
Undergraduate Topics in Computer Science

What
Is Computer
Science?

Daniel Page
Nigel Smart

An Information Security Perspective

www.allitebooks.com

http://www.allitebooks.org

Undergraduate Topics in Computer
Science

www.allitebooks.com

http://www.allitebooks.org

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
www.springer.com/series/7592

www.allitebooks.com

http://www.springer.com/series/7592
http://www.allitebooks.org

Daniel Page � Nigel Smart

What Is Computer
Science?

An Information Security Perspective

www.allitebooks.com

http://www.allitebooks.org

Daniel Page
Department of Computer Science
University of Bristol
Bristol, UK

Nigel Smart
Department of Computer Science
University of Bristol
Bristol, UK

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-04041-7 ISBN 978-3-319-04042-4 (eBook)
DOI 10.1007/978-3-319-04042-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013958156

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.allitebooks.com

http://www.springer.com
http://www.springer.com/mycopy
http://www.allitebooks.org

Introduction

Computer Science is a diverse subject: it covers topics that range from the design
of computer hardware through to programming that hardware so it can do useful
things, and encompasses applications in fields such as Science, Engineering and
the Arts. As a result, a modern Computer Science degree will often see students
study topics that could be described as applied Mathematics (e.g., cryptography),
applied Physics (e.g., quantum computing), Psychology (e.g., human-computer in-
teraction), Philosophy (e.g., artificial intelligence), Biology (e.g., bio-informatics)
and Linguistics (e.g., speech synthesis); such a list could go on and on.

On one hand, this diversity means trying to capture what Computer Science is can
be quite hard and the subject can be misunderstood as a result. A prime example
is that ICT, a subject often taught in schools, can give a false impression of what
Computer Science would be about at University: if ICT gives the impression that a
Computer Science degree would be about using a word processor for example, the
reality is it relates more closely to creating the word processor itself. The knock-on
effect of this potential misunderstanding is that recruiting students to do Computer
Science degrees is much harder work than you might think.

But on the other hand, the same diversity is tremendously exciting. Bjarne Strous-
trup, inventor of the C++ programming language, is quoted as stating that “our civil-
isation runs on software” and therefore, by implication, the Computer Scientists who
create it do likewise. From the perspective of other fields this might seem like a wild
claim; for example, an Engineer might argue various wonders of the ancient world
were realised without assistance from computers! However, the increasing ubiq-
uity of computing in our lives somewhat justifies the statement. Beyond software
running on desktop and laptop computers, we are increasingly dependent on huge
numbers of devices that have permeated society in less obvious ways. Examples
include software running on embedded computers within consumer products such
as automobiles and televisions, and software running on chip-and-pin credit cards.
All of these examples form systems on which we routinely depend. From domes-
tic tasks to communication, from banking to travel: Computer Science underpins
almost everything we do, even if you cannot see it on the surface.

v

www.allitebooks.com

http://www.allitebooks.org

vi Introduction

Beyond the challenge this presents, it has tangible advantages in terms of em-
ployment: Computer Science graduates are regularly snapped up by industries as
diverse as finance, media and aerospace for example. The reason is obvious: of
course they are highly skilled in the use and creation of technology, but more im-
portantly they have been trained to understand and solve problems, and to challenge
what is possible. These skills in particular turn out to be the “gold dust” that distin-
guishes graduates in Computer Science from other subjects; they also represent the
main reason why such a high proportion of those graduates become entrepreneurs
by developing their own ideas into their own businesses.

So our goal here is to answer questions about, and encourage you to be interested
in, the subject of Computer Science. More specifically, we want to answer questions
such as “what is Computer Science” and “why should I study it at University”. Of
course, to some extent the answers will differ for everyone; different topics within
the subject excite different people for example. But rather than give a very brief
overview of many topics, our approach is to showcase specific topics all roughly
relating to one theme: information security. This is a slightly subjective choice, but
it turns out to allow a very natural connection between lots of things you are already
familiar with (e.g., how compact discs work, or the problem of computer viruses)
and theory in Computer Science that can help explain them. In each case, we try
to demonstrate how the topic relates to other subjects (e.g., Mathematics) and how
it allows us to solve real problems. You can think of each one as a “mini” lecture
course: if you find one or more of them interesting, the chances are you would find
a Computer Science degree interesting as well.

Intended Audience

This book attempts a careful balancing act between two intended types of reader,
who have related but somewhat different needs. Clearly the book can still be useful
if you fall outside this remit, but by focusing on these types we can make some
assumptions about what you already know and hence the level of detail presented.

Students Our primary audience are students looking for an introduction to Com-
puter Science. Two examples stand out:
1. A student studying Mathematics (perhaps ICT or even Computer Science) in later

years of secondary or further education.
In this case our goal is to give a taste of what Computer Science is about, and

to provide a connection to your existing studies. Either way, we view you as a
target to recruit into a Computer Science degree at University!

2. A student in early years of a Computer Science degree at University, or taking
flavours of such a degree from within another subject (e.g., as an optional or
elective course).

In this case our goal is to (re)introduce topics and challenges you may al-
ready be faced with; offering a new, and hopefully accessible perspective can
help understand basic concepts and motivate further study by illustrating con-
crete applications.

www.allitebooks.com

http://www.allitebooks.org

Introduction vii

Teachers Our secondary audience are teachers. Anecdotally at least, we have
found two use-cases that seem important:
1. Where there is a lack of specialist staff, non-specialists or early career staff mem-

bers are often tasked with teaching Computer Science. In some cases, for exam-
ple with content in Mathematics, there is clear synergy or even overlap. Either
way however, this task can be very challenging.

In this case the book can be used more or less as a student would. Although
you might absorb the material quicker or more easily, it still offers an good in-
troduction to the subject as a whole.

2. Even with specialist staff, it can be hard to find and/or develop suitable material;
there are an increasing number of good resources online, but still few that focus
on fundamentals of the subject and hence form a link to University-level study.

In this case, the book can act as a useful way to enrich existing lesson plans,
or as further reading where appropriate. The tasks embedded in the material, in
particular, offer potential points for discussion or work outside the classroom.

Overview of Content

Some books are intended to be read from front-to-back in one go; others are like
reference books, where you can dive into a specific part if or when you need to.
This book sits somewhere between these types. It is comprised of various parts as
explained below, each with specific goals and hence a suggested approach to reading
the associated material.

Core Material

The first part is concerned with the fundamentals of Computer Science, and outlines
concepts used variously elsewhere in the book. As a result, each chapter in this part
should ideally be read in order, and before starting any other part:
Chapter 1 introduces the idea that numbers can be represented in different ways,

and uses this to discuss the concepts of data compression, and error detection and
correction. The example context is CDs and DVDs. Both store vast amounts of
data and are fairly robust to damage; the question is, how do they do this?

Chapter 2 is a brief introduction to the study of algorithms, i.e., formal sets of
directions which describe how to perform a task. The idea is to demonstrate that
algorithms are fundamental tools in Computer Science, but no more complicated
than a set of driving directions or cookery instructions. By studying how algo-
rithms behave, the chapter shows that we can compare them against each other
and select the best one for a particular task.

Chapter 3 uses the example of computer viruses to show how computers actually
work, i.e., how they are able to execute the programs (or software) we use every
day. The idea is to show that there is no magic involved: even modern computers
are based on fairly simple principles which everyone can understand.

www.allitebooks.com

http://www.allitebooks.org

viii Introduction

Chapter 4 highlights the role of data structures, the natural companion to algo-
rithms. By using the example of strings (which are sequences of characters) the
chapter shows why data structures are needed, and how their design can have a
profound influence on algorithms that operate on them.

Chapter 5 deals with one of the most ubiquitous and influential information sys-
tems available on the Internet: Google web-search. Using only fairly introductory
Mathematics, it explains how the system seems able to “understand” the web and
hence produce such good results for a given search query.

The second part focuses specifically on examples drawn from cryptography and
information security. After completing the first part, the idea is that each chapter in
the second part can be read more or less independently from the rest:
Chapter 6 gives a brief introduction to what we now regard as historical schemes

for encrypting messages. The goal is to demonstrate the two sides of cryptog-
raphy: the constructive side where new schemes are designed and used, and the
destructive side where said schemes are attacked and broken. By using simple
programs available on every UNIX-based computer, the chapter shows how his-
torical cryptanalysts were able to decrypt messages their sender thought were
secure.

Chapter 7 discusses the idea of randomness: what does random even mean, and
when can we describe a number as random? The idea is that random numbers
often play a crucial role in cryptography, and using just some simple experiments
one can demonstrate the difference between “good” and “bad” randomness.

Chapter 8 shifts the focus from history to the present day. By giving a more com-
plete overview of a specific area in Mathematics (i.e., the idea of modular arith-
metic) it describes two modern cryptographic schemes that more or less all of us
rely on every day.

Chapter 9 introduces the concept of steganography which relates to hiding secret
data within non-secret data. This allows a discussion of how computers represent
and process images (e.g., those taken with a digital camera) and how simple
steganographic techniques can embed secret messages in them.

Chapter 10 approaches the idea of security from a different perspective than the
description in Chap. 8. As well as reasoning in theory about how secure a system
is, we also need to worry about whether the physical system leaks information or
not. The example scenario is guessing passwords: can you break into a computer
without having to try every possible password, i.e., use any leaked information
to help you out?

Supplementary Material

In addition to electronic copies of each core chapter, various supplementary material
is available online at

http://www.cs.bris.ac.uk/home/page/teaching/wics.html

www.allitebooks.com

http://www.cs.bris.ac.uk/home/page/teaching/wics.html
http://www.allitebooks.org

Introduction ix

This includes additional chapter(s) extending the range of topics covered, plus Ap-
pendices providing extra introduction and explanation for topics we think might
need it.

Perhaps the single most important instance is an Appendix supporting the use of
BASH within examples and tasks. If you have no experience with BASH, which is
common, the examples can be confusing. As such, we have written a short tutorial
that includes a high-level overview of BASH itself, plus lower-level explanations
of every command used in the book. The best approach is arguably to use it for
reference as you read through each chapter: whenever you encounter something
unfamiliar or confusing, take some time to look through the Appendix which should
provide an explanation.

Embedded Tasks

To ensure the content is as practically oriented as possible, various tasks are em-
bedded into the material alongside the fixed examples. These fall into various cate-
gories:

These tasks represent implementation challenges, usually
with a clear or fixed answer or outcome. In some cases the
task might act as a prompt to reproduce or extend an exam-
ple; in other cases the task might ask you to design some-
thing, e.g., an algorithm based on an information description
of something in the material.

These tasks outline topics that represent a good next step on
from the material presented: you are interested in the material
but want to learn more, or about a specific aspect in more
depth, these give some suggestions of what to look at.

They often present open-ended challenges or questions,
and as a result often make good discussion points. Either
way, the idea is that you stop reading through the material,
and attempt to solve the task yourself (rather than rely on the
resources provided).

Some tasks of this type will be harder than others, but none are designed to represent
a significant amount of work: if you get stuck on one, there is no problem with just
skipping it and moving on.

Notation

Throughout the book we have tried to make the notation used as simple and familiar
as possible. On the other, hand some notation is inevitable: we need a way to express
sets and sequences for instance.

www.allitebooks.com

http://www.allitebooks.org

x Introduction

Ranges
When we write a . . . b for a starting point a and a finishing point b, we are describing
a range that includes all numbers between (and including) a and b. So writing 0 . . .7
is basically the same as writing 0, 1, 2, 3, 4, 5, 6, 7. If we say c is in the range 0 . . .7
we mean that

0 ≤ c ≤ 7

i.e., c is one of 0, 1, 2, 3, 4, 5, 6 and 7.

Sequences
We write a sequence of elements called A, which you can think of as like a list, as
follows

A = 〈0,3,1,2〉.
This sequence contains elements which are numbers, but it is important to keep
in mind that elements can be any objects we want. For example we could write a
sequence of characters such as

B = 〈‘a’, ‘b’, ‘c’, ‘d’, ‘e’〉.
Either way, we know the size of A and B , i.e., the number of elements they contain;
in the case of A we write this as |A| so that |A| = 4 for instance.

In a sequence, the order of the elements is important, and we can refer to each
one using an index. When we want to refer to the i-th element in A for example
(where i is the index) we write Ai . Reading the elements left-to-right, within A we
have that A0 = 0, A1 = 3, A2 = 1 and A3 = 2. Note that we count from zero, so the
first element is A0, and that referring to the element A4 is invalid (because there is
no element in A with index 4). Using ⊥ to mean invalid, we write A4 =⊥ to make
this more obvious.

Sometimes it makes sense to save space by not writing all the elements in a given
sequence. For example we might rewrite B as

B = 〈‘a’, ‘b’, . . . , ‘e’〉
where the continuation dots written as . . . represent elements ‘c’ and ‘d’ which have
been left out: we assume whoever reads the sequence can fill in the . . . part appro-
priately. This means it should always be clear and unambiguous what . . . means.
This way of writing B still means we know what |B| is, and also that B5 =⊥ for
example. Another example is the sequence C written as

C = 〈0,3,1,2, . . .〉.
When we used continuation dots in B , there was a well defined start and end to the
sequence so they were just a short-hand to describe elements we did not want to
write down. However, with C the continuation dots now represent elements either

Introduction xi

we do not know, or do not matter: since there is no end to the sequence we cannot
necessarily fill in the . . . part appropriately as before. This also means we might not
know what |C| is, or whether C4 =⊥ or not.

It is possible to join together, or concatenate, two sequences. For example, imag-
ine we start with two 4-element sequences

D = 〈0,1,2,3〉
E = 〈4,5,6,7〉

and want to join them together; we would write

F = D ‖ E = 〈0,1,2,3〉 ‖ 〈4,5,6,7〉 = 〈0,1,2,3,4,5,6,7〉.

Notice that the result F is an 8-element sequence, where F0...3 are those from D

and F4...7 are those from E.

Sets
The concept of a set and the theory behind such structures is fundamental to Math-
ematics. A set is an unordered collection of elements; as with a sequence, the ele-
ments can be anything you want. We can write a set called A by listing the elements
between a pair of braces as follows

A = {2,3,4,5,6,7,8}.

This set contains the whole numbers between two and eight inclusive. The size of
a set is the number of elements it contains. For the set A this is written |A|, so we
have that |A| = 7. If the element a is in the set A, we say a is a member of A or
write

a ∈ A.

We know for example that 2 ∈ A but 9 �∈ A, i.e., 2 is a member of the set A, but 9
is not. Unlike a sequence, the ordering of the elements in a set does not matter, only
their membership or non-membership. This means we cannot refer to elements in
A as Ai . However, if we define another set

B = {8,7,6,5,4,3,2},

we can be safe in the knowledge that A = B . Note that elements cannot occur in a
set more than once.

As with sequences, it sometimes makes sense to save space by not writing all the
elements in a set. For example we might rewrite the set A as

A = {2,3, . . . ,7,8}.

xii Introduction

Sometimes we might want to write a set with unknown size such as

C = {2,4,6,8, . . .}.

This set is infinite in size in the sense there is no end: it represents all even whole
numbers starting at two and continuing to infinity. In this case, the continuation dots
are a necessity; if we did not use them, we could not write down the set at all.

Frequently Asked Questions (FAQs)

I have a question/comment/complaint for you. Any (positive or negative) feed-
back, experience or comment is very welcome; this helps us to improve and
extend the material in the most useful way. To get in contact, email

page@cs.bris.ac.uk

or

nigel@cs.bris.ac.uk

We are not perfect, so mistakes are of course possible (although hopefully rare).
Some cases are hard for us to check, and make your feedback even more valuable:
for instance
1. minor variation in software versions can produce subtle differences in how

some commands and hence examples work, and
2. some examples download and use online resources, but web-sites change over

time (or even might differ depending on where you access them from) so
might cause the example to fail.

Either way, if you spot a problem then let us know: we will try to explain and/or
fix things as fast as we can!

Why are all your references to Wikipedia? Our goal is to give an easily accessi-
ble overview, so it made no sense to reference lots of research papers. There are
basically two reasons why: research papers are often written in a way that makes
them hard to read (even when their intellectual content is not difficult to under-
stand), and although many research papers are available on the Internet, many are
not (or have to be paid for). So although some valid criticisms of Wikipedia ex-
ist, for introductory material on Computer Science it certainly represents a good
place to start.

I like programming; why do the examples include so little programming? We
want to focus on interesting topics rather than the mechanics of programming.
So even when we include example programs, the idea is to do so in a way where
their meaning is fairly clear. For example it makes more sense to use pseudo-
code algorithms or reuse existing software tools than complicate a description of
something by including pages and pages of program listings.

mailto:page@cs.bris.ac.uk
mailto:nigel@cs.bris.ac.uk

Introduction xiii

If programming really is your sole interest, you might prefer

S.S. Skiena and M.A. Revilla.
Programming Challenges: The Programming Contest Training Manual.
Springer, 2003. ISBN: 978-0387001630.

which offers a range of programming challenges; the excellent online resource

http://projecteuler.net/

is similar, although with greater emphasis on problems grounded in Mathematics.
But you need to be able to program to do Computer Science, right? Yes! But only

in the same way as you need to be able to read and write to study English. Put
another way, reading and writing, or grammar and vocabulary, are just tools: they
simply allow us to study topics such as English literature. Computer Science is
the same. Although it is possible to study programming as a topic in itself, we are
more interested in what can be achieved using programs: we treat programming
itself as another tool.

Are there any other things like this I can read? There are many books about spe-
cific topics in Computer Science, but somewhat fewer which overview the subject
itself. Amongst these, some excellent examples are the following:

A.K. Dewdney.
The New Turing Omnibus.
Palgrave-Macmillan, 2003. ISBN: 978-0805071665.

B. Vöcking, H. Alt, M. Dietzfelbinger, R. Reischuk, C. Scheideler, H. Vollmer
and D. Wagner.
Algorithms Unplugged.
Springer, 2011. ISBN: 978-3642153273.

J. MacCormick.
Nine Algorithms That Changed the Future: The Ingenious Ideas that Drive To-
day’s Computers.
Princeton University Press, 2011. ISBN: 978-0691147147.

There are of course innumerable web-site, blog and wiki style resources online.
Some structured examples include the CS4FN (or “Computer Science for fun”)
series from Queen Mary, University of London, UK

http://www.dcs.qmul.ac.uk/cs4fn/

and Computer Science Unplugged series from the University of Canterbury, New
Zealand

http://csunplugged.org/

the latter of which now also offers downloadable and printable books ideal for
use in earlier stages of school.

http://projecteuler.net/
http://www.dcs.qmul.ac.uk/cs4fn/
http://csunplugged.org/

xiv Introduction

Acknowledgements

This book was typeset with LATEX, originally developed by Leslie Lamport and
based on TEX by Donald Knuth; among the numerous packages used, some impor-
tant examples include adjustbox by Martin Scharrer, algorithm2e by Christophe
Fiorio, listings by Carsten Heinz, PGF and TiKZ by Till Tantau, and pxfonts by
Young Ryu. The embedded examples make heavy use of the BASH shell by Brian
Fox, and numerous individual commands developed by members of the GNU
project housed at

http://www.gnu.org

Throughout the book, images from sources other than the authors have been care-
fully reproduced under permissive licenses only; each image of this type notes both
the source and license in question.

We owe a general debt of gratitude to everyone who has offered feedback, ideas
or help with production and publication of this book. We have, in particular, ben-
efited massively from tireless proof reading by Valentina Banciu, David Bernhard,
Jake Longo Galea, Simon Hoerder, Daniel Martin, Luke Mather, Jim Page, and Car-
olyn Whitnall; any remaining mistakes are, of course, our own doing. We would like
to acknowledge the support of the EPSRC (specifically via grant EP/H001689/1),
whose model for outreach and public engagement was instrumental in allowing de-
velopment of the material. All royalties resulting from printed versions of the book
are donated to the Computing At School (CAS) group, whose ongoing work can be
followed at

http://www.computingatschool.org.uk/

We thank Simon Rees and Wayne Wheeler (Springer) for making publication such
a smooth process, and additionally Simon Humphreys (CAS) and Jeremy Barlow
(BCS) for dealing ably with non-standard administrative overhead of the royalties
arrangement.

Daniel Page
Nigel Smart

Bristol, UK

http://www.gnu.org
http://www.computingatschool.org.uk/

Contents

Part I Foundations of Computer Science

1 Compressing and Correcting Digital Media 3
1.1 A Compact Disk = a Sequence of Numbers 5

1.1.1 Decimal and Binary Representation 6
1.1.2 Decimal and Binary Notation 9
1.1.3 Grouping Bits into Bytes 10

1.2 Data Compression . 11
1.2.1 A Run-Length Based Approach 13
1.2.2 A Dictionary-Based Approach 15

1.3 Error Correction . 18
1.3.1 An Error Detection Approach 18
1.3.2 An Error Correction Approach 21

1.4 Recasting Error Correction as Matrix Arithmetic 23
1.4.1 An Overview of Vectors 24
1.4.2 An Overview of Matrices 25
1.4.3 Addition and Multiplication Modulo 2 27
1.4.4 Using Matrices for Error Correction 28
1.4.5 Generalising the Matrix-Based (7,4)-Code 31

References . 31

2 Writing and Comparing Algorithms 33
2.1 Algorithms . 33

2.1.1 What Is an Algorithm? 34
2.1.2 What Is not an Algorithm? 37

2.2 Algorithms for Multiplication 38
2.3 Algorithms for Exponentiation 42
2.4 Computational Complexity . 44

2.4.1 Step Counting and Dominant Steps 45
2.4.2 Problem Size and Step Counting Functions 46

xv

xvi Contents

2.4.3 Ignoring Small Problems and Minor Terms 47
2.4.4 Studying the Growth of Functions 49

References . 51

3 Playing Hide-and-Seek with Virus Scanners 53
3.1 Computers and Programs . 55

3.1.1 A Theoretical Computer 56
3.1.2 A Real, Harvard-Style Computer 57
3.1.3 A Real, von Neumann-Style Computer 59

3.2 Harvard Versus von Neumann Computers 66
3.2.1 Beyond Straight-Line Programs 67
3.2.2 Toward Self-Modifying Programs 68

3.3 A Self-Modifying Virus . 70
3.3.1 Using XOR to Mask Numbers 70
3.3.2 A Virus that Masks the Payload 71
3.3.3 Preventing the Virus Without a Virus Scanner 73

References . 74

4 How Long Is a Piece of String? . 77
4.1 String Data Structures . 78

4.1.1 Problem #1: Representing Characters 80
4.1.2 Problem #2: Representing Strings 82

4.2 String Algorithms . 84
4.2.1 strlen: Finding the Length of a String 84
4.2.2 toupper: Converting a String to Upper-Case 86
4.2.3 strcmp: Testing if One String Is the Same as Another . 89
4.2.4 strcat: Concatenating Two Strings Together 91
4.2.5 Problem #3: Repeated Concatenation 95

References . 97

5 Demystifying Web-Search: the Mathematics of PageRank 99
5.1 PageRank: the Essence of Google Web-Search 100

5.1.1 What Actually Is Web-Search? 100
5.1.2 Web-Search Before Google 101
5.1.3 Web-Search After Google 102

5.2 Using Graph Theory to Model and Explore the Web 103
5.2.1 Graph Traversal . 105
5.2.2 Graph Exploration . 109

5.3 Using Probability Theory to Model Web-Browsing 110
5.3.1 Sanitising the Web-Graph to Avoid a Subtle Problems . . 113
5.3.2 A Mathematical Approach to Computing PageRank . . . 114

5.4 Putting It All Together: Using PageRank to Produce Web-Search
Results . 121

References . 123

Contents xvii

Part II Examples from Information Security

6 Using Short Programs to Make and Break Historical Ciphers . . . 127
6.1 Shift Ciphers . 128

6.1.1 Encryption and Decryption 128
6.1.2 Cryptanalysis . 135

6.2 Substitution Ciphers . 138
6.2.1 Encryption and Decryption 139
6.2.2 Cryptanalysis . 141

References . 147

7 Generation and Testing of Random Numbers 149
7.1 What Is Randomness? . 150

7.1.1 Biased Versus Unbiased 151
7.1.2 Predictable Versus Unpredictable 152
7.1.3 Random Versus Arbitrary 153

7.2 Real Randomness . 154
7.2.1 Generating Randomness 154
7.2.2 Testing Randomness . 155

7.3 Fake Randomness . 159
7.3.1 Generating Randomness 159
7.3.2 Testing Randomness . 164

References . 167

8 Safety in Numbers: Modern Cryptography from Ancient
Arithmetic . 169
8.1 Modular Arithmetic: the Theory 171

8.1.1 Rules for Modular Addition 172
8.1.2 Rules for Modular Multiplication 173
8.1.3 The Sets Z, ZN and Z

�
N 175

8.1.4 Some Interesting Facts About Z�
N 177

8.2 Modular Arithmetic: the Practice 179
8.2.1 Addition and Subtraction 179
8.2.2 Multiplication . 181
8.2.3 Exponentiation . 183
8.2.4 Division (via Inversion) 183

8.3 From Modular Arithmetic to Cryptographic Protocols 190
8.3.1 Diffie-Hellman Key Exchange 190
8.3.2 RSA Encryption . 192
8.3.3 Functional Versus Secure 194

References . 197

xviii Contents

9 Hiding a Needle in a Haystack: Concealed Messages 199
9.1 Digital Images . 200

9.1.1 Rasterised Images . 200
9.1.2 Vector Images . 204

9.2 Steganography . 208
9.2.1 Rasterised Images: “Stolen LSBs” 208
9.2.2 Vector Images: “Microdots” 211

References . 212

10 Picking Digital Pockets . 215
10.1 Passive Physical Attacks . 217

10.1.1 Attack . 217
10.1.2 Countermeasures . 221

10.2 Active Physical Attacks . 224
10.2.1 Attack . 224
10.2.2 Countermeasures . 225

References . 227

Index . 229

Part I
Foundations of Computer Science

www.allitebooks.com

http://www.allitebooks.org

1Compressing and Correcting Digital Media

If you talk to most teenage mobile telephone users, they will be experts in data
compression [3]. Sadly, money rather than Computer Science is their motivation.
Short Message Service (SMS) text messages [17] cost the sender some money and,
in addition, are limited to 160 characters per-message. Newer messaging services
like Twitter derive their limits from SMS (140 characters is actually 160 characters
minus 20 for any meta-data), but is less clear where the 160 character limit came
from in the first place; it seems the designers just guessed this would be about right
in 1985, and now we are stuck with it forever!

Although Twitter messaging is (currently) free, SMS turns out to be a relatively
expensive means of communication. For example, Nigel Bannister, a lecturer at the
University of Leicester, made a comparison used on the Channel 4 documentary
called The Mobile Phone Rip-Off : at £0.05 per-message in 2008, transmitting 1 MB
of data using SMS costs about £374.49 whereas transmitting the same amount from
the Hubble Space Telescope [9] to earth only costs about £8.85!

But I digress. The point is that no matter what means of communication we
choose, it makes sense to pack as much information into each message as we can.
For example the message

“R U @ hm cuz I wnt 2 cm ovr”

is only 27 characters long and looks like gibberish [18]. To the trained eye, however,
it easily translates into the message

“are you at home because I want to come over”

which is a massive 43 characters.
We have compressed the message: the first message is shorter than the second,

and perhaps costs less as a result. Of course, there is a trade-off or balance between
how much we save in terms of communication and how much work we do to com-
press and decompress the text: typically the more cryptic a text message, the harder
it becomes for someone to understand it.

The idea of compressing data is not a new one, but is often hidden by new trends
in technology. Only a generation ago for example, before the advent of high-speed

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_1,
© Springer International Publishing Switzerland 2014

3

http://dx.doi.org/10.1007/978-3-319-04042-4_1

4

broadband and wireless Internet connections, communication between computers
was achieved using a MODEM [13]. The purpose of such a device was to convert
digital data into analogue sounds that could be sent along a normal telephone line;
this allowed computers to “talk” to each other. However, the speed at which they
could talk was slow in comparison to the speed at which they did everything else.
Early MODEMs could transmit data at less than 1 kB/s: I can remember transmit-
ting the contents of 880 kB floppy disks to my friend using a MODEM, it literally
took all day! People quickly realised that compressing the data first could help: if
there was less data to send, it would take less time to send it and also reduce their
telephone bill. Exactly the same story is true of storage. Again looking back only a
generation ago, it would have been seen as quite extravagant to own a 50 MB hard
disk. Constrained by cost, people using even smaller hard disks than this realised
that they could extend the limits of the space they did have by compressing files
which were not in use. It was common practice, whenever they finished writing a
document, to first save it onto the hard disk and then compress it so that it took up
less space.

These days one can buy a 50 GB hard disk, so it might appear that the need
for compression has disappeared: with large bandwidth and storage capacities, who
really needs it? The problem is that people have a tendency to fill up whatever
bandwidth or storage capacity is provided with new forms of data produced by new
forms of application! As an example, consider the rise in use of digital photography:
armed with digital cameras, people are now used to taking many photographs every
time they do something or go somewhere. It is highly likely that the average person
takes over 1000 pictures per-year; over a lifetime that is a lot of data to store!

So we can compress data and save money when we communicate or store it. The
next problem is, when we receive or read the data how do we know that is what was
meant? How do we know there were no errors that may have corrupted the data so
that instead of

“R U @ hm cuz I wnt 2 cm ovr”

the recipient actually gets the even less intelligible

“Q T ? gl btx H vms 1 bl nuq”

i.e., each character is “off by one”. The answer lies in the two related techniques
of error detection and error correction [5]. The idea is that we add some extra
information to the data we communicate or store so that if there is an error it is at
least apparent to us and, ideally, we can also correct it. Returning to reminiscing
about MODEMs, the advantage of an error correction scheme should be apparent:
computers used MODEMs to talk over noisy telephone lines. We have all used a
telephone where there is a bad connection for example. Humans deal with this rea-
sonably well because they can ask the person with whom they are talking to “say
that again” if they do not understand something. Computers can do the same thing,
but first they need to know that they do not understand what is being said; when
the data they are communicating is simply numbers, how can a computer know that
one number is right while another is wrong? Error detection and correction solve

1.1 A Compact Disk = a Sequence of Numbers 5

Fig. 1.1 An illustration of pits and lands on a CD surface

this problem and are the reasons why after a day spent sending the content of floppy
disks via our MODEMs, my friend did not end up with 880 kB of nonsense data he
could not use.

The goal of this chapter is to investigate some schemes for data compression and
error correction in a context which should be fairly familiar: we will consider data
stored on a Compact Disk (CD) [2]. This is quite a neat example because when
introduced in the early 1980s, the amount of data one could store on a CD and their
resilience against damage were two of the major selling points. Both factors (plus
some effective marketing) enabled the CD to replace previous technologies such as
the cassette tape. The “official” CD specifications are naturally quite technical; our
goal here is to give just a flavour of the underlying techniques using the CD as a
motivating example.

1.1 A Compact Disk = a Sequence of Numbers

Roughly speaking, you can think of the content of a CD as being a long spiral track
onto which tiny marks are etched (as shown in Fig. 1.1): a pit is where a mark is
made, a land is where no mark is made. The physical process by which a writer
device performs the marking depends slightly on the CD type. But however it is
written, the idea is that a reader device can inspect the surface of a CD and detect
the occurrence of pits and lands. It is easy to imagine that instead of talking about
pits and lands we could write down the content as a sequence such as

A = 〈0,1,0,1〉
where for the sake of argument, imagine a pit is represented by a 1 and a land is rep-
resented by a 0. Quite often it is convenient to interpret the CD content represented

6 1 Compressing and Correcting Digital Media

by A in different ways that suit whatever we are doing with it. To this end, we need
to understand how numbers are represented by a computer.

1.1.1 Decimal and Binary Representation

As humans, we are used to working with base-10 or decimal numbers because
(mostly) we have ten fingers and toes; this means the set of valid decimal digits
is {0,1, . . . ,9}. Imagine we write down a decimal number such as 123. Hopefully
you can believe this is sort of the same as writing the sequence

B = 〈3,2,1〉
given that 3 is the first digit of 123, 2 is the second digit and so on; we are just
reading the digits from left-to-right rather than from right-to-left. How do we know
what 123 or B means? What is their value? In simple terms, we just weight each of
the digits 1, 2 and 3 by a different amount and then add everything up. We can see
for example that

123 = 1 · 100 + 2 · 10 + 3 · 1

which we might say out loud as “one lot of hundred, two lots of ten and three units”
or “one hundred and twenty three”. We could also write the same thing as

123 = 1 · 102 + 2 · 101 + 3 · 100

since any number raised to the power of zero is equal to one.
In our example, the sequence B consists of three elements; we can write this

more formally by saying |B| = 3 meaning “the size of B is three”. The first element
of the sequence is B0 and clearly B0 = 3; likewise for the second and third elements
we have B1 = 2 and B2 = 1. It might seem odd naming the first element B0 rather
than B1, but we almost always count from 0 rather than 1 in Computer Science. We
can now rewrite

123 = 1 · 102 + 2 · 101 + 3 · 100

as the summation

123 =
|B|−1∑

i=0

Bi · 10i .

In words, the right-hand side means that for each index i between 0 and |B| − 1
(since |B| = 3 this means i = 0, i = 1 and i = 2) we add up terms that look like
Bi · 10i (i.e., the terms B0 · 100, B1 · 101 and B2 · 102). This means we add up

B0 · 100 = 3 · 100 = 3 · 1 = 3
B1 · 101 = 2 · 101 = 2 · 10 = 20
B2 · 102 = 1 · 102 = 1 · 100 = 100

to make a total of 123 as expected. As a final step, we could abstract away the
number 10 (which is called the base of our number system) and simply call it b.

1.1 A Compact Disk = a Sequence of Numbers 7

An aside: a magic trick based on binary numbers (part #1)

A popular magic trick is based on binary representations of numbers: you might
have seen the trick itself before, which is a common (presumably since it is in-
expensive) prize inside Christmas crackers. The whole thing is based on 6 cards
with numbers written on them:

1 3 5 7 9 11 13 15
17 19 21 23 25 27 29 31
33 35 37 39 41 43 45 47
49 51 53 55 57 59 61 63

2 3 6 7 10 11 14 15
18 19 22 23 26 27 30 31
34 35 38 39 42 43 46 47
50 51 54 55 58 59 62 63

4 5 6 7 12 13 14 15
20 21 22 23 28 29 30 31
36 37 38 39 44 45 46 47
52 53 54 55 60 61 62 63

8 9 10 11 12 13 14 15
24 25 26 27 28 29 30 31
40 41 42 43 44 45 46 47
56 57 58 59 60 61 62 63

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

To pull off the trick, we follow these steps:
1. Give the cards to your target and ask them to pick a number x that appears on

at least one card, but to keep it secret.
2. Now show them the cards one-by-one: each time, ask them whether x appears

the card or not. If they tell you x does appear on a card then place it in a pile,
otherwise discard it.

3. To “magically” guess the number chosen, just add up each top, left-hand num-
ber on the cards in your pile.

This means that our number

123 =
|B|−1∑

i=0

Bi · 10i

can be rewritten as

123 =
|B|−1∑

i=0

Bi · bi

for b = 10. So to cut a long story short, it is reasonable to interpret the sequence B

as the decimal number 123 if we want to do so: all we need know is that since B

represents a decimal sequence, we need to set b = 10.

8 1 Compressing and Correcting Digital Media

An aside: a magic trick based on binary numbers (part #2)

Why does this work? Basically, if we write a number in binary then we are ex-
pressing it as the sum of some terms that are each a power-of-two. You can see
this by looking at some examples:

1 = 1 = 20

2 = 2 = 21

3 = 1 + 2 = 20 + 21

4 = 4 = 22

5 = 1 + 4 = 20 + 22

6 = 2 + 4 = 21 + 22

7 = 1 + 2 + 4 = 20 + 21 + 22

...
...

Notice that the top, left-hand number t on each card is a power-of-two; all the
other numbers on a given card are those where t appears as a term when we
express it in binary. Look at the first card for example: each of the numbers 1, 3,
5, 7 and so on include the term t = 20 = 1 when we express it in binary. Or, on the
second card each of the numbers 2, 3, 6, 7 and so on include the term t = 21 = 2.

So given a pile of cards on which x appears, we recover it more or less in
reverse. Imagine the target selects x = 35 for example. Look at the cards: if we
ask the target to identify cards on which 35 appears, we get a pile with those
whose top, left-hand numbers are 1, 2 and 32 . . . when we add them up we clearly
recover

20 + 21 + 25 = 1 + 2 + 32 = 35.

To a target with no understanding of binary, this of course looks far more like
magic than Mathematics!

The neat outcome is that there are many other ways of representing 123. For
example, suppose we use a different value for b, say b = 2. Using b = 2 equates to
working with base-2 or binary numbers; all this means is our weights and digit set
from above change. We could now express the number 123 as the binary sequence

C = 〈1,1,0,1,1,1,1,0〉.

For b = 2, the set of valid binary digits is {0,1}. The value of C is therefore given
by

|C|−1∑

i=0

Ci · 2i

1.1 A Compact Disk = a Sequence of Numbers 9

as before, which since |C| = 8 means we add up the terms

C0 · 20 = 1 · 20 = 1 · 1 = 1
C1 · 21 = 1 · 21 = 1 · 2 = 2
C2 · 22 = 0 · 22 = 0 · 4 = 0
C3 · 23 = 1 · 23 = 1 · 8 = 8
C4 · 24 = 1 · 24 = 1 · 16 = 16
C5 · 25 = 1 · 25 = 1 · 32 = 32
C6 · 26 = 1 · 26 = 1 · 64 = 64
C7 · 27 = 0 · 27 = 0 · 128 = 0

to obtain the number 123 as before.
Now we can move away from the specific example of 123, and try to think about

a general number x. For a given base b, we have the digit set {0,1, . . . , b − 1}.
Remember that for b = 10 and b = 2 this meant the sets {0,1, . . . ,9} and {0,1}.
A given number x is written as a sequence of digits taken from the appropriate digit
set, i.e., each i-th digit xi ∈ {0,1, . . . , b − 1}. We can express the value of x using n

base-b digits and the summation

x =
n−1∑

i=0

xi · bi.

The key thing to realise is that it does not matter so much how we write down a
number, as long as we take some care the value is not changed when we interpret
what it means.

1.1.2 Decimal and Binary Notation

Amazingly there are not many jokes about Computer Science, but here are two:
1. There are only 10 types of people in the world: those who understand binary, and

those who do not.
2. Why did the Computer Scientist always confuse Halloween and Christmas? Be-

cause 31 Oct equals 25 Dec.
Whether or not you laughed at them, both jokes relate to what we have been dis-
cussing: in the first case there is an ambiguity between the number ten written in
decimal and binary, and in the second between the number twenty five written in
octal and decimal.

Still confused? Look at the first joke: it is saying that the literal 10 can be
interpreted as binary as well as decimal, i.e., as 1 · 2 + 0 · 1 = 2 in binary and
1 · 10 + 0 · 1 = 10. So the two types of people are those who understand that 2 can
be represented by 10, and those that do not. Now look at the second joke: this is a
play on words in that “Oct” can mean “October” but also “octal” or base-8. Likewise
“Dec” can mean “December” but also “decimal”. With this in mind, we see that

3 · 8 + 1 · 1 = 25 = 2 · 10 + 5 · 1.

I.e., 31 Oct equals 25 Dec in the sense that 31 in base-8 equals 25 in base-10.

10 1 Compressing and Correcting Digital Media

Put in context, we have already shown that the decimal sequence B and the dec-
imal number 123 are basically the same if we interpret B in the right way. But there
is a problem of ambiguity: if we follow the same reasoning, we would also say that
the binary sequence C and the number 01111011 are the same. But how do we
know what base 01111011 is written down in? It could mean the decimal number
123 (i.e., one hundred and twenty three) if we interpret it using b = 2, or the decimal
number 01111011 (i.e., one million, one hundred and eleven thousand and eleven)
if we interpret it using b = 10!

To clear up this ambiguity where necessary, we write literal numbers with the
base appended to them. For example 123(10) is the number 123 written in base-10
whereas 01111011(2) is the number 01111011 in base-2. We can now be clear, for
example, that 123(10) = 01111011(2). If we write a sequence, we can do the same
thing: 〈3,2,1〉(10) makes it clear we are still basically talking about the number 123.
So our two “jokes” in this notation become 10(2) = 2(10) and 31(8) = 25(10).

Actually working through examples is really the only way to
get to grips with this topic. Convince yourself you understand
things so far by
• converting the decimal literal 31(10) into binary, then
• converting the binary literal 01101111(2) into decimal.

1.1.3 Grouping Bits into Bytes

Traditionally, we call a binary digit (whose value is 0 or 1) a bit. Returning to the
CD content described as the sequence of bits called A, what we really had was
a sequence which we could interpret as a single (potentially very large) number
written in binary. Imagine we write a similar sequence

D = 〈1,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0〉.
One could take D and write it to the CD surface directly, or instead we could write
it in groups of bits. The second approach would be sort of like constructing and
writing a new sequence, for example splitting the bits of D into groups of four,

E = 〈〈1,1,0,0〉, 〈0,0,0,0〉, 〈1,0,0,0〉, 〈1,0,1,0〉〉

or eight,

F = 〈〈1,1,0,0,0,0,0,0〉, 〈1,0,0,0,1,0,1,0〉〉.
So E has four elements (each of which is a sub-sequence of four elements from the
original sequence), while F has two elements (each of which is a sub-sequence of
eight elements from the original sequence). We call a group of four bits a nybble
and a group of eight bits a byte: E is a sequence of nybbles and F is a sequence of

1.2 Data Compression 11

bytes. The thing is, if we write the content of E or F to the CD surface we get the
same bits (and hence the same pits and lands) as if we write D: it just depends on
how we group them together.

Armed with the knowledge we now have about representing numbers, we can
also use a short-hand to write each group as a decimal number. For example

G = 〈3(10),81(10)〉
can be reasonably interpreted as the same sequence as F , and hence D, because

〈1,1,0,0,0,0,0,0〉(2) ≡ 1 · 2 + 1 · 1 = 3(10)

〈1,0,0,0,1,0,1,0〉(2) ≡ 1 · 64 + 1 · 16 + 1 · 1 = 81(10)

As an exercise, look at the four groups of four bits in E: see if you can work out
the equivalent of G for this sequence, i.e., what would the same decimal short-hand
look like?

The upshot of this is that we can describe the CD content in a variety of different
ways on paper, even though when we talk about actually writing them onto the CD
surface everything must be a sequence of bits. All we need to be careful about is
that we have a consistent procedure to convert between different ways of describing
the CD content.

Another representation of integers used by Computer Scien-
tists, often as a short-hand for binary, is base-16 or hexadec-
imal. Do some research on this representation, and try to ex-
plain it within the general framework used for decimal and
binary above. Also, explain
1. how we can cope with the fact that we only have ten digits

(i.e., 0 to 9) but hexadecimal needs 16, and
2. how and why it acts as the short-hand described.

1.2 Data Compression

Even though it is intended as an amusing example, there are serious points we can
draw from our previous discussion of text messaging:
• The topic of data compression has a golden rule which, roughly speaking, says

to replace long things with shorter things. We can clearly see this going on, for
example we have used the short symbol “@” to represent the longer sequence of
characters “at”.

• How were we able to compress and decompress the text at all? Partly the answer
is that we know what English words and sentences mean; we can adapt our
compression scheme because of this knowledge. However, in many situations
we are just given a long binary sequence with no knowledge of what it means: it
could represent an image, or some text for instance. In such a case, we have no

12 1 Compressing and Correcting Digital Media

extra insight with which to adapt our compression method; we only have the raw
bits to look at.

• The fact that we can find a good scheme to compress the text is, in part, because
the English language is quite redundant; this is a fancy way to say some things
occur more often than others. So for example, if you look at this chapter then you
would see that the sequence of characters “compression” appears quite often in-
deed: if we apply the golden rule of data compression and replace “compression”
with some short symbol, e.g., ‘@’, then we will make the document quite a bit
shorter.

• The final thing to note is the difference between lossless and lossy compres-
sion. If we compress something with a lossless compression scheme and then
decompress it, we always get back what we started with. However, with lossy
compression this is not true: such a scheme throws away data thought not to mat-
ter in relation to the meaning. For example, if we had a sequence of ten spaces,
throwing away nine of them still means the text is readable even though it is not
the same.

You may have come across lossy and lossless compression when dealing with digital
photographs. When storing or editing the resulting image files, one usually stores
them in the jpeg or jpg format; this is a standard produced by the Joint Photo-
graphic Experts Group (JPEG) [11]. Such a file usually compresses the image,
but it does so in a lossy manner: some information is thrown away. The advantage
of this approach is that the file can be smaller: much of the information in the image
is so detailed our eyes cannot see it, so any disadvantage is typically marginal.

Armed with this knowledge we can be a bit more specific about how to treat
the CD content: we want a non-adaptive, lossless compression scheme. Put more
simply, we want to take some binary sequence X and, without knowing anything
about what it means, compress it into a shorter sequence X̄ so that later we can
recover the exact original X if we want to. This will basically mean we can write
more data onto the surface of our CD (i.e., longer films, larger files, more music or
whatever), though we need to work harder to access it (i.e., decompress it first).

There are plenty of good software tools for manipulating im-
ages, and many of them are free; a good example is The
GNU Image Manipulation Program (GIMP)

www.gimp.org

Using such a tool, load a photograph and then save various
versions of it: if you use JPEG as the format, you should
be able to alter the compression ratio used, and hence the
quality. What is the smallest sized version (on disk) you can
make? At what point does the image quality start to degrade
past what you find acceptable? Does the answer to these
questions change if you use a different photograph?

www.allitebooks.com

http://www.gimp.org
http://www.allitebooks.org

1.2 Data Compression 13

1.2.1 A Run-Length Based Approach

Imagine we wanted to write a decimal sequence

X = 〈255,255,255,255,255,255,255,255〉
onto a CD. The number 255 is repeated eight times in a row: we call this a run [16],
each run has a subject (i.e., the thing that is repeated, in this case 255) and a length
(i.e., how many times the subject is repeated, in this case 8). Of course, you might
argue that this is a contrived example: how likely is it that 255 will be repeated
again and again in real CD content? Actually, this happens more often that you
would think. Going back to the example, imagine we wrote a digital photograph
onto the CD where numbers in the sequence X basically represent the colours in
the image; if the image has a large block of a single colour then the colour value
will repeat many times. Another example is English text; although it is uncommon
to have a run of more than two identical characters in a word (for example “moon”
is possible with a run of two ‘o’ characters), sometimes there is a long run of spaces
to separate words or paragraphs.

For the sake of argument, imagine there is at least a fair chance of a run occurring
from time to time: how can we compress a run when we find one? Think about a
simple question: which is shorter, X or a description of X written as

“repeat 255 eight times” .

Probably it is hard to say since we know how to write numbers onto the CD, but not
the description of X. So we need to invent a scheme that converts the description into
numbers we can write to the CD; imagine we choose to represent a run description
as three numbers where:
1. the first number (the escape code) tells us we have found a run description rather

than a normal number and therefore need to take some special action (here we
use the number 0 as the escape code),

2. the second number tells us the length of the run, and
3. the third number tells us the subject of the run.
Using this scheme, we can compress our sequence X into the new sequence

X̄ = 〈0,8,255〉
where 0 tells us this is a run, 8 tells us the run length is eight and 255 tells us the
number to repeat eight times is 255. Compressing X into X̄ is a matter of scanning
the original sequence, identifying runs and converting them into the corresponding
description. To decompress X̄ and recover X we simply process elements of the
compressed sequence one at a time: when we hit a 0 we know that we need to do
something special (i.e., expand a run description specified by the next two numbers),
otherwise we just have a normal number.

However, there are two problems. First, since our scheme for describing runs has
a length of three, it does not really make sense to use it for runs of length less than
three. Of course, runs of length one or zero do not really make sense anyway, but

14 1 Compressing and Correcting Digital Media

we should not compress runs of length two because we would potentially be making
the compressed sequence longer! To see this, consider the sequence

Y = 〈255,255〉.
Our compression scheme would turn this into

Ȳ = 〈0,2,255〉,
which is longer than the original sequence! In short, we are relying on the original
sequence containing long runs, the longer the better: if it does not, then using our
scheme does not make sense.

Second, and more importantly, what happens if the original sequence contains
a 0? For example, imagine we want to compress the sequence

Z = 〈255,255,255,255,255,255,255,255,0,1,2〉
with our scheme; we would end up with

Z̄ = 〈0,8,255,0,1,2〉.
When we read Z̄ from the CD and try to decompress it, we would start off fine:
we would read the 0, notice that we had found a run description with length 8 and
subject 255, and expand it into eight copies of 255. Then there is a problem because
we would read the next 0 and assume we would found another run with length 1
and subject 2 which is not what we meant at all. We would end up recovering the
sequence

Z′ = 〈255,255,255,255,255,255,255,255,2〉,
which is not what was originally compressed.

To fix things, we need to be a bit more clever about the escape code. One ap-
proach is to compress a “real 0” into a run of length one and subject 0. With this
alteration we would compress Z to obtain

Z̄ = 〈0,8,255,0,1,0,1,2〉
which will then decompress correctly. However, this is a bit wasteful due to two
facts: first we know it does not make sense to have a run of length zero, and second
if the run length was zero there would be no point having a subject since repeating
anything zero times gives the same result. So we could reserve a run length of zero
to mean we want a real 0. Using this approach, we would compress Z to get

Z̄ = 〈0,8,255,0,0,1,2〉.
We can still decompress this correctly because when we read the second 0 and
(falsely) notice we have found a run description, we know we were mistaken because
the next number we read (i.e., the supposed run length) is also 0: there is no need
to read a run subject because we already know we meant to have a real 0. In other
words, the sequence 〈0,0〉 is an encoding of the actual element 0.

1.2 Data Compression 15

1.2.2 A Dictionary-Based Approach

A run-length approach is fine if the original sequence has long runs in it, but what
else can we do? One idea would be to take inspiration from our original example of
text messaging. Abusing our notation for CD content for a moment, roughly what
we want to do is compress the sequence

X = 〈“are”, “you”, “at”, “home”, “because”, “I”, “want”, “to”, “come”, “over”〉.
The way we did this originally (although we did not really explain how at the time)
was to construct and use a dictionary that coverts long words into short symbols [4].
For example, if we had the dictionary

D = 〈“are”, “at”, “to”〉
then we could compress X into

X̄ = 〈D0, “you”,D1, “home”, “because”, “I”, “want”,D2, “come”, “over”〉.
Essentially we have replaced words in X with references to entries in the dictionary.
For example D0 is a reference to the 0-th entry in the dictionary D so each time we
see D0 in X̄, we can expand it out into “are”.

If X̄ is shorter than X, we could claim we have compressed the original sequence;
if we choose longer words to include in the dictionary or words that occur often, we
improve how much we compress by. The sanity of this approach is easy to see if we
continue to ignore sequences of numbers and consider some real text from Project
Gutenberg:

http://www.gutenberg.org/

Among a huge number of potential examples, consider the text of The Merchant of
Venice by Shakespeare. To analyse the frequency of words, we will combine some
standard commands in a BASH terminal. First we fetch the text and save it as the file
A.txt:

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1810.txt’
bash$

The wget command downloads the file containing The Merchant of Venice text
from the URL

http://www.gutenberg.org/dirs/etext97/1ws1810.txt

using three options, namely
1. -q tells wget not print out any progress information,
2. -U chrome tells wget to masquerade as the Chrome web-browser so the

download is not blocked, and
3. -O A.txt tells wget to save the output into a file called A.txt,

http://www.gutenberg.org/
http://www.gutenberg.org/dirs/etext97/1ws1810.txt

16 1 Compressing and Correcting Digital Media

plus the URL

http://www.gutenberg.org/dirs/etext97/1ws1810.txt

Once we have the text, we translate all characters to lower-case so our task is a little
easier (i.e., we do not need to consider the upper-case characters as distinct), and
save the result in B.txt. This is achieved using the following command pipeline

bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

where the output of cat (the contents of A.txt) is fed as input to tr which per-
forms the translation for us; the output is then redirected into B.txt. In this case,
the rule [:upper:] [:lower:] used by tr can be read as “take upper-case
letters, translate them into lower-case equivalents”.

Now we need a way to count the number of occurrences of words. To do this
we first use tr to convert all space characters into EOL characters and delete all
punctuation characters; this basically takes the original file and converts it into a
version where there is one word per-line. Finally we remove all punctuation and
blank lines using tr and grep, and save the result as C.txt. In summary we
execute the command pipeline:

bash$ cat B.txt | tr [:space:] ’\n’ | tr -d [:punct:] | grep -v ^$ > C.txt
bash$

To get the actual count, we first sort C.txt then use uniq to count the unique
occurrences of each word; we sort the result and use head to give us the top 31
most used words:

bash$ cat C.txt | sort | uniq -c | sort -n -r | head -n 31 | paste -s
888 the 662 and 656 i 549 of 502 to
476 you 462 a 363 my 306 in 296 is
271 that 263 for 262 me 243 it 231 not
208 be 207 with 188 your 185 but 177 this
174 he 166 have 159 his 151 as 145 portia
144 by 135 will 128 so 128 if 121 are
120 bassanio
bash$

This might all seem a bit like magic if you are not used to BASH or the commands
themselves. However, the result we get at the end should be more obviously close to
what you would expect. For example the words used most are things like “the” and
“and”. Working down the list we start to find some good candidates for the dictio-
nary. For example “bassanio” is quite long and also used fairly often, so replacing
this with a reference to the dictionary would be quite effective.

Of course, a largely similar approach is possible when we return to consider
sequences of numbers we want to write onto the CD. Imagine we wanted to write a
decimal sequence

Y = 〈1,2,3,4,5,5,5,5,1,2,3,4〉
onto a CD. First we construct a dictionary, say

D = 〈〈1,2,3,4〉, 〈5,5,5,5〉〉,

http://www.gutenberg.org/dirs/etext97/1ws1810.txt

1.2 Data Compression 17

and then compress Y to get

Ȳ = 〈D0,D1,D0〉.

Already we can identify two problems. First, the text messages example was a spe-
cial case since the dictionary was actually in the head of the person reading the SMS
message: we did not need to include it with the message! Now things are different.
To decompress Ȳ and hence recover Y , we need to write D to the CD as well be-
cause this is the only way to be clear what D0 means. There is a trade-off as a result:
the more elements we add to the dictionary, the more chance we have to compress
parts of the sequence but also the larger the dictionary becomes. Since we need to
write the dictionary onto the CD as well as the compressed sequence, identifying a
small set of good candidates for dictionary entries is therefore important, otherwise
including the dictionary will cancel out any advantage (in terms of storage space)
we get from the compression process.

Second, D0 is not a number so we cannot currently write it to the CD at all. To
solve this, we can use a similar approach as when we looked at run-length encoding;
imagine we choose to represent a reference to a dictionary entry as two numbers:
1. the first number (the escape code) tells us we have found a dictionary reference

rather than a normal number and therefore need to take some special action (here
we use the number 1 as the escape code),

2. the second number tells us the dictionary entry we are referring to.
Returning to the sequence Y , given the dictionary D we could compress Y to give

Ȳ = 〈1,0,1,1,1,0〉

where, looking at the first two elements in Ȳ , 1 tells us this is a dictionary reference,
and 0 tells us the reference is to entry 0 (i.e., 〈1,2,3,4〉) for example.

Compressing Y into Ȳ is a matter of scanning the original sequence, identifying
good candidates for the dictionary and converting them into references. Of course
this is a bit harder than when we looked at text: given we are not working with
words which we can identify based on spaces around them, how could we decide
〈1,2,3,4〉 is a good candidate? This is beyond the scope of our description; essen-
tially this is the clever part in any dictionary based approach. We would need to
perform a scan of the original sequence to capture statistics about the content, and
construct the dictionary before a second scan performed the actual compression.

To decompress Ȳ and recover Y , we simply process elements of the compressed
sequence one at a time: when we hit a 1 we know that we need to do something
special (i.e., replace a reference with an element from the dictionary), otherwise we
just have a normal number. Again, we would need to do the same thing as in the
run-length encoding case to cope with the fact that the escape code 1 might occur
in the original sequence; we need to be able to specify that we meant a “real 1”
somehow.

18 1 Compressing and Correcting Digital Media

1.3 Error Correction

In the previous section we looked at two simple schemes for data compression. But
recall this was only one reason that CDs became popular; the other reason was that
CDs are less prone to damage than previous media such as vinyl or cassette tape.
Now we need to turn our attention to the detection and correction of errors. To
illustrate the problem, imagine we start off with the short binary sequence

X = 〈0,1,1,1〉
which represents (potentially compressed) binary data we want to write onto a CD.
Two types of error might occur:
1. There might be permanent errors which occur every time we try to read X. For

example, if we scratch the CD surface then every time we try to read X we get
some other sequence because the pits and lands have been destroyed.

2. There might be transient errors that only occur occasionally when we try to
read X. For example, if the CD surface has dust on it then we might read X

incorrectly sometimes and correctly other times when the dust is displaced.
To cope with this, we would like to construct a scheme with two properties: first
we would like to know when an error has occurred, and second we would like to be
able to correct an error once we know it has occurred. To do this we will add some
redundant elements to X in order to produce a new sequence X̂ which is what we
actually write onto the CD.

1.3.1 An Error Detection Approach

To present an error detection scheme we need to introduce two functions:
1. The HAMMING-WEIGHT function [8] counts the number of elements in a binary

sequence that are equal to one. So given that

X = 〈0,1,1,1〉,
for example, this means HAMMING-WEIGHT(X) = 3. We can compute this re-
sult by just adding all the elements together, i.e.,

HAMMING-WEIGHT(X) =
|X|−1∑

i=0

Xi

so that

HAMMING-WEIGHT
(〈0,1,1,1〉)= X0 + X1 + X2 + X3 = 0 + 1 + 1 + 1 = 3.

2. The PARITY function tells us whether the HAMMING-WEIGHT function gives
an odd or even result. The idea relies on the XOR (short for “exclusive-or”)
function [6] that is written using the symbol ⊕ and gives us a single output from

1.3 Error Correction 19

two inputs:

x ⊕ y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = 0, y = 0
1 if x = 1, y = 0
1 if x = 0, y = 1
0 if x = 1, y = 1

We compute the PARITY function by simply XOR’ing all the elements together,
i.e.,

PARITY(X) =
|X|−1⊕

i=0

Xi

so that

PARITY
(〈0,1,1,1〉)= X0 ⊕ X1 ⊕ X2 ⊕ X3 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1.

In other words, we take the HAMMING-WEIGHT function and replace each +
with ⊕. As a consequence, you could also think of the result as being given by

PARITY(X) = HAMMING-WEIGHT(X) mod 2.

Given a sequence X, an even parity code [15] adds an extra element in order to
allow detection of errors. Starting with X, we compute the extra element

P0 = PARITY(X) = X0 ⊕ X1 ⊕ X2 ⊕ X3

and then concatenate it to the end of X to give

X̂ = X ‖ 〈P0〉.

A more concrete example probably makes this easier to understand. If we start with

X = 〈0,1,1,1〉

then since P0 = PARITY(X) = 1, the result is a new sequence

X̂ = X ‖ 〈1〉
= 〈0,1,1,1〉 ‖ 〈1〉
= 〈0,1,1,1,1〉

which we can write onto the CD. Notice that because of our choices, we will always
have PARITY(X̂) = 0.

Now imagine that sometime after writing X̂ to the CD, we try to read the se-
quence back again. Unfortunately there is an error: instead of getting what we ex-
pected, i.e., X̂, we get some other sequence X̂′ where the error has flipped one

20 1 Compressing and Correcting Digital Media

element from either 0 to 1 or from 1 to 0. For example, we might get

X̂′ = 〈0,1,0,1,1〉
= 〈0,1,0,1〉 ‖ 〈1〉
= X′ ‖ 〈1〉

How can we detect that the error occurred? Because of the way we added the extra
element to X, PARITY(X̂′) should be zero but because of the error it is one: this
mismatch shows that an error occurred. Put more simply, if we recompute

P ′
0 = X′

0 ⊕ X′
1 ⊕ X′

2 ⊕ X′
3= 0 ⊕ 1 ⊕ 0 ⊕ 1

= 0

then the fact we get 0 as a result signals that an error occurred: this does not match
the original P0 we added. Notice that
• if we read X̂, i.e., there was no error, we can simply strip off the extra element

and get back the X we wanted to read, but
• if we read X̂′, i.e., there was an error, we cannot tell where the error occurred

or how to correct it, so we have to try to reread the CD and hope the error is
transient and does not occur again.

This sounds great, but there is a problem: if more than one error occurs then we can
be fooled into thinking that there was no error at all. For example, imagine that two
elements are flipped and we read

X̂′ = 〈0,0,0,1,1〉
= 〈0,0,0,1〉 ‖ 〈1〉
= X′ ‖ 〈1〉

instead of X̂. To check if an error occurred, we compute

P ′
0 = X′

0 ⊕ X′
1 ⊕ X′

2 ⊕ X′
3= 0 ⊕ 0 ⊕ 0 ⊕ 1

= 1

and are fooled because we get 1 as a result which matches what we were expecting;
as a result we use X̂′ thinking it is correct. Clearly detection of more than one
error is important in reality, and more complex schemes that can achieve this goal
are possible. But instead we turn our attention to error correction: once we have
detected an error, how can we fix it rather than reread the CD and hope for the best?

Throughout the above, we used an even parity code. Provided
all the working out is consistent, however, there is no rea-
son to prefer this approach over the alternative: an odd par-
ity code. Reproduce the example above using an odd parity
code.

1.3 Error Correction 21

Fig. 1.2 A Venn diagram
describing the computation of
error correction bits in a
(7,4)-code

1.3.2 An Error Correction Approach

The Hamming code [7], named after inventor Richard Hamming, improves on sim-
ple error detection mechanisms by allowing the correction of errors once they are
detected. This requires more than one element to be added to the sequence we start
with. Hamming used the term (n,m)-code to mean a scheme where there were n

elements in the end result, of which m are the original elements and n − m are
added afterwards. Phrased like this, you could view the original even parity code
from above as an (n,n − 1)-code because there were n elements to start with, and
we added n − (n − 1) = 1 element.

We will concentrate on the specific example of a (7,4)-code introduced in 1950:
this starts with a sequence of four elements and adds three more to realise the error
correction scheme. Starting with X, we compute the three extra elements

P0 = X0 ⊕ X1 ⊕ X3
P1 = X0 ⊕ X2 ⊕ X3
P2 = X1 ⊕ X2 ⊕ X3

and then concatenate them onto the end of X to give

X̂ = X ‖ 〈P0,P1,P2〉.
A reasonable question to ask is why we would choose to compute P0, P1 and P2
like this rather than in some other way? The choice is explained neatly by placing
them into the Venn diagram [19] shown in Fig. 1.2. The idea is that the three sets
in the Venn diagram represent the three extra elements we have computed. Each set
“covers” a different combination of the elements from X: the upper set represents
P0 and covers X0, X1 and X3; the lower-left set represents P1 and covers X0, X2
and X3; the lower-right set represents P2 and covers X1, X2 and X3. Notice, for
example, that the element X0 is only included in the equations for P0 and P1, so it

22 1 Compressing and Correcting Digital Media

is placed in the intersection of the P0 and P1 sets and hence covered only by those
sets. As a result, if there is an error and X0 is flipped then we know that P0 and P1

will be affected but P2 will not.
Again, a more concrete example probably makes this easier to understand. If we

start with

X = 〈0,1,1,1〉
then since

P0 = X0 ⊕ X1 ⊕ X3
= 0 ⊕ 1 ⊕ 1
= 0

P1 = X0 ⊕ X2 ⊕ X3
= 0 ⊕ 1 ⊕ 1
= 0

P2 = X1 ⊕ X2 ⊕ X3
= 1 ⊕ 1 ⊕ 1
= 1

the result is a new sequence

X̂ = X ‖ 〈0,0,1〉
= 〈0,1,1,1〉 ‖ 〈0,0,1〉
= 〈0,1,1,1,0,0,1〉

which we can write onto the CD.
Now imagine that when we try to read X̂ from the CD, there is again some error:

instead of getting what we expected, i.e., X̂, we get some other sequence X̂′ where
one element has been flipped. For example, we might get

X̂′ = 〈1,1,1,1,0,0,1〉
= 〈1,1,1,1〉 ‖ 〈0,0,1〉
= X′ ‖ 〈0,0,1〉

If we recompute

P ′
0 = X′

0 ⊕ X′
1 ⊕ X′

3= 1 ⊕ 1 ⊕ 1
= 1

P ′
1 = X′

0 ⊕ X′
2 ⊕ X′

3= 1 ⊕ 1 ⊕ 1
= 1

P ′
2 = X′

1 ⊕ X′
2 ⊕ X′

3= 1 ⊕ 1 ⊕ 1
= 1

www.allitebooks.com

http://www.allitebooks.org

1.4 Recasting Error Correction as Matrix Arithmetic 23

Table 1.1 A table detailing
error correction for the
(7,4)-code

Difference Error

〈0,0,0〉 None

〈0,0,1〉 X̂′
6

〈0,1,0〉 X̂′
5

〈0,1,1〉 X̂′
2

〈1,0,0〉 X̂′
4

〈1,0,1〉 X̂′
1

〈1,1,0〉 X̂′
0

〈1,1,1〉 X̂′
3

and match these against the original P0, P1 and P2 we added to X, this shows there
is an error: P ′

0 and P ′
1 do not match up with P0 and P1, but P ′

2 does match P2. Put
another way, since we assume only one error has occurred and we know that the
values of P ′

0 and P ′
1 are wrong, this means that the error must occur in the upper

and lower-left sets of our Venn diagram; in the same way, because P ′
2 is correct,

this also means that the error did not occur in the lower-right set. There is only one
region of the Venn diagram which is covered by the upper and lower-left sets yet
not by the lower-right set: this corresponds to X0, so it must be X̂′

0 which is wrong.
Does this work for all possible errors? Given we originally added three extra

elements, i.e., P0, P1 and P2, we can deal with at most eight possibilities; these
are described by the left-hand column in Table 1.1. Note that one possibility corre-
sponds to no errors occurring, leaving seven others: intuitively this should seem the
correct number since we have seven bits in which an error could occur. The issue
now is to determine how we can translate the “differences” between P ′

0, P ′
1 and P ′

2
and P0, P1 and P2 into the position of an error as we did for the example above;
the right-hand column in Table 1.1 describes the correct translation. In our exam-
ple, the difference was 〈1,1,0〉, i.e., P ′

0 and P ′
1 were wrong but P2 was right: the

corresponding entry in the table shows that the error was in X̂′
0.

1.4 Recasting Error Correction as Matrix Arithmetic

Another way of thinking about the (7,4)-code for error correction is that it simply
reuses the even parity code that we used for error detection. In this context, we could
say that

〈X0,X1,X3,P0〉
is a codeword for the even parity code on the data 〈X0,X1,X3〉, and likewise both

〈X0,X2,X3,P1〉

24 1 Compressing and Correcting Digital Media

and

〈X1,X2,X3,P2〉
are code words on the data 〈X0,X2,X3〉 and 〈X1,X2,X3〉. The idea is to recast
this in terms of matrices. If you have covered matrices before then the following
should link the theory you already know to a real-world application; if not, we try
to introduce the theory as we go, but you can skip to the next chapter if you prefer.

Basically we would like to generalise and extend the (7,4)-code so far explained
in a fairly informal way; perhaps to send more data per-codeword, or to correct more
than one error. Doing this with a Venn diagram seems unattractive for two reasons
1. for a human, more complicated Venn diagrams (e.g., in more than two dimen-

sions) are hard to draw and understand, and
2. on a computer, the concept of using Venn diagrams does not easily map onto the

types of operation that are available.
To combat both problems, we recast and formalise the basic idea, then let Mathe-
matics take care of achieving the generalisation [1].

1.4.1 An Overview of Vectors

A row vector is simply a sequence of elements, e.g.,

R = (r0, r1, . . . , rm−1),

where the number of elements is m; we call m the dimension of R. A column
vector is similar, except the elements are written down in a column rather than a
row, e.g.,

C =

⎛

⎜⎜⎜⎝

c0
c1
...

cn−1

⎞

⎟⎟⎟⎠ .

In this case the number of elements in C is n, so the dimension of C is n. Note
that we use lower-case letters for the vector elements, so, for example, ri is the i-th
element of R; the reason for this is that we want to use Rj to denote the j -th separate
vector in some set.

If we take two row vectors (or two column vectors) which have the same dimen-
sion, i.e., n = m, we can combine them together. For example, we can compute a
vector addition, where the idea is to add together corresponding elements of the
vectors:

(1,2,3) + (4,5,6) = (1 + 4,2 + 5,3 + 6) = (5,7,9).

Note we cannot add a row vector to a column vector: the operation is only valid
when the two vectors have the same type and dimension. However, if we take a row
vector and a column vector which have the same dimension, we can compute a vec-
tor multiplication (or dot product): the idea is to multiply together corresponding

1.4 Recasting Error Correction as Matrix Arithmetic 25

elements of the vectors, and add up all the results. For example

(1,2,3) ·
⎛

⎝
4
5
6

⎞

⎠= 1 · 4 + 2 · 5 + 3 · 6 = 4 + 10 + 18 = 32.

We can write a more general method

R ·C = (r0, r1, . . . , rn−1) ·

⎛

⎜⎜⎜⎝

c0
c1
...

cn−1

⎞

⎟⎟⎟⎠= r0 ·c0 +r1 ·c1 +· · ·+rn−1 ·cn−1 =
n−1∑

i=0

ri ·ci,

which captures the same idea more formally. In words, the right-hand side means
that for each index i between 0 and n−1 (i.e., i = 0, i = 1 and so on up to i = n−1)
we add up terms that look like Ri · Ci (i.e., the product of the i-th elements of R
and C). Note we cannot multiply a row vector and a row vector, or a column vector
and a column vector: the operation is only valid when the two vectors have different
types but the same dimension. Further, we always write the column vector on the
right, i.e.,

R · C

is valid, but

C · R

is not. These restrictions can be annoying because sometimes we might want to
put the column vector on the left, or multiply a row vector by another row vector.
The solution is to use a vector transpose operation to translate a row vector into a
column vector or vice versa. For example

(1,2,3)T =
⎛

⎝
1
2
3

⎞

⎠ and

⎛

⎝
1
2
3

⎞

⎠
T

= (1,2,3)

where the “T” superscript means “apply transpose to this vector”.

1.4.2 An Overview of Matrices

Suppose we have n separate row vectors, each of dimension m; that is, suppose we
have R1,R2, . . . ,Rn, where each Ri has dimension m. If we write the row vectors
above each other, we get a “table” or matrix with n rows and m columns, i.e., of
dimension n × m. For example, if we take the n = 3 row vectors

R1 = (1,2,3,4) R2 = (5,6,7,8) R3 = (9,0,1,2),

26 1 Compressing and Correcting Digital Media

each of which has dimension m = 4, and write them above each other, we get a
matrix

M =
⎛

⎝
1 2 3 4
5 6 7 8
9 0 1 2

⎞

⎠

of dimension 3 × 4. Alternatively, we could construct the same matrix by taking
m column vectors, each of dimension n, and writing them next to each other. For
example, if we take m = 4 column vectors

C1 =
⎛

⎝
1
5
9

⎞

⎠ C2 =
⎛

⎝
2
6
0

⎞

⎠ C3 =
⎛

⎝
3
7
1

⎞

⎠ C4 =
⎛

⎝
4
8
2

⎞

⎠ ,

each of which has dimension n = 3 and write them next to each other, we again get

M =
⎛

⎝
1 2 3 4
5 6 7 8
9 0 1 2

⎞

⎠ .

This means a given matrix can be considered either as a collection of row vectors or
column vectors.

The vector transpose operation we described previously can also be used to per-
form a matrix transpose, i.e., to translate a matrix of dimension n × m into one of
dimension m × n. Basically we just apply the vector transpose to everything: given
the matrix above, we see that

MT =
⎛

⎝
1 2 3 4
5 6 7 8
9 0 1 2

⎞

⎠
T

=

⎛

⎜⎜⎝

1 5 9
2 6 0
3 7 1
4 8 2

⎞

⎟⎟⎠

because

M =
⎛

⎝
R1
R2
R3

⎞

⎠

so

MT =
⎛

⎝
R1

T

R2
T

R3
T

⎞

⎠
T

=
⎛

⎝
(1,2,3,4)T

(5,6,7,8)T

(9,0,1,2)T

⎞

⎠
T

=

⎛

⎜⎜⎝

⎛

⎜⎜⎝

1
2
3
4

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

5
6
7
8

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

9
0
1
2

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .

Finally, the vector multiplication operation is also useful in the context of matrices
since it allows us to define matrix-vector multiplication. Suppose we have a matrix
M of dimension n×m. We compute matrix-vector multiplication in one of two ways
depending on the type of the vector:

1.4 Recasting Error Correction as Matrix Arithmetic 27

1. A row vector R with dimension n can be multiplied on the left of the matrix to
obtain another row vector of dimension m. To achieve this, we consider M as a
set of m column vectors and compute

R · M = R · (C0,C1, . . . ,Cm−1) = (R · C0,R · C1, . . . ,R · Cm−1).

Notice that there are m elements in the result, each one computed via the dot
product of R and one of the Ci vectors.

2. A column vector C with dimension m can be multiplied on the right of the matrix,
to obtain another column vector of dimension n. To achieve this, we consider M

as a set of n column vectors and compute

M · C = (R1,R2, . . . ,Rn) · C = (R1 · C,R2 · C, . . . ,Rn · C).

Notice that there are n elements in the result, each one computed via the dot
product of one of the Ri vectors and C.

1.4.3 Addition and Multiplication Modulo 2

Recall the XOR function from our discussion of error correction; it gives a single
output from two inputs:

x ⊕ y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = 0, y = 0
1 if x = 1, y = 0
1 if x = 0, y = 1
0 if x = 1, y = 1

Although it was useful, you might be forgiven for thinking that XOR is a little ad
hoc: where does this particular form come from? Another way of thinking about
XOR is that it computes a special type of addition. What we are doing is called
modular arithmetic [14], and we will encounter more formal definitions later in
Chaps. 6 and 8. For now, it is enough to think of XOR as addition where we treat
all even numbers as 0 and all odd numbers as 1. In more detail, the four cases above
can be described as

0 + 0 = 0 ≡ 0 (mod 2)

1 + 0 = 1 ≡ 1 (mod 2)

0 + 1 = 1 ≡ 1 (mod 2)

1 + 1 = 2 ≡ 0 (mod 2)

Likewise, the AND function

x ∧ y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = 0, y = 0
0 if x = 1, y = 0
0 if x = 0, y = 1
1 if x = 1, y = 1

28 1 Compressing and Correcting Digital Media

can be described as modular multiplication because

0 · 0 = 0 ≡ 0 (mod 2)

1 · 0 = 0 ≡ 0 (mod 2)

0 · 1 = 0 ≡ 0 (mod 2)

1 · 1 = 1 ≡ 1 (mod 2)

In both cases, when we write x ≡ y (mod 2) this shows the number x on the left is
equivalent to the number y on the right if considered modulo 2. The idea is that we
have translated what looked like ad hoc functions into a more Mathematical setting:
the goal is that whereas we previously did all our arithmetic “normally” on vectors
and matrices of numbers, now we can do it all “modulo 2” and work with vectors
and matrices of bits instead.

1.4.4 Using Matrices for Error Correction

Our original goal was to generalise and extend the (7,4)-code using the concept of
matrices as a formal underpinning. We now know enough to do just that. First we
need to translate the encoding step: consider

G =

⎛

⎜⎜⎝

1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠

which we call the generating matrix since it will be used to generate codewords
from data; notice it has dimension 4 × 7. Now suppose we have the data

X = 〈0,1,1,1〉

which matches our original (7,4)-code example. To compute the codeword X̂, we
first write the elements of X as a row vector and then multiply it on the right by
the generating matrix G: all operations on elements are performed modulo 2. For
example

X̂ = X · G = (0,1,1,1) ·

⎛

⎜⎜⎝

1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠= (0,1,1,1,0,0,1).

1.4 Recasting Error Correction as Matrix Arithmetic 29

As an exercise, to make sure you understand how to multiply a row vector by a
matrix, verify that the calculation above is correct: work out each element in the
result long-hand. To get you started, here are the first two elements:

X̂0 = 0 · 1 + 1 · 0 + 1 · 0 + 1 · 0 (mod 2)

= 0 (mod 2)

X̂1 = 0 · 0 + 1 · 1 + 1 · 0 + 1 · 0 (mod 2)

= 1 (mod 2)

Next we need to translate the decoding step. This demands a closer look at the
generating matrix G, considering it as two parts:
1. Consider a matrix of dimension d × d whose elements are all 0 except those on

the main diagonal [12] which are 1. This is called an identity matrix [10] and
denoted by Id ; for example

I2 =
(

1 0
0 1

)

and

I4 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ .

The first, left-hand 4 × 4 part of G is an identity matrix of this type, i.e., the
left-hand 4 × 4 sub-matrix is I4.

2. The second, right-hand 4 × 3 part of G is less structured; we can call this sub-
matrix A for short, i.e.,

A =

⎛

⎜⎜⎝

1 1 0
1 1 1
1 0 1
0 1 1

⎞

⎟⎟⎠ .

Using the two parts we can write G as I4 ‖ A, i.e., G is I4 with A concatenated
onto the right-hand side of it. We now form a new 3 × 7 parity check matrix as

H = AT ‖ I3,

i.e., H is AT with I3 concatenated onto the right-hand side of it. In our case this
means

H =
⎛

⎝
1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎞

⎠ .

The parity check matrix allows us to perform error detection and correction on the
codeword X̂: we take the codeword and interpret it as a column vector, before com-
puting

S = H · X̂

30 1 Compressing and Correcting Digital Media

which we call the syndrome. As before, all operations on elements are performed
modulo 2. If all the elements in S are 0 then no errors have occurred; if S is non-
zero however, then it tells us where an error occurred just as before. For example,
suppose we receive the correct codeword

X̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We compute

H · X̂ =
⎛

⎝
1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎞

⎠ ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
0
0
0

⎞

⎠

and, since the result is zero, deduce that no error occurred. However, if receive the
codeword

X̂′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

that has an error in the first element we compute

H · X̂′ =
⎛

⎝
1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎞

⎠ ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
1
1
0

⎞

⎠ .

The result we get is non-zero: it is actually equal to the first column vector of the
parity check matrix, allowing us to detect and correct the error.

References 31

As an aside, we can recast the parity code (i.e., the error detection scheme) using
the same approach. Looking back, the generating and parity check matrices

G =
⎛

⎝
1 0 0 1
0 1 0 1
0 0 1 1

⎞

⎠

and

H = (1,1,1,1)

reproduce the same properties. As an exercise, work through the original parity
check code example and convince yourself that the syndrome this produces can
detect errors but not correct them.

1.4.5 Generalising the Matrix-Based (7,4)-Code

We have recast the original (7,4)-code in terms of matrices, but how can we gener-
alise it? That is, how can we use the same theory to construct an arbitrary (n,m)-
code? In general, for an (n,m)-code we have

G = Im ‖ A

and

H = AT ‖ In−m

where we know what Im and In−m look like, but not the m × (n − m) matrix A. So
the generalisation problem becomes one of trying to find a matrix A which gives us
the properties we want, and then a way of interpreting what the syndrome is telling
us. This is far from trivial, but at least it gives us somewhere to start: certainly
this seems more achievable than imagining what multi-dimensional Venn diagrams
would look like!

The final paragraph leaves an obvious question open: exactly
what properties does A need to have, and how do we create
such a matrix for given values of n and m? Do some research
into this issue, and see if you can produce a working (3,1)-
code or larger (15,11)-code.

References

1. Wikipedia: Coding theory. http://en.wikipedia.org/wiki/Coding_theory
2. Wikipedia: Compact disk. http://en.wikipedia.org/wiki/Compact_disk
3. Wikipedia: Data compression. http://en.wikipedia.org/wiki/Data_compression

http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Compact_disk
http://en.wikipedia.org/wiki/Data_compression

32 1 Compressing and Correcting Digital Media

4. Wikipedia: Dictionary coder. http://en.wikipedia.org/wiki/Dictionary_coder
5. Wikipedia: Error detection and correction. http://en.wikipedia.org/wiki/Error_correction
6. Wikipedia: Exclusive OR. http://en.wikipedia.org/wiki/XOR
7. Wikipedia: Hamming code. http://en.wikipedia.org/wiki/Hamming_code
8. Wikipedia: Hamming weight. http://en.wikipedia.org/wiki/Hamming_weight
9. Wikipedia: Hubble space telescope. http://en.wikipedia.org/wiki/Hubble_space_telescope

10. Wikipedia: Identity matrix. http://en.wikipedia.org/wiki/Identity_matrix
11. Wikipedia: JPEG. http://en.wikipedia.org/wiki/JPEG
12. Wikipedia: Main diagonal. http://en.wikipedia.org/wiki/Main_diagonal
13. Wikipedia: MODEM. http://en.wikipedia.org/wiki/Modem
14. Wikipedia: Modular arithmetic. http://en.wikipedia.org/wiki/Modular_arithmetic
15. Wikipedia: Parity bit. http://en.wikipedia.org/wiki/Parity_bit
16. Wikipedia: Run-length encoding. http://en.wikipedia.org/wiki/Run-length_encoding
17. Wikipedia: Short Message Service (SMS). http://en.wikipedia.org/wiki/Short_message_

service
18. Wikipedia: SMS language. http://en.wikipedia.org/wiki/SMS_language
19. Wikipedia: Venn diagram. http://en.wikipedia.org/wiki/Venn_diagram

www.allitebooks.com

http://en.wikipedia.org/wiki/Dictionary_coder
http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Hamming_code
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Hubble_space_telescope
http://en.wikipedia.org/wiki/Identity_matrix
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Main_diagonal
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Short_message_service
http://en.wikipedia.org/wiki/Short_message_service
http://en.wikipedia.org/wiki/SMS_language
http://en.wikipedia.org/wiki/Venn_diagram
http://www.allitebooks.org

2Writing and Comparing Algorithms

Imagine you are a student at the University of Bristol; lectures for the day are fin-
ished, and you fancy a drink to celebrate. How do you get from the Computer Sci-
ence Department to the Student Union? Easy! Just ask Google Maps:

http://maps.google.com/?saddr=’bristol+bs8+1ub’&daddr=’bristol+bs8+1ln’

What comes back is a fancy map plus a list of directions which resemble the follow-
ing:
1. Start at Bristol, BS8 1UB, UK.
2. Head west on B4051 toward A4018; continue to follow B4051.
3. Continue on A4018.
4. Continue on B3129; go through two roundabouts; destination will be on the left.
5. Finish at Bristol, BS8 1LN, UK.
The directions have some features worth discussing in more detail. Each line in
the directions represents a static description of some active step we should perform
while following them. The lines have to be followed, or processed, in order: we
start at the first step and once that is complete, move on to the next one. If one of
the steps is missed out for example, or we start at the third step instead of the first,
the directions do not work. The directions are (fairly) unambiguous. It may help
to know that the road B4051 is more usually called Park Street, but line #4 is not
“go through some roundabouts”; we should go through exactly two roundabouts.
This means it is always clear how to process each line (i.e., exactly what steps to
perform): we never become confused because there is not enough information and
we do not know what to do.

2.1 Algorithms

As a result of the features described above, our directions at least loosely satisfy
the definition of an algorithm [1]: they are simply an abstract description of how
to solve a problem. Of course in this case the problem is helping someone get from
one place to another, but we might just as easily write an algorithm to solve other
problems as well.

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_2,
© Springer International Publishing Switzerland 2014

33

http://maps.google.com/?saddr='bristol+bs8+1ub'&daddr='bristol+bs8+1ln'
http://dx.doi.org/10.1007/978-3-319-04042-4_2

34 2 Writing and Comparing Algorithms

2.1.1 What Is an Algorithm?

It is unusual to enforce any strict rules about how we should write an algorithm
down: as long as it makes sense to whoever is reading it, we can use whatever format
we want. This often means using pseudo-code, literally a “sort of” program [11]. An
algorithm can have inputs, which we name, and can provide some outputs; we say
the algorithm takes (or is given) some arguments as input, and returns (or produces)
a result as output. Based on this, imagine we write the following algorithm:

1 algorithm FERMAT-TEST(n) begin
2 Choose a random number a between 2 and n − 1 inclusive
3 Compute d = gcd(a,n), the greatest common divisor of a and n

4 If d �= 1 then return false as the result
5 Compute t = an−1 (mod n)

6 If t = 1 then return true as the result, otherwise return false
7 end

This looks more formal, but there is no magic going on: the algorithm is simply a
list of five lines we can process. Note that we have numbered each of the lines so we
can refer to them. In line #1 we name the algorithm FERMAT-TEST and show that
it accepts a single argument called n as input; in lines #2 to #6 we list the directions
themselves. The lines #4 and #6 are a bit special since they can produce output from
the algorithm.

We invoke (or use) FERMAT-TEST by giving a concrete value to each of the
inputs. For example, if we write

FERMAT-TEST(221)

basically what we mean is “follow the algorithm FERMAT-TEST, but each time you
see n substitute 221 instead”. Like the travel directions, invoking FERMAT-TEST

means we perform some active step (or steps) for each line in the algorithm:
Step #1 Choose a random number between 2 and 220 inclusive, e.g., a = 11.
Step #2 Compute d = gcd(11,221) = 1.
Step #3 Since d = 1, carry on rather than returning a result.
Step #4 Compute t = 11221−1 (mod 221) = 81.
Step #5 Since t �= 1, return false as the result.
After step #5 the algorithm terminates: from the input 221, we have computed the
result false. What this result means of course depends on the purpose of the algo-
rithm; the purpose of FERMAT-TEST is certainly less clear than the travel directions
we started off with!

FERMAT-TEST is actually quite a famous algorithm [7] due to the French math-
ematician Pierre de Fermat. The purpose is to tell if n, the input, is a prime [12]
number or not. Lines #2 to #4 ensure we select an a that is co-prime [5] to n; this
means a and n have no common factors. If we were to pick an a such that a divided
n, then clearly n cannot be prime, so this possibility is ruled out before we carry

2.1 Algorithms 35

on. Having computed t , if the result we get after lines #5 to #6 is false then n defi-
nitely is not a prime number; it is composite. On the other hand, if the result is true
then n might be a prime number. The more times we invoke FERMAT-TEST with a
given n and get true as a result, the more confident we are that n is a prime number.
FERMAT-TEST works quite well, except for the so-called Carmichael numbers [3]
which trick the algorithm: they are composite, but FERMAT-TEST always returns
true. The smallest Carmichael number is 561 = 3 · 11 · 17: whatever a it chooses,
FERMAT-TEST will always compute t = 1 and return true.

Try this out for yourself: pick some example values of n, and
work through the steps used by FERMAT-TEST to compute a
result; you could even use a friend to generate random values
of a to make sure you cannot cheat! Using the algorithm, see
if you can identify some
1. other Carmichael numbers, or
2. Mersenne primes, which have the special form n = 2k − 1

for an integer value k,
or, get a friend to give you an n (which they know is either
prime or composite) and try to decide whether or not it is
prime.

Different Styles of Structure
There are of course lots of ways we can write down the same algorithm. For ex-
ample, where the inputs and outputs need more explanation (e.g., to explain their
type or meaning), it is common to write it in a slightly more verbose but otherwise
similar way:

1 algorithm FERMAT-TEST begin
Input: An integer n

Output: false if n is composite, otherwise true if n is probably prime

2 Choose a random number a between 2 and n − 1 inclusive
3 Compute d = gcd(a,n), the greatest common divisor of a and n

4 If d �= 1 then return false as the result
5 Compute t = an−1 (mod n)

6 If t = 1 then return true as the result, otherwise return false
7 end

As more of a contrast, Fig. 2.1 shows a totally different way to describe the same al-
gorithm. You might find this more natural, or easier to read: this form is called a flow
chart [9] and can be traced back to the early 1920s. Since then, flow charts have
become a common way of describing “real life” algorithms such as troubleshooting
instructions that tell you what to do when your television breaks down, or for cap-
turing decision making procedures in organisations. The point is, both our written

36 2 Writing and Comparing Algorithms

Fig. 2.1 A flow chart description of FERMAT-TEST

and flow chart versions of FERMAT-TEST describe exactly the same thing: they are
both algorithms.

Different Styles of Notation
There is one final, minor issue remaining that we need to be careful about whatever
style of algorithm we opt for. As an example, look at the original FERMAT-TEST al-
gorithm again, specifically at lines #3 and #4: both make use of the = (or “equals”)
symbol. In line #3 we mean “assign the value produced by computing gcd(a,n)

to d” whereas in line #4 we mean “evaluate to true if and only if the value d does
not equal one”. It is reasonable to argue that we might confuse the two meanings.
For example, we might mistakenly interpret “compute t = an−1 (mod n)” as “com-
pute the value false” since the value t does not equal an−1 (mod n); we have not
assigned any value to t yet! To prevent this possible ambiguity, Computer Scientists
often use
1. the = symbol to mean equality, and
2. the ← symbol to mean assignment.
As such, we should really rewrite the algorithm as follows:

1 algorithm FERMAT-TEST(n) begin
2 Choose a random number a between 2 and n − 1 inclusive
3 Compute d ← gcd(a,n), the greatest common divisor of a and n

4 If d �= 1 then return false as the result
5 Compute t ← an−1 (mod n)

6 If t = 1 then return true as the result, otherwise return false
7 end

2.1 Algorithms 37

2.1.2 What Is not an Algorithm?

Algorithms �= Functions
It is tempting to treat algorithms like Mathematical functions. After all, invoking an
algorithm looks like the use of a Mathematical function; writing SIN(90) uses the
function SIN to compute a result using the input 90 for example. Strictly speaking,
the difference (or at least one difference) comes down to the idea of state.

For Mathematical functions, writing something like SIN(x) might give different
results depending on x, but once we have chosen an x we get the same result every
time. For example SIN(90) always equals 1 so we are entitled to write SIN(90) = 1,
or use 1 whenever we see SIN(90). But algorithms are different: they may depend
on the context they are invoked in; there may be some state which effects how an
algorithm behaves and hence the result it returns. Another way to say the same thing
is that algorithms might have side effects which alter the state; in contrast, functions
are pure in the sense they are totally self contained.

FERMAT-TEST demonstrates this fact neatly: line #2 reads “choose a random
number a”. Since this can be any number (as long as it is co-prime to n), it is
perfectly possible we might choose a different one each time we invoke FERMAT-
TEST. So the first time we invoke

FERMAT-TEST(221)

we might choose a = 11 in line #2 as above; we know the result in this case is false.
However, imagine we invoke the algorithm a second time

FERMAT-TEST(221)

and choose a = 47 instead. This time, the result is true. So we have got a different
result with the same input: the context (represented in this case by whatever we are
choosing random numbers with) influences what result we get, not just the input.

Algorithms �= Programs
It is tempting to treat algorithms like programs. If you have written any programs
before, there is a good chance FERMAT-TEST has a similar look and feel. Usually
when we talk about a program, we mean something which is intended to be exe-
cuted by a real computer: a word processor, a web-browser, or something like that.
This means a program should be written in a “machine readable” form: each step or
action required by a program needs to be something a computer can actually do.

Within FERMAT-TEST for example, we are required to compute an−1 (mod n)

for some a and n. Would most computers know how to do this? Probably not. The
computer might know how to do multiplication, and we might be able to explain to
it how to do exponentiation using another algorithm, but it is not reasonable that the
computer will know how to do the computation itself.

So in contrast to a “machine readable” program, we have written the FERMAT-
TEST algorithm in a far less restrictive “human readable” form. Whereas a program
relates to a real computer, you can think of an algorithm as relating to some abstract

38 2 Writing and Comparing Algorithms

or make believe uber-computer which does not have any similar restrictions. The
algorithm needs to be implemented, by rewriting it in a programming language,
before it is ready for execution by a real computer.

2.2 Algorithms for Multiplication

Imagine you are asked to multiply one number x by another number y. You might
perform multiplication in your head without thinking about it, but more formally
what does multiplication actually mean? If you met someone from a different planet
who does not know what multiplication is, how could you describe to them the steps
required to compute x · y? Clearly the answer is to write an algorithm that they can
follow. As a starting point, notice that multiplication is just repeated addition. So for
example

x · y = x + x + · · · + x + x︸ ︷︷ ︸
y copies

,

which means if we select y = 6 then we obviously have

x · 6 = x + x + x + x + x + x.

Based on this approach, we can write an algorithm that describes how to multiply x

by y. We just need a list of careful directions that someone could follow:

1 algorithm MULTIPLY-REPEAT(x, y) begin
2 t ← 0
3 for i from 1 upto y do
4 t ← t + x

5 end
6 return t

7 end

The basic idea of this algorithm is simple: add together y copies of x, keeping
track of the value we have accumulated so far in t . Of course you could argue the
algorithm is much harder to read and understand because we have replaced this
English description with something that looks much more formal. On the other hand,
by doing this we have made things more precise. That is, there is no longer any
room for someone to misinterpret the description if they know how each construct
behaves:
• The construct in line #2 is another example of the assignment we saw earlier:

it assigns a value (on the right) to a name, or variable (on the left). When we
write X ← Y , the idea is to set the variable X to a value given by evaluating the
expression Y . In this case, the construct t ← 0 sets the variable t to the value 0:
every time we evaluate t in some expression after this, we can substitute 0 until
t is assigned a new value.

2.2 Algorithms for Multiplication 39

• The construct that starts in line #3 is an example of a loop. When we write for X

do Y , the idea is to repeatedly process the block Y for values dictated by X; we
say that the construct iterates over Y . Our loop is bounded because we know
how many times we will process Y before we start.

In this case the block is represented by line #4, and hence t ← t +x is iterated
over for values of i in the range 1 . . . y. So basically the loop does the same thing
as copying out line #4 a total of y times, i.e.,

t ← t + x } i = 1
t ← t + x } i = 2

...

t ← t + x } i = y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
y copies

• The construct in line #6 is an example of a return. When we write return X, the
idea is that we evaluate X and return this as the result of the algorithm. In this
case, we return the value accumulated in t as the result.

Now that we know the meaning of each line, we can invoke the algorithm and per-
form the steps required to compute a result. Imagine we select x = 3 and y = 6 for
example; the steps we perform would be something like the following:
Step #1 Assign t ← 0.
Step #2 Assign t ← t + x, i.e., t ← 0 + 3 = 3.
Step #3 Assign t ← t + x, i.e., t ← 3 + 3 = 6.
Step #4 Assign t ← t + x, i.e., t ← 6 + 3 = 9.
Step #5 Assign t ← t + x, i.e., t ← 9 + 3 = 12.
Step #6 Assign t ← t + x, i.e., t ← 12 + 3 = 15.
Step #7 Assign t ← t + x, i.e., t ← 15 + 3 = 18.
Step #8 Return t = 18.
After eight steps we reassuringly find the result is x ·y = 18. The key thing to realise
is that fundamentally we are still just following directions: lines in our algorithm
might be more formal than “go through two roundabouts”, but as long as we know
what they mean we can carry out the corresponding steps just as easily.

Another way of looking at what multiplication means is to see that it simply adds
another “weight” to the digits that describe y. It might look odd, but imagine we
wrote y out as an n-bit binary number, i.e., we write

y =
n−1∑

i=0

yi · 2i

where clearly each yi ∈ 0,1. Then, we could write

x · y = x ·
n−1∑

i=0

yi · 2i =
n−1∑

i=0

yi · x · 2i .

40 2 Writing and Comparing Algorithms

What we are doing is taking each weighted digit of y, and adding a further weight
x to the base which is used to express y in. Again, as an example, selecting y =
6(10) = 110(2) we find that we still get the result we would expect to

y · x = y0 · x · 20 + y1 · x · 21 + y2 · x · 22

= 0 · x · 20 + 1 · x · 21 + 1 · x · 22

= 0 · x + 2 · x + 4 · x
= 6 · x

So far so good. Except that this still looks unpleasant to actually compute. For exam-
ple we keep having to compute those powers of two to weight the terms. Fortunately,
a British mathematician called William Horner worked out a scheme to do this more
neatly [10]. Sometimes this is termed Horner’s rule (or scheme): bracket the thing
we started with in such a way that instead of having to compute the powers of two
independently we sort of accumulate them as we go. This is best shown by example:

y · x = y0 · x + 2 · (y1 · x + 2 · (y2 · x + 2 · (0)
))

= 0 · x + 2 · (1 · x + 2 · (1 · x + 2 · (0)
))

= 0 · x + 2 · (1 · x + 2 · (1 · x + 0)
)

= 0 · x + 2 · (1 · x + 2 · (1 · x)
)

= 0 · x + 2 · (1 · x + 2 · x)

= 0 · x + 2 · (3 · x)

= 0 · x + 6 · x
= 6 · x

In much the same way as above, we can write an algorithm that describes how to
multiply x by y using this approach:

1 algorithm MULTIPLY-HORNER(x, y) begin
2 t ← 0
3 for i from |y| − 1 downto 0 do
4 t ← 2 · t
5 if yi = 1 then
6 t ← t + x

7 end
8 end
9 return t

10 end

This algorithm again accepts two inputs called x and y, the two numbers we would
like to multiply together, and again produces one output that gives us the result x ·y.
This time, the basic idea is to write y in binary, and process it from left-to-right one
digit at a time. In terms of the bracketing, we work from inside outward, applying
Horner’s rule and keeping track of an accumulated value called t :
• The construct in line #2 is another assignment. We have already seen what this

means: it sets the variable t to the value 0.

2.2 Algorithms for Multiplication 41

• The construct that starts in line #3 is another loop; this is a little different from
the previous one we saw. The first difference is that the values of i go downward
rather than upward: the block, now represented by lines #4 to #7, is iterated over
for i in the range |y| − 1 . . .0. That is fine though, we still just copy out lines
#4 to #7 a total of |y| times making sure the right values of i are alongside each
copy, i.e.,

t ← 2 · t
if yi = 1 then t ← t + x

}
i = |y| − 1

...

t ← 2 · t
if yi = 1 then t ← t + x

}
i = 1

t ← 2 · t
if yi = 1 then t ← t + x

}
i = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

|y| copies

The second difference is that the block actually uses i within it. That is fine as
well: wherever we see an i, we can substitute the right value for that iteration.
For example, the last copy from above becomes

t ← 2 · t
if y0 = 1 then t ← t + x

after we substitute in the value i = 0.
• The construct that start starts on line #5 is an example of a condition; it forms

part of the block iterated over by the loop. When we write if X then Y , the idea
is that we perform a test: if X evaluates to true then we process the block Y ,
otherwise we skip it. In this case, we test the i-th bit of y: if yi = 1 then we add
x to t in line #6, otherwise t remains unchanged.

• The construct in line #9 is another return. We have already seen what this means:
it returns t as the result.

This algorithm is slightly more complicated than the last one. However, in the same
way as before we know what each line means so we can invoke the algorithm and
carry out steps in order to compute a result. Imagine we again select x = 3 and
y = 6(10) = 110(2); the steps we perform would be something like the following:
Step #1 Assign t ← 0.
Step #2 Assign t ← 2 · t , i.e., t ← 2 · 0 = 0.
Step #3 Since y2 = 1, assign t ← t + x, i.e., t ← 0 + 3 = 3.
Step #4 Assign t ← 2 · t , i.e., t ← 2 · 3 = 6.
Step #5 Since y1 = 1, assign t ← t + x, i.e., t ← 6 + 3 = 9.
Step #6 Assign t ← 2 · t , i.e., t ← 2 · 9 = 18.
Step #7 Since y0 = 0, skip the assignment t ← t + x.
Step #8 Return t = 18.
The algorithm has clearly computed the result in a different way (i.e., the steps
themselves are different), but we still find that x · y = 18 as expected.

42 2 Writing and Comparing Algorithms

Although reading and following invocations of existing algo-
rithms is a good start, writing your own algorithms is really
the only way to get to grips with this topic.

In Chap. 1 we met the HAMMING-WEIGHT function: it
counts the number of elements in a binary sequence that
are equal to one. Write an algorithm that can compute
HAMMING-WEIGHT(x) for a suitable input sequence x;
demonstrate how it does so by listing the steps (similar to
above) for an example x.

2.3 Algorithms for Exponentiation

So much for multiplication, what about the exponentiation we needed in FERMAT-
TEST? It turns out that we can pull the same trick again. In the same was as we
wrote multiplication as repeated addition, we can write exponentiation as repeated
multiplication:

xy = x · x · · · · · x · x︸ ︷︷ ︸
y copies

.

If we again select y = 6 then we obviously have

x6 = x · x · x · x · x · x.

The thing to notice is that there is a duality here: where there was an addition in our
description of multiplication, that has become a multiplication in our description of
exponentiation; where there was a multiplication, this has become an exponentia-
tion. As such, we can adapt the MULTIPLY-REPEAT algorithm as follows:

1 algorithm EXPONENTIATE-REPEAT(x, y) begin
2 t ← 1
3 for i from 1 upto y do
4 t ← MULTIPLY-HORNER(t, x)

5 end
6 return t

7 end

One purpose of this is to highlight a subtle but fairly obvious fact: we are allowed
to invoke one algorithm from within another one. In this case, we needed to mul-
tiply t by x in line #4; MULTIPLY-REPEAT and MULTIPLY-HORNER both com-
pute the same result, so we could have used either of them here to do what we
wanted. Either way, the idea is that half way through following the steps within

www.allitebooks.com

http://www.allitebooks.org

2.3 Algorithms for Exponentiation 43

the EXPONENTIATE-REPEAT algorithm, we stop for a while and follow steps from
MULTIPLY-HORNER instead so as to compute the value we need. Again selecting
x = 3 and y = 6, the steps we perform would be something like the following:
Step #1 Assign t ← 1.
Step #2 Invoke MULTIPLY-HORNER(t, x), i.e., invoke MULTIPLY −

HORNER(1,3),
Step #2.1 Assign t ← 0.
Step #2.2 Assign t ← 2 · t , i.e., t ← 2 · 0 = 0.
Step #2.3 Since y1 = 1, assign t ← t + x, i.e., t ← 0 + 1 = 1.
Step #2.4 Assign t ← 2 · t , i.e., t ← 2 · 1 = 2.
Step #2.5 Since y0 = 1, assign t ← t + x, i.e., t ← 2 + 1 = 3.
Step #2.6 Return t = 3.
then assign t ← 3.

Step #3 Invoke MULTIPLY-HORNER(t, x), i.e., invoke MULTIPLY −
HORNER(3,3),
Step #3.1 Assign t ← 0.
Step #3.2 Assign t ← 2 · t , i.e., t ← 2 · 0 = 0.
Step #3.3 Since y1 = 1, assign t ← t + x, i.e., t ← 0 + 3 = 3.
Step #3.4 Assign t ← 2 · t , i.e., t ← 2 · 1 = 6.
Step #3.5 Since y0 = 1, assign t ← t + x, i.e., t ← 6 + 3 = 9.
Step #3.6 Return t = 9.
then assign t ← 9.
. . .

Step #8 Return t = 729.
Nothing has changed: we are still just following directions. We need to keep track of
which algorithm we are following and ensure the names we give to variables do not
get mixed up, but other than that things are not fundamentally more complicated.

Of course, we can also use Horner’s rule by replacing all the additions with mul-
tiplications, and all multiplications with exponentiations. Using the same example
as previously, we would end up with

xy = xy0 · (xy1 · (xy2 · (1)2
)2)2

= x0 · (x1 · (x1 · (1)2
)2)2

= x0 · (x1 · (x1 · 1
)2)2

= x0 · (x1 · (x1
)2)2

= x0 · (x1 · x2
)2

= x0 · (x3
)2

= x0 · x6

= x6

44 2 Writing and Comparing Algorithms

Unsurprisingly, our method for multiplying one number by another has a dual which
is able to exponentiate one number by another:

1 algorithm EXPONENTIATE-HORNER(x, y) begin
2 t ← 1
3 for i from |y| − 1 downto 0 do
4 t ← MULTIPLY-HORNER(t, t)

5 if yi = 1 then
6 t ← MULTIPLY-HORNER(t, x)

7 end
8 end
9 return t

10 end

You should compare EXPONENTIATE-HORNER as given above, line-by-line, with
MULTIPLY-HORNER given earlier. Notice that they use the same idea; their
structure is the same, we simply changed all the additions to multiplications.
EXPONENTIATE-HORNER is often called the square-and-multiply algorithm [6]
since it performs of a sequence of squaring (line #4) and multiplication (line #6):
one squaring is performed for every bit of y whether it is equal to zero or one, and
one multiplication for those bits of y which are equal to one.

The EXPONENTIATE-HORNER algorithm (so MULTIPLY-
HORNER as well, since they are similar) is sometimes de-
scribed as processing y in a left-to-right order: if you write
y in binary, it starts at the left-hand end and finishes at the
right-hand end. For instance, we had

y = 6(10) = 110(2)

and processed y2 = 1 first, then y1 = 1 then finally y0 = 0.
There is an alternative version of the algorithm that processes
y the other way around, i.e., right-to-left. Do some research
into this alternative: write down the algorithm, and convince
yourself it will computes the same result using some exam-
ples. Can you think why the left-to-right version might be
preferred to the right-to-left alternative, or vice versa?

2.4 Computational Complexity

Imagine we have two algorithms that solve the same problem, but do so in different
ways. This should not be hard, because we already have some suitable candidates:
given an x and y, MULTIPLY-REPEAT and MULTIPLY-HORNER compute the same
result x ·y differently. So armed with these, or another example of your choice, here

2.4 Computational Complexity 45

is a question: which one of the algorithms is the “best”? Actually, maybe we should
go back a step: what does “best” even mean? Fastest? Shortest? Most attractive? All
are reasonable measures, but imagine we select the first one and focus on selecting
the algorithm which gives us a result in the least time.

Suppose we implemented the algorithms we would like to compare. This would
give one way of comparing one against the other, we could simply time how long the
corresponding programs take to execute on a computer. There are, however, many
factors which might influence how long the execution of each program takes. For
example:
• the skill of the programmer who implements the algorithm,
• the programming language used,
• the speed at which the computer can execute programs,
• the input, and
• the algorithm implemented by the program.
We know little or nothing about the first three factors, so have to focus on the latter
two. Our goal is to introduce the subject of computational complexity [4]. This
might sound scary, but is essentially about selectively ignoring detail: via a series
of sane simplifications, each focusing on the most important, big picture issues, we
can determine the quality of one algorithm compared to another.

2.4.1 Step Counting and Dominant Steps

As a guess at how long an algorithm would take to give a result if it were imple-
mented and executed, we could count how many steps it takes. If you think about it,
this makes perfect sense: the more steps the algorithm takes, the longer it will take to
give result. But this would be quite a boring task if the algorithm had many steps. So
the first simplification we make is to focus just on a small set of dominant steps, i.e.,
those steps we think are the most important. For algorithms that sort things, maybe
the number of comparisons is the most important thing to count; for algorithms that
process sequences of things, maybe the number of accesses to the sequence is the
most important thing to count.

Since we are comparing algorithms that perform multiplication, it makes sense
that we are interested mainly in arithmetic operations: the most important thing to
count is the number of additions each algorithm uses to compute a result. Table 2.2
shows how many additions each algorithm performs for a range of inputs (ignore the
columns marked f (n) and g(n) for now). It only includes a limited sample of inputs,
but already we can identify two problems: first, the number of addition depends on
y, and, second, it is not clear cut which algorithm uses the least number of additions.
That is, sometimes MULTIPLY-REPEAT uses less, sometimes MULTIPLY-HORNER

uses less. So in terms of answering our question, we are not really much better off
than when we started.

46 2 Writing and Comparing Algorithms

Table 2.1 A table showing
values of y and the number of
bits in their binary
representation

y log2(y + 1) �log2(y + 1)�
1(10) = 1(2) 1.000 1

2(10) = 10(2) 1.584 2

3(10) = 11(2) 2.000 2

4(10) = 100(2) 2.322 3

5(10) = 101(2) 2.585 3

6(10) = 110(2) 2.807 3

7(10) = 111(2) 3.000 3

8(10) = 1000(2) 3.170 4
.
.
.

.

.

.
.
.
.

2.4.2 Problem Size and Step Counting Functions

Usually we would like to make a general judgement about an algorithm which is
independent of the input. To do this, we need to make another simplification: instead
of thinking about the number of steps for a particular input y, we will shift things
to consider a problem size n. The basic idea is that we try to write down a function
for the number of steps an algorithm takes in terms of n, the problem size; this is
a step counting function. Once we have such functions, we can forget about the
algorithms themselves and simply compare the associated step counting functions
with each other.

There is not really a general definition of what the problem size should mean;
basically it is just a measure of how hard the problem is. For example, if we have an
algorithm that sorts a sequence of numbers, the length of the sequence makes a good
problem size: if n is larger, the problem is harder in the sense that the algorithm has
to do more work. In our case, suppose we are looking at n-bit numbers: each input
x and y has n binary digits. If n is larger, the problem is harder in the sense that the
algorithm has to do more work: multiplying together large numbers is harder than
multiplying small numbers together. We can describe n in terms of y as

n = ⌈
log2(y + 1)

⌉
.

That is, we add one to y then it takes the logarithm to base two, and then round
the result up to the nearest integer (this is called the ceiling [8] function); Table 2.1
details some results.

Consider MULTIPLY-REPEAT to start with: if we have n-bit inputs, how many
additions will the algorithm perform? Looking at the algorithm again, we can see
that the best case is when the inputs are really small: that way, we are clearly going
to perform the least additions. The smallest number we can write in n bits is always
going to be 0; this means we perform 0 additions. What about the worst case? This
would be represented by the largest input we can write using n bits; this is 2n − 1. If

2.4 Computational Complexity 47

Table 2.2 A table showing the number of additions performed by MULTIPLY-REPEAT and
MULTIPLY-HORNER, and the values of the associated step counting functions

y �log2(y + 1)� MULTIPLY-REPEAT f (n) = 2n − 1 MULTIPLY-HORNER g(n) = 2 · n
1 1 1 1 2 2

2 2 2 3 3 4

3 2 3 3 4 4

4 3 4 7 4 6

5 3 5 7 5 6

6 3 6 7 5 6

7 3 7 7 6 6

8 4 8 15 5 8
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

we set n = 2 for example, the largest number we can write is three: the next largest
number, i.e., four, needs n = 3. In the worst case then, we can write the step counting
function

f (n) = 2n − 1

to describe how many additions we would do. If n = 2, we are talking about 2-bit
numbers and f (n) = 3 indicates that we would do at most three additions.

Now consider MULTIPLY-HORNER. If we have n-bit inputs, the loop in the al-
gorithm iterates n times: we perform one iteration for each bit of the input y. This
means we do n additions as a result of line #4. In the best case, all the bits of the
input are zero (i.e., each yi = 0) so we never process line #6 and do no more addi-
tions; in the worst case all the bits are one (i.e., each yi = 1) and we always process
line #6 and do n more additions. So in the worst case our step counting function will
be

g(n) = 2 · n.

Choosing n = 2 again, g(n) = 4 indicates that we would do four additions.
Table 2.2 shows the results of the step counting functions along side the actual

number of steps performed by the algorithms. Clearly the two are not the same; the
key thing to realise is that the actual number of steps is always less than or equal
to the step counting function for the corresponding algorithm. This is because we
developed each step counting function in relation to the worst case behaviour for a
given input size, not the actual behaviour for that specific input.

2.4.3 Ignoring Small Problems and Minor Terms

The next simplification we make is to assume n is always large. In a way, this is
obviously sensible: if n were small then nobody cares what algorithm we choose,

48 2 Writing and Comparing Algorithms

they will all be fast enough. The main result of making such an assumption is that
we can make our step counting functions simpler. For example, we currently have
the function

f (n) = 2n − 1.

If n is going to be large, who cares about the 1 term? This will be incidental in
comparison to the 2n term. Imagine we select n = 8 for example: 28 = 256 and
28 − 1 = 255 are close enough that we may as well just treat them as the same and
rewrite the function as

f (n) = 2n.

What about the other step counting function? Consider the following sequence of
step counting functions:

〈1 · n,2 · n,3 · n,4 · n,5 · n,6 · n, . . .〉.

Assuming n is positive, if we read the sequence from left-to-right each function is
greater than the last one. For example 3 ·n will always be greater than 2 ·n, no matter
what n is. This means the number of steps would grow as we read from left-to-right:
the associated algorithms would be slower and slower.

The natural end to this sequence is the point where one of the functions is
n · n = n2. This is basically saying that n2 is greater than all the functions in our
sequence: if we select any constant c < n, then c · n is going to be less than n2. As a
result, another simplification we can make is to treat any step counting function that
looks like c · n as n instead. This means we can rewrite

g(n) = 2 · n

as

g(n) = n.

On one hand, this seems mad: an algorithm whose step counting function is 200 · n
will take 100 times more steps than one whose step counting function is 2 · n. So
how can we rationally treat them as the same? Well, consider running an algorithm
on two different computers: one is about ten years old, and one is very modern.
The same algorithm will probably run 100 times slower on the old computer than it
does on the new one: a ten year old computer is likely to be 100 times slower than
a new one. This comparison is nothing to do with the algorithm in the sense that
the computers are what makes the difference. So whether we take the step counting
function as being 2 · n or 100 · n does not matter, the constant will eventually be
one if we wait for a computer which is fast enough. So in comparing algorithms we
always ignore constants terms, thus treat both 2 · n and 100 · n as the function n.

2.4 Computational Complexity 49

Actually writing

100 · n = n

looks a bit odd, so instead we use the big-O notation [2] and we write the above
non-equation as the equation

100 · n = O(n)

which basically says that if n is big enough, then the function on the left behaves at
worst like the function inside the big-O (having ignored any constants). The phrase
“at worst” is crucial; we can write n = O(n2) since n is at worst n2, but this is
slightly lazy since we also know that n = O(n).

2.4.4 Studying the Growth of Functions

Have a look at Fig. 2.2. It plots the growth of a few simple step counting functions as
the problem size n grows; actually, it only uses very small values of n because some
of the functions fly off the top quite quickly. What we are trying to do is visualise
how the functions behave, relating the shape of the plot for a given step counting
function to the number of steps taken by the associated algorithm.
1. The plot for h(n) = 1 is flat: it does not matter what the problem size is, there is

no growth in the function. This is great! No matter how large the problem is, the
step counting function says the algorithm will take a constant number of steps.

2. The next plot is for h(n) = log2 n. Unlike h(n) = 1, this function grows as n

grows; the larger we make the problem size, the more steps the algorithm takes.
On the other hand, h(n) = log2 n grows quite slowly. We can see, from the tra-
jectory that the plot is taking, that even for large values of n, h(n) = log2 n will
not be too large (in comparison to some of the other functions).

3. The plot for h(n) = n is not so great. This time, the growth is constant: if the
problems size is n, the algorithm takes n steps. If we compare the trajectory of
the function h(n) = n with h(n) = log2 n, h(n) = n is clearly going to be much
larger than h(n) = log2 n in the long run.

4. Then things take a turn for the worse. The functions h(n) = n2 and h(n) = 2n

grow really quickly compared to the others. The function h(n) = 2n shows what
we call exponential growth: looking at the almost vertical trajectory of h(n) = 2n,
it will be enormous even for fairly small values of n. So for large values of n, the
algorithm will take so many steps to produce a result that it is probably not worth
even invoking it!

Just so this hits home, notice that the function h(n) = n is equal to 100 if n = 100:
if the problem size is 100, the algorithm takes 100 steps. On the other hand, the
function h(n) = 2n is equal to

1267650600228229401496703205376

if n = 100. That is a lot of steps!

50 2 Writing and Comparing Algorithms

Fig. 2.2 A graph illustrating the growth of several functions as the problem size is increased

Now, if we put all this evidence together we can try to answer our original ques-
tion: given a problem size n, the number of steps taken by MULTIPLY-REPEAT can
approximated by the function f (n) = 2n; for MULTIPLY-HORNER the number of
steps is approximated by the function g(n) = n. We have seen that f grows so
quickly that even with quite small n, it is fair to say it will always be larger than g.
This implies MULTIPLY-HORNER gives us a result in the least time, and is therefore
the “best” algorithm. Putting this into context helps show the value of our analysis:
in real computers, 32-bit numbers are common. If we wanted to multiply such num-
bers together MULTIPLY-REPEAT would take approximately 4294967296 steps in
the worst case; if we selected MULTIPLY-HORNER instead, we only need approxi-
mately 32 steps. Hopefully it is clear that even though we have made simplifications
along the way, they would have to be wrong on a monumental scale to make our

References 51

selection the incorrect one! So to cut a long story short, computational complexity
has allowed us to reason about and compare algorithms in a meaningful, theoretical
way: this is a very powerful tool if used for the right job.

The big-O notation is one of the most important concepts,
and also items of Mathematical notation, in Computer Sci-
ence. It is worth getting used to it now, so consider the fol-
lowing nine examples:

2n + 1 = O(n)

2n + 3n = O
(
2n
)

6n2 + 3n + 1 = O
(
6n2

)

n

2
+ logn = O(n)

2n logn = O
(
2n
)

6n2 + 3n + 1 = O
(
n2 + n

)

(logn)3 = O(n)

(logn)3 = O
(
(logn)4

)

(logn)3 = O
(
(logn)3

)

One of them is wrong, can you work out which one (and the
reason why)?

In turns out big-O is a short-hand for big-Omicron, if you
want to be exact about the Greek symbol used. Within this
context, using other Greek symbols allows us make other
statements about a function: there is a whole family, includ-
ing o (or little-O), ω (or little-Omega), Ω (or big-Omega),
and Θ (or big-Theta) for instance. Do some research into
what these mean, and why we might use them instead of big-
O in specific situations.

References

1. Wikipedia: Algorithm. http://en.wikipedia.org/wiki/Algorithm
2. Wikipedia: Big-O notation. http://en.wikipedia.org/wiki/Big_O_notation
3. Wikipedia: Carmichael number. http://en.wikipedia.org/wiki/Carmichael_number
4. Wikipedia: Computational complexity theory. http://en.wikipedia.org/wiki/Computational_

complexity_theory
5. Wikipedia: Coprime. http://en.wikipedia.org/wiki/Coprime
6. Wikipedia: Exponentiation by squaring. http://en.wikipedia.org/wiki/Exponentiation_by_

squaring
7. Wikipedia: Fermat primality test. http://en.wikipedia.org/wiki/Fermat_primality_test

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Carmichael_number
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Fermat_primality_test

52 2 Writing and Comparing Algorithms

8. Wikipedia: Floor and ceiling functions. http://en.wikipedia.org/wiki/Floor_and_ceiling_
functions

9. Wikipedia: Flow chart. http://en.wikipedia.org/wiki/Flowchart
10. Wikipedia: Horner’s scheme. http://en.wikipedia.org/wiki/Horner_scheme
11. Wikipedia: Pesudo-code. http://en.wikipedia.org/wiki/Pseudo_code
12. Wikipedia: Prime number. http://en.wikipedia.org/wiki/Prime_number

www.allitebooks.com

http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Horner_scheme
http://en.wikipedia.org/wiki/Pseudo_code
http://en.wikipedia.org/wiki/Prime_number
http://www.allitebooks.org

3Playing Hide-and-Seek with Virus Scanners

A computer virus [5] is a program that attempts to infect another host file (often
another program) by replicating itself (e.g., appending a copy of itself to the host).
This is analogous to how Biological viruses attach themselves to host cells. The idea
is that when the host file is loaded or executed, the virus is activated: at this point
the virus can deploy a payload of some kind, which often has malicious intent. Al-
though a definition1 for computer viruses was yet to be written in 1971, it represents
the point in time when instances of programs we retrospectively call viruses started
to appear. Creeper [7], written by Bob Thomas, is often cited as the first: it targeted
PDP [19] computers connected to the Advanced Research Projects Agency Net-
work (ARPANET) [3], propagating itself via the telephone system. Once resident
it displayed the annoying but otherwise non-destructive message “I’m the creeper,
catch me if you can” to users, but seemingly did not replicate itself (at least inten-
tionally): once the payload was deployed, it simply moved on to the next computer.
Perhaps more (in)famous though, is the 1988 Morris Worm [17] written by Robert
Morris. Although it again lacked a malign payload, the worm infected computers
multiple times, slowing down their normal operation to the point where roughly
10 % of computers connected to the Internet [14] were claimed to have been left
non-operational.

A rich published history [24] of computer viruses now exists; since much of it
is legally dubious, more undoubtedly remains unpublished. Both Creeper and the
Morris Worm represented an experimental era in this historical timeline, with hon-
est security researchers exploring what was and was not possible; neither was in-
tentionally malicious, with Creeper being explicitly described as an experimental

1Strictly speaking, a virus is a program that propagates itself from file to file on one computer,
but typically requires an external stimulus to propagate between computers (e.g., a user carrying
infected files on a USB stick from one computer to another); the requirement for a host file to
infect means the virus is typically not a stand-alone program. This contrasts with a worm, which
propagates from computer to computer itself, acting as a stand-alone program without the need
to infect a host file. A specific example might include aspects of both, so a precise classification
is often difficult; we largely ignore the issue, using the term virus as an imprecise but convenient
catch-all.

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_3,
© Springer International Publishing Switzerland 2014

53

http://dx.doi.org/10.1007/978-3-319-04042-4_3

54

self-replicating program. Beyond the technological aspects, the Morris Worm is
also notorious because of the subsequent prosecution of Morris and treatment of in-
formation, network and computer security as an important emerging threat: govern-
ments, rather than just programmers and researchers, started to take notice. Today
of course, viruses (and malware [16] more generally) have become big business for
the wider computer underground. Not content with sending you annoying messages,
a modern virus might delete or encrypt your files (holding the owners to ransom, so
they must pay before the content can be read again), steal information [15], or even
attempt to actively destroy physical infrastructure. Stuxnet [23], for instance, repre-
sents what is widely viewed as a “cyber-weapon” developed and deployed by some
(unnamed) government against uranium enrichment plants in Iran.

In many cases therefore, (cyber-)crime increasingly does pay. The result is an
arms race between the people who write viruses, and the people who write anti-
virus software. Again drawing on Biology (and the field of virotherapy), the first
example of anti-virus was arguably a second virus called Reaper written to stamp
out the spread of updates to Creeper (which, in contrast to the original, did replicate
themselves). More generally however, before we can disable a virus we need to
detect whether a given host file is infected or not. Interestingly we can prove this
is a good business to be in by showing that it is impossible to write a perfect virus
detector algorithm. Imagine for a moment we could do this: DETECT represents a
perfect virus detector, so we are sure DETECT(x) = true whenever x is a virus,
and that DETECT(x) = false in all other cases. Now imagine there is a virus called
VIRUS. It is clever: it incorporates a copy of DETECT, the virus detector algorithm,
inside itself. A simple description of how VIRUS works is as follows:

1 algorithm VIRUS begin
2 if DETECT(VIRUS) = true then
3 Behave like a non-virus, i.e., a normal program
4 else
5 Behave like a virus, i.e., do something “bad”
6 end
7 end

So when VIRUS is executed, it checks whether DETECT says it is a virus. If
DETECT(VIRUS) = true, i.e., DETECT thinks VIRUS is a virus, then VIRUS does
nothing. Hence, in this case VIRUS does not behave like a virus and so DETECT

was wrong. If DETECT(VIRUS) returns false, i.e., DETECT does not think VIRUS

is a virus, then VIRUS does something “bad” such as deleting all your files. In this
case VIRUS definitely does behave like a virus, and so DETECT is wrong again.
Thus, if we assume a perfect virus scanner DETECT exists then we get a contradic-
tion; this means DETECT cannot exist. Although this proof relates to writing perfect
anti-virus software, it is in fact a special case of the famous Halting problem [10].

Despite the fact that we cannot write perfect anti-virus software, it is still worth
looking at how we might at least try to detect V ; a common tool in this context is
a virus scanner [2]. Most work in roughly the same way: the idea is that for each
virus, one tries to create a unique signature that identifies files containing the virus.

3.1 Computers and Programs 55

The scanner inspects each file in turn, and tries to match the file content with each
signature. If there are no matches, then the scanner concludes that there is no virus
in the file and moves on to the next one. We can imagine both the signature and the
file being sequences of numbers called S and F . There are lots of efficient ways to
search F , the easiest of which is to simply take each S and match it up against the
content of F one element at a time:

F = 〈 · · · , 6, 5, 2, 1, 4, 0, 3, 5, 2, 1, · · · 〉
S = 〈 3, 5, 2, 1 〉 �→ no match

〈 3, 5, 2, 1 〉 �→ no match
〈 3, 5, 2, 1 〉 �→ no match
〈 3, 5, 2, 1 〉 �→ no match
〈 3, 5, 2, 1 〉 �→ no match
〈 3, 5, 2, 1 〉 �→ no match
〈 3, 5, 2, 1 〉 �→ match

In the i-th step, we compare S against the sub-sequence of F starting at Fi . We
continue this process until either we run out of content, or there is a match between
S and a particular region of F . In the latter case, we have found an occurrence of S

in F and identified the file as containing the virus. This approach relies on the fact
that the people who sold you the virus scanner send you a new signature whenever
a new virus is detected somewhere; this is basically why you need to update your
virus scanner regularly. A given signature might not be perfect, and might sound
the alarm for some files that do not contain a virus. For example, the signature
〈3,5,2,1〉 might be a valid part of some uninfected data file, but would still cause
the scanner to flag it as infected.

In this chapter we will play the part of the bad guy, and imagine we want to
write a virus. The goal is to explain how our virus can avoid detection by virus
scanners (or at least the one described above), and yet still execute some payload.
The approach we use is to have the virus change itself during execution so as to fool
the virus scanner. This sort of self-modifying program is made possible by the way
that modern computers execute programs. So before we start talking about viruses,
we will start by looking at what programs are and how computers execute them.

3.1 Computers and Programs

The questions “what is a computer” and “what is computation” are at the core of
Computer Science; eminent scholars in the field have spent, and still spend, lots of
time thinking about and producing new results in this area. If you pick up a textbook
on the subject, the topic of Turing Machines (TMs) [25] is often used as a starting
point. Alan Turing [1], some might say the father of Computer Science, introduced
TMs as a theoretical tool to reason about computers and computation: we still use
them for the same tasks today. But TMs and their use are a topic in their own right,
and one not quite aligned to what we want here. Specifically, we would like to
answer some more concrete, more practical questions instead. So, consider that you

56 3 Playing Hide-and-Seek with Virus Scanners

probably sit in front of and use a physical (rather than theoretical) computer every
day: we would like to know “what is that computer” and more importantly “how
does it compute things”?

3.1.1 A Theoretical Computer

A computer is basically just a machine used to process steps, which we call instruc-
tions, collected together into programs. This should sound familiar: the computer
is doing something similar to what we do when we step through an algorithm. In
a sense, the only thing that makes a computer remarkable is that it executes the
instructions in a program much faster than we can process algorithms, and more
or less without error. Just like we can process any reasonably written algorithm,
a computer can execute any program. This is a neat feature: we do not need one
computer to send emails and a different one to view web-pages, we just need one
general-purpose computer that can do more or less anything when provided with
an appropriate program.

To design a computer, we need to write down an algorithm that describes how
to process programs (which are simply algorithms). In a very rough sense, as the
user of a computer you “see” the result as the combination of an operating system
(e.g., UNIX) and a Central Processing Unit (CPU) [4], or processor, that is the
main hardware component within the computer. Basically the processor is the thing
that actually executes programs, and the operating systems acts as an assistant by
loading the programs from disk, allowing you to select which program to execute
and so on. Of course we then need to build the hardware somehow, but we will
worry about that later; basically what we want as a starting point is an algorithm for
processing algorithms. Here is a first attempt:
1. Write a program as a sequence of instructions called P ; start executing the se-

quence from the first element, i.e., P0.
2. Fetch the next instruction from the program and call it IR.
3. If IR =⊥ (i.e., we have run out of instructions to execute) or if IR = HALT

then halt the computer, otherwise execute IR (i.e., perform the operation it spec-
ifies).

4. Repeat from line #2.
Look at this a little more closely. The sequence of instructions we call P is a pro-
gram for the computer; if it makes things easier, think of it as a word processor or
web-browser or something. Each element of P is an instruction, and each instruc-
tion is taken from an instruction set of possibilities that the computer understands.
Lines #2 to #4 form a loop. During each iteration we first fetch the next instruc-
tion from P . We call the instruction IR because in real computers, it is held in
the Instruction Register (IR). Once we have IR to hand, we set about perform-
ing whatever operation is specifies; then if we encounter a special instruction called
HALT we stop execution, otherwise we carry out the whole loop again.

Hopefully this seems sensible. It should do, because as we have tried to motivate,
it more or less models the same thing you would do if you were processing the steps
of an algorithm. An example makes the whole idea easier to understand: imagine

3.1 Computers and Programs 57

we want to execute a short program that computes 10 + 20. First we write down the
program, e.g.,

P = 〈A ← 10,A ← A + 20,HALT 〉,
and then process the remaining steps of our algorithm to execute it
Step #1 Fetch IR = A ← 10 from the sequence.
Step #2 Since IR �=⊥ and IR �= HALT , execute A ← 10, i.e., set A to 10.
Step #3 Fetch IR = A ← A + 20 from the sequence.
Step #4 Since IR �=⊥ and IR �= HALT , execute A ← A + 20, i.e., set A to 30.
Step #5 Fetch IR = HALT from the sequence.
Step #6 Since IR �=⊥ but IR = HALT , halt the computer.
After which we have the result 10 + 20 = 30 held in A. Hopefully the underlying
point is clear. Specifically, bar the issue with building the hardware itself there is no
magic behind the scenes: this really is how a computer executes a program.

3.1.2 A Real, Harvard-Style Computer

It turns out that the hardware components we would need to build a computer like
the one described above relate well to those you would find in a simple pocket cal-
culator. For example:

A pocket calculator:
• Has an accumulator (i.e., the current

value).
• Has some memory (accessed via the

M+ and MR buttons) that can store
values.

• Has some device to perform arith-
metic (i.e., to add together numbers).

• Has input and output peripherals
(e.g., keypad, LCD screen).

• Responds to simple commands or in-
structions from the user; for exam-
ple the user can supply things to per-
form arithmetic on (i.e., numbers)
and commands to perform arithmetic
(e.g., do an addition).

A computer:
• Has many accumulators (often called

registers).
• Has potentially many levels and large

amounts of memory (often called
RAM).

• Has an Arithmetic and Logic Unit
(ALU) to perform arithmetic.

• Has input and output peripherals
(e.g., keyboard, mouse, hard disk,
monitor).

• Executes sequences of simple in-
structions called programs; each in-
struction consists of some operands
(i.e., the things to operate on) and
an opcode (i.e., the operation to per-
form).

In fact, early computers essentially were very large versions of what today we would
call a calculator. They were used to perform repetitive computation, such as com-
puting tables of SIN and COS for people to use. Computers of this era typically
relied on
1. a paper tape [20], where instructions from the program were stored as patterns

of holes in the paper, and
2. some memory, where data being processed by the computer was stored.

58 3 Playing Hide-and-Seek with Virus Scanners

We could expand on both technologies, but their detail is not really that important.
Instead we can model them using two sequences called T APE and MEM . When
we write MEMi , we are accessing the i-th address in memory, whereas T APEj

represents the j -th row on the continuous ream of paper tape.
So imagine we want to build an example computer of this type. We assume it has

a tape and a memory as described above, and single accumulator called A. Each
element of T APE holds an instruction from the program, while each element of
MEM and the accumulator A can hold numbers; to make things simpler, we will
write each number using decimal. The computer can understand a limited set of
instructions:
• NOP , i.e., do nothing.
• HALT , i.e., halt or stop execution.
• A ← n, i.e., load the number n into the accumulator A.
• MEMn ← A, i.e., store the number in the accumulator A into address n of the

memory.
• A ← MEMn, i.e., load the number from address n in memory into the accumu-

lator A.
• A ← A + MEMn, i.e., add the number in address n of the memory to the accu-

mulator A and store the result back in the accumulator.
• A ← A−MEMn, i.e., subtract the number in address n of the memory from the

accumulator A and store the result back in the accumulator.
• A ← A ⊕ MEMn, i.e., XOR the number in address n of the memory with the

accumulator A and store the result back in the accumulator.
One can view things on the right-hand side of the assignment symbol ← as being
read from, and those on the left-hand side as being written to by an instruction. So
for example, an instruction

A ← 10

reads the number 10 and writes it into A. This also implies that memory access can
be written in the same way; for example

MEM64 ← A

reads the number in A and writes it into memory at address sixty four.
It is important to notice that a given program for our example computer can only

include instructions from this instruction set. It simply does not know how to execute
any other type. For example, we could not feed it the FERMAT-TEST algorithm from
Chap. 2 because it uses operations not included in the instruction set. Even so, we
can start to write useful programs. Consider a similar example to the one we looked
at previously: we want to add together two numbers held in MEM4 and MEM5
(where say MEM4 = 10 and MEM5 = 20), and then store the result into MEM6.
The program consists of the four instructions

A ← MEM4
A ← A + MEM5
MEM6 ← A

HALT

3.1 Computers and Programs 59

The method used by the computer to execute a program like this is very similar to
our first attempt above:
1. Encode a program P onto paper tape; load this tape into the tape reader and start

the computer.
2. Using the tape reader, fetch the next instruction in the program and call it IR.
3. If IR =⊥ (i.e., we have run out of instructions to execute) or if IR = HALT

then halt the computer, otherwise execute IR (i.e., perform the operation it spec-
ifies).

4. Repeat from line 2.
We can describe each step during execution of the program by detailing the state of
the computer, e.g., what values are held by MEM , T APE and A; Figs. 3.1 and 3.2
do just this. The execution shows that after step #9, the computer halts and we end
up with the result of the addition, i.e., 30, stored in MEM6; not exactly a word
processor or web-browser, but quite an achievement by the standards of the 1940s!

It is important to remember that the program is free to alter memory content,
but has no means of altering the tape which houses the instructions. That is, once
we start the computer, we cannot change the program: our example computer views
instructions and the data as fundamentally different things. This is now termed a
Harvard architecture [11] after the Automatic Sequence Controlled Calculator
(ASCC) designed by Howard Aiken and built by IBM; the installation at Harvard
University, delivered in around 1944, was nicknamed the “Mark 1” [12]. The crucial
thing to take away is that there is still no magic involved: as shown in Fig. 4.1, the
Harvard Mark 1 was a real, physical computer built on exactly the principles as
above.

3.1.3 A Real, von Neumann-Style Computer

The Harvard style view of computers changed radically when John von Neu-
mann [26] documented the concept of a stored program architecture in around
1945. The basic idea is that instructions and data are actually the same thing. Think
about it: what does 1 mean? The meaning of 1 completely depends on the context
it is placed in, and how we interpret it: if we interpret it as a number it means the
integer one, if we interpret it as an instruction it could mean “perform an addition”.
So basically, as long as we have an encoding from numbers to meaning then we
can store both instructions and data as numbers in memory. For our purposes, the
encoding does not matter too much; imagine we continue to represent everything as
decimal numbers:
• 00nnnn means NOP .
• 10nnnn means HALT .
• 20nnnn means A ← n.
• 21nnnn means MEMn ← A.
• 22nnnn means A ← MEMn.
• 30nnnn means A ← A + MEMn.
• 31nnnn means A ← A − MEMn.

60 3 Playing Hide-and-Seek with Virus Scanners

Fig. 3.1 Computing the sum 10 + 20, as executed on a Harvard-style computer

3.1 Computers and Programs 61

Fig. 3.2 Computing the sum 10 + 20, as executed on a Harvard-style computer

• 32nnnn means A ← A ⊕ MEMn.
• 40nnnn means PC ← n.
• 41nnnn means PC ← n iff. A = 0.
• 42nnnn means PC ← n iff. A �= 0.
The entries on the left-hand side perhaps need some explanation. Take the entry
for 20nnnn: this is a six digit decimal number where the left-most two digits are
2 and 0, and the right-most four can be any digits in the range 0,1, . . . ,9. On the
right-hand side, we replace nnnn by a single number n so it will be in the range
0,1, . . . ,9999. For example, the decimal number 300005, viewed as an encoded
instruction 300005, means A ← A + MEM5: we match 0005 on the left-hand side
of the table, and turn it into 5 on the right-hand side. The 30 part is the opcode,
and the 0005 part is the operand; the 30 part tells the computer what operation to
perform, while the 0005 part tells it what to perform the operation on.

So if we store both instructions and data in memory, how do we know which
instruction to execute next? Basically, we need an extra accumulator, which we call
the Program Counter (PC), to keep track of where to fetch the instruction from: it
holds a number just like A does, but the number in PC will be used to keep track of
where the next instruction is in memory. With this in mind, we also need to slightly
alter the way programs are executed:

62 3 Playing Hide-and-Seek with Virus Scanners

Fig. 3.3 The ENIAC installation at the US Army Ballistics Research Laboratory (public domain
image, source: US Army Photo http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac5.gif)

1. Encode a program P onto paper tape; load this tape into memory using the tape
reader, zero the program counter PC and start the computer.

2. From the address in PC, fetch the next instruction in the program and call it IR.
3. Increment PC so it points to the next instruction.
4. If IR =⊥ (i.e., we have run out of instructions to execute), or if IR = HALT

then halt the computer, otherwise execute IR (i.e., perform the operation it spec-
ifies).

5. Repeat from line 2.
Notice that we have included a new step to update the value of PC (by adding one
to it). This is analogous to ensuring we fetch the instruction from the next row of
the tape in our previous design. Now reconsider the example program we looked at
before, and how it is encoded:

A ← MEM4 �→ 220004
A ← A + MEM5 �→ 300005
MEM6 ← A �→ 210006
HALT �→ 100000

Execution using our new computer proceeds in more or less the same way, except
that now it holds both data and instructions in MEM rather than having the in-
structions on a dedicated tape. As before, one can imagine drawing the state of the
computer at each step in the execution; we do this in Figs. 3.6, 3.7, 3.8. Again, after
step #13, the computer halts and we end up with the result of the addition, i.e., 30,

http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac5.gif

3.1 Computers and Programs 63

Fig. 3.4 Two operators at the ENIAC control panel (public domain image, source: US Army Photo
http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac7.gif)

Fig. 3.5 Original caption notes that “replacing a bad [vacuum] tube meant checking among
ENIACs 19,000 possibilities”; a daunting task! (public domain image, source: US Army Photo
http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac3.gif)

http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac7.gif
http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac3.gif

64 3 Playing Hide-and-Seek with Virus Scanners

Fig. 3.6 Computing the sum 10 + 20, as executed on a stored program computer

3.1 Computers and Programs 65

Fig. 3.7 Computing the sum 10 + 20, as executed on a stored program computer

66 3 Playing Hide-and-Seek with Virus Scanners

Fig. 3.8 Computing the sum 10 + 20, as executed on a stored program computer

stored in MEM6.

Although reading and following executions of existing pro-
grams is a good start, writing your own programs is really
the only way to get to grips with this topic.
See if you can write a program for the von Neumann com-
puter that evaluates the expression

x · (y + z)

where x, y and z are stored in memory at addresses of your
choice; since the computer has no multiplication instruction,
this demands some careful thought! Demonstrate that the
program works by listing the steps (similar to above) for ex-
ample x, y and z.

The current instruction set contains three rough classes of in-
struction: some perform load and store from and to memory,
some perform arithmetic operations, and some perform up-
dates to PC. Depending on what we use the computer for,
other instructions might be useful of course: assuming you
have a free choice, write the encoding and meaning for some
other instructions you deem useful.

Why choose these instructions in particular? For instance,
what might you use them for? There is a limit to how many
new instructions we can add: can you explain one reason
why?

3.2 Harvard Versus von Neumann Computers

With such a simple example program, it might seem as if the two styles of computer
are more or less the same, i.e., neither has a massive advantage over the other. For

3.2 Harvard Versus von Neumann Computers 67

example, they both compute 10 + 20 = 30 at the end of the day. But, and this is a
big but, there are (at least) two subtle and key differences between them.

3.2.1 Beyond Straight-Line Programs

With the Harvard-style design, we were forced to write instructions onto the tape
and have them executed in the same order. There was, for example, no mechanism
to “skip over” a given instruction or “jump” execution to an instruction based on
a result we computed. Clearly this limits the sorts of program we could write. The
good news is that the von Neumann-style upgrade removes this restriction by allow-
ing PC to be altered by the program rather than just by the computer. By simply
setting the value of PC we can direct execution to any instruction; we no longer
have to write programs which are straight-line.

As a simple example, imagine we alter our example program by replacing the
HALT instruction with one that alters the value of PC:

A ← MEM4 �→ 220004
A ← A + MEM5 �→ 300005
MEM6 ← A �→ 210006
PC ← 0 �→ 400000

When we execute the last instruction, it sets the value of PC back to zero. Put more
simply, it starts executing the program again right from the start. Writing down the
steps of execution only, rather than drawing the state at each step, we now get:
Step #1: Load the tape into memory, set PC = 0 and start the computer.
Step #2: Fetch the next instruction IR = 220004 from PC = 0.
Step #3: Decode IR = 220004 into A ← MEM4, and set PC to PC + 1 = 1.
Step #4: Execute the instruction A ← MEM4, i.e., set A to MEM4 = 10.
Step #5: Fetch the next instruction IR = 300005 from PC = 1.
Step #6: Decode IR = 300005 into A ← A+MEM5, and set PC to PC+1 = 2.
Step #7: Execute the instruction A ← A + MEM5, i.e., set A to A + MEM5 =

30.
Step #8: Fetch the next instruction IR = 210006 from PC = 2.
Step #9: Decode IR = 210006 into MEM6 ← A, and set PC to PC + 1 = 3.
Step #10: Execute the instruction MEM6 ← A, i.e., set MEM6 to A = 30.
Step #11: Fetch the next instruction IR = 400000 from PC = 3.
Step #12: Decode IR = 400000 into PC ← 0, and set PC to PC + 1 = 4.
Step #13: Execute the instruction PC ← 0, i.e., set PC to 0.
Step #14: Fetch the next instruction IR = 220004 from PC = 0.
Step #15: Decode IR = 220004 into A ← MEM4, and set PC to PC + 1 = 1.
Step #16: Execute the instruction A ← MEM4, i.e., set A to MEM4 = 10.
Step #17: . . .

Clearly the program never finishes in the sense that we never execute a HALT

instruction. What we have constructed is an infinite loop; in this situation the com-
puter will seem to “freeze” since it ends up executing the same instructions over and

68 3 Playing Hide-and-Seek with Virus Scanners

Fig. 3.9 A moth found by operations of the Harvard Mark 2; the “bug” was trapped within the
computer and caused it to malfunction (public domain image, source: http://en.wikipedia.org/wiki/
File:H96566k.jpg)

over again forever [13].

Although the occurrence of an infinite loop is normally
deemed a problem, can you think of an example where it
might be required?

Even so, you might argue it would be useful to detect in-
finite loops so the computer can be manually halted. How
might you approach doing so? For example, what changes to
the computer might be necessary? Is your approach always
guaranteed to work?

3.2.2 Toward Self-Modifying Programs

With the Harvard-style design, we were prevented from altering the tape content
after we started execution. Put another way, programming happens strictly before
program execution. However, with the von Neumann-style design instructions and
data are the same thing so we can alter instructions during execution just as easily
as data.

http://en.wikipedia.org/wiki/File:H96566k.jpg
http://en.wikipedia.org/wiki/File:H96566k.jpg

3.2 Harvard Versus von Neumann Computers 69

What does this mean in practise? Imagine we take the example program but in-
troduce a bug [22]. A bug is a programming error: it is a mistake in a program
that causes it to malfunction, behaving in a different way than we might have in-
tended. The term bug (and debug [8], that relates to fixing the mistake) have well-
discussed histories; a nice story relates them to a real bug (a moth) that famously
short-circuited the Harvard Mark 2 computer! The bug here is that instead of storing
the addition result in MEM6, we mistakenly store it in MEM3:

A ← MEM4 �→ 220004
A ← A + MEM5 �→ 300005
MEM3 ← A �→ 210003
HALT �→ 100000

Again writing down the steps of execution only, we obtain:
Step #1: Load the tape into memory, set PC = 0 and start the computer.
Step #2: Fetch the next instruction IR = 220004 from PC = 0.
Step #3: Decode IR = 220004 into A ← MEM4, and set PC to PC + 1 = 1.
Step #4: Execute the instruction A ← MEM4, i.e., set A to MEM4 = 10.
Step #5: Fetch the next instruction IR = 300005 from PC = 1.
Step #6: Decode IR = 300005 into A ← A+MEM5, and set PC to PC+1 = 2.
Step #7: Execute the instruction A ← A + MEM5, i.e., set A to A + MEM5 =

30.
Step #8: Fetch the next instruction IR = 210003 from PC = 2.
Step #9: Decode IR = 210003 into MEM3 ← A, and set PC to PC + 1 = 3.
Step #10: Execute the instruction MEM3 ← A, i.e., set MEM3 to A = 30.
Step #11: Fetch the next instruction IR = 000030 from PC = 3.
Step #12: Decode IR = 000030 into NOP , and set PC to PC + 1 = 4.
Step #13: Execute the instruction NOP , i.e., do nothing.
Step #14: Fetch the next instruction IR = 000010 from PC = 4.
Step #15: Decode IR = 000010 into NOP , and set PC to PC + 1 = 5.
Step #16: Execute the instruction NOP , i.e., do nothing.
Step #17: . . .

Step #11 is now different: something weird has happened because initially we had
a HALT instruction in MEM3, but when we come to fetch it, it has changed! The
reason is obvious if we look a few steps back. In step #10 we execute the instruction
which should store the result of our addition. But remember the bug: instead of
storing the result in MEM6, we store the result, i.e., 30, in MEM3. Of course,
MEM3 is part of the program, so as things progress we end up trying to execute
the number 30 we previously stored. This behaviour is allowed because data and
instructions are the same thing now. So we fetch the data value 30 and try to interpret
it as an instruction according to our encoding.

To cut a long story short, the program has modified itself [21] by altering in-
structions relating to the same program as is being executed! In this case, the self-
modification can only be a bad thing since without a HALT instruction the com-
puter will never stop executing the program. More than likely it will “crash” some-
how [6]. More generally however, the idea is that in other cases we can put self-

70 3 Playing Hide-and-Seek with Virus Scanners

modification to constructive use, i.e., have a program change instructions so that
something useful happens as a result.

3.3 A Self-Modifying Virus

Finally we can talk about our virus which, you will remember, aims to change itself
to avoid detection by the virus scanner. Imagine our example computer includes a
single instruction that, when executed, causes something bad to happen; maybe the
computer self-destructs or something. For the sake of argument, we will say that
whenever the computer executes the extra instruction 111111 this represents the
payload of our virus. In other words, in our encoding 111111 means payload, and
when payload is executed the virus has won.

It is not too hard to imagine that when we infect a file called F , the virus payload
will then appear somewhere within it. If this is the case, the virus scanner can easily
detect the virus by using the single element signature S = 〈111111〉 to scan F as we
discussed at the beginning of the chapter:

F = 〈 · · · · · · · · · · · · 111111 · · · 〉,
S = 〈 111111 〉 �→ no match

〈 111111 〉 �→ no match
〈 111111 〉 �→ no match
〈 111111 〉 �→ match

With this in mind, the virus writer has to somehow hide the virus payload so the
virus scanner cannot detect it. To do this, we will use the properties of the XOR
(short for “exclusive-or”) function [9] we met in Chap. 1.

3.3.1 Using XOR to Mask Numbers

XOR can be used to mask (or hide) the value of a number. Imagine we have a bit
x and we do not want anyone to know it; select a bit k and compute y = x ⊕ k. If
we give y to someone, can they tell us what x is? Well, if y = 0 then that could
have been produced by us having x = 0 and selecting k = 0 or having x = 1 and
selecting k = 1 because

y = 0 = x ⊕ k =
{

0 ⊕ 0 if x = 0 and k = 0
1 ⊕ 1 if x = 1 and k = 1

Similarly, if y = 1 then that could have been produced by us having x = 0 and
selecting k = 1 or having x = 1 and selecting k = 0 because

y = 1 = x ⊕ k =
{

0 ⊕ 1 if x = 0 and k = 1
1 ⊕ 0 if x = 1 and k = 0

The point is, if we give someone y they can not tell us x for sure unless they also
know k. Since we know k, we can easily tell what x is since y ⊕ k = x ⊕ k ⊕ k = x.
You can think of this as a limited form of encryption, except we call k the mask
(rather than the key) and say x has been masked by k to produce y.

3.3 A Self-Modifying Virus 71

The problem is that XOR is a Boolean function: the inputs and output have to be
either 0 or 1. To apply it to the decimal numbers in MEM , we first apply what we
learnt in Chap. 1 to convert between decimal and binary. For example

310000(10) = 01001011101011110000(2)

329975(10) = 01010000100011110111(2)

Now we can compute

01001011101011110000(2) ⊕ 01010000100011110111(2)

= 00011011001000000111(2)

= 111111(10)

simply by applying XOR to the corresponding bits. Likewise, since

111111(10) = 00011011001000000111(2)

329975(10) = 01010000100011110111(2)

we can compute

00011011001000000111(2) ⊕ 01010000100011110111(2)

= 01001011101011110000(2)

= 310000(10)

More simply, in terms of our example above we start with x = 310000 and select
k = 329975. Then, if we compute x⊕k = 310000⊕329975 we get y = 111111. We
know k, so if we compute y ⊕ k = 111111 ⊕ 329975 then we get back x = 310000.

3.3.2 A Virus that Masks the Payload

Now for the clever part: notice that
• 310000 corresponds to the encoded instruction 310000 which means A ← A −

MEM0,
• 329975 corresponds to the encoded instruction 329975 which means A ← A ⊕

MEM9975, and
• 111111 corresponds to the encoded instruction 111111 which means payload.
So basically

111111 = 310000 ⊕ 329975

means we can build the payload instruction by simply applying ⊕ to two innocent
looking instructions. Our strategy for hiding the virus payload should now be ob-
vious: we mask the payload instruction within F which we load into memory and
start executing. While the program is executing, we unmask the payload instruction
using self-modification, and then execute it. There is a fancy name for viruses like
this: they are called polymorphic [18]. The first time a virus was seen using the
technique was around 1990 when a virus called 1260 (referring to the length) was
discovered.

72 3 Playing Hide-and-Seek with Virus Scanners

Confused? Understanding why it works might be a puzzle, but either way the end
result is the following program and the corresponding encoding:

A ← MEM3 �→ 220003
A ← A ⊕ MEM5 �→ 320005
MEM3 ← A �→ 210003
A ← A − MEM0 �→ 310000
HALT �→ 100000
A ← A ⊕ MEM9975 �→ 329975

Just by eye-balling the encoded program we can see that the virus payload does not
appear, so if we use the virus scanner on it we fail to detect a virus:

F = 〈 · · · 220003 320005 210003 310000 100000 329975 · · · 〉,
S = 〈 111111 〉 �→ no match

〈 111111 〉 �→ no match
〈 111111 〉 �→ no match
〈 111111 〉 �→ no match
〈 111111 〉 �→ no match
〈 111111 〉 �→ no match

But so what? If the program does not contain the virus payload, nothing bad can
happen right?! Unfortunately not. Have a look at what happens when we execute
the program:
Step #1: Load the tape into memory, set PC = 0 and start the computer.
Step #2: Fetch the next instruction IR = 220003 from PC = 0.
Step #3: Decode IR = 220003 into A ← MEM3, and set PC to PC + 1 = 1.
Step #4: Execute the instruction A ← MEM3, i.e., set A to MEM3 = 310000.
Step #5: Fetch the next instruction IR = 320005 from PC = 1.
Step #6: Decode IR = 320005 into A ← A⊕MEM5, and set PC to PC+1 = 2.
Step #7: Execute the instruction A ← A ⊕ MEM5, i.e., set A to A ⊕ MEM5 =

111111.
Step #8: Fetch the next instruction IR = 210003 from PC = 2.
Step #9: Decode IR = 210003 into MEM3 ← A, and set PC to PC + 1 = 3.
Step #10: Execute the instruction MEM3 ← A, i.e., set MEM3 to A = 111111.
Step #11: Fetch the next instruction IR = 111111 from PC = 3.
Step #12: Decode IR = 111111 into payload, and set PC to PC + 1 = 4.
Step #13: Execute the instruction payload, i.e., do something bad.
Step #14: . . .

Step #13 executes payload somehow, so the virus payload has been triggered even
though it did not appear in F . Look at what happens step-by-step:
• Step #4 loads the masked virus payload, which looks like a A ← A − MEM0

instruction, from MEM3 and into A.
• Step #7 unmasks it using an XOR instruction that applies the mask value k stored

in MEM5 just like we saw above.

3.3 A Self-Modifying Virus 73

• At this point we have A = 111111 which is then stored back into MEM3 by step
#10.

• Step #13 executes the unmasked instruction from MEM3, at which point the
payload is triggered and the virus wins.

3.3.3 Preventing the Virus Without a Virus Scanner

The obvious question is, if the virus scanner we have does not work in this case
then what can we do to stop the virus? In reality, this is quite an open question.
On real computers we still do not have a definitive, general solution against viruses
and malware. However, in the particular case of our virus we can think of a few
possibilities:
• We could monitor the program during execution and prevent the virus payload

being executed. So, for example, execution of every instruction would have to
include an extra step saying “if IR is the virus payload then stop execution”. But
of course in reality there is not just one instruction that does something bad: more
usually a subtle combination of many instructions will represent the payload, so
this approach would not work. It also has the drawback of reducing the speed at
which we can execute all programs, which might be quite unpopular.

• We could try to be more clever at coming up with the signature that identifies this
sort of virus. We cannot use the masked payload 310000 because that is a valid
instruction which basically any program might include! We cannot use the mask
329975 because this could be anything: the virus is free to choose any mask it
wants (although obviously this alters the masked payload). One option could be
to try and identify the pattern of self-modifying code. For example, if the virus
scanner knew the meaning of instructions it could perhaps analyse the program
and work out what is really going on. Clearly this means the virus scanner needs
to be much more sophisticated and depends on the fact that writing similar code
in a different way is not possible.

• We could alter the computer so that writing self-modifying programs is impos-
sible. Modern computers include a scheme which roughly works by adding an
extra “tag” to each element of MEM . If the tag is 0, this indicates that the el-
ement can be written to but not executed as an instruction; if the flag is 1, this
means the element can be executed as an instruction but not written to. In terms
of our example virus, this would mean the memory looks like:

MEM

Address Tag Value Meaning
0 1 220003 A ← MEM3
1 1 320005 A ← A ⊕ MEM5
2 1 210003 MEM3 ← A

3 1 310000 A ← A − MEM0
4 1 100000 HALT

5 0 329975 A ← A ⊕ MEM9975

74 3 Playing Hide-and-Seek with Virus Scanners

So basically, we could not execute the virus because MEM3 could not be written
to once the program was loaded. Put another way, the instruction MEM3 ← A

would cause the computer to halt due to a violation of the rules. The drawback is
that there are reasonable uses for self-modifying programs; by implementing this
solution we prevent those from being executed as well. Plus, we have to make
our memory, and the mechanism that accesses it, more complicated and therefore
more costly.

The current instruction set includes instructions to load from
and store into fixed addresses. For instance MEMn ← A

stores A at the address n which is fixed when we write the
program. For computers such as ENIAC, self-modifying pro-
grams were often used in a positive way to extend this abil-
ity to variable addresses; put simply, this allows access to
MEMi for some i chosen during execution.

Imagine a sequence of numbers X = 〈X0,X1, . . . ,Xm−1〉
is stored at a known address in memory, and we want to com-
pute the sum

i<m∑

i=0

Xi.

If the sequence has 10 elements and starts at address 100,
say, one way to do this would be

A ← MEM100+0
A ← A + MEM100+1

...

A ← A + MEM100+9

where clearly 100 + 1 = 101 is fixed, so we can write an
appropriate instruction.

But what if m is really large, or only known once the pro-
gram starts to execute? In these cases, we might prefer to
write a loop: based on an m also stored in memory some-
where (at address 99 say), use the concept of self-modifying
programs to compute the same result by looping through
each i (like the loop in Chap. 2) and hence accumulating each
Xi .

References

1. Wikipedia Alan Turing. http://en.wikipedia.org/wiki/Alan_Turing
2. Wikipedia: Anti-virus software. http://en.wikipedia.org/wiki/Antivirus_software

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Antivirus_software

References 75

3. Wikipedia: ARPANET. http://en.wikipedia.org/wiki/ARPANET
4. Wikipedia: Central Processing Unit (CPU). http://en.wikipedia.org/wiki/Central_

processing_unit
5. Wikipedia: Computer virus. http://en.wikipedia.org/wiki/Computer_virus
6. Wikipedia: Crash. http://en.wikipedia.org/wiki/Crash_(computing)
7. Wikipedia: Creeper. http://en.wikipedia.org/wiki/Creeper_(program)
8. Wikipedia: Debugging. http://en.wikipedia.org/wiki/Debugging
9. Wikipedia: Exclusive OR. http://en.wikipedia.org/wiki/XOR

10. Wikipedia: Halting problem. http://en.wikipedia.org/wiki/Halting_problem
11. Wikipedia: Harvard architecture. http://en.wikipedia.org/wiki/Harvard_architecture
12. Wikipedia: Harvard Mark I. http://en.wikipedia.org/wiki/Harvard_Mark_I
13. Wikipedia: Infinite loop. http://en.wikipedia.org/wiki/Infinite_loop
14. Wikipedia: Internet. http://en.wikipedia.org/wiki/Internet
15. Wikipedia: Keystroke logging. http://en.wikipedia.org/wiki/Keystroke_logging
16. Wikipedia: Malware. http://en.wikipedia.org/wiki/Malware
17. Wikipedia: Morris worm. http://en.wikipedia.org/wiki/Morris_worm
18. Wikipedia: Polymorphic code. http://en.wikipedia.org/wiki/Polymorphic_code
19. Wikipedia: Programmed Data Processor (PDP). http://en.wikipedia.org/wiki/Programmed_

Data_Processor
20. Wikipedia: Punched tape. http://en.wikipedia.org/wiki/Punched_tape
21. Wikipedia: Self-modifying code. http://en.wikipedia.org/wiki/Self-modifying_code
22. Wikipedia: Software bug. http://en.wikipedia.org/wiki/Software_bug
23. Wikipedia: Stuxnet. http://en.wikipedia.org/wiki/Stuxnet
24. Wikipedia: Timeline of computer viruses and worms. http://en.wikipedia.org/wiki/

Timeline_of_computer_viruses_and_worms
25. Wikipedia: Turing machine. http://en.wikipedia.org/wiki/Turing_machine
26. Wikipedia: von Neumann architecture. http://en.wikipedia.org/wiki/Von_Neumann_

architecture

http://en.wikipedia.org/wiki/ARPANET
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Computer_virus
http://en.wikipedia.org/wiki/Crash_(computing)
http://en.wikipedia.org/wiki/Creeper_(program)
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Harvard_Mark_I
http://en.wikipedia.org/wiki/Infinite_loop
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Keystroke_logging
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Morris_worm
http://en.wikipedia.org/wiki/Polymorphic_code
http://en.wikipedia.org/wiki/Programmed_Data_Processor
http://en.wikipedia.org/wiki/Programmed_Data_Processor
http://en.wikipedia.org/wiki/Punched_tape
http://en.wikipedia.org/wiki/Self-modifying_code
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Stuxnet
http://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Von_Neumann_architecture

4How Long Is a Piece of String?

Recall that in Chap. 3 we described how computers only understand a fixed set
of instructions that can operate only on fixed types of operand; at the lowest level,
instructions typically only operate on operands which are numbers. So, for example,
most computers understand how to add together numbers: in this case we would say
that a number is a native type of data. However, it is not common for a computer
to understand types of data more complicated than this. For example a computer
does not have a native understanding of emails; there is no instruction that tells it to
“search for the text X in the email Y ”. In order to write a program that deals with
non-native types of data like this, we need to decide on a representation for it using
a data structure.

The design of data structures and the algorithms that perform operations on them
is a fundamental subject that underpins almost every aspect of Computer Science.
Essentially, a data structure allows us to look at numbers and interpret them as some-
thing else. Sometimes the data structure is simply a description of how numbers
should be arranged so we can interpret them correctly; sometimes we add extra
information or meta-data which allows us to inspect and alter the data structure.
Interested in computer graphics? You need data structures (e.g., representations of
images, or points in 3D space) and algorithms to operate on them (e.g., change the
colour of an image, or rotate a 3D scene). Interested in computer networks? You
need data structures (e.g., representations of connectivity between computers on the
network) and algorithms to operate on them (e.g., find a path from computer X to
computer Y). Interested in computer security? You need data structures (e.g., rep-
resentations of very large numbers) and algorithms to operate on them (e.g., add
together X and Y modulo Z). In all cases, efficiency is key: if we use a more effi-
cient data structure, we might reduce the time taken to perform a given operation,
or the amount of memory required to store the data.

Our focus here is on strings. The term string crops up in a lot of places, but
generically means a sequence of things. For example, we string together a sequence
of words to make a sentence, protein is made from a string of many amino acids
and so on. In Computer Science, a string is a sequence of characters and one of the
most fundamental data structures after the native types of data which a computer

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_4,
© Springer International Publishing Switzerland 2014

77

http://dx.doi.org/10.1007/978-3-319-04042-4_4

78 4 How Long Is a Piece of String?

Fig. 4.1 A teletype machine being used by UK-based Royal Air Force (RAF) operators during
WW2 (public domain image, source: http://en.wikipedia.org/wiki/File:WACsOperateTeletype.jpg)

can operate on. If you think about it, an email is just a string of characters, the files
created by a word processor could be thought of as similar strings, the messages a
computer displays so it can communicate with the user are also strings, and so on.
The aim is to show that even with something that seems so simple, there are many
options for useful data structures and that our choice has a major impact on the
algorithms used to manipulate them.

4.1 String Data Structures

As we saw in Chap. 3, the memory of a computer is where it stores data in the
long term. The computer loads the data into an accumulator to operate on it, and
stores the result back in memory afterwards. We modelled memory using a sequence
called MEM and stored decimal numbers in each element. Since MEM is large, it
is convenient to avoid writing out the whole sequence. To allow this, we will write
the addresses of elements above the elements themselves. For example, imagine we
have

i = . . . , 3, 4, 5, 6, 7, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, . . . 〉

http://en.wikipedia.org/wiki/File:WACsOperateTeletype.jpg

4.1 String Data Structures 79

Table 4.1 A table describing the printable ASCII character set

y CHR(y) y CHR(y) y CHR(y) y CHR(y)

ORD(x) x ORD(x) x ORD(x) x ORD(x) x

0 NUL 1 SOH 2 ST X 3 ET X

4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 LF 11 V T

12 FF 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3

20 DC4 21 NAK 22 SYN 23 ET B

24 CAN 25 EM 26 SUB 27 ESC

28 FS 29 GS 30 RS 31 US

32 SPC 33 ! 34 " 35 #

36 $ 37 % 38 & 39 ’

40 (41) 42 * 43 +

44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3

52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ;

60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C

68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K

76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S

84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [

92 \ 93] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c

100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k

108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s

116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 {

124 | 125 } 126 ~ 127 DEL

If MEM has n elements in total, we have missed out the elements at addresses
0 . . .2 and those at addresses 8 . . . n − 1. We are only interested in addresses #3, #4,
#5, #6 and #7 which have the values 104, 101, 108, 108 and 111. Our goal is to
represent strings within MEM but to do this, we need to solve two problems: first
how to represent characters, and second how to represent strings.

80 4 How Long Is a Piece of String?

4.1.1 Problem #1: Representing Characters

The first problem is that MEM can only store numbers, and the computer it exists
within can only really process numbers. To allow it to deal with characters, we need
some way to represent them numerically. Basically we just need to translate from
one to the other. More specifically, we need two functions: ORD(x) which takes
a character x and gives us back the corresponding numerical representation, and
CHR(y) which takes a numerical representation y and gives back the corresponding
character. But how should the functions work? Fortunately, people have thought
about this problem for us and provided standards we can use. One of the oldest is the
American Standard Code for Information Interchange (ASCII) [1], pronounced
“ass key”.

ASCII has a rich history, but was developed to permit communication between
early teleprinter devices. These were like a combination of a typewriter and a tele-
phone, and were able to communicate text to each other before innovations such as
the fax machine. Later, but long before monitors and graphics cards existed, simi-
lar devices allowed users to send input to early computers and receive output from
them. Table 4.1 shows the 128-entry ASCII table which tells us how characters are
represented as numbers. Of the entries, 95 are printable characters we can instantly
recognise (including SPC which is short for “space”). There are also 33 others
which represent non-printable control characters: originally, these would have been
used to control the teleprinter rather than to have it print something. For example,
the CR and LF characters (short for “carriage return” and “line feed”) would com-
bine to move the print head onto the next line; we still use these characters to mark
the end of lines in text files. Other control characters also play a role in modern
computers. For example, the BEL (short for “bell”) characters play a “ding” sound
when printed to most UNIX terminals, we have keyboards with keys that relate to
DEL and ESC (short for “delete” and “escape”) and so on.

You can test this out by issuing the command

echo -e ’\x07’

in a BASH terminal. It asks echo to display the ASCII char-
acter 07(16) = 7(10) = BEL on the terminal, which should
mean a sound is produced (or perhaps a visual indicator if
the sound is disabled). The -e option is quite important, be-
cause it means that \x07 is interpreted as an ASCII code
rather than a normal string. Try this with some other exam-
ples. For instance, what would you expect

echo -e ’hello\x08world’

to produce?

Since there are 128 entries in the table, ASCII characters can be and are represented

4.1 String Data Structures 81

by bytes as 8-bit numbers. However, notice that 27 = 128 and 28 = 256 so in fact we
could represent 256 characters: essentially one of the bits is not used by the ASCII
encoding. Specific computer systems sometimes use the unused bit to permit use of
an “extended” ASCII table with 256 entries; the extra characters in this table can be
used for some special purpose. For example, foreign language characters are often
defined in this range (e.g., é or ø). However, the original use of the unused bit was
as an error detection mechanism: more specifically, it represents the parity bit from
the even parity code in Chap. 1.

Another use for extended ASCII characters is ASCII art [2],
popular in an era when plain text was the only viable display
medium. Examples archived at

http://www.textfiles.com/

were often used by Bulletin Board Systems (BBSs) [4],
which used the telephone system and MODEMs to form an
early form of computer network: text was used almost ex-
clusively to compensate for the relatively slow speed of data
transfer. An excellent documentary at

http://www.bbsdocumentary.com/

chronicles the technology and personalities involved.
There are now various ASCII art editors online, such as

http://www.asciigraffiti.com/

Forget GIMP, which we used in Chap. 1, or other modern
image manipulation software: take a trip into the past, and
see how hard it is to draw images using text!

Given the table, we can see, for example, that CHR(104) = ‘h’, i.e., if we see
the number 104 then this represents the character ‘h’. Conversely we have that
ORD(‘h’) = 104. Although in a sense any consistent translation between characters
and numbers like this would do, ASCII has some useful properties. Look specifi-
cally at the alphabetic characters:
• Imagine we want to test if one character x is alphabetically before some other y.

The way the ASCII translation is specified, we can simply compare their numeric
representation. If we find ORD(x) < ORD(y) then the character x is before the
character y in the alphabet. For example ‘a’ is before ‘c’ because

ORD(‘a’) = 97 < 99 = ORD(‘c’).

• Imagine we want to convert a character x from lower-case into upper-case.
The lower-case characters are represented numerically as the contiguous range
97 . . .122; the upper-case characters as the contiguous range 65 . . .90. So we can

http://www.textfiles.com/
http://www.bbsdocumentary.com/
http://www.asciigraffiti.com/

82 4 How Long Is a Piece of String?

covert from lower-case into upper-case simply by subtracting 32. For example

CHR
(
ORD(‘a’) − 32

)= ‘A’.

Armed with the ASCII table and the new translation method, we can read new mean-
ing into the contents of MEM . As well as writing the addresses of elements above
the elements, we can write the ASCII translation of each element (i.e., the character
that each numeric element represents) below this, on an extra line. For example:

i = . . . , 3, 4, 5, 6, 7, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

We can now see that addresses 3 . . .7 hold the string “hello” if we interpret the
memory content as ASCII characters. Just to show that this really is how things
work, consider this short experiment using BASH:

bash$ cat > A.txt
hello
bash$ cat A.txt
hello
bash$ cat A.txt | od -Ad -tu1 | cut -c 9-
104 101 108 108 111 10

bash$

First we create a file called A.txt by typing the characters ‘h’, ‘e’, ‘l’, ‘l’ and‘o’
followed by return (which you cannot see). The second use of cat prints the file
to the terminal as ASCII characters as one might expect. However, using the od
command we can inspect the numerical representation. In particular using the option
-t with format u1 instructs od to format the content as a sequence of unsigned
decimal integers in the range 0 . . .255. As a result we see a total of six numbers,
namely 104, 101, 108, 108 and 111 representing characters ‘h’, ‘e’, ‘l’, ‘l’ and ‘o’
as in MEM , and the number 10 which represents the character LF (which occurs
as a result of our pressing return after “hello” when creating A.txt).

4.1.2 Problem #2: Representing Strings

The second problem is that so far we do not really have a way to know how long a
string is, i.e., how many characters it contains. What we have been doing is looking
at the memory content

i = . . . , 3, 4, 5, 6, 7, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

then seeing the characters ‘h’, ‘e’, ‘l’, ‘l’ and ‘o’ and assuming that they are the
string “hello”. But how do we know the length of the string starting at address #3?
It could be possible that addresses higher than #7 hold more characters so that we

4.1 String Data Structures 83

actually have a longer string than we thought. For example, maybe MEM8 = 46
which means there is a full stop character there:

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, 46, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘.’, . . .

How do we know if the full stop is actually part of the string starting at address #3,
or if it is just some unrelated value which is there by chance? That is, how do we
know we really mean the five character string “hello” rather than the six character
string “hello.”?

Given some address x which tells us where in memory a string starts, our goal is
to add structure to the data so we know the length (and therefore what the intended
content is). One way is to form a data structure by embedding some extra informa-
tion in MEM to tell us how long the string is; there are at least two schemes we
could consider:
1. We could embed the string length, which is a number, as the first element:

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

We still have a string starting at address #3 but instead of interpreting the first el-
ement as a character, we interpret it as the length of the string. Since MEM3 = 5
we know this string has five characters in it, and that they will be in addresses
4 . . .8.

2. We could embed a character, which will mark the end of the string, as the last
element:

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, 0, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

Again we have a string starting at address #3, but now we can be sure where it
ends because MEM8 = 0. This is not a character as such, but the end of string
marker or terminator which enables us to determine that the length is 8 − 3 = 5
characters.

The reason these two schemes are interesting is because they are adopted by the
Pascal [6] and C [5] programming languages respectively; because they do not really
have good names1 we will refer to them as the P-string and C-string schemes. No,
there is no G-string or equivalent before you ask.

Neither the P-string or C-string scheme is right or wrong, but do give particular
advantages and disadvantages in each case:

1The second option is sometimes termed ASCIIZ which sort of reads as “zero-terminated ASCII”.

84 4 How Long Is a Piece of String?

P-string:
• The string is represented using one

more element than the content sug-
gests; if there are n characters, we
need n + 1 elements because one is
used to store the length.

• Since the length needs to fit into one
element of MEM , there is an up-
per limit on the lengths of string we
can represent. We can remove this re-
striction by using more elements, but
things become more tricky and we
use more space.

• We have direct access to the length
of the string, since we simply have to
load it from the first element.

C-string:
• The string is represented using one

more element than the content sug-
gests; if there are n characters, we
need n + 1 elements because one is
used to store the NUL terminator.

• The actual string content cannot con-
tain a NUL character, otherwise we
would interpret this as the terminator,
i.e., the end of the string. Although
NUL is not printable, the fact we
cannot use it can be a disadvantage
in some circumstances.

• There is no real restriction on the
string length, but we do not have di-
rect access to that length. To find the
length of a string, we need to search
for the NUL terminator.

These are just two data structures that could be used to rep-
resent strings. Still more exist: can you think of at least one
more possibility? Explain how this third data structure works
using an example, and contrast it with the C-string and P-
string approaches by constructing a list of advantages and
disadvantages.

4.2 String Algorithms

The idea of introducing these two data structures is to demonstrate some more al-
gorithms; unlike the algorithms in Chap. 2 that computed an arithmetic result, these
ones operate on and manipulate instances of the string data structures. The real goal
is to point out something subtle about the algorithms and data structures involved,
but it will take a while to get there.

Keep in mind that we can reuse the ideas we developed in Chap. 2 to compare
algorithms against each other. In this case, a good definition of the problem size n

is the length of the strings are dealing with.

4.2.1 strlen: Finding the Length of a String

About the most simple task one might think of in the context of strings is computing
their length. Given a string starting at address x, the idea is to return the number of
characters in that string. The C programming language includes a standard function
called strlen which represents an implementation of this idea.

4.2 String Algorithms 85

1 algorithm P-STRING-LENGTH(x) begin
2 return MEMx

3 end

(a) P-string version

1 algorithm C-STRING-LENGTH(x) begin
2 i ← 0
3 while MEMx+i �= 0 do
4 i ← i + 1
5 end
6 return i

7 end

(b) C-string version

Fig. 4.2 Algorithms to compute the length of a string at address x, represented using a P-string
(left-hand side) or C-string (right-hand side) data structure

P-String Version
The P-string version is shown in Fig. 4.2a. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

and we invoke the algorithm using P-STRING-LENGTH(3). The only input is the
string address, so in this case we want to find the length of a string at address 3; the
corresponding steps performed by the algorithm are as follows:
Step #1 Return MEM3 = 5.
This could not be simpler! Remember the string length is embedded as the first
element, so the algorithm computes the required length in one step by simply load-
ing it. Because of this, the algorithm always takes just one step; describing it using
big-O notation we say it is O(1) because no matter what the input size is, it takes a
constant number of steps to give us a result.

C-String Version
The C-string version is shown in Fig. 4.2b. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, 0, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

which is just the C-string version of the P-string one we used above. If we invoke
the algorithm with C-STRING-LENGTH(3) in a similar way, the corresponding steps
performed by the algorithm are now:

86 4 How Long Is a Piece of String?

Step #1 Assign i ← 0.
Step #2 Since MEM3+0 �= 0, assign i ← i + 1, i.e., i ← 1.
Step #3 Since MEM3+1 �= 0, assign i ← i + 1, i.e., i ← 2.
Step #4 Since MEM3+2 �= 0, assign i ← i + 1, i.e., i ← 3.
Step #5 Since MEM3+3 �= 0, assign i ← i + 1, i.e., i ← 4.
Step #6 Since MEM3+4 �= 0, assign i ← i + 1, i.e., i ← 5.
Step #7 Return i = 5.
This time things are a bit more complicated. So what is going on? We have used a
slightly different loop construct than in Chap. 2 for this algorithm. When we write
while X do Y , the idea is that we repeatedly process the block Y until X evaluates
to false. So we perform a test: if X evaluates to true then we process the block Y ,
and then start again, otherwise we do not bother and exit the loop. This sort of loop
is unbounded because we do not know how many times we will process Y before
we start.

Here, the test X is “have we found the string terminator”. We keep adding one to
a counter called i until MEMx+i = 0 at which point we know that i should give the
length of the string. So how many steps does the algorithm take? The answer is that
if we add one to i for each character in the string, then we must take at least n steps
for an n-character string. Using big-O notation we say it is O(n).

So the P-string approach is much better when we want to compute the length of
a string: an algorithm which has complexity O(1) will always be better than one
which has complexity O(n), assuming n is large enough. In this case we do not
even need n to be large since for all strings the P-string method will be better: there
is only one string for which the two methods will take exactly the same number of
steps. As an exercise, can you work out which string this is?

4.2.2 toupper: Converting a String to Upper-Case

Computing the length of a string accesses the string content but does not alter it.
The next task we look at is altering the string starting at address x so that the content
consists of upper-case characters only: we take each lower-case character in the
string and convert it into the upper-case equivalent. The C programming language
does not include a standard function which represents quite this idea, but it does have
a function called toupper that turns lower-case characters (rather than strings) into
the upper-case equivalent.

P-String Version
The P-string version is shown in Fig. 4.3a. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

and we invoke the algorithm using P-STRING-TOUPPER(3). The only input is the
string address, so in this case we want to convert the string at address 3 into upper-

4.2 String Algorithms 87

1 algorithm P-STRING-TOUPPER(x) begin
2 n ← P-STRING-LENGTH(x)

3 for i from 0 upto n − 1 do
4 t ← MEMx+1+i

5 if 97 ≤ t ≤ 122 then
6 MEMx+1+i ← t − 32
7 end
8 end
9 return

10 end

(a) P-string version

1 algorithm C-STRING-TOUPPER(x) begin
2 n ← C-STRING-LENGTH(x)

3 for i from 0 upto n − 1 do
4 t ← MEMx+i

5 if 97 ≤ t ≤ 122 then
6 MEMx+i ← t − 32
7 end
8 end
9 return

10 end

(b) C-string version

Fig. 4.3 Algorithms to convert a string at address x, represented using a P-string (left-hand side)
or C-string (right-hand side) data structure, into upper-case

case. The corresponding steps performed by the algorithm are
Step # 1 Assign n = P-STRING-LENGTH(3) = 5.
Step # 2 Assign t = MEM3+1+0 = 104.
Step # 3 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1+0 = 104 − 32 = 72.
Step # 4 Assign t = MEM3+1+1 = 101.
Step # 5 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1+1 = 101 − 32 = 69.
Step # 6 Assign t = MEM3+1+2 = 108.
Step # 7 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1+2 = 108 − 32 = 76.
Step # 8 Assign t = MEM3+1+3 = 108.
Step # 9 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1+3 = 108 − 32 = 76.
Step #10 Assign t = MEM3+1+4 = 111.
Step #11 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1+4 = 111 − 32 = 79.
Step #12 Return.
Of course this time the algorithm actually stores new content in memory rather than
just reading existing content from it; after the algorithm has finished, the content is

88 4 How Long Is a Piece of String?

described by:

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 5, 72, 69, 76, 76, 79, . . . 〉
CHR(MEMi) = . . . , ENQ, ‘H’, ‘E’, ‘L’, ‘L’, ‘O’, . . .

How did it end up this way? In the example where we were finding the length of a
string, the complication was a new type of loop to deal with; here the complication is
that by invoking P-STRING-TOUPPER, we invoke P-STRING-LENGTH as well dur-
ing the first step. From then on, it is fairly easy to see what is going on. We perform a
series of loads from memory to retrieve the “current” character at MEMx+1+i , and
if the character we load is in the range 97 . . .122 (i.e., it is a lower-case character)
we subtract 32 from it and store it back at the same place.

Working out how to express this in big-O notation is not hard. The main loop
in lines #3 to #8 clearly takes 2 · n steps since, for each character, we need one
step to load it and one step to test and assign it if applicable. But to be fair, we
also need to include the number of steps that it took to compute the string length
via P-STRING-LENGTH. In a sense we just add the number of steps together, so
informally we might write O(1) + O(n) = O(1 + n). Of course O(n) dominates
O(1) so using the same sort of simplification we did in Chap. 2, this turns into O(n).

C-String Version
The C-string version is shown in Fig. 4.3b. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 104, 101, 108, 108, 111, 0, . . . 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

which, again, is just the C-string version of the P-string one we used above. If we
invoke the algorithm with C-STRING-TOUPPER(3) again, the corresponding steps
performed by the algorithm are
Step # 1 Assign n = C-STRING-LENGTH(3) = 5.
Step # 2 Assign t = MEM3+0 = 104.
Step # 3 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+0 = 104 − 32 = 72.
Step # 4 Assign t = MEM3+1 = 101.
Step # 5 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+1 = 101 − 32 = 69.
Step # 6 Assign t = MEM3+2 = 108.
Step # 7 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+2 = 108 − 32 = 76.
Step # 8 Assign t = MEM3+3 = 108.
Step # 9 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+3 = 108 − 32 = 76.
Step #10 Assign t = MEM3+4 = 111.
Step #11 Since 97 ≤ t ≤ 122, store the result, i.e., MEM3+4 = 111 − 32 = 79.
Step #12 Return.

4.2 String Algorithms 89

which alter the memory content to read

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = 〈 . . . , 72, 69, 76, 76, 79, 0, . . . 〉
CHR(MEMi) = . . . , ‘H’, ‘E’, ‘L’, ‘L’, ‘O’, NUL, . . .

afterwards. In the example where we were finding the length of a string, the steps
taken by the two algorithms were radically different; here they are more similar.
They are more or less the same in fact, bar the first step which obviously needs to use
C-STRING-LENGTH instead of P-STRING-LENGTH. Since C-STRING-LENGTH

takes O(n) steps, the function C-STRING-TOUPPER takes O(n)+O(n) = O(2 ·n)

steps. The constant can be ignored if we again tolerate the simplifications described
in Chap. 2, and we end up with O(n).

4.2.3 strcmp: Testing if One String Is the Same as Another

Next we look at the task of string comparison, or string matching. The idea is that we
take two strings, one starting at address x and one at address y, and try to determine
whether they are the same or not. The C programming language includes a standard
function called strcmp which represents an implementation of this idea.

P-string version
The P-string version is shown in Fig. 4.4a. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’,

i = 9, 10, 11, 12, 13, 14, . . .

MEM = 〈 5, 104, 101, 76, 76, 111, . . . 〉
CHR(MEMi) = ENQ, ‘h’, ‘e’, ‘L’, ‘L’, ‘o’, . . .

Notice that we have got some more content: in fact so much more we have now split
the memory content onto two lines. This is, in part, because this algorithm takes
two arguments representing the addresses of the strings we want to compare. Using
P-STRING-MATCH(3,9) to invoke the algorithm means we want to compare the
strings at addresses 3 and 9, with the corresponding steps performed as follows:
Step # 1 Assign n = P-STRING-LENGTH(3) = 5.
Step # 2 Assign m = P-STRING-LENGTH(9) = 5.
Step # 3 Since n = m, continue.
Step # 4 Since MEM3+1+0 = MEM9+1+0 = 104, continue.
Step # 5 Since MEM3+1+1 = MEM9+1+1 = 101, continue.
Step # 6 Since MEM3+1+2 �= MEM9+1+2, return false.
The strings are similar, but not the same. In particular, the ‘l’ characters in the string
at address #3 (i.e., the characters at addresses #6 and #7) are lower-case, but those in
the string at address #9 (i.e., the characters at addresses #12 and #13) are upper-case.
This is reflected in the fact that the algorithm returned false.

90 4 How Long Is a Piece of String?

1 algorithm P-STRING-MATCH(x, y) begin
2 n ← P-STRING-LENGTH(x)

3 m ← P-STRING-LENGTH(y)

4 if n �= m then
5 return false
6 end
7 for i from 0 upto n − 1 do
8 if MEMx+1+i �= MEMy+1+i then
9 return false

10 end
11 end
12 return true
13 end

(a) P-string version

1 algorithm C-STRING-MATCH(x, y) begin
2 n ← C-STRING-LENGTH(x)

3 m ← C-STRING-LENGTH(y)

4 if n �= m then
5 return false
6 end
7 for i from 0 upto n − 1 do
8 if MEMx+i �= MEMy+i then
9 return false

10 end
11 end
12 return true
13 end

(b) C-string version

Fig. 4.4 Algorithms to match one string at address x against another at address y, both represented
using a P-string (left-hand side) or C-string (right-hand side) data structure

To understand the reason it gives the right answer we need to take a closer look at
what happens at each step. The first thing that happens is a condition, namely if the
number of characters in the first string is not the same as the number of characters in
the second string then the strings cannot be the same, and the algorithm returns false
as the result. But that does not happen here, since both strings have five characters
in them so we carry on, and proceed to check each character. To do this, we use
a loop which iterates over a block for values of i in the range 0 . . . n − 1. By this
point we know n = m so there is no danger of the i-th character of either string
being “out of bounds” (i.e., beyond their actual length). For each value of i, we test
the i-th characters of the two strings against each other. If they are not equal, then
clearly the two strings are not equal and we can return false as the result. For i = 0

4.2 String Algorithms 91

and i = 1, the characters in both strings are ‘h’ and ‘e’ so the algorithm continues.
When we hit i = 3, however, the characters are ‘l’ and ‘L’ which are not equal; the
algorithm notices this, concludes that the strings do not match, then returns false as
the result. If, on the other hand, it had got all the way through the strings and found
that they all matched it would return true instead.

As you might have expected, there is an extra complication here. The number
of steps the algorithm takes depends on the strings themselves, i.e., their content
and length, but it is not too hard to describe the number of steps in big-O notation.
The two invocations of P-STRING-LENGTH take O(1) + O(1) steps which is still
O(1), and then in the worst case we have to test all n characters of the strings so the
main loop takes O(n). The total number of steps is therefore O(1) + O(n) which
simplifies to O(n).

C-String Version
The C-string version is shown in Fig. 4.4b. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 104, 101, 108, 108, 111, 0, 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL,

i = 9, 10, 11, 12, 13, 14, . . .

MEM = 〈 104, 101, 76, 76, 111, 0, . . . 〉
CHR(MEMi) = ‘h’, ‘e’, ‘L’, ‘L’, ‘o’, NUL, . . .

which, again, is just the C-string version of the P-string one we used above. Invoking
the algorithm with C-STRING-MATCH(3,9) gives basically the same steps as last
time, namely
Step # 1 Assign n = C-STRING-LENGTH(3) = 5.
Step # 2 Assign m = C-STRING-LENGTH(9) = 5.
Step # 3 Since n = m, continue.
Step # 4 Since MEM3+0 = MEM9+0 = 104, continue.
Step # 5 Since MEM3+1 = MEM9+1 = 101, continue.
Step # 6 Since MEM3+2 �= MEM9+2, return false.
This time we use C-STRING-LENGTH instead of P-STRING-LENGTH, but the result
is still false as you would expect. The two initial invocations of C-STRING-LENGTH

plus the main algorithm take a grand total of O(n)+O(n)+O(n) = O(3 ·n) steps,
but of course we again ignore the constant and simplify this to O(n).

4.2.4 strcat: Concatenating Two Strings Together

The final task we look at is the key one we have been building up to, as you might
have guessed. The idea is to take one string (the source string) starting at address
y and concatenate it with, or join it onto, another one (the target string) starting at
address x; the source string remains unaltered.

92 4 How Long Is a Piece of String?

1 algorithm P-STRING-CONCAT(x, y) begin
2 n ← P-STRING-LENGTH(x)

3 m ← P-STRING-LENGTH(y)

4 for i from 0 upto m − 1 do
5 MEMx+1+i+n ← MEMy+1+i

6 end
7 MEMx ← n + m

8 return
9 end

(a) P-string version

1 algorithm C-STRING-CONCAT(x, y) begin
2 n ← C-STRING-LENGTH(x)

3 m ← C-STRING-LENGTH(y)

4 for i from 0 upto m − 1 do
5 MEMx+i+n ← MEMy+i

6 end
7 MEMx+n+m ← 0
8 return
9 end

(b) C-string version

Fig. 4.5 Algorithms to concatenate (i.e., join) one string at address y onto the end of another
at address x, both represented using a P-string (left-hand side) or C-string (right-hand side) data
structure

P-String Version
The P-string version is shown in Fig. 4.5a. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’,

i = 9, 10, 11, 12, 13, 14, . . .

MEM = 〈 5, 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

and we invoke the algorithm using P-STRING-CONCAT(9,3). This means we spec-
ify that the target string starts at address #9, and the source string starts at address #3;
both strings are initially “hello”. The algorithm itself is quite simple. Basically, af-
ter computing the lengths of the source and target string, it uses a loop to copy each
character of the source string to the corresponding address after the target string
ends. In short, the character at address y + 1 + i in the source string is copied to
address x + 1 + i + n in the target string. The steps performed by the algorithm in
this case are
Step # 1 Assign n = P-STRING-LENGTH(9) = 5.
Step # 2 Assign m = P-STRING-LENGTH(3) = 5.

4.2 String Algorithms 93

Step # 3 Assign MEM9+1+0+5 = MEM3+1+0 = 104.
Step # 4 Assign MEM9+1+1+5 = MEM3+1+1 = 101.
Step # 5 Assign MEM9+1+2+5 = MEM3+1+2 = 108.
Step # 6 Assign MEM9+1+3+5 = MEM3+1+3 = 108.
Step # 7 Assign MEM9+1+4+5 = MEM3+1+4 = 111.
Step # 8 Assign MEM9 = 5 + 5 = 10.
Step # 9 Return.
Which alter the memory content to read

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 5, 104, 101, 108, 108, 111, 〉
CHR(MEMi) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’,

i = 9, 10, 11, 12, 13, 14,

MEM = 〈 10, 104, 101, 108, 108, 111, 〉
CHR(MEMi) = LF, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’,

i = 15, 16, 17, 18, 19, . . .

MEM = 〈 104, 101, 108, 108, 111, . . . 〉
CHR(MEMi) = ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

We have split the content across three lines now to make it fit, but the point is that if
you check the addresses and the content you find that the source string at address #3
is still “hello” but the target string at address #9 is now “hellohello”, i.e., the original
source and target joined together.

In terms of a big-O description of P-STRING-CONCAT, the two invocations
of P-STRING-LENGTH take O(1) + O(1) steps which is still O(1), and then we
perform n steps inside the loop that copies the characters. This gives a total of
O(1) + O(1) + O(n) which of course we simplify to O(n).

C-String Version
The C-string version is shown in Fig. 4.5b. Imagine the memory content is initially

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 104, 101, 108, 108, 111 0, 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’ NUL,

i = 9, 10, 11, 12, 13, 14, . . .

MEM = 〈 104, 101, 108, 108, 111, 0, . . . 〉
CHR(MEMi) = ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

which, again, is just the C-string version of the P-string one we used above. Invoking
the algorithm with C-STRING-CONCAT(9,3) gives basically the same steps as last
time, i.e.,
Step # 1 Assign n = C-STRING-LENGTH(9) = 5.
Step # 2 Assign m = C-STRING-LENGTH(3) = 5.
Step # 3 Assign MEM9+0+5 = MEM3 + 0 = 104.
Step # 4 Assign MEM9+1+5 = MEM3 + 1 = 101.
Step # 5 Assign MEM9+2+5 = MEM3 + 2 = 108.

94 4 How Long Is a Piece of String?

Step # 6 Assign MEM9+3+5 = MEM3 + 3 = 108.
Step # 7 Assign MEM9+4+5 = MEM3 + 4 = 111.
Step # 8 Assign MEM19 = 0.
Step # 9 Return.
The only real difference is the last step, which instead of setting the length of the
target string to n+m, i.e., the sum of the lengths of the source and target, it “moves”
the terminator character to the correct position at the new end of the target. The
memory content is altered to read

i = . . . , 3, 4, 5, 6, 7, 8,

MEM = 〈 . . . , 104, 101, 108, 108, 111 0, 〉
CHR(MEMi) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’ NUL,

i = 9, 10, 11, 12, 13, 14,

MEM = 〈 104, 101, 108, 108, 111, 104, 〉
CHR(MEMi) = ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘h’,

i = 15, 16, 17, 18, 19, . . .

MEM = 〈 101, 108, 108, 111, 0, . . . 〉
CHR(MEMi) = ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

so that again we find the source string at address #3 is still “hello” but the target
string at address #9 is now “hellohello”, i.e., the original source and target joined
together. Again, the big-O notation for C-STRING-CONCAT is simple. We end up
with O(n) + O(n) + O(n) which we simplify to O(n).

You can probably think of lots of other useful operations we
could perform on a string, but two examples are described
below. In each case, your challenge is to write two algorithms
that apply the operation using the C-string and P-string data
structures respectively.
1. C has a standard function called strchr that takes a

character c and the address of a string x as input: the func-
tion returns how far the first instance of the character is
(i.e., the offset) from the start of the string. For example,
if the character is ‘l’ and the string is “hello” we expect
the result to be 2: the first instance of ‘l’ is 2 characters
from the start of “hello”.

What happens if the character does not occur in the
string: what useful value could the algorithm return in this
case?

2. C has no standard function called strrev, but imagine
it takes the address of a string x as input and reverses the
order of the characters. For example, the string “hello”
would become “olleh”.

4.2 String Algorithms 95

4.2.5 Problem #3: Repeated Concatenation

After all that, here is the problem that justifies what we have been doing. Have a
look again at the last task of concatenating strings together and imagine we try to
concatenate m strings together, accumulating the result in the string at address x.
Using P-STRING-CONCAT as an example, we would end up with something like
this:

P-STRING-CONCAT(x, “foo”) �→ x = “foo”
P-STRING-CONCAT(x, “bar”) �→ x = “foobar”
P-STRING-CONCAT(x, “baz”) �→ x = “foobarbaz”

That is, after the first invocation we would have appended “foo” to the empty string
to get “foo”, and after the second we would have appended “bar” to “foo” to get
“foobar” and so on.

The thing to notice is that x gets longer and longer, but each string we concatenate
to it remains short (say n characters). So how does this alter the number of steps
taken by each invocation of P-STRING-CONCAT? Well, the number of steps in the
main loop is determined by the number of characters in the source string, so this
does not change. What about the number of steps required before the main loop to
compute the length of the strings? P-STRING-LENGTH is O(1), so no matter how
long x is it will take a constant number of steps to give us a result. Even if we invoke
P-STRING-LENGTH m times like this, the end result is still O(n).

What about the C-string alternative? Again starting off with x as the empty string,
we would get the same result, i.e.,

C-STRING-CONCAT(x, “foo”) �→ x = “foo”
C-STRING-CONCAT(x, “bar”) �→ x = “foobar”
C-STRING-CONCAT(x, “baz”) �→ x = “foobarbaz”

but now the behaviour is a bit different. Of course, the number of steps is still de-
termined by the number of characters in the source string and this still does not
change. But now, as x gets longer and longer C-STRING-LENGTH takes more and
more steps to give us a result. Remember, it is O(n) and n is getting larger and
larger with each invocation. This might not look that bad, because if we invoke
C-STRING-CONCAT four times then the total number of steps will be

O(n) + O(2n) + O(3n) + O(4n) = O(10n),

but we simplify this by ignoring the constants to get O(n). But what happens if we
invoke C-STRING-CONCAT m times? Now we get the sum

O(n) + O(2n) + · · · + O(m · n) = O

((
m∑

i=1

i

)
· n
)

which simplifies first to

O
((

m · (m + 1)/2
) · n)

96 4 How Long Is a Piece of String?

because
∑m

i=1 i = m(m + 1)/2 and then to

O
(
n · m2)

because O(m(m + 1)/2) = O(m2). So the upshot is that if we invoke C-STRING-
CONCAT m times like this, the end result is more like O(m2), since now we treat the
value n as the constant. Yikes! Remember Chap. 2? O(m2) is bad. An eloquent anal-
ogy of this problem is offered by famed writer and programmer Joel Spolsky [8]:

Shlemiel gets a job as a street painter, painting the dotted lines down the middle of the road.
On the first day he takes a can of paint out to the road and finishes 300 yards of the road.
“That’s pretty good!” says his boss, “you’re a fast worker!” and pays him a kopeck. The
next day Shlemiel only gets 150 yards done. “Well, that’s not nearly as good as yesterday,
but you’re still a fast worker. 150 yards is respectable,” and pays him a kopeck. The next day
Shlemiel paints 30 yards of the road. “Only 30!” shouts his boss. “That’s unacceptable! On
the first day you did ten times that much work! What’s going on?” “I can’t help it,” says
Shlemiel. “Every day I get farther and farther away from the paint can!”

The C-string strcat algorithm is poor old Shlemiel in this analogy: each time we
try to concatenate one of our m strings, we need to place it further and further away
from the end of the start of x.

Hopefully you can appreciate the problem now that we have spelled it out in such
gruesome detail, but why does it matter? In short, understanding problems like this
highlights the fact that C hides low-level detail of the data structure from us; this is
even more true of languages such as Java. On one hand the abstraction this offers
is great news because we do not have to worry about the data structure so much:
the programming language takes care of it all for us automatically. But on the other
hand, only by understanding low-level details can one hope to write efficient high-
level programs! This is an issue that, in the opinion of many people, plagues modern
Computer Science. We have built great tools to abstract away detail so we can con-
struct wondrous hardware and software artefacts, but without an understanding of
the fundamentals, one is always at a disadvantage.

C is not a bad language, and the C-string data structure is not the wrong choice:
remember each of the C-string and P-string approaches have advantages and disad-
vantages. Therefore, it is interesting to look at the reason why the designers of C,
Brian Kernighan and Dennis Ritchie, chose C-string rather than the P-string alterna-
tive in the 1970s. Two historical drivers are important. First, memory was at a real
premium at the time C was developed; when dealing with large strings, the advan-
tage of having a single string terminator character rather than a larger length field is
tangible. It might seem amazing now, but saving even an extra byte of memory here
and there could have been important then. Second, the PDP [7] range of computers
used as early development platforms for C already used C-string type strings, and
had some instructions that could deal with such strings quite efficiently. Hindsight
is a wonderful thing; maybe they would have made a different choice looking back,
maybe not. But it should be clear that by understanding low-level details, one at
least has the opportunity to learn from the benefit of hindsight, and potentially to
design better data structures and algorithms as a result. After all, data structures get
much more complicated than strings so the cost of not understanding the details is

References 97

potentially much greater as well.

Lots of instruction sets include instructions that were once
useful, but now seem slightly odd; these legacy instruc-
tions often remain to ensure backward compatibility, i.e.,
to make sure old programs still work.

The x86 instruction set used by Intel includes support for
something called Binary Coded Decimal (BCD) [3]. Find
out about the instructions available for BCD; what do you
think the original motivation for including them was? Why
do you think they are or are not still useful now?

References

1. Wikipedia: ASCII. http://en.wikipedia.org/wiki/ASCII
2. Wikipedia: ASCII art. http://en.wikipedia.org/wiki/ASCII_art
3. Wikipedia: Binary Coded Decimal (BCD). http://en.wikipedia.org/wiki/Binary-coded_

decimal
4. Wikipedia: Bulletin Board System (BBS). http://en.wikipedia.org/wiki/Bulletin_board_

system
5. Wikipedia: C. http://en.wikipedia.org/wiki/C_(programming_language)
6. Wikipedia: Pascal. http://en.wikipedia.org/wiki/Pascal_(programming_language)
7. Wikipedia: Programmed Data Processor (PDP). http://en.wikipedia.org/wiki/Programmed_

Data_Processor
8. Wikipedia: “Schlemiel the painter’s” algorithm. http://en.wikipedia.org/wiki/Schlemiel_the_

painter’s_Algorithm

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII_art
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Bulletin_board_system
http://en.wikipedia.org/wiki/Bulletin_board_system
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Programmed_Data_Processor
http://en.wikipedia.org/wiki/Programmed_Data_Processor
http://en.wikipedia.org/wiki/Schlemiel_the_painter's_Algorithm
http://en.wikipedia.org/wiki/Schlemiel_the_painter's_Algorithm

5Demystifying Web-Search: the Mathematics
of PageRank

Ask yourself a question: other web-search engines [39] exist of course, but how
often do you use Google via

https://www.google.com/

to search for something? In fact, if you have a Google account the answer is avail-
able at

https://history.google.com/

unless you turned this feature off. For me it was around 100 times a day, although
interestingly it changes a lot depending on what day it is. Another one: how often
does the set of results produced fail to include what you were searching for? This
is harder to answer precisely, but my guess would be not that often overall. Even
accepting that it might fail sometimes, if you stop to think about it this is really
amazing: versus only a generation ago, it seems fair to say that the ability to access
so much information with such ease and accuracy has changed the world we live in
fundamentally.

Although online advertising underpins the Google business model (a large pro-
portion of income stemming from the AdWords [2] and AdSense [1] systems),
from a technology perspective their web-search system remains a core interest. To
support it, Google store and process a lot of information (some estimates cite up-
ward of 50 billion web-sites alone, on top of which they deal with images etc.) and
deal with a lot of search queries (40 % of the current 7 billion world population
make use of the Internet, so if each of them perform 100 Google searches a day we
are potentially talking about a huge volume of queries at any given point in time).
This means they clearly need a lot of computing power to keep pace with demand.
Beyond this however, and given all the challenges involved, how are they able to
provide such high-quality results?

A full answer is obviously quite complicated, and has also changed over time
to meet new challenges and capitalise on new opportunities. Even so, the central
concepts depend on applying fundamental Computer Science to solve real, practical
challenges; better still, they can be explained using Mathematical techniques you

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_5,
© Springer International Publishing Switzerland 2014

99

https://www.google.com/
https://history.google.com/
http://dx.doi.org/10.1007/978-3-319-04042-4_5

100 5 Demystifying Web-Search: the Mathematics of PageRank

are already (somewhat) familiar with. These concepts represent our focus in this
chapter: our aim is to explain how Google produces results for your search queries,
using graph theory and probability theory behind the scenes.1

5.1 PageRank: the Essence of Google Web-Search

5.1.1 What Actually Is Web-Search?

First, a recap of things you probably already know. The World Wide Web
(WWW) [41] (or web) was conceived in a 1989 proposal by Tim Berners-Lee:
the idea was to develop a universal mechanism to view (and edit) documents, with
embedded connections that would facilitate browsing through them. Overviewing
the rich body of previous and related work is beyond our scope, but the proposal ba-
sically aimed to implement what was an established concept called hypertext [13];
one famous example2 is the so-called “mother of all demos” in 1969 by Doug En-
gelbart [32], which included use of the first mouse to navigate hypertext documents
in NLS [22]. This aim was achieved when Berners-Lee and a group of collaborators
eventually developed
1. the HTML [14] language for describing document content, which we now know

as web-pages, and the embedded hyperlinks [11],
2. the HTTP [15] protocol used to communicate such content to and from client

(or web-browser) and web-server software, plus
3. the first actual implementations of such software that could be used to form a

working system.
The result was advertised3 to the Internet at large in 1991, and the rest, as they say,
is history: various aspects of the original system have matured and improved, but
either way it now represents a ubiquitous presence in modern life.

If you think of the web as a massive database of information stored within web-
pages, web-search can be described as an information retrieval problem [17]: given
the database of web-pages, represented by a set V , we want to find the sub-set
R ⊂ V so each x ∈ R matches a search query q . Exactly what constitutes a match
depends on the type of search queries allowed [40] of course, so deciding whether
a given web-page matches or not is a challenge in itself. To make things simple
however, imagine q is just a single word: R might then be the set of web-pages
which contain it somewhere.

1The chapter assumes you have at least some exposure to these topics, and focuses on explaining
how they are used. However, we include a number of fairly lengthy introductions in case you need
a refresher or even a place to start learning about them from scratch.
2A copy of the video is preserved at http://www.dougengelbart.org/firsts/dougs-1968-demo.html.
3A copy of the post is preserved at http://groups.google.com/groups?selm=6487%40cernvax.cern.
ch.

http://www.dougengelbart.org/firsts/dougs-1968-demo.html
http://groups.google.com/groups?selm=6487%40cernvax.cern.ch
http://groups.google.com/groups?selm=6487%40cernvax.cern.ch

5.1 PageRank: the Essence of Google Web-Search 101

5.1.2 Web-Search Before Google

Depending on how old you are, the birth of the web in 1991 might already seem
like a long time ago. But systems for web-search did already exist between then and
1998, when Google was founded as a company. Understanding of this history is
important, because it explains the technical context into which Google web-search
was born a few years earlier (based on a 1996 research project at Stanford Univer-
sity): like most good products it solved a problem, so by understanding the problem
means we can better appreciate the solution.

Web-Directories
Once a significant number of web-pages were available, the most obvious way to
locate one of interest was initially a web-directory [36]. Probably the first exam-
ple, dated roughly 1992, was a list4 of web-server maintained by Tim Berners-Lee
at CERN (when there were few enough to do so easily); contemporary examples
include the WWW Virtual Library [42], also started by Berners-Lee, at

http://www.vlib.org/

and the Open Directory Project (ODP) [24] at

http://www.dmoz.org/

The basic idea is to classify web-pages within a giant table of contents. Much like
the table of contents in a book is divided into chapters and/or sections, the web-
directory is arranged into a hierarchy of categories with all web-pages about a given
topic listed under the same category. Imagine some user wants to find web-pages
related to some topic q . To do so, they start at the top, least specific level of the
hierarchy and move level-by-level through more specific categories until they get
to a set R of matches for q . Imagine q = “star wars” for instance: using ODP, they
might navigate through

“Top” → “Arts” → “Movies” → “Titles” → “S” → “Star Wars Movies”

until eventually finding (lots of) relevant matches.

Web-Search Engines
A web-search engine (or search engine) offers a different way to resolve search
queries, basically forming R by testing q against every web-page on behalf of the
user. This avoids the need to maintain the hierarchy of categories, and also auto-
mates the process so that users no longer need to manually control the search.

A lot of web-search engines have existed, and their history is interesting as a topic
in itself. Although it oversimplifies the range of approaches employed somewhat, we
can think of them as using three stages:

4A copy of the web-page is preserved at http://www.w3.org/History/19921103-hypertext/hypertext/
DataSources/WWW/Servers.html.

http://www.vlib.org/
http://www.dmoz.org/
http://www.w3.org/History/19921103-hypertext/hypertext/DataSources/WWW/Servers.html
http://www.w3.org/History/19921103-hypertext/hypertext/DataSources/WWW/Servers.html

102 5 Demystifying Web-Search: the Mathematics of PageRank

1. web-crawling [35],
2. web-indexing [38], then
3. search query resolution.
The first and second stages automatically collect and summarise information about
web-pages, using the content to form a web-index used by the third stage to pro-
duce a set of results. The volume of information and relative lack of storage capacity
initially limited the information collected to specific features of a web-pages (e.g.,
within so-called meta tags [20], or headings and titles), but this was quickly ex-
panded to full-text search (meaning search of any web-page content).

Think of it like this: the index of a book is basically a map from words (usually
those deemed important in some sense), to pages on which they appear. The index
is prepared before the book is printed by analysing the content of each pagem, then
if you want to know which page includes word x, you look-up x in the index and
it tells you. The concept of web-indexing is exactly the same, except we want a
mapping from words to web-pages. Now, we want to know which web-pages match
the search query q , so we look-up q in the web-index and use the associated web-
pages as R.

The system as a whole operates in two phases [23]: preparation of the web-index
is performed offline (meaning before anyone uses the system), while search query
resolution is performed online (meaning during use of the system). It is important
the web-index can be prepared offline, because the web-crawling process will take
a long time for the entire web. By pre-computing [26] it before anyone uses the
system, the actual searches queries can still be resolved quickly because the bulk of
the work has already been completed.

5.1.3 Web-Search After Google

Arguably, a good web-directory will produce high-quality results provided users can
navigate the hierarchy to resolve their query. Why? Ignoring the issue of deciding
on a category for web-page x, a quality control system decides whether or not x

is good enough to include at all: this decision might be resolved in two parts, by
a submitter first suggesting the web-page then an editor making a final decision
about inclusion. You could think of this as roughly analogous to them voting for the
web-page. However, there are a number of problems, including
• the actual decisions may be subjective and/or hard to articulate precisely, so it is

hard to deal with issues such as bias,
• it is difficult to cope with many web-pages, since the workload involved in doing

so is relatively high, and
• it sort of assumes the web-pages stay the same, because otherwise the process

would have to be repeated again and again, which of course further adds to the
workload.

You could also argue that web-search engines solve some of these problems through
automation, since the workload can be borne by a computer rather than a human.
However, it also seems fair to say they just shift rather than solve the underlying

5.2 Using Graph Theory to Model and Explore the Web 103

problem: the maintainer of a given web-search engine has an easier task than for
a web-directory, but now the user is faced with the challenge of enforcing quality
control. They must filter the good results from potentially lots of bad ones.

PageRank [25] is, roughly speaking, the solution employed by Google. Al-
though it represents an important aspect of their producing such high-quality results,
and therefore the success of the company, the concept itself is very easy to grasp:
instead of humans voting for web-pages, the web-pages will vote for each other.
Think of each link from web-page x to y as a vote, in the sense that x indicates y

has something important (or at least relevant) on it: y is deemed important if many
other web-pages link to it, and even more so if those web-pages are themselves im-
portant. By considering the structure of the web (i.e., the links between web-pages)
alongside their content, a PageRank-based web-search engine can solve the quality
control problem: it allows us to automatically sort the results, and display the good,
important ones before the bad, unimportant ones.

Strictly speaking, PageRank is just a component within the wider Google web-
search system: the term may be used to describe either the measure of importance
assigned to each web-page, or the algorithm used to compute such values. So given
our intuition about what it is, how does it work? This is really three questions in
one. In reality, we need to answer the following:
1. how do we collect information to inform our analysis of web-page importance,

which is basically the same web-crawling challenge that any other web-search
engine faces,

2. how do we formalise the concept of importance, so we can compute actual
PageRank values for each web-page, and,

3. once we have those values, how do we use them while resolving a given search
query?

These questions are addressed, in order, by the following sections.

5.2 Using Graph Theory to Model and Explore the Web

As already discussed, the goal of web-crawling is to automatically collect and sum-
marise information about web-pages: we want a computer to do this rather than a
human because there are a lot of web-pages to process. The idea is to develop an
algorithm that controls the web-crawler software, i.e., determines exactly how it au-
tomatically browses the web. This task can be made a lot easier by using graph
theory, including various existing algorithms, as a starting point: we model the real
web as a directed graph

G = (V ,E)

called the web-graph [37]: each vertex v ∈ V represents a web-page, and each edge
(u, v) ∈ E represents a link from web-page u to web-page v. A (very small) example
is illustrated by Fig. 5.3, which includes n = 6 web-pages identified by URLs such
as a.html, and links such as from a.html to d.html. This might not seem like

104 5 Demystifying Web-Search: the Mathematics of PageRank

An aside: a quick introduction to graphs and graph theory

In graph theory [9], a graph [8] is used to describe a set of abstract objects and
relationships between them. Formally, we specify a graph using two sets:
1. The set V is called the set of vertices (or nodes): these are basically labels that

identify the abstract objects we are interested in.
2. The set E is called the set of edges: each edge is a pair of vertices from V ,

i.e., (u, v) where u,v ∈ V , which specify a relationship between the associated
objects.

As a result, we often write G = (V ,E) to show that a particular graph G is spec-
ified by particular sets V and E. Consider an example where

V = {a, b, c, d} E = {
(a, b), (b, d), (d, c), (d, d), (c, a), (c, b)

}

From this, we can see there are four vertices labelled a, b, c and d ; there are six
edges between them in total, meaning for example that a and b are connected and
so on. We often visualise the structure of a graph by drawing each of the vertices,
and linking them with lines to depict the edges.
Beyond this general definition, several particular types of graph are useful:
Undirected versus directed edges In a directed graph, edges still connect ver-

tices, but their order matters. For example, (u, v) is an edge from u to v (but
not from v to u) whereas (v,u) is an edge from v to u (but not from u to v). It
is common to visualise this using an arrow head on the edge.

Unweighted versus weighted edges In a weighted graph, we associated an ex-
tra weight with each of the edges: a edge between some u and v would look
like (u, v,w) where w is the weight, which is usually just a number.

There are numerous properties we can define given some graph G, but an impor-
tant one is the degree of a given vertex u ∈ V : given two functions

into(u) = {
v | v ∈ V, (v,u) ∈ E

}

from(u) = {
v | v ∈ V, (u, v) ∈ E

}

that produce the set of all vertices v where there is an edge from v to u or u to
v respectively, the degree of u is deg(u) = |from(u) ∪ into(u)| meaning the total
number of edges that connect it to any other vertex.

A path is a sequence of edges in E which connect a sequence of vertices
in V : in a sense, it connects the first vertex in the sequence to the last ver-
tex by moving along the intermediate edges. Within our example, the path
P = 〈(a, b), (b, d), (d, c)〉 connects a to c, for instance; a path like this with no
repeated vertices is deemed to be simple.

a massive step; the web-graph is certainly a natural, and fairly obvious way to model
the real web. Crucially though, this added formalism allows us to develop and reason
about algorithms that process the web-graph.

5.2 Using Graph Theory to Model and Explore the Web 105

5.2.1 Graph Traversal

Given a graph G = (V ,E) as input, graph traversal [10] is fairly simple problem
to explain: starting at some vertex s, the goal is simply to move along edges until all
are vertices have been visited. If you translate “vertex” into “web-page” and “visit”
into “extract and summarise the content”, this should seem reasonably close to what
we want.

Algorithms 5.1a and 5.1b detail two classic ways to solve this problem, called
Breadth-First Search (BFS) [3] and Depth-First Search (DFS) [7] respectively.5

Each algorithm starts at s, and then visits vertices one at a time by traversing edges
from those already visited. To keep track of this process, a sequence Q of vertices
yet to visit (called the worklist), and a set D of vertices already visited are main-
tained. The intuition is as follows:
• The loop in lines #3 to #12 processes vertices until the worklist is empty; line #4

removes the first vertex u from Q and then processes it.
• The loop in lines #5 to #9 process each edge (u, v) from u to some other vertex v:

if v has not been visited already (i.e., v �∈ D), then it is added to both Q and D.
Checking D first is important, because it allows cycles [5] to be avoided.

• Finally, line #11 visits vertex u, processing it in whatever way is appropriate.
Given a worklist Q = 〈Q0,Q1, . . . ,Qn−1〉, one or two of the steps might need some
more detailed explanation:
• In line #7 of Algorithm 5.1a, where we need to append v to Q, we update Q to

be Q ‖ 〈v〉 = 〈Q0,Q1, . . . ,Qn−1, v〉 so that v becomes the new last element.
• In line #7 of Algorithm 5.1b, where we need to prepend v to Q, we update Q to

be 〈v〉 ‖ Q = 〈v,Q0,Q1, . . . ,Qn−1〉 so that v becomes the new first element.
• In line #4 of either algorithm, where we need to remove the first element from Q,

we just take Q0 (i.e., the first element) as u then update Q to be 〈Q1, . . . ,Qn−1〉
(i.e., all the other elements).

Beyond this, the behaviour of both algorithms is better explained with an example.
Using a tree [34], a special type of undirected graph in which any two vertices are
connected by one simple path, means their differing behaviours are easier to explain:
consider a 7-vertex tree described formally via

V = {a, b, c, d, e, f, g}
E = {

(a, b), (a, c), (b, d), (b, e), (c, f), (c, g)
}

or visually in Fig. 5.2. If we invoke the BFS algorithm using a (the so-called root
of the tree) as a starting point, it proceeds as follows:
Step #1 Set Q = 〈a〉 and D = {a}.
Step #2 Since |Q| �= 0, perform the next loop iteration for v ∈ {b, c}.

5Why search? This terminology relates to how BFS and DFS are often used, namely to search for
a target vertex within the graph: once the target vertex v is visited, the traversal usually stops rather
than continuing to visit all vertices.

106 5 Demystifying Web-Search: the Mathematics of PageRank

1 algorithm BFS(V ,E, s) begin
2 Q ← 〈s〉,D ← {s}
3 while |Q| �= 0 do
4 Remove first element u from Q

5 foreach v such that (u, v) ∈ E do
6 if v �∈ D then
7 Append v to Q

8 Add v to D

9 end
10 end
11 Visit and process u

12 end
13 return
14 end

(a) An algorithm for Breadth-First Search (BFS)

1 algorithm DFS(V ,E, s) begin
2 Q ← 〈s〉,D ← {s}
3 while |Q| �= 0 do
4 Remove first element u from Q

5 foreach v such that (u, v) ∈ E do
6 if v �∈ D then
7 Prepend v to Q

8 Add v to D

9 end
10 end
11 Visit and process u

12 end
13 return
14 end

(b) An algorithm for Depth-First Search (DFS)

Fig. 5.1 Two approaches to traversal of vertices in a graph

Fig. 5.2 A simple 7-vertex
tree used to explain the
behaviour of BFS and DFS
algorithms

Step #2.1 Set u = a and Q = 〈〉.
Step #2.2 Since b �∈ D, set Q = 〈b〉 and D = {a, b}.
Step #2.3 Since c �∈ D, set Q = 〈b, c〉 and D = {a, b, c}.

5.2 Using Graph Theory to Model and Explore the Web 107

Step #2.4 Visit a.
Step #3 Since |Q| �= 0, perform the next loop iteration for v ∈ {d, e}.

Step #3.1 Set u = b and Q = 〈c〉.
Step #3.2 Since d �∈ D, set Q = 〈c, d〉 and D = {a, b, c, d}.
Step #3.3 Since e �∈ D, set Q = 〈c, d, e〉 and D = {a, b, c, d, e}.
Step #3.4 Visit b.

Step #4 Since |Q| �= 0, perform the next loop iteration for v ∈ {f,g}.
Step #4.1 Set u = c and Q = 〈d, e〉.
Step #4.2 Since f �∈ D, set Q = 〈d, e, f 〉 and D = {a, b, c, d, e, f }.
Step #4.3 Since g �∈ D, set Q = 〈d, e, f, g〉 and D = {a, b, c, d, e, f, g}.
Step #4.4 Visit c.

Step #5 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #5.1 Set u = d and Q = 〈e, f, g〉.
Step #5.2 Visit c.

Step #6 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #6.1 Set u = e and Q = 〈f,g〉.
Step #6.2 Visit e.

Step #7 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #7.1 Set u = f and Q = 〈g〉.
Step #7.2 Visit f .

Step #8 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #8.1 Set u = g and Q = 〈〉.
Step #8.2 Visit g.

Step #9 Since |Q| = 0, stop the loop.
Step #10 Return.
Doing the same with the DFS algorithm produces a different behaviour:
Step #1 Set Q = 〈a〉 and D = {a}.
Step #2 Since |Q| �= 0, perform the next loop iteration for v ∈ {b, c}.

Step #2.1 Set u = a and Q = 〈〉.
Step #2.2 Since b �∈ D, set Q = 〈b〉 and D = {a, b}.
Step #2.3 Since c �∈ D, set Q = 〈c, b〉 and D = {a, b, c}.
Step #2.4 Visit a.

Step #3 Since |Q| �= 0, perform the next loop iteration for v ∈ {f,g}.
Step #3.1 Set u = c and Q = 〈b〉.
Step #3.2 Since f �∈ D, set Q = 〈f,b〉 and D = {a, b, c, f }.
Step #3.3 Since g �∈ D, set Q = 〈g,f, b〉 and D = {a, b, c, f, g}.
Step #3.4 Visit c.

Step #4 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #4.1 Set u = g and Q = 〈f,b〉.
Step #4.2 Visit c.

Step #5 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #5.1 Set u = f and Q = 〈b〉.
Step #5.2 Visit f .

Step #6 Since |Q| �= 0, perform the next loop iteration for v ∈ {d, e}.
Step #6.1 Set u = b and Q = 〈〉.

108 5 Demystifying Web-Search: the Mathematics of PageRank

Step #6.2 Since d �∈ D, set Q = 〈d〉 and D = {a, b, c, f, g, d}.
Step #6.3 Since e �∈ D, set Q = 〈e, d〉 and D = {a, b, c, f, g, d, e}.
Step #6.4 Visit c.

Step #7 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #7.1 Set u = e and Q = 〈d〉.
Step #7.2 Visit e.

Step #8 Since |Q| �= 0, perform the next loop iteration for v ∈ ∅.
Step #8.1 Set u = d and Q = 〈〉.
Step #8.2 Visit d .

Step #9 Since |Q| = 0, stop the loop.
Step #10 Return.
To summarise, both BFS and DFS satisfy the goal of visiting all vertices but differ
in the order they do so. You can think of this tree as three levels, where the top level
contains a, the middle level contains b and c, and the bottom level contains d , e, f

and g. BFS visits each vertex in the current level before moving onto a lower level;
the order of traversal is

〈a, b, c, d, e, f, g〉
which sort of moves across the tree then down. DFS on the other hand visits each
vertex in the lower level before the current one; the order of traversal is therefore

〈a, c, g,f, b, e, d〉,

which moves down the tree then across.
Using a tree is just a way to make the behaviours easier to explain however: we

can of course invoke the same algorithms on a more general graph. If we take the
web-graph in Fig. 5.3 for example, the order BFS visits the web-pages is

〈a.html,c.html,d.html,b.html,e.html,f.html〉,

whereas for DFS this changes to

〈a.html,d.html,f.html,e.html,b.html,c.html〉.

Both BFS or DFS traverse the web-graph, so provided they act in the right way
when visiting each web-page they (more or less) solve the original problem of au-
tomatically browsing the web.

In BFS and DFS, the way v is added to the worklist Q in line
#7 is the central difference; formally, Q is used as a queue in
BFS and as a stack in DFS. Find out more about these data
structures.

5.2 Using Graph Theory to Model and Explore the Web 109

Fig. 5.3 A simple, concrete web-graph that captures the link structure between, and content of
each web-page; each of the n = 6 highly artificial web-pages is a short HTML file, which in
combination provide structure (i.e., links between the web-pages) and content (i.e., some words, in
this case names of fruit)

By using a so-called robots.txt file [29], a web-server
can signal that certain web-pages should be ignored by a
web-crawler. Find out about this mechanism: when and why
do you think it makes sense to use it?

5.2.2 Graph Exploration

“More or less solves” is a hint: a subtle problem exists with using standard graph
traversal. Remember that the web-crawler does not have access to the web-graph as
input. The whole point is to automatically browse the web and collect information
about web-pages, so if we already have the web-graph there would be no point!

110 5 Demystifying Web-Search: the Mathematics of PageRank

Really solving this problem means translating BFS or DFS into graph ex-
ploration algorithms, but fortunately the difference is minor. Obviously we can-
not have G as an input to the algorithm any longer; in a sense, the web-graph
is now an output from exploration, not the input to traversal. As a result, line
#5 cannot check for edges (u, v) ∈ E because E is unknown. Instead, we need
to take u and discover edges from it to other, potentially unknown web-pages.
The form of web-pages makes this easy: HTML is a mark-up language [19],
meaning as well as the actual content we see, each web-page contains extra in-
formation (the so-called mark-up). This mark-up will includes specifications of
which web-page a given link is to, so if we parse the web-page content for
a.html in Fig. 5.3 for example, we might extract the edges (a.html,c.html) and
(a.html,d.html) from the links link to c and
link to d which are embedded in it.

So the idea is that we invoke the web-crawler on a starting point, for example a
Top Level Domain (TLD) [33] such as s = www.bbc.co.uk, and let it explore links
from there to construct G. Once finished (e.g., when it runs out of web-pages to
explore) we might invoke it on another starting point and merge together the results
(e.g., to increase the chance of visiting every web-page), or just use G as is for
whatever purpose we had in mind.

In line #11 of Algorithms 5.1a and 5.1b, we need to visit
and process a web-page u. What this actually means depends
on the task at hand of course: for some web-search engines
this could just mean extracting and summarising the content
of u, noting that a.html contains the words “apple” and
“orange” for instance.

Since PageRank needs the actual web-graph structure (i.e.,
the links between web-pages) as input, the processing ba-
sically needs to form and eventually return G = (V ,E) by
collecting the vertices and edges. Write an graph exploration
algorithm to do this, using either Algorithms 5.1a or 5.1b as
a basis; demonstrate how it works using the web-graph in
Fig. 5.3.

5.3 Using Probability Theory to Model Web-Browsing

Section 5.2 showed a suitable web-crawler can automatically generate a web-graph
G = (V ,E) for us, where the edges in E capture the link structure required to reason
about each web-page x ∈ V . The example in Fig. 5.3 is quite detailed however: once
we have G, it is easier to consider Fig. 5.4a instead. This is the same graph (e.g.,
a.html is just renamed a) but any unnecessary detail such as the web-page content
is removed.

Given a G as input, our next challenge is computation of a PageRank value for
each web-page. So where do we start? As stated, this challenge is enormously vague:

http://www.bbc.co.uk

5.3 Using Probability Theory to Model Web-Browsing 111

Fig. 5.4 Two simple, abstract web-graphs (derived from Fig. 5.3) that capture the link structure
between, but not content of each web-page

we lack a formal definition of what we should compute, how we should try to com-
pute it, or even what the correct answer looks like! To make reasoning about the
problem easier, Google use the following model: imagine the web is comprised of
n web-pages, which a user browses indefinitely. At each step, this user randomly
causes one of two events to occur:
1. with probability 1 − p, a random web-page is loaded from anywhere on the web

(i.e., it thinks of a random web-page and types the URL into the web-browser
address bar), or

112 5 Demystifying Web-Search: the Mathematics of PageRank

2. with probability p, it clicks on and hence follows a random link on the current
web-page to some other web-page.

This is called the random surfer model, and amounts to performing a random
walk [28] on the web-graph. Although this might not be how people really behave,
it allows us to translate the vague English description into something more concrete:
assuming we accept the random surfer model, the PageRank of a web-page is equiv-
alent to the probability of visiting it. Think about it: if web-page x is more important
then there will be more links to it, and as a result the probability is higher that at
some point the random surfer visits x by following such a link (plus the probability
it visits it at random of course). We can stress this by keeping in mind

“the PageRank of x” ≡ Pr[x]
where the right-hand side means the probability that web-page x is visited; this in
turn is equivalent to the number of votes accumulated by x if you prefer the voting
analogy. It also allows a sanity check later when we come to compute the actual
values: since we are dealing with probabilities, the sum of Pr[x] for all x ∈ V should
be 1.

This all becomes more concrete still by capturing the description as a formula:

Pr[x] = 1 − p

n︸ ︷︷ ︸
term representing
random web-page

+p ·
(∑

y∈into(x)

Pr[y]
|from(y)|

)

︸ ︷︷ ︸
term representing

random link

There are two terms because there are two events possible within the random surfer
model; each term computes the associated probability, which we then add together
because we want the probability of either one event or the other occurring as the
result. Although they might look cryptic, both terms are just translations of the En-
glish description of random surfer behaviour into Mathematics. For the first term,
this is easy to see: if there are n web-pages in total and we load a random one with
probability 1 − p then we end up on x with a probability of 1−p

n
. The second is

more difficult however. The term itself is p multiplied by

∑

y∈into(x)

Pr[y]
|from(y)|

or, in English, the probability of this event occurring multiplied by the combined
probabilities of arriving at x having followed a link from another web-page y. Think
about it again using the voting analogy: a web-page y has a number of votes to cast
(i.e., Pr[y]), so gives each web-page x that it links to a number of votes in proportion
to the total number of links it contains (i.e., divides Pr[y] by the number of outgoing
links from y, namely |from(y)|). We are interested in x of course, so the summation
basically deals with all web-pages y that link to x (i.e., all y ∈ into(x)), forming the
sum of their votes cast for x per the above. This means two things:
1. if y has many votes to cast, the number given to x will be larger (since the nu-

merator Pr[y] will be larger) than if it had few, and

5.3 Using Probability Theory to Model Web-Browsing 113

2. if y votes for fewer web-pages by linking to them, the proportion given to x will
be larger (since the denominator |from(y)| will be smaller) than if it votes for
many.

By replacing votes with probabilities we get the desired result: there is a higher
probability the random surfer visits x by following a link if other web-pages link
to it, and even more so if those web-pages have a high probability of being visited
themselves.

Although PageRank is probably the most famous, other simi-
lar examples exist within a family of related techniques. Two
such examples are
• the impact factor [16] used to gauge how important an

academic publication is, and
• the Hyperlink-Induced Topic Search (HITS) algo-

rithm [12] that deals with web-page ranking.
It is often important to see how techniques relate or build on
each other: do some research into the above, and compare
them with PageRank in terms of their approach, features and
so on.

5.3.1 Sanitising the Web-Graph to Avoid a Subtle Problems

Two special types of web-page can occur in a web-graph, namely
1. source web-pages, which have no incoming links (i.e., into(x) = ∅) so will never

be visited by following links, and
2. sink web-pages, which have no outgoing links (i.e., from(x) = ∅) so will never

be exited by following links.
For the first case, the only potential problem might be that our web-crawler fails to
visit it. In terms of computing PageRank values, there is no issue: it is just deemed
unimportant according to the PageRank metric, due to the lack of links to it. The
second case is problematic however. There are two ways to think about why this is
the case:
1. The random surfer model says one of two events will occur: either the random

surfer loads a random web-page or follows a random link. If the random surfer
visits a sink web-page however, the first event cannot occur because there are no
links to follow. Intuitively this is a problem because it means the probabilistic
model of behaviour we rely on breaks down for sink web-pages.

2. In the corresponding formula, each web-page can be seen as voting for others
by distributing the votes allocated to it via the links it contains. A sink web-
page votes for no other web-page however, even though they might vote for it.
Numerically this is a problem because a sink web-page accumulates votes like a
sort of black hole. That is, votes flow in but never comes out again; this skews
the results produced for non-sink web-pages because there is a fixed number of
votes in total.

114 5 Demystifying Web-Search: the Mathematics of PageRank

As a result, it is common to treat sink nodes differently. Various ways to do this
have been proposed, but the easiest to justify is as follows: for each sink web-page
x identified, we add an artificial edge of the form (x, y) to every other vertex y ∈ V .
By doing so, the random surfer is happy again because either event can occur once
it visits x; it also ensures fairness to non-sink web-pages, because the PageRank
accumulated by x is now shared evenly among all other web-pages.

Consider Fig. 5.4a: web-page f satisfies the criteria for being a sink, since
from(f) = ∅. To cope, we might amend the web-graph to produce Fig. 5.4b where
the dashed edges have been added artificially; these ensure f is linked to every other
web-page, in this case a, b, c, d and e. We use this altered web-graph rather than
the original from here on.

The “link sink web-page x to all other web-pages” strategy
described is not the only option: various other strategies have
also been proposed. Find out about at least one other strat-
egy, then compare and contrast each option using a list of
advantages and disadvantages.

Write an algorithm that takes a web-graph as input, and ap-
plies a strategy (whether the one described, or discovered in
Task 26) for dealing with sink web-pages; the output should
be the amended web-graph ready for use during computation
of PageRank values.

If you consider the real web rather than the examples pre-
sented, the value of n is large and hence many web-pages
will be identified as sinks. If you implement the strategy de-
scribed for dealing with them exactly, a problem starts to
emerge. What do you think this problem could be, and, with
reference to your algorithm in Task 27 for instance, how
could it be avoided?

5.3.2 A Mathematical Approach to Computing PageRank

Rewriting the Formula to Avoid Cycles
Now armed with a web-graph and a formula to compute Pr[x] for each web-page,
you could be forgiven for thinking that we are done. There is a subtle but important
problem lucking behind the scenes however. Look again at

Pr[x] = 1 − p

n
+ p ·

(∑

y∈into(x)

Pr[y]
|from(y)|

)
,

5.3 Using Probability Theory to Model Web-Browsing 115

An aside: root finding with the iterative Newton-Raphson method

A good example to illustrate the concept of using iterative methods is the Newton-
Raphson [21] method for computing the roots of a function δ, i.e., an x such that

δ(x) = 0.

If you think about the case of finding the square root of an integer y, this amounts
to finding an x such that x2 = y meaning δ(x) = x2 − y = 0. Skipping a lot of
theory that explains why, we do so using the relationship

xi+1 = xi − δ(xi)

δ′(xi)

where δ′ is the derivative of δ; here, since δ(x) = x2 − y = 0, we know
δ′(x) = 2 · x. The important thing is that the left-hand side shows how to com-
pute the (i+1)-th element in a sequence of progressively more accurate solutions,
given the i-th such element on the right-hand side. For example, imagine we have
y = 4321 and want to compute x = √

y. First we make a guess at x, say x0 = 100,
and then iterate use of the recurrence to produce the following sequence:

x1 = x0 − δ(x0)

δ′(x0)
= 100.000 − 5679.000

200.000
= 71.605

x2 = x1 − δ(x1)

δ′(x1)
= 71.605 − 806.276

143.210
= 65.974

x3 = x2 − δ(x2)

δ′(x2)
= 65.974 − 31.697

131.949
= 65.734

x4 = x3 − δ(x3)

δ′(x3)
= 65.734 − 0.057

131.468
= 65.734

x5 = x4 − δ(x4)

δ′(x4)
= 65.734 − 0.000

131.468
= 65.734

...
...

...

Eventually, the changes in our solution get very small and we can say they con-
verge. We need a termination criteria to detect this, but in our example this is
easy since we can check whether abs(x2

i − y) is small enough to consider that xi

as correct: here we might say that because

abs
(
65.7342 − 4321

)= abs(4320.958 − 4321) = 0.041

is small enough, x = x5 = 65.734 � √
4321 is an acceptable solution.

keeping in mind the goal is to compute the left-hand side. How? There is no hidden
trick: to get the left-hand side, we just evaluate the right-hand side as with any
equality. But the right-hand side includes Pr[y], so how do we compute this? Use the

116 5 Demystifying Web-Search: the Mathematics of PageRank

formula again! Now we have a chicken-and-egg style problem: we cannot compute
Pr[x] until we already know Pr[y] for all y ∈ V , which is then a cyclic argument
(literally, because the problem stems from cycles in the web-graph).

Fortunately, we can resolve this using some slightly more advanced probability
theory. The basic idea is that the random surfer model implicitly includes a notion of
time: the random surfer browses web-pages indefinitely, but it does so step-by-step.
Instead of thinking of Pr[x], as we have done so far, we make an alteration by letting
Pr[x(t)] denote the probability that the random surfer visits web-page x in step (or
at time) t . If we count the steps as starting at t = 0, then

Pr
[
a(0)

]= Pr
[
b(0)

]= Pr
[
c(0)

]= Pr
[
d(0)

]= Pr
[
e(0)

]= Pr
[
f (0)

]= 1

6
.

Hopefully this makes sense: we have to start somewhere, and since there are n = 6
web-pages then each one has probability 1

n
= 1

6 of being the starting point. What
now? Well, at step t = 1 one or other of the events occurs and the random surfer
visits another web-page. Imagine the random surfer starts by visiting web-page b at
step t = 0 for example; what is the probability it visits web-page d at step t + 1? We
can answer this by looking at how probable the two events are in this case:
1. It might visit d with probability 1 − p, by loading the web-page at random.

There is a 1
n

probability of visiting any specific web-page of the n in total, so a 1
6

probability of visiting d . This means a 1−p
6 probability overall.

2. It might visit d with probability p, by following a random link. There are
|from(y)| links from any given web-page y, so |from(b)| = |{a, d, e}| = 3 from b

specifically. Only one of those links is to d though, so the probability of following
that one specifically is 1

3 . This means a p
3 probability overall.

Putting this together, we can write

Pr
[
d(t+1) | b(t)

]= 1 − p

6
+ p

3

where the left-hand side means the probability of visiting web-page d in step t + 1
having visited web-page b in step t ; this is an example of conditional probabil-
ity [4].

Of course this is only one way we might visit d . To be complete, we need to take
into account that we could follow a link from any web-page to it. We can follow the
same reasoning as above, and find the following:

Pr
[
d(t+1) | a(t)

]= 1 − p

6
+ p

2

Pr
[
d(t+1) | b(t)

]= 1 − p

6
+ p

3

Pr
[
d(t+1) | c(t)

]= 1 − p

6
+ p

1

Pr
[
d(t+1) | d(t)

]= 1 − p

6
+ 0

5.3 Using Probability Theory to Model Web-Browsing 117

Pr
[
d(t+1) | e(t)

]= 1 − p

6
+ 0

Pr
[
d(t+1) | f (t)

]= 1 − p

6
+ p

5

What we want though, is what is the probability of visiting web-page d in step t + 1
outright not as part of some condition. All this means is we combine all possible
ways of visiting d per the above. Keeping in mind that the sum of Pr[y(t)] for all
y ∈ V must be 1 since these are probabilities, we end up with the following:

Pr
[
d(t+1)

] = Pr
[
d(t+1) | a(t)

] · Pr
[
a(t)

]+ Pr
[
d(t+1) | b(t)

] · Pr
[
b(t)

]

+ Pr
[
d(t+1) | c(t)

] · Pr
[
c(t)
]+ Pr

[
d(t+1) | d(t)

] · Pr
[
d(t)

]

+ Pr
[
d(t+1) | e(t)

] · Pr
[
e(t)
]+ Pr

[
d(t+1) | f (t)

] · Pr
[
f (t)

]

=
(

1 − p

6
+ p

2

)
· Pr
[
a(t)

]+
(

1 − p

6
+ p

3

)
· Pr
[
b(t)

]

+
(

1 − p

6
+ p

1

)
· Pr
[
c(t)
]+

(
1 − p

6
+ 0

)
· Pr
[
d(t)

]

+
(

1 − p

6
+ 0

)
· Pr
[
e(t)
]+

(
1 − p

6
+ p

5

)
· Pr
[
f (t)

]

= 1 − p

6
+ p ·

(
Pr[a(t)]

2
+ Pr[b(t)]

3
+ Pr[c(t)]

1
+ Pr[f (t)]

5

)

Each term on the right-hand side multiplies the probability of visiting some web-
page x in step t + 1 having visited another one y at step t , i.e.,

Pr
[
x(t+1) | y(t)

]
,

with the probability of actually having visited y at step t , i.e.,

Pr
[
y(t)

]
.

All such terms are added together, because we want to know the probability of any
one of them occurring. Doing a similar thing for each web-page, we end up with

Pr
[
a(t+1)

] = 1 − p

6
+ p ·

(
Pr[b(t)]

3
+ Pr[f (t)]

5

)

Pr
[
b(t+1)

] = 1 − p

6
+ p ·

(
Pr[d(t)]

3
+ Pr[f (t)]

5

)

Pr
[
c(t+1)

] = 1 − p

6
+ p ·

(
Pr[a(t)]

2
+ Pr[f (t)]

5

)

118 5 Demystifying Web-Search: the Mathematics of PageRank

Pr
[
d(t+1)

] = 1 − p

6
+ p ·

(
Pr[a(t)]

2
+ Pr[b(t)]

3
+ Pr[c(t)]

1
+ Pr[f (t)]

5

)

Pr
[
e(t+1)

] = 1 − p

6
+ p ·

(
Pr[b(t)]

3
+ Pr[d(t)]

3
+ Pr[f (t)]

5

)

Pr
[
f (t+1)

] = 1 − p

6
+ p ·

(
Pr[d(t)]

3
+ Pr[e(t)]

1

)

or, generalising this for any given web-page x,

Pr
[
x(t+1)

]= 1 − p

n
+ p ·

(∑

y∈into(x)

Pr[y(t)]
|from(y)|

)
.

Unsurprisingly, this looks a like the formula we started with. The crucial difference
is that on the left-hand side we now refer to step t + 1 (values relating to which are
unknown), whereas on the right-hand side we only refer to step t (values relating
to which we know). That might not seem like a big difference, but is solves our
chicken-and-egg problem: finally, we can compute actual PageRank values.

Using an Iterative Method to Compute Results
To do so, we draw on use of iterative methods [18] elsewhere in Mathematics.
The underlying idea is that instead of computing a solution directly, we compute a
sequence of approximate solutions each of which is more accurate (i.e., closer to the
real solution) than the last: we start with an approximation x0, then use a function δ

to iteratively compute

xi+1 = δ(xi)

forming the next, (i + 1)-th approximation from the last, i-th one. At some i-th
step the process will converge, meaning xi is then accurate enough to accept as the
solution. This general description should seem similar to what we developed above.
Remember that we want to compute

Pr
[
x(t+1)

]= 1 − p

n
+ p ·

(∑

y∈into(x)

Pr[y(t)]
|from(y)|

)
,

so, following the above, δ is basically just the PageRank formula with a right-hand
side relating to the last, t-th approximation and a left-hand side relating to the next,
(t + 1)-th approximation. To adopt the same approach however, we need to resolve
one minor difference: in the general description we are only interested in one x,
whereas we want a solution for each web-pages in the web-graph, i.e., all x ∈ V or
n solutions in total. To cope, we combine all n formula into one using the matrix

5.3 Using Probability Theory to Model Web-Browsing 119

form of what is then a system of n linear equations [31]:

⎛

⎜⎜⎜⎜⎜⎜⎝

Pr[a(t+1)]
Pr[b(t+1)]
Pr[c(t+1)]
Pr[d(t+1)]
Pr[e(t+1)]
Pr[f (t+1)]

⎞

⎟⎟⎟⎟⎟⎟⎠
=
(

1 − p

n

)
·

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞

⎟⎟⎟⎟⎟⎟⎠
+ p ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
3 0 0 0 1

5

0 0 0 1
3 0 1

5
1
2 0 0 0 0 1

5
1
2

1
3 1 0 0 1

5

0 1
3 0 1

3 0 1
5

0 0 0 1
3 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎝

Pr[a(t)]
Pr[b(t)]
Pr[c(t)]
Pr[d(t)]
Pr[e(t)]
Pr[f (t)]

⎞

⎟⎟⎟⎟⎟⎟⎠

This could be simplified into

x(t+1) = δ
(
x(t)

)= b + A · x(t)

where x is now a column vector capturing the PageRank values for all web-pages
rather than just one, while A and b are a constant column vector and a matrix re-
spectively (the latter of which is derived from link structure in the web-graph). We
already informally decided that an appropriate initial approximation would be

x(0) =

⎛

⎜⎜⎜⎜⎝

1
n

1
n
...
1
n

⎞

⎟⎟⎟⎟⎠

i.e., an n-element column vector whose elements are all 1
n

. So, using this we can
proceed to iteratively compute

x(1) = δ
(
x(0)

) = b + A · x(0)

x(2) = δ
(
x(1)

) = b + A · x(1)

= b + A · (b + A · x(0)
)

= b + A · b + A2x(0)

...
...

x(t+1) = δ
(
x(t)

) =
(t−1∑

i=0

Ai

)
· b + At · x(0)

until at some t-th step the process converges, meaning x(t) is then accurate enough
to accept as the solution.

If you consider the real web rather than the examples pre-
sented, the value of n is large and hence the value of Pr[x]
for any given x will be very small; numerical precision [27]
becomes a problem. How can this problem be resolved?

120 5 Demystifying Web-Search: the Mathematics of PageRank

Selecting the Probability p
The only remaining question is what value we should choose for p, the probability
which controls the random surfer model: a larger p means there is a higher proba-
bility the random surfer opts to follow a random link, whereas a smaller p means a
higher probability it loads a random web-page. It is quite important to find a balance,
because taken to an extreme,
• if p is too large then the random surfer might never encounter poorly connected

web-pages at all (since it is less likely to load them at random), whereas
• if p is too small then we sort of ignore the web-graph structure (since it is less

likely to follow any given link), which of course contradicts the original aim.
A little more formally, p also influences how quickly the iterative method will ar-
rive at a solution: a larger p places more emphasis on following links, meaning
their influence will spread6 more quickly, and vice versa. In their original research
paper describing a prototype Google web-search system, Sergey Brin and Larry
Page quote p = 0.85; it is less clear what Google use now, but we will stick with
this as a reasonable guess.

Concrete PageRank Values for the Example Web-Graph
Now, finally, we can actually compute the PageRank values themselves. Recall that
we now have a formula

x(t+1) = δ
(
x(t)

)= b + A · x(t)

which allows an iterative method of computing a solution; each part of the formula
is now specified, in the sense that our example web-graph shown in Fig. 5.4b tells
us that n = 6 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
3 0 0 0 1

5

0 0 0 1
3 0 1

5
1
2 0 0 0 0 1

5
1
2

1
3 1 0 0 1

5

0 1
3 0 1

3 0 1
5

0 0 0 1
3 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Likewise, we know that

b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
40
1
40
1
40
1
40
1
40
1
40

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

6This also explains why in various descriptions, including the original research paper, p is termed
a damping factor (or damping ratio); this term stems from description of a similar feature of
physical systems [6].

5.4 Putting It All Together: Using PageRank to Produce Web-Search Results 121

and

x(0) =

⎛

⎜⎜⎜⎜⎝

1
6
1
6
...
1
6

⎞

⎟⎟⎟⎟⎠
.

We therefore produce the following sequence of approximate but concrete solutions:

x(0) x(1) x(2) x(3) x(4) x(5) · · ·
Pr[a(t)] 0.166 0.101 0.090 0.108 0.104 0.104 · · ·
Pr[b(t)] 0.166 0.101 0.150 0.133 0.133 0.134 · · ·
Pr[c(t)] 0.166 0.124 0.104 0.104 0.113 0.110 · · ·
Pr[d(t)] 0.166 0.313 0.238 0.235 0.239 0.244 · · ·
Pr[e(t)] 0.166 0.148 0.179 0.176 0.171 0.171 · · ·
Pr[f (t)] 0.166 0.214 0.239 0.244 0.241 0.238 · · ·

We could continue of course, but the values in iteration 4 versus those in iteration 5
already show little change. Using this as a termination criteria, we take x(5) as our
solution: these are the probabilities the random surfer will visit each web-page in
our web-graph. For instance, it visits a with probability 0.104, i.e., about 10 percent
of the time.

The results presented above relate to Fig. 5.4b, i.e., the web-
graph that has been amended to cope with any sink web-
pages (in this case just f). Try to
1. reproduce these results yourself, then
2. do the same thing with Fig. 5.4a, the original web-graph.
Compare the results with each other: what do you notice, and
how do you explain each identifiable difference?

5.4 Putting It All Together: Using PageRank to Produce
Web-Search Results

As noted, PageRank is only one component in the Google web-search system: it
forms part of the final stage outlined in Sect. 5.1.2 by ranking (or sorting) the set of
results produced for some search query. To wrap-up and meet the challenge of ex-
plaining how the system works, it makes sense to look at how and where PageRank
fits in. To start with, in the offline phase, we
1. use a web-crawler to build a web-graph and summary of content for each web-

page, then
2. compute PageRank values for each web-page in the web-graph.

122 5 Demystifying Web-Search: the Mathematics of PageRank

For our limited example, the outcome of this phase can be summarised as follows

{“apple”, “orange”} ∈ a Pr[a] = 0.104
{“apple”, “banana”} ∈ b Pr[b] = 0.134

{“banana”, “orange”} ∈ c Pr[c] = 0.110
{“apple”, “banana”} ∈ d Pr[d] = 0.244

{“apple”, “pear”} ∈ e Pr[e] = 0.171
{“banana”, “pear”} ∈ f Pr[f] = 0.238

in the sense that web-page a is viewed as containing content relating to the words
“apple” and “orange”, and has a PageRank of 0.104. Now, imagine a user gives us
a search query q during the online phase. We need to
1. match web-pages with the query in order to build R, an initial set of results, then
2. take the web-pages in R, and sort them according to their PageRank values to

produce the results actually presented for the user.
The first step depends a lot on the type of queries we want to allow, but given the
simple form of content our web-pages house, imagine a simple form of query that is
just a single word: we want the set of results to give us the web-pages which are most
relevant, ranked by their PageRank-decided importance. Consider the following for
example:
• If q = “orange”, the initial set of results is R = {a, c}. Given

Pr[a] = 0.104
Pr[c] = 0.110

the results are displayed with web-page c first, then a.
• If q = “apple”, the initial set of results is R = {a, b, d, e}. Given

Pr[a] = 0.104
Pr[b] = 0.134
Pr[d] = 0.244
Pr[e] = 0.171

the results are displayed with web-page d first, then e, b and finally a.
Even with such simple web-pages and queries, you see the PageRank concept in
action. For instance, a, b, d and e are all relevant for the query “apple”. Both a and
b have links to d : each link source can be viewed as attesting to the importance of
the link target, meaning d ends up with a (relatively) high PageRank value and is
displayed first.

References 123

Search Engine Optimisation (SEO) [30] is the art of de-
signing web-pages so they appear in web-search results more
often and/or with a higher ranking than normal; this might
be used in a marketing strategy, where the overall goal is that
users visit the web-page more often.

Various acceptable and unacceptable SEO methods exist:
do some research into both sides of this arms race, i.e.,
1. how web-page owners might try to inflate their PageRank

and hence get ranked higher in a set of results, and
2. how Google identify and eliminate unfair SEO practices

which skew their results and, arguably, devalue PageRank.

Given a small example, it is hard to see the value PageRank gives in general. There
are two related take-away points from this chapter. First, once n grows large enough,
a huge number of web-pages will always be deemed relevant for any given query.
Put another way, without PageRank we would almost be back to square one: there
would be so many web-pages like a, b and e that match, without PageRank to
help us we would be tasked with picking out d by hand. Second, given the ben-
efit PageRank provides, you may have previously thought of it as complex or even
magic in some way (if you knew it existed at all). In reality however, we have ex-
plained more or less the entire thing by taking a 2-step strategy:
1. model various problems in a way we can more easily understand and reason

about, and
2. apply fundamental but fairly simple Mathematics (i.e., probability and graph the-

ory, and iterative methods) and Computer Science (i.e., algorithms) to produce
solutions.

Although the techniques themselves might not be applicable to all problems, the
general strategy is. This makes PageRank a great example, and advert, for Computer
Science as a whole.

References

1. Wikipedia: AdSense. https://en.wikipedia.org/wiki/AdSense
2. Wikipedia: AdWords. http://en.wikipedia.org/wiki/AdWords
3. Wikipedia: Breadth-first search. https://en.wikipedia.org/wiki/Breadth-first_search
4. Wikipedia: Conditional probability. http://en.wikipedia.org/wiki/Conditional_probability
5. Wikipedia: Cycle. http://en.wikipedia.org/wiki/Cycle_(graph_theory)
6. Wikipedia: Damping ratio. http://en.wikipedia.org/wiki/Damping_ratio
7. Wikipedia: Depth-first search. http://en.wikipedia.org/wiki/Depth-first_search
8. Wikipedia: Graph. http://en.wikipedia.org/wiki/Graph_(mathematics)
9. Wikipedia: Graph theory. http://en.wikipedia.org/wiki/Graph_theory

10. Wikipedia: Graph traversal. http://en.wikipedia.org/wiki/Graph_traversal
11. Wikipedia: Hyperlink. http://en.wikipedia.org/wiki/Hyperlink
12. Wikipedia: Hyperlink-Induced Topic Search (HITS). http://en.wikipedia.org/wiki/HITS_

algorithm

https://en.wikipedia.org/wiki/AdSense
http://en.wikipedia.org/wiki/AdWords
https://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Damping_ratio
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_traversal
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/HITS_algorithm
http://en.wikipedia.org/wiki/HITS_algorithm

124 5 Demystifying Web-Search: the Mathematics of PageRank

13. Wikipedia: Hypertext. http://en.wikipedia.org/wiki/Hypertext
14. Wikipedia: HyperText Mark-up Language (HTML). http://en.wikipedia.org/wiki/HTML
15. Wikipedia: HyperText Transfer Protocol (HTTP). http://en.wikipedia.org/wiki/Hypertext_

Transfer_Protocol
16. Wikipedia: Impact factor. http://en.wikipedia.org/wiki/Impact_factor
17. Wikipedia: Information retrieval. http://en.wikipedia.org/wiki/Information_retrieval
18. Wikipedia: Iterative method. http://en.wikipedia.org/wiki/Iterative_method
19. Wikipedia: Mark-up language. http://en.wikipedia.org/wiki/Markup_language
20. Wikipedia: Meta element. http://en.wikipedia.org/wiki/Meta_element
21. Wikipedia: Newton-Raphson method. https://en.wikipedia.org/wiki/Newton’s_method
22. Wikipedia: On-Line System (NLS). http://en.wikipedia.org/wiki/NLS_(computer_system)
23. Wikipedia: Online and offline. http://en.wikipedia.org/wiki/Online_and_offline
24. Wikipedia: Open Directory Project (ODP). http://en.wikipedia.org/wiki/Open_Directory_

Project
25. Wikipedia: PageRank. http://en.wikipedia.org/wiki/PageRank
26. Wikipedia: Pre-computation. http://en.wikipedia.org/wiki/Precomputation
27. Wikipedia: Precision. http://en.wikipedia.org/wiki/Precision_(computer_science)
28. Wikipedia: Random walk. http://en.wikipedia.org/wiki/Random_walk
29. Wikipedia: Robots exclusion standard. http://en.wikipedia.org/wiki/Robots_Exclusion_

Standard
30. Wikipedia: Search engine optimization. http://en.wikipedia.org/wiki/Search_engine_

optimization
31. Wikipedia: System of linear equations. https://en.wikipedia.org/wiki/System_of_linear_

equations
32. Wikipedia: The mother of all demos. http://en.wikipedia.org/wiki/The_Mother_of_All_

Demos
33. Wikipedia: Top Level Domain (TLD). http://en.wikipedia.org/wiki/Top-level_domain
34. Wikipedia: Tree. https://en.wikipedia.org/wiki/Tree_(graph_theory)
35. Wikipedia: Web-crawler. http://en.wikipedia.org/wiki/Web_crawler
36. Wikipedia: Web-directory. http://en.wikipedia.org/wiki/Web_directory
37. Wikipedia: Web-graph. http://en.wikipedia.org/wiki/Webgraph
38. Wikipedia: Web indexing. http://en.wikipedia.org/wiki/Web_indexing
39. Wikipedia: Web-search engine. http://en.wikipedia.org/wiki/Web_search_engine
40. Wikipedia: Web-search query. http://en.wikipedia.org/wiki/Web_search_query
41. Wikipedia: World Wide Web. http://en.wikipedia.org/wiki/World_Wide_Web
42. Wikipedia: World Wide Web Virtual Library (WWWVL). http://en.wikipedia.org/wiki/

World_Wide_Web_Virtual_Library

http://en.wikipedia.org/wiki/Hypertext
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Impact_factor
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Meta_element
https://en.wikipedia.org/wiki/Newton's_method
http://en.wikipedia.org/wiki/NLS_(computer_system)
http://en.wikipedia.org/wiki/Online_and_offline
http://en.wikipedia.org/wiki/Open_Directory_Project
http://en.wikipedia.org/wiki/Open_Directory_Project
http://en.wikipedia.org/wiki/PageRank
http://en.wikipedia.org/wiki/Precomputation
http://en.wikipedia.org/wiki/Precision_(computer_science)
http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Robots_Exclusion_Standard
http://en.wikipedia.org/wiki/Robots_Exclusion_Standard
http://en.wikipedia.org/wiki/Search_engine_optimization
http://en.wikipedia.org/wiki/Search_engine_optimization
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/The_Mother_of_All_Demos
http://en.wikipedia.org/wiki/The_Mother_of_All_Demos
http://en.wikipedia.org/wiki/Top-level_domain
https://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Web_crawler
http://en.wikipedia.org/wiki/Web_directory
http://en.wikipedia.org/wiki/Webgraph
http://en.wikipedia.org/wiki/Web_indexing
http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Web_search_query
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web_Virtual_Library
http://en.wikipedia.org/wiki/World_Wide_Web_Virtual_Library

Part II
Examples from Information Security

6Using Short Programs to Make and Break
Historical Ciphers

It might seem hard to imagine, but in early 1587 Mary Stewart (or Mary Queen of
Scots) [6] was sitting in a jail cell, most likely cursing the subject of cryptography.
Around a year or so beforehand, Mary was imprisoned in Chartley Hall as a result
of her increasingly tense relationship with the then Queen, Elizabeth I. Having been
placed under close observation, Mary was only able to communicate with her al-
lies using messages smuggled in and out of the jail inside beer barrels. However, to
prevent the messages being used against her should they be discovered, Mary used
a system of encoding that substituted characters and common words with a variety
of symbols. This gave Mary enough confidence that, while still in jail, she insti-
gated a plot to overthrow Elizabeth: what we now know as the Babington Plot is
named after her chief conspirator, Anthony Babington. Unbeknown to them, mes-
sages sent between Mary and Babington were being intercepted by a double agent,
then analysed by an espionage team established by Sir Francis Walsingham. The
messages were processed by Thomas Phelippes, who carefully copied their content
before resealing and sending them to their intended recipient. Phelippes eventually
worked out the encoding system used, and the plot was uncovered when Phelippes
took a real message from Mary and added a forged postscript that asked Babington
for the names of the conspirators. The resulting proof of conspiracy led to the arrest
of Babington and subsequent execution of Mary.

Historical significance aside, the same underlying issue in this story has re-
occurred again and again. In 2006, for instance, the famed Mafia boss Bernardo
Provenzano was captured for much the same reason as Mary Stewart was executed.
Provenzano’s encoded notes, including orders to his henchmen and so on, were de-
coded by police who were then able to capture him. The issue, basically, is that
while both Stewart and Provenzano clearly understood the need for secrecy, they
lacked the range of formal techniques offered by modern cryptography.

Almost all terms used above can be translated into a modern setting. We still
talk about encoding messages, but now call this encryption, a technique that is
used to ensure the secrecy of messages. An unencrypted message is called a plain-
text, whereas an encrypted message is called a ciphertext. In the context of Mary
Stewart, a plaintext was formed from characters of the English alphabet while a ci-

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_6,
© Springer International Publishing Switzerland 2014

127

http://dx.doi.org/10.1007/978-3-319-04042-4_6

128 6 Using Short Programs to Make and Break Historical Ciphers

phertext was formed from an alphabet of abstract symbols. We still use the term
alphabet to describe the symbols used to form plaintext and ciphertext, but they are
more likely to be sequences of bits or bytes that can be processed by a computer. Put
another way, we still think about a sender and a receiver who are communicating
messages, but the message is more likely to be an electronic file communicated over
a network such as the Internet than written on paper. As a result, either the sender
and/or receiver might also be a computer rather than a human. Finally, intercep-
tion and attempted decryption of messages also has an analogy in communication
as we use it today. We call the party trying to do this an attacker or adversary,
while the art of trying to decrypt a message that should be kept secret would be
termed cryptanalysis. Whereas the encoding methods used by Stewart and Proven-
zano were eventually broken via cryptanalysis of some sort, the design of modern
encryption schemes is intended to resist even the most capable attacker.

As with any topic that has evolved in this way, study of basic techniques can still
offer insight into modern practise. Our aim here is to look at two types of historical
cipher (i.e., methods of encryption) in a very practical way. In each case we describe
how the cipher works, how it can be broken via cryptanalysis, and how both aspects
can be reproduced using single-line (or at least very short) BASH commands.

6.1 Shift Ciphers

Apparently, Julius Caesar knew about cryptography. Chronicling the life of the Ro-
man leader in De Vita Caesarum, Divus Iulius, Suetonius wrote:

If he had anything confidential to say, he wrote it in cipher, that is, by so changing the
order of the letters of the alphabet, that not a word could be made out. If anyone wishes to
decipher these, and get at their meaning, he must substitute the fourth letter of the alphabet,
namely D, for A, and so with the others.

This should sound familiar: Caesar was doing something similar to Mary Stewart in
the sense that he was translating characters in a plaintext message into other charac-
ters to form a ciphertext message. We use the name shift cipher [2] to describe the
method of translation used by Caesar. ROT13 [10], a modern day equivalent of the
same method, is still used to hide solutions to puzzles in newspapers and so on.

6.1.1 Encryption and Decryption

3-Place Shifts
We can describe the method used by Caesar using two functions

6.1 Shift Ciphers 129

ENC(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘d’ if x = ‘a’
‘e’ if x = ‘b’
‘f’ if x = ‘c’
‘g’ if x = ‘d’

...

‘z’ if x = ‘w’
‘a’ if x = ‘x’
‘b’ if x = ‘y’
‘c’ if x = ‘z’

DEC(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘a’ if x = ‘d’
‘b’ if x = ‘e’
‘c’ if x = ‘f’
‘d’ if x = ‘g’

...

‘w’ if x = ‘z’
‘x’ if x = ‘a’
‘y’ if x = ‘b’
‘z’ if x = ‘c’

Encryption works by examining each character of the plaintext message in turn. For
example, where we see ‘a’ and want to encrypt it, we use ENC(‘a’) to look-up the
result ‘d’. Or, in the other direction, if we want to decrypt ‘d’ then we use DEC(‘d’)
to look-up the result ‘a’. The term shift cipher comes from the fact that what we
are actually doing is shifting the alphabet around: in this case the shifting moves
characters by three places.

To demonstrate the process on a larger example, we need something to act as
plaintext. As in Chap. 1, we use text downloaded from Project Gutenberg

http://www.gutenberg.org/

There are numerous worthy examples we could use, but opt for The Merchant of
Venice by Shakespeare. Using ‘�’ to make it clear where the spaces are, encrypting
the plaintext

‘t ’ ‘h ’ ‘e ’ ‘ �’ ‘m ’ ‘e ’ ‘r ’ ‘c ’ ‘h ’ ‘a ’
‘n ’ ‘t ’ ‘�’ ‘ o ’ ‘f ’ ‘�’ ‘v ’ ‘e ’ ‘ n ’ ‘i ’
‘c ’ ‘e ’

yields the ciphertext

‘w ’ ‘k ’ ‘h ’ ‘ �’ ‘p ’ ‘h ’ ‘u ’ ‘f ’ ‘k ’ ‘d ’
‘q ’ ‘w ’ ‘�’ ‘ r ’ ‘i ’ ‘�’ ‘y ’ ‘h ’ ‘ q ’ ‘l ’
‘f ’ ‘h ’

One can imagine the cipher being like a big codebook; to encrypt or decrypt mes-
sages, Caesar probably employed a trusted slave to apply the translation using tables
in the codebook for reference. Obviously this is very tedious, so an important ques-
tion to resolve (given we lack a slave, but on the other hand have computers) is
whether encryption and decryption might be automated. One way would be to write
a dedicated program for the task; since we want to focus on the concepts rather
than teach programming, we will instead try to automate the process using BASH
commands. First we need some plaintext to encrypt. The text for The Merchant of
Venice will do fine: we save it as the file A.txt before translating all characters to
lower-case so that our job is made a little easier (since we no longer need to consider
the upper-case characters as distinct):

http://www.gutenberg.org/

130 6 Using Short Programs to Make and Break Historical Ciphers

Fig. 6.1 The message that uncovered the Babington Plot: masquerading as part of a mes-
sage from Mary Stewart, the postscript asks Babington to reveal the names of the conspir-
ators using the broken cipher (public domain image, source: http://en.wikipedia.org/wiki/File:
Babington_postscript.jpg)

http://en.wikipedia.org/wiki/File:Babington_postscript.jpg
http://en.wikipedia.org/wiki/File:Babington_postscript.jpg

6.1 Shift Ciphers 131

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1810.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

Although we aim to process the whole file, this is tricky to demonstrate because of
the length. Therefore, we focus on a seven line extract starting at line #274:

bash$ cat B.txt | tail -n +274 | head -n 7
antonio. in sooth, i know not why i am so sad.
it wearies me; you say it wearies you;
but how i caught it, found it, or came by it,
what stuff ’tis made of, whereof it is born,
i am to learn;
and such a want-wit sadness makes of me
that i have much ado to know myself.

bash$

To encrypt and decrypt we employ the tr command, which we already saw in
Chap. 1. Recall that tr reads lines of input, translates characters in those lines
based on rules supplied by the user, and writes the result as output. As before, the
rule is given by two sequences: all instances of a given character in the first sequence
are translated into the corresponding character in the second sequence. This is easy
to see with a simple example. Imagine we want to translate from 〈‘a’, ‘b’, ‘c’〉 into
〈‘g’, ‘h’, ‘i’〉:
bash$ cat | tr [a-c] [g-i]
abcdef
ghidef
bash$

The input “abcdef” is typed by the user; the first three characters (‘a’, ‘b’ and ‘c’)
match those in the first sequence and are thus translated by tr into the correspond-
ing characters in the second sequence (‘g’, ‘h’ and ‘i’). Notice that the next three
characters (‘d’, ‘e’ and ‘f’) do not match any in the first sequence so are passed
through unaltered. Using this technique, we can encrypt and decrypt files using a
3-place shift cipher as follows:

bash$ cat B.txt | tr [a-cd-z] [d-za-c] > C.txt
bash$ cat C.txt | tr [d-za-c] [a-cd-z] > D.txt
bash$

In the first command we start with B.txt (the original file turned into lower-case),
feed this to tr, and direct the output into the file C.txt which represents the ci-
phertext. The rule for translation is given by the sequences [a-cd-z], which are
short-hand for

〈‘a’, ‘b’, ‘c’, ‘d’, . . . , ‘w’, ‘x’, ‘y’, ‘z’〉,
i.e., the standard alphabet, and [d-za-c], meaning

〈‘d’, ‘e’, ‘f’, ‘g’, . . . , ‘z’, ‘a’, ‘b’, ‘c’〉.
In other words, the first command reads input and translates ‘a’ into ‘d’, ‘b’ into ‘e’,
‘c’ into ‘f’, ‘d’ into ‘g’ and so on. In the second command we reverse the process by
starting with C.txt (the ciphertext), feed this to tr (where the sets for translation

132 6 Using Short Programs to Make and Break Historical Ciphers

are reversed), and direct the output into the file D.txt. Inspecting the relevant lines
in the encrypted and decrypted files shows the result:

bash$ cat C.txt | tail -n +274 | head -n 7
dqwrqlr. lq vrrwk, l nqrz qrw zkb l dp vr vdg.
lw zhdulhv ph; brx vdb lw zhdulhv brx;
exw krz l fdxjkw lw, irxqg lw, ru fdph eb lw,
zkdw vwxii ’wlv pdgh ri, zkhuhri lw lv eruq,
l dp wr ohduq;
dqg vxfk d zdqw-zlw vdgqhvv pdnhv ri ph
wkdw l kdyh pxfk dgr wr nqrz pbvhoi.

bash$ cat D.txt | tail -n +274 | head -n 7
antonio. in sooth, i know not why i am so sad.
it wearies me; you say it wearies you;
but how i caught it, found it, or came by it,
what stuff ’tis made of, whereof it is born,
i am to learn;
and such a want-wit sadness makes of me
that i have much ado to know myself.

bash$

Just by looking at the text, we can see the 3-place shift cipher at work. For example,
the ‘a’ of “antonio” in B.txt has become a ‘d’ in C.txt. The file D.txt which
is the decryption should match the original file B.txt which was encrypted. Al-
though the decrypted extract looks the same as the original, we can prove that the
whole file is the same using the diff command to perform a file comparison:

bash$ diff B.txt D.txt
bash$ echo ${?}
0
bash$

The lack of output (and exit code, as printed by the echo command) indicate there
are no differences, i.e., the encryption and subsequent decryption were successful.

This is a simple task: take any other plaintext of your choice
(e.g., a text file you wrote, or another one from Project
Gutenberg) and reproduce the steps above to encrypt then
decrypt it.

k-Place Shifts
At the moment, the ENC and DEC functions must be kept secret: since they are fixed
to performing 3-place shifts, if the attacker can work out their behaviour he can de-
crypt all messages encrypted with them. This is often called “security through ob-
scurity” and is frowned upon in modern cryptography. More usually, we try to build
schemes whose security relies only on the secrecy of some key rather than the ac-
tual method of encryption. This philosophy was articulated by Auguste Kerckhoffs
in the late 1800s, and is often called the Kerckhoffs Principle [5].

6.1 Shift Ciphers 133

Kerckhoffs actually cited six design principles for ciphers.
Find out what the others are. Based on how we communicate
today compared with 1883, do you think all the principles are
still relevant? If any are no longer relevant, what has changed
to make this so? Are there any new principles you could add
to the list?

Fortunately, we can easily generalise ENC and DEC by adding a key parameter
called k that allows more general k-place shifts; the resulting functions are written
ENCk and DECk . To describe the generalised functions easily, we first need a way
to convert characters to numbers. We could use ASCII, as in Chap. 1, but to make
things easier we will use the functions

ORD(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = ‘a’
1 if x = ‘b’
2 if x = ‘c’
3 if x = ‘d’

...

22 if x = ‘w’
23 if x = ‘x’
24 if x = ‘y’
25 if x = ‘z’

CHR(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘a’ if x = 0
‘b’ if x = 1
‘c’ if x = 2
‘d’ if x = 3

...

‘w’ if x = 22
‘x’ if x = 23
‘y’ if x = 24
‘z’ if x = 25

where ORD(x) takes a character x and returns the associated number, and CHR(x)

does the reverse by taking a number x and returning the associated character.
To describe what is going on, it is easier to view the scheme as another appli-

cation of the modular arithmetic [7] we first touched on in Chap. 1. This topic
appears frequently in cryptography, so it makes sense to describe it more fully now.
Fortunately, we have a nice analogy to help: we are doing what is sometimes called
clock arithmetic. Imagine someone says to you “the time is now ten o’clock; I will
meet you in four hours”, what time do they mean? You might say “two o’clock” in-
stinctively, or maybe getting this answer by looking at a clock face such as Fig. 6.2
and moving clockwise 4 hours starting at 10 in order to get to 2. More formally we
write this as

(10 + 4) = 14 ≡ 2 (mod 12)

so that mod can be read to mean “remainder after division”: 14 and 2 are equiv-
alent modulo 12 because 14 divided by 12 gives the remainder 2. Of course, we
might alter our diagram so it describes a 24-hour clock face instead; this would
illustrate that the equivalence we are discussing “wraps around”. We can see this
easily by looking at a number line detailing x and x (mod 12):

x = · · · −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
x (mod 12) = · · · 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 · · ·

134 6 Using Short Programs to Make and Break Historical Ciphers

Fig. 6.2 An analogue clock
face showing the time three
o’clock

Notice that as you would expect 13 ≡ 1 (mod 12), i.e., the time 13 : 00 means one
o’clock, and also that two useful facts pop out of looking at the number line:
1. Taking any x and adding 12 is the same as adding 0 because 12 ≡ 0 (mod 12).

For example 1 + 12 ≡ 1 (mod 12).
2. If x is negative, x (mod 12) is given by 12 + x. For example −2 (mod 12) is

given by 12 + (−2) = 10. To answer the question “the time is now four o’clock,
what time was it six hours ago?” we know 4 − 6 = −2 and hence −2 ≡ 10
(mod 12).

While talking about clock faces, 12 is the natural modulus to use. In general how-
ever, we can select (more or less) any integer modulus we like. What links this
fact to the way we have performed encryption and decryption so far, is that both
ENCk(x) and DECk(x) can be described using modular arithmetic by setting the
modulus to 26. More specifically, we can write

ENCk(x) = CHR
(
ORD(x) + k (mod 26)

)

DECk(x) = CHR
(
ORD(x) − k (mod 26)

)

This is starting to get a bit complicated, so it makes sense to look at what is going
on in more detail. Say we select k = 3 to mimic our original functions, and want to
encrypt the plaintext ‘a’:
1. First turn ‘a’ into a number using ORD(‘a’) = 0.
2. Next add k to get 0 + 3 = 3, and then reduce it modulo 26 to get 3 mod 26 = 3.
3. Finally, translate the number back into a character to get the result CHR(3) = ‘d’.
In short, we have encrypted ‘a’ into the ciphertext ‘d’. What about decryption? Es-
sentially the same technique applies, meaning we can decrypt ‘d’ as follows:
1. First turn ‘d’ into a number using ORD(‘d’) = 3.
2. Next subtract k to get 3 − 3 = 0, and then reduce it modulo 26 to get

0 mod 26 = 0.
3. Finally, translate the number back into a character to get the result CHR(0) = ‘a’.

6.1 Shift Ciphers 135

Notice that by opting to include the mod 26 operation we have ensured that when
adding or subtracting k to a number, the result will “wrap around” to the start or end
of the alphabet when turning the number back into a character. We can see this more
clearly with another example, this time we encrypt the plaintext ‘x’:
1. First turn ‘x’ into a number using ORD(‘x’) = 23.
2. Next add k to get 23 + 3 = 26, and then reduce it modulo 26 to get 26 mod

26 = 0.
3. Finally, translate the number back into a character to get the result CHR(0) = ‘a’.
The corresponding decryption of the ciphertext ‘a’ is as follows:
1. First turn ‘a’ into a number using ORD(‘a’) = 0.
2. Next subtract k to get 0 − 3 = −3, and then reduce it modulo 26 to get −3 mod

26 = 23.
3. Finally, translate the number back into a character to get the result CHR(23) = ‘x’.
One can view all this as a mechanism to generate new codebooks. Whereas before
Caesar just had one codebook, he can now generate a new one for each value of k.
Either way, we now have a situation where only k need be kept secret. An attacker
might know the method of encryption but without the value of k, he cannot decrypt
messages. Better still, we are free to select a different k for each message so that
even if an attacker recovers the key for one message, he still would not necessarily
know the key for another message.

6.1.2 Cryptanalysis

We already fixed one problem with the initial 3-place shift cipher by making it into
a general k-place version; this gave us a cipher that at least made some attempt to
comply with the Kerckhoffs Principle. You might have guessed, however, that this
is not really enough, and that the cipher is still easy to cryptanalyse:
• Although we could have included space as a character in the plaintext alphabet,

we did not do so. As such, the word structure of the plaintext is retained in the
ciphertext when we encrypt it. We can identify words in both simply by spotting
where the space characters are.

• A given character is translated the same way every time it occurs. For example if
we encrypt one ‘a’ in the plaintext into a ‘d’ in the ciphertext, we know that all
occurrences of ‘a’ will encrypt to ‘d’.

• Even though we are free to select k, there are not that many choices. Selecting
k = 27 and shifting the alphabet by 27 places, for example, is the same as k = 1
because of the “wrap around” effect. So basically there are only 26 possible keys.
In fact with k = 0 the ciphertext is the same as the plaintext, so actually there are
probably more like 25 useful keys.

How can we use these features to cryptanalyse the cipher, for example to decrypt
an encrypted message we have intercepted? When presented with the ciphertext we
might first employ a brute-force attack [1]. This means that we just try all the keys.
Although laborious, there are only 26 of them so if the key is worth finding it could
be worthwhile. Caesar would probably just have 26 slaves try one key each in order

136 6 Using Short Programs to Make and Break Historical Ciphers

to speed things up. The problem is, how do we know when we have got the right
key? In our case, we have been assuming that the underlying plaintext is English
so as soon as a trial decryption yields text which forms English words we know we
have got the right one.

Imagine either we do not have the time to perform the brute-force attack or are
just lazy and want a short cut. The next thing we could do is apply a technique called
frequency analysis [4]. The basic idea is that for a language like English, single
characters and combinations of characters occur with varying frequencies. In fact,
given a large enough sample, the frequencies are characteristic of any text written in
that same language: this means, for example, we can make a good guess if the text is
English (versus German say), or predict the frequency with which characters occur
in one text given frequencies in another (if they are written in the same language).

By retrieving a fresh copy of The Merchant of Venice

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1810.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

we can use some further BASH commands to demonstrate this:

bash$ cat B.txt | fold -c -w 1 | grep [[:alpha:]] | sort | uniq -c | paste -s
7789 a 1721 b 2427 c 3748 d 11710 e
2174 f 1724 g 6024 h 7023 i 256 j
799 k 4272 l 2781 m 6580 n 8816 o
1474 p 60 q 6032 r 6395 s 8733 t
3166 u 1002 v 2284 w 180 x 2671 y
117 z

bash$

The last command in particular needs some explanation. The first part of the com-
mand pipeline feeds the file B.txt (the original text turned into lower-case) into
fold which splits each line into one character per-line. Since this is the first time
we have used fold, a simpler example might be helpful:

bash$ cat | fold -c -w 1
abcd
a
b
c
d

bash$

Notice that the single line input of four characters typed by the user has been split
into four lines each of one character. As used originally, the output of fold is then
filtered to leave only alphanumeric characters (or letters and numbers), then sorted
using sort and fed to uniq to count how many duplicates appear (i.e., how many
times a given character exists). Finally we format the output nicely using paste,
and after all that effort, hope something useful came out! The interesting thing is that
some occur much more frequently than others. For example ‘e’ is the most used by
some distance, followed by ‘o’, ‘t’, ‘a’ and so on. You can view the result above as
being somewhat indicative of English in general. Okay, it is Shakespearean English
but more or less the same frequencies occur in modern text as well, bar the odd “ye
olde” or two.

6.1 Shift Ciphers 137

The claim above is that our character frequencies are indica-
tive of the language. Test this claim by performing the same
type of analysis on a text file written in something other than
English; Project Gutenberg offers a number of French books
for instance.

So imagine someone hands us some ciphertext and challenges us to tell them the
key it was encrypted with. To simulate this, we will retrieve a copy of A Midsummer
Night’s Dream again by Shakespeare

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1710.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

and imagine that someone takes the plaintext B.txt, selects a k and then encrypts
B.txt to give the ciphertext C.txt. Our task is to determine the unknown k given
only C.txt. We call this scenario a ciphertext only attack [3] since we are given
(rather than choose) the ciphertext, and also do not get the corresponding plain-
text. We do not present the file C.txt, but you could obtain your own version by
encrypting some text and then following the same analysis we do; the results you
obtain may be slightly different, but the general method should still work.

We first examine what happens if we apply the same frequency analysis to the
ciphertext (rather than the plaintext as above). All the cipher does is shift around the
alphabet, basically just rearranging the table of frequencies. Employing the method
as above, we get a different set of numbers; this should not be surprising since this
was a different plaintext originally:

bash$ cat C.txt | fold -c -w 1 | grep [[:alpha:]] | sort | uniq -c | paste -s
5195 a 6673 b 1411 c 121 d 5114 e
5237 f 7079 g 2763 h 783 i 1886 j
169 k 2176 l 16 m 5984 n 1310 o
1751 p 3173 q 10178 r 1528 s 1372 t
5035 u 5509 v 87 w 678 x 3674 y
2544 z

bash$

However, the crucial thing to notice is that the relative frequency of the characters in
the new results should match those in the old results. For example, in this case ‘r’ is
the most used by some distance, followed by ‘g’, ‘b’, ‘n’ and so on. If we consider
‘r’, ‘g’, ‘b’ and ‘n’ to be the only reasonable way one could have encrypted ‘e’ then
we narrow the range of possible keys to k = 13, k = 2, k = 23 or k = 9.

Consider some more evidence in the shape of the eleven line extract of ciphertext
starting at line #959:

bash$ cat C.txt | tail -n +959 | head -n 11
boreba. v cenl gurr tvir vg zr.
v xabj n onax jurer gur jvyq gulzr oybjf,
jurer bkyvcf naq gur abqqvat ivbyrg tebjf,
dhvgr bire-pnabcvrq jvgu yhfpvbhf jbbqovar,
jvgu fjrrg zhfx-ebfrf, naq jvgu rtynagvar;
gurer fyrrcf gvgnavn fbzrgvzr bs gur avtug,
yhyy’q va gurfr sybjref jvgu qnaprf naq qryvtug;
naq gurer gur fanxr guebjf ure ranzryy’q fxva,
jrrq jvqr rabhtu gb jenc n snvel va;
naq jvgu gur whvpr bs guvf v’yy fgernx ure rlrf,
naq znxr ure shyy bs ungrshy snagnfvrf.

bash$

138 6 Using Short Programs to Make and Break Historical Ciphers

On the second line of the output, we find a 1-character word ‘v’. Not many of these
exist in English, so basically we know either ‘ a’ or ‘i’ must encrypt to ‘v’ which
suggests k = 21 or k = 13. By this point, k = 13 is looking like a good choice: we
could now try to decrypt the ciphertext using this key, and see what we get. Selecting
k = 13 means translating ‘a’ to ‘ n’ and so on, which means we just need to select
the right sequences for tr and we are done:

bash$ cat C.txt | tr [n-za-m] [a-mn-z] > D.txt
bash$ cat D.txt | tail -n +959 | head -n 11
oberon. i pray thee give it me.
i know a bank where the wild thyme blows,
where oxlips and the nodding violet grows,
quite over-canopied with luscious woodbine,
with sweet musk-roses, and with eglantine;
there sleeps titania sometime of the night,
lull’d in these flowers with dances and delight;
and there the snake throws her enamell’d skin,
weed wide enough to wrap a fairy in;
and with the juice of this i’ll streak her eyes,
and make her full of hateful fantasies.

bash$

Even if we did not have diff to confirm the result as follows

bash$ diff B.txt D.txt
bash$ echo ${?}
0
bash$

it would be fairly bad luck to have selected the wrong key and get perfect Shake-
spearean as output, so we can conclude k = 13 was the right key. If we had inter-
cepted C.txt from Caesar then we could decrypt his messages and get the jump
on him the next time he invaded our country.

6.2 Substitution Ciphers

After generalising the 3-place shift cipher into a k-place version and still failing to
produce something which can secure our messages, the next step is something called
a substitution cipher [11]. In The Adventure of the Dancing Men, Sir Arthur Conan
Doyle had his character Sherlock Holmes, the arch detective, encounter a cipher of
this type. Holmes and Watson are confronted with a number of pictures of dancing
men:

These hieroglyphics have evidently a meaning. If it is a purely arbitrary one, it may be
impossible for us to solve it. If, on the other hand, it is systematic, I have no doubt that we
shall get to the bottom of it.

Of course, the pictures are symbols which encode a message; Holmes and Watson
eventually decode the messages and solve yet another case [12]. So if substitution
ciphers are important enough for the great Sherlock Holmes to worry about, then
they are good enough for us as well.

6.2 Substitution Ciphers 139

6.2.1 Encryption and Decryption

Imagine we have a sequence or list of characters

A = 〈‘a’, ‘b’, ‘c’, ‘d’〉.
Given such a sequence, the concept of a permutation [9] is central: if we permute
the elements in a source sequence, we basically reorder them to produce a target
sequence. This means that each element occurs once, but there is some translation
from the source to the target sequence. We can describe an example permutation P

as follows:

P(X) = 〈X1,X2,X3,X0〉.
Put more simply, if we apply P to some source sequence X then the target sequence
we get back has X1 as the 0-th element, X2 as the 1-st element, X3 as the 2-nd
element and X0 as the 3-rd element. Applying P to the sequence A above therefore
gives us

P(A) = 〈‘b’, ‘c’, ‘d’, ‘a’〉.
Since P is simply reordering the elements, we could write down the inverse per-
mutation P −1 which performs translation in the opposite direction. In this case

P −1(X) = 〈X3,X0,X1,X2〉
which means that

P −1(A) = 〈‘d’, ‘a’, ‘b’, ‘c’〉
and, more importantly, that

P −1(P(A)
)= 〈‘a’, ‘b’, ‘c’, ‘d’〉 = A.

The basic idea is that the key for a substitution cipher is a permutation; we still
write k as the key just for continuity, so you can think of it as a name (or index) that
identifies the permutation we use among all those available. The permutation tells
us how to translate characters from a source sequence (i.e., the plaintext alphabet)
into characters in a target sequence (i.e., the ciphertext alphabet). Of course, one
can view the shift cipher as a particular form of permutation. However, the fact that
the permutation is of such a particular form makes the cipher weak. We already
saw that there are only 26 possible keys, which is far from ideal: a substitution
cipher generalises the idea, relaxing the need for a particular form of permutation
and allowing any permutation at all.

How many possible keys would there be using this generalised approach? We
can get the answer by looking at a more general question: say we have an n-element
source sequence, how many different permutations of those elements are there? The
answer is n factorial or

n! = n · (n − 1) · (n − 2) · · ·3 · 2 · 1.

140 6 Using Short Programs to Make and Break Historical Ciphers

Fig. 6.3 An example of the “dancing men” used as a cipher in The Adventure of the Dancing Men
(public domain image, source: http://en.wikipedia.org/wiki/File:Dancing_men.png)

Why is this is the case? We start with n elements in the source sequence, so there are
n choices for the first element in the target sequence. When we remove one of those
choices, there are n − 1 choices left for the second element in the target sequence,
n− 2 choices left for the third element and so on. So given we have n = 26 possible
characters in our plaintext and ciphertext alphabets there are a total of

26! = 403291461126605635584000000

possible keys for the substitution cipher. This is now too big to allow searching for
the key by brute-force: we need to think a bit harder if we want to break this scheme.

Each key specifies a different permutation; you can think of this as each k spec-
ifying a different, secret pair of encryption and decryption functions. Consider an
example and imagine that some k specifies the functions:

ENCk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘z’ if x = ‘a’
‘y’ if x = ‘b’
‘x’ if x = ‘c’
‘w’ if x = ‘d’

...

‘d’ if x = ‘w’
‘c’ if x = ‘x’
‘b’ if x = ‘y’
‘a’ if x = ‘z’

DECk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘a’ if x = ‘z’
‘b’ if x = ‘y’
‘c’ if x = ‘x’
‘d’ if x = ‘w’

...

‘w’ if x = ‘d’
‘x’ if x = ‘c’
‘y’ if x = ‘b’
‘z’ if x = ‘a’

Although these functions are not complete (so they can fit on a page), the general
idea acts as a mechanism to generate a codebook; as was the case of the k-place
shift cipher, security is based on knowledge of k rather than the actual method of
encryption.

Automating this encryption method is almost as simple as for the shift cipher.
We again fetch the text of The Merchant of Venice text and save it as A.txt before
translating all characters to lower-case:

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1810.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

Next we set up two strings, which essentially define source and target sequences,
and hence the permutation we want to use. This means we can again use tr to
perform the encryption and decryption:

http://en.wikipedia.org/wiki/File:Dancing_men.png

6.2 Substitution Ciphers 141

bash$ S=’abcdefghijklmnopqrstuvwxyz’
bash$ T=’zyxwvutsrqponmlkjihgfedcba’
bash$ cat B.txt | tr ${S} ${T} > C.txt
bash$ cat C.txt | tr ${T} ${S} > D.txt
bash$

What does this mean? Essentially what we are saying is that the i-th character in the
source sequence S should be translated into the i-th character in target sequence T
so, for example, in this case an ‘a’ encrypts to a ‘z’.

As before, we can focus on a seven line extract starting at line #274 to show the
process is working as expected:

bash$ cat C.txt | tail -n +274 | head -n 7
zmglmrl. rm hllgs, r pmld mlg dsb r zn hl hzw.
rg dvzirvh nv; blf hzb rg dvzirvh blf;
yfg sld r xzftsg rg, ulfmw rg, li xznv yb rg,
dszg hgfuu ’grh nzwv lu, dsvivlu rg rh ylim,
r zn gl ovzim;
zmw hfxs z dzmg-drg hzwmvhh nzpvh lu nv
gszg r szev nfxs zwl gl pmld nbhvou.

bash$ cat D.txt | tail -n +274 | head -n 7
antonio. in sooth, i know not why i am so sad.
it wearies me; you say it wearies you;
but how i caught it, found it, or came by it,
what stuff ’tis made of, whereof it is born,
i am to learn;
and such a want-wit sadness makes of me
that i have much ado to know myself.

bash$

or use diff to show that the decrypted file is the same as the original plaintext:

bash$ diff B.txt D.txt
bash$ echo ${?}
0
bash$

6.2.2 Cryptanalysis

Since we have improved upon the shift cipher using the stronger permutation cipher,
we need to consider better forms of cryptanalysis to attack it: we cannot say it pre-
vents the previous attack, so therefore is secure! In particular, we need to consider
an improved form of frequency analysis that relies on further properties of language.

The concepts of bigrams and trigrams are special cases of something called
an n-gram [8]. An n-gram is a sub-sequence of length n taken from some other
sequence; a bigram is the case where n = 2 and a trigram is the case where n = 3.
Imagine we want to find all the bigrams of

A = 〈‘a’, ‘b’, ‘c’, ‘d’〉.
We can formulate a solution by saying we want all the sub-sequences which look
like

〈Ai,Ai+1〉.

142 6 Using Short Programs to Make and Break Historical Ciphers

That is, we want all the sub-sequences formed by taking the i-th element and the
(i +1)-th element of A. Of course we cannot select element three as the i-th element
since the (i+1)-th element would not be valid, but apart from this the sub-sequences
we can form are

〈‘a’, ‘b’〉, 〈‘b’, ‘c’〉, 〈‘c’, ‘d’〉.
You can think of a text file as just a long string, so it is easy to imagine that we
could work out all the bigrams within such a file. How can we do this in practical
terms? Using only existing BASH commands demands a cunning approach; imagine
we have a file called A.txt which has one character per-line:

bash$ cat > A.txt
a
b
c
d
bash$

Now imagine we take the file and paste it next to itself; we can achieve this easily
using the paste command:

bash$ paste -d ’ ’ A.txt A.txt
a a
b b
c c
d d
bash$

Believe it or not, we are almost there. All we need now do is “skew” the second
column by one character. That is, if we skewed the column so that we started at ‘b’
rather than ‘a’ we would (more or less) have the bigrams one per-line. To perform
the skewing, we use tail to take A.txt and copy the content starting at the second
line. Pasting the result, which we call B.txt, alongside the original A.txt gives:

bash$ tail -n +2 A.txt > B.txt
bash$ paste -d ’ ’ A.txt B.txt
a b
b c
c d
d
bash$

Of course, we might want to eliminate the last line (this is the result of including
an “invalid” index) but other than that we can build a list of all bigrams in A.txt.
The case for trigrams is quite similar but we need to skew the original file by two
characters and include that in our paste command as well. Suppose we apply this
to The Merchant of Venice. First we retrieve the text and turn it into lower-case as
usual; then we split the characters from B.txt into a file called E.txtwhere there
is one character per-line and finally skew this file by one and two lines to get F.txt
and G.txt:

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1810.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$ cat B.txt | fold -c -w 1 > E.txt
bash$ tail -n +2 E.txt > F.txt
bash$ tail -n +3 E.txt > G.txt
bash$

6.2 Substitution Ciphers 143

Now we are ready to construct the bigrams and trigrams. Using paste as above
we take the files E.txt, F.txt and G.txt and paste them into place next to each
other. Then we use grep to throw away any invalid lines. We do this by specifying
that we only want lines with two or three alphabetic characters on them (for the
respective bigram and trigram case). Finally we remove the inter-character spacing
using tr and get the bigrams and trigrams in H.txt and I.txt:

bash$ paste -d ’ ’ E.txt F.txt | tr -d ’ ’ | grep .. > H.txt
bash$ paste -d ’ ’ E.txt F.txt G.txt | tr -d ’ ’ | grep ... > I.txt
bash$

Next we can apply a similar approach to analysis of the bigram and trigram frequen-
cies as we previously applied to single character frequencies. We take the input file,
sort it using sort and feed the output to uniq to count how many duplicates ex-
ists (i.e., how many times a given bigram or trigram exists). Unlike single character
frequencies where there were not many (since there are not many characters), there
are a huge number of bigrams and trigrams: we feed the result through sort and
tail to produce only the 20 most frequent:

bash$ cat H.txt | sort | uniq -c | sort -n -r | head -n 20 | paste -s
2922 th 2098 he 1814 an 1592 er 1430 ou
1283 in 1273 re 1238 or 1181 nd 1136 ha
1013 en 995 is 990 on 974 at 820 es
814 to 802 it 789 me 786 ar 782 ve

bash$ cat I.txt | sort | uniq -c | sort -n -r | head -n 20 | paste -s
1438 the 800 and 722 you 468 her 456 hat
426 for 398 ing 376 tha 347 our 338 his
306 thi 305 ere 297 not 281 nio 276 ith
272 hou 262 tia 259 all 256 ear 252 wit

bash$

If you think about it, the results are what we would expect: “th” is obviously going
to occur more often than “tz” for example, and it should not be a surprise that three
character words such as “the” and “and” are the most popular trigrams.

Now imagine we play the same game as before. Someone hands us some cipher-
text and challenges us to tell them the key it was encrypted with. To simulate this,
we first retrieve a fresh copy of A Midsummer Night’s Dream

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/dirs/etext97/1ws1710.txt’
bash$ cat A.txt | tr [:upper:] [:lower:] > B.txt
bash$

and imagine someone takes the plaintext B.txt, selects k then encrypts B.txt to
give the ciphertext C.txt: our task is again to determine k given only C.txt. To
avoid having to inspect the whole file, we will again focus on the eleven lines of the
ciphertext starting at line #959:

bash$ cat C.txt | tail -n +959 | head -n 11
ylivyz. e xvmo tfii geri et ai.
e czyq m lmzc qfivi tfi qebj tfoai lbyqu,
qfivi ypbexu mzj tfi zyjjezg reybit gvyqu,
wseti yriv-kmzyxeij qetf bsukeysu qyyjlezi,
qetf uqiit asuc-vyuiu, mzj qetf igbmztezi;
tfivi ubiixu tetmzem uyaiteai yh tfi zegft,
bsbb’j ez tfiui hbyqivu qetf jmzkiu mzj jibegft;
mzj tfivi tfi uzmci tfvyqu fiv izmaibb’j ucez,
qiij qeji izysgf ty qvmx m hmevo ez;
mzj qetf tfi dseki yh tfeu e’bb utvimc fiv ioiu,
mzj amci fiv hsbb yh fmtihsb hmztmueiu.

bash$

144 6 Using Short Programs to Make and Break Historical Ciphers

By now, we have a range of techniques available to us. The first step is to run a
single character frequency analysis

bash$ cat C.txt | fold -c -w 1 | grep [[:alpha:]] | sort | uniq -c | paste -s
2544 a 3674 b 678 c 87 d 5509 e
5035 f 1372 g 1528 h 10178 i 3173 j
1751 k 1310 l 5984 m 16 n 2176 o
169 p 1886 q 783 r 2763 s 7079 t
5237 u 5114 v 121 w 1411 x 6673 y
5195 z

bash$

and then to extract the most common bigrams and trigrams:

bash$ cat C.txt | fold -c -w 1 > E.txt
bash$ tail -n +2 E.txt > F.txt
bash$ tail -n +3 E.txt > G.txt
bash$ paste -d ’ ’ E.txt F.txt | tr -d ’ ’ | grep .. > H.txt
bash$ paste -d ’ ’ E.txt F.txt G.txt | tr -d ’ ’ | grep ... > I.txt
bash$ cat H.txt | sort | uniq -c | sort -n -r | head -n 20 | paste -s

2494 tf 1990 fi 1487 iv 1330 mz 1122 ys
1102 ez 1026 zj 913 vi 801 fm 797 iz
787 yv 780 yz 777 eu 728 fe 726 ai
707 iu 705 mt 677 bb 670 mv 649 et

bash$ cat I.txt | sort | uniq -c | sort -n -r | head -n 20 | paste -s
1186 tfi 797 mzj 505 fiv 468 oys 341 fmt
337 tfe 333 feu 328 ezg 288 hyv 275 mbb
273 ysv 248 tfm 242 etf 236 zyt 226 ivi
226 imv 224 qet 219 fys 211 yri 202 ebb

bash$

Based on all this information we can start to make some guesses about how the
ciphertext was produced:
• We still do not consider spaces during encryption, so the cipher still retains the

word structure and we know that ‘�’ decrypts to ‘�’.
• Based on the single character frequency analysis we can be reasonably sure about

at least the three most frequent characters and say that ‘i’ decrypts to ‘e’, ‘t’
decrypts to ‘t’ and ‘y’ decrypts to ‘o’.

• The bigram and trigram analysis confirms the guesses above because, for ex-
ample, the most frequent trigram in the ciphertext is “tfi” and so if we match
this against “the” (the most frequent trigram in some general text) we confirm
the likelihood of ‘t’ decrypting to ‘t’. Based on further similar matching we can
guess that ‘f’ decrypts to ‘h’, ‘m’ decrypts to ‘a’, ‘z’ decrypts to ‘n’ and ‘j’ de-
crypts to ‘d’.

• Given we already guessed ‘m’ decrypts to ‘ a’, we can guess that ‘e’ decrypts
to ‘i’ since on the second line we have a one letter word and we know it cannot
decrypt to ‘a’.

Based on these initial guesses, and without too much effort, we can already be fairly
confident about roughly a third of the key; we can start taking the ciphertext and
performing a partial decryption. Considering just the first two lines of our example
text:

6.2 Substitution Ciphers 145

‘y ’ ‘l ’ ‘i ’ ‘v ’ ‘y ’ ‘z ’ ‘. ’ ‘�’ ‘ e ’ ‘�’
‘x ’ ‘v ’ ‘m ’ ‘o ’ ‘�’ ‘t ’ ‘f ’ ‘i ’ ‘i ’ ‘�’
‘g ’ ‘e ’ ‘r ’ ‘i ’ ‘�’ ‘e ’ ‘t ’ ‘�’ ‘ a ’ ‘i ’
‘. ’ ‘e ’ ‘�’ ‘ c ’ ‘z ’ ‘y ’ ‘q ’ ‘�’ ‘ m ’ ‘�’
‘l ’ ‘m ’ ‘z ’ ‘c ’ ‘�’ ‘q ’ ‘f ’ ‘i ’ ‘v ’ ‘i ’
‘�’ ‘t ’ ‘f ’ ‘ i ’ ‘�’ ‘q ’ ‘e ’ ‘b ’ ‘j ’ ‘�’
‘t ’ ‘f ’ ‘o ’ ‘a ’ ‘i ’ ‘�’ ‘l ’ ‘b ’ ‘ y ’ ‘q ’
‘u ’ ‘, ’

we can already decrypt portions of it to read:

‘o ’ ‘l ’ ‘e ’ ‘v ’ ‘o ’ ‘n ’ ‘. ’ ‘�’ ‘ i ’ ‘�’
‘x ’ ‘v ’ ‘a ’ ‘o ’ ‘�’ ‘t ’ ‘h ’ ‘e ’ ‘e ’ ‘�’
‘g ’ ‘i ’ ‘r ’ ‘e ’ ‘�’ ‘i ’ ‘t ’ ‘�’ ‘ a ’ ‘e ’
‘. ’ ‘i ’ ‘�’ ‘ c ’ ‘n ’ ‘o ’ ‘q ’ ‘�’ ‘ a ’ ‘�’
‘l ’ ‘a ’ ‘n ’ ‘c ’ ‘�’ ‘q ’ ‘h ’ ‘e ’ ‘v ’ ‘e ’
‘�’ ‘t ’ ‘h ’ ‘ e ’ ‘�’ ‘q ’ ‘i ’ ‘b ’ ‘d ’ ‘�’
‘t ’ ‘h ’ ‘o ’ ‘a ’ ‘e ’ ‘�’ ‘l ’ ‘b ’ ‘ o ’ ‘q ’
‘u ’ ‘, ’

At this point we need to start working harder ... but we can still lean on some existing
tools to help us. The basic idea is to start looking at the words which we know part
of and narrow down the possibilities for the parts we do not know based on which
real words fit the template. This is sort of like the process of filling in a crossword.
For example, we can see two partially decrypted words “ae” and “thoae”. We know
that ‘a’ probably decrypts to something which will make both of these examples
real words. So first we can search the standard dictionary [13] file for all two letter
words which end in ‘e’:

bash$ cat /usr/share/dict/words | grep -i ^.e$ | sort | uniq | paste -s
AE BE Be CE Ce DE De EE FE Fe
GE Ge HE He IE Je KE LE Le ME
Me NE Ne OE Oe PE QE RE Re SE
Se TE Te VE Ve Xe ae be ce de
ee fe ge he ie le me ne oe pe
qe re se te we ye
bash$

This does not help much; the dictionary does not seem much good for this case!
For example, the words “ve” and “qe” might be real, but do not really seem realis-
tic possibilities for someone writing English. If we eliminate the words beginning
with characters we are already confident about, this helps to reduce the possibilities;
probably only “be”, “me”, “we” and “ye” remain. Now we can search for all five
letter words that start with “th” and end with either “be”, “me”, “we” or “ye”:

bash$ cat /usr/share/dict/words | grep -i ^th.be$ | sort | uniq | paste -s
Thebe thebe
bash$ cat /usr/share/dict/words | grep -i ^th.me$ | sort | uniq | paste -s
theme thyme
bash$ cat /usr/share/dict/words | grep -i ^th.we$ | sort | uniq | paste -s

bash$ cat /usr/share/dict/words | grep -i ^th.ye$ | sort | uniq | paste -s

bash$

146 6 Using Short Programs to Make and Break Historical Ciphers

Although “thebe” might be a reasonable Shakespearean word, it seems more likely
that ‘a’ decrypts to ‘m’ given the only other two words in the dictionary support this
choice. Updating our partial decryption we get:

‘o ’ ‘l ’ ‘e ’ ‘v ’ ‘o ’ ‘n ’ ‘. ’ ‘�’ ‘ i ’ ‘�’
‘x ’ ‘v ’ ‘a ’ ‘o ’ ‘�’ ‘t ’ ‘h ’ ‘e ’ ‘e ’ ‘�’
‘g ’ ‘i ’ ‘r ’ ‘e ’ ‘�’ ‘i ’ ‘t ’ ‘�’ ‘ m ’ ‘e ’
‘. ’ ‘i ’ ‘�’ ‘ c ’ ‘n ’ ‘o ’ ‘q ’ ‘�’ ‘ a ’ ‘�’
‘l ’ ‘a ’ ‘n ’ ‘c ’ ‘�’ ‘q ’ ‘h ’ ‘e ’ ‘v ’ ‘e ’
‘�’ ‘t ’ ‘h ’ ‘ e ’ ‘�’ ‘q ’ ‘i ’ ‘b ’ ‘d ’ ‘�’
‘t ’ ‘h ’ ‘o ’ ‘m ’ ‘e ’ ‘�’ ‘l ’ ‘b ’ ‘ o ’ ‘q ’
‘u ’ ‘, ’

The process can continue in a similar way, using the frequency analysis to back
up our guesses. Although we are working in a known ciphertext scenario, we can
bend the rules a bit by considering some knowledge about the plaintext (actually we
already did this by assuming it was English). Why is this not cheating? Imagine you
get an encrypted email. In this case you know that there is a high chance that the
start of the email includes the headers “to”, “from”, “subject” and so on, and this
type of information can help conclude our search more quickly. Fast-forwarding a
little then, we would eventually recover the whole key and hence the method of
substitution between plaintext and ciphertext characters. Using this, and in the same
way as the shift cipher example, we can test if the result of a trial decryption looks
reasonable:

bash$ S=’abcdefghijklmnopqrstuvwxyz’
bash$ T=’mlkjihgfedcbazyxwvutsrqpon’
bash$ cat C.txt | tr ${T} ${S} > D.txt
bash$ cat D.txt | tail -n +959 | head -n 11
oberon. i pray thee give it me.
i know a bank where the wild thyme blows,
where oxlips and the nodding violet grows,
quite over-canopied with luscious woodbine,
with sweet musk-roses, and with eglantine;
there sleeps titania sometime of the night,
lull’d in these flowers with dances and delight;
and there the snake throws her enamell’d skin,
weed wide enough to wrap a fairy in;
and with the juice of this i’ll streak her eyes,
and make her full of hateful fantasies.

bash$

Find someone to work with. One of you act as the sender
of some secret plaintext message, and the other as the crypt-
analysist:
1. the sender selects k, i.e., a permutation, and encrypts the

plaintext message to produce a ciphertext, then
2. the cryptanalysist is given the ciphertext, and asked to re-

cover k (or at least the plaintext message, partial or other-
wise).

Did it work? Several things can go wrong: can you think why
the process might fail? For example, what assumptions do we
make and therefore depend on being true?

References 147

References

1. Wikipedia: Brute-force attack. http://en.wikipedia.org/wiki/Brute_force_attack
2. Wikipedia: Caesar cipher. http://en.wikipedia.org/wiki/Caesar_cipher
3. Wikipedia: Ciphertext-only attack. http://en.wikipedia.org/wiki/Ciphertext-only_attack
4. Wikipedia: Frequency analysis. http://en.wikipedia.org/wiki/Frequency_analysis
5. Wikipedia: Kerckhoffs’ principle. http://en.wikipedia.org/wiki/Kerckhoffs’_principle
6. Wikipedia: Mary I of Scotland. http://en.wikipedia.org/wiki/Mary_I_of_Scotland
7. Wikipedia: Modular arithmetic. http://en.wikipedia.org/wiki/Modular_arithmetic
8. Wikipedia: N -gram. http://en.wikipedia.org/wiki/N-gram
9. Wikipedia: Permutation. http://en.wikipedia.org/wiki/Permutation

10. Wikipedia: ROT13. http://en.wikipedia.org/wiki/ROT13
11. Wikipedia: Substitution cipher. http://en.wikipedia.org/wiki/Substitution_cipher
12. Wikipedia: The Adventure of the Dancing Men. http://en.wikipedia.org/wiki/The_

Adventure_of_the_Dancing_Men
13. Wikipedia: words. http://en.wikipedia.org/wiki/Words_(Unix)

http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/Ciphertext-only_attack
http://en.wikipedia.org/wiki/Frequency_analysis
http://en.wikipedia.org/wiki/Kerckhoffs'_principle
http://en.wikipedia.org/wiki/Mary_I_of_Scotland
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/Permutation
http://en.wikipedia.org/wiki/ROT13
http://en.wikipedia.org/wiki/Substitution_cipher
http://en.wikipedia.org/wiki/The_Adventure_of_the_Dancing_Men
http://en.wikipedia.org/wiki/The_Adventure_of_the_Dancing_Men
http://en.wikipedia.org/wiki/Words_(Unix)

7Generation and Testing of Random Numbers

It might seem unlikely, but there are some really great stories about random-
ness [14]. The way Michael Larson used knowledge of the lack of randomness on
the US game show Press Your Luck in 1984, for example, is so great that it war-
rants being made into a film of some sort [12]. Part of the game involved the players
moving around an eighteen square board. The squares were either empty, contained
a prize or contained the so-called Whammy character: landing on a prize square
won you that prize, landing on the Whammy square lost all prizes won so far.

To make things exciting, the contents of the squares was updated every second or
so in a “random” manner. Except it was not random at all. Larson video taped Press
Your Luck episodes and played them back frame-by-frame. Then, by writing down
the sequence of board states, he discovered that the board in fact cycled through just
five simple patterns. Better still, during a given turn there were some squares that
would never contain the Whammy. So armed with this knowledge, Larson reasoned
that he could carry on playing without really gambling at all: provided he could re-
member the patterns and which turn he was on, he could always avoid the Whammy.
Larson went on the game show and stayed on so long it had to be split into multiple
episodes; the look on the presenters face as he consistently avoided the Whammy
with seemingly steel-eyed bravery must have been priceless. Well, not exactly price-
less: Larson walked off with $110,000 after lawyers from the TV station conceded
that he had not cheated. You can still find video of the now legendary episodes on
YouTube:

http://www.youtube.com/results?search_query=Press+Your+Luck

I hear a more mundane story much more often: my mother has a love/hate relation-
ship with the UK National Lottery game Lotto [10]. The idea is that she picks six
numbers between 1 and 49 and then every Saturday, a machine selects six numbers
at random. If her numbers match the ones the machine picked, she wins something:
typically the more numbers that match, the more money she gets. But invariably the
numbers do not match and she is left to contemplate the injustice of it all. This takes
the form of a ritual tirade against the machine: “it’s a fix, having 21 and 22 cannot
be random”.

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_7,
© Springer International Publishing Switzerland 2014

149

http://www.youtube.com/results?search_query=Press+Your+Luck
http://dx.doi.org/10.1007/978-3-319-04042-4_7

150 7 Generation and Testing of Random Numbers

Examples like this beg some questions about what random numbers are and how
we generate them. These are quite important questions because random numbers
are used in lots of different areas of Computer Science. A good example is that the
security of many cryptographic schemes relies on the fact that one can make random
choices and choose random numbers. For example, it is common to assume that any
key we choose is done so in a random way; if there was some way to predict how we
selected it, the key would be more easily guessed and security more easily breached.
Setting a password to “X4$ia0!l” is arguably better than “password” for example!

7.1 What Is Randomness?

The term entropy is often used by scientists to describe disorder: if a physical sys-
tem has high entropy it behaves in an unpredictable way. For example as you heat
up a gas, predicting how it will behave starts to become harder than if it is in a more
stable, cooled state. When we say something is random we mean more or less the
same thing: the behaviour we observe follows no deterministic or predictable pat-
tern. As a result we can not write an algorithm to describe it; instead we have to
describe it in terms of probability, or chance.

Randomness is quite an abstract concept. To make things more concrete, we will
talk exclusively about sequences of random numbers. Imagine we want to generate
a sequence of such numbers, e.g.,

X = 〈0,1,0,1〉.
The idea is to use coin flips (or tosses) [3]: in order to generate each Xi , we first
throw the coin in the air then and inspect which side it lands on. A real coin has
two sides, normally called the tails side and heads side, but we can make life easier
by using the number 0 with tails and 1 with heads; we also rule out any freak oc-
curances such as the coin landing on anything other than one of the sides (e.g., on
the edge). As a result, we can say each coin flip makes a random selection from the
set S = {0,1}. Clearly we cannot write down an algorithm to describe how the coin
behaves, so instead we use a probability distribution:

P(x) =
{

1
2 if x = 0 i.e., the coin flip was a tail
1
2 if x = 1 i.e., the coin flip was a head

Looking at P , for a given output x we can say what the probability of selecting x

from S is. In this case, we have a special name for the probability distribution: when
the probability for each x is the same we say the distribution is uniform.

The subject of randomness is one where it is quite difficult to prove things cate-
gorically. More usually, we define randomness in terms of properties which we can
measure. Typically we generate a sequence of random numbers and then use sta-
tistical tests of randomness [16] on the sequence. For example we might say that
a sequence contains some feature that mean it is not random; we discuss two such
features below.

7.1 What Is Randomness? 151

7.1.1 Biased Versus Unbiased

Imagine we get a friend to flip a coin eight times, resulting in the sequence

Y = 〈1,1,1,1,1,1,1,0〉.

We would have to ask ourselves whether or not this friend is cheating somehow:
intuitively, we might say that the coin is biased. On the other hand, this sequence is
just as probable as any other. The probability of getting Y is

1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
= 1

28
= 1

256

which is the same as any other sequence of the same length. So given Y is just
as likely to occur as any other sequence, why would we conclude that the coin is
unfair?

In more general terms, if we select uniformly at random from a set of m numbers
the probability of selecting a number x is

P(x) = 1

m
.

If we repeat the selection n times, we would expect each of the numbers to appear
roughly n

m
times on average. If some number x is selected significantly more or less

than n
m

times, we could conclude that the selection process is not random at all: it
is biased in favour or against x somehow. This means that there exists a number x

with P(x) �= 1
m

, but we expected that for all x we would have P(x) = 1
m

. This is
another way of saying the selection process is biased, i.e., P is not uniform.

The “on average” part in the previous paragraph is important in the sense that
we need n to be large before we start talking about average behaviour. For example
if we flip a coin twice and get 1 twice, we cannot conclude that the coin is unfair
because we do not have enough evidence. If we flip a coin eight hundred times and
get 1 seven hundred times however, we can be more confident that something fishy
is going on.

Looking again at the sequence Y , we can start to see why our friend might be
cheating. We are selecting from m = 2 numbers and have repeated the selection
n = 8 times so we would expect each number to occur 8

2 = 4 times. But they do not:
we get 1 seven times and 0 just once, so we could conclude that for this limited sam-
ple the coin is biased toward 1 and is therefore unfair. Rather than being uniform,
based on having seen Y we might say the behaviour of the coin is better described
by

P(x) =
{

1
8 if x = 0
7
8 if x = 1

Maybe we should get some more trustworthy friends!

152 7 Generation and Testing of Random Numbers

You can get some statistics about the UK National Lottery
here

http://www.lottery.co.uk/statistics/

Based on the discussion above, i.e., explaining your answer
in terms of Mathematics, probability in particular, is it biased
or not?

7.1.2 Predictable Versus Unpredictable

Now imagine we get a different friend to flip another coin eight times, and that this
time the resulting sequence is

Z = 〈1,0,1,0,1,0,1,0〉.
The probability of getting this sequence is still

1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
· 1

2
= 1

28
= 1

256

so again we cannot really infer anything from it occurring rather than some other
sequence. Also, we can see that the coin is not biased in the same way the other one
was: we get 1 four times and 0 four times so the coin is not biased toward either
case. On the other hand, we might intuitively say the new coin is still unfair because
there is a clear pattern: if a given flip of the coin gives 1, there seems a strong chance
the next flip will give 0. If we believe the pattern will continue to hold, this means
we can predict the next result with some confidence.

You can think of this in terms of conditional probability [2]: the result of a given
coin flip should not depend on anything other than the probability distribution. It
especially should not depend on the results from previous coin flips: imagine you
flip the coin ten times and every time you get 1. We might say a 0 was “due”.
But looking at our description of the behaviour, it clearly is not: the probability of
getting a 0 on the eleventh flip is still 1

2 and the probability of getting a 1 is still 1
2 .

The tendency for people to ignore this is sometimes called the gambler’s fallacy [5].
In our case, we can see that the result of the i-th coin flip probably is dependent
on the (i − 1)-th coin flip. For example if Zi−1 = 1 then it is more probable that
Zi = 0 than Zi = 1. Therefore we could conclude that the coin behaviour is not as
well described by the probability distribution as expected.

There is another, perhaps neater way to think about this. Imagine we want to take
Z and compress it by coming up with a shorter way to describe the sequence, just
as we did in Chap. 1. For example, imagine we say that the symbol � represents the
sequence 〈1,0〉. We might then describe Z as the sequence

Z̄ = 〈�, �, �, �〉.

http://www.lottery.co.uk/statistics/

7.1 What Is Randomness? 153

Why does this work? Well, we know what � “means” so we can take Z̄ and recon-
struct Z by just replacing each occurrence of � with (1,0). But the way we describe
Z̄ is shorter than the way we describe Z (even if we include the definition of �),
so in some sense we have used the fact there is a “pattern” to compress the infor-
mation. We have glossed over a lot of the detail, but there is a fancy name for this
general concept: we call it Kolmogorov-Chaitin complexity [7]. Very roughly, this
concept says that the more we can compress a sequence the less random it must be;
equivalently, the more we can compress a sequence the more usable structure there
must be in the sequence.

7.1.3 Random Versus Arbitrary

There used to be a joke about messages from computers that would prompt the user
to “press any key” [1]; the joke was that users would find the space key and the
escape key, but could not find the “any” key. It seems debatable whether this was
ever actually funny, but looking at things more closely highlights an important point:
the message did not read “press a random key”, the choice of key does not matter
so really what we mean is “press an arbitrary key”.

The difference between arbitrary and random is sometimes important however.
For example, many files used within a UNIX-based operating system start with a
magic number [9] which allows us to easily identify their type; if the file starts with
the number 8993 this tells us that we can execute it for example. In a sense the
choice of 8993 is arbitrary; there is no real reason to choose 8993 rather than say
1234 or 9999, we just needed “any” number. In this sort of situation, it is tempting
to just select the numbers at random.

Test this claim using BASH. Remember, the od command
can display the content of files in various ways: the option
-tux1 will print the content as a sequence of hexadeci-
mal bytes for instance. If you can locate some different file
types (e.g., JPEG images, PDF documents, BASH scripts,
Java class files and so on) you should be able to see the magic
number in the first few bytes (the file command uses this
information to guess the file type).

In cryptography, this approach can have some disadvantages. The most famous ex-
ample is illustrated by the Data Encryption Standard (DES) [4] which was de-
signed and standardised in the US in the late 1970s. DES is a block cipher; it en-
crypts messages. One of the components in the algorithm is a large table called the
S-box whose contents is chosen carefully but somewhat arbitrarily. The problem is,
there was no explanation of how the content was generated. People began to become
suspicious that the content had been chosen in a special way so that, for example, the
US government could decrypt their messages. In turned out that the US government
had not selected the S-box content either randomly or arbitrarily. They had actually

154 7 Generation and Testing of Random Numbers

been selected to prevent an attack which, at the time, only the US governments cryp-
tographers knew about. Even so, the lack of openness over the design choices for the
S-box sparked a trend toward use of so-called “nothing up my sleeve” numbers [11].
This idea is used when we want “any” number, but one which we can prove has not
been selected with special properties. For example, the number π might not be a
good random number, but if all you need is an arbitrary number then it is probably
a good choice. For example, people would be hard pushed to prove your choice of
π was underhand: it cannot have been generated in some special way.

7.2 Real Randomness

7.2.1 Generating Randomness

When we talk about real random numbers, we typically mean numbers that come
from some physical process. The idea is that we cannot control, or to some extent
understand, how these processes might work. In other words, we cannot write down
an algorithm that describes them. Radioactive decay is a good candidate. The idea
is that an unstable atom will decay by emitting energy in the form of radiation;
we know the average rate at which this might happen, but when exactly a given
atom will decay is unpredictable. So we could generate random numbers by simply
taking a measuring device such as a Geiger counter [6] and have it tell us whenever
radioactive decay is detected.

Another candidate is atmospheric noise. In the same way as radioactive decay, it
is difficult to predict the level and characteristics of the noise around us. Sampling
such noise using even a basic radio or microphone can give quite effective results:
Mads Haahr, a lecturer at Trinity College, Dublin has rigged up such a system to the
Internet at

http://www.random.org/

The web-site offers a neat interface which we can easily use from BASH by employ-
ing the wget command. The idea is to issue a command that mimics what happens
when we type a URL into the address bar of a web-browser:

bash$ wget -q -U chrome -O- ’http://www.random.org/integers/?num=100&min=0&max=255&col=5&base=10&format=
plain&rnd=new’

52 131 189 14 3
118 123 153 46 88
206 77 42 72 171
194 229 113 19 153
55 244 69 46 220
117 9 101 82 82
5 64 164 172 250
119 26 1 87 58
169 231 44 194 182
28 210 243 124 193
148 129 177 71 249
178 202 101 25 47
254 102 2 44 144
15 24 46 84 165
32 225 153 101 17
148 255 220 235 71
45 195 34 217 84
80 134 25 74 117
17 21 109 25 148
144 167 10 41 203
bash$

http://www.random.org/

7.2 Real Randomness 155

Of course having a Geiger counter attached to every computer is not ideal, and
neither is having to access a remote computer over the Internet every time we need
to generate random numbers. Fortunately there are lots of devices already connected
to your local computer which could do a similar job. Most operating systems have
a mechanism for collecting together random events from such devices into what
is called an entropy pool [17]. You can think of the entropy pool as a sequence
of numbers; the idea is that each time a random event happens, we mix it into the
entropy pool by adding some numerical representation of the event onto the end of
the sequence. You could imagine that every time someone moves the mouse, the
computer might add the mouse speed and direction to the sequence. Then, when
someone or something needs to generate a random number, we take one from the
start of the sequence.

UNIX systems commonly have two types of entropy pool which they let users
access via the /dev/random and /dev/urandom files. Except the files are
not really files at all: when we read from them, behind the scenes we are tak-
ing random numbers from an entropy pool. The difference between the two is
that /dev/random will wait for enough entropy to exist before allowing us to
read from it, while /dev/urandom will let us read whenever we want. You can
see this as a choice between the quality of the numbers we read and the length
of time required to read them. Again, we can easily read some numbers from
/dev/urandom using BASH:

bash$ cat /dev/urandom | od -Ad -tu1 -w5 -N50 | cut -c 9-
32 38 155 120 79
74 78 146 204 147
9 206 233 35 218
41 49 214 96 35
25 200 21 190 9
47 213 208 199 21
123 69 220 194 226
6 154 57 46 78

150 244 150 225 166
97 31 145 243 15

bash$

That is quite a horrible looking command, so it makes sense to look at what is
going on in more detail. Basically, we take /dev/urandom and pass it through a
command called od which is controlled using a number of options: we tell od to
give us fifty bytes of the input using -N50, to format the output in five columns
using -w5, and to format the content as unsigned decimal integers in the range
0 . . .255 inclusive using -t with the format u1. Finally we pass the output of od
through cut to remove some information we do not need, i.e., to get just the random
numbers.

7.2.2 Testing Randomness

So we can generate random numbers, but can we apply similar statistical tests as
those discussed earlier to show they are random? As an example, we will look at the
tests for bias and predictability; we will compare the real random numbers against

156 7 Generation and Testing of Random Numbers

English text, which is not random at all. Again we will use Project Gutenberg as a
source of text:

http://www.gutenberg.org/

For the sake of argument, we fetch the text for War and Peace by Tolstoy (which is
quite large) and save it as the file A.txt. Using the du command we can see that it
weighs in at roughly 3 MB:

bash$ wget -q -U chrome -O A.txt ’http://www.gutenberg.org/files/2600/2600.txt’
bash$ du -b A.txt
3226645 A.txt
bash$

Next we take the same amount of random data from /dev/urandom (using du
and cut to provide the number of bytes as an option for head), then save it as the
binary file B.bin as follows:

bash$ cat /dev/urandom | head -c ‘du -b A.txt | cut -f 1‘ > B.bin
bash$

Remember that testing for bias in A.txt and B.bin basically means testing that
each possible number we could select has the same probability of selection. The test
will be performed in two steps:
1. Take the input file and chop it up into decimal numbers in the range 0 . . .255.

The output will need some cleaning up, but the end result will essentially be a
long sequence of decimal numbers (one per-line) that represents the file content.

2. Take the sequence and count how many times each number occurs in it.
There are two main things to notice in the output for A.txt:

bash$ cat A.txt | od -Ad -tu1 -w1 -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v ^$ | sort -n | uniq -c | paste -s
65008 10 514911 32 3923 33 17970 34 1 35

2 36 1 37 7529 39 670 40 670 41
300 42 39891 44 6308 45 30805 46 29 47
179 48 392 49 147 50 61 51 23 52
55 53 57 54 40 55 193 56 35 57

1015 58 1145 59 2 61 3137 63 2 64
6575 65 3606 66 2107 67 2017 68 2259 69
1946 70 1303 71 4378 72 7933 73 308 74
1201 75 713 76 3251 77 3614 78 1635 79
6519 80 35 81 3057 82 2987 83 6817 84
254 85 1116 86 2888 87 673 88 1265 89
108 90 1 91 1 93 199239 97 31052 98

59520 99 116274 100 312990 101 52950 102 50024 103
163027 104 166351 105 2266 106 19230 107 95814 108
58395 109 180561 110 191245 111 39014 112 2295 113
145373 114 159906 115 219591 116 65180 117 25970 118
56319 119 3711 120 45000 121 2280 122

bash$

First, some numbers do not appear at all; for example the output starts at 10 so
clearly 0 . . .9 appear zero times. Second, among the numbers that do appear, some
appear much more often than others. For example the number 32 appears many
times whereas the number 90 appears fewer times. The reason for this is simple.
Since A.txt is an ASCII text file, the numbers will be biased toward those which
relate to printable ASCII codes. Looking back to Chap. 4, we find that 32 is the
ASCII code for SPC, the characters ‘a’ . . . ‘z’ have ASCII codes 97 . . .122, and

http://www.gutenberg.org/

7.2 Real Randomness 157

ASCII codes 10 and 13 produce a new line; unsurprisingly these all appear very
often! What about B.bin?

bash$ cat B.bin | od -Ad -tu1 -w1 -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v ^$ | sort -n | uniq -c | paste -s
12593 0 12698 1 12513 2 12485 3 12524 4
12627 5 12663 6 12609 7 12691 8 12535 9
12699 10 12597 11 12683 12 12520 13 12697 14
12525 15 12520 16 12577 17 12621 18 12477 19
12438 20 12585 21 12594 22 12845 23 12591 24
12688 25 12623 26 12600 27 12658 28 12692 29
12747 30 12490 31 12476 32 12521 33 12770 34
12739 35 12451 36 12569 37 12628 38 12666 39
12628 40 12523 41 12579 42 12507 43 12504 44
12634 45 12757 46 12529 47 12517 48 12602 49
12454 50 12598 51 12409 52 12445 53 12634 54
12723 55 12566 56 12780 57 12817 58 12737 59
12565 60 12532 61 12641 62 12495 63 12565 64
12661 65 12808 66 12670 67 12610 68 12685 69
12663 70 12511 71 12692 72 12665 73 12705 74
12639 75 12454 76 12658 77 12821 78 12702 79
12656 80 12746 81 12542 82 12775 83 12592 84
12413 85 12486 86 12725 87 12681 88 12574 89
12663 90 12544 91 12716 92 12651 93 12584 94
12729 95 12671 96 12529 97 12430 98 12499 99
12500 100 12439 101 12662 102 12891 103 12600 104
12581 105 12720 106 12538 107 12650 108 12599 109
12550 110 12567 111 12512 112 12534 113 12864 114
12449 115 12590 116 12548 117 12650 118 12779 119
12546 120 12787 121 12548 122 12611 123 12663 124
12577 125 12323 126 12583 127 12623 128 12757 129
12564 130 12572 131 12780 132 12527 133 12839 134
12487 135 12458 136 12783 137 12452 138 12570 139
12521 140 12571 141 12699 142 12691 143 12461 144
12835 145 12618 146 12582 147 12681 148 12657 149
12593 150 12489 151 12859 152 12544 153 12823 154
12513 155 12676 156 12399 157 12613 158 12379 159
12650 160 12626 161 12693 162 12595 163 12633 164
12773 165 12696 166 12761 167 12834 168 12472 169
12576 170 12892 171 12496 172 12571 173 12611 174
12353 175 12509 176 12546 177 12729 178 12777 179
12624 180 12612 181 12480 182 12517 183 12584 184
12395 185 12573 186 12679 187 12408 188 12597 189
12748 190 12733 191 12360 192 12397 193 12616 194
12503 195 12480 196 12699 197 12641 198 12487 199
12470 200 12481 201 12609 202 12580 203 12621 204
12598 205 12555 206 12692 207 12593 208 12426 209
12568 210 12470 211 12630 212 12483 213 12684 214
12665 215 12623 216 12499 217 12629 218 12312 219
12551 220 12502 221 12749 222 12682 223 12581 224
12787 225 12625 226 12805 227 12596 228 12505 229
12806 230 12473 231 12608 232 12564 233 12663 234
12747 235 12512 236 12428 237 12788 238 12456 239
12704 240 12672 241 12575 242 12621 243 12515 244
12542 245 12362 246 12566 247 12692 248 12496 249
12654 250 12639 251 12853 252 12518 253 12475 254
12626 255

bash$

The difference is quite obvious: all numbers appear in the output and do so roughly
12600 times on average. There are a few cases which vary a little, but basically we
can conclude that there is no bias in B.bin to the same extent there was in A.txt.
We might use some further statistics to back this up, for example if we were to
measure the standard deviation of B.bin it would not be very large.

Measuring predictability is a little more tricky. One thing we could do quite easily
is to approximate the Kolmogorov-Chaitin complexity by seeing how easy it is to
compress the file content. The command bzip2 performs a full blown version of
the compression ideas we discussed in Chap. 1. bzip2 processes an input file to
identify patters and replaces them with shorter symbols to produce a compressed
output file. It needs to define what those symbols mean so it adds a dictionary to the
start of the compressed file so that we can decompress it later if we want to. Using
bzip2 to compress A.txt and B.bin is simple; to be fair, we instruct bzip2

158 7 Generation and Testing of Random Numbers

to make the best effort it can at compressing the files rather than worrying about
producing the result quickly:

bash$ bzip2 -c -9 A.txt > A.txt.bz2
bash$ bzip2 -c -9 B.bin > B.bin.bz2
bash$

We then inspect how big the resulting files are, again using the du command we
used earlier:

bash$ du -b A.txt A.txt.bz2
3226645 A.txt
883666 A.txt.bz2
bash$ du -b B.bin B.bin.bz2
3226645 B.bin
3241465 B.bin.bz2
bash$

Inspecting the results confirms more or less what we expected: the War and Peace
text A.txt was compressed into A.txt.bz2, which is roughly a quarter of the
size. This is what we would expect since A.txt represents English text; for ex-
ample the word “and” probably appears very often so we might imagine replac-
ing each occurrence with a one character symbol. However, the randomness pro-
duced by /dev/urandom in B.bin is processed by bzip2 to produce the file
B.bin.bz2. In this case the output of /dev/urandom is so hard to compress
that the overhead of adding the dictionary to the compressed file has meant the end
result is larger than what we started with!

Maybe bzip2 is just not very good at compressing files (or at least this file? To
test this, we can try the same thing with some other compression tools like gzip
and get similar results:

bash$ gzip -c -9 A.txt > A.txt.gz
bash$ gzip -c -9 B.bin > B.bin.gz
bash$ du -b A.txt A.txt.gz
3226645 A.txt
1193969 A.txt.gz
bash$ du -b B.bin B.bin.gz
3226645 B.bin
3227164 B.bin.gz
bash$

Or perhaps using the zip compression method:

bash$ zip -q -9 A.zip A.txt
bash$ zip -q -9 B.zip B.bin
bash$ du -b A.txt A.zip
3226645 A.txt
1194105 A.zip
bash$ du -b B.bin B.zip
3226645 B.bin
3227300 B.zip
bash$

Of course, this still does not prove anything; perhaps bzip2, gzip and zip are all
missing some obvious way to compress the files. But basically we conclude from
our tests that A.txt is quite easy to compress whereas B.bin is at least harder to
compress. This means the Kolmogorov-Chaitin complexity of A.txt is quite low:
we can make a shorter description of A.txt, so it is not very random. On the other

7.3 Fake Randomness 159

hand, for B.bin the Kolmogorov-Chaitin complexity is higher: it is not as easy to
describe B.bin in a shorter way, so in a sense it is more random.

Using the commands described above for compressing files,
set yourself a challenge: what is the
1. largest file you can create that can be compressed into the

smallest size, and
2. smallest file you can create that can be compressed into

the largest size.
Put more precisely, imagine the original and compressed files
have sizes x and y bytes respectively: you are trying to max-
imises or minimise the compression ratio x/y. In each case,
explain what your strategy for constructing the original file
is, i.e., what features does it have that make it a good choice?

7.3 Fake Randomness

7.3.1 Generating Randomness

The problem with real random numbers is that sometimes they are too random for
our purposes. Yes, really: imagine we want to simulate a scientific experiment us-
ing a computer; this is a good idea if the real experiment would be impractical. For
example, maybe we would like to experiment with things that expand very fast and
generate large amounts of heat; usually we call these things explosions and doing
real experiments can be quite hazardous! So instead, we simulate the explosion on
a computer. On one hand it is quite possible we would want a source of random
numbers to model parts of the experiment, for example randomness in atomic-level
behaviour. On the other hand it would be a good idea if we could repeat the simu-
lation and get the same results. Using real random numbers is not ideal because of
the second reason: we cannot reproduce the real randomness so we would need to
generate all the numbers, store them somewhere and then look them up if we needed
them again.

A solution is to use pseudo-random numbers [13]. Whereas real randomness
cannot be described using an algorithm, pseudo-randomness can. The idea is to
think of the pseudo-random numbers we generate as a sequence called R. We start
by specifying the first element in the sequence R0, this is called the seed. Then,
to generate the next element R1 we apply the algorithm to compute it for us; we
can perform this over and over again so that more generally if we have Ri , the i-th
element in the sequence, we can generate the next element Ri+1. The thing we need
to be very careful about is that the sequence we generate still passes the tests for
randomness we looked at previously: although pseudo-random numbers are in a
sense fake, they should still satisfy our definition of what randomness looks like. If
we are successful, reproducing pseudo-random numbers becomes a matter of using

160 7 Generation and Testing of Random Numbers

the algorithm over and over again rather than storing a large amount of real random
numbers: we have traded more computation for less storage.

A Linear Congruence Generator (LCG) is one way to generate pseudo-
random numbers [8]. The algorithm we use to compute the next element of the
sequence given the current element is

Ri+1 = a · Ri + c (mod p).

This means that we take Ri , multiply it by some number a, and finally add another
number c: the result Ri+1 is produced by using modular arithmetic where the mod-
ulus we are using is p. Imagine we select a = 5, b = 1, p = 8 and set the seed
value R0 = 2. We can apply the LCG equation to generate successive elements in
the sequence

R0 = 2
R1 = 5 · R0 + 1 mod 8 = 3
R2 = 5 · R1 + 1 mod 8 = 0
R3 = 5 · R2 + 1 mod 8 = 1
R4 = 5 · R3 + 1 mod 8 = 6
R5 = 5 · R4 + 1 mod 8 = 7
R6 = 5 · R5 + 1 mod 8 = 4
R7 = 5 · R6 + 1 mod 8 = 5
R8 = 5 · R7 + 1 mod 8 = 2
R9 = 5 · R8 + 1 mod 8 = 3

...
...

Think back to our example application of pseudo-randomness where we wanted to
use a computer to simulate something, and imagine we want to start the simulation
half way through. Normally this would be tricky: we would first have to start our
random number generator at the beginning using the seed element, and then repeat-
edly compute the next element until we got to the point we actually wanted to start.
Depending on where this is, we might waste quite a bit of time just finding the Ri

we want.

The LCG is just one example of a Pseudo-Random Number
Generator (PRNG). Find out about at least one other type,
including how it works; compare it with the LCG in terms of
any advantages and disadvantages each might offer given a
particular context or application.

The LCG has a nice property which allows us to avoid this wasted time by skipping
ahead in the sequence. We already have a way to skip ahead by one element, namely

Ri+1 = a · Ri + c (mod p).

7.3 Fake Randomness 161

What if we take Ri+1 and apply the equation again? We would skip ahead two
elements, and the result would look a bit like

Ri+2 = a · S + c (mod p)

where S = a · Ri + c; writing things out fully gives a way to go straight from Ri to
Ri+2

Ri+2 = a · (a · Ri + c) + c (mod p).

Pulling the same trick again we can compute what the result of skipping ahead three
elements would be

Ri+3 = a · T + c (mod p)

where T = a · (a · Ri + c) + c; things are starting to get a bit of a mess, but we can
again write things out to get straight from Ri to Ri+3

Ri+3 = a · (a · (a · Ri + c) + c
)+ c (mod p).

The aim of all this is not to give you a headache, but rather to show that there is a
pattern emerging: if we start at Ri then to skip ahead k elements means that first we
multiply Ri by a a total of k times, but also add c a total of k times as we go. The
problem is, the multiplications by a and additions of c are sort of mixed up. We can
unravel the mess by rewriting things a bit

Ri+3 = a · (a · (a · Ri + c) + c
)+ c (mod p)

= a · (a2 · Ri + a · c + c
)+ c (mod p)

= a3 · Ri + a2 · c + a · c + c (mod p)

The important thing to notice from the above is that given Ri we just need to com-
pute two values which we can write down as

A(k) = ak

C(k) = ak−1 · c + ak−2 · c + · · · + a2 · c + a · c + c

and then we can use them to compute

Ri+k = A(k) · Ri + C(k) (mod p).

If we plug in the specific case of k = 3 the terms are as we expect, i.e.

A(3) = a3

C(3) = a2 · c + a · c + c

which gives

Ri+3 = a3 · Ri + a2 · c + a · c + c.

162 7 Generation and Testing of Random Numbers

The great thing is, since a and c are constant values, so if we know k before we start
then we can also compute A(k) and C(k) before we start. But what if we do not
know k before we start? What is the best way to compute A(k) and C(k)? Certainly
we want to do this in an inexpensive way, otherwise we might as well perform k

steps, skipping ahead 1 element each time.
The A(k) part is quite easy, but the C(k) part looks much less pleasant. We have

got an expression of the form

ak−1 · c + ak−2 · c + · · ·a2 · c + a · c + c

to compute. This looks bad because for a large value of k, the number of additions
and multiplications we need to do is also quite large. However, we are saved because
this large expression is actually the same as the much nicer looking

(ak − 1) · c
a − 1

.

To see why, multiply the first expression by (a − 1), to obtain

(
ak−1 · c + ak−2 · c + · · · + a · c + c

) · (a − 1)

= (
ak−1 · c + ak−2 · c + · · · + a2 · c + a · c + c

) · a
− (

ak−1 · c + ak−2 · c + · · · + a2 · c + a · c + c
)

= (
ak · c + ak−1 · c + ak−2 · c + · · · + a2 · c + a · c)

− (
ak−1 · c + ak−2 · c + · · · + a2 · c + a · c + c

)

= ak · c − c

= (
ak − 1

) · c
Now dividing both sides by (a − 1) we obtain

ak−1 · c + ak−2 · c + · · · + a2 · c + a · c + c = (ak − 1) · c
a − 1

This is great news because we already have to compute ak in order to get A(k), so
given that a − 1 is also just a constant value we only need to do one subtraction, one
multiplication and one division to get C(k) rather than the mass of multiplications
and additions that we started with. In other words we have

C(k) = (A(k) − 1) · c
a − 1

.

Computing the sequence an LCG produces by hand is somewhat tedious, so how
might we automate the process? One way would be to write a dedicated program
for the task; since we want to focus on the concepts rather than teach programming,

7.3 Fake Randomness 163

we will instead try to automate the process using only existing BASH commands.
Our approach is to write a small BASH script [15] which will generate n elements
of the sequence given R0, a, c and p. You can think of the script as creating a new
command which we can use as follows:

bash$./P.sh n R a c p

In other words it will produce the output of the LCG for values of i in the range
1,2, . . . , n, starting at position R0. We create the script, which we call P.sh, as
follows:

bash$ cat > P.sh
#!/bin/bash

R=${2}

for ((i = 0; i < ${1}; i += 1)) ; do
echo "${R}"
R=$[((${3} * ${R}) + ${4}) % ${5}]

done
bash$ chmod 775 P.sh
bash$

Note that cat is used to capture input from the user and save it into a file called
P.sh.1 The permissions of P.sh are set using chmod so we can use it as a script
(rather than just a normal file). For example, to replicate the sequence we looked at
above, we might run P.sh as follows:

bash$./P.sh 100 2 5 1 8 | paste -s -d ’ ’
2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5
2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5
2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1
bash$

where we read ${1} as 100 meaning n = 100, ${2} as 2 meaning R0 = 2, ${3}
as 5 meaning a = 5, ${4} as 1 meaning c = 1, and finally ${5} as 8 meaning
p = 8.

Although overall it might seem unfamiliar, each step of the script is easy to ex-
plain: you can think of it as an algorithm, but written in a slightly different way. First
we assign R to ${2} which is the second option given to P.sh on the command
line (i.e., the seed). Then we use a loop to iterate over a block of statements ${1}
times, where ${1} is the first option given to P.sh on the command line (i.e., the
value n). The block does two things. First it writes the current value of R (i.e., the
value Ri) to standard output using the echo command, then updates R to the next
value (i.e., Ri+1) using the method we have already seen. Note that ${3}, ${4}
and ${5} are the third, forth and five options given to P.sh on the command line
(i.e., the values of a, c and p).

1Using cat here is a bit awkward: we do so simply to show this example within the same BASH-
based setting as the others. An easier way to create P.sh might of course be to use a text editor.

164 7 Generation and Testing of Random Numbers

7.3.2 Testing Randomness

Hang on a second: that sequence we just generated looks like it just repeats over and
over again! We call the number of elements before this repetition occurs the period
of the sequence and in fact, the case where the period is equal to p is the best we can
hope for. Since we are computing elements modulo p there are only p possibilities,
i.e., numbers in the range 0 . . . p − 1. So in our case, after the eighth element the
sequence must repeat because the next element must be one we have already seen.
It turns out that depending on the choices of a, c and p things can get even worse:

bash$./P.sh 100 2 0 0 8 | paste -s -d ’ ’
2 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bash$./P.sh 100 2 1 0 8 | paste -s -d ’ ’
2 2
2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
bash$./P.sh 100 2 0 1 8 | paste -s -d ’ ’
2 1
1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
bash$./P.sh 100 2 1 1 8 | paste -s -d ’ ’
2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5
bash$./P.sh 100 2 2 2 8 | paste -s -d ’ ’
2 6
6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
bash$./P.sh 100 0 2 1 10 | paste -s -d ’ ’
0 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7
5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7
5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7 5 1 3 7
bash$

The first four cases are a bit dumb: it we select a or c as zero for example, we do not
really update Ri to get a new Ri+1 as we would like. The fifth and sixth cases are
a bit more subtle however. In the fifth case the period is one: we always get 6 from
the generator after the seed even though, at face value, our choices of a, c and p are
not very special. In the sixth case a slightly better situation occurs: the period is four
which is less disastrous, but also less than the value of ten which we would hope to
get given the choice of p. Hopefully it is clear that none of these cases are attractive:
if the sequence repeats itself after p elements (or less) and we generate more than
that many elements, then there will be a pattern that we can use to compress the
sequence and it does not pass our tests for randomness any more. So in some sense,
the smaller the period the less randomness there is for us to use.

We can use some rules of thumb to avoid these problems. An often used approach
is to select the seed element R0 as the current time and date; this ensures that we
get a different starting point (more or less) every time we generate the sequence. We
also need to select p so that it is large enough that there would not be any (or at least
very few) cycles. Finally, we should select a and c in such a way that the sequence
we generate is not trivially bad (like those above). Putting all this together we can
run P.sh as follows for example:

7.3 Fake Randomness 165

bash$./P.sh 100 ‘date +’%Y%m%d’‘ 16807 0 2147483647 | paste -s -d ’ ’
20130905 1185187756 1539789167 2058583419 502486316 1381813008 1243066798 150275
5970 264415423 886348718 1916327834 1909651979 1377706638 946782912 1874061361 2
06643778 580919647 1055847867 977725508 87746112 1575122542 1053646825 492034613
1813699741 1468661469 616270865 350798574 1029022203 1090356530 1144239859 5232
51328 339535231 704577338 606490208 1323537194 1054003932 51481021 1953093853 13
60842976 987057082 157204099 724406083 1008242138 1879638536 1600427182 11469691
99 1298112121 1084047774 339676470 930897564 1176989753 1194906154 1668147181 11
50659482 1043672739 361295677 1360173270 468726575 917528829 1974443543 15553137
57 987362615 997329936 1014369517 1783282333 1344393199 1541045506 1699036522 61
6771095 168229596 1346340520 2057414848 189666342 856477846 240271881 980247607
1674474712 123290649 1971702035 575945388 1205339087 920793058 1001765524 401369
388 569168889 1129353685 1586911609 1624000370 57065220 1317445978 1758151676 20
27719459 1462953170 1313653687 298142602 803363363 898353252 1813067954 15876355
95 907131190
bash$

and get an output which reassuringly looks like nonsense!
Here we selected p = 231 − 1 = 2147483647 so we would expect there to be no

repetitions in the sequence unless we generated a huge amount of output. But how
can we be sure that what we have generated passes our tests for randomness? The
easy answer to this is to actually run those tests. To do this we need to update our
script a little. We create the new script, which we call Q.sh, as follows:

bash$ cat > Q.sh
#!/bin/bash

R=${2}

for ((i = 0; i < ${1}; i += 1)) ; do
r=‘printf ’\134%03o’ $[${R} % 256]‘
printf "${r}"
R=$[((${3} * ${R}) + ${4}) % ${5}]

done
bash$ chmod 775 Q.sh
bash$

The new Q.sh script is used in exactly the same way as P.sh. There are two main
differences however. Firstly, we do not write each Ri exactly, but instead compute
ri = Ri mod 256. So basically, the LCG is generating the sequence R which looks
like

R0 461110000
R1 = 16807 · R0 + 0 mod 2147483647 = 1754771624
R2 = 16807 · R1 + 0 mod 2147483647 = 1053760317
R3 = 16807 · R2 + 0 mod 2147483647 = 252011010
R4 = 16807 · R3 + 0 mod 2147483647 = 711293186
R5 = 16807 · R4 + 0 mod 2147483647 = 1810597900
R6 = 16807 · R5 + 0 mod 2147483647 = 875627310
R7 = 16807 · R6 + 0 mod 2147483647 = 2110249926
R8 = 16807 · R7 + 0 mod 2147483647 = 1278076077
R9 = 16807 · R8 + 0 mod 2147483647 = 1493188845

...
...

166 7 Generation and Testing of Random Numbers

but we are actually using

r0 = R0 mod 256 = 240
r1 = R1 mod 256 = 168
r2 = R2 mod 256 = 61
r3 = R3 mod 256 = 2
r4 = R4 mod 256 = 2
r5 = R5 mod 256 = 12
r6 = R6 mod 256 = 46
r7 = R7 mod 256 = 198
r8 = R8 mod 256 = 173
r9 = R9 mod 256 = 237

...
...

Secondly, we do not write each ri directly to standard output as text; instead we
add some nasty looking printf commands that result in the script writing binary
output. The idea behind both alterations is that Q.sh generates output in the same
format as /dev/urandom (i.e., binary values in the range 0 . . .255) so we can use
the same testing strategy.

Running Q.sh with the parameters above that we eventually decided on for
P.sh, we can generate a binary file called C.bin which is the same size as our
original tests:

bash$./Q.sh 3288738 ‘date +’%Y%m%d’‘ 16807 0 2147483647 > C.bin
bash$

This takes quite a long time; BASH is not really intended for this sort of thing so our
script is not exactly tuned for performance. Even so, it gives us a result eventually
and we can perform the same analysis as before:

bash$ cat C.bin | od -Ad -tu1 -w1 -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v ^$ | sort -n | uniq -c | paste -s
12817 0 12889 1 12917 2 12732 3 12948 4
12817 5 12766 6 12713 7 12905 8 12877 9
12935 10 12789 11 12861 12 12862 13 12675 14
12727 15 12784 16 13027 17 12801 18 12887 19
12780 20 12721 21 12845 22 12825 23 12980 24
12825 25 12845 26 12963 27 13059 28 12769 29
12698 30 12944 31 12921 32 12754 33 12822 34
13063 35 12949 36 12859 37 12654 38 12950 39
12866 40 12734 41 12770 42 12578 43 12701 44
12709 45 13060 46 12726 47 12608 48 13075 49
12990 50 12935 51 12836 52 12903 53 13034 54
12744 55 12785 56 12768 57 13155 58 12802 59
12830 60 12941 61 12860 62 12699 63 12874 64
12724 65 12788 66 12957 67 12762 68 12899 69
12813 70 12816 71 12762 72 12904 73 12836 74
13029 75 12930 76 12794 77 12982 78 12846 79
12992 80 12871 81 12759 82 12723 83 12951 84
12736 85 13032 86 12762 87 12696 88 12863 89
12754 90 12786 91 12882 92 12861 93 12959 94
12808 95 12831 96 12805 97 12917 98 12757 99
12744 100 12831 101 12856 102 12807 103 13047 104
13157 105 12869 106 12858 107 12778 108 12769 109
12932 110 12834 111 12890 112 12764 113 12713 114
12941 115 13034 116 12922 117 12720 118 12745 119
12759 120 12863 121 12893 122 12768 123 12848 124
12782 125 12897 126 12924 127 12780 128 12904 129
12925 130 12788 131 12945 132 12753 133 12854 134
12790 135 12897 136 12746 137 12846 138 12955 139
12942 140 12777 141 13056 142 12888 143 12870 144

References 167

12977 145 12827 146 12697 147 12737 148 12830 149
12746 150 12789 151 12972 152 12696 153 12824 154
12931 155 12947 156 12731 157 12891 158 12981 159
12798 160 12970 161 12871 162 12900 163 13020 164
12874 165 12756 166 12788 167 12946 168 12778 169
12767 170 12971 171 12926 172 12740 173 12890 174
12706 175 12712 176 12713 177 12963 178 12672 179
12781 180 12766 181 12771 182 12652 183 12790 184
12800 185 12930 186 12812 187 13014 188 12765 189
12919 190 12809 191 12869 192 12753 193 12829 194
12719 195 12605 196 12853 197 13025 198 12740 199
12593 200 12705 201 12851 202 12799 203 12704 204
12833 205 12861 206 12966 207 12959 208 13121 209
13042 210 12963 211 12719 212 12858 213 12741 214
12715 215 12757 216 12942 217 12857 218 12937 219
12898 220 12657 221 12864 222 13062 223 12912 224
13005 225 12791 226 12820 227 12764 228 12744 229
12993 230 12886 231 12770 232 12877 233 12950 234
12738 235 12881 236 12914 237 12768 238 13032 239
12903 240 12812 241 12784 242 12915 243 13039 244
12942 245 13007 246 12833 247 12856 248 12845 249
12962 250 12676 251 12726 252 12738 253 12862 254
12864 255

bash$

This looks good: in a similar way to B.bin, the output of /dev/urandom, we
can see that every number is appears in the output and do so roughly 12800 times on
average. Again there are a few cases which vary a little, but again we can conclude
that there is no significant bias in C.bin. What about the test for predictability?
Running bzip2 again gives a positive result:

bash$ bzip2 -c -9 C.bin > C.bin.bz2
bash$ du -b C.bin C.bin.bz2
3288738 C.bin
3304334 C.bin.bz2
bash$

The randomness produced by the LCG in C.bin is processed by bzip2 to produce
the file C.bin.bz2; again slightly larger than the original. An interesting thing to
note is that this proves bzip2 is not a perfect compression algorithm: if it was
perfect it would have detected that the file contained the output of our LCG, and
then compressed the entire file into a description of the LCG (i.e., Q.sh), plus the
requisite parameters.

We know that the output of the LCG is only pseudo-random so what can we con-
clude? The first thing to highlight repeats what we already said: we cannot really
prove anything about randomness, we can just test for features. In a way, this per-
haps hints that our tests are not good enough to capture the difference between real
randomness and pseudo-randomness. The second thing is that we have to be prag-
matic about what we actually want: the pseudo-random results look random, and we
have shown that for our application their generation is perhaps more attractive than
using real randomness. So in a way, who cares? They might not really be random
but as long as we can test them and they are good enough for our purposes, then
their use should not be viewed as invalid.

References

1. Wikipedia: Any key. http://en.wikipedia.org/wiki/Any_key

http://en.wikipedia.org/wiki/Any_key

168 7 Generation and Testing of Random Numbers

2. Wikipedia: Bayes theorem. http://en.wikipedia.org/wiki/Bayes’_theorem
3. Wikipedia: Coin flipping. http://en.wikipedia.org/wiki/Coin_flipping
4. Wikipedia: Data Encryption Standard (DES). http://en.wikipedia.org/wiki/Data_

Encryption_Standard
5. Wikipedia: Gambler’s fallacy. http://en.wikipedia.org/wiki/Gambler’s_fallacy
6. Wikipedia: Geiger counter. http://en.wikipedia.org/wiki/Geiger_counter
7. Wikipedia: Kolmogorov randomness. http://en.wikipedia.org/wiki/Kolmogorov_

randomness
8. Wikipedia: Linear Congruence Generator (LCG). http://en.wikipedia.org/wiki/Linear_

congruence_generator
9. Wikipedia: Magic number. http://en.wikipedia.org/wiki/Magic_number_(programming)

10. Wikipedia: National lottery. http://en.wikipedia.org/wiki/National_Lottery
11. Wikipedia: “Nothing up my sleeve” number. http://en.wikipedia.org/wiki/Nothing_up_my_

sleeve_number
12. Wikipedia: Press Your Luck. http://en.wikipedia.org/wiki/Press_Your_Luck
13. Wikipedia: Pseudo-randomness. http://en.wikipedia.org/wiki/Pseudo_random
14. Wikipedia: Randomness. http://en.wikipedia.org/wiki/Randomness
15. Wikipedia: Script. http://en.wikipedia.org/wiki/Script_(computing)
16. Wikipedia: Statistical randomness. http://en.wikipedia.org/wiki/Statistical_randomness
17. Wikipedia: /dev/random. http://en.wikipedia.org/wiki//dev/random

http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Gambler's_fallacy
http://en.wikipedia.org/wiki/Geiger_counter
http://en.wikipedia.org/wiki/Kolmogorov_randomness
http://en.wikipedia.org/wiki/Kolmogorov_randomness
http://en.wikipedia.org/wiki/Linear_congruence_generator
http://en.wikipedia.org/wiki/Linear_congruence_generator
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/National_Lottery
http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
http://en.wikipedia.org/wiki/Press_Your_Luck
http://en.wikipedia.org/wiki/Pseudo_random
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Script_(computing)
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki//dev/random

8Safety in Numbers: Modern Cryptography
from Ancient Arithmetic

Think back to the k-place shift encryption scheme that was introduced in Chap. 6,
and consider two parties, a sender called Alice and a receiver called Bob, using
it to communicate with each other. We might describe how Alice and Bob behave
using a diagram:

Alice Eve Bob

C ← ENCk(M)
C−→

M ← ENCk(C)

This description is a simple cryptographic protocol: it describes the computational
steps each party performs and the communication steps that occur between them.
Note that we could have named the parties Angharad and Bryn but, somewhat
bizarrely, an entire menagerie of standard names are used within protocol descrip-
tions of this sort [1]. Unless we use Alice and Bob, cryptographers get confused as
to what their roles are! In this case, the protocol that Alice and Bob engage in has
three simple steps read from top-to-bottom:
1. Alice encrypts a plaintext, e.g., M = ‘a’, using the key k = 3 to produce the

ciphertext message

C = ‘d’ = ENCk=3(‘a’).

2. Alice communicates C to Bob.
3. Bob decrypts the ciphertext, e.g., C = ‘d’, using the key k = 3 to recover the

plaintext message

M = ‘a’ = DECk=3(‘d’).

There are some important features of this protocol that demand further discussion:
• The diagram shows a third party: Eve is a passive adversary who hopes to learn

M (or k) just by observing what Alice and Bob communicate to each other (in
this case C). If Eve is allowed to alter the communication rather than just observe
it, she turns into Mallory the active, malign adversary. We saw why this could be

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_8,
© Springer International Publishing Switzerland 2014

169

http://dx.doi.org/10.1007/978-3-319-04042-4_8

170

a problem at the start of Chap. 6: Thomas Phelippes was basically doing the
same thing with messages communicated between Mary Stewart and Anthony
Babington.

• With the encryption scheme we have, both M and C are single characters. For-
mally, we have block cipher [2] where each block is one character in size. What
if Alice wants to send a sequence of characters (i.e., a string) to Bob? This is easy
to accommodate: we simply apply the encryption scheme independently to each
of the characters (i.e., the blocks) in the sequence. That is, take the i-th block of
the plaintext and encrypt it to form the i-th block of the ciphertext

Ci = ENCk=3(Mi)

and vice versa

Mi = DECk=3(Ci).

• Both Alice and Bob need to know and use the same shared key. We call this
type of encryption scheme a symmetric-key [24] block cipher because the use
of k is symmetric, i.e., the same for both Alice and Bob. In some circumstances
this poses no problem at all, but in others it represents what we call the key
distribution problem: given that Eve can see everything communicated between
Alice and Bob, how can they decided on k in the first place?

The way we use a block cipher is, roughly speaking, called a
mode of operation [3]. For example, although

Ci = ENCk(Mi)

and

Mi = DECk(Ci).

Describe the Electronic Codebook (ECB) mode, various al-
ternatives also exist. Find out about at least one alternative,
plus when and why it might be preferred. Try to write equa-
tions, similar to those above, that describe how the mode pro-
duces a block of ciphertext from the corresponding block of
plaintext (and vice versa).

The focus of this chapter relates to the final point above, and two potential solu-
tions more specifically: key agreement protocols [15] and public-key encryption
schemes [21]. Both are interesting from a historical point of view, but also under-
pin a widely-used application of modern cryptography: the Secure Sockets Layer
(SSL) [25] system that permits modern e-commerce to exist in a usable form. If you
open a web-browser and load a secure web-site (whose URL will often start with
https:// rather than http://), these technologies enable you to shop online
without a real Eve finding out and using your credit card number!

8.1 Modular Arithmetic: the Theory 171

Additionally, they both rely on a field of mathematics called number the-
ory [17]. Many of the algorithms within this field have been studied for thousands
of years; two of the most famous are Euclid’s algorithm [8] for computing the great-
est common divisor of two numbers, and the binary exponentiation algorithm [10]
that we saw in Chap. 2. Both are often studied as examples in Computer Science
because, aside from being useful, they have a number of attractive properties. In
particular they
1. are short and fairly easy to understand (or at least explain),
2. allow simple arguments and proofs about their correctness, and
3. allow relatively simple analysis of their computational complexity.
Our aim is to demonstrate these properties and to show how these ancient algorithms
support the modern cryptographic protocols on which we now rely.

8.1 Modular Arithmetic: the Theory

Chapter 6 described modular arithmetic as being like the “clock arithmetic” you
need when reading the time from an analogue clock face such as Fig. 8.1a. Based
on someone saying “the time is now ten o’clock; I will meet you in four hours”, our
example question asked what time they mean? We reasoned that since

(10 + 4) = 14 ≡ 2 (mod 12),

the answer is two o’clock. We started being more formal by saying that the ≡ sym-
bol means equivalent to, so writing

x ≡ y (mod N)

means x and y give the same remainder after division by the modulus N . This is
the same as saying there exists some κ so that

x = y + κ · N,

i.e., x equals y after some multiple of the modulus is added on. We can see this from
our example: we can say

14 ≡ 2 (mod 12)

precisely because for κ = 1

14 = 2 + 1 · 12,

i.e., both 14 and 2 give the remainder 2 after division by 12.

172 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

Fig. 8.1 Two analogue clock
faces, one standard 12-hour
version and a slightly odd
13-hour alternative

8.1.1 Rules for Modular Addition

Although things look more complicated, many of the rules of addition and subtrac-
tion you already know still apply to modular arithmetic:

x + y ≡ y + x (mod N)

x + (y + z) ≡ (x + y) + z (mod N)

x + 0 ≡ x (mod N)

In the last rule, 0 is called an additive identity. More generally, an identity func-
tion [13] gives the same output as the input. For example,

f (x) = x

8.1 Modular Arithmetic: the Theory 173

means f is an identify function because whatever x we give it as input, the output
is x as well. Here, you can think of the “add 0 function” as an identity function as
well, i.e.,

f (x) = x + 0 ≡ x (mod N).

A useful question to ask is whether for a given x we can find y, the additive inverse
of x, which produces

x + y ≡ 0 (mod N).

That is, can we find a y which when added to x produces the additive identity as a
result? One way to answer this question is to just search through all possible values
of y. If x = 3 and N = 12 for example, we can look at the following possibilities:

3 + 0 ≡ 3 (mod 12) 3 + 6 ≡ 9 (mod 12)

3 + 1 ≡ 4 (mod 12) 3 + 7 ≡ 10 (mod 12)

3 + 2 ≡ 5 (mod 12) 3 + 8 ≡ 11 (mod 12)

3 + 3 ≡ 6 (mod 12) 3 + 9 ≡ 0 (mod 12)

3 + 4 ≡ 7 (mod 12) 3 + 10 ≡ 1 (mod 12)

3 + 5 ≡ 8 (mod 12) 3 + 11 ≡ 2 (mod 12)

The one we want is y = 9 which produces 3 + 9 ≡ 0 (mod 12). But can we always
find an additive inverse, no matter what x and N are? Ignoring modular arithmetic,
the intuitive answer would be to set y = −x meaning that x + y = x − x = 0. This
also works for modular arithmetic. Remember from Chap. 6 that −x (mod N) =
N − x, so setting y = −x gives us

x − y ≡ x + (−y) ≡ x + (N − x) ≡ N ≡ 0 (mod N).

In our example above, this is demonstrated by

3 − 3 ≡ 3 + (−3) ≡ 3 + (12 − 3) ≡ 12 ≡ 0 (mod N),

which produces exactly what we wanted.

8.1.2 Rules for Modular Multiplication

In Chap. 6 we only used modular addition, but it should be no great surprise that we
can consider other operations as well. We saw in Chap. 2 that multiplication is just
repeated addition, so it follows that modular multiplication could be similar.

As another example, suppose you started a job at ten o’clock and worked in three
shifts each of two hours. When you finished, the time would be given by

10 + (3 · 2) = 16 ≡ 4 (mod 12),

i.e., you would have finished at four o’clock. Of course this is just the same as

10 + (2 + 2 + 2) = 16 ≡ 4 (mod 12).

174 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

We can again rely on existing rules for multiplication:

x · y ≡ y · x (mod N)

x · (y · z) ≡ (x · y) · z (mod N)

x · 1 ≡ x (mod N)

This time 1 is called a multiplicative identity; the “multiply by 1 function” is an-
other identity function. Since this resembles the additive identity case we saw pre-
viously, we can ask the same question: can we always find a y so that x · y ≡ 1
(mod N)? The answer this time is no, not always. If x = 3 and N = 12, we show
this by searching through all values of y again:

3 · 0 ≡ 0 (mod 12) 3 · 6 ≡ 6 (mod 12)

3 · 1 ≡ 3 (mod 12) 3 · 7 ≡ 9 (mod 12)

3 · 2 ≡ 6 (mod 12) 3 · 8 ≡ 0 (mod 12)

3 · 3 ≡ 9 (mod 12) 3 · 9 ≡ 3 (mod 12)

3 · 4 ≡ 0 (mod 12) 3 · 10 ≡ 6 (mod 12)

3 · 5 ≡ 3 (mod 12) 3 · 11 ≡ 9 (mod 12)

None of the y gives us the result we want. Why?! Remember that finding such a y

is the same as finding a κ which satisfies

3 · y = 1 + 12 · κ
or put another way,

3 · y − 12 · κ = 1.

The left-hand side of this equation is divisible by three, i.e., we can write it as

3 · (y − 4 · κ) = 1

instead, whereas the right-hand side is not; this means that no such κ can exist. What
about some other values of x, say x = 7? This time things work out

7 · 0 ≡ 0 (mod 12) 7 · 6 ≡ 6 (mod 12)

7 · 1 ≡ 7 (mod 12) 7 · 7 ≡ 1 (mod 12)

7 · 2 ≡ 2 (mod 12) 7 · 8 ≡ 8 (mod 12)

7 · 3 ≡ 9 (mod 12) 7 · 9 ≡ 3 (mod 12)

7 · 4 ≡ 4 (mod 12) 7 · 10 ≡ 10 (mod 12)

7 · 5 ≡ 11 (mod 12) 7 · 11 ≡ 5 (mod 12)

and we find that for y = 7, x ·y ≡ 1 (mod 12). The reason is that given the equation

7 · y − 12 · κ = 1

we can write, using κ = 4,

7 · 7 − 12 · 4 = 1.

8.1 Modular Arithmetic: the Theory 175

We are allowed to call this y the multiplicative inverse of the corresponding x:
if you take x and multiply it with its multiplicative inverse, you end up with the
multiplicative identity.

8.1.3 The Sets Z, ZN and Z
�
N

The set of integers [14], or “whole numbers”, is written using a special symbol:

Z = {. . . ,−3,−2,−1,0,+1,+2,+3, . . .}.
Clearly this is an infinite set: the continuation dots at the right- and left-hand ends
highlight the fact that we can write down infinitely many positive and negative in-
tegers. With modular arithmetic, we deal with a sub-set of the integers. By using
a modulus N , we only deal with 0 through to N − 1 because anything equal to or
larger than N or less than 0 “wraps around” (as we saw with the number line in
Chap. 6). More formally, we deal with the set

ZN = {0,1,2,3, . . . ,N − 1},
which for N = 12 would obviously be

Z12 = {0,1,2,3, . . . ,11}.
When you see ZN , take it to mean the set of integers modulo N ; the only numbers
we can work with are 0 through to N − 1.

Given an N we already know that for some y ∈ ZN , but not all, we can find
a multiplicative inverse; this is a bit of a pain unless we know beforehand which
values of y and N will work. For example, for N = 12 we can write out a table and
fill in the multiplicative inverses for each y:

0 · ? ≡ 1 (mod 12) 6 · ? ≡ 1 (mod 12)

1 · 1 ≡ 1 (mod 12) 7 · 7 ≡ 1 (mod 12)

2 · ? ≡ 1 (mod 12) 8 · ? ≡ 1 (mod 12)

3 · ? ≡ 1 (mod 12) 9 · ? ≡ 1 (mod 12)

4 · ? ≡ 1 (mod 12) 10 · ? ≡ 1 (mod 12)

5 · 5 ≡ 1 (mod 12) 11 · 11 ≡ 1 (mod 12)

The question marks in the table highlight entries that we cannot fill in, with the
values y ∈ {1,5,7,11} being those with a multiplicative inverse.

Recall that if some p is a prime number [20], it can only be divided exactly
by 1 and p; we say 1 and p are the only divisors of p. Strictly speaking 1 is a prime
number based on this definition, but 1 is not usually very interesting so we tend to
exclude it. Two facts explain why the result above is no accident:
1. 2 and 3 are the two prime divisors of 12, i.e., the divisors of 12 which are prime.

For example, 6 is a divisor of 12 but not prime, 5 is not a divisor but is prime,
whereas 3 is both a divisor of 12 and prime.

176 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

2. {1,5,7,11} is precisely the set of elements in Z12 which are not divisible by 2
or 3. For example, 4 is not in the set because it is divisible by 2, whereas 5 is
divisible by neither 2 nor 3 so it is in the set.

The special symbol Z�
N is used to represent the sub-set of ZN for which we can find

a multiplicative inverse; for our example this means

Z
�
12 = {1,5,7,11}.

Interestingly, the y ∈ Z
�
12 are integers we can safely divide by. Normally if we wrote

2/5 you might say the result is 0.4, but keep in mind that we can only work with 0
through to N − 1: there are no fractional numbers. So actually, when we write 2/5
(mod 12) this means

2/5 = 2 · 1/5 = 2 · 5−1 ≡ 2 · 5 ≡ 10 (mod 12)

which is “allowed” precisely because, as we saw, 1/5 ≡ 5−1 ≡ 5 (mod 12), i.e., 5
has a multiplicative inverse modulo 12 which, coincidentally, is also 5.

Now look at a different modulus, namely N = 13. Something special happens,
because if we follow the same reasoning as above we get

Z13 = {0,1,2,3,4,5,6,7,8,9,10,11,12},
Z

�
13 = {1,2,3,4,5,6,7,8,9,10,11,12}.

Z13 and Z
�
13 look fairly similar: all non-zero y ∈ Z13 have a multiplicative inverse

and appear in Z
�
13 as a result. We can see this by again writing out a table and filling

in the multiplicative inverse for each y:

0 · ? ≡ 1 (mod 13) 6 · 11 ≡ 1 (mod 13)

1 · 1 ≡ 1 (mod 13) 7 · 2 ≡ 1 (mod 13)

2 · 7 ≡ 1 (mod 13) 8 · 5 ≡ 1 (mod 13)

3 · 9 ≡ 1 (mod 13) 9 · 3 ≡ 1 (mod 13)

4 · 10 ≡ 1 (mod 13) 10 · 4 ≡ 1 (mod 13)

5 · 8 ≡ 1 (mod 13) 11 · 6 ≡ 1 (mod 13)

There are no question marks (except for 0) this time, precisely because 13 is a
prime number, and means we can divide by every non-zero y. You can think of this
mirroring integer arithmetic, where dividing by zero is not allowed either. It also
illustrates the fact that for p = 12, it was just a coincidence that y−1 ≡ y (mod 12)

for all y with an inverse: clearly this is not true for p = 13, where we find 5−1 ≡ 8
(mod 13) for instance.

8.1 Modular Arithmetic: the Theory 177

8.1.4 Some Interesting Facts About Z�
N

The set Z�
N is interesting because the number of elements it contains can be calcu-

lated, using just N , via the so-called Euler Φ (or “phi”) function [9]. Specifically,

Φ(N) =
l−1∏

i=0

p
ei−1
i · (pi − 1)

when the prime factorisation [19] of N is given by

N =
l−1∏

i=0

p
ei

i

and where each pi is a prime number. Basically we express N as the product of
l prime numbers (or powers thereof). This is quite a nasty looking definition, but
some examples should make things clearer:
• If we select N = 12, then the prime factorisation of N is

N = 12 = 2 · 2 · 3 = 22 · 31.

We have expressed N as the product of l = 2 primes, namely 2 and 3. Matching
this description with what we had above, this means p0 = 2, e0 = 2, p1 = 3 and
e1 = 1 so

N =
l−1∏

i=0

p
ei

i =
2−1∏

i=0

p
ei

i = p
e0
0 · pe1

1 = 22 · 31 = 12.

If we select N = 13 then things are even simpler, i.e.,

N = 13 = 131,

due to the fact that 13 is a prime number: the prime factorisation only includes
13 itself! That is, for N = 13 we just have p0 = 13 and e0 = 1 so

N =
l−1∏

i=0

p
ei

i =
1−1∏

i=0

p
ei

i = p
e0
0 = 131 = 13.

• We can now compute

Φ(12) = 22−1 · (2 − 1) · 31−1 · (3 − 1)

= 21 · 1 · 30 · 2
= 2 · 2
= 4

178 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

and

Φ(13) = 131−1 · (13 − 1)

= 130 · 12
= 12

Both these results make sense because looking back we know that

Z
�
12 = {1,5,7,11}

Z
�
13 = {1,2,3,4,5,6,7,8,9,10,11,12}

which match up: Z�
12 contains Φ(12) = 4 elements, and Z

�
13 contains Φ(13) = 12

elements.
Another way to look at things is that Φ(N) represents the number of integers less
than N which are also coprime [4] to N . Two integers a and b are coprime if
their Greatest Common Divisor (GCD) is 1; some examples again make the idea
clearer:
• If a = 3 and b = 12, the divisors of a are 1 and 3 while the divisors of b are 1, 2,

3 and 6. The greatest divisor they have in common is 3 so we can write

gcd(a, b) = gcd(3,12) = 3

and say a and b are not coprime.
• If a = 3 and b = 13, the divisors of a are 1 and 3 while the divisors of b are 1

and 13. The greatest divisor they have in common is 1 so we can write

gcd(a, b) = gcd(3,13) = 1

and say a and b are coprime.
So, if N = 12 how many integers y exist that are less than N and also coprime to N?
If we list all the options (except 0)

gcd(12,6) = 6
gcd(12,1) = 1 gcd(12,7) = 1
gcd(12,2) = 2 gcd(12,8) = 4
gcd(12,3) = 3 gcd(12,9) = 3
gcd(12,4) = 4 gcd(12,10) = 2
gcd(12,5) = 1 gcd(12,11) = 1

the answer is four, i.e., 1, 5, 7 and 11, so Φ(12) = 4. Notice that the values of y

which produce gcd(N,y) = 1 are precisely those which make up the set Z�
N . We

need not go through the same task for N = 13: all positive integers less than 13 are
coprime to 13 because it is prime, so Φ(13) = 12.

Another interesting fact is that if you take any x ∈ Z
�
N and raise it to the power

Φ(N) modulo N , the result is 1. In short, for every x ∈ Z
�
N we have

xΦ(N) ≡ 1 (mod N).

8.2 Modular Arithmetic: the Practice 179

For example, consider x = 5 which is an element of both Z
�
12 and Z

�
13. In these cases

we have

xΦ(12) = 54 = 625 ≡ 1 (mod 12),

xΦ(13) = 512 = 244140625 ≡ 1 (mod 13).

Demonstrate this fact is also true for other elements of Z�
12

and Z
�
13 by working out similar results for them.

8.2 Modular Arithmetic: the Practice

In Chap. 2, one of the goals was to convince ourselves that we could write down
an algorithm for multiplication: the premise was that if we could do this, we were
closer to writing a program to do the same thing on a computer.

You can easily imagine having a similar motivation with respect to modular arith-
metic and cryptographic protocols based on it. The goal is to show that you can
write algorithms to compute all the modular arithmetic operations we need using
only integer arithmetic as a starting point. Put another way, all the theory that sur-
rounds modular arithmetic is important, but if all you want to do is make some
cryptographic protocol work on a computer then there is no magic involved: we can
describe such computation entirely in terms of what you already know.

8.2.1 Addition and Subtraction

Imagine we start off with 0 ≤ x, y < N , i.e., both x and y are in the set ZN =
{0,1, . . . ,N − 1}. If we add x and y together to get t = x + y, we end up with a
result that satisfies

0 ≤ t ≤ 2 · (N − 1).

The smallest result we can end up with is t = 0 which happens when x and y are
as small as they can be, i.e., x = y = 0; the largest result we can end up with is
t = 2 · (N − 1) which happens when x and y are as large as then can be, i.e., x =
y = N − 1. We would like to apply a modular reduction to t , i.e., compute t ′ ≡ t

(mod N). This is simple in that to get

0 ≤ t ′ ≤ N − 1,

we just subtract N from t if t ≥ N . This is captured in Algorithm 8.2a, and demon-
strated in action by some examples:

180 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

1 algorithm ADD-MOD(x, y,N) begin
2 t ← x + y

3 if t ≥ N then
4 t ′ ← t − N

5 end
6 else
7 t ′ ← t

8 end
9 return t ′

10 end

(a) x + y (mod N)

1 algorithm SUBTRACT-MOD(x, y,N) begin
2 t ← x − y

3 if t < 0 then
4 t ′ ← t + N

5 end
6 else
7 t ′ ← t

8 end
9 return t ′

10 end

(b) x − y (mod N)

Fig. 8.2 Some algorithms for modular arithmetic

• Imagine x = 8, y = 7 and N = 12: we compute t = 8 + 7 = 15, and then t ′ =
15 − 12 = 3 since t ≥ 12. Checking the modular reduction, we can see that

3 ≡ 15 (mod 12).

• Imagine x = 1, y = 7 and N = 12: we compute t = 1 + 7 = 8, and then t ′ = 8
since t < 12, i.e., no modular reduction is needed in this case because we know

8 ≡ 8 (mod 12).

So to cut a long story short, computing a modular addition relies only on integer
addition and subtraction.

Things work more or less the same way for modular subtraction: if we subtract
y from x to get t = x − y, we end up with a result that satisfies

−(N − 1) ≤ t ≤ (N − 1).

The smallest result we can end up with is t = −(N − 1) which happens when x is
as small as it can be and y is as large as it can be, i.e., x = 0 and y = N − 1; the
largest result we can end up with is t = N − 1 which happens when x is as large as

8.2 Modular Arithmetic: the Practice 181

it can be and y is as small as it can be, i.e., x = N − 1 and y = 0. Again, we would
like to apply a modular reduction to get

0 ≤ t ′ ≤ N − 1

which is again simple: we just add N to t if t < 0. This is captured in Algo-
rithm 8.2b, and demonstrated in action by some examples:
• Imagine x = 8, y = 7 and N = 12: we compute t = 8 − 7 = 1, and then t ′ = 1

since t ≥ 0. No modular reduction is required in this case because we know

1 ≡ 1 (mod 12).

• Imagine x = 1, y = 7 and N = 12: we compute t = 1 − 7 = −6, and then t ′ =
−6 + 12 = 6 since t < 0. Checking the modular reduction, we can see that

6 ≡ −6 (mod 12).

Once more it is clear that to compute a modular subtraction, integer addition and
subtraction are all we need.

8.2.2 Multiplication

Imagine we start off with 0 ≤ x, y < N , i.e., both x and y are in the set ZN =
{0,1, . . . ,N − 1}. Following the cases for addition and subtraction above, if we now
multiply x and y together to get t = x · y, we end up with a result that satisfies

0 ≤ t ≤ (N − 1)2.

The smallest result we can end up with is t = 0 which happens when x and y are
as small as they can be, i.e., x = y = 0; the largest result we can end up with is
t = (N − 1)2 which happens when x and y are as large as then can be, i.e., x = y =
N − 1.

We would like to apply a modular reduction to t , but this time things are more
tricky. For addition and subtraction, the t we compute is only ever wrong by at most
N , i.e., we only need to subtract or add N once to get the right result; here we might
need to subtract N many times. Consider an example: imagine we set N = 12 and
select x = 10 and y = 11. If we compute t = x + y = 10 + 11 = 21, then we only
need to subtract N once from t to get the result t ′ = 9 ≡ 21 (mod 12). If however
we compute t = x · y = 10 · 11 = 110, then we need to subtract N nine times to get
t ′ = 2 ≡ 110 (mod 12). So basically, instead of

1 if t ≥ N then
2 t ′ ← t − N

3 end
4 else
5 t ′ ← t

6 end

182 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

1 algorithm MULTIPLY-MOD(x, y,N) begin
2 t ← x · y
3 t ′ ← t − (N · � t

N
�)

4 return t ′
5 end

(a) x · y (mod N)

1 algorithm EXPONENTIATE-MOD(x, y,N) begin
2 t ← 1
3 for i from |y| − 1 downto 0 do
4 t ← MULTIPLY-MOD(t, t,N)

5 if yi = 1 then
6 t ← MULTIPLY-MOD(t, x,N)

7 end
8 end
9 return t

10 end

(b) xy (mod N)

Fig. 8.3 Some algorithms for modular arithmetic

we need something that repeatedly subtracts N until we get the right result, i.e.,
something more like

1 t ′ ← t

2 while t ′ ≥ N do
3 t ′ ← t ′ − N

4 end

Potentially this will be very inefficient however; the reason is more or less the same
as when we talked about repeated addition in Chap. 2. Instead, we can calculate
how many multiples of N we would need to subtract using this approach, and then
simply do them all in one go. The idea is basically to compute

t ′ = t −
(

N ·
⌊

t

N

⌋)
.

The term � t
N

� is the number of times N goes into t ; this is basically the number of
times we would go around the loop above. As a result N · � t

N
� tells us what to sub-

tract from t , which we can now do in one step. This is captured in Algorithm 8.3a,
and demonstrated in action by some examples:
• Imagine x = 8, y = 7 and N = 12: we compute t = 8 · 7 = 56, and then

t ′ = 56 − (12 · 4) = 8

8.2 Modular Arithmetic: the Practice 183

since � 56
12� = 4. Checking the modular reduction, we can see that

8 ≡ 56 (mod 12).

• Imagine x = 1, y = 7 and N = 12: we compute t = 1 · 7 = 7, and then

t ′ = 7 − (12 · 0) = 7

since � 7
12� = 0, i.e., no modular reduction is needed in this case because we know

that

7 ≡ 7 (mod 12).

Things are more involved here than in the case of modular addition and subtraction,
but to compute a modular multiplication we still only rely on integer multiplication,
division and subtraction.

8.2.3 Exponentiation

The case of modular exponentiation is (believe it or not) one of the easiest to resolve.
What we end up with is Algorithm 8.3b, which should look at least a bit familiar:
basically we have just taken the old algorithm based on Horner’s Rule from Chap. 2
and replaced the normal, integer multiplications with modular multiplications in-
stead. The idea is that if each multiplication applies a modular reduction, then of
course the exponentiation algorithm as a whole will be sane.

Consider an example where x = 3 and y = 6(10) = 110(2). We know that
36 = 729 and that 729 ≡ 9 (mod 12), so the question is whether the new algorithm
will give us the same result. The steps it performs demonstrate that it does:
Step #1 Assign t ← 1.
Step #2 Assign t ← t2 (mod N), i.e., t ← 12 (mod 12) = 1.
Step #3 Since y2 = 1, assign t ← t · x (mod N), i.e., t ← 1 · 3 (mod 12) = 3.
Step #4 Assign t ← t2 (mod N), i.e., t ← 32 (mod 12) = 9.
Step #5 Since y1 = 1, assign t ← t · x (mod N), i.e., t ← 9 · 3 (mod 12) = 3.
Step #6 Assign t ← t2 (mod N), i.e., t ← 32 (mod 12) = 9.
Step #7 Since y0 = 0, skip the assignment t ← t · x (mod N).
Step #8 Return t = 9.
All we are relying on to do this is modular multiplication, and we already know that
modular multiplication can be described using integer operations only.

8.2.4 Division (via Inversion)

We have already seen that in modular arithmetic, dividing by some y only makes
sense if y has a multiplicative inverse. This is only true if y ∈ Z

�
N which, in turn, is

only true if N and y are coprime, i.e., gcd(N,y) = 1. When this all works out, we

184 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

can write

x/y = x · 1/y = x · y−1 (mod N)

which implies that modular division of x by y boils down to finding the multiplica-
tive inverse of y modulo N , and multiplying this by x modulo N .

Problem #1: Computing gcd(N,y)
The first challenge is to test whether y has a multiplicative inverse or not: for large
values of N we cannot simply write out the whole set Z�

N , we need to compute and
test whether gcd(N,y) = 1 or not.

One way would be to write out the prime factorisation of N and y and simply
pick out the greatest divisor they have in common; if this turns out to be 1, we know
N and y are coprime. We performed this exact task when we originally discussed
coprimality, but imagine we now select the larger examples

N = 1426668559730 = 21 · 51 · 1571 · 2711 · 7431 · 45131,

y = 810653094756 = 22 · 32 · 611 · 1571 · 5211 · 45131.

Using their prime factorisations (the right-hand part of each line), we can deduce
that

gcd(N,y) = gcd(1426668559730,810653094756)

= 2 · 157 · 4513
= 1417082

because both N and y have 2, 157 and 4513 as common divisors. However factoring
is relatively hard work, particularly if N and y are large; if this was the best way
to compute gcd(N,y), we would need a very fast computer or plenty of time on
our hands! Luckily the Euclidean algorithm [8], an ancient algorithm due to Greek
mathematician Euclid, can compute the same result rather more quickly.

Imagine we want to compute

gcd(a, b)

assuming a ≥ b (swapping a and b if not). Understanding how the Euclidean algo-
rithm works hinges on writing

a = b · q + r

where q is called the quotient and r is called the remainder. This is the same as
saying that if we divide a by b, we get a quotient (how many times b divides into a)
and a remainder (what is left after such a division). An important fact is that 0 ≤
r < b ≤ a because if r were larger, b would divide into a one more time than q says
it should. Taking this as our starting point, we can formulate two rules:
1. If you divide a by b and the remainder is 0, then a is a multiple of b (because b

divides a exactly): this implies that b is a common divisor of a and b.

8.2 Modular Arithmetic: the Practice 185

2. If you divide a by b and the remainder is not 0, then we can say that

gcd(a, b) = gcd(b, r).

Why is this? Imagine we write out the prime factorisation of a as follows:

a = p
e0
0 · pe1

1 · · ·pel−1
l−1 .

One of those terms will be d = gcd(a, b). Therefore you could imagine a written
instead as

a = d · a′

where a′ represents all the “other” terms. We can do the same thing with b,
because we know d must divide it as well, to get

b = d · b′.

As a result

a − b = (
d · a′)− (

d · b′)= d · (a′ − b′)

and hence d clearly divides a −b. Now going back to what we know from above,
i.e.,

r = a − b · q,

it follows that

a − b · q = (
d · a′)− (

d · b′ · q)= d · (a′ − b′ · q).
So basically

r = d · (a′ − b′ · q)

which means that d also divides r . To cut a long story short, gcd(b, r) will there-
fore give us the same result as gcd(a, b); because r is smaller than a and b,
computing gcd(b, r) retains the restrictions we had to start with that said a ≥ b.

Based on these two rules, the Euclidean algorithm computes the following sequence:

r0 = a

r1 = b

r2 = r0 − r1 · q2
r3 = r1 − r2 · q3

...

Basically the sequence is describing repeated application of the second rule above:
the i-th remainder r , which we call ri , is computed via

ri = ri−2 − ri−1 · qi

186 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

1 algorithm EUCLIDEAN(a, b) begin
2 r0 ← a

3 r1 ← b

4 i ← 2
5 forever
6 if (ri−2 mod ri−1) = 0 then
7 return ri−1
8 end
9 qi ← � ri−2

ri−1
�

10 ri ← ri−2 − ri−1 · qi

11 i ← i + 1
12 end
13 end

(a) gcd(a, b)

1 algorithm EXTENDED-EUCLIDEAN(a, b) begin
2 r0 ← a, s0 ← 1, t0 ← 0
3 r1 ← b, s1 ← 0, t1 ← 1
4 i ← 2
5 forever
6 if (ri−2 mod ri−1) = 0 then
7 return ri−1, si−1, ti−1
8 end
9 qi ← � ri−2

ri−1
�

10 ri ← ri−2 − ri−1 · qi

11 si ← si−2 − si−1 · qi

12 ti ← ti−2 − ti−1 · qi

13 i ← i + 1
14 end
15 end

(b) xgcd(a, b)

Fig. 8.4 Some algorithms for modular arithmetic

where the i-th quotient is qi = ri−2/ri−1. The sequence will finish in some m-
th step when rm−1 divides rm−2 exactly (meaning we compute rm = 0), at which
point the answer we want is rm−1; this corresponds to the first rule above. There are
plenty of ways to write this down as an algorithm; one simple approach is shown in
Algorithm 8.4a.

If we invoke

EUCLIDEAN(21,12),

8.2 Modular Arithmetic: the Practice 187

i.e., try to compute gcd(a, b) with a = 21 and b = 12 as in the example above, the
algorithm computes the sequence

r0 = 21
r1 = 12
r2 = 21 − 12 · 1 = 9
r3 = 12 − 9 · 1 = 3
r4 = 9 − 3 · 3 = 0

meaning that m = 4 and hence rm−1 = r3 = 3. The algorithm itself does this via the
following steps:
Step #1 Assign r0 ← 21.
Step #2 Assign r1 ← 12.
Step #3 Assign i ← 2.
Step #4 Since r0 mod r1 = 21 mod 12 �= 0, skip the return.
Step #5 Assign r2 ← r0 mod r1 · � r0

r1
� = 21 − 12 · � 21

12� = 21 − 12 · 1 = 9.
Step #6 Assign i ← i + 1 = 3.
Step #7 Since r1 mod r2 = 12 mod 9 �= 0, skip the return.
Step #8 Assign r3 ← r1 mod r2 · � r1

r2
� = 12 − 9 · � 12

9 � = 12 − 9 · 1 = 3.
Step #9 Assign i ← i + 1 = 4.
Step #10 Since r2 mod r3 = 9 mod 3 = 0, return r3 = 3.
What about the example we started off with originally? The a and b are larger so
we have a longer sequence, but by invoking

EUCLIDEAN(1426668559730,810653094756)

we get

r0 = 1426668559730
r1 = 810653094756
r2 = 1426668559730 − 810653094756 · 1 = 616015464974
r3 = 810653094756 − 616015464974 · 1 = 194637629782
r4 = 616015464974 − 194637629782 · 3 = 32102575628
r5 = 194637629782 − 32102575628 · 6 = 2022176014
r6 = 32102575628 − 2022176014 · 15 = 1769935418
r7 = 2022176014 − 1769935418 · 1 = 252240596
r8 = 1769935418 − 252240596 · 7 = 4251246
r9 = 252240596 − 4251246 · 59 = 1417082
r10 = 4251246 − 1417082 · 3 = 0

via similar steps, meaning that m = 10 and hence rm−1 = r9 = 1417082 which
matches the original result.

188 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

Problem #2: Computing y−1 (mod N)
Now we can tell whether or not y has a multiplicative inverse modulo N , the next
challenge is to compute the inverse itself, i.e., y−1 (mod N). One option is to use
the fact that we know

yΦ(N) ≡ 1 (mod N).

Based on this, it also makes sense that

...
...

yΦ(N)−2 ≡ y−2 ≡ 1/y2 (mod N)

yΦ(N)−1 ≡ y−1 ≡ 1/y (mod N)

yΦ(N)+0 ≡ y0 ≡ 1 (mod N)

yΦ(N)+1 ≡ y1 ≡ y (mod N)

yΦ(N)+2 ≡ y2 ≡ y2 (mod N)
...

...

Or, put another way, we can easily compute y−1 (mod N) if we know Φ(N) be-
cause we already know how to do modular exponentiation. On the other hand, we
already said that computing Φ(N) is relatively hard because we need to factor N .

An alternative option is to use a variant of the Euclidean algorithm, called the
Extended Euclidean Algorithm (EEA) [11]; sometimes this is called “XGCD” as in
“eXtended”. Recall that the Euclidean algorithm used

ri = ri−2 − ri−1 · qi.

The idea of the extended Euclidean algorithm is to unwind the steps and write each
ri in terms of a and b. This produces

r0 = a

r1 = b

r2 = r0 − r1 · q2
= a − b · q2

r3 = r1 − r2 · q3
= b − (a − b · q2) · q3
= −a · q3 + b · (1 + q2 · q1)
...

This quickly starts to look nasty, so we simplify it by saying that in the i-th step we
have

ri = a · si + b · ti
where si and ti collect together all the nasty looking parts in one place. The sequence
again finishes in the m-th step. But if we keep track of si and ti , as well as getting
rm−1 we also get sm−1 and tm−1. Algorithm 8.4b shows the updated algorithm that
keeps track of the extra parts.

8.2 Modular Arithmetic: the Practice 189

If we invoke the new algorithm via EXTENDED-EUCLIDEAN(21,12), we get

r0 = 21
s0 = 1
t0 = 0
r1 = 12
s1 = 0
t1 = 1
r2 = 21 − 12 · 1 = 9
s2 = 1 − 0 · 1 = 1
t2 = 0 − 1 · 1 = −1
r3 = 12 − 9 · 1 = 3
s3 = 0 − 1 · 1 = −1
t3 = 1 − −1 · 1 = 2
r4 = 9 − 3 · 3 = 0
s4 = 1 − −1 · 3 = 4
t4 = −1 − 2 · 3 = −7

meaning that m = 4. We can verify that this is sane because

rm−1 = 3 = a · sm−1 + b · tm−1
= 21 · −1 + 12 · 2
= −21 + 24
= 3

as expected. The point is that the extra parts the algorithm computes turn out to be
very useful because given

rm−1 = gcd(a, b) = 1

if a and b are coprime, we therefore know

1 = a · sm−1 + b · tm−1.

As a result, we can compute the multiplicative inverse of x modulo N by setting
a = x and b = N . This means we get

1 = x · sm−1 + N · tm−1

and, if we look at this modulo N ,

1 ≡ x · sm−1 (mod N)

since N · tm−1 ≡ 0 (mod N) (in fact any multiple of N is equivalent to 0 when
reduced modulo N) or rather

x−1 ≡ sm−1 (mod N)

meaning that sm−1 is the multiplicative inverse we want.

190 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

8.3 From Modular Arithmetic to Cryptographic Protocols

As we saw in the introduction, a cryptographic protocol is a description of how
the parties involved accomplish some task (e.g., sending messages between each
other securely). The two tasks we focus on relate to the key distribution problem:
can Alice and Bob communicate in a secure way without having to agree on a shared
key before they start? We can describe two potential solutions using just the modular
arithmetic studied so far:
1. key agreement protocols [15], and
2. public-key encryption schemes [21].
One of the motivations for solving this problem is that we, as Alice say, often want to
communicate with a non-human Bob. Imagine for example if Bob were a web-site
we want to buy something from; it is not feasible for us to agree a shared key with
every possible web-site, so solutions like those above are critically important.

8.3.1 Diffie-Hellman Key Exchange

Suppose Alice wants to send a message to Bob, but they do not have a shared key;
they could use the protocol we saw in the introduction, but first they need a secure
way to agree on a shared key. The Diffie-Hellman key exchange [5] protocol, in-
vented in 1976 by cryptographers Whitfield Diffie and Martin Hellman, offers one
solution to this problem. A historically interesting fact is that the same protocol was
invented independently, and around the same time, by Malcolm Williamson, a cryp-
tographer at GCHQ [12] in the UK; this only became apparent when the intelligence
agency declassified the work, making it public in 1997.

Before they start, Alice and Bob agree on two public values: a large prime num-
ber p, and some g ∈ Zp . The values are made available to everyone, e.g., by pub-
lishing them on a web-site. You can think of them as fixed settings which allow the
protocol to work, a bit like the settings that tell a web-browser how to work. As a
result, Alice and Bob can agree on a key as follows:

Alice Eve Bob

x
$← Zp y

$← Zp

a ← gx (mod p) b ← gy (mod p)
a−→
b←−

k ← bx (mod p) k ← ay (mod p)

The protocol Alice and Bob engage in has five simple steps:

8.3 From Modular Arithmetic to Cryptographic Protocols 191

1. Alice selects x, a random element in Zp; at the same time Bob selects y, a random
element in Zp .

2. Alice computes a = gx (mod p); at the same time Bob computes b = gy

(mod p).
3. Alice communicates a to Bob .
4. Bob communicates b to Alice.
5. Alice computes k = bx (mod p); at the same time Bob computes k = ay

(mod p).
Notice that at the end of the protocol Alice and Bob end up with the same shared
key k; this is because for Alice

k ≡ bx (mod p)

≡ (
gy
)x

(mod p)

≡ gy·x (mod p)

while for Bob we find

k ≡ ay (mod p)

≡ (
gx
)y

(mod p)

≡ gx·y (mod p)

A concrete example demonstrates that crucially, this happens even though Alice does
not know y, Bob does not know x and Eve knows neither y nor x. Imagine we make
the settings p = 13 and g = 7 available to everyone. The protocol can then proceed
as follows:
1. Alice selects x = 9; at the same time Bob selects y = 3.
2. Alice computes a = gx (mod p) = 79 (mod 13) = 8; at the same time Bob com-

putes b = gy (mod p) = 73 (mod 13) = 5.
3. Alice communicates a = 8 to Bob .
4. Bob communicates b = 5 to Alice.
5. Alice computes k = bx (mod p) = 59 (mod 13) = 5; at the same time Bob com-

putes k = ay (mod p) = 83 (mod 13) = 5.

What if all you have is a block cipher? Clearly Alice and
Bob cannot rely on the fact they know k before they start,
but what if they each share a different key with some trusted
third-party Trent (call them kAlice and kBob say): can you write
down a protocol whereby they end up with a shared k using
Trent to help out?

192 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

8.3.2 RSA Encryption

Now suppose Alice wants to send a message to Bob, without the need to agree on
a shared key at all. The RSA public-key encryption [22], invented in 1978 by Ron
Rivest, Adi Shamir and Leonard Adleman (who lend their initials to the name),
represents an efficient and widely-used solution. In short, it allows us to avoiding
the need for shared keys entirely, and hence side-step the key distribution problem.
Again, cryptographers at GCHQ [12] produced similar results behind closed doors:
Clifford Cocks had developed a similar scheme independently in 1973, but this was
not declassified until 1997.

Before Alice can encrypt a message, Bob has to do some work. He picks two
large prime numbers p and q and uses them to first compute N = p · q , then

Φ(N) = (p − 1) · (q − 1).

Notice that only Bob can do this because only he knows p and q , the prime factors
of N . He then selects a small number e which is coprime to Φ(N), and solves

e · d ≡ 1
(
mod Φ(N)

)
,

that is, he computes d , the multiplicative inverse of e modulo Φ(N). Remember,
this means there exists a κ (known only by Bob in this case) such that

e · d = 1 + κ · Φ(N).

The pair (N, e) is the public-key for Bob, while (N,d) is the private-key. The idea
is that Bob can make his public-key available to everyone (e.g., by publishing it on
his web-site), and that by downloading it doing so anyone can encrypt messages
for him. Only Bob knows the corresponding private-key, so only he will be able to
decrypt said messages.

As a result, Alice can send M ∈ Z
�
N to Bob as follows:

Alice Eve Bob

C ← Me (mod N)
C−→

M ← Cd (mod N)

As in the introduction, the protocol that Alice and Bob engage in has three simple
steps:
1. Alice encrypts a plaintext M using the public-key (N, e) to produce the ciphertext

message

C = Me (mod N).

2. Alice communicates C to Bob.

8.3 From Modular Arithmetic to Cryptographic Protocols 193

3. Bob decrypts the ciphertext C using the private-key (N,d) to recover the plain-
text message

M = Cd (mod N).

But why does this work? Well, it follows from a fact we saw earlier: for any x ∈ Z
�
N

we have that

xΦ(N) ≡ 1 (mod N).

This means

Cd ≡ (
Me

)d
(mod N)

≡ Me·d (mod N)

≡ M1+κ·Φ(N) (mod N)

≡ M · Mκ·Φ(N) (mod N)

≡ M · (MΦ(N)
)κ

(mod N)

≡ M · 1κ (mod N)

≡ M · 1 (mod N)

≡ M (mod N)

and so we get the message M as a result! The crucial difference between this and
what we saw in the introduction is that Alice and Bob no longer use a shared key:
everyone knows the public-key owned by Bob that was used for encryption, but only
Bob knows the corresponding private-key used for decryption. We can demonstrate
this using another concrete example. Imagine Bob selects

p = 5
q = 11

meaning N = 55 and Φ(N) = (p − 1) · (q − 1) = 40. He also selects e = 7, noting
that gcd(e,Φ(N)) = 1, and computes d = 23, again noting that e · d = 161 ≡ 1
(mod Φ(N)). The protocol can then proceed as follows:
1. Alice encrypts a plaintext M = 46 using the public-key (N, e) = (55,7) to pro-

duce the ciphertext message

C = Me (mod N) = 467 (mod 55) = 51.

2. Alice communicates C to Bob.
3. Bob decrypts the ciphertext C = 51 using the private-key (N,d) = (55,23) to

recover the plaintext message

M = Cd (mod N) = 5123 (mod 55) = 46.

194 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

The ElGamal [7] public-key encryption scheme is an alterna-
tive to RSA; it also makes use of modular arithmetic. Three
public values, namely g, p and q, are known to everyone:
• Alice chooses a random private-key x from the set

{1,2, . . . q − 1} and computes

h = gx (mod p)

which is her public-key made available to everyone.
• Bob wants to send a message m to Alice: he first chooses

a random k from the set {1,2, . . . q − 1} and computes

c1 = gk (mod p)

c2 = hk · m (mod p)

The pair (c1, c2) is the ciphertext sent to Alice.
How can Alice decrypt (c1, c2) to recover the plaintext m?
Work out the steps required, and show that the overall scheme
works using an example (e.g., using the public values g =
105, p = 107 and q = 53).

8.3.3 Functional Versus Secure

In describing the protocols above, we showed they do what they should: they satisfy
the functional requirements. But we forgot about (or more like ignored) Eve: how
can we be sure the protocols are secure? We need to be able to reason about what
Eve can do as well: it is not good enough to say in the case of RSA “Eve does not
see M communicated between Alice and Bob so the protocol is secure”. A standard
approach is to model all the things that Eve must do in order that a protocol is
insecure, and relate them to a “hard” Mathematical problem: if we can prove things
about the problem, those proofs mean something in terms of Eve. For example, if
we can reason about how hard the problem is (e.g., how many steps an algorithm
will take to solve it), we can reason about how easily Eve will be able to attack the
protocol.

Both of the protocols we introduced rely on a common building block, namely
the computation of

z = xy (mod N)

for various x, y and N . This allows us to consider (at least) two problems:
• If N is prime, say N = p, then given N , x and z computing y is believed to be

hard (for large values of N). This is called the Discrete Logarithm Problem
(DLP) [6]; we write down an instance of this problem as DLP(z, x,N).

8.3 From Modular Arithmetic to Cryptographic Protocols 195

• If N is a product of two primes, say N = p · q , then given N , y and z computing
x is believed to be hard without also knowing p and q . This is called the RSA
problem [23]; we write down an instance of this problem as RSA(z, y,N).

In both cases, a problem instance is simply a challenge to Eve. When you see
DLP(z, x,N) this should be read as “find y such that z ≡ xy (mod N)”; when you
see RSA(z, y,N) this should be read as“find an x such that z ≡ xy (mod N)”.

In general, a function f which is easy to compute but which is hard to invert or
“reverse” (meaning f −1 is hard to compute) is called a one-way function [18]. Our
examples fall exactly into this category: it is easy to compute z = xy (mod N), but
(depending on the N we choose) hard to solve either DLP(z, x,N) or RSA(z, y,N).
The question is, what do we mean by “hard”? Usually we try to answer this by using
the same ideas as in Chap. 2. By saying that computing f should be easy, we mean
that for a problem of size n (for example the number of bits in N), we might have an
algorithm which does not take too many steps to compute f . So maybe f is O(n)

or O(n2) or even O(n3). In contrast, computing f −1 should be much harder; for
example we might select f so that the best known algorithm to compute f −1 takes
O(2n) steps.

So how does this relate to what Eve might do? Consider a model where Eve
observes the communication between Alice and Bob (in addition to getting any pub-
licly available values). How might she attack the protocol?
1. In the Diffie-Hellman example, Eve (like everyone else) gets access to the settings

p and g and sees a and b communicated from Alice to Bob and vice versa.
Assuming Eve wants to recover the shared key k, one approach would be

to solve the problem instance DLP(a, g,p); this yields x and means Eve can
compute

bx = k

just like Bob did. Alternatively, Eve could solve the problem instance DLP(b, g,p)

to get y and compute

ay = k

just like Alice did. But both problem instances are as hard as each other, so ei-
ther way we might argue that if solving them is hard then Diffie-Hellman key
exchange is secure.

2. In the RSA example, Eve (like everyone else) gets access to the public-key for
Bob, i.e., (N, e) and sees C communicated by Alice to Bob.

Assuming Eve wants to recover the message M , one can imagine two ap-
proaches:
(a) Factor N to recover p and q , then compute Φ(N). By doing this, d can be

computed and Eve can decrypt C just like Bob did.
(b) Solve the problem instance RSA(C, e,N) which gives the result M .
and solving instances of the RSA problem is hard.

This seems great: if Eve wants to do anything we might regard as “bad”, she has to
work out how to solve what we are assuming are hard mathematical problems. If
the problems really are hard, then we can say the protocols are secure.

196 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

But what if Eve does something other than what we expect? What if she acts
outside our current model, which assumes she can only observe the communication
between Alice and Bob? For example, imagine Eve has cut the network cable that
links Alice and Bob and placed her own computer in between them; this is known as
a man-in-the-middle attack [16]. Now Eve becomes the active adversary Mallory,
and can do all sorts of other things. The question is, are the two protocols still
secure?
1. For the Diffie-Hellman example, imagine the protocol changes because of how

Mallory behaves; Alice and Bob behave in exactly the same way. The result is as
follows:

Alice Mallory Bob

x
$← Zp

x′ $← Zp

y′ $← Zp y
$← Zp

a ← gx (mod p)

a′ = gx′
(mod p)

b′ = gy′
(mod p) b ← gy (mod p)

a−→ a′−→
b′←− b←−

k1 ← b′x (mod p)

k1 = ay′
(mod p)

k2 = bx′
(mod p) k2 ← a′y (mod p)

Since

k1 = b′x (mod p)

= (
gy′)x

(mod p)

= gy′·x (mod p)

= (
gx
)y′

(mod p)

= ay′
(mod p)

and

k2 = a′y (mod p)

= (
gx′)y

(mod p)

= gx′·y (mod p)

= (
gy
)x′

(mod p)

= bx′
(mod p)

Mallory agrees one key with Alice and one with Bob: Alice thinks she is commu-
nicating with Bob and vice versa, but actually they are communicating through
Mallory. When Alice sends a message to Bob encrypted using k1, Mallory can
simply decrypt the message and read it, then re-encrypt it using k2 and send it
on: neither Alice nor Bob are any the wiser because from their point of view,
nothing has gone wrong.

References 197

2. For the RSA example, imagine the protocol changes to the following:

Alice Mallory Bob

C ← Me (mod N)
C−→

C′ ← 2e · C (mod N)
C′−→

M ′ ← C′d (mod N)

Since

C′ ≡ 2e · C (mod N)

2e · Me (mod N)

(2 · M)e (mod N),

when Bob decrypts C′, he gets an M ′ equal to 2 · M . That seems quite bad: if M

was a message saying “Alice owes Bob $100” then Alice might actually end up
owing twice as much!

Both cases are meant to illustrate that Eve (now Mallory) has avoided the hard math-
ematical problems: in order to do “something bad”, there was no need to solve an
instance of the RSA problem for example. What does this mean: is the protocol
insecure? Or is the security model wrong? The combined difficulty of
1. understanding what a protocol should do,
2. understanding and modelling what any adversaries can do, and
3. designing a protocol that is efficient while also matching all functional require-

ments
make good cryptography very challenging. The fact that people are constantly de-
veloping new capabilities for Eve (e.g., new ways to factor numbers or solve the
RSA problem) adds even more of a challenge; what is secure today may not be se-
cure in ten or twenty years time, and equally the types of protocol parties want to
engage in might change. But these challenges also make cryptography a fascinating
subject: it must, by definition, constantly evolve to keep pace with both functionality
and attack landscapes.

References

1. Wikipedia: Alice and Bob. http://en.wikipedia.org/wiki/Alice_and_Bob
2. Wikipedia: Block cipher. http://en.wikipedia.org/wiki/Block_cipher
3. Wikipedia: Block cipher modes of operation. http://en.wikipedia.org/wiki/Block_cipher_

modes_of_operation
4. Wikipedia: Coprime. http://en.wikipedia.org/wiki/Coprime
5. Wikipedia: Diffie-Hellman. http://en.wikipedia.org/wiki/Diffie-Hellman
6. Wikipedia: Discrete logarithm. http://en.wikipedia.org/wiki/Discrete_logarithm
7. Wikipedia: ElGamal encryption. http://en.wikipedia.org/wiki/ElGamal_encryption
8. Wikipedia: Euclidean algorithm. http://en.wikipedia.org/wiki/Euclidean_algorithm
9. Wikipedia: Euler’s totient function. http://en.wikipedia.org/wiki/Euler’s_totient_function

http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Diffie-Hellman
http://en.wikipedia.org/wiki/Discrete_logarithm
http://en.wikipedia.org/wiki/ElGamal_encryption
http://en.wikipedia.org/wiki/Euclidean_algorithm
http://en.wikipedia.org/wiki/Euler's_totient_function

198 8 Safety in Numbers: Modern Cryptography from Ancient Arithmetic

10. Wikipedia: Exponentiation by squaring. http://en.wikipedia.org/wiki/Exponentiation_by_
squaring

11. Wikipedia: Extended Euclidean algorithm. http://en.wikipedia.org/wiki/Extended_
Euclidean_algorithm

12. Wikipedia: GCHQ. http://en.wikipedia.org/wiki/Government_Communications_
Headquarters

13. Wikipedia: Identity function. http://en.wikipedia.org/wiki/Identity_function
14. Wikipedia: Integer. http://en.wikipedia.org/wiki/Integer
15. Wikipedia: Key agreement protocol. http://en.wikipedia.org/wiki/Key-agreement_protocol
16. Wikipedia: Man-in-the-middle attack. http://en.wikipedia.org/wiki/Man-in-the-middle_

attack
17. Wikipedia: Number theory. http://en.wikipedia.org/wiki/Number_theory
18. Wikipedia: One-way function. http://en.wikipedia.org/wiki/One-way_function
19. Wikipedia: Prime factor. http://en.wikipedia.org/wiki/Prime_factor
20. Wikipedia: Prime number. http://en.wikipedia.org/wiki/Prime_number
21. Wikipedia: Public key cryptography. http://en.wikipedia.org/wiki/Public-key_cryptography
22. Wikipedia: RSA. http://en.wikipedia.org/wiki/RSA
23. Wikipedia: RSA Problem. http://en.wikipedia.org/wiki/RSA_problem
24. Wikipedia: Symmetric key cryptography. http://en.wikipedia.org/wiki/Symmetric_key_

algorithm
25. Wikipedia: Transport Layer Security (TLS). http://en.wikipedia.org/wiki/Transport_Layer_

Security

http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Government_Communications_Headquarters
http://en.wikipedia.org/wiki/Government_Communications_Headquarters
http://en.wikipedia.org/wiki/Identity_function
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Key-agreement_protocol
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/RSA_problem
http://en.wikipedia.org/wiki/Symmetric_key_algorithm
http://en.wikipedia.org/wiki/Symmetric_key_algorithm
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Transport_Layer_Security

9Hiding a Needle in a Haystack:
Concealed Messages

Imagine you are employed as a spy or, to add a modicum of glamour to the story,
the spy, James “007” Bond himself [5]. You have two suspects under surveillance
and are tasked with identifying which one is plotting to end the world. The usual
laser pen and exploding pants were loaned to 006, but you do have a watch that can
intercept the emails people send; you use the watch to capture some evidence:

Email from suspect #1: Email from suspect #2:

Dear Mum,

I am having a strange holiday. The
weather here is nice enough, but there
is a weird man in the next room who does
nothing but drink vodka martinis and
smile at women.

Love, David.

DE259236 4D503352 8D9ABE72 818B4040
856ECEC7 C9DB0FF2 7E854F98 9B0DF034
D14EC5DC 683D69C5 49C7AA7D AB6BD65A
77DDE93E 815275EC 6F66DD23 22A0333A
B1641A64 FCB533FA E8E210B7 81115EF2
7DB41239 4A942DCF E2C59A6E DC6DB547
3B0F1BC2 23D1E844 FDFD474A 9B0C9D30
FAD65181 3EEAD4FB 5D71AE10 28F8702B

Love, Mr. X.

Which suspect should you throw in the shark infested swimming pool? Clearly sus-
pect #2: by the look of it he is sending encrypted emails so if he does not want
people to know what they say, he must be up to no good. What went wrong for
suspect #2? Cryptography was meant to solve all his secrecy problems! In short, the
problem here is not really one of secrecy because the message suspect #2 sent is still
secure in the sense that it cannot be read. Rather, the problem is that the message he
is sending stands out and therefore attracts attention. It would be nice if the message
was also secret, but in this case hiding the message is perhaps more important to
suspect #2. The topic of steganography [16], a Greek word meaning “concealed
writing”, gives us a solution. As we have described previously, cryptography is all
about preserving the secrecy of data; steganography on the other hand relates to hid-
ing secret data, typically within non-secret data. For example, imagine we intercept
a million emails with the watch. Suspect #2 could hide a secret message inside an
innocuous email similar to the one suspect #1 sent: the secret message in this case
is one needle in a haystack of a million emails, and we may totally overlook it as a
result.

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_9,
© Springer International Publishing Switzerland 2014

199

http://dx.doi.org/10.1007/978-3-319-04042-4_9

200 9 Hiding a Needle in a Haystack: Concealed Messages

Although steganography is more generally interesting, one reason it makes a
good topic is the connection to use within digital media: we get to look at some
pictures for a change, rather than long lists of numbers! In this context, steganogra-
phy can be used as a way to watermark [4] digital media. Imagine we have taken
a brilliant photograph, and upload it to our web-site. What is to stop a competitor
downloading the image, making a copy of it on their web-site, and claiming they
took the photograph not us? The answer is not much because the beauty (and curse)
of digital media is that it is so easy to copy. In Chap. 1 we already saw that CDs and
DVDs are just well organised sequences of numbers; digital images and MP3 files
are the same thing. So, unlike an oil painting or an analogue cassette tape, it is trivial
to make a perfect copy of most digital media. One way to combat this problem is to
hide a message within whatever we want to protect: imagine we hide the message
“this photograph was taken by X on the date Y ” inside the image. Even if someone
else copies it, they would have a hard time convincing a court of law that they had
taken the image and just happened to put our name in it!

Of course, real digital watermarking techniques usually have additional and com-
plicated requirements that we will not worry about; obviously we require the water-
mark to be robust, in the sense that it cannot easily be removed, for instance. Our
aim here is to use the scenario above as a motivation to look at two types of digital
image, and two forms of steganography that follow quite naturally from how such
images are represented.

9.1 Digital Images

It pains me to say it, but I am old enough to remember a time before digital photog-
raphy existed. The question is, how do modern digital cameras do the same thing
as older ones that were based mainly on chemical processes? That is, how do they
represent a physical image using numbers so that we can store and manipulate them
using a computer? The answer is not too involved, but it turns out that there are
(at least) two quite different varieties of digital image.

9.1.1 Rasterised Images

A rasterised image (or “bitmap” image) measures or samples the colour of the
physical image at regular intervals; the samples are the digital representation we
keep. You can think of a rasterised image as being a matrix where each element
represents one sample called a pixel (or picture element) [11].

The number of rows and columns for a particular image is usually fixed; if we
have a (m×n)-pixel image then the resolution is n by m, meaning it has n columns
and m rows. You might have seen images described as “1024 by 768” for example,
which would mean n = 1024 and m = 786. When talking about digital cameras,
it is also common to refer to the total number of pixels rather than the number
of rows and columns. So a camera described as “having 10 megapixels” produces

9.1 Digital Images 201

images where n · m ∼ 10 · 106, i.e., we might have a matrix with just over n = 3000
columns and just over m = 3000 rows.

In a sense, the total number of pixels tells us something about the image detail.
Basically, if there are more pixels, more samples have been taken from the physical
image and therefore there is more detail:
• A 1 megapixel digital camera produces a (1000 × 1000)-pixel image, i.e., one

million pixels in total. Imagine we use the camera to take a picture of an object
that is 5 m long: we sample about one pixel every 5 mm or so. What if there is
an ant on the object which is only 2 mm long? Chances are we might miss him
out if he happens to fall between two samples.

• A 10 megapixel digital camera produces an image with ten times as many pixels,
i.e., ten million pixels in total. Now, taking a picture of the same 5 m object means
we sample about one pixel every 1.6 mm. There is more detail in this image: we
can capture smaller features within the physical image.

The next question is how we describe the pixels themselves; remember that they are
meant to represent samples, or colours, from the physical image. To do this, we use
a colour model [3] which tells us which numbers represent which colours.

The RGB Colour Model
The RGB colour model [14] represents colours by mixing together red, green and
blue (i.e., “R”, “G” and “B”). The idea is to write a sequence of three numbers, i.e.,
a triple

〈r, g, b〉
where each of r , g and b is called a channel and represents the proportion of red,
green or blue in the pixel. There are several ways we could specify r , g and b; for
example we could use a percentage, e.g., 100 % red, which is both easy to read and
understand. However, it is more common to see them specified as an n-bit integer
between zero and some maximum 2n − 1. Imagine we set n = 8: this means each
channel is some number x in the range 0 . . .255 and the proportion specified is
x/(2n − 1), in this case x/255. Here are some examples to make things clearer:
1. The triple 〈255,255,255〉 is white: it specifies 255/255 (or 100 % red), 255/255

(or 100 %) green and 255/255 (or 100 %) blue.
2. The triple 〈255,0,0〉 is a pure red colour: it specifies 255/255 (or 100 % red),

0/255 (or 0 %) green and 0/255 (or 0 %) blue.
3. The triple 〈255,255,0〉 is a pure yellow colour: it specifies 255/255 (or 100 %

red), 255/255 (or 100 %) green and 0/255 (or 0 %) blue.
4. The triple 〈51,255,102〉 is a pea green colour: it specifies 51/255 (or 20 % red),

255/255 (or 100 %) green and 102/255 (or 40 %) blue.
Since we need an n-bit integer for each channel, and we need three channels to
specify the colour of each pixel, we need 3n bits for each pixel. This is sometimes
called the colour depth because it tells us how many colours we can represent, i.e.,
the number of bits-per-pixel (sometimes abbreviated as “bpp”). With n = 8, each
pixel needs 24 bits and we can represent nearly 17 million colours. This is enough

202 9 Hiding a Needle in a Haystack: Concealed Messages

colours to approximate physical images, and is used by many image formats that
are produced by digital cameras.

The obvious next step is to put the two concepts together and arrange the RGB
triples in a matrix to represent the pixels of an image. Figure 9.1 demonstrates what
this actually looks like, both as a matrix of numbers and the pixels they represent.
We can write the numbers that represent each colour channel in any base, so the
matrix
⎛

⎜⎜⎜⎜⎝

〈11111111(2),11111111(2),11111111(2)〉 〈00000000(2),00000000(2),00000000(2)〉
〈11111111(2),00000000(2),00000000(2)〉 〈00000000(2),11111111(2),00000000(2)〉
〈00000000(2),00000000(2),11111111(2)〉 〈11111111(2),11111111(2),00000000(2)〉
〈11111111(2),00000000(2),11111111(2)〉 〈00000000(2),11111111(2),11111111(2)〉

⎞

⎟⎟⎟⎟⎠

is equivalent: it is just written down in a different way.

You might be used to creating images using soft-
ware that allows you to “paint” interactively (using a
mouse). When we need careful control over pixel val-
ues, however, it can be easier to describe images us-
ing a text format such as PPM [9]. For example,

is a PPM description of Fig. 9.1. The first four lines specify

information about the image, namely
• the PPM file identifier (which ensures any software read-

ing the file can interpret the associated content correctly),
• the image dimensions, first the number of columns then

the number of rows, and
• the maximum value any colour channel can have.
The subsequent lines specify image content: each line speci-
fies a pixel, from top-left to bottom-right in the image. So the
first pixel in the top-left corner is (255,255,255) (meaning
white).

Try to reproduce this example using image manipulation
software of your choice to view the result.

9.1 Digital Images 203

Fig. 9.1 An example rasterised image in two representations

As well as the red, green and blue channels, it is common
to include an alpha channel. This forms the RGBA colour
space [15], and typically means that each pixel is represented
by 32 rather than 24 bits. Find out about the purpose of this
addition, then try to show the effect it has using some exper-
imental images.

The CMYK Colour Model
RGB is not the only colour model; you might reasonably argue that it is not even the
most sensible since it does not correspond to what happens when paints are mixed
together. Consider some examples:
1. To get green coloured paint you need to mix yellow and blue paint together. With

RGB on the other hand, you can get a green colour “for free”; adding red gives
a yellow colour. Try mixing red and green paint together: you do not get yellow
paint!

2. If you mix together all colours of paint together you get black (or maybe just a
mess), but in RGB you end up with a white colour.

So why the difference? Think about what a computer monitor is doing in a physical
sense: basically it just emits light. If it emits no light, then we as the viewer see a
black colour. If it emits red, green and blue then these “add up” to white. So, with
the RGB model, colours are additive. Now think about how we see paint: white
light hits the paint, the paint absorbs selected parts of the spectrum and reflects
what is left so that we as the viewer can see it. If white light, 〈255,255,255〉 as an
RGB triple, hits yellow paint, it absorbs all the blue component and we get reflected
〈255,255,0〉 back; if white light hits cyan paint, it absorbs all the red component
and we get 〈0,255,255〉 reflected back. So if we mix yellow and cyan paint the
result will absorb all the blue and red components from the spectrum and hence
reflect 〈0,255,0〉, i.e. green, back. Hence, paint absorbs (i.e., subtracts) colours of
light, whereas a computer monitor emits (i.e., adds) colours of light.

204 9 Hiding a Needle in a Haystack: Concealed Messages

The idea of using cyan, magenta and yellow as primary colours is standard in the
printing world since it deals with ink (which is like paint). So whereas we use red,
green and blue as primary colours and hence the RGB colour model within com-
puters, when we print rather than display images it is common to use the CMYK
colour model [2] instead.

If you are really serious about printing and typesetting, the
name Pantone [10] will crop up a lot: the Pantone Matching
System (PMS) is a standard colour model used in most com-
mercial settings. Do some research about this colour model,
and the legal issues which mean it often cannot be used
(e.g., within the open source GIMP software mentioned in
Chap. 1).

9.1.2 Vector Images

A vector image describes a physical image using a combination of geometric prim-
itives such as points and lines. It is also possible to include more complicated curved
surfaces (e.g., circles and ellipses), and even to extend from 2-dimensions into 3-
dimensions. An example makes this easy to explain. Imagine you have a large sheet
of graph paper: a 2-dimensional point on our graph paper is just a pair of coordi-
nates that we write as (x, y). We can draw such a point on the graph paper; scale is
not important, but you can imagine the paper has unit sized or 1 cm squares on it if
that helps. Using two such points, we can write

(x, y) � (p, q)

to describe a 2-dimensional line segment between points (x, y) and (p, q). Again,
we can draw such a line on the graph paper: just get a ruler and join up the points.
Using lots of lines, we can start to draw basic images. Imagine we start with this
one

(1.0,1.0) � (2.0,1.0)

(2.0,1.0) � (2.0,2.0)

(2.0,2.0) � (1.0,2.0)

(1.0,2.0) � (1.0,1.0)

(3.0,1.0) � (4.0,1.0)

(4.0,1.0) � (3.5,2.0)

(3.5,2.0) � (3.0,1.0)

which describes seven lines in total. The first four lines form a square with sides
of length one unit, the last three form an isosceles triangle of base and altitude one
unit. It does not look very impressive when written like this, but if we were to draw
it on our graph paper, it would look like Fig. 9.2a. On one hand, this is still a fairly
unimpressive image; we could make it more complicated by drawing more lines,

9.1 Digital Images 205

Fig. 9.2 Some example vector image transformations

206 9 Hiding a Needle in a Haystack: Concealed Messages

but it still might be difficult to represent a physical image such as a face or a flower.
On the other hand, what we might have sacrificed in terms of realism we recoup in
terms of precision: since the image is effectively described in terms of Mathematics,
we can manipulate it via Mathematics as well. There are applications where this is
a real benefit; if you are designing a new car or building, accuracy is vital!

It is not as common now, but a system called Logo [7] has
been used extensively as a way to teach programming. The
idea is that a program controls an on-screen turtle that is
guided around, drawing as it moves. In a sense, the Mathe-
matical description of images above is very close to a Logo
program: see if you can use an online resource such as

http://turtleacademy.com/

to reproduce our simple example. If you have no background
in programming, this is a good chance to explore what else
is possible.

To demonstrate the significance of this, we can start to think about taking a point
(x, y) and translating it into a new point (x′, y′) using some form of transforma-
tion. Three such transformations, which describe how to compute x′ and y′, are

TRANSLATE : x′ = x + i

y′ = y + j

SCALE : x′ = x · i
y′ = y · j

ROTATE : x′ = x · cos θ − y · sin θ

y′ = x · sin θ + y · cos θ

Imagine we select an example point (1.0,2.0), i.e., we have x = 1.0 and y = 2.0,
which is the bottom left-hand corner of our square. The first thing we might try is to
translate (or “move”) the point to somewhere else in the image. To do this we add
a vector (i, j). To move the point one unit horizontally and one unit vertically for
example, we compute the new point as

x′ = 1.0 + 1.0 = 2.0
y′ = 2.0 + 1.0 = 3.0

In isolation this probably does not seem very exciting. But if we repeat the trans-
formation for all the points in the image, we end up with the result in Fig. 9.2b.
And that is just for starters! We can reflect an image in either axis. For example by
negating the y coordinate we can mirror the image in the y-axis, as in Fig. 9.2c.

http://turtleacademy.com/

9.1 Digital Images 207

If we want to scale a point (x, y) by a factor of i horizontally and j vertically
we multiply x and y by i and j . Imagine we want to double the size of the image;
setting i = 2 and j = 2 we compute the new point as

x′ = 1.0 · 2.0 = 2.0
y′ = 2.0 · 2.0 = 4.0

Again, doing the same thing with all the points in our image gives the result in
Fig. 9.2d. This time the result is a bit more impressive: we have doubled the image
size, but we have not degraded the quality at all. The Mathematics to describe the
lines, and hence our image, is “perfect”. We can play about even more, and stretch
the image horizontally; setting i = 2 and j = 1 gives Fig. 9.2e.

As a final trick we can think about rotating the image, the result of which is
shown in Fig. 9.2f. If we want to rotate the point by θ , say θ = 45 for instance, we
compute the new point (to three decimal places) as follows:

x′ = 1.0 · cos(45) − 2.0 · sin(45) = −0.325
y′ = 1.0 · sin(45) + 2.0 · cos(45) = 1.376

What other types of useful transformation can you think of?
As a hint, think about a shearing transform which produces
a slanting result. Find out how such transformations can be
specified and applied by using matrices [17].

Rotation is the first point where we hit a problem: the “perfectness” of the Mathe-
matics fails us when we want to write down actual values for x′ and y′, because of
the limit on precision (put simply, we only have a fixed number of decimal places
available). Until then, we can manipulate everything perfectly without ever having
to see a number! In a sense, the same problem crops up when we want to print or
view a vector image.

Most laser printers [6] or plotters [12] can draw vector images. Many accept
PostScript [13], a language for describing vector images, as input: programs written
in PostScript are essentially lists of geometry, such as the line segments we started
off with. But, eventually, physical constraints will cause problems. Such a printer
cannot usually draw infinitely small images, for example, since there is a limit to
how accurate mechanical parts can ever be. Some other types of display device [18]
can also render vector images; early video games like Asteroids [1] used this sort of
technology. These are rare however, and most modern computer monitors work in a
different way: they first rasterise the vector image, turning it into a format that can
be displayed. And there lies the problem: the process of rasterisation throws away
the “perfect” nature of the Mathematics and forces us to do things like round-up the
coordinates of a point, which might be represented using many decimal places of
precision, so they match the nearest integer pixel location.

208 9 Hiding a Needle in a Haystack: Concealed Messages

9.2 Steganography

Back to James Bond, or rather the problem of stopping his pesky snooping. Re-
member that the idea is to hide some secret data in non-secret data and, by doing so,
throw him off the scent. The secret message will be a string of characters (an email if
you like) and the non-secret data will be a digital image. Each type of digital image
we have looked at gives quite a neat way to do this.

9.2.1 Rasterised Images: “Stolen LSBs”

We have already learned that a rasterised image can be represented as a matrix
of numbers, and ideally binary numbers. For example, our original (4 × 2)-pixel
example image was

⎛

⎜⎜⎜⎜⎝

〈11111111(2),11111111(2),11111111(2)〉 〈00000000(2),00000000(2),00000000(2)〉
〈11111111(2),00000000(2),00000000(2)〉 〈00000000(2),11111111(2),00000000(2)〉
〈00000000(2),00000000(2),11111111(2)〉 〈11111111(2),11111111(2),00000000(2)〉
〈11111111(2),00000000(2),11111111(2)〉 〈00000000(2),11111111(2),11111111(2)〉

⎞

⎟⎟⎟⎟⎠
.

Some of the bits are given special names:
• The bits at the right-hand end of each number (those coloured red), are termed

the least-significant bits or LSBs: they contribute weights of 21 and 20 to the
overall value, the smallest weights of all.

• The bits at the left-hand end of each number (those coloured blue), are termed
the most-significant bits or MSBs: they contribute weights of 27 and 26 to the
overall value, the largest weights of all.

What happens if we alter either the LSBs or MSBs of the pixels in an image? Imag-
ine we look at each pixel and set the two LSBs of each colour channel to zero. Or,
maybe we look at each pixel and randomise the two MSBs of each colour chan-
nel. Figure 9.3 demonstrates four images that were created by taking an original
and slightly altering each pixel along these lines. Figures 9.3b and 9.3c had the two
LSBs in each pixel altered, either set to zero or a random 2-bit value respectively.
Although the images are marginally different (perhaps a little darker), without the
original you would be hard pressed to pick them out as having been altered at all.
This should make sense: we are altering the LSBs and these have the least impact
on the value of each colour, so changing them does not have a lot of impact.

In Figs. 9.3d and 9.3e, the two MSBs rather than the LSBs were altered and the
results are quite striking: if the MSBs are altered, the images are clearly corrupted.
In Fig. 9.3d, each pixel has become much darker: the image is more or less intact
and understandable, but in Fig. 9.3e is much less understandable; there is still some
structure if you look closely, but it is really quite random. Again, this should make
sense, we are altering the MSBs and these have the most impact on the value of

9.2 Steganography 209

Fig. 9.3 Four images, each
created by altering the pixels
from an original image

each colour. In particular, if we zero the two MSBs we are basically saying that
each colour channel can only take a value 0 . . .63 rather than 0 . . .255 so at best, it
can only be about a quarter as bright.

210 9 Hiding a Needle in a Haystack: Concealed Messages

The question is, how can we use our findings as a steganographic mechanism?
The answer is reasonably simple. We are going to “steal” the LSBs from their orig-
inal purpose of contributing to an image, and use them to conceal a message. The
theory is that altering the LSBs will not corrupt the image too much: we have already
seen that even if we randomise them, the end result is very close to the original. Our
original (4×2)-pixel example image had eight pixels in total; we are stealing six bits
from each pixel (two from each of the colour channels), so 48 bits in total. Chapter 4
already showed us than an ASCII character can be stored using 8 bits. Therefore,
we can store a 6-character message in the 48 bits we have at our disposal.

First, we need to choose a message: the 6-character string “hello.” (note the trail-
ing full stop) is not particularly exciting, but will do the job here. Writing the ASCII
representation of the string as a sequence we have

〈104,101,108,108,111,46〉.
If we write this in binary instead our message is

〈01101000(2),01100101(2),01101100(2),01101100(2),01101111(2),00101110(2)〉
and if we split it up into 2-bit chunks then, reading left-to-right and top-to-bottom,
we get

〈01(2), 10(2), 10(2), 00(2), 01(2), 10(2),

01(2), 01(2), 01(2), 10(2), 11(2), 00(2),

01(2), 10(2), 11(2), 00(2), 01(2), 10(2),

11(2), 11(2), 00(2), 10(2), 11(2), 10(2)

〉

which is now ready to be injected into the image. Again, this is reasonably simple:
we just start with the example image and replace the red LSBs with the sequence of
2-bit chunks derived from our message. The result is as follows:

⎛

⎜⎜⎜⎜⎝

〈11111101(2),11111110(2),11111110(2)〉 〈00000000(2),00000001(2),00000010(2)〉
〈11111101(2),00000001(2),00000001(2)〉 〈00000010(2),11111111(2),00000000(2)〉
〈00000001(2),00000010(2),11111111(2)〉 〈11111100(2),11111101(2),00000010(2)〉
〈11111111(2),00000011(2),11111100(2)〉 〈00000010(2),11111111(2),11111110(2)〉

⎞

⎟⎟⎟⎟⎠

If we turn this back into decimal to make it easier to read, and render the matrix as
pixels as well, the end result is Fig. 9.4. The left-hand side shows the two matrices:
clearly there is a difference as a result of the LSBs having been commandeered to
store the message.

Reversing the process to extract the message is just as simple: we take the pixels,
extract the LSBs and then recombine the 2-bit chunks into 8-bit bytes which repre-
sent the characters. But the point is that we would have to know the message was
there in the first place before we even attempted to extract it. Looking at the compar-
ison, it is difficult to see any difference in the images themselves: marginal changes
in the colour channels are not easily detected even when we have the original image

9.2 Steganography 211

Fig. 9.4 The result of injecting a 6-character ASCII message into the LSBs of an eight pixel image

(which of course we would ordinarily lack).

If you know the message (or watermark) has been embedded
in an image, it is of course easy to extract it. What about if
you just suspect such a watermark is there? Can you think of
a way to detect watermarks of this (or some other, similar)
type?

9.2.2 Vector Images: “Microdots”

You Only Live Twice [19] is the first film to feature cat lover Ernst Blofeld, the
head of SPECTRE, as a main character (in previous films you only see a character
stroking a white cat, never his face). Part way through the film, Bond recovers a
photograph of a cargo ship; on the photograph is something called a microdot [8].
A microdot is basically a very tiny image. The idea is to scale one image until it is
so small it can be placed, in an inconspicuous way, within another image. Because
it is so small, the premise is that it will be overlooked by a casual observer. So we
take a secret message, scale it until it looks like a barnacle on the side of the cargo

212 9 Hiding a Needle in a Haystack: Concealed Messages

Fig. 9.5 A “real” microdot
embedded into a full stop

ship and then only someone looking for it (or who is far too interested in barnacles)
will be able to recover the message.

Far from being limited to science fiction, there is plenty of evidence to suggest
microdots being used as a real steganographic mechanism. Various sources have
claimed invention, but it was almost certainly used by German intelligence agents
in WW2 to send covert messages. British counter-intelligence nicknamed the mi-
crodots “duff” because they were mixed into letters like raisins were mixed into
in the steamed pudding “plum duff”. More modern uses include identification of
physical resources such as car parts: the car manufacturer prints a unique number
on each part in order to trace it in the event it is stolen. Of course a car thief might
try to cover their tracks by etching off any obvious markings, but if they cannot even
see the microdot then the chances of removing it are slim.

From the terminology we have used so far, it perhaps is not a surprise that we can
try to create a real microdot using vector images: remember they these can be scaled
without loss of quality, so are an ideal match. Figure 9.5 shows a somewhat basic
example where we have scaled a message so that it is small enough to fit inside a
full stop. If you are reading an electronic PDF version of this document, you can ac-
tually zoom in and enlarge the dot to see for yourself. If you are reading a version of
the document printed on paper, this clearly would not work. Why not? We already
talked about the problem: a given printer has limits as to how accurate the print
mechanism is. So, in printing the electronic version that includes the perfect Math-
ematical description of our message, we have lost all the detail. Real microdots are
therefore created using a traditional photographic process in which (very roughly) a
special camera is used which shrinks an image of the message using magnification.

References

1. Wikipedia: Asteroids. http://en.wikipedia.org/wiki/Asteroids_(game)
2. Wikipedia: CMYK color model. http://en.wikipedia.org/wiki/CMYK_color_model
3. Wikipedia: Colour model. http://en.wikipedia.org/wiki/Color_model
4. Wikipedia: Digital watermarking. http://en.wikipedia.org/wiki/Digital_watermarking
5. Wikipedia: James Bond. http://en.wikipedia.org/wiki/James_Bond
6. Wikipedia: Laser printer. http://en.wikipedia.org/wiki/Laser_printer

http://en.wikipedia.org/wiki/Asteroids_(game)
http://en.wikipedia.org/wiki/CMYK_color_model
http://en.wikipedia.org/wiki/Color_model
http://en.wikipedia.org/wiki/Digital_watermarking
http://en.wikipedia.org/wiki/James_Bond
http://en.wikipedia.org/wiki/Laser_printer

References 213

7. Wikipedia: Logo. http://en.wikipedia.org/wiki/Logo_(programming_language)
8. Wikipedia: Microdot. http://en.wikipedia.org/wiki/Microdot
9. Wikipedia: Netpbm format. http://en.wikipedia.org/wiki/Netpbm_format

10. Wikipedia: Pantone. http://en.wikipedia.org/wiki/Pantone
11. Wikipedia: Pixel. http://en.wikipedia.org/wiki/Pixel
12. Wikipedia: Plotter. http://en.wikipedia.org/wiki/Plotter
13. Wikipedia: PostScript. http://en.wikipedia.org/wiki/PostScript
14. Wikipedia: RGB color model. http://en.wikipedia.org/wiki/RGB_color_model
15. Wikipedia: RGBA color space. http://en.wikipedia.org/wiki/RGBA_color_space
16. Wikipedia: Steganography. http://en.wikipedia.org/wiki/Steganography
17. Wikipedia: Transformation matrix. http://en.wikipedia.org/wiki/Transformation_matrix
18. Wikipedia: Vector monitor. http://en.wikipedia.org/wiki/Vector_monitor
19. Wikipedia: You Only Live Twice. http://en.wikipedia.org/wiki/You_Only_Live_Twice_

(film)

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/Microdot
http://en.wikipedia.org/wiki/Netpbm_format
http://en.wikipedia.org/wiki/Pantone
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Plotter
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/RGBA_color_space
http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Transformation_matrix
http://en.wikipedia.org/wiki/Vector_monitor
http://en.wikipedia.org/wiki/You_Only_Live_Twice_(film)
http://en.wikipedia.org/wiki/You_Only_Live_Twice_(film)

10Picking Digital Pockets

The 1983 film WarGames saw lead character David Lightman faced with a prob-
lem [9]. David had already hooked his computer up to the telephone system and
broken into the school computer to change his grades. He succeeded because some-
one left the password on a desk in the school office. He then set about finding other
computers by performing an automated search (we call this war dialing [8]) of all
telephone numbers in the region. After a while he hit the jackpot: an interesting
looking computer answered his call. But he could not gain access because this time
he did not have the password.

It is easy to model this problem in a more formal way. Imagine the remote com-
puter C has a password P embedded inside it, and that P is a sequence of char-
acters (lower-case alphabetic characters only, to make things easier). Our job as
the attacker Eve is to guess P . We can make successive attempts, each of which
means sending a guess G to the computer: the computer takes P and G and uses
an algorithm called MATCH-PWD to compare them. If P and G are the same then
MATCH-PWD(P,G) returns true, otherwise it returns false. We know whether or
not a guess was correct, because if we guessed correctly we obviously then get ac-
cess to the computer. The following diagram tries to capture this model:

So how do we, as the attacker, proceed? One method might be to try all possible
passwords; this is called a brute-force attack [1]. Imagine the password has n char-
acters in it, and for the sake of argument say n = 6. With our brute-force attack we
would perform guesses of the form

MATCH-PWD(P, “aaaaaa”)

MATCH-PWD(P, “baaaaa”)

MATCH-PWD(P, “caaaaa”)

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4_10,
© Springer International Publishing Switzerland 2014

215

http://dx.doi.org/10.1007/978-3-319-04042-4_10

216

...

MATCH-PWD(P, “zaaaaa”)

MATCH-PWD(P, “abaaaa”)

MATCH-PWD(P, “bbaaaa”)

MATCH-PWD(P, “cbaaaa”)

...

MATCH-PWD(P, “zbaaaa”)

...

MATCH-PWD(P, “zzzzzz”)

until eventually one of them matched. There are two problems: first, we do not know
what n is (but we can solve this later); second, the number of possible passwords is
26n which grows quickly even if n grows slowly. With n = 6 for example, 266 =
308915776 passwords are possible: not only will it take some time to make all those
guesses, but after the first thousand or so wrong guesses someone in charge of the
system should notice there is a problem. On the other hand, there are advantages
in the sense that although the brute-force attack might take a long time it at least
guarantees success if we wait long enough.

The next thing we could do is try common passwords. This is often called a
dictionary attack [2]. The idea is that we have or make a dictionary of words, and
use those words (including combinations of them) as our guesses. It turns out that
people often select weak (i.e., easy to guess) passwords [4], so this approach can be
effective. This is particularly true if we include various common passwords in our
dictionary such as system defaults (e.g., “password” or “admin”), names of family
and pets, football teams and so on. In fact David Lightman eventually solved his
problem in exactly this way: the designer of the computer he had contacted, Prof.
Stephen Falken, set the password to the name of his dead son Joshua. Clearly a
similar approach could reduce the number of attempts versus a brute-force attack,
but on the other hand it does not guarantee success: the actual password might not
occur in our dictionary.

As we saw in Chaps. 6 and 8 however, when we design cryptographic schemes
we do so in a way that should prevent these two forms of attack. For example, the key
(which is of course analogous to the password) should be large enough to prevent a
brute-force attack. More often than not, an attacker would need to cryptanalyse the
system, usually attempting to find some weakness in the underlying Mathematics.
Within this context, the concept of side-channel attacks [6] is relatively new. The
idea is that rather than studying just the mathematics of a cryptographic scheme “on
paper”, we consider the fact that the scheme must be implemented as a program
which executes on a computer. The idea is that as an attacker we might be able to
passively monitor, or actively influence, how the computer executes the program.

10.1 Passive Physical Attacks 217

Based on this activity we hope that cryptanalysis could be easier; of course, how
feasible this is depends on the exact scenario. However, motivating examples are
easy to come by: modern computers (e.g., a chip-and-pin card) are increasingly
carried around with us, contain sensitive information (e.g., your banking details) and
are used in a setting controlled by other people (e.g., the terminal of a supermarket
checkout). So it is not too hard to imagine that side-channel attacks are sometimes
a feasible and useful addition to the range of approaches on offer. Our aim in this
chapter is to look at side-channel and fault attacks in a non-technical way: some of
the examples do not exactly match what would happen in real life, but act as good
metaphors for the concepts involved.

In the description above, there are some hints that our sim-
plified model is not how real access control systems work.
Within a system that controls access to a large web-site for
instance, it would normally be a bad idea to store P itself
somewhere.

Find out about why this choice is made, e.g., using the
LinkedIn web-site breach in 2012 as motivation, and how it
is supported: write out a set of requirements, and then steps
that describe a better access control system than the one mod-
elled.

10.1 Passive Physical Attacks

10.1.1 Attack

Imagine we represent strings as sequences of characters, for example we might have
a sequence

A = 〈‘a’, ‘b’, ‘c’, ‘d’〉.
Instead of writing 〈‘a’, ‘b’, ‘c’, ‘d’〉 for example, we would normally write “abcd”
instead. Based on this, how might we write an algorithm to check whether two
strings (in our case P and G) are the same or not? Easy! We already saw algorithms
in Chap. 4 that do this. If we ignore the type of string, since we are not really inter-
ested in that, the algorithm is (re)shown in Fig. 10.1. Recapping on Chap. 4 a little,
have a look at it one step at a time. The first thing that happens is a conditional:
if the number of characters in P is not the same as the number of characters in G

then the two strings cannot be the same, so we return false as the result. If P and
G are the same length then we need to check each character. To do this, we use a
loop which iterates over a block for values of i in the range 0 . . . n− 1. By this point
we know n = m so there is no danger of the i-th element of P or G being invalid.
For each value of i, we test if Pi = Gi , i.e., if the i-th character of P is equal to
the i-th character of G. If they are not equal, then clearly the two strings are not
equal and we can return false as the result; if they are equal, we need to test all the

218 10 Picking Digital Pockets

1 algorithm MATCH-PWD(P,G) begin
2 n ← STRING-LENGTH(P)

3 m ← STRING-LENGTH(G)

4 if n �= m then
5 return false
6 end
7 for i from 0 upto n − 1 do
8 if Pi �= Gi then
9 return false

10 end
11 end
12 return true
13 end

Fig. 10.1 An algorithm to test whether the guess G matches some password P (where both G

and P are strings)

other possible values of i. Finally, after we have completed all our tests we can be
confident that the two strings are the same and return true.

Obviously it takes some time for the computer to execute an implementation of
the MATCH-PWD algorithm. Thinking back to Chap. 4, you will remember that the
algorithm is O(n), i.e., the number of steps it takes is tied to the number of times
the loop iterates. But a subtle issue is at the crux of what we are interested in: the
loop does not always make n iterations because if there is a case where Pi �= Gi ,
then the algorithm terminates early. Some examples make this clear:
• MATCH-PWD(“joshua”, “bob”) returns false and takes 1 step because n �= m.
• MATCH-PWD(“joshua”, “daniel”) returns false and takes 2 steps because n = m

but at i = 0, P0 = ‘j’ �= ‘d’ = G0.
• MATCH-PWD(“joshua”, “joanne”) returns false and takes 4 steps because n = m

but at i = 2, P2 = ‘s’ �= ‘a’ = G2; obviously for i = 0 and i = 1 we have Pi = Gi .
• MATCH-PWD(“joshua”, “joshua”) returns true and takes 7 steps because n = m

and for all i we have Pi = Gi .
The idea is now to imagine that we can actually time how long it takes the computer
to execute MATCH-PWD and hence recover the information above. This is not dif-
ficult: since we are communicating with the remote computer, we just measure the
time that elapses between sending it a guess and getting a response back. We can
redraw the original diagram to look more like this:

10.1 Passive Physical Attacks 219

An aside: other, everyday analogies for information leakage

The example of guessing passwords might sound a little contrived, especially if
you know a little more about how such systems are really implemented. Even
so, the problem of information leakage is ubiquitous enough that many other
everyday analogies exist. Consider for example
1. a burglar who opens a safe using a stethoscope to collect audible information

leaked while operating the lock,
2. a burglar who guesses a door entry code by noting leaked information in the

form of worn buttons on the keypad, or
3. a TV license detector van who reasons about your use of a TV set by monitor-

ing the electro-magnetic emission from your house.
In each case, unintentional information leakage of different forms (i.e., differ-
ent from execution time, which we used for guessing passwords) is the common
issue.

The question is, how can we exploit this side-channel to help us solve the original
problem of guessing the password? Notice that the more characters at the start of our
guess that match those in the password, the longer the computer will take to give
us this result. We say that information has leaked through a side-channel related
to execution time; we still do not know P , but we do know a bit more than we
thought we did. Also notice that we have solved the problem of how long P is: if
the algorithm takes more than one step then we know our guess is the right length.

So let us return to the brute-force attack, but each time we make a guess we time
how long it takes to get the result back and use this information to help us. We start
by cycling though guesses of G0:

MATCH-PWD(P, “aaaaaa”) �→ 2 steps
MATCH-PWD(P, “baaaaa”) �→ 2 steps
MATCH-PWD(P, “caaaaa”) �→ 2 steps

...

MATCH-PWD(P, “jaaaaa”) �→ 3 steps
...

MATCH-PWD(P, “zaaaaa”) �→ 2 steps

One of the guesses will take slightly longer to return a result than the rest. This is
because one of the guesses will make P0 = G0 and so will take 3 steps rather than
2 steps as in the cases where Pi �= Gi . So we know this guess must be the real value
of P0. We carry on, but now we keep G0 set to P0, which we now know, and cycle
through guesses at G1:

MATCH-PWD(P, “jaaaaa”) �→ 3 steps
MATCH-PWD(P, “jbaaaa”) �→ 3 steps
MATCH-PWD(P, “jcaaaa”) �→ 3 steps

220 10 Picking Digital Pockets

...

MATCH-PWD(P, “joaaaa”) �→ 4 steps
...

MATCH-PWD(P, “jzaaaa”) �→ 3 steps

Again, one of the guesses will take slightly longer to return a result than the rest.
This time one of the guesses will make P1 = G1 and so will take 4 steps rather
than 3. Again we know this guess must be the real value of P1; we carry on by
keeping G1 set to P1, which we now know, and cycle through guesses at G2:

MATCH-PWD(P, “joaaaa”) �→ 4 steps
MATCH-PWD(P, “jobaaa”) �→ 4 steps
MATCH-PWD(P, “jocaaa”) �→ 4 steps

...

MATCH-PWD(P, “josaaa”) �→ 5 steps
...

MATCH-PWD(P, “jozaaa”) �→ 4 steps

If we follow this approach, we eventually guess correctly. The crucial thing to realise
is that by using the side-channel information we have dramatically decreased the
number of guesses we need to make. In the brute-force attack we needed 26n guesses
in the worst case, whereas now we need 26 ·n; more formally, the brute-force attack
can be described as O(26n) whereas the side-channel attack is O(n). The latter is
clearly better since it is at least somewhat feasible even with quite large n: with
n = 6 that is only 156 guesses rather than 308915776.

Cast your mind back to Chap. 8, and even more specifi-
cally to the EXPONENTIATE-MOD algorithm. Imagine this
is used by a target computer that computes RSA decryptions
for users; using a similar model, we would have something
like

Think about this setting: given Eve can still measure the ex-
ecution time, what information leaks from C? Based on what
you know about RSA, do you think this alone is a problem
or not? Whatever your answer is, explain why.

10.1 Passive Physical Attacks 221

1 algorithm MATCH-PWD(P,G) begin
2 if c > t then
3 return false
4 end
5 n ← STRING-LENGTH(P)

6 m ← STRING-LENGTH(G)

7 if n �= m then
8 c ← c + 1
9 return false

10 end
11 for i from 0 upto n − 1 do
12 if Pi �= Gi then
13 c ← c + 1
14 return false
15 end
16 end
17 c ← 0
18 return true
19 end

1 algorithm MATCH-PWD(P,G) begin
2 Pause for c steps
3 n ← STRING-LENGTH(P)

4 m ← STRING-LENGTH(G)

5 if n �= m then
6 c ← c + 1
7 return false
8 end
9 for i from 0 upto n − 1 do

10 if Pi �= Gi then
11 c ← c + 1
12 return false
13 end
14 end
15 c ← 0
16 return true
17 end

(a) Detect the attack (b) Slow down the attack

1 algorithm MATCH-PWD(P,G) begin
2 f ← true
3 n ← STRING-LENGTH(P)

4 m ← STRING-LENGTH(G)

5 if n �= m then
6 f ← false
7 end
8 for i from 0 upto min(n,m) − 1 do
9 if Pi �= Gi then

10 f ← false
11 end
12 end
13 return f

14 end

1 algorithm MATCH-PWD(P,G) begin
2 Pause for r steps, where r is random
3 n ← STRING-LENGTH(P)

4 m ← STRING-LENGTH(G)

5 if n �= m then
6 return false
7 end
8 for i from 0 upto n − 1 do
9 if Pi �= Gi then

10 return false
11 end
12 end
13 return true
14 end

(c) Take a fixed number of steps (d) Take a random number of steps

Fig. 10.2 Four example countermeasures to harden MATCH-PWD against side-channel attack

10.1.2 Countermeasures

If we wanted to prevent this sort of side-channel leakage, what could we do? Rather
than come up with a totally different algorithm for checking passwords, one idea
is to add some countermeasures to our existing MATCH-PWD algorithm: they are
like a bandage which should patch up the algorithm and prevent the attack working.
There are lots of potential ideas; the plan here is to explore four of them, plus any
advantages or disadvantages they might have. To highlight the differences, we have
collected the altered algorithms together in Fig. 10.2.

222 10 Picking Digital Pockets

Detect the Attack
We have already mentioned one idea that could be quite effective: if we notice that
numerous incorrect guesses have been made, we assume they are being made by an
attacker and shut down the computer to prevent access. A basic version is captured
by Fig. 10.2a. Of course it is a little simplistic, but the central idea is that we maintain
a counter somewhere called c and initially set it to zero when the computer is turned
on. Notice that each time the algorithm detects an incorrect guess it adds one to c, so
if lots and lots of incorrect guesses are made in a row then c will grow quite large.
When a correct guess is registered, we set c back to zero again and we forget about
any incorrect guesses up to that point.

The algorithm capitalises on this behaviour by checking c before it does anything
else: if c is larger than some threshold value t it instantly returns false and denies
access to the computer, in effect denying access forever or at least until we manually
reset c back to zero somehow. So basically what we are saying is that if t incorrect
guesses in a row are made, then the computer will shut down. Choosing a suitable
value for t will result in the attack becoming much less feasible.

Slow Down the Attack
If you were the administrator of the computer, you might be having a heart attack
after reading the previous idea: even legitimate users make mistakes, so you would
probably be called out at all hours of the day to reset c after someone forgot the
password! Another less problematic idea is not to shut down the computer, but to
slow it down: in short, the more incorrect guesses the attacker makes the longer the
computer takes to use MATCH-PWD. This is a simple alteration from our previous
algorithm, and is shown in Fig. 10.2b.

The alteration is simply in the first step: instead of testing c against a threshold,
we wait for c steps. This means as more and more incorrect guesses are made, c

grows larger and larger and the computer is slower and slower to respond: making
many incorrect guesses, as necessitated by the attack, thus becomes laborious at
best! This approach is a variant of something called exponential back-off [3]; you
would see similar approaches to controlling network congestion for example.

Take a Fixed Number of Steps
We could force MATCH-PWD to take the same, fixed number of steps no matter what
values of P and G are given to it. If this is possible, the idea is that information
previously leaked is hidden: if the attacker cannot determine the number of steps
taken, they cannot use the same strategy.

Figure 10.2c implements this idea. To keep track of when a difference is found,
it maintains a flag called f : it starts with f = true, then when it finds a difference
sets f = false to note this fact. The flag is only returned once the algorithm finishes
checking characters in P and G: it always checks all characters to determine f ,
meaning it always takes a fixed number of steps. Or at least it does if P and G are
the same length. Imagine we have P = “joshua” for example, and make two guesses

10.1 Passive Physical Attacks 223

G = “daniel” and G′ = “joanne”. The algorithm will take 8 steps in both cases, so
the original attack strategy fails.

Of course, we have paid a price for this improved security: previously, if P and
G were long strings then our algorithm was efficient in the sense that as soon as we
definitely knew the result, we returned it straight away. With our new algorithm, we
are always looking at the worst case; the algorithm always takes the longest possible
time it could.

With reference to Task 51, how could you apply this same
idea as a countermeasure for EXPONENTIATE-MOD? Do you
think this is a good approach? For instance, does using this
countermeasure imply any disadvantages (versus an alterna-
tive say)?

Take a Random Number of Steps
Another approach would be to force MATCH-PWD to take a random number of
steps no matter what values of P and G are given to it. The end result is similar: the
information previously leaked is now masked, meaning the attacker cannot use the
same strategy.

Figure 10.2d shows that only a simple alteration is required (although, in reality,
we also need a way to generate suitable random numbers). The main algorithm is
the same, so the matching process is the same. However, there is an additional line
before we start: by waiting a random amount of time, the actual number of steps ob-
served by the attacker is randomised. For example, imagine we have P = “joshua”
and make the two guesses G = “daniel” and G′ = “joanne”; if the algorithm takes
8 steps, which guess did this come from? It could be G if the algorithm waits for
r = 6 steps initially, then takes 2 steps in the matching phase; on the other hand, it
could be G′ if the algorithm waits for r = 4 steps initially, then takes 4 steps in the
matching phase. The point is that we cannot relate the number of steps observed to
the value of P being used; again, we have prevented the use of execution time as a
useful side-channel.

Is this a robust countermeasure though? We could try to filter out the randomness
using elementary statistics. Imagine we take our two guesses and use them each 100
times, capturing the results. If we find the average time taken by attempts with
G and G′, this might tell us something that comparing the time taken by a single
attempt could not. For example, if on average the number of steps for guess G is
significantly longer than the number of steps for G′ then we might reason there is a
good chance that more characters at the start of G are correct than G′. We cannot
say for definite, but by capturing more and more results we can get more and more
confident. So we have partially removed the effect of the randomness by simply
using enough attempts that a general trend emerges.

224 10 Picking Digital Pockets

10.2 Active Physical Attacks

10.2.1 Attack

Imagine a real scenario; things get a little more technical but we will try to keep
the discussion simple. A mobile telephone uses a different type of password to a
computer login screen: normally the telephone can be configured to ask for and test
a four digit Personal Identification Number (PIN) when turned on [5]. There are
not that many different four digit PIN numbers, only 10000 in fact, so one might im-
mediately start to think a brute-force attack could work here. Usually the telephone
would be equipped with a countermeasure to prevent such an attack. Do not try this
at home, but after a few wrong attempts the telephone usually locks itself and re-
fuses further attempts before you take it to the shop to be unlocked. This prevents a
brute-force attack unless the shopkeeper is willing to reactivate a telephone for you
thousands of times!

In the previous example, we had a computer with a password P embedded inside
it. Here we have a telephone with a PIN number P and a counter c embedded inside
it; this is more or less the same as our example countermeasure where we wanted
to shut down the computer if there were lots of incorrect password guesses. In this
new context, we can be a bit more accurate about the details. Typically the P and
c values are stored on the SIM card [7] which means their values are retained even
if the telephone is turned off. The PIN number plays the same role as the password
did: the telephone is supposed to take a guess G, compare P and G and allow access
if they are equal. This time we will use an algorithm called CHECK-PIN detailed in
Fig. 10.3a.

Again, look at the algorithm one step at a time. The first thing that happens is
that the counter c is read from where it is stored and tested: if c = 0 we have run out
of attempts and the telephone is locked. In this case we return false to indicate that
the attempt at accessing the telephone failed. However, if c > 0 then the telephone
is unlocked and we are allowed at least one more attempt. In this case we call the
algorithm REQUEST-PIN to read a guess G from the user and then proceed to check
it. Next we check if the guess G is the same as the real PIN number P stored in
the telephone. If the two are equal then we return true to indicate that the attempt
succeeded. If they are not equal then we first subtract one from the counter c to
indicate there is one less incorrect attempt allowed, and then return false.

As the attacker, our goal is to guess P without the telephone locking itself. Maybe
we have “acquired” a telephone from somewhere, or maybe we have forgotten our
own PIN number. Unlike the MATCH-PWD function, there is not really anything we
can infer by timing CHECK-PIN since the actual test (i.e., P �= G) takes the same
time no matter what P and G are (P and G here are numbers, not strings). But
imagine that rather than just passively monitoring CHECK-PIN, we could actively
influence how it is executed. This should not sound too amazing, for example we
have the telephone in our hand so we could do all sorts of things to it: we might
pull out the battery, detach the keypad, or put the telephone in the oven. Of course,
the goal is not to destroy the telephone but to aid cryptanalysis, so imagine we are
restricted to turning the telephone off mid-execution.

10.2 Active Physical Attacks 225

1 algorithm CHECK-PIN begin
2 if c > 0 then
3 G ← REQUEST-PIN()

4 end
5 else
6 return false
7 end
8 if P �= G then
9 c ← c − 1

10 return false
11 end
12 else
13 return true
14 end
15 end

1 algorithm CHECK-PIN begin
2 if c > 0 then
3 G ← REQUEST-PIN()

4 end
5 else
6 return false
7 end
8 c ← c − 1
9 if P = G then

10 c ← c + 1
11 return true
12 end
13 else
14 return false
15 end
16 end

(a) The original CHECK-PIN algorithm (b) A CHECK-PIN variant with coun-
termeasures against fault attack

Fig. 10.3 Two algorithms to test whether the guess G matches some PIN P (where both G and
P are numbers)

The trick is to turn off the power at just the right point. A good point would be
just before line #9 (which updates c) gets executed. If we turn off the power before
c is updated then basically it never changes: the new value of c is not stored on
the SIM card. So if we had a way to sound an alarm when line #9 is going to be
executed and then turn off the power whenever the alarm sounds, then c will never
be updated and we have unlimited attempts at guessing P without the telephone
being locked. This turns out to be very feasible. A suitable alarm can be rigged up
by monitoring the telephone communicating with the SIM card, both of which we
have easy access to. One can imagine an attacker that can now perform a brute-force
attack on the telephone:
1. Set the current guess G = 0.
2. Take G and enter it into the telephone as a guess at P .
3. Monitor communication between the telephone and the SIM card:

• If the telephone sends a command to update c, turn off the power then wait
for a few seconds and skip forward to line #4.

• If the telephone does not send a command to decrement c then G was the
correct guess and we have access to the telephone.

4. Add one to G and go back to line #2.

10.2.2 Countermeasures

This is not good news for whoever made and/or sold the telephone: they would claim
the PIN number password and associated locking mechanism is offering some level

226 10 Picking Digital Pockets

Fig. 10.4 Demonstrating viability of the SIM card physical attack

References 227

of security, but with only reasonable assumptions we can circumvent that security
with some ease. So how might we go about solving the problem? Have a look at the
slightly modified version of CHECK-PIN in Fig. 10.3b.

At face value the two algorithms are quite similar, but now we alter c in two
places: on line #8 where one is taken away from it, and then in line #10 when one is
added to it again if it turns out that the guess was correct. What happens if we set the
original attacker to work on the new algorithm? If the alarm sounds just before line
#8 is executed the we can prevent one being subtracted from c. However c is always
updated at this point regardless of whether P = G or not, so if we turn off the power
when the telephone communicates with the SIM then we can never get access to the
telephone: we would turn off the power even if the guess was correct. On the other
hand, if the alarm sounds just before line #10 is executed then it is already too late
to turn off the power since c will already have been updated in line #8.

Think about the types of electronic device you carry around
with you: can you identify any other environmental factors
(other than the power supply) that could be manipulated by
Eve?

References

1. Wikipedia: Brute-force attack. http://en.wikipedia.org/wiki/Brute_force_attack
2. Wikipedia: Dictionary attack. http://en.wikipedia.org/wiki/Dictionary_attack
3. Wikipedia: Exponential backoff. http://en.wikipedia.org/wiki/Exponential_backoff
4. Wikipedia: Password strength. http://en.wikipedia.org/wiki/Password_strength
5. Wikipedia: Personal Identification Number (PIN). http://en.wikipedia.org/wiki/Personal_

identification_number
6. Wikipedia: Side-channel attack. http://en.wikipedia.org/wiki/Side-channel_attack
7. Wikipedia: Subscriber Identity Module. http://en.wikipedia.org/wiki/Subscriber_Identity_

Module
8. Wikipedia: War dialing. http://en.wikipedia.org/wiki/War_dialing
9. Wikipedia: WarGames. http://en.wikipedia.org/wiki/WarGames

http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Dictionary_attack
http://en.wikipedia.org/wiki/Exponential_backoff
http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Personal_identification_number
http://en.wikipedia.org/wiki/Personal_identification_number
http://en.wikipedia.org/wiki/Side-channel_attack
http://en.wikipedia.org/wiki/Subscriber_Identity_Module
http://en.wikipedia.org/wiki/Subscriber_Identity_Module
http://en.wikipedia.org/wiki/War_dialing
http://en.wikipedia.org/wiki/WarGames

Index

0–9
1260, 71

A
Accumulator, 58
Adapt, 11
Additive identity, 172
Additive inverse, 173
Address, 58
AdSense, 99
Advanced Research Projects Agency Network

(ARPANET), 53
Adversary, 128, 169
AdWords, 99
Algorithm, 33
Alpha, 203
American Standard Code for Information

Interchange (ASCII), 80
Anti-virus, 54
ASCII art, 81
Assignment, 36, 38, 40
Attacker, 128
Automatic Sequence Controlled Calculator

(ASCC), 59

B
Babington Plot, 127
Backward compatibility, 97
Base, 6
Biased, 151
Big-O notation, 49
Bigrams, 141
Binary, 8
Binary Coded Decimal (BCD), 97
Bit, 10
Block, 170

Block cipher, 170
Bounded, 39
Breadth-First Search (BFS), 105
Broken, 128
Brute-force, 135, 215
Bug, 69
Bulletin Board Systems (BBSs), 81
Byte, 10

C
Carmichael numbers, 35
Ceiling, 46
Central Processing Unit (CPU), 56
Channel, 201
Characters, 77
Cipher, 128
Ciphertext, 127
Ciphertext only, 137
Clock arithmetic, 133
CMYK, 204
Co-prime, 34
Codeword, 23
Colour depth, 201
Colour model, 201
Column vector, 24
Compact Disk (CD), 5
Compressed, 3
Computational complexity, 45
Computer virus, 53
Concatenate, xi
Condition, 41
Conditional probability, 116, 152
Construct, 38
Converge, 115
Coprime, 178
Countermeasures, 221
Creeper, 53, 54

D. Page, N. Smart, What Is Computer Science?,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-04042-4,
© Springer International Publishing Switzerland 2014

229

http://dx.doi.org/10.1007/978-3-319-04042-4

230 Index

Cryptanalysis, 128
Cryptography, 127
Cycles, 105

D
Damping factor, 120
Damping ratio, 120
Data Encryption Standard (DES), 153
Data structure, 77
Debug, 69
Decimal, 6
Degree, 104
Depth-First Search (DFS), 105
Dictionary, 15, 216
Dimension, 24
Discrete Logarithm Problem (DLP), 194
Divisors, 175
Dot product, 24

E
Edges, 104
Electronic Codebook (ECB), 170
Elements, x, xi
Encryption, 127
Entropy, 150
Entropy pool, 155
Equality, 36
Equivalent, 133
Equivalent to, 171
Error correction, 4
Error detection, 4
Escape code, 13, 17
Euclidean algorithm, 184
Euler Φ , 177
Even parity code, 19
Executed, 37
Executes, 56
Exponential back-off, 222

F
Flow chart, 35
Frequency analysis, 136

G
General-purpose, 56
Generating matrix, 28
GNU Image Manipulation Program

(GIMP), 12
Graph, 104
Graph exploration, 110
Graph theory, 103, 104
Graph traversal, 105
Greatest Common Divisor (GCD), 178

H
Halting problem, 54
Hamming code, 21
Harvard architecture, 59
Hexadecimal, 11
Host, 53
HTML, 100
HTTP, 100
Hyperlink-Induced Topic Search (HITS), 113
Hyperlinks, 100
Hypertext, 100

I
Identity function, 172
Identity matrix, 29
Impact factor, 113
Implemented, 38
Index, x
Infect, 53
Infinite loop, 67
Instruction Register (IR), 56
Instruction set, 56
Instructions, 56
Integers, 175
Internet, 53
Inverse permutation, 139
Invoke, 34
Iterates, 39
Iterative methods, 118

J
John von Neumann, 59
Joint Photographic Experts Group (JPEG), 12
Jpeg, 12
Jpg, 12

K
Kerckhoffs Principle, 132
Key, 132
Key agreement protocols, 170
Key distribution problem, 170

L
Land, 5
Least-significant, 208
Length, 13
Line, 33
Linear Congruence Generator (LCG), 160
Linear equations, 119
Logo, 206
Loop, 39, 41
Lossless, 12
Lossy, 12

Index 231

M
Malware, 54
Man-in-the-middle, 196
Mark-up language, 110
Matrices, 24
Matrix, 25
Matrix transpose, 26
Matrix-vector multiplication, 26
Member, xi
Memory, 57
Meta tags, 102
Meta-data, 77
Microdot, 211
Mode of operation, 170
Modular arithmetic, 27, 133
Modulus, 134, 171
Morris Worm, 53
Most-significant, 208
Multiplicative identity, 174
Multiplicative inverse, 175

N
n-gram, 141
Native, 77
Nodes, 104
Number theory, 171
Nybble, 10

O
Odd parity code, 20
Offline, 102
One-way function, 195
Online, 102
Opcode, 57, 61
Open Directory Project (ODP), 101
Operand, 61
Operands, 57
Operating system, 56

P
PageRank, 103
Pantone, 204
Pantone Matching System (PMS), 204
Parity check matrix, 29
Parties, 169
Password, 215
Path, 104
Payload, 53
Period, 164
Permanent, 18
Permutation, 139
Personal Identification Number (PIN), 224
Picture element, 200
Pit, 5

Pixel, 200
Plaintext, 127
PostScript, 207
Pre-computing, 102
Precision, 207
Prime, 34
Prime divisors, 175
Prime factorisation, 177
Prime number, 175
Private-key, 192
Probability, 150
Probability distribution, 150
Problem size, 46
Processed, 33
Processor, 56
Program Counter (PC), 61
Programs, 56
Protocol, 169
Pseudo-code, 34
Pseudo-random, 159
Pseudo-Random Number Generator (PRNG),

160
Public-key, 192
Public-key encryption schemes, 170
Pure, 37

Q
Queue, 108

R
Random surfer model, 112
Random walk, 112
Randomness, 149
Range, x
Rasterise, 207
Rasterised image, 200
Reaper, 54
Receiver, 128, 169
Redundant, 12
Resolution, 200
Return, 39, 41
RGB, 201
RGBA colour space, 203
Root, 105
Roots, 115
Row vector, 24
RSA problem, 195
Run, 13

S
Samples, 200
Scanner, 54
Script, 163
Search engine, 101

232 Index

Search Engine Optimisation (SEO), 123
Search queries, 99
Search query, 100
Secure Sockets Layer (SSL), 170
Seed, 159
Self-replicating, 54
Sender, 128, 169
Sequence, x
Set, xi
Shift cipher, 128
Short Message Service (SMS), 3
Side effects, 37
Side-channel, 216
Signature, 54
Simple, 104
Sink web-pages, 113
Source web-pages, 113
Square-and-multiply, 44
Stack, 108
State, 37
Steganography, 199
Step, 33
Step counting, 46
Stored program architecture, 59
Straight-line, 67
Strings, 77
Stuxnet, 54
Subject, 13
Substitution cipher, 138
Summation, 6
Symmetric-key, 170
Syndrome, 30

T
Tape, 57
Terminates, 34
Termination criteria, 115
Terminator, 83

Transformation, 206
Transient, 18
Tree, 105
Trigrams, 141
Turing Machines (TMs), 55
Turtle, 206

U
Unbounded, 86
Uniform, 150

V
Vector addition, 24
Vector image, 204
Vector multiplication, 24
Vector transpose, 25
Vertices, 104
Virus, 53

W
War dialing, 215
Watermark, 200
Web, 100
Web-browser, 100
Web-crawling, 102
Web-directory, 101
Web-graph, 103
Web-index, 102
Web-indexing, 102
Web-pages, 100
Web-search, 99, 100
Web-search engine, 101
Web-server, 100
Weight, 104
World Wide Web (WWW), 100
Worm, 53
WWW Virtual Library, 101

	What Is Computer Science?
	Introduction
	Intended Audience
	Overview of Content
	Core Material
	Supplementary Material
	Embedded Tasks
	Notation
	Ranges
	Sequences
	Sets

	Frequently Asked Questions (FAQs)
	Acknowledgements

	Contents

	Part I: Foundations of Computer Science
	Chapter 1: Compressing and Correcting Digital Media
	1.1 A Compact Disk=a Sequence of Numbers
	1.1.1 Decimal and Binary Representation
	1.1.2 Decimal and Binary Notation
	1.1.3 Grouping Bits into Bytes

	1.2 Data Compression
	1.2.1 A Run-Length Based Approach
	1.2.2 A Dictionary-Based Approach

	1.3 Error Correction
	1.3.1 An Error Detection Approach
	1.3.2 An Error Correction Approach

	1.4 Recasting Error Correction as Matrix Arithmetic
	1.4.1 An Overview of Vectors
	1.4.2 An Overview of Matrices
	1.4.3 Addition and Multiplication Modulo 2
	1.4.4 Using Matrices for Error Correction
	1.4.5 Generalising the Matrix-Based (7,4)-Code

	References

	Chapter 2: Writing and Comparing Algorithms
	2.1 Algorithms
	2.1.1 What Is an Algorithm?
	Different Styles of Structure
	Different Styles of Notation

	2.1.2 What Is not an Algorithm?
	Algorithms<>Functions
	Algorithms<>Programs

	2.2 Algorithms for Multiplication
	2.3 Algorithms for Exponentiation
	2.4 Computational Complexity
	2.4.1 Step Counting and Dominant Steps
	2.4.2 Problem Size and Step Counting Functions
	2.4.3 Ignoring Small Problems and Minor Terms
	2.4.4 Studying the Growth of Functions

	References

	Chapter 3: Playing Hide-and-Seek with Virus Scanners
	3.1 Computers and Programs
	3.1.1 A Theoretical Computer
	3.1.2 A Real, Harvard-Style Computer
	3.1.3 A Real, von Neumann-Style Computer

	3.2 Harvard Versus von Neumann Computers
	3.2.1 Beyond Straight-Line Programs
	3.2.2 Toward Self-Modifying Programs

	3.3 A Self-Modifying Virus
	3.3.1 Using XOR to Mask Numbers
	3.3.2 A Virus that Masks the Payload
	3.3.3 Preventing the Virus Without a Virus Scanner

	References

	Chapter 4: How Long Is a Piece of String?
	4.1 String Data Structures
	4.1.1 Problem #1: Representing Characters
	4.1.2 Problem #2: Representing Strings

	4.2 String Algorithms
	4.2.1 strlen: Finding the Length of a String
	P-String Version
	C-String Version

	4.2.2 toupper: Converting a String to Upper-Case
	P-String Version
	C-String Version

	4.2.3 strcmp: Testing if One String Is the Same as Another
	P-string version
	C-String Version

	4.2.4 strcat: Concatenating Two Strings Together
	P-String Version
	C-String Version

	4.2.5 Problem #3: Repeated Concatenation

	References

	Chapter 5: Demystifying Web-Search: the Mathematics of PageRank
	5.1 PageRank: the Essence of Google Web-Search
	5.1.1 What Actually Is Web-Search?
	5.1.2 Web-Search Before Google
	Web-Directories
	Web-Search Engines

	5.1.3 Web-Search After Google

	5.2 Using Graph Theory to Model and Explore the Web
	5.2.1 Graph Traversal
	5.2.2 Graph Exploration

	5.3 Using Probability Theory to Model Web-Browsing
	5.3.1 Sanitising the Web-Graph to Avoid a Subtle Problems
	5.3.2 A Mathematical Approach to Computing PageRank
	Rewriting the Formula to Avoid Cycles
	Using an Iterative Method to Compute Results
	Selecting the Probability p
	Concrete PageRank Values for the Example Web-Graph

	5.4 Putting It All Together: Using PageRank to Produce Web-Search Results
	References

	Part II: Examples from Information Security
	Chapter 6: Using Short Programs to Make and Break Historical Ciphers
	6.1 Shift Ciphers
	6.1.1 Encryption and Decryption
	3-Place Shifts
	k-Place Shifts

	6.1.2 Cryptanalysis

	6.2 Substitution Ciphers
	6.2.1 Encryption and Decryption
	6.2.2 Cryptanalysis

	References

	Chapter 7: Generation and Testing of Random Numbers
	7.1 What Is Randomness?
	7.1.1 Biased Versus Unbiased
	7.1.2 Predictable Versus Unpredictable
	7.1.3 Random Versus Arbitrary

	7.2 Real Randomness
	7.2.1 Generating Randomness
	7.2.2 Testing Randomness

	7.3 Fake Randomness
	7.3.1 Generating Randomness
	7.3.2 Testing Randomness

	References

	Chapter 8: Safety in Numbers: Modern Cryptography from Ancient Arithmetic
	8.1 Modular Arithmetic: the Theory
	8.1.1 Rules for Modular Addition
	8.1.2 Rules for Modular Multiplication
	8.1.3 The Sets Z, ZN and ZN
	8.1.4 Some Interesting Facts About ZN

	8.2 Modular Arithmetic: the Practice
	8.2.1 Addition and Subtraction
	8.2.2 Multiplication
	8.2.3 Exponentiation
	8.2.4 Division (via Inversion)
	Problem #1: Computing gcd(N,y)
	Problem #2: Computing y-1 8mu(mod6muN)

	8.3 From Modular Arithmetic to Cryptographic Protocols
	8.3.1 Difﬁe-Hellman Key Exchange
	8.3.2 RSA Encryption
	8.3.3 Functional Versus Secure

	References

	Chapter 9: Hiding a Needle in a Haystack: Concealed Messages
	9.1 Digital Images
	9.1.1 Rasterised Images
	The RGB Colour Model
	The CMYK Colour Model

	9.1.2 Vector Images

	9.2 Steganography
	9.2.1 Rasterised Images: "Stolen LSBs"
	9.2.2 Vector Images: "Microdots"

	References

	Chapter 10: Picking Digital Pockets
	10.1 Passive Physical Attacks
	10.1.1 Attack
	10.1.2 Countermeasures
	Detect the Attack
	Slow Down the Attack
	Take a Fixed Number of Steps
	Take a Random Number of Steps

	10.2 Active Physical Attacks
	10.2.1 Attack
	10.2.2 Countermeasures

	References

	Index

