modeling

designing fer security

http://www.allitebooks.org

lvww . allitebooks.cond

http://www.allitebooks.org

Threat Modeling

Designing for Security

Adam Shostack

WILEY

lvww . allitebooks.cond

http://www.allitebooks.org

Threat Modeling: Designing for Security

Published by

John Wiley & Sons, Inc.

10475 Crosspoint
BoulevardIndianapolis, IN 46256
www.wiley.com

Copyright © 2014 by Adam Shostack

Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-80999-0
ISBN: 978-1-118-82269-2 (ebk)
ISBN: 978-1-118-81005-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or onlineat http: //www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at ht tp: / /booksupport .wiley . com. For more information about Wiley products,
visit www . wiley.com.

Library of Congress Control Number: 2013954095

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

lvww . allitebooks.cond

http://www.allitebooks.org

For all those striving to deliver more secure systems

lvww . allitebooks.cond

http://www.allitebooks.org

Credits

Executive Editor
Carol Long

Project Editors
Victoria Swider
Tom Dinse

Technical Editor
Chris Wysopal

Production Editor
Christine Mugnolo

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Technical Proofreader
Russ McRee

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Image
Courtesy of Microsoft

Cover Designer
Wiley

lvww . allitebooks.cond

http://www.allitebooks.org

About the Author

Adam Shostack is currently a program manager at Microsoft.
His security roles there have included security development
processes, usable security, and attack modeling. His attack-
modeling work led to security updates for Autorun being
delivered to hundreds of millions of computers. He shipped
the SDL Threat Modeling Tool and the Elevation of Privilege
threat modeling game. While doing security development
process work, he delivered threat modeling training across
Microsoft and its partners and customers.

Prior to Microsoft, he has been an executive at a number of successful
information security and privacy startups. He helped found the CVE, the
Privacy Enhancing Technologies Symposium and the International Financial
Cryptography Association. He has been a consultant to banks, hospitals and
startups and established software companies. For the first several years of his
career, he was a systems manager for a medical research lab. Shostack is a
prolific author, blogger, and public speaker. With Andrew Stewart, he co-authored
The New School of Information Security (Addison-Wesley, 2008).

lvww . allitebooks.cond

http://www.allitebooks.org

Vi

About the Technical Editor

Chris Wysopal, Veracode’s CTO and Co-Founder, is responsible for the company’s
software security analysis capabilities. In 2008 he was named one of InfoWorld’s
Top 25 CTO’s and one of the 100 most influential people in IT by eWeek. One of
the original vulnerability researchers and a member of LOpht Heavy Industries,
he has testified on Capitol Hill in the US on the subjects of government computer
security and how vulnerabilities are discovered in software. He is an author of
LOphtCrack and netcat for Windows. He is the lead author of The Art of Software
Security Testing (Addison-Wesley, 2006).

lvww . allitebooks.cond

http://www.allitebooks.org

Acknowledgments

First and foremost, I'd like to thank countless engineers at Microsoft and else-
where who have given me feedback about their experiences threat modeling. I
wouldn’t have had the opportunity to have so many open and direct conversa-
tions without the support of Eric Bidstrup and Steve Lipner, who on my first
day at Microsoft told me to go “wallow in the problem for a while.” I don’t
think either expected “a while” to be quite so long. Nearly eight years later with
countless deliverables along the way, this book is my most complete answer to
the question they asked me: “How can we get better threat models?”

Ellen Cram Kowalczyk helped me make the book a reality in the Microsoft
context, gave great feedback on both details and aspects that were missing, and
also provided a lot of the history of threat modeling from the first security pushes
through the formation of the SDL, and she was a great manager and mentor.
Ellen and Steve Lipner were also invaluable in helping me obtain permission
to use Microsoft documents.

The Elevation of Privilege game that opens this book owes much to Jacqueline
Beauchere, who saw promise in an ugly prototype called “Threat Spades,” and
invested in making it beautiful and widely available.

The SDL Threat Modeling Tool might not exist if Chris Peterson hadn’t given
me a chance to build a threat modeling tool for the Windows team to use. Ivan
Medvedev, Patrick McCuller, Meng Li, and Larry Osterman built the first version
of that tool. I'd like to thank the many engineers in Windows, and later across
Microsoft, who provided bug reports and suggestions for improvements in the
beta days, and acknowledge all those who just flamed at us, reminding us of the
importance of getting threat modeling right. Without that tool, my experience
and breadth in threat modeling would be far poorer.

Larry Osterman, Douglas Maclver, Eric Douglas, Michael Howard, and Bob
Fruth gave me hours of their time and experience in understanding threat

lvww . allitebooks.cond

vii

http://www.allitebooks.org

viii

Acknowledgments

modeling at Microsoft. Window Snyder’s perspective as I started the Microsoft
job has been invaluable over the years. Knowing when you're done . . . well,
this book is nearly done.

Rob Reeder was a great guide to the field of usable security, and Chapter 15
would look very different if not for our years of collaboration. I can’t discuss
usable security without thanking Lorrie Cranor for her help on that topic; but
also for the chance to keynote the Symposium on Usable Privacy and Security,
which led me to think about usable engineering advice, a perspective that is
now suffused throughout this book.

Andy Stiengrubel, Don Ankney, and Russ McRee all taught me important
lessons related to operational threat modeling, and how the trade-offs change
as you change context. Guys, thank you for beating on me—those lessons now
permeate many chapters. Alec Yasinac, Harold Pardue, and Jeff Landry were
generous with their time discussing their attack tree experience, and Chapters
4 and 17 are better for those conversations. Joseph Lorenzo Hall was also a gem
in helping with attack trees. Wendy Nather argued strongly that assets and
attackers are great ways to make threats real, and thus help overcome resistance
to fixing them. Rob Sama checked the Acme financials example from a CPA’s
perspective, correcting many of my errors. Dave Awksmith graciously allowed
me to include his threat personas as a complete appendix. Jason Nehrboss gave
me some of the best feedback I've ever received on very early chapters.

I'd also like to acknowledge Jacob Appelbaum, Crispin Cowan, Dana Epp (for
years of help, on both the book and tools), Jeremi Gosney, Yoshi Kohno, David
LeBlanc, Marsh Ray, Nick Mathewson, Tamara McBride, Russ McRee, Talhah
Mir, David Mortman, Alec Muffet, Ben Rothke, Andrew Stewart, and Bryan
Sullivan for helpful feedback on drafts and/or ideas that made it into the book
in a wide variety of ways.

Of course, none of those acknowledged in this section are responsible for the
errors which doubtless crept in or remain.

Writing this book “by myself” (an odd phrase given everyone I'm acknowl-
edging) makes me miss working with Andrew Stewart, my partner in writing
on The New School of Information Security. Especially since people sometimes
attribute that book to me, I want to be public about how much I missed his
collaboration in this project.

This book wouldn't be in the form it is were it not for Bruce Schneier’s will-
ingness to make an introduction to Carol Long, and Carol’s willingness to pick
up the book. It wasn't always easy to read the feedback and suggested changes
from my excellent project editor, Victoria Swider, but this thing is better where I
did. Tom Dinse stepped in as the project ended and masterfully took control of a
very large number of open tasks, bringing them to resolution on a tight schedule.

Lastly, and most importantly, thank you to Terri, for all your help, support,
and love, and for putting up with “it’s almost done” for a very, very long time.

—Adam Shostack

lvww . allitebooks.cond

http://www.allitebooks.org

Introduction
Partl
Chapter 1

Chapter 2

Getting Started

Dive In and Threat Model!
Learning to Threat Model
What Are You Building?
What Can Go Wrong?
Addressing Each Threat
Checking Your Work
Threat Modeling on Your Own
Checklists for Diving In and Threat Modeling
Summary

Strategies for Threat Modeling
“What'’s Your Threat Model?”
Brainstorming Your Threats
Brainstorming Variants
Literature Review
Perspective on Brainstorming
Structured Approaches to Threat Modeling
Focusing on Assets
Focusing on Attackers
Focusing on Software
Models of Software
Types of Diagrams
Trust Boundaries
What to Include in a Diagram
Complex Diagrams
Labels in Diagrams

Contents

xXi

—

N O W

12
24

27
28

29
30
31
32
33
34
34
36
40
41
43
44
50
52
52
53

X

Contents

Partll
Chapter 3

Chapter 4

Color in Diagrams

Entry Points

Validating Diagrams
Summary

Finding Threats

STRIDE
Understanding STRIDE and Why It’s Useful
Spoofing Threats
Spoofing a Process or File on the Same Machine
Spoofing a Machine
Spoofing a Person
Tampering Threats
Tampering with a File
Tampering with Memory
Tampering with a Network
Repudiation Threats
Attacking the Logs
Repudiating an Action
Information Disclosure Threats
Information Disclosure from a Process
Information Disclosure from a Data Store
Information Disclosure from a Data Flow
Denial-of-Service Threats
Elevation of Privilege Threats
Elevate Privileges by Corrupting a Process
Elevate Privileges through Authorization Failures
Extended Example: STRIDE Threats against Acme-DB
STRIDE Variants
STRIDE-per-Element
STRIDE-per-Interaction
DESIST
Exit Criteria
Summary

Attack Trees
Working with Attack Trees
Using Attack Trees to Find Threats
Creating New Attack Trees
Representing a Tree
Human-Viewable Representations
Structured Representations
Example Attack Tree
Real Attack Trees
Fraud Attack Tree
Election Operations Assessment Threat Trees
Mind Maps

53
53
54
56

59

61
62
64
65
66
66
67
68
68
68
68
69
70
70
71
71
72
72
73
74
74
74
78
78
80
85
85
85

87
87
88
88
91
91
94
94
96
96
96
98

Contents

Chapter 5

Chapter 6

Part Il
Chapter 7

Perspective on Attack Trees
Summary

Attack Libraries
Properties of Attack Libraries
Libraries and Checklists
Libraries and Literature Reviews
CAPEC
Exit Criteria
Perspective on CAPEC
OWASP Top Ten
Summary

Privacy Tools

Solove’s Taxonomy of Privacy

Privacy Considerations for

Internet Protocols

Privacy Impact Assessments (PLA)

The Nymity Slider and the Privacy Ratchet

Contextual Integrity
Contextual Integrity Decision Heuristic
Augmented Contextual Integrity Heuristic
Perspective on Contextual Integrity

LINDDUN

Summary

Managing and Addressing Threats

Processing and Managing Threats
Starting the Threat Modeling Project
When to Threat Model
What to Start and (Plan to) End With
Where to Start
Digging Deeper into Mitigations
The Order of Mitigation
Playing Chess
Prioritizing
Running from the Bear
Tracking with Tables and Lists
Tracking Threats
Making Assumptions
External Security Notes
Scenario-Specific Elements of
Threat Modeling
Customer/Vendor Trust Boundary
New Technologies
Threat Modeling an API
Summary

98
100

101
101
103
103
104
106
106
108
108

111
112

114
114
115
117
118
119
119
120
121

123

125
126
126
128
128
130
131
131
132
132
133
133
135
136

138
139
139
141
143

Xii

Contents

Chapter 8

Chapter9

Chapter 10

Defensive Tactics and Technologies

Tactics and Technologies for Mitigating Threats

Authentication: Mitigating Spoofing
Integrity: Mitigating Tampering
Non-Repudiation: Mitigating Repudiation

Confidentiality: Mitigating Information Disclosure

Availability: Mitigating Denial of Service

Authorization: Mitigating Elevation of Privilege

Tactic and Technology Traps
Addressing Threats with Patterns

Standard Deployments

Addressing CAPEC Threats
Mitigating Privacy Threats

Minimization

Cryptography

Compliance and Policy
Summary

Trade-Offs When Addressing Threats
Classic Strategies for Risk Management
Avoiding Risks
Addressing Risks
Accepting Risks
Transferring Risks
Ignoring Risks
Selecting Mitigations for Risk Management
Changing the Design
Applying Standard Mitigation Technologies
Designing a Custom Mitigation
Fuzzing Is Not a Mitigation
Threat-Specific Prioritization Approaches
Simple Approaches
Threat-Ranking with a Bug Bar
Cost Estimation Approaches
Mitigation via Risk Acceptance
Mitigation via Business Acceptance
Mitigation via User Acceptance
Arms Races in Mitigation Strategies
Summary

Validating That Threats Are Addressed
Testing Threat Mitigations

Test Process Integration

How to Test a Mitigation

Penetration Testing

145
145
146
148
150
153
155
157
159
159
160
160
160
160
161
164
164

167
168
168
168
169
169
169
170
170
174
176
177
178
178
180
181
184
184
185
185
186

189
190
190
191
191

Contents

xiii

Chapter 11

Part IV
Chapter 12

Checking Code You Acquire
Constructing a Software Model
Using the Software Model

QA’ing Threat Modeling
Model/Reality Conformance
Task and Process Completion
Bug Checking

Process Aspects of Addressing Threats
Threat Modeling Empowers Testing;

Testing Empowers Threat Modeling
Validation/Transformation
Document Assumptions as You Go

Tables and Lists

Summary

Threat Modeling Tools
Generally Useful Tools

Whiteboards

Office Suites

Bug-Tracking Systems
Open-Source Tools

TRIKE

SeaMonster

Elevation of Privilege
Commercial Tools

ThreatModeler

Corporate Threat Modeller

SecurlTree

Little-JIL

Microsoft’s SDL Threat Modeling Tool
Tools That Don’t Exist Yet
Summary

Threat Modeling in Technologies and Tricky Areas

Requirements Cookbook
Why a “Cookbook”?
The Interplay of Requirements, Threats,
and Mitigations
Business Requirements
Outshining the Competition
Industry Requirements
Scenario-Driven Requirements
Prevent/Detect/Respond as a Frame
for Requirements
Prevention
Detection

192
193
194
195
195
196
196
197

197
197
198
198
202

203
204
204
204
204
206
206
206
206
208
208
208
209
209
209
213
213

215

217
218

219
220
220
220
221

221
221
225

Xiv

Contents

Chapter 13

Response

People/Process/Technology as a Frame
for Requirements

People

Process

Technology
Development Requirements vs. Acquisition Requirements
Compliance-Driven Requirements

Cloud Security Alliance

NIST Publication 200

PCI-DSS
Privacy Requirements

Fair Information Practices

Privacy by Design

The Seven Laws of Identity

Microsoft Privacy Standards for Development
The STRIDE Requirements

Authentication

Integrity

Non-Repudiation

Confidentiality

Availability

Authorization
Non-Requirements

Operational Non-Requirements

Warnings and Prompts

Microsoft’s “10 Immutable Laws”
Summary

Web and Cloud Threats
Web Threats
Website Threats
Web Browser and Plugin Threats
Cloud Tenant Threats
Insider Threats
Co-Tenant Threats
Threats to Compliance
Legal Threats
Threats to Forensic Response
Miscellaneous Threats
Cloud Provider Threats
Threats Directly from Tenants
Threats Caused by Tenant Behavior
Mobile Threats
Summary

225

227
227
228
228
228
229
229
230
231
231
232
232
233
234
234
235
236
237
238
238
239
240
240
241
241
242

243
243
244
244
246
246
247
247
248
248
248
249
249
250
250
251

Contents

Chapter 14 Accounts and Identity

Chapter 15

Account Life Cycles
Account Creation
Account Maintenance
Account Termination
Account Life-Cycle Checklist
Authentication
Login
Login Failures
Threats to “What You Have”
Threats to “What You Are”
Threats to “What You Know”
Authentication Checklist
Account Recovery
Time and Account Recovery
E-mail for Account Recovery

Knowledge-Based Authentication

Social Authentication
Attacker-Driven Analysis of
Account Recovery

Multi-Channel Authentication

Account Recovery Checklist
Names, IDs, and SSNs

Names

Identity Documents

Social Security Numbers and Other

National Identity Numbers
Identity Theft
Names, IDs, and SSNs Checklist
Summary

Human Factors and Usability
Models of People

Applying Behaviorist Models of People
Cognitive Science Models of People

Heuristic Models of People
Models of Software Scenarios
Modeling the Software

Diagramming for Modeling the Software
Modeling Electronic Social Engineering Attacks

Threat Elicitation Techniques
Brainstorming

The Ceremony Approach to Threat Modeling

Ceremony Analysis Heuristics

Integrating Usability into the Four-Stage Framework

253
254
254
257
258
258
259
260
262
263
264
267
271
271
272
273
274
278

280
281
281
282
282
285

286
289
290
290

293
294
295
297
302
304
304
307
309
311
311
311
312
315

Xvi

Contents

Chapter 16

PartV
Chapter 17

Tools and Techniques for Addressing
Human Factors
Myths That Inhibit Human Factors Work
Design Patterns for Good Decisions
Design Patterns for a Kind Learning
Environment
User Interface Tools and Techniques
Configuration
Explicit Warnings
Patterns That Grab Attention
Testing for Human Factors
Benign and Malicious Scenarios
Ecological Validity
Perspective on Usability and Ceremonies
Summary

Threats to Cryptosystems
Cryptographic Primitives

Basic Primitives

Privacy Primitives

Modern Cryptographic Primitives
Classic Threat Actors
Attacks against Cryptosystems
Building with Crypto

Making Choices

Preparing for Upgrades

Key Management

Authenticating before Decrypting
Things to Remember about Crypto

Use a Cryptosystem Designed by Professionals
Use Cryptographic Code Built and Tested by Professionals

Cryptography Is Not Magic Security Dust
Assume It Will All Become Public
You Still Need to Manage Keys

Secret Systems: Kerckhoffs and His Principles

Summary

Taking It to the Next Level

Bringing Threat Modeling to Your Organization

How To Introduce Threat Modeling
Convincing Individual Contributors
Convincing Management

Who Does What?

Threat Modeling and Project Management

316
317
317

320
322
322
323
325
327
328
328
329
331

333
334
334
339
339
341
342
346
346
346
346
348
348
348
348
349
349
349
349
351

353

355
356
357
358
359
359

Contents

xvii

Chapter 18

Chapter 19

Prerequisites

Deliverables

Individual Roles and Responsibilities
Group Interaction

Diversity in Threat Modeling Teams

Threat Modeling within a Development Life Cycle

Development Process Issues

Organizational Issues

Customizing a Process for Your Organization
Overcoming Objections to Threat Modeling

Resource Objections

Value Objections

Objections to the Plan
Summary

Experimental Approaches
Looking in the Seams
Operational Threat Models
FlipIT
Kill Chains
The “Broad Street” Taxonomy
Adversarial Machine Learning
Threat Modeling a Business
Threats to Threat Modeling Approaches
Dangerous Deliverables
Enumerate All Assumptions
Dangerous Approaches
How to Experiment
Define a Problem
Find Aspects to Measure and Measure Them
Study Your Results
Summary

Architecting for Success
Understanding Flow

Flow and Threat Modeling

Stymieing People

Beware of Cognitive Load

Avoid Creator Blindness

Assets and Attackers
Knowing the Participants
Boundary Objects
The Best Is the Enemy of the Good
Closing Perspectives

“The Threat Model Has Changed”

360
360
362
363
367
367
368
373
378
379
379
380
381
383

385
386
387
388
388
392
398
399
400
400
400
402
404
404
404
405
405

407
407
409
411
411
412
412
413
414
415
416
417

xviii Contents

On Artistry 418
Summary 419
Now Threat Model 420
Appendix A Helpful Tools 421
Common Answers to “What’s Your Threat Model?” 421
Network Attackers 421
Physical Attackers 422
Attacks against People 423
Supply Chain Attackers 423
Privacy Attackers 424
Non-Sentient “Attackers” 424
The Internet Threat Model 424
Assets 425
Computers as Assets 425
People as Assets 426
Processes as Assets 426
Intangible Assets 427
Stepping-Stone Assets 427
Appendix B Threat Trees 429
STRIDE Threat Trees 430
Spoofing an External Entity (Client/ Person/Account) 432
Spoofing a Process 438
Spoofing of a Data Flow 439
Tampering with a Process 442
Tampering with a Data Flow 444
Tampering with a Data Store 446
Repudiation against a Process (or by an External Entity) 450
Repudiation, Data Store 452
Information Disclosure from a Process 454
Information Disclosure from a Data Flow 456
Information Disclosure from a Data Store 459
Denial of Service against a Process 462
Denial of Service against a Data Flow 463
Denial of Service against a Data Store 466
Elevation of Privilege against a Process 468
Other Threat Trees 470
Running Code 471
Attack via a “Social” Program 474
Attack with Tricky Filenames 476
Appendix C Attacker Lists 477
Attacker Lists 478
Barnard'’s List 478
Verizon’s Lists 478
OWASP 478
Intel TARA 479

lvww . allitebooks.cond

http://www.allitebooks.org

Contents

Xix

Appendix D

Appendix E

Glossary
Bibliography

Index

Personas and Archetypes
Aucsmith’s Attacker Personas
Background and Definitions
Personas
David “NeOphyate” Bradley — Vandal
JoLynn “NightLily” Dobney — Trespasser
Sean “Keech” Purcell — Defacer
Bryan “CrossFyre” Walton — Author
Lorrin Smith-Bates — Insider
Douglas Hite — Thief
My. Smith — Terrorist
M. Jones — Spy

Elevation of Privilege: The Cards
Spoofing

Tampering

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege (EoP)

Case Studies

The Acme Database
Security Requirements
Software Model
Threats and Mitigations

Acme’s Operational Network
Security Requirements
Operational Network
Threats to the Network

Phones and One-Time Token Authenticators

The Scenario
The Threats
Possible Redesigns

Sample for You to Model
Background
The iNTegrity Data Flow Diagrams
Exercises

480
481
481
484
484
486
488
490
492
494
496
498

501
501
503
504
506
507
508

511
512
512
512
513
519
519
520
521
525
526
527
528
528
529
530
531

533

543

567

Introduction

All models are wrong, some models are useful.
— George Box

This book describes the useful models you can employ to address or mitigate
these potential threats. People who build software, systems, or things with
software need to address the many predictable threats their systems can face.

Threat modeling is a fancy name for something we all do instinctively. If I
asked you to threat model your house, you might start by thinking about the
precious things within it: your family, heirlooms, photos, or perhaps your collec-
tion of signed movie posters. You might start thinking about the ways someone
might break in, such as unlocked doors or open windows. And you might start
thinking about the sorts of people who might break in, including neighborhood
kids, professional burglars, drug addicts, perhaps a stalker, or someone trying
to steal your Picasso original.

Each of these examples has an analog in the software world, but for now,
the important thing is not how you guard against each threat, but that you're
able to relate to this way of thinking. If you were asked to help assess a friend’s
house, you could probably help, but you might lack confidence in how complete
your analysis is. If you were asked to secure an office complex, you might have
a still harder time, and securing a military base or a prison seems even more
difficult. In those cases, your instincts are insufficient, and you'd need tools to
help tackle the questions. This book will give you the tools to think about threat
modeling technology in structured and effective ways.

In this introduction, you'll learn about what threat modeling is and why indi-
viduals, teams, and organizations threat model. Those reasons include finding
security issues early, improving your understanding of security requirements,
and being able to engineer and deliver better products. This introduction has

XXi

Introduction

five main sections describing what the book is about, including a definition of
threat modeling and reasons it’s important; who should read this book; how to
use it, and what you can expect to gain from the various parts, and new lessons
in threat modeling.

What Is Threat Modeling?

Everyone threat models. Many people do it out of frustration in line at the airport,
sneaking out of the house or into a bar. At the airport, you might idly consider how
to sneak something through security, even if you have no intent to do so. Sneaking
in or out of someplace, you worry about who might catch you. When you speed
down the highway, you work with an implicit threat model where the main threat
is the police, who you probably think are lurking behind a billboard or overpass.
Threats of road obstructions, deer, or rain might play into your model as well.

When you threat model, you usually use two types of models. There’s a model
of what you're building, and there’s a model of the threats (what can go wrong).
What you're building with software might be a website, a downloadable program
or app, or it might be delivered in a hardware package. It might be a distributed
system, or some of the “things” that will be part of the “Internet of things.” You
model so that you can look at the forest, not the trees. A good model helps you
address classes or groups of attacks, and deliver a more secure product.

The English word threat has many meanings. It can be used to describe a
person, such as “Osama bin Laden was a threat to America,” or people, such
as “the insider threat.” It can be used to describe an event, such as “There is
a threat of a hurricane coming through this weekend,” and it can be used to
describe a weakness or possibility of attack, such as “What are you doing about
confidentiality threats?” It is also used to describe viruses and malware such as
“This threat incorporates three different methods for spreading.” It can be used
to describe behavior such as “There’s a threat of operator error.”

Similarly, the term threat modeling has many meanings, and the term threat
model is used in many distinct and perhaps incompatible ways, including;:

m As a verb—for example, “Have you threat modeled?” That is, have you
gone through an analysis process to figure out what might go wrong with
the thing you're building?

m As a noun, to ask what threat model is being used. For example, “Our
threat model is someone in possession of the machine,” or “Our threat
model is a skilled and determined remote attacker.”

m |t can mean building up a set of idealized attackers.

m |t can mean abstracting threats into classes such as tampering.

There are doubtless other definitions. All of these are useful in various sce-
narios and thus correct, and there are few less fruitful ways to spend your time

Introduction

xxiii

than debating them. Arguing over definitions is a strange game, and the only
way to win is not to play. This book takes a big tent approach to threat model-
ing and includes a wide range of techniques you can apply early to make what
you're designing or building more secure. It will also address the reality that
some techniques are more effective than others, and that some techniques are
more likely to work for people with particular skills or experience.

Threat modeling is the key to a focused defense. Without threat models, you
can never stop playing whack-a-mole.

In short, threat modeling is the use of abstractions to aid in thinking about
risks.

Reasons to Threat Model

In today’s fast-paced world, there is a tendency to streamline development activ-
ity, and there are important reasons to threat model, which are covered in this
section. Those include finding security bugs early, understanding your security
requirements, and engineering and delivering better products.

Find Security Bugs Early

If you think about building a house, decisions you make early will have dramatic
effects on security. Wooden walls and lots of ground-level windows expose you
to more risks than brick construction and few windows. Either may be a reason-
able choice, depending on where you're building and other factors. Once you've
chosen, changes will be expensive. Sure, you can put bars over your windows,
but wouldn't it be better to use a more appropriate design from the start? The
same sorts of tradeoffs can apply in technology. Threat modeling will help you
find design issues even before you've written a line of code, and that’s the best
time to find those issues.

Understand Your Security Requirements

Good threat models can help you ask “Is that really a requirement?” For example,
does the system need to be secure against someone in physical possession of
the device? Apple has said yes for the iPhone, which is different from the tradi-
tional world of the PC. As you find threats and triage what you're going to do
with them, you clarify your requirements. With more clear requirements, you
can devote your energy to a consistent set of security features and properties.

There is an important interplay between requirements, threats, and mitiga-
tions. As you model threats, you'll find that some threats don't line up with your
business requirements, and as such may not be worth addressing. Alternately,
your requirements may not be complete. With other threats, you'll find that
addressing them is too complex or expensive. You'll need to make a call between

XXiv

Introduction

addressing them partially in the current version or accepting (and communicat-
ing) that you can’t address those threats.

Engineer and Deliver Better Products

By considering your requirements and design early in the process, you can
dramatically lower the odds that you'll be re-designing, re-factoring, or facing
a constant stream of security bugs. That will let you deliver a better product on
a more predictable schedule. All the effort that would go to those can be put
into building a better, faster, cheaper or more secure product. You can focus on
whatever properties your customers want.

Address Issues Other Techniques Won't

The last reason to threat model is that threat modeling will lead you to catego-
ries of issues that other tools won't find. Some of these issues will be errors of
omission, such as a failure to authenticate a connection. That’s not something
that a code analysis tool will find. Other issues will be unique to your design.
To the extent that you have a set of smart developers building something new,
you might have new ways threats can manifest. Models of what goes wrong,
by abstracting away details, will help you see analogies and similarities to
problems that have been discovered in other systems.

A corollary of this is that threat modeling should not focus on issues that your
other safety and security engineering is likely to find (except insofar as finding
them early lets you avoid re-engineering). So if, for example, you're building a
product with a database, threat modeling might touch quickly on SQL injection
attacks, and the variety of trust boundaries that might be injectable. However,
you may know that you'll encounter those. Your threat modeling should focus
on issues that other techniques can’t find.

Who Should Read This book?

This book is written for those who create or operate complex technology. That’s
primarily software engineers and systems administrators, but it also includes
a variety of related roles, including analysts or architects. There’s also a lot of
information in here for security professionals, so this book should be useful to
them and those who work with them. Different parts of the book are designed
for different people—in general, the early chapters are for generalists (or special-
ists in something other than security), while the end of the book speaks more
to security specialists.

Introduction

You don’t need to be a security expert, professional, or even enthusiast to
get substantial benefit from this book. I assume that you understand that there
are people out there whose interests and desires don't line up with yours. For
example, maybe they’d like to take money from you, or they may have other
goals, like puffing themselves up at your expense or using your computer to
attack other people.

This book is written in plain language for anyone who can write or spec a
program, but sometimes a little jargon helps in precision, conciseness, or clarity,
so there’s a glossary.

What You Will Gain from This Book

When you read this book cover to cover, you will gain a rich knowledge of threat
modeling techniques. You'll learn to apply those techniques to your projects
so you can build software that’s more secure from the get-go, and deploy it
more securely. You'll learn to how to make security tradeoffs in ways that are
considered, measured, and appropriate. You will learn a set of tools and when
to bring them to bear. You will discover a set of glamorous distractions. Those
distractions might seem like wonderful, sexy ideas, but they hide an ugly inte-
rior. You'll learn why they prevent you from effectively threat modeling, and
how to avoid them.

You'll also learn to focus on the actionable outputs of threat modeling, and
I'll generally call those “bugs.” There are arguments that it’s helpful to consider
code issues as bugs, and design issues as flaws. In my book, those arguments
are a distraction; you should threat model to find issues that you can address,
and arguing about labels probably doesn't help you address them.

Lessons for Different Readers

This book is designed to be useful to a wide variety of people working in tech-
nology. That includes a continuum from those who develop software to those
who combine it into systems that meet operational or business goals to those
who focus on making it more secure.

For convenience, this book pretends there is a bright dividing line between
development and operations. The distinction is used as a way of understand-
ing who has what capabilities, choices, and responsibilities. For example, it is
“easy” for a developer to change what is logged, or to implement a different
authentication system. Both of these may be hard for operations. Similarly, it’s
“easy” for operations to ensure that logs are maintained, or to ensure that a
computer is in a locked cage. As this book was written, there’s also an important

XXVi

Introduction

model of “devops” emerging. The lessons for developers and operations can
likely be applied with minor adjustments. This book also pretends that security
expertise is separate from either development or operations expertise, again,
simply as a convenience.

Naturally, this means that the same parts of the book will bring different les-
sons for different people. The breakdown below gives a focused value proposi-
tion for each audience.

Software Developers and Testers

Software developers—those whose day jobs are focused on creating software—
include software engineers, quality assurance, and a variety of program or
project managers. If you're in that group, you will learn to find and address
design issues early in the software process. This book will enable you to deliver
more secure software that better meets customer requirements and expecta-
tions. You'll learn a simple, effective and fun approach to threat modeling, as
well as different ways to model your software or find threats. You'll learn how
to track threats with bugs that fit into your development process. You'll learn to
use threats to help make your requirements more crisp, and vice versa. You'll
learn about areas such as authentication, cryptography, and usability where the
interplay of mitigations and attacks has a long history, so you can understand
how the recommended approaches have developed to their current state. You'll
learn about how to bring threat modeling into your development process. And
a whole lot more!

Systems Architecture, Operations, and Management

For those whose day jobs involve bringing together software components,
weaving them together into systems to deliver value, you'll learn to find and
address threats as you design your systems, select your components, and get
them ready for deployment. This book will enable you to deliver more secure
systems that better meet business, customer, and compliance requirements.
You'll learn a simple, effective, and fun approach to threat modeling, as well as
different ways to model the systems you're building or have built. You'll learn
how to find security and privacy threats against those systems. You'll learn
about the building blocks which are available for you to operationally address
those threats. You'll learn how to make tradeoffs between the threats you face,
and how to ensure that those threats are addressed. You'll learn about specific
threats to categories of technology, such as web and cloud systems, and about
threats to accounts, both of which are deeply important to those in operations.
It will cover issues of usability, and perhaps even change your perspective on

Introduction xxvii

how to influence the security behavior of people within your organization and/
or your customers. You will learn about cryptographic building blocks, which
you may be using to protect systems. And a whole lot more!

Security Professionals

If you work in security, you will learn two major things from this book: First,
you'll learn structured approaches to threat modeling that will enhance your
productivity, and as you do, you'll learn why many of the “obvious” parts
of threat modeling are not as obvious, or as right, as you may have believed.
Second, you'll learn about bringing security into the development, operational
and release processes that your organization uses.

Even if you are an expert, this book can help you threat model better. Here,
I speak from experience. As I was writing the case study appendix, I found
myself turning to both the tree in Appendix B and the requirements chapter,
and finding threats that didn’t spring to mind from just considering the models
of software.

TO MY COLLEAGUES IN INFORMATION SECURITY

I want to be frank. This book is not about how to design abstractly perfect software.
Itis a practical, grounded book that acknowledges that most software is built in some
business or organizational reality that requires tradeoffs. To the dismay of purists,
software where tradeoffs were made runs the world these days, and I'd like to make
such software more secure by making those tradeoffs better. That involves a great
many elements, two of which are making security more consistent and more acces-
sible to our colleagues in other specialties.

This perspective is grounded in my time as a systems administrator, deploying
security technologies, and observing the issues people encountered. It is grounded
in my time as a startup executive, learning to see security as a property of a system
which serves a business goal. It is grounded in my responsibility for threat model-
ing as part of Microsoft’s Security Development Lifecycle. In that last role, | spoke
with thousands of people at Microsoft, its partners, and its customers about our
approaches. These individuals ranged from newly hired developers to those with
decades of experience in security, and included chief security officers and Microsoft’s
Trustworthy Computing Academic Advisory Board. | learned that there are an awful
lot of opinions about what works, and far fewer about what does not. This book aims
to convince my fellow security professionals that pragmatism in what we ask of devel-
opment and operations helps us deliver more secure software over time. This perspec-
tive may be a challenge for some security professionals. They should focus on Parts I,
IV, and V, and perhaps give consideration to the question of the best as the enemy of
the good.

xxviii Introduction

How To Use This Book

You should start at the very beginning. It’s a very good place to start, even if
you already know how to threat model, because it lays out a framework that
will help you understand the rest of the book.

The Four-Step Framework

This book introduces the idea that you should see threat modeling as composed
of steps which accomplish subgoals, rather than as a single activity. The essential
questions which you ask to accomplish those subgoals are:

1. What are you building?

2. What can go wrong with it once it’s built?

3. What should you do about those things that can go wrong?
4. Did you do a decent job of analysis?

The methods you use in each step of the framework can be thought of like
Lego blocks. When working with Legos, you can snap in other Lego blocks.
In Chapter 1, you'll use a data flow diagram to model what you're building,
STRIDE to help you think about what can go wrong and what you should do
about it, and a checklist to see if you did a decent job of analysis. In Chapter 2,
you'll see how diagrams are the most helpful way to think about what you're
building. Different diagram types are like different building blocks to help
you model what you're building. In Chapter 3, you'll go deep into STRIDE (a
model of threats), while in Chapter 4, you'll learn to use attack trees instead of
STRIDE, while leaving everything else the same. STRIDE and attack trees are
different building blocks for considering what can go wrong once you've built
your new technology.

Not every approach can snap with every other approach. It takes crazy glue
to make an Erector set and Lincoln logs stick together. Attempts to glue threat
modeling approaches together has made for some confusing advice. For example,
trying to consider how terrorists would attack your assets doesn’t really lead
to a lot of actionable issues. And even with building blocks that snap together,
you can make something elegant, or something confusing or bizarre.

So to consider this as a framework, what are the building blocks? The four-
step framework is shown graphically in Figure I-1.

The steps are:

1. Model the system you're building, deploying, or changing.
2. Find threats using that model and the approaches in Part II.

lvww . allitebooks.cond

http://www.allitebooks.org

Introduction

XXix

3. Address threats using the approaches in Part III.

4. Validate your work for completeness and effectiveness (also Part III).

Model
System

;

Find
Threats

:

Address
Threats

:

Validate

Figure I-1: The Four-Step Framework

This framework was designed to align with software development and opera-
tional deployment. It has proven itself as a way to structure threat modeling.
It also makes it easier to experiment without replacing the entire framework.
From here until you reach Part V, almost everything you encounter is selected
because it plugs into this four-step framework.

This book is roughly organized according to the framework:

Part I “Getting Started” is about getting started. The opening part of the book
(especially Chapter 1) is designed for those without much security expertise.
The later parts of the book build on the security knowledge you'll gain from this
material (or combined with your own experience). You'll gain an understanding
of threat modeling, and a recommended approach for those who are new to the
discipline. You'll also learn various ways to model your software, along with
why that’s a better place to start than other options, such as attackers or assets.

Part II “Finding Threats” is about finding threats. It presents a collection of
techniques and tools you can use to find threats. It surveys and analyzes the dif-
ferent ways people approach information technology threat modeling, enabling
you to examine the pros and cons of the various techniques that people bring to
bear. Theyre grouped in a way that enables you to either read them from start
to finish or jump in at a particular point where you need help.

Part III “Managing and Addressing Threats” is about managing and address-
ing threats. It includes processing threats and how to manage them, the tactics
and technologies you can use to address them, and how to make risk tradeoffs

Introduction

you might need to make. It also covers validating that your threats are addressed,
and tools you can use to help you threat model.

Part IV “Threat Modeling in Technologies and Tricky Areas” is about threat
modeling in specific technologies and tricky areas where a great deal of threat
modeling and analysis work has already been done. It includes chapters on web
and cloud, accounts and identity, and cryptography, as well as a requirements
“cookbook” that you can use to jump-start your own security requirements
analysis.

Part V “Taking it to the Next Level” is about taking threat modeling to the
next level. It targets the experienced threat modeler, security expert, or process
designer who is thinking about how to build and customize threat modeling
processes for a given organization.

Appendices include information to help you apply what you've learned. They
include sets of common answers to “what’s your threat model,” and “what are
our assets”; as well as threat trees that can help you find threats, lists of attackers
and attacker personas; and details about the Elevation of Privilege game you'll
use in Chapter 1; and lastly, a set of detailed example threat models. These are
followed by a glossary, bibliography, and index.

Website: This book’s website, www . threatmodel ingbook . com will contain a
PDF of some of the figures in the book, and likely an errata list to mitigate the
errors that inevitably threaten to creep in.

What This Book Is Not

Many security books today promise to teach you to hack. Their intent is to teach
you what sort of attacks need to be defended against. The idea is that if you have
an empirically grounded set of attacks, you can start with that to create your
defense. This is not one of those books, because despite millions of such books
being sold, vulnerable systems are still being built and deployed. Besides, there
are solid, carefully considered defenses against many sorts of attacks. It may
be useful to know how to execute an attack, but it’s more important to know
where each attack might be executed, and how to effectively defend against it.
This book will teach you that.

This book is not focused on a particular technology, platform, or API set.
Platforms and APIs influence may offer security features you can use, or mitigate
some threats for you. The threats and mitigations associated with a platform
change from release to release, and this book aims to be a useful reference
volume on your shelf for longer than the release of any particular technology.

This book is not a magic pill that will make you a master of threat modeling.
It is a resource to help you understand what you need to know. Practice will

Introduction

help you get better, and deliberative practice with feedback and hard problems
will make you a master.

New Lessons on Threat Modeling

Most experienced security professionals have developed an approach to threat
modeling that works for them. If you've been threat modeling for years, this
book will give you an understanding of other approaches you can apply. This
book also give you a structured understanding of a set of methods and how
they inter-relate. Lastly, there are some deeper lessons which are worth bringing
to your attention, rather than leaving them for you to extract.

There’s More Than One Way to Threat Model

If you ask a programmer “What's the right programming language for my new
project?” you can expect a lot of clarifying questions. There is no one ideal pro-
gramming language. There are certainly languages that are better or worse at
certain types of tasks. For example, it’s easier to write text manipulation code
in Perl than assembler. Python is easier to read and maintain than assembler,
but when you need to write ultra-fast code for a device driver, C or assembler
might be a better choice. In the same way, there are better and worse ways to
threat model, which depend greatly on your situation: who will be involved,
what skills they have, and so on.

So you can think of threat modeling like programming. Within programming
there are languages, paradigms (such as waterfall or agile), and practices (pair
programming or frequent deployment). The same is true of threat modeling.
Most past writing on threat modeling has presented “the” way to do it. This
book will help you see how “there’s more than one way to do it” is not just the
Perl motto, but also applies to threat modeling.

The Right Way Is the Way That Finds Good Threats

The right way to threat model is the way that empowers a project team to find
more good threats against a system than other techniques that could be employed
with the resources available. (A “good threat” is a threat that illuminates work
that needs to be done.) That'’s as true for a project team of one as it is for a project
team of thousands. That’s also true across all levels of resources, such as time,
expertise, and tooling. The right techniques empower a team to really find and
address threats (and gain assurance that they have done so).

XXXii

Introduction

There are lots of people who will tell you that they know the one true way.
(That’s true in fields far removed from threat modeling.) Avoid a religious war
and find a way that works for you.

Threat Modeling Is Like Version Control

Threat modeling is sometimes seen as a specialist skill that only a few people
can do well. That perspective holds us back, because threat modeling is more
like version control than a specialist skill. This is not intended to denigrate or
minimize threat modeling; rather, no professional developer would think of
building software of any complexity without a version control system of some
form. Threat modeling should aspire to be that fundamental.

You expect every professional software developer to know the basics of a
version control system or two, and similarly, many systems administrators
will use version control to manage configuration files. Many organizations get
by with a simple version control approach, and never need an expert. If you
work at a large organization, you might have someone who manages the build
tree full time. Threat modeling is similar. With the lessons in this book, it will
become reasonable to expect professionals in software and operations to have
basic experience threat modeling.

Threat Modeling Is Also Like Playing a Violin

When you learn to play the violin, you don't start with the most beautiful violin
music ever written. You learn to play scales, a few easy pieces, and then progress
to trickier and trickier music.

Similarly, when you start threat modeling, you need to practice to learn the
skills, and it may involve challenges or frustration as you learn. You need to
understand threat modeling as a set of skills, which you can apply in a variety
of ways, and which take time to develop. You'll get better if you practice. If
you expect to compete with an expert overnight, you might be disappointed.
Similarly, if you threat model only every few years, you should expect to be
rusty, and it will take you time to rebuild the muscles you need.

Technique versus Repertoire

Continuing with the metaphor, the most talented violinist doesn’t learn to play
a single piece, but they develop a repertoire, a set of knowledge that’s relevant
to their field.

As you get started threat modeling, you'll need to develop both techniques
and a repertoire—a set of threat examples that you can build from to imagine
how new systems might be attacked. Attack lists or libraries can act as a partial

Introduction oxxiii

substitute for the mental repertoire of known threats an expert knows about.
Reading about security issues in similar products can also help you develop a
repertoire of threats. Over time, this can feed into how you think about new and
different threats. Learning to think about threats is easier with training wheels.

“Think Like an Attacker” Considered Harmful

A great deal of writing on threat modeling exhorts people to “think like an
attacker.” For many people, that’s as hard as thinking like a professional chef.
Even if you're a great home cook, a restaurant-managing chef has to wrestle
with problems that a home cook does not. For example, how many chickens
should you buy to meet the needs of a restaurant with 78 seats, each of which
will turn twice an evening? The advice to think like an attacker doesn't help
most people threat model.

Worse, you may end up with implicit or incorrect assumptions about how an
attacker will think and what they will choose to do. Such models of an attacker’s
mindset may lead you to focus on the wrong threats. You don’t need to focus
on the attacker to find threats, but personification may help you find resources
to address them.

The Interplay of Attacks, Mitigations, & Requirements

Threat modeling is all about making more secure software. As you use models
of software and threats to find potential problems, you'll discover that some
threats are hard or impossible to address, and you'll adjust requirements to
match. This interplay is a rarely discussed key to useful threat modeling.

Sometimes it’s a matter of wanting to defend against administrators, other
times it’s a matter of what your customers will bear. In the wake of the 9/11
hijackings, the US government reputedly gave serious consideration to banning
laptops from airplanes. (A battery and a mass of explosives reportedly look the
same on the x-ray machines.) Business customers, who buy last minute expen-
sive tickets and keep the airlines aloft, threatened to revolt. So the government
implemented other measures, whose effectiveness might be judged with some
of the tools in this book.

This interplay leads to the conclusion that there are threats that cannot be
effectively mitigated. That’s a painful thought for many security professionals.
(But as the Man in Black said, “Life is pain, Highness! Anyone who says differ-
ently is selling something.”) When you find threats that violate your requirements
and cannot be mitigated, it generally makes sense to adjust your requirements.
Sometimes it’s possible to either mitigate the threat operationally, or defer a
decision to the person using the system.

With that, it’s time to dive in and threat model!

This part of the book is for those who are new to threat modeling, and it assumes
no prior knowledge of threat modeling or security. It focuses on the key new
skills that you'll need to threat model and lays out a methodology that’s designed
for people who are new to threat modeling.

Part I also introduces the various ways to approach threat modeling using a
set of toy analogies. Much like there are many children’s toys for modeling, there
are many ways to threat model. There are model kits with precisely molded
parts to create airplanes or ships. These kits have a high degree of fidelity and
a low level of flexibility. There are also numerous building block systems such
as Lincoln Logs, Erector Sets, and Lego blocks. Each of these allows for more
flexibility, at the price of perhaps not having a propeller that’s quite right for
the plane you want to model.

In threat modeling, there are techniques that center on attackers, assets, or
software, and these are like Lincoln Logs, Erector Sets, and Lego blocks, in that
each is powerful and flexible, each has advantages and disadvantages, and it
can be tricky to combine them into something beautiful.

2 Part | = Getting Started

Part I contains the following chapters:

m Chapter 1: Dive In and Threat Model! contains everything you need to
get started threat modeling, and does so by focusing on four questions:

m What are you building?

m What can go wrong?

m What should you do about those things that can go wrong?
m Did you do a decent job of analysis?

These questions aren’t just what you need to get started, but are at the
heart of the four-step framework, which is the core of this book.

m Chapter 2: Strategies for Threat Modeling covers a great many ways
to approach threat modeling. Many of them are “obvious” approaches,
such as thinking about attackers or the assets you want to protect. Each
is explained, along with why it works less well than you hope. These
and others are contrasted with a focus on software. Software is what
you can most reasonably expect a software professional to understand,
and so models of software are the most important lesson of Chapter 2.
Models of software are one of the two models that you should focus on
when threat modeling.

Dive In and Threat Model!

Anyone can learn to threat model, and what’s more, everyone should. Threat
modeling is about using models to find security problems. Using a model means
abstracting away a lot of details to provide a look at a bigger picture, rather than
the code itself. You model because it enables you to find issues in things you
haven't built yet, and because it enables you to catch a problem before it starts.
Lastly, you threat model as a way to anticipate the threats that could affect you.

Threat modeling is first and foremost a practical discipline, and this chapter
is structured to reflect that practicality. Even though this book will provide you
with many valuable definitions, theories, philosophies, effective approaches,
and well-tested techniques, you'll want those to be grounded in experience.
Therefore, this chapter avoids focusing on theory and ignores variations for
now and instead gives you a chance to learn by experience.

To use an analogy, when you start playing an instrument, you need to develop
muscles and awareness by playing the instrument. It won’t sound great at the
start, and it will be frustrating at times, but as you do it, you'll find it gets easier.
You'll start to hit the notes and the timing. Similarly, if you use the simple four-
step breakdown of how to threat model that’s exercised in Parts I-III of this book,
you'll start to develop your muscles. You probably know the old joke about the
person who stops a musician on the streets of New York and asks “How do I
get to Carnegie Hall?” The answer, of course, is “practice, practice, practice.”
Some of that includes following along, doing the exercises, and developing an

Part | = Getting Started

understanding of the steps involved. As you do so, you'll start to understand how
the various tasks and techniques that make up threat modeling come together.

In this chapter you're going to find security flaws that might exist in a design,
so you can address them. You'll learn how to do this by examining a simple
web application with a database back end. This will give you an idea of what
can go wrong, how to address it, and how to check your work. Along the way,
you'll learn to play Elevation of Privilege, a serious game designed to help you
start threat modeling. Finally you'll get some hands-on experience building
your own threat model, and the chapter closes with a set of checklists that help
you get started threat modeling.

Learning to Threat Model

You begin threat modeling by focusing on four key questions:
1. What are you building?
2. What can go wrong?
3. What should you do about those things that can go wrong?
4. Did you do a decent job of analysis?

In addressing these questions, you start and end with tasks that all technolo-
gists should be familiar with: drawing on a whiteboard and managing bugs. In
between, this chapter will introduce a variety of new techniques you can use to
think about threats. If you get confused, just come back to these four questions.

Everything in this chapter is designed to help you answer one of these ques-
tions. You're going to first walk through these questions using a three-tier web
app as an example, and after you've read that, you should walk through the
steps again with something of your own to threat model. It could be software
you're building or deploying, or software you're considering acquiring. If you're
feeling uncertain about what to model, you can use one of the sample systems
in this chapter or an exercise found in Appendix E, “Case Studies.”

The second time you work through this chapter, you'll need a copy of the
Elevation of Privilege threat-modeling game. The game uses a deck of cards
that you can download free from http://www.microsoft.com/security/sdl/
adopt/eop.aspx. You should get two—four friends or colleagues together for
the game part.

You start with building a diagram, which is the first of four major activities
involved in threat modeling and is explained in the next section. The other
three include finding threats, addressing them, and then checking your work.

lvww . allitebooks.cond

http://www.allitebooks.org

Chapter 1 = Dive In and Threat Model!

What Are You Building?

Diagrams are a good way to communicate what you are building. There are
lots of ways to diagram software, and you can start with a whiteboard diagram
of how data flows through the system. In this example, you're working with
a simple web app with a web browser, web server, some business logic and a
database (see Figure 1-1).

]

Web browser Web server Business Logic Database

¢ J
Figure 1-1: A whiteboard diagram

Some people will actually start thinking about what goes wrong right here.
For example, how do you know that the web browser is being used by the person
you expect? What happens if someone modifies data in the database? Is it OK
for information to move from one box to the next without being encrypted? You
might want to take a minute to think about some things that could go wrong
here because these sorts of questions may lead you to ask “is that allowed?”
You can create an even better model of what you're building if you think about
“who controls what” a little. Is this a website for the whole Internet, or is it an
intranet site? Is the database on site, or at a web provider?

For this example, let’s say that you're building an Internet site, and you're
using the fictitious Acme storage-system. (I'd put a specific product here, but
then I'd get some little detail wrong and someone, certainly not you, would
get all wrapped around the axle about it and miss the threat modeling lesson.
Therefore, let’s just call it Acme, and pretend it just works the way I'm saying.
Thanks! I knew you'd understand.)

Adding boundaries to show who controls what is a simple way to improve
the diagram. You can pretty easily see that the threats that cross those bound-
aries are likely important ones, and may be a good place to start identifying
threats. These boundaries are called trust boundaries, and you should draw

Part | = Getting Started

them wherever different people control different things. Good examples of this
include the following;:

m Accounts (UIDs on unix systems, or SIDS on Windows)
m Network interfaces

m Different physical computers

m Virtual machines

m Organizational boundaries

m Almost anywhere you can argue for different privileges

TRUST BOUNDARY VERSUS ATTACK SURFACE

A closely related concept that you may have encountered is attack surface. For example,
the hull of a ship is an attack surface for a torpedo. The side of a ship presents a larger
attack surface to a submarine than the bow of the same ship. The ship may have inter-

nal “trust” boundaries, such as waterproof bulkheads or a Captain’s safe. A system that
exposes lots of interfaces presents a larger attack surface than one that presents few

APIs or other interfaces. Network firewalls are useful boundaries because they reduce the
attack surface relative to an external attacker. However, much like the Captain’s safe, there
are still trust boundaries inside the firewall. A trust boundary and an attack surface are
very similar views of the same thing. An attack surface is a trust boundary and a direction
from which an attacker could launch an attack. Many people will treat the terms are inter-
changeable. In this book, you'll generally see “trust boundary” used.

In your diagram, draw the trust boundaries as boxes (see Figure 1-2), show-
ing what’s inside each with a label (such as “corporate data center”) near the
edge of the box.

F n
] f E
Web browser : Web server Business Logic - Database ;
E EE Web storage E
© Corporate data center i1 (offsite) ;
& J

Figure 1-2: Trust boundaries added to a whiteboard diagram

Chapter 1 = Dive In and Threat Model!

As your diagram gets larger and more complex, it becomes easy to miss
a part of it, or to become confused by labels on the data flows. Therefore, it
can be very helpful to number each process, data flow, and data store in the
diagram, as shown in Figure 1-3. (Because each trust boundary should have a
unique name, representing the unique trust inside of it, there’s limited value
to numbering those.)

[g a)|
1 y .
Web browser - Web server Business Logic - Database '
1] 12 3) * A 7]
E EE Web storage E
E Corporate data center : E (offsite) !
| J

Figure 1-3: Numbers and trust boundaries added to a whiteboard diagram

Regarding the physical form of the diagram: Use whatever works for you.
If that’s a whiteboard diagram and a camera phone picture, great. If it’s Visio,
or OmniGraffle, or some other drawing program, great. You should think of
threat model diagrams as part of the development process, so try to keep it in
source control with everything else.

Now that you have a diagram, it’s natural to ask, is it the right diagram? For
now, there’s a simple answer: Let’s assume it is. Later in this chapter there are
some tips and checklists as well as a section on updating the diagram, but at
this stage you have a good enough diagram to get started on identifying threats,
which is really why you bought this book. So let’s identify.

What Can Go Wrong?

Now that you have a diagram, you can really start looking for what can go wrong
with its security. This is so much fun that I turned it into a game called, Elevation
of Privilege. There’s more on the game in Appendix D, “Elevation of Privilege:
The Cards,” which discusses each card, and in Chapter 11, “Threat Modeling
Tools,” which covers the history and philosophy of the game, but you can get
started playing now with a few simple instructions. If you haven't already done
so, download a deck of cards from http://www.microsoft.com/security/sdl/
adopt/eop.aspx. Print the pages in color, and cut them into individual cards.
Then shuffle the deck and deal it out to those friends you've invited to play.

Part | = Getting Started

\[eA N3 Some people aren't used to playing games at work. Others approach new
games with trepidation, especially when those games involve long, complicated instruc-
tions. Elevation of Privilege takes just a few lines to explain. You should give it a try.

How To Play Elevation of Privilege

Elevation of Privilege is a serious game designed to help you threat model. A
sample card is shown in Figure 1-4. You'll notice that like playing cards, it has a
number and suit in the upper left, and an example of a threat as the main text on
the card. To play the game, simply follow the instructions in the upcoming list.

\

Tampering

An attacker can take
advantage of your custom key
exchange or integrity control
which you built instead of
using standard crypto.

9

\ ¥

Figure 1-4: An Elevation of Privilege card

1. Deal the deck. (Shuffling is optional.)

2. The person with the 3 of Tampering leads the first round. (In card games
like this, rounds are also called “tricks” or “hands.”)

Chapter 1 = Dive In and Threat Model!

3. Each round works like so:

A. Each player plays one card, starting with the person leading the round,
and then moving clockwise.

B. To play a card, read it aloud, and try to determine if it affects the
system you have diagrammed. If you can link it, write it down, and
score yourself a point. Play continues clockwise with the next player.

C. When each player has played a card, the player who has played the
highest card wins the round. That player leads the next round.

4. When all the cards have been played, the game ends and the person with
the most points wins.

5. If you're threat modeling a system you're building, then you go file any
bugs you find.

There are some folks who threat model like this in their sleep, or even have
trouble switching it off. Not everyone is like that. That’s OK. Threat modeling
is not rocket science. It’s stuff that anyone who participates in software devel-
opment can learn. Not everyone wants to dedicate the time to learn to do it in
their sleep.

Identifying threats can seem intimidating to a lot of people. If you're one of
them, don't worry. This section is designed to gently walk you through threat
identification. Remember to have fun as you do this. As one reviewer said:
“Playing Elevation of Privilege should be fun. Don’t downplay that. We play it
every Friday. It’s enjoyable, relaxing, and still has business value.”

Outside of the context of the game, you can take the next step in threat model-
ing by thinking of things that might go wrong. For instance, how do you know
that the web browser is being used by the person you expect? What happens
if someone modifies data in the database? Is it OK for information to move
from one box to the next without being encrypted? You don’t need to come up
with these questions by just staring at the diagram and scratching your chin. (I
didn’t!) You can identify threats like these using the simple mnemonic STRIDE,
described in detail in the next section.

Using the STRIDE Mnemonic to Find Threats

STRIDE is a mnemonic for things that go wrong in security. It stands for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation
of Privilege:

m Spoofing is pretending to be something or someone you're not.

10

Part | = Getting Started

m Tampering is modifying something you're not supposed to modify. It can
include packets on the wire (or wireless), bits on disk, or the bits in memory.

m Repudiation means claiming you didn’t do something (regardless of
whether you did or not).

m Denial of Service are attacks designed to prevent a system from provid-
ing service, including by crashing it, making it unusably slow, or filling
all its storage.

m Information Disclosure is about exposing information to people who are
not authorized to see it.

m Elevation of Privilege is when a program or user is technically able to
do things that theyre not supposed to do.

LK XN Thisis where Elevation of Privilege, the game, gets its name. This book uses
Elevation of Privilege, italicized, or abbreviated to EoP, for the game—to avoid confusion
with the threat.

Recall the three example threats mentioned in the preceding section:

m How do you know that the web browser is being used by the person you
expect?

m What happens if someone modifies data in the database?

m s it ok for information to go from one box to the next without being encrypted?

These are examples of spoofing, tampering, and information disclosure. Using
STRIDE as a mnemonic can help you walk through a diagram and select example
threats. Pair that with a little knowledge of security and the right techniques,
and you'll find the important threats faster and more reliably. If you have a
process in place for ensuring that you develop a threat model, document it, and
you can increase confidence in your software.

Now that you have STRIDE in your tool belt, walk through your diagram
again and look for more threats, this time using the mnemonic. Make a list as
you go with the threat and what element of the diagram it affects. (Generally,
the software, data flow, or storage is affected, rather than the trust boundary.)
The following list provides some examples of each threat.

m Spoofing: Someone might pretend to be another customer, so you'll need a
way to authenticate users. Someone might also pretend to be your website, so
you should ensure that you have an SSL certificate and that you use a single
domain for all your pages (to help that subset of customers who read URLs
to see if they're in the right place). Someone might also place a deep link to
one of your pages, such as logout . html Or placeorder.aspx. You should be
checking the Referrer field before taking action. That’s not a complete solution
to what are called CSRF (Cross Site Request Forgery) attacks, but it’s a start.

Chapter 1 = Dive In and Threat Model!

11

m Tampering: Someone might tamper with the data in your back end at
Acme. Someone might tamper with the data as it flows back and forth
between their data center and yours. A programmer might replace the
operational code on the web front end without testing it, thinking they're
uploading it to staging. An angry programmer might add a coupon code
“PayBobMore” that offers a 20 percent discount on all goods sold.

m Repudiation: Any of the preceding actions might require digging into
what happened. Are there system logs? Is the right information being
logged effectively? Are the logs protected against tampering?

m Information Disclosure: What happens if Acme reads your database?
Can anyone connect to the database and read or write information?

m Denial of Service: What happens if a thousand customers show up at
once at the website? What if Acme goes down?

m Elevation of Privilege: Perhaps the web front end is the only place
customers should access, but what enforces that? What prevents them
from connecting directly to the business logic server, or uploading new
code? If there’s a firewall in place, is it correctly configured? What controls
access to your database at Acme, or what happens if an employee at Acme
makes a mistake, or even wants to edit your files?

The preceding possibilities aren’t intended to be a complete list of how each
threat might manifest against every model. You can find a more complete list
in Chapter 3, “STRIDE.” This shorter version will get you started though, and
it is focused on what you might need to investigate based on the very simple
diagram shown in Figure 1-2. Remember the musical instrument analogy. If
you try to start playing the piano with Ravel’s Gaspard (regarded as one of the
most complex piano pieces ever written), you're going to be frustrated.

Tips for Identifying Threats

Whether you are identifying threats using Elevation of Privilege, STRIDE, or both,
here are a few tips to keep in mind that can help you stay on the right track to
determine what could go wrong:

m Start with external entities: If you're not sure where to start, start with
the external entities or events which drive activity. There are many other
valid approaches though: You might start with the web browser, look-
ing for spoofing, then tampering, and so on. You could also start with
the business logic if perhaps your lead developer for that component is
in the room. Wherever you choose to begin, you want to aspire to some
level of organization. You could also go in “STRIDE order” through the
diagram. Without some organization, it’s hard to tell when you're done,
but be careful not to add so much structure that you stifle creativity.

12

Part |

Getting Started

Never ignore a threat because it’s not what you're looking for right now.
You might come up with some threats while looking at other categories.
Write them down and come back to them. For example, you might have
thought about “can anyone connect to our database,” which is listed under
information disclosure, while you were looking for spoofing threats. If so,
that’s awesome! Good job! Redundancy in what you find can be tedious,
but it helps you avoid missing things. If you find yourself asking whether
“someone not authorized to connect to the database who reads informa-
tion” constitutes spoofing or information disclosure, the answer is, who
cares? Record the issue and move along to the next one. STRIDE is a tool
to guide you to threats, not to ask you to categorize what you've found;
it makes a lousy taxonomy, anyway. (That is to say, there are plenty of
security issues for which you can make an argument for various different
categorizations. Compare and contrast it with a good taxonomy, such
as the taxonomy of life. Does it have a backbone? If so, it’s a vertebrae.)

Focus on feasible threats: Along the way, you might come up with threats
like “someone might insert a back door at the chip factory,” or “someone
might hire our janitorial staff to plug in a hardware key logger and steal
all our passwords.” These are real possibilities but not very likely com-
pared to using an exploit to attack a vulnerability for which you haven't
applied the patch, or tricking someone into installing software. There’s
also the question of what you can do about either, which brings us to the
next section.

Addressing Each Threat

You should now have a decent-sized list or lists of threats. The next step in the

threat modeling process is to go through the lists and address each threat. There
are four types of action you can take against each threat: Mitigate it, eliminate
it, transfer it, or accept it. The following list looks briefly at each of these ways
to address threats, and then in the subsequent sections you will learn how to
address each specific threat identified with the STRIDE list in the “What Can
Go Wrong” section. For more details about each of the strategies and techniques
to address these threats, see Chapters 8 and 9, “Defensive Building Blocks” and
“Tradeoffs When Addressing Threats.”

Mitigating threats is about doing things to make it harder to take advan-
tage of a threat. Requiring passwords to control who can log in mitigates
the threat of spoofing. Adding password controls that enforce complex-
ity or expiration makes it less likely that a password will be guessed or
usable if stolen.

Eliminating threats is almost always achieved by eliminating features. If
you have a threat that someone will access the administrative function of

Chapter 1 = Dive In and Threat Model!

13

a website by visiting the /admin/URL, you can mitigate it with passwords
or other authentication techniques, but the threat is still present. You can
make it less likely to be found by using a URL like /j8esvg21euwg/, but
the threat is still present. You can eliminate it by removing the interface,
handling administration through the command line. (There are still threats
associated with how people log in on a command line. Moving away from
HTTP makes the threat easier to mitigate by controlling the attack surface.
Both threats would be found in a complete threat model.) Incidentally,
there are other ways to eliminate threats if you're a mob boss or you run
a police state, but I don’t advocate their use.

m Transferring threats is about letting someone or something else handle the
risk. For example, you could pass authentication threats to the operating
system, or trust boundary enforcement to a firewall product. You can also
transfer risk to customers, for example, by asking them to click through
lots of hard-to-understand dialogs before they can do the work they
need to do. That’s obviously not a great solution, but sometimes people
have knowledge that they can contribute to making a security tradeoff.
For example, they might know that they just connected to a coffee shop
wireless network. If you believe the person has essential knowledge to
contribute, you should work to help her bring it to the decision. There’s
more on doing that in Chapter 15, “Human Factors and Usability.”

m Accepting the risk is the final approach to addressing threats. For most
organizations most of the time, searching everyone on the way in and out
of the building is not worth the expense or the cost to the dignity and
job satisfaction of those workers. (However, diamond mines and some-
times government agencies take a different approach.) Similarly, the cost
of preventing someone from inserting a back door in the motherboard
is expensive, so for each of these examples you might choose to accept
the risk. And once you've accepted the risk, you shouldn’t worry over it.
Sometimes worry is a sign that the risk hasn't been fully accepted, or that
the risk acceptance was inappropriate.

The strategies listed in the following tables are intended to serve as examples
to illustrate ways to address threats. Your “go-to” approach should be to miti-
gate threats. Mitigation is generally the easiest and the best for your customers.
(It might look like accepting risk is easier, but over time, mitigation is easier.)
Mitigating threats can be hard work, and you shouldn’t take these examples
as complete. There are often other valid ways to address each of these threats,
and sometimes trade-offs must be made in the way the threats are addressed.

Addressing Spoofing

Table 1-1 and the list that follows show targets of spoofing, mitigation strategies
that address spoofing, and techniques to implement those mitigations.

14 Part | = Getting Started

Table 1-1: Addressing Spoofing Threats

THREAT
TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE
Spoofing a Identification and authen- Usernames, real names, or other identifiers:
person tication (usernames and .
something you know/have/ ¥ Passwords
are) % Tokens
« Biometrics
Enrollment/maintenance/expiry
Spoofing a “file” Leverage the OS < Full paths
on disk)
% Checking ACLs
« Ensuring that pipes are created properly
Cryptographic Digital signatures or authenticators
authenticators
Spoofinganet- Cryptographic «» DNSSEC

work address
< HTTPS/SSL

% IPsec
Spoofing a Leverage the OS Many modern operating systems have
program in some form of application identifier that the
memory OS will enforce.

m When you're concerned about a person being spoofed, ensure that each
person has a unique username and some way of authenticating. The tradi-
tional way to do this is with passwords, which have all sorts of problems
as well as all sorts of advantages that are hard to replicate. See Chapter
14, “Accounts and Identity” for more on passwords.

m When accessing a file on disk, don’t ask for the file with open (file). Use
open (/path/to/file). If the file is sensitive, after opening, check vari-
ous security elements of the file descriptor (such as fully resolved name,
permissions, and owner). You want to check with the file descriptor to
avoid race conditions. This applies doubly when the file is an executable,
although checking after opening can be tricky. Therefore, it may help to
ensure that the permissions on the executable can’t be changed by an
attacker. In any case, you almost never want to call exec () with . /file.

m When you're concerned about a system or computer being spoofed when
it connects over a network, you'll want to use DNSSEC, SSL, IPsec, or a
combination of those to ensure you're connecting to the right place.

lvww . allitebooks.cond

http://www.allitebooks.org

Chapter 1 = Dive In and Threat Model!

15

Addressing Tampering

Table 1-2 and the list that follows show targets of tampering, mitigation strate-
gies that address tampering, and techniques to implement those mitigations.

Table 1-2: Addressing Tampering Threats

MITIGATION
THREAT TARGET STRATEGY MITIGATION TECHNIQUE
Tampering with a file Operating system ACLs

Cryptographic < Digital Signatures

< Keyed MAC

Racing to create a file Using a directory that's ACLs
(tampering with the file protected from arbitrary) . .
systerm) user tampering Using private directory structures

(Randomizing your file names just
makes it annoying to execute the

attack.)
Tampering with a net- Cryptographic & HTTPS/SSL
work packet
% [Psec
Anti-pattern Network isolation (See note on

network isolation anti-pattern.)

m Tampering with a file: Tampering with files can be easy if the attacker
has an account on the same machine, or by tampering with the network
when the files are obtained from a server.

m Tampering with memory: The threats you want to worry about are those
that can occur when a process with less privileges than you, or that you
don’t trust, can alter memory. For example, if you're getting data from a
shared memory segment, is it ACLed so only the other process can see it?
For a web app that has data coming in via AJAX, make sure you validate
that the data is what you expect after you pull in the right amount.

m Tampering with network data: Preventing tampering with network data
requires dealing with both spoofing and tampering. Otherwise, someone
who wants to tamper can simply pretend to be the other end, using what’s
called a man-in-the-middle attack. The most common solution to these
problems is SSL, with IP Security (IPsec) emerging as another possibility.
SSL and IPsec both address confidentiality and tampering, and can help
address spoofing.

16

Part | = Getting Started

m Tampering with networks anti-pattern: It's somewhat common for peo-
ple to hope that they can isolate their network, and so not worry about
tampering threats. It’s also very hard to maintain isolation over time.
Isolation doesn’t work as well as you would hope. For example, the isolated
United States SIPRNet was thoroughly infested with malware, and the
operation to clean it up took 14 months (Shachtman, 2010).

A program can’t check whether it’s authentic after it loads. It may be
possible for something to rely on “trusted bootloaders” to provide a chain of signatures,
but the security decisions are being made external to that code. (If you're not familiar
with the technology, don’t worry, the key lesson is that a program cannot check its own
authenticity.)

Addressing Repudiation

Addressing repudiation is generally a matter of ensuring that your system
is designed to log and ensuring that those logs are preserved and protected.
Some of that can be handled with simple steps such as using a reliable trans-
port for logs. In this sense, syslog over UDP was almost always silly from
a security perspective; syslog over TCP/SSL is now available and is vastly
better.

Table 1-3 and the list that follows show targets of repudiation, mitigation strate-
gies that address repudiation, and techniques to implement those mitigations.

Table 1-3: Addressing Repudiation Threats

THREAT TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE
No logs means you can't Log Be sure to log all the security-
prove anything. relevant information.
Logs come under attack Protect your logs. < Send over the network.
“ ACL
Logs as a channel for attack Tightly specified logs Documenting log design
early in the development
process

= No logs means you can’t prove anything: This is self-explanatory. For
example, when a customer calls to complain that they never got their order,
how will this be resolved? Maintain logs so that you can investigate what
happens when someone attempts to repudiate something.

Chapter 1

Dive In and Threat Model!

17

m Logs come under attack: Attackers will do things to prevent your logs
from being useful, including filling up the log to make it hard to find the
attack or forcing logs to “roll over.” They may also do things to set off
so many alarms that the real attack is lost in a sea of troubles. Perhaps
obviously, sending logs over a network exposes them to other threats

that you'll need to handle.

m Logs as a channel for attack: By design, you're collecting data from sources
outside your control, and delivering that data to people and systems with
security privileges. An example of such an attack might be sending mail
addressed to "</html> haha@example.com", causing trouble for web-based

tools that don't expect inline HTML.

You can make it easier to write secure code to process your logs by clearly
communicating what your logs can’t contain, such as “Our logs are all plaintext,
and attackers can insert all sorts of things,” or “Fields 1-5 of our logs are tightly
controlled by our software, fields 6-9 are easy to inject data into. Field 1 is time
in GMT. Fields 2 and 3 are IP addresses (v4 or 6)...” Unless you have incredibly
strict control, documenting what your logs can contain will likely miss things.
(For example, can your logs contain Unicode double-wide characters?)

Addressing Information Disclosure

Table 1-4 and the list which follows show targets of information disclosure,
mitigation strategies that address information disclosure, and techniques to

implement those mitigations.

Table 1-4: Addressing Information Disclosure Threats

THREAT TARGET MITIGATION STRATEGY

MITIGATION TECHNIQUE

Network monitoring Encryption « HTTPS/SSL
% IPsec

Directory or filename (for Leverage the OS. ACLs

example

layoff-letters/

adamshostack.docx)

File contents Leverage the OS. ACLS

Cryptography File encryption such as PGP, disk

encryption (FileVault, BitLocker)

APl information Design Careful design control

disclosure

Consider pass by reference or
value.

18

Part |

Getting Started

Table

Network monitoring: Network monitoring takes advantage of the archi-
tecture of most networks to monitor traffic. (In particular, most networks
now broadcast packets, and each listener is expected to decide if the packet
matters to them.) When networks are architected differently, there are a
variety of techniques to draw traffic to or through the monitoring station.

If you don’t address spoofing, much like tampering, an attacker can just
sit in the middle and spoof each end. Mitigating network information
disclosure threats requires handling both spoofing and tampering threats.
If you don’t address tampering, then there are all sorts of clever ways to
get information out. Here again, SSL and IP Security options are your
simplest choices.

Names reveal information: When the name of a directory or a filename
itself will reveal information, then the best way to protect it is to create
a parent directory with an innocuous name and use operating system
ACLs or permissions.

File content is sensitive: When the contents of the file need protection,
use ACLs or cryptography. If you want to protect all the data should the
machine fall into unauthorized hands, you’ll need to use cryptography.
The forms of cryptography that require the person to manually enter a key
or passphrase are more secure and less convenient. There’s file, filesystem,
and database cryptography, depending on what you need to protect.

APIs reveal information: When designing an API, or otherwise passing
information over a trust boundary, select carefully what information you
disclose. You should assume that the information you provide will be
passed on to others, so be selective about what you provide. For example,
website errors that reveal the username and password to a database are a
common form of this flaw, others are discussed in Chapter 3.

Addressing Denial of Service

1-5 and the list that follows show targets of denial of service, mitigation

strategies that address denial of service, and techniques to implement those
mitigations.

Chapter 1 = Dive In and Threat Model! 19

Table 1-5: Addressing Denial of Service Threats

THREAT MITIGATION

TARGET STRATEGY MITIGATION TECHNIQUE
Network Look for exhaustible ¢ Elastic resources

flooding resources.

% Work to ensure attacker resource consumption is
as high as or higher than yours.

Network ACLS

Program Careful design Elastic resource management, proof of work
resources

Avoid multipliers. Look for places where attackers can multiply CPU
consumption on your end with minimal effort on
their end: Do something to require work or enable
distinguishing attackers, such as client does crypto
first or login before large work factors (of course, that
can't mean that logins are unencrypted).

System Leverage the OS. Use OS settings.
resources

m Network flooding: If you have static structures for the number of
connections, what happens if those fill up? Similarly, to the extent that it’s
under your control, don’t accept a small amount of network data from
a possibly spoofed address and return a lot of data. Lastly, firewalls can
provide a layer of network ACLs to control where you’'ll accept (or send)
traffic, and can be useful in mitigating network denial-of-service attacks.

m Look for exhaustible resources: The first set of exhaustible resources are
network related, the second set are those your code manages, and the third
are those the OS manages. In each case, elastic resourcing is a valuable
technique. For example, in the 1990s some TCP stacks had a hardcoded
limit of five half-open TCP connections. (A half-open connection is one
in the process of being opened. Don’t worry if that doesn’t make sense,
but rather ask yourself why the code would be limited to five of them.)
Today, you can often obtain elastic resourcing of various types from
cloud providers.

20 Part | = Getting Started

m System resources: Operating systems tend to have limits or quotas to
control the resource consumption of user-level code. Consider those
resources that the operating system manages, such as memory or disk
usage. If your code runs on dedicated servers, it may be sensible to allow
it to chew up the entire machine. Be careful if you unlimit your code, and
be sure to document what you’re doing.

m Program resources: Consider resources that your program manages
itself. Also, consider whether the attacker can make you do more
work than they’re doing. For example, if he sends you a packet full
of random data and you do expensive cryptographic operations on it,
then your vulnerability to denial of service will be higher than if you
make him do the cryptography first. Of course, in an age of botnets,
there are limits to how well one can reassign this work. There’s an
excellent paper by Ben Laurie and Richard Clayton, “Proof of work
proves not to work,” which argues against proof of work schemes
(Laurie, 2004).

Addressing Elevation of Privilege

Table 1-6 and the list that follows show targets of elevation of privilege, mitiga-
tion strategies that address elevation of privilege, and techniques to implement
those mitigations.

Table 1-6: Addressing Elevation of Privilege Threats

MITIGATION
THREAT TARGET STRATEGY MITIGATION TECHNIQUE
Data/code Use tools and < Prepared statements or stored procedures in
confusion architectures that SQL

separate data and))

code. ¢ Clear separators with canonical forms

«» Late validation that data is what the next func-
tion expects

Control flow/ Use a type-safe Writing code in a type-safe language protects
memory corrup- language. against entire classes of attack.
tion attacks

Leverage the Most modern operating systems have memory-
OS for memory protection facilities.
protection.

Chapter 1 = Dive In and Threat Model! 21

MITIGATION

THREAT TARGET STRATEGY MITIGATION TECHNIQUE

Use the sandbox. « Modern operating systems support sand-
boxing in various ways (AppArmor on Linux,
AppContainer or the MOICE pattern on
Windows, Sandboxlib on Mac OS).

< Don't run as the “nobody” account, create a
new one for each app. Postfix and QMail are
examples of the good pattern of one account
per function.

Command injec- Be careful. « Validate that your input is the size and form
tion attacks you expect.

< Don't sanitize. Log and then throw it away if
it's weird.

m Data/code confusion: Problems where data is treated as code are common.
As information crosses layers, what’s tainted and what’s pure can be lost.
Attacks such as XSS take advantage of HTML's freely interweaving code
and data. (That is, an .html file contains both code, such as Javascript, and
data, such as text, to be displayed and sometimes formatting instructions
for that text.) There are a few strategies for dealing with this. The first
is to look for ways in which frameworks help you keep code and data
separate. For example, prepared statements in SQL tell the database what
statements to expect, and where the data will be.

You can also look at the data you're passing right before you pass it, so
you know what validation you might be expected to perform for the func-
tion you're calling. For example, if you're sending data to a web page,
you might ensure that it contains no <, >, #, or & characters, or whatever.

In fact, the value of “whatever” is highly dependent on exactly what exists
between “you” and the rendition of the web page, and what security
checks it may be performing. If “you” means a web server, it may be very
important to have a few < and > symbols in what you produce. If “you”
is something taking data from a database and sending it to, say PHP, then
the story is quite different. Ideally, the nature of “you” and the additional
steps are clear in your diagrams.

= Control flow/memory corruption attacks: This set of attacks generally
takes advantage of weak typing and static structures in C-like languages
to enable an attacker to provide code and then jump to that code. If you

22

Part | = Getting Started

use a type-safe language, such as Java or C#, many of these attacks are
harder to execute.

Modern operating systems tend to contain memory protection and random-
ization features, such as Address Space Layout Randomization (ASLR).
Sometimes the features are optional, and require a compiler or linker switch.
In many cases, such features are almost free to use, and you should at
least try all such features your OS supports. (It’s not completely effortless,
you may need to recompile, test, or make other such small investments.)

The last set of controls to address memory corruption are sandboxes.
Sandboxes are OS features that are designed to protect the OS or the rest
of the programs running as the user from a corrupted program.

N[Ol ld Details about each of these features are outside the scope of this book, but
searching on terms such as type safety, ASLR, and sandbox should provide a plethora of
details.

m Command injection attacks: Command injection attacks are a form of
code/data confusion where an attacker supplies a control character, fol-
lowed by commands. For example, in SQL injection, a single quote will
often close a dynamic SQL statement; and when dealing with unix shell
scripts, the shell can interpret a semicolon as the end of input, taking
anything after that as a command.

In addition to working through each STRIDE threat you encounter, a few other
recurring themes will come up as you address your threats; these are covered
in the following two sections.

Validate, Don’t Sanitize

Know what you expect to see, how much you expect to see, and validate that
that’s what you're receiving. If you get something else, throw it away and return
an error message. Unless your code is perfect, errors in sanitization will hurt
a lot, because after you write that sanitize input function youre going to rely
on it. There have been fascinating attacks that rely on a sanitize function to get
their code into shape to execute.

Trust the Operating System

One of the themes that recurs in the preceding tables is “trust the operating
system.” Of course, you may want to discount that because I did much of this

Chapter 1 = Dive In and Threat Model!

23

work while working for Microsoft, a purveyor of a variety of fine operating
system software, so there might be some bias here. It’s a valid point, and good
for you for being skeptical. See, you're threat modeling already!

More seriously, trusting the operating system is a good idea for a number
of reasons:

m The operating system provides you with security features so you can
focus on your unique value proposition.

m The operating system runs with privileges that are probably not available
to your program or your attacker.

m [f your attacker controls the operating system, you're likely in a world of
hurt regardless of what your code tries to do.

With all of that “trust the operating system” advice, you might be tempted to
ask why you need this book. Why not just rely on the operating system?

Well, many of the building blocks just discussed are discretionary. You can
use them well or you can use them poorly. It’s up to you to ensure that you don’t
set the permissions on a file to 777, or the ACLs to allow Guest accounts to write.
It’s up to you to write code that runs well as a normal or even sandboxed user,
and it’s certainly up to you in these early days of client/server, web, distributed
systems, web 2.0, cloud, or whatever comes next to ensure that you're building
the right security mechanisms that these newfangled widgets don't yet offer.

File Bugs

Now that you have a list of threats and ways you would like to mitigate them,
you're through the complex, security-centered parts of the process. There are just
a few more things to do, the first of which is to treat each line of the preceding
tables as a bug. You want to treat these as bugs because if you ship software,
you've learned to handle bugs in some way. You presumably have a way to track
them, prioritize them, and ensure that you're closing them with an appropriate
degree of consistency. This will mean something very different to a three-person
start-up versus a medical device manufacturer, but both organizations will have
a way to handle bugs. You want to tap into that procedure to ensure that threat
modeling isn't just a paper exercise.

You can write the text of the bugs in a variety of ways, based on what your
organization does. Examples of filing a bug might include the following:

m Someone might use the /admin/ interface without proper authorization.
m The admin interface lacks proper authorization controls,

m There’s no automated security testing for the /admin/ interface.

24

Part | = Getting Started

Whichever way you go, it’s great if you can include the entire threat in the
bug, and mark it as a security bug if your bug-tracking tool supports that. (If
you're a super-agile scrum shop, use a uniquely colored Post-it for security bugs.)

You'll also have to prioritize the bugs. Elevation-of-privilege bugs are almost
always going to fall into the highest priority category, because when they’re
exploited they lead to so much damage. Denial of service often falls toward
the bottom of the stack, but you'll have to consider each bug to determine how
to rank it.

Checking Your Work

Validation of your threat model is the last thing you do as part of threat model-
ing. There are a few tasks to be done here, and it is best to keep them aligned
with the order in which you did the previous work. Therefore, the validation
tasks include checking the model, checking that you've looked for each threat,
and checking your tests. You probably also want to validate the model a second
time as you get close to shipping or deploying.

Checking the model

You should ensure that the final model matched what you built. If it doesn't,
how can you know that you found the right, relevant threats? To do so, try to
arrange a meeting during which everyone looks at the diagram, and answer
the following questions:

m |s this complete?

m [s it accurate?

m Does it cover all the security decisions we made?

m Can I start the next version with this diagram without any changes?

If everyone says yes, your diagram is sufficiently up to date for the next step.
If not, you'll need to update it.

Updating the Diagram

As you went through the diagram, you might have noticed that it’s missing
key data. If it were a real system, there might be extra interfaces that were not
drawn in, or there might be additional databases. There might be details that you
jumped to the whiteboard to draw in. If so, you need to update the diagram with
those details. A few rules of thumb are useful as you create or update diagrams:

m Focus on data flow, not control flow.

m Anytime you need to qualify your answer with “sometimes” or “also,”
you should consider adding more detail to break out the various cases. For
example, if you say, “Sometimes we connect to this web service via SSL,

lvww . allitebooks.cond

http://www.allitebooks.org

Chapter 1 = Dive In and Threat Model!

25

and sometimes we fall back to HTTP,” you should draw both of those data
flows (and consider whether an attacker can make you fall back like that).

m Anytime you find yourself needing more detail to explain security-relevant
behavior, draw it in.

m Any place you argued over the design or construction of the system, draw
in the agreed-on facts. This is an important way to ensure that everyone
ended that discussion on the same page. It's especially important for larger
teams when not everyone is in the room for the threat model discussions.
If they see a diagram that contradicts their thinking, they can either accept
it or challenge the assumptions; but either way, a good clear diagram can
help get everyone on the same page.

m Don’t have data sinks: You write the data for a reason. Show who uses it.

m Data can’t move itself from one data store to another: Show the process
that moves it.

m The diagram should tell a story, and support you telling stories while
pointing at it.

m Don’t draw an eye chart (a diagram with so much detail that you need to
squint to read the tiny print).

Diagram Details

If you're wondering how to reconcile that last rule of thumb, don’t draw an eye
chart, with all the details that a real software project can entail, one technique
is to use a sub diagram that shows the details of one particular area. You should
look for ways to break things out that make sense for your project. For example,
if you have one hyper-complex process, maybe everything in that process should
be covered in one diagram, and everything outside it in another. If you have
a dispatcher or queuing system, that’s a good place to break things up. Your
databases or the fail-over system is also a good split. Maybe there’s a set of a
few elements that really need more detail. All of these are good ways to break
things out.

The key thing to remember is that the diagram is intended to help ensure
that you understand and can discuss the system. Recall the quote that opens
this book: “All models are wrong. Some models are useful.” Therefore, when
you're adding additional diagrams, don't ask, “Is this the right way to do it?”
Instead, ask, “Does this help me think about what might go wrong?”

Checking Each Threat

There are two main types of validation activities you should do. The first is
checking that you did the right thing with each threat you found. The other is
asking if you found all the threats you should find.

26

Part | = Getting Started

In terms of checking that you did the right thing with each threat you did
find, the first and foremost question here is “Did I do something with each
unique threat I found?” You really dont want to drop stuff on the floor. This is
“turning the crank” sort of work. It’s rarely glamorous or exciting until you find
the thing you overlooked. You can save a lot of time by taking meeting minutes
and writing a bug number next to each one, checking that you've addressed
each when you do your bug triage.

The next question is “Did I do the right something with each threat?” If you've
filed bugs with some sort of security tag, run a query for all the security bugs,
and give each one a going-over. This can be as lightweight as reading each
bug and asking yourself, “Did I do the right thing?” or you could use a short
checklist, an example of which (“Validating threats”) is included at the end of
this chapter in the “Checklists for Diving in and Threat Modeling” section.

Checking Your Tests

For each threat that you address, ensure you've built a good test to detect the
problem. Your test can be a manual testing process or an automated test. Some
of these tests will be easy, and others very tricky. For example, if you want to
ensure that no static web page under /beta can be accessed without the beta
cookie, you can build a quick script that retrieves all the pages from your source
repository, constructs a URL for it, and tries to collect the page. You could extend
the script to send a cookie with each request, and then re-request with an admin
cookie. Ideally, that’s easy to do in your existing web testing framework. It
gets a little more complex with dynamic pages, and a lot more complex when
the security risk is something such as SQL injection or secure parsing of user
input. There are entire books written on those subjects, not to mention entire
books on the subject of testing. The key question you should ask is something
like “Are my security tests in line with the other software tests and the sorts of
risks that failures expose?”

Threat Modeling on Your Own

You have now walked through your first threat model. Congratulations! Remember
though: You're not going to get to Carnegie Hall if you don’t practice, practice,
practice. That means it is time to do it again, this time on your own, because
doing it again is the only way to get better. Pick a system you're working on and
threat model it. Follow this simplified, five-step process as you go:

1. Draw a diagram.

2. Use the EoP game to find threats.

Chapter 1 = Dive In and Threat Model!

27

3. Address each threat in some way.
4. Check your work with the checklists at the end of this chapter.

5. Celebrate and share your work.

Right now, if you're new to threat modeling, your best bet is to do it often,
applying it to the software and systems that matters to you. After threat model-
ing a few systems, you'll find yourself getting more comfortable with the tools
and techniques. For now, the thing to do is practice. Build your first muscles to
threat model with.

This brings up the question, what should you threat model next?

What you're working on now is the first place to look for the next system to
threat model. If it has a trust boundary of some sort, it may be a good candidate.
If it’s too simple to have trust boundaries, threat modeling it probably won't
be very satisfying. If it has too many boundaries, it may be too big a project to
chew on all at once. If you're collaborating closely on it with a few other people
who you trust, that may be a good opportunity to play EoP with them. If you're
working on a large team, or across organizational boundaries, or things are tense,
then those people may not be good first collaborators on threat modeling. Start
with what you're working on now, unless there are tangible reasons to wait.

Checklists for Diving In and Threat Modeling

There’s a lot in this chapter. As you sit down to really do the work yourself, it can
be tricky to assess how you're doing. Here are some checklists that are designed
to help you avoid the most common problems. Each question is designed to be
read aloud and to have an affirmative answer from everyone present. After read-
ing each question out loud, encourage questions or clarification from everyone
else involved.

Diagramming
1. Can we tell a story without changing the diagram?
2. Can we tell that story without using words such as “sometimes” or “also”?

3. Can we look at the diagram and see exactly where the software will make
a security decision?

4. Does the diagram show all the trust boundaries, such as where different
accounts interact? Do you cover all UIDs, all application roles, and all
network interfaces?

5. Does the diagram reflect the current or planned reality of the software?

28 Part | = Getting Started

6. Can we see where all the data goes and who uses it?

7. Do we see the processes that move data from one data store to another?
Threats
1. Have we looked for each of the STRIDE threats?

2. Have we looked at each element of the diagram?

3. Have we looked at each data flow in the diagram?

L[l N3 Data flows are a type of element, but they are sometimes overlooked as people
get started, so question 3 is a belt-and-suspenders question to add redundancy. (A belt-
and-suspenders approach ensures that a gentleman’s pants stay up.)

Validating Threats

1. Have we written down or filed a bug for each threat?

2. Is there a proposed /planned /implemented way to address each threat?
3. Do we have a test case per threat?
4

. Has the software passed the test?

Summary

Any technical professional can learn to threat model. Threat modeling involves
the intersection of two models: a model of what can go wrong (threats), applied
to a model of the software you're building or deploying, which is encoded in
a diagram. One model of threats is STRIDE: spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of privilege. This model
of threats has been made into the Elevation of Privilege game, which adds struc-
ture and hints to the model.

With a whiteboard diagram and a copy of Elevation of Privilege, developers
can threat model software that theyre building, systems administrators can
threat model software they’re deploying or a system theyre constructing, and
security professionals can introduce threat modeling to those with skillsets
outside of security.

It'’s important to address threats, and the STRIDE threats are the inverse of
properties you want. There are mitigation strategies and techniques for devel-
opers and for systems administrators.

Once you've created a threat model, it’s important to check your work by
making sure you have a good model of the software in an up-to-date diagram,
and that you've checked each threat you've found.

Strategies for Threat Modeling

The earlier you find problems, the easier it is to fix them. Threat modeling is all
about finding problems, and therefore it should be done early in your develop-
ment or design process, or in preparing to roll out an operational system. There
are many ways to threat model. Some ways are very specific, like a model air-
plane kit that can only be used to build an F-14 fighter jet. Other methods are
more versatile, like Lego building blocks that can be used to make a variety
of things. Some threat modeling methods don’t combine easily, in the same
way that Erector set pieces and Lego set blocks don't fit together. This chapter
covers the various strategies and methods that have been brought to bear on
threat modeling, presents each one in depth, and sets the stage for effectively
finding threats.

You'll start with very simple methods such as asking “what’s your threat
model?” and brainstorming about threats. Those can work for a security expert,
and they may work for you. From there, you'll learn about three strategies for
threat modeling: focusing on assets, focusing on attackers, and focusing on
software. These strategies are more structured, and can work for people with
different skillsets. A focus on software is usually the most appropriate strategy.
The desire to focus on assets or attackers is natural, and often presented as an
unavoidable or essential aspect of threat modeling. It would be wrong not to
present each in its best light before discussing issues with those strategies. From
there, you'll learn about different types of diagrams you can use to model your
system or software.

29

30

Part | = Getting Started

L[AN This chapter doesn’t include the specific threat building blocks that discover
threats, which are the subject of the next few chapters.

“What’s Your Threat Model?”

The question “what’s your threat model?” is a great one because in just four
words, it can slice through many conundrums to determine what you are
worried about. Answers are often of the form “an attacker with the laptop” or “
insiders,” or (unfortunately, often) “huh?” The “huh?” answer is useful because
it reveals how much work would be needed to find a consistent and structured
approach to defense. Consistency and structure are important because they
help you invest in defenses that will stymie attackers. There’s a compendium
of standard answers to “what’s your threat model?” in Appendix A, “Helpful
Tools,” but a few examples are listed here as well:

m A thief who could steal your money

m The company stakeholders (employees, consultants, shareholders, etc.)
who access sensitive documents and are not trusted

m An untrusted network

m An attacker who could steal your cookie (web or otherwise)

Throughout this book, you'll visit and revisit the same example for each of
these approaches. Your main targets are the fictitious Acme Corporation’s “Acme/SQL,”
which is a commercial database server, and Acme’s operational network. Using Acme
examples, you can see how the different approaches play out against the
same systems.

Applying the question “what’s your threat model?” to the Acme Corporation
example, you might get the following answers:

m For the Acme SQL database, the threat model would be an attacker who
wants to read or change data in the database. A more subtle model might
also include people who want to read the data without showing up in
the logs.

m For Acme’s financial system, the answers might include someone getting
a check they didn’t deserve, customers who don’t make a payment they
owe, and /or someone reading or altering financial results before reporting.

If you don't have a clear answer to the question, “what’s your threat model?” it
can lead to inconsistency and wasted effort. For example, start-up Zero-Knowledge

Chapter 2 = Strategies for Threat Modeling

31

Systems didn't have a clear answer to the question “what’s your threat model?”
Because there was no clear answer, there wasn't consistency in what security
features were built. A great deal of energy went into building defenses against
the most complex attacks, and these choices to defend against such attackers had
performance impacts on the whole system. While preventing governments from
spying on customers was a fun technical challenge and an emotionally resonant
goal, both the challenge and the emotional impact made it hard to make techni-
cal decisions that could have made the business more successful. Eventually,
a clearer answer to “what’s your threat model?” let Zero-Knowledge Systems
invest in mitigations that all addressed the same subset of possible threats.

So how do you ensure you have a clear answer to this question? Often, the
answers are not obvious, even to those who think regularly about security,
and the question itself offers little structure for figuring out the answers. One
approach, often recommended is to brainstorm. In the next section, you'll learn
about a variety of approaches to brainstorming and the tradeoffs associated
with those approaches.

Brainstorming Your Threats

Brainstorming is the most traditional way to enumerate threats. You get a
set of experienced experts in a room, give them a way to take notes (white-
boards or cocktail napkins are traditional) and let them go. The quality of the
brainstorm is bounded by the experience of the brainstormers and the amount
of time spent brainstorming.

Brainstorming involves a period of idea-generation, followed by a period of
analyzing and selecting the ideas. Brainstorming for threat modeling involves
coming up with possible attacks of all sorts. During the idea generation phase,
you should forbid criticism. You want to explore the space of possible threats,
and an atmosphere of criticism will inhibit such idea generation. A moderator
can help keep brainstorming moving.

During brainstorming, it is key to have an expert on the technology being
modeled in the room. Otherwise, it’s easy to make bad assumptions about how
it works. However, when you have an expert who’s proud of their technology,
you need to ensure that you don’t end up with a “proud parent” offended that
their software baby is being called ugly. A helpful rule is that it’s the software
being attacked, not the software architects. That doesn’t always suffice, but it’s
a good start. There’s also a benefit to bringing together a diverse grouping of
experts with a broader set of experience.

Brainstorming can also devolve into out-of-scope attacks. For example, if
you're designing a chat program, attacks by the memory management unit
against the CPU are probably out of scope, but if you're designing a motherboard,

32

Part | = Getting Started

these attacks may be the focus of your threat modeling. One way to handle this
issue is to list a set of attacks that are out of scope, such as “the administrator is
malicious” or “an attacker edits the hard drive on another system,” as well as
a set of attack equivalencies, like, “an attacker can smash the stack and execute
code,” so that those issues can be acknowledged and handled in a consistent
way. A variant of brainstorming is the exhortation to “think like an attacker,”
which is discussed in more detail in Chapter 18, “Experimental Approaches.”

Some attacks you might brainstorm in threat modeling the Acme’s financial
statements include breaking in over the Internet, getting the CFO drunk, bribing
a janitor, or predicting the URL where the financials will be published. These
can be a bit of a grab bag, so the next section provides somewhat more focused
approaches.

Brainstorming Variants

Free-form or “normal” brainstorming, as discussed in the preceding sec-
tion, can be used as a method for threat modeling, but there are more specific
methods you can use to help focus your brainstorming. The following sections
describe variations on classic brainstorming: scenario analyses, pre-mortems,
and movie-plotting.

Scenario Analysis

It may help to focus your brainstorming with scenarios. If you're using written
scenarios in your overall engineering, you might start from those and ask what
might go wrong, or you could use a variant of Chandler’s law (“When in doubt,
have a man come through a door with a gun in his hand.”) You don’t need to
restrict yourself to a man with a gun, of course; you can use any of the attackers
listed in Appendix C, “Attacker Lists.”

For an example of scenario-specific brainstorming, try to threat model for
handing your phone to a cute person in a bar. It’s an interesting exercise. The
recipient could perhaps text donations to the Red Cross, text an important
person to “stop bothering me,” or post to Facebook that “I don’t take hints well”
or “I'm skeevy,” not to mention possibilities of running away with the phone
or dropping it in a beer.

Less frivolously, your sample scenarios might be based on the product
scenarios or use cases for the current development cycle, and therefore cover
failover and replication, and how those services could be exploited when not
properly authenticated and authorized.

Pre-Mortem

Decision-sciences expert Gary Klein has suggested another brainstorming tech-
nique he calls the pre-mortem (Klein, 1999). The idea is to gather those involved

Chapter 2 = Strategies for Threat Modeling

33

in a decision and ask them to assume that it’s shortly after a project deadline,
or after a key milestone, and that things have gone totally off the rails. With
an “assumption of failure” in mind, the idea is to explore why the participants
believe it will go off the rails. The value to calling this a pre-mortem is the fram-
ing it brings. The natural optimism that accompanies a project is replaced with
an explicit assumption that it has failed, giving you and other participants a
chance to express doubts. In threat modeling, the assumption is that the product
is being successfully attacked, and you now have permission to express doubts
or concerns.

Movie Plotting

Another variant of brainstorming is movie plotting. The key difference between
“normal brainstorming” and “movie plotting” is that the attack ideas are intended
to be outrageous and provocative to encourage the free flow of ideas. Defending
against these threats likely involves science-fiction-type devices that impinge
on human dignity, liberty, and privacy without actually defending anyone.
Examples of great movies for movie plot threats include Ocean’s Eleven, The
Italian Job, and every Bond movie that doesn’t stink. If you'd like to engage in
more structured movie plotting, create three lists: flawed protagonists, brilliant
antagonists, and whiz-bang gadgetry. You can then combine them as you see fit.

Examples of movie plot threats include a foreign spy writing code for Acme
SQL so that a fourth connection attempt lets someone in as admin, a scheming
CFO stealing from the firm, and someone rappelling from the ceiling to avoid
the pressure mats in the floor while hacking into the database from the console.
Note that these movie plots are equally applicable to Acme and its customers.

The term movie plotting was coined by Bruce Schneier, a respected security
expert. Announcing his contest to elicit movie plot threats, he said: “The purpose
of this contest is absurd humor, but I hope it also makes a point. Terrorism is a
real threat, but we're not any safer through security measures that require us
to correctly guess what the terrorists are going to do next” (Schneier, 2006). The
point doesn’t apply only to terrorism; convoluted but vividly described threats
can be a threat to your threat modeling methodology.

Literature Review

As a precursor to brainstorming (or any other approach to finding threats),
reviewing threats to systems similar to yours is a helpful starting point in threat
modeling. You can do this using search engines, or by checking the academic
literature and following citations. It can be incredibly helpful to search on
competitors or related products. To start, search on a competitor, appending
terms such as “security,” “security bug,” “penetration test,” “pwning,” or “Black

Hat,” and use your creativity. You can also review common threats in this book,

7oA 1AL

34

Part | = Getting Started

especially Part III, “Managing and Addressing Threats” and the appendixes.
Additionally, Ross Anderson’s Security Engineering is a great collection of real
world attacks and engineering lessons you can draw on, especially if what you're
building is similar to what he covers (Wiley, 2008).

A literature review of threats against databases might lead to an understanding
of SQL injection attacks, backup failures, and insider attacks, suggesting the
need for logs. Doing a review is especially helpful for those developing their
skills in threat modeling. Be aware that a lot of the threats that may come up
can be super-specific. Treat them as examples of more general cases, and look
for variations and related problems as you brainstorm.

Perspective on Brainstorming

Brainstorming and its variants suffer from a variety of problems. Brainstorming
often produces threats that are hard or impossible to address. Brainstorming inten-
tionally requires the removal of scoping or boundaries, and the threats are very
dependent on the participants and how the session happens to progress. When
experts get together, unstructured discussion often ensues. This can be fun for the
experts and it usually produces interesting results, but oftentimes, experts are in
short supply. Other times, engineers get frustrated with the inconsistency of “ask
two experts, get three answers.”

There’s one other issue to consider, and that relates to exit criteria. It’s difficult
to know when you’re done brainstorming, and whether you’re done because
you have done a good job or if everyone is just tired. Engineering management
may demand a time estimate that they can insert into their schedule, and these
are difficult to predict. The best approach to avoid this timing issue is simply
to set a meeting of defined length. Unfortunately, this option doesn’t provide a
high degree of confidence that all interesting threats have been found.

Because of the difficulty of addressing threats illuminated with a limitless
brainstorming technique and the poorly defined exit criteria to a brainstorming
session, it is important to consider other approaches to threat modeling that are
more prescriptive, formal, repeatable, or less dependent on the aptitudes and
knowledge of the participants. Such approaches are the subject of the rest of this
chapter and also discussed in the rest of Part II, “Finding Threats.”

Structured Approaches to Threat Modeling

When it’s hard to answer “What’s your threat model?” people often use an
approach centered on models of their assets, models of attackers, or models of
their software. Centering on one of those is preferable to using approaches that
attempt to combine them because these combinations tend to be confusing.

lvww . allitebooks.cond

http://www.allitebooks.org

Chapter 2 = Strategies for Threat Modeling

35

Assets are the valuable things you have. The people who might go after your
assets are attackers, and the most common way for them to attack is via the
software you're building or deploying.

Each of these is a natural place to start thinking about threats, and each has
advantages and disadvantages, which are covered in this section. There are
people with very strong opinions that one of these is right (or wrong). Don’t
worry about “right” or “wrong,” but rather “usefulness.” That is, does your
approach help you find problems? If it doesn't, it’s wrong for you, however
forcefully someone might argue its merits.

These three approaches can be thought of as analogous to Lincoln Log sets,
Erector sets, and Lego sets. Each has a variety of pieces, and each enables you
to build things, but they may not combine in ways as arbitrary as you'd like.
That is, you can’t snap Lego blocks to an Erector set model. Similarly, you can’t
always snap attackers onto a software model and have something that works
as a coherent whole.

To understand these three approaches, it can be useful to apply them to some-
thing concrete. Figure 2-1 shows a data flow diagram of the Acme/SQL system.

DB
DBA (Human) Users
(Human)
A
L DBCluster |
Web Clients ! ;=------===----===------mmmmooemmmoommoo oo .
Original SQL Account i
'y 4
Acme : ; '
Front End(s)H Database)4—»(DB Admin) Log Analysis
(\ o A
saLClents ¥ _—~— | T~_
Y !
Data Management Logs —-—
Key:
External Entity Process data flow Data Store BoTurr:jc?;
-—> ' & .

Figure 2-1: Data flow diagram of the Acme/SQL database

Looking at the diagram, and reading from left to right, you can see two
types of clients accessing the front ends and the core database, which manages

36

Part | = Getting Started

transactions, access control, atomicity, and so on. Here, assume that the Acme/
SQL system comes with an integrated web server, and that authorized clients
are given nearly raw access to the data. There could simultaneously be web
servers offering deeper business logic, access to multiple back ends, integration
with payment systems, and so on. Those web servers would access Acme/SQL
via the SQL protocol over a network connection.

Back to the diagram, Figure 2-1 also shows there is also a set of DB Admin
tools that the DBA (the human database administrator) uses to manage the
system. As shown in the diagram, there are three conceptual data stores: Data,
Management (including metadata such as locks, policies, and indices), and Logs.
These might be implemented in memory, as files, as custom stores on raw disk,
or delegated to network storage. As you dig in, the details matter greatly, but
you usually start modeling from the conceptual level, as shown.

Finally, there’s a log analysis package. Note that only the database core has
direct access to the data and management information in this design. You
should also note that most of the arrows are two-way, except Database => Logs
and Logs = Log Analysis. Of course, the Log Analysis process will be query-
ing the logs, but because it’s intended as a read-only interface, it is represented
as a one-way arrow. Very occasionally, you might have strictly one-way flows,
such as those implemented by SNMP traps or syslog. Some threat modelers
prefer two one-way arrows, which can help you see threats in each direction,
but also lead to busy diagrams that are hard to label or read. If your diagrams
are simple, the pair of one way arrows helps you find threats, and is therefore
better than two-way. If your diagram is complex, either approach can be used.

The data flow diagram is discussed in more detail later in this chapter, in the
section “Data Flow Diagrams.” In the next few sections, you'll see how to apply
asset, attacker, and software-centric models to find threats against Acme/SQL.

Focusing on Assets

It seems very natural to center your approach on assets, or things of value.
After all, if a thing has no value, why worry about how someone might attack
it? It turns out that focusing on assets is less useful than you may hope, and is
therefore not the best approach to threat modeling. However, there are a small
number of people who will benefit from asset-centered threat modeling. The
most likely to benefit are a team of security experts with experience structuring
their thinking around assets. (Having found a way that works for them, there
may be no reason to change.) Less technical people may be able to contribute
to threat modeling by saying “focus on this asset.” If you are in either of these
groups, or work with them, congratulations! This section is for you. If you aren’t
one of those people, however, don't be too quick to skip ahead. It is still important

Chapter 2 = Strategies for Threat Modeling

37

to have a good understanding of the role assets can play in threat modeling,
even if theyre not in a starring role). It can also help for you to understand why
the approach is not as useful as it may appear, so you can have an informed
discussion with those advocating it.

The term asset usually refers to something of value. When people bring up
assets as part of a threat modeling activity, they often mean something an attacker
wants to access, control, or destroy. If everyone who touches the threat modeling
process doesn’t have a working agreement about what an asset is, your process
will either get bogged down, or participants will just talk past each other.

There are three ways the term asset is commonly used in threat modeling;:

m Things attackers want
m Things you want to protect

m Stepping stones to either of these

You should think of these three types of assets as families rather than categories
because just as people can belong to more than one family at a time, assets can
take on more than one meaning at a time. In other words, the tags that apply
to assets can overlap, as shown in Figure 2-2. The most common usage of asset
in discussing threat models seems to be a marriage of “things attackers want”
and “things you want to protect.”

Things you
protect

Stepping stones

Things attackers
want

Figure 2-2: The overlapping definitions of assets

There are a few other ways in which the term asset is used by those who
are threat modeling—such as a synonym for computer, or a type of computer (for
example, “Targeted assets: mail server, database”). For the sake of clarity, this book
only uses asset with explicit reference to one or more of the three families previously
defined, and you should try to do the same.

38

Part | = Getting Started

Things Attackers Want

Usually assets that attackers want are relatively tangible things such as “this
database of customer medical data.” Good examples of things attackers want
include the following;:

m User passwords or keys
m Social security numbers or other identifiers
m Credit card numbers

m Your confidential business data

Things You Want to Protect

There’s also a family of assets you want to protect. Unlike the tangible things
attackers want, many of these assets are intangibles. For example, your com-
pany’s reputation or goodwill is something you want to protect. Competitors
or activists may well attack your reputation by engaging in smear tactics. From
a threat modeling perspective, your reputation is usually too diffuse to be able
to technologically mitigate threats against it. Therefore, you want to protect it
by protecting the things that matter to your customers.

As an example of something you want to protect, if you had an empty safe,
you intuitively don’t want someone to come along and stick their stethoscope
to it. But there’s nothing in it, so what’s the damage? Changing the combination
and letting the right folks (but only the right folks) know the new combination
requires work. Therefore you want to protect this empty safe, but it would be
an unlikely target for a thief. If that same safe has one million dollars in it, it
would be much more likely to pique a thief’s interest. The million dollars is part
of the family of things you want that attackers want, too.

Stepping Stones

The final family of assets is stepping stones to other assets. For example, every-
thing drawn in a threat model diagram is something you want to protect because
it may be a stepping stone to the targets that attackers want. In some ways, the
set of stepping stone assets is an attractive nuisance. For example, every com-
puter has CPU and storage that an attacker can use. Most also have Internet
connectivity, and if you're in systems management or operational security,
many of the computers you worry most about will have special access to your
organization’s network. They’re behind a firewall or have VPN access. These
are stepping stones. If they are uniquely valuable stepping stones in some way,
note that. In practice, it’s rarely helpful to include “all our PCs” in an asset list.

Chapter 2 = Strategies for Threat Modeling

39

Referring back to the safe example in the previous section, the safe combina-
tion is a member of the stepping stone family. It may well be that stepping-stones and
things you protect are, in practice, very similar. The list of technical elements you
protect that are not members of the stepping-stone family appears fairly short.

Implementing Asset-Centric Modeling

If you were to threat model with an asset-focused approach, you would make a
list of your assets and then consider how an attacker could threaten each. From
there, you'd consider how to address each threat.

After an asset list is created, you should connect each item on the list to
particular computer systems or sets of systems. (If an asset includes something
like “Amazon Web Services” or “Microsoft Azure,” then you don't need to be
able to point to the computer systems in question, you just need to understand
where they are—eventually you'll need to identify the threats to those systems
and determine how to mitigate them.)

The next step is to draw the systems in question, showing the assets and
other components as well as interconnections, until you can tell a story about
them. You can use this model to apply either an attack set like STRIDE or an
attacker-centered brainstorm to understand how those assets could be attacked.

Perspective on Asset-Centric Threat Modeling

Focusing on assets appears to be a common-sense approach to threat model-
ing, to the point where it seems hard to argue with. Unfortunately, much of the
time, a discussion of assets does not improve threat modeling. However, the
misconception is so common that it’s important to examine why it doesn’t help.

There’s no direct line from assets to threats, and no prescriptive set of steps.
Essentially, effort put into enumerating assets is effort you're not spending find-
ing or fixing threats. Sometimes, that involves a discussion of what’s an asset,
or which type of asset youre discussing. That discussion, at best, results in a
list of things to look for in your software or operational model, so why not start
by creating such a model? Once you have a list of assets, that list is not (ahem) a
stepping stone to finding threats; you still need to apply some methodology or
approach. Finally, assets may help you prioritize threats, but if that’s your goal, it
doesn’t mean you should start with or focus on assets. Generally, such informa-
tion comes out naturally when discussing impacts as you prioritize and address
threats. Those topics are covered in Part I1I, “Managing and Addressing Threats.”

How you answer the question “what are our assets?” should help focus your
threat modeling. If it doesn’t help, there is no point to asking the question or
spending time answering it.

40

Part | = Getting Started

Focusing on Attackers

Focusing on attackers seems like a natural way to threat model. After all, if
no one is going to attack your system, why would you bother defending it?
And if you're worried because people will attack your systems, shouldn't you
understand them? Unfortunately, like asset-centered threat modeling, attacker-
centered threat modeling is less useful than you might anticipate. But there are
also a small number of scenarios in which focusing on attackers can come in
handy, and they’re the same scenarios as assets: experts, less-technical input
to your process, and prioritization. And similar to the “Focusing on Assets”
section, you can also learn for yourself why this approach isn’t optimal, so you
can discuss the possibility with those advocating this approach.

Implementing Attacker-Centric Modeling

Security experts may be able to use various types of attacker lists to find threats
against a system. When doing so, it’s easy to find yourself arguing about the
resources or capabilities of such an archetype, and needing to flesh them out.
For example, what if your terrorist is state-sponsored, and has access to govern-
ment labs? These questions make the attacker-centric approach start to resemble
“personas,” which are often used to help think about human interface issues.
There’s a spectrum of detail in attacker models, from simple lists to data-derived
personas, and examples of each are given in Appendix C, “Attacker Lists”
That appendix may help security experts and will help anyone who wants
to try attacker-centric modeling and learn faster than if they have to start by
creating a list.

Given a list of attackers, it’s possible to use the list to provide some structure
to a brainstorming approach. Some security experts use attacker lists as a way
to help elicit the knowledge they’ve accumulated as they’ve become experts.
Attacker-driven approaches are also likely to bring up possibilities that are
human-centered. For example, when thinking about what a spy would do, it
may be more natural (and fun) to think about them seducing your sysadmin
or corrupting a janitor, rather than think about technical attacks. Worse, it will
probably be challenging to think about what those human attacks mean for
your system’s security.

Where Attackers Can Help You

Talking about human threat agents can help make the threats real. That is, it’s
sometimes tough to understand how someone could tamper with a configura-
tion file, or replace client software to get around security checks. Especially
when dealing with management or product teams who “just want to ship,”

Chapter 2 = Strategies for Threat Modeling

M

it’s helpful to be able to explain who might attack them and why. There’s real
value in this, but it’s not a sufficient argument for centering your approach
on those threat agents; you can add that information at a later stage. (The risk
associated with talking about attackers is the claim that “no one would ever
do that.” Attempting to humanize a risk by adding an actor can exacerbate
this, especially if you add a type of actor who someone thinks “wouldn’t be
interested in us.”).

You were promised an example, and the spies stole it. More seriously, carefully
walking through the attacker lists and personas in Appendix C likely doesn’t
help you (or the author) figure out what they might want to do to Acme/SQL,
and so the example is left empty to avoid false hope.

Perspective on Attacker-Centric Modeling

Helping security experts structure and recall information is nice, but doesn’t
lead to reproducible results. More importantly, attacker lists or even personas
are not enough structure for most people to figure out what those people will
do. Engineers may subconsciously project their own biases or approaches into
what an attacker might do. Given that the attacker has his own motivations,
skills, background, and perspective (and possibly organizational priorities),
avoiding such projection is tricky.

In my experience, this combination of issues makes attacker-centric approaches
less effective than other approaches. Therefore, I recommend against using
attackers as the center of your threat modeling process.

Focusing on Software

Good news! You've officially reached the “best” structured threat modeling
approach. Congrats! Read on to learn about software-centered threat modeling,
why it’s the most helpful and effective approach, and how to do it.

Software-centric models are models that focus on the software being built
or a system being deployed. Some software projects have documented models
of various sorts, such as architecture, UML diagrams, or APIs. Other projects
don’t bother with such documentation and instead rely on implicit models.

Having large project teams draw on a whiteboard to explain how the software
fits together can be a surprisingly useful and contentious activity. Understandings
differ, especially on large projects that have been running for a while, but find-
ing where those understandings differ can be helpful in and of itself because
it offers a focal point where threats are unlikely to be blocked. (“I thought you
were validating that for a SQL call!”)

The same complexity applies to any project that is larger than a few people
or has been running longer than a few years. Projects accumulate complexity,

42

Part | = Getting Started

which makes many aspects of development harder, including security. Software-
centric threat modeling can have a useful side effect of exposing this accumu-
lated complexity.

The security value of this common understanding can also be substantial,
even before you get to looking for threats. In one project it turned out that a
library on a trust boundary had a really good threat model, but unrealistic
assumptions had been made about what the components behind it were doing.
The work to create a comprehensive model led to an explicit list of common
assumptions that could and could not be made. The comprehensive model and
resultant understanding led to a substantial improvement in the security of
those components.

V(oA Ascomplexity grows, so will the assumptions that are made, and such lists
are never complete. They grow as experience requires and feedback loops allow.

Threat Modeling Different Types of Software

The threat discovery approaches covered in Part I, can be applied to models of
all sorts of software. They can be applied to software you're building for others
to download and install, as well as to software you're building into a larger
operational system. The software they can be applied to is nearly endless, and
is not dependent on the business model or deployment model associated with
the software.

Even though software no longer comes in boxes sold on store shelves, the
term boxed software is a convenient label for a category. That category is all the
software whose architecture is definable, because there’s a clear edge to what
is the software: It’s everything in the box (installer, application download, or
open source repository). This edge can be contrasted with the deployed systems
that organizations develop and change over time.

You may be concerned that the techniques in this book focus on either
boxed software or deployed systems, and that the one you're concerned about isn’t
covered. In the interests of space, the examples and discussion only cover both when
there’s a clear difference and reason. That’s because the recommended ways to model
software will work for both with only a few exceptions.

The boundary between boxed software models and network models gets
blurrier every year. One important difference is that the network models tend
to include more of the infrastructural components such as routers, switches, and
data circuits. Trust boundaries are often operationalized by these components,
or by whatever group operates the network, the platforms, or the applications.

Chapter 2 = Strategies for Threat Modeling

43

Data flow models (which you met in Chapter 1, “Dive In and Threat Model!”
and which you'll learn more about in the next section) are usually a good choice
for both boxed software and operational models. Some large data center operators
have provided threat models to teams, showing how the data center is laid out.
The product group can then overlay its models “on top” of that to align with the
appropriate security controls that they’ll get from operations. When you're using
someone else’s data center, you may have discussions about their infrastructure
choices that make it easy to derive a model, or you might have to assume the worst.

Perspective on Software-Centric Modeling

I am fond of software-centric approaches because you should expect software
developers to understand the software theyre developing. Indeed, there is
nothing else you should expect them to understand better. That makes software
an ideal place to start the threat-modeling tasks in which you ask developers
to participate. Almost all software development is done with software models
that are good enough for the team'’s purposes. Sometimes they require work to
make them good enough for effective threat modeling.

In contrast, you can merely hope that developers understand the business or
its assets. You may aspire to them understanding the people who will attack their
product or system. But these are hopes and aspirations, rather than reasonable
expectations. To the extent that your threat modeling strategy depends on these
hopes and aspirations, youre adding places where it can fail. The remainder of
this chapter is about modeling your software in ways that help you find threats,
and as such enabling software centric-modeling. (The methods for finding these
threats are covered in the rest of Part I

Models of Software

Making an explicit model of your software helps you look for threats without
getting bogged down in the many details that are required to make the software
function properly. Diagrams are a natural way to model software.

As you learned in Chapter 1, whiteboard diagrams are an extremely effective
way to start threat modeling, and they may be sufficient for you. However, as
a system hits a certain level of complexity, drawing and redrawing on white-
boards becomes infeasible. At that point, you need to either simplify the system
or bring in a computerized approach.

In this section, you'll learn about the various types of diagrams, how they
can be adapted for use in threat modeling, and how to handle the complexities
of larger systems. You'll also learn more detail about trust boundaries, effective
labeling, and how to validate your diagrams.

44

Part | = Getting Started

Types of Diagrams

There are many ways to diagram, and different diagrams will help in differ-
ent circumstances. The types of diagrams you'll encounter most frequently are
probably data flow diagrams (DFDs). However, you may also see UML, swim
lane diagrams, and state diagrams. You can think of these diagrams as Lego
blocks, looking them over to see which best fits whatever you're building. Each
diagram type here can be used with the models of threats in Part IL

The goal of all these diagrams is to communicate how the system works,
so that everyone involved in threat modeling has the same understanding. If
you can’t agree on how to draw how the software works, then in the process of
getting to agreement, you're highly likely to discover misunderstandings about
the security of the system. Therefore, use the diagram type that helps you have
a good conversation and develop a shared understanding.

Data Flow Diagrams

Data flow models are often ideal for threat modeling; problems tend to follow
the data flow, not the control flow. Data flow models more commonly exist for
network or architected systems than software products, but they can be created
for either.

Data flow diagrams are used so frequently they are sometimes called
“threat model diagrams.” As laid out by Larry Constantine in 1967, DFDs
consist of numbered elements (data stores and processes) connected by data
flows, interacting with external entities (those outside the developer’s or the
organization’s control).

The data flows that give DFDs their name almost always flow two ways,
with exceptions such as radio broadcasts or UDP data sent off into the Ethernet.
Despite that, flows are usually represented using one-way arrows, as the threats
and their impact are generally not symmetric. That is, if data flowing to a
web server is read, it might reveal passwords or other data, whereas a data
flow from the web server might reveal your bank balance. This diagramming
convention doesn’t help clarify channel security versus message security. (The
channel might be something like SMTP, with messages being e-mail messages.)
Swim lane diagrams may be more appropriate as a model if this channel/message
distinction is important. (Swim lane diagrams are described in the eponymous
subsection later in this chapter.)

The main elements of a data flow diagram are shown in Table 2-1.

Chapter 2 = Strategies for Threat Modeling 45

Table 2-1: Elements of a Data Flow Diagram

ELEMENT APPEARANCE MEANING EXAMPLES
Process Rounded rect- Any running code Code writtenin C,
angle, circle, or C#, Python, or PHP
concentric circles
Data flow Arrow Communication between Network connec-
processes, or between tions, HTTP, RPC,

processes and data stores LPC

Data store Two parallel Things that store data Files, databases, the
lines with a label Windows Registry,
between them shared memory

segments

External Rectangle with People, or code outside Your customer,

entity sharp corners your control Microsoft.com

Figure 2-3 shows a classic DFD based on the elements from Table 2-1; how-
ever, it’s possible to make these models more usable. Figure 2-4 shows this same
model with a few changes, which you can use as an example for improving
your own models.

7 DB
6 DBA (Human) Users
1 Web Clients
4 Database 5DB
- 8 Log
Admin Analysis
2 SQL Clients
9 Data 10 Management 11 Logs
Key:
External Entity data flow Data Store
-—>

Figure 2-3: A classic DFD model

46

Part | = Getting Started

DBA (Human) Users

' DB Cluster
Web Clients ! 7==---=-===m-mmmmmommmmmmm oo fo oo
Original SQL Account

Acme .
Front End(s))‘_’(Database)«—»(DB Admin)

3

SQL Clients :
Y !
Data Management Logs _—
Key:
; Trust
External Entity [Process j data flow Data Store Boundary
D e ' ,

Figure 2-4: A modern DFD model (previously shown as Figure 2-1)

The following list explains the changes made from classic DFDs to more
modern ones:

m The processes are rounded rectangles, which contain text more efficiently
than circles.

m Straight lines are used, rather than curved, because straight lines are easier
to follow, and you can fit more in larger diagrams.

Historically, many descriptions of data flow diagrams contained both
“process” elements and “complex process” elements. A process was depicted
as a circle, a complex process as two concentric circles. It isn’t entirely clear,
however, when to use a normal process versus a complex one. One possible
rule is that anything that has a subdiagram should be a complex process. That
seems like a decent rule, if (ahem) a bit circular.

DFDs can be used for things other than software products. For example,
Figure 2-5 shows a sample operational network in a DFD. This is a typical model
for a small to mid-sized corporate network, with a representative sampling

Chapter 2 = Strategies for Threat Modeling

47

of systems and departments shown. It is discussed in depth in Appendix E,
“Case Studies.”

- Desktop & E-mail & Development :

— X '

Internet ! Mobile Intranet Servers Servers 1
K

! | Production | 1 HR Mgmt | © |

. ' Directory <] g o

5 |___Operations ™ f S N

Acme Corporate Network

\ 4 \ 4
Sales/CRM Payroll

Figure 2-5: An operational network model

UML

UML is an abbreviation for Unified Modeling Language. If you use UML
in your software development process, it’s likely that you can adapt UML
diagrams for threat modeling, rather than redrawing them. The most impor-
tant way to adapt UML for threat modeling diagrams is the addition of trust
boundaries.

UML is fairly complex. For example, the Visio stencils for UML offer roughly
80 symbols, compared to six for DFDs. This complexity brings a good deal
of nuance and expressiveness as people draw structure diagrams, behavior
diagrams, and interaction diagrams. If anyone involved in the threat model-
ing isn’t up on all the UML symbols, or if there’s misunderstanding about
what those symbols mean, then the diagram’s effectiveness as a tool is greatly
diminished. In theory, anyone who’s confused can just ask, but that requires
them to know they’re confused (they might assume that the symbol for fish

48

Part | = Getting Started

excludes sharks). It also requires a willingness to expose one’s ignorance by
asking a “simple” question. It’s probably easier for a team that’s invested in
UML to add trust boundaries to those diagrams than to create new diagrams
just for threat modeling.

Swim Lane Diagrams

Swim lane diagrams are a common way to represent flows between various
participants. Theyre drawn using long lines, each representing participants
in a protocol, with each participant getting a line. Each lane edge is labeled
to identify the participant; each message is represented by a line between
participants; and time is represented by flow down the diagram lanes. The
diagrams end up looking a bit like swim lanes, thus the name. Messages
should be labeled with their contents; or if the contents are complex, it may
make more sense to have a diagram key that abstracts out some details.
Computation done by the parties or state should be noted along that partici-
pant’s line. Generally, participants in such protocols are entities like comput-
ers; and as such, swim lane diagrams usually have implicit trust boundaries
between each participant. Cryptographer and protocol designer Carl Ellison
has extended swim lanes to include the human participants as a way to
structure discussion of what people are expected to know and do. He calls
this extension ceremonies, which is discussed in more detail in Chapter 15,
“Human Factors and Usability.”
A sample swim lane diagram is shown in Figure 2-6.

Client Server
SYN

SYN-ACK

¥/

ACK

/

Data

/

Figure 2-6: Swim lane diagram (showing the start of a TCP connection)

Chapter 2 = Strategies for Threat Modeling

49

State Diagrams

State diagrams represent the various states a system can be in, and the transi-
tions between those states. A computer system is modeled as a machine with
state, memory, and rules for moving from one state to another, based on the
valid messages it receives, and the data in its memory. (The computer should
course test the messages it receives for validity according to some rules.) Each
box is labeled with a state, and the lines between them are labeled with the
conditions that cause the state transition. You can use state diagrams in threat
modeling by checking whether each transition is managed in accordance with
the appropriate security validations.

A very simple state machine for a door is shown in Figure 2-7 (derived from
Wikipedia). The door has three states: opened, closed, and locked. Each state is
entered by a transition. The “deadbolt” system is much easier to draw than locks
on the knob, which can be locked from either state, creating a more complex
diagram and user experience. Obviously, state diagrams can become complex
quickly. You could imagine a more complex state diagram that includes “ajar,” a
state that can result from either open or closed. (I started drawing that but had
trouble deciding on labels. Obviously, doors that can be ajar are poorly specified
and should not be deployed.) You don’t want to make architectural decisions
just to make modeling easier, but often simple models are easier to work with,
and reflect better engineering.

Opened

Close door Open door

Transition
condition

/ Lock deadbolt
Transition
State / Unlock deadbolt

Figure 2-7: A state machine diagram

50

Part | = Getting Started

Trust Boundaries

As you saw in Chapter 1, a trust boundary is anyplace where various principals
come together—that is, where entities with different privileges interact.

Drawing Boundaries

After a software model has been drawn, there are two ways to add boundaries:
You can add the boundaries you know and look for more, or you can enumerate
principals and look for boundaries. To start from boundaries, add any sorts of
enforced trust boundary you can. Boundaries between unix UIDs, Windows
sessions, machines, network segments, and so on should be drawn in as boxes,
and the principal inside each box should be shown with a label.

To start from principals, begin from one end or the other of the privilege
spectrum (often that’s root/admin or anonymous Internet users), and then add
boundaries each time they talk to “someone else.”

You can always add at least one boundary, as all computation takes place in
some context. (So you might criticize Figure 2-1 for showing Web Clients and
SQL Clients without an identified context.)

If you don’t see where to draw trust boundaries of any sort, your diagram
may be detailed as everything is inside a single trust boundary, or you may
be missing boundaries. Ask yourself two questions. First, does everything in
the system have the same level of privilege and access to everything else on
the system? Second, is everything your software communicates with inside
that same boundary? If either of these answers are a no, then you should now
have clarified either a missing boundary or a missing elemen