not specified a transport, both UDP and TCP traffic will be captured.
« If you are only interested in capturing DNS zone transfers over TCP that use port 53, use the capture filter
tcp port 53.
« If you are only interested in capturing UDP-based DNS queries and responses that use port 53 (not zone
transfers), use the capture filter udp port 53.
« If you are interested in capturing DNS responses only, use the capture filter src port 53 since DNS
responses come from port 53.

DNS filtering provides a perfect comparison between the process to create a capture filter and the process to
create a display filter. Wireshark understands the common acronym of numerous applications, such as DNS.
While you must specify a port number for DNS capture filters, you can simply use dns for a display filter.

You can use portrange as a quick method to filter on a range of ports. The capture filter tcp portrange 6881-
6999 will capture TCP traffic to or from ports between 6881 and 6999. These are the commonly used ports for
BitTorrent Tracker communications.

Use Operators to Combine Capture Filters

There are three primary operators available for capture filters:
¢ Negation (not or 1)
« Concatenation (and or &)
¢ Alternation (or or |)

These operators enable you to make more specific capture filters. If you wanted to expand your DNS filter
created earlier to also include an address filter, use an operator. The capture filter host 192.168.1.103 and
tcp dst 53 will capture all traffic sent to port 53 to or from 192.168.1.103. If 192.168.1.103 is a client on the
network, this filter would display DNS queries sent to port 53. When using the and" operator, packets must
match both sides of the operator to pass through the filter.

If you used the "or" operator, the interpretation would be entirely different. When using the "or" operator,
each packet must match only one side of the operator to pass through the filter. The filter host 192.168.1.103
or tcp dst 53 will capture all traffic to or from 192.168.1.103 regardless of the destination ports as well as
any traffic sent to port 53 regardless of the IP addresses in use.

The capture filternot net 10.2.0.0/16 only captures traffic to or from IP addresses that do not begin with
10.2. The capture filterhost www.wireshark.org and not port 80 and not port 25 only captures traffic to or
from www.wireshark.org, but not any traffic to or from ports 80 or 25.

Create Capture Filters to Look for Byte Values

In some cases you may need to create a capture filter that looks for a specific value at a specific offset in the
packet. The syntax for byte offset capture filters is proto [expr:size] where proto is one of ether, fddi,

tr, ip, arp, rarp, tcp, udp, icmp Or ip6. "Expr" identifies the offset of the field and "'size (optional)
defines the length (in bytes) that you are interested in. This is followed by the operator and the value.

For example, perhaps you want to create a capture filter for all TCP packets that contain a TCP window size
value of 65,535. We can see in Figure 86 that the TCP header starts with the value 0x4de5. The window size

field is 15 bytes from the start of the TCP header. When we count the offsets, we start counting at zero so the
offset of the window size field is 14.

To create the filter, we will start with the highest protocol, TCP. Next, we define the offset and the length of
the field (optional) followed by the operator and value. The capture filter is tcp[14:2]=0xffff. We started at
the TCP header and started counting from 0 until we reached the window size field.

(1 Ethernet
= Internet Protocol Versiol
= Transmission Control Proto|
| Source port: 19941 (19941)
Destination port: http (84
[stream index: 0]
sequence number: 0 (relative sequence number)(‘
Header length: 32 bytes
« Flags: 0x002 (5
window size value

Figure 86. The TCP header decode [http-espn2012.pcapng]

The capture filter (tcp[2:2] > 100 and tcp[2:2] < 150) captures only the traffic to ports between 100 and
150. The destination port field is located at offset 2 from the start of the TCP header and the field is two bytes
long - tcp[2:2]. Fortunately, we can simply use portrange 100-150 for this purpose.

Another example, wlan[0] = 0x50captures WLAN probe response packets. This filter is based on the 802.11
Type and Subtype field values that are located at offset 0 in the WLAN header. The length field is optional and
not used in this example. Refer to Analyze Frame Control Types and Subtypes.

Manually Edit the Capture Filters File

The capture filters window has some limitations. You cannot sort the capture filters or categorize capture

filters. These capabilities are possible by manually editing the cfilters file. Figure 87 shows an edited cfilters file
in the capture filter window.

To manually edit the cfilters file, open the file in a text editor. The capture filter syntax is name" filter. Ensure
you add a line feed after the last capture filter listed or Wireshark will not display the last filter in the list.

1 Wireshark: Capture Fiter - Profile: Traubleshosting L
Edit <

Figure 87. Manually edited cfilters file

The book website (www.wiresharkbook.com) contains the following cfilters file in the Download section.
Consider creating a "Wireshark Book" profile and copying this cfilters file into that profile directory. For more

information on creating custom Wireshark profiles, refer to Chapter 11: Customize Wireshark Profiles.
Sample cfilters File
" Original Wireshark Filter Set " Installed with Wireshark

" Ethernet address 00:08:15:00:08:15" ether host 00:08:15:00:08:15
" Ethernet type 0x0806 (ARP)" ether proto 0x0806

No Broadcast and no Multicast" not broadcast and not multicast
' No ARP"™ not arp

" IP only" ip

' IP address 192.168.0.1" host 192.168.0.1
* IPX only"™ ipx

" TCP only" tcp

" UDP only" udp

http://www.wiresharkbook.com/

' TCP or UDP port 80 (HTTP)" port 80
" HTTP TCP port (80) tcp port http
' No ARP and no DNS" not arp and port not 53
' Non-HTTP and non-SMTP to/from www.wireshark.org" not port 80 and not port 25 and host
www . wireshark. org
Laura®s Wireshark Filter Set ' Just My Stuff
" My MAC (replace w/your MAC Address)™ ether host 00:08:15:00:08:15
" Not My MAC (replace w/your MAC Address)'" not ether host 00:08:15:00:08:15
" ARP or DHCP (Passive Discovery)' arp or port 67 or port 68
" Broadcasts/Multicasts Only" broadcast or multicast
" ICMP Only" icmp
" IPv6 Only" ip6
" TCP SYN Only" tcp[tcpflags] & (tcp-syn) =1
" TCP SYN/ACK"™ tcp[tcpflags] & (tcp-syn) = 1 (tcp-ack) =

Share Capture Filters with Others

Although the capture filter feature does not include an export or import feature at this time, you can share
your capture filters by simply copying the cfilters file from one Wireshark system to another.

In order to avoid overwriting the default capture filters, make a backup copy of the cfilters file that is in the
Global Configuration directory or create a new profile and put the shared capture filters file in that profile

dlrectory Refer to Chapter 11: Customize Wireshark Profiles.

Case Study: Kerberos UDP to TCP Issue
Submitted by: Thanassis Diogos

Arriving onsite | was given a brief description of a pretty strange problem. The customer was in the middle of
Domain migration from Windows NT 4 to Windows 2003 Active Directory. They were using the well-known tool
for this job called ADMT (Active Directory Migration Tool). This tool was being used to migrate users and other
objects from the source NT Domain to the destination. These users were required to use Terminal Services on
a Terminal Server located in a perimeter firewall zone and joined to the same Active Directory.

A small number of the users migrated were not able to login and use the Terminal Server and the error
message received during logon was "The RPC Server is unavailable". Oh great! As a workaround they found
that deleting faulty accounts and recreating them allowed users to login normally. Of course this was not
acceptable and | had to find out what was the initial cause of the issue.

Through the event viewer and other logs | was not able to find out the real cause, Wireshark was installed
locally on a Terminal Server and started to monitor traffic.

I used the default capture filter to exclude port 3389/RDP (not port 3389) since | was not interested in
Remote Desktop Protocol (RDP) but | was interested in logon traffic. The image below shows what we
captured.

10.74. 24, 29
10.72.100.224
10.74.2:

So in frame No 3 we monitor the AS-REQ normal Kerberos traffic asking for initial authentication, but in frame
4 server responds that "KRB Error: KRB5KRB_ERR_RESPONSE_TOO_BIG" which means that answer cannot fit
inside UDP packet which has the limitation of 512 bytes maximum payload for Kerberos traffic.

Using this response, the server is asking our client to switch over to TCP communication. This is exactly what
the client does by initiating a TCP 3-way handshake. In frame 5 clients sends a TCP packet with SYN flag
enabled but as we can see it resends that packet two more times which is typical TCP behavior.

The answer was quick and easy—the firewall between the host and server was configured to allow only UDP
port 88 traffic, but not allow TCP port 88 traffic. The issue appeared only for a number of users because the
Kerberos answers containing group memberships were directly affecting the UDP payload size. If the group
membership information could not fit inside 512 bytes of space allowed by Kerberos over UDP, it simply
switched over to TCP.

I do not think this problem could be solved without any kind of network tracing because events were very
general and no other information was available. It's also an example that the solution is not always just

"delete, recreate or reboot."

Summary

Capture filters are used to reduce the number of packets captured and therefore allow you to focus in more
specifically on traffic of interest. Capture filters use the tcpdump syntax and are not interchangeable with
display filters. You cannot apply capture filters to existing trace files and you cannot recover packets that did
not match your capture filter already applied.

Capture filters are saved in the cfilters file. The default cfilters file is located in the Global Configuration
directory—if you have added or altered the default capture filters another cfilters file will be located in the
Personal Configurations folder.

Capture filters can be created based on a protocol, address or specific port number(s). Capture filters consist of
Type, Direction and Protocol qualifiers or primitives.

You can also define capture filters based on an offset and byte value if desired. Operators such as and, or and
not allow you to combine capture filters to be more selective regarding the traffic you capture.

Practice What You’'ve Learned

@ Download the cfilters file from the Download section of the book website, www.wiresharkbook.com. Copy
this file to your Personal Configurations folder when instructed in the practice exercise below.

Create and Apply a Capture Filter for Your Own Traffic

« Create and save a "My MAC" capture filter based on your own hardware address.

« Start capturing your traffic using this capture filter. Do not touch your keyboard for at least 5 minutes. Did
you capture any traffic? The packets would be generated by automated processes running in the
background on your computer.

« Try another test—using the My MAC filter, browse to www.wireshark.org. Do not navigate through the site
—just browse to the main page.

« Stop capturing and examine the traffic you captured. If your browser performs site safety checks or the
Wireshark site drops cookies on your drive, it will be visible in your trace file.

Replace your Capture Filter File

« Identify your Personal Configurations folder (Help | About Wireshark | Folders).

« Rename the existing cfilters file in that folder (if one exists) to old-cfilters.

« Copy the sample cfilters file from the Download section of the book website, www.wiresharkbook.com, to
your Personal Configurations folder.

« Restart Wireshark and then select Capture | Capture Filters. You should see a customized capture filter

set appear.

Practice navigating Wireshark’s interface with the following trace file:

http-espn2012.pcapng: Compare this trace file to http-espn2007.pcapng, http-espn2010.pcapng and http-
espn2011.pcapng. Has the website loading process improved over the years?

Review Questions

Q4.1
What is the difference between capture filters and display filters?

Q4.2
What format is used by Wireshark’s capture filters?

Q4.3
What is the purpose of the following capture filters?

ether dst 08:3f:3d:03:32:03
gateway rtrmainOl
host www.espn.com

Answers to Review Questions

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

Q4.1
What is the difference between capture filters and display filters?

Ad.1

Capture filters are applied to traffic during the capture process only. Capture filters cannot be applied to
existing trace files. Display filters can be used while capturing, but do not limit the packet you capture—
display filters only limit what is visible. Display filters can be applied to existing trace files. Each filter type
uses a different filter syntax.

Q4.2
What format is used by Wireshark’s capture filters?

A4.2
Capture filters use the Berkeley Packet Filtering (BPF) filter syntax.

Q4.3
What is the purpose of the following capture filters?

A4.3
ether dst 08:3f:3d:03:32:03

ether dst 08:3f:3d:03:32:03 captures all traffic sent to the Ethernet address 08:3f:3d:03:32:03.

gateway rtrmain0Ol

gateway rtrmainO1 captures traffic to or from the hardware address of rtrmaino1, but not to the IP
address of rtrmain01. This capture filter requires that a host name is used and can be found by the local
system’s name lookup process.

host www.espn.com
host www.espn.com captures traffic to or from the IP address associated with www.espn.com.

Chapter 5
Define Global and Personal Preferences

Find Your Configuration Folders
Wireshark consists of two types of configuration settings: Global Configurations and Personal Configurations.

Refer to Help | About Wireshark | Folders—as shown in Figure 88—to identify the location of Global and
Personal Configuration folders. Doubleclick on any folder link to open the corresponding folder.

B Avout Wireshark])

Wireshark | Authors| Felders | Plugins | License

e]

Figure 88. Wireshark folder information

Set Global and Personal Configurations

Wireshark global settings include the following text files:
cfilters—default capture filters

dfilters—default display filters

colorfilters—default coloring rules

manuf—default Organizationally Unique Identifier (OUI) list (global)
services—default port list (global)

smi-modules—default MIB modules to load

You can manually edit these global settings. For example, if you want to alter the transport name resolution of
traffic on port 4308 because your custom-developed application uses that port, you can edit the services file
for that entry from compx-lockview 4308/tcp CompX-LockView tO ourapp 4308/tcp Our-App.

If you want to change an OUI value from one manufacturer name to another, simply edit the manuf file.

Some of these files, such as cfilters, dfilters and colorfilters can become personal settings. When you use
Wireshark to add or edit capture filters, display filters or your coloring rules, Wireshark copies the original file
from the Global Configuration folder and saves the new version (with your edits) in your Personal Configuration
folder. When you make changes to your global preferences (such as adding Packet List pane columns,
changing protocol settings, or altering name resolution settings), a new preferences file is saved in your
Personal Configuration folder.

Edit a predefined capture filter cfilters

Global

S i Create a new display filter dfilters
Configurations i e
Change “Filter display max. list entries” preferences

Personai -Co;n%(é;raticns
Figure 89. Personal Configuration files are based on Global Configuration files and settings

You can share these files with others by simply sending them the file. The new settings will be available after
the receiver places the file(s) in their Personal Configuration folder and restarts Wireshark. Be careful of
sharing Personal Configuration files such as the preferences file that contain directory structure information
and the recent file that contains the most recent directory you visited. The directory information may not
match the system to which you are copying this configuration information.

You can create a profile that uses its own configuration files. For example, if you work on WLANSs part of the
time, you might create a WLAN profile that includes filters, coloring and columns that assist you in analyzing

WLAN traffic. For more information on creating and using profiles, refer to Chapter 11: Customize Wireshark
Profiles

When you change global preferences while working in a profile, a new preferences file is saved in your profile
folder. When you return to the default profile, you are using preferences contained in your Personal
Configuration folder, not a profile subdirectory.

For details on each of the global preferences settings, refer to

www.wireshark.org/docs/wsug_html/#ChCustGUIPrefPage. In this Study Guide we focus on key preference

settings only.

Some of the most common global preferences to change include:

¢ "Open Recent" max list entries (increase this number to 30)
Pane layout (put the Packet Details and Packet Bytes panes side-by-side)
Capture | Update list of packets in real time (disable to reduce overhead)
Name Resolution settings (enable network name resolution with caution)
Filter Expressions (add key display filter buttons to the display filter area)
Various protocol settings (disable IP checksum validation for task offloading)

When you update Wireshark, you are prompted to uninstall the previous version. During the uninstall process
you can choose the components that you want to save as shown in Figure 90 (uninstall process on a Windows
host).

By default, Wireshark maintains your personal settings during the update process, but overrides the global
settings, such as the default cfilters, dfilters, colorfilters, manuf and services files. After installing Wireshark,
consider making a copy of the original preferences file in case you need to restore it at some time in the future
without going through a reinstallation.

http://www.wireshark.org/docs/wsug_html/#ChCustGUIPrefPage

[Weeihark Unieotal [E=EE)

Choose whch features of wireshark you want to unnstal, ﬁ

Spsce cequired: 0,068

Figure 90. The uninstall options to remove an earlier version of Wireshark

It is important to stay up-to-date with the latest version of Wireshark as dissectors are fixed, features are
added and security issues are addressed.

Customize Your User Interface Settings

Select Edit | Preferences or click on the Preferences icon on the Main Toolbar. The User Interface Settings
area contains five sections, the main User Interface section, Layout, Columns, Fonts and Colors as shown in
Figure 91. Many of these features are covered in the Wireshark online help files. In this section we focus on
some of the key settings.

"File Open" Dialog Behavior

When you select File | Open, Wireshark looks in the directory specified by this setting or in the last directory
from which a trace file was opened. Consider creating a \mytraces directory for all your trace files so you can
set Wireshark to always look in this same directory.

Maximum List Entries

There are two "maximum list entries" settings available. The first, "Filter display" controls the number of
recently-created display filters that should appear when you click the drop-down arrow next to the display
filter field. The second, "Open Recent" controls the number of recently opened trace files that Wireshark
displays when you select File | Open Recent.

Wl Wieshar: Preferences - rofie Detat =)

Figure 91. User interface preferences

“Make Wireshark More Efficient

We move quickly between many, many trace files and constantly apply and clear display filters on our systems.
We increase both the filter display list and open recent list values to 30 so Wireshark displays more options
when we select File | Open Recent and click the drop-down arrow next to the Display Filter window. This saves
a LOT of time.

Dpen
Open

Merge..
Import.
R Close

@ Sese
Fie e
Expont
B

& gu l+Q | & Clens
[Stream index: 0]
Sequence number: 1 (relative sequence number),

5 :

Next_gsequence nugber: 461 re equen

Figure 92. The Display filters max. list entries is set at 10

Pane Configurations

The default Wireshark pane configuration shows three stacked panes including the Packet List pane, the Packet
Details pane and the Packet Bytes pane. Use View | <pane=> to toggle on or off the various panes. Alter the
pane layouts by selecting Edit | Preferences | User Interface | Layout.

Columns
The default columns in the Wireshark Packet List pane are:
* No.: Packet number (this value never changes for each packet)
e Time: Setting based on View | Time Display Format setting
Source: Highest layer source address identified (hardware/network)
e Destination: Highest layer destination address identified (hardware/network)
* Protocol: Highest layer protocol identified
* Length: Length of the frame[58]
+ Info: Protocol-specific details for each packet

Wireshark contains numerous predefined columns that can be added easily to the Packet List pane. Select Edit
| Preferences | Columns and select Add to choose one of the predefined columns to add to the Packet List
pane.

In addition, you can right click on a field in the Packet Details pane and select Apply As Column. The new
column will be added to the right side of the existing columns in the Packet List pane. Right click on a column
heading in the Packet List pane to remove, rename, or align columns.

Columns can be reordered by dragging the columns up or down in the Preferences window or by dragging the
columns into their new positions directly in the Packet List pane.

Several of the predefined columns are listed below:
» 802.1Q VLAN id
» Absolute data and time
e Cisco Dst Portldx
Cumulative Bytes
Delta time (conversation)
Dest addr (unresolved)
Destination port
Expert Info Security
Fibre Channel OXID
Frame Relay DLCI
Frequency/Channel
IEEE 802.11 RSSI
IEEE 802.11 TX rate
IP DSCP Value
Net Dest addr (resolved)
Packet length (bytes)

There may be times when you do not have a packet that has the desired column’s field so you can’t use Apply
As Column. In addition, Wireshark may not have a predefined column you can simply select in the Preferences
window. In this case, you can still create a custom column. For example, if you want to create a column that
displays the TCP window size field value, select Edit | Preferences | User Interface | Columns | Add
and choose the field type Custom in the field type. Enter the name of the field that you want to add a column
for.

In Figure 93, we have set up a new column for the Calculated TCP Window Size (tcp.window_size) field value
and moved it to appear after the Time column. Packet 374 has a very low Window Size value—low enough to
force the sender to stop sending data until a Window Update has been received. The Time column indicates
this caused a 2.75+ second delay. For more information on issues related to small window sizes, refer to

Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic.

“Add a TCP Window Size Field Column to Spot Problems

Why is this column useful to add? The TCP window size field indicates the receive window buffer space
available. When a host advertises a small size or zero, network performance can be severely impacted. At a

customer location, creating a column depicting the Window Size field value enabled us to easily see when
Window sizes were unacceptably low. A Window Size field column can help you spot these types of problems.

[mp—
Bt [t Yew Go Capture Anahze Stiics Telephony ook Intemals Help
e

LR RN BR2a e

- prereep——
370 1,854221 65535
371 1.855568 65535
1.855581 1996
65535
36

1.856624
04

2.0496 ? 164 204.152.184.134 TP
375 4.802758 4296 v 4 204.152.184.134 TCP
376 4.803679 256960 10.0.52.164 204.152.184.1347cP [TO
4 525 204.152.184,134 10,0.52.164

04.
10.0.52
10.0.52

Figure 93. The new column provides fast information about the contents of a field [http-download-good.pcapng]

Define Your Capture Preferences

The capture preferences are used to select a default interface for capture and apply some configuration
settings to that interface. Figure 94 shows the capture Preferences window with the new trace file format,

pcap-ng, enabled.

Wl Wireshark: Preferences - Profie: Default =1)]

Capture

Hide capture info dislog: 4

Help o][ey Goncel

Figure 94. The Capture Preferences window indicates trace files will be saved in pcap-ng format by default

Select a Default Interface for Faster Capture Launch
Selecting the default interface speeds up the time required to begin packet capture. If this is set for the
interface you want to use, just click the Start Capture button on the Main Toolbar.

If an interface will never be used for packet capture, select Edit | Preferences | Capture and select an
interface before clicking Edit, as shown in Figure 95.

“Be Careful when Hiding Interfaces

This feature can cause problems if you hide an interface and then, months later, notice the interface missing in
Wireshark’s interface list (forgetting that you have hidden the interface). If an interface is not listed in the
interface list, check the capture preferences.

[l £t Inerface Settings =

Capture
Interface: Realtek PCle FE Family Contraller: \Device\NPF {SETOFECO-FF79-4970-96E4- EEFFI00A089F]

617320

Figure 95. Altering interface settings

Enable Promiscuous Mode to Analyze Other Hosts’ Traffic

Promiscuous mode enables an interface to capture packets that are not addressed to the interface’s MAC
address. In essence, this is the mode that allows analysts to listen in on traffic destined to other hosts on the

wired network (refer to Compare Monitor Mode vs. Promiscuous Mode for information about capturing WLAN

traffic). Disabling promiscuous mode will limit the capture to packets to or from the local interface only.

The Future Trace File Format is Here: pcap-ng

As of Wireshark 1.8, pcap-ng (the ng stands for next generation) format is the default trace file format (if
pcap-ng is enabled for your Wireshark Capture preferences as shown in Figure 96). Files saved in pcap-ng
format end with .pcapng.

Pcap-ng addresses three goals for capture file formats:
« Extensibility

« Portability

* Merge/append data

With these three goals in mind and future development on pcap-ng, meta data may be included with trace files
to enhance interpretation and improve efficiency of network analysis processes. For more information about

pcap-ng format, visit www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html.
You can begin taking advantage of pcap-ng capabilities in Wireshark 1.8. Right click a packet in the packet list

pane and select Edit or Add Packet Comment. This feature saves annotations inside a pcap-ng trace file. For
more information on annotation, see Chapter 12: Annotate, Save, Export and Print Packets.

Figure 96. If pcap-ng is enabled, this will be the default trace file format with a .pcapng extension

See the Traffic in Real Time

Enable Update list of packets in real time to view the packets as they are captured. This feature allows you
to start analyzing right away—while you are capturing. This feature can negatively affect Wireshark
performance on a busy network. Consider disabling this feature if the Status Bar indicates Wireshark has
dropped packets or you suspect packets have been dropped. For more recommendations for dealing with
dropped packets, refer to imize Wireshark to Avoid Dropping Pack

Automatically Scroll During Capture

On a very busy network, you will probably not be able to keep up with the packets as they scroll by quickly on
the screen. This feature can be useful if you have applied a capture filter that limits the number of packets
captured. It is also useful if you have applied a display filter that limits the number of packets that are
displayed. This feature can also negatively affect Wireshark performance on a busy network. Consider disabling
automatic scrolling if the Status Bar indicates Wireshark has dropped packets or you suspect packets have
been dropped. For more recommendations for dealing with dropped packets, refer to Optimize Wireshark to

Avoid Dropping Packets.
Automatically Resolve IP and MAC Names

Wireshark offers many options for name resolution. The most commonly used options are MAC name
resolution, transport name resolution and network name resolution. The name resolution preferences can
severely impact performance in certain situations. Figure 97 shows the name resolution Preferences window.

http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html

Be careful of this
i

Figure 97. Wireshark name resolution preferences

Resolve Hardware Addresses (MAC Name Resolution)
MAC name resolution resolves the first 3 bytes of the MAC address to the OUI value contained in the manuf
file in the Wireshark Global Configuration directory.

Wireshark’s manuf file began as a subset of Michael Patton’s Ethernet Codes Master Page and includes entries
from IEEE’s OUI list.

The manuf file consists of the three byte OUI value followed by the manufacturer short name and
manufacturer long name (commented out) if available, as shown below.

00:E0:96 Shimadzu # SHIMADZU CORPORATION
00:E0:97 CarrierAcc # CARRIER ACCESS CORPORATION
00:E0:98 Trend

00:E0:99 Samson # SAMSON AG

00:EQ:9A Positron # Positro

00:E0:9B EngageNetw # ENGAGE NETWORKS INC.

You can edit the manuf file—be certain to use a generic text editor that won't put extraneous characters in the
file.

You can also create an ethers file to enable Wireshark to resolve MAC addresses to names. The ethers file
format is the same as the hosts file format. Place this file in your Wireshark Global Configuration or in your
Personal Configuration directory. As long as Enable MAC name resolution is set, Wireshark will look for the
ethers file to resolve MAC addresses.

In Figure 98, Wireshark has resolved two MAC addresses based on the information contained in the ethers file
(also shown in the figure). ARP packets list the Ethernet address in the Packet List pane Source and
Destination columns. TCP and UDP packets show the resolved addresses inside the Packet Details pane.

Using an ethers file does not have the same negative impact on performance that you may experience when
enabling network name resolution (covered next) because it is a simple file lookup process.

Remember that MAC headers are stripped off and applied as packets cross routers on a network. If you focus
on the MAC header addresses, you are only seeing addresses of local devices.

W hep-espr201 L pcapng =
3l e T S i 8
LR] D'Bn.-—' Rk ; 5] (=]

- T—

ap EDmRE B

o, Time Sewce Destination Protocel Info -
5 0.040191 24.6.173.220 19‘3 181.132.250 TCP 57817 > http [§
3 0.071917 199.181.132.250 24.6.173.220 TCP http > 57817 [s
7 0.072103 24.6.173.220 199.181.132.250 TcP 57817 > http [a
8 0.072822 24.6.173.220 199.181.132.250 HTTP GET / HTTP/1.1
9 0.111113 199.181.132.250 24.6.173.220 HTTP HTTP/L.1 301 Mo
10 0.114988 24.6.173.220 68.87.76.182 DNS standard auery | -

| Frame 1: 72 bytes o 76 bits), 72 bytes captur
« Ethernet II, Src: Laura PC5)(d4:85:64:a7:bf:a3), Dst: Rnuter 01529

» Internet Protocol Version rc: 24.6.173.220 (24 Dst: 6
@ User Datagram Protocol, Src I‘t 63301 (63301) Port: domam 53|
= Domain Name System (query)

@ | FicC\iaces-poapngen ip- spa20L1L peapng 1768 KB... | Packets: 2176 Dsplayedt 57 Profile Defaut

g \
Figure 98. Use an ethers file to resolve MAC addresses [http-espn2011.pcapng]

PR zﬂ'““;z;ﬁ“ 1
Resolve IP Addresses (Network Name Resolution)
Network name resolution uses a host file lookup process or inverse DNS queries (also referred to as Pointer or
PTR queries) to resolve IP addresses to host names. If network name resolution is enabled you can also enable
concurrent DNS resolution and define the maximum concurrent requests for faster name resolution processing.
Figure 97 shows a setting of 500 will be used if network name resolution is enabled.

“Network Name Resolution Can Slow Wireshark to a Crawl
Enabling network name resolution when the name server is unavailable or name resolution latency times are

high will severely impact Wireshark’s performance. If you must use network name resolution, consider creating
a hosts file as defined next.

You can create a Wireshark hosts file and place it in your Personal Configurations directory to speed up
Wireshark’s network name resolution process. When you enable network name resolution, Wireshark looks for
this hosts file before generating DNS PTR queries to a DNS server. The Wireshark hosts file syntax is ipaddress
hostname as shown below.

10.1.0.1 rtro01
10.1.0.99 server04
10.1.0.4 Fred
10.1.0.6 Michaela

You will need to restart Wireshark before it will recognize the new hosts file.

You can manually resolve the address of a host by right clicking on an address in the Packet Detail pane. For
example, if you expand the IP header of a packet and right click on the destination IP address, Wireshark will
resolve just that one IP address. This great feature was added by Stig Bjarlykke.

“Warnings about Using a Special Wireshark hosts File

Turning on network name resolution often causes undesirable effects (such as flooding the DNS server with
DNS PTR queries). You can enable network name resolution and use a Wireshark hosts file as mentioned
above, but any IP addresses seen in the trace file that do not have a hosts file entry will trigger the DNS PTR
query process. Analyze your own traffic after you enable network name resolution and use a hosts file to see if
your system still generates DNS PTR queries.

Plot IP Addresses on a World Map with GeolP

Using the MaxMind databases, you can see IP addresses plotted on a world map.
Follow these steps to enable and use GeolP.

Step 1: Download the following files from geolite.maxmind.com/download/geoip/database/.
GeoliteCity.dat.gz (in the Geolite City directory)

GeolP.dat.gz (in the GeolLite Country directory)

GeolPASNum.dat.gz (in the asnum directory)

GeolLiteCityv6.dat.gz (in the GeolLite City directory)

GeolPv6.dat.gz (in the GeoLite Country directory)

Step 2: Create a maxmind directory on your local drive and extract all the MaxMind files in that directory.

Step 3: In Wireshark, select Edit | Preferences | Name Resolution and click the Edit button in the
GeolP database directories area. Enter the path to your maxmind directory. If desired, you can also select
Edit | Preferences | Protocols | IPv4 and check the box next to Enable GeolP lookups. This will display
GeolP information in the IPv4 headers. As of Wireshark 1.8, you can also enable GeolP resolution for IPv6 by
opening Edit | Preferences | Protocols | IPv6 and check the box next to Enable GeolP lookups. This
will display GeolP information in the IPv6 headers.

Step 4: Open http-espn2011.pcapng. Select Statistics | Endpoints and click on the 1Pv4 tab. (GeolP
mapping is available from the IPv4 tab in the Conversations and Endpoints windows.) Click the Map button.
An OpenStreetMap view of the world will appear with your IP addresses mapped with red flags. Click on a flag
to learn more about that host.

Resolve Port Numbers (Transport Name Resolution)

The services file resides in the Global Configurations directory and contains a list of the port numbers and
application/protocol names. The services file is a copy of the IANA port number file. You can edit this file using
a text editor (as long as the editor does not put extraneous characters in the file). The original IANA file can be
found at www.iana.org/assignments/portnumbers.

In Figure 98 Wireshark has resolved port 80 to http in the Protocol column of packets 8 and 9 and port 53 to
DNS in packet 10 as seen in the Packet List pane and Packet Detail pane.

http://www.iana.org/assignments/port-numbers

Resolve SNMP Information

Your copy of Wireshark must support libSMI to use MIBs and enable the SNMP dissector to resolve the object
IDs (OIDs). For more information on Wireshark’s handling of SNMP MIBs, refer to wiki.wireshark.org/SNMP.

In the Name Resolution setting, enable OID resolution. The SNMP MIB (Management Information Base) files
used to resolve ASN1 (Abstract Syntax Notation 1) numbers to object names in SNMP communications. The
MIB modules are contained in the \snmp\mibs directory in the Wireshark Program File directory. The smi-
modules file lists the default MIB modules to load when Wireshark is launched.

“Warnings about SNMP Object Dissection Support

Numerous questions regarding SNMP appeared at ask.wireshark.org. Unfortunately, many earlier Windows 64-
bit versions of Wireshark did not support libSMI so SNMP OID resolution was not available. View Help | About
Wireshark and look for "with SMI" in the paragraph that begins with "Compiled..."

The default set of MIBs that load when you launch Wireshark is listed below:
e IP-MIB

e IF-MIB

e TCP-MIB

« UDP-MIB

* SNMPv2-MIB

e RFC1213-MIB

» IPV6-ICMP-MIB

» IPV6-MIB

o SNMP-COMMUNITY-MIB

o SNMP-FRAMEWORK-MIB

¢ SNMP-MPD-MIB

e SNMP-NOTIFICATION-MIB

* SNMP-PROXY-MIB

e SNMP-TARGET-MIB

* SNMP-USER-BASED-SM-MIB
o SNMP-USM-DH-OBJECTS-MIB
e SNMP-VIEW-BASED-ACM-MIB

This list only includes the active MIBs. There are over 300 MIBs in Wireshark’s \snmp\mibs folder. Additional
SNMP MIBs can be found at www.mibdepot.com or www.oidview.com/mibs/detail.html. If Wireshark can’t
resolve an SNMP MIB object, or OID (Object Identifier), it shows a partially resolved name such as
enterprises.9.9.41.2.0.1.

In order to enable Wireshark to decode additional MIB information, (1) a MIB file must be created in the
proper format and (2) the MIB must be placed in the \snmp\mibs folder. For details on formatting, naming and
adding MIBs, refer to wiki.wireshark.org/SNMP. If you are using secure SNMP communications available with
SNMPv3, set the username, authentication model, password, privacy protocol, and privacy password in Edit |
Preferences | SNMP.

Configure Filter Expressions

This feature was added in Wireshark 1.8 and is fantastic! Simply select Add, enter a label and display filter as
shown in Figure 99. (You can also create a display filter and click the Save button on the display filter area.)
Filter Expression buttons are shown in the display filter area.

“Use New Filter Expression Buttons for Faster Troubleshooting

As you go through this book and add display filters and coloring rules, save the best ones as Filter Expression
buttons to rapidly apply the filters to the traffic. This is one of the hottest recent features added to Wireshark!

http://wiki.wireshark.org/SNMP
http://www.mibdepot.com/
http://www.oidview.com/mibs/detail.html
http://wiki.wireshark.org/SNMP

Figure 99. Create filter expressions to speed up troubleshooting tasks

You don't need to use the Preferences window to add Filter Expressions. Try typing in a display filter and
clicking the Save button. You will be propted to name your Filter Expression as shown below. At the current
time you will need to return to the Preferences | Filter Expressions area to rename or edit your Filter
Expression.

Il Wiresharc Save Filter [y

| - Save Fitter a5

i hitpresponsecodes 309, || HTTP Emor |

|[b | ok | [cenca ||

Configure Statistics Settings
There are only two statistics settings—one that defines the tap update interval and another that defines the
number of visible channels in the RTP player.

[Wireshark: Preferences - Profile: Default = | D

Max visible channels in RTP Player. 4

Help _Qki 8| Apply. Kancel

Figure 100. Wireshark statistics preferences

The settings you define only affect the current working profile. If you are in the Default profile and you alter
the maximum visible channels in the RTP player, you will not see the new setting when you switch to another
profile.

Preference settings are maintained in the preferences file. For example, the Statistics preferences are
contained in the preferences file as shown below:

#HiHHH# Taps/Statistics ##HHHHHHT

Tap update interval in ms.

An integer value greater between 100 and 10000.
#taps.update_interval: 3000

Maximum visible channels in RTP Player window.
An integer value greater than O.
#taps.rtp_player_max_visible: 4

Define ARP, TCP, HTTP/HTTPS and Other Protocol
Settings

Many of the protocols and applications interpreted by Wireshark have dissection options that can be changed.

Those options could be as simple as changing the default port that an application uses or as complex as
defining how dissectors should handle specific types of traffic.

Detect Duplicate IP Addresses and ARP Storms

Figure 101 shows the protocol preferences for the ARP/RARP dissector. Notice that you have the ability to
enable detection of ARP storms and detect duplicate IP addresses.

Duplicate IP address detection is on by default. To enable ARP storm detection you must define the number of
ARP packets to detect during a specific detection period. When this is enabled using the default settings shown
in Figure 101, Wireshark looks for 30 ARP packets occurring within 100ms before triggering an event.

B Wireshark: Preferences - Profie: Defoult =)

| | -Address Resolution Pratocol
Detect ARP request storms:

ANSIBSMAD

= | Mumber of requests to detect during pesiod: | 30

Detection period in mek: | 100

Vet

i Detect duplicate IP addeess configuration: [

asn

ATMTCP

aaaaa

Figure 101. Wireshark protocol preferences for ARP/RARP

Define How Wireshark Handles TCP Traffic
One of the most commonly altered protocol preferences is the TCP dissector configuration, as shown in Figure
102. You can alter many key TCP dissector behaviors, such as:
¢ TCP checksum validation
allow subdissectors to reassemble TCP streams
analyze TCP sequence numbers (very helpful when troubleshooting)
use relative sequence numbers (also very helpful when troubleshooting)
track the number of unacknowledged bytes (bytes in flight)
calculate TCP conversation timestamps
try heuristic subdissectors first
ignore TCP timestamps in summary (Wireshark 1.8 and later)

Refer to Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic for more details on TCP relative

sequence numbers, tracking TCP conversation timestamps and typical TCP communication problems as well as
the TCP preference settings listed previously.

B8 Wireshark: Preferences - Profile: Default a | E=rEr s

Tau
TCAP
TS

TIME Track number of bytes inflight: ¥

Calculate con

ntimestomps: ¥
Teken-Hing E Try heuristic sub-dissectors first:

Tgnore TCP Timestamps i sumemary:

| Hep Lo \\ Apply Goncel

Figure 102. The TCP preference settings

“Checksum Validation Settings

Both TCP and UDP checksum validations were enabled in previous versions of Wireshark. This caused lots of
concern as systems began doing checksum offloading. Wireshark would capture outbound traffic before those
checksums were calculated and applied to the packet. Those packets triggered the Bad Checksum coloring rule
and people felt they must troubleshoot those issues. Unfortunately, IP checksum validation is still enabled by
default—consider disabling that IPv4 setting.

One setting that you may find yourself turning on and off at times is the Allow subdissector to reassemble
TCP streams setting. For example, for the clearest view of HTTP traffic in the Packet List pane, disable Allow
subdissector to reassemble TCP streams to see the HTTP GET requests and the HTTP response codes in the
Packet List pane. When you are working with HTTPS traffic, however, enable this setting to see and filter on all
four SSL/TLS handshake packets. For more information on using this setting, refer to Allow Subdissector to
Reassemble TCP Streams.

Set Additional Ports for HTTP and HTTPS Dissection

In the HTTP protocol preferences, you can add other ports that you might use for HTTP or HTTPS (SSL/TLS)
traffic. For example, if you are running your HTTP server on port 3880, simply add this port number to the TCP
ports list in the HTTP preferences area. For more details on working with HTTP/HTTPS traffic and settings,
refer to Ch r 23: Analyze Hypertext Transfer Pr [(HTTP) Traffic.

Enhance VolP Analysis with RTP Settings

In the RTP protocol preferences, you can configure the Wireshark RTP (Realtime Transport Protocol) dissector

to try to decode RTP outside of conversations. This means that if you did not capture the call setup process
(such as Session Initiation Protocol, SIP), Wireshark still examines the traffic to identify and decode RTP
streams. This is an excellent setting to enable if Wireshark often cannot decode your RTP traffic. For more

details on working with VolP traffic, refer to Chapter 27: Introduction to Voice over IP (VolP) Analysis.
Configure Wireshark to Decrypt SSL Traffic

In the SSL protocol preferences, you can define how SSL reassembly should work and enter one or more RSA
keys to decrypt the SSL traffic detected by Wireshark. Wireshark can only decrypt SSL traffic if it is configured
properly to reference an RSA key. For more information on decrypting SSL traffic, refer to Analyze HTTPS
Communications.

Configure Protocol Settings with RightClick

If you want to quickly change protocol settings while examining a packet, right click on a protocol section in
the Packet Details pane (e.g., Ethernet, IP, TCP and HTTP). Select Protocol Preferences and set the value or
toggle the setting on or off.

In Figure 103 we right clicked on the TCP summary line and selected Protocol Preferences. Preferences set
this way are permanent and will be available again when you reload another trace file or restart Wireshark.
This is the fastest way to change protocol preferences for Wireshark.

1l sop-ve-chatpeapng 2| el
fe fdt Wew Go Gopture nahme Satsics Telephomy ook femais Help

BEdeN SAXE Qe raT L [

Fien

No. Time Sousce Desticutin Protocol lnfo -
5 0.071727 66.150.11.48 67.161.32.69 TCP https » kwtc [ACK] Seqsl Ack=103 -

o Frame 5: 60 bytes on wire (480 hlts) 60 bytes captured (480 bits) on interface 0 |

= Ethernet II, Sr 25:82 (00:01:5C:22:25:82), Dst: Sony_f4:3a:09 (08:00:46:1

| Internet Protoc Srci §6.150.11.48 (66.150.11.48), 0st: 67.161.32.69 7,
hminEablonk (443}, Ost Port: kwtc (4566), Seq: 1,

Epand Al
[Stream index: 0] | Collapse Al
Sequence number: 1
Acknowedgment numl
Header length: 20 |
& Flags: 0x010 (ACK)
window size value:
[Calculated window
[Window size scalii & o
Checksum: 0x5b22 [fosop 55t Sueam
[Good Checksum: F
[Bad Checksum: Fg Copy

[SEQ/ACK analysis]| [uportSelected Packet Bytes..
[This is an ACK'{g
[The RTT to ACK 1

tber)
number)

Apply s Colunn

Right ciick on a protacal in the
Packet Details pane 1o select and
quickly sel Protocol Preferences

Wil Protocol Page.
@ Filter Fekd Reference
Protocol Help
Piotocol Preferences

100 seconds]

@ ¥ Transmisicn Control Protoca

¥ Dissble Frotacl...
Resolve Hame

Figure 103. You can set protocol preferences by right clicking on the protocol in the Packet Details pane and selecting Protocol Preferences
[applive-chat.pcapng]

(=

.C:ase Study: NonStandard Web Server Setup

At one customer location they had configured a number of internal web servers to offer corporate information
to all the employees, act as test servers, provide a site for uploading and downloading support files between
departments, etc. The IT team had configured these servers with HTTP daemons running on unusual port
numbers—from port number 259 to port 266.

192.168.4.17:266 192.168.4.17:259

192.168.4.17:265 192.168.4.17:260
192 168.4.17:264 192,168.4.17:261 \

192.168.4.17:263 192.168.4.17:262

&g & g &

When the IT team is called in to troubleshoot communications to any one of these servers, Wireshark won't
dissect the traffic as HTTP traffic. To fix this problem, the team created a personal preference setting for HTTP
traffic that included the additional port numbers they used for their HTTP traffic as shown in the next figure.
Once Wireshark was configured with these additional ports, the IT team could easily dissect all the traffic to
these servers as HTTP traffic.

ten T Conce

Because this IT team moved to many different branch offices and even partner companies, they decided to
save this configuration in a profile so they could easily revert back to the default settings in case other traffic
used those ports.

Summary
Wireshark can and should be customized for more efficient troubleshooting and security analysis.

You can customize the Wireshark interface, capture preferences, capture/display filters, packet colorization,
name resolution processes, dissector behavior and more.

Various default settings are maintained in the Global Configurations directory while personal settings are
maintained in the Personal Configurations folder. Additional confirmation information is saved in profile
directories as well.

Locate your Global and Personal Configurations folders through Help | Wireshark | Folders.

Practice What You’ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
You will use some of these trace files as you practice what you've learned in this chapter.

Customize Your User Interface

» Select Edit | Preferences and set your Open Recent max list entries value to 30.

¢ In the same area, set your Filter display max. list entries to 30.

Select Columns and click the Add button. Name your column "DSCP". In the Field type list, select IP
DSCP Value. Click and drag your new column to the row below the Time column.[59]

In the Layout section, add your name to the Custom window title (prepend to existing titles) field. Click
OK.

Check your customization—you should see a new column for DSCP. Open voip-extension.pcapng to see a
communication that uses varying values in this field.

Add, Edit and Remove Custom Columns in the Packet List Pane
The column you created above is not a custom column—it was a built-in column available in the column field
type list. You can create custom columns based on the fields in a packet.

¢ Open tcp-winscaling-good.pcapng.

¢ Select any of the packets and expand the TCP header in the Packet Details pane.

« Right click on the Calculated Window Size field in the TCP header and choose Apply as Column.[60]

« Click on the new column’s heading in the Packet List pane and drag the column to the right of the DSCP

column.

The following lists the trace files we worked with in this section. The trace files are available on the book
website, www.wiresharkbook.com.

applive-chat.pcapng: This live chat to a support line creates a nice secure connection. Oh, wait...make that
122 nice secure connections. Whazzup with that? Isn't that overkill? Look at Statistics | Packet Length to

see how much of the traffic uses little itty bitty stinkin' packets! Refer to Chapter 8: Interpret Basic Trace File
Statistics.

http-download-good.pcapng: The users are relatively happy with the download time required to obtain the
OpenOffice binary depicted in this trace file. How long did the file transfer take? What is the average
bytes/second rate? Refer to Chapter 7: Define Time Val nd Interpret Summaries for details on using
Wireshark’s Summary window.

http-espn2011.pcapng: Look at the Packet List pane Info column for packet 20. Now compare this
information when you enable and disable the TCP Allow subdissector to reassemble TCP streams preference.

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

We will examine the HTTP traffic later in this book.

tcp-winscaling-good.pcapng: Now this is the life! The client advertises a TCP window scale of 2 (multiply
the window value by 4) and the server supports window scaling as well (although with a window scale of 0
which does it no good on the receive side of things). Check out Wireshark's ability to calculate the correct
window size (packet 3) for the client.

voip-extension.pcapng: This VolP communication begins with a SIP call setup process. The call is directed
to the VolP server (operator). Later in the trace file the user enters extension 204. This was just a test call. If
Wireshark does not recognize the RTP traffic, set the RTP preferences to decode RTP outside of conversations.

Review Questions

Q5.1
How does Wireshark’s network name resolution use DNS to associate an IP address with a host name?

Q5.2
Why would you want to alter Wireshark’s preference settings?

Q5.3
What is the difference between a global preference and a personal preference setting?

Answers to Review Questions

Q5.1
How does Wireshark’s network name resolution use DNS to associate an IP address with a host
name?
A5.1
If network name resolution is enabled, Wireshark looks for a Wireshark hosts file first. If no Wireshark
hosts file exists or the file does exist but does not have the desired information in it, Wireshark sends an

inverse query to the DNS server to resolve the IP address. If this process is unsuccessful, Wireshark
cannot resolve the IP address for a host name.

Q5.2
Why would you want to alter Wireshark’s preference settings?

A5.2

You may want to alter Wireshark'’s preference settings to customize Wireshark for your network
environment. These settings include the panes displayed in the main Wireshark window, capture settings,
the name resolution processes, individual dissector behavior, etc.

Q5.3
What is the difference between a global preference and a personal preference setting?

A5.3
Global preferences are system-wide preferences. Personal preferences define customized Wireshark
behavior and override the global preferences.

Chapter 6
Colorize Traffic

Use Colors to Differentiate Traffic Types

Colorization can be a very effective tool to locate and highlight packets of interest. You can choose to colorize
packets that indicate error conditions, contain evidence of a network scan or breached host, etc.

Wireshark contains several predefined coloring rules in the default coloring rules file (colorfilters) that resides
in the Global Configurations directory. When you edit the coloring rules file, the new colorfilters file is saved in
your Personal Configurations directory. If you create and work in a new profile, another colorfilters file is saved
in that profile’s directory.

The following lists some of the predefined coloring rule string values.

tcp.-analysis.flags && !'tcp.analysis.window_update

Bad TCP (TCP retransmissions, out-of-order packets, Duplicate ACKs, etc.)

hsrp.state =8 && hsrp.state != 16

HSRP State Change (Hot Standby Router Protocol state changes)

stp.type==0x80

Spanning Tree Topology Change

ospf.msg 1=1

OSPF State Change (routing state changes)

icmp.type eq 3 || icmp.-type eq 4 || icmp.type eq 5 || |cmp type eq 11 || icmpv6.type eq 1 ||
icmpv6.type eq 2 || icmpv6.type eq 3 || icmpv6.type eq 4

ICMP errors (ICMP destination unreachable, Source Quench, Redirect and Time Exceeded messages)

arp

ARP (all ARP traffic)

icmp || icmpv6

ICMP (all ICMP traffic; the ICMP errors colorization takes precedence because it is higher in the color rules list)
tcp-flags.reset eq 1

TCP RST (TCP connection refusal or termination packets)

(1ip.dst==224.0.0.0/4 && ip.ttl < 5 && !pim) || (ip-dst==224.0.0.0/24 && ip.ttl != 1)
Low TTL (packets that contain an IP header Time-to-Live value less than 5)

Coloring rules require a name, a string (based on the display filter format), a foreground color and a
background color.

Disable One or More Coloring Rules

By default, Wireshark colorizes the traffic based on the default set of coloring rules. Turn off colorization using
the Colorize Packet List button on the Main Toolbar or select View | Colorize Packet List to toggle this
setting off.

To disable a single coloring rule, click the Coloring Rules button on the Mcon Toolbar (between the Display
Filter Window button and the Preferences button). Click on a coloring rule and click the Disable button. The
coloring rule is not deleted—it is just disabled. If you want to delete a coloring rule, select the rule and click

the Delete button.

“Wlehll((nlvngi\ - Profile: Default Sl - [E=RAOY” > |

Edit Fiter Order

Bew |

h the order of your coloring
rules - packets are processed top 10
battom - use the Up and Down
buttans ta reorder the rules

Manage smb || nbss | nbns | rbipx | ipxsely] netbios
hitp fjtcp.port == 80
{Import..| | | 1PX i | s

DCERPC deerpe
% _ | | Rawting hsep || eigrp || ospf ||
Eport..| [CASHUAN tepflags 8002 f tcp
TP wp
upe udp

Consider disabling the Checksum
Errors coloring rule to avoid false
positives seen when task offloading
(aka checksum offloading) is used).

Figure 104. Packets are processed from top to bottom through the coloring rules list

In the trace file http-facebook.pcapng our client, 24.6.173.220, uses IP, UDP and TCP checksum offloading
which will trigger the Checksum Errors coloring rule if checksum validation is enabled in the IP, UDP and TCP
protocol preferences.

“Checksum Errors and Coloring Rules

One coloring rule you may consider disabling is Checksum Errors as shown in Figure 104. If TCP, UDP and IP
checksum validation is enabled and checksum offloading is used, packets sent from a system running
Wireshark may trigger the Checksum Errors coloring rule. Checksum offloading is defined in Chapter 3:

Capture Traffic.

Share and Manage Coloring Rules

You can easily share coloring rules using the Import or Export buttons in the Coloring Rules window. When you
export a coloring rule, Wireshark prompts you for a file name. Wireshark uses the name colorfilters as the
default name. If you want to share these rules with other users, consider using this name.

Coloring rules are contained in a text file. You can copy the desired coloring rule to another system—just like
any other file. You don’t need to use the Import/Export feature in the Coloring Rules window.

Identify Why a Packet is a Certain Color

To determine why a packet is colored a certain way, examine its Frame section in the top of the Packet Details
pane.

In Figure 105 we have expanded the Frame section of the packet. This packet is colored based on a coloring
rule named TCP SYN/FIN that uses the string tcp.flags & 0x02 || tcp.flags.fin==1 (only the SYN bit is set
to 1 or the FIN bit is set to 1).

= Frame 804: 60 bytes on wire (480 bits), 60 byt captured (480 bi
Arrival Time: Jul 7, 2011 12:36:08.991890000 Pacific Daylight
[Time shift for this packet: 0.000 ds]

Epoch Time: 1310067368.991890000 s
[

0.000873000 seconds]

us displaye : 0.000873000 seconds]
reference or first frame: 127.216221000 seconds]
: 804

60 bytes (480 bits)
: 60 bytes (480 bits)
ed: False]

fal

choin:rcol
CP SYN/FIN]
tcp. Flags & 0x02 || tep.flags.fin == 1]

T STe T CRUNNT S ITES e T (00 UT SO STT 0 Te L), DEr T REmT
Protoco] Version 4, Src: 74.125.278.140 (74.125.224.140§
control Protocel, Src Port: ps (443), Dst Port:
Tz https (443)

ro: 62533 (62533)

Sequence number: 2965 (relative sgaffence number)

Acknowledgement number: 852 ive ack number)

Header length: 20 bytes

Flags: 0x011 (FIN, ACK)

window size value: 140

[calculated window size: 8960]
ow £12 i A

Figure 105. Frame details include coloring rule information [http-yahoo-viafirefox.pcapng]

Although coloring rules are not actual fields in a packet, you can still filter on them. Right click on either the
coloring rule name or the coloring rule string to create a display filter based on these two elements.

“Coloring Rules are Processed in Order Top to Bottom

Coloring rules are processed in order so you need to be careful when you create and rearrange coloring rules.
For example, using the default coloring rules, an HTTP packet that contains a TCP retransmission will be
processed by the Bad TCP coloring rule, not the HTTP rule because the Bad TCP coloring rule is listed above

the HTTP coloring rule.

Create a "Butt Ugly" Coloring Rule for HTTP Errors

Although Wireshark contains a number of default coloring rules, there are some packets that should be
screaming at you to get your attention. HTTP errors would be a good example. Any HTTP response that
contains a numerical code between 400 and 499 indicates a client error. HTTP responses between 500 and 599

indicates server errors.

Let's go step-by-step to create a single coloring rule to call attention to HTTP error responses. Refer to Figure
106 to see the steps as you work through this process.

Step 1: Open http-espn2011.pcapng (available in the Download section of www.wiresharkbook.com)

Step 2: In the Packet List pane select Packet 9 (an HTTP response). In the Packet Details pane right click on
the Hypertext Transfer Protocol line and choose Expand subtrees so you can see the "Status Code: 301"
line.

Step 3: (A) Right click on "Status Code: 301" and select Colorize with Filter | New Coloring Rule.
Wireshark opens the Coloring Rules window and Edit Color Filter window. In addition, your coloring rule string
is filled out based on the field you selected in this step.

Step 4: (B) Enter T-HTTP Errors in the name field. Enter http.response.code > 399 in the string field.
Step 5: (C) Click the Background Color button. In the Color name field, type in orange and click OK. Click

http://www.wiresharkbook.com/

OK to close the Edit Color Filter window and OK to close the Coloring Rules window.

Step 6: (D) Your coloring rule will be highlighted with a blue background. Click the Up or Down button to
move your butt-ugly coloring rule to the top of the coloring rules list.[61]

Step 7: Open http-500error.pcapng. If your "butt ugly" coloring rule is configured properly, packet 9 should
match the rule.

[Y otoina e - ot Dot =

Lo]

Figure 106. The steps to create a "butt ugly" coloring rule for HTTP error responses

Color Conversations to Distinguish Them

There are 10 temporary coloring options for conversations. Right click on a packet in the Packet List pane and
select Colorize Conversation. Choose the conversation protocol to temporarily color a specific conversation
as shown in Figure 107. The coloring rule remains in effect the next time you open the trace file, but it will not
be in effect when you restart Wireshark.

B e onsnionpcaon
Tle [48 Gow Go Goptwe fraiye gommcs Teshony In
BN SAXDE A ST

Filter

br
S
192.168.5.10 S
.10 192.168.5.11 RE
.10 192.168.5.11 R
. .10 192.168.5.11 S|
wire (2904 bits), 363 b
' ntaCo_2f:1b:85 (00:le:68:
) sion 4, src: 192,168.5.11
S ¢ bridgecontro

Calors 1 through 10
are only lemporary

Figure 107. Right click on a packet to select it for colorization [voip-extension.pcapng]

To remove the conversation colorization, select View | Reset Coloring 1-10.

Temporarily Mark Packets of Interest

You can mark packets by right clicking on the packet and selecting Mark Packet (toggle). Unmark the
packet using the same step. Packet marking is useful to temporarily identify packets of interest.

You can also use several accelerator keys (keyboard shortcuts) to mark packets and move between marked
packets.

Ctrl+MMark Packet (toggle)

Shift+Ctrl+NFind Next Marked Packet

Shift+Ctrl+BFind Previous Marked Packet

By default, Wireshark colors marked packets with a black background and white foreground. You can change
the default coloring in Edit | Preferences | Colors as shown in Figure 109.

“Use Packet Marking to Save Non-Contiguous Packets

Marking packets also allows you to save specific non-contiguous packets or ranges of packets between marked
packets. For example, if you want to save packets 1, 3, 7 and 9 of a trace file, simply mark those packets.
When saving the trace file, select to save only the marked packets.

To clear marking, select Edit | Unmark All Displayed Packets or click the Reload button on the Main
Toolbar. To invert the marked and unmarked packets, select Edit | Toggle Marking of All Displayed
Packets.

The option for saving marked packets is shown in Figure 108. In this figure, Wireshark indicates that we have
marked four packets. We have selected to save just those marked packets. To save just the marked packets
into a separate trace file, select File | Export Specified Packets and check Marked packets. Enter the
new file name and click Save.

@ oot Dupioe
© tiackets o
€ Seoctedpacket 1
 Maked packets
T @
< Ragei]

Be careful -
Display
defa

Figure 108. Use marked packets in the save process

Alter Stream Reassembly Coloring

When you right click on a packet and select Follow UDP stream, Follow TCP stream or Follow SSL
stream, the streams are colorized to identify packets sent from a client (the device initiating the connection or
conversation) and packets sent from a server. For more information on following UDP, TCP or SSL streams,
refer to Ch r 10: Follow Streams and R mble D.

You can change the stream coloring using Edit | Preferences | (User Interface) Colors as shown in
Figure 109. Although the stream coloring lists only Sample TCP stream client text and Sample TCP stream
server text, these colors are also used for UDP stream reassembly and SSL stream reassembly—the setting can
be interpreted simply as "stream client text" (the host that sent the first packet in the stream) and "stream
server text" (the host that received the first packet in the stream).

W Ve Perses Froie O [E=or=r=)

Figure 109. Stream coloring is defined through preferences

By default, a light red background and red font identify traffic sent by the client and light blue background and
blue font identify traffic sent by the server.[62] The separate parts of a reassembled TCP stream are marked in
Figure 110.

I Fofo 18 i By defaut, e client
Soeam Content communications are In red

GET / HTTP/1.1
Accept: application/x-ms-
application, image/jpeg, application/
xaml+xml, image/gif, image/pjpeg,
application/x-ms-xbap, application/
wnd.ms-excel, aqp'licatwnfvnd.ms-
powerpoint, application/msword, */*
Accept-Language: en-Us

User-agent: Mozilla/4.0 (compatible;
MSIE 8.0; Windows NT 6.1; WOW64;
Trident/4.0; GTB7.2; SLCC2; .NET CLf
2.0.50727; .NET CLR 3.5.30729; .NET
CLR i,D‘io?Zg: media center PC 6.0;

R

LM 8; BRI/2) By default, the server
communications are inblue. These
colors can be changed using Edit|
Preferences | Colors

Connection: K

HTTP/1.1 301 Moved Permanently
Date: sat, 07 Jan 2012 21:59:44 GMT
server: Apache

Location: http://espn.go.com/
Content-Length: 227

X-Cnection: close

(< : text/html;

E ASCH () EBEDKC € Hex Dump € € Amays @ Raw

Hep Fiter Out Thisstream | [Clone.

Figure 110. Stream coloring is seen when you reassemble UDP, TCP or SSL streams [http-espn2011.pcapng]

-

.C:';lse Study: Colorizing SharePoint Connections During
Login

Colorization can help in the analysis of very complex communications. For example, SharePoint networks use

numerous connections and numerous port numbers. Wading through the communications from a SharePoint
client can be overwhelming and rekindle that "needle in the haystack" feeling.

During a recent onsite analysis and training session we analyzed a login sequence from a host that was a
SharePoint client. In order to distinguish between the various connections made from the client, we
systematically colorized the various conversations to tell them apart.

This colorization helped us quickly see which connections were established first and which connections had
problems. We could slowly filter out conversations that didn't have problems—we were left with the
conversations that we needed to focus on. Do a bit of "googling" to see how many ports are used in a typical
SharePoint environment.

Summary

Colorization can be used to distinguish separate conversations, specific packet types and unusual traffic. A set
of predefined coloring rules is included with Wireshark. Create custom coloring rules to improve your ability to
identify unusual traffic in your analysis environment.

The predefined coloring rules are maintained in the colorfilters file in the Wireshark Global Preferences
directory. New or customized coloring rule settings are maintained in the colorfilters file in your Personal
Configuration folder. You can import, export and clear (return to default) your coloring rules.

Coloring rules are automatically applied to each packet as it is displayed (if packet coloring is enabled). Other
colorization, such as conversation colorization and marked packets are applied on a temporary basis only. To
identify the coloring rule applied to any packet, expand the Frame section in the Packet Details pane and
examine the [Coloring Rule Name] and [Coloring Rule String] sections.

You can mark packets of interest and save just the subset of marked packets, if desired. You do not have the
option to save packets based on any other colorization.

Reassembled UDP, TCP and SSL streams are colorized based on the Preferences settings. By default, data sent
from clients is red and data from servers is blue. If desired, this can be changed.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
Use these trace files to complete the practice exercises that follow.

Deal with Checksum Offloading

¢ Open ip-checksum-invalid.pcapng. Ensure packet coloring is enabled. Packets from 10.2.110.167 appear
with a black background and a red foreground if IP checksum calculation is enabled in the Wireshark
preference settings and the Checksum Errors coloring rule is enabled. Open the Frame section to examine
the Coloring Rule Name and Coloring Rule String that these packets match.

« This trace was captured at 10.2.110.167. Since this communication appears to have worked properly, we
can assume that the checksums were not incorrect when they went out on the network. This host uses
checksum offloading (also referred to as task offloading).

 Select View | Coloring Rules and select the Checksum Errors coloring rule. Click Disable and then OK.

* What coloring rule does the traffic match now?

Separate Conversations using Colorization
Let's deal with the mess of a trace file containing lots of conversations.

Open http-aol.pcapng. This trace file contains 17 separate TCP connections. We will use this trace file to
practice colorizing traffic to help identify separate conversations in a single trace file.

» The first packet is a TCP handshake packet (SYN). Right click on packet 1 in the Packet List pane and

http://www.wiresharkbook.com/

select Colorize Conversation | TCP | Color 1.

 Follow the same coloring process for the next TCP conversation that starts at packet 10. Assign Color 2 to
that conversation.

« Continue coloring the conversations each time you see a SYN packet.

» After you have colorized five separate conversations, scroll through the trace file. You should be able to see
the separation between the conversations much easier now that they are colorized.

« Select File | Close to close the trace file.

¢ Open http-1.pcapng—do you see your colorization in this trace file?

* Open http-aol.pcapng again. Is your coloring still there? Your coloring will be lost if you restart Wireshark or
select View | Reset Coloring 1-10.

Mark and Save Packets of Interest

In this exercise we want to create a new trace file that only contains packets that have the HTTP GET
command in them. In addition, you want to include the first two packets of just two TCP connections to use as
a snapshot of round trip latency time to the www.aol.com server.

» Using the same trace file, http-aol.pcapng, apply the following display filter:
http.request.method=="GET"

« How many packets matched your filter? You should see 57 packets.

¢ Select Edit | Mark All Displayed Packets. All the packets that contain the HTTP GET command should
now be marked with a black background and white foreground. Click Clear to remove the display filter.
Scroll through the trace file to see your marked packets.

« Right click on packet 1 and choose Mark Packet. Perform the same steps for packet 2, packet 10 and
packet 11.

 Select File | Export Specified Packets. Your Packet Range area should look like the image that follows
these steps. Select Marked Packets and name your new file get-syns.pcapng (or get-syns.pcap if you are
saving in the older pcap format). Click Save. You now have created a new trace file containing the 57
packets plus the 4 additional packets you marked for a total of 61 packets. Clear your filter before opening
the next trace file.

Packet Range
@ Caphured " Displayed
& Aipackets 318
" Selected packet 1
" Marked packets 61

€ Frsttolast marked EiF]

~ I
© Range: |

Add a Custom Coloring Rule for Packets Containing FTP Passwords

If you want Wireshark to make password packets stand out more, add a custom coloring rule.

1. Open ftp-putfile.pcapng.

2. Select View | Coloring Rules and click New.

3. Enter the name FTP PASS. Enter ftp.request.command=="PASS" as the string (be sure to include the
quotes around PASS in the string area).

4. Define a red background and a white foreground. Click OK.

5. Ensure your new coloring rule is at the top of the coloring rule list. Click OK. If your coloring rule worked
correctly, packet 13 should be colorized with a red background and white foreground.

The following table provides more information about the trace files we worked with in this section and lists
additional trace files for practice.

ftp-putfile.pcapng: The client uses the STOR command during an active FTP connection. Note the Wireshark
decode of the PORT command packets (packet 16) (packet 37) (packet 55) (packet 71). What data is being
transferred across the secondary connections established by the server? Refer to Chapter 24: Analyze File
Transfer Protocol (FTP) Traffic

http-1.pcapng: This HTTP trace depicts someone using the HEAD command instead of the GET command.
The HEAD command is similar to the GET command except it does not expect the file to be transferred—it just
obtains the associated header lines. For example, if the HEAD command is followed by the IfModified-Since
line, the sender can determine if there is a newer version of a file on the HTTP server. Refer to Chapter 23:

Analyze Hypertext Transfer Protocol (HTTP) Traffic for details on the IfModified-Since request method.

http-500error.pcapng: This trace shows an HTTP 500 error response from a web server that cannot handle

the request. In this case we were trying to get a list of laptops on sale at Fry’s Electronics’ website (Outpost).
The problem seemed to be with the backend database server. Refer to Chapter 23: Analyze Hypertext Transfer
Protocol (HTTP) Traffic for details on analyzing web browsing problems. Create a coloring rule to highlight
these HTTP error responses.

http-aol.pcapng: It takes 17 different TCP connections to load the www.aol.com website. Have you analyzed
the connection to your corporate website lately?

http-espn2011.pcapng: If you want some practice colorizing traffic, build a coloring rule for all HTTP
redirections (response code 300-399) and you'll see the redirection at the beginning of this trace can't be
missed.

http-facebook.pcapng: Getting to that Facebook page isn't so easy today—we have some serious issues
with our communications. This is a good trace file on which to enable TCP’s Calculate Conversation
Timestamps and add tcp-time_delta as a column. The DNS traffic won't have timestamps, but your TCP
session will. Build a butt-ugly coloring rule looking for delays in the TCP conversations (tcp.time_delta > 1).

http-yahoo-viafirefox.pcapng: Wow — check out the number of connections required to open the main
page at www.yahoo.com. Consider applying temporary coloring to the various conversations to separate them
in the Packet List pane. Inside packet 10 you will see a series of Cookies being set on the client. Yuck.

ip-127guy.pcapng: This trace depicts an actual host that sends traffic from 127.0.0.1—something is terribly
wrong with this host. Can you tell what application is triggering this traffic? Perhaps the application should be
examined. Consider building a "butt-ugly"” coloring rule for all traffic sent to 127.x.x.X (ip.dst==127.0.0.0/8).

ip-checksum-invalid.pcapng: This is a classic case of checksum offloading (aka task offloading). We are
capturing traffic on 10.2.110.167 and all traffic from that source appears to have invalid checksums. Open the
Packet Details pane. Which headers have invalid checksums? How do we know the checksums must be valid
on the wire? Easy—the HTTP web browsing session was successful. Consider disabling the Checksum Errors
coloring rule or possibly disable the Validate the IPv4 checksum if possible IP preference setting.

tcp-window-frozen.pcapng: A window frozen condition can Kill file transfer speed. Set the Time column
format to Seconds Since Beginning of Capture. Right click on the first Zerowindow packet (packet 30) to Set
Time Reference. How much time did this condition waste? Consider building a coloring rule for all TCP packets
that have a window size lower than 1460.

voip-extension.pcapng: This VolP communication begins with a SIP call setup process. The call is directed
to the VolP server (operator). Later in the trace file the user enters extension 204. This was just a test call.

Refer to Chapter 27: Introduction to Voice over IP (VolP) Analysis.

Review Questions
Q6.1
What is the difference between marking packets and applying a coloring rule?

Q6.2
How do you share coloring rules with other Wireshark users?

Q6.3
You have created a coloring rule for ICMP Type 3 traffic as shown in the figure below. How can you ensure
that ICMP Type 3 packets are colored with this new rule?

B Weeshark Cokoring Fues - Prole; Default)

Answers to Review Questions

Q6.1
What is the difference between marking packets and applying a coloring rule?

A6.1

Packet marking is a temporary designation that is cleared when you reload the trace file, open the trace
file again or toggle the packet marking off. Coloring rules are automatically applied to the traffic each time
you open the trace file (if coloring is enabled).

Q6.2
How do you share coloring rules with other Wireshark users?

A6.2

By default, coloring rules are contained in the colorfilters file. This file can be copied to another Wireshark
system. In addition, you can use the export and import feature in the coloring rules window to save the
coloring rules file by another name and load it on another Wireshark system.

Q6.3
You have created a coloring rule for ICMP Type 3 traffic as shown in the figure on the previous
page. How can you ensure that ICMP Type 3 packets are colored with this new rule?

A6.3
Coloring rules are processed in order from top to bottom. In order to have ICMP Type 3 packets colored as

defined by the ICMP Type 3 coloring rule you created, ensure that coloring rule above the ICMP errors
coloring rule as shown in the image below.

[Wiresharkc Coloring Fuies - Profle: Default =

Chapter 7
Define Time Values and Interpret Summaries

Use Time to Identify Network Problems

When troubleshooting slow network communications, it is important to focus on the Time column. Slow
network performance can be due to high latency, access errors, excessive number of packets required to
obtain data or a number of other causes.

When poor performance is due to delays in the communications, look for large gaps in time between a request
and acknowledgement, an acknowledgement and a response, etc.

Understand How Wireshark Measures Packet Time

During the capture process, Wireshark gets the timestamps from the libpcap/WinPcap library. This library gets
the timestamp from the operating system kernel. When you save a trace file, the packet timestamps are saved
with that file in a file header so packet arrival time can be displayed when the file is opened.

The pcap file format consists of a record header for each packet. These record headers contain a 4-byte value
that defines the timestamp of that packet in seconds since January 1, 1970 00:00:00 Coordinated Universal
Time (UTC). This field is followed by another 4-byte value defining the microseconds since that point in time.
The time zone and current time setting of the capturing host is used in defining the packet timestamp.

Note that packets captured using the pcap file formats cannot define nanosecond timestamp values. These
features are included in pcap-ng which is documented at wiki.wireshark.org/Development/PcapNg.

For more details on the pcap file format, refer to wiki.wireshark.org/Development/LibpcapFileFormat.

http://wiki.wireshark.org/Development/PcapNg
http://wiki.wireshark.org/Development/LibpcapFileFormat

Choose the Ideal Time Display Format
Wireshark offers eight time settings. Each time setting offers a different view of the timestamp value
associated with each packet captured. Figure 111 shows the options available for the Time column setting.

Select View | Time Display Format to define the Time column setting. If you prefer to see more than one
Time column at a time, add a column to the Packet List pane as explained in Create Additional Time Columns.

It is recommended that you synchronize your system time using Network Time Protocol (NTP) to ensure
timestamp accuracy.

1 htto-downioad-bsd.peagng [y
Fle Edit MiendGo Caplure Analyze Statistics Telephony Tools ftemals Help
PP e oFs A eaan 0% % B
« e Toctbar i
Fe
Too!
AR Select View | Time Display Format o aer
1 0.of o the format of the Time Column - Seconds
2 0.1 v Packetlnt Since Previous Displayed Packet is a great
3 0.1 ¥ Packet Denits sefting for troubleshooting
4 0.1 v purapen HITP
5 0.3 Tro. meen o ade TACET cand arvoang e
6 0.3 IimeDisplayFormat * | Dateand Time of Day: 1970-01-01 010203123456 o 11
7 bl Time of Day: 010203123456 il Ale 2
[Seconds Since Epoch Q9700101 1234567012056 | ff crean3
9 0.3 inning of Capture: 123123456 CirleAlted
12 0.4 Ctrle- Seconds Snce Previous Displayed Packet: 1123456 Qe Alte6
13 0.4 k= UTC Dote and Time of Day: 1970-01-01 6102031234%6 Cirle Alte7
14 A UTC Time of Day: 01020312356 Citesne? |
< £ Resize All Columns Shifts Crrl+ R
|« Displayed Columns b Autematic (File Farmat Precision)
0000 0C e o | SEONGE O
9010 98 Erpanamn Curkign | Decieconds: 01
I Centseconds 012
{0030 Ff Colopsest ColeLeh
ood0 04 . o L Mliseconds 0123
e ® Microtaconds: 0123456
SRREN MNencseconds: 012456789
" Coloring R
Display Seconds with hours and minutes
I Show Packet in New Window
& e 5 L lisp M - Profie ok
ko L P oy [3ckets: T195 Displayed: 7195 hlarkedt 0 Lead | Profide:Default

Figure 111. Time Display Format options [http-download-bad.pcapng]

Date and Time of Day/Time of Day Settings
The Date and Time of Day and Time of Day options display the local time. If your local host time is off when
you capture packets, the incorrect information will be saved with your trace file.

Seconds since Epoch
Epoch time may rarely be used, but it is interesting. An epoch is a selected instance in time. Wireshark’s
Seconds since Epoch time is measured since January 1, 1970, which is also referred to as UNIX time.

Seconds since Beginning of Capture

Seconds since Beginning of Capture is the default time setting for Wireshark. The first packet in the Time
column is set to a time value of 0. All other packet timestamps are measured in comparison to that first packet.
In Figure 112, using this time setting we can see that packet 9 (the Window Update packet) occurs 0.335607
seconds after the connection setup began in packet 1.

This is an appropriate setting if your trace includes a single transaction, such as the process of loading a
website.

[pa—
e B o~ G0 Daplors Bnalyee- Jisics T ekpbony. Took=Trttma]
Bwdew ﬁ=g= e s T 2 E

e e

Mo,
1 . 00000 (

B2 5 10.0. 52 164

3 |0.167556 \52.164 61,8.0.17 TcP
4 10.169750 2.164 61.8.0.17 HTTP
5 [0.325404 rat 10.0.52.164 TCP
6 0.327342 .17 10.0.52.164 TCP
7 J0.335186 e 10.0.52.164 TCP
8 10.335492 .52.164 61.8.0.17 TCP
9 [0.335607 2,164 61.8.0.17 TCP
10 | 0.492885 7 10.0.52.164 TCP
11 §0.493174 2,164 61.8.0,17 TcP
12 | 0.498617 17 10.0.52.164 TCP
13 §0.498791 52,164 61,8.0.17 TcP
14 §0.505104 10.0.52.164 TCP
15 §0.505252 Z 1.54 61.8.0.17 TCP
16 J10.676139 10.0.52.164 TCP
17 | 0.676419 2 154 61.8.0.17 TCP
18 §0.682237 10.0.52.164 TCP
19 2.164 61.8.0.17 Tce

0.682305

(© 1] Fie "Chtraces-peapngsethtp-downdond-bad peapny 5. Packet= 7155 Dk

Figure 112. The default time setting is Seconds since Beginning of Capture [http-download-bad.pcapng]

Seconds since Previous Captured Packet

This setting is often called the delta time setting and measures the time from the end of one packet to the end
of the next packet for all captured packets. If a display filter is set and a packet is not displayed, its timestamp
is still calculated and shown on packets that are displayed.

Seconds since Previous Displayed Packet
Seconds since Previous Displayed Packet only counts the delta time value from the end of one displayed packet

to the next displayed packet.

If you are filtering on a conversation in the trace file, apply this Time column setting to examine the delta time
between packets in the conversation only.

Figure 113 compares the Time column values for Seconds since Previous Captured Packet and Seconds since
Previous Displayed Packet. Packets 3, 5 and 6 have been filtered out. For simplicity sake, we only used
millisecond-level time stamping.

Seconds Since Previous...

Displayed Packet

1 0.000000 0.000000
2 0.001000 0.001000

4 0.002000 0.015000

7 0.018000 0.058000
8 0.005000 0.005000

Figure 113. Comparing Previous Packet and Displayed Packet timestamps

UTC Date and Time of Day/UTC Time of Day Settings
The UTC Date and Time of Day and UTC Time of Day options display the trace file time based on UTC time,
not the local time.

Deal with Timestamp Accuracy and Resolution Issues

As discussed earlier, Wireshark does not create the packet timestamps. Timestamp accuracy may vary from
one Wireshark system to another. The Wireshark documentation makes special reference to USB adapters and
the "bad timestamp accuracy" they offer. Those timestamps are passed to the operating system kernel which
in turn is passed to the libpcap/WinPcap library.

Wireshark’s libpcap/WinPcap capture libraries support microsecond resolution which is typically adequate. A
specialized adapter/driver is required to support capture with nanosecond time resolution. If you open a trace
file captured with another network analyzer tool, you may find that the resolution is set to milliseconds and
contains values after the decimal such as .342000, .542000, and .893000. There is nothing you can do to
enhance the timestamp on these existing trace files.

Figure 114 shows the interpretation of Wireshark’s timestamp value down to the nanosecond.

seconds microseconds

32.130943090

milliseconds nanoseconds

Figure 114. Timestamp resolution

Send Trace Files Across Time Zones

If you regularly travel, enable Network Time Protocol (NTP) to ensure your system has the proper time. You
will still need to adjust the time zone manually.

The Date and Time of Day and Time of Day values may not be an issue if you are only focused on the time
between packets (Seconds since Previous Displayed Packet) or the comparative time between non-contiguous
packets in a trace file. For example, if you are analyzing the response time to HTTP GET requests, you can
simply use the Seconds since Previous Displayed Packet setting.

If, however, you are interested in the exact date/time that a packet was captured and you send this trace file
off to someone in another time zone, the trace file will have a different date/time value for the recipient.
Remember—the pcap and pcap-ng file formats contains a record header for each packet that defines the
difference between the local time and January 1, 1970 00:00:00 UTC. This value will be based on the time
setting of the system that captured the trace file.

A trace file captured on a host in London, England will contain the GMT/UTC differential value of the capturing
Wireshark system—GMT/UTC-0. When that user in London opens the trace file, the timestamp is set at
10:04am.

When the same trace file is emailed to someone on the west coast of the United States (Pacific Standard
Time), the file still contains the GMT/UTC-0 value even though the user in the US is on GMT/UTC-8. When that
user opens the trace file, the timestamp is seen as 2:04am as that system’s GMT/UTC offset is quite different.

If you need to know the actual time that a packet was captured, you need to allow for the different time zone
values.

o

. A
b
{ _n =
’
uTC-8 uTCc-0 ,/ o
Local Timestamp | | Local Timestamp L -
02:04am 10:04am
— N
L "

Figure 115. When trace files are sent across time zones

Identify Delays with Time Values

To isolate slow performance caused by high latency, set the Time column value to Seconds since Previous
Displayed Packet using View | Time Display Format | Seconds since Previous Displayed Packet.
Wireshark retains this time setting in the preferences file.

You can sort the Time column to identify packets that have a large delay between them.

In Figure 116, the Time column is set to Seconds since Beginning of Capture. We have added another column
for the delta time setting by expanding the Frame section of a packet, right clicking on the Time delta from
previous displayed frame line and selecting Apply As Column. We have clicked twice on the new delta
Time column heading to sort from highest to lowest in delta times. At the top of the sorted packet list we see
large delays between displayed packets.

The trace file contains a single file download process. In the midst of the file download process, delta times
jumped to over 16 seconds, 8 seconds, 4 seconds, 2 seconds and 1 second. It appears the performance issue
occurs around the packet range 367-375.

W e s ey

Fle Edit Wiew Go Capture Anshze Sestistics Telephor
BEseN @ADL
Filter:

sion.. Cless Apply Save

o, Time Time defta from previous dispisyedframe Destination Protecar
375 35.9403 16. 074234000 10.0.52.164 TCP

379 36.336561 0.279305000 ! e P b Continual
385 36.606264 0.257458000 ? b Continuat
7153123.211778 _0.247708000 ¢t 3 Continuat

| Frame 375: 60 bytes on wire (480 bits). 60 bytes captured (480 bits) on interface (-
rface id: 0

Arrival Time: Nov 2, 2005 20:02:34.027304000 Pacific Daylight Time
(i ift for this packet: 0.000000000 seconds]

1130986954.027 304000 seconds
from previous captured frame: 16.074234000 seconds]
ol _preé 16074234000 s&conds

5.07: B
.940370000 seconds]

erence or first frame:

+ 375
n 60 bytes (480 bits)

... [Packetss 195 Marked: 0 Lead . | Prafife: Defauit

Figure 116. Sort the Time column after setting it to display delta times [http-download-bad.pcapng]

Sorting the trace file by the number column enables us to look sequentially at the traffic surrounding large
gaps in time to see what lead up to the problem.

You can right click a column heading to hide or display columns.

Create Additional Time Columns
If you want to view two or more Time columns in your Packet List pane, use Edit | Preferences to add a
predefined Time column value or expand the Frame header, right click on a time field and select Apply As
Column. Alternately, select Edit | Preferences | Columns | Add and select one of the following time-related
field types:
« Absolute date and time—based on the date and time of the capturing host (this is the same as the Date
and Time of Day setting)
» Absolute time—based on the time of the capturing host (this is the same as the Time of Day setting)
 Delta time (conversation)—time from the end of one packet to the end of the next packet in a conversation
 Delta time displayed—time from the end of one packet to the end of the next packet of displayed packets
only (this is the same as Seconds Since Previous Displayed Packet)

 Relative time—time from the first packet in the trace file (this is the same as the Seconds Since Beginning
of Capture setting)

 Relative time (conversation)—time from the first packet in the trace file for the conversation only

+ Time (format as specified)—this setting displays the value set using View | Time Display Format

Using two Time columns you can easily compare the arrival packet time (Time since Beginning of Capture) to
the delta time (Time since Previous Displayed Packet).

Measure Packet Arrival Times with a Time Reference

Set a time reference and use Seconds since Beginning of Capture when you need to determine the time from
the end of one packet to the end of another packet further down in the trace file. For example, if you want to
find the time between a DNS query for www.aol.com and the final packet sent when the page is loaded, set
the DNS query with a time reference and scroll down to the final packet. The time shown on the final packet
sent indicates the entire load time including the DNS lookup process.

To set the time reference, right click on a packet and choose Set Time Reference (toggle). The time
reference packet is temporarily given a timestamp of 00:00:00 in the trace file (denoted by REF in the Time
column). The arrival time of all future packets is based on the arrival of the previous time reference packet.
You can set more than one time reference packet in a trace file.

In Figure 117 we have set the time reference on packet 363 of http-download-bad.pcapng. This is the last

packet containing data before a zero window condition occurred. Scrolling down to packet 379, when data
transfer resumes, we can see the entire delay time was 32.661522 seconds. For more information on Zero

Window conditions, refer to Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic.

e =
=

dow Update] ads
54 [TCP dow Update] ads
Bl or

1514 Continuation or non-|
54 ads > hrep [ACK] Se

1514 Cont
Erass

Figure 117. Using a Time Reference to sum total delay [http-download-bad.pcapng]

Identify Client, Server and Path Delays

Figure 118 shows a TCP connection set up (three-way handshake in packets 1-3), an HTTP GET request
(packet 4), a TCP ACK (packet 5) and a server responding with HTTP data (packet 6). You can use the packets
in an HTTP connection setup to identify wire latency and processor latency. In this example, we use http-
download-bad.pcapng again.

“Handshakes Provide a Nice Snapshot of Latency

You can look at the SYN and SYN/ACK of a TCP connection establishment process to determine round trip
latency time at that moment. Keep in mind that this measurement only provides a snapshot of round trip
latency between the hosts. Just a few seconds later the round trip latency may be entirely different. Refer to
the Tip in the section entitled Graph Round Trip Time to learn how to build a graph of the average latency
time in a trace file.

= > http [SYN] 5eq=0 Win=b
517 10.0.52.164 ttp > ads [SYN, ACK] seq:
2,164 61.8.0.17 TCP 54 ads > http [ACK] Seq=1 Ack=l Wi
2.164 61.8.0.17 HTTP 499 GET /openoffice/stable/2.0.0/00
7 10.0.52.164 TCP 60 http > ads [ACK] Seq=l Ack=446
.17 10.0.52.164 HTTP 383 WTTR/L.1 200 OK
7 10.0.52.164 HTTP 1514 Continuation or non-HTTP traffi
TCP 54 ads > http [ACK] Seq=446 Ack=17
TP 54 (Tce window Update] ads > http
fe4 wWTTP 1514 Continuation or non-HITP traffi
TCP 54 ads > http [ACK] Seq=446 Ack=32
A64 HTTP 1514 Continuation or non-WTTP traffi
TOTSETE 1 TCP 54 ads > http [ACK] Seq=446 Ack=47
14 0.006313 61.5.0.17 10.0.52.164 KWTTP 1514 Continuation or non-HTTP traffi
15 0.000148 10.0.52.164 61.8.0.17 TCP 54 ads > http [ACK] Seq=446 Ack=61
16 0.170887 61.8.0.17 10.0.52.164 HWTTP 1514 Continuation or non-HTTP traffi
17 0.000280 10.0.52.164 61.8.0.17 TP 54 ads > http [ACK] Seq=d46 Ack=76
18 0.005818 61.8.0.17 10.0.52.164 HWTTP 1514 continuation or
19 0.000068 10.0.52.164 61.8.0.17 TCP 54 ACK
61.8.0.17 10.0.52.164 KWTTP 1514 ¢
21 0.000043 10.0.52.164 61.8.0.17 Tcp 54
22 0.005949 61.8.0.17 10.0.52.164 HTTP 1514
23 0.000047 10.0.52.164 61.8.0.17 TCP 54 &
s A &1 8 A7 an A Ea tes wree asva

TP traffi
446 Ack=90

The Time column is set to Y
Seconds Since Previous
Displayed Packet

© ¥ FieCA prgsctitp-downd Packets 7195 Dis Profie- Defauh

Figure 118. Evaluating latency with the Time column set to Seconds Since Previous Displayed Packet [http-download-bad.pcapng]

We can use this short section of the communications to identify three types of latency between the client and
server: end-to-end path delays, slow server responses and slow clients.

Calculate End-to-End Path Delays

In Figure 118, Wireshark has been placed close to the client. The time between the initial TCP SYN (packet 1)
and SYN/ACK (packet 2) packets indicate the round trip path latency time from the capture point. High latency
times along a path should be evident by looking at the first two packets of the TCP handshake.

In this example, the Time column has been set at Seconds since Previous Displayed Packet. The latency
time between the SYN and SYN/ACK packet is over 167 milliseconds (.167521 seconds). We next examine the
time between the GET request (4) and the ACK in response (packet 5). The round trip latency time is over 155
milliseconds (.155654 seconds).

High latency along a path can be caused by interconnecting devices that make forwarding decisions on the
packets, slow links along a path, the distance between end devices or other factors.

Locate Slow Server Responses
Examine the time between the server’'s ACK (packet 5) and the actual data packet (6) to identify potential
server processor latency problems.

For example, in http-slowboat.pcapng (shown in Figure 119) we can see approximately 37ms response (ACK in
packet 9) to a GET request from the client. Another four seconds lapse before the data transfer begins (packet
10).

Servers may be slow responding when they are overwhelmed with other requests or processes or are
underpowered (in processor capabilities or memory). Again, remember that this is simply a snapshot.
Additional communications should be examined to verify that high server processor latency times are the
problem.

Spot Overloaded Clients

Client latency issues are evident when a large delay occurs before a client makes a request for a service. For
example, if there was a large delay between the ACK (packet 3) and GET Request (packet 4), the client is
injecting latency into the communications.

Clients may be slow making the next request in a communication if the client is overloaded. This problem may
be due to problems such as insufficient processing power, not enough memory available, or slow disk
read/write operations, etc.

View a Summary of Traffic Rates, Packet Sizes and
Overall Bytes Transferred

View Statistics | Summary for basic information about the saved or unsaved trace file. Summary statistics
includes file format information, file length, time elapsed, number of packets, average packets per second,
average packet size, total bytes, average bytes per second and average megabits per second.The summary
information is particularly valuable when comparing proper network performance with problematic network
performance.

L p— i
Ele Edit Wwew Go Capture Anahze Sutistics Telephory Took Jnternals Help

LR LR Bx@a qaessaeFi BEaqan #0®Ex B

Fater: The trace file was taken close o the) Expresien.. Clesr g

o client. Based on the TCP handshake Ry, o

1 0.000000 0 process, the roundtrip latency time is T Standard query 0x427b A waw, pc
12 approximately 37ms Standard query response Ox427b
13 0.000468 TTIUTETET TS TR NS Standard query 0xe370 AAAA W
4 0.131600 €76.182 24.6.173.220 DNs 133 Standard query response Oxe370
5 0.000904 6.173.220 74.85.18.172 TCP 66 61520 > http [SYN] Seq=0 Win=81
6 0.037410 #74.85.18.172 24.6.173.220 TCP 66 http > 61520 [SYN, ACK] Seq=0 A
7 0.000113 24.6.173.220 74.85.18.172 TCP 54 61520 > http [ACK] Seq=1 Ack=1
8 0.000439 24.6.173.220 74.85.18.172 WTTP 713 GET /home WTTP/1.1

9 0.037502 74.85.18.172 24.6.173.220 TCP http > 61520 [ACK] Seq=1 Ack=66

60
10 4.433878 \\74.85.18.172 24.6.173.220 WTTP 1514 WTTP/L.1 200 OK (text/html)

11 0.008362 1514 Continuation or non-HTTP traffi
12 0.000275 54 61520 > http [ACK] Seq-660 Ack=
13 0.006031 80 standard query Oxcfbs A pcapr.
14 0.001152

83 Standard query 0x4658 A jouery

1S 0.002614 84 standard query Ox7S5ce A jquery
16 0.008231 The ACK roundrip s 30 standard query response Oxcfb6
17 0.000590 acceplable (37ms), bu el 1S 80 Standard query 0x2flc AAAA pca
18 0.012317 1134 Standard query response Ox75ce

slow sending the
_ = 84 standard query 0x3330 AAMA jqu
68,87, 76.102 20.6.179.220 D6 133 Standard query response 0x4658
21 0.000434 24.6.173.220 6B.87.76.182 DNS 83 Standard query 0x0715 AAAA jqu
22 0.003220 68.87.76.182 24.6.173.220 DNS 164 standard query response Ox2flc
23 0.000866 24.6.173.220 72.14.213.82 TCP 66 61529 > http [SYN] Seq=0 Win=81 _
£1230 . hesn TPV Eamn Win_o1

a3 nlAnAiEA a4 £ 173 338 73 14 313 83 wen &E

© * FicC Marked Losd time: #0045 | Profile: Oefault

Figure 119. The server response time is unacceptable [http-slowboat.pcapng]

Compare Up to Three Traffic Types in a Single Summary Window
You can compare three traffic types in one Summary window:

 All captured packets in the trace file

« All displayed packets in the trace file

« All marked packets in the trace file

To compare three traffic types, as shown in Figure 120, follow these simple steps:

1. Open http-espn2012.pcapng. Enter dns as your display filter. Select Edit | Mark All Displayed Packets.
All the DNS traffic should be displayed in a black background and white foreground.

2. Apply a new display filter for tcp.analysis.flags && !tcp.analysis.window_update. Do not clear this
display filter.

3. Select Statistics | Summary to view the Captured, Displayed and Marked columns at the bottom of the
Summary window.

I Wiresharkc Somemary. o B e
e
Hame: Citmaces peapngsetihetp-espndil2pegng
Length: 60259 bytes
Forma Weshar - peapng
Encapsulation: Ethernet

Trace file comments can be
Time ‘acdded 1o pcapng files and
st packet: @200 gispiaved inthe Statistics |
Lot pucinet 120807 Summary window
flapred ooo1e

Ignored packets:

Tratc

g [

Figure 120. The Summary window can be used to compare three sets of data [http-espn2012.pcapng]

Compare Summary Information for Two or More Trace Files

If you have created a baseline of network communications when performance was acceptable, you can use the
summary window to compare basic statistics of your baseline traffic against the statistics of a current capture
taken when performance was not acceptable. For more information on the baselines you should create, refer
to Chapter 28: Baseline "Normal" Traffic Patterns.

Figure 121 shows two summaries side-by-side. In this case we launched two instances of Wireshark, loaded a
separate trace file in each instance, and opened the summary window for each of the trace files.

Comparing the two summaries side-by-side, the trace file showing the slower download process has a much
lower packet per second rate and average megabits per second rate than the trace file showing the faster
download process.

To enhance these Summary views further, Wireshark allows you to filter on a humber of values. In Figure 122
both trace files are filtered on tcp.time_delta > .500 which displays all delay spots in the trace files.

e

Figure 121. Comparing summaries in two instances of Wireshark [http-download-bad.pcapng and http-download-good.pcapng]

It is also possible to apply a filter for tcp.analysis.flags && !tcp.analysis.window_update and then Mark
All Displayed Packets. The marked column in the Summary window would show the number of TCP analysis
events in each trace file. For more information on display filtering, refer to Chapter 9: Create and Apply Displ
Filters.

Elapsedt 0002

http-download-good.pcapng
the trace file, we enabled the TCP
ilate Conversation Time

 peapn:
Capture comments
Hiene]
To look for TGP delays in
prefere alculate Convers:
L ped P fier for tep. time

AP A A RPN e S ,K“ T W
105

Figure 122. Compare traces with a filter on delta time greater than one-half second [http-download-bad.pcapng and http-download-good.pcapng]

-

Case Study: Time Column Spots Delayed ACKs
Submitted by: Allen Gittelson

The customer complained that sending print jobs via 100 Mbps Ethernet to the print server was extremely
slow.

I obtained network traces of the communication between their Windows Line Printer (LPR) client and our Line
Printer Daemon (LPD) server and had my own baseline traces for comparison. It's usually very helpful to be
able to compare a baseline trace to the "bad" or "abnormal" trace. I've found many times that we can identify
at least where the differences between them start to occur and we can find the problem from analyzing the
differences.

The first thing | did was look through the trace to see if there were any problems that were immediately
obvious, and didn't see anything wrong in the LPR protocol (RFC 1179) communications. | normally have
Wireshark’s Time column configured to show the interpacket timing (Time since Previously Displayed Packet)—
this is an example of a case when this was extremely helpful.

When | looked through the trace and paid attention to the interpacket timing, | noticed there were frequent
and repeated ~200 ms (millisecond) gaps between packets in the LPR communication. Furthermore, there was
a fairly clear pattern. The frequency and volume of these delays were making the data transfers extremely
slow, because there were hundreds or thousands of these delays in a typical data transfer. The data transfer
speed was slower than a telephone dialup connection at the time (approximately 56 Kbps).

One very easy way to identify this specific problem in the future was to use the display filter of Wireshark to
view only the LPR traffic and then sort the trace by interpacket times with the largest times on top.

There were extremely frequent incidents of the ~200 ms delay times listed. Also, the Wireshark feature that is
helpful to identify this type of problem is the 10 Graphs feature. You can set the X Axis tick interval to 0.1
seconds and the Y Axis units to bytes/tick. In this situation, the 10 Graph would show lots of bursts of traffic
with delays between each burst set. | sometimes refer to this problem as the "hurry up and wait syndrome,"

because the data is transferred quickly with lots of time spent waiting for acknowledgements.

The customer believed that this problem was due to our specific device because they did not experience the
problem with their other devices.

The root cause of the problem was in the implementation of the LPR client by Microsoft and how it interacted
with the print server. | am unable to go into the details of how we worked around the problem for the
products we manufactured, but you can see what the Microsoft Knowledgebase has to say and recommend

regarding this type of problem at support.microsoft.com/kb/950326 and support.microsoft.com/kb/823764.

A workaround for this specific problem is to use other network printing protocols that are available such as
SMB, Port 9100/raw, etc.

Summary

Performance problems can be caused by delays along a path, delays at the server or even delays at the client.
You can change Wireshark’s default Time column setting or add more Time column settings (such as
tcp.time_delta) to help you measure the time between packets or from specific points (time references) in
the trace file. Setting the Time column to Seconds since Previously Displayed Packet helps identify gaps
between consecutive packets in a trace file.

Each trace file contains per-packet headers that include a main timestamp value based on the seconds since
January 1, 1970 00:00:00. Wireshark references these headers when displaying packet timestamps in the
Frame section of the Packet Details pane. When you open a trace file on hosts configured for different time
zones, the trace file timestamp values displayed will be different.

You can set a time reference in a trace file by right clicking on a packet in the Packet List pane and selecting
Set Time Reference (toggle). The Time column will then provide the time from the current packet to the
time reference packet.

You can use the TCP handshake to provide a snapshot of the round trip latency time between hosts. This is
only a snapshot, however, and round trip time can vary over time.

You can use the trace file summaries to compare basic information for trace files and even use a time filter to
identify how often large gaps in time are seen in a trace file.

Pcapng trace files can define time at the nanosecond level. You must have specialized hardware to capture at
this granular time.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com
You will use some of these trace files as you practice what you've learned in this chapter.

Measure Slow DNS Response Time

¢ Open dns-slow.pcapng. Select View | Time Display Format | Seconds since Previous Displayed
Packet.

« How much time elapsed between the first and second DNS query for www.ncmec.org? You should see
1.000620 seconds.

« How much time elapsed between the first and second DNS response for www.ncmec.org? Right click on the
first DNS response and set a time reference to measure this value. (By the time the second DNS response
arrived, the client had closed the listening port for the DNS response —that’s why the client sent an ICMP
Destination Unreachable/Port Unreachable response. For more information on analyzing ICMP traffic, refer

r 18: Analyze Intern ntrol M Pr | (ICMPv4/ICMPV6) Traffic. You should see
0.184489 seconds between the first and second DNS response packet.

+ How much time did it take for the server to answer the DNS query in packet 98? You should see .207250

seconds elapsed between the DNS query in packet 98 and the DNS response in packet 107.

Measure a High Latency Path

¢ Open http-download-good.pcapng. Reset the Time column to Seconds since Previous Displayed
Packet.[63] What is the latency time between the first and second packets of the TCP handshake (packets
1 and 2)? You should see 0.179989 seconds.

http://support.microsoft.com/kb/950326
http://support.microsoft.com/kb/823764
http://www.wiresharkbook.com/

« Sort the Time column. What is the largest time delay in the trace file? You should see 2.753091 seconds
is the largest time delay in the trace file.
¢ Sort by the Number (No.) column. What happened around the largest time delay in the trace file? You

should see a TCP window update process occurred at this time. Refer to Chapter 13: Use Wireshark’s Expert
System for more information on Window Update packets.

When you experience slow performance when web browsing, accessing a file server, sending or receiving
email, etc., capture your traffic and examine the Time column.

The following table provides a summary of the trace files we worked with in this section.

dns-slow.pcapng: Compare the delay between DNS queries and responses at the start of this trace. Is the
DNS response time better later in the trace?

http-download2011.pcapng: We are returning to the Open Office website to try downloading the
application again—this is what we did in http-download-bad.pcapng and http-download-good.pcapng. How did
we do this time? Be careful if you set the Time column to Seconds Since Previous Displayed Packet and sort to
identify the largest delays. You don't want to troubleshoot delays preceding FINs or RSTs.

http-download-bad.pcapng: There are some serious problems in this trace file. Don’t get stuck
troubleshooting the small issues. Set the Time column to Seconds Since Previous Displayed Packet and then
sort it. You can check out Chapter 13: Use Wireshark’s Expert System for information on some of the issues
causing those big delays.

http-download-good.pcapng: The users are relatively happy with the download time required to obtain the
OpenOffice binary depicted in this trace file. How long did the file transfer take? What is the average
bytes/second rate? Set the Time column to Seconds Since Previous Displayed Packet and then sort this column
to find the large gaps in time.

http-slowboat.pcapng: We're going to spend all day waiting for the downloads to complete if this keeps up.
This trace file demonstrates latency problems at the server. Check out the path latency first, then look at the
time between the server ACKing a request and actually sending the information.

Review Questions
Q7.1
How can the time setting be used to identify the cause of network performance problems?

Q7.2
You have opened a trace file sent to you from another company. The timestamp only shows millisecond
resolution. Why? Can you improve the timestamp resolution of the trace file?

Q7.3
You have opened a trace file that contains 5 separate conversations. How can Time Reference be used to
measure the time elapsed in one of the conversations?

Answers to Review Questions

Q7.1
How can the time setting be used to identify the cause of network performance problems?

A7.1

One way to identify network problems is to set the Time column to Seconds since Previously Displayed
Packet and look for large gaps in time in a conversation during what should be an automated streaming
process. For example, during a file transfer process the file should be transferred without large gaps in
time.

Q7.2
You have opened a trace file sent to you from another company. The timestamp only shows
millisecond resolution. Why? Can you improve the timestamp resolution of the trace file?

A7.2
Most likely the analyzer used to capture the trace file could not provide more precise timestamps. You
cannot alter the timestamp resolution of captured trace files.

Q7.3
You have opened a trace file that contains 5 separate conversations. How can Time Reference be
used to measure the time elapsed in one of the conversations?

A7.3

You could set a Time Reference on the first packet of the conversation you are interested in and scroll to
the end of the conversation. The Time column will indicate the time elapsed from the Time Reference
packet and the last packet of the conversation.

Alternately you could filter on the conversation of interest and then set the Time Reference on the first
packet. The last packet displayed indicates the time elapsed for the conversation.

Chapter 8
Interpret Basic Trace File Statistics

Launch Wireshark Statistics

Wireshark can display statistics for a number of network packet types and overall behavior. To view Wireshark
statistics, select Statistics on the menu. The key statistics include:
» Protocol hierarchies
Conversations and Endpoints
Address and Port Information
Packet Lengths
Multicast Stream
BOOTP-DHCP
Flow Graphs
WLAN Traffic

Identify Network Protocols and Applications

Select Statistics | Protocol Hierarchy to identify the protocols and applications in a trace file.

The protocol hierarchy statistics window displays the packet count, bytes count, megabits per second and
three end packets columns. The end packets column indicates the absolute number of packets, bytes and
megabits of a protocol or application where that protocol or application was the highest decoded protocol or
application. Figure 123 shows the protocol hierarchy information for http-espn2010.pcapng which depicts a
web browsing session to www.espn.com[64].

Il Wieeshark: Frotocol Hierarchy Statistcs 1

e
T
TCP Preference.
Alow subdissector to reassemble TCP stieams is
ENABLED

Hilp [_gione_

Figure 123. Protocol Hierarchy Statistics information on a web browsing session [http-espn2010.pcapng]

The protocols and application are categorized according to their protocol layer. Ninety-eight packets (1.45% of
all the traffic bytes) are UDP-based (DNS requests and responses) and 861 packets (98.55% of all the traffic)
are TCP-based.

There are 110 packets defined as HTTP. That matches the number of packets you would see if you apply a
display filter for http. If you scroll through the trace file, however, it appears that all the TCP traffic is HTTP
browsing traffic. Why the discrepancy?

It can be very disconcerting when you open a trace file that only contains a web browsing session and
Wireshark indicates that the HTTP traffic comprises less than one-half the traffic. TCP handshakes, ACKs,
connection termination packets and TCP segments of reassembled Physical Data Units (PDUs) do not count as
HTTP. You can apply a filter for tcp && 'http to see the packets that are not defined as HTTP. This explains
the large difference between the number of TCP packets and the number of HTTP packets.

You can right click on a row to apply or prepare a filter, find a packet or colorize a protocol or application.

Protocol Settings Can Affect Your Results

The results in Figure 124 do not show the true number of packets involved in the web page loading process.
To see a more accurate picture, disable Allow subdissector to reassemble TCP streams using Edit |
Preferences | TCP or right click on a TCP header in the Packet Details pane and select Protocol
Preferences.

Figure 124 shows how a TCP preference setting alters the results of the Protocol Hierarchy Statistics window.
With the Allow subdissector to reassemble TCP streams setting disabled, Wireshark defines the data
packets containing web page data as HTTP.

Only TCP handshake, ACK packets and connection termination packets are defined as just TCP (not HTTP).

Il Wreshan Protocsi Mersschy Statistes 1

Figure 124. Changing the TCP setting alters the Protocol Hierarchy Statistics results [http-espn2010.pcapng]

“Characterize All Protocols and Applications Used by a Host

Apply an IP address display filter before opening the Protocol Hierarchy Statistics window to view traffic
statistics for that host only. This is a great way to characterize all the protocols and applications that a host
uses. For example, if you want to know what protocols and applications are active while a host is idle (without
a user working on the system), filter on that host’s IP address and open the Protocol Hierarchy Statistics
window.

Examining the protocol hierarchy is a particularly important step when characterizing traffic to and from a host
that you suspect may be compromised. Look for unusual protocols or applications, such as Internet Relay Chat
(IRC), Trivial File Transfer Protocol (TFTP), Remote Procedure Call (RPC) or unrecognized applications.

Figure 125 shows the Protocol Hierarchy information for a breached host. This network does not typically
support Internet Relay Chat (IRC) or Trivial File Transfer Protocol (TFTP). At this point, you can right click on
one of the unusual protocols or applications listed to create a filter on that traffic to examine it further.

For more examples of analyzing compromised hosts, refer to Chapter 32: Analyze Suspect Traffic.
(=)

Tl Waeshar:Protoco Hierarchy Satstcs

{DCERPe)

&
i

EEEEREEEL

Look for inusual

Bl &

T

F

Figure 125. The protocol hierarchy displays some questionable traffic for this network [sec-clientdying.pcapng]

Identify the Most Active Conversations

A conversation is a pair of physical or logical entities communicating. Conversations can include just MAC layer
addresses (ARP conversations for example), network layer addresses (ICMP ping conversations for example),
port numbers (FTP conversations for example), etc.

Conversations are pairs of hosts communicating while an endpoint is a single side of a conversation. Note that
communications from a host to the broadcast address are listed as a conversation. Broadcast and multicast
addresses are listed as endpoints in the endpoint window, even though there is no such host as a "broadcast"
host or a "multicast" host.
=
B e——

Client 10.1.2.2:1024 Server10.1.2.76:80
Host A HostB

Conversations: (1) 10.1.2.2:1024 (HostA) 4ssh 10.1.2.76:80 [Host B)
Endpoaints: (2) 10.1.2.2:1024
10.1.2.76:80

Figure 126. Comparing conversations with endpoints

Select Statistics | Conversations to view the Conversations window. When working with a large trace file,
sorting on the bytes transferred between hosts enables you to detect the most active connections based on
packets, bytes, bits per second or total duration of conversation. Figure 127 shows a conversation list for TCP
connections. Notice that there is only one Ethernet conversation, but numerous IP, TCP and UDP conversations
that travel over that one Ethernet conversation.

In this example we have sorted on the bytes column to identify the most active conversation based on bytes
transferred between TCP hosts.

Il Converiations sec<hntdying xapng)

Py om = e P

Help Sory Follow Stream Glose.

Figure 127. Conversations define pairs of hosts that communicate with each other [sec-clientdying.pcapng]

List Endpoints and Map Them on the Earth

An endpoint is one side of a conversation—for example, an IP address and a port number used at that IP
address would be defined as an endpoint. Select Statistics | Endpoints to view the endpoints window.

In Figure 128 we opened a trace file containing packets from a web browsing session to www.yahoo.com using
Firefox and opened the endpoint window. Note that the endpoint window displays details regarding packets,
bytes, transmitted packets and bytes, received packets and bytes (as a destination address—there is no
guarantee that the target ever received the packets).

If you downloaded the GeolP database (from www.maxmind.com) and pointed Wireshark to your database
directory for GeolP services in Edit | Preferences | Name Resolution, you may map some or all of the
hosts listed under the IPv4 tab in the endpoints window.[65]

8 Erdpomnts: up-yahos-viafeelocpeap \\ [P—Ey
3\
\

Ethernet: 3

TN A20HHT
WIS 105174500

-B636002
122057404

=

— ! -- —

Figure 128. Examining IP address endpoints [http-yahoo-viafirefox.pcapng]

http://www.maxmind.com/

Select the IPv4 tab in the Endpoints window to be able to use the Map button. Wireshark 1.8 and later
supports IPv4 and IPv6 address mapping.

Spot Suspicious Targets with GeolP
Mapping your traffic can help you identify unusual target systems anywhere in the world.

In Figure 129 we have mapped the IPv4 addresses seen in an IPv4/IPv6 test at www.wireshark.org by clicking
the IPv6 image in the top right corner of the website. The trace file is called http-wireshark-ipv6.pcapng. In
the Endpoints window we clicked the IPv4 tab and clicked the Map button. The GeolP feature launches an
OpenStreetMap view of the world, plotting our IP addresses with red flags based on the GeolP information
detected for each address.

As of Wireshark 1.8, GeolP IPv6 databases are supported. Click on the 1Pv6 tab in the Endpoints window to
plot IPv6 addresses.

For step-by-step instructions to set up GeolP, see Plot IP Addr n a World Map with IP.

88.250.231.17

PO —r—

Figure 129. GeolP can be run from the IPv4 or IPv6 tab of the endpoints window[http-wireshark-ipv6.pcapng]

List Conversations or Endpoints for Specific Traffic Types

In addition to using Statistics | Conversations and Statistics | Endpoints, you can also click Statistics |
Conversation List or Statistics | Endpoints List to view fifteen predefined conversation and endpoint
criteria including Ethernet, Fibre Channel, FDDI, IPX, IPv4, IPv6, JXTA, NCP, RSVP, SCTP, TCP, Token Ring,
UDP, USB and WLAN.

If GeolP is configured, the Endpoints Lists window displays the GeolP location information and includes a Map
button to launch the OpenStreetMap view.

Evaluate Packet Lengths

Select Statistics | Packet Lengths when baselining or analyzing a network application. You can apply a
filter to focus on specific addresses, protocol, field values or other criteria. Smaller packet sizes offer less-
efficient file transfers and higher protocol overhead costs. For example, consider an application used to
transfer a 500,000 byte file over TCP.

The most common network file transfer methods use TCP/IP communications over Ethernet. Ethernet 802.3
networks support 1518-byte packet sizes and a 1500-byte Maximum Transmission Unit (MTU) as shown in
Figure 130.

MAC Header | 14 bytes (Etheret Il

IP Header 20 bytes (IPvd)

TCP Header 20 bytes (without options)

MTU 1500bytes

Data TCP Segment (1860 bytes)

Packet 1518 bytes

MAC FCS 4 bytes

Figure 130. Standard TCP packet structure

The MAC, IP and TCP header overhead shown in Figure 130 does not factor in the unseen overhead elements
such as the preamble and interpacket gap (if required).

When using a standard Ethernet Il packet structure that can be 1,518 bytes and removing the overhead of the
Ethernet header, IP header, TCP header and MAC Frame Check Sequence (FCS) shown in Figure 130, you are
left with 1,460 bytes available to handle TCP segment data. Based on an MTU of 1500 bytes, the Maximum

http://www.wireshark.org/

Segment Size (MSS) value would be 1,460.

Some basic math can illustrate the problem of using small packet sizes to transfer large amounts of data
across the network.

« If your application transfers the data using the full 1,460 byte available MSS size in all packets, it would
take 343 packets to transfer 500,000 bytes of data. This would require 19,894 bytes (58 bytes overhead
times 343 packets) for header overhead.

« If your application transfers the data sending only 320 bytes in a packet, it would take 1,563 packets to
transfer 500,000 bytes of data. This would require 90,654 bytes (58 bytes overhead times 1,563 packets)
for header overhead. This is certainly not as efficient for data transfer.

“Database Communications are Weird Interesting!

Database communications often use small packet sizes as they are transferring records and field values, not
entire files. It is not the most efficient use of bandwidth, but it is not uncommon. Be sure to baseline your
database traffic when users are not complaining. This provides a blueprint of how your database looks on a
good day.

File transfer applications should be examined with particular attention focused on their packet lengths. If the
application is transferring packets that are smaller than the maximum MTU allowed on the link, the reason may
be:

« The application is transferring files that are smaller than the MTU—examine the file requests and file
transfers to see if the application is indeed transferring small file sizes. For example, when you pick up or
send email you may see lots of small packets as most emails are small and each email is typically treated as
an individual file.

¢ A device along the path is limiting the MTU size. Transmit various sizes of ping packets or other packets
along the path to determine if all traffic is throttled to a smaller MTU size. Consider that the MTU reduction
may pertain to one particular port value or source/destination pair. Look for ICMP Type 3, Code 4
(Destination Unreachable, Fragmentation Needed but the Don’t Fragment Bit is Set) packets. For more
information on ICMP, refer to Chapter 18: Analyze Internet Control Message Protocol (ICMPv4/ICMPV6)
Traffic.

» The application was not developed to take advantage of maximum MTU sizes as shown in the Packet
Lengths window in Figure 131. Compare other applications transferring files to and from the target. For
example, try FTP or HTTP to test file transfers.

Figure 131 shows the Packet Lengths window of a trace file that contains small packets during a file transfer
process. This application does not perform well as a file transfer method.

[l Packet Lengths [P

015 12630 LI4351 9086%
160-319 103 0000055 0.08%
-9 B 0000156 002%
#0127 0 0000000 000%
12802559 O 0000000 000%
20519 0 0000000 000%

Figure 131. The majority of this traffic uses minimal size packets; this is not ideal for transferring large files across the network

List All IPv4/1Pv6 Addresses in the Traffic

Select Statistics | IP Addresses to list all the IP addresses seen in the trace file as shown in Figure 132.
Wireshark prompts you for a display filter in case you want to focus on a specific address, subnet, protocol,
application or other criteria. If you already have a display filter applied to the trace file, Wireshark includes the
display filter when prompting you to create the statistics.

The IP Addresses statistics window includes both source and destination IP addresses seen. You might find the
Conversations or Endpoints window is more useful.

“ARP Packets Do Not Match IP Address Filters
If you apply an arp display filter when opening the IP Addresses statistic, no packets will appear. Although ARP

packets have an IP address in the packet, they do not have an IP header. Therefore, IP address filters do not
work on ARP packets.

[1P Addresses Tesan o[

Topic / tem Count Rate (ms) Percent
1P Addresses M1 0012656

UEIT3IN 3 MM KTIN
67228110220 7 0001002 792%
T415224.72 3 0000111 088%
17437113144 25 000949 B551%
2002:1806:addc::1808:addc 11 0.000408 323%
BOTONNMNEIAN 11 00006 3%
68.87.76.182 4 0000148 117%
8825023117 1 om0y 029%

e]

Figure 132. The IP address window shows all IPv4 or IPv6 addresses seen in the trace file [http-wireshark-ipv6.pcapng]

List All Destinations in the Traffic

Select Statistics | IP Destinations to examine each destination IP address as well as the destination
transport (UDP or TCP) and destination port number. You might find the Conversations or Endpoints window is
more useful.

Wireshark prompts you for a display filter in case you want to focus on a specific address, subnet, protocol,
application or other criteria. If you already have a display filter applied to the trace file, Wireshark includes the
display filter when prompting you to create the statistics.

For example, if you want to see all the hosts who have received a SYN+ACK (indicating a previous TCP
connection attempt was successful), enter the display filter tcp.flags==0x12 before clicking Create Stat. (This
looks for all packets with both SYN and ACK bits set.) This can also be set as tcp.flags==0x012 if you are
interested in the entire 12 bit flag area.

For more information on creating display filters for various TCP flags, refer to Chapter 9: Create and Apply
Display Filters.

List UDP and TCP Usage

Select Statistics | IP Protocol Types to determine how much TCP or UDP traffic is in the trace. Only
packets that contain UDP or TCP headers are counted in this statistic. Wireshark prompts you for a display
filter in case you want to focus on a specific address, subnet, application or other criteria. If you already have
a display filter applied to the trace file, Wireshark includes the display filter when prompting you to create the
statistics.

This window only shows UDP and TCP ports that are used. If you have ICMP packets in your trace file (or
other packets that do not use a UDP or TCP header) this window will include a count for None. Again, you
might find the Conversations or Endpoints window is more useful.

Analyze UDP Multicast Streams

Wireshark automatically detects multicast streams and provides basic packet rate statistics and bandwidth
usage details.

One example of multicast traffic is generated by Open Shortest Path First (OSPF) routers. OSPF is a link state
routing protocol used to support large, heterogeneous IP networks. OSPF routers send multicast
advertisements.

Another example is Internet Group Management Protocol (IGMP) multicast traffic. IGMP is used by hosts to
dynamically join or leave multicast groups. Routers that are configured to support IGMP only forward packets
down links that support a multicast member, as learned through IGMP.

Applications can also use multicast to transmit data to multiple hosts through a single datastream. In Figure
133 we examine the information for a multicast video stream.

@ up- , 82 peapng - UDP C=SEE
|
Detected 1 Multicast streams, Average B 104 Mbps Max Bw: 113 Mbps Max burst: 121/ 100ms Max buffer: 10.1

SicPaddr 4 Srcpot € DtPPaddr 4 Dstport ¢ Packets ¢ Packets/s ¢ AvgBw ¢ MaxBw
192166102 104 23925501 B0 216 1108 /s 0AMbps 1IM

* Jormerstatream-queued? peapng - UDP Multicast Streams o |

Detected] Multicast streams, Average Bw: 104 Mbps Max Buz 11.3 Mbps Max burst: 121 /100ms. Max butfer: 101 KB

Nekets’s ¢ AwgBw € MaxBw 4 Mauxbusts 4 Busstalams 4 Maxbuffers ¢ Buffes slarms
| }s.; 104Mbps 113Mbps 121 /100ms 1 1U3IE 1

Select a stream with left mouse buttan

stint: 100 ms Burst alarm: 50 pps Buffer alarm: 10000 Bytes. Stream empty speed: 5000 Kbps Total empty speed: 100000 Kbps.

W Ve ,l

[setporameters | #repusciter Glose

Figure 133. UDP Multicast Streams statistics include burst information [udp-mcaststream-queued2.pcapng]

Select Statistics | UDP Multicast Streams to identify multicast source, destination and port information as
well as the packet rate and burst statistics (based on settable parameters as shown in Figure 134).

The burst measurement interval measures the number of multicast packets within the given time (defined in
milliseconds). Thresholds can be set to identify multicast traffic that falls outside a range of either a specific
number of packets or bytes within the burst measurement interval.

Rl Wireshork: Set pvamek s e x|

Buntmessurcment interval (ms) | 100
Buest alarm threshold fpackets) |50

Butfer alarm thieshold (bytes) 10000
Stream empty speed (kbit/s) 5000

Total empty speed (kbit/s) 100000

[Cancel |

Figure 134. Multicast burst statistics are based on settable parameters

Graph the Flow of Traffic

Select Statistics | Flow Graphs to view the traffic with source and destination addresses distributed across
columns as shown in Figure 135.

Flow graphs can be created based on all traffic, filtered traffic or just TCP flows. In Figure 135 we have
graphed a web browsing session to www.espn.com. At the start of the trace file http-espn2012.pcapng we see
the TCP handshake process and an HTTP GET request. The response indicates that there isn’'t anything at
WwWw.espn.com.

As the client receives a redirection— indicating that the main page of www.espn.com is at another location
(301 Moved Permanently)—the client performs another DNS query (at timestamp 0.105533) before the client
launches another TCP handshake process to another server (timestamp 0.168701).

Note that if you set your time column to Seconds Since Previous Displayed Packets, this setting will be
displayed in the Time column of the Flow Graph (this feature was enabled in Wireshark 1.8).

Take some time and compare this flow graph to the flow graphs from http-espn2007.pcapng, http-
espn2010.pcapng, and http-espn2011.pcapng. You can save your Flow Graphs in ASCII text format. This
format is not ideal, but it allows you to reformat and print out a full document depicting the flow of network
communications.

8 to-c5pn2012 pespng - Graph Analysis [, i

HIB2D 199183225
75757575 ST1NE1T6

Tene

0000
ans
ooisen
a0
oms
asise
61706
osem
o03m
oaoss5
o180
o107
a6nen
o670
015647
010615
vasms?

Figure 135. Flow graphs list sources and targets in columns [http-espn2012.pcapng]

Creating a Flow Graph of just TCP communications illustrates the TCP flags, sequence and acknowledgment
number information for the traffic. It really doesn’t provide a very complete picture of what is going on in a
trace file.

Y

Use Flow Graphs to Spot Web Browsing Issues
Creating Flow Graphs of web browsing sessions displays the number of sites you are redirected to for content
when accessing a site. For example, to load www.espn.com’s main web page, the Flow Graph indicates that a
client must connect to numerous web servers. If one of these other web servers responds slowly or with 404
errors, the user may complain about slow web browsing or state that part of the site does not load.

Gather Your HTTP Statistics

Select Statistics | HTTP to view load distribution, packet counter and request information. Wireshark
prompts you for a display filter in case you want to focus on a specific address, subnet other criteria. If you
already have a display filter applied to the trace file, Wireshark includes the display filter when prompting you
to create the statistics.

Load Distribution lists HTTP requests by host and server address. The Packet Counter information breaks down
the HTTP request types (such as GET and POST) with the HTTP response codes (such as 200, 403 or 404) as
shown in Figure 136. Finally, HTTP Requests lists out every target HTTP server and every file requested from
each server.

2 0TI B36%
0000000 0.00%
0000000 0.00%
o7 8%

Figure 136. The HTTP Packet Counter shows a 404 error [http-chappellu2011.pcapng]

Wireshark organizes the response packets according to the five numerical HTTP response code sets:
¢ 1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

Response codes beginning with any other value are broken (as noted by ???: broken in this statistic window).
HTTP statistics are covered in more detail in Ch r 23: Analyze Hypertext Transfer Pr | (HTTP) Traffic.

Examine All WLAN Statistics

Select Statistics | WLAN Traffic to list the BSSID, channels, SSID, packet percentages, management and
control packet types and protection mechanisms of the WLAN traffic as shown in Figure 137. We can see in
this figure that the trace file contains traffic from two different WLANs operating on channel 6. Over 90% of
WLAN traffic discovered is on the WLAN network named wlan01.

Chapter 26: Introduction to 802.11 (WLAN) Analysis covers the process of analyzing wireless network traffic.

[Wireshark: WLAN Traffic Statistcs: whan-ipad-start-sleep.pcapng (= 5

Metwork Overview

Over 90% of the traffic
is on wiang

IPvbmeast 0000:00:0 1557 % 0 n 0
IPGmeast 473387 [492% (] 3 o

) Name resohation Limi to display filter Gnly show eisting networks

He][com .|

Figure 137. The WLAN statistics window includes management and control frame information [wlan-ipad-start-sleep.pcapng]

Apply a display filter before opening the WLAN Statistics window (such as radiotap.channel . freq==2437 for
traffic arriving on Channel 6) to focus in on specific traffic.

In addition, you can choose to only show existing networks. When you enable this option, Wireshark will not
send Probe Requests to locate additional WLAN networks.

-

Cése Study: Application Analysis: Aptimize Website
Accelerator™

Wireshark offers an excellent open source solution for application testing. When vendors make grand claims of
performance improvements offered by their products, I, like many in this industry, am skeptical. | must
witness the improvements on my own turf at packet level. Wireshark provides insight into application behavior
in a visible format. If there are performance changes, | can see them clearly and make a definitive judgment
for or against an application’s deployment on a customer’s network.

Aptimize Website Accelerator (www.aptimize.com) claims to improve website performance without code
changes or extra hardware—a perfect application analysis subject for Wireshark.

Step 1: Set up the Test

My good friend, Mike lem, brought this case study to me—he informed me that Microsoft's SharePoint site had
the Aptimize Website Accelerator product loaded on it. Mike provided me with the URL parameters that allowed
me to access the site with and without Aptimize Website Accelerator enabled.

In order to capture only the traffic to and from the SharePoint site, | turned off all other applications that
generated traffic on my local testing machine. This included my virus detection, safe website surfing tool,
printer polling and background broadcasts. In addition, | created an exclusion filter to remove any extraneous
communications from view.

Refer to Chapter 9: Create and Apply Display Filters for details on creating exclusion filters for application
analysis.

Step 2: Running the Comparative Test

As Wireshark ran in the background, I entered the URL to access the SharePoint site without Aptimize
Website Accelerator enabled:

http://sharepoint._microsoft.com/?wax=0ff
From my perspective the page loaded as sluggishly as most pages | browse (including my own company
website). | stopped the capture after the page had completely loaded and Wireshark's packet counter stopped
incrementing. | saved the displayed packets in a trace file called aptimize-off.pcapng. (This file is named app-
aptimize-off.pcapng on the book website, www.wiresharkbook.com.)

Next, | cleared my browser cache, restarted my browser and used ipconfig /flushdns to clear my DNS
resolver cache. Clearing the browser cache is imperative—if the browser cache is not cleared the browser
sends IfModified-Since HTTP requests and may load pages from cache instead of loading the pages across the
network. Clearing DNS resolver cache is also a very important step in application analysis because DNS
performance problems can have a severe impact on website loading times.

Again | started capturing traffic with my exclusion display filter set. This time | entered the URL to access the

SharePoint site with Aptimize Website Accelerator enabled:
http://sharepoint._microsoft.com/?wax=on

I saved this new trace as aptimize-on.pcapng. (This file is named app-aptimize-on.pcapng and can be found in
the Download section on the book website, www.wiresharkbook.com.) Wireshark would show me exactly how
Aptimize Website Accelerator altered the traffic flow.

Step 3: Analyze the Results

My first step when analyzing "before and after" traffic is to run two instances of Wireshark and open the
Statistics | Summary windows side by side.

Regardless of how Aptimize Website Accelerator altered the behavior, the improvement was visible from my
user perspective and verified in the Summary window comparison, as shown in Figure 138.

| repeated the test numerous times for good measure. Each time, the Aptimize optimized download process

http://www.aptimize.com/
http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

showed an improvement in performance. The Summary window validated that Aptimize Website Accelerator
improved the site load time by over 22% and reduced the packet overhead by over 24%.

&

Figure 138. Performance before and after Aptimize Website Accelerator was enabled

[app-aptimize-off.pcapng and app-aptimize-on.pcapng]

What a dream! As | delved into the packets | could see exactly how Aptimize Website Accelerator dramatically
improved website loading times and significantly reduced overhead on the network.

Looking through the trace files, | noticed a remarkable difference in the number of HTTP GET requests when
the optimization was enabled—over 60% fewer GET requests on average requests. This has a great impact on
the load time. Rather than asking for and receiving small pieces of the page bit-by-bit, the browser asks for a
piece of the site (style sheets, graphics, etc.) and receives them in a stream.

The table below illustrates the numerous differences between the traffic before and after Aptimize Website
Accelerator was enabled.

Time to Load Page Plus Links (secs.)
Aptimize Off: 6.91

Aptimize On: 5.33

Difference: 22.9% faster launch

Packets to Load Page Plus Links
Aptimize Off: 2,180

Aptimize On:1,651

Difference: 24.3% fewer packets

Bytes to Load Page Plus Links
Aptimize Off: 1,779,036

Aptimize On:1,468,861
Difference: 17.44% fewer bytes

HTTP GET Requests

Aptimize Off: 90

Aptimize On:34

Difference: 62.22% fewer GETs

The two-minute video on Aptimize’s website (www.aptimize.com) offers an ideal analogy that explains why so
many sites load slowly. In addition, they have a clear list of the features offered by Aptimize Website
Accelerator. Using Wireshark | could witness the results of their optimization techniques including:
« Reduce HTTP Requests: This was verified in the trace file—from 90 HTTP GET requests down to 34 HTTP
GET.
o Compress page resources: This is evident when we examine the smaller total bytes required to load the site
—reduced from 2,180 packets to 1,651 packets.

When analyzing a web browsing session it is important to realize that loading a web page may require multiple
connections. Each connection should be analyzed—not just the connection required to load the default page.

Using Wireshark, | created an IP address filter to display traffic to and from the SharePoint site only
(ip.addr==207.46.105.139). Next, | opened the Statistics | Conversations window and clicked on the box Limit
to display filter. | dragged the Duration column over to place it next to the Bytes column for better readability.

As shown in Figure 139, the web browsing session required six separate HTTP connections to the SharePoint
site. Every connection required fewer packets, transferred fewer bytes and took less time when the Aptimize
Website Accelerator was enabled.

http://www.aptimize.com/

The average improvement in connection speed was 37% for the six connections. Note that the site loading
process made these connections concurrently. If they didn't, we would have seen a 24-second load without
Aptimize Website Accelerator enabled and a 15-second load time with it enabled. Thank goodness for
concurrent TCP connections.

Connection 1

Aptimize On: 4.8290
Aptimize Off: 3.7866
Results: 22% improvement

Connection 2

Aptimize On: 4.4863
Aptimize Off:3.2607
Results: 27% improvement

Connection 3

Aptimize On: 4.0549
Aptimize Off:1.9541
Results: 52% improvement

Connection 4

Aptimize On: 3.5741
Aptimize Off:2.183

Results: 39% improvement

Connection 5

Aptimize On: 3.5518
Aptimize Off:1.9237
Results: 46% improvement

Connection 6

Aptimize On: 3.5604
Aptimize Off:1.9742
Results: 45% improvement

Now before you go running off to get Aptimize Website Accelerator loaded on your web server, you need to
know this important fact:

If your site references third-party sites that are not optimized, your site visitor's performance may be
negatively impacted.

For example, many sites link to partner sites. When elements load from these partner sites, your visitor must
make separate TCP connections to those sites. I've used numerous sports reporting web sites as the perfect
example of "letting your friends drag you down". As part of your improvement plan, analyze all connections
your visitors establish when they visit your site. You can use the same steps shown in this case study and pay
particular attention to Statistics | Conversations.

Since performing this application analysis, | learned that Aptimize added extensibility so that Aptimize Website
Accelerator can cache these external scripts/images, etc. locally. This is a bonus for folks who link to third-
party websites to load their pages. | expect this should really help improve website loading time and | plan on
setting up a new application analysis lab test to check it out.

This Wireshark application analysis session proved definitively that the Aptimize Website Accelerator does
improve web browsing speed, decrease the packet overhead and reduce the overall traffic required to view a
website.

TCP Conversations - Filter: ip.addr==207.46 10513
Address A 4 [PortA 4 |AddressB_¢ [Port B ¢ [Packets 4 |Bytes ~ | Duration ¢ |Packe

@l cony r?;;apnme-crtmp
0*1‘—-- pannel | F001 | vk | 916 | x| xr |scre Teps | o
ts’

1921680115 37273 20746105130 80 825 738458 48290
1921680115 37272 20746105139 80 411 375384 44863
1921680115 37268 20746105139 80 341 289002 40549
1921680115 37260 20746105139 80 139 121498 35041
1921680115 37270 207.46.105130 &0 13 113750 35518
1921680115 37271 20746105139 80 146 91048 35604

W Conveqgotions: aptimize-on.pcap
0& e Chonnel | Fo0t | 1Pwt: 1| s |] 5 | #|rsve| Tep:s | e

TCP Conversations - Filter:ip.addr==207.46.105.13
Address A ¢ |Port A ¢ |AddressB ¢ [PortB ¢ [Packets -\s,u s | Duration 4 |Packe
1921680115 3791 20746105139 80 T80 766751 37866
1921680115 37282 20746105139 80 9 3138 32607
1921680115 3T 20746105130 80 144 174 19541
1921680115 37T 20746105139 80 @ W4 21830
1021680115 3788 207.46.105130 80 7 egs0 19237
1921680115 37280 207.46105139 80 a7 B3 19742

B e Ve Ve VIO

Figure 139. Comparing Duration for each of the connections to the SharePoint site [app-aptimize-off.pcapng and app-aptimize-on.pcapng]

As a site becomes more complex and requires more connections and more data transfer capabilities, the
advantages of using Aptimize Website Accelerator should also increase.

This was a dream project as it shows how easily you can use Wireshark to analyze a product to determine if it
offers benefits to your company.

-

Case Study: Finding VolP Quality Issues
Submitted by: Roy B.

I use Wireshark to identify voice quality issues of VolP calls over wired or wireless phones (like dual mode
phones).

Wireshark is set to capture packets from the subnet of the VolP phones or from the port of voice gateway.

I created an 1/0 graph using 2 filters:
« One filter for the outgoing traffic from the phone (using the phone MAC address or IP address)
« One filter for the incoming traffic to the phone (using the phone MAC address or IP address)

These VoIP phones are using the G.711 codec which sends traffic consistently at 50 packets per second in each
direction. If all goes well, this traffic should appear as a straight line on the 1/0 graph showing at 50 packets
per second on the Y axis.

If the line is not flat this means that there were voice quality issues.

In the 10 Graph shown you can see a trace from my Nokia dual mode phone communicating over the WLAN.
Wireshark is capturing from the LAN subnet of the wireless phones.

The darker line represents the traffic coming from the phone, the lighter line represents the traffic going to the
phone.

At around 2400 seconds (X axis), the darker line fluctuates—meaning that there are voice quality issues with
traffic from the phone.

I use this technique with trace files to try and correlate the problems with WLAN interference. I monitor WLAN
interference using a spectrum analyzer or through WLAN analysis.

This method is good for troubleshooting any constant traffic like voice, even if it is encrypted.

Summary

Wireshark’s statistics provide details on the protocols and applications seen in saved or unsaved traces
including the most active hosts or conversations, packet lengths, ports used and WLAN traffic.

In addition, you can graph the flow of traffic to analyze separate interwoven communications or spot
dependencies on other hosts.

You should take time to baseline network communications to ensure you can spot unusual traffic statistics.

Refer to Chapter 28: Baseline "Normal" Traffic Patterns for more information on the types of traffic that should

be baselined.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
Open the following trace files and answer the statistics questions below. You should be able to find the
answers to each of these questions by following the steps defined in this chapter. Refer to
www.wiresharkbook.com for additional information.

app-aptimize-off.pcapng: Which conversation is the most active (bytes)? How many UDP conversations are
in the trace file? How many HTTP redirections occurred? 192.168.0.115 connected to how many targets? What
was the average Mbits/second?

app-aptimize-on.pcapng: Compare these statistics from app-aptimize-on.pcapng and app-aptimize-on-
fromcache.pcapng to analyze the performance difference when you load a website from cache:

e HTTP Redirections

e Bytes

« Time from first to last packet

app-aptimize-on-fromcache.pcapng: Compare these statistics from app-aptimize-on.pcapng and app-
aptimize-on-fromcache.pcapng to analyze the performance difference when you load a website from cache:
e HTTP Redirections
o Bytes
¢ Time from first to last packet

arp-sweep.pcapng: This trace shows a classic ARP sweep as mentioned in Chapter 32: Analyze Suspect
Traffic. This ARP sweep isn't just one big nonstop sweep. What is the packet per second rate in this ARP
sweep? Does the ARP sweep run consistently at this rate or does the packet per second rate vary? Using a
Flow Graph, can you identify ARPs that are not part of the ARP sweep?

http-chappellu2011.pcapng: Pull the statistics on this trace file. How many connections were required? Are
there any HTTP error responses? What if you hit the same site today—do you see the same general traffic
pattern?

http-espn2007.pcapng: We know there are great HTTP statistics from this heavily linked website. Run a
Flow Graph to see the client bounce around from one site to another to load the main page.

http-espn2010.pcapng: Well? Did they clean up the site yet? Look at those statistics and the Flow Graph to
determine what might have changed. Did the site load faster?

http-espn2011.pcapng: Some of our packet counts are different simply because the client supports both
IPv4 and IPv6. Did the site have any HTTP errors? How many TCP connections were required to load this site?

http-espn2012.pcapng: How many TCP connections were required to load the site in 2012? Are there any
HTTP errors?

http-wireshark-ipv6.pcapng: This is the trace file we used in this chapter to run GeolP and determine we
have some communications with a host in Turkey. Set up GeolP on your system and check out the Endpoint
window—then do some mapping to test your settings. If you go to www.wireshark.org you'll see the result of
the IPv4/1Pv6 test in the upper right corner.

http-yahoo-viafirefox.pcapng: Pull up the Conversations window and check the TCP tab to see the number
of connections established. Are they all HTTP? What about the UDP tab—what type of traffic is listed there?

sec-clientdying.pcapng: We know this host is acting strangely. Check out the Conversation window and look

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/
http://www.wireshark.org/

for TCP conversations to see who this host is trying to talk to.

udp-mcaststream-queued2.pcapng: We can check out the multicast stream statistics using this trace file.
It's not a very lengthy one—look at the Summary to see the duration of the trace file.

Review Questions

Q8.1

How can you use the Protocol Hierarchy window to identify a breached host?

Q8.2

Your trace file contains over 100 TCP connections. How can you identify the most active (bytes/second) TCP
connections?

Q8.3
What is the purpose of GeolP?

Answers to Review Questions

Q8.1
How can you use the Protocol Hierarchy window to identify a breached host?

A8.1

After capturing traffic to and from the host, open the Protocol Hierarchy window to look for unusual
applications such as TFTP, IRC, etc. You can apply a display filter for the conversation from inside the
Protocol Hierarchy window and then follow the TCP or UDP stream to reassemble the communications and
identify commands or information exchanged.

Q8.2
Your trace file contains over 100 TCP connections. How can you identify the most active TCP
connection based on bytes per second?

A8.2

Open the Statistics | Conversations window and select the TCP tab. Sort the information by the Bytes
column. You can now right click and apply a filter based on the most active conversation for further
analysis.

Q8.3
What is the purpose of GeolP?

A8.3

GeolP maps IP addresses in the Endpoints window to an OpenStreetMap view of the world. This feature is
available if (a) Wireshark supports GeolP, (b) the MaxMind GeolP database files are loaded on the
Wireshark system and (c) Wireshark’s name resolution settings for GeolP are configured properly.

Chapter 9
Create and Apply Display Filters

Understand the Purpose of Display Filters

Display filters enable you to focus on specific packets based on a criteria you define. You can filter on traffic
that you want to see (inclusion filtering) or filter undesired traffic out of your view (exclusion filtering).

Display filters can be created using several techniques:
Type in the display filter (possibly using auto-complete)
Apply saved display filters

Use expressions

Rightclick filter

Apply conversation or endpoint filters

When you apply a display filter, the Status Bar indicates the total number of packets and the packets displayed,
as shown in Figure 140. In this example, the trace file contains 4900 packets, but only 180 packets are
displayed because they match our filter.

The Status Bar indicates there are

Figure 140. The Status Bar shows the displayed packet count after a display filter has been applied

Wireshark's display filters use a proprietary Wireshark filter format while capture filters use the Berkeley Packet
Filtering (BPF) format—they are not interchangeable. The BPF filter format is also used by tcpdump. In rare
instances, there just happen to be some capture and display filters that look the same. For example, the
capture and display filter syntax for TCP traffic is the same: tcp.

Wireshark includes a default set of display filters that are saved in a file called dfilters in the Global
Configurations directory. When you edit the default display filters, a new dfilters file is saved in the Personal
Configurations directory or in the active profile directory.

Display filters can be relatively simple. The filter field or protocol must be defined in lower case in most
situations[66]. You can use uppercase characters for the value portion of the filter as we will cover later in this
chapter.

The following are examples of very basic display filters.
tcp
ip (IPv4 traffic only)
ipv6
udp
icmp
bootp[67]
dhcpv6
arp
dns
nbns

Display filters can be created based on a packet characteristic (not an actual field) if desired. For example, the
following filters display packets that contain one of the TCP analysis flags packets and packets that have an
invalid IP header checksum. These are not actual fields in a TCP packet.

tcp.-analysis.flags
ip.checksum_bad

Using operators (see Combine Display Filters with Comparison Operators) you can create display filters based
on the contents of a field. The following list provides examples of display filters based on field values.

http.request.method=="GET"

tcp.-fFlags==0x20

tep.window_size < 1460

tcp.stream eq 1

icmp.type==

dns.gry.name=="www.wireshark.org"

Display filters can be quite complex and include numerous criteria that must be matched. The following are
some examples of display filters using multiple criteria:
« The following filter displays ARP requests except ARP requests from the MAC address 00:01:5¢:22:a5:82.
(arp.opcode==0x0001) && !'(arp.src.hw_mac==00:01:5c:22:a5:82)
» The following display filter shows any BOOTP/DHCP packets to or from 74.31.51.150 that lists 73.68.136.1
as the relay agent.
bootp.ip.relay==73.68.136.1 && bootp.ip.your==74.31.51.150
« The following filter displays packets that have the TCP ACK bit set but not packets that have the TCP SYN
bit set.
(tcp-flags.ack==1) && !(tcp.flags.syn==1)
« The following filter displays ICMP Destination Unreachable packets that indicate the host is unreachable or

the protocol is unreachable.
(icmp.type==3) && ((icmp.code==0x01) || (icmp.code==0x02))

There is another form of display filter—one that uses the offset and a value calculated from a specific point in
a packet. These types of display filters use the same format as offset capture filters proto[expr:size]. These

filters may not be used often, but knowing how to create one when you need it can save you loads of time.
eth.src[4:2]==22:1b

ip[14:2]==96:2c
These offset filters are discussed in Eilter on Specific Bytes in a Packet.

“Use Your Display Filters in Command Line Capture

If you know how to build display filters efficiently, those filters can be used with the —R parameter with Tshark
for command-line capture. You can even use Tshark to read an existing trace file, apply a display filter and
output to a new trace file using the —r, -R and —w parameters together. Using display filters with Tshark during
a live capture does not limit the packets you are capturing; it only limits the packets you see. Using these
display filters with Tshark on previously saved captures can allow you to create a subset of the original trace
file. For examples of using display filters with Tshark, refer to Tshark Examples.

Create Display Filters Using Auto-Complete

If you know the display filter syntax you want to use, you can type it directly into the display filter area.
Wireshark has an auto-complete feature that helps you create your filters. For example, if you type in tcp. (be
sure to include the period after tcp) as shown in Figure 141, Wireshark’s auto-complete feature lists possible
display filter values that could be created beginning with tcp.

Note that tcp without the period is a valid display filter (as noted by the green background), but tcp followed
by a period is not a valid display filter—you must either complete the filter by removing the period or add
remaining text to the display filter as shown in the drop down list. For more information on Wireshark’s validity
checks, refer to Avoi mmon Display Filter Mi

o< nessus pepng

Ele fdt Wiew Go Coptwe Anabge Sutisics Telepheny Teoh fntemals Help
Bdaea BXx@a AeraTi(E
Fite: tep.

T ICWP Address mask request
IcMP Information request
NS

TR T

standard query respol

Figure 141. Wireshark's auto-complete feature helps you create valid filters [sec-nessus.pcapng]

Apply Saved Display Filters
Click on the Filter button to the left of the display filter area to open the Display Filter window, shown in
Figure 142. When you create filters that you want to use again, save them using the display filters window.

To create and save a new display filter, click New then enter the filter name and filter string. Wireshark
supports error checking and auto-complete in the display filter area.

“How to Ensure Your Display Filter is Saved
If you do not see your filter listed in the display filters list, your filter cannot be saved. You must click New to
create a new filter. This is a common mistake people make when creating new display filters.

Figure 142. The Display Filter window

Use Expressions for Filter Assistance

In some cases you may want to make more complex filters, but you might not know the syntax. In addition,
you might not be aware of the fields available for a specific type of communication. The Expression button is
located to the right of the Display Filter field.

Expressions walk you through the filter creation process.

Some of the protocols and applications listed in the Filter Expression window include predefined values for
individual fields. The FTP expression detail for ftp.response.code provides an example of a fully-defined
expression as shown in Figure 143.

Expressions consist of field names, relations, values, predefined values (if available) and range. Selecting is

present builds a filter for the existence of the protocol, application or field. For example, selecting Mobile IP

as the field name and is present in the relation area creates a mip filter that just looks for all Mobile IP traffic.
: ==

[Gencel

Figure 143. Some expression fields have predefined values
The following list provides examples of display filters created with Expressions:

Filter: expert.severity==1536
Expression Path: Expert | Expert Severity | == | Warn

Filter: expert.message
Expression Path: Expert | Expert Message | is present

Filter: bootp.type==1

BOOTP or DHCP | bootp.type | == | Boot Request
Expression Path: Filter: dns.flags.opcode==1
DNS | dns.flags.opcode | == | Inverse Query

Make Display Filters Quickly Using RightClick Filtering
You can use rightclick filtering in the Packet List pane and the Packet Details pane. You cannot use this
technique in the Packet Bytes pane.

You can right click on the Packet List pane and prepare or apply a filter based on the column and row that you
right clicked on. You can also right click on a field or summary line in the Packet Details pane. Rather than type
out a field value, right click on the field of interest and select either Apply as Filter | Selected or Prepare a
Filter | Selected as shown in Figure 144.

[ho-espn2012 peapng Lo | B bt
Bl Edit Wiew Go Capture Anabhze Siatistics Telephony Tools Intemals Help

SEees BrRSE NewaTF

No. Time Sousce Destination Protocel Length info -
8 0.062371000 24.6.173.220 199.181.132.250 HTTP 603 GET / HTTP/1.1
9 0.103470000 199.181.132.250 24.6.173.220 HTTP 484 HTTP/1.1 301 Mo -

Hypertext Transter Protocol
GET / HTTP/L.INPNp

jpeg, application/xaml+xml, i

User-Agent: MoZ

G » 0; Windows NT 6.1; wWOW6d; Tris
Accept-Encoding: gzip

Prepare a Fiter gives
¥ou a chance to edit f
the display fiter first

Jousn.’ 70 70, 6c.08 oL L
1@ ¥ HTTP Requent Method (hetp.request m

Figure 144. Prepare a Filter does not apply the filter inmediately

Apply as Filter
Use Apply as Filter to apply the filter immediately. You can edit the filter after it has been applied or expand
the filter by using this technique and specifying one of the other filter options such as:

* Not Selected: (create an exclusion filter based on the selection)

¢ ... and Selected: (must match existing filter AND the selection)

... or Selected: (must match either existing filter OR the selection)

... and Not Selected: (must match existing filter AND NOT selection)

... or Not Selected: (must match either existing filter OR NOT selection)

Be careful—if you choose Apply as | Selected again or choose Apply as | Not Selected you will replace your
original filter with the current field name and value. These two options replace anything already shown in your
Display Filter window.

If you choose another option, an operator (&& or |] or = or 1) is placed after the existing filter portion and the
field and value selected will be appended to the existing filter. For more information on display filter operators,
refer to Combine Display Filters with i

For example, if you already have arp in your Display Filter window when you click on a source MAC address
and select ...and Not Selected, your filter would display all ARP packets except those with the MAC address
selected.

Prepare a Filter

Right click on a field and select Prepare a Filter to create a filter, but not apply it immediately. This process
is useful for creating longer, more complex filters with numerous operators. For example, if you wanted to
build a filter on ICMP Destination Unreachable/Port Unreachable packets, you could select the ICMP Type value
of 3 first and then select the ICMP code value of 3 using the ...and Selected operation. You can edit your
filter before applying it if necessary.

Copy | As Filter

Right click a field in either the Packet List pane or a field in the Packet Details pane and buffer a display filter
based on that field using the Copy | As Filter feature. This technique is very useful for creating coloring
rules, building more complex display filters or copying filters between Wireshark instances. (Thanks, Sake Blok,
for this feature!)

Filter on Conversations and Endpoints

You can create a filter based on the conversations or endpoints window contents. Right click on a conversation
of interest and select either Prepare a Filter or Apply as Filter. As shown in Figure 145, when creating
filters based on a conversation, you are prompted for the direction of travel in addition to the basic filter type.
The directions are based on the Address A and Address B column titles in the conversation window.

[l Comessasions spp-nortan vpdatepcapng

hemet] ke Channel] Fooi] ittt et [cra e esve L scrp] Ve 53

AddiessA @ PotA ¢ AddressB ¢ PortB 4 Packets 4 Bytes > Packets A-B ¢ Bytes A-B

anmcat 72246171346 higs 26 16624 Ji:
Rontclok I: st 72246171246 bitps 21 138531 105

Figure 145. Create a bidirectional display filter based on a conversation [app-norton-update.pcapng]

You can use the same steps to create display filters based on the endpoints window with one exception—the
endpoints window does not offer an option to define the direction of the traffic.

Filter on the Protocol Hierarchy Window

To extract traffic based on an application or protocol in use, you can select Statistics | Protocol Hierarchy
and right click on any entry listed.This is a key task when you are analyzing traffic to or from a host that you
believe has been breached.

Understand Display Filter Syntax
Wireshark’s proprietary display filter syntax is used to create display filters and coloring rules.

Every field shown in the Packet Details pane (whether that field actually exists in a packet or is simply a packet
characteristic, such as a retransmission) can be used to create these filters. Highlight a field in the Packet
Details pane and the related display filter value is shown in the status area. In Figure 146 we selected the TCP
Calculated window size field (created by Wireshark based on the Window Size field and window scaling
factor, if available). The field name is tcp.window_size. Now that we know the field name, we can create a
tcp.-window_size==7104 filter to find other packets with this Window Size field value.

o ;
. Tnternet prefocol Version ¥, 6rey 7an{25.2%4.143

Transmission Control Protocol, Src Port: http (80
Source port: http (80)
Destination port: 53463 (53463)
[stream index: 0]
Sequence number: 1 (relative sequence number)
Acknowledgment number: 686 (relative ack numb®
Header length: 20 bytes

Flags: 0x010 (ACK)

window size value: 111

[calculated window size: 7104]
[window size scaling factor: 64]
+ checksum: 0x5565 [validation disabled)
[SEQ/ACK analysis]

O ¥ The sl

Figure 146. The field name selected in a packet is shown in the Status bar [http-download-exe.pcapng]

As mentioned earlier, you can create display filters on packet characteristics as opposed to actual fields. In
Figure 147 we selected the TCP analysis line stating [This is a tcp window update]. The display syntax for all
TCP window update packets is tcp.analysis.window_update. You can right click and apply a filter for TCP
window update packets even though this field does not exist.

| Header Tength: 20 bytes
Flags: 0x010 (AcCK)

window size value: 16425
[calculated window size: §5700]
[window size scaling factor: 4]
Checksum: Oxebl6 [validation disabled]
TSEQ/ACK dnalysis]
[TCP Analysis Flags]

[Expert Info (Chat/Sequence): window ugate]'
[Message: window update]
[severity level: chat]
[Group: Sequence]

) 7 This rame i1 tcp window update (tcp anshyss window updare) 9 Packets: 5374 Di

Figure 147. Not all fields displayed actually exist in a packet [http-download-exe.pcapng]

Combine Display Filters with Comparison Operators

Comparison and logical operators enable you to combine multiple filters to further define the traffic of interest
and offer a negative operand to filter out undesired traffic (exclusion filtering).
e equal to
Symbol: ==
Text: eq
e Or
Symbol: ||

Text: or

e and
Symbol: &&
Text: and

e greater than
Symbol: >
Text: gt

¢ less than
Symbol: <
Text: It

e greater than or equal to
Symbol: >=
Text: ge

¢ less than or equal to
Symbol: <=
Text: 1e

¢ not
Symbol: 1
Text: not

¢ not equal to
Symbol: 1=
Text: ne

e contains
Text: contains

e matches
Text: matches

“Understand Wireshark Warnings on Using !=
Wireshark colorizes the display filter area in yellow whenever you use the 1= operator. It doesn’'t mean your

filter won’t work—it’s just a warning that it may not work. See Avoid Common Display Filter Mistakes for more

details.

You can create display filters with operators using the rightclick method, expressions or just by typing in the
filter. The following provides examples of various display filters using operators:

ip.addr==10.2.3.4 && port==80

Only display port 80 traffic to or from 10.2.3.4

Tarp && licmp

Display all traffic except ARP and ICMP traffic

bootp || dns

Only display BOOTP/DHCP or DNS traffic

tcp contains "PASS™

Only display packets that have the ASCII string "PASS" in the TCP segment—this is a case sensitive filter
dns.count.answers > 2

Only display DNS responses that contain more than two answers

tcp matches "\.(?1)zip"

The TCP packet includes the text value ".zip" in upper or lower case. This is a great filter if you are looking for
HTTP downloads of compressed files. Consider using "exe" as the target content (note that "zip" may be
included in the Accept-Encoding HTTP Request Modifier field). See Find Key Words in Upper or Lower Case for
more examples of using matches.

Alter Display Filter Meaning with Parentheses

Use parentheses to have the conditions evaluated in a specific order. For example, the two filters shown next
have different interpretations based on the parentheses set.

(ip-src==192.168.0.105 and udp.port==53) or tcp.port==80
DNS/port 53 traffic from 192.168.0.105 plus all HTTP/port 80 traffic on the network

ip.src==192.168.0.105 and (udp.port==53 or tcp.port==80)

DNS/port 53 or HTTP/port 80 traffic from 192.168.0.105
Filter on the Existence of a Field

In some cases you may just want to know if a particular field exists in your packets. For example, when
analyzing a web browsing session you may want to know if any cookies were exchanged during the session.
The following display filter will only show HTTP packets where a client has sent a cookie (http.cookie) or an

HTTP server has sent a cookie (http.set_cookie).
http.cookie or http.set _cookie

Locating specific types of TCP problems is another great use of this type of display filter. For example, the

following display filter will show all packets that Wireshark believes are TCP issues.
tcp-analysis.flags && !'tcp.analysis.window_update

You can also create a display filter to show a specific type of TCP issue as shown in the three examples below.
tcp-analysis. lost_segment
tcp.analysis.duplicate_ack

tcp.analysis.retransmission[68]

Filter on Specific Bytes in a Packet

Offset filters are also referred to as Subset Operators. These filters define a frame element, an offset, length
(optional), operator and value. You can use these filters when no simpler filter method is available. For
example, if you want to filter on Ethernet source addresses that end with a specific two-byte value, use an
offset filter.

An example of an offset display filter is shown below.
eth._src[4:2]==22:1b

The display filter shown above begins looking at the Ethernet Source Address field in a frame then counts over
5 bytes (we begin counting with zero) and looks for the two-byte value 0x221b. This means we are looking at
the last two bytes in the Ethernet source field for the value 0x221b.

' source Address | ?

? (source address continued) |- Dest Address

8 (dest Address continued)

Figure 148. The filter eth_src[4:2] looks at the last two bytes of the Ethernet Source Address field

Another example of an offset filter is shown below.
ip[14:2]==96:2c

This filter looks at the 15™ and 16™ bytes of the IP header (the end of the source IP address) for the value
0x962c¢ (this would equate to a source IP address ending in 150.44). Figure 149 shows the breakdown of an IP
header. Remember that the value [14:2] means we count over 15 bytes (start counting at 0) and look for a
two-byte value.

Ver/Hdr Len | 1 DiffServ 2 Total Length

Identification 6 Flags/Fragment Offset

8 m 9 Protocol 10 Hdr Checksum

12 Source Address 13 14 15

1 7 18
16 Dest Address i I‘~

Options (if any) 23

Figure 149. The filter ip[14:2] looks at the 15th and 16th bytes(start counting at 0) in IPv4 header source address field

The need to create offset filters has been reduced because of the number of filters built into Wireshark. There
are still times, however, when you need to use these offset filters to look inside fields for a partial value match.

Find Key Words in Upper or Lower Case

One operator, matches, is rarely used, but it is very powerful. We can use this operator to search in string/text
fields using regular expressions (regex).[69] For example, if we are interested in all HTTP requests for files

ending in .zip or .exe, we can use the following display filter.
http.request.method==""GET" && (http matches "\.(?i1)(zip|exe)"

Try running this display filter on http-download-bad.pcapng, http-download-good.pcapng and http-slow-

filexfer.pcapng. Be aware that you might get some false positives if these strings are found in the HTTP data.

The majority of the comparison operators are relatively intuitive—the matches operator may not be, however.
The matches operator is used with Perl regular expressions (regex) to search for a string within a field. This
functionality is provided through libpcre, the Perl-Compatible Regular Expressions library.

The following filter identifies HTTP packets that contain .exe, .zip or .jar in either upper or lower case:
http matches "\.(?1)(exe|zipljar)"

This filter looks at HTTP packets only. The \. looks for a dot. The (?i) indicates the search is case insensitive.
The (exe]zipljar) indicates we are interested in any of those strings.

In the Practice What You've Learned section at the end of this chapter you will have a chance to test using
"matches"” on a trace file.

More Interesting Regex Filters

You can use the matches operator with other regex definitions. The following are some examples of using
regex to find specific strings in your traffic.

Look for email addresses anywhere in the frame:
frame matches "(?i1)[A-Z0-9. %-]1+@[A-Z0-9.-1+\.[A-Z2\>]{2,4}"

Look for someone using HTTP to connect to a website ending in a string other than ".com":
http.host && 'http.host matches '"\.com$"

For more information on regex, see the Regex Cheat Sheet at regexlib.com/CheatSheet.aspx.

“Add an Inclusion Field with Exclusion Field Filters

The filter above, http_host && Thttp.host matches '"\.com$" brings up an interesting problem with filters that
use the not operator on a field. If we used only the second half of the filter (1http.host matches ‘*\.com$")
we would see all packets that do not have the .com at the end of the HTTP Host field. That includes DNS
packets, DHCP packets, ARP packets, UDP packets, etc. They do not have .com at the end of the HTTP Host
field. To avoid this problem, add the field you are interested in. In the example above we added http.host to
avoid the problem.

Let Wireshark Catch Display Filter Mistakes

Wireshark contains error checking to help you avoid syntax problems and even practical display filter mistakes
such as ip.addr = 10.2.4.1. This mistake is defined in Avoid Common Display Filter Mistakes.

¢ A green background indicates the filter syntax is correct and logical.

¢ A yellow background indicates the syntax |s correct, but |t may not be Ioglcally correct. For an example of a
filter that would be colored yellow, see

¢ A red background indicates a syntax error. Filters marked with a red background will not process correctly.

Not all display filter mistakes are caught by Wireshark’s error checking mechanism. For example, consider the
filter http && arp. How can a packet be both an HTTP packet and an ARP packet? It can't.

Use Display Filter Macros for Complex Filtering

Display filters macros are used to create shortcuts for more complex display filters. Select Analyze | Display
Filter macros | New to create a new macro.

Display filter macros are saved in dfilters_macros in your Personal Configuration folder. If you create display
filter macros under a profile other than the default profile, the dfilters_macros file is saved in the associated
profile’s directory. The syntax used in this file is "'name’,"filter_string".

To create a display filter macro, first you must name the macro. You must use this name to call the macro in
the Display Filter window. Figure 150 shows a display filter macro used to view traffic destined to five ports.
Without using a display filter macro, this display filter syntax would be tcp.dstport==5600 ||
tcp-dstport==5603 || tcp.-dstport==6400 || tcp.dstport==6500 |] tcp.dstport==6700.

The macro shown in Figure 150 is named "5ports". Dollar signs precede the variable numbers. The syntax to

use this macro would be ${5ports:5600;5603;6400;6500;6700}%.

When we run this display filter macro, the five port variables will be substituted as follows:
$1 tcp.dstport==5600
$2 tcp.dstport==5603
$3 tcp.dstport==6400
$4 tcp.dstport==6500
$5 tcp.dstport==6700

Il Display Fiter Macros - Prafle: Difault e ()

Hame Tet

Hew

tip 3 aopdy Consel

Figure 150. Display filter macros provide shortcuts for more complex filters

Another example of a time saving display filter macro would be one that focuses on a specific conversation—

we'll call this macro "tcp_conv". The display filter macro syntax would be:
(ip.src==%1 and ip.dst==%$2 and tcp.srcport==$3 and tcp.dstport==%$4) or (ip.src==%$2 and
ip.dst==%$1 and tcp.srcport==%$4 and tcp.dstport==%3)

In this example, the display filter macro focuses on a specific conversation based on IP addresses and TCP port

numbers. To run the macro, we would use the following command in the Display Filter window:
${tcp_conv:192.168.1.1;192.168.1.99;1201;2401}

You can share display filter macros by simply copying the dfilters_macros file from your Personal Configuration
folder or profile folder to another Wireshark system.

Avoid Common Display Filter Mistakes

One of the most common filter mistakes involves the use of the 1 or not operand. This problem is mostly seen
when filtering out traffic to or from an IP address or port number using ip.addr, tcp.port Or udp.port.

Many people are familiar with the ip.addr==10.2.4.1 syntax for displaying packets that contain the IP address
10.2.4.1 in either the source or destination IP address field. Naturally, they enter ip.addr 1= 10.2.4.1 to try
to view all packets except ones that contain the address 10.2.4.1. This filter structure does not work, however.

The filter ip.addr 1= 10.2.4.1 actually means you are looking for a packet that has an ip.addr field that
contains a value other than 10.2.4.1. There are two IP address fields in the packet, however and this filter will
allow a packet to be displayed if it has an address other than 10.2.4.1 in either of those two fields. First
Wireshark looks at the source IP address field to see if the filter matches. Next it looks at the destination IP
address field.

The table below shows how packets are examined. Using the filter ip.addr = 10.2.4.1, if one of the IP
addresses matches the filter then the packet will be displayed.

Source IP Address: 10.2.4.1 (no match)
Destination IP Address: 255.255.255.255 (match)
Show Packet: Yes

Source IP Address: 10.99.99.99 (match)
Destination IP Address: 10.2.4.1 (no match)
Show Packet: Yes

Source IP Address: 10.2.4.1 (no match)
Destination IP Address: 10.99.99.99 (match)
Show Packet: Yes

Source IP Address: 10.2.2.2 (match)
Destination IP Address: 10.1.1.1 (match)
Show Packet: Yes

The correct filter syntax is 'ip.addr==10.2_4.1. Place the ! or not before ip.addr.

The same issue applies to IPv6 address filtering as well. To filter out an IPv6 address, use 'ipv6.src ==
2002:1806:addc: :1806:addc instead of ipv6.src 1= 2002:1806:addc: :1806:addc.

Manually Edit the dfilters File

You can add filters through the Wireshark GUI interface or edit the dfilters file directly using a text editor. The
default dfilters file is located in the Global Configurations directory. New filters are added to the dfilters file and
a copy is placed in the Personal Configurations folder or in the current profile directory.
The syntax of the dfilters file is:

“filter name" Ffilter string
The dfilters file does not have an extension and you must include a new line after the last display filter entry or
it will not show up in the Wireshark display filter list. When manually editing the dfilters file, use a text editor.
Do not use a word processing program such as Word that will add unnecessary characters and code to the file.

The advantage of manually editing the dfilters file is the ability to reorder the display filters and add indenting
and titles to your display filters list as shown in Figure 151.

-
[Wireshakc Display Fiter - Profile: Laura's Profle

Edt— Dis

Figure 151. Edit the dfilters file to organize your personal display filters
To add the title and indents to your display filters list, manually edit the dfilters file and put underscores and
spaces inside the quotes used around the name of the display filter, as shown in Figure 152.

The Download section of the book website, www.wiresharkbook.com, contains a sample dfilters file that uses
this style of formatting.

Figure 152. An edited dfilters file

Using display filters helps avoid the "needle in the haystack issue" and speeds up the process of finding the
cause of network problems and identifying unusual traffic patterns. For more information on this issue, see

The case studies at the end of this chapter provide examples of using display filters to solve network concerns
and perform application analysis.

-

bése Study: Using Filters and Graphs to Solve Database

Issues
Submitted by: Coleen D., Network Analyst

There appeared to be way too many connections to our documentation server at specific times during the day.
The server administrators thought someone was attacking the server and they wanted to know how many
active connections had been established to the server throughout the day and by whom.

I ended up using a display filter for the third packet of the TCP handshake to catch all successful connections

and plotting this on an 10 Graph. My filter is shown below.
(tcp.-flags==0x10) && (tcp.seq==1) && (tcp.ack==1)

http://www.wiresharkbook.com/

The first part of my filter looked for packets that had just the ACK bit set in the TCP header. The second part
looked for the TCP Sequence Number field set to 1 and the third part looked for the TCP Acknowledgment
Number field set to 1.

We always have relative sequence numbering enabled in Wireshark’'s TCP preferences (otherwise this wouldn’t
work) and these field values are always seen in the third packet of the TCP handshakes.

To see these connections, | put this display filter in the red graph line in the 10 Graph and used the Fbar
format so it really showed up.

Sure enough, we did find that the connections spiked around 2pm each day.

Interestingly, it was one of the documentation server administrator machines that made over 1,000
connections to their own server around that time. It turned out someone in their group was testing out a new
document management package that flooded the documentation server with connections every time they ran
it.

We could easily show the source of the connections and recommend against the lousy program they were
about to buy!

We saved the company a ton of money and headache using Wireshark!

=

.C:':lse Study: The Chatty Browser

To analyze Twitter traffic, | created a filter for all traffic to/from my IP address (ip.addr==192.168.0.106) and
then filtered out any of my unrelated traffic—the idle traffic and the background traffic sent when my browser
connected to Web of Trust or other sites that had nothing to do with the Twitter communications.

I was working backwards and separating out my Firefox traffic and any other noise that my host generates
without my interaction. | created a number of exclusions to my display filter as | identified my background
traffic to my printer, my router's management port, DHCP noise, ARP noise, traffic from my iPhone (which was
being bridged onto the wired network), Google Analytics and Google Malware updates from Firefox, World
News and BBC background feeds from Firefox and anything else not related to my Twitter communications.

When my convoluted display filter was completed, | could see no background traffic from superfluous
processes.

My final display filter was extremely long:
ip.addr==192.168.0.106 && !srvloc && 'dns && lip.addr==74.6.114.56 && 'ip.addr==239.255.255.250
&& 'ip.addr==96.17.0.0/16 && 'ip.-addr==192.168.0.102 && !smb && !'nbns && 'ip.addr==
192.168.0.103 && lip.addr==64.74.80.187 && ! ip.addr==83.150.67.33 && !ip.addr==67.217.0.0/16
&& 'ip.addr==66.102.7.101 && !ip.addr==216.115.0.0/16 && 'ip.addr==216.219.0.0/16 &&
Tip.addr==69.90.30.72

Although | started out analyzing Twitter traffic, | ended up finding out that all the plugins we added to Firefox
made our browsers way too chatty—they were talking all the time.

We temporarily turned on network name resolution in Wireshark to make it easier to find out who the plugins
were talking to. It made Wireshark really slow when we opened the Conversation and Endpoint statistics, but
we could easily spot the plugin traffic by the targets.

We ended up uninstalling some of the plugins that were talking all day long in the background. We didn’'t need
them and they just added too much garbage to the network.

=

ase Study: Catching Viruses and Worms
Submitted by: Todd Lerdal

Computer viruses and worms were a great learning time for me with packet analysis. | was very new at packet
analysis and would just fire off traces on a VLAN to get a "feel" of what was running on my network.
"Unofficial baselining" is probably a better description—never documented anything other than getting an idea
in my head of what was normal.

I knew the sorts of applications that I should expect to see, NCP, Web, Telnet, Citrix, etc. If there was
something out there | didn't recognize, I'd filter down to it just to get a better understanding of "should this be
running?"

Then, the worms hit.

I spent many hours/days with a monitor session on our server VLAN just watching how worms would spread to
help identify, isolate, and inoculate infected workstations.

It doesn’t take long once you start watching to see the unusual traffic on your LAN. What | would see is what
appeared to be ping sweeps or port scans coming from multiple hosts.

Once I'd captured enough packets | was able to then build better display filters to identify just these sweeps so
that | could then isolate the infected workstations and help the desktop and server teams to go clean these
devices before allowing them back on the network.

With practice, it didn’'t take me long to generate lists of IP addresses or device names to provide the desktop
folks so they could start cleaning.

Summary

Display filters are used to focus on specific packets, protocols, conversations or endpoints of interest. Display
filters use the special Wireshark syntax—they are not interchangeable with capture filters which use the BPF
filter syntax (also used by tcpdump).

Wireshark provides automatic error checking of your display filter syntax (green = correct syntax, red =
incorrect syntax, yellow = may yield unexpected results). You can also use Wireshark’s Expressions to create
filters using predefined fields and field values.

One of the fastest ways to create a display filter is to right click on a field and select either Apply as Filter or
Prepare a Filter. You can use comparison operators to combine multiple display filters, but be careful of the
parentheses in your filters. The location of parentheses can alter a display filter's meaning.

Display filters are saved in the dfilters file and can be edited through the GUI or directly in the text file. You
can share your display filters by simply sending someone a copy of your dfilters file.

There are numerous Wireshark display filters contained in the Downloads section of the book website,
www.wiresharkbook.com. One of the dfilters files available online is shown in Figure 152. This dfilters file
includes the default set of display filters released with Wireshark and 15 additional display filters. To use this
dfilters file, simply copy the file into your Personal Configuration folder or create a new profile and copy this
file into the profile’s folder. For more information on creating a new profile, refer to Chapter 11: Customize

Practice What You’ve Learned

@ The following table lists several trace files to use when practicing what you've learned in this chapter.

app-norton-update.pcapng: This Symantec update process has some HTTP errors in it. Build a filter for
http.response.code==404 and note the number of File Not Found responses. Now apply the same display filter
to app-norton-update2.pcapng.

app-norton-update2.pcapng: This Symantec update process doesn't seem to work very well. Filter for
http.response.code==404 and note the number of File Not Found responses. Ouch! What if you apply the
display filter http.response.code '=404? Why does Wireshark think there’s a problem with this filter? Did it
work?

ftp-crack.pcapng: Apply the following display filter to the traffic:
ftp.request.command=="USER" || ftp.request.command==""PASS"

This reveals that the password cracking attempt is only focused on the admin account and the passwords are
coming from a dictionary that includes names. Looks like they are cycling through the password list—we
caught them on the letter M, but they start at the beginning later (packet 4739).

http-aol.pcapng: It takes 17 different TCP connections to load the www.aol.com site. Have you analyzed the
connection to your corporate website lately? Use http.request.uri matches "laptop$" as the display filter.
Another example of using the matches operator is http.request.uri matches "&+". This filter examines the
URI field for the value "&" and display the packet if the value is found 1 or more times as denoted by the +.
Try out some regular expressions in a display filter. Apply a display filter for http.request.uri matches
"\.[Jj1[Ss]". What did this display filter do? How would you add to this filter to identify someone requesting
executable files from a web server?

http://www.wiresharkbook.com/

http-download-bad.pcapng: Use your display filtering techniques to view all the Retransmission packets in
this trace file. Now build a display filter that will show you all the packets that arrived more than 2 seconds
after the previous packet—this would be a nice coloring rule, too.

http-download-exe.pcapng: Try applying a display filter for frame matches "MZ". Then add frame contains
"application” and look again. What were your results? The MZ is a file identifier for a Windows executable
file. You'll learn more about these in Ch r 10: Follow

http-download-good.pcapng: Try the same filter that you created for http-download-exe.pcapng above.
Can you find the first packet of the file download process? That packet also indicates the length of the file in
the HTTP header.

http-slow-filexfer.pcapng: Now use that filter from http-download-exe.pcapng on this file. What result did
you get? Was that what you expected?

sec-nessus.pcapng: Use a display filter to identify any packet that contains "Nessus" in either upper or lower
case in a header or data portion of the packet. What did you find?

Review Questions

Q9.1
What syntax type is used by Wireshark display filters?

Q9.2
Why is the display filter arp && bootp incorrect?

Q9.3
What is the difference between Prepare a Filter and Apply as Filter?

Q9.4
What is the difference between the following filters?

(ip-src==192.168.0.1 and udp.port==53) or tcp.port==80
ip.src==192.168.0.1 and (udp.port==53 or tcp.port==80)

Answers to Review Questions

Q9.1
What syntax type is used by Wireshark display filters?

A9.1

Display filters use Wireshark’s specialized display filter format. Capture filters use the Berkeley Packet
Filtering (BPF) format (which is also used by tcpdump). Filters created with Wireshark’s specialized display
filter format and filters created with the BPF filter format are not interchangeable.

Q9.2
Why is the display filter arp && bootp incorrect?
A9.2

This filter displays packets that are both ARP and BOOTP/DHCP packets which is impossible. The correct
filter would be arp || bootp.

Q9.3
What is the difference between Prepare a Filter and Apply as Filter?

A9.3

Prepare a Filter simply creates the filter and displays it in the Display Filter window—the filter is not
applied yet. This allows you to add to the filter or edit the filter before applying it. Apply as Filter applies
the filter to the traffic immediately.

Q9.4
What is the difference between the following filters?

(ip.src==192.168.0.101 and udp.port==53) or tcp.port==80
ip.src==192.168.0.101 and (udp.port==53 or tcp.port==80)

A9.4

The first filter displays DNS/port 53 traffic from 192.168.0.105 plus all HTTP/port 80 traffic on the
network. The second filter displays DNS/port 53 or HTTP/port 80 traffic from 192.168.0.105.

Chapter 10
Follow Streams and Reassemble Data

The Basics of Traffic Reassembly

Wireshark offers the ability to follow communication streams. The Follow Streams process reassembles the
communications (minus the MAC header, network header and transport headers).

Figure 153 shows the result of following the TCP stream of an FTP command session. By default, Wireshark
color codes the conversation in the streams window—red for traffic from the client (the host initiating the
conversation) and blue for traffic from the server. You can change the color coding using Edit | Preferences
| Colors.

Right click on a packet in the Packet List pane or Packet Bytes pane to select Follow UDP Stream, Follow
TCP Stream or Follow SSL Stream. The traffic type that you have selected defines which option is available
in the list.

Wi <P e o
[s Conte: 1
220 (vsFTPd 2.0.3)

USER anenymou:

331 Plea:
PASS anypwd

s
pecify the password.

230 Login successful,

PORT 192,168,0,101,206,177)

200 PORT command successful. Consider using PASY.
NLST

150 Here comes the directory listing.

226 Directory send OK.

TYPE T

200 Switching to Binary mode.

PORT 192,168,0,101,206,178

200 PORT command successful. Consider using PASV.

RETR pantheon. jpg

150 opening BINARY mode data connection for pantheon.jpg
(5544612 bytes).

226 File send OK.

QUIT
221 Goodbye.
]

e |[seess [B o ascs eBcox Hes Dump. Camyr WA

Figure 153. Following streams provides a clear view of commands and data transferred [ftp-clientside.pcapng]

Follow and Reassemble UDP Conversations

As long as the traffic has a UDP header, the option to Follow UDP Stream is available. Right click on a UDP
packet and select Follow UDP Stream.

One example of using UDP stream reassembly is the process of reassembling a multicast video stream. As long
as the video data is not encrypted, you can reassemble the data, use Save As to save the video stream in a
video file format and open and replay it with a video player.

“Consider VLC Player to Play Back Exported Video Files

We recommend VLC Player, an open source media player able to read numerous audio and video formats
(MPEG-2, MPEG-4, H.264, DivX, MPEG-1, mp3, ogg, aac and more) as well as various streaming protocols. For
more information on VLC, visit www.videolan.org.

Figure 154 shows a UDP stream in the background. Upon reassembling the UDP stream, a display filter was
created for the UDP conversation - (ip.addr eq 192.168.1.12 and ip.addr eq 239.255.0.1) and (udp.port
eq 1024 and udp.port eq 8001). In the Stream Content window the data is displayed in raw format by
default. Clicking Save As, we saved the data in a file called videostreaml1. We don’'t know the actual video
format—VLC Player automatically detected the video type and, since it supports that video type, it could open
and play the video.[70]

http://www.videolan.org/

[l udp-meaststream-queued peapng [| o oy
Fle fdit View Go Capture Anshze Statistics Telephory Tooks Intemals Help
BEdaN @@L arsveTe ([EEaecan #0%% B
Exprassion..

. r.mg Source Destination Protocel Length _infe
19 B.1.17 13 i1

0. . 108.1. . 255.0.1 ort:
0. 000905000 25 1,312 0.1 MPEG TS 1170 source PO
0.1

13 0.001813000 192.168.1.12 239 255. MPEG TS 1170 Source port: 102:

|4 0L Follow DR Stream T) ey | 1170 SOurce port: 102«
5 0. 11170 Source port: 102¢
6 Q)| Stream Content 11170 Source port: 102
70 ([et sme oot —

s 0 = — —
9 o bame | vdeosresnt |
0 0 |
11 o swemoiger |\ mces-peapngses Croate Foider
12 0

130 ~ | Name < See Modded - ||
14 0 |
15 0 il
16 0

7 o i
18 o I
za gl |
20 ol i
23000 |
: e |
© ¥ Fle"Chtraces-pesprgsetiudy-meosd | ey I

Figure 154. You can recreate a video stream using Follow UDP Stream [udp-mcaststream-queued2.pcapng]

If the UDP stream you are examining is a VolP RTP stream, use Telephony | VolIP Calls | <select call> |
Player | Decode to reassemble an unencrypted VolIP call. Try this with voip-extension2downata.pcapng. For
more information, read Chapter 27: Introduction to Voice over IP (VolP) Analysis.

Follow and Reassemble TCP Conversations

You can reassemble web browsing sessions, FTP command channel sessions, FTP data transfer channel
sessions or any other TCP-based communications. Right click on a TCP packet and select Follow TCP
Stream.

In some cases, you will see commands and application headers prefacing the data being transferred. For
example, when reassembling an HTTP web browsing session, you will see the GET requests from the clients
and the HTTP response codes from the server as well as the data that is being transferred.

When you follow TCP streams, a display filter based on the TCP stream index number is used for this filter.
The format of the filter is tcp.stream eq x. This filter syntax is also used when you follow SSL streams. The
tep.stream index value is shown in Figure 155. Use this field to filter on a conversation from the Packet
Details pane.

B i snordiovbdaypoapng [E=RE—)
Ede Edt View Go Capture Ambze Sutisics Telphony Tools Itemss Help

BEeed m@ARTE 'ww--."-vs-?“ SEFaaan @HmE @
Fiter: txpmm .
No. Time Sousce Destinat ol Length info

5 0.289505000 2002:1806:addc: : 3500:3c01: fo3c:cich 106 60478 > http [s

s Frame 5: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on inte
= Ethernet II, Src: Hewlett-_a7:bf:a3 (d4:85:64:a7:bf:a3), Dst: Cadant_31:bb:c
Internet Protocol Version 4, Src: 24.6.173.220 (24.6.173.220), Dst: 192.88.9
= Internet Protocol Version 6, Src: 2002:1806:addc::1806:addc (2002:1806:addc:
Transmission Control Protocol, Src Port: 60478 (60478), Dst Port: http (30),

Source port: 60478 (60478)
Destination pnrt http (80)

ex; 0]

Sequence numher 0 e number)
Header \engn- 32 by Conside ks "”"f‘;‘g‘e

. FTagsy tep-stream
window 512? value 819
[Calculated window size: §102]

@ Checksum: 0xde97 [validation disabled]

@ Options: (12 bytes), Maximum segment size, No-Operation (NOP), window scal¢

@ [Timestamps]

o - ‘}’ e

Figure 155. The Stream Index value is in the TCP header [ipv6-worldipv6day.pcapng]

Figure 156 shows a reassembled web browsing session on World IPv6 Day (June 8, 2011).[71] We can see
what browser is used for the browsing session (Firefox), the target (scanmev6.nmap.org) and the OS type of
the target (Ubuntu).

When analyzing or troubleshooting HTTP communications, Follow TCP Stream can be very useful to examine
commands and responses. In Figure 157 we reassembled an HTTP POST process where we can clearly see the
data being sent from the client to the HTTP server. In this case, a user is filling out an online form on a web
server.

1l oS TCP Stresm IS
Stesm Comtent
GET / HTTP/1.1
Host: scanmevb.nmap
User-Agent: an\”q/ﬁ 8 (windows; U; Windows NT 6.1; en-us;
rvi1.9.2.17) Gecko/20110420 F1refux/3 6.17
A:::sts ‘text/ntml,application/xhtml+xml ,applicaticn/xnl;g=0.9,%/

Accept-Language: en-us,en; q-n &
Accept-Encoding: gzip, deflat

Accept- charset 150-8859- l.utF-s;q:Q.rmq:O,:'
Keep-Alive:

Connection: kaep alive

HTTP/1.1 200 of

pate: wed, 08 Jun 2011 20:49:56 GMT
server: Apache/2.2.14 (ubuntu)
Accept-Ranges: hytes

vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 3748

Keep-Alive: nmeout-ls max=100
r.‘urme:t!nn Keep-Aliv

pe: text/htm‘\

cn 8283 ytes) =l

Soveds 2o s E8coKc Hex Dump. <A

Lty Fover O T sueam | [gione]

Figure 156. Reassembling an HTTP session provides details on the HTTP requests and responses

[ipv6-worldipv6day.pcapng]

What if we want to reassemble data in an HTTP communication? One option is to choose File Export |
Objects | HTTP to extract the objects downloaded during the entire HTTP session. See File | Export.

In some cases, however, you need to look through the data stream to find an embedded file. You can use a
file extension or a file identifier to determine the type of file transferred. The file identifier is contained in the
leading bytes of a file and is used to define whether a file is a Word document, a trace file, an Excel
spreadsheet, an Open Office document, etc. See ldentify Common File Types.

In Figure 158, a TCP stream contains a graphics file. We can determine this by a file identifier—JFIF (JPEG File
Interchange Format).[72] In Wireshark, we can save the entire TCP stream as a .jpg file using Save As. We
can then view the file clearly.

Wl P TCP Strewm o)
Stiesm Contert

POST /ﬂashmaﬂ asp HTTP/1.1
Accept:
x-flash-version: 7,0,19,0
Contem ~Type: apphcanun/x -wo-Form-urlencoded
content-Length: 986
secept-sncoding: gzip, deflat
User-agent: anﬂ a/4 0 fcnmpanb'!e MSIE 6.0; Windows NT 5.1
SVl; .NET CLR 1.0.3705; .NET CLR 1.1.4322; Media Center PC 4. 0)
HOST: www. dwsceverconsoks com
Connection: Keep-A
Cache-Control: no-i cache

val wd:lte:kSﬁt¥pe+Funct1 on¥sp&formeheck= msg:ypnmmm onX
So&maiTform=flash firm=th 111+getsback

d our+First

i

mame&errerl p'\e:\Se‘entenyourdastmme&e"eri PY!;S&*E“MM
+valid+email+adressderror4=please+enter+correct+pho
murrhur&w-rors-plenseq.en(er‘a-.-suh ect&erroré= Yaur-»:ammentstp]ease+
#218TXTFirstiSFName=LauradtxtLas!

SFName=Chap elMtxtEma!]*1chappeﬂ%40pucke(?2|ﬂ!ve]'%
2Ecomdtxtsubject=FTP+Background+Traffick3FdtxtComment s=IT+appears
+that+your+software+is+loaded+on+one+of+our+lab+Media+Center &

e conversation (1281 bytes) =]

find Sovein 2ot asca ecoic Hex Duenps C A » R

e T |

Figure 157. Reassembling an HTTP post session [http-fault-post.pcapng]

——= = [E=eT——)

ii: 'sn 39.
221

Figure 158. Sometimes you need to extract a file from inside a stream [ftp-clientside.pcapng]

Identify Common File Types

Files begin with file identifiers that indicate the application used to create or open the file. The following list
provides some basic file identifier values. View streams in hex dump format so you can use the Find feature to
locate these hex values in a stream.

For more information on file types and file extensions, visit mark0.n ft-trid-defli

Excel (Extension: xIs)
File Identifier Value: bo CF 11 EO Al B1 1A E1 00

JPEG Bitmap (Extension: jpg)
File Identifier Value: FF D8 FF

Open Office Document (Extension: odp)
File ldentifier Value: 50 4B 03 04

http://mark0.net/soft-trid-deflist.html

Portable Network Graphics (Extension: png)
File Identifier Value: 89 50 4E 47 0D OA 1A OA 00 00 00 OD 49 48 44 52

Powerpoint Slide Deck (Extension: ppt)
File Identifier Value: DO CF 11 EO A1 B1 1A E1 00

Powerpoint XML (Extension: pptx)
File ldentifier Value: 50 4B 03 04

Word (Extension: doc)
File Identifier Value: DO CF 11 EO A1l B1 1A E1

Word 2007 (Extension: docx)
File Identifier Value:50 4B 03 04

PK Zip File (Extension: zip)
File Identifier Value: 50 4B 03 04

Packet Capture File (Extension: pcap)
File Identifier Value: D4 c3 B2 Al

Packet Capture File (Extension: pcapng)
File ldentifier Value: 0A oD 0D OA

Reassemble an FTP File Transfer

It is an easy process to reassemble files transferred using FTP. The first step is to locate the FTP data channel.
Refer to Chapter 24: Analyze File Transfer Protocol (FTP) Traffic for details on FTP command and data
channels.

FTP data can run over any port number. Filter for ftp.response.code==227 || ftp.request.command=="PORT"
to view the FTP command channel traffic that will indicate the port used for data transfer. The response code
227 indicates that a passive FTP data channel is being established. The FTP command PORT is used for an
active command. Packets that match these two filters contain the IP address and port number of the data
channel.

Figure 159 shows an FTP communication using a dynamic port number for the data transfer.
Follow along—the trace file is called ftp-download-good2.pcapng (available at www.wiresharkbook.com).

In ftp-download-good2.pcapng, the client has requested that the server enter passive mode (PASV). In packet
8 the server indicates that it is entering passive mode and defines the port number it will use for the FTP
communications—port 30189. Immediately following the response, the client completes the TCP handshake to
port 30189. The client sends two more commands on the FTP command channel: SIZE and RETR. The RETR
command is the request to transfer the file OS Fingerprinting with ICMP.zip (the name is truncated in the
screenshot).

Once you know what port the FTP data transfer takes place on, right click on a packet in that data stream and
select Follow TCP Stream.

1l tp-domnlond-good2 pcapng <1 & el
B Edt Mew Go Captore dnsbyze Stotistics Telephony Tooks: Intemsls: Help

SEYAN FEREL AerRTFL B reren @) @mm g% 8

Lengih o
60" ‘Iléque&t. noop
83 Response: 200 NOOP command ¢
101 Request: CWD /farticlefarm/o:
82 Response: 250 CWD command st
62 Request: TYPE I
D P —— = TP 73 Response: 200 Type set to I
67.180.72.76 128.121.136.21FTP 60 Request: PASV
128.121.136.217 67.180.72.76 FTP 108 Respon 227 Entering Pass
67.180.72.76 128.121.136.21TCP 62 z-wave > 30189 [SYN] Seq=0 |
110° 128.121.136.217 67.180.72.76 TcP 60 30180 > z-wave [SYN, ACK] St
11 67.180.72.76 128.121.136.21TCP 54 z-wave » 30189 [ACK] Seq=l
12 67.180.72.76 128.121.136.21FTP 92 Request: SIZE 05 Fingerprint
36.217 67.180.72.76 FTP 66 Response: 213 610078
3 28.121.136.2LFTP 92 Request: RETR 05 Fingerprinfid

|@ Erame 14: 92 bytes on wire (736
Ethernet II, Src: QuantaCo_ad:p
= Internet Protocol Version 4, § W
» Transmission Control Protocol,
File Transfer Protocol (FTP)
RETR 05 Fingerprinting with ICMP.zip\rin

2 bytes captured (736 bits) on int?ri
a-eo-aq), Dst: Cadant_22:as:8

.76), Dst: 128.121. |
» Dst Port: ftp (21;
|

Figure 159. Create a filter for the PORT command or a 227 response code to locate the port used for FTP data [ftp-download-good2.pcapng]

We can now right click on packet 9, the first packet of the data channel TCP handshake and select Follow
TCP Stream. We know this is a .zip file based on the file name. Selecting Save As and naming the file allows
us to unzip and open the PDF file contained therein.

T

O ¥ Pl Cltiaces-poapng: Packets: y time 000561 Profile: Defaut

http://www.wiresharkbook.com/

When you follow a stream, Wireshark applies a display filter for the conversation based on the TCP stream
index. You must clear this filter to see the entire contents of the saved or unsaved trace.

Follow and Reassemble SSL Conversations

Wireshark can decrypt SSL communications if you define RSA keys in Edit | Preferences | Protocols | SSL.
For more information on SSL decryption and a sample SSL encrypted file, visit Analyze TLS Encrypted Alerts
and wiki.wireshark.org/SSL.

In this example, we downloaded the rsasnakeoil2.pcap file and the RSA decryption key[73]. We then right
clicked on a decrypted SSL packet and selected Follow SSL Streams.

Figure 160 shows the rsasnakeoil2.pcap trace file. We have not configured the SSL protocol with a link to the
RSA key so no data is available when we follow the SSL stream.
88 ranakecitz pesp. ey

Ele fdit Mew Go Capture Anabge Sutisics Telephony Took jotemals Help

FEdAN EERIL aeveTa ([EFeaan @8 % B

Fiter: tcpaeam &0

0.000178 127.0.0.1 127 TP 66 https > mfn [ACK] seq=1 Ach
0. 002150 127.0. 0 : U b 0 0.1rSSLv3 995 Server Hello, Certificate, Sc.

a n__ 66 38713 > https [ACK] Seqs106 ¢
278 Client Key Exchange, change (

\hou right click on an SSL slream and <=e!ecl
Follow SSL Stream, the window is empty -
you must decrypt the SSL stream first

141 change Cipher Spec, Encryptec
66 38713 > https [ACK] Seq=318 »
11 2.833071 127.0.0.1 127.0.0.1 SSLv3 503 Application Data

12 2.873275 127.0.0.1 P =)
13 2.938485 127.0.0.1| —— B -
14 2.938750 127.0.
15 2.938761 127.0
16 2.938999 127.0.0.
17 2.840026 127.0.
0
0
0.
0

18 2.943406 127.0.
19 2.944825 127.0.0.
20 2.944864 127.0.0.
21 2.964424 127.0.

Entire conversation (D bytes) _']
o] [Soets] (B € 51 © SO € Mg) Cvays @ B

[[Fiter Ot T trear | | Close |

@ ¥ Fie"C - — ———

Figure 160. The rsasnakeoil2.pcap trace contains SSL traffic—until we apply the RSA key, the SSL stream is blank [rsasnakeoil2.pcap]

In Figure 161 we have entered the RSA key information in the SSL protocol section under preferences. Our
setting defines the IP address of a host in the trace file, the port number of the traffic to decrypt, the traffic
type (after decryption) and the path and key file name.

s retrences - i Detaut L) |

* [secomn Sockets Loger

- FE by st [
551 debug il

0 552 Doy - ot Dete =]

1P address Pore Brotocel ey il

o e

[55t Doy - i |

B address: | (I

Pot (843

Figure 161. Adding the RSA key setting in the SSL preferences

In Figure 162, we have applied the RSA key to the Wireshark SSL protocol configuration. When we follow the
SSL stream in the rsasnakeoil2.pcap trace after setting up the RSA key, we can see the HTTP session contents
and see the HTTP requests and responses clearly.

e T o=
e [dt View Go Copture Analyne Sutics Telephony Jooks [ntemals Help

T2 EEQ QD @S5 Q|

Expression... Clear 251,

CRC S NN R

Fiter, teputream eq0

c.'a,

= 12; 0.1
39 0.039531 127.0.0.1 127.
0.1

0.1 .HTI'F H1'!'P - text
.0.1 TCP 38713 > https [ACK] 5eq—1§48
|40 2.496706 127.0.0.1 127.0.0.1

HTTP GET /test HTTP/L.1

l[41 0.000052 127. - S & 367
ez 0}005253: 127 iq M oke it o N e
143 0.000182 127.Q| SvemCement 903
{47 3.191219 127.4 gg;" 'i':;:/]’;ci: g £
,:'; g'gggg;: 1’5;(User- A?ent Mozilla/5.0 (x11; U; Linux :';g
5o o0.o73285 127.0] . 1686 :1.8.0.2) Gecku/ZODGGBOB !

I . A Firefox/i.5. o 2 155
B3 Accept: text/xml,application/ ‘ ¥
@ Frame 35: 588 byt| xml apphcatwon/xhtmhxm? text/ bi-

© Ethernet II, Src ht”'] ‘I =0.9,text/plain; q=0.8, image/png,*/ :00:
= Internet Protoco =0.5

f = .
Fracsatsstonicor Accept Language r,fr-fr;q=0.8,en

$;9=0.5,e

Source port: ht| A::ept Encod1 ng: gzip,deflate
Destination por| Accept-charset:

[Stream index:
Sequence number = =
[Next sequence || [End] swess|[gint] 0 asca © escbic © Hedump O Chmys @
Acknowledgement
St) | A= [Fites 0ut ThisStresm Gase

ot corverton G071y =

B
@ Fie cwiem

http://wiki.wireshark.org/SSL

Figure 162. Follow the SSL stream after applying the RSA key to see the traffic clearly [rsasnakeoil2.pcap]
For another example of decrypting and analyzing SSL streams, refer to Analyze HTTPS Communications.

Reassemble an SMB Transfer

The fastest way to reassemble a file transferred through SMB, use File | Export Objects | SMB. Open smb-
filexfer.pcapng and refer to packet 56 for the name of the file.

Follow TCP Stream does not work well with SMB data transfers because of the back-and-forth nature of SMB.
As you look through smb-filexfer.pcapng you will notice the client periodically asking for the next 61,440 bytes
of the file. These periodic file requests fill the stream with client requests and SMB headers on the response
packets. It's a waste of time trying to clean this up when we have the File | Export Objects | SMB

capability. Refer to File | Export.

.C:dse Study: Unknown Hosts ldentified

The hospital IT staff stated they had 458 hosts and 7 servers at the location where we were working. The job
was focused on training this staff to use Wireshark to quickly spot network problems and fix them fast.

During the analysis process, we captured all network traffic off a switch—we didn’t span the port—we were
just examining the broadcast and multicast traffic on the network. As we talked about broadcast traffic rates it
became evident that this network had more than 458 hosts and 7 servers. We saw ARP broadcasts from over
600 devices throughout the day.

The IT team said this just could not be possible. In addition, they did not believe they had such a flat network
—they had routers in place and no single subnet should have more than about 210 devices on it.

It was time to start spanning various switch ports to capture more than just ARP broadcasts from these
devices. We decided to capture traffic to file sets to deal with the high amount of traffic we were capturing.

It didn’t take long to see some undecoded traffic crossing the network from a host that the IT team did not
recognize. We focused in on this traffic.

Since Wireshark didn’t have a dissector for this traffic, we couldn’t tell right away what the mysterious device
was saying.

By reassembling the UDP streams we could see some interesting text strings that helped us identify these
devices. They were various pieces of medical equipment that had embedded Windows XP running on them.

This raised serious concerns about the security of the network—were these systems patched and updated to
protect them against known security issues? Who was responsible to keep these "closed devices" up-to-date?

This onsite analysis project led to the customer coordinating a vendor/customer initiative to examine the
security of devices with embedded operating systems. In some cases they pulled the devices from the network
completely.

Summary

Following streams is a useful process to view the commands and data transferred in a conversation. Wireshark
strips off the data link header, IP header and TCP or UDP header and color codes the traffic to differentiate
between client and server traffic.

You can reassemble UDP, TCP and SSL streams. SSL streams only show reassembled data after they are
decrypted.

On some communications, such as FTP data transfers, you can rebuild the original file transferred by saving
the reassembled data. You can use the file identifier to determine what type of file was transferred.

To reassemble files transferred using SMB, don't waste your time with Follow TCP Stream. Instead, use File |
Export Objects | SMB.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
Open the trace files listed below to practice reassembling streams.

http://www.wiresharkbook.com/

app-nodissector.pcapng: Even though Wireshark doesn't have a dissector for this application, following the
TCP stream reveals the application in use. If Wireshark doesn't have a dissector for your traffic, examine the
payload to look for some evidence to help identify the application or look up the port number used on
WwWw.iana.org.

ftp-clientside.pcapng: Disable the Checksum Errors coloring rule when viewing this trace file. This is an FTP
file transfer. Note that you can follow the TCP stream of the data transfer and see the type of camera used to
take the picture. This trace is the client side of the ftp-serverside.pcapng trace file. Use Save As to make a
new file from the data exchanged during this conversation.

ftp-download-good2.pcapng: Practice reassembling the file transferred in this FTP operation. You can also
right click on any of the command channel packets to easily view the data channel setup process. The
reassembled file is worth looking at as well.

http-fault-post.pcapng: It's much faster to use reassembly to decipher what happened in this trace file. Use
your display filter techniques to find the POST from the client. Right click on this packet and reassemble the
stream.

httpproxy-problem.pcapng: The client can't communicate with other networks because of errors getting
through the proxy server. Find and read the proxy response in clear text by following the TCP stream. Also
note the slow handshake response time. Not a good day for this user.

ipv6-worldipv6day.pcapng: You can quickly determine the browser software used to reach
scanmev6.nmap.org by reassembling the first HTTP connection in the trace file. Use File | Export Objects |
HTTP to reassemble sitelogo.png. Can you do this using Follow TCP Stream?

rsasnakeoil2.pcap: This trace file is available at the wiresharkbook.com site and also at
wiki.wireshark.org/SSL (the link is named SampleCaptures/snakeoil2_070531.tgz). You can practice
reassembling the SSL stream, but you won’t see much. Learn how to decrypt SSL traffic with an RSA key in
udp-mcaststream-queued2.pcapng: Sure you can reassemble UDP traffic. Right click on a UDP packet in
the Packet List pane and select Follow UDP stream. You can save the UDP stream just as you can save a
TCP stream.

voip-extension2downata.pcapng: Practice replaying a VolP call using Telephony | VolP Calls |
<select call= | Player | Decode. It's not the most interesting conversation as we hear "Sorry..." and a
problem with the VolP call connection.

Review Questions

Q10.1
You have selected a packet in the Packet List pane, but Follow TCP Stream, Follow UDP Stream and Follow SSL
Stream are not available. Why not?

Q10.2
What is the syntax of the display filter created when you choose Follow TCP Stream?

Q10.3
How can you determine the type of file transferred over an FTP connection when you use Follow TCP Stream?

Q10.4
Why would the Stream window be empty when you select Follow SSL Streams?

Answers to Review Questions

Q10.1
You have selected a packet in the Packet List pane, but Follow TCP Stream, Follow UDP Stream
and Follow SSL Stream are not available. Why not?

Al10.1

You must have selected a packet that does not have a TCP header, UDP header or is not an SSL
communication. For example, you cannot follow streams if you select an ARP packet in the Packet List
pane.

Q10.2

http://www.iana.org/
http://wiki.wireshark.org/SSL

What is the syntax of the display filter created when you choose Follow TCP Stream?

A10.2

tcp.stream eq x where X is the TCP stream number. This same syntax is used when you Follow SSL
Streams. When you follow a UDP stream the syntax defines the IP addresses and port numbers—for
example, (ip.addr eq 24.6.150.44 and ip.addr eq 68.87.76.178) and (udp.port eq 1427 and
udp.port eq 53).

Q10.3
How can you determine the type of file transferred over an FTP connection when you use Follow
TCP Stream?

A10.3
You can look at the file name in the command channel or look for a file identifier inside the file itself.

Q10.4
Why would the Stream window be empty when you select Follow SSL Streams?

Al0.4
The Stream window will be empty until you successfully apply decryption keys to the SSL stream.

Chapter 11
Customize Wireshark Profiles

Customize Wireshark with Profiles

Profiles can be used to work more efficiently with display filters, capture filters, coloring rules, columns and
layouts specifically configured for the environment in which you are working.

For example, if you work on a network segment at a branch office that consists of routing traffic, web
browsing traffic, VolP traffic and DNS traffic, you might want to create a profile called "Branch 01". This profile
might contain coloring rules that help make the interpretation process faster. You might also include a column
to show the Window Size field values for TCP communications and an IP DSCP column to note any
asynchronous routing of your VolP traffic.

Figure 163 shows the Wireshark Status Bar. The current profile in use is listed in the right column. In this case
we are working with the default profile, but we can quickly choose another profile in the list.

o Default
80211 Analysis
Application Analysis

Ay Email Analysis
HTTP Analysis
¢
;\i OpenssL/0.¢ Main Lab Network
Z r\n Security Analysis
T lesh
§ . |Profile: Defautt [l sbichioies !

Figure 163. Click on the Profile column on the Status Bar to quickly change your profile selection

When you create a new profile, Wireshark builds a directory with the same name. The number of files
contained in the profile’s directory depends on what you have added to your profile. The Default profile uses
the configuration files located directly inside the Personal Configuration directory.

When you shut down Wireshark or change to another profile, the profile in use is saved and automatically
loaded again when you restart Wireshark.

Create a New Profile

Right click on the Profile area in the Status bar or select Edit | Configuration Profiles | New to create a
new profile. Wireshark will create a new directory using the profile name you specify. This new directory is
placed in a \profiles directory under your Personal Configurations directory. You can also rename, copy or
delete profiles in this area.

Wireshark 1.6.x Wireshark 1.7 and later
1 Create New Profie | B rcmnmum e

Profie name: | [ERTIEER

ok][canca] || |[*"
T = |

Figure 164. Make new profiles based on existing ones in more recent versions of Wireshark

Figure 165 shows the contents of a Personal Configuration directory. When we defined our first profile,
Wireshark created \profiles in our Personal Configurations directory. Inside the \profiles directory, we have
individual profile directories for our various profiles.[74]

b Laurs b AppDats » Rosming » Witcshark » profiies »

Figure 165. Our Personal Configurations directory contains a profiles folder

There are several files that may be inside the profiles directory—which files exist depend on the settings
established when working within a profile. The files may include:
cfilters
dfilters
colorfilters
preferences
disabled_protos
decode_as_entries
recent

When Wireshark creates a new profile, it uses the default settings from the Global Configurations directory. As
you alter those settings, new profile configuration files are placed in the profile’s directory.

“Create from a Master Profile First

As of Wireshark 1.8, you are prompted to create your new profile based on an existing profile. This is a fast
way to populate a new profile with common settings you use in each profile. Consider making a Master profile
that includes basic capture filters, display filters, coloring rules and protocol settings. When you build any new
profile, use Create from to define the Master profile as the source. This is a great addition to Wireshark.

Share Profiles

Profiles consist of a number of configuration files in a directory named after the profile itself. For example, if
you make a profile called "Corporate HQ," Wireshark creates a "Corporate HQ" directory under the Wireshark
\profiles directory. To share the profile, copy the entire "Corporate HQ" directory to another Wireshark
system’s profile directory.

“Be Careful Sharing Profiles

Be careful when copying the preferences file from one computer to another. Some settings may not be
compatible with the new computer’s directory structure or configuration. Two potential conflicts from the
preferences file are shown below:

Directory to start in when opening File Open dialog.

gui.fileopen.dir: C:\Users\Laura\Documents\traces — master

Default capture device

capture.device: AirPcap USB wireless capture adapter nr. 00: \\.\airpcap00

Create a Troubleshooting Profile
A general troubleshooting profile can help spot issues in your traffic. Such a profile might contain the following
customized configurations:

cfilters: The cfilters file contains the capture filters for the local host MAC address and traffic ports.
e My MAC: ether host D4:85:64:A7:BF:A3

e Not My MAC: not ether host D4:85:64:A7:BF:A3

e DHCP: port 67

e Inbound SYNSs: tcp[tcpflags] & (tcp-syn) != 0 and tcp[tcpflags] & (tcp-ack) = 0 and not src net
10.16

dfilters: The dfilters file contains filters for key types of traffic and triggers on the troubleshooting coloring rules
defined next.

e TCP Issues: tcp.analysis.flags

e SYN Packets: tcp.flags==0x0002

e HTTP GETSs: http.request.method==""GET"

¢ Info Packets: frame.coloring_rule.name matches "~I-"

e Trouble Packets: frame.coloring_rule.name matches " T-"

colorfilters: The colorfilters file contains colorization overriding false positives and highlighting unusual traffic on
the network, such as low TCP window size values and application error responses. G indicates green
background; O indicates orange background, R indicates red background in this example.
¢ |-WinUpdates/G: expert.message=="Window update"
e |-TCP SYN/R: tcp.flags.syn==1
I-TCP Win/O: tcp.options.wscale.shift==
T-HTTP-err/O: http.response.code > 399
T-DNS-err/O: 1dns.flags.rcode==0 && dns.flags.response==1
T-TCP Delay/O: tcp-time_delta > 2

T-SmallWin/O: tcp.window_size < 1320 && tcp.window_size > 0 && tcp.flags.fin==0 &&
tcep.flags.reset==

preferences: The preferences file contains the column settings that work well for troubleshooting.
e TCP: Enable Calculate conversation timestamps
 IP: Disable checksum validation

Time Column: Set to Seconds Since Previous Displayed Packet

Add Column: tcp.window_size

Add Column: tcp.seq

Add Column: tcp.nxtseq

Add Column: tcp.ack

Add Column: tcp.time_delta

In addition, the preferences file contains the Filter Expressions settings. Consider building Filter Expression
buttons for your most popular display filters. For more information on Filter Expressions, refer to Configure

Filter Expressions.

“Import Some Profiles
Rather than create this troubleshooting profile yourself, feel free to download it from the wiresharkbook.com
website. Evaluate the various settings and alter it to work best with your network.

Create a Corporate Profile
A sample corporate profile might contain the following customized configurations:

cfilters: The cfilters file contains the capture filters for a key host based on its MAC address or its IP address (if
statically assigned), key protocols and ports used.

dfilters: The dfilters file contains filters for a key host based on its MAC address or its IP address (if statically
assigned), key protocols and ports used and key web server host names. All display filters should be defined as
coloring rules as well so the traffic is easy to find in the trace files.

colorfilters: The colorfilters file contains colorization for unusual traffic on the network, such as low TCP
window size values, traffic flowing between clients (built by excluding traffic that contains the IP address of a
server in the source or destination IP address field) and application error responses.

preferences: The preferences file contains the column settings that include a Time Since Previous Displayed

Packet, a column for the TCP window size setting and a column for the WLAN frequency/channel (consider
adding other columns defined in the WLAN profile section next).

Create a WLAN Profile

A sample WLAN profile might contain the following customized configurations:

cfilters: The cfilters file contains the capture filters for key WLAN hosts based on either their MAC address
(such as wlan host 08:02:14:cb:2b:03) or its IP address (if statically assigned), key protocols and ports used.
In addition, create capture filters for beacon frames (wlan[0] '= 0x80) and other types of WLAN traffic.

dfilters: The dfilters file contains filters for all WLAN traffic (wlan), key hosts based on either its MAC address
(such as wlan.addr==08:02:14:cb:2b:03) or its IP address (if statically assigned), key protocols and ports. In
addition, the dfilters file contains filters for key WLAN traffic types, such as beacons
(wlan.fc.type_subtype==0x08) and management frames for a specific SSID (wlan_mgt.ssid=="Corp WLAN1')
and WLAN retries (wlan.fc.retry==1). All display filters should be defined as coloring rules as well so the
traffic is easy to find in the trace files.

colorfilters: The colorfilters file contains colorization for unusual traffic on the network, such as low TCP
window size values, traffic flowing between clients (this is built by excluding traffic that contains the IP address
of a server in the source or destination IP address field) and application error responses. The colorfilters file
also contains colorization for certain WLAN traffic, such as disassociation frames
(wlan.fc.type_subtype==0x0a), retries (wlan.fc.retry==1) and weak signal strength in Radiotap headers
(radiotap.dbm_antsignal < -80). Use the auto-complete feature with wlan. (add the trailing period) to
identify possible other display filter values. You might also want to add coloring rules based on the WLAN
channel as explained in Chapter 26: Introduction to Analyzing 802.11 (WLAN) Traffic.

preferences: The preferences file contains the column settings that include a Time Since Previous Displayed
Packet, a column for the TCP window size setting and a column for the WLAN Channel (frequency/channel),
Radiotap Signal Strength value (radiotap.dbm_antsignal) or PPl Signal Strength value (ppi.80211-
common.dbm_antsignal), 802.11 RSSI (field type I1EEE 802.11 RSSI) and transmission rate (field type 1EEE
802.11 TX rate). For more information on analyzing WLAN traffic, refer to Chapter 26: Introduction to 802.11

(WLAN) Analysis.

Create a VolIP Profile
A sample VolP profile might contain the following customized configurations:

cfilters: The cfilters file contains the capture filters for a key host based on its MAC address or its IP address (if
statically assigned), key protocols and ports used. Since SIP and RTP traffic is typically based on UDP, you may
use the UDP capture filter (udp) more often than usual.

dfilters: The dfilters file contains filters for a key host based on its MAC address or its IP address (if statically
assigned), key protocols and ports used and key web server host names. The dfilters file also contains filters
for SIP (sip) and RTP (rtp) traffic as well as filters for various SIP error responses (such as sip.Status-
Code==401). All display filters should be defined as coloring rules as well so the traffic is easy to find in the
trace files.

colorfilters: The colorfilters file contains colorization for unusual traffic on the network, such as low TCP
window size values, traffic flowing between clients (this is built by excluding traffic that contains the IP address
of a server in the source or destination IP address field) and application error responses. In this VolP profile,
the colorfilters file also contains colorization for SIP error responses (such as sip.Status-Code==401) and
retransmissions (sip.resend==1).

preferences: The preferences file contains the column settings that include a Time since Previous Displayed
Packet, a column for the TCP window size values and a column for the DSCP (Differentiated Services Code
Point) value (ip.dsfield.dscp). In addition, the RTP protocol preference setting Try to Decode RTP outside
of conversations should be enabled. For more information on analyzing VolP traffic, refer to Chapter 27:
Intr ion to Voi ver IP (VolP) Analysis.

Create a Security Profile
A sample security profile might contain the following customized configurations:

cfilters: The cfilters file contains the capture filters for a key host based on its MAC address or its IP address (if
statically assigned), key protocols and ports used and key web server host names.

dfilters: The dfilters file contains filters for a key host based on its MAC address or its IP address (if statically
assigned), key protocols and ports used and key web server host names. Display filters should be configured
based on unusual traffic patterns—it is imperative that these display filters are also defined as coloring rules.
Examples include a display filter for IRC traffic based on the JOIN command (tcp matches *(?i)join"),
unusual ICMP traffic ((icmp.type==3) && (icmp.code==1 || icmp.code==2 || icmp.code==3 || icmp.code==
Il icmp.code==10 || icmp.code==13)) and ICMP OS fingerprinting ((icmp.type==13 || icmp.type==15 ||
icmp.type==17)). All display filters should be defined as coloring rules as well so the traffic is easy to find in
the trace files.

For more examples of security filters and colorization, refer to Chapter 30: Network Forensics Overview,

Chapter 31: Detect Network Scanning and Discovery Processes and Chapter 32: Analyze Suspect Traffic. These
chapters focus on detecting discovery processes and evidence of compromised hosts.

colorfilters: The colorfilters file contains colorization for unusual traffic on the network, such as low TCP
window size values (which can be signs of performance problems or TCP vulnerabilities being exploited), traffic
flowing between clients (built by excluding traffic that contains the IP address of a server in the source or
destination IP address fields), application error responses and unusual ICMP traffic or other suspicious traffic
patterns.

preferences: The preferences file contains the column settings that include columns for web server names
(http.host) and TCP stream Index values (tcp.stream).

=

Case Study: Customizing Wireshark for the Customer

One of my customers had thousands of hosts and literally hundreds of applications. Capturing traffic from a
client on the network inevitably ended up with a huge amount of traffic to sort through—we wanted to make
the trace files easier to manage and analyze.

By creating a new profile for each of the three offices that we visited, we could analyze the traffic faster. The
client was primarily interested in slow performance between the clients and one database server in particular
—"DB912."

Here are the Wireshark areas we customized in a profile for this client:

+ We created a coloring rule for large delays in the traffic from the DB912 server (ip.src==10.6.2.2 &&
tcp.time_delta > 0.200). These packets were displayed with a red background and white foreground. Red
backgrounds would be a symbol of problem traffic.

« We created a coloring rule for small Window Size field values because this client had Windows XP hosts that
had not been configured to use Window Scaling—we could imagine there may be problems with the TCP
buffer space. For more information, see Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic.
This coloring rule used a red background and a white foreground to alert us to a problem.

+ We added two more ports to the HTTP preferences because they used more than the standard set of ports
for web browsing to their internal servers.

+ We created a special coloring rule for the first packet of the TCP handshake processes (tcp.flags==0x02).
These packets were colored with a dark green background and white foreground—we didn’t use red
because these were not problem packets.

* We created an ethers file that contained the hardware address of the network routers at each office. This
made it easy to identify which router the clients’ traffic went through to get off the network (this customer
had more than one router on each network so watching the paths taken was important).

¢ We added tcp.window_size and ip.dsfield.dscp columns to the Packet List pane.

« We configured GeolP and enabled GeolP lookup in the IP preferences. This allowed us to look at the global
target information right after the last IP header field. For more information on GeolP mapping, refer to List
Endpoints and Map Them on the Earth.

Using all these customized settings, we could understand and troubleshoot the network problems much faster
and more accurately.

Summary

Wireshark’s profiles enable you to customize Personal Configuration settings to work more efficiently in specific
analysis environments. For example, a WLAN profile may have special coloring rules to identify traffic on
separate channels and an extra column to indicate signal strength.

You can create an unlimited number of profiles and copy them to other Wireshark systems. Any configuration
settings dealing with directory paths on the main Wireshark system may not work properly on other Wireshark
systems if the directory structures do not match.

Consider creating profiles for your home environment, your office network, branch offices or wireless networks.
You could also build profiles for specific traffic types, such as wireless, database, VolP or web browsing traffic.

Practice What You’ve Learned

@ There are sample custom profiles in the Download section on the book website, www.wiresharkbook.com.
Copy the profiles to your local Wireshark \profiles directory. If a profiles directory does not exist you can create
one and copy the profiles to that directory.

What elements might you include when creating your own set of profiles for the following network
environments?

* Your corporate office

¢ Your home network

¢ A wireless network

e TCP-based applications

Open the trace files listed below to practice using the specified profiles.

http-download-bad.pcapng: Use the Troubleshooting profile on this traffic. In this trace, the client and the
server can do window scaling, but there are still problems with the data flow. This profile contains a coloring
rule for traffic with a low window size setting.

sec-strangescan.pcapng: Use the Nmap Detection profile for this traffic. What on Earth is the scanner
doing? Look at the TCP Flag settings in the scan packets.

wlan-airplane-laptopson.pcapng: Use the WLAN profile on this traffic. This profile contains separate
coloring rules for traffic on channels 1, 6 and 11 and WLAN retransmit frames, disassociation frames and probe
request/reply frames. This traffic was broadcast on a flight that did not have a wireless network on board. So
much for the old "please disable wireless on your laptops" speech, eh?

Review Questions

Q1l1.1
What elements can you customize using Wireshark profiles?

Q11.2
How can you move a custom profile to another Wireshark system?

Q11.3
Which file should you be cautious of sharing when copying a custom profile to another Wireshark system?

Answers to Review Questions
Q11.1
What elements can you customize using Wireshark profiles?

Al1.1
You can customize your preferences (such as name resolution, columns, stream coloring and protocol
dissection settings), capture filters, display filters, coloring rules, etc.

Q11.2
How can you move a custom profile to another Wireshark system?

Al1l.2
You can copy the entire profile directory to the other Wireshark system's profiles directory.

Q11.3
Which file should you be cautious of sharing when copying a custom profile to another Wireshark
system

Al11.3

http://www.wiresharkbook.com/

The preferences file may contain settings that are specific to the original Wireshark system. This file
contains configurations such as the default directory setting for opening new trace files and the default
capture device setting.

Chapter 12
Annotate, Save, Export and Print Packets

Annotate a Packet or an Entire Trace File

This long-awaited feature changes the way we explain what's going on in a trace file. Finally we can add our
comments about an entire trace file or individual packets right inside the trace file. Your trace file must be
saved in pcap-ng format in order to retain packet or trace file annotations. These comments are saved inside
the trace file itself. When someone opens the pcap-ng file on another Wireshark system (version 1.7 or later),
they will be able to read all your notes embedded in the trace file.

There are two quick ways to add a comment to a packet:

» Select a packet in the Packet List pane and choose Edit | Edit or Add Packet Comment from the Main

Menu.
« Right click on the packet in the Packet List pane and select Edit or Add Packet Comment from the drop

down menu as shown below.

[htto-download-bad peapng
Fle Edt View Go Copture Anslye Statistics Telephony Tools

Bedeel EE@XRPE NesDT

Filter;

uuuuu nation

e Aan - Tn N €2 164 61.8,0,

0 k, Mark Packet (toggle) c
Ignore Packet (toggle)

© Set Time Reference {toggle)

Tim,

Edit o

o w s wnEz

Manually Resolve Address

Packet comments are shown above the Frame section in the Packet Detail pane in a field called pkt_comment.
You can easily right click and add this column to the Packet List pane to see which packets have comments. In
addition, all your packet comments are listed under the Packet Comments tab in the Expert Infos window.

Figure 166 shows individual packet annotations, the Packet Comments column and the Expert Info Packet
Comments tab. Note that you can doubleclick on a comment in the Expert Info tab to open and edit a
comment.

T — ==
Ble Edit Mew Go Capture Anahze Sutistics Telephory Took ot

LR RN BxXxX@a nesaF

Help
B Qe D & ® 8% 8
; BadTCP

H

No. Time Source Destinati

1 0.000000 10.0.52.164 61.8.0.17 ads > http [s
2 0.167521 61.8.0.17 10.0.52.164 http > ads [s
3 0.000035 10.0.52.164 61.8.0.17 ads > http [A
4 0.002194 10.0.52.164 61.8.0.17 GET /openoffi
5 0.155654 61.8.0.17 10.0.52.164 fhttp > ads [A
6 0.001938 61.8.0.17 10.0.52.164 | [TCP segment
7 0.0.52.164

0.007844 61.8.0.17 1

so.
g, SA
dacant MSS

P H :
[MesS;.gg-r cliant: Windnw Scalina SACK and a
i Wireshari: 1299 Expent Infos.
[severit|{

Loroup: | | I FEp——
+Frame 1 66 8 s temreiom [T Feerr e PR —

Ethernet I

s (pht_comment, | 6 bytes | Packets 7195 Displayed: 7195 Marked:0 Loa..._| Profie Default

Figure 166. Packet comments are saved in the trace file and visible in the Packet Details pane as well as the Expert Info Packet Comments tab
[http-download-bad.pcapng]

To add, edit or cancel a comment linked to the entire trace file, simply click on the Comment icon in the lower
left corner of the Status Bar (next to the Expert Info button). This trace file comment is displayed in the trace
file Summary window as shown in Figure 167.

[l http-download-bad.peapng - B e E
File Edit View Go Copture Analy eleph
" e File
SHeeE B %2 i Mame: Ci\traces\http-download-bad.pcapng é
Filter: Length: 5865230 bytes
Format: Wireshark - peapng
Mo, Time Source Destinati | g capculstion: et
1 0.000000 10.0.52.16% 61.8
2 0.167521 61.8.0.17 § 10.0|| Time
3 0 5 000035 10 - 0 = 52 5 1 K 61 : 8 First packet: 2005-11-02 20:01:58
4 0.002194 10.0.52. 61.8 Last packet: 2005-11-02 20:04:03
5 0.155654 61.8.0.17 Haet i
6 0.001938 61.8.0.17 Capture
7 0.007844 61.8.0.17 1OV .o comments
P m g (c) Chappell University
= Packet comments e i e

[l Edit or Add Capture Comments

scarffg, sack™and a
a decent MSS... so far

(<) Chappell University
This is my favorite trace file. It indicates path latency issues, packet loss and recovery

captured (528 bits) on
:09), Dst: 3Com_c9:51:|
10.0.52.164), Dst: 61.
550), Dst Port: http (

= i :
\Eacke& comments (pkt_comment), 66 bytes Packets: 7195 Displayed: 7195 Marked: 0 Loa... | Profile: Default

Figure 167. Comments about the entire trace file can be seen when you select Statistics | Summary or click the Packet Comments icon on the
Status Bar [http-download-bad.pcapng]

Help oK H Clear H Cancel]

“ Almost all the trace files listed in Appendix A contain comments. These files are marked with this comment
icon. Select Statistics | Summary or click on the Annotation button on the Status Bar (next to the Expert
Infos button) to view the trace file comments.

@ In Appendix A, this icon appears if the trace file also contains individual packet comments. Click the Expert
Infos button on the Status Bar and select the Packet Comments tab to see a list of all packet comments.

Save Filtered, Marked and Ranges of Packets

You can save a subset of packets based on the filters and marked packets. In addition, you can choose to save
a range of packets regardless of the filter.

“Avoid the "Needle in the Haystack Issue' by Saving Subsets

Consider saving subsets when you are baselining network communications. If you capture a trace of a
workstation starting up, user logging in, user opening an application and user shutting down, save each
function in a separate trace file for separate review.

Figure 168 shows the Save As window. We can choose whether to save the displayed packets only, the
selected packet, marked packets, first to last marked packets or a range of packets. In our trace file, we have
4 marked packets and 102 packets that match the display filter set. We are saving in pcap-ng format in order
to retain any trace file or packet comments we created.

W Wreshark Save fle sy o — -

Figure 168. You can save all packets, displayed packets, marked packets or a range of packets

You can save trace files in numerous formats as well. Click on the drop down arrow to the right of the Save
as type field to select a format other than Wireshark/tcpdump...libpcap (*.pcap;*.cap) or Wireshark —

pcap-ng (*.pcapng) formats. Alternately you can choose to print packets to a file (either a text file or a
PostScript file). Select File | Print to open the Print window as shown in Figure 169.

@ A5 dsplayed

Al egpanded

Packet bytes

Each packet on & new page

s [Sonce

Figure 169. You can print to a text or PostScript file

When printing, you can choose to print just the Packet List pane summary line, the Packet Details (collapsed,
as displayed, expanded) or the packet bytes. You can print each packet on a separate line (consider the
number of packets you are printing, however). You have the same options to print displayed packets, selected
packets, marked packets or a range of packets as you have when saving.

In Figure 170 we have decided to print the Packet List summary line and the Packet Details information (as
displayed).

“Print Packet Summaries in Landscape Mode

When printing the packet summary line, print in landscape format to see as much information as possible. You
will still likely lose part of the information due to page size constraints. Consider printing to a file (print.txt for
example) to reformat the data for best printing results.

Figure 170. Printed packets retain formats for readability

Export Packet Content for Use in Other Programs

Use File | Export Packet Dissections to create additional graphs, search for specific contents, or perform
other advanced procedures on data captured.

Packets can be exported in several formats:
¢ Plain text (*.txt)
¢ PostScript (*ps)
Comma Separated Values—Packet Summary (*csv)
¢ C Arrays—Packet Bytes (*.c)
¢ PSML—XML Packet Summary (*psml)
¢ PDML—XML Packet Details (*pdml)

In the following example, we exported the contents of a filtered trace file to plot the beacons rate of WLAN
packets—this same graph can be created using a filter with an 10 Graph, but we exported to CSV format so we
could graph and manipulate the information in a different format.

We worked with a profile that contained a column for the delta time value. We wanted to graph the frequency
of beacons in the trace file.

Wireshark: Export File e

Savein Excel CSV Fies] «BrE-
D= Name 2 Date modified Type
=3 No it teh h
s o items match your search.
| as "CSV" (Comma Separated Values packet summary) file...
Deskdop i
= After adding the desired column in the Packet List 0l
Libraries pane, we have selected File | Export Packet
[™ Dissections | as "C8V" file and then indicated
e we are interested in the Packet summary line
Computer
)
A }
< m
File game: Jbeacans.csv Ra
Save as type: |csV (Comma Separated Valuss summary) ("cs: v |
Packet Range Packet Format -
" Captured &' Displayed ¥ Packet suimary line
& Al packets 56 4563 Fackel defails

£ Selected packet 1 1
€ Marked packets

" Range | 0 I Each packet on a new page

I~ Packet Bytes

Figure 171. We have chosen to export displayed packets to CSV format [wlan-beacon-problem.pcapng]

As shown in Figure 171, we named our exported file beacons.csv. Figure 172 shows the file opened in Excel.
The Delta Time column is circled—that is the column we want to graph.

E F G H I 1
Destination Protocol Length Info

202.11 126 Beacon frame, SN=872, FN=0
20211 126 Beacon frame, SN=875, FN,
#0211 126 Beacon frame, SN=876, FN-g
20211

126 Beacon frame, SN=833, ¥

Figure 172. We will graph the contents of the Delta column

In Excel we selected the Delta column and Insert | Line to create the graph shown in Figure 173. Now that
the data is graphed in Excel we can add labels, compare graphs in a single spreadsheet and more. Other
graphs you may consider creating with exported CSV files include tcp.analysis.bytes_in_flight[75] and
wlan.analysis.retransmission.

Delta

AR A

- Delts
I

8 i

Figure 173. Plotting the delta time between beacons [wlan-beacon-problem.pcapng]

“Use Your Own Screen Capture Utility

Since many of the Wireshark screens do not support printing or export, consider using a third-party screen
capture and print utility such as Snaglt by TechSmith Corporation (www.techsmith.com).

Export SSL Keys

You can easily Export SSL Keys using File | Export SSL Keys. The exported key is saved with a .key
extension and contains a value similar to the following:

RSA Session-1D: Master-
Key:df7be659ee74cad671c9962edd70chbelaacc0175b14289362ddd985a3da6f24ad03a6cdF3c4ffco1F5d69F6Fleceb450

Try exporting the SSL key in client_init_renego.pcap. This trace file can be found at www.wiresharkbook.com.
Save Conversations, Endpoints, 10 Graphs and Flow

http://www.techsmith.com/
http://www.wiresharkbook.com/

Graph Information

Conversations, endpoints, 10 Graph and other information may be saved as CSV format files, or in some cases,
as graphic files (in the case of 10 Graphs).

Flow graphs are saved in ASCII text format only. Click the Save As button to save the Flow Graph information.
In Conversations, Endpoints or 10 Graph windows, click the Copy button to save the data in CSV format as

Figure 174. Click the Copy button to save the data from the Conversation or Endpoint windows in CSV format [http-riverbed-one.pcapng]

“Check out Cascade Pilot™ for Graphing

For extensive graphing capabilities, consider Cascade Pilot, the visualization and reporting tool that integrates
with Wireshark. Cascade Pilot is available from Riverbed Technology.

10 Graphs also have a Save button that allows you to save a graphic file in BMP, 1CO, JPEG, PNG or TIFF
format. The saved graphic is very limited. You will not see the X-or Y-axis information.

Export Packet Bytes

To export packet bytes, you must select a field or byte(s) in the Packet Details pane or Packet Bytes
pane. Right click and select Export Selected Packet Bytes or press Ctrl+H.

Using this function, packets can only be exported in raw data format. This format is a hex format of the field(s)
selected with no formatting data. For example, right click on the IP header in the Packet Details pane and
choose Export Selected Packet Bytes to export the IP header of a packet into raw format.

-

ase Study: Saving Subsets of Traffic to Isolate Problems

The customer was having problems with connections to one of their database servers used by their personnel
department. Sometimes the connections seemed to work fine—other times users couldn’t get a connection. It
was the dreaded "intermittent problem".

Because we didn't know when the problem would surface, we set up Wireshark off of a tap between one of
the staff members and the switch. We configured Wireshark to capture traffic to a file set with each file set at
a maximum of 30 MB. To reduce the traffic captured, we also used a capture filter set for all traffic to the
database server (host 10.3.3.4).

Just to make sure we captured the problem while | was onsite, we repeated the same process for three other
personnel department members. We didn’t use port spanning on the switch because we were going to monitor
three ports and | didn’t want to rule out any physical layer issues that the port spanning would hide from us.

We asked the users to work on their database as they usually did—we let them know we were watching their
traffic because (a) we wanted them to see that the IT team was working on the problem and (b) we were
aware that they browsed some sites that weren't work related and we wanted to be able to subtly discourage
them from doing so. <Grin.>

To help us spot the problems in the trace files we employed a little trick on the users’ workstations. We gave
the users a nice little icon named "Ouch" on their desktop to launch a ping to the database server. We told the
users to doubleclick on the icon when they experienced a serious problem in the communications to the
database server.

This helped us spot the problem points in the trace files.

After being informed that the problems were occurring again and that the four personnel department users
had clicked "Ouch" at least three times each, we were ready to start looking at the traces.

We simply filtered on ICMP ping packets (icmp.type==8) and marked these packets. It didn't matter that the
database server never responded—these were just markers in the file to help us find problem spots. Marking
the packets made it easier to skip from one problem point to the next using Ctrl+Shift+N.

In each instance we saw the users were trying to access the same file and the server simply did not respond.
The server sent the TCP ACK indicating that it received the request for the file, but it did not send the
requested file. Repeated requests for that particular file went unanswered. The Time column (set to Seconds
since Previous Displayed Packet) indicated a delay averaging 23 seconds!

The request was ACKed by the server so we knew it arrived at the server. We didn'’t feel that this was a
network problem.

We looked on the server to see if the file existed. It did. We used Find to look for the file name as an ASCII
string and we were able to see times when users could get the file without problems.

It was time to do some research and ultimately contact the vendor. In this case we couldn’t find much online
to help us. We called the vendor and discussed the problem with them.

The vendor denied that the problem could ever occur. They implied that there must be packet loss on the
network or the server was ‘unstable.’

Rolling up our sleeves, we began to carve out the sections in the trace file that demonstrated the problem. We
noted the numbers of the packets that included the file request and unmarked our ping packets (we did this
quickly by filtering on icmp.type==8 and choosing Ctrl+D to unmark the displayed packets).

e s

e
P

@ Range: [F30425 20

We selected File | Save As (Export Specified Packets as of Wireshark 1.8) and choose to save each range
as separate trace files. We didn’t need to give the vendor the entire trace file—we wanted to solve this one
issue that was obviously causing problems. It’'s important to note that we did examine the trace file to ensure
no confidential information was contained in it before sending it to the vendor.

After about three days the vendor responded to my customer stating that they were aware of an "anomaly" in
their program that limited the number of times the file in question could be accessed by the program. If more
than a certain number of users tried to access the file in a short period of time, the program would just discard
the request.

Wireshark showed exactly where the problem was. It didn't tell us why the problem was occurring, but it saved
the IT staff days of troubleshooting time through guesswork, indicated that the network was not at fault,
validated the user’s claims of performance problems and helped management avoid spending money on
equipment that would not have solved the problem.

Summary

Trace files and individual packets can be annotated in newer versions of Wireshark. File annotations are visible
in the Summary window while individual packet comments can be located quickly through the Expert Infos
window's Packet Comments tab. Trace files must be saved in pcap-ng format to retain annotations.

Wireshark offers numerous methods for saving packets, conversations, graphs and even bytes from a single
packet.

To separate a trace file into smaller parts, you can save just the filtered packets, just the marked packets or
even a range of packets. For example, if you find a single conversation that you want to share with a vendor,
you can apply a filter on that conversation and save the conversation traffic in a separate trace file.

You can also export packet or file contents for manipulation in other programs. For example, you can add a
column for the TCP Window Size field, export the file information to CSV format and build charts and graphs in
another application.

Many of the statistics windows also offer the Save feature. For example, you can save the conversation or
endpoint information as well as 10 Graph plot points.

Practice What You’'ve Learned

@ Download the trace files available in the Download section of the book website, www.wiresharkbook.com.
Test your skills at saving subsets of traffic and conversation information using the trace files listed below.

client_init_renego.pcap: Practice exporting an SSL key with this trace file provided by the PhoneFactor
group. Consider creating a \key directory to save all the keys in.

http-riverbed-one.pcapng: Test your skills at exporting a specific type of traffic. Filter on all DNS traffic and
save those packets in a trace file called riverbed-dns.pcapng.

icmpredirect.pcapng: This trace contains ICMP redirection traffic. As you examine this trace, pay close
attention to the MAC address in the packets and the contents of the ICMP Redirect packet (packet 2). That
packet contains the IP address of the recommended router to get to 10.3.71.7. Filter out the ICMP Redirect
packet and save it in a separate file called icmpredir.pcapng.

sec-evilprogram.pcapng: A truly classic trace file of a system infected with the Stopguard browser hijack
spyware/malware/scumware program. Create a DNS filter to see the client look up Virtumonde's website.
That's when the troubles begin. Save the DNS packets in a separate trace file called vmonddns.pcapng. Add
trace file annotations describing the contents of your new trace file.

sec-nessus.pcapng: Nessus (Www.nessus.org), the penetration testing tool, doesn't try to be sneaky. Use
the Find feature to search for the string "nessus" in this trace file. You'll find the "nessus* signature all over in
this trace file. In addition, you'll see the unusual ping packet (packet 3) used by Xprobe2 when the Nessus
scan runs. Open the Conversations window and select Copy. Open a text editor and paste the data into the
file.

wlan-beacon-problem.pcapng: Build an 10 Graph on this trace file and save it as a png file. Also check out
the Copy function on this graph. Import your CSV information into a spreadsheet to work with it further.

Review Questions

Q12.1

How can you quickly view all the packet comments in a trace file?

Q12.2

What save options are available when you only want to save a subset of packets contained in a trace file?
Q12.3

What export format could you use if you are going to import information from the Packet List pane into a
spreadsheet program?

Q12.4
Which Wireshark feature should you use if you want to save a TCP header as a text file?

Answers to Review Questions
Q12.1
How can you quickly view all the packet comments in a trace file?

Al2.1
Open the Expert Infos window and select the Packet Comments tab.

Q12.2
What save options are available when you only want to save a subset of packets contained in a
trace file?

Al2.2
When you select File | Export Specified Packets, you can choose to save displayed packets, selected
packets, marked packets, first to last marked packet or a packet range.

Q12.3
What export format could you use if you are going to import information from the Packet List
pane into a spreadsheet program?

Al12.3

http://www.wiresharkbook.com/
http://www.nessus.org/

Comma separated value (CSV) format imports easily into spreadsheet programs.

Q12.4
Which Wireshark feature should you use if you want to save a TCP header as a text file?

Al2.4
Expand the TCP header in a packet and choose File | Export Packet Dissections and choose as
"Plain Text" file. Select Packet Details: As displayed in the Packet Format section.

Chapter 13
Use Wireshark’s Expert System

Let Wireshark’s Expert Information Guide You

Wireshark’s Expert Information is defined in the dissectors. For example, the TCP Expert Information is
maintained in the packet-tcp.c file. You can access this file on www.wireshark.org when you select Develop |
Browse the Code.

Expert Information is classified into one of four categories:
e Errors: Packet or dissector errors
« Warnings: Unusual responses from the application/transport
« Notes: Unusual responses from the application/transport (may be a recovery process from a Warning)
¢ Chats: Information about the workflow

Each category is represented under a different tab in the Expert Infos window. There is also a Packet
Comments tab (for packet annotations) and a Details tab that lists all Errors, Warnings, Notes, Chats and
packet comments in a single location.

“Check Expert Notes AND Warnings

Prior to Wireshark 1.8, TCP Fast Retransmissions fell under Warnings while Retransmissions and Duplicate
ACKs fell under Notes. Fortunately this changed with Wireshark 1.8 when Fast Retransmissions were moved to
Notes to keep the related traffic together.

Launch Expert Info Quickly

The Expert Info button is available on the Status Bar, as shown in Figure 175.

Open the Expert Infos window by clicking on the Expert Info button on the left of the Status Bar or choose
Analyze | Expert Info from the menu. The Expert Info button is color coded according to the highest level
of classification of Expert Information listed.
¢ Errors: Red
* Warnings: Yellow
Note: Cyan (Light Blue)
Chats: Blue
Comments: Green
None: Grey

J'_MMJ‘\.,-N'\YM e
Transmission control Protocel, SFE Port: 62555 (
@

1@ X é\u:e;-papng(u\lcp-winstaﬂng-oﬂ peapng” 50 KB0O:00:00 | Packets: 7 Displayed: 7 »{
—

Figure 175. The button on the lower left corner of the Status Bar opens the Expert Infos window
[tcp-winscaling-off.pcapng]

Although future versions of Wireshark may expand on the number of Expert elements, currently, the majority
of the elements are based on TCP communication issues.

Figure 176 shows the Expert Info information for a trace file that depicts a network plagued with packet loss.

http://www.wireshark.org/

In this case, a user was trying to download a file.

In the Warnings area we see 100 indications of Previous Segment Lost, 1 Window Full condition and 7 Zero
Window conditions. In the Notes area we see Duplicate ACKs, Fast retransmissions, Retransmissions and
KeepAlives. We can correlate the slow download with a window size issue and packet loss.

“Always Double-Check Expert Findings

Although the Expert Info Composite window points to a likely cause of a problem, always verify the situation
by examining the trace file. For example, in one situation we noticed that Wireshark defined a packet as Out-
of-order when it was actually a retransmission. The original packet had occurred almost 800ms earlier in the
trace file and Wireshark did not relate the retransmission to the earlier original packet—instead, Wireshark saw
the TCP Sequence Number field value was suddenly lower than the previous packet and indicated it was an
Out-of-order packet. Always double-check Expert findings.

Expand a selection in the Expert Infos window to click on a specific packet listed. Wireshark will highlight
that packet in the trace file. For example, in Figure 176, we have expanded the Zero Window information in
the Warnings section. Click on packet 374 and Wireshark will highlight that packet in the Packet List pane.[76]

As of Wireshark 1.8, you can enable the Display LEDs preference setting in the Expert Infos dialog tab labels to
add the related color codes to each of the tabs in the Expert Infos window.

e

Wirashark: 1281 Expert Infos.

@ Errors:0.0) | O Wornings: 3(108) () Notes: 51 (1005) | @ Chots:6 (163) | Detai 1281 | Packes Commentsz0
o

equence ero window
acket:
Packet: 366 Click ket
Click on a packe
i 3
Packet 38 to jump toiit quickly
Packet: 31 d

[l Wireshark 1281 Expert Infos e) o

@ Errors0.0) |OWammgs 3(108) | @ Notes: 51 (1005) (@ Chats: 6 (168) | Detaits 1281 | Packet Comments: 0
Group 4 Protocol 4 Summary 1 Con s

Click onthe
Packet Comments
tab to read all

packet annotations
inthe trace file

Hedp | Close

Figure 176. The Expert Infos window indicates packet loss problems [http-download-bad.pcapng]

Colorize Expert Info Elements

By default, Wireshark colors packets that match the tcp.analysis.flags coloring rule with a black background
and red foreground. These packets are listed in either the Expert Info Warnings or Notes tabs. Expanding the
Frame section shows the coloring rule that a packet matches.

For example, in Figure 177, the packet matches the Bad TCP coloring rule that uses the string
tcp.analysis.flags && !'tcp.analysis.window_update. You can change the colorization of these packets by
editing the coloring rules. Highlighting the Coloring Rule Name field indicates the field name is
frame.coloring_rule_name. You can create a filter based on a value in this field—for example, if you have a
coloring rule called T-Low Window Sizes, you can apply the following display filter to see all packets that match

that coloring rule:
frame.coloring_rule_name=="T-Low Window Sizes"

T rr— = [
Ede Edit Mew Go Capture Anahyze Ststistics Telephory ook Jnternals Help
BESAN EEAXTE AEPST L

Fiter: = | Bxpression

an @EnRE B

BadTCP

nnnnnnn

Mo Tme Source D Info -
145 0.000829 205.234.175.175 24.6.173.220 TCP [TcP Previous -

Frame 145: 1514 bytes on wire (12112 bits), 1514 bytes captured (12]-
Interface id: 0
Arrival Time: Jul 7, 2011 12:23:15.803629000 Pacific Daylight Tim
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1310066595.803629000 seconds
[Time delta from previous captured frame: 0.000829000 seconds]
[Time delta from previous displayed frame: 0.000829000 seconds]
[Time since reference or first frame: 32.417665000 seconds]
Frame Number: 145
Frame Length: 1514 bytes (12112 bits)
Capture Length: 1514 bytes (12112 bits)
[Frame is marked: False]
[Frame is ignored: False]

& - - fitcp]

col E Rule Name: Bad TCP) - o
ote Fatert5 pranalysis.flags &&Mitcp.analysis.window_

Ethernet II, Src: Router-01329 (00:01:5c:3]e#b:cl), Dst: Laura-PC5 (-

(o] @mnmd i eolorg ey s merse THANS u:mn;,.di@dm- 277 Divplayed: 277 Marked. | Profile: Defa.
Figure 177. Expand the Frame section to identify the coloring rule applied [http-iewithtoolbar.pcapng]
Filter on TCP Expert Information Elements

Apply a display filter for tcp.analysis.flags to show packets that match the Expert Info Notes and Warnings
triggers.

Figure 178 shows the result of applying a tcp.analysis.flags display filter to an entire trace file. This is a fast
method to detect TCP-based problems in a trace file.

“Use a tcp.analysis.flags Filter Expression Button

Consider creating and saving this display filter as a filter expression button called Bad TCP. To be most
accurate, add && 'tcp.analysis.window_update to the filter. When you open trace files, click your new Bad
TCP Filter Expression button to locate the most common TCP-related network problems.Expert Infos window

You can create a display filter to examine packets that meet a specific Expert Info severity level. The following
provides examples of the four severity level filters ("Details" and "Packet Comments" are not considered a

severity levels):
expert.severity==error
expert._severity==warn
expert.severity==note
expert.severity==chat

Another display filter is available for packets that are part of a specific Expert Info group. The syntax is
expert.group==<group>. Some of the Wireshark Expert Info groups are:

¢ Checksum—a checksum was invalid

¢ Sequence—sequence number was not correct or indicated a retransmission

« Malformed—malformed packet or dissector bug

» Protocol—invalid field value (possible violation of specification)

Figure 178. A display filter shows TCP problems [http-iewithtoolbar.pcapng]

Understand TCP Expert Information

The TCP dissector file, packet-tcp.c, lists the TCP Expert Information at the beginning of the file and the
details of each Expert Information notification later in the file. The following lists the Expert Information
contained in the packet-tcp.c file. Analyze TCP Sequence Numbers (enabled by default in TCP preferences)

uses these TCP Expert notifications.
TCP_A_RETRANSMISSION 0x0001
TCP_A_LOST_PACKET 0x0002
TCP_A_ACK_LOST_PACKET 0x0004
TCP_A_KEEP_ALIVE 0x0008
TCP_A_DUPLTCATE_ACK 0x0010
TCP_A_ZERO_WINDOW 0x0020

TCP_A_ZERO_WINDOW_PROBE 0x0040
TCP_A_ZERO_WINDOW_PROBE_ACK 0x0080
TCP_A_KEEP_ALIVE_ACK 0x0100
TCP_A_OUT OF ORDER 0x0200
TCP_A_FAST RETRANSMISSION 0x0400
TCP_A_WINDOW_UPDATE 0x0800
TCP_A_WINDOW_FULL 0x1000
TCP_A_REUSED_PORTS 0x2000

The Expert system can speed up the process of locating potential problems in a trace file. The following
section provides a definition of the fifteen TCP Expert notifications defined in the packet-tcp.c file. For more
details on normal and unusual TCP communications, refer to Chapter 14: TCP/IP Analysis Overview and

Chapter 20: Analyze Transmission Control Protocol (TCP) Traffic.

“What Makes an Item a Warning vs. a Note?

Some Expert Info items are categorized as Warnings while others are defined as Notes. A warning indicates a
problem in the communications (such as a lost packet detected) while a note indicates what could be
considered "normal” traffic (such as a retransmission). True, a retransmission is not considered "good."
However, a retransmission is part of the proper TCP recovery process when a network is experiencing packet
loss. Retransmissions are not considered errors per se.

What Triggers TCP Retransmissions?

Retransmissions are listed under the Notes tab in the Expert Infos window. Retransmissions are the result of
packet loss and are triggered when the sender’s TCP retransmission timeout (RTO) timer expires or a receiver
sends Duplicate Acknowledgments to request a missing segment (see What Triggers Duplicate ACK?).

If a TCP segment contains data and it uses the same sequence number as a previous packet, it must be a TCP
retransmission or a fast retransmission (see What Triggers Fast Retransmission?).

To filter on all retransmissions (fast or regular), just use tcp.analysis.retransmission.

Since packet loss typically occurs at interconnecting devices, you should move your analyzer around a bit to try
to isolate the offending device.

What Triggers Previous Segment Lost?

Previous Segment Lost situations are listed under the Warnings tab in the Expert Infos window. Wireshark
tracks the TCP sequence numbers of each packet as well as the number of data bytes in the packets.
Wireshark, therefore, knows the next expected sequence number in a TCP stream. When an expected
sequence number is skipped, Wireshark indicates a previous segment has been lost on the packet immediately
following the missing packet in the stream.

Again, this is a good time to move Wireshark around a bit to find out where packets are being dropped.

What Triggers ACKed Lost Packet?

ACKed Lost Packets are listed under the Warnings tab in the Expert Infos window. When Wireshark detects an
acknowledgment, but it has not seen the packet that is being acknowledged, an ACKed Lost Packet warning is
triggered.

This is an unusual situation to witness. It often indicates that the network supports multiple paths. Wireshark
did not see the data packet because it took a different path. This is often referred to as asymmetrical routing
and can cause issues in network performance and make troubleshooting more complex. Check out Sake Blok’s
case study, The Tale of the Missing ARPs, in Chapter 16 for an example of an asymmetrical routing issue.

The ACKed Lost Packet can also be an indication that your capture process is faulty. For example, if you
spanned a switch port and the switch is overloaded, it may not forward all the traffic down the monitor port.

“When to Consider Trashing a Trace File

How can you troubleshoot something you cannot see? Wireshark is not seeing the entire data flow if there are
ACKed Lost Packet indications in the trace file. Perhaps a switch cannot keep up with normal operations while
in span mode. If the switch drops packets that should be sent to your analyzer, you aren’t seeing an accurate
picture of network traffic. Alternately, if Wireshark could not keep up with the traffic ("Dropped" appears on
the Status Bar during capture), you are not seeing the full view of traffic. Consider throwing away trace files
that indicate ACKed Lost Packet as they won'’t help you find network issues. Capture at a location where you

can see the complete communication.

What Triggers Keep Alive?

TCP Keep Alive packets are listed under the Warnings tab in the Expert Infos window. Each side of a TCP
connection maintains a keep alive timer. When the keep alive timer expires, a TCP host sends a keep alive
probe to the remote host. If the remote host responds with a keep alive ACK (or any TCP packet, for that
case), it is assumed the connection is still valid. If no response is received, it is assumed the connection is

broken[77].
What Triggers Duplicate ACK?

Duplicate ACKs are listed under the Notes tab in the Expert Infos window. A receiver tracks the incoming TCP
sequence numbers. If a packet is detected as missing (the expected sequence number is skipped), the receiver
generates an ACK indicating the next expected sequence number in the Acknowledgment Number field.

A TCP host that supports a feature called Fast Recovery will continue to generate Duplicate ACKs—requesting
the missing segment. When the host sending the TCP segments receives three identical ACKs (the original ACK
and two Duplicate ACKSs), it assumes there is packet loss and it resends the missing packet—regardless of
whether the RTO expired or not. A high number of Duplicate ACKs may be an indication of high latency
between TCP hosts as well as packet loss. A receiver continues to generate Duplicate ACKs until the situation
is resolved.

In essence, we have a packet loss issue again. Begin moving your analyzer around, connecting to the network
in different locations and focus on the interconnecting devices.

What Triggers Zero Window?

Zero Window packets are listed under the Warnings tab in the Expert Infos window. When a receiver has no
receive buffer space available, it sends Zero Window packets indicating the TCP window size is zero. This, in
effect, shuts down data transfer to the receiver. The data transfer will not resume until that receiver sends a
packet with a window size sufficient to accept the next amount of queued data from the sender which is
usually 1 MSS. The trace file http-download-bad.pcapng contains a perfect example of the performance hit
from a Zero Window condition.

Ultimately the cause of a Zero Window condition is an application that is not pulling data out of the receive
buffer fast enough. This might be caused by an underpowered system, running too many CPU-intensive
applications on the host or a dog-slow application. Alternatively, the starting window size may be too small.

What Triggers Zero Window Probe?

Zero Window Probes are listed under the Notes tab in the Expert Infos window. A Zero Window Probe packet
may be sent by a TCP host when the remote host advertises a window size of zero. By specification, a zero
window probe may contain one byte of the next segment of data. If the zero window condition has been
resolved, the receiver sends an acknowledgment for the new byte received. If the zero window condition has
not been resolved, the receiver sends an ACK, but does not acknowledge the new byte.

What Triggers Zero Window Probe ACK?

Zero Window Probe ACKs are listed under the Notes tab in the Expert Infos window. This packet is a response
to the Zero Window Probe packet. If the zero window condition has been resolved, the Zero Window Probe
ACK will acknowledge the new byte received. If the zero window condition has not been resolved, the Zero
Window Probe ACK will not acknowledge the new byte received.

What Triggers Keep Alive ACK?

Keep Alive ACKs are listed under the Notes tab in the Expert Infos window. Keep Alive ACKs are sent in
response to a Keep Alive. If the Keep Alive ACK contains a window size of zero, the zero window condition has
not been resolved.

What Triggers Out-of-Order?

Out-of-order packets are listed under the Warnings tab in the Expert Infos window. If a packet contains data
and does not advance the sequence number, it is either a retransmission or fast retransmission (using the
same sequence number as the previous one) or an Out-of-order packet. An out-of-order packet contains a
lower sequence number than a previous packet.

It is painful to see these Out-of-order packets which often indicate that data traffic travels along multiple paths
to get to the destination. Data streams traveling along multiple paths may encounter different latency times,
thus triggering unnecessary retransmissions if a receiver times out waiting for a packet.

These Out-of-order indications can also be seen when a queuing device along a path does not forward packets
in the same order in which they arrived. For example, packets arrive at the queuing device in 1-2-3-4 order,
but are queued and forwarded in 1-3-2-4 order. An application may not be affected by this slight reordering,
but it is not an ideal way for a queuing device to behave.

What Triggers Fast Retransmission?
Fast Retransmissions are listed under the Warnings tab (prior to Wireshark 1.8) or the Notes tab (in Wireshark
1.8 and later) in the Expert Infos window. A Fast Retransmission occurs within 20ms of a Duplicate ACK.

To filter on all retransmissions (fast or regular), just use tcp.analysis.retransmission.

For all practical purposes, Fast Retransmissions are Retransmissions. The only difference is who noticed the
packet loss first. In this case, the receiver noticed packet loss and began to complain through Duplicate ACKs.
You need to find out the location of packet loss to fix this issue. If Retransmissions are causing serious
performance problems on the network, find the location of the packet loss to fix the problem.

What Triggers Window Update?
Window Update packets are listed under the Chats tab in the Expert Infos window. A Window Update packet
contains no data, but indicates that the sender’s TCP window size field value has increased[78].

These are actually good packets. A client just advertised a larger receive buffer space indicating an application
just picked up some data from the receive buffer. These packets are the only recovery for a Window Zero
condition and do not require any action.

“Window Update Packets Were Colorized Incorrectly (prior to Wireshark
1.8)

Prior to Wireshark 1.8, Window Updates were colorized as Bad TCP when they are actually good events. As of
Wireshark 1.8, the coloring rule for Bad TCP explicitly excludes Window Updates (tcp.analysis.flags &&
Ttcp.analysis.window_update). Thanks to the developers for changing this!

What Triggers Window is Full?

Window is Full packets are listed under the Notes tab in the Expert Infos window. Wireshark tracks a receiver’s
window size and notes when a data packet is sent that will fill up the remaining buffer space. This packet itself
will not have the Window size value of 0—this packet is an indication that a window size value of 0 may come
from the other side if their receive window size is not updated. Examine http-download-bad.pcapng—packet
363 in particular. Notice the previous Window Size values advertised by 10.0.62.174 and the amount of data
being sent to that host.

Focus on the destination IP host for Window is Full packets. That destination IP address indicates the device
that is having issues with the application not picking up data fast enough from its receive buffer. See also
What Triggers Zero Window?

What Triggers TCP Ports Reused?

TCP Ports Reused are listed under the Notes tab in the Expert Infos window. This Expert notification was
added at the same time the tcp.stream indicator was added to Wireshark.

This Expert notification is triggered when a new TCP session begins using the same IP addresses and port
number combination as an earlier conversation in the trace file. To see an example of this Expert Note, open
the Expert Infos window for sec-nessus-recon.pcapng.

This is often seen during a vulnerability scan or reconnaissance process. These packets should be investigated
to see if there is a security issue to address.

What Triggers 4 NOP in a Row?

"4 NOP in a row - a router may have removed some options" is listed under the Warnings tab in the Expert
Infos window.[79] This warning is triggered when Wireshark sees an illogical pattern 01:01:01:01 (4 NOPs, or
No Operations) in a TCP SYN or SYN/ACK packet. A NOP is used to pad a TCP option so it ends on a 4-byte

boundary.

As the warning states, this is typically a router issue—a router has likely stripped off a TCP header option
(such as Selective ACK) and replaced it with 4 NOPs. It is very bad behavior to alter the TCP options in the
handshake process. An option may be stripped out due to a router bug, a router’s inability to support a
particular TCP option or poor router configuration. A server may believe a client does not support SACK
because the option is wiped out in the TCP handshake packet received. Since the server believes the client
does not support SACK, the server will not include SACK information when it responds to the client’s
handshake packet.[80]

In early 2011 | began to see 4 EOLs (End of Options List) being used by interconnecting devices for the same
purpose. An EOL is simply 0x00. You can create a coloring rule to identify these packets using the following
string:

tcp.options contains 00:00:00:00

“Disable Wireshark’s Expert Feature... with Caution

To disable the Expert feature, disable Analyze TCP sequence numbers in the TCP preferences section. Note
that your filter for tcp.analysis.flags will yield no results as no packets will match the filter if this setting is
disabled.

Cése Study: Expert Info Catches Remote Access
Headaches

Submitted by: Guy Talbot, CISSP, Conseiller Principal en Sécurité de I'Information et Réseautique
I am a network architect for a large organization.

Our network consists of close to 2,000 sites and includes more than 100,000 workstations. | am usually not
involved in network incidents unless: (1) things really get out of hand; (2) nobody else can figure out what is
happening; or (3) my boss decides that | need to get involved.

It must have been a Friday afternoon. (These things always happen on a Friday afternoon to ruin your
weekend or on a Monday morning to convince you that Monday morning is a bad idea and should simply be
cancelled.)

Anyway, a technician came into my office indicating that the call center is receiving multiple complaints from
users stating that Internet access is very slow or is not available at all.

Level 1 and 2 technicians and even the network analysts couldn’t understand the causes. Multiples sites are
affected and we already know that all the affected sites are on low speed (ADSL) access. The other common
factor is that all the affected sites are using the Internet through a web proxy service. Don't ask why, but users
on our network can access the Internet either through a web proxy service or they can request to bypass this
service. Level 1 technicians are already using the bypass option as a workaround for the incident, so this is a
number (2) situation where | need to get involved.

The local networks of the affected sites can almost certainly be eliminated as the cause of those incidents
because everything is fine when bypassing the web proxy service. The conclusion is then: the web proxy
service is the cause of the problem.

But wait, we have approximately 1,000 sites still using that web proxy service and they are not reporting any
incidents.

So here we are: we have a network problem!

Wireshark to the rescue. Trying to capture traffic at the web proxy service is futile. Yes, we have network taps
available very close to the equipment, but trying to isolate problematic sessions in the volumes of traffic going
through this service is literally the proverbial "needle in the haystack.”

Network taps and port mirroring are not available on affected sites’ networks.

In an earlier situation, we needed to be able to capture traffic on workstations for long periods of time (days
actually). We could not rely on the users to make sure that Wireshark was running at all times on their systems
every time their systems were rebooted or a shift change occurred.

So we bought a few 250GB USB external drives, installed the Tshark executable as well as WinPcap. We added

a few scripts to install and remove WinPcap and Tshark as a service on a Windows workstation—we called it
"Deepthroat"—no, that wasn't a good name—we called it "USBTSHARK". That's better.

This setup captured all the traffic from the workstations and stored it on the USB drive in 200MB chunks. (If
you are into stupid stunts, capture to your "C" drive, let it run for a while and you'll have a problem that is
definitely not network related.)

We sent a few of these USB drives to the local administrators and asked them to set them up on workstations.
We also asked the local administrators to switch the configuration of Internet Explorer between the web proxy
service and the bypass on those workstation, and finally to log web browsing with both configurations and
note any problems accessing the Internet.

When the traces came back, we began the analyses. | will spare you all the filtering and the latency
calculations that were done on theses traces because it is long, boring and the problem was not there. But still,
they needed to be done.

Looking at the different tabs of the Expert Info in Wireshark, | eventually came across an oddity, the number
of Duplicated ACKs was, let’s say, a little on the high side as shown in the following image.

Tl wireshark: 60 Expert Infos.

Erroes100)| Warnings: 0.(0) Notes: 10(31) | chats1 6 (29) | oetais 60 |

o + |protacel 4 [summary < | count
ol Sequence TP Dupheate ACK (71) o
4 Somence TGP Retrananission (anpected) 15
4 Sequercs TOP Dupheate ACK (#2) 3

% Sequence TCP Duphcate ACK (#3) 2
® sequece TP Duplcate ACK (#4) 2
% Sequence TCP Dupkcate ACK (#5) 2
& Sequece TCP Dupkcate ACK (#6) 1
% Sequence TEP Dupheate ACK (47) 1
 sequence TCP Dupicate ACK (#6) 1
3 Sequence TCP Duphcate ACK (#5) 1

When | isolated the sessions that were impacted, | noticed that, yes, the Duplicate "ACK" indicated lost frames
and sometimes the lost frames were eventually resent and acknowledged.

In certain situations however, the web proxy server retransmitted the last acknowledged frame instead of
retransmitting the lost frame. This retransmission was acknowledged by a Duplicated ACK again. After a few
rounds of that, the workstation eventually got fed up and reset the session.

What can make an average web filtering server suddenly become dumb and not be able to figure out the
proper frame to retransmit?

Looking a few frames back in the trace, | noticed that before the web filtering server began retransmitting the
wrong frame, a few frames were also acknowledged with a Duplicate ACK. This is nhormal—those frames were
simply transmitted after the lost frame, arriving as they should.

An analysis of the TCP header showed that the session was using the SACK option. That's good news—this
should help prevent unneeded retransmissions if we start losing multiple frames.

But wait something is not right. The values of the TCP sequence numbers in the TCP header and those in the
SACK option field are not in the same range—I mean really, completely, definitely those numbers are very far
from each other as you can see in the following figure.

tured)

= options: (12 byzes)
roP

HoP
B SACK: 075687856-075680516
Teft edge = 975687856 (relatived
right adge - 975690616 (relative)
® [sEQ/acK analysis)
® [Timestamps]

Something happened to that TCP header. The Acknowledgement number is 4141, but the left and right edges
in the SACK option field are 975687856 and 975690616.

This time | have no options—no more Mr. Nice Guy. | will need a multi-point trace to find out who the heck is
modifying my TCP headers. Not on my network, not on my watch!

I had a site and a workstation where | could replicate the incident. | could install probes along the path
between the workstation and the web filte