
www.allitebooks.com

http://www.allitebooks.org

fl ast.indd 11:57:23:AM 01/17/2014 Page xx

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12:57:18:PM 01/17/2014 Page i

Threat Modeling

Designing for Security

Adam Shostack

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12:57:18:PM 01/17/2014 Page ii

Threat Modeling: Designing for Security

Published by

John Wiley & Sons, Inc.

10475 Crosspoint

BoulevardIndianapolis, IN 46256

www.wiley.com

Copyright © 2014 by Adam Shostack

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-80999-0

ISBN: 978-1-118-82269-2 (ebk)

ISBN: 978-1-118-81005-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or

warranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim

all warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may

be created or extended by sales or promotional materials. The advice and strategies contained herein may not

be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more information about Wiley products,

visit www.wiley.com.

Library of Congress Control Number: 2013954095

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries, and may not be used without written permission.

All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated

with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12:57:18:PM 01/17/2014 Page iii

For all those striving to deliver more secure systems

www.allitebooks.com

http://www.allitebooks.org

iv

ffi rs.indd 12:57:18:PM 01/17/2014 Page iv

Credits

Executive Editor
Carol Long

Project Editors
Victoria Swider

Tom Dinse

Technical Editor
Chris Wysopal

Production Editor
Christine Mugnolo

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefi eld

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Technical Proofreader
Russ McRee

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Image
Courtesy of Microsoft

Cover Designer
Wiley

www.allitebooks.com

http://www.allitebooks.org

v

ffi rs.indd 12:57:18:PM 01/17/2014 Page v

Adam Shostack is currently a program manager at Microsoft.

His security roles there have included security development

processes, usable security, and attack modeling. His attack-

modeling work led to security updates for Autorun being

delivered to hundreds of millions of computers. He shipped

the SDL Threat Modeling Tool and the Elevation of Privilege
threat modeling game. While doing security development

process work, he delivered threat modeling training across

Microsoft and its partners and customers.

Prior to Microsoft, he has been an executive at a number of successful

information security and privacy startups. He helped found the CVE, the

Privacy Enhancing Technologies Symposium and the International Financial

Cryptography Association. He has been a consultant to banks, hospitals and

startups and established software companies. For the fi rst several years of his

career, he was a systems manager for a medical research lab. Shostack is a

prolifi c author, blogger, and public speaker. With Andrew Stewart, he co-authored

The New School of Information Security (Addison-Wesley, 2008).

About the Author

www.allitebooks.com

http://www.allitebooks.org

vi

ffi rs.indd 12:57:18:PM 01/17/2014 Page vi

Chris Wysopal, Veracode’s CTO and Co-Founder, is responsible for the company’s

software security analysis capabilities. In 2008 he was named one of InfoWorld’s

Top 25 CTO’s and one of the 100 most infl uential people in IT by eWeek. One of

the original vulnerability researchers and a member of L0pht Heavy Industries,

he has testifi ed on Capitol Hill in the US on the subjects of government computer

security and how vulnerabilities are discovered in software. He is an author of

L0phtCrack and netcat for Windows. He is the lead author of The Art of Software
Security Testing (Addison-Wesley, 2006).

About the Technical Editor

www.allitebooks.com

http://www.allitebooks.org

vii

ffi rs.indd 12:57:18:PM 01/17/2014 Page vii

First and foremost, I’d like to thank countless engineers at Microsoft and else-

where who have given me feedback about their experiences threat modeling. I

wouldn’t have had the opportunity to have so many open and direct conversa-

tions without the support of Eric Bidstrup and Steve Lipner, who on my fi rst

day at Microsoft told me to go “wallow in the problem for a while.” I don’t

think either expected “a while” to be quite so long. Nearly eight years later with

countless deliverables along the way, this book is my most complete answer to

the question they asked me: “How can we get better threat models?”

Ellen Cram Kowalczyk helped me make the book a reality in the Microsoft

context, gave great feedback on both details and aspects that were missing, and

also provided a lot of the history of threat modeling from the fi rst security pushes

through the formation of the SDL, and she was a great manager and mentor.

Ellen and Steve Lipner were also invaluable in helping me obtain permission

to use Microsoft documents.

The Elevation of Privilege game that opens this book owes much to Jacqueline

Beauchere, who saw promise in an ugly prototype called “Threat Spades,” and

invested in making it beautiful and widely available.

The SDL Threat Modeling Tool might not exist if Chris Peterson hadn’t given

me a chance to build a threat modeling tool for the Windows team to use. Ivan

Medvedev, Patrick McCuller, Meng Li, and Larry Osterman built the fi rst version

of that tool. I’d like to thank the many engineers in Windows, and later across

Microsoft, who provided bug reports and suggestions for improvements in the

beta days, and acknowledge all those who just fl amed at us, reminding us of the

importance of getting threat modeling right. Without that tool, my experience

and breadth in threat modeling would be far poorer.

Larry Osterman, Douglas MacIver, Eric Douglas, Michael Howard, and Bob

Fruth gave me hours of their time and experience in understanding threat

Acknowledgments

www.allitebooks.com

http://www.allitebooks.org

viii Acknowledgments

ffi rs.indd 12:57:18:PM 01/17/2014 Page viii

modeling at Microsoft. Window Snyder’s perspective as I started the Microsoft

job has been invaluable over the years. Knowing when you’re done . . . well,

this book is nearly done.

Rob Reeder was a great guide to the fi eld of usable security, and Chapter 15

would look very different if not for our years of collaboration. I can’t discuss

usable security without thanking Lorrie Cranor for her help on that topic; but

also for the chance to keynote the Symposium on Usable Privacy and Security,
which led me to think about usable engineering advice, a perspective that is

now suffused throughout this book.

Andy Stiengrubel, Don Ankney, and Russ McRee all taught me important

lessons related to operational threat modeling, and how the trade-offs change

as you change context. Guys, thank you for beating on me—those lessons now

permeate many chapters. Alec Yasinac, Harold Pardue, and Jeff Landry were

generous with their time discussing their attack tree experience, and Chapters

4 and 17 are better for those conversations. Joseph Lorenzo Hall was also a gem

in helping with attack trees. Wendy Nather argued strongly that assets and

attackers are great ways to make threats real, and thus help overcome resistance

to fi xing them. Rob Sama checked the Acme fi nancials example from a CPA’s

perspective, correcting many of my errors. Dave Awksmith graciously allowed

me to include his threat personas as a complete appendix. Jason Nehrboss gave

me some of the best feedback I’ve ever received on very early chapters.

I’d also like to acknowledge Jacob Appelbaum, Crispin Cowan, Dana Epp (for

years of help, on both the book and tools), Jeremi Gosney, Yoshi Kohno, David

LeBlanc, Marsh Ray, Nick Mathewson, Tamara McBride, Russ McRee, Talhah

Mir, David Mortman, Alec Muffet, Ben Rothke, Andrew Stewart, and Bryan

Sullivan for helpful feedback on drafts and/or ideas that made it into the book

in a wide variety of ways.

Of course, none of those acknowledged in this section are responsible for the

errors which doubtless crept in or remain.

Writing this book “by myself” (an odd phrase given everyone I’m acknowl-

edging) makes me miss working with Andrew Stewart, my partner in writing

on The New School of Information Security. Especially since people sometimes

attribute that book to me, I want to be public about how much I missed his

collaboration in this project.

This book wouldn’t be in the form it is were it not for Bruce Schneier’s will-

ingness to make an introduction to Carol Long, and Carol’s willingness to pick

up the book. It wasn’t always easy to read the feedback and suggested changes

from my excellent project editor, Victoria Swider, but this thing is better where I

did. Tom Dinse stepped in as the project ended and masterfully took control of a

very large number of open tasks, bringing them to resolution on a tight schedule.

Lastly, and most importantly, thank you to Terri, for all your help, support,

and love, and for putting up with “it’s almost done” for a very, very long time.

—Adam Shostack

www.allitebooks.com

http://www.allitebooks.org

ix

ftoc.indd 11:56:7:AM 01/17/2014 Page ix

Introduction xxi

Part I Getting Started 1

Chapter 1 Dive In and Threat Model! 3

Learning to Threat Model 4
What Are You Building? 5

What Can Go Wrong? 7

Addressing Each Threat 12

Checking Your Work 24

Threat Modeling on Your Own 26
Checklists for Diving In and Threat Modeling 27
Summary 28

Chapter 2 Strategies for Threat Modeling 29

“What’s Your Threat Model?” 30
Brainstorming Your Threats 31

Brainstorming Variants 32

Literature Review 33

Perspective on Brainstorming 34

Structured Approaches to Threat Modeling 34
Focusing on Assets 36

Focusing on Attackers 40

Focusing on Software 41

Models of Software 43
Types of Diagrams 44

Trust Boundaries 50

What to Include in a Diagram 52

Complex Diagrams 52

Labels in Diagrams 53

Contents

x Contents

ftoc.indd 11:56:7:AM 01/17/2014 Page x

Color in Diagrams 53

Entry Points 53

Validating Diagrams 54

Summary 56

Part II Finding Threats 59

Chapter 3 STRIDE 61

Understanding STRIDE and Why It’s Useful 62
Spoofing Threats 64

Spoofing a Process or File on the Same Machine 65

Spoofing a Machine 66

Spoofing a Person 66

Tampering Threats 67
Tampering with a File 68

Tampering with Memory 68

Tampering with a Network 68

Repudiation Threats 68
Attacking the Logs 69

Repudiating an Action 70

Information Disclosure Threats 70
Information Disclosure from a Process 71

 Information Disclosure from a Data Store 71

Information Disclosure from a Data Flow 72

Denial-of-Service Threats 72
Elevation of Privilege Threats 73

Elevate Privileges by Corrupting a Process 74

Elevate Privileges through Authorization Failures 74

Extended Example: STRIDE Threats against Acme-DB 74
STRIDE Variants 78

STRIDE-per-Element 78

STRIDE-per-Interaction 80

DESIST 85

Exit Criteria 85
Summary 85

Chapter 4 Attack Trees 87

Working with Attack Trees 87
Using Attack Trees to Find Threats 88

Creating New Attack Trees 88

Representing a Tree 91
Human-Viewable Representations 91

Structured Representations 94

Example Attack Tree 94
Real Attack Trees 96

Fraud Attack Tree 96

Election Operations Assessment Threat Trees 96

Mind Maps 98

 Contents xi

ftoc.indd 11:56:7:AM 01/17/2014 Page xi

Perspective on Attack Trees 98
Summary 100

Chapter 5 Attack Libraries 101

Properties of Attack Libraries 101
Libraries and Checklists 103

Libraries and Literature Reviews 103

CAPEC 104
Exit Criteria 106

Perspective on CAPEC 106

OWASP Top Ten 108
Summary 108

Chapter 6 Privacy Tools 111

Solove’s Taxonomy of Privacy 112
Privacy Considerations for

Internet Protocols 114
Privacy Impact Assessments (PIA) 114
The Nymity Slider and the Privacy Ratchet 115
Contextual Integrity 117

Contextual Integrity Decision Heuristic 118

Augmented Contextual Integrity Heuristic 119

Perspective on Contextual Integrity 119

LINDDUN 120
Summary 121

Part III Managing and Addressing Threats 123

Chapter 7 Processing and Managing Threats 125

Starting the Threat Modeling Project 126
When to Threat Model 126

What to Start and (Plan to) End With 128

Where to Start 128

Digging Deeper into Mitigations 130
The Order of Mitigation 131

Playing Chess 131

Prioritizing 132

Running from the Bear 132

Tracking with Tables and Lists 133
Tracking Threats 133

Making Assumptions 135

External Security Notes 136

Scenario-Specifi c Elements of
Threat Modeling 138

Customer/Vendor Trust Boundary 139

New Technologies 139

Threat Modeling an API 141

Summary 143

xii Contents

ftoc.indd 11:56:7:AM 01/17/2014 Page xii

Chapter 8 Defensive Tactics and Technologies 145

Tactics and Technologies for Mitigating Threats 145
Authentication: Mitigating Spoofi ng 146

Integrity: Mitigating Tampering 148

Non-Repudiation: Mitigating Repudiation 150

Confi dentiality: Mitigating Information Disclosure 153

Availability: Mitigating Denial of Service 155

Authorization: Mitigating Elevation of Privilege 157

Tactic and Technology Traps 159

Addressing Threats with Patterns 159
Standard Deployments 160

Addressing CAPEC Threats 160

Mitigating Privacy Threats 160
Minimization 160

Cryptography 161

Compliance and Policy 164

Summary 164

Chapter 9 Trade-Off s When Addressing Threats 167

Classic Strategies for Risk Management 168
Avoiding Risks 168

Addressing Risks 168

Accepting Risks 169

Transferring Risks 169

Ignoring Risks 169

Selecting Mitigations for Risk Management 170
Changing the Design 170

Applying Standard Mitigation Technologies 174

Designing a Custom Mitigation 176

Fuzzing Is Not a Mitigation 177

Threat-Specifi c Prioritization Approaches 178
Simple Approaches 178

Threat-Ranking with a Bug Bar 180

Cost Estimation Approaches 181

Mitigation via Risk Acceptance 184
Mitigation via Business Acceptance 184

Mitigation via User Acceptance 185

Arms Races in Mitigation Strategies 185
Summary 186

Chapter 10 Validating That Threats Are Addressed 189

Testing Threat Mitigations 190
Test Process Integration 190

How to Test a Mitigation 191

Penetration Testing 191

 Contents xiii

ftoc.indd 11:56:7:AM 01/17/2014 Page xiii

Checking Code You Acquire 192
Constructing a Software Model 193

Using the Software Model 194

QA’ing Threat Modeling 195
Model/Reality Conformance 195

Task and Process Completion 196

Bug Checking 196

Process Aspects of Addressing Threats 197
Threat Modeling Empowers Testing;

Testing Empowers Threat Modeling 197

Validation/Transformation 197

Document Assumptions as You Go 198

Tables and Lists 198
Summary 202

Chapter 11 Threat Modeling Tools 203

Generally Useful Tools 204
Whiteboards 204

Offi ce Suites 204

Bug-Tracking Systems 204

Open-Source Tools 206
TRIKE 206

SeaMonster 206

Elevation of Privilege 206

Commercial Tools 208
ThreatModeler 208

Corporate Threat Modeller 208

SecurITree 209

Little-JIL 209

Microsoft’s SDL Threat Modeling Tool 209

Tools That Don’t Exist Yet 213
Summary 213

Part IV Threat Modeling in Technologies and Tricky Areas 215

Chapter 12 Requirements Cookbook 217

Why a “Cookbook”? 218
The Interplay of Requirements, Threats,

and Mitigations 219
Business Requirements 220

Outshining the Competition 220

Industry Requirements 220

Scenario-Driven Requirements 221

Prevent/Detect/Respond as a Frame
for Requirements 221

Prevention 221

Detection 225

xiv Contents

ftoc.indd 11:56:7:AM 01/17/2014 Page xiv

Response 225

People/Process/Technology as a Frame
for Requirements 227

People 227

Process 228

Technology 228

Development Requirements vs. Acquisition Requirements 228
Compliance-Driven Requirements 229

Cloud Security Alliance 229

NIST Publication 200 230

PCI-DSS 231

Privacy Requirements 231
Fair Information Practices 232

Privacy by Design 232

The Seven Laws of Identity 233

Microsoft Privacy Standards for Development 234

The STRIDE Requirements 234
Authentication 235

Integrity 236

Non-Repudiation 237

Confi dentiality 238

Availability 238

Authorization 239

Non-Requirements 240
Operational Non-Requirements 240

Warnings and Prompts 241

Microsoft’s “10 Immutable Laws” 241

Summary 242

Chapter 13 Web and Cloud Threats 243

Web Threats 243
Website Threats 244

Web Browser and Plugin Threats 244

Cloud Tenant Threats 246
Insider Threats 246

Co-Tenant Threats 247

Threats to Compliance 247

Legal Threats 248

Threats to Forensic Response 248

Miscellaneous Threats 248

Cloud Provider Threats 249
Threats Directly from Tenants 249

Threats Caused by Tenant Behavior 250

Mobile Threats 250
Summary 251

 Contents xv

ftoc.indd 11:56:7:AM 01/17/2014 Page xv

Chapter 14 Accounts and Identity 253

Account Life Cycles 254
Account Creation 254

Account Maintenance 257

Account Termination 258

Account Life-Cycle Checklist 258

Authentication 259
Login 260

Login Failures 262

Threats to “What You Have” 263

Threats to “What You Are” 264

Threats to “What You Know” 267

Authentication Checklist 271

Account Recovery 271
Time and Account Recovery 272

E-mail for Account Recovery 273

Knowledge-Based Authentication 274

Social Authentication 278

Attacker-Driven Analysis of

Account Recovery 280

Multi-Channel Authentication 281

Account Recovery Checklist 281

Names, IDs, and SSNs 282
Names 282

Identity Documents 285

Social Security Numbers and Other

National Identity Numbers 286

Identity Theft 289

Names, IDs, and SSNs Checklist 290

Summary 290

Chapter 15 Human Factors and Usability 293

Models of People 294
Applying Behaviorist Models of People 295

Cognitive Science Models of People 297

Heuristic Models of People 302

Models of Software Scenarios 304
Modeling the Software 304

Diagramming for Modeling the Software 307

Modeling Electronic Social Engineering Attacks 309

Threat Elicitation Techniques 311
Brainstorming 311

The Ceremony Approach to Threat Modeling 311

Ceremony Analysis Heuristics 312

Integrating Usability into the Four-Stage Framework 315

xvi Contents

ftoc.indd 11:56:7:AM 01/17/2014 Page xvi

Tools and Techniques for Addressing
Human Factors 316

Myths That Inhibit Human Factors Work 317

Design Patterns for Good Decisions 317

Design Patterns for a Kind Learning

Environment 320

User Interface Tools and Techniques 322
Confi guration 322

Explicit Warnings 323

Patterns That Grab Attention 325

Testing for Human Factors 327
Benign and Malicious Scenarios 328

Ecological Validity 328

Perspective on Usability and Ceremonies 329
Summary 331

Chapter 16 Threats to Cryptosystems 333

Cryptographic Primitives 334
Basic Primitives 334

Privacy Primitives 339

Modern Cryptographic Primitives 339

Classic Threat Actors 341
Attacks against Cryptosystems 342
Building with Crypto 346

Making Choices 346

Preparing for Upgrades 346

Key Management 346

Authenticating before Decrypting 348

Things to Remember about Crypto 348
Use a Cryptosystem Designed by Professionals 348

Use Cryptographic Code Built and Tested by Professionals 348

Cryptography Is Not Magic Security Dust 349

Assume It Will All Become Public 349

You Still Need to Manage Keys 349

Secret Systems: Kerckhoffs and His Principles 349
Summary 351

Part V Taking It to the Next Level 353

Chapter 17 Bringing Threat Modeling to Your Organization 355

How To Introduce Threat Modeling 356
Convincing Individual Contributors 357

Convincing Management 358

Who Does What? 359
Threat Modeling and Project Management 359

 Contents xvii

ftoc.indd 11:56:7:AM 01/17/2014 Page xvii

Prerequisites 360

Deliverables 360

Individual Roles and Responsibilities 362

Group Interaction 363

Diversity in Threat Modeling Teams 367

Threat Modeling within a Development Life Cycle 367
Development Process Issues 368

Organizational Issues 373

Customizing a Process for Your Organization 378

Overcoming Objections to Threat Modeling 379
Resource Objections 379

Value Objections 380

Objections to the Plan 381

Summary 383

Chapter 18 Experimental Approaches 385

Looking in the Seams 386
Operational Threat Models 387

FlipIT 388

Kill Chains 388

The “Broad Street” Taxonomy 392
Adversarial Machine Learning 398
Threat Modeling a Business 399
Threats to Threat Modeling Approaches 400

Dangerous Deliverables 400

Enumerate All Assumptions 400

Dangerous Approaches 402

How to Experiment 404
Defi ne a Problem 404

Find Aspects to Measure and Measure Them 404

Study Your Results 405

Summary 405

Chapter 19 Architecting for Success 407

Understanding Flow 407
Flow and Threat Modeling 409

Stymieing People 411

Beware of Cognitive Load 411

Avoid Creator Blindness 412

Assets and Attackers 412

Knowing the Participants 413
Boundary Objects 414
The Best Is the Enemy of the Good 415
Closing Perspectives 416

“The Threat Model Has Changed” 417

xviii Contents

ftoc.indd 11:56:7:AM 01/17/2014 Page xviii

On Artistry 418

Summary 419
Now Threat Model 420

Appendix A Helpful Tools 421

Common Answers to “What’s Your Threat Model?” 421
Network Attackers 421

Physical Attackers 422

Attacks against People 423

Supply Chain Attackers 423

Privacy Attackers 424

Non-Sentient “Attackers” 424

The Internet Threat Model 424

Assets 425

Computers as Assets 425

People as Assets 426

Processes as Assets 426

Intangible Assets 427

Stepping-Stone Assets 427

Appendix B Threat Trees 429

STRIDE Threat Trees 430
Spoofi ng an External Entity (Client/ Person/Account) 432

Spoofi ng a Process 438

Spoofi ng of a Data Flow 439

Tampering with a Process 442

Tampering with a Data Flow 444

Tampering with a Data Store 446

Repudiation against a Process (or by an External Entity) 450

Repudiation, Data Store 452

Information Disclosure from a Process 454

Information Disclosure from a Data Flow 456

Information Disclosure from a Data Store 459

Denial of Service against a Process 462

Denial of Service against a Data Flow 463

Denial of Service against a Data Store 466

Elevation of Privilege against a Process 468

Other Threat Trees 470
Running Code 471

Attack via a “Social” Program 474

Attack with Tricky Filenames 476

Appendix C Attacker Lists 477

Attacker Lists 478
Barnard’s List 478

Verizon’s Lists 478

OWASP 478

Intel TARA 479

www.allitebooks.com

http://www.allitebooks.org

 Contents xix

ftoc.indd 11:56:7:AM 01/17/2014 Page xix

Personas and Archetypes 480
Aucsmith’s Attacker Personas 481
Background and Defi nitions 481
Personas 484

David “Ne0phyate” Bradley – Vandal 484

JoLynn “NightLily” Dobney – Trespasser 486

Sean “Keech” Purcell – Defacer 488

Bryan “CrossFyre” Walton – Author 490

Lorrin Smith-Bates – Insider 492

Douglas Hite – Thief 494

Mr. Smith – Terrorist 496

Mr. Jones – Spy 498

Appendix D Elevation of Privilege: The Cards 501

Spoofi ng 501
Tampering 503
Repudiation 504
Information Disclosure 506
Denial of Service 507
Elevation of Privilege (EoP) 508

Appendix E Case Studies 511

The Acme Database 512
Security Requirements 512

Software Model 512

Threats and Mitigations 513

Acme’s Operational Network 519
Security Requirements 519

Operational Network 520

Threats to the Network 521

Phones and One-Time Token Authenticators 525
The Scenario 526

The Threats 527

Possible Redesigns 528

Sample for You to Model 528
Background 529

The iNTegrity Data Flow Diagrams 530

Exercises 531

Glossary 533

Bibliography 543

Index 567

fl ast.indd 11:57:23:AM 01/17/2014 Page xx

xxi

fl ast.indd 11:57:23:AM 01/17/2014 Page xxi

All models are wrong, some models are useful.

— George Box

This book describes the useful models you can employ to address or mitigate

these potential threats. People who build software, systems, or things with

software need to address the many predictable threats their systems can face.

Threat modeling is a fancy name for something we all do instinctively. If I

asked you to threat model your house, you might start by thinking about the

precious things within it: your family, heirlooms, photos, or perhaps your collec-

tion of signed movie posters. You might start thinking about the ways someone

might break in, such as unlocked doors or open windows. And you might start

thinking about the sorts of people who might break in, including neighborhood

kids, professional burglars, drug addicts, perhaps a stalker, or someone trying

to steal your Picasso original.

Each of these examples has an analog in the software world, but for now,

the important thing is not how you guard against each threat, but that you’re

able to relate to this way of thinking. If you were asked to help assess a friend’s

house, you could probably help, but you might lack confi dence in how complete

your analysis is. If you were asked to secure an offi ce complex, you might have

a still harder time, and securing a military base or a prison seems even more

diffi cult. In those cases, your instincts are insuffi cient, and you’d need tools to

help tackle the questions. This book will give you the tools to think about threat

modeling technology in structured and effective ways.

In this introduction, you’ll learn about what threat modeling is and why indi-

viduals, teams, and organizations threat model. Those reasons include fi nding

security issues early, improving your understanding of security requirements,

and being able to engineer and deliver better products. This introduction has

Introduction

xxii Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxii

fi ve main sections describing what the book is about, including a defi nition of

threat modeling and reasons it’s important; who should read this book; how to

use it, and what you can expect to gain from the various parts, and new lessons

in threat modeling.

What Is Threat Modeling?

Everyone threat models. Many people do it out of frustration in line at the airport,

sneaking out of the house or into a bar. At the airport, you might idly consider how

to sneak something through security, even if you have no intent to do so. Sneaking

in or out of someplace, you worry about who might catch you. When you speed

down the highway, you work with an implicit threat model where the main threat

is the police, who you probably think are lurking behind a billboard or overpass.

Threats of road obstructions, deer, or rain might play into your model as well.

When you threat model, you usually use two types of models. There’s a model

of what you’re building, and there’s a model of the threats (what can go wrong).

What you’re building with software might be a website, a downloadable program

or app, or it might be delivered in a hardware package. It might be a distributed

system, or some of the “things” that will be part of the “Internet of things.” You

model so that you can look at the forest, not the trees. A good model helps you

address classes or groups of attacks, and deliver a more secure product.

The English word threat has many meanings. It can be used to describe a

person, such as “Osama bin Laden was a threat to America,” or people, such

as “the insider threat.” It can be used to describe an event, such as “There is

a threat of a hurricane coming through this weekend,” and it can be used to

describe a weakness or possibility of attack, such as “What are you doing about

confi dentiality threats?” It is also used to describe viruses and malware such as

“This threat incorporates three different methods for spreading.” It can be used

to describe behavior such as “There’s a threat of operator error.”

Similarly, the term threat modeling has many meanings, and the term threat
model is used in many distinct and perhaps incompatible ways, including:

 ■ As a verb—for example, “Have you threat modeled?” That is, have you

gone through an analysis process to fi gure out what might go wrong with

the thing you’re building?

 ■ As a noun, to ask what threat model is being used. For example, “Our

threat model is someone in possession of the machine,” or “Our threat

model is a skilled and determined remote attacker.”

 ■ It can mean building up a set of idealized attackers.

 ■ It can mean abstracting threats into classes such as tampering.

There are doubtless other defi nitions. All of these are useful in various sce-

narios and thus correct, and there are few less fruitful ways to spend your time

 Introduction xxiii

fl ast.indd 11:57:23:AM 01/17/2014 Page xxiii

than debating them. Arguing over defi nitions is a strange game, and the only

way to win is not to play. This book takes a big tent approach to threat model-

ing and includes a wide range of techniques you can apply early to make what

you’re designing or building more secure. It will also address the reality that

some techniques are more effective than others, and that some techniques are

more likely to work for people with particular skills or experience.

Threat modeling is the key to a focused defense. Without threat models, you

can never stop playing whack-a-mole.

In short, threat modeling is the use of abstractions to aid in thinking about

risks.

Reasons to Threat Model

In today’s fast-paced world, there is a tendency to streamline development activ-

ity, and there are important reasons to threat model, which are covered in this

section. Those include fi nding security bugs early, understanding your security

requirements, and engineering and delivering better products.

Find Security Bugs Early

If you think about building a house, decisions you make early will have dramatic

effects on security. Wooden walls and lots of ground-level windows expose you

to more risks than brick construction and few windows. Either may be a reason-

able choice, depending on where you’re building and other factors. Once you’ve

chosen, changes will be expensive. Sure, you can put bars over your windows,

but wouldn’t it be better to use a more appropriate design from the start? The

same sorts of tradeoffs can apply in technology. Threat modeling will help you

fi nd design issues even before you’ve written a line of code, and that’s the best

time to fi nd those issues.

Understand Your Security Requirements

Good threat models can help you ask “Is that really a requirement?” For example,

does the system need to be secure against someone in physical possession of

the device? Apple has said yes for the iPhone, which is different from the tradi-

tional world of the PC. As you fi nd threats and triage what you’re going to do

with them, you clarify your requirements. With more clear requirements, you

can devote your energy to a consistent set of security features and properties.

There is an important interplay between requirements, threats, and mitiga-

tions. As you model threats, you’ll fi nd that some threats don’t line up with your

business requirements, and as such may not be worth addressing. Alternately,

your requirements may not be complete. With other threats, you’ll fi nd that

addressing them is too complex or expensive. You’ll need to make a call between

xxiv Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxiv

addressing them partially in the current version or accepting (and communicat-

ing) that you can’t address those threats.

Engineer and Deliver Better Products

By considering your requirements and design early in the process, you can

dramatically lower the odds that you’ll be re-designing, re-factoring, or facing

a constant stream of security bugs. That will let you deliver a better product on

a more predictable schedule. All the effort that would go to those can be put

into building a better, faster, cheaper or more secure product. You can focus on

whatever properties your customers want.

Address Issues Other Techniques Won’t

The last reason to threat model is that threat modeling will lead you to catego-

ries of issues that other tools won’t fi nd. Some of these issues will be errors of

omission, such as a failure to authenticate a connection. That’s not something

that a code analysis tool will fi nd. Other issues will be unique to your design.

To the extent that you have a set of smart developers building something new,

you might have new ways threats can manifest. Models of what goes wrong,

by abstracting away details, will help you see analogies and similarities to

problems that have been discovered in other systems.

A corollary of this is that threat modeling should not focus on issues that your

other safety and security engineering is likely to fi nd (except insofar as fi nding

them early lets you avoid re-engineering). So if, for example, you’re building a

product with a database, threat modeling might touch quickly on SQL injection

attacks, and the variety of trust boundaries that might be injectable. However,

you may know that you’ll encounter those. Your threat modeling should focus

on issues that other techniques can’t fi nd.

Who Should Read This book?

This book is written for those who create or operate complex technology. That’s

primarily software engineers and systems administrators, but it also includes

a variety of related roles, including analysts or architects. There’s also a lot of

information in here for security professionals, so this book should be useful to

them and those who work with them. Different parts of the book are designed

for different people—in general, the early chapters are for generalists (or special-

ists in something other than security), while the end of the book speaks more

to security specialists.

 Introduction xxv

fl ast.indd 11:57:23:AM 01/17/2014 Page xxv

You don’t need to be a security expert, professional, or even enthusiast to

get substantial benefi t from this book. I assume that you understand that there

are people out there whose interests and desires don’t line up with yours. For

example, maybe they’d like to take money from you, or they may have other

goals, like puffi ng themselves up at your expense or using your computer to

attack other people.

This book is written in plain language for anyone who can write or spec a

program, but sometimes a little jargon helps in precision, conciseness, or clarity,

so there’s a glossary.

What You Will Gain from This Book

When you read this book cover to cover, you will gain a rich knowledge of threat

modeling techniques. You’ll learn to apply those techniques to your projects

so you can build software that’s more secure from the get-go, and deploy it

more securely. You’ll learn to how to make security tradeoffs in ways that are

considered, measured, and appropriate. You will learn a set of tools and when

to bring them to bear. You will discover a set of glamorous distractions. Those

distractions might seem like wonderful, sexy ideas, but they hide an ugly inte-

rior. You’ll learn why they prevent you from effectively threat modeling, and

how to avoid them.

You’ll also learn to focus on the actionable outputs of threat modeling, and

I’ll generally call those “bugs.” There are arguments that it’s helpful to consider

code issues as bugs, and design issues as fl aws. In my book, those arguments

are a distraction; you should threat model to fi nd issues that you can address,

and arguing about labels probably doesn’t help you address them.

Lessons for Diff erent Readers

This book is designed to be useful to a wide variety of people working in tech-

nology. That includes a continuum from those who develop software to those

who combine it into systems that meet operational or business goals to those

who focus on making it more secure.

For convenience, this book pretends there is a bright dividing line between

development and operations. The distinction is used as a way of understand-

ing who has what capabilities, choices, and responsibilities. For example, it is

“easy” for a developer to change what is logged, or to implement a different

authentication system. Both of these may be hard for operations. Similarly, it’s

“easy” for operations to ensure that logs are maintained, or to ensure that a

computer is in a locked cage. As this book was written, there’s also an important

xxvi Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxvi

model of “devops” emerging. The lessons for developers and operations can

likely be applied with minor adjustments. This book also pretends that security

expertise is separate from either development or operations expertise, again,

simply as a convenience.

Naturally, this means that the same parts of the book will bring different les-

sons for different people. The breakdown below gives a focused value proposi-

tion for each audience.

Software Developers and Testers

Software developers—those whose day jobs are focused on creating software—

include software engineers, quality assurance, and a variety of program or

project managers. If you’re in that group, you will learn to fi nd and address

design issues early in the software process. This book will enable you to deliver

more secure software that better meets customer requirements and expecta-

tions. You’ll learn a simple, effective and fun approach to threat modeling, as

well as different ways to model your software or fi nd threats. You’ll learn how

to track threats with bugs that fi t into your development process. You’ll learn to

use threats to help make your requirements more crisp, and vice versa. You’ll

learn about areas such as authentication, cryptography, and usability where the

interplay of mitigations and attacks has a long history, so you can understand

how the recommended approaches have developed to their current state. You’ll

learn about how to bring threat modeling into your development process. And

a whole lot more!

Systems Architecture, Operations, and Management

For those whose day jobs involve bringing together software components,

weaving them together into systems to deliver value, you’ll learn to fi nd and

address threats as you design your systems, select your components, and get

them ready for deployment. This book will enable you to deliver more secure

systems that better meet business, customer, and compliance requirements.

You’ll learn a simple, effective, and fun approach to threat modeling, as well as

different ways to model the systems you’re building or have built. You’ll learn

how to fi nd security and privacy threats against those systems. You’ll learn

about the building blocks which are available for you to operationally address

those threats. You’ll learn how to make tradeoffs between the threats you face,

and how to ensure that those threats are addressed. You’ll learn about specifi c

threats to categories of technology, such as web and cloud systems, and about

threats to accounts, both of which are deeply important to those in operations.

It will cover issues of usability, and perhaps even change your perspective on

 Introduction xxvii

fl ast.indd 11:57:23:AM 01/17/2014 Page xxvii

how to infl uence the security behavior of people within your organization and/

or your customers. You will learn about cryptographic building blocks, which

you may be using to protect systems. And a whole lot more!

Security Professionals

If you work in security, you will learn two major things from this book: First,

you’ll learn structured approaches to threat modeling that will enhance your

productivity, and as you do, you’ll learn why many of the “obvious” parts

of threat modeling are not as obvious, or as right, as you may have believed.

Second, you’ll learn about bringing security into the development, operational

and release processes that your organization uses.

Even if you are an expert, this book can help you threat model better. Here,

I speak from experience. As I was writing the case study appendix, I found

myself turning to both the tree in Appendix B and the requirements chapter,

and fi nding threats that didn’t spring to mind from just considering the models

of software.

TO MY COLLEAGUES IN INFORMATION SECURITY

I want to be frank. This book is not about how to design abstractly perfect software.

It is a practical, grounded book that acknowledges that most software is built in some

business or organizational reality that requires tradeoff s. To the dismay of purists,

software where tradeoff s were made runs the world these days, and I’d like to make

such software more secure by making those tradeoff s better. That involves a great

many elements, two of which are making security more consistent and more acces-

sible to our colleagues in other specialties.

This perspective is grounded in my time as a systems administrator, deploying

security technologies, and observing the issues people encountered. It is grounded

in my time as a startup executive, learning to see security as a property of a system

which serves a business goal. It is grounded in my responsibility for threat model-

ing as part of Microsoft’s Security Development Lifecycle. In that last role, I spoke

with thousands of people at Microsoft, its partners, and its customers about our

approaches. These individuals ranged from newly hired developers to those with

decades of experience in security, and included chief security offi cers and Microsoft’s

Trustworthy Computing Academic Advisory Board. I learned that there are an awful

lot of opinions about what works, and far fewer about what does not. This book aims

to convince my fellow security professionals that pragmatism in what we ask of devel-

opment and operations helps us deliver more secure software over time. This perspec-

tive may be a challenge for some security professionals. They should focus on Parts II,

IV, and V, and perhaps give consideration to the question of the best as the enemy of

the good.

xxviii Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxviii

How To Use This Book

You should start at the very beginning. It’s a very good place to start, even if

you already know how to threat model, because it lays out a framework that

will help you understand the rest of the book.

The Four-Step Framework

This book introduces the idea that you should see threat modeling as composed

of steps which accomplish subgoals, rather than as a single activity. The essential

questions which you ask to accomplish those subgoals are:

 1. What are you building?

 2. What can go wrong with it once it’s built?

 3. What should you do about those things that can go wrong?

 4. Did you do a decent job of analysis?

The methods you use in each step of the framework can be thought of like

Lego blocks. When working with Legos, you can snap in other Lego blocks.

In Chapter 1, you’ll use a data fl ow diagram to model what you’re building,

STRIDE to help you think about what can go wrong and what you should do

about it, and a checklist to see if you did a decent job of analysis. In Chapter 2,

you’ll see how diagrams are the most helpful way to think about what you’re

building. Different diagram types are like different building blocks to help

you model what you’re building. In Chapter 3, you’ll go deep into STRIDE (a

model of threats), while in Chapter 4, you’ll learn to use attack trees instead of

STRIDE, while leaving everything else the same. STRIDE and attack trees are

different building blocks for considering what can go wrong once you’ve built

your new technology.

Not every approach can snap with every other approach. It takes crazy glue

to make an Erector set and Lincoln logs stick together. Attempts to glue threat

modeling approaches together has made for some confusing advice. For example,

trying to consider how terrorists would attack your assets doesn’t really lead

to a lot of actionable issues. And even with building blocks that snap together,

you can make something elegant, or something confusing or bizarre.

So to consider this as a framework, what are the building blocks? The four-

step framework is shown graphically in Figure I-1.

The steps are:

 1. Model the system you’re building, deploying, or changing.

 2. Find threats using that model and the approaches in Part II.

www.allitebooks.com

http://www.allitebooks.org

 Introduction xxix

fl ast.indd 11:57:23:AM 01/17/2014 Page xxix

 3. Address threats using the approaches in Part III.

 4. Validate your work for completeness and effectiveness (also Part III).

Model
System

Find
Threats

Address
Threats

Validate

Figure I-1: The Four-Step Framework

This framework was designed to align with software development and opera-

tional deployment. It has proven itself as a way to structure threat modeling.

It also makes it easier to experiment without replacing the entire framework.

From here until you reach Part V, almost everything you encounter is selected

because it plugs into this four-step framework.

This book is roughly organized according to the framework:

Part I “Getting Started” is about getting started. The opening part of the book

(especially Chapter 1) is designed for those without much security expertise.

The later parts of the book build on the security knowledge you’ll gain from this

material (or combined with your own experience). You’ll gain an understanding

of threat modeling, and a recommended approach for those who are new to the

discipline. You’ll also learn various ways to model your software, along with

why that’s a better place to start than other options, such as attackers or assets.

Part II “Finding Threats” is about fi nding threats. It presents a collection of

techniques and tools you can use to fi nd threats. It surveys and analyzes the dif-

ferent ways people approach information technology threat modeling, enabling

you to examine the pros and cons of the various techniques that people bring to

bear. They’re grouped in a way that enables you to either read them from start

to fi nish or jump in at a particular point where you need help.

Part III “Managing and Addressing Threats” is about managing and address-

ing threats. It includes processing threats and how to manage them, the tactics

and technologies you can use to address them, and how to make risk tradeoffs

xxx Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxx

you might need to make. It also covers validating that your threats are addressed,

and tools you can use to help you threat model.

Part IV “Threat Modeling in Technologies and Tricky Areas” is about threat

modeling in specifi c technologies and tricky areas where a great deal of threat

modeling and analysis work has already been done. It includes chapters on web

and cloud, accounts and identity, and cryptography, as well as a requirements

“cookbook” that you can use to jump-start your own security requirements

analysis.

Part V “Taking it to the Next Level” is about taking threat modeling to the

next level. It targets the experienced threat modeler, security expert, or process

designer who is thinking about how to build and customize threat modeling

processes for a given organization.

Appendices include information to help you apply what you’ve learned. They

include sets of common answers to “what’s your threat model,” and “what are

our assets”; as well as threat trees that can help you fi nd threats, lists of attackers

and attacker personas; and details about the Elevation of Privilege game you’ll

use in Chapter 1; and lastly, a set of detailed example threat models. These are

followed by a glossary, bibliography, and index.

Website: This book’s website, www.threatmodelingbook.com will contain a

PDF of some of the fi gures in the book, and likely an errata list to mitigate the

errors that inevitably threaten to creep in.

What This Book Is Not

Many security books today promise to teach you to hack. Their intent is to teach

you what sort of attacks need to be defended against. The idea is that if you have

an empirically grounded set of attacks, you can start with that to create your

defense. This is not one of those books, because despite millions of such books

being sold, vulnerable systems are still being built and deployed. Besides, there

are solid, carefully considered defenses against many sorts of attacks. It may

be useful to know how to execute an attack, but it’s more important to know

where each attack might be executed, and how to effectively defend against it.

This book will teach you that.

This book is not focused on a particular technology, platform, or API set.

Platforms and APIs infl uence may offer security features you can use, or mitigate

some threats for you. The threats and mitigations associated with a platform

change from release to release, and this book aims to be a useful reference

volume on your shelf for longer than the release of any particular technology.

This book is not a magic pill that will make you a master of threat modeling.

It is a resource to help you understand what you need to know. Practice will

 Introduction xxxi

fl ast.indd 11:57:23:AM 01/17/2014 Page xxxi

help you get better, and deliberative practice with feedback and hard problems

will make you a master.

New Lessons on Threat Modeling

Most experienced security professionals have developed an approach to threat

modeling that works for them. If you’ve been threat modeling for years, this

book will give you an understanding of other approaches you can apply. This

book also give you a structured understanding of a set of methods and how

they inter-relate. Lastly, there are some deeper lessons which are worth bringing

to your attention, rather than leaving them for you to extract.

There’s More Than One Way to Threat Model

If you ask a programmer “What’s the right programming language for my new

project?” you can expect a lot of clarifying questions. There is no one ideal pro-

gramming language. There are certainly languages that are better or worse at

certain types of tasks. For example, it’s easier to write text manipulation code

in Perl than assembler. Python is easier to read and maintain than assembler,

but when you need to write ultra-fast code for a device driver, C or assembler

might be a better choice. In the same way, there are better and worse ways to

threat model, which depend greatly on your situation: who will be involved,

what skills they have, and so on.

So you can think of threat modeling like programming. Within programming

there are languages, paradigms (such as waterfall or agile), and practices (pair

programming or frequent deployment). The same is true of threat modeling.

Most past writing on threat modeling has presented “the” way to do it. This

book will help you see how “there’s more than one way to do it” is not just the

Perl motto, but also applies to threat modeling.

The Right Way Is the Way That Finds Good Threats

The right way to threat model is the way that empowers a project team to fi nd

more good threats against a system than other techniques that could be employed

with the resources available. (A “good threat” is a threat that illuminates work

that needs to be done.) That’s as true for a project team of one as it is for a project

team of thousands. That’s also true across all levels of resources, such as time,

expertise, and tooling. The right techniques empower a team to really fi nd and

address threats (and gain assurance that they have done so).

xxxii Introduction

fl ast.indd 11:57:23:AM 01/17/2014 Page xxxii

There are lots of people who will tell you that they know the one true way.

(That’s true in fi elds far removed from threat modeling.) Avoid a religious war

and fi nd a way that works for you.

Threat Modeling Is Like Version Control

Threat modeling is sometimes seen as a specialist skill that only a few people

can do well. That perspective holds us back, because threat modeling is more

like version control than a specialist skill. This is not intended to denigrate or

minimize threat modeling; rather, no professional developer would think of

building software of any complexity without a version control system of some

form. Threat modeling should aspire to be that fundamental.

You expect every professional software developer to know the basics of a

version control system or two, and similarly, many systems administrators

will use version control to manage confi guration fi les. Many organizations get

by with a simple version control approach, and never need an expert. If you

work at a large organization, you might have someone who manages the build

tree full time. Threat modeling is similar. With the lessons in this book, it will

become reasonable to expect professionals in software and operations to have

basic experience threat modeling.

Threat Modeling Is Also Like Playing a Violin

When you learn to play the violin, you don’t start with the most beautiful violin

music ever written. You learn to play scales, a few easy pieces, and then progress

to trickier and trickier music.

Similarly, when you start threat modeling, you need to practice to learn the

skills, and it may involve challenges or frustration as you learn. You need to

understand threat modeling as a set of skills, which you can apply in a variety

of ways, and which take time to develop. You’ll get better if you practice. If

you expect to compete with an expert overnight, you might be disappointed.

Similarly, if you threat model only every few years, you should expect to be

rusty, and it will take you time to rebuild the muscles you need.

Technique versus Repertoire

Continuing with the metaphor, the most talented violinist doesn’t learn to play

a single piece, but they develop a repertoire, a set of knowledge that’s relevant

to their fi eld.

As you get started threat modeling, you’ll need to develop both techniques

and a repertoire—a set of threat examples that you can build from to imagine

how new systems might be attacked. Attack lists or libraries can act as a partial

 Introduction xxxiii

fl ast.indd 11:57:23:AM 01/17/2014 Page xxxiii

substitute for the mental repertoire of known threats an expert knows about.

Reading about security issues in similar products can also help you develop a

repertoire of threats. Over time, this can feed into how you think about new and

different threats. Learning to think about threats is easier with training wheels.

“Think Like an Attacker” Considered Harmful

A great deal of writing on threat modeling exhorts people to “think like an

attacker.” For many people, that’s as hard as thinking like a professional chef.

Even if you’re a great home cook, a restaurant-managing chef has to wrestle

with problems that a home cook does not. For example, how many chickens

should you buy to meet the needs of a restaurant with 78 seats, each of which

will turn twice an evening? The advice to think like an attacker doesn’t help

most people threat model.

Worse, you may end up with implicit or incorrect assumptions about how an

attacker will think and what they will choose to do. Such models of an attacker’s

mindset may lead you to focus on the wrong threats. You don’t need to focus

on the attacker to fi nd threats, but personifi cation may help you fi nd resources

to address them.

The Interplay of Attacks, Mitigations, & Requirements

 Threat modeling is all about making more secure software. As you use models

of software and threats to fi nd potential problems, you’ll discover that some

threats are hard or impossible to address, and you’ll adjust requirements to

match. This interplay is a rarely discussed key to useful threat modeling.

Sometimes it’s a matter of wanting to defend against administrators, other

times it’s a matter of what your customers will bear. In the wake of the 9/11

hijackings, the US government reputedly gave serious consideration to banning

laptops from airplanes. (A battery and a mass of explosives reportedly look the

same on the x-ray machines.) Business customers, who buy last minute expen-

sive tickets and keep the airlines aloft, threatened to revolt. So the government

implemented other measures, whose effectiveness might be judged with some

of the tools in this book.

This interplay leads to the conclusion that there are threats that cannot be

effectively mitigated. That’s a painful thought for many security professionals.

(But as the Man in Black said, “Life is pain, Highness! Anyone who says differ-

ently is selling something.”) When you fi nd threats that violate your requirements

and cannot be mitigated, it generally makes sense to adjust your requirements.

Sometimes it’s possible to either mitigate the threat operationally, or defer a

decision to the person using the system.

With that, it’s time to dive in and threat model!

c01.indd 11:33:50:AM 01/17/2014 Page 1

This part of the book is for those who are new to threat modeling, and it assumes

no prior knowledge of threat modeling or security. It focuses on the key new

skills that you’ll need to threat model and lays out a methodology that’s designed

for people who are new to threat modeling.

Part I also introduces the various ways to approach threat modeling using a

set of toy analogies. Much like there are many children’s toys for modeling, there

are many ways to threat model. There are model kits with precisely molded

parts to create airplanes or ships. These kits have a high degree of fi delity and

a low level of fl exibility. There are also numerous building block systems such

as Lincoln Logs, Erector Sets, and Lego blocks. Each of these allows for more

fl exibility, at the price of perhaps not having a propeller that’s quite right for

the plane you want to model.

In threat modeling, there are techniques that center on attackers, assets, or

software, and these are like Lincoln Logs, Erector Sets, and Lego blocks, in that

each is powerful and fl exible, each has advantages and disadvantages, and it

can be tricky to combine them into something beautiful.

Par t

I
Getting Started

2 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 2

Part I contains the following chapters:

 ■ Chapter 1: Dive In and Threat Model! contains everything you need to

get started threat modeling, and does so by focusing on four questions:

 ■ What are you building?

 ■ What can go wrong?

 ■ What should you do about those things that can go wrong?

 ■ Did you do a decent job of analysis?

These questions aren’t just what you need to get started, but are at the

heart of the four-step framework, which is the core of this book.

 ■ Chapter 2: Strategies for Threat Modeling covers a great many ways

to approach threat modeling. Many of them are “obvious” approaches,

such as thinking about attackers or the assets you want to protect. Each

is explained, along with why it works less well than you hope. These

and others are contrasted with a focus on software. Software is what

you can most reasonably expect a software professional to understand,

and so models of software are the most important lesson of Chapter 2.

Models of software are one of the two models that you should focus on

when threat modeling.

3

c01.indd 11:33:50:AM 01/17/2014 Page 3

Anyone can learn to threat model, and what’s more, everyone should. Threat

modeling is about using models to fi nd security problems. Using a model means

abstracting away a lot of details to provide a look at a bigger picture, rather than

the code itself. You model because it enables you to fi nd issues in things you

haven’t built yet, and because it enables you to catch a problem before it starts.

Lastly, you threat model as a way to anticipate the threats that could affect you.

Threat modeling is fi rst and foremost a practical discipline, and this chapter

is structured to refl ect that practicality. Even though this book will provide you

with many valuable defi nitions, theories, philosophies, effective approaches,

and well-tested techniques, you’ll want those to be grounded in experience.

Therefore, this chapter avoids focusing on theory and ignores variations for

now and instead gives you a chance to learn by experience.

To use an analogy, when you start playing an instrument, you need to develop

muscles and awareness by playing the instrument. It won’t sound great at the

start, and it will be frustrating at times, but as you do it, you’ll fi nd it gets easier.

You’ll start to hit the notes and the timing. Similarly, if you use the simple four-

step breakdown of how to threat model that’s exercised in Parts I-III of this book,

you’ll start to develop your muscles. You probably know the old joke about the

person who stops a musician on the streets of New York and asks “How do I

get to Carnegie Hall?” The answer, of course, is “practice, practice, practice.”

Some of that includes following along, doing the exercises, and developing an

C H A P T E R

1

Dive In and Threat Model!

4 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 4

understanding of the steps involved. As you do so, you’ll start to understand how

the various tasks and techniques that make up threat modeling come together.

In this chapter you’re going to fi nd security fl aws that might exist in a design,

so you can address them. You’ll learn how to do this by examining a simple

web application with a database back end. This will give you an idea of what

can go wrong, how to address it, and how to check your work. Along the way,

you’ll learn to play Elevation of Privilege, a serious game designed to help you

start threat modeling. Finally you’ll get some hands-on experience building

your own threat model, and the chapter closes with a set of checklists that help

you get started threat modeling.

Learning to Threat Model

You begin threat modeling by focusing on four key questions:

 1. What are you building?

 2. What can go wrong?

 3. What should you do about those things that can go wrong?

 4. Did you do a decent job of analysis?

In addressing these questions, you start and end with tasks that all technolo-

gists should be familiar with: drawing on a whiteboard and managing bugs. In

between, this chapter will introduce a variety of new techniques you can use to

think about threats. If you get confused, just come back to these four questions.

Everything in this chapter is designed to help you answer one of these ques-

tions. You’re going to fi rst walk through these questions using a three-tier web

app as an example, and after you’ve read that, you should walk through the

steps again with something of your own to threat model. It could be software

you’re building or deploying, or software you’re considering acquiring. If you’re

feeling uncertain about what to model, you can use one of the sample systems

in this chapter or an exercise found in Appendix E, “Case Studies.”

The second time you work through this chapter, you’ll need a copy of the

Elevation of Privilege threat-modeling game. The game uses a deck of cards

that you can download free from http://www.microsoft.com/security/sdl/

adopt/eop.aspx. You should get two–four friends or colleagues together for

the game part.

You start with building a diagram, which is the fi rst of four major activities

involved in threat modeling and is explained in the next section. The other

three include fi nding threats, addressing them, and then checking your work.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Dive In and Threat Model! 5

c01.indd 11:33:50:AM 01/17/2014 Page 5

What Are You Building?

Diagrams are a good way to communicate what you are building. There are

lots of ways to diagram software, and you can start with a whiteboard diagram

of how data fl ows through the system. In this example, you’re working with

a simple web app with a web browser, web server, some business logic and a

database (see Figure 1-1).

Web browser Web server Business Logic Database

Figure 1-1: A whiteboard diagram

Some people will actually start thinking about what goes wrong right here.

For example, how do you know that the web browser is being used by the person

you expect? What happens if someone modifi es data in the database? Is it OK

for information to move from one box to the next without being encrypted? You

might want to take a minute to think about some things that could go wrong

here because these sorts of questions may lead you to ask “is that allowed?”

You can create an even better model of what you’re building if you think about

“who controls what” a little. Is this a website for the whole Internet, or is it an

intranet site? Is the database on site, or at a web provider?

For this example, let’s say that you’re building an Internet site, and you’re

using the fi ctitious Acme storage-system. (I’d put a specifi c product here, but

then I’d get some little detail wrong and someone, certainly not you, would

get all wrapped around the axle about it and miss the threat modeling lesson.

Therefore, let’s just call it Acme, and pretend it just works the way I’m saying.

Thanks! I knew you’d understand.)

Adding boundaries to show who controls what is a simple way to improve

the diagram. You can pretty easily see that the threats that cross those bound-

aries are likely important ones, and may be a good place to start identifying

threats. These boundaries are called trust boundaries, and you should draw

6 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 6

them wherever different people control different things. Good examples of this

include the following:

 ■ Accounts (UIDs on unix systems, or SIDS on Windows)

 ■ Network interfaces

 ■ Different physical computers

 ■ Virtual machines

 ■ Organizational boundaries

 ■ Almost anywhere you can argue for different privileges

TRUST BOUNDARY VERSUS ATTACK SURFACE

A closely related concept that you may have encountered is attack surface. For example,

the hull of a ship is an attack surface for a torpedo. The side of a ship presents a larger

attack surface to a submarine than the bow of the same ship. The ship may have inter-

nal “trust” boundaries, such as waterproof bulkheads or a Captain’s safe. A system that

exposes lots of interfaces presents a larger attack surface than one that presents few

APIs or other interfaces. Network fi rewalls are useful boundaries because they reduce the

attack surface relative to an external attacker. However, much like the Captain’s safe, there

are still trust boundaries inside the fi rewall. A trust boundary and an attack surface are

very similar views of the same thing. An attack surface is a trust boundary and a direction

from which an attacker could launch an attack. Many people will treat the terms are inter-

changeable. In this book, you’ll generally see “trust boundary” used.

In your diagram, draw the trust boundaries as boxes (see Figure 1-2), show-

ing what’s inside each with a label (such as “corporate data center”) near the

edge of the box.

Web browser Web server

Corporate data center
Web storage
(offsite)

Business Logic Database

Figure 1-2: Trust boundaries added to a whiteboard diagram

 Chapter 1 ■ Dive In and Threat Model! 7

c01.indd 11:33:50:AM 01/17/2014 Page 7

As your diagram gets larger and more complex, it becomes easy to miss

a part of it, or to become confused by labels on the data fl ows. Therefore, it

can be very helpful to number each process, data fl ow, and data store in the

diagram, as shown in Figure 1-3. (Because each trust boundary should have a

unique name, representing the unique trust inside of it, there’s limited value

to numbering those.)

Web browser Web server
1 2 3 4 5 6 7

Corporate data center
Web storage
(offsite)

Business Logic Database

Figure 1-3: Numbers and trust boundaries added to a whiteboard diagram

Regarding the physical form of the diagram: Use whatever works for you.

If that’s a whiteboard diagram and a camera phone picture, great. If it’s Visio,

or OmniGraffl e, or some other drawing program, great. You should think of

threat model diagrams as part of the development process, so try to keep it in

source control with everything else.

Now that you have a diagram, it’s natural to ask, is it the right diagram? For

now, there’s a simple answer: Let’s assume it is. Later in this chapter there are

some tips and checklists as well as a section on updating the diagram, but at

this stage you have a good enough diagram to get started on identifying threats,

which is really why you bought this book. So let’s identify.

What Can Go Wrong?

Now that you have a diagram, you can really start looking for what can go wrong

with its security. This is so much fun that I turned it into a game called, Elevation

of Privilege. There’s more on the game in Appendix D, “Elevation of Privilege:

The Cards,” which discusses each card, and in Chapter 11, “Threat Modeling

Tools,” which covers the history and philosophy of the game, but you can get

started playing now with a few simple instructions. If you haven’t already done

so, download a deck of cards from http://www.microsoft.com/security/sdl/

adopt/eop.aspx. Print the pages in color, and cut them into individual cards.

Then shuffl e the deck and deal it out to those friends you’ve invited to play.

8 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 8

N O T E Some people aren’t used to playing games at work. Others approach new

games with trepidation, especially when those games involve long, complicated instruc-

tions. Elevation of Privilege takes just a few lines to explain. You should give it a try.

How To Play Elevation of Privilege

Elevation of Privilege is a serious game designed to help you threat model. A

sample card is shown in Figure 1-4. You’ll notice that like playing cards, it has a

number and suit in the upper left, and an example of a threat as the main text on

the card. To play the game, simply follow the instructions in the upcoming list.

Tampering
An attacker can take
advantage of your custom key
exchange or integrity control
which you built instead of
using standard crypto.

Figure 1-4: An Elevation of Privilege card

 1. Deal the deck. (Shuffl ing is optional.)

 2. The person with the 3 of Tampering leads the fi rst round. (In card games

like this, rounds are also called “tricks” or “hands.”)

 Chapter 1 ■ Dive In and Threat Model! 9

c01.indd 11:33:50:AM 01/17/2014 Page 9

 3. Each round works like so:

 A. Each player plays one card, starting with the person leading the round,

and then moving clockwise.

 B. To play a card, read it aloud, and try to determine if it affects the

system you have diagrammed. If you can link it, write it down, and

score yourself a point. Play continues clockwise with the next player.

 C. When each player has played a card, the player who has played the

highest card wins the round. That player leads the next round.

 4. When all the cards have been played, the game ends and the person with

the most points wins.

 5. If you’re threat modeling a system you’re building, then you go fi le any

bugs you fi nd.

There are some folks who threat model like this in their sleep, or even have

trouble switching it off. Not everyone is like that. That’s OK. Threat modeling

is not rocket science. It’s stuff that anyone who participates in software devel-

opment can learn. Not everyone wants to dedicate the time to learn to do it in

their sleep.

Identifying threats can seem intimidating to a lot of people. If you’re one of

them, don’t worry. This section is designed to gently walk you through threat

identifi cation. Remember to have fun as you do this. As one reviewer said:

“Playing Elevation of Privilege should be fun. Don’t downplay that. We play it

every Friday. It’s enjoyable, relaxing, and still has business value.”

Outside of the context of the game, you can take the next step in threat model-

ing by thinking of things that might go wrong. For instance, how do you know

that the web browser is being used by the person you expect? What happens

if someone modifi es data in the database? Is it OK for information to move

from one box to the next without being encrypted? You don’t need to come up

with these questions by just staring at the diagram and scratching your chin. (I

didn’t!) You can identify threats like these using the simple mnemonic STRIDE,

described in detail in the next section.

Using the STRIDE Mnemonic to Find Threats

STRIDE is a mnemonic for things that go wrong in security. It stands for Spoofi ng,

Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation

of Privilege:

 ■ Spoofi ng is pretending to be something or someone you’re not.

10 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 10

 ■ Tampering is modifying something you’re not supposed to modify. It can

include packets on the wire (or wireless), bits on disk, or the bits in memory.

 ■ Repudiation means claiming you didn’t do something (regardless of

whether you did or not).

 ■ Denial of Service are attacks designed to prevent a system from provid-

ing service, including by crashing it, making it unusably slow, or fi lling

all its storage.

 ■ Information Disclosure is about exposing information to people who are

not authorized to see it.

 ■ Elevation of Privilege is when a program or user is technically able to

do things that they’re not supposed to do.

N O T E This is where Elevation of Privilege, the game, gets its name. This book uses

Elevation of Privilege, italicized, or abbreviated to EoP, for the game—to avoid confusion

with the threat.

Recall the three example threats mentioned in the preceding section:

 ■ How do you know that the web browser is being used by the person you

expect?

 ■ What happens if someone modifi es data in the database?

 ■ Is it ok for information to go from one box to the next without being encrypted?

These are examples of spoofi ng, tampering, and information disclosure. Using

STRIDE as a mnemonic can help you walk through a diagram and select example

threats. Pair that with a little knowledge of security and the right techniques,

and you’ll fi nd the important threats faster and more reliably. If you have a

process in place for ensuring that you develop a threat model, document it, and

you can increase confi dence in your software.

Now that you have STRIDE in your tool belt, walk through your diagram

again and look for more threats, this time using the mnemonic. Make a list as

you go with the threat and what element of the diagram it affects. (Generally,

the software, data fl ow, or storage is affected, rather than the trust boundary.)

The following list provides some examples of each threat.

 ■ Spoofi ng: Someone might pretend to be another customer, so you’ll need a

way to authenticate users. Someone might also pretend to be your website, so

you should ensure that you have an SSL certifi cate and that you use a single

domain for all your pages (to help that subset of customers who read URLs

to see if they’re in the right place). Someone might also place a deep link to

one of your pages, such as logout.html or placeorder.aspx. You should be

checking the Referrer fi eld before taking action. That’s not a complete solution

to what are called CSRF (Cross Site Request Forgery) attacks, but it’s a start.

 Chapter 1 ■ Dive In and Threat Model! 11

c01.indd 11:33:50:AM 01/17/2014 Page 11

 ■ Tampering: Someone might tamper with the data in your back end at

Acme. Someone might tamper with the data as it fl ows back and forth

between their data center and yours. A programmer might replace the

operational code on the web front end without testing it, thinking they’re

uploading it to staging. An angry programmer might add a coupon code

“PayBobMore” that offers a 20 percent discount on all goods sold.

 ■ Repudiation: Any of the preceding actions might require digging into

what happened. Are there system logs? Is the right information being

logged effectively? Are the logs protected against tampering?

 ■ Information Disclosure: What happens if Acme reads your database?

Can anyone connect to the database and read or write information?

 ■ Denial of Service: What happens if a thousand customers show up at

once at the website? What if Acme goes down?

 ■ Elevation of Privilege: Perhaps the web front end is the only place

customers should access, but what enforces that? What prevents them

from connecting directly to the business logic server, or uploading new

code? If there’s a fi rewall in place, is it correctly confi gured? What controls

access to your database at Acme, or what happens if an employee at Acme

makes a mistake, or even wants to edit your fi les?

The preceding possibilities aren’t intended to be a complete list of how each

threat might manifest against every model. You can fi nd a more complete list

in Chapter 3, “STRIDE.” This shorter version will get you started though, and

it is focused on what you might need to investigate based on the very simple

diagram shown in Figure 1-2. Remember the musical instrument analogy. If

you try to start playing the piano with Ravel’s Gaspard (regarded as one of the

most complex piano pieces ever written), you’re going to be frustrated.

Tips for Identifying Threats

Whether you are identifying threats using Elevation of Privilege, STRIDE, or both,

here are a few tips to keep in mind that can help you stay on the right track to

determine what could go wrong:

 ■ Start with external entities: If you’re not sure where to start, start with

the external entities or events which drive activity. There are many other

valid approaches though: You might start with the web browser, look-

ing for spoofi ng, then tampering, and so on. You could also start with

the business logic if perhaps your lead developer for that component is

in the room. Wherever you choose to begin, you want to aspire to some

level of organization. You could also go in “STRIDE order” through the

diagram. Without some organization, it’s hard to tell when you’re done,

but be careful not to add so much structure that you stifl e creativity.

12 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 12

 ■ Never ignore a threat because it’s not what you’re looking for right now.
You might come up with some threats while looking at other categories.

Write them down and come back to them. For example, you might have

thought about “can anyone connect to our database,” which is listed under

information disclosure, while you were looking for spoofi ng threats. If so,

that’s awesome! Good job! Redundancy in what you fi nd can be tedious,

but it helps you avoid missing things. If you fi nd yourself asking whether

“someone not authorized to connect to the database who reads informa-

tion” constitutes spoofi ng or information disclosure, the answer is, who

cares? Record the issue and move along to the next one. STRIDE is a tool

to guide you to threats, not to ask you to categorize what you’ve found;

it makes a lousy taxonomy, anyway. (That is to say, there are plenty of

security issues for which you can make an argument for various different

categorizations. Compare and contrast it with a good taxonomy, such

as the taxonomy of life. Does it have a backbone? If so, it’s a vertebrae.)

 ■ Focus on feasible threats: Along the way, you might come up with threats

like “someone might insert a back door at the chip factory,” or “someone

might hire our janitorial staff to plug in a hardware key logger and steal

all our passwords.” These are real possibilities but not very likely com-

pared to using an exploit to attack a vulnerability for which you haven’t

applied the patch, or tricking someone into installing software. There’s

also the question of what you can do about either, which brings us to the

next section.

Addressing Each Threat

You should now have a decent-sized list or lists of threats. The next step in the

threat modeling process is to go through the lists and address each threat. There

are four types of action you can take against each threat: Mitigate it, eliminate

it, transfer it, or accept it. The following list looks briefl y at each of these ways

to address threats, and then in the subsequent sections you will learn how to

address each specifi c threat identifi ed with the STRIDE list in the “What Can

Go Wrong” section. For more details about each of the strategies and techniques

to address these threats, see Chapters 8 and 9, “Defensive Building Blocks” and

“Tradeoffs When Addressing Threats.”

 ■ Mitigating threats is about doing things to make it harder to take advan-

tage of a threat. Requiring passwords to control who can log in mitigates

the threat of spoofi ng. Adding password controls that enforce complex-

ity or expiration makes it less likely that a password will be guessed or

usable if stolen.

 ■ Eliminating threats is almost always achieved by eliminating features. If

you have a threat that someone will access the administrative function of

 Chapter 1 ■ Dive In and Threat Model! 13

c01.indd 11:33:50:AM 01/17/2014 Page 13

a website by visiting the /admin/URL, you can mitigate it with passwords

or other authentication techniques, but the threat is still present. You can

make it less likely to be found by using a URL like /j8e8vg21euwq/, but

the threat is still present. You can eliminate it by removing the interface,

handling administration through the command line. (There are still threats

associated with how people log in on a command line. Moving away from

HTTP makes the threat easier to mitigate by controlling the attack surface.

Both threats would be found in a complete threat model.) Incidentally,

there are other ways to eliminate threats if you’re a mob boss or you run

a police state, but I don’t advocate their use.

 ■ Transferring threats is about letting someone or something else handle the

risk. For example, you could pass authentication threats to the operating

system, or trust boundary enforcement to a fi rewall product. You can also

transfer risk to customers, for example, by asking them to click through

lots of hard-to-understand dialogs before they can do the work they

need to do. That’s obviously not a great solution, but sometimes people

have knowledge that they can contribute to making a security tradeoff.

For example, they might know that they just connected to a coffee shop

wireless network. If you believe the person has essential knowledge to

contribute, you should work to help her bring it to the decision. There’s

more on doing that in Chapter 15, “Human Factors and Usability.”

 ■ Accepting the risk is the fi nal approach to addressing threats. For most

organizations most of the time, searching everyone on the way in and out

of the building is not worth the expense or the cost to the dignity and

job satisfaction of those workers. (However, diamond mines and some-

times government agencies take a different approach.) Similarly, the cost

of preventing someone from inserting a back door in the motherboard

is expensive, so for each of these examples you might choose to accept

the risk. And once you’ve accepted the risk, you shouldn’t worry over it.

Sometimes worry is a sign that the risk hasn’t been fully accepted, or that

the risk acceptance was inappropriate.

The strategies listed in the following tables are intended to serve as examples

to illustrate ways to address threats. Your “go-to” approach should be to miti-

gate threats. Mitigation is generally the easiest and the best for your customers.

(It might look like accepting risk is easier, but over time, mitigation is easier.)

Mitigating threats can be hard work, and you shouldn’t take these examples

as complete. There are often other valid ways to address each of these threats,

and sometimes trade-offs must be made in the way the threats are addressed.

Addressing Spoofi ng

Table 1-1 and the list that follows show targets of spoofi ng, mitigation strategies

that address spoofi ng, and techniques to implement those mitigations.

14 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 14

Table 1-1: Addressing Spoofi ng Threats

THREAT

TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

Spoofi ng a

person

Identifi cation and authen-

tication (usernames and

something you know/have/

are)

Usernames, real names, or other identifi ers:

❖ Passwords

❖ Tokens

❖ Biometrics

Enrollment/maintenance/expiry

Spoofi ng a “fi le”

on disk

Leverage the OS ❖ Full paths

❖ Checking ACLs

❖ Ensuring that pipes are created properly

Cryptographic

authenticators

Digital signatures or authenticators

Spoofi ng a net-

work address

Cryptographic ❖ DNSSEC

❖ HTTPS/SSL

❖ IPsec

Spoofi ng a

program in

memory

Leverage the OS Many modern operating systems have

some form of application identifi er that the

OS will enforce.

 ■ When you’re concerned about a person being spoofed, ensure that each

person has a unique username and some way of authenticating. The tradi-

tional way to do this is with passwords, which have all sorts of problems

as well as all sorts of advantages that are hard to replicate. See Chapter

14, “Accounts and Identity” for more on passwords.

 ■ When accessing a fi le on disk, don’t ask for the fi le with open(file). Use

open(/path/to/file). If the fi le is sensitive, after opening, check vari-

ous security elements of the fi le descriptor (such as fully resolved name,

permissions, and owner). You want to check with the fi le descriptor to

avoid race conditions. This applies doubly when the fi le is an executable,

although checking after opening can be tricky. Therefore, it may help to

ensure that the permissions on the executable can’t be changed by an

attacker. In any case, you almost never want to call exec() with ./file.

 ■ When you’re concerned about a system or computer being spoofed when

it connects over a network, you’ll want to use DNSSEC, SSL, IPsec, or a

combination of those to ensure you’re connecting to the right place.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Dive In and Threat Model! 15

c01.indd 11:33:50:AM 01/17/2014 Page 15

Addressing Tampering

Table 1-2 and the list that follows show targets of tampering, mitigation strate-

gies that address tampering, and techniques to implement those mitigations.

Table 1-2: Addressing Tampering Threats

THREAT TARGET

MITIGATION

STRATEGY MITIGATION TECHNIQUE

Tampering with a fi le Operating system ACLs

Cryptographic ❖ Digital Signatures

❖ Keyed MAC

Racing to create a fi le

(tampering with the fi le

system)

Using a directory that’s

protected from arbitrary

user tampering

ACLs

Using private directory structures

(Randomizing your fi le names just

makes it annoying to execute the

attack.)

Tampering with a net-

work packet

Cryptographic ❖ HTTPS/SSL

❖ IPsec

Anti-pattern Network isolation (See note on

network isolation anti-pattern.)

 ■ Tampering with a fi le: Tampering with fi les can be easy if the attacker

has an account on the same machine, or by tampering with the network

when the fi les are obtained from a server.

 ■ Tampering with memory: The threats you want to worry about are those

that can occur when a process with less privileges than you, or that you

don’t trust, can alter memory. For example, if you’re getting data from a

shared memory segment, is it ACLed so only the other process can see it?

For a web app that has data coming in via AJAX, make sure you validate

that the data is what you expect after you pull in the right amount.

 ■ Tampering with network data: Preventing tampering with network data

requires dealing with both spoofi ng and tampering. Otherwise, someone

who wants to tamper can simply pretend to be the other end, using what’s

called a man-in-the-middle attack. The most common solution to these

problems is SSL, with IP Security (IPsec) emerging as another possibility.

SSL and IPsec both address confi dentiality and tampering, and can help

address spoofi ng.

16 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 16

 ■ Tampering with networks anti-pattern: It’s somewhat common for peo-

ple to hope that they can isolate their network, and so not worry about

tampering threats. It’s also very hard to maintain isolation over time.

Isolation doesn’t work as well as you would hope. For example, the isolated

United States SIPRNet was thoroughly infested with malware, and the

operation to clean it up took 14 months (Shachtman, 2010).

N O T E A program can’t check whether it’s authentic after it loads. It may be

possible for something to rely on “trusted bootloaders” to provide a chain of signatures,

but the security decisions are being made external to that code. (If you’re not familiar

with the technology, don’t worry, the key lesson is that a program cannot check its own

authenticity.)

Addressing Repudiation

Addressing repudiation is generally a matter of ensuring that your system

is designed to log and ensuring that those logs are preserved and protected.

Some of that can be handled with simple steps such as using a reliable trans-

port for logs. In this sense, syslog over UDP was almost always silly from

a security perspective; syslog over TCP/SSL is now available and is vastly

better.

Table 1-3 and the list that follows show targets of repudiation, mitigation strate-

gies that address repudiation, and techniques to implement those mitigations.

Table 1-3: Addressing Repudiation Threats

THREAT TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

No logs means you can’t

prove anything.

Log Be sure to log all the security-

relevant information.

Logs come under attack Protect your logs. ❖ Send over the network.

❖ ACL

Logs as a channel for attack Tightly specifi ed logs Documenting log design

early in the development

process

 ■ No logs means you can’t prove anything: This is self-explanatory. For

example, when a customer calls to complain that they never got their order,

how will this be resolved? Maintain logs so that you can investigate what

happens when someone attempts to repudiate something.

 Chapter 1 ■ Dive In and Threat Model! 17

c01.indd 11:33:50:AM 01/17/2014 Page 17

 ■ Logs come under attack: Attackers will do things to prevent your logs

from being useful, including fi lling up the log to make it hard to fi nd the

attack or forcing logs to “roll over.” They may also do things to set off

so many alarms that the real attack is lost in a sea of troubles. Perhaps

obviously, sending logs over a network exposes them to other threats

that you’ll need to handle.

 ■ Logs as a channel for attack: By design, you’re collecting data from sources

outside your control, and delivering that data to people and systems with

security privileges. An example of such an attack might be sending mail

addressed to "</html> haha@example.com", causing trouble for web-based

tools that don’t expect inline HTML.

You can make it easier to write secure code to process your logs by clearly

communicating what your logs can’t contain, such as “Our logs are all plaintext,

and attackers can insert all sorts of things,” or “Fields 1–5 of our logs are tightly

controlled by our software, fi elds 6–9 are easy to inject data into. Field 1 is time

in GMT. Fields 2 and 3 are IP addresses (v4 or 6)...” Unless you have incredibly

strict control, documenting what your logs can contain will likely miss things.

(For example, can your logs contain Unicode double-wide characters?)

Addressing Information Disclosure

Table 1-4 and the list which follows show targets of information disclosure,

mitigation strategies that address information disclosure, and techniques to

implement those mitigations.

Table 1-4: Addressing Information Disclosure Threats

THREAT TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

Network monitoring Encryption ❖ HTTPS/SSL

❖ IPsec

Directory or fi lename (for

example

layoff-letters/
adamshostack.docx)

Leverage the OS. ACLs

File contents Leverage the OS. ACLS

Cryptography File encryption such as PGP, disk

encryption (FileVault, BitLocker)

API information

disclosure

Design Careful design control

Consider pass by reference or

value.

18 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 18

 ■ Network monitoring: Network monitoring takes advantage of the archi-

tecture of most networks to monitor traffi c. (In particular, most networks

now broadcast packets, and each listener is expected to decide if the packet

matters to them.) When networks are architected differently, there are a

variety of techniques to draw traffi c to or through the monitoring station.

If you don’t address spoofi ng, much like tampering, an attacker can just

sit in the middle and spoof each end. Mitigating network information

disclosure threats requires handling both spoofi ng and tampering threats.

If you don’t address tampering, then there are all sorts of clever ways to

get information out. Here again, SSL and IP Security options are your

simplest choices.

 ■ Names reveal information: When the name of a directory or a fi lename

itself will reveal information, then the best way to protect it is to create

a parent directory with an innocuous name and use operating system

ACLs or permissions.

 ■ File content is sensitive: When the contents of the fi le need protection,

use ACLs or cryptography. If you want to protect all the data should the

machine fall into unauthorized hands, you’ll need to use cryptography.

The forms of cryptography that require the person to manually enter a key

or passphrase are more secure and less convenient. There’s fi le, fi lesystem,

and database cryptography, depending on what you need to protect.

 ■ APIs reveal information: When designing an API, or otherwise passing

information over a trust boundary, select carefully what information you

disclose. You should assume that the information you provide will be

passed on to others, so be selective about what you provide. For example,

website errors that reveal the username and password to a database are a

common form of this fl aw, others are discussed in Chapter 3.

Addressing Denial of Service

Table 1-5 and the list that follows show targets of denial of service, mitigation

strategies that address denial of service, and techniques to implement those

mitigations.

 Chapter 1 ■ Dive In and Threat Model! 19

c01.indd 11:33:50:AM 01/17/2014 Page 19

Table 1-5: Addressing Denial of Service Threats

THREAT

TARGET

MITIGATION

STRATEGY MITIGATION TECHNIQUE

Network

fl ooding

Look for exhaustible

resources.

❖ Elastic resources

❖ Work to ensure attacker resource consumption is

as high as or higher than yours.

Network ACLS

Program

resources

Careful design Elastic resource management, proof of work

Avoid multipliers. Look for places where attackers can multiply CPU

consumption on your end with minimal eff ort on

their end: Do something to require work or enable

distinguishing attackers, such as client does crypto

fi rst or login before large work factors (of course, that

can’t mean that logins are unencrypted).

System

resources

Leverage the OS. Use OS settings.

 ■ Network flooding: If you have static structures for the number of

connections, what happens if those fi ll up? Similarly, to the extent that it’s

under your control, don’t accept a small amount of network data from

a possibly spoofed address and return a lot of data. Lastly, fi rewalls can

provide a layer of network ACLs to control where you’ll accept (or send)

traffi c, and can be useful in mitigating network denial-of-service attacks.

 ■ Look for exhaustible resources: The fi rst set of exhaustible resources are

network related, the second set are those your code manages, and the third

are those the OS manages. In each case, elastic resourcing is a valuable

technique. For example, in the 1990s some TCP stacks had a hardcoded

limit of fi ve half-open TCP connections. (A half-open connection is one

in the process of being opened. Don’t worry if that doesn’t make sense,

but rather ask yourself why the code would be limited to fi ve of them.)

Today, you can often obtain elastic resourcing of various types from

cloud providers.

20 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 20

 ■ System resources: Operating systems tend to have limits or quotas to

control the resource consumption of user-level code. Consider those

resources that the operating system manages, such as memory or disk

usage. If your code runs on dedicated servers, it may be sensible to allow

it to chew up the entire machine. Be careful if you unlimit your code, and

be sure to document what you’re doing.

 ■ Program resources: Consider resources that your program manages

itself. Also, consider whether the attacker can make you do more

work than they’re doing. For example, if he sends you a packet full

of random data and you do expensive cryptographic operations on it,

then your vulnerability to denial of service will be higher than if you

make him do the cryptography fi rst. Of course, in an age of botnets,

there are limits to how well one can reassign this work. There’s an

excellent paper by Ben Laurie and Richard Clayton, “Proof of work

proves not to work,” which argues against proof of work schemes

(Laurie, 2004).

Addressing Elevation of Privilege

Table 1-6 and the list that follows show targets of elevation of privilege, mitiga-

tion strategies that address elevation of privilege, and techniques to implement

those mitigations.

Table 1-6: Addressing Elevation of Privilege Threats

THREAT TARGET

MITIGATION

STRATEGY MITIGATION TECHNIQUE

Data/code

confusion

Use tools and

architectures that

separate data and

code.

❖ Prepared statements or stored procedures in

SQL

❖ Clear separators with canonical forms

❖ Late validation that data is what the next func-

tion expects

Control fl ow/

memory corrup-

tion attacks

Use a type-safe

language.

Writing code in a type-safe language protects

against entire classes of attack.

Leverage the

OS for memory

protection.

Most modern operating systems have memory-

protection facilities.

 Chapter 1 ■ Dive In and Threat Model! 21

c01.indd 11:33:50:AM 01/17/2014 Page 21

THREAT TARGET

MITIGATION

STRATEGY MITIGATION TECHNIQUE

Use the sandbox. ❖ Modern operating systems support sand-

boxing in various ways (AppArmor on Linux,

AppContainer or the MOICE pattern on

Windows, Sandboxlib on Mac OS).

❖ Don’t run as the “nobody” account, create a

new one for each app. Postfi x and QMail are

examples of the good pattern of one account

per function.

Command injec-

tion attacks

Be careful. ❖ Validate that your input is the size and form

you expect.

❖ Don’t sanitize. Log and then throw it away if

it’s weird.

 ■ Data/code confusion: Problems where data is treated as code are common.

As information crosses layers, what’s tainted and what’s pure can be lost.

Attacks such as XSS take advantage of HTML’s freely interweaving code

and data. (That is, an .html fi le contains both code, such as Javascript, and

data, such as text, to be displayed and sometimes formatting instructions

for that text.) There are a few strategies for dealing with this. The fi rst

is to look for ways in which frameworks help you keep code and data

separate. For example, prepared statements in SQL tell the database what

statements to expect, and where the data will be.

You can also look at the data you’re passing right before you pass it, so

you know what validation you might be expected to perform for the func-

tion you’re calling. For example, if you’re sending data to a web page,

you might ensure that it contains no <, >, #, or & characters, or whatever.

In fact, the value of “whatever” is highly dependent on exactly what exists

between “you” and the rendition of the web page, and what security

checks it may be performing. If “you” means a web server, it may be very

important to have a few < and > symbols in what you produce. If “you”

is something taking data from a database and sending it to, say PHP, then

the story is quite different. Ideally, the nature of “you” and the additional

steps are clear in your diagrams.

 ■ Control fl ow/memory corruption attacks: This set of attacks generally

takes advantage of weak typing and static structures in C-like languages

to enable an attacker to provide code and then jump to that code. If you

22 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 22

use a type-safe language, such as Java or C#, many of these attacks are

harder to execute.

Modern operating systems tend to contain memory protection and random-

ization features, such as Address Space Layout Randomization (ASLR).

Sometimes the features are optional, and require a compiler or linker switch.

In many cases, such features are almost free to use, and you should at

least try all such features your OS supports. (It’s not completely effortless,

you may need to recompile, test, or make other such small investments.)

The last set of controls to address memory corruption are sandboxes.

Sandboxes are OS features that are designed to protect the OS or the rest

of the programs running as the user from a corrupted program.

N O T E Details about each of these features are outside the scope of this book, but

searching on terms such as type safety, ASLR, and sandbox should provide a plethora of

details.

 ■ Command injection attacks: Command injection attacks are a form of

code/data confusion where an attacker supplies a control character, fol-

lowed by commands. For example, in SQL injection, a single quote will

often close a dynamic SQL statement; and when dealing with unix shell

scripts, the shell can interpret a semicolon as the end of input, taking

anything after that as a command.

In addition to working through each STRIDE threat you encounter, a few other

recurring themes will come up as you address your threats; these are covered

in the following two sections.

Validate, Don’t Sanitize

Know what you expect to see, how much you expect to see, and validate that

that’s what you’re receiving. If you get something else, throw it away and return

an error message. Unless your code is perfect, errors in sanitization will hurt

a lot, because after you write that sanitize input function you’re going to rely

on it. There have been fascinating attacks that rely on a sanitize function to get

their code into shape to execute.

Trust the Operating System

One of the themes that recurs in the preceding tables is “trust the operating

system.” Of course, you may want to discount that because I did much of this

 Chapter 1 ■ Dive In and Threat Model! 23

c01.indd 11:33:50:AM 01/17/2014 Page 23

work while working for Microsoft, a purveyor of a variety of fi ne operating

system software, so there might be some bias here. It’s a valid point, and good

for you for being skeptical. See, you’re threat modeling already!

More seriously, trusting the operating system is a good idea for a number

of reasons:

 ■ The operating system provides you with security features so you can

focus on your unique value proposition.

 ■ The operating system runs with privileges that are probably not available

to your program or your attacker.

 ■ If your attacker controls the operating system, you’re likely in a world of

hurt regardless of what your code tries to do.

With all of that “trust the operating system” advice, you might be tempted to

ask why you need this book. Why not just rely on the operating system?

Well, many of the building blocks just discussed are discretionary. You can

use them well or you can use them poorly. It’s up to you to ensure that you don’t

set the permissions on a fi le to 777, or the ACLs to allow Guest accounts to write.

It’s up to you to write code that runs well as a normal or even sandboxed user,

and it’s certainly up to you in these early days of client/server, web, distributed

systems, web 2.0, cloud, or whatever comes next to ensure that you’re building

the right security mechanisms that these newfangled widgets don’t yet offer.

File Bugs

Now that you have a list of threats and ways you would like to mitigate them,

you’re through the complex, security-centered parts of the process. There are just

a few more things to do, the fi rst of which is to treat each line of the preceding

tables as a bug. You want to treat these as bugs because if you ship software,

you’ve learned to handle bugs in some way. You presumably have a way to track

them, prioritize them, and ensure that you’re closing them with an appropriate

degree of consistency. This will mean something very different to a three-person

start-up versus a medical device manufacturer, but both organizations will have

a way to handle bugs. You want to tap into that procedure to ensure that threat

modeling isn’t just a paper exercise.

You can write the text of the bugs in a variety of ways, based on what your

organization does. Examples of fi ling a bug might include the following:

 ■ Someone might use the /admin/ interface without proper authorization.

 ■ The admin interface lacks proper authorization controls,

 ■ There’s no automated security testing for the /admin/ interface.

24 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 24

Whichever way you go, it’s great if you can include the entire threat in the

bug, and mark it as a security bug if your bug-tracking tool supports that. (If

you’re a super-agile scrum shop, use a uniquely colored Post-it for security bugs.)

You’ll also have to prioritize the bugs. Elevation-of-privilege bugs are almost

always going to fall into the highest priority category, because when they’re

exploited they lead to so much damage. Denial of service often falls toward

the bottom of the stack, but you’ll have to consider each bug to determine how

to rank it.

Checking Your Work

Validation of your threat model is the last thing you do as part of threat model-

ing. There are a few tasks to be done here, and it is best to keep them aligned

with the order in which you did the previous work. Therefore, the validation

tasks include checking the model, checking that you’ve looked for each threat,

and checking your tests. You probably also want to validate the model a second

time as you get close to shipping or deploying.

Checking the model

You should ensure that the fi nal model matched what you built. If it doesn’t,

how can you know that you found the right, relevant threats? To do so, try to

arrange a meeting during which everyone looks at the diagram, and answer

the following questions:

 ■ Is this complete?

 ■ Is it accurate?

 ■ Does it cover all the security decisions we made?

 ■ Can I start the next version with this diagram without any changes?

If everyone says yes, your diagram is suffi ciently up to date for the next step.

If not, you’ll need to update it.

Updating the Diagram

As you went through the diagram, you might have noticed that it’s missing

key data. If it were a real system, there might be extra interfaces that were not

drawn in, or there might be additional databases. There might be details that you

jumped to the whiteboard to draw in. If so, you need to update the diagram with

those details. A few rules of thumb are useful as you create or update diagrams:

 ■ Focus on data fl ow, not control fl ow.

 ■ Anytime you need to qualify your answer with “sometimes” or “also,”

you should consider adding more detail to break out the various cases. For

example, if you say, “Sometimes we connect to this web service via SSL,

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Dive In and Threat Model! 25

c01.indd 11:33:50:AM 01/17/2014 Page 25

and sometimes we fall back to HTTP,” you should draw both of those data

fl ows (and consider whether an attacker can make you fall back like that).

 ■ Anytime you fi nd yourself needing more detail to explain security-relevant

behavior, draw it in.

 ■ Any place you argued over the design or construction of the system, draw

in the agreed-on facts. This is an important way to ensure that everyone

ended that discussion on the same page. It’s especially important for larger

teams when not everyone is in the room for the threat model discussions.

If they see a diagram that contradicts their thinking, they can either accept

it or challenge the assumptions; but either way, a good clear diagram can

help get everyone on the same page.

 ■ Don’t have data sinks: You write the data for a reason. Show who uses it.

 ■ Data can’t move itself from one data store to another: Show the process

that moves it.

 ■ The diagram should tell a story, and support you telling stories while

pointing at it.

 ■ Don’t draw an eye chart (a diagram with so much detail that you need to

squint to read the tiny print).

Diagram Details

If you’re wondering how to reconcile that last rule of thumb, don’t draw an eye

chart, with all the details that a real software project can entail, one technique

is to use a sub diagram that shows the details of one particular area. You should

look for ways to break things out that make sense for your project. For example,

if you have one hyper-complex process, maybe everything in that process should

be covered in one diagram, and everything outside it in another. If you have

a dispatcher or queuing system, that’s a good place to break things up. Your

databases or the fail-over system is also a good split. Maybe there’s a set of a

few elements that really need more detail. All of these are good ways to break

things out.

The key thing to remember is that the diagram is intended to help ensure

that you understand and can discuss the system. Recall the quote that opens

this book: “All models are wrong. Some models are useful.” Therefore, when

you’re adding additional diagrams, don’t ask, “Is this the right way to do it?”

Instead, ask, “Does this help me think about what might go wrong?”

Checking Each Threat

There are two main types of validation activities you should do. The fi rst is

checking that you did the right thing with each threat you found. The other is

asking if you found all the threats you should fi nd.

26 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 26

In terms of checking that you did the right thing with each threat you did

fi nd, the fi rst and foremost question here is “Did I do something with each

unique threat I found?” You really don’t want to drop stuff on the fl oor. This is

“turning the crank” sort of work. It’s rarely glamorous or exciting until you fi nd

the thing you overlooked. You can save a lot of time by taking meeting minutes

and writing a bug number next to each one, checking that you’ve addressed

each when you do your bug triage.

The next question is “Did I do the right something with each threat?” If you’ve

fi led bugs with some sort of security tag, run a query for all the security bugs,

and give each one a going-over. This can be as lightweight as reading each

bug and asking yourself, “Did I do the right thing?” or you could use a short

checklist, an example of which (“Validating threats”) is included at the end of

this chapter in the “Checklists for Diving in and Threat Modeling” section.

Checking Your Tests

For each threat that you address, ensure you’ve built a good test to detect the

problem. Your test can be a manual testing process or an automated test. Some

of these tests will be easy, and others very tricky. For example, if you want to

ensure that no static web page under /beta can be accessed without the beta

cookie, you can build a quick script that retrieves all the pages from your source

repository, constructs a URL for it, and tries to collect the page. You could extend

the script to send a cookie with each request, and then re-request with an admin

cookie. Ideally, that’s easy to do in your existing web testing framework. It

gets a little more complex with dynamic pages, and a lot more complex when

the security risk is something such as SQL injection or secure parsing of user

input. There are entire books written on those subjects, not to mention entire

books on the subject of testing. The key question you should ask is something

like “Are my security tests in line with the other software tests and the sorts of

risks that failures expose?”

Threat Modeling on Your Own

You have now walked through your fi rst threat model. Congratulations! Remember

though: You’re not going to get to Carnegie Hall if you don’t practice, practice,

practice. That means it is time to do it again, this time on your own, because

doing it again is the only way to get better. Pick a system you’re working on and

threat model it. Follow this simplifi ed, fi ve-step process as you go:

 1. Draw a diagram.

 2. Use the EoP game to fi nd threats.

 Chapter 1 ■ Dive In and Threat Model! 27

c01.indd 11:33:50:AM 01/17/2014 Page 27

 3. Address each threat in some way.

 4. Check your work with the checklists at the end of this chapter.

 5. Celebrate and share your work.

Right now, if you’re new to threat modeling, your best bet is to do it often,

applying it to the software and systems that matters to you. After threat model-

ing a few systems, you’ll fi nd yourself getting more comfortable with the tools

and techniques. For now, the thing to do is practice. Build your fi rst muscles to

threat model with.

This brings up the question, what should you threat model next?

What you’re working on now is the fi rst place to look for the next system to

threat model. If it has a trust boundary of some sort, it may be a good candidate.

If it’s too simple to have trust boundaries, threat modeling it probably won’t

be very satisfying. If it has too many boundaries, it may be too big a project to

chew on all at once. If you’re collaborating closely on it with a few other people

who you trust, that may be a good opportunity to play EoP with them. If you’re

working on a large team, or across organizational boundaries, or things are tense,

then those people may not be good fi rst collaborators on threat modeling. Start

with what you’re working on now, unless there are tangible reasons to wait.

Checklists for Diving In and Threat Modeling

There’s a lot in this chapter. As you sit down to really do the work yourself, it can

be tricky to assess how you’re doing. Here are some checklists that are designed

to help you avoid the most common problems. Each question is designed to be

read aloud and to have an affi rmative answer from everyone present. After read-

ing each question out loud, encourage questions or clarifi cation from everyone

else involved.

Diagramming

 1. Can we tell a story without changing the diagram?

 2. Can we tell that story without using words such as “sometimes” or “also”?

 3. Can we look at the diagram and see exactly where the software will make

a security decision?

 4. Does the diagram show all the trust boundaries, such as where different

accounts interact? Do you cover all UIDs, all application roles, and all

network interfaces?

 5. Does the diagram refl ect the current or planned reality of the software?

28 Part I ■ Getting Started

c01.indd 11:33:50:AM 01/17/2014 Page 28

 6. Can we see where all the data goes and who uses it?

 7. Do we see the processes that move data from one data store to another?

Threats

 1. Have we looked for each of the STRIDE threats?

 2. Have we looked at each element of the diagram?

 3. Have we looked at each data fl ow in the diagram?

N O T E Data fl ows are a type of element, but they are sometimes overlooked as people

get started, so question 3 is a belt-and-suspenders question to add redundancy. (A belt-

and-suspenders approach ensures that a gentleman’s pants stay up.)

Validating Threats

 1. Have we written down or fi led a bug for each threat?

 2. Is there a proposed/planned/implemented way to address each threat?

 3. Do we have a test case per threat?

 4. Has the software passed the test?

Summary

Any technical professional can learn to threat model. Threat modeling involves

the intersection of two models: a model of what can go wrong (threats), applied

to a model of the software you’re building or deploying, which is encoded in

a diagram. One model of threats is STRIDE: spoofi ng, tampering, repudiation,

information disclosure, denial of service, and elevation of privilege. This model

of threats has been made into the Elevation of Privilege game, which adds struc-

ture and hints to the model.

With a whiteboard diagram and a copy of Elevation of Privilege, developers

can threat model software that they’re building, systems administrators can

threat model software they’re deploying or a system they’re constructing, and

security professionals can introduce threat modeling to those with skillsets

outside of security.

It’s important to address threats, and the STRIDE threats are the inverse of

properties you want. There are mitigation strategies and techniques for devel-

opers and for systems administrators.

Once you’ve created a threat model, it’s important to check your work by

making sure you have a good model of the software in an up-to-date diagram,

and that you’ve checked each threat you’ve found.

29

c02.indd 11:35:5:AM 01/17/2014 Page 29

The earlier you fi nd problems, the easier it is to fi x them. Threat modeling is all

about fi nding problems, and therefore it should be done early in your develop-

ment or design process, or in preparing to roll out an operational system. There

are many ways to threat model. Some ways are very specifi c, like a model air-

plane kit that can only be used to build an F-14 fi ghter jet. Other methods are

more versatile, like Lego building blocks that can be used to make a variety

of things. Some threat modeling methods don’t combine easily, in the same

way that Erector set pieces and Lego set blocks don’t fi t together. This chapter

covers the various strategies and methods that have been brought to bear on

threat modeling, presents each one in depth, and sets the stage for effectively

fi nding threats.

You’ll start with very simple methods such as asking “what’s your threat

model?” and brainstorming about threats. Those can work for a security expert,

and they may work for you. From there, you’ll learn about three strategies for

threat modeling: focusing on assets, focusing on attackers, and focusing on

software. These strategies are more structured, and can work for people with

different skillsets. A focus on software is usually the most appropriate strategy.

The desire to focus on assets or attackers is natural, and often presented as an

unavoidable or essential aspect of threat modeling. It would be wrong not to

present each in its best light before discussing issues with those strategies. From

there, you’ll learn about different types of diagrams you can use to model your

system or software.

 C H A P T E R

2

Strategies for Threat Modeling

30 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 30

N O T E This chapter doesn’t include the specifi c threat building blocks that discover

threats, which are the subject of the next few chapters.

“What’s Your Threat Model?”

The question “what’s your threat model?” is a great one because in just four

words, it can slice through many conundrums to determine what you are

worried about. Answers are often of the form “an attacker with the laptop” or “

insiders,” or (unfortunately, often) “huh?” The “huh?” answer is useful because

it reveals how much work would be needed to fi nd a consistent and structured

approach to defense. Consistency and structure are important because they

help you invest in defenses that will stymie attackers. There’s a compendium

of standard answers to “what’s your threat model?” in Appendix A, “Helpful

Tools,” but a few examples are listed here as well:

 ■ A thief who could steal your money

 ■ The company stakeholders (employees, consultants, shareholders, etc.)

who access sensitive documents and are not trusted

 ■ An untrusted network

 ■ An attacker who could steal your cookie (web or otherwise)

N O T E Throughout this book, you’ll visit and revisit the same example for each of

these approaches. Your main targets are the fi ctitious Acme Corporation’s “Acme/SQL,”

which is a commercial database server, and Acme’s operational network. Using Acme

examples, you can see how the diff erent approaches play out against the

same systems.

Applying the question “what’s your threat model?” to the Acme Corporation

example, you might get the following answers:

 ■ For the Acme SQL database, the threat model would be an attacker who

wants to read or change data in the database. A more subtle model might

also include people who want to read the data without showing up in

the logs.

 ■ For Acme’s fi nancial system, the answers might include someone getting

a check they didn’t deserve, customers who don’t make a payment they

owe, and/or someone reading or altering fi nancial results before reporting.

If you don’t have a clear answer to the question, “what’s your threat model?” it

can lead to inconsistency and wasted effort. For example, start-up Zero-Knowledge

 Chapter 2 ■ Strategies for Threat Modeling 31

c02.indd 11:35:5:AM 01/17/2014 Page 31

Systems didn’t have a clear answer to the question “what’s your threat model?”

Because there was no clear answer, there wasn’t consistency in what security

features were built. A great deal of energy went into building defenses against

the most complex attacks, and these choices to defend against such attackers had

performance impacts on the whole system. While preventing governments from

spying on customers was a fun technical challenge and an emotionally resonant

goal, both the challenge and the emotional impact made it hard to make techni-

cal decisions that could have made the business more successful. Eventually,

a clearer answer to “what’s your threat model?” let Zero-Knowledge Systems

invest in mitigations that all addressed the same subset of possible threats.

So how do you ensure you have a clear answer to this question? Often, the

answers are not obvious, even to those who think regularly about security,

and the question itself offers little structure for fi guring out the answers. One

approach, often recommended is to brainstorm. In the next section, you’ll learn

about a variety of approaches to brainstorming and the tradeoffs associated

with those approaches.

Brainstorming Your Threats

Brainstorming is the most traditional way to enumerate threats. You get a

set of experienced experts in a room, give them a way to take notes (white-

boards or cocktail napkins are traditional) and let them go. The quality of the

brainstorm is bounded by the experience of the brainstormers and the amount

of time spent brainstorming.

Brainstorming involves a period of idea-generation, followed by a period of

analyzing and selecting the ideas. Brainstorming for threat modeling involves

coming up with possible attacks of all sorts. During the idea generation phase,

you should forbid criticism. You want to explore the space of possible threats,

and an atmosphere of criticism will inhibit such idea generation. A moderator

can help keep brainstorming moving.

During brainstorming, it is key to have an expert on the technology being

modeled in the room. Otherwise, it’s easy to make bad assumptions about how

it works. However, when you have an expert who’s proud of their technology,

you need to ensure that you don’t end up with a “proud parent” offended that

their software baby is being called ugly. A helpful rule is that it’s the software

being attacked, not the software architects. That doesn’t always suffi ce, but it’s

a good start. There’s also a benefi t to bringing together a diverse grouping of

experts with a broader set of experience.

Brainstorming can also devolve into out-of-scope attacks. For example, if

you’re designing a chat program, attacks by the memory management unit

against the CPU are probably out of scope, but if you’re designing a motherboard,

32 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 32

these attacks may be the focus of your threat modeling. One way to handle this

issue is to list a set of attacks that are out of scope, such as “the administrator is

malicious” or “an attacker edits the hard drive on another system,” as well as

a set of attack equivalencies, like, “an attacker can smash the stack and execute

code,” so that those issues can be acknowledged and handled in a consistent

way. A variant of brainstorming is the exhortation to “think like an attacker,”

which is discussed in more detail in Chapter 18, “Experimental Approaches.”

Some attacks you might brainstorm in threat modeling the Acme’s fi nancial

statements include breaking in over the Internet, getting the CFO drunk, bribing

a janitor, or predicting the URL where the fi nancials will be published. These

can be a bit of a grab bag, so the next section provides somewhat more focused

approaches.

Brainstorming Variants

Free-form or “normal” brainstorming, as discussed in the preceding sec-

tion, can be used as a method for threat modeling, but there are more specifi c

methods you can use to help focus your brainstorming. The following sections

describe variations on classic brainstorming: scenario analyses, pre-mortems,

and movie-plotting.

Scenario Analysis

It may help to focus your brainstorming with scenarios. If you’re using written

scenarios in your overall engineering, you might start from those and ask what

might go wrong, or you could use a variant of Chandler’s law (“When in doubt,

have a man come through a door with a gun in his hand.”) You don’t need to

restrict yourself to a man with a gun, of course; you can use any of the attackers

listed in Appendix C, “Attacker Lists.”

For an example of scenario-specifi c brainstorming, try to threat model for

handing your phone to a cute person in a bar. It’s an interesting exercise. The

recipient could perhaps text donations to the Red Cross, text an important

person to “stop bothering me,” or post to Facebook that “I don’t take hints well”

or “I’m skeevy,” not to mention possibilities of running away with the phone

or dropping it in a beer.

Less frivolously, your sample scenarios might be based on the product

scenarios or use cases for the current development cycle, and therefore cover

failover and replication, and how those services could be exploited when not

properly authenticated and authorized.

Pre-Mortem

Decision-sciences expert Gary Klein has suggested another brainstorming tech-

nique he calls the pre-mortem (Klein, 1999). The idea is to gather those involved

 Chapter 2 ■ Strategies for Threat Modeling 33

c02.indd 11:35:5:AM 01/17/2014 Page 33

in a decision and ask them to assume that it’s shortly after a project deadline,

or after a key milestone, and that things have gone totally off the rails. With

an “assumption of failure” in mind, the idea is to explore why the participants

believe it will go off the rails. The value to calling this a pre-mortem is the fram-

ing it brings. The natural optimism that accompanies a project is replaced with

an explicit assumption that it has failed, giving you and other participants a

chance to express doubts. In threat modeling, the assumption is that the product

is being successfully attacked, and you now have permission to express doubts

or concerns.

Movie Plotting

 Another variant of brainstorming is movie plotting. The key difference between

“normal brainstorming” and “movie plotting” is that the attack ideas are intended

to be outrageous and provocative to encourage the free fl ow of ideas. Defending

against these threats likely involves science-fi ction-type devices that impinge

on human dignity, liberty, and privacy without actually defending anyone.

Examples of great movies for movie plot threats include Ocean’s Eleven, The

Italian Job, and every Bond movie that doesn’t stink. If you’d like to engage in

more structured movie plotting, create three lists: fl awed protagonists, brilliant

antagonists, and whiz-bang gadgetry. You can then combine them as you see fi t.

Examples of movie plot threats include a foreign spy writing code for Acme

SQL so that a fourth connection attempt lets someone in as admin, a scheming

CFO stealing from the fi rm, and someone rappelling from the ceiling to avoid

the pressure mats in the fl oor while hacking into the database from the console.

Note that these movie plots are equally applicable to Acme and its customers.

The term movie plotting was coined by Bruce Schneier, a respected security

expert. Announcing his contest to elicit movie plot threats, he said: “The purpose

of this contest is absurd humor, but I hope it also makes a point. Terrorism is a

real threat, but we’re not any safer through security measures that require us

to correctly guess what the terrorists are going to do next” (Schneier, 2006). The

point doesn’t apply only to terrorism; convoluted but vividly described threats

can be a threat to your threat modeling methodology.

Literature Review

As a precursor to brainstorming (or any other approach to fi nding threats),

reviewing threats to systems similar to yours is a helpful starting point in threat

modeling. You can do this using search engines, or by checking the academic

literature and following citations. It can be incredibly helpful to search on

competitors or related products. To start, search on a competitor, appending

terms such as “security,” “security bug,” “penetration test,” “pwning,” or “Black

Hat,” and use your creativity. You can also review common threats in this book,

34 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 34

especially Part III, “Managing and Addressing Threats” and the appendixes.

Additionally, Ross Anderson’s Security Engineering is a great collection of real

world attacks and engineering lessons you can draw on, especially if what you’re

building is similar to what he covers (Wiley, 2008).

A literature review of threats against databases might lead to an understanding

of SQL injection attacks, backup failures, and insider attacks, suggesting the

need for logs. Doing a review is especially helpful for those developing their

skills in threat modeling. Be aware that a lot of the threats that may come up

can be super-specifi c. Treat them as examples of more general cases, and look

for variations and related problems as you brainstorm.

Perspective on Brainstorming

Brainstorming and its variants suffer from a variety of problems. Brainstorming

often produces threats that are hard or impossible to address. Brainstorming inten-

tionally requires the removal of scoping or boundaries, and the threats are very

dependent on the participants and how the session happens to progress. When

experts get together, unstructured discussion often ensues. This can be fun for the

experts and it usually produces interesting results, but oftentimes, experts are in

short supply. Other times, engineers get frustrated with the inconsistency of “ask

two experts, get three answers.”

There’s one other issue to consider, and that relates to exit criteria. It’s diffi cult

to know when you’re done brainstorming, and whether you’re done because

you have done a good job or if everyone is just tired. Engineering management

may demand a time estimate that they can insert into their schedule, and these

are diffi cult to predict. The best approach to avoid this timing issue is simply

to set a meeting of defi ned length. Unfortunately, this option doesn’t provide a

high degree of confi dence that all interesting threats have been found.

Because of the diffi culty of addressing threats illuminated with a limitless

brainstorming technique and the poorly defi ned exit criteria to a brainstorming

session, it is important to consider other approaches to threat modeling that are

more prescriptive, formal, repeatable, or less dependent on the aptitudes and

knowledge of the participants. Such approaches are the subject of the rest of this

chapter and also discussed in the rest of Part II, “Finding Threats.”

Structured Approaches to Threat Modeling

When it’s hard to answer “What’s your threat model?” people often use an

approach centered on models of their assets, models of attackers, or models of

their software. Centering on one of those is preferable to using approaches that

attempt to combine them because these combinations tend to be confusing.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Strategies for Threat Modeling 35

c02.indd 11:35:5:AM 01/17/2014 Page 35

Assets are the valuable things you have. The people who might go after your

assets are attackers, and the most common way for them to attack is via the

software you’re building or deploying.

Each of these is a natural place to start thinking about threats, and each has

advantages and disadvantages, which are covered in this section. There are

people with very strong opinions that one of these is right (or wrong). Don’t

worry about “right” or “wrong,” but rather “usefulness.” That is, does your

approach help you fi nd problems? If it doesn’t, it’s wrong for you, however

forcefully someone might argue its merits.

These three approaches can be thought of as analogous to Lincoln Log sets,

Erector sets, and Lego sets. Each has a variety of pieces, and each enables you

to build things, but they may not combine in ways as arbitrary as you’d like.

That is, you can’t snap Lego blocks to an Erector set model. Similarly, you can’t

always snap attackers onto a software model and have something that works

as a coherent whole.

To understand these three approaches, it can be useful to apply them to some-

thing concrete. Figure 2-1 shows a data fl ow diagram of the Acme/SQL system.

Web Clients

SQL Clients

Acme
Front End(s)

External Entity

Key:

Process Data Store

DB Admin

Data Management Logs

Log Analysis

Original SQL Account

DB Cluster

DBA (Human)
 DB

Users
(Human)

Database

data flow
Trust

Boundary

Figure 2-1: Data flow diagram of the Acme/SQL database

Looking at the diagram, and reading from left to right, you can see two

types of clients accessing the front ends and the core database, which manages

36 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 36

transactions, access control, atomicity, and so on. Here, assume that the Acme/

SQL system comes with an integrated web server, and that authorized clients

are given nearly raw access to the data. There could simultaneously be web

servers offering deeper business logic, access to multiple back ends, integration

with payment systems, and so on. Those web servers would access Acme/SQL

via the SQL protocol over a network connection.

Back to the diagram, Figure 2-1 also shows there is also a set of DB Admin

tools that the DBA (the human database administrator) uses to manage the

system. As shown in the diagram, there are three conceptual data stores: Data,

Management (including metadata such as locks, policies, and indices), and Logs.

These might be implemented in memory, as fi les, as custom stores on raw disk,

or delegated to network storage. As you dig in, the details matter greatly, but

you usually start modeling from the conceptual level, as shown.

Finally, there’s a log analysis package. Note that only the database core has

direct access to the data and management information in this design. You

should also note that most of the arrows are two-way, except Database ➪ Logs

and Logs ➪ Log Analysis. Of course, the Log Analysis process will be query-

ing the logs, but because it’s intended as a read-only interface, it is represented

as a one-way arrow. Very occasionally, you might have strictly one-way fl ows,

such as those implemented by SNMP traps or syslog. Some threat modelers

prefer two one-way arrows, which can help you see threats in each direction,

but also lead to busy diagrams that are hard to label or read. If your diagrams

are simple, the pair of one way arrows helps you fi nd threats, and is therefore

better than two-way. If your diagram is complex, either approach can be used.

The data fl ow diagram is discussed in more detail later in this chapter, in the

section “Data Flow Diagrams.” In the next few sections, you’ll see how to apply

asset, attacker, and software-centric models to fi nd threats against Acme/SQL.

Focusing on Assets

It seems very natural to center your approach on assets, or things of value.

After all, if a thing has no value, why worry about how someone might attack

it? It turns out that focusing on assets is less useful than you may hope, and is

therefore not the best approach to threat modeling. However, there are a small

number of people who will benefi t from asset-centered threat modeling. The

most likely to benefi t are a team of security experts with experience structuring

their thinking around assets. (Having found a way that works for them, there

may be no reason to change.) Less technical people may be able to contribute

to threat modeling by saying “focus on this asset.” If you are in either of these

groups, or work with them, congratulations! This section is for you. If you aren’t

one of those people, however, don’t be too quick to skip ahead. It is still important

 Chapter 2 ■ Strategies for Threat Modeling 37

c02.indd 11:35:5:AM 01/17/2014 Page 37

to have a good understanding of the role assets can play in threat modeling,

even if they’re not in a starring role). It can also help for you to understand why

the approach is not as useful as it may appear, so you can have an informed

discussion with those advocating it.

The term asset usually refers to something of value. When people bring up

assets as part of a threat modeling activity, they often mean something an attacker

wants to access, control, or destroy. If everyone who touches the threat modeling

process doesn’t have a working agreement about what an asset is, your process

will either get bogged down, or participants will just talk past each other.

There are three ways the term asset is commonly used in threat modeling:

 ■ Things attackers want

 ■ Things you want to protect

 ■ Stepping stones to either of these

You should think of these three types of assets as families rather than categories

because just as people can belong to more than one family at a time, assets can

take on more than one meaning at a time. In other words, the tags that apply

to assets can overlap, as shown in Figure 2-2. The most common usage of asset

in discussing threat models seems to be a marriage of “things attackers want”

and “things you want to protect.”

Stepping stonesThings you
protect

Things attackers
want

Figure 2-2: The overlapping definitions of assets

N O T E There are a few other ways in which the term asset is used by those who

are threat modeling—such as a synonym for computer, or a type of computer (for

example, “Targeted assets: mail server, database”). For the sake of clarity, this book

only uses asset with explicit reference to one or more of the three families previously

defi ned, and you should try to do the same.

38 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 38

Things Attackers Want

Usually assets that attackers want are relatively tangible things such as “this

database of customer medical data.” Good examples of things attackers want

include the following:

 ■ User passwords or keys

 ■ Social security numbers or other identifi ers

 ■ Credit card numbers

 ■ Your confi dential business data

Things You Want to Protect

There’s also a family of assets you want to protect. Unlike the tangible things

attackers want, many of these assets are intangibles. For example, your com-

pany’s reputation or goodwill is something you want to protect. Competitors

or activists may well attack your reputation by engaging in smear tactics. From

a threat modeling perspective, your reputation is usually too diffuse to be able

to technologically mitigate threats against it. Therefore, you want to protect it

by protecting the things that matter to your customers.

As an example of something you want to protect, if you had an empty safe,

you intuitively don’t want someone to come along and stick their stethoscope

to it. But there’s nothing in it, so what’s the damage? Changing the combination

and letting the right folks (but only the right folks) know the new combination

requires work. Therefore you want to protect this empty safe, but it would be

an unlikely target for a thief. If that same safe has one million dollars in it, it

would be much more likely to pique a thief’s interest. The million dollars is part

of the family of things you want that attackers want, too.

Stepping Stones

The fi nal family of assets is stepping stones to other assets. For example, every-

thing drawn in a threat model diagram is something you want to protect because

it may be a stepping stone to the targets that attackers want. In some ways, the

set of stepping stone assets is an attractive nuisance. For example, every com-

puter has CPU and storage that an attacker can use. Most also have Internet

connectivity, and if you’re in systems management or operational security,

many of the computers you worry most about will have special access to your

organization’s network. They’re behind a fi rewall or have VPN access. These

are stepping stones. If they are uniquely valuable stepping stones in some way,

note that. In practice, it’s rarely helpful to include “all our PCs” in an asset list.

 Chapter 2 ■ Strategies for Threat Modeling 39

c02.indd 11:35:5:AM 01/17/2014 Page 39

N O T E Referring back to the safe example in the previous section, the safe combina-

tion is a member of the stepping stone family. It may well be that stepping-stones and

things you protect are, in practice, very similar. The list of technical elements you

protect that are not members of the stepping-stone family appears fairly short.

Implementing Asset-Centric Modeling

If you were to threat model with an asset-focused approach, you would make a

list of your assets and then consider how an attacker could threaten each. From

there, you’d consider how to address each threat.

After an asset list is created, you should connect each item on the list to

particular computer systems or sets of systems. (If an asset includes something

like “Amazon Web Services” or “Microsoft Azure,” then you don’t need to be

able to point to the computer systems in question, you just need to understand

where they are—eventually you’ll need to identify the threats to those systems

and determine how to mitigate them.)

The next step is to draw the systems in question, showing the assets and

other components as well as interconnections, until you can tell a story about

them. You can use this model to apply either an attack set like STRIDE or an

attacker-centered brainstorm to understand how those assets could be attacked.

Perspective on Asset-Centric Threat Modeling

Focusing on assets appears to be a common-sense approach to threat model-

ing, to the point where it seems hard to argue with. Unfortunately, much of the

time, a discussion of assets does not improve threat modeling. However, the

misconception is so common that it’s important to examine why it doesn’t help.

There’s no direct line from assets to threats, and no prescriptive set of steps.

Essentially, effort put into enumerating assets is effort you’re not spending fi nd-

ing or fi xing threats. Sometimes, that involves a discussion of what’s an asset,

or which type of asset you’re discussing. That discussion, at best, results in a

list of things to look for in your software or operational model, so why not start

by creating such a model? Once you have a list of assets, that list is not (ahem) a

stepping stone to fi nding threats; you still need to apply some methodology or

approach. Finally, assets may help you prioritize threats, but if that’s your goal, it

doesn’t mean you should start with or focus on assets. Generally, such informa-

tion comes out naturally when discussing impacts as you prioritize and address

threats. Those topics are covered in Part III, “Managing and Addressing Threats.”

How you answer the question “what are our assets?” should help focus your

threat modeling. If it doesn’t help, there is no point to asking the question or

spending time answering it.

40 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 40

Focusing on Attackers

Focusing on attackers seems like a natural way to threat model. After all, if

no one is going to attack your system, why would you bother defending it?

And if you’re worried because people will attack your systems, shouldn’t you

understand them? Unfortunately, like asset-centered threat modeling, attacker-

centered threat modeling is less useful than you might anticipate. But there are

also a small number of scenarios in which focusing on attackers can come in

handy, and they’re the same scenarios as assets: experts, less-technical input

to your process, and prioritization. And similar to the “Focusing on Assets”

section, you can also learn for yourself why this approach isn’t optimal, so you

can discuss the possibility with those advocating this approach.

Implementing Attacker-Centric Modeling

Security experts may be able to use various types of attacker lists to fi nd threats

against a system. When doing so, it’s easy to fi nd yourself arguing about the

resources or capabilities of such an archetype, and needing to fl esh them out.

For example, what if your terrorist is state-sponsored, and has access to govern-

ment labs? These questions make the attacker-centric approach start to resemble

“personas,” which are often used to help think about human interface issues.

There’s a spectrum of detail in attacker models, from simple lists to data-derived

personas, and examples of each are given in Appendix C, “Attacker Lists”

That appendix may help security experts and will help anyone who wants

to try attacker-centric modeling and learn faster than if they have to start by

creating a list.

Given a list of attackers, it’s possible to use the list to provide some structure

to a brainstorming approach. Some security experts use attacker lists as a way

to help elicit the knowledge they’ve accumulated as they’ve become experts.

Attacker-driven approaches are also likely to bring up possibilities that are

human-centered. For example, when thinking about what a spy would do, it

may be more natural (and fun) to think about them seducing your sysadmin

or corrupting a janitor, rather than think about technical attacks. Worse, it will

probably be challenging to think about what those human attacks mean for

your system’s security.

Where Attackers Can Help You

Talking about human threat agents can help make the threats real. That is, it’s

sometimes tough to understand how someone could tamper with a confi gura-

tion fi le, or replace client software to get around security checks. Especially

when dealing with management or product teams who “just want to ship,”

 Chapter 2 ■ Strategies for Threat Modeling 41

c02.indd 11:35:5:AM 01/17/2014 Page 41

it’s helpful to be able to explain who might attack them and why. There’s real

value in this, but it’s not a suffi cient argument for centering your approach

on those threat agents; you can add that information at a later stage. (The risk

associated with talking about attackers is the claim that “no one would ever

do that.” Attempting to humanize a risk by adding an actor can exacerbate

this, especially if you add a type of actor who someone thinks “wouldn’t be

interested in us.”).

You were promised an example, and the spies stole it. More seriously, carefully

walking through the attacker lists and personas in Appendix C likely doesn’t

help you (or the author) fi gure out what they might want to do to Acme/SQL,

and so the example is left empty to avoid false hope.

Perspective on Attacker-Centric Modeling

Helping security experts structure and recall information is nice, but doesn’t

lead to reproducible results. More importantly, attacker lists or even personas

are not enough structure for most people to fi gure out what those people will

do. Engineers may subconsciously project their own biases or approaches into

what an attacker might do. Given that the attacker has his own motivations,

skills, background, and perspective (and possibly organizational priorities),

avoiding such projection is tricky.

In my experience, this combination of issues makes attacker-centric approaches

less effective than other approaches. Therefore, I recommend against using

attackers as the center of your threat modeling process.

Focusing on Software

Good news! You’ve offi cially reached the “best” structured threat modeling

approach. Congrats! Read on to learn about software-centered threat modeling,

why it’s the most helpful and effective approach, and how to do it.

Software-centric models are models that focus on the software being built

or a system being deployed. Some software projects have documented models

of various sorts, such as architecture, UML diagrams, or APIs. Other projects

don’t bother with such documentation and instead rely on implicit models.

Having large project teams draw on a whiteboard to explain how the software

fi ts together can be a surprisingly useful and contentious activity. Understandings

differ, especially on large projects that have been running for a while, but fi nd-

ing where those understandings differ can be helpful in and of itself because

it offers a focal point where threats are unlikely to be blocked. (“I thought you

were validating that for a SQL call!”)

The same complexity applies to any project that is larger than a few people

or has been running longer than a few years. Projects accumulate complexity,

42 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 42

which makes many aspects of development harder, including security. Software-

centric threat modeling can have a useful side effect of exposing this accumu-

lated complexity.

The security value of this common understanding can also be substantial,

even before you get to looking for threats. In one project it turned out that a

library on a trust boundary had a really good threat model, but unrealistic

assumptions had been made about what the components behind it were doing.

The work to create a comprehensive model led to an explicit list of common

assumptions that could and could not be made. The comprehensive model and

resultant understanding led to a substantial improvement in the security of

those components.

N O T E As complexity grows, so will the assumptions that are made, and such lists

are never complete. They grow as experience requires and feedback loops allow.

Threat Modeling Diff erent Types of Software

The threat discovery approaches covered in Part II, can be applied to models of

all sorts of software. They can be applied to software you’re building for others

to download and install, as well as to software you’re building into a larger

operational system. The software they can be applied to is nearly endless, and

is not dependent on the business model or deployment model associated with

the software.

Even though software no longer comes in boxes sold on store shelves, the

term boxed software is a convenient label for a category. That category is all the

software whose architecture is defi nable, because there’s a clear edge to what

is the software: It’s everything in the box (installer, application download, or

open source repository). This edge can be contrasted with the deployed systems

that organizations develop and change over time.

N O T E You may be concerned that the techniques in this book focus on either

boxed software or deployed systems, and that the one you’re concerned about isn’t

covered. In the interests of space, the examples and discussion only cover both when

there’s a clear diff erence and reason. That’s because the recommended ways to model

software will work for both with only a few exceptions.

The boundary between boxed software models and network models gets

blurrier every year. One important difference is that the network models tend

to include more of the infrastructural components such as routers, switches, and

data circuits. Trust boundaries are often operationalized by these components,

or by whatever group operates the network, the platforms, or the applications.

 Chapter 2 ■ Strategies for Threat Modeling 43

c02.indd 11:35:5:AM 01/17/2014 Page 43

Data fl ow models (which you met in Chapter 1, “Dive In and Threat Model!”

and which you’ll learn more about in the next section) are usually a good choice

for both boxed software and operational models. Some large data center operators

have provided threat models to teams, showing how the data center is laid out.

The product group can then overlay its models “on top” of that to align with the

appropriate security controls that they’ll get from operations. When you’re using

someone else’s data center, you may have discussions about their infrastructure

choices that make it easy to derive a model, or you might have to assume the worst.

Perspective on Software-Centric Modeling

I am fond of software-centric approaches because you should expect software

developers to understand the software they’re developing. Indeed, there is

nothing else you should expect them to understand better. That makes software

an ideal place to start the threat-modeling tasks in which you ask developers

to participate. Almost all software development is done with software models

that are good enough for the team’s purposes. Sometimes they require work to

make them good enough for effective threat modeling.

In contrast, you can merely hope that developers understand the business or

its assets. You may aspire to them understanding the people who will attack their

product or system. But these are hopes and aspirations, rather than reasonable

expectations. To the extent that your threat modeling strategy depends on these

hopes and aspirations, you’re adding places where it can fail. The remainder of

this chapter is about modeling your software in ways that help you fi nd threats,

and as such enabling software centric-modeling. (The methods for fi nding these

threats are covered in the rest of Part II.)

Models of Software

Making an explicit model of your software helps you look for threats without

getting bogged down in the many details that are required to make the software

function properly. Diagrams are a natural way to model software.

As you learned in Chapter 1, whiteboard diagrams are an extremely effective

way to start threat modeling, and they may be suffi cient for you. However, as

a system hits a certain level of complexity, drawing and redrawing on white-

boards becomes infeasible. At that point, you need to either simplify the system

or bring in a computerized approach.

In this section, you’ll learn about the various types of diagrams, how they

can be adapted for use in threat modeling, and how to handle the complexities

of larger systems. You’ll also learn more detail about trust boundaries, effective

labeling, and how to validate your diagrams.

44 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 44

Types of Diagrams

There are many ways to diagram, and different diagrams will help in differ-

ent circumstances. The types of diagrams you’ll encounter most frequently are

probably data fl ow diagrams (DFDs). However, you may also see UML, swim

lane diagrams, and state diagrams. You can think of these diagrams as Lego

blocks, looking them over to see which best fi ts whatever you’re building. Each

diagram type here can be used with the models of threats in Part II.

The goal of all these diagrams is to communicate how the system works,

so that everyone involved in threat modeling has the same understanding. If

you can’t agree on how to draw how the software works, then in the process of

getting to agreement, you’re highly likely to discover misunderstandings about

the security of the system. Therefore, use the diagram type that helps you have

a good conversation and develop a shared understanding.

Data Flow Diagrams

Data fl ow models are often ideal for threat modeling; problems tend to follow

the data fl ow, not the control fl ow. Data fl ow models more commonly exist for

network or architected systems than software products, but they can be created

for either.

Data fl ow diagrams are used so frequently they are sometimes called

“threat model diagrams.” As laid out by Larry Constantine in 1967, DFDs

consist of numbered elements (data stores and processes) connected by data

fl ows, interacting with external entities (those outside the developer’s or the

organization’s control).

The data fl ows that give DFDs their name almost always fl ow two ways,

with exceptions such as radio broadcasts or UDP data sent off into the Ethernet.

Despite that, fl ows are usually represented using one-way arrows, as the threats

and their impact are generally not symmetric. That is, if data fl owing to a

web server is read, it might reveal passwords or other data, whereas a data

fl ow from the web server might reveal your bank balance. This diagramming

convention doesn’t help clarify channel security versus message security. (The

channel might be something like SMTP, with messages being e-mail messages.)

Swim lane diagrams may be more appropriate as a model if this channel/message

distinction is important. (Swim lane diagrams are described in the eponymous

subsection later in this chapter.)

The main elements of a data fl ow diagram are shown in Table 2-1.

 Chapter 2 ■ Strategies for Threat Modeling 45

c02.indd 11:35:5:AM 01/17/2014 Page 45

Table 2-1: Elements of a Data Flow Diagram

ELEMENT APPEARANCE MEANING EXAMPLES

Process Rounded rect-

angle, circle, or

concentric circles

Any running code Code written in C,

C#, Python, or PHP

Data fl ow Arrow Communication between

processes, or between

processes and data stores

Network connec-

tions, HTTP, RPC,

LPC

Data store Two parallel

lines with a label

between them

Things that store data Files, databases, the

Windows Registry,

shared memory

segments

External

entity

Rectangle with

sharp corners

People, or code outside

your control

Your customer,

Microsoft.com

Figure 2-3 shows a classic DFD based on the elements from Table 2-1; how-

ever, it’s possible to make these models more usable. Figure 2-4 shows this same

model with a few changes, which you can use as an example for improving

your own models.

1 Web Clients

2 SQL Clients

3 Front
End(s)

External Entity

Key:

Process Data Store

5 DB
Admin

9 Data 10 Management 11 Logs

8 Log
Analysis

6 DBA (Human) 7 DB
Users

4 Database

data flow

Figure 2-3: A classic DFD model

46 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 46

Web Clients

SQL Clients

Acme
Front End(s)

External Entity

Key:

Process Data Store

DB Admin

Data Management Logs

Log Analysis

Original SQL Account

DB Cluster

DBA (Human)
 DB

Users
(Human)

Database

data flow
Trust

Boundary

Figure 2-4: A modern DFD model (previously shown as Figure 2-1)

The following list explains the changes made from classic DFDs to more

modern ones:

 ■ The processes are rounded rectangles, which contain text more effi ciently

than circles.

 ■ Straight lines are used, rather than curved, because straight lines are easier

to follow, and you can fi t more in larger diagrams.

Historically, many descriptions of data flow diagrams contained both

“process” elements and “complex process” elements. A process was depicted

as a circle, a complex process as two concentric circles. It isn’t entirely clear,

however, when to use a normal process versus a complex one. One possible

rule is that anything that has a subdiagram should be a complex process. That

seems like a decent rule, if (ahem) a bit circular.

DFDs can be used for things other than software products. For example,

Figure 2-5 shows a sample operational network in a DFD. This is a typical model

for a small to mid-sized corporate network, with a representative sampling

 Chapter 2 ■ Strategies for Threat Modeling 47

c02.indd 11:35:5:AM 01/17/2014 Page 47

of systems and departments shown. It is discussed in depth in Appendix E,

“Case Studies.”

Acme Corporate Network

Internet

Payroll

HR

Directory

Sales/CRM

Operations

Production

Desktop &
Mobile

E-mail &
Intranet Servers

Development
Servers

HR Mgmt

Figure 2-5: An operational network model

UML

UML is an abbreviation for Unifi ed Modeling Language. If you use UML

in your software development process, it’s likely that you can adapt UML

diagrams for threat modeling, rather than redrawing them. The most impor-

tant way to adapt UML for threat modeling diagrams is the addition of trust

boundaries.

UML is fairly complex. For example, the Visio stencils for UML offer roughly

80 symbols, compared to six for DFDs. This complexity brings a good deal

of nuance and expressiveness as people draw structure diagrams, behavior

diagrams, and interaction diagrams. If anyone involved in the threat model-

ing isn’t up on all the UML symbols, or if there’s misunderstanding about

what those symbols mean, then the diagram’s effectiveness as a tool is greatly

diminished. In theory, anyone who’s confused can just ask, but that requires

them to know they’re confused (they might assume that the symbol for fi sh

48 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 48

excludes sharks). It also requires a willingness to expose one’s ignorance by

asking a “simple” question. It’s probably easier for a team that’s invested in

UML to add trust boundaries to those diagrams than to create new diagrams

just for threat modeling.

Swim Lane Diagrams

Swim lane diagrams are a common way to represent fl ows between various

participants. They’re drawn using long lines, each representing participants

in a protocol, with each participant getting a line. Each lane edge is labeled

to identify the participant; each message is represented by a line between

participants; and time is represented by fl ow down the diagram lanes. The

diagrams end up looking a bit like swim lanes, thus the name. Messages

should be labeled with their contents; or if the contents are complex, it may

make more sense to have a diagram key that abstracts out some details.

Computation done by the parties or state should be noted along that partici-

pant’s line. Generally, participants in such protocols are entities like comput-

ers; and as such, swim lane diagrams usually have implicit trust boundaries

between each participant. Cryptographer and protocol designer Carl Ellison

has extended swim lanes to include the human participants as a way to

structure discussion of what people are expected to know and do. He calls

this extension ceremonies, which is discussed in more detail in Chapter 15,

“Human Factors and Usability.”

A sample swim lane diagram is shown in Figure 2-6.

SYN

SYN-ACK

ACK

Data

Client Server

Figure 2-6: Swim lane diagram (showing the start of a TCP connection)

 Chapter 2 ■ Strategies for Threat Modeling 49

c02.indd 11:35:5:AM 01/17/2014 Page 49

State Diagrams

State diagrams represent the various states a system can be in, and the transi-

tions between those states. A computer system is modeled as a machine with

state, memory, and rules for moving from one state to another, based on the

valid messages it receives, and the data in its memory. (The computer should

course test the messages it receives for validity according to some rules.) Each

box is labeled with a state, and the lines between them are labeled with the

conditions that cause the state transition. You can use state diagrams in threat

modeling by checking whether each transition is managed in accordance with

the appropriate security validations.

A very simple state machine for a door is shown in Figure 2-7 (derived from

Wikipedia). The door has three states: opened, closed, and locked. Each state is

entered by a transition. The “deadbolt” system is much easier to draw than locks

on the knob, which can be locked from either state, creating a more complex

diagram and user experience. Obviously, state diagrams can become complex

quickly. You could imagine a more complex state diagram that includes “ajar,” a

state that can result from either open or closed. (I started drawing that but had

trouble deciding on labels. Obviously, doors that can be ajar are poorly specifi ed

and should not be deployed.) You don’t want to make architectural decisions

just to make modeling easier, but often simple models are easier to work with,

and refl ect better engineering.

Opened

Closed Locked

State

Transition

Open doorClose door

Unlock deadbolt

Lock deadbolt

Transition
condition

Figure 2-7: A state machine diagram

50 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 50

Trust Boundaries

As you saw in Chapter 1, a trust boundary is anyplace where various principals

come together—that is, where entities with different privileges interact.

Drawing Boundaries

After a software model has been drawn, there are two ways to add boundaries:

You can add the boundaries you know and look for more, or you can enumerate

principals and look for boundaries. To start from boundaries, add any sorts of

enforced trust boundary you can. Boundaries between unix UIDs, Windows

sessions, machines, network segments, and so on should be drawn in as boxes,

and the principal inside each box should be shown with a label.

To start from principals, begin from one end or the other of the privilege

spectrum (often that’s root/admin or anonymous Internet users), and then add

boundaries each time they talk to “someone else.”

You can always add at least one boundary, as all computation takes place in

some context. (So you might criticize Figure 2-1 for showing Web Clients and

SQL Clients without an identifi ed context.)

If you don’t see where to draw trust boundaries of any sort, your diagram

may be detailed as everything is inside a single trust boundary, or you may

be missing boundaries. Ask yourself two questions. First, does everything in

the system have the same level of privilege and access to everything else on

the system? Second, is everything your software communicates with inside

that same boundary? If either of these answers are a no, then you should now

have clarifi ed either a missing boundary or a missing element in the diagram,

or both. If both are yes, then you should draw a single trust boundary around

everything, and move on to other development activities. (This state is unlikely

except when every part of a development team has to create a software model.

That “bottom up” approach is discussed in more detail in Chapter 7, “Processing

and Managing Threats.”)

A lot of writing on threat modeling claims that trust boundaries should

only cross data fl ows. This is useful advice for the most detailed level of your

model. If a trust boundary crosses over a data store (that is, a database), that

might indicate that there are different tables or stored procedures with different

trust levels. If a boundary crosses over a given host, it may refl ect that members

of, for example, the group “software installers,” have different rights from the

“web content updaters.” If you fi nd a trust boundary crossing an element of a

diagram other than a data fl ow, either break that element into two (in the model,

in reality, or both), or draw a subdiagram to show them separated into multiple

entities. What enables good threat models is clarity about what boundaries exist

and how those boundaries are to be protected. Contrariwise, a lack of clarity

will inhibit the creation of good models.

 Chapter 2 ■ Strategies for Threat Modeling 51

c02.indd 11:35:5:AM 01/17/2014 Page 51

Using Boundaries

Threats tend to cluster around trust boundaries. This may seem obvious: The

trust boundaries delineate the attack surface between principals. This leads some

to expect that threats appear only between the principals on the boundary, or

only matter on the trust boundaries. That expectation is sometimes incorrect. To

see why, consider a web server performing some complex order processing. For

example, imagine assembling a computer at Dell’s online store where thousands

of parts might be added, but only a subset of those have been tested and are

on offer. A model of that website might be constructed as shown in Figure 2-8.

Web browser TCP/IP stack

Kernel

Platform

Application

Web server

Sales

Order
processing

Marketing

Figure 2-8: Trust boundaries in a web server

The web server in Figure 2-8 is clearly at risk of attack from the web browser,

even though it talks through a TCP/IP stack that it presumably trusts. Similarly,

the sales module is at risk; plus an attacker might be able to insert random part

numbers into the HTML post in which the data is checked in an order processing

module. Even though there’s no trust boundary between the sales module and

the order processing module, and even though data might be checked at three

boundaries, the threats still follow the data fl ows. The client is shown simply

as a web browser because the client is an external entity. Of course, there are

many other components around that web browser, but you can’t do anything

about threats to them, so why model them?

Therefore, it is more accurate to say that threats tend to cluster around trust

boundaries and complex parsing, but may appear anywhere that information

is under the control of an attacker.

52 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 52

What to Include in a Diagram

So what should be in your diagram? Some rules of thumb include the following:

 ■ Show the events that drive the system.

 ■ Show the processes that are driven.

 ■ Determine what responses each process will generate and send.

 ■ Identify data sources for each request and response.

 ■ Identify the recipient of each response.

 ■ Ignore the inner workings, focus on scope.

 ■ Ask if something will help you think about what goes wrong, or what

will help you fi nd threats.

This list is derived from Howard and LeBlanc’s Writing Secure Code, Second
Edition (Microsoft Press, 2009).

Complex Diagrams

When you’re building complex systems, you may end up with complex diagrams.

Systems do become complex, and that complexity can make using the diagrams

(or understanding the full system) diffi cult.

One rule of thumb is “don’t draw an eye chart.” It is important to balance

all the details that a real software project can entail with what you include in

your actual model. As mentioned in Chapter 1, one technique you can use to

help you do this is a subdiagram showing the details of one particular area.

You should look for ways to break out highly-detailed areas that make sense

for your project. For example, if you have one very complex process, maybe

everything inside it is one diagram, and everything outside it is another. If

you have a dispatcher or queuing system, that might be a good place to break

things up. Maybe your databases or the fail over system is a good place to split.

Maybe there are a few elements that really need more detail. All of these are

good ways to break things out.

One helpful approach to subdiagrams is to ensure that there are not more

subdiagrams than there are processes. Another approach is to use different

diagrams to show different scenarios.

Sometimes it’s also useful to simplify diagrams. When two elements of the

diagram are equivalent from a security perspective, you can combine them.

Equivalent means inside the same trust boundary, relying on the same technol-

ogy, and handling the same sort of data.

The key thing to remember is that the diagram is intended to help ensure that

you understand and can discuss the system. Remember the quote that opens

this book: “All models are wrong, some models are useful.” Therefore, when

 Chapter 2 ■ Strategies for Threat Modeling 53

c02.indd 11:35:5:AM 01/17/2014 Page 53

you’re adding additional diagrams, don’t ask “is this the right way to do it?”

Instead, ask “does this help us think about what might go wrong?”

Labels in Diagrams

Labels in diagrams should be short, descriptive, and meaningful. Because you

want to use these names to tell stories, start with the outsiders who are driving

the system; those are nouns, such as “customer” or “vibration sensor.” They

communicate information via data fl ows, which are nouns or noun phrases, such

as “books to buy” or “vibration frequency.” Data fl ows should almost never be

labeled using verbs. Even though it can be hard, you should work to fi nd more

descriptive labels than “read” or “write,” which are implied by the direction of

the arrows. In other words, data fl ows communicate their information (nouns)

to processes, which are active: verbs, verb phrases, or verb/noun chains.

Many people fi nd it helpful to label data fl ows with sequence numbers to help

keep track of what happens in what order. It can also be helpful to number ele-

ments within a diagram to help with completeness or communication. You can

number each thing (data fl ow 1, a process 1, et cetera) or you can have a single

count across the diagram, with external entity 1 talking over data fl ows 2 and 3

to process 4. Generally, using a single counter for everything is less confusing.

You can say “number 1” rather than “data fl ow 1, not process 1.”

Color in Diagrams

Color can add substantial amounts of information without appearing over-

whelming. For example, Microsoft’s Peter Torr uses green for trusted, red for

untrusted and blue for what’s being modeled (Torr, 2005). Relying on color alone

can be problematic. Roughly one in twelve people suffer from color blindness,

the most common being red/green confusion (Heitgerd, 2008). The result is that

even with a color printer, a substantial number of people are unable to easily

access this critical information. Box boundaries with text labels address both

problems. With box trust boundaries, there is no reason not to use color.

Entry Points

One early approach to threat modeling was the “asset/entry point” approach,

which can be effective at modeling operational systems. This approach can be

partially broken down into the following steps:

 1. Draw a DFD.

 2. Find the points where data fl ows cross trust boundaries.

 3. Label those intersections as “entry points.”

54 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 54

N O T E There were other steps and variations in the approaches, but we as a com-

munity have learned a lot since then, and a full explanation would be tedious and

distracting.

In the Acme/SQL example (as shown in Figure 2-1) the entry points are the

“front end(s)” and the “database admin” console process. “Database” would

also be an entry point, because nominally, other software could alter data in

the databases and use failures in the parsers to gain control of the system. For

the fi nancials, the entry points shown are “external reporting,” “fi nancial plan-

ning and analysis,” “core fi nance software,” “sales” and “accounts receivable.”

Validating Diagrams

Validating that a diagram is a good model of your software has two main goals:

ensuring accuracy and aspiring to goodness. The fi rst is easier, as you can ask

whether it refl ects reality. If important components are missing, or the diagram

shows things that are not being built, then you can see that it doesn’t refl ect

reality. If important data fl ows are missing, or nonexistent fl ows are shown,

then it doesn’t refl ect reality. If you can’t tell a story about the software without

editing the diagram, then it’s not accurate.

Of course, there’s that word “important” in there, which leads to the second

criterion: aspiring to goodness. What’s important is what helps you fi nd issues.

Finding issues is a matter of asking questions like “does this element have any

security impact?” and “are there things that happen sometimes or in special

circumstances?” Knowing the answers to these questions is a matter of expe-

rience, just like many aspects of building software. A good and experienced

architect can quickly assess requirements and address them, and a good threat

modeler can quickly see which elements will be important. A big part of gain-

ing that experience is practice. The structured approaches to fi nding threats in

Part II, are designed to help you identify which elements are important.

How To Validate Diagrams

To best validate your diagrams, bring together the people who understand the

system best. Someone should stand in front of the diagram and walk through

the important use cases, ensuring the following:

 ■ They can talk through stories about the diagram.

 ■ They don’t need to make changes to the diagram in its current form.

 ■ They don’t need to refer to things not present in the diagram.

 Chapter 2 ■ Strategies for Threat Modeling 55

c02.indd 11:35:5:AM 01/17/2014 Page 55

The following rules of thumb will be useful as you update your diagram

and gain experience:

 ■ Anytime you fi nd someone saying “sometimes” or “also” you should

consider adding more detail to break out the various cases. For example,

if you say, “Sometimes we connect to this web service via SSL, and some-

times we fall back to HTTP,” you should draw both of those data fl ows

(and consider whether an attacker can make you fall back like that).

 ■ Anytime you need more detail to explain security-relevant behavior, draw

it in.

 ■ Each trust boundary box should have a label inside it.

 ■ Anywhere you disagreed over the design or construction of the system,

draw in those details. This is an important step toward ensuring that

everyone ended that discussion on the same page. It’s especially important

for larger teams where not everyone is in the room for the threat model

discussions. If anyone sees a diagram that contradicts their thinking, they

can either accept it or challenge the assumptions; but either way, a good

clear diagram can help get everyone on the same page.

 ■ Don’t have data sinks: You write the data for a reason. Show who uses it.

 ■ Data can’t move itself from one data store to another: Show the process

that moves it.

 ■ All ways data can arrive should be shown.

 ■ If there are mechanisms for controlling data fl ows (such as fi rewalls or

permissions) they should be shown.

 ■ All processes must have at least one entry data fl ow and one exit data fl ow.

 ■ As discussed earlier in the chapter, don’t draw an eye chart.

 ■ Diagrams should be visible on a printable page.

N O T E Writing Secure Code author David LeBlanc notes that “A process without

input is a miracle, while one without output is a black hole. Either you’re missing

something, or have mistaken a process for people, who are allowed to be black holes

or miracles.”

When to Validate Diagrams

For software products, there are two main times to validate diagrams: when you

create them and when you’re getting ready to ship a beta. There’s also a third

triggering event (which is less frequent), which is if you add a security boundary.

56 Part I ■ Getting Started

c02.indd 11:35:5:AM 01/17/2014 Page 56

For operational software diagrams, you also validate when you create them,

and then again using a sensible balance between effort and up-to-dateness. That

sensible balance will vary according to the maturity of a system, its scale, how

tightly the components are coupled, the cadence of rollouts, and the nature of

new rollouts. Here are a few guidelines:

 ■ Newer systems will experience more diagram changes than mature ones.

 ■ Larger systems will experience more diagram changes than smaller ones.

 ■ Tightly coupled systems will experience more diagram changes than

loosely coupled systems.

 ■ Systems that roll out changes quickly will likely experience fewer diagram

changes per rollout.

 ■ Rollouts or sprints focused on refactoring or paying down technical

debt will likely see more diagram changes. In either case, create an

appropriate tracking item to ensure that you recheck your diagrams

at a good time. The appropriate tracking item is whatever you use to

gate releases or rollouts, such as bugs, task management software,

or checklists. If you have no formal way to gate releases, then you

might focus on a clearly defi ned release process before worrying about

rechecking threat models. Describing such a process is beyond the

scope of this book.

Summary

There’s more than one way to threat model, and some of the strategies you can

employ include modeling assets, modeling attackers, or modeling software.

“What’s your threat model” and brainstorming are good for security experts,

but they lack structure that less experienced threat modelers need. There are

more structured approaches to brainstorming, including scenario analysis,

pre-mortems, movie plotting, and literature reviews, which can help bring a

little structure, but they’re still not great.

If your threat modeling starts from assets, the multiple overlapping defi ni-

tions of the term, including things attackers want, things you’re protecting, and

stepping stones, can trip you up. An asset-centered approach offers no route to

fi gure out what will go wrong with the assets.

Attacker modeling is also attractive, but trying to predict how another person

will attack is hard, and the approach can invite arguments that “no one would

do that.” Additionally, human-centered approaches may lead you to human-

centered threats that can be hard to address.

 Chapter 2 ■ Strategies for Threat Modeling 57

c02.indd 11:35:5:AM 01/17/2014 Page 57

Software models are focused on that what software people understand. The

best models are diagrams that help participants understand the software and

fi nd threats against it. There are a variety of ways you can diagram your soft-

ware, and DFDs are the most frequently useful.

Once you have a model of the software, you’ll need a way to fi nd threats

against it, and that is the subject of Part II.

c03.indd 07:51:54:AM 01/15/2014 Page 59

At the heart of threat modeling are the threats.

There are many approaches to fi nding threats, and they are the subject of

Part II. Each has advantages and disadvantages, and different approaches may

work in different circumstances. Each of the approaches in this part is like a

Lego block. You can substitute one for another in the midst of this second step

in the four-step framework and expect to get good results.

Knowing what aspects of security can go wrong is the unique element that

makes threat modeling threat modeling, rather than some other form of mod-

eling. The models in this part are abstractions of threats, designed to help you

think about these security problems. The more specifi c models (such as attack

libraries) will be more useful to those new to threat modeling, and are less

freewheeling. As you become more experienced, the less structured approaches

such as STRIDE become more useful.

In this part, you’ll learn about the following approaches to fi nding threats:

 ■ Chapter 3: STRIDE covers the STRIDE mnemonic you met in chapter 1,

and its many variants.

 ■ Chapter 4: Attack Trees are either a way for you to think through threats

against your system, or a way to help others structure their thinking about

those threats. Both uses of attack trees are covered in this chapter.

Par t

II
Finding Threats

60 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 60

 ■ Chapter 5: Attack Libraries are libraries constructed to track and organize

threats. They can be very useful to those new to security or threat modeling.

 ■ Chapter 6: Privacy Tools covers a collection of tools for fi nding privacy

threats.

Part II focuses on the second question in the four-step framework: What can

go wrong? As you’ll recall from Part I, before you start fi nding threats with any

of the techniques in this part, you should fi rst have an idea of scope: where are

you looking for threats? A diagram, such as a data fl ow diagram discussed

in Part I, can help scope the threat modeling session, and thus is an excellent

input condition. As you discuss threats, however, you’ll likely fi nd imperfec-

tions in the diagram, so it isn’t necessary to “perfect” your diagram before you

start fi nding threats.

61

c03.indd 07:51:54:AM 01/15/2014 Page 61

As you learned in Chapter 1, “Dive in and Threat Model!,” STRIDE is an acro-

nym that stands for Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privilege. The STRIDE approach to threat

modeling was invented by Loren Kohnfelder and Praerit Garg (Kohnfelder,

1999). This framework and mnemonic was designed to help people developing

software identify the types of attacks that software tends to experience.

The method or methods you use to think through threats have many differ-

ent labels: fi nding threats, threat enumeration, threat analysis, threat elicitation,

threat discovery. Each connotes a slightly different fl avor of approach. Do the

threats exist in the software or the diagram? Then you’re fi nding them. Do they

exist in the minds of the people doing the analysis? Then you’re doing analysis

or elicitation. No single description stands out as always or clearly preferable, but

this book generally talks about fi nding threats as a superset of all these ideas.

Using STRIDE is more like an elicitation technique, with an expectation that

you or your team understand the framework and know how to use it. If you’re

not familiar with STRIDE, the extensive tables and examples are designed to

teach you how to use it to discover threats.

This chapter explains what STRIDE is and why it’s useful, including sections

covering each component of the STRIDE mnemonic. Each threat-specifi c sec-

tion provides a deeper explanation of the threat, a detailed table of examples

for that threat, and then a discussion of the examples. The tables and examples

are designed to teach you how to use STRIDE to discover threats. You’ll also

C H A P T E R

3

STRIDE

62 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 62

learn about approaches built on STRIDE: STRIDE-per-element, STRIDE-per-

interaction, and DESIST. The other approach built on STRIDE, the Elevation of
Privilege game, is covered in Chapters 1, “Dive In and Threat Model!” and 12,

“Requirements Cookbook,” and Appendix C, “Attacker Lists.”

Understanding STRIDE and Why It’s Useful

The STRIDE threats are the opposite of some of the properties you would like

your system to have: authenticity, integrity, non-repudiation, confidentiality,

availability, and authorization. Table 3-1 shows the STRIDE threats, the cor-

responding property that you’d like to maintain, a defi nition, the most typical

victims, and examples.

Table 3-1: The STRIDE Threats

THREAT

PROPERTY

VIOLATED

THREAT

DEFINITION

TYPICAL

VICTIMS EXAMPLES

Spoofi ng Authentication Pretending to be

something or some-

one other than

yourself

Processes,

external

entities,

people

Falsely claiming to be

Acme.com, winsock

.dll, Barack Obama, a

police offi cer, or the

Nigerian Anti-Fraud

Group

Tampering Integrity Modifying some-

thing on disk, on

a network, or in

memory

Data

stores,

data fl ows,

processes

Changing a spread-

sheet, the binary of an

important program,

or the contents of

a database on disk;

modifying, adding,

or removing packets

over a network, either

local or far across

the Internet, wired

or wireless; chang-

ing either the data a

program is using or

the running program

itself

 Chapter 3 ■ STRIDE 63

c03.indd 07:51:54:AM 01/15/2014 Page 63

THREAT

PROPERTY

VIOLATED

THREAT

DEFINITION

TYPICAL

VICTIMS EXAMPLES

Repudiation Non-

Repudiation

Claiming that you

didn’t do some-

thing, or were

not responsible.

Repudiation can be

honest or false, and

the key question for

system designers is,

what evidence do

you have?

Process Process or system: “I

didn’t hit the big red

button” or “I didn’t

order that Ferrari.”

Note that repudia-

tion is somewhat the

odd-threat-out here;

it transcends the

technical nature of

the other threats to

the business layer.

Information

Disclosure

Confi dentiality Providing informa-

tion to someone

not authorized to

see it

Processes,

data

stores,

data fl ows

The most obvious

example is allowing

access to fi les, e-mail,

or databases, but

information disclosure

can also involve fi le-

names (“Termination

for John Doe.docx”),

packets on a network,

or the contents of

program memory.

Denial of

Service

Availability Absorbing resources

needed to provide

service

Processes,

data

stores,

data fl ows

A program that can

be tricked into using

up all its memory, a

fi le that fi lls up the

disk, or so many net-

work connections

that real traffi c can’t

get through

Elevation of

Privilege

Authorization Allowing someone

to do something

they’re not autho-

rized to do

Process Allowing a normal

user to execute code

as admin; allowing a

remote person with-

out any privileges to

run code

In Table 3-1, “typical victims” are those most likely to be victimized: For

example, you can spoof a program by starting a program of the same name, or

64 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 64

by putting a program with that name on disk. You can spoof an endpoint on

the same machine by squatting or splicing. You can spoof users by capturing

their authentication info by spoofing a site, by assuming they reuse credentials

across sites, by brute forcing (online or off) or by elevating privilege on their

machine. You can also tamper with the authentication database and then spoof

with falsified credentials.

Note that as you’re using STRIDE to look for threats, you’re simply enumerat-

ing the things that might go wrong. The exact mechanisms for how it can go

wrong are something you can develop later. (In practice, this can be easy or it

can be very challenging. There might be defenses in place, and if you say, for

example, “Someone could modify the management tables,” someone else can

say, “No, they can’t because...”) It can be useful to record those possible attacks,

because even if there is a mitigation in place, that mitigation is a testable feature,

and you should ensure that you have a test case.

You’ll sometimes hear STRIDE referred to as “STRIDE categories” or “the STRIDE

taxonomy.” This framing is not helpful because STRIDE was not intended as, nor

is it generally useful for, categorization. It is easy to find things that are hard to

categorize with STRIDE. For example, earlier you learned about tampering with

the authentication database and then spoofi ng. Should you record that as a tam-

pering threat or a spoofi ng threat? The simple answer is that it doesn’t matter. If

you’ve already come up with the attack, why bother putting it in a category? The

goal of STRIDE is to help you find attacks. Categorizing them might help you

figure out the right defenses, or it may be a waste of effort. Trying to use STRIDE

to categorize threats can be frustrating, and those efforts cause some people to

dismiss STRIDE, but this is a bit like throwing out the baby with the bathwater.

Spoofing Threats

Spoofing is pretending to be something or someone other than yourself.

Table 3-1 includes the examples of claiming to be Acme.com, winsock.dll, Barack

Obama, or the Nigerian Anti-Fraud Offi ce. Each of these is an example of a

different subcategory of spoofing. The first example, pretending to be Acme.

com (or Google.com, etc.) entails spoofing the identity of an entity across a net-

work. There is no mediating authority that takes responsibility for telling you

that Acme.com is the site I mean when I write these words. This differs from

the second example, as Windows includes a winsock.dll. You should be able

to ask the operating system to act as a mediating authority and get you to

winsock. If you have your own DLLs, then you need to ensure that you’re open-

ing them with the appropriate path (%installdir%\dll); otherwise, someone

might substitute one in a working directory, and get your code to do what they

want. (Similar issues exist with unix and LD_PATH.) The third example, spoofing

Barack Obama, is an instance of pretending to be a specific person. Contrast that

 Chapter 3 ■ STRIDE 65

c03.indd 07:51:54:AM 01/15/2014 Page 65

with the fourth example, pretending to be the President of the United States or

the Nigerian Anti-Fraud Offi ce. In those cases, the attacker is pretending to be

in a role. These spoofi ng threats are laid out in Table 3-2.

Table 3-2: Spoofi ng Threats

THREAT EXAMPLES WHAT THE ATTACKER DOES NOTES

Spoofi ng a process on

the same machine

Creates a fi le before the real

process

Renaming/linking Creating a Trojan “su” and alter-

ing the path

Renaming Naming your process “sshd”

Spoofi ng a fi le Creates a fi le in the local

directory

This can be a library, execut-

able, or confi g fi le.

Creates a link and changes it From the attacker’s perspec-

tive, the change should hap-

pen between the link being

checked and the link being

accessed.

Creates many fi les in the

expected directory

Automation makes it easy to cre-

ate 10,000 fi les in /tmp, to fi ll the

space of fi les called /tmp
/”pid.NNNN, or similar.

Spoofi ng a machine ARP spoofi ng

IP spoofi ng

DNS spoofi ng Forward or reverse

DNS Compromise Compromise TLD, registrar or

DNS operator

IP redirection At the switch or router level

Spoofi ng a person Sets e-mail display name

Takes over a real account

Spoofi ng a role Declares themselves to be

that role

Sometimes opening a special

account with a relevant name

Spoofing a Process or File on the Same Machine

If an attacker creates a file before the real process, then if your code is not care-

ful to create a new file, the attacker may supply data that your code interprets,

thinking that your code (or a previous instantiation or thread) wrote that data,

66 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 66

and it can be trusted. Similarly, if file permissions on a pipe, local procedure

call, and so on, are not managed well, then an attacker can create that endpoint,

confusing everything that attempts to use it later.

Spoofi ng a process or fi le on a remote machine can work either by creating

spoofed fi les or processes on the expected machine (possibly having taken admin

rights) or by pretending to be the expected machine, covered next.

Spoofing a Machine

Attackers can spoof remote machines at a variety of levels of the network stack.

These spoofing attacks can influence your code’s view of the world as a client,

server, or peer. They can spoof ARP requests if they’re local, they can spoof IP

packets to make it appear that they’re coming from somewhere they are not, and

they can spoof DNS packets. DNS spoofing can happen when you do a forward

or reverse lookup. An attacker can spoof a DNS reply to a forward query they

expect you to make. They can also adjust DNS records for machines they control

such that when your code does a reverse lookup (translating IP to FQDN) their

DNS server returns a name in a domain that they do not control—for example,

claiming that 10.1.2.3 is update.microsoft.com. Of course, once attackers have

spoofed a machine, they can either spoof or act as a man-in-the-middle for the

processes on that machine. Second-order variants of this threat involve stealing

machine authenticators such as cryptographic keys and abusing them as part

of a spoofing attack.

Attackers can also spoof at higher layers. For example, phishing attacks involve

many acts of spoofi ng. There’s usually spoofi ng of e-mail from “your” bank,

and spoofi ng of that bank’s website. When someone falls for that e-mail, clicks

the link and visits the bank, they then enter their credentials, sending them

to that spoofed website. The attacker then engages in one last act of spoofi ng:

They log into your bank account and transfer your money to themselves or an

accomplice. (It may be one attacker, or it may be a set of attackers, contracting

with one another for services rendered.)

Spoofing a Person

Major categories of spoofing people include access to the person’s account and

pretending to be them through an alternate account. Phishing is a common way

to get access to someone else’s account. However, there’s often little to prevent

anyone from setting up an account and pretending to be you. For example,

an attacker could set up accounts on sites like LinkedIn, Twitter, or Facebook

and pretend to be you, the Adam Shostack who wrote this book, or a rich and

deposed prince trying to get their money out of the country.

 Chapter 3 ■ STRIDE 67

c03.indd 07:51:54:AM 01/15/2014 Page 67

Tampering Threats

Tampering is modifying something, typically on disk, on a network, or in

memory. This can include changing data in a spreadsheet (using either a program

such as Excel or another editor), changing a binary or configuration file on disk,

or modifying a more complex data structure, such as a database on disk. On

a network, packets can be added, modified, or removed. It’s sometimes easier

to add packets than to edit them as they fly by, and programs are remarkably

bad about handling extra copies of data securely. More examples of tampering

are in Table 3-3.

Table 3-3: Tampering Threats

THREAT EXAMPLES WHAT THE ATTACKER DOES NOTES

Tampering with a fi le Modifi es a fi le they own and on

which you rely

Modifi es a fi le you own

Modifi es a fi le on a fi le server that

you own

Modifi es a fi le on their fi le server Loads of fun when you

include fi les from remote

domains

Modifi es a fi le on their fi le server Ever notice how much

XML includes remote

schemas?

Modifi es links or redirects

Tampering with memory Modifi es your code Hard to defend against

once the attacker is run-

ning code as the same

user

Modifi es data they’ve supplied to

your API

Pass by value, not by refer-

ence when crossing a trust

boundary

Tampering with a network Redirects the fl ow of data to their

machine

Often stage 1 of

tampering

Modifi es data fl owing over the

network

Even easier and more fun

when the network is wire-

less (WiFi, 3G, et cetera)

Enhances spoofi ng attacks

68 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 68

Tampering with a File

Attackers can modify fi les wherever they have write permission. When your

code has to rely on fi les others can write, there’s a possibility that the fi le was

written maliciously. While the most obvious form of tampering is on a local disk,

there are also plenty of ways to do this when the file is remotely included, like

most of the JavaScript on the Internet. The attacker can breach your security by

breaching someone else’s site. They can also (because of poor privileges, spoofing,

or elevation of privilege) modify files you own. Lastly, they can modify links

or redirects of various sorts. Links are often left out of integrity checks. There’s

a somewhat subtle variant of this when there are caches between things you

control (such as a server) and things you don’t (such as a web browser on the

other side of the Internet). For example, cache poisoning attacks insert data into

web caches through poor security controls at caches (OWASP, 2009).

Tampering with Memory

Attackers can modify your code if they’re running at the same privilege level.

At that point, defense is tricky. If your API handles data by reference (a pat-

tern often chosen for speed), then an attacker can modify it after you perform

security checks.

Tampering with a Network

Network tampering often involves a variety of tricks to bring the data to the

attacker’s machine, where he forwards some data intact and some data modi-

fi ed. However, tricks to bring you the data are not always needed; with radio

interfaces like WiFi and Bluetooth, more and more data flow through the air.

Many network protocols were designed with the assumption you needed spe-

cial hardware to create or read arbitrary packets. The requirement for special

hardware was the defense against tampering (and often spoofi ng). The rise of

software-defined radio (SDR) has silently invalidated the need for special hard-

ware. It is now easy to buy an inexpensive SDR unit that can be programmed

to tamper with wireless protocols.

Repudiation Threats

Repudiation is claiming you didn’t do something, or were not responsible for

what happened. People can repudiate honestly or deceptively. Given the increas-

ing knowledge often needed to understand the complex world, those honestly

repudiating may really be exposing issues in your user experiences or service

architectures. Repudiation threats are a bit different from other security threats,

 Chapter 3 ■ STRIDE 69

c03.indd 07:51:54:AM 01/15/2014 Page 69

as they often appear at the business layer. (That is, above the network layer such

as TCP/IP, above the application layer such as HTTP/HTML, and where the

business logic of buying products would be implemented.)

Repudiation threats are also associated with your logging system and process.

If you don’t have logs, don’t retain logs, or can’t analyze logs, repudiation threats

are hard to dispute. There is also a class of attacks in which attackers will drop

data in the logs to make log analysis tricky. For example, if you display your

logs in HTML and the attacker sends </tr> or </html>, your log display needs

to treat those as data, not code. More repudiation threats are shown in Table 3-4.

Table 3-4: Repudiation Threats

THREAT EXAMPLES WHAT THE ATTACKER DOES NOTES

Repudiating an action Claims to have not clicked Maybe they really did

Claims to have not received Receipt can be strange; does

mail being downloaded by

your phone mean you’ve

read it? Did a network proxy

pre-fetch images? Did some-

one leave a package on the

porch?

Claims to have been a fraud

victim

Uses someone else’s account

Uses someone else’s pay-

ment instrument without

authorization

Attacking the logs Notices you have no logs

Puts attacks in the logs to con-

fuse logs, log-reading code, or a

person reading the logs

Attacking the Logs

Again, if you don’t have logs, don’t retain logs, or can’t analyze logs, repudiation

actions are hard to dispute. So if you aren’t logging, you probably need to start.

If you have no log centralization or analysis capability, you probably need that

as well. If you don’t properly define what you will be logging, an attacker may

be able to break your log analysis system. It can be challenging to work through

the layers of log production and analysis to ensure reliability, but if you don’t,

it’s easy to have attacks slip through the cracks or inconsistencies.

70 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 70

Repudiating an Action

When you’re discussing repudiation, it’s helpful to discuss “someone” rather

than “an attacker.” You want to do this because those who repudiate are often

not actually attackers, but people who have been failed by technology or pro-

cess. Maybe they really didn’t click (or didn’t perceive that they clicked). Maybe

the spam filter really did eat that message. Maybe UPS didn’t deliver, or maybe

UPS delivered by leaving the package on a porch. Maybe someone claims to

have been a victim of fraud when they really were not (or maybe someone else

in a household used their credit card, with or without their knowledge). Good

technological systems that both authenticate and log well can make it easier to

handle repudiation issues.

Information Disclosure Threats

Information disclosure is about allowing people to see information they are not

authorized to see. Some information disclosure threats are shown in Table 3-5.

Table 3-5: Information Disclosure Threats

THREAT

EXAMPLES WHAT THE ATTACKER DOES NOTES

Information dis-

closure against

a process

Extracts secrets from error messages

Reads the error messages from username/passwords to entire database

tables

Extracts machine secrets from error cases Can make defense

against memory

corruption such as

ASLR far less useful

Extracts business/personal secrets from error cases

Information dis-

closure against

data stores

Takes advantage of inappropriate or missing ACLs

Takes advantage of bad database permissions

Finds fi les protected by obscurity

Finds crypto keys on disk (or in memory)

Sees interesting information in fi lenames

Reads fi les as they traverse the network

Gets data from logs or temp fi les

Gets data from swap or other temp storage

Extracts data by obtaining device, changing OS

 Chapter 3 ■ STRIDE 71

c03.indd 07:51:54:AM 01/15/2014 Page 71

THREAT

EXAMPLES WHAT THE ATTACKER DOES NOTES

Information dis-

closure against

a data fl ow

Reads data on the network

Redirects traffi c to enable reading data on the

network

Learns secrets by analyzing traffi c

Learns who’s talking to whom by watching the DNS

Learns who’s talking to whom by social network

info disclosure

Information Disclosure from a Process

Many instances in which a process will disclose information are those that inform

further attacks. A process can do this by leaking memory addresses, extracting

secrets from error messages, or extracting design details from error messages.

Leaking memory addresses can help bypass ASLR and similar defenses. Leaking

secrets might include database connection strings or passwords. Leaking design

details might mean exposing anti-fraud rules like “your account is too new to

order a diamond ring.”

 Information Disclosure from a Data Store

As data stores, well, store data, there’s a profusion of ways they can leak it. The first

set of causes are failures to properly use security mechanisms. Not setting permis-

sions appropriately or hoping that no one will find an obscure file are common

ways in which people fail to use security mechanisms. Cryptographic keys are a

special case whereby information disclosure allows additional attacks. Files read

from a data store over the network are often readable as they traverse the network.

An additional attack, often overlooked, is data in filenames. If you have a

directory named “May 2013 layoffs,” the fi lename itself, “Termination Letter

for Alice.docx,” reveals important information.

There’s also a group of attacks whereby a program emits information

into the operating environment. Logs, temp files, swap, or other places can

contain data. Usually, the OS will protect data in swap, but for things like

crypto keys, you should use OS facilities for preventing those from being

swapped out.

Lastly, there is the class of attacks whereby data is extracted from the device

using an operating system under the attacker’s control. Most commonly (in

2013), these attacks affect USB keys, but they also apply to CDs, backup tapes,

hard drives, or stolen laptops or servers. Hard drives are often decommissioned

without full data deletion. (You can address the need to delete data from hard

72 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 72

drives by buying a hard drive chipper or smashing machine, and since such

machines are awesome, why on earth wouldn’t you?)

Information Disclosure from a Data Flow

Data flows are particularly susceptible to information disclosure attacks when

information is flowing over a network. However, data flows on a single machine

can still be attacked, particularly when the machine is shared by cloud co-tenants

or many mutually distrustful users of a compute server. Beyond the simple

reading of data on the network, attackers might redirect traffi c to themselves

(often by spoofing some network control protocol) so they can see it when they’re

not on the normal path. It’s also possible to obtain information even when the

network traffi c itself is encrypted. There are a variety of ways to learn secrets

about who’s talking to whom, including watching DNS, friend activity on a site

such as LinkedIn, or other forms of social network analysis.

N O T E Security mavens may be wondering if side channel attacks and covert channels

are going to be mentioned. These attacks can be fun to work on (and side channels are

covered a bit in Chapter 16, “Threats to Cryptosystems”), but they are not relevant until

you’ve mitigated the issues covered here.

Denial-of-Service Threats

Denial-of-service attacks absorb a resource that is needed to provide service.

Examples are described in Table 3-6.

Table 3-6: Denial-of-Service Threats

THREAT EXAMPLES

WHAT THE ATTACKER

DOES NOTES

Denial of service against a

process

Absorbs memory (RAM or

disk)

Absorbs CPU

Uses process as an amplifi er

Denial of service against a

data store

Fills data store up

Makes enough requests to

slow down the system

Denial of service against a

data fl ow

Consumes network

resources

 Chapter 3 ■ STRIDE 73

c03.indd 07:51:54:AM 01/15/2014 Page 73

Denial-of-service attacks can be split into those that work while the attacker

is attacking (say, filling up bandwidth) and those that persist. Persistent attacks

can remain in effect until a reboot (for example, while(1){fork();}), or even

past a reboot (for example, filling up a disk). Denial-of-service attacks can also

be divided into amplified and unamplified. Amplified attacks are those whereby

small attacker effort results in a large impact. An example would take advantage

of the old unix chargen service, whose purpose was to generate a semi-random

character scheme for testing. An attacker could spoof a single packet from the

chargen port on machine A to the chargen port on machine B. The hilarity

continues until someone pulls a network cable.

Elevation of Privilege Threats

Elevation of privilege is allowing someone to do something they’re not autho-

rized to do—for example, allowing a normal user to execute code as admin, or

allowing a remote person without any privileges to run code. Two important

ways to elevate privileges involve corrupting a process and getting past autho-

rization checks. Examples are shown in Table 3-7.

Table 3-7: Elevation of Privilege Threats

THREAT EXAMPLES

WHAT THE ATTACKER

DOES NOTES

Elevation of privilege against

a process by corrupting the

process

Send inputs that the code

doesn’t handle properly

These errors are very com-

mon, and are usually high

impact.

Gains access to read or write

memory inappropriately

Writing memory is (hope-

fully obviously) bad, but

reading memory can enable

further attacks.

Elevation through missed

authorization checks

Elevation through buggy

authorization checks

Centralizing such checks

makes bugs easier to

manage

Elevation through data

tampering

Modifi es bits on disk to do

things other than what the

authorized user intends

74 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 74

Elevate Privileges by Corrupting a Process

Corrupting a process involves things like smashing the stack, exploiting data

on the heap, and a whole variety of exploitation techniques. The impact of

these techniques is that the attacker gains influence or control over a program’s

control flow. It’s important to understand that these exploits are not limited to

the attack surface. The first code that attacker data can reach is, of course, an

important target. Generally, that code can only validate data against a limited

subset of purposes. It’s important to trace the data flows further to see where else

elevation of privilege can take place. There’s a somewhat unusual case whereby

a program relies on and executes things from shared memory, which is a trivial

path for elevation if everything with permissions to that shared memory is not

running at the same privilege level.

Elevate Privileges through Authorization Failures

There is also a set of ways to elevate privileges through authorization failures.

The simplest failure is to not check authorization on every path. More complex

for an attacker is taking advantage of buggy authorization checks. Lastly, if a

program relies on other programs, configuration files, or datasets being trust-

worthy, it’s important to ensure that permissions are set so that each of those

dependencies is properly secured.

Extended Example: STRIDE Threats against Acme-DB

This extended example discusses how STRIDE threats could manifest against

the Acme/SQL database described in Chapter 1, “Dive In and Threat Model!”

and 2, “Strategies for Threat Modeling,” and shown in Figure 2-1. You’ll fi rst look

at these threats by STRIDE category, and then examine the same set according

to who can address them.

Spoofi ng

 ■ A web client could attempt to log in with random credentials or stolen

credentials, as could a SQL client.

 ■ If you assume that the SQL client is the one you wrote and allow it to

make security decisions, then a spoofed (or tampered with) client could

bypass security checks.

 ■ The web client could connect to a false (spoofed) front end, and end up

disclosing credentials.

 ■ A program could pretend to be the database or log analysis program, and

try to read data from the various data stores.

 Chapter 3 ■ STRIDE 75

c03.indd 07:51:54:AM 01/15/2014 Page 75

Tampering

 ■ Someone could also tamper with the data they’re sending, or with any of

the programs or data files.

 ■ Someone could tamper with the web or SQL clients. (This is nominally

out of scope, as you shouldn’t be trusting external entities anyway.)

N O T E These threats, once you consider them, can easily be addressed with operating

system permissions. More challenging is what can alter what data within the database.

Operating system permissions will only help a little there; the database will need to

implement an access control system of some sort.

Repudiation

 ■ The customers using either SQL or web clients could claim not to have

done things. These threats may already be mitigated by the presence of

logs and log analysis. So why bother with these threats? They remind you

that you need to configure logging to be on, and that you need to log the

“right things,” which probably include successes and failures of authen-

tication attempts, access attempts, and in particular, the server needs to

track attempts by clients to access or change logs.

Information Disclosure

 ■ The most obvious information disclosure issues occur when confidential

information in the database is exposed to the wrong client. This informa-

tion may be either data (the contents of the salaries table) or metadata (the

existence of the termination plans table). The information disclosure may

be accidental (failure to set an ACL) or malicious (eavesdropping on the

network). Information disclosure may also occur by the front end(s)—

for example, an error message like “Can’t connect to database foo with

password bar!”

 ■ The database files (partitions, SAN attached storage) need to be protected

by the operating system and by ACLs for data within the files.

 ■ Logs often store confidential information, and therefore need to be protected.

Denial of Service

 ■ The front ends could be overwhelmed by random or crafted requests,

especially if there are anonymous (or free) web accounts that can craft

requests designed to be slow to execute.

 ■ The network connections could be overwhelmed with data.

 ■ The database or logs could be filled up.

76 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 76

 ■ If the network between the main processes, or the processes and databases,

is shared, it may become congested.

Elevation of Privilege

 ■ Clients, either web or SQL, could attempt to run queries they’re not autho-

rized to run.

 ■ If the client is enforcing security, then anyone who tampers with their

client or its network stream will be able to run queries of their choice.

 ■ If the database is capable of running arbitrary commands, then that capa-

bility is available to the clients.

 ■ The log analysis program (or something pretending to be the log analysis

program) may be able to run arbitrary commands or queries.

N O T E The log analysis program may be thought of as trusted, but it’s drawn outside

the trust boundaries. So either the thinking or the diagram (in Figure 2-1) is incorrect.

 ■ If the DB cluster is connected to a corporate directory service and no action

is taken to restrict who can log in to the database servers (or file servers),

then anyone in the corporate directory, including perhaps employees,

contractors, build labs, and partners can make changes on those systems.

N O T E The preceding lists in this extended example are intended to be illustrative;

other threats may exist.

It is also possible to consider these threats according to the person or team

that must address them, divided between Acme and its customers. As shown

in Table 3-8, this illustrates the natural overlap of threat and mitigation, fore-

shadowing the Part III, “Managing and Addressing Threats” on how to mitigate

threats. It also starts to enumerate things that are not requirements for Acme/

SQL. These non-requirements should be documented and provided to customers,

as covered in Chapter 12. In this table, you’re seeing more and more actionable

threats. As a developer or a systems administrator, you can start to see how to

handle these sorts of issues. It’s tempting to start to address threats in the table

itself, and a natural extension to the table would be a set of ways for each actor

to address the threats that apply.

 Chapter 3 ■ STRIDE 77

c03.indd 07:51:54:AM 01/15/2014 Page 77

Table 3-8: Addressing Threats According to Who Handles Them

THREAT INSTANCES THAT ACME MUST HANDLE

INSTANCES THAT

IT DEPARTMENTS

MUST HANDLE

Spoofi ng Web/SQL/other client brute forcing logins

DBA (human)

DB users

Web client

SQL client

DBA (human)

DB users

Tampering Data

Management

Logs

Front end(s)

Database

DB admin

Repudiation Logs (Log analysis must be protected.)

Certain actions from web and SQL clients will need

careful logging.

Certain actions from DBAs will need careful logging.

Logs (Log analysis

must be protected.)

If DBAs are not fully

trusted, a system in

another privilege

domain to log all

commands might

be required.

Information

disclosure

Data, management, and logs must be protected.

Front ends must implement access control.

Only the front ends should be able to access the data.

ACLs and security

groups must be

managed.

Backups must be

protected.

Denial of

service

Front ends must be designed to minimize DoS risks. The system must be

deployed with suf-

fi cient resources.

Continues

78 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 78

THREAT INSTANCES THAT ACME MUST HANDLE

INSTANCES THAT

IT DEPARTMENTS

MUST HANDLE

Elevation of

privilege

Trusting client

The DB should support prepared statements to make

injection harder.

No “run this command” tools should be in the default

install.

No default way to run commands on the server, and

calls like exec()and system() must be permis-

sioned and confi gurable if they exist.

Inappropriately

trusting clients that

are written locally

Confi gure the DB

appropriately.

STRIDE Variants

STRIDE can be a very useful mnemonic when looking for threats, but it’s not

perfect. In this section, you’ll learn about variants of STRIDE that may help

address some of its weaknesses.

STRIDE-per-Element

STRIDE-per-element makes STRIDE more prescriptive by observing that certain

threats are more prevalent with certain elements of a diagram. For example, a

data store is unlikely to spoof another data store (although running code can

be confused as to which data store it’s accessing.) By focusing on a set of threats

against each element, this approach makes it easier to find threats. For example,

Microsoft uses Table 3-9 as a core part of its Security Development Lifecycle

threat modeling training.

Table 3-9: STRIDE-per-Element

S T R I D E

External Entity x x

Process x x x x x x

Data Flow x x x

Data Store x ? x x

Table 3-8 (continued)

 Chapter 3 ■ STRIDE 79

c03.indd 07:51:54:AM 01/15/2014 Page 79

Applying this chart, you can focus threat analysis on how an attacker might

tamper with, read data from, or prevent access to a data flow. For example, if data

is flowing over a network such as Ethernet, it’s trivial for someone attached to

that same Ethernet to read all the content, modify it, or send a flood of packets

to cause a TCP timeout. You might argue that you have some form of network

segmentation, and that may mitigate the threats suffi ciently for you. The ques-

tion mark under repudiation indicates that logging data stores are involved in

addressing repudiation, and sometimes logs will come under special attack to

allow repudiation attacks.

The threat is to the element listed in Table 3-9. Each element is the victim,

not the perpetrator. Therefore, if you’re tampering with a data store, the threat

is to the data store and the data within. If you’re spoofing in a way that affects

a process, then the process is the victim. So, spoofing by tampering with the

network is really a spoof of the endpoint, regardless of the technical details.

In other words, the other endpoint (or endpoints) are confused about what’s

at the other end of the connection. The chart focuses on spoofing of a process,

not spoofing of the data flow. Of course, if you happen to find spoofing when

looking at the data flow, obviously you should record the threat so you can

address it, not worry about what sort of threat it is. STRIDE-per-element has

the advantage of being prescriptive, helping you identify what to look for where

without being a checklist of the form “web component: XSS, XSRF...” In skilled

hands, it can be used to find new types of weaknesses in components. In less

skilled hands, it can still find many common issues.

STRIDE-per-element does have two weaknesses. First, similar issues tend to

crop up repeatedly in a given threat model; second, the chart may not represent

your issues. In fact, Table 3-9 is somewhat specifi c to Microsoft. The easiest

place to see this is “information disclosure by external entity,” which is a good

description of some privacy issues. (It is by no means a complete description

of privacy.) However, the table doesn’t indicate that this could be a problem.

That’s because Microsoft has a separate set of processes for analyzing privacy

problems. Those privacy processes are outside the security threat modeling

space. Therefore, if you’re going to adopt this approach, it’s worth analyzing

whether the table covers the set of issues you care about, and if it doesn’t, create

a version that suits your scenario. Another place you might see the specifi city

is that many people want to discuss spoofi ng of data fl ows. Should that be part

of STRIDE-per-element? The spoofi ng action is a spoofi ng of the endpoint, but

that description may help some people to look for those threats. Also note that

the more “x” marks you add, the closer you come to “consider STRIDE for each

element of the diagram.” The editors ask if that’s a good or bad thing, and it’s

a fi ne question. If you want to be comprehensive, this is helpful; if you want to

focus on the most likely issues, however, it will likely be a distraction.

So what are the exit criteria for STRIDE-per-element? When you have a threat

per checkbox in the STRIDE-per-element table, you are doing reasonably well.

80 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 80

If you circle around and consider threats against your mitigations (or ways to

bypass them) you’ll be doing pretty well.

STRIDE-per-Interaction

STRIDE-per-element is a simplified approach to identifying threats, designed

to be easily understood by the beginner. However, in reality, threats don’t show

up in a vacuum. They show up in the interactions of the system. STRIDE-per-

interaction is an approach to threat enumeration that considers tuples of (origin,

destination, interaction) and enumerates threats against them. Initially, another

goal of this approach was to reduce the number of things that a modeler would

have to consider, but that didn’t work out as planned. STRIDE-per-interaction

leads to the same number of threats as STRIDE-per-element, but the threats

may be easier to understand with this approach. This approach was developed

by Larry Osterman and Douglas MacIver, both of Microsoft. The STRIDE-

per-interaction approach is shown in Tables 3-10 and 3-11. Both reference two

processes, Contoso.exe and Fabrikam.dll. Table 3-10 shows which threats apply

to each interaction, and Table 3-11 shows an example of STRIDE per interaction

applied to Figure 3-1. The relationships and trust boundaries used for the named

elements in both tables are shown in Figure 3-1.

Browser database

widgetsCreate(widgets)

Write

Results

Commands

Responses

Fabrikam.dll

Contoso.exe

Figure 3-1: The system referenced in Table 3-10

In Table 3-10, the table columns are as follows:

 ■ A number for referencing a line (For example, “Looking at line 2, let’s

look for spoofi ng and information disclosure threats.”)

 Chapter 3 ■ STRIDE 81

c03.indd 07:51:54:AM 01/15/2014 Page 81

 ■ The main element you’re looking at

 ■ The interactions that element has

 ■ The STRIDE threats applicable to the interaction

Table 3-10: STRIDE-per-Interaction: Threat Applicability

ELEMENT INTERACTION S T R I D E

1 Process

(Contoso)

Process has outbound data

fl ow to data store.

x x

2 Process sends output to

another process.

x x x x x

3 Process sends output to

external interactor (code).

x x x x

4 Process sends output to

external interactor (human).

x

5 Process has inbound data

fl ow from data store.

x x x x

6 Process has inbound data

fl ow from a process.

x x x x

7 Process has inbound

data fl ow from external

interactor.

x x x

8 Data Flow

(com-

mands/

responses)

Crosses machine boundary x x x

9 Data Store

(database)

Process has outbound data

fl ow to data store.

x x x x

10 Process has inbound data

fl ow from data store.

x x x

11 External

Interactor

(browser)

External interactor passes

input to process.

x x x

12 External interactor gets

input from process.

x

c03.indd 07:51:54:AM 01/15/2014 Page 82

T
a

b
le

 3
-1

1
: S

T
R

ID
E

-p
e

r-
In

te
ra

ct
io

n
 (

E
xa

m
p

le
)

E
L

E
M

E
N

T
IN

T
E

R
A

C
T

IO
N

S
T

R
I

D
E

1
P

ro
ce

ss

(C
o

n
to

so
)

P
ro

ce
ss

 h
as

 o
u

t-

b
o

u
n

d
 d

at
a

fl
o

w

to
 d

at
a

st
o

re
.

“D
at

ab
as

e
”

is
 s

p
o

o
fe

d
,

an
d

 C
o

n
to

so
 w

ri
te

s
to

 t
h

e

w
ro

n
g

 p
la

ce
.

P
2

: C
o

n
to

so

w
ri

te
s

in
fo

rm
a-

ti
o

n
 in

 “d
at

a-

b
as

e
 w

h
ic

h

sh
o

u
ld

 n
o

t
b

e

in
 d

at
ab

as
e

”

(e
.g

.,

p
as

sw
o

rd
s)

.

2
P

ro
ce

ss
 s

e
n

d
s

o
u

tp
u

t
to

 o
th

e
r

p
ro

ce
ss

.

Fa
b

ri
ka

m
 is

 s
p

o
o

fe
d

, a
n

d

C
o

n
to

so
 w

ri
te

s
to

 t
h

e

w
ro

n
g

 p
la

ce
.

Fa
b

ri
ka

m

cl
ai

m
s

n
o

t
to

h
av

e
 b

e
e

n

ca
lle

d
 b

y

C
o

n
to

so
.

P
2

: F
ab

ri
ka

m
 is

n
o

t
au

th
o

ri
ze

d

to
 r

e
ce

iv
e

 d
at

a.

N
o

n
e

 u
n

le
ss

ca
lls

 a
re

sy
n

ch
ro

n
o

u
s

Fa
b

ri
ka

m

ca
n

 im
p

e
r-

so
n

at
e

C
o

n
to

so

an
d

 u
se

 it
s

p
ri

vi
le

g
e

s.

3
P

ro
ce

ss
 s

e
n

d
s

o
u

tp
u

t
to

 e
xt

e
r-

n
al

 in
te

ra
ct

o
r

(w
it

h
 t

h
e

 in
te

ra
c-

to
r

b
e

in
g

 c
o

d
e)

.

C
o

n
to

so
 is

 c
o

n
fu

se
d

ab
o

u
t

th
e

 id
e

n
ti

ty
 o

f
th

e

b
ro

w
se

r.

B
ro

w
se

r

d
is

cl
ai

m
s

an
d

 d
o

e
sn

’t

ac
kn

o
w

le
d

g
e

th
e

 o
u

tp
u

t.

P
2

: B
ro

w
se

r

g
e

ts
 d

at
a

it
’s

n
o

t
au

th
o

ri
ze

d

to
 g

e
t.

N
o

n
e

 u
n

le
ss

ca
lls

 a
re

sy
n

ch
ro

n
o

u
s

4
P

ro
ce

ss
 s

e
n

d
s

o
u

tp
u

t
to

 e
xt

e
r-

n
al

 in
te

ra
ct

o
r

(f
o

r
a

h
u

m
an

in
te

ra
ct

o
r)

.

H
u

m
an

 d
is

-

cl
ai

m
s

se
e

in
g

th
e

 o
u

tp
u

t.

c03.indd 07:51:54:AM 01/15/2014 Page 83

E
L

E
M

E
N

T
IN

T
E

R
A

C
T

IO
N

S
T

R
I

D
E

5
P

ro
ce

ss
 h

as

in
b

o
u

n
d

 d
at

a

fl
o

w
 f

ro
m

 d
at

a

st
o

re
.

“D
at

ab
as

e
”

is
 s

p
o

o
fe

d
, a

n
d

C
o

n
to

so
 r

ea
d

s
th

e
 w

ro
n

g

d
at

a.

C
o

n
to

so

st
at

e
 is

 c
o

r-

ru
p

te
d

 b
y

d
at

a
re

ad

fr
o

m
 t

h
e

d
at

a
st

o
re

.

P
ro

ce
ss

 s
ta

te

is
 c

o
rr

u
p

te
d

b
y

th
e

 d
at

a

re
tr

ie
ve

d

fr
o

m
 t

h
e

d
at

a
st

o
re

.

P
ro

ce
ss

in
te

rn
al

st
at

e
 is

co
rr

u
p

te
d

b
as

e
d

 o
n

d
at

a
re

ad

fr
o

m
 t

h
e

 fi
le

,

le
ad

in
g

 t
o

co
d

e
 e

xe
cu

-

ti
o

n
 .

6
P

ro
ce

ss
 h

as

in
b

o
u

n
d

 d
at

a

fl
o

w
 f

ro
m

 a

p
ro

ce
ss

.

C
o

n
to

so
 b

e
lie

ve
s

it
’s

 g
e

t-

ti
n

g
 d

at
a

fr
o

m
 F

ab
ri

ka
m

.

C
o

n
to

so

d
e

n
ie

s
g

e
t-

ti
n

g
 d

at
a

fr
o

m

Fa
b

ri
ka

m
.

C
o

n
to

so

cr
as

h
e

s/

st
o

p
s

d
u

e

to
 F

ab
ri

ka
m

in
te

ra
ct

io
n

.

Fa
b

ri
ka

m

p
as

se
s

d
at

a

o
r

ar
g

s
th

at

al
lo

w
 it

 t
o

ch
an

g
e

 fl
o

w

o
f

e
xe

cu
ti

o
n

o
f

C
o

n
to

so
.

7
P

ro
ce

ss
 h

as

in
b

o
u

n
d

 d
at

a

fl
o

w
 f

ro
m

 e
xt

e
r-

n
al

 in
te

ra
ct

o
r.

C
o

n
to

so
 b

e
lie

ve
s

it
’s

g
e

tt
in

g
 d

at
a

fr
o

m
 t

h
e

b
ro

w
se

r,
w

h
e

n
 in

 f
ac

t
it

’s
 a

ra
n

d
o

m
 a

tt
ac

ke
r.

C
o

n
to

so

cr
as

h
e

s/

st
o

p
s

d
u

e

to
 b

ro
w

se
r

in
te

ra
ct

io
n

.

B
ro

w
se

r

p
as

se
s

d
at

a

o
r

ar
g

s
th

at

al
lo

w
 it

 t
o

ch
an

g
e

 fl
o

w

o
f

e
xe

cu
ti

o
n

o
f

C
o

n
to

so
.

C
o
n
ti
n
u
es

T
a

b
le

 3
-1

1

(c
o

n
ti

n
u

e
d

)

c03.indd 07:51:54:AM 01/15/2014 Page 84

E
L

E
M

E
N

T
IN

T
E

R
A

C
T

IO
N

S
T

R
I

D
E

8
D

at
a

Fl
o

w

(c
o

m
m

an
d

s/

re
sp

o
n

se
s)

C
ro

ss
e

s
m

ac
h

in
e

b
o

u
n

d
ar

y

D
at

a
fl

o
w

is
 m

o
d

ifi
e

d

b
y

M
IT

M

at
ta

ck
.

T
h

e
 c

o
n

te
n

ts
 o

f

th
e

 d
at

a
fl

o
w

ar
e

 s
n

iff
e

d
 o

n

th
e

 w
ir

e.

T
h

e
 d

at
a

fl
o

w
 is

 in
te

r-

ru
p

te
d

 b
y

an
 e

xt
e

rn
al

e
n

ti
ty

 (e
.g

.,

m
e

ss
in

g

w
it

h
 T

C
P

se
q

u
e

n
ce

n
u

m
b

e
rs

.)

9
D

at
a

St
o

re

(d
at

ab
as

e)

P
ro

ce
ss

 h
as

 o
u

t-

b
o

u
n

d
 d

at
a

fl
o

w

to
 d

at
a

st
o

re
.

D
at

ab
as

e
 is

co
rr

u
p

te
d

.

C
o

n
to

so

cl
ai

m
s

n
o

t
to

h
av

e
 w

ri
tt

e
n

to
 d

at
ab

as
e.

D
at

ab
as

e

re
ve

al
s

in
fo

rm
at

io
n

.

D
at

ab
as

e

ca
n

n
o

t
b

e

w
ri

tt
e

n
 t

o
.

10
P

ro
ce

ss
 h

as

in
b

o
u

n
d

 d
at

a

fl
o

w
 f

ro
m

 d
at

a

st
o

re
.

C
o

n
to

so

cl
ai

m
s

n
o

t
to

h
av

e
re

ad
 fr

o
m

d
at

ab
as

e.

D
at

ab
as

e

d
is

cl
o

se
s

in
fo

rm
at

io
n

.

D
at

ab
as

e

ca
n

n
o

t
b

e

re
ad

 f
ro

m
.

11
E

xt
e

rn
al

In
te

ra
ct

o
r

(b
ro

w
se

r)

E
xt

e
rn

al
 in

te
ra

c-

to
r

p
as

se
s

in
p

u
t

to
 p

ro
ce

ss
.

C
o

n
to

so
 is

 c
o

n
fu

se
d

ab
o

u
t

th
e

 id
e

n
ti

ty
 o

f
th

e

b
ro

w
se

r.

C
o

n
to

so

cl
ai

m
s

n
o

t
to

h
av

e
 r

e
ce

iv
e

d

th
e

 d
at

a.

P
2

: p
ro

ce
ss

 n
o

t

au
th

o
ri

ze
d

 t
o

re
ce

iv
e

 t
h

e
 d

at
a

(W
e

 c
an

’t
 s

to
p

it
.)

12
E

xt
e

rn
al

 in
te

ra
c-

to
r

g
e

ts
 in

p
u

t

fr
o

m
 p

ro
ce

ss
.

B
ro

w
se

r
is

 c
o

n
fu

se
d

 a
b

o
u

t

th
e

 id
e

n
ti

ty
 o

f
C

o
n

to
so

.

C
o

n
to

so

cl
ai

m
s

n
o

t
to

h
av

e
 s

e
n

t
th

e

d
at

a

(N
o

t
o

u
r

p
ro

b
le

m
.)

T
a

b
le

 3
-1

1

(c
o
n
ti
n
u
e
d

)

 Chapter 3 ■ STRIDE 85

c03.indd 07:51:54:AM 01/15/2014 Page 85

When you have a threat per checkbox in the STRIDE-per-interaction table,

you are doing reasonably well. If you circle through and consider threats against

your mitigations (or ways to bypass them) you’ll be doing pretty well.

STRIDE-per-interaction is too complex to use without a reference chart handy.

(In contrast, STRIDE is an easy mnemonic, and STRIDE-per-element is simple

enough that the chart can be memorized or printed on a wallet card.)

DESIST

DESIST is a variant of STRIDE created by Gunnar Peterson. DESIST stands for

Dispute, Elevation of privilege, Spoofing, Information disclosure, Service denial,

and Tampering. (Dispute replaces repudiation with a less fancy word, and

Service denial replaces Denial of Service to make the acronym work.) Starting

from scratch, it might make sense to use DESIST over STRIDE, but after more

than a decade of STRIDE, it would be expensive to displace at Microsoft. (CEO

of Scorpion Software, Dana Epp, has pointed out that acronyms with repeated

letters can be challenging, a point in STRIDE’s favor.) Therefore, STRIDE-per-

element, rather than DESIST-per-element, exists as the norm. Either way, it’s

always useful to have mnemonics for helping people look for threats.

Exit Criteria

There are three ways to judge whether you’re done fi nding threats with STRIDE.

The easiest way is to see if you have a threat of each type in STRIDE. Slightly

harder is ensuring you have one threat per element of the diagram. However,

both of these criterion will be reached before you’ve found all threats. For more

comprehensiveness, use STRIDE-per-element, and ensure you have one threat

per check.

Not having met these criteria will tell you that you’re not done, but having

met them is not a guarantee of completeness.

Summary

STRIDE is a useful mnemonic for fi nding threats against all sorts of techno-

logical systems. STRIDE is more useful with a repertoire of more detailed

threats to draw on. The tables of threats can provide that for those who are

new to security, or act as reference material for security experts (a function

also served by Appendix B, “Threat Trees”). There are variants of STRIDE that

attempt to add focus and attention. STRIDE-per-element is very useful for

86 Part II ■ Finding Threats

c03.indd 07:51:54:AM 01/15/2014 Page 86

this purpose, and can be customized to your needs. STRIDE-per-interaction

provides more focus, but requires a crib sheet (or perhaps software) to use. If

threat modeling experts were to start over, perhaps DESIST would help us make

better ... progress in fi nding threats.

87

c04.indd 11:38:53:AM 01/17/2014 Page 87

As Bruce Schneier wrote in his introduction to the subject, “Attack trees provide

a formal, methodical way of describing the security of systems, based on vary-

ing attacks. Basically, you represent attacks against a system in a tree structure,

with the goal as the root node and different ways of achieving that goal as leaf

nodes” (Schneier, 1999).

In this chapter you’ll learn about the attack tree building block as an alterna-

tive to STRIDE. You can use attack trees as a way to fi nd threats, as a way to

organize threats found with other building blocks, or both. You’ll start with

how to use an attack tree that’s provided to you, and from there learn various

ways you can create trees. You’ll also examine several example and real attack

trees and see how they fi t into fi nding threats. The chapter closes with some

additional perspective on attack trees.

Working with Attack Trees

Attack trees work well as a building block for threat enumeration in the four-

step framework. They have been presented as a full approach to threat modeling

(Salter, 1998), but the threat modeling community has learned a lot since then.

There are three ways you can use attack trees to enumerate threats: You can

use an attack tree someone else created to help you fi nd threats. You can create

C H A P T E R

4

Attack Trees

88 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 88

a tree to help you think through threats for a project you’re working on. Or you

can create trees with the intent that others will use them. Creating new trees

for general use is challenging, even for security experts.

Using Attack Trees to Find Threats

If you have an attack tree that is relevant to the system you’re building, you

can use it to fi nd threats. Once you’ve modeled your system with a DFD or

other diagram, you use an attack tree to analyze it. The attack elicitation

task is to iterate over each node in the tree and consider if that issue (or a

variant of that issue) impacts your system. You might choose to track either

the threats that apply or each interaction. If your system or trees are complex,

or if process documentation is important, each interaction may be help-

ful, but otherwise that tracking may be distracting or tedious. You can use

the attack trees in this chapter or in Appendix B “Threat Trees” for this

purpose.

If there’s no tree that applies to your system, you can either create one, or use

a different threat enumeration building block.

Creating New Attack Trees

If there are no attack trees that you can use for your system, you can create a

project-specifi c tree. A project-specifi c tree is a way to organize your thinking

about threats. You may end up with one or more trees, but this section assumes

you’re putting everything in one tree. The same approach enables you to create

trees for a single project or trees for general use.

The basic steps to create an attack tree are as follows:

 1. Decide on a representation.

 2. Create a root node.

 3. Create subnodes.

 4. Consider completeness.

 5. Prune the tree.

 6. Check the presentation.

Decide on a Representation

There are AND trees, where the state of a node depends on all of the nodes

below it being true, and OR trees, where a node is true if any of its subnodes

are true. You need to decide, will your tree be an AND or an OR tree? (Most

will be OR trees.) Your tree can be created or presented graphically or as an

outline. See the section “Representing a Tree” later in this chapter for more on

the various forms of representation.

 Chapter 4 ■ Attack Trees 89

c04.indd 11:38:53:AM 01/17/2014 Page 89

Create a Root Node

To create an attack tree, start with a root node. The root node can be the com-

ponent that prompts the analysis, or an adversary’s goal. Some attack trees use

the problematic state (rather than the goal) as the root. Which you should use

is a matter of preference. If the root node is a component, the subnodes should

be labeled with what can go wrong for the node. If the root node is an attacker

goal, consider ways to achieve that goal. Each alternative way to achieve the

goal should be drawn in as a subnode.

The guidance in “Toward a Secure System Engineering Methodology” (Salter,

1999) is helpful to security experts; however, it doesn’t shed much light on how to

actually generate the trees, comparative advice about what a root node should be

(in other words, whether it’s a goal or a system component and, most important,

when one is better than the other), or how to evaluate trees in a structured fashion

that would be suitable for those who are not security experts. To be prescriptive:

 ■ Create a root node with an attacker goal or high-impact action.

 ■ Use OR trees.

 ■ Draw them into a grid that the eye can track linearly.

Create Subnodes

You can create subnodes by brainstorming, or you can look for a structured way

to fi nd more nodes. The relation between your nodes can be AND or OR, and

you’ll have to make a choice and communicate it to those who are using your

tree. Some possible structures for first-level subnodes include:

 ■ Attacking a system:

 ■ physical access

 ■ subvert software

 ■ subvert a person

 ■ Attacking a system via:

 ■ People

 ■ Process

 ■ Technology

 ■ Attacking a product during:

 ■ Design

 ■ Production

 ■ Distribution

 ■ Usage

 ■ Discard

90 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 90

You can use these as a starting point, and make them more specifi c to your

system. Iterate on the trees, adding subnodes as appropriate.

N O T E Here the term subnode is used to include leaf (end) nodes and nodes with

children, because as you create something you may not always know whether it is a

leaf or whether it has more branches.

Consider Completeness

For this step, you want to determine whether your set of attack trees is complete

enough. For example, if you are using components, you might need to add addi-

tional trees for additional components. You can also look at each node and ask

“is there another way that could happen?” If you’re using attacker motivations,

consider additional attackers or motivations. The lists of attackers in Appendix

C “Attacker Lists” can be used as a basis.

An attack tree can be checked for quality by iterating over the nodes, look-

ing for additional ways to reach the goal. It may be helpful to use STRIDE,

one of the attack libraries in the next chapter, or a literature review to help

you check the quality.

Prune the Tree

In this step, go through each node in the tree and consider whether the action in

each subnode is prevented or duplicative. (An attack that’s worth putting in a tree

will generally only be prevented in the context of a project.) If an attack is prevented,

by some mitigation you can mark those nodes to indicate that they don’t need to

be analyzed. (For example, you can use the test case ID, an “I” for impossible, put a

slash through the node, or shade it gray.) Marking the nodes (rather than deleting

them) helps people see that the attacks were considered. You might choose to test

the assumption that a given node is impossible. See the “Test Process Integration”

section in Chapter 10 “Validating That Threats Are Addressed” for more details.

Check the Presentation

Regardless of graphical form, you should aim to present each tree or subtree

in no more than a page. If your tree is hard to see on a page, it may be help-

ful to break it into smaller trees. Each top level subnode can be the root of a

new tree, with a “context” tree that shows the overall relations. You may also

be able to adjust presentation details such as font size, within the constraints

of usability.

The node labels should be of the same form, focusing on active terms. Finally,

draw the tree on a grid to make it easy to track. Ideally, the equivalent level

subnodes will show on a single line. That becomes more challenging as you go

deeper into a tree.

 Chapter 4 ■ Attack Trees 91

c04.indd 11:38:53:AM 01/17/2014 Page 91

Representing a Tree

Trees can be represented in two ways: as a free-form (human-viewable) model

without any technical structure, or as a structured representation with variable

types and/or metadata to facilitate programmatic analysis.

Human-Viewable Representations

Attack trees can be drawn graphically or shown in outline form. Graphical

representations are a bit more work to create but have more potential to focus

attention. In either case, if your nodes are not all related by the same logic

(AND/OR), you’ll need to decide on a way to represent the relationship and

communicate that decision. If your tree is being shown graphically, you’ll also

want to decide if you use a distinct shape for a terminal node: The labels in a

node should be carefully chosen to be rich in information, especially if you’re

using a graphical tree. Words such as “attack” or “via” can distract from the key

information. Choose “modify fi le” over “attack via modifying fi le.” Words such

as “weak” are more helpful when other nodes say “no.” So “weak cryptography”

is a good contrast to “no cryptography.”

As always, care should be taken to ensure that the graphics are actually

information-rich and communicative. For instance, consider the three repre-

sentations of a tree shown in Figure 4–1.

Asset/Revenue
Overstatement

Asset/Revenue
Overstatement

Asset/Revenue
Overstatement

Timing
Differences

Fictitious
Revenue

Timing
Differences

Fictitious
Revenue

Timing
Differences

Fictitious
Revenue

Figure 4–1: Three representations of a tree

The left tree shows an example of a real tree that simply uses boxes. This rep-

resentation does not clearly distinguish hierarchy, making it hard to tell which

nodes are at the same level of the tree. Compare that to the center tree, which

uses a tree to show the equivalence of the leaf nodes. The rightmost tree adds

the “OR gate” symbol from circuit design to show that any of the leaf nodes

lead to the parent condition.

Additionally, tree layout should make considered use of space. In the very

small tree in Figure 4–2, note the pleasant grid that helps your eye follow the

layout. In contrast, consider the layout of Figure 4–3, which feels jumbled. To

focus your attention on the layout, both are shown too small to read.

92 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 92

Conflicts of
Interest Bribery

Corruption Asset
Misappropriation

Fraudulent
Statements

Purchases
Schemes

Sales
Schemes

Other Other

Cash

Fraudulent
Disbursements

Inventory
and all

Other Assets

Larceny Skimming Misuse Larceny

Bid
Rigging

Invoice
Kickbacks

Illegal
Gratuities

Economic
Extortion Financial Non-

Financial

Employment
Credentials

Asset/Revenue
Overstatements

Asset/Revenue
Understatements

Timing
Differences

Fictitious
Revenues

Concealed
Liabilities

Unconcealed
Unconcealed

Larceny

Billing
Schemes

Shell
Company

Non-Accomplice
Vendor

Personal
Purchases

Workers
Compensation

Falsified
Wages

Ghost
Employees

Commission
Schemes

Mischaracterized
Expenses

Overstated
Expenses

Fictitious
Expenses

Multiple
Reimbursements

Altered
Payee

Authorized
Maker

Forged
Endorsement

Concealed
Checks

Forged
Maker

Payroll
Schemes

Expense
Reimbursement

Schemes

Check
Tampering

Register
Disbursements

False Voids

False
Refunds

Improper
Disclosures

Improper
Asset

Valuations

Sales Receivables Refunds &
other

Asset Req. &
Transfers

Fake Sales
& Shipping

Purchasing &
Receiving

Write-off
Schemes

Lapping
Schemes

Of Cash
on Hand

From the
Deposit

Other Understated

Unrecorded

Internal
Documents

External
Documents

Figure 4–2: A tree drawn on a grid

Repudiate
message

Weak
signature
system

Replay
attacks

Weak
logging

Spoofing
external
entity

Spoofing
external
entity

Logs weaker than
authentication system

Logging unauthenticated
or weakly authenticated

data

No logs
Logging

insufficient
data

Tampering
threats

against logs

Repudiate
transaction

Repudiation,
external entity

or process

Figure 4–3: A tree drawn without a grid

 Chapter 4 ■ Attack Trees 93

c04.indd 11:38:53:AM 01/17/2014 Page 93

N O T E In Writing Secure Code 2 (Microsoft Press, 2003), Michael Howard and David

LeBlanc suggest the use of dotted lines for unlikely threats, solid lines for likely

threats, and circles to show mitigations, although including mitigations may make

the trees too complex.

Outline representations are easier to create than graphical representations,

but they tend to be less attention-grabbing. Ideally, an outline tree is shown on

a single page, not crossing pages. The question of how to effectively represent

AND/OR is not simple. Some representations leave them out, others include

an indicator either before or after a line. The next three samples are modeled

after the trees in “Election Operations Assessment Threat Trees” later in this

chapter. As you look at them, ask yourself precisely what is needed to achieve

the goal in node 1, “Attack voting equipment.”

 1. Attack voting equipment

 1.1 Gather knowledge

 1.1.1 From insider

 1.1.2 From components

 1.2 Gain insider access

 1.2.1 At voting system vendor

 1.2.2 By illegal insider entry

The preceding excerpt isn’t clear. Should the outline be read as a need to do

each of these steps, or one or the other to achieve the goal of attacking voting

equipment? Contrast that with the next tree, which is somewhat better:

 1. Attack voting equipment

 1.1 Gather knowledge (and)

 1.1.1 From insider (or)

 1.1.2 From components

 1.2 Gain insider access (and)

 1.2.1 At voting system vendor (or)

 1.2.2 By illegal insider entry

This representation is useful at the end nodes: It is clearly 1.1.1 or 1.1.2. But

what does the “and” on line 1.1 refer to? 1.1.1 or 1.1.2? The representation is not

clear. Another possible form is shown next:

94 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 94

 1. Attack voting equipment

 O 1.1 Gather knowledge

 T 1.1.1 From insider

 O 1.1.2 From components

 O 1.2 Gain insider access

 T 1.2.1 At voting system vendor

 T 1.2.2 By illegal insider entry

This is intended to be read as “AND Node: 1: Attack voting equipment, involves

1.1, gather knowledge either from insider or from components AND 1.2, gain

insider access . . .” This can be confusing if read as the children of that node

are to be ORed, rather than being ORed with its sibling nodes. This is much

clearer in the graphical presentation. Also note that the steps are intended to

be sequential. You must gather knowledge, then gain insider access, then attack

the components to pull off the attack.

As you can see from the preceding examples, the question of how to use an out-

line representation of a tree is less simple than you might expect. If you are using

someone else’s tree, be sure you understand their intent. If you are creating a tree, be

sure you are clear on your intent, and clear in your communication of your intent.

Structured Representations

Graphical and outline presentation of trees are useful for humans, but a tree

is also a data structure, and a structured representation of a tree makes it pos-

sible to apply logic to the tree and in turn, the system you’re modeling. Several

software packages enable you to create and manage complex trees. One such

package allows the modeler to add costs to each node, and then assess what

attacks an attacker with a given budget can execute. As your trees become more

complex, such software is more likely to be worthwhile. See Chapter 11 “Threat

Modeling Tools” for a list of tree management software.

Example Attack Tree

The following simple example of an attack tree (and a useful component for other

attack tree activity) models how an attacker might get into a building. The entire

tree is an OR tree; any of the methods listed will achieve the goal. (This tree is

derived from “An Attack Tree for the Border Gateway Protocol” [Convery, 2004].)

 Chapter 4 ■ Attack Trees 95

c04.indd 11:38:53:AM 01/17/2014 Page 95

Goal: Access to the building

 1. Go through a door

 a. When it’s unlocked:

 i. Get lucky.

 ii. Obstruct the latch plate (the “Watergate Classic”).

 iii. Distract the person who locks the door at night.

 b. Drill the lock.

 c. Pick the lock.

 d. Use the key.

 i. Find a key.

 ii. Steal a key.

 iii. Photograph and reproduce the key.

 iv. Social engineer a key from someone.

 1. Borrow the key.

 2. Convince someone to post a photo of their key ring.

 e. Social engineer your way in.

 i. Act like you’re authorized and follow someone in.

 ii. Make friends with an authorized person.

 iii. Carry a box, a cup of coffee in each hand, etc.

 2. Go through a window.

 a. Break a window.

 b. Lift the window.

 3. Go through a wall.

 a. Use a sledgehammer or axe.

 b. Use a truck to go through the wall.

 4. Gain access via other means.

 a. Use a fi re escape.

 b. Use roof access from a helicopter (preferably black) or adjacent

building.

 c. Enter another part of the building, using another tenant’s access.

96 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 96

Real Attack Trees

A variety of real attack trees have been published. These trees may be helpful

to you either directly, because they model systems like the one you’re model-

ing, or as examples of how to build an attack tree. The three attack trees in this

section show how insiders commit fi nancial fraud, how to attack elections, and

threats against SSL.

Each of these trees has the nice property of being available now, either as

an extended example, as a model for you to build from, or (if you’re working

around fraud, elections, or SSL), to use directly in analyzing a system which

matters to you.

The fraud tree is designed for you to use. In contrast, the election trees

were developed to help the team think through their threats and organize the

possibilities.

Fraud Attack Tree

An attack tree from the Association of Certifi ed Fraud Examiners is shown with

their gracious permission in Figure 4–4, and it has a number of good qualities.

First, it’s derived from actual experience in fi nding and exposing fraud. Second,

it has a structure put together by subject matter experts, so it’s not a random

collection of threats. Finally, it has an associated set of mitigations, which are

discussed at great length in Joseph Wells’ Corporate Fraud Handbook (Wiley, 2011).

Election Operations Assessment Threat Trees

The largest publicly accessible set of threat trees was created for the Elections

Assistance Commission by a team centered at the University of Southern Alabama.

There are six high-level trees. They are useful both as an example and for you

to use directly, and there are some process lessons you can learn.

N O T E This model covers a wider scope of attacks than typical for software threat

models, but is scoped like many operational threat models.

 1. Attack voting equipment.

 2. Perform an insider attack.

 3. Subvert the voting process.

 4. Experience technical failure.

 5. Attack audit.

 6. Disrupt operations.

 Chapter 4 ■ Attack Trees 97

c04.indd 11:38:53:AM 01/17/2014 Page 97

Conflicts of
Interest Bribery

Corruption Asset
Misappropriation

Fraudulent
Statements

Purchases
Schemes

Sales
Schemes

Other Other

Cash

Fraudulent
Disbursements

Inventory
and all

Other Assets

Larceny Skimming Misuse Larceny

Bid
Rigging

Invoice
Kickbacks

Illegal
Gratuities

Economic
Extortion Financial Non-

Financial

Employment
Credentials

Asset/Revenue
Overstatements

Asset/Revenue
Understatements

Timing
Differences

Fictitious
Revenues

Concealed
Liabilities

Unconcealed
Unconcealed

Larceny

Billing
Schemes

Shell
Company

Non-Accomplice
Vendor

Personal
Purchases

Workers
Compensation

Falsified
Wages

Ghost
Employees

Commission
Schemes

Mischaracterized
Expenses

Overstated
Expenses

Fictitious
Expenses

Multiple
Reimbursements

Altered
Payee

Authorized
Maker

Forged
Endorsement

Concealed
Checks

Forged
Maker

Payroll
Schemes

Expense
Reimbursement

Schemes

Check
Tampering

Register
Disbursements

False Voids

False
Refunds

Improper
Disclosures

Improper
Asset

Valuations

Sales Receivables Refunds &
other

Asset Req. &
Transfers

Fake Sales
& Shipping

Purchasing &
Receiving

Write-off
Schemes

Lapping
Schemes

Of Cash
on Hand

From the
Deposit

Other Understated

Unrecorded

Internal
Documents

External
Documents

Figure 4–4: The ACFE fraud tree

98 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 98

If your system is vulnerable to threats such as equipment attack, insider attack,

process subversion or disruption, these attack trees may work well to help you

fi nd threats against those systems.

The team created these trees to organize their thinking around what might

go wrong. They described their process as having found a very large set of

issues via literature review, brainstorming, and original research. They then

broke the threats into high-level sets, and had individuals organize them into

trees. An attempt to sort the sets into a tree in a facilitated group process did not

work (Yanisac, 2012). The organization of trees may require a single person or a

very close-knit team; you should be cautious about trying for consensus trees.

Mind Maps

Application security specialist Ivan Ristic (Ristić, 2009) conducted an interesting

experiment using a mind map for what he calls an SSL threat model, as shown

in Figure 4–5.

This is an interesting way to present a tree. There are very few mind-map trees

out there. This tree, like the election trees, shows a set of editorial decisions and those

who use mind maps may fi nd the following perspective on this mind map helpful:

 ■ The distinction between “Protocols/Implementation bugs” and “End

points/Client side/secure implementation” is unclear.

 ■ There’s “End points/Client side/secure implementation” but no “server

side” counterpart to that.

 ■ Under “End points/server side/server confi g” there’s a large subtree.

Compare that to Client side where there’s no subtree at all.

 ■ Some items have an asterisk (*) but it’s unclear what that means. After

discussion with Ivan, it turns out that those “may not apply to everyone.”

 ■ There’s an entire set of traffi c analytic threats that allow you to see where

on a secure site someone is. These issues are made worse by AJAX, but

more important here, how should they fi t into this mind map? Perhaps

under “Protocols/specifi cations/scope limits”?

 ■ It’s hard to fi nd elements of the map, as it draws the eye in various direc-

tions, some of which don’t align with the direction of reading.

Perspective on Attack Trees

Attack trees can be a useful way to convey information about threats. They can

be helpful even to security experts as a way to quickly consider possible attack

types. However, despite their surface appeal, it is very hard to create attack trees.

c04.indd 11:38:53:AM 01/17/2014 Page 99

Trust path validation bugs

NUL-byte Certificates

Leaked CA Certificates

Rogue CA Certificates
Rogue Sysadmin

Server Compromise

Backup Compromise

Attacks against sysadmins

Social engineering

Validation software subversion

Forgery

BriberyFailure to enforce SSL

Expired certificate

Incorrectly configured chain

Invalid hostname

Not valid for all required hostnames

Insufficient assurance (*)

Self-signed Certificates

Unprotected Private Key

Private Key Duplication (*)

Private Key reuse
Lack of trust validation

Validation against other root certs

Lack of revocation checking

Client Authentication

Use of weak protocols

Weak key exchange (*)

Weak ciphers (*)

Non-FIPS approved ciphers (*)

Anonymous key exchange

Invalid Certificates

Configuration errors

Server Configuration
Server-side

End Points

SSL Threat
Model

Protocols
Specifications

Scope limitations

No IP layer protection

Not end-to-end

No certificate information protection

Hostname leakage (via SNI)

Downgrade attack (SSLv2)

Truncation attack (SSLv2)

Bleichenbacher adaptive
chosen-ciphertext attack

Klima-Pokorny-Rosa adaptive
chosen-ciphertext attack

etc..
Implementation bugs

Usability

Prevalence of self-signed certificates

Domain name spoofing
Internationalised domain names

Similar domain names
DNS Cache Poisoning

MITM
LAN

Wireless

Route hijacking (BGP)

Phishing

Corporate interception

XSS

Weaknesses

Users

Attacks

Configuration Weaknesses

Use of unpactched SSL libraries

Mixed SSL/Non-SSL Areas

Insecure cookies

Site
Implementation

User Interface (Usability)

Client Configuration

Secure Implementation
Lack of revocation checking

Client Side

Validation errors

Theft
Site certificate
attacks

Trust (PKI)

Certificate Validation Bugs

CA Certificate Attacks

Figure 4–5: Ristic’s SSL mind map

100 Part II ■ Finding Threats

c04.indd 11:38:53:AM 01/17/2014 Page 100

I hope that we’ll see experimentation and perhaps progress in the quality of

advice. There are also a set of issues that can make trees hard to use, including

completeness, scoping, and meaning:

 ■ Completeness: Without the right set of root nodes, you could miss entire

attack groupings. For example, if your threat model for a safe doesn’t

include “pour liquid nitrogen on the metal, then hit with a hammer,” then

your safe is unlikely to resist this attack. Drawing a tree encourages specifi c

questions, such as “how could I open the safe without the combination?”

It may or may not bring you to the specifi c threat. Because there’s no way

of knowing how many nodes a branch should have, you may never reach

that point. A close variant of the this is how do you know that you’re

done? (Schneier’s attack tree article alludes to these problems.)

 ■ Scoping: It may be unreasonable to consider what happens when the

computer’s main memory is rapidly cooled and removed from the moth-

erboard. If you write commercial software for word processing, this may

seem like an operating system issue. If you create commercial operating

systems, it may seem like a hardware issue. The nature of attack trees means

many of the issues discovered will fall under the category of “there’s no

way for us to fi x that.”

 ■ Meaning: There is no consistency around AND/OR, or around sequence,

which means that understanding a new tree takes longer.

Summary

Attack trees fi t well into the four-step framework for threat modeling. They can

be a useful tool for fi nding threats, or a way to organize thinking about threats

(either for your project or more broadly).

To create a new attack tree to help you organize thinking, you need to decide

on a representation, and then select a root node. With that root node, you can

brainstorm, use STRIDE, or use a literature review to fi nd threats to add to

nodes. As you iterate over the nodes, consider if the tree is complete or overly-

full, aiming to ensure the right threats are in the tree. When you’re happy with

the content of the tree, you should check the presentation so others can use it.

Attack trees can be represented as graphical trees, as outlines, or in software.

You saw a sample tree for breaking into a building, and real trees for fraud,

elections, and SSL. Each can be used as presented, or as an example for you to

consider how to construct trees of your own.

101

c05.indd 07:52:5:AM 01/15/2014 Page 101

Some practitioners have suggested that STRIDE is too high level, and should

be replaced with a more detailed list of what can go wrong. Insofar as STRIDE

being abstract, they’re right. It could well be useful to have a more detailed list

of common problems.

A library of attacks can be a useful tool for fi nding threats against the system

you’re building. There are a number of ways to construct such a library. You

could collect sets of attack tools; either proof-of-concept code or fully developed

(“weaponized”) exploit code can help you understand the attacks. Such a collec-

tion, where no modeling or abstraction has taken place, means that each time

you pick up the library, each participant needs to spend time and energy creat-

ing a model from the attacks. Therefore, a library that provides that abstraction

(and at a more detailed level than STRIDE) could well be useful. In this chapter,

you’ll learn about several higher-level libraries, including how they compare

to checklists and literature reviews, and a bit about the costs and benefi ts of

creating a new one.

Properties of Attack Libraries

As stated earlier, there are a number of ways to construct an attack library, so

you probably won’t be surprised to learn that selecting one involves trade-offs,

 C H A P T E R

5

Attack Libraries

102 Part II ■ Finding Threats

c05.indd 07:52:5:AM 01/15/2014 Page 102

and that different libraries address different goals. The major decisions to be

made, either implicitly or explicitly, are as follows:

 ■ Audience

 ■ Detail versus abstraction

 ■ Scope

Audience refers to whom the library targets. Decisions about audience dra-

matically infl uence the content and even structure of a library. For example,

the “Library of Malware Traffi c Patterns” is designed for authors of intrusion

detection tools and network operators. Such a library doesn’t need to spend

much, if any, time explaining how malware works.

The question of detail versus abstraction is about how many details are included

in each entry of the library. Detail versus abstraction is, in theory, simple. You

pick the level of detail at which your library should deliver, and then make sure

it lands there. Closely related is structure, both within entries and between them.

Some libraries have very little structure, others have a great deal. Structure

between entries helps organize new entries, while structure within an entry

helps promote consistency between entities. However, all that structure comes at

a cost. Elements that are hard to categorize are inevitable, even when the things

being categorized have some form of natural order, such as they all descend

from the same biological origin. Just ask that egg-laying mammal, the duck-

billed platypus. When there is less natural order (so to speak), categorization is

even harder. You can conceptualize this as shown in Figure 5-1.

DetailedAbstract

STRIDE OWASP Top 10 CAPEC Checklist

Figure 5-1: Abstraction versus detail

Scope is also an important characteristic of an attack library. If it isn’t shown

by a network trace, it probably doesn’t fi t the malware traffi c attack library. If

it doesn’t impact the web, it doesn’t make sense to include it in the OWASP

attack libraries.

There’s probably more than one sweet spot for libraries. They are a balance

of listing detailed threats while still being thought provoking. The thought-

provoking nature of a library is important for good threat modeling. A thought-

provoking list means that some of the engineers using it will find interesting and

different threats. When the list of threats reaches a certain level of granularity,

it stops prompting thinking, risks being tedious to apply, and becomes more

and more of a checklist.

 Chapter 5 ■ Attack Libraries 103

c05.indd 07:52:5:AM 01/15/2014 Page 103

 The library should contain something to help remind people using it that

it is not a complete enumeration of what could go wrong. The precise form of

that reminder will depend on the form of the library. For example, in Elevation
of Privilege, it is the ace card(s), giving an extra point for a threat not in the game.

Closely related to attack libraries are checklists and literature reviews, so

before examining the available libraries, the following section looks at checklists

and literature reviews.

Libraries and Checklists

Checklists are tremendously useful tools for preventing certain classes of prob-

lems. If a short list of problems is routinely missed for some reason, then a

checklist can help you ensure they don’t recur. Checklists must be concise and

actionable.

Many security professionals are skeptical, however, of “checklist security”

as a substitute for careful consideration of threats. If you hate the very idea

of checklists, you should read The Checklist Manifesto by Atul Gawande. You

might be surprised by how enjoyable a read it is. But even if you take a big-tent

approach to threat modeling, that doesn’t mean checklists can replace the work

of trained people using their judgment.

A checklist helps people avoid common problems, but the modeling of threats

has already been done when the checklist is created. Therefore, a checklist can

help you avoid whatever set of problems the checklist creators included, but it is

unlikely to help you think about security. In other words, using a checklist won’t

help you fi nd any threats not on the list. It is thus narrower than threat modeling.

Because checklists can still be useful as part of a larger threat modeling

process, you can fi nd a collection of them at the end of Chapter 1, “Dive In and

Threat Model!” and throughout this book as appropriate. The Elevation of Privilege

game, by the way, is somewhat similar to a checklist. Two things distinguish

it. The fi rst is the use of aces to elicit new threats. The second is that by making

threat modeling into a game, players are given social permission to playfully

analyze a system, to step beyond the checklist, and to engage with the security

questions in play. The game implicitly abandons the “stop and check in” value

that a checklist provides.

Libraries and Literature Reviews

A literature review is roughly consulting the library to learn what has happened

in the past. As you saw in Chapter 2, “Strategies for Threat Modeling,” reviewing

threats to systems similar to yours is a helpful starting point in threat modeling.

If you write up the input and output of such a review, you may have the start of

104 Part II ■ Finding Threats

c05.indd 07:52:5:AM 01/15/2014 Page 104

an attack library that you can reuse later. It will be more like an attack library

if you abstract the attacks in some way, but you may defer that to the second or

third time you review the attack list.

Developing a new library requires a very large time investment, which is

probably part of why there are so few of them. However, another reason might

be the lack of prescriptive advice about how to do so. If you want to develop a

literature review into a library, you need to consider how the various attacks

are similar and how they differ. One model you can use for this is a zoo. A zoo

is a grouping—whether of animals, malware, attacks, or other things—that

taxonomists can use to test their ideas for categorization. To track your zoo of

attacks, you can use whatever form suits you. Common choices include a wiki,

or a Word or Excel document. The main criteria are ease of use and a space for

each entry to contain enough concrete detail to allow an analyst to dig in.

As you add items to such a zoo, consider which are similar, and how to

group them. Be aware that all such categorizations have tricky cases, which

sometimes require reorganization to refl ect new ways of thinking about them.

If your categorization technique is intended to be used by multiple independent

people, and you want what’s called “inter-rater consistency,” then you need to

work on a technique to achieve that. One such technique is to create a fl owchart,

with specifi c questions from stage to stage. Such a fl owchart can help produce

consistency.

The work of grouping and regrouping can be a considerable and ongoing

investment. If you’re going to create a new library, consider spending some time

fi rst researching the history and philosophy of taxonomies. Books like Sorting

Things Out: Classifi cation and Its Consequences (Bowker, 2000) can help.

CAPEC

The CAPEC is MITRE’s Common Attack Pattern Enumeration and Classifi cation.

As of this writing, it is a highly structured set of 476 attack patterns, organized

into 15 groups:

 ■ Data Leakage

 ■ Attacks Resource Depletion

 ■ Injection (Injecting Control Plane content through the Data Plane)

 ■ Spoofi ng

 ■ Time and State Attacks

 ■ Abuse of Functionality

 Chapter 5 ■ Attack Libraries 105

c05.indd 07:52:5:AM 01/15/2014 Page 105

 ■ Probabilistic Techniques

 ■ Exploitation of Authentication

 ■ Exploitation of Privilege/Trust

 ■ Data Structure Attacks

 ■ Resource Manipulation

 ■ Network Reconnaissance

 ■ Social Engineering Attacks

 ■ Physical Security Attacks

 ■ Supply Chain Attacks

Each of these groups contains a sub-enumeration, which is available via MITRE

(2013b). Each pattern includes a description of its completeness, with values

ranging from “hook” to “complete.” A complete entry includes the following:

 ■ Typical severity

 ■ A description, including:

 ■ Summary

 ■ Attack execution fl ow

 ■ Prerequisites

 ■ Method(s) of attack

 ■ Examples

 ■ Attacker skills or knowledge required

 ■ Resources required

 ■ Probing techniques

 ■ Indicators/warnings of attack

 ■ Solutions and mitigations

 ■ Attack motivation/consequences

 ■ Vector

 ■ Payload

 ■ Relevant security requirements, principles and guidance

 ■ Technical context

 ■ A variety of bookkeeping fi elds (identifi er, related attack patterns and

vulnerabilities, change history, etc.)

106 Part II ■ Finding Threats

c05.indd 07:52:5:AM 01/15/2014 Page 106

An example CAPEC is shown in Figure 5-2.

You can use this very structured set of information for threat modeling in

a few ways. For instance, you could review a system being built against either

each CAPEC entry or the 15 CAPEC categories. Reviewing against the individual

entries is a large task, however; if a reviewer averages fi ve minutes for each of the

475 entries, that’s a full 40 hours of work. Another way to use this information

is to train people about the breadth of threats. Using this approach, it would be

possible to create a training class, probably taking a day or more.

Exit Criteria

The appropriate exit criteria for using CAPEC depend on the mode in which

you’re using it. If you are performing a category review, then you should have at

least one issue per categories 1–11 (Data Leakage, Resource Depletion, Injection,

Spoofi ng, Time and State, Abuse of Functionality, Probabilistic Techniques,

Exploitation of Authentication, Exploitation of Privilege/Trust, Data Structure

Attacks, and Resource Manipulation) and possibly one for categories 12–15

(Network Reconnaissance, Social Engineering, Physical Security, Supply Chain).

Perspective on CAPEC

Each CAPEC entry includes an assessment of its completion, which is a nice

touch. CAPECs include a variety of sections, and its scope differs from STRIDE

in ways that can be challenging to unravel. (This is neither a criticism of CAPEC,

which existed before this book, nor a suggestion that CAPEC change.)

The impressive size and scope of CAPEC may make it intimidating for people to

jump in. At the same time, that specifi city may make it easier to use for someone

who’s just getting started in security, where specifi city helps to identify attacks.

For those who are more experienced, the specifi city and apparent completeness

of CAPEC may result in less creative thinking. I personally fi nd that CAPEC’s

impressive size and scope make it hard for me to wrap my head around it.

CAPEC is a classifi cation of common attacks, whereas STRIDE is a set of

security properties. This leads to an interesting contrast. CAPEC, as a set of

attacks, is a richer elicitation technique. However, when it comes to addressing

the CAPEC attacks, the resultant techniques are far more complex. The STRIDE

defenses are simply those approaches that preserve the property. However,

looking up defenses is simpler than fi nding the attacks. As such, CAPEC may

have more promise than STRIDE for many populations of threat modelers. It

would be fascinating to see efforts made to improve CAPEC’s usability, perhaps

with cheat sheets, mnemonics, or software tools.

 Chapter 5 ■ Attack Libraries 107

c05.indd 07:52:5:AM 01/15/2014 Page 107

Figure 5-2: A sample CAPEC entry

108 Part II ■ Finding Threats

c05.indd 07:52:5:AM 01/15/2014 Page 108

OWASP Top Ten

OWASP, The Open Web Application Security Project, offers a Top Ten Risks list

each year. In 2013, the list was as follows:

 ■ Injection

 ■ Broken Authentication and Session Management

 ■ Cross-Site Scripting

 ■ Insecure Direct Object References

 ■ Security Misconfi guration

 ■ Sensitive Data Exposure

 ■ Missing Function Level Access Control

 ■ Cross Site Request Forgery

 ■ Components with Known Vulnerabilities

 ■ Invalidated Requests and Forwards [sic]

This is an interesting list from the perspective of the threat modeler. The list

is a good length, and many of these attacks seem like they are well-balanced

in terms of attack detail and its power to provoke thought. A few (cross-site

scripting and cross-site request forgery) seem overly specifi c with respect to

threat modeling. They may be better as input into test planning.

Each has backing information, including threat agents, attack vectors, security

weaknesses, technical and business impacts, as well as details covering whether

you are vulnerable to the attack and how you prevent it.

To the extent that what you’re building is a web project, the OWASP Top Ten

list is probably a good adjunct to STRIDE. OWASP updates the Top Ten list each

year based on the input of its volunteer membership. Over time, the list may be

more or less valuable as a threat modeling attack library.

The OWASP Top Ten are incorporated into a number of OWASP-suggested

methodologies for web security. Turning the Top Ten into a threat modeling

methodology would likely involve creating something like a STRIDE-per-element

approach (Top Ten per Element?) or looking for risks in the list at each point

where a data fl ow has crossed a trust boundary.

Summary

By providing mode specifi cs, attack libraries may be useful to those who are not

deeply familiar with the ways attackers work. It is challenging to fi nd generally

useful sweet spots between providing lots of details and becoming tedious. It

 Chapter 5 ■ Attack Libraries 109

c05.indd 07:52:5:AM 01/15/2014 Page 109

is also challenging to balance details with the threat of fooling a reader into

thinking a checklist is comprehensive. Performing a literature review and cap-

turing the details in an attack library is a good way for someone to increase

their knowledge of security.

There are a number of attack libraries available, including CAPEC and the

OWASP Top Ten. Other libraries may also provide value depending on the

technology or system on which you’re working.

111

c06.indd 02:15:11:PM 01/16/2014 Page 111

Threat modeling for privacy issues is an emergent and important area. Much

like security threats violate a required security property, privacy threats are

where a required privacy property is violated. Defi ning privacy requirements

is a delicate balancing act, however, for a few reasons: First, the organization

offering a service may want or even need a lot of information that the people

using the service don’t want to provide. Second, people have very different

perceptions of what privacy is, and what data is private, and those perceptions

can change with time. (For example, someone leaving an abusive relation-

ship should be newly sensitive to the value of location privacy, and perhaps

consider their address private for the fi rst time.) Lastly, most people are “privacy

pragmatists” and will make value tradeoffs for personal information.

Some people take all of this ambiguity to mean that engineering for privacy

is a waste. They’re wrong. Others assert that concern over privacy is a waste,

as consumers don’t behave in ways that expose privacy concerns. That’s also

wrong. People often pay for privacy when they understand the threat and the

mitigation. That’s why advertisements for curtains, mailboxes, and other privacy-

enhancing technologies often lead with the word “privacy.”

Unlike the previous three chapters, each of which focused on a single type

of tool, this chapter is an assemblage of tools for fi nding privacy threats. The

approaches described in this chapter are more developed than “worry about

privacy,” yet they are somewhat less developed than security attack libraries

such as CAPEC (discussed in Chapter 5, “Attack Libraries”). In either event, they

 C H A P T E R

6

Privacy Tools

112 Part II ■ Finding Threats

c06.indd 02:15:11:PM 01/16/2014 Page 112

are important enough to include. Because this is an emergent area, appropriate

exit criteria are less clear, so there are no exit criteria sections here.

In this chapter, you’ll learn about the ways to threat model for privacy, includ-

ing Solove’s taxonomy of privacy harms, the IETF’s “Privacy Considerations

for Internet Protocols,” privacy impact assessments (PIAs), the nymity slider,

contextual integrity, and the LINDDUN approach, a mirror of STRIDE created

to fi nd privacy threats. It may be reasonable to treat one or more of contextual

integrity, Solove’s taxonomy or (a subset of) LINDDUN as a building block

that can snap into the four-stage model, either replacing or complementing the

security threat discovery.

N O T E Many of these techniques are easier to execute when threat modeling

operational systems, rather than boxed software. (Will your database be used to

contain medical records? Hard to say!) The IETF process is more applicable than other

processes to “boxed software” designs.

Solove’s Taxonomy of Privacy

In his book, Understanding Privacy (Harvard University Press, 2008), George

Washington University law professor Daniel Solove puts forth a taxonomy of

privacy harms. These harms are analogous to threats in many ways, but also

include impact. Despite Solove’s clear writing, the descriptions might be most

helpful to those with some background in privacy, and challenging for tech-

nologists to apply to their systems. It may be possible to use the taxonomy as

a tool, applying it to a system under development, considering whether each

of the harms presented is enabled. The following list presents a version of this

taxonomy derived from Solove, but with two changes. First, I have added “iden-

tifi er creation,” in parentheses. I believe that the creation of an identifi er is a

discrete harm because it enables so many of the other harms in the taxonomy.

(Professor Solove and I have agreed to disagree on this issue.) Second, exposure

is in brackets, because those using the other threat modeling techniques in this

Part should already be handling such threats.

 ■ (Identifi er creation)

 ■ Information collection: surveillance, interrogation

 ■ Information processing: aggregation, identifi cation, insecurity, secondary

use, exclusion

 ■ Information dissemination: breach of confi dentiality, disclosure, increased

accessibility, blackmail, appropriation, distortion, [exposure]

 ■ Invasion: intrusion, decisional interference

 Chapter 6 ■ Privacy Tools 113

c06.indd 02:15:11:PM 01/16/2014 Page 113

Many of the elements of this list are self-explanatory, and all are explained

in depth in Solove’s book. A few may benefi t from a brief discussion. The harm

of surveillance is twofold: First is the uncomfortable feeling of being watched

and second are the behavioral changes it may cause. Identifi cation means the

association of information with a fl esh-and-blood person. Insecurity refers to

the psychological state of a person made to feel insecure, rather than a techni-

cal state. The harm of secondary use of information relates to societal trust.

Exclusion is the use of information provided to exclude the provider (or others)

from some benefi t.

Solove’s taxonomy is most usable by privacy experts, in the same way that

STRIDE as a mnemonic is most useful for security experts. To make use of it in

threat modeling, the steps include creating a model of the data fl ows, paying

particular attention to personal data.

Finding these harms may be possible in parallel to or replacing security

threat modeling. Below is advice on where and how to focus looking for these.

 ■ Identifi er creation should be reasonably easy for a developer to identify.

 ■ Surveillance is where data is collected about a broad swath of people or

where that data is gathered in a way that’s hard for a person to notice.

 ■ Interrogation risks tend to correlate around data collection points, for

example, the many “* required” fi elds on web forms. The tendency to

lie on such forms may be seen as a response to the interrogation harm.

 ■ Aggregation is most frequently associated with inbound data fl ows from

external entities.

 ■ Identifi cation is likely to be found in conjunction with aggregation or

where your system has in-person interaction.

 ■ Insecurity may associate with where data is brought together for decision

purposes.

 ■ Secondary use may cross trust boundaries, possibly including boundaries

that your customers expect to exist.

 ■ Exclusion happens at decision points, and often fraud management

decisions.

 ■ Information dissemination threats (all of them) are likely to be associated

with outbound data fl ows; you should look for them where data crosses

trust boundaries.

 ■ Intrusion is an in-person intrusion; if your system has no such features,

you may not need to look at these.

 ■ Decisional interference is largely focused on ways in which information

collection and processing may infl uence decisions, and as such it most

likely plays into a requirements discussion.

114 Part II ■ Finding Threats

c06.indd 02:15:11:PM 01/16/2014 Page 114

Privacy Considerations for Internet Protocols

The Internet Engineering Task Force (IETF) requires consideration of security

threats, and has a process to threat model focused on their organizational needs,

as discussed in Chapter 17, “Bringing Threat Modeling to Your Organization.”

As of 2013, they sometimes require consideration of privacy threats. An infor-

mational RFC “Privacy Considerations for Internet Protocols,” outlines a set of

security-privacy threats, a set of pure privacy threats, and offers a set of mitiga-

tions and some general guidelines for protocol designers (Cooper, 2013). The

combined security-privacy threats are as follows:

 ■ Surveillance

 ■ Stored data compromise

 ■ Mis-attribution or intrusion (in the sense of unsolicited messages and

denial-of-service attacks, rather than break-ins)

The privacy-specifi c threats are as follows:

 ■ Correlation

 ■ Identifi cation

 ■ Secondary use

 ■ Disclosure

 ■ Exclusion (users are unaware of the data that others may be collecting)

Each is considered in detail in the RFC. The set of mitigations includes data

minimization, anonymity, pseudonymity, identity confi dentiality, user participa-

tion and security. While somewhat specifi c to the design of network protocols,

the document is clear, free, and likely a useful tool for those attempting to threat

model privacy. The model, in terms of the abstracted threats and methods to

address them, is an interesting step forward, and is designed to be helpful to

protocol engineers.

Privacy Impact Assessments (PIA)

As outlined by Australian privacy expert Roger Clarke in his “An Evaluation

of Privacy Impact Assessment Guidance Documents,” a PIA “is a systematic

process that identifi es and evaluates, from the perspectives of all stakeholders,

the potential effects on privacy of a project, initiative, or proposed system or

scheme, and includes a search for ways to avoid or mitigate negative privacy

impacts.” Thus, a PIA is, in several important respects, a privacy analog to security

threat modeling. Those respects include the systematic tools for identifi cation

 Chapter 6 ■ Privacy Tools 115

c06.indd 02:15:11:PM 01/16/2014 Page 115

and evaluation of privacy issues, and the goal of not simply identifying issues,

but also mitigating them. However, as usually presented, PIAs have too much

integration between their steps to snap into the four-stage framework used in

this book.

There are also important differences between PIAs and threat modeling. PIAs

are often focused on a system as situated in a social context, and the evaluation

is often of a less technical nature than security threat modeling. Clarke’s evalu-

ation criteria include things such as the status, discoverability, and applicability

of the PIA guidance document; the identifi cation of a responsible person; and

the role of an oversight agency; all of which would often be considered out of

scope for threat modeling. (This is not a critique, but simply a contrast.) One

sample PIA guideline from the Offi ce of the Victorian Privacy Commissioner

states the following:

“Your PIA Report might have a Table of Contents that looks something like this:

 1. Description of the project

 2. Description of the data fl ows

 3. Analysis against ‘the’ Information Privacy Principles

 4. Analysis against the other dimensions to privacy

 5. Analysis of the privacy control environment

 6. Findings and recommendations”

Note that step 2, “description of the data fl ows,” is highly reminiscent of “data

fl ow diagrams,” while steps 3 and 4 are very similar to the “threat fi nding”

building blocks. Therefore, this approach might be highly complementary to

the four-step model of threat modeling.

The appropriate privacy principles or other dimensions to consider are some-

what dependent on jurisdiction, but they can also focus on classes of intrusion,

such as those offered by Solove, or a list of concerns such as informational, bodily,

territorial, communications, and locational privacy. Some of these documents,

such as those from the Offi ce of the Victorian Privacy Commissioner (2009a),

have extensive lists of common privacy threats that can be used to support a

guided brainstorming approach, even if the documents are not legally required.

Privacy impact assessments that are performed to comply with a law will often

have a formal structure for assessing suffi ciency.

The Nymity Slider and the Privacy Ratchet

University of Waterloo professor Ian Goldberg has defi ned a measurement he

calls nymity, the “amount of information about the identity of the participants

that is revealed [in a transaction].” Nymity is from the Latin for name, from

which anonymous (“without a name”) and pseudonym (“like a name”) are derived.

116 Part II ■ Finding Threats

c06.indd 02:15:11:PM 01/16/2014 Page 116

Goldberg has pointed out that you can graph nymity on a continuum (Goldberg,

2000). Figure 6-1 shows the nymity slider. On the left-hand side, there is less

privacy than on the right-hand side. As Goldberg points out, it is easy to move

towards more nymity, and extremely diffi cult to move away from it. For example,

there are protocols for electronic cash that have most of the privacy-preserving

properties of physical cash, but if you deliver it over a TCP connection you lose

many of those properties. As such, the nymity slider can be used to examine

how privacy-threatening a protocol is, and to compare the amount of nymity a

system uses. To the extent that it can be designed to use less identifying infor-

mation, other privacy features will be easier to achieve.

Verinymity Persistent Pseudonym
Pen name

Linkable anonymity
Prepaid phone cards

Unlinkable anonymity
Cash paymentsGovernment ID

Credit Card #
Address

Figure 6-1: The nymity slider

When using nymity privacy in threat modeling, the goal is to measure how

much information a protocol, system, or design exposes or gathers. This enables

you to compare it to other possible protocols, systems, or designs. The nymity

slider is thus an adjunct to other threat-fi nding building blocks, not a replace-

ment for them.

Closely related to nymity is the idea of linkability. Linkability is the ability to

bring two records together, combining the data in each into a single record or

virtual record. Consider several databases, one containing movie preferences,

another containing book purchases, and a third containing telephone records.

If each contains an e-mail address, you can learn that joe@example.org likes

religious movies, that he’s bought books on poison, and that several of the

people he talks with are known religious extremists. Such intersections might

be of interest to the FBI, and it’s a good thing you can link them all together!

(Unfortunately, no one bothered to include the professional database showing

he’s a doctor, but that’s beside the point!) The key is that you’ve engaged in link-

ing several datasets based on an identifi er. There is a set of identifi ers, including

e-mail addresses, phone numbers, and government-issued ID numbers, that are

often used to link data, which can be considered strong evidence that multiple

records refer to the same person. The presence of these strongly linkable data

points increases linkability threats.

Linkability as a concept relates closely to Solove’s concept of identifi cation and

aggregation. Linkability can be seen as a spectrum from strongly linkable with

multiple validated identifi ers to weakly linkable based on similarities in the data.

 Chapter 6 ■ Privacy Tools 117

c06.indd 02:15:11:PM 01/16/2014 Page 117

(“John Doe and John E. Doe is probably the same person.”) As data becomes

richer, the threat of linkage increases, even if the strongly linkable data points

are removed. For example, Harvard professor Latanya Sweeney has shown

how data with only date of birth, gender, and zip code uniquely identifi es 87

percent of the U.S. population (Sweeney, 2002). There is an emergent scientifi c

research stream into “re-identifi cation” or “de-anonymization,” which discloses

more such results on a regular basis. The release of anonymous datasets carries

a real threat of re-identifi cation, as AOL, Netfl ix, and others have discovered.

(McCullagh, 2006; Narayanan, 2008; Buley, 2010).

Contextual Integrity

Contextual integrity is a framework put forward by New York University

professor Helen Nissenbaum. It is based on the insight that many privacy issues

occur when information is taken from one context and brought into another. A

context is a term of art with a deep grounding in discussions of the spheres, or

arenas, of our lives. A context has associated roles, activities, norms, and val-

ues. Nissenbaum’s approach focuses on understanding contexts and changes

to those contexts. This section draws very heavily from Chapter 7 of her book

Privacy in Context, (Stanford Univ. Press, 2009) to explain how you might apply

the framework to product development.

Start by considering what a context is. If you look at a hospital as a context,

then the roles might include doctors, patients, and nurses, but also family mem-

bers, administrators, and a host of other roles. Each has a reason for being in a

hospital, and associated with that reason are activities that they tend to perform

there, norms of behavior, and values associated with those norms and activities.

Contexts are places or social areas such as restaurants, hospitals, work, the

Boy Scouts, and schools (or a type of school, or even a specifi c school). An

event can be “in a work context” even if it takes place somewhere other than

your normal offi ce. Any instance in which there is a defi ned or expected set

of “normal” behaviors can be treated as a context. Contexts nest and overlap.

For example, normal behavior in a church in the United States is infl uenced

by the norms within the United States, as well as the narrower context of the

parishioners. Thus, what is normal at a Catholic Church in Boston or a Baptist

Revival in Mississippi may be inappropriate at a Unitarian Congregation in

San Francisco (or vice versa). Similarly, there are shared roles across all schools,

those of student or teacher, and more specifi c roles as you specify an elementary

school versus a university. There are specifi c contexts within a university or

even the particular departments of a university.

Contextual integrity is violated when the informational norms of a context

are breached. Norms, in Nissenbaum’s sense, are “characterized by four key

parameters: context, actors, attributes, and transmission principles.” Context

118 Part II ■ Finding Threats

c06.indd 02:15:11:PM 01/16/2014 Page 118

is roughly as just described. Actors are senders, recipients, and information

subjects. Attributes refer to the nature of the information—for example, the nature

or particulars of a disease from which someone is suffering. A transmission

principle is “a constraint on the fl ow (distribution, dissemination, transmission)

of information from party to party.” Nussbaum fi rst provides two presentations

of contextual integrity, followed by an augmented contextual integrity heuristic.

As the technique is new, and the “augmented” approach is not a strict superset

of the initial presentation, it may help you to see both.

Contextual Integrity Decision Heuristic

Nissenbaum fi rst presents contextual integrity as a post-incident analytic tool.

The essence of this is to document the context as follows:

 1. Establish the prevailing context.

 2. Establish key actors.

 3. Ascertain what attributes are affected.

 4. Establish changes in principles of transmission.

 5. Red fl ag

Step 5 means “if the new practice generates changes in actors, attributes, or

transmission principles, the practice is fl agged as violating entrenched infor-

mational norms and constitutes a prima facie violation of contextual integrity.”

You might have noticed a set of interesting potential overlaps with software

development and threat modeling methodologies. In particular, actors over-

lap fairly strongly with personas, in Cooper’s sense of personas (discussed in

Appendix B, “Threat Trees”). A contextual integrity analysis probably does not

require a set of personas for bad actors, as any data fl ow outside the intended

participants (and perhaps some between them) is a violation. The information

transmissions, and the associated attributes are likely visible in data fl ow or

swim lane diagrams developed for normal security threat modeling.

Thus, to the extent that threat models are being enhanced from version to

version, a set of change types could be used to trigger contextual integrity

analysis. The extant diagram is the “prevailing context.” The important change

types would include the addition of new human entities or new data fl ows.

Nissenbaum takes pains to explore the question of whether a violation of

contextual integrity is a worthwhile reason to avoid the change. From the

perspective of threat elicitation, such discussions are out of scope. Of course,

they are in scope as you decide what to do with the identifi ed privacy threats.

 Chapter 6 ■ Privacy Tools 119

c06.indd 02:15:11:PM 01/16/2014 Page 119

Augmented Contextual Integrity Heuristic

Nissenbaum also presents a longer, ‘augmented’ heuristic, which is more pre-

scriptive about steps, and may work better to predict privacy issues.

 1. Describe the new practice in terms of information fl ows.

 2. Identify the prevailing context.

 3. Identify information subjects, senders, and recipients.

 4. Identify transmission principles.

 5. Locate applicable norms, identify signifi cant changes.

 6. Prima facie assessment

 7. Evaluation

 a. Consider moral and political factors.

 b. Identify threats to autonomy and freedom.

 c. Identify effects on power structures.

 d. Identify implications for justice, fairness, equality, social hierarchy,

democracy and so on.

 8. Evaluation 2

 a. Ask how the system directly impinges on the values, goals, and ends

of the context.

 b. Consider moral and ethical factors in light of the context.

 9. Decide.

This is, perhaps obviously, not an afternoon’s work. However, in considering

how to tie this to a software engineering process, you should note that steps 1,

3, and 4 look very much like creating data fl ow diagrams. The context of most

organizations is unlikely to change substantially, and thus descriptions of the

context may be reusable, as may be the work products to support the evalua-

tions of steps 7 and 8.

Perspective on Contextual Integrity

I very much like contextual integrity. It strikes me as providing deep insight into

and explanations for a great number of privacy problems. That is, it may be pos-

sible to use it to predict privacy problems for products under design. However,

that’s an untested hypothesis. One area of concern is that the effort to spell out

120 Part II ■ Finding Threats

c06.indd 02:15:11:PM 01/16/2014 Page 120

all the aspects of a context may be quite time consuming, but without spelling

out all the aspects, the privacy threats many be missed. This sort of work is

challenging when you’re trying to ship software and Nissenbaum goes so far

as to describe it as “tedious” (Privacy In Context, page 142). Additionally, the act

of fi xing a context in software or structured defi nitions may present risks that

the fi xed representation will deviate as social norms evolve.

This presents a somewhat complex challenge to the idea of using contextual

integrity as a threat modeling methodology within a software engineering

process. The process of creating taxonomies or categories is an essential step in

structuring data in a database. Software engineers do it as a matter of course as

they develop software, and even those who are deeply cognizant of taxonomies

often treat it as an implicit step. These taxonomies can thus restrict the evolution

of a context—or worse; generate dissonance between the software-engineered

version of the context or the evolving social context. I encourage security and

privacy experts to grapple with these issues.

LINDDUN

LUNDDUN is a mnemonic developed by Mina Deng for her PhD at the Katholieke

Universiteit in Leuven, Belgium (Deng, 2010). LINDDUN is an explicit mirroring

of STRIDE-per-element threat modeling. It stands for the following violations

of privacy properties:

 ■ Linkability

 ■ Identifi ability

 ■ Non-Repudiation

 ■ Detectability

 ■ Disclosure of information

 ■ Content Unawareness

 ■ Policy and consent Noncompliance

LINDDUN is presented as a complete approach to threat modeling with a

process, threats, and requirements discovery method. It may be reasonable to use

the LINDDUN threats or a derivative as a tool for privacy threat enumeration

in the four-stage framework, snapping it either in place of or next to STRIDE

security threat enumeration. However, the threats in LINDDUN are somewhat

unusual terminology; therefore, the training requirements may be higher, or

the learning curve steeper than other privacy approaches.

 Chapter 6 ■ Privacy Tools 121

c06.indd 02:15:11:PM 01/16/2014 Page 121

N O T E LINDDUN leaves your author deeply confl icted. The privacy terminology it

relies on will be challenging for many readers. However, it is, in many ways, one of

the most serious and thought-provoking approaches to privacy threat modeling, and

those seriously interested in privacy threat modeling should take a look. As an aside,

the tension between non-repudiation as a privacy threat and repudiation as a security

threat is delicious.

Summary

Privacy is no less important to society than security. People will usually act to

protect their privacy given an understanding of the threats and how they can

address them. As such, it may help you to look for privacy threats in addition

to security threats. The ways to do so are less prescriptive than ways to look

for security threats.

There are many tools you can use to fi nd privacy issues, including Solove’s

taxonomy of privacy harms. (A harm is a threat with its impact.) Solove’s taxonomy

helps you understand the harm associated with a privacy violation, and thus,

perhaps, how best to prioritize it. The IETF has an approach to privacy threats

for new Internet protocols. That approach may complement or substitute Privacy

Impact Assessments. PIAs and the IETF’s processes are appropriate when a regu-

latory or protocol design context calls for their use. Both are more prescriptive

than the nymity slider, a tool for assessing the amount of personal information

in a system and measuring privacy invasion for comparative purposes. They are

also more prescriptive than contextual integrity, an approach which attempts to

tease out the social norms of privacy. If your goal is to identify when a design

is likely to raise privacy concerns, however, then contextual integrity may be

the most helpful. Far more closely related to STRIDE-style threat identifi cation

is LINDDUN, which considers privacy violations in the manner that STRIDE

considers security violations.

c07.indd 09:44:3:AM 01/09/2014 Page 123

Par t

III
Managing and Addressing

Threats

Part III is all about managing threats and the activities involved in threat mod-

eling. While threats themselves are at the heart of threat modeling, the reason

you threat model is so that you can deliver more secure products, services, or

technologies. This part of the book focuses on the third step in the four-step

framework, what to do after you’ve found threats and need to do something

about them; but it also covers the fi nal step: validation.

Chapters in this part include the following:

 ■ Chapter 7: Processing and Managing Threats describes how to start a

threat modeling project, how to iterate across threats, the tables and lists

you may want to use, and some scenario-specifi c process elements.

 ■ Chapter 8: Defensive Tactics and Technologies are tools you can use to

address threats, ranging from simple to complex. This chapter focuses on

a STRIDE breakdown of security threats and a variety of ways to address

privacy.

 ■ Chapter 9: Trade-Offs When Addressing Threats includes risk manage-

ment strategies, how to use those strategies to select mitigations, and

threat-modeling specifi c prioritization approaches.

124 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 124

 ■ Chapter 10: Validating That Threats Are Addressed includes how to test

your threat mitigations, QA’ing threat modeling, and process aspects of

addressing threats. This is the last step of the four-step approach.

 ■ Chapter 11: Threat Modeling Tools covers the various tools that you can

use to help you threat model, ranging from the generic to the specifi c.

125

c07.indd 09:44:3:AM 01/09/2014 Page 125

Finding threats against arbitrary things is fun, but when you’re building some-

thing with many moving parts, you need to know where to start, and how to

approach it. While Part II is about the tasks you perform and the methodolo-

gies you can use to perform them, this chapter is about the processes in which

those tasks are performed. Questions of “what to do when” naturally come up

as you move from the specifi cs of looking at a particular element of a system

to looking at a complete system. To the extent that these are questions of what

an individual or small team does, they are addressed in this chapter; questions

about what an organization does are covered in Chapter 17, “Bringing Threat

Modeling to Your Organization.”

Each of the approaches covered here should work with any of the “Lego

blocks” covered in Part II. In this chapter, you’ll learn how to get started look-

ing for threats, including when and where to start and how to iterate through

a diagram. The chapter continues with a set of tables and lists that you might

use as you threat model, and ends with a set of scenario-specifi c guidelines,

including the importance of the vendor-customer trust boundary, threat model-

ing new technologies, and how to threat model an API.

C H A P T E R

7

Processing and Managing Threats

126 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 126

Starting the Threat Modeling Project

The basic approach of “draw a diagram and use the Elevation of Privilege game

to fi nd threats” is functional, but people prefer different amounts of prescrip-

tiveness, so this section provides some additional structure that may help you

get started.

When to Threat Model

You can threat model at various times during a process, with each choice having

a different value. Most important, you should threat model as you get started

on a project. The act of drawing trust boundaries early on can greatly help you

improve your architecture. You can also threat model as you work through fea-

tures. This allows you to have smaller, more focused threat modeling projects,

keeping your skills sharp and reducing the chance that you’ll fi nd big problems

at the end. It is also a good idea to revisit the threat model as you get ready to

deliver, to ensure that you haven’t made decisions which accidentally altered

the reality underlying the model.

Starting at the Beginning

Threat modeling as you get started involves modeling the system you’re plan-

ning or building, fi nding threats against the model, and fi ling bugs that you’ll

track and manage, such as other issues discovered throughout the develop-

ment process. Some of those bugs may be test cases, some might be feature

work, and some may be deployment decisions. It depends on what you’re

threat modeling.

Working through Features

As you develop each feature, there may be a small amount of threat modeling

work to do. That work involves looking deeply at the threats to that feature (and

possibly refreshing or validating your understanding of the context by checking

the software model). As you start work on a feature or component, it can also

be a good time to work through second- or third-order threats. These are the

threats in which an attacker will try to bypass the features or design elements

that you put in place to block the most immediate threats. For example, if the

primary threat is a car thief breaking a window, a secondary threat is them

jumping the ignition. You can mitigate that with a steering-wheel lock, which

is thus a second-order mitigation. There’s more on this concept of ordered

threats in the “Digging Deeper into Mitigations” section later in this chapter,

 Chapter 7 ■ Processing and Managing Threats 127

c07.indd 09:44:3:AM 01/09/2014 Page 127

as well as more on considering planned mitigations, and how an attacker might

work around them.

Threat modeling as you work through a feature has several important value

propositions. One is that if you do a small threat model as you start a component

or feature, the design is probably closer to mind. In other words, you’ll have a

more detailed model with which to look for threats. Another is that if you fi nd

threats, they are closer to mind as you’re working on that feature. Threat model-

ing as you work through features can also help you maintain your awareness

of threats and your skills at threat modeling. (This is especially true if your

project is a long one.)

Close to Delivery

Lastly, you should threat model as you get ready to ship by reexamining the

model and checking your bugs. (Shipping here is inclusive of delivering, deploy-

ing, or going live.) Reexamining the model means ensuring that everyone still

agrees it’s a decent model of what you’re building, and that it includes all the

trust boundaries and data fl ows that cross them. Checking your bugs involves

checking each bug that’s tagged threat modeling (or however else you’re track-

ing them), and ensuring it didn’t slip through the cracks.

Time Management

So how long should all this take? The answer to that varies according to system

size and complexity, the familiarity of the participants with the system, their

skill in threat modeling, and even the culture of meetings in an organization.

Some very rough rules of thumb are that you should be able to diagram and fi nd

threats against a “component” and decide if you need to do more enumeration

in a one-hour session with an experienced threat modeler to moderate or help.

For the sort of system that a small start-up might build, the end-to-end threat

modeling could take a few hours to a week, or possibly longer if the data the

system holds is particularly sensitive. At the larger end of the spectrum, a project

to diagram the data fl ows of a large online service has been known to require

four people working for several months. That level of effort was required to help

fi nd threat variations and alternate routes through a system that had grown to

serve millions of people.

Whatever you’re modeling, familiarity with threat modeling helps. If you need

to refer back to this book every few minutes, your progress will be slower. One

of the reasons to threat model regularly is to build skill and familiarity with the

tasks and techniques. Organizational culture also plays a part. Organizations

that run meetings with nowhere to sit will likely create a list of threats faster

128 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 128

than a consensus-oriented organization that encourages exploring ideas. (Which

list will be better is a separate and fascinating question.)

What to Start and (Plan to) End With

When you start looking for threats, a diagram is something between useful and

essential input. Experienced modelers may be able to start without it, but will

likely iterate through creating a diagram as they fi nd threats. The diagram is

likely to change as you use it to fi nd threats; you’ll discover things you missed

or don’t need. That’s normal, and unless you run a strict waterfall approach to

engineering, it’s a process that evolves much like the way requirements evolve

as you discover what’s easy or hard to build.

Use the following two testable states to help assess when you’re done:

 ■ You have fi led bugs.

 ■ You have a diagram or diagrams that everyone agrees represents the system.

To be more specifi c, you should probably have a number of bugs that’s roughly

scaled to the number of things in your diagram. If you’re using a data fl ow

diagram and STRIDE, expect to have about fi ve threats per diagram element.

N O T E Originally, this text suggested that you should have: (# of processes * 6) +

(# of data fl ows * 3) + (# of data stores * 3.5) + (# of distinct external entities *2) threats,

but that requires keeping four separate counts, and is thus more work to get approxi-

mately the same answer.

You might notice that says “STRIDE” rather than “STRIDE-per-element” or

“STRIDE-per-interaction,” and fi ve turns out to match the number you get if

you tally up the checkmarks in those charts. That’s because those charts are

derived from where the threats usually show up.

Where to Start

When you are staring at a blank whiteboard and wondering where to start,

there are several commonly recommended places. Many people have recom-

mended assets or attackers, but as you learned in Chapter 2, “Strategies for

Threat Modeling,” the best starting place is a diagram that covers the system

as a whole, and from there start looking at the trust boundaries. For advice on

how to create diagrams, see Chapter 2.

When you assemble a group of people in a room to look for threats, you

should include people who know about the software, the data fl ows and (if

possible) threat modeling. Begin the process with the component(s) on which

the participants in the room are working. You’ll want to start top-down, and

 Chapter 7 ■ Processing and Managing Threats 129

c07.indd 09:44:3:AM 01/09/2014 Page 129

then work across the system, going “breadth fi rst,” rather than delving deep

into any component (“depth fi rst”).

Finding Threats Top Down

Almost any system should be modeled from the highest-level view you can

build of the entire system, for some appropriate value of “the entire system”.

What constitutes an entire system is, of course, up for debate, just like what

constitutes the entire Internet, the entirety of (say) Amazon’s website, and so

on, isn’t a simple question. In such cases more scoping is needed. The ideal is

probably what is within an organization’s control and, to the extent possible,

cross-reviews with those responsible for other components.

In contrast, bottom-up threat modeling starts from features, and then attempts

to derive a coherent model from those feature-level models. This doesn’t work

well, but advice that implies you should do this is common, so a bit of discussion

may be helpful. The reason this doesn’t work is because it turns out to be very

challenging to bring threat models together when they are not derived from a

system-level view. As such, you should start from the highest-level view you

can build of the entire system.

MICROSOFT’S BOTTOMUP EXPERIENCE

It may help to understand the sorts of issues that can lead to a bottom-up approach.

At Microsoft in the mid-2000s, there was an explosion of bottom-up threat model-

ing. There were three drivers for this: specifi c words in the Security Development

Lifecycle (SDL) threat model requirement, aspects of Microsoft’s approach to func-

tion teams, and the work involved in creating top-level models. The SDL required

“all new features” be threat modeled. This intersected with an approach to features

whereby a particular team of developer, tester, and program manager owns a feature

and collaborates to ship it. Because the team owned its feature, it was natural to ask

it to add threat models to the specifi cations involved in producing it. As Microsoft’s

approach to security evolved, product security teams had diverse sets of important

tasks to undertake. Creating all-up threat models was usually not near the top of the

list. (Many large product diagrams have now done that work and found it worthwhile.

Some of these diagrams require more than one poster-size sheet of paper.)

Finding Threats “Across”

Even with a top-down approach, you want to go breadth fi rst, and there are

three different lists you can iterate “across”: A list of the trust boundaries, a

list of diagram elements, or a list of threats. A structure can help you look

130 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 130

for threats, either because you and your team like structure, or because the

task feels intimidating and you want to break it down, Table 7-1 shows three

approaches.

Table 7-1: Lists to Iterate Across

METHOD SAMPLE STATEMENT COMMENTS

Start from what

goes across trust

boundaries.

“What can go wrong as foo comes

across this trust boundary?

This is likely to identify the

highest-value threats.

Iterate across

diagram

elements.

“What can go wrong with this data-

base fi le?” “What can go wrong with

the logs?”

Focusing on diagram ele-

ments may work well when a

lot of teams are collaborating.

Iterate across

the threats.

“Where are the spoofi ng threats in

this diagram?” “Where are the tam-

pering threats?”

Making threats the focus of

discussion may help you fi nd

related threats.

Each of these approaches can be a fi ne way to start, as long as you don’t let

them become straightjackets. If you don’t have a preference, try starting from

what crosses trust boundaries, as threats tend to cluster there. However you

iterate, ensure that you capture each threat as it comes up, regardless of the

planned approach.

Digging Deeper into Mitigations

Many times threats will be mitigated by the addition of features, which can

be designed, developed, tested and delivered much like other features. (Other

times, mitigation might be a confi guration change, or at the other end of the

effort scale, require re-design.) However, mitigations are not quite like other

features. An attacker will rarely try to work around the bold button and fi nd

an unintended, unsupported way to bold their text.

Finding threats is great, and to the extent that you plan to be attacked only

by people who are exactly lazy enough to fi nd a threat but not enthusiastic

enough to try to bypass your mitigation, you don’t need to worry about going

deeper into the mitigations. (You may have to worry about a new job, but that,

as they say, is beyond the scope of this book. I recommend Mike Murray’s Forget
the Parachute: Let Me Fly the Plane.) In this section, you’ll learn about how to go

deeper into the interplay of how attackers can attempt to bypass the design

choices and features you put in place to make their lives harder.

 Chapter 7 ■ Processing and Managing Threats 131

c07.indd 09:44:3:AM 01/09/2014 Page 131

The Order of Mitigation

Going back to the example of threat modeling a home from the introduction,

it’s easy and fun for security experts to focus on how attackers could defeat

the security system by cutting the alarm wire. If you consider the window to

be the attack surface, then threats include someone smashing through it and

someone opening it. The smashing is addressed by re-enforced glass, which

is thus “first-order” mitigation. The smashing threat is also addressed by an

alarm, which is a second-order defense. But, oh no! Alarms can be defeated by

cutting power. To address that third-level threat, the system designer can add

more defenses. For example, alarm systems can include an alert if the line is ever

dropped. Therefore, the defender can add a battery, or perhaps a cell phone or

some other radio. (See how much fun this is?) These multiple layers, or orders,

of attack and defense are shown in Table 7-2.

N O T E If you become obsessed with the window-smashing threat and forget to put

a lock on the window, or you never discover that there’s a door key under the mat, you

have unaddressed problems, and are likely mis-investing your resources.

Table 7-2: Threat and Mitigation “Orders” or “Layers”

ORDER THREAT MITIGATION

1st Window smashing Reinforced glass

2nd Window smashing Alarm

3rd Cut alarm wire Heartbeat

4th Fake heartbeat Cryptographic signal integrity

Threat modeling should usually proceed from attack surfaces, and ensure

that all fi rst-order threats are mitigated before attention is paid to the second-

order threats. Even if a methodology is in place to ensure that the full range

of fi rst-order threats is addressed, a team may run out of time to follow the

methodology. Therefore, you should fi nd threats breadth-fi rst.

Playing Chess

It’s also important to think about what an attacker will do next, given your

mitigations. Maybe that means following the path to faking a heartbeat on the

alarm wire, but maybe the attacker will fi nd that door key, or maybe they’ll move

on to another victim. Don’t think of attacks and mitigations as static. There’s a

132 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 132

dynamic interplay between them, usually driven by attackers. You might think

of threats and mitigations like the black and white pieces on a chess board. The

attacker can move, and when they move, their relationship to other pieces can

change. As you design mitigation, ask what an attacker could do once you deliver

that mitigation. How could they work around it? (This is subtly different from

asking what they will do. As Nobel-prize winning physicist Niels Bohr said,

“Prediction is very diffi cult, especially about the future.”)

Generally, attackers look for the weakest link they can easily fi nd. As you

consider your threats and where to go into depth, start with the weakest links.

This is an area where experience, including a repertoire of real scenarios, can

be very helpful. If you don’t have that repertoire, a literature review can help,

as you saw in Chapter 2. This interplay is a place where artful threat modeling

and clever redesign can make a huge difference.

Believing that an attacker will stop because you put a mitigation in place is

optimistic, or perhaps naive would be a better word. What happens several

moves ahead can be important. (Attackers are tricky like that.) This differs from

thinking through threat ordering in that your attacker will likely move to the

“next easiest” attack available. That is, an attacker doesn’t need to stick to the

attack you’re planning for or coding against at the moment, but rather can go

anywhere in your system. The attacker gets to choose where to go, so you need

to defend everywhere. This isn’t really fair, but no one promised you fair.

Prioritizing

You might feel that the advice in this section about the layers of mitigations

and the suggestion to fi nd threats across fi rst is somewhat contradictory. Which

should you do fi rst? Consider the chess game or cover everything? Covering

breadth fi rst is probably wise. As you manage the bugs and select ways to

mitigate threats, you can consider the chess game and deeper threat variants.

However, it’s important to cover both.

The unfortunate reality is that attackers with enough interest in your

technology will try to fi nd places where you didn’t have enough time to

investigate or build defenses. Good requirements, along with their interplay

with threats and mitigations, can help you create a target that is consistently

hard to attack.

Running from the Bear

There’s an old joke about Alice and Bob hiking in the woods when they come

across an angry bear. Alice takes off running, while Bob pauses to put on

some running shoes. Alice stops and says, “What the heck are you doing?”

 Chapter 7 ■ Processing and Managing Threats 133

c07.indd 09:44:3:AM 01/09/2014 Page 133

Bob looks at her and replies, “I don’t need to outrun the bear, I just need to

outrun you.”

OK, it’s not a very good joke. But it is a good metaphor for bad threat model-

ing. You shouldn’t assume that there’s exactly one bear out there in the woods.

There are a lot of people out there actively researching new vulnerabilities, and

they publish information about not only the vulnerabilities they fi nd, but also

about their tools and techniques. Thus, more vulnerabilities are being found

more effi ciently than in past years. Therefore, not only are there multiple bears,

but they have conferences in which they discuss techniques for eating both

Alice and Bob for lunch.

Worse, many of today’s attacks are largely automated, and can be scaled up

nearly infi nitely. It’s as if the bears have machine guns. Lastly, it will get far

worse as the rise of social networking empowers automated social engineering

attacks (just consider the possibilities when attackers start applying modern

behavior-based advertising to the malware distribution business).

If your iteration ends with “we just have to run faster than the next target,”

you may well be ending your analysis early.

Tracking with Tables and Lists

Threat modeling can lead you to generate a lot of information, and good tracking

mechanisms can make a big difference. Discovering what works best for you

may require a bit of experimentation. This section lays out some sample lists

and sample entries in such lists. These are all intended as advice, not straight-

jackets. If you regularly fi nd something that you’re writing on the side, give

yourself a way to track it.

Tracking Threats

The fi rst type of table to consider is one that tracks threats. There are (at least)

three major ways to organize such a table, including by diagram element (see

Table 7-3), by threat type (see Table 7-4), or by order of discovery (see Table 7-5).

Each of these tables uses these methods to examine threats against the super-

simple diagram from Chapter 1, “Dive In and Threat Model!” reprised here in

Figure 7-1.

If you organize by diagram element, the column headers are Diagram Element,

Threat Type, Threat, and Bug ID/Title. You can check your work by validating

that the expected threats are all present in the table. For example, if you’re using

STRIDE-per-element, then you should have at least one tampering, information

disclosure, and denial-of-service threat for each data fl ow. An example table for

use in iterating over diagram elements is shown in Table 7-3.

134 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 134

Web browser Web server
1 2 3 4 5 6 7

Corporate data center
Web storage
(offsite)

Business Logic Database

Figure 7-1: The diagram considered in threat tables

Table 7-3: A Table of Threats, Indexed by Diagram Element (excerpt)

DIAGRAM

ELEMENT

THREAT

TYPE THREAT BUG ID AND TITLE

Data fl ow (4)

web server

to Biz

Logic

Tampering Add orders without

payment checks.

4553 “need integrity controls on

channel”

Information

disclosure

Payment instruments

in the clear

4554 “need crypto” #PCI #p0

Denial of

service

Can we just accept all

these inside the data

center?

4555 “Check with Alice in IT if

these are acceptable”.

To check the completeness of Table 7-3, confi rm that each element has at least

one threat. If you’re using STRIDE-per-element, each process should have six

threats, each data fl ow three, each external entity two, and each data store three

or four if the data store is a log.

You can also organize a table by threats, and use threats as what’s being iterated

“across.” If you do that, you end up with a table like the one shown in Table 7-4.

Table 7-4: A Table of Threats, Organized by Threat (excerpt)

THREAT

DIAGRAM

ELEMENT THREAT BUG ID AND TITLE

Tampering Web browser (1) Attacker modifi es

our JavaScript order

checker.

4556 “Add order-checking

logic to the server”.

Data fl ow (2)

from browser to

server

Failure to use HTTPS* 4557 “Build unit tests to

ensure that there are no HTTP

listeners for endpoints to

these data fl ows.”

 Chapter 7 ■ Processing and Managing Threats 135

c07.indd 09:44:3:AM 01/09/2014 Page 135

THREAT

DIAGRAM

ELEMENT THREAT BUG ID AND TITLE

Web server Someone who tam-

pers with the web

server can attack our

customers.

4558 “Ensure all changes to

server code are pulled from

source control so changes are

accountable”.

Web server Web server can add

items to orders.

4559 “Investigate moving con-

trols to Biz Logic, which is less

accessible to attackers”.

* The entry for “failure to use HTTPS” is an example that illustrates how knowledge of the scenario and
mitigating techniques can lead you to jump to a fix, rather than perhaps tediously working through the threats.
Be careful that when you (literally) jump to a conclusion like this, you’re not missing other threats.

N O T E You may have noticed that Table 7-4 has two entries for web server—this is

totally fi ne. You shouldn’t let having something in a space prevent you from fi nding

more threats against that thing, or recording additional threats that you discover.

The last way to formulate a table is by order of discovery, as shown in Table 7-5.

This is the easiest to fi ll out, as the next threat is simply added to the next line. It is,

however, the hardest to validate, because the threats will be “jumbled together.”

Table 7-5: Threats by Order of Discovery (excerpt)

THREAT

DIAGRAM

ELEMENT THREAT BUG ID

Tampering Web browser (1) Attacker modifi es

the JavaScript

order checker.

4556 “Add order-checking logic

to the server”.

With three variations, the obvious question is which one should you use? If you’re

new to threat modeling and need structure, then either of the fi rst two forms help

you organize your approach. The third is more natural, but requires checking at

the end; so as you become more comfortable threat modeling, jumping around

will become natural, and therefore the third type of table will become more useful.

Making Assumptions

The key reason to track assumptions as you discover them is so that you can

follow up and ensure that you’re not assuming your way into a problem. To do

that, you should track the following:

 ■ The assumption

 ■ The impact if it’s wrong

136 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 136

 ■ Who can tell you if it’s wrong

 ■ Who’s going to follow-up

 ■ When they need to do so

 ■ A bug for tracking

Table 7-6 shows an example entry for such a table of assumptions.

Table 7-6: A Table for Recording Assumptions

ASSUMPTION

IMPACT IF

WRONG

IF NOT

OBVIOUS

WHO TO

TALK TO

IF

KNOWN

WHO’S

FOLLOWING

UP

FOLLOWUP

BY DATE BUG #

It’s OK to ignore

denial of service

within the data

center.

Unhandled

vulnerabilities

Alice Bob April 15 4555

External Security Notes

Many of the documented Microsoft threat-modeling approaches have a section

for “external security notes.” That name frames these notes with respect to the

threat model. That is, they’re notes for those outside the threat discovery process

in some way, and they’ll probably emerge or crystalize as you look for threats.

Therefore, like tracking threats and assumptions, you want to track external

security notes. You can be clearer by framing the notes in terms of two sets of

audiences: your customers and those calling your APIs. One of the most illus-

trative forms of these notes appears in the IETF “RFC Security Considerations”

section, so you’ll get a brief tour of those here.

Notes for Customers

Security notes that are designed for your customers or the people using your

system are generally of the form “we can’t fi x problem X.” Not being able to

fi x problem X may be acceptable, and it’s more likely to be acceptable if it’s not

a surprise—for example, “This product is not designed to defend against the

system administrator.” This sort of note is better framed as “non-requirements,”

and they are discussed at length in Chapter 12, “Requirements Cookbook.”

 Chapter 7 ■ Processing and Managing Threats 137

c07.indd 09:44:3:AM 01/09/2014 Page 137

Notes for API Callers

The right design for an API involves many trade-offs, including utility, usability,

and security. Threat modeling that leads to security notes for your callers can

serve two functions. First, those notes can help you understand the security

implications of your design decisions before you fi nalize those decisions. Second,

they can help your customers understand those implications.

These notes address the question “What does someone calling your API need

to do to use it in a secure way?” The notes help those callers know what threats

you address (what security checks you perform), and thus you can tell them

about a subset of the checks they’ll need to perform. (If your security depends

on not telling them about threats then you have a problem; see the section on

Kerckhoffs’s Principles in Chapter 16, “Threats to Cryptosystems.”) Notes to

API callers are generally one of the following types:

 ■ Our threat model is [description]—That is, the things you worry about

are… This should hopefully be obvious to readers of this book.

 ■ Our code will only accept input that looks like [some description]—What

you’ll accept is simply that—a description of what validation you’ll perform,

and thus what inputs you would reject. This is, at a surface level, at odds

with the Internet robustness principle of “be conservative in what you

send, and liberal in what you accept”; but being liberal does not require

foolishness. Ideally, this description is also matched by a set of unit tests.

 ■ Common mistakes in using our code include [description]—This is a

set of things you know callers should or should not do, and are two sides

of the same coin:

 ■ We do not validate this property that callers might expect us to vali-
date—In other words, what should callers check for themselves in their

context, especially when they might expect you to have done something?

 ■ Common mistakes that our code doesn’t or can’t address—In other

words, if you regularly see bug reports (or security issues) because

your callers are not doing something, consider treating that as a design

fl aw and fi xing it.

For an example of callers having trouble with an API, consider the strcpy

function. According to the manual pages included with various fl avors of unix,

“strcpy does not validate that s2 will fi t buffer s1,” or “strcpy requires that s1

be of at least length (s2) + 1.” These examples are carefully chosen, because as

the fi ne manual continues, “Avoid using strcat.” (You should now use SafeStr*

on Windows, strL* on unix.) The manual says this because, although notes

138 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 138

about safer use were eventually added, the function was simply too hard to

use correctly, and no amount of notes to callers was going to overcome that. If

your notes to those calling your API boil down to “it is impossible to use this

API without jumping through error-prone hoops,” then your API is going to

need to change (or deliver some outstanding business value).

Sometimes, however, it’s appropriate to use these sorts of notes to API callers—

for example, “This API validates that the SignedDataBlob you pass in is signed

by a valid root CA. You will still need to ensure that the OrganizationName

fi eld matches the name in the URL, as you do not pass us the URL.” That’s a

reasonable note, because the blob might not be associated with a URL. It might

also be reasonable to have a ValidateSignatureURL() API call.

RFC Security Considerations

IETF RFCs are a form of external security notes, so it’s worth looking at them

as an evolved example of what such notes might contain (Rescorla, 2003). If you

need a more structured form of note, this framework is a good place to start. The

security considerations of a modern RFC include discussion of the following:

 ■ What is in scope

 ■ What is out of scope—and why

 ■ Foreseeable threats that the protocol is susceptible to

 ■ Residual risk to users or operators

 ■ Threats the protocol protects against

 ■ Assumptions which underlie security

Scope is reasonably obvious, and the RFC contains interesting discussion

about not arbitrarily defi ning either foreseeable threats or residual risk as out

of scope. The point about residual risk is similar to non-requirements, as cov-

ered in Chapter 12. It discusses those things that the protocol designers can’t

address at their level.

Scenario-Specifi c Elements of Threat Modeling

There are a few scenarios where the same issues with threat modeling show up

again and again. These scenarios include issues with customer/vendor bound-

aries, threat modeling new technologies, and threat modeling an API (which

is broader than just writing up external security notes). The customer/vendor

trust boundary is dropped with unfortunate regularity, and how to approach

 Chapter 7 ■ Processing and Managing Threats 139

c07.indd 09:44:3:AM 01/09/2014 Page 139

an API or new technology often appears intimidating. The following sections

address each scenario separately.

Customer/Vendor Trust Boundary

It is easy to assume that because someone is running your code, they trust you,

and/or you can trust them. This can lead to things like Acme engineers saying,

“Acme.com isn’t really an external entity... ” While this may be true, it may also

be wrong. Your customers may have carefully audited the code they received

from you. They may believe that your organization is generally trustworthy

without wanting to expose their secrets to you. You holding those secrets is

a different security posture. For example, if you hold backups of their cryp-

tographic keys, they may be subject to an information disclosure threat via a

subpoena or other legal demand that you can’t reveal to them. Good security

design involves minimizing risk by appropriate design and enforcement of the

customer/vendor trust boundary.

This applies to traditional programs such as installed software packages, and

it also applies to the web. Believing that a web browser is faithfully executing

the code you sent it is optimistic. The other end of an HTTPS connection might

not even be a browser. If it is a browser, an attacker may have modifi ed your

JavaScript, or be altering the data sent back to you via a proxy. It is important to

pay attention to the trust boundary once your code has left your trust context.

New Technologies

From mobile to cloud to industrial control systems to the emergent “Internet of

Things,” technologists are constantly creating new and exciting technologies.

Sometimes these technologies genuinely involve new threat categories. More

often, the same threats manifest themselves. Models of threats that are intended

to elicit or organize thinking about skilled threat modelers (such as STRIDE in

its mnemonic form) can help in threat modeling these new technologies. Such

models of threats enable skilled practitioners to fi nd many of the threats that

can occur even as the new technologies are being imagined.

As your threat elicitation technique moves from the abstract to the detailed,

changes in the details of both the technologies and the threats may inhibit your

ability to apply the technique.

From a threat-modeling perspective, the most important thing that design-

ers of new technologies can do is clearly defi ne and communicate the trust

relationships by drawing their trust boundaries. What’s essential is not just

identifi cation, but also communication. For example, in the early web, the trust

model was roughly as shown in Figure 7-2.

140 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 140

Web server

Browser context Server context

Origin 1

Origin 2

Web browser

Figure 7-2: The early web threat model

In that model, servers and clients both ran code, and what passed between

them via HTTP was purely data in the form of HTML and images. (As a model,

this is simplifi ed; early web browsers supported more than HTTP, including

gopher and FTP.) However, the boundaries were clearly drawable. As the web

evolved and web developers pushed the boundary of what was possible with

the browser’s built-in functionality, a variety of ways for the server to run code

on the client were added, including JavaScript, Java, ActiveX, and Flash. This

was an active transformation of the security model, which now looks more like

Figure 7-3.

Flash

Java

Active content

Web server

Browser context Server context

Origin 1

Origin 2

Web browser

Figure 7-3: The evolved web threat model

In this model, content from the server has dramatically more access to the

browser, leading to two new categories of threats. One is intra-page threats, whereby

code from different servers can attack other information in the browser. The

other is escape threats, whereby code from the server can fi nd a way to infl uence

what’s happening on the client computer. In and of themselves, these changes

are neither good nor bad. The new technologies created a dramatic transforma-

tion of what’s possible on the web for both web developers and web attackers.

The transformation of the web would probably have been accomplished with

more security if boundaries had been clearly identifi ed. Thus, those using new

technology will get substantial security benefi ts from its designers by defi ning,

communicating, and maintaining clear trust boundaries.

 Chapter 7 ■ Processing and Managing Threats 141

c07.indd 09:44:3:AM 01/09/2014 Page 141

Threat Modeling an API

API threat models are generally very similar. Each API has a low trust side,

regardless of whether it is called from a program running on the local machine or

called by anonymous parties on the far side of the Internet. On a local machine,

the low trust side is more often clear: The program running as a normal user is

running at a low trust level compared to the kernel. (It may also be running at

the same trust level as other code running with the same user ID, but with the

introduction of things like AppContainer on Windows and Mac OS sandbox,

two programs running with the same UID may not be fully equivalent. Each

should treat the other as being untrusted.) In situations where there’s a clear

“lower trust” side, that unprivileged code has little to do, except ensure that

data is validated for the context in which that data will be used. If it really is at a

lower trust level, then it will have a hard time defending itself from a malicious

kernel, and should generally not try. This applies only to relationships like that

of a program to a kernel, where there’s a defi ned hierarchy of privilege. Across

the Internet, each side must treat the other as untrusted. The “high trust” side

of the API needs to do the following seven things for security:

 ■ Perform all security checks inside the trust boundary. A system has

a trust boundary because the other side is untrusted or less trusted. To

allow the less trusted side to perform security checks for you is missing the

point of having a boundary. It is often useful to test input before sending

it (for example, a user might fi ll out a long web form, miss something, and

then get back an error message). However, that’s a usability feature, not

a security feature. You must test inside the trust boundary. Additionally,

for networked APIs/restful APIs/protocol endpoints, it is important to

consider authentication, authorization, and revocation.

 ■ When reading, ensure that all data is copied in before validation for
purpose (see next bullet). The low, or untrusted side, can’t be trusted to

validate data. Nor can it be trusted to not change data under its control

after you’ve checked it. There is an entire genus of security fl aws called

TOCTOU (“time of check, time of use”) in which this pattern is violated.

The data that you take from the low side needs to be copied into secured

memory, validated for some purpose, and then used without further

reference to the data on the low side.

 ■ Know what purpose the data will be put to, and validate that it matches
what the rest of your system expects from it. Knowing what the data

will be used for enables you to check it for that purpose—for example,

ensure an IPv4 address is four octets, or that an e-mail address matches

some regular expression (an e-mail regular expression is an easily grasped

example, but sending e-mail to the address is better [Celis, 2006]). If the

142 Part III ■ Managing and Addressing Threats

c07.indd 09:44:3:AM 01/09/2014 Page 142

API is a pass-through (for example, listening on a socket), then you may

be restricted to validating length, length to a C-style string, or perhaps

nothing at all. In that case, your documentation should be very clear that

you are doing minimal or no validation, and callers should be cautious.

 ■ Ensure that your messages enable troubleshooting without giving away
secrets. Trusted code will often know things that untrusted code should

not. You need to balance the capability to debug problems with return-

ing too much data. For example, if you have a database connection, you

might want to return an error like “can’t connect to server instance with

username dba password dfug90845b4j,” but anyone who connected

then now knows the DBA’s password. Oops! Messages of the form “An

error of type X occurred. This is instance Y in the error log Z” are helpful

enough to a systems administrator, who can search for Y in Z while only

disclosing the existence of the logs to the attacker. Even better are errors

that include information about who to contact. Messages that merely say

“Contact your system administrator” are deeply frustrating.

 ■ Document what security checks you perform, and the checks you expect
callers to perform for themselves. Very few APIs take unconstrained

input. The HTTP interface is a web interface: It expects a verb (GET, POST,

HEAD) and data. For a GET or HEAD, the data is a URL, an HTTP version,

and a set of HTTP headers. Old-fashioned CGI programs knew that the

web server would pass them a set of headers as environment variables

and then a set of name-value pairs. The environment variables were not

always unique, leading to a number of bugs. What a CGI could rely on

could be documented, but the diverse set of attacks and assumptions that

people could read into it was not documentable.

 ■ Ensure that any cryptographic function runs in a constant time. All your

crypto functions should run in constant time from the perspective of the

low trust side. It should be obvious that cryptographic keys (except the

public portion of asymmetric systems) are a critical subset of the things

you should not expose to low. Crypto keys are usually both a stepping

stone asset and a thing you want to protect asset. See also Chapter 16 on

threats to cryptosystems.

 ■ Handle the unique security demands of your API. While the preceding

issues show up with great consistency, you’re hopefully building a new

API to deliver new value, and that API may also bring new risks that you

should consider. Sometimes it’s useful to use the “rogue insider” model

to help ask “what could we do wrong with this?”

In addition to the preceding checklist, it may be helpful to look to similar or

competitive APIs and see what security changes they’ve executed, although the

security changes may not be documented as such.

 Chapter 7 ■ Processing and Managing Threats 143

c07.indd 09:44:3:AM 01/09/2014 Page 143

Summary

There are a set of tools and techniques that you can use to help threat modeling

fi t with other development, architecture, or technology deployments. Threat

modeling tasks that use these tools happen at the start of a project, as you’re

working through features, and as you’re close to delivery.

Threat modeling should start with the creation of a software diagram (or

updating the diagram from the previous release). It should end with a set of

security bugs being fi led, so that the normal development process picks up and

manages those bugs.

When you’re creating the diagram, start with the broadest description you

can, and add details as appropriate. Work top down, and as you do, at each level

of the diagram(s), work across something: trust boundaries, software elements

or your threat discovery technique.

As you look to create mitigations, be aware that attackers may try to bypass

those mitigations. You want to mitigate the most accessible (aka “fi rst order”)

threats fi rst, and then mitigate attacks against your mitigations. You have to

consider your threats and mitigations not as a static environment, but as a game

where the attacker can move pieces, and possibly cheat.

As you go through these analyses, you’ll want to track discoveries, includ-

ing threats, assumptions, and things your customers need to know. Customers

here include your customers, who need to understand what your goals and

non-goals are, and API callers, who need to understand what security checks

you perform, and what checks they need to perform.

There are some scenario-specifi c call outs: It is important to respect the

customer/vendor security boundary; new technologies can and should

be threat modeled, especially with respect to all the trust boundaries, not just the

customer/vendor one; all APIs have very similar threat models, although there

may be new and interesting security properties of your new and interesting API.

c07.indd 09:44:3:AM 01/09/2014 Page 144

145

c08.indd 12:26:46:PM 01/13/2014 Page 145

So far you’ve learned to model your software using diagrams and learned to

fi nd threats using STRIDE, attack trees, and attack libraries. The next step in

the threat modeling process is to address every threat you’ve found.

When it works, the fastest and easiest way to address threats is through

technology-level implementations of defensive patterns or features. This chapter

covers the standard tactics and technologies that you will use to mitigate threats.

These are often operating system or program features that you can confi gure,

activate, apply or otherwise rapidly engage to defend against one or more threats.

Sometimes, they involve additional code that is widely available and designed to

quickly plug in. (For example, tunneling connections over SSH to add security is

widely supported, and some unix packages even have options to make that easier.)

Because you likely found your threats via STRIDE, the bulk of this chapter

is organized according to STRIDE. The main part of the chapter addresses

STRIDE and privacy threats, because most pattern collections already include

information about how to address the threats.

Tactics and Technologies for Mitigating Threats

The mitigation tactics and technologies in this chapter are organized by STRIDE

because that’s most likely how you found them. This section is therefore orga-

nized by ways to mitigate each of the STRIDE threats, each of which includes

 C H A P T E R

8

Defensive Tactics and

Technologies

146 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 146

a brief recap of the threat, tactics that can be brought to bear against it, and the

techniques for accomplishing that by people with various skills and respon-

sibilities. For example, if you’re a developer who wants to add cryptographic

authentication to address spoofi ng, the techniques you use are different from

those used by a systems administrator. Each subsection ends with a list of

specifi c technologies.

Authentication: Mitigating Spoofi ng

Spoofi ng threats against code come in a number of forms: faking the program on

disk, squatting a port (IP, RPC, etc.), splicing a port, spoofi ng a remote machine,

or faking the program in memory (related problems with libraries and depen-

dencies are covered under tampering); but in general, only programs running

at the same or a lower level of trust are spoofable, and you should endeavor to

trust only code running at a higher level of trust, such as in the OS.

There is also spoofi ng of people, of course, a big, complex subject covered in

Chapter 14, “Accounts and Identity.” Mitigating spoofi ng threats often requires

unusually tight integration between layers of systems. For example, a mainte-

nance engineer from Acme, Inc. might want remote (or even local) access to

your database. Is it enough to know that the person is an employee of Acme? Is

it enough to know that he or she can initiate a connection from Acme’s domain?

You might reasonably want to create an account on your database to allow Joe

Engineer to log in to it, but how do you bind that to Acme’s employee database?

When Joe leaves Acme and gets a job at Evil Geniuses for a Better Tomorrow,

what causes his access to Acme’s database to go away?

N O T E Authentication and authorization are related concepts, and sometimes

confused. Knowing that someone really is Adam Shostack should not authorize a

bank to take money from my account (there are several people of that name in the

U.S.). Addressing authorization is covered in the Authorization: Mitigating Elevation

of Privilege

From here, let’s dig into the specifi c ways in which you can ensure authen-

tication is done well.

Tactics for Authentication

You can authenticate a remote machine either with or without cryptographic

trust mechanisms. Without crypto involves verifying via IP or “classic” DNS

entries. All the noncryptographic methods are unreliable. Before they existed,

there were attempts to make hostnames reliable, such as the double-reverse

DNS lookup. At the time, this was sometimes the best tactic for authentication.

 Chapter 8 ■ Defensive Tactics and Technologies 147

c08.indd 12:26:46:PM 01/13/2014 Page 147

Today, you can do better, and there’s rarely an excuse for doing worse. (SNMP

may be an excuse, and very small devices may be another). As mentioned

earlier, authenticating a person is a complex subject, covered in Chapter 14.

Authenticating on-system entities is somewhat operating system dependent.

Whatever the underlying technical mechanisms are, at some point crypto-

graphic keys are being managed to ensure that there’s a correspondence between

technical names and names people use. That validation cannot be delegated

entirely to machines. You can choose to delegate it to one of the many compa-

nies that assert they validate these things. These companies often do business

as “PKI” or “public key infrastructure” companies, and are often referred to

as “certifi cation authorities” or “CAs”. You should be careful about relying on

that delegation for any transaction valued at more than what the company will

accept for liability. (In most cases, certifi cate authorities limit their liability to

nothing). Why you should assign it a higher value is a question their market-

ing departments hope will not be asked, but the answer roughly boils down to

convenience, limited alternatives, and accepted business practice.

Developer Ways to Address Spoofi ng

Within an operating system, you should aim to use full and canonical path names

for libraries, pipes, and so on to help mitigate spoofi ng. If you are relying on

something being protected by the operating system, ensure that the permissions

do what you expect. (In particular, unix fi les in /tmp are generally unreliable,

and Windows historically has had similarly shared directories.) For networked

systems in a single trust domain, using operating system mechanisms such

as Active Directory or LDAP makes sense. If the system spans multiple trust

domains, you might use persistence or a PKI. If the domains change only rarely,

it may be appropriate to manually cross-validate keys, or to use a contract to

specify who owns what risks.

You can also use cryptographic ways to address spoofi ng, and these are covered

in Chapter 16, “Threats to Cryptosystems.” Essentially, you tie a key to a person, and

then work to authenticate that the key is correctly associated with the person who’s

connecting or authenticating.

Operational Ways to Address Spoofi ng

Once a system is built, a systems administrator has limited options for improv-

ing spoofi ng defenses. To the extent that the system is internal, pressure can be

brought to bear on system developers to improve authentication. It may also be

possible to use DNSSEC, SSH, or SSL tunneling to add or improve authentication.

Some network providers will fi lter outbound traffi c to make spoofi ng harder.

That’s helpful, but you cannot rely on it.

148 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 148

Authentication Technologies

Technologies for authenticating computers (or computer accounts) include the

following:

 ■ IPSec

 ■ DNSSEC

 ■ SSH host keys

 ■ Kerberos authentication

 ■ HTTP Digest or Basic authentication

 ■ “Windows authentication” (NTLM)

 ■ PKI systems, such as SSL or TLS with certifi cates

Technologies for authenticating bits (fi les, messages, etc.) include the following:

 ■ Digital signatures

 ■ Hashes

Methods for authenticating people can involve any of the following:

 ■ Something you know, such as a password

 ■ Something you have, such as an access card

 ■ Something you are, such as a biometric, including photographs

 ■ Someone you know who can authenticate you

Technologies for maintaining authentication across connections include the

following:

 ■ Cookies

Maintaining authentication across connections is a common issue as you

integrate systems. The cookie pattern has fl aws, but generally, it has fewer fl aws

than re-authenticating with passwords.

Integrity: Mitigating Tampering

Tampering threats come in several fl avors, including tampering with bits on

disk, bits on a network, and bits in memory. Of course, no one is limited to

tampering with a single bit at a time.

 Chapter 8 ■ Defensive Tactics and Technologies 149

c08.indd 12:26:46:PM 01/13/2014 Page 149

Tactics for Integrity

There are three main ways to address tampering threats: relying on system

defenses such as permissions, use of cryptographic mechanisms, and use of

logging technology and audit activities as a deterrent.

Permission mechanisms can protect things that are within their scope of

control, such as fi les on disk, data in a database, or paths within a web server.

Examples of such permissions include ACLs on Windows, unix fi le permissions,

or .htaccess fi les on a web server.

There are two main cryptographic primitives for integrity: hashes and

signatures. A hash takes an input of some arbitrary length, and produces a fi xed-

length digest or hash of the input. Ideally, any change to the input completely

transforms the output. If you store a protected hash of a digital object, you can

later detect tampering. Actually, anyone with that hash can detect tampering,

so, for example, many software projects list a hash of the software on their

website. Anyone who gets the bits from any source can rely on them being the

bits described on the project website, to a level of security based on the security

of the hash and the operation of the web site. A signature is a cryptographic

operation with a private key and a hash that does much the same thing. It has

the advantage that once someone has obtained the right public key, they can

validate a lot of hashes. Hashes can also be used in binary trees of various forms,

where large sets of hashes are collected together and signed. This can enable, for

example, inserting data into a tree and noting the time in a way that’s hard to

alter. There are also systems for using hashes and signatures to detect changes

to a fi le system. The fi rst was co-invented by Gene Kim, and later commercial-

ized by Tripwire, Inc. (Kim, 1994).

Logging technology is a weak third in this list. If you log how fi les change,

you may be able to recover from integrity failures.

Implementing Integrity

If you’re implementing a permission system, you should ensure that there’s a

single permissions kernel, also called a reference monitor. That reference monitor

should be the one place that checks all permissions for everything. This has

two main advantages. First, you have a single monitor, so there are no bugs,

synchronization failures, or other issues based on which code path called.

Second, you only have to fi x bugs in one place.

Creating a good reference monitor is a fairly intricate bit of work. It’s hard to

get right, and easy to get wrong. For example, it’s easy to run checks on references

150 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 150

(such as symlinks) that can change when the code fi nally opens the fi le. If you

need to implement a reference monitor, perform a literature review fi rst.

If you’re implementing a cryptographic defense, see Chapter 16. If you’re

implementing an auditing system, you need to ensure it is suffi ciently perfor-

mant that people will leave it on, that security successes and failures are both

logged, and that there’s a usable way to access the logs. You also need to ensure

that the data is protected from attackers. Ideally, this involves moving it off the

generating system to an isolated logging system.

Operational Assurance of Integrity

The most important element of assuring integrity is about process, not

technology. Mechanisms for ensuring integrity only work to the extent that

integrity failures generate operational exceptions or interruptions that are

addressed by a person. All the cryptographic signatures in the world only help

if someone investigates the failure, or if the user cannot or does not override

the message about a failure. You can devote all your disk access operations to

running checksums, but if no one investigates the alarms, they won’t do any

good. Some systems use “whitelists” of applications so only code on the whitelist

runs. That reduces risk, but carries an operational cost.

It may be possible to use SSH or SSL tunneling or IPSec to address network

tampering issues. Systems like Tripwire, OSSEC, or L5 can help with system

integrity.

Integrity Technologies

Technologies for protecting fi les include:

 ■ ACLs or permissions

 ■ Digital signatures

 ■ Hashes

 ■ Windows Mandatory Integrity Control (MIC) feature

 ■ Unix immutable bits

Technologies for protecting network traffi c:

 ■ SSL

 ■ SSH

 ■ IPSec

 ■ Digital signatures

Non-Repudiation: Mitigating Repudiation

Repudiation is a somewhat different threat because it bridges the business

realm, in which there are four elements to addressing it: preventing fraudulent

 Chapter 8 ■ Defensive Tactics and Technologies 151

c08.indd 12:26:46:PM 01/13/2014 Page 151

transactions, taking note of contested issues, investigating them, and respond-

ing to them. In an age when anyone can instantly be a publisher, assuming

that you can ignore the possibility of a customer (or noncustomer) complaint or

contested charge is foolish. Ensuring you can accept customer complaints and

investigate them is outside the scope of this book, but the output from such a

system provides a key validation that you have the right logs.

Note that repudiation is sometimes a feature. As Professor Ian Goldberg

pointed out when introducing his Off-the-Record messaging protocol, signed

conversations can be embarrassing, incriminating, or otherwise undesirable

(Goldberg, 2008). Two features of the Off-the-Record (OTR) messaging system

are that it’s secure (encrypted and authenticated) and deniable. This duality of

feature or threat also comes up in the LINDDUN approach to privacy threat

modeling.

Tactics for Non-Repudiation

The technical elements of addressing repudiation are fraud prevention, logs,

and cryptography. Fraud prevention is sometimes considered outside the scope

of repudiation. It’s included here because managing repudiation is easier if you

have fewer contested transactions. Fraud prevention can be divided into fraud

by internal actors (embezzlement and the like) and external fraud. Internal

fraud prevention is a complex matter; for a full treatment see The Corporate Fraud

Handbook (Wells, 2011). You should have good account management practices,

including ensuring that your tools work well enough that people are not tempted

or forced to share passwords as part of getting their jobs done. Be sure you log

and audit the data in those logs.

Logs are the traditional technical core of addressing repudiation issues. What

is logged depends on the transaction, but generally includes signatures or an

IP address and all related information. There are also cryptographic ways to

address repudiation, which are currently mostly used between larger businesses.

Tactics for Preventing Fraud by External Parties

External fraud prevention can be seen as a matter of payment fraud prevention,

and ensuring that your customers remain in control of their account. In both

cases, details about the state of the art changes quickly, so talk to your peers.

Even the most tight-lipped companies have been willing to have very frank

discussions with peers under NDA.

In essence, stability is good. For example, someone who has been buying

two romance novels a month from you for a decade and is still living at the

same address is likely the person who just ordered another one. If that person

suddenly moves to the other side of the world, and orders technical books in

Slovakian with a new credit card with a billing address in the Philippines, you

152 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 152

might have a problem. (Then again, they might have fi nally found true love,

and you don’t want to upset your loyal customers.)

Tools for Preventing Fraud by External Parties

In their annual report on online fraud, CyberSource includes a survey of

popular fraud detection tools and their perceived effectiveness (CyberSource,

2013). Their 2013 survey includes a set of automated tools:

 ■ Validation services

 ■ Proprietary data/customer history

 ■ Multi-merchant data

 ■ Purchase device tracing

Validation services include tracking verifi cation numbers (aka CVN/CVV),

address verifi cation services, postal address verifi cation, Verifi ed by Visa/

MasterCard SecureCode, telephone number verifi cation/reverse lookups, public

records services, credit checks, and “out-of-wallet/in-wallet” verifi cation services.

Proprietary data and customer history includes customer order history, in

house “negative lists” of problematic customers, “positive lists” of VIP or reliable

customers, order velocity monitoring, company-specifi c fraud models (these

are usually built with manual, statistical, or machine learning analyses of past

fraudulent orders), and customer website behavioral analysis.

Multi-merchant data focuses on shared negative lists or multi-merchant

purchase velocity analyzed by the merchant. (This analysis is nominally also

performed by the card processors and clearing houses, so the additional value

may be transient.)

Finally, purchase device tracking includes device “fi ngerprinting” and IP

address geolocation. The CyberSource report also discusses the importance of

tools to help manual review, and how a varied list is both very helpful and time

consuming. Because manual review is one of the most expensive components

of an anti-fraud approach to repudiation threats, it may be worth investing in

tools to gather all the data into one (or at least fewer) places to improve analyst

productivity.

Implementing Non-Repudiation

The two key tools for non-repudiation are logging and digital signatures. Digital

signatures are probably most useful for business-to-business systems.

Log as much as you can keep for as long as you need to keep it. As the price

of storage continues to fall, this advice becomes easier and easier to follow. For

example, with a web transaction, you might log IP address, current geoloca-

tion of that address, and browser details. You might also consider services that

 Chapter 8 ■ Defensive Tactics and Technologies 153

c08.indd 12:26:46:PM 01/13/2014 Page 153

either provide information on fraud or allow you to request decision advice. To

the extent that these companies specialize, and may have broader visibility into

fraud, this may be a good area of security to outsource. Some of the information

you log or transfer may interact with your privacy policies, and it’s important

to check.

There are also cryptographic digital signatures. Digital signature should be

distinguished from electronic signature, which is a term of art under U.S. law

referring to a variety of mechanisms with which to produce a signature, some

as minimalistic as “press 1 to agree to these terms and conditions.” In contrast,

a digital signature is a mathematical transformation that demonstrates irrefut-

ably that someone in possession of a mathematical key took an action to cause a

signature to be made. The strength of “irrefutable” here depends on the strength

of the math, and the tricky bits are possession of the key and what human intent

(if any) may have lain behind the signature.

Operational Assurance of Non-Repudiation

When a customer or partner attempts to repudiate a transaction, someone needs

to investigate it. If repudiation attempts are frequent, you may need dedicated

people, and those people might require specialized tools.

Non-Repudiation Technologies

Technologies you can use to address repudiation include:

 ■ Logging

 ■ Log analysis tools

 ■ Secured log storage

 ■ Digital signatures

 ■ Secure time stamps

 ■ Trusted third parties

 ■ Hash trees

 ■ As mentioned in “tools for preventing fraud” above

Confi dentiality: Mitigating Information Disclosure

Information disclosure can happen with information at rest (in storage) or in

motion (over a network). The information disclosed can range from the con-

tent of communication to the existence of an entity with which someone is

communicating.

154 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 154

Tactics for Confi dentiality

Much like with integrity, there are two main ways to prevent information dis-

closure: Within the confi nes of a system, you can use ACLs, and outside of it

you must use cryptography.

If what must be protected is the content of the communication, then traditional

cryptography will be suffi cient. If you need to hide who is communicating with

whom and how often, you’ll need a system that protects that data, such as a

cryptographic mix or onion network. If you must hide the fact that communica-

tion is taking place at all, steganography will be required.

Implementing Confi dentiality

If your system can act as a reference monitor and control all access to the data,

you can use a permissions system. Otherwise, you’ll need to encrypt either the

data or its “container.” The data might be a fi le on disk, a record in a database, or

an e-mail message as it transits over the network. The container might be a fi le

system, database, or network channel, such as all e-mail between two systems,

or all packets between a web client and a web server.

In each cryptographic case, you have to consider who needs access to the keys

for encrypting and the decrypting data. For fi le encryption, that might be as

simple as asking the operating system to securely store the key for the user so

that the user can get to it later. Also, note that encrypted data is not integrity

controlled. The details can be complex and tricky, but consider a database of

salaries, where the cells are encrypted. You don’t need to know the CEO’s sal-

ary to know that replacing your salary with it is likely a good thing (for you);

and if there’s no integrity control, replacing the encrypted value of your salary

with the CEO’s salary will do just fi ne.

An important subset of information disclosure cases related to the storage

of passwords or backup authentication mechanisms is considered in depth in

Chapter 14.

Operational Assurance of Confi dentiality

It may be possible to add ACLs to an already developed system, or to use chroot

or similar sandboxes to restrict what it can access. On Windows, the addition

of a SID to a program and an inherited deny ACL for that SID may help (or it

may break things). It is usually possible to add a disk or fi le encryption layer to

protect information at rest from disclosure. Disk crypto will work “by default”

with all the usual caveats about how keys are managed. It works for adversarial

custody of the machine, but not if the password is written down or otherwise

stored with the machine. With regard to a network, it may be possible to use

SSH or SSL tunneling or IPSec to address network tampering issues.

 Chapter 8 ■ Defensive Tactics and Technologies 155

c08.indd 12:26:46:PM 01/13/2014 Page 155

Confi dentiality Technologies

Technologies for confi dentiality include:

 ■ Protecting fi les:

 ■ ACLs/permissions

 ■ Encryption

 ■ Appropriate key management

 ■ Protecting network data:

 ■ Encryption

 ■ Appropriate key management

 ■ Protecting communication headers or the fact of communication:

 ■ Mix networks

 ■ Onion routing

 ■ Steganography

N O T E In the preceding lists, “appropriate key management” is not quite a

technology, but is so important that it’s included.

Availability: Mitigating Denial of Service

Denial-of-service attacks work by exhausting some resource. Traditionally,

those resources are CPU, memory (both RAM and hard drive space can be

exhausted), and bandwidth. Denial-of-service attacks can also exhaust human

availability. Consider trying to call the reservations line of a very exclusive

restaurant—the French Laundry in Napa Valley books all its tables within 5

minutes of the phone being open every day (for a day 30 days in the future).

The resource under contention is the phone lines, and in particular the people

answering them.

Tactics for Availability

There are two forms of denial of service attacks: brute force and clever. Using

the restaurant example, brute force involves bringing 100 people to a restaurant

that can seat only 25. Clever attacks bring 20 people, each of whom makes an

ever-escalating list of requests and changes, and runs the staff ragged. In the

online world, brute force attacks on networks are somewhat common under the

name DDoS (Distributed Denial of Service). They can also be carried out against

CPU (for example, while(1) fork()) or disk. It’s simple to construct a small zip

156 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 156

fi le that will expand to whatever limit might be in place: the maximum size of a

fi le or space on the fi le system. Recall that a zip fi le is structured to describe the

contents of the real fi le as simply as possible, such as 65,535 0s. That three-byte

description will expand to 64K, for a magnifi cation effect of over 21,000—which

is awfully cool if you’re an attacker.

Clever denial-of-service attacks involve a small amount of work by an attacker

that causes you to do a lot of work. For example, connecting to an SSL v2 server,

the client sends a client master key challenge, which is a random key encrypted

such that the server does (relatively) expensive public key operations to decrypt

it. The client does very little work compared to the server. This can be partially

addressed in a variety of ways, most notably the Photuris key management

protocol. The core of such protocols is proof that the client has done more work

than the server, and the body of approaches is called proof of work. However,

in a world of abundant bots and volunteers to run DDoS software for political

causes, Ben Laurie and Richard Clayton have shown reasonably conclusively

that “Proof-of-Work Proves Not to Work” (in a paper of that name [Laurie]).

A second important strategy for defending against denial-of-service attacks

is to ensure your attacker can receive data from you. For example, defenses

against SYN fl ooding attacks now take this form. In a SYN fl ood attack, a host

receives a lot of connection attempts (TCP SYNchronize) and it needs to keep

track of each one to set up new connections. By sending a slew of those, operat-

ing systems in the 1990s could be run out of memory in the fi xed-size buffers

allocated to track SYNs, and no new connections could be established. Modern

TCP stacks calculate certain parts of their response to a SYN packet using

some cryptography. They maintain no state for incoming packets, and use the

cryptographic tools to validate that new connections are real (Rescorla, 2003).

Implementing Availability

If you’re implementing a system, consider what resources an attacker might

consume, and look for ways to limit those resources on a per-user basis.

Understand that there are limits to what you can achieve when dealing with

systems on the other side of a trust boundary, and some of the response needs

to be operational. Ensure that the operators have such mechanisms.

Operational Assurance of Availability

Addressing brute force denial-of-service attacks is simple: Acquire more resources

such that they don’t run out, or apply limits so that one bad apple can’t spoil

things for others. For example, multi-user operating systems implement quota

systems, and business ISPs may be able to fi lter traffi c coming from certain sources.

 Chapter 8 ■ Defensive Tactics and Technologies 157

c08.indd 12:26:46:PM 01/13/2014 Page 157

Addressing clever attacks is generally in the realm of implementation, not

operations.

Availability Technologies

Technologies for protecting fi les include:

 ■ ACLs

 ■ Filters

 ■ Quotas (rate limiting, thresholding, throttling)

 ■ High-availability design

 ■ Extra bandwidth (rate limiting, throttling)

 ■ Cloud services

Authorization: Mitigating Elevation of Privilege

Elevation of privilege threats are one category of unauthorized use, and the only

one addressed in this section. The overall question of designing authorization

systems fi lls other books.

Tactics for Authorization

As discussed in the section “Implementing Integrity,” having a reference moni-

tor that can control access between objects is a precursor to avoiding several

forms of a problem, including elevation of privilege. Limiting the attack surface

makes the problem more tractable. For example, limiting the number of setuid

programs limits the opportunity for a local user to become root. (Technically,

programs can be setuid to something other than root, but generally those

other accounts are also privileged.) Each program should do a small number

of things, and carefully manage their input, including user input, environment,

and so on. Each should be sandboxed to the extent that the system supports it.

Ensure that you have layers of defense, such that an anonymous Internet user

can’t elevate to administrator with a single bug. You can do this by having the

code that listens on the network run as a limited user. An attacker who exploits

a bug will not have complete run of the system. (If they’re a normal user, they

may well have easy access to many elevation paths, so lock down the account.)

The permission system needs to be comprehensible, both to administrators

trying to check things and to people trying to set things. A permission system

that’s hard to use often results in people incorrectly setting permissions, (tech-

nically) enabling actions that policy and intent mean to forbid.

158 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 158

Implementing Authorization

Having limited the attack surface, you’ll need to very carefully manage the

input you accept at each point on the attack surface. Ensure that you know what

you want to accept and how you’re going to use that input. Reject anything that

doesn’t match, rather than trying to make a complete list of bad characters. Also,

if you get a non-match, reject it, rather than try to clean it up.

Operational Assurance of Authorization

Operational details, such as “we need to expose this to the Internet” can often

lead to those deploying technology wanting to improve their defensive stance.

This usually involves adding what can be referred to as defense in depth or layered
defense. There are several ways to do this.

First, run as a normal or limited user, not as administrator/root. While techni-

cally that’s not a mitigation against an elevation-of-privilege threat, but a har-

binger of such, it’s inline with the “principle of least privilege.” Each program

should run as its own limited user. When unix made “nobody” the default

account for services, the nobody account ended up with tremendous levels of

authorization. Second, apply all the sandboxing you can.

Authorization Technologies

Technologies for improving authorization include:

 ■ ACLs

 ■ Group or role membership

 ■ Role based access control

 ■ Claims-based access control

 ■ Windows privileges (runas)

 ■ Unix sudo

 ■ Chroot, AppArmor or other unix sandboxes

 ■ The “MOICE” Windows sandbox pattern

 ■ Input validation for a defi ned purpose

N O T E MOICE is the “Microsoft Offi ce Isolated Conversion Environment.” The name

comes from the problem that led to the pattern being invented, but the approach can

now be considered a pattern for sandboxing on Windows. For more on MOICE, see

(LeBlanc, 2007).

 Chapter 8 ■ Defensive Tactics and Technologies 159

c08.indd 12:26:46:PM 01/13/2014 Page 159

N O T E Many Windows privileges are functionally equivalent to administrator, and

may not be as helpful as you desire. See (Margosis, 2006) for more details.

Tactic and Technology Traps

There are two places where it’s easy to get pulled into wasting time when

working through these technologies and tactics. The fi rst distraction is risk

management. The tactics and technologies in this chapter aren’t the only ways

to address threats, but they are the best place to start. When you can use them,

they will be easier to implement and work better than more complex or nuanced

risk management approaches. For example, if you can address a threat by chang-

ing a network endpoint to a local endpoint, there’s no point to engaging in

the more time consuming risk management approaches covered in the next

chapter. The second distraction is trying to categorize threats. If you found a

threat via brainstorming or just the free fl ow of ideas, don’t let the organization

of this chapter fool you into thinking you should try to categorize that threat.

Instead, focus on fi nding the best way to address it. (Teams can spend longer

in debate around categorization than it would take to implement the fi x they

identifi ed—changing permissions on a fi le.)

Addressing Threats with Patterns

In his book, A Pattern Language, architect Christopher Alexander and his col-

leagues introduced the concept of architectural patterns (Alexander, 1977). A

pattern is a way of expressing how experts capture ways of solving recurring

problems. Patterns have since been adapted to software. There are well-understood

development patterns, such as the three-tier enterprise app.

Security patterns seem like a natural way to group and communicate about

tactics and technologies to address security problems into something larger.

You can create and distribute patterns in a variety of ways, and this section

discusses some of them. However, in practice, these patterns have not been

popular. The reasons for this are not clear, and those investing in using patterns

to address security problems would likely benefi t from studying the factors that

have limited their popularity.

Some of those factors might include engineers not knowing when to reach

for such a text, or the presentation of security patterns as a distinct subset,

apart from other patterns. At least one web patterns book (Van Duyne, 2007)

includes a chapter on security patterns. Embedding security patterns where

non-specialists are likely to fi nd them seems like a good pattern.

160 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 160

Standard Deployments

In many larger organizations, an operations group will have a standard way

to deploy systems, or possibly several standard ways, depending on the data’s

sensitivity. In these cases, the operations group can document what sorts of

threats their standard deployment mitigates, and provide that document as

part of their “on-boarding” process. For example, a standard data center at

an organization might include defenses against DDoS, or state that “network

information disclosure is an accepted risk for risk categories 1–3.”

Addressing CAPEC Threats

CAPEC (MITRE’s Common Attack Pattern Enumeration and Classifi cation) is

primarily a collection of attack patterns, but most CAPEC threat patterns include

defenses. This chapter has primarily organized threats according to STRIDE.

If you are using CAPEC, each CAPEC pattern includes advice about how to

address it in its “Solutions and Mitigations” section. The CAPEC website is the

authoritative source for such data.

Mitigating Privacy Threats

There are essentially three ways to address privacy threats: Avoid collecting

information (minimization), use crypto in various clever ways, and control

how data is used (compliance and policy). Cryptography is a technology, while

minimization and compliance are more tactics you can apply. Each requires

effort to integrate into your design or implementation.

Minimization

 Perhaps obviously, it is impossible to use information you don’t have in a way

that impacts someone’s privacy. Therefore, minimizing your collection and reten-

tion of information reduces risk. Minimizing what you collect is by far more

reliable than attempting to use policy controls on the data. Of course, it also

eliminates any utility that you can get from that data. As such, minimization

is generally a business call regarding risk and reward. Over the past decade,

with breach disclosure laws, the balance of factors related to decisions about

the collection and retention of information have changed dramatically. Some

legal scholars have gone so far as to compare personal data to toxic waste. Holly

 Chapter 8 ■ Defensive Tactics and Technologies 161

c08.indd 12:26:46:PM 01/13/2014 Page 161

Towle, an attorney specializing in electronic commerce, offers 10 principles for

handling toxic waste, or personally identifying information (PII). Each of these

is addressed in depth in her article (Towle, 2009):

 ■ Do not touch it unless you have to.

 ■ If you have to touch it, learn how or whether to do so—mistakes can be

fatal or at least seriously damaging.

 ■ Do not use normal methods to transport (transfer) it.

 ■ Attempt to crack the whip over contractor handling it.

 ■ Do not store some of it at all.

 ■ Store what you need but in a manner avoiding spills, and limit access.

 ■ Be alert for suspicious odors and other red fl ags.

 ■ Report spills to the relevant people and agencies.

 ■ Dispose of it only by special means.

 ■ Get ready to be sued or incur often unreasonable expenses no matter how

much care you take.

Minimization is a conceptually simple way to address privacy. In practice,

however, it can become complex and contentious. The value of collecting data is

easy to see, and it’s hard to know what you’ll be unable to do if you don’t collect it.

Cryptography

There are a variety of ways to use cryptographic techniques to address privacy

concerns. The applicability of each is dependent on the threat model, in the

sense of who you’re worried about. Each of these techniques is the subject of a

great deal of research, so rather than try to provide a full description of each

technique and risk leaving out key details, the following sections explain where

each is useful as a response to a threat.

Hashing or Encrypting Data

If your privacy concern is someone accidentally viewing data, or running simple

database queries, it may help to encrypt the data. If you want a record that can

only be accessed once someone has a specifi c string (such as an e-mail address

or SSN), you can use a cryptographic hash of that data. For example, if you store

hash(adam.shostack@example.com), then only someone who knows that e-mail

address can look it up.

162 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 162

W A R N I N G Simple hashing doesn’t protect your data if the attacker is willing to

build a “dictionary” and hash each term in the dictionary. For SSNs, that’s only a billion

hashes to run, which is cheap on modern hardware. Hashing is therefore not the right

defense if your data is low entropy, either because the data is short strings, or because

it’s highly structured. In those cases, you’ll likely want to encrypt, and use a unique

key and initialization vector per plaintext.

Split-Key Systems

Splitting keys is useful when you’re concerned about the threat of someone

decrypting the data without authorization. It’s possible to encrypt data with

multiple keys, such that all or some fraction of the keys is needed to decrypt it.

For example, if you store m = ek1(ek2(plaintext)), then to decrypt m, you need

the party that holds k1 to decrypt the m, then send that to whomever holds k2.

If you’re worried about availability threats, there are split-key cryptographic

systems for which the keys are mathematically related, and you only need

k-of-n keys to get the plaintext out of the system. Such systems encrypt the data

with n keys. Those n keys are mathematically related in ways which allow any

k of the n keys to decrypt the data. These are useful, for example, for backing

up the master key to a system where that master key may be needed a decade

later. Such a system is used to backup the root keys for DNSSEC.

Private Information Retrieval

If the threat is a database owner watching a client’s queries and learning from

them, then a set of techniques called private information retrieval may be useful.

Private information retrieval techniques are generally fairly bandwidth inten-

sive, as they often retrieve far more information than is desired to get at the

data without revealing anything to the database owner.

Diff erential Privacy

When the threat is a database client running multiple queries to violate the

database owner’s privacy policies, differential privacy provides the database

owner with a way to fi rst measure how much information has been given out,

and then stop answering queries that provide additional information. This does

not mean that the database needs to stop answering queries. Many queries will

not change, or differentiate, the amount of information that can be inferred,

even after the database has reached a specifi ed privacy limit.

 Chapter 8 ■ Defensive Tactics and Technologies 163

c08.indd 12:26:46:PM 01/13/2014 Page 163

N O T E Diff erential privacy off ers very strong protection for a very specifi c defi nition

of privacy.

Mixes and Mix-Like Systems

A mix is a system for preventing traffi c analysis and providing untracability

to message senders or recipients. That is, an observer should not be able to

trace a message back to a person after it has been through a mix. Mixes work

by maintaining a pool of messages, and now and then sending messages out.

To avoid trusting a single mix, there may be a network of mixes operated by

different parties.

There are two major modes in which mixes operate: interactive-time and

batch. Interactive-time mixes can be used for scenarios like web browsing, but

are less secure against traffi c analysis. There are also interactive systems that

do not mix traffi c but aim to conceal its source and destination. Such interactive

systems include Tor.

Blinding

Blinding helps defend against surveillance threats that use cryptographic keys

as identifi ers. For example, if Alice is worried that a certifi cate authority might

track her vote, then she might want a voting registration system that can do

deep checking to ensure that she is authorized to vote, providing her with an

anonymous voting chit that can be used to prove her right to vote. Online, this

can be done through the use of blinding.

Blinding is a cool math trick that can solve real problems. The math may look

a little intimidating, but you can understand it with high school algebra. Think

of signing as doing exponentiation modulo p. (Modulo is a remainder—1 mod

12 is 1, 14 mod 12 is 2, where 14 mod 10 is 4. The modulo math is needed for

certain security properties.) Therefore if s is the signature, a is Alice’s key, and

c is the CA’s key, then a signature is s = ac mod p. Normally, the CA calculates

the signature, and sends s back to Alice. Now the CA knows s, and can use

that knowledge. So how can the CA calculate s without knowing it? Because

multiplication is commutative, the CA can calculate something related to s.
Blinding works by Alice multiplying her key by some blinding factor (b) before

sending the product of that multiplication (ab) to the CA. The CA then calculates

s = (ab)c mod p, and sends s to Alice. Alice then divides s by b, and s/b = ac. So

Alice now knows s/b, which appears for all the world like a signature on a, but

the CA doesn’t know that a is associated with Alice. The math shown here is

164 Part III ■ Managing and Addressing Threats

c08.indd 12:26:46:PM 01/13/2014 Page 164

a subset of what’s needed to do this securely, with the goal of giving you an

idea of how it works. Proper blinding requires that you deal with a plethora

of mathematical threats, which are covered in a book such as (Ferguson, 2012).

Compliance and Policy

To the extent that a business decision has been made to gather and store sensi-

tive information about people, the organization needs to put controls around it.

Those controls can either be policy or technical, and they can meet either your

business need or regulatory needs, or both. These approaches are not as crisp

as the tools and tactics you can apply to security problems, and to the extent

that you can apply minimization or cryptography to privacy problems, it will

be easier and more effective.

Policies

The fi rst class of controls are organizational policies that specify who can do

what with the information. From the technologist’s perspective, these can be

frustratingly vague statements, such as “only authorized people will be allowed

access.” However, they are an important fi rst step in setting requirements.

From a statement like that you can derive a technical approach, such as “only a

security group can access the data.” Then you’ll need to ensure that that policy

is enforced across a variety of information systems, and then you’re at the level

of tactics and technologies.

Regulatory Requirements

Personal data is subject to a long and complex list of privacy rules that differ

from jurisdiction to jurisdiction. As with everything else covered in this book,

this section on mitigating privacy threats is not intended to replace proper

legal advice.

There’s one other thing to be said about mitigating privacy threats to your

organization. In many cases, organizations are required by law to collect and

protect a set of information that they must treat as toxic waste, at great expense. It

makes a great deal of privacy sense for organizations and their industry groups

to argue against requirements to gather such data. That includes rolling back

existing mandates and holding fi rm against new mandates to collect data that

you’d prefer not to hold.

Summary

The best way to address threats is to use standard, well-tested features or prod-

ucts that add security against the threats you’ve identifi ed. These tactics and

 Chapter 8 ■ Defensive Tactics and Technologies 165

c08.indd 12:26:46:PM 01/13/2014 Page 165

technologies are available to address each of the STRIDE threats. There are

tactics and technologies available to both developers and operations.

Authentication technologies mitigate spoofi ng threats. You can authenticate

computers, bits, or people. Integrity technologies mitigate tampering threats.

Generally, you want integrity protection for fi les and network connections.

Non-repudiation technologies mitigate repudiation, which can include fraud

and other repudiations. Anti-fraud technologies include validation services, or

use of customer history that’s either local or shared by others. There are also

a variety of cryptographic and operational measures you can take to increase

assurance around your logs. Information disclosure threats are addressed by

confi dentiality technologies. Those can be most easily applied to fi les or net-

work connections; however, it can also be important to protect container data,

such as fi lenames or the fact of communication. Preventing denial of service

involves ensuring that code doesn’t have arbitrary limits that prevent it from

taking advantage of all the available resources. Preventing elevation of privilege

generally works by fi rst ensuring that the code is constrained by mechanisms

such as ACLs, and then by more complex sandboxes.

Patterns are collections of tactics and technologies. They seem like a natural

approach. For reasons which are unclear, they haven’t really taken off, and

those who are considering using them would be advised to understand why.

Mitigating privacy threats is best done by minimizing what you collect, and

then applying cryptography; however, there are limits to the tactics and technolo-

gies available, and sometimes you must fall back to compliance tools or policy.

The issue of standard tactics and technologies not being applicable every-

where is not limited to privacy. In the next chapter, you’ll learn about making

structured tradeoffs between ways to address threats.

167

c09.indd 09:44:28:AM 01/09/2014 Page 167

After you create a list of threats, you should consider whether standard approaches

will work. It is often faster to do so than to assess the risk trade-offs and the variety

of ways you might deal with the problem. Of course, it’s helpful to understand

that there are ways to manage risks other than the tactics and technologies you

learned about in Chapter 8, “Defensive Tactics and Technologies,” and those

more complex approaches are the subject of this chapter.

For each threat in your list, you need to make one or more decisions. The

fi rst decision is your strategy: Should you accept the risk, address it, avoid it, or

transfer it? If you’re going to address it, you must next decide when, and then

how? There are a variety of ways to think about when to address the threat.

Table 9-1 provides an example to make these choices appear more concrete and

to help separate them:

Table 9-1: Sample Risk Approach Tracking Table

ITEM # THREAT

WHY NOT USE STANDARD

MITIGATION? STRATEGY APPROACH

1 Physical

tampering

We don’t own the hardware. Accept Document

on website

This may seem like a lot of things to do for every threat, but the fi rst approach

to fi xing most issues is to try to apply standard mitigations, and only look for

an alternative when that fails.

 C H A P T E R

9

Trade-Off s When Addressing

Threats

168 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 168

This chapter fi rst teaches you about risk management, in the sense of avoid-

ing, addressing, accepting, or transferring risks. You’ll learn how to apply risk

management to software design. From there, you’ll learn about a variety of

threat-specifi c prioritization approaches, ranging from the simple to the complex.

The chapter also covers risk acceptance, and closes with a brief discussion of

arms races in mitigation strategies.

Classic Strategies for Risk Management

As you consider each threat, you should make three decisions. Logically, these

can be ordered as follows:

 1. What’s the level of risk?

 2. What do you want to do to address that risk?

 3. How are you going to achieve that?

Strategizing in this manner can be expensive. Therefore, when there is an easy

way to address a problem, you should skip strategizing and just address it. Not

only is it easier, it avoids the possibility that your risk management approach

will lead you astray.

When you do fi nd it necessary to strategize, a few classic strategies exist for

addressing risks: You can avoid them, address them, accept them, or transfer

them. You can also ignore risks, but that option is not ignored in this section.

Avoiding Risks

Avoiding risks is a great approach to the extent that you can do so. A good risk

assessment can help you determine whether a risk is greater than the potential

reward. If it is, then the risk may be worth avoiding. As the saying goes, “a ship

in the harbor is safe, but that is not what ships are for.” So how do you avoid a

risk? You don’t build the feature, or you change the design suffi ciently that the

risk disappears.

Addressing Risks

Addressing risks is also a perfectly valid approach. The main ways you do so

are via design changes (such as adding cryptography) or operational processes.

Design and operational changes were covered in Chapter 8.

 Chapter 9 ■ Trade-Offs When Addressing Threats 169

c09.indd 09:44:28:AM 01/09/2014 Page 169

Accepting Risks

You can choose to accept a risk by deciding to accept all the costs of things going

wrong. This is easier when you’re operating a service than when you’re building

a product. You can’t accept risk on behalf of your users or customers—if there’s

risk that affects them, that risk is transferred.

Sometimes a threat is real but the probability is very low, or the impact is

minor. In these situations, it’s probably reasonable to accept the risk. Before

doing so, it may be helpful to reassess both the probability and the impact,

asking whether there are any factors that would change either (e.g., “do not

use Panexa while pregnant or when you might become pregnant”). It can also

be illuminating to ask whether you would accept the risk for yourself, if you

couldn’t hand it to customers or others. Note that the word “illuminating” is

used, rather than “useful.”

Risk acceptance differs from “ignore it” or “wait and see” (see the sections

on each later in this chapter) insofar as it entails accepting that certain things

are real risks. For example, Microsoft treats threats that involve unconstrained

access to hardware as non-threats (Culp, 2013), and is explicit about the risk

acceptance and the rationale behind that decision.

Transferring Risks

Risks that fall on your customers or end users are transferred risks. Many

products bundle some level of risk with them, and use some combination of

terms of service, licensing agreements, or user interface to transfer the risk. You

should clearly disclose such risks.

Ignoring Risks

A traditional approach to risk in information security is to ignore it. Approaches

to measuring risk have been hampered by an orientation towards secrecy and

obscurity. Historically, both the occurrence of each breach and impact infor-

mation has been generally kept secret. As a result, calculating frequency and

making predictions have been hard, and a de facto strategy of ignoring risks

emerged. From an executive standpoint, this strategy was highly effective, if

frustrating for security staff.

This approach is becoming less effective as a combination of contracts, law-

suits, and laws increase the risk of ignoring risks. In particular, a variety of new

American laws make ignoring information security risks more risky. They include

breach disclosure laws, general information security laws, sectorial information

security laws, and Federal law for public companies. Breach disclosure laws

170 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 170

usually do not (directly) regulate information security, but require disclosure

when it fails. Some states now have general security laws that apply to any stor-

age of certain types of personal information. Outside of the U.S., there may also

be requirements to disclose security breaches, especially those that involve a

loss of control of personal information, or in certain sectors (such as telecom-

munications in Europe). The overall regulatory situation around security risks

is also rapidly evolving, and disclosures are helping security professionals learn

from each other’s mistakes, and focus attention on important issues.

Finally, if you are threat modeling and create a list of security problems that

you decide not to address, please send a copy of the list to the author, care of the

publisher. There will be quarterly auctions to sell them to plaintiff’s attorneys

(or other interested parties). Even if you don’t send them to me, they may be

revealed by whistleblowers, accidentally shared or disclosed, or discovered as

part of a legal action. All in all, it seems that “ignore it” is a riskier proposition

than it has been before.

Selecting Mitigations for Risk Management

There are many ways to select mitigations. The following sections describe

how to integrate risk management into your decisions about how to mitigate

threats. The ways to mitigate cover a spectrum, with risk increasing as you

move from changing the design through standard tactics and technologies to

designing your own.

Changing the Design

The fi rst way to address risks in a design is to eliminate the features to elimi-

nate the risks. For example, if you have payroll software that is accessible to

the entire Internet without authentication, then changing the design so that it’s

only available on your corporate intranet will reduce the risk. This aligns with

the risk-avoidance approach. Unfortunately, carried to its logical conclusion,

this leaves you with software that doesn’t do anything at all. While that has a

Zen simplicity to it, Zen simplicity is usually not a requirement; features are.

This brings you to the second way to address risks: Change the design by

adding features that reduce risks. For example, you can redesign the software

to add authentication and authorization features.

There are two ways to think about changing designs: iterative and

comparative. Iterative means altering a small number of components, with each

change intended to reduce the number of components or trust boundaries or

 Chapter 9 ■ Trade-Offs When Addressing Threats 171

c09.indd 09:44:28:AM 01/09/2014 Page 171

otherwise eliminate some threats. The comparative method means coming up

with two or more designs, and then comparing them. This would appear to be

more expensive, and in the short term it is. However, it is common for iterative

design to involve many iterations, so often it is more cost-effective (especially

in the early days) to consider several designs and choose between them.

For an example of how one might change a design, consider Figure 9-1, which

depicts a threat model for sending single-use login tokens to phones. (These

tokens are often called one time tokens, abbreviated OTT.) There are many advan-

tages to this type of authentication, including the capability to deploy to all

sorts of phones, including voice-only phones, “dumb” mobile phones, and

smartphones. The downside is a plethora of places where that token is subject

to information disclosure.

Those places include the varied systems responsible for mobile phone roaming

and the “femtocell” base stations that telephone companies distribute. They also

include things such as Google Voice or iMessage, which put text messages onto

the Internet in various ways. (These products are mentioned only as examples,

rather than a comment on their security.)

Login System Telco interface Number routing

1. Authentication
Challenge

Expected OTT
Organization

2. Phone #
2a Phone #

2b Telco

2c Telco

Google Voice

4. OTT

5. OTT

Roaming Routing

Femtocell Routing

3. phone #,
OTT

Customer Effective
Telco

iMessage

Mobile Phone

(or)
(Non-exclusive)

Figure 9-1: An OTT threat model

172 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 172

There’s a variety of ways to change the design and address the information

disclosure threats that apply to Figure 9-1. Simplifi ed versions of ways to address

these threats follow. In each, m1 is a message from the server to the client, while

m2 is a response.

 ■ Send a nonce, encrypted to a key held on a smartphone, and then send

the decrypted nonce to the authentication server. The server checks that

the noncen is the one that it encrypted for the phone, and if it is, approves

the transaction. (m1 = ephone(noncen), m2 = noncen).

 ■ Send a nonce to the smartphone, and then send a signed version of the

nonce to the server. The server validates that the signature on the noncephone

is from the expected phone, and that it is a good signature on the expected

nonce. If both checks pass, then the server approves the transaction. (m1

= noncephone, m2 = signphone(noncephone)).

 ■ Send a nonce to the smartphone. The smartphone hashes the nonce with

a secret value it shares with the server, and then sends that hash back.

m1 = noncephone , m2 = hashphone(noncephone)).

It’s important to manage the keys appropriately for each of these methods

and to understand these are simplifi ed examples; they do not include time

stamps, message addressing, and other elements to make the system fully

secure. Including those in this discussion makes it hard to see the ways in which

cryptographic building blocks could be applied.

The key in all design changes is to understand the differences introduced by

the changes, and how those changes interact with the software requirements

as a whole.

N O T E This model and some ways to address the threats, are worked through in

more detail in Appendix E, “Case Studies.”

For another example of comparative threat modeling, consider the two sys-

tems shown in Figures 9-2 and 9-3. Figure 9-2 depicts an e-mail system, and

Figure 9-3 is a version of 9-2 with a “lawful intercept” module added. (“Lawful

intercept” is an Orwellian phrase for “thing which allows people to bypass the

security features of your system.” Setting aside any arguments of “should we as

a society have such a mechanism?” it’s possible to assess the technical security

implications of adding such mechanisms.)

It should be obvious that Figure 9-2 is more secure than Figure 9-3. Using

software-centric modeling, Figure 9-3 adds two data fl ows and a process; thus,

by STRIDE-per-element, it has an additional 12 threats (tampering, informa-

tion disclosure, DoS with each fl ow, for 6; and the six S,T,R, I, D, and E threats

against the process for a total of 12). Additionally, Figure 9-3 has two apparent

groupings of elevation-of-privilege threats: those posed by outsiders and those

 Chapter 9 ■ Trade-Offs When Addressing Threats 173

c09.indd 09:44:28:AM 01/09/2014 Page 173

posed by software-allowed, but human-policy-violating, use. Thus, if Figure 9-2

has a list of threats (1…n), then Figure 9-3 has a list of threats (1…n+14).

Acme E-mail InternetClient

Figure 9-2: An e-mail system

Acme E-mail InternetClient

Acme Lawful
Access Module Government

Figure 9-3: The same e-mail system with a lawful access module

If instead of software-centric modeling you use attacker-centered modeling

on the systems shown in Figures 9-2 and 9-3, you fi nd two sets of threats: First,

each law enforcement agency that is authorized to connect adds its employees

and IT systems as possible threats, and possible threat vectors. Second, attackers

are likely to attack these features of the system to abuse them. The 2010 “Aurora”

attacks on Google and others allegedly did exactly this (McMillan, 2010, and

Adida, 2013). Thus, by comparing them you can see that the addition of these

features creates additional risk. You might also wonder where those risks fall,

but that’s outside the scope of this example.

More subtly, the addition of the code in Figure 9-3 is an obvious source of

security vulnerabilities. As such, it may draw attention and possibly effort

away from the rest of the system. Thus, the components that comprise

Figure 9-2 are likely to be less secure, even ignoring the threats to the additional

components. In the same vein, the requests and implementations for such back-

doors may be confi dential or classifi ed. If that’s the case, the features may not go

through normal tracking for implementation, testing, or review, again reducing

174 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 174

the odds that they are secure. Of course, because such a system is designed to

bypass other security controls, any weaknesses are likely to have outsized impact.

Applying Standard Mitigation Technologies

To the extent that standard approaches will effectively solve a problem, they

should be used. Devising new approaches to defense is very simple and lots

of fun. Unfortunately, devising effective new approaches, building, and testing

them can be very time consuming.

N O T E To be fair, testing newly devised mitigation approaches can actually be

super-quick sometimes, as the new defense will fall with just a few minutes of expert

scrutiny. PGP creator Phil Zimmerman tells the story of bringing the cipher he created

for the fi rst version of his popular encryption software to a large gathering of cryptog-

raphers, where he saw months of his painstaking work demolished over lunch. After

that, PGP switched to using standard ciphers.

There are a number of ways in which you can use standard mitigations, includ-

ing platform-provided ones, developer-implemented ones, or operational ones.

Platform-Provided Mitigations

Software developers have a number of ways to code mitigations to common

threats. Each has pros and cons. That’s not to say that they’re all equal, or that

any one has advantages in every situation. As a general rule, using the defenses

in whatever platform you’re building on is a good idea for several reasons: First,

they often run at a higher trust level than defenses you can build. Second, they’re

generally well designed and subjected to a high level of scrutiny before you get

to them. Related to that, they’re often more intensively tested than what you can

justify. Finally, they’re usually either free or included in the price of the platform.

Developer-Implemented Mitigations

There is an entire set of mitigations that are not platform provided, and must be

implemented by developers. Almost all of these can be seen as feature develop-

ment work: Implement a cryptographic scheme to address a spoofi ng threat;

implement a better logging system to address a repudiation threat, and so on.

An interesting and growing set of software is built and operated by the same

organization. This creates an additional class of defensive opportunities that

 Chapter 9 ■ Trade-Offs When Addressing Threats 175

c09.indd 09:44:28:AM 01/09/2014 Page 175

you can design. This class focuses on attack detection, whereby attempts to

execute injection or overfl ow attacks can be found and repaired. With the right

investment in detection and response capabilities, this allows some deferment

of security costs to fi nd and fi x those bugs. Doing so requires developing the

features to detect such attacks. It also increases the importance of information

disclosure attacks, which disclose your source (or binary) to an attacker, pos-

sibly enabling them to develop a reliable exploit without triggering your attack

detection.

Operational Mitigations

Systems administrators should consider a number of trade-offs in terms of

policy, procedural, and software defenses. To the extent that software defenses

are available, they will scale better and be more reliable than process-oriented

controls. Operationally, process-oriented controls provide defense against a

broader swath of issues. In particular, effective change control helps manage

a wide variety of issues. A fi rewall to control issues at the network or edge is

easier to manage and maintain. However, at the machine level, there is less

doubt about what a packet means (Ptacek, 1998). Highly targeted defensive

programs are often technically superior to more general ones, but they are less

well-integrated into operations, which may mean that they are less effective

overall. Many classes of mitigations that have become commercial standards

are “arms race” technology.

For example, a signature-based anti-virus program is only as good as its last

update. In contrast, a fi rewall will block packets according to its rules. Some

fi rewalls were implemented as packet fi lters, and can be fooled, but others

implemented connection proxying (meaning the connection terminates at the

fi rewall, and code on the fi rewall makes an additional connection to the target

system). Those fi rewalls don’t engage in a meaningful arms race, although some

of them include signature-driven intrusion detection or prevention code, and

that code requires regular updating. (Arms races are so much “fun” that they

get their own section, towards the end of this chapter.)

It is valuable for developers to understand the system administrator’s perspec-

tive on defenses, and vice versa. This is especially true of standard mitigations,

where you can rely on a body of knowledge, analogies, and other facets of the

mitigation being a standard approach to make it easier to operate. Developing a

defensive system that no one can operate is about as bad as developing one that

doesn’t work. The ultimate goal of deploying operational technology that meets

business needs requires developers and system administrators to understand

the limits of available defenses. The example defenses shown in Table 9-2 are

for the Acme SQL Database introduced previously in the book.

176 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 176

Table 9-2: Defenses by Who Can Implement Them

THREAT

INSTANCES THAT DEVELOPERS

MUST IMPLEMENT

INSTANCES THAT IT

DEPARTMENTS MUST

IMPLEMENT

Spoofi ng Web/SQL/other client brute-forcing

logins

Authentication for DBA (human), DB

users

Authentication infrastruc-

ture for: web client, SQL cli-

ent DBA (human), DB users

Tampering Integrity protection for Data,

Management, Logs

Integrity protection for front

end(s), Database admin

Repudiation Logs (log analysis must be protected)

Certain actions from web and SQL

clients will need careful logging.

Certain actions from DBAs will need

careful logging.

Logs (log analysis must be

protected)

If DBAs are not fully trusted,

a system in another privi-

lege domain to log all com-

mands might be required.

Information

Disclosure

Data, management, and logs must be

protected.

Front ends must implement access

control.

Only the front ends should be able to

access the data.

ACLs and security groups

must be managed.

Backups must be protected.

Denial of Service Front ends must be designed to mini-

mize DoS risks

The system must be

deployed with suffi cient

resources.

Elevation of

Privilege

Trusting client

DB should support prepared state-

ments to make injection harder.

There should be no default way to run

commands on the server, and calls

like exec()or system() must be

permissioned and confi gurable if they

exist.

Avoiding improperly trust-

ing clients which were writ-

ten locally.

Confi gure DB appropriately.

Designing a Custom Mitigation

As explained earlier, custom approaches are risky and expensive to verify,

but sometimes you have no choice. Aspects of your design or implementation

 Chapter 9 ■ Trade-Offs When Addressing Threats 177

c09.indd 09:44:28:AM 01/09/2014 Page 177

could prevent all the standard approaches. For example, if you’re implement-

ing a low-cost device with an eight-bit processor, it’s probably not going to be

able to use 2,048-bit RSA keys at acceptable speeds. At that point, you need to

consider what you can do.

Because the defense will be custom, there are fewer specifi cs to talk about.

However, some general guidelines apply. Ensure that you have a clearly written

defi nition of the goal of the custom system, along with the constraints you’re

operating under. Consider what will happen when it breaks, and in particular

what you’ll do to update it.

Custom mitigations differ from non-security code in a very important way:

It’s hard to see that they’re ineffective. The mistakes made by inexperienced

database designers are easy to see; problems like performance will crop up rela-

tively quickly and obviously. With security mitigations, it’s easier to be fooled.

When you’re designing a custom approach to mitigation, it’s worthwhile to

take a couple of unusual steps early in the process. The fi rst is to share your

motivation and design. You may well get useful feedback on it. You’ll get more

useful feedback if you make the design public (rather than requiring an NDA),

and/or if you pay for feedback, perhaps by hiring experts to break it or by offer-

ing a prize to anyone who can break it.

W A R N I N G Be careful to explain what you did separately from why you think

those defenses make it hard to break; the interleaving can inhibit the free fl ow of ideas

in the same way that criticism can shut down a brainstorming session.

Fuzzing Is Not a Mitigation

Oftentimes, to address a variety of threats, people will say “we’ll fuzz that!”

Fuzzing is the technique of generating random input for a program, and it is

stunningly effective at fi nding bugs in code that’s never been fuzzed. This is

especially true of parsers. However, fuzzing is not a way of mitigating threats;

it’s a way of testing mitigations. Fuzzing will not make your code secure, it will

help you fi nd bugs, and as those bugs are fi xed, the average time to fi nd the

next bug using random input goes up. However, the time for a clever human

to fi nd that next bug does not change. Therefore, over time, fuzzing becomes

less effective. When you are tempted to fuzz, you should ensure it’s in your test

plan, but at design time you need to take other actions.

You can do several things to make parsers more secure at design/code time. The

fi rst is to design your fi le format or network protocol for safe parsing (Sassaman,

2013). If the format is not Turing complete, parsing it is easier. If it doesn’t contain

macros, loops, multiple ways to encode things, or the capability to encapsulate

layers of encoding, your parser can be a lot simpler, and thus safer. The next

thing you can do to make parsers safer is to use a safer language than the C

178 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 178

family. C’s lack of type safety and primitive, unsafe string handling functions

make safe coding of parsers hard. If the thing being parsed is already defi ned

and you can’t redefi ne it (say, HTML), it may help to create a state machine for

your parser. You may, quite appropriately, be laughing at the idea of creating a

state machine for HTML. Well, if you can’t describe it, good luck with making

a safe parser for it. Finally, if there’s a canonicalization step, canonicalize early,

and run the input through it until the output matches the input.

Threat-Specifi c Prioritization Approaches

This section is all about risks you’re going to address (rather than avoid, accept,

or transfer). For the problems you decide to address, you have choices to make

about how to approach those risks. Those choices include simply waiting and

seeing whether the risks materialize or fi xing the easy stuff fi rst, using threat-

ranking techniques of various sorts, or using some approach to estimate the

cost of the problem.

Simple Approaches

The very simplest approaches to threat prioritization don’t involve any math or

calculation. They are “wait and see” and “do the easy fi xes fi rst.”

Wait and See

The wait and see approach to security issues sometimes works pretty well, and

often fails catastrophically. It can differ from “ignore it” when the system in

question is either an internal network or a service offering that can be monitored

for problems. Wait and see is a worse technique for, say, a gas tank, than it is for

a website. It can also be an example of what 451 Group analyst Wendy Nather

calls “the cheeseburger case”: “Doc, I’m gonna keep eating cheeseburgers until

I have a heart attack. Then we’ll deal with it” (Nather, 2013). The cheeseburger

case is less about accepting risks, but more about ignoring those risks—and

doing nothing to mitigate them until a catastrophe forces you to pay attention.

Most businesses have long used monitoring as a part of their risk management

strategy. For example, if a bank notices that one of its employees suddenly

has a fl ashy car, someone is likely to question where the money came from.

Monitoring, the “see” part of “wait and see,” needs to be planned effectively.

There are four main types of monitoring: change detection, signature attack

detection, anomaly attack detection, and impact detection.

 Chapter 9 ■ Trade-Offs When Addressing Threats 179

c09.indd 09:44:28:AM 01/09/2014 Page 179

N O T E Related to the cheeseburger approach in risk management is the ostrich

approach of sticking ones head in the sand. Of course, your colleagues don’t really

stick their heads in the sand, they say “no one would ever do that!” The best response

to this is to say “if I can give you an example where someone did that, will you agree

to fi x it?” (This is another place where the repertoire that people develop en route to

becoming an expert can come in very handy.)

Change Detection

Change detection focuses on the operational discipline of ensuring that change is

managed. To the extent that changes are managed, anything outside the change

management process must be treated as a problem. (Kim, 2006)

Signature Attack Detection

Signature attack detection is based on the idea that an interesting subset of

attacks has certain defi nable signatures, either sequences of bytes or messages

that will appear only in an attack. With the rise of production-quality exploit

software, this signature-oriented approach appeared promising. However, as the

products to detect signatures proliferated, the attack tools added polymorphism,

and simple signature detection is less effective than its proponents had hoped.

Anomaly Attack Detection

Anomaly attack detection is based on the idea that there’s a normal and unchang-

ing set of network traffi c. This is a pipe dream. As business changes, the normal

traffi c changes; and when it does, the anomaly detector needs to be retrained

about what’s normal. As business accelerates and change accelerates, it becomes

increasingly diffi cult to continue training the system so that it knows what’s

normal. There are also normal abnormalities (for example, every Friday evening,

there’s an audit run, and every close of quarter there’s another one). It may be

possible to use people to investigate every anomaly, although the cost of doing

so rises very quickly.

Impact Detection

The fi nal major form of detection is impact detection. If suddenly the shipped

product count for the quarter is out of whack with your accounts receivable,

there’s a problem. (A friend once did a penetration test in which he ordered

minus three copies of a book. The system credited his credit card the cost of

the three books, minus shipping, and a week later he got the three books in

the mail. When the merchant was told what happened, it turned out that the

shipping clerk had seen the negative three copies, fi gured it was a bug, and

sent the three copies.)

180 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 180

Generally, mature operations use some combination of all the techniques—

change detection, signature attack detection, anomaly attack detection, and impact

detection. The precise combination that will work for a given organization’s threat

profi le, risk acceptance, culture, regulatory environment, and so on, are specifi c

to that organization. Wait and see is less valid in (at least) three cases. First,

when there’s a risk of injury or death. Duh. Enough said. Second, when you’re

shipping a product to your customer, especially physical products. Regardless

of whether the product is a baby’s crib, a car, or a piece of software, wait and

see what goes wrong cannot be the primary risk management approach. Third,

when you don’t have a response planned. For example, if you operate banking

software, you probably have an adjustable dollar level at which you manually

check transactions for fraud. You might adjust it based on current capacity in

the fraud management department or on the cost effectiveness of the activity.

Easy Fixes First

Some organizations just starting to threat model may begin by fi xing those

things that are easy to fi x before going on to harder fi xes. For many experienced

security practitioners, this seems like an odd choice, but it’s worth discussing

the pros and cons of the approach. On the pro side, fi xing security issues is a

good thing, and demonstrating that threat modeling is producing actionable

bugs may help ensure that threat modeling continues. The downside is that the

issues you’re fi xing may be the wrong things, or things that don’t seem relevant

to other parts of an organization, and thus appear to be a waste of time.

If you need to start from an easy fi x fi rst approach, ensure that you do so in

consultation with the people who are performing the fi xes, and ensure they

don’t perceive it as busywork. In addition, plan to move from easy fi xes to a

more mature approach, as described in the remainder of this section.

Threat-Ranking with a Bug Bar

There are a few techniques that enable you to rank your threats with a little

more precision than “easy” and “everything else.” These ranking techniques

are designed to provide you with a consistent approach to addressing threats.

DREAD

One of the fi rst of these was DREAD. This awesome acronym stands for discoverability,

reproducibility, exploitability, aff ected users, and damage. Unfortunately, DREAD is

fairly subjective and leads to odd results in many circumstances. Therefore, as of 2010,

DREAD is no longer recommended for use by the Microsoft SDL team.

 Chapter 9 ■ Trade-Offs When Addressing Threats 181

c09.indd 09:44:28:AM 01/09/2014 Page 181

The most effective simple prioritization technique is a bug bar. In a bug bar,

bugs are given a severity based on a shared understanding of their impact.

That shared understanding comes from a “bug bar” table that lists the criteria

used to classify bugs, and might include examples. Over the product lifecycle,

the bar defi ning what bugs must be fi xed is adjusted. Thus, six months before

shipping, a medium-impact bug would be fi xed, whereas a bug discovered on

the day of shipping would be fi xed in a hotfi x. The bar will likely be refi ned, and

what must be fi xed may change as your security processes mature. Microsoft

makes fairly heavy use of the bug bar concept.

A version of the complete Microsoft SDL bug bar is available online. The bug

bar is made available under a Creative Commons license that allows you to use

it within your organization (Microsoft, 2012).

Cost Estimation Approaches

Sometimes there are business reasons to use a threat prioritization approach

that produces cost estimates. This section covers two such approaches:

probability/impact assessments and FAIR.

Probability/Impact Assessments

Assessing probability and impact is an obvious approach, but effective imple-

mentations are rare. There are a few sticking points, including that, unlike

hurricanes or tornados, information security events are often caused by malice.

However, insurance companies still write theft insurance, and don’t go out of

business too often. Over time, the industry will likely learn more about both

probabilities and impacts from incidents disclosure because of breach disclosure

laws, and probability/impact assessments will become a more useful part of

threat modeling. If you’re going to use a probability/impact assessment of any

form, you’ll need to fi gure out the cost of mitigation, and few approaches help

you do that (Gordon, 2006).

Probability assessments in information security are notoriously hard to get

right. Well-engineered systems can often be broken with very inexpensive

equipment. Kryptonite bike locks were found vulnerable to a Bic pen (Kahney,

2004). Facial recognition systems have been found to recognize photographs of

an authorized person (Nguyen, 2009). Fingerprint readers have been beaten by

gummy candy and laser printers (Matsumoto, 2002). Expensive equipment may

be easier to get than you anticipate, for example, graduate students often have

access to million-dollar lab equipment. At the other end of the spectrum, most

people would consider an attack that allows someone to steal a few dollars as not

worth a lot of time. However, a billion people worldwide live on less than one

dollar a day, and their lives would be improved by stealing just a few dollars.

182 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 182

(This isn’t to say that everyone living at that level of poverty would become a

criminal given the opportunity, only that typical Western assessments of cost/

benefi t trade-offs are challenged by global networking.)

FAIR

FAIR is the acronym for Factor Analysis of Information Risk, developed by

Jack Jones while he was Chief Security Offi cer for a large bank. FAIR focuses

on defi ning business risk associated with technology systems. FAIR defi nes

a threat as “anything (e.g., object, substance, human) that is capable of acting

against an asset in a manner that can result in harm.”

The primary use of FAIR is for systems that a business is deploying, regard-

less of the source of the components (off the shelf or local). It defi nes risk as a

function of loss event frequency and probable loss magnitude. Each of these is

decomposed further, as shown in Figure 9-4.

FAIR has 10 defi ned steps in four stages:

Stage 1: Identify scenario components

 1. Identify the asset at risk.

 2. Identify the threat community under consideration.

Stage 2: Evaluate loss event frequency

 3. Estimate the probable threat event frequency.

 4. Estimate the threat capability.

 5. Estimate control strength.

 6. Derive vulnerability.

 7. Derive loss event frequency.

Stage 3: Estimate probable loss magnitude

 8. Estimate worst-case loss.

 9. Estimate probable loss.

Stage 4: Derive and articulate risk

 10. Derive and articulate risk.

The document “An Introduction to FAIR” (Jones, 2006) presents FAIR as an

approach to risk management in business. The FAIR white paper starts out at

what you might see as a very philosophical level. If you fi nd that frustrating,

consider jumping to page 64 of that introductory paper, where FAIR is presented

in a more concrete and compact fashion.

Contact Action

Vulnerability Primary Loss
Factors

Secondary Loss
Factors

Threat Event
Frequency

Control
Strength

Threat
Capability

Asset Loss
Factors

Threat Loss
Factors

Organizational
Loss Factors

External Loss
Factors

Loss Event
Frequency

Probable Loss
Magnitude

Risk

Figure 9-4: FAIR’s risk decomposition

184 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 184

There are two issues to discuss regarding FAIR. The fi rst is the way in which

it assigns numbers to various elements of risk. The white paper acknowledges

these in a remarkably frank discussion in the conclusions. It’s worth reiterating

that without incident data, FAIR is a repeatable way to get to the same results,

but the results are hard to compare to results for other systems. The second issue

is FAIR’s opening steps, and the asset- and attacker-centricity of the system. An

asset is defi ned as “any data, device, or other component of the environment

that supports information-related activities, and which can be affected in a man-

ner that results in loss.” This broad defi nition implies a remarkable amount of

work, as FAIR analysis is run on each asset. This is probably ameliorated by an

intuitive ranking approach. FAIR at least provides an “example” set of threat

communities, but it does not address the effort needed to analyze their behav-

iors, nor the risks in getting that analysis wrong. FAIR is probably the best of

the approaches for quantifying risk. My lovely editor would like to know if that

means it’s worth using, and so would I. More seriously, if your organization

relies on quantifi ed risk assessments, FAIR has many things to recommend it,

but if a simpler approach, such as a bug bar will work, that’s probably a better

return on investment.

Mitigation via Risk Acceptance

As discussed in the section “Classic Strategies for Risk Management,” it is per-

fectly reasonable to address risk via risk acceptance, and there are two ways

that is commonly done: either via business risk acceptance or via user risk

acceptance. The following sections describe both of these.

Mitigation via Business Acceptance

If an organization is building software for its own use, it is free to make whatever

risk acceptance decisions it chooses. For example, if your inventory site exposes

your product inventory to the world, that’s a choice you can reasonably make,

by applying whatever risk approach works for you.

In a number of cases, a business may choose to take into account other per-

spectives beyond its own in risk acceptance decisions. Those cases include

privacy and “fi tness for purpose,” a term borrowed from the lawyers to mean

something that’s good enough to do the job it’s intended to serve.

If the software involves personal, private information, then the risk accep-

tance must take into account the myriad laws that apply to such things. Many

of those laws require something like “appropriate security.” This constrains the

decisions that the business can make regarding risk. Even if those laws do not

apply, losing all your customer data may enable competitors to use that data to

 Chapter 9 ■ Trade-Offs When Addressing Threats 185

c09.indd 09:44:28:AM 01/09/2014 Page 185

market to your customers, or it may upset your customers. Lastly, it may have

an impact on your reputation.

Fitness for purpose is the other element that may infl uence a business’s will-

ingness to accept risk. If your system is being sold with the expectation that it

can connect to the Internet, then there may be a reasonable expectation that it’s

suffi ciently secure for that purpose. If it’s being sold for medical use, “critical

infrastructure,” or similar areas, there may be substantial additional expecta-

tions. In these types of cases, the business cannot silently accept the risk; at the

very least the risk acceptance decisions must be communicated to customers.

(I’m not a lawyer, but if you decide not to communicate such risks, I suspect

you’ll get to know some very unfriendly lawyers.)

Mitigation via User Acceptance

There are times when a software developer or systems administrator can’t make

a decision for the user. For example, there may be a business reason to visit

Playboy.com. (For instance, consider an investment bank. No reason to allow

adult content, right? Except when Playboy’s CEO visits to pitch her stock to the

bank’s analysts, she’ll want to demo their new digital media line of business.)

There may be a reason to have viruses on a system. Or maybe there’s something

that is “obviously” a security error, but the user wants to accept the risk involved.

If you need to warn someone about a potential risk, ensure that such warnings

are NEAT: necessary, explanatory, actionable, and tested. These four relatively

simple steps work well for designing warnings (or improving existing ones), and

NEAT is covered in more detail in Chapter 15, “Human Factors and Usability.”

When authenticating, ensure that the authentication is two-way. If any details

have changed since the last authentication, inform the user about what’s differ-

ent. This requires persisting some information, explaining it to the user, and

walking them through evaluating it.

Arms Races in Mitigation Strategies

An arms race describes the predictable set of steps that both attackers and defend-

ers engage in that leave both sides approximately where they were at the start

of the arms race, only poorer. A classic example is signature-driven anti-virus

software. Such software is only as good as its latest update. There will almost

always be viruses that the signature authors have not yet discovered, or for

which the signatures have not been tested, shipped, or applied.

It should perhaps go without saying that such arms races are to be avoided,

but because they are frequent it’s worth a few words on why arms races happen,

and what you can do should you fi nd it hard to avoid one.

186 Part III ■ Managing and Addressing Threats

c09.indd 09:44:28:AM 01/09/2014 Page 186

Arms races happen because some factor makes a perfect defense hard. For

example, it turns out that bolting on security defenses that block only what

viruses do is nearly impossible. Commercial operating systems support a wide

variety of behavior, and legitimate programs make use of those defi ned behaviors,

sometimes in ways that are hard to distinguish from malicious use. Therefore,

heuristic modules in anti-virus programs have a high rate of false positives.

Similarly, whitelisting of programs in advance is an excellent defensive technique,

but one that turns out to be very inhibitory to the normal use of computers.

When you fi nd yourself in an arms race, you are playing an economic game,

and your goal should be to both minimize your cost while maximizing your

profi t, while simultaneously maximizing your opponent’s cost and minimizing

their profi t. Your costs go up when you must scramble, and your profi ts will

be maximized the longer your opponent spends time reacting to your latest

moves. This leads to two related strategies: Aim for the last-mover advantage

and have a bag of tricks.

Last-mover advantage is a term credited to cryptographer extraordinaire Paul

Kocher (Kocher, 2006). It refers to the idea that the last side to take action has

an advantage. Further, your moves should be designed, in part, to fl ummox the

other side, and make it tricky for them to respond. Therefore, here, the use of

obfuscation or anti-debugging techniques can pay dividends. Having a system

that’s designed to roll forward to a new confi guration can also help, and here’s

where a bag of tricks comes in. A bag of tricks is a set of moves in the arms race

that are already coded and tested. When you detect that your opponent has

taken a new move, you deploy something from your bag of tricks. For example,

if you have a DRM scheme to prevent people from using your music fi les as

they choose, you might have a set of additional restrictions coded up and ready

to ship as attackers break your current scheme. This enables you to maximize

how long you have the last-mover advantage.

Summary

There are many strategies you can apply to risk management. The classic risk

management strategies of avoid, address, accept, or transfer are applicable to

how you address threats.

More specifi c to threats and security are the approaches of changing the

design, applying standard mitigations, and designing custom mitigations. It’s

expensive and time consuming to test your custom mitigation, and easy to get

the design wrong, so custom mitigations should be a fallback. The department

of “easy to get wrong” also includes fuzzing, which is more appropriately seen

as a test technique. (It’s a great technique, but you can’t fuzz your way to a

secure design or implementation.)

 Chapter 9 ■ Trade-Offs When Addressing Threats 187

c09.indd 09:44:28:AM 01/09/2014 Page 187

Sometimes you need to prioritize your mitigation approaches, and there’s a

variety of ways to do so, ranging from simple ones like wait and see (and the

associated actions to ensure you do see) to bug bars and quantifi ed risk man-

agement approaches such as FAIR.

Now and then you need to accept risks, or ask others to do so. When you

need to accept risk, you should ensure that you’re doing so with some structure

and not using “accepted risk” as a synonym for ignoring it. When you need to

ask others to accept risk, you should do so clearly, and the NEAT approach can

help you do so.

Sometimes arms races are hard to avoid. If you do fi nd yourself there, there are

some strategies to drive your opponent’s costs up while keeping yours low. You

want to aim for a last-mover advantage that forces your opponent to scramble

while you relax. That’s what good risk management can get you.

189

c10.indd 09:44:43:AM 01/09/2014 Page 189

You’ve been hard at work to address your threats, fi rst by simply fi xing them,

and then by assessing risks around them. But are your efforts working? It is

important that you test the fi xes, and have confi dence that anything previously

identifi ed has been addressed.

Good testers have a lot in common with good threat modelers: Both focus on

how stuff is going to break, and work on preventing it. Working closely with your

testers can have surprisingly positive payoff for threat modeling proponents, a

synergy explored in more detail in Chapter 17, “Bringing Threat Modeling to

Your Organization.”

A brief note on terminology: In this chapter, the term testing is used to refer

to a key functional task that “quality assurance” performs: the creation and

management of tests. This chapter focuses only on the subset of testing that

intersects with threat modeling. As shown in Figure 10-1, threat-model-driven

testing can overlap heavily with security testing, but the degree of overlap will

vary across organizations. Some organizations have reliability testing specialists.

They need to understand the issues you fi nd when looking for denial-of-service

threats. Others might manage repudiation as part of customer readiness. Your

security testers might also use fuzzing, look for SQL injection, or create and

manage tests that are not driven by threat modeling.

 C H A P T E R

10

Validating That Threats Are

Addressed

190 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 190

All Testing

Security
Testing

Threat-Model-
Driven Testing

Figure 10-1: Different types of testing

This chapter will teach you about testing threat mitigations, how to exam-

ine software you acquire from elsewhere to check that threats are addressed

to your satisfaction, explain how to perform quality assurance on your threat

modeling activity, and discuss some of the mechanical and process elements

of threat modeling validation. It closes with a set of tables designed to help you

track your threat modeling testing activity.

Testing Threat Mitigations

You’ll need both process and skills to test the mitigations you’re developing.

This section explains both, and also discusses penetration testing, which is

often mistaken for a complete approach to testing security.

Test Process Integration

Anything you do to address a threat is subject to being tested. However you

manage test cases, you should include testing the threats you’ve found and

chosen to address. If you’re an agile team that uses test-driven development,

develop at least two tests per threat: one that exploits the easy (no mitigation)

case, and at least one that attempts to bypass the mitigation. It can be easy, fun,

and even helpful for your testers to go nuts with this. It may be worth the effort

to ensure they start with the highest-risk threats, or the ones that developers

don’t want to fi x. If you use bugs to track test development, you might want to

fi le two test-creation bugs per threat. One will track the threat, and the other

the test code for the threat. Then again, you might fi nd this overkill. Giving

threat model bugs unique tags can help you when you search for threat model

test bugs. (For example, you can use “threatmodel” to fi nd all bugs that come

from threat enumeration, and “tmtest” for the test bugs.)

 Chapter 10 ■ Validating That Threats Are Addressed 191

c10.indd 09:44:43:AM 01/09/2014 Page 191

If you have some form of test planning, then you should ensure that the list

of threats feeds into the test planning. A good list of threats delivered to a tester

can produce an avalanche of new tests.

How to Test a Mitigation

If you think of threats as bugs, then testing threats is much like doing heavy

testing on those bugs. You’ll want to set up a way to reproduce the conditions

that cause the bug to trigger, and create a test that demonstrates whether a fi x

is working. That test can be manual or automated. Sometimes the level of effort

needed to code an automated test can be high, and you’ll be tempted to test

manually. At the same time, these are bugs you’d really prefer do not regress,

which is an argument for automation.

Of course, unlike normal bugs, attackers will vary conditions to help them

trigger your bugs, so good testing will include variations of the attack. The exact

variation you’ll want depends heavily on the threat. You should vary whatever

the mitigation code depends on. For a simple example, consider an XSS bug

in a website. Such bugs are often demonstrated by use of the JavaScript alert

function. Therefore, perhaps someone has coded a test that looks for the string

“alert.” Try replacing that with “%61%6C%65%72%74%0A.” Robert “RSnake” Hansen

has a site dedicated to creating such variants—his “XSS (Cross Site Scripting)

Cheat Sheet Calculator" (OWASP, 2013b). You can use such a site to develop the

skills to create your own variations.

As you develop tests for a threat, you can also consider how the mitigations

you’re developing can be attacked. This is very similar to attack variations, but

goes back to the idea of second-and third-order threats discussed in Chapter 7,

“Processing and Managing Threats.”

The skills required to perform testing of threat mitigations vary according to

the type of threat and mitigation. There are test engineers at large companies

who are experts at shell coding, that is, the specialized attack code used to take

over control fl ow. There are others who are expert cryptographers, spend-

ing their days looking for mathematical attacks on the cryptography their

employers develop.

Penetration Testing

Some organizations choose to use penetration testing to validate their threat

models and/or add a level of confi dence in their software. Penetration testing

(aka pen testing) can supplement threat modeling. But there’s a saying that “you

can’t test quality in.” That means all the testing you might possibly do will never

make a product great. It will just help you fi x the defects you happen to fi nd. To

make a quality product, you need to start with good design, good raw materi-

als and good production processes, and then check that your output matches

192 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 192

your expectation. In the same way, you can’t test your product to secure. So,

pen testing can’t replace threat modeling.

Pen testing can be either black box or glass box. Black box pen testing pro-

vides only the software to the testers, who will then explicitly test assumptions

you have about how much effort it takes to gain an understanding of the soft-

ware. This is an expensive undertaking, especially compared to glass box pen

testing, whereby testers are given access to code, designs, and threat models,

and they are able to use those to better understand the goals of the software

and the intentions of the developers.

If you choose to use pen testing as an adjunct to threat modeling, the most

important thing is to ensure that you’re aligned with the penetration testers

regarding what’s in scope. If they come back with a list of SQL injections and

cross-site scripting attacks, will you be happy? (Either a yes or a no is fi ne as

long as you’re clear with the pen testers. An “I don’t know” is likely to leave

you unhappy.)

Checking Code You Acquire

Most of this book is focused on what you’re building. But the reality is that much

of the code in today’s products comes from elsewhere, in either binary or source

form. And not all of it comes with well-formed security operations guidance

and non-requirements. Less of it comes with explicit threat models telling you

what the creators worried about. This section shows you how to threat model

code you’ve acquired, so you can validate if threats are addressed. The steps

here are aligned with the four-stage framework expressed in the Introduction

and in Chapter 1, “Dive In and Threat Model!”. You’ll use a variety of tools to

learn about the software you’re looking at, create a model of the software from

what you’ve learned, and then analyze that model. From there, standard opera-

tional approaches to addressing threats can come into play. You can apply these

techniques to code you acquire from outside, or if you’re an operations team, to

code which is handed to you for deployment. This section is inspired by work

by consultant Ollie Whitehouse (Whitehouse, 2013).

N O T E The approaches here assume you do not have the time or the skills to de-

compile or reverse engineer the binaries. Of course, if you do, you have more options

and the capability to dig deeper. If you have source, you can of course compile it, and

so the binary approaches will work, and may be easier (for example, fi nd listening

ports or account information by running the installer). Of course, that dynamic analy-

sis has limitations; if on the third Wednesday of the month, the software opens a back-

door, bad luck if you start the next day and trust runtime analysis. This section also

assumes you’re looking at software which you have reason to believe you can trust.

(For example, unexpected binaries on your USB drives may well be malware.)

 Chapter 10 ■ Validating That Threats Are Addressed 193

c10.indd 09:44:43:AM 01/09/2014 Page 193

Constructing a Software Model

Even if the product comes with an architecture diagram, it may not suffi ce for

threat modeling. For example, it probably doesn’t show trust boundaries. So

you’ll need to construct a model that’s useful for threat analysis. To do that you

need to dig into a set of questions, and then synthesize. In theory, you’ll want

to move from the outside in, enumerating architectural aspects of the software,

including the following:

 ■ Accounts and processes:

 ■ New accounts created

 ■ Running processes

 ■ Start-up processes

 ■ Invoked or spawned processes

 ■ Listening ports:

 ■ Sockets

 ■ RPC

 ■ Web

 ■ Local inter-process communication

 ■ Administrative interfaces:

 ■ Documented

 ■ Account recovery

 ■ Service personnel accounts

 ■ Web and database implementation

 ■ Technical dependencies and platform information:

 ■ Changes to OS (for appliances/virtual machines)

 ■ Firewall rule changes

 ■ Permission changes

 ■ Auto-updater status

 ■ Unpatched vulnerabilities

If the software is delivered in binary form, you can use unix tools like ps,

netstat, fi nd (with the –newer option), or their equivalents on your platform

to fi nd listeners and processes. Similarly, the operating system can show you

new accounts and start-up processes. Tools like Sysinternals’ Autoruns on

Windows can walk through the many possible ways to start a program on boot.

Administrative interfaces are probably documented, although it’s unfortunately

194 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 194

common to have backdoors for service or recovery, so you can look into how

you’d get in “if you forget your password.”

With this information, you can start to construct a software model. The com-

ponents are the trust boundaries, and the processes are the processes within

each. The listening ports get drawn as one end of data fl ows. If present, you’ll

need to dig deeper into web and databases, in technology-appropriate ways, to

better understand what’s happening in those complex subsystems. The admin-

istrative interfaces can add additional trust boundaries and possibly data fl ows.

Technical dependencies (such as a web server or framework) may also introduce

new processes or data fl ows, and the approach here can be applied recursively

to those dependencies. There’s one other aspect to check for dependencies: Are

the dependencies up to date with security fi xes? Searching a database like the

US National Vulnerability Database for the dependency can give you an idea of

what’s been discovered in the version you have, or you can use free tools such

as nmap or Metasploit to test it.

All of the preceding can be performed by any systems administrator who’s

willing to learn a bit about new tools. If you also have source code, it may be

possible to, and even worth, digging in. You may learn about additional accounts

where Windows impersonates, or unix sets uid. System calls such as fork and

exec will show you where processes are spawned. Open, read, and especially

socket and listen calls can reveal trust boundaries. (There are a near-infi nite

number of higher-level variants which implicitly create a socket and listen.)

Finding extra login interfaces is easier with the code, but will likely require

more than just grepping.

Using the Software Model

When you have a model of the software you acquired, you can apply the tech-

niques in Part II of this book to bear to fi nd threats. You can look to see if they

are appropriately mitigated. If you’re looking for threats during a software

evaluation or acquisition phase, you have a number of choices about the threats

you fi nd that are not mitigated to your satisfaction. Those choices include:

 ■ Bring them to the attention of the software producer.

 ■ Look for an alternate package.

 ■ Mitigate them yourself.

If you are bringing them to the software producer, be prepared for a dis-

cussion of the correct requirements, the tradeoffs involved in a fi x, or other

disagreements about the threats you’ve found. (For example, many proposed

“improvements” to Windows permissions fail to consider what may break if

those changes are made.)

 Chapter 10 ■ Validating That Threats Are Addressed 195

c10.indd 09:44:43:AM 01/09/2014 Page 195

Some backwards looking vendors may even threaten you, asserting that

you’ve violated the license, although fortunately this is becoming less common.

If the producer is open source, don’t be surprised if the answer is “we’re

accepting patches.”

If you’re looking at threats after the software has been acquired, selected or

deployed, your ability to select an alternative is dramatically lower. (Once again,

threat modeling early gives you more fl exibility.) Bringing them to the vendor

or mitigating them yourself are your main choices.

Mitigating issues yourself means applying the “operational” mitigations

found in Chapter 8, “Defensive Tactics and Technologies.” The most common

forms of this are “slap a fi rewall in front of it,” and tunnel the network traffi c

over SSL or SSH.

You can make all this work a lot easier by looking for operational security

guides and threat model documents as you select components. Components that

come with such documentation are likely to require a lot less work on your part.

QA’ing Threat Modeling

While it is common for security enthusiasts to claim that you’re never done

threat modeling, at some point you need to ship, deploy, or otherwise deliver

the software, and you may or may not be planning to do another version. As you

get close to fi nishing (say, feature complete), you’ll want to be able to close out

the threat modeling work. If you use checklists or some other means of track-

ing what needs to be done to pass through the gate and call it feature complete,

you should add threat model verifi cation to the checklist. Verifying the threat

model consists of ensuring the following:

 ■ The model actually matches reality closely enough.

 ■ Everything in the threat list is addressed and the threat model portion of

the test plan is complete.

 ■ Threat model bugs are closed.

Model/Reality Conformance

As you fi nish addressing threats, you need to ensure that the threats you’re

addressing were found using a model that relates to what you built. In other

words, if you did three major architecture revamps between the last time you

did an architectural diagram of the system and now, the list of threats you found

might not be relevant to what you’ve built. Therefore, you need to check whether

your model is close enough to reality to be useful. Ideally, you do this along

196 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 196

the way, by including threat modeling in your list of activities to do during an

architectural redesign or major refactoring work. This also applies to deploy-

ing complex systems. The complexities of deployment often lead to on-the-fl y

changes. If those are substantial (say, turning off a fi rewall), then the threat model

probably needs a revamp.

If your threat model leads to substantial redesign or architecture changes to

address threats, “closing that loop” is tremendously important. If that’s the goal,

make sure you re-check the software model against the code around the time

the code is getting checked in, or when the new systems are being deployed.

Ideally, bring the people who made the changes into a room, and have them

explain the changes that were made and the new security features.

N O T E A meeting like this can sometimes devolve into security fi nding new threats

against the new system. That may be acceptable, or it may seem like moving the goal-

posts. Upfront agreement on the meeting goals will reduce contention.

Task and Process Completion

Have you gone through each threat, and decided on a strategy and a tactic for

addressing it? That might be to accept the risk and monitor, or it might be to use

an operating system feature to manage it. You need to track these and ensure

that you do an appropriate amount of work to avoid any falling through the

cracks. (You might say that anything of severity less than some bar isn’t worth the

effort to track.) Good threat modeling tools make it easy to fi le a bug per threat.

If you’re using something without that feature, you need to fi le bugs manually.

There are two reasons why threats should lead to bugs that are like your other

bugs, rather than a separate document. First, anyone shipping software has a

way to manage bugs; and if you want your security issues managed, making

them bugs puts them into the same machinery your organization is already

using to assure quality. Second, bugs act as an exit point from threat modeling,

allowing the normal machinery to take over, and enabling you to say, “We’re

done threat modeling that.”

Bug Checking

As you get closer to shipping, review the mitigation test bugs, ensuring that

you’ve closed each one. This is where a tag such as tmtest is really helpful. Bugs

that haven’t been closed should be triaged like other bugs (with appropriate

attention to the gravity of the bug), and fi xed or, if appropriate, moved to the

next revision.

 Chapter 10 ■ Validating That Threats Are Addressed 197

c10.indd 09:44:43:AM 01/09/2014 Page 197

Process Aspects of Addressing Threats

There are a few fi nal aspects of how testing and threat modeling complement

each other, and a few red fl ags that testers can use to quickly fi nd issues, includ-

ing a belief that data is “validated” where people are making assumptions.

Threat Modeling Empowers Testing; Testing Empowers Threat
Modeling

Writing code is hard; thinking through all the things needed to make the code

work leaves little space in the brain for thinking about anything else, including

what might go wrong. This level of focus and concentration on the problem at

hand is part of why engineers can get so upset at interruptions: The problem

at hand is complex enough to require full attention, and there’s no room for

minor issues like eating properly. There’s “no room” in two senses: rational and

emotional. In the rational sense, developers usually want to focus on developing

great code. Thinking about all the ways to make the code better, faster, more

capable, more elegant, and so on, requires less of a mental shift than thinking

about what will go wrong. Many great developers have learned that they need

to think about writing testable code and collaborating with testers, but that

doesn’t mean they’re great at fi nding what will go wrong. The emotional sense

of lacking room to think about what might go wrong means that after a lot of

effort to make the code work, thinking about making it break is challenging.

Threat modeling has a natural ally in testers, especially when testing is seen

as an “inferior” function to developing. If testing “owns” threat modeling, then

test has a reason to be in architecture meetings. They need to be there to talk

about how to threat model, and to start conducting tests early. If threat model-

ing is the reason testers are brought in early, then testers have a reason to drive

effective threat modeling processes.

Validation/Transformation

It’s common to see threat models that assert, incorrectly, that this input or that

has been “validated.” This claim should be a red fl ag for testers, because it is

never completely true. The data may well have been validated for some purpose

or purposes. For example, is the following data valid? http://www.example

.org/this/url/will/pwn/you.

It’s a valid URL, in accordance with RFC 1738. It uses a domain that is nomi-

nally reserved for example use. Were it a real URL, a path this/url/will/

pwn/you is probably unsafe to visit. It’s easy to construct similar examples.

198 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 198

For example, the e-mail address adam+threat@example.org is valid (see RFC

822), but just try convincing many web forms of that. Many fi lter out the plus

sign to make SQL injection attacks harder to carry out, along with the single

quote character ('), which annoys a great many Irish people with names like

O’Malley or O’Leary. Therefore, data can only be validated for a particular

purpose or, better, to comply with certain rules.

The other approach to data is to fi lter and transform it. For example, if you

have a system that is taking input that will be displayed on a website, you can

do so more safely by ensuring it is ASCII, eliminating everything but a known

good set and transforming bracketed strings into approved HTML strings.

Your known good set could be A–Z, 0–9 and some set of punctuation. The

advantage to a fi lter and transform approach is safety by design. By fi ltering

out everything but known good, and then transforming them into something

that includes “dangerous” input, attack code will need to pass through multiple

bugs to succeed.

Document Assumptions as You Go

As you threat model, you’ll fi nd yourself saying, “I assume that …” You should

write those things down, and testers should test the assumptions. How to do

that will vary according to the assumption. Generally, you can test the assump-

tions by asking, “Could it ever not be true?” and “What can I break if this is

false, incomplete, or an overgeneralization?”

This differs in a subtle but important way from the common prescription to

“document all assumptions.” That advice leads people to try to document all

assumptions as they start threat modeling, but what assumptions? When do

you stop? Do you assume that no one will fi nd a new solution to the factoring

problem that underlies many public key cryptography schemes? It’s usually a

reasonable assumption, but documenting that in advance often feels like an

exercise in pedantry. In contrast, documenting as you go is easier, constrained,

and helps those who review the threat models.

Tables and Lists

Now that you know about the defensive tactics and technologies

and the various strategies you can apply to manage risks, it’s time to

learn about the blocking and tackling elements. If you think back to

Chapter 7, many of the tables there have a bug ID as their last column. The

tables here, therefore, start with a bug ID. A simple table might look something

like Table 10-1.

 Chapter 10 ■ Validating That Threats Are Addressed 199

c10.indd 09:44:43:AM 01/09/2014 Page 199

Table 10-1: Tracking Bugs for Fixing

BUG

ID THREAT

RISK

MANAGEMENT

TECHNIQUE

PRIORITIZATION

APPROACH TACTIC TESTER DONE?

4556 Orders not

checked at

server

Design change Fix now to

address, avoid

dependencies.

Code

changes

Alice

4558 Ensure all

changes to

server code

are pulled

from source

control so

changes are

accountable.

Operational

change

Wait and see. Deploy

ment

tooling

change

Bob No

4559 Investigate

moving con-

trols to busi-

ness logic,

which is less

accessible to

attackers.

Design change Wait and see. Include

in user

stories

for next

refactoring.

Bob no

However, you’ll notice that these threats are all being addressed, or have a

strategy for addressing them. As you’ll recall, this isn’t always possible, so you

might have additional tables for accepted risks (see Table 10-3) and transferred

risks (see Table 10-4). That leaves out avoided risks, which are rarely worth track-

ing as bugs. If you maintain architecture documentation, you might include the

insecure designs that were avoided. You can use a table like Table 10-2 to track

how you’re handling various risks, which can help you get an overview of where

you stand overall. (With the right fi elds, you can also extract such a table from

your bug tracking system.) In this list and the lists that follow, italics are used for

fi elds that you might choose to include if you’re a more process-intensive shop.

Table 10-2 shows the following:

 ■ Bug ID

 ■ Threat

 ■ Risk management approach

 ■ Risk management technique or building blocks

 ■ Is it done?

 ■ Test IDs if you have test code (optional).

200 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 200

Table 10-2: Overall Threat Modeling Bug Tracking (Example)

BUG ID THREAT

RISK

MANAGEMENT

APPROACH

TECHNIQUE/

BUILDING

BLOCKS DONE?

1234 Criminals send-

ing money

orders

Avoid Don’t accept

checks/ACH/

money orders.

Yes!

4556 Orders not

checked at

server

Address Fix now. Check with

Alice.

1235 People will

mistype URL,

visit phishing

site.

Accept Document in

security advice

page, advising

bookmark, since

we can’t fi x the

browsers.

Yes

1236 People will order

things they don’t

want.

Transfer Terms of service

state that all

orders are fi nal.

Yes

In tracking accepted risks, the key deliverable is an understanding of the risks

you’re accepting, so that executives can have a single view. You might choose

to sort such a table by bug ID, cost, or the business owner who has accepted

the risk. Of course, as you’ve learned, putting a dollar value on threats can be

challenging. If you do put a cost on threats, then unlike most of the other tables,

the accepted risks table can actually be summarized or totaled.

As shown in Table 10-3, you should track at least the following:

 ■ Bug ID

 ■ Threat

 ■ Cost or impact estimate

 ■ Who made the estimate and how (optional)

 ■ Why the risk is accepted

 ■ Who accepted it

 ■ The sign off procedure that was followed (optional)

 Chapter 10 ■ Validating That Threats Are Addressed 201

c10.indd 09:44:43:AM 01/09/2014 Page 201

Table 10-3: Accepted Risks (Example)

BUG ID THREAT

COST/IMPACT

ESTIMATE

REASON

TO ACCEPT

BUSINESS SIGN

OFF FROM

1237 A janitor will

plug a keylogger

into the CEO’s

desktop.

High The CEO

still has a

desktop.

IT director

1238

… … … …

Total (above) $1,000,000 Charlene, Dave

The “transferred to” column may or may not be needed. You may fi nd that

all risks are transferred to the customer, but you might fi nd that some risks

are transferred to other parties. For example, if your product has a fi le-sharing

feature, risk may be transferred to copyright owners; or if your product has a

messaging feature, you may create a new channel for spam. Of course, in prac-

tice, those risks may fall on your customers.

If you want to track to whom it’s transferred, you can do so as shown in

Table 10-4, which includes the following:

 ■ Bug ID

 ■ Threat

 ■ Why you can’t fi x it

 ■ To whom it’s transferred (optional)

 ■ The way it’s being transferred

 ■ Whether the transfer mechanism is completed

Table 10-4: Transferred Risks (Example)

BUG ID THREAT

REASON WE

CAN’T FIX FORM OF TRANSFER DONE?

1238 Insiders Need an admin

role

Non-requirements, pre-

sented in security opera-

tions guide

Yes

1239 Buff er

overfl ow in

our custom

document

format

After careful

redesign and

fuzzing, resid-

ual risks exist.

Warning on opening

document

No—

requires user

testing.

202 Part III ■ Managing and Addressing Threats

c10.indd 09:44:43:AM 01/09/2014 Page 202

Summary

Like everything else in the development of software or the deployment of systems,

threat models can be subjected to a quality assurance process. It’s important to

“close the loop” and ensure that threats have been appropriately handled. Those

tasks may fall outside what’s normally thought of as threat modeling. How you

handle them will vary according to your organization.

Thus, there’s a need to integrate threat model testing into your test process,

and to test that each threat is addressed. You’ll also want to look for variants

and second- or third-order attacks as you test for threats.

When you perform quality assurance, you’ll want to confi rm that the soft-

ware model conforms to what you ended up building, deploying or acquiring.

Modeling the architecture of software you acquire involves a different process

than software you create in-house. In addition, you should verify that each task

and process associated with threat modeling was completed, and check the

threat model bugs to ensure that each was handled appropriately.

There’s an interesting overlap between “the security mindset” and the way

many testers approach their work. This may lead to an interesting career oppor-

tunity for testers. Also, at larger organizations, this offers an opportunity for

security and testers to create a virtuous circle of mutual reinforcement.

The term “validated” is, by itself, a red fl ag for security analysis and testing.

Without a clear statement of what the validation is for, it is impossible to test

whether it’s correct, and whether the assumption (or group of assumptions) is

accurate or shared by everyone touching the supposedly validated data. “The

exact purpose data is being validated” is often left as an assumption, rather than

being made explicit. There are many others, and all of them should be validated

as you threat model, and tested at an appropriate time.

203

c11.indd 01:56:23:PM 01/08/2014 Page 203

This chapter covers tools to help you threat model. Tooling can help threat

modeling in a number of ways. It can help you create better models, or create

models more fl uidly. Tools can help you remember to engage in various steps,

or provide assistance performing those steps. Tools can help create a more

legible or even beautiful threat model document. Tools can help you check your

threat model for completeness. Finally, tools can help you create actionable

output from a threat model.

Tools can also act as a constraint. You may fi nd yourself stymied by usability

issues, such as fi elds you’re unsure how to fi ll out. Or you might fi nd that a tool

cramps your style. Some trade-offs are unavoidable as tools are created, so the

chapter starts with general tools that are useful in threat modeling, and then

progresses to more specialized tools.

A few disclosures: I do not have personal experience with each tool described

here, and some of the tools I created myself. (Those are treated at greater length,

because there’s less risk of me insulting the authors.)

This chapter starts by describing some generally useful tools and how to

apply them to threat modeling. You’ll then learn about the open-source tools

that are available, followed by commercial tools. The chapter closes with a few

words about tools that don’t yet exist.

C H A P T E R

11

Threat Modeling Tools

204 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 204

Generally Useful Tools

This section discusses tools that are not specialized for threat modeling but can

be tremendously useful. It covers a few of the more useful tools to encourage

you to think about the tools you already use and with which you are familiar.

Whiteboards

I can hardly imagine threat modeling without a whiteboard. No technology I’ve

used has the immediacy, fl exibility, and visibility to a group than a whiteboard

when iteratively drawing system architecture. Whiteboards also have the advan-

tage of transience—drawing on paper just isn’t the same. On a whiteboard, no

one tries to correct details such as a line not being connected properly, so the

discussion can be focused on how the system actually works.

For distributed teams, a webcam focused on a whiteboard may work, or you

may have “virtual whiteboarding” technologies that work for you.

Offi ce Suites

Microsoft Offi ce contains a number of tools that are very useful in threat

modeling. Word is a great tool for recording threats in free-form. What to record

is dependent on the approach you’ve chosen. Excel can be used for issue tracking

and status. Visio is great for turning whiteboards into more precise documents.

Of course, Offi ce is one of several suites with word processing, spreadsheet, and

drawing functionality. The only caveats would be the limitations of the tools.

The document tool should be more than text—a feature such as embedded

images is extremely useful. Similarly, use a vector drawing tool that enables

you to move symbols as symbols. Automatic connector management is also

super-useful, and of course this feature is not unique to Visio.

To state the obvious, Microsoft Word, Excel, and Visio are commercially

licensed tools.

Bug-Tracking Systems

Whatever bug-tracking system you use should also be used to track threats. A

good bug from threat modeling can take many forms. The form you use will

infl uence how you title and discuss bugs, and there is no universally right

way to approach it. (The right way is the way that works best for you and your

organization.) The title could express any of the following:

 ■ The threat itself: Here the bug title is of a form such as “an attacker can

threaten the component” or “the component is vulnerable to threat.”

 Chapter 11 ■ Threat Modeling Tools 205

c11.indd 01:56:23:PM 01/08/2014 Page 205

For example, “the front end is vulnerable to spoofi ng because we use

reusable passwords.”

 ■ The mitigation: Here, the bug title is of a form such as “the component

needs mitigation.” For example, “the front end needs to run only over

SSH.” In the text of the bug, you should also explain the threat.

 ■ The need to test a mitigation: This is what you can title a bug if someone

says, “Oh, the front end isn’t vulnerable to that.” Rather than absorb time

in the meeting to discuss or check the threat, fi le a bug, “Test front end

vulnerability to threat” and ensure that there are good tests for the bug.

 ■ The need to validate an assumption: These bugs are fi led to ensure that

someone follows up on an assumption you discover while threat modeling,

and on which you depend for a security property. The bug should have

a title such as “security depends on assumption A” or “security property

X of component Y depends on assumption Z.” For example, “Security

depends on the assumption that no one would ever fi nd the key in the

fake rock that looks exactly like the rocks at our last house.”

 ■ Other tracking items: You should treat the preceding items as sugges-

tions, not a form into which all bugs need to fi t. If you fi nd something

worth tracking, fi le a bug.

When tracking security bugs from threat modeling, there are a few fi elds that

can make running queries and analysis more reliable. These include whether

the bug is a security bug, whether it’s “stop ship,” and how the bug was found

(for example, threat modeling, fuzzing, code review, customer report). You can

also check the tables in Chapter 7, “Processing and Managing Threats,” and

Chapter 9, “Trade-Offs When Addressing Threats,” for useful fi elds. For example,

you might want a risk management approach fi eld whose values could be avoid,

address, accept, or transfer.

The right fi elds to use will depend in large part on the queries you want to

run, which of course depend on the questions you want to ask. Some questions

you might want to ask include the following:

 ■ Do we have any open security bugs?

 ■ Do we have any open threat modeling bugs?

 ■ Do we have any high-severity threat modeling bugs left to fi x?

 ■ How much risk are we transferring to end-users in the security operations

guide or via warning dialogs?

 ■ What department head has signed off on the largest business risk? Which

department head has signed off on the most risks?

206 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 206

Open-Source Tools

A variety of open-source tools for threat modeling are available. The open

source tools illustrate some of the challenges in creating a high-quality threat

modeling tool.

TRIKE

There are two tools named TRIKE. The fi rst was a standalone desktop tool,

written in Smalltalk. That tool is no longer being maintained, and TRIKE is

now implemented in a spreadsheet. According to documentation, it works best

in Excel 2011 for the Macintosh (Trike, 2013). TRIKE is sometimes referred to

as “OctoTrike.”

TRIKE does not fi t cleanly into the four-stage framework defi ned in this book.

The TRIKE spreadsheet contains 19 pages, which are grouped as follows: one

overview, seven main threat pages (actors, data model, intended actions, con-

nections, protocols, threats, and security objectives), four record-keeping pages

(use case index, use case details, document index, and development team) and

seven reference sheets (actor types, data types, action, network layers, meaning-

ful threats, intended response, and guide words). As of this writing, the help

spreadsheet appears to be a reference document, not an introduction of the system.

SeaMonster

SeaMonster is an Eclipse-based attack tree and misuse case tool that was devel-

oped by students at the Norwegian University of Science and Technology. It

appears to be abandoned since 2010 (SeaMonster, 2013). The code is still available.

Elevation of Privilege

Elevation of Privilege (the game) is designed to be the easy way to get started

threat modeling. It works by inviting individuals to participate in a game. The

game consists of 74 physical playing cards in six suits, named for the STRIDE

threats, with most suits having cards 2 through Ace. Two suits have fewer cards

in order to avoid redundant threats, and it was challenging to fi nd broadly

applicable threat instances that were easily explained on a card. Each card has

a specifi c instance of a STRIDE threat. For example, the 6 of Tampering reads

“An attacker can write to a data store your code relies on.” Another example

card is shown in Figure 11-1.

 Chapter 11 ■ Threat Modeling Tools 207

c11.indd 01:56:23:PM 01/08/2014 Page 207

Figure 11-1: An Elevation of Privilege card

The Elevation of Privilege fi les can be downloaded from http://www.microsoft.com/

sdl/adopt/eop.aspx. Before starting Elevation of Privilege, participants or the

game organizer create a diagram of a system being modeled. People then come

together for a game. The organizer explains the rules, and may ask people to

“put their skepticism on hold.” The game starts by dealing out the deck, and is

then structured into turns. The fi rst card played is always the 3 of Tampering.

Play proceeds around the table in hands.

Each hand starts with a player selecting a suit to lead and playing in that suit.

Each player plays by selecting a card and connecting it to the diagram. The player

must play in the suit that was led if they have a card in that suit. If they don’t,

they may play any card. When play has gone once around the table, the hand

ends. The player who played the highest card wins the hand. The highest card is

either in the suit that was led, or, if a card in the Elevation of Privilege suit card

was played, the highest card played from the EoP played wins the hand. (All

Elevation of Privilege threat cards are higher ranked than the suit that was led,

208 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 208

and only Elevation of Privilege cards can win when someone leads in another

suit.) Players get a point for connecting the threat on their card to the diagram

with a “buggable threat,” and a point for winning the hand by playing the

highest card either in the suit that was led or in EoP. Any EoP card trumps the

suit that was led. To encourage creativity, each ace card says “You’ve invented

a new threat,” and the threats are enumerated on cards included in the pack.

The game ends either when time allocated has elapsed or when all the cards

have been played. The winner is the player with the most points.

A buggable threat is one a team identifi es and is willing to fi le a bug for. It’s

a simple and implicit element of most software development. Some teams may

fi nd it more helpful to ask “would we add that to the backlog?” However you

want to approach it (in the context of the game), you want an understandable

and shared bar to test threats, so that you focus on fi nding the good ones.

Games are less threatening than “serious” work, and they provide structure

and hints to the beginner, enabling new players to fi nd a threat based on the

cards in their hands. The game is also intended to help players fi nd a fl ow state,
a concept that is covered in depth in Chapter 19, “Architecting for Success.” EoP

is covered in greater depth in my paper Elevation of Privilege: Drawing Developers

into Threat Modeling [Shostack, 2012].

Microsoft makes the fi les (source and PDF) available under a Creative Commons

BY-3.0 license, allowing you to take it, modify it, make derivative works, and

even sell them.

Commercial Tools

Here are a few commercially licensed threat modeling tools. I mention a few

commercial tools as examples, but caveat emptor.

ThreatModeler

ThreatModeler from MyAppSecurity.com is a defense-oriented tool based on

data elements, roles, and components. It uses a set of attack libraries, including

the MITRE CAPEC (see Chapter 4, “Attack Trees”), the WASC threat classifi ca-

tion, and others. The tool generates attack trees with the component as the root,

requirements that can be violated as a fi rst level of subnode, and then threats

and attacks as the next layers. According to the documentation, ThreatModeler

is intended to be used by architects, developers, security professionals, QA

professionals, or senior executives. ThreatModeler requires Windows.

Corporate Threat Modeller

Corporate Threat Modeller from SensePost is a tool built to support a method-

ology designed after an analysis of the strengths and weaknesses of a number

 Chapter 11 ■ Threat Modeling Tools 209

c11.indd 01:56:23:PM 01/08/2014 Page 209

of threat modeling approaches. Those approaches included threat trees and

OCTAVE, a US-CERT-originated system for threat modeling a business (White,

2010). The analysis also looked at Microsoft’s SDL Threat Modeling Tool v3, and

the Microsoft “IT Infrastructure Threat Modeling Guide,” (McRee, 2009) which

shows how to use STRIDE-per-element to threat model IT infrastructure.

The Corporate Threat Modeler was explicitly designed for consultants. Insofar

as it was developed with an explicitly stated target user (not “everyone”), it is

one of the most interesting tools on the market. The approach starts with an

architectural overview, and then applies a somewhat complex risk equation.

The tool is free to download.

SecurITree

SecurITree is threat risk software from Amenaza Technologies, which launched

in 2007 to positive reviews (SC Magazine, 2007). The product seems like a well

thought through tool for constructing, managing and interpreting threat trees.

It contains not only the ability to manage trees, but a set of ways to fi lter those

trees. Each node in the tree has behavioral/capability indicators: a cost to execute,

noticability, and a technical ability. It also has impact/attacker benefi t indicators

of attacker gain and victim loss, along with stored notes for a node or subtree.

You can fi lter the tree based on a given attacker ability. SecurITree comes with a

library of threat trees, which is likely to help its customers get to the interesting

part of the threat modeling work faster. SecurITree also includes some excellent

screencast-delivered training (Ingoldsby, 2009). SecurITree runs on Windows,

Mac, and Linux.

Little-JIL

If you’re making use of threat trees at a research institution, the Little-JIL soft-

ware may be helpful. “Little-JIL is a graphical language for defi ning processes

that coordinate the activities of autonomous agents and their use of resources

during the performance of a task.” It has been used for creating an elections

process model and a set of fault trees for that model (Simidchieva, 2010). The full

fault trees are available as a graphML model. The software used to create and

process the models may be freely used at research institutions (Laser, undated).

Microsoft’s SDL Threat Modeling Tool

Microsoft has shipped at least four families of threat modeling tools. They are

the Elevation of Privilege card game, the SDL Threat Modeling Tool v3, the Threat

Analysis and Modeling Tool, and the Threat Modeling Tool v1 and 2. I was the

project lead for Elevation of Privilege and the SDL Threat Modeling Tool v3 and

3.1. The currently available SDL Threat Modeling Tool is (or has been) available

free from Microsoft.

210 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 210

The SDL Threat Modeling Tool v3 was designed in reaction to the complexities

and usability issues encountered when engineers who were not threat model-

ing experts tried to use the older tools. It was the fi rst tool designed around

the four-stage framework. The tool has four major screens, designed around

the tasks that naturally fi t together: Draw Diagrams, Analyze Model, Describe

Environment, and Generate Reports. The Draw Diagrams screen, shown in

Figure 11-2, includes both the capability to draw diagrams with a constrained

Visio stencil set and a diagram validation section with heuristics. The Analyze

Model screen, shown in Figure 11-3, is automatically fi lled out with threats

according to STRIDE-per-element.

Each threat instance contains a set of guiding questions to help engineers think

through the threat, and an area to record the threat, mitigation, to track whether

work on the threat is complete, and to fi le a bug. The Describe Environment

screen is something of a catch-all to track assumptions, external notes and the

context of the threat model. The Reports screen includes an all-up report, an open

issues report, a list of bugs, and a diagrams-only report intended to facilitate

printing. The tool also contains a manual, a sample threat model (for the tool

itself), and a getting started guide, all accessible via the Help menu.

As shown in Figure 11-2, the main Draw Diagrams screen contains the

following, clockwise from upper left (excluding the menu):

 ■ The diagrams control, enabling you to create sub-diagrams

 ■ The Visio shapes you can use as diagram elements

 ■ The “default” diagram (discussed in the next paragraph)

 ■ The numbered Screens control

 ■ Diagram validation (feedback)

 ■ A help pane

The default diagram is present because human factor testing has shown that

less experienced threat modelers are sometimes stymied by a blank screen.

Providing them with a starting diagram serves two purposes. One, it dem-

onstrates what is expected in that space. Two, rather than needing to create a

diagram, a novice can modify what’s there, which is an easier task.

One other feature worth mentioning from Figure 11-2 is the help fi eld. Generally,

help is a menu option that software engineers ignore, because they believe

they’re too smart to need to read what they expect will be a badly written help

fi le. Therefore, the tool has basic help onscreen.

The Analyze Model screen shown in Figure 11-3 has two panes. The left pane

is a list of diagram elements and the threats associated with them, presented as

a tree with a single level of branches. The right pane is titled with the element

name (“Results”) and a description of the element. Under that is a reminder

of the STRIDE-per-element threats to which it is subject, and an option to not

 Chapter 11 ■ Threat Modeling Tools 211

c11.indd 01:56:23:PM 01/08/2014 Page 211

generate threat placeholders, with a reason box. A large portion of the screen is

devoted to onscreen guidance: “Some questions to ask about this threat type.”

The guidance is specifi c to threat and element category (process, data store, data

fl ow, or external entity).

Figure 11-2: The SDL Threat Modeling Tool “Draw Diagrams” screen

There’s also a command link to “Certify that there are no threats of this type.”

The word certify was carefully chosen to convey gravity. The last element on

the screen is where the threat modeler describes the threat impact, and how it

will be mitigated. Most of that is done in two large text entry boxes, but there

is also a Finished check box, a “fi le bug” command link, and a completion bar.

The completion bar (shown empty, under the word completion) fi lls out in four

segments to encourage text entry in the Impact and Solution fi elds, as well as

checking “fi nished” and fi ling a bug. There is also an Add Threat command

link in case someone discovers an additional tampering threat against the

results data fl ow.

The bug fi ling is intentionally abstracted into an API, and the tool ships with

sample code to connect to a variety of bug tracking systems, or allow you to

connect to whatever you use. When developing the tool, we intentionally spent

time to create an API and to ship it under the Microsoft Public License (an Open

212 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 212

Source Initiative Approved License), because bugs are a critical part of ensuring

that the threat model leads to something actionable.

Figure 11-3: The SDL TM Tool Analyze Model screen

N O T E Within the Draw Diagrams screen, the term “validation” causes consterna-

tion when diagrams don’t conform. For example, one heuristic is to show where

all data comes from. That can be addressed by including three extra elements: an

installer external entity, a data fl ow, and a trust boundary. Doing so is not obvious,

and requires roughly 10 steps. In a future version, it would be great to see diagram

feedback that includes advice on how to address each. Also, boxed trust boundar-

ies would be one of several improvements that could be made to the shapes in the

default set. Others include rounded rectangles for processes, less curvy lines, and

better positioning of text.

The SDL TM Tool v3.1 series is a no-cost download from Microsoft

(www.microsoft.com/security/sdl/adopt/threatmodeling.aspx) and it

requires Visio 2007 or 2010 to use. The tool is compatible with the Visio 2010

 Chapter 11 ■ Threat Modeling Tools 213

c11.indd 01:56:23:PM 01/08/2014 Page 213

evaluation version. Newer versions of the tool may become available (after this

book goes to press) with different dependencies.

Tools That Don’t Exist Yet

There are two categories of features that people often ask for that are worth a

brief discussion: automated model creation and automated threat identifi ca-

tion. A great many people want tools that can take a piece of software that’s

already been written and extract a data fl ow or other architectural diagram.

This is an attractive goal, and one that might be feasible for programs written

in strongly typed languages. Marwan Abi-Antoun has done some work show-

ing how to extract data fl ow diagrams for Java (Abi-Antoun, 2009). (The system

with open code and published DFDs he found to use for testing was only 3,000

lines of code.) If technology to do this is further developed, it will present great

value to threat modeling, but also create a temptation to not perform any threat

modeling or analysis until late in a project. Threat modeling after the code has

been completed limits options for addressing issues. This is discussed further

in Chapter 7, “Processing and Managing Threats” and Chapter 17, “Bringing

Threat Modeling to Your Organization.”

Similarly, tools that can take a diagram or other model and produce lists

of threats would be lovely. A Spanish graduate student, Guifré Ruiz, and

colleagues have created a fi rst version of such a tool (Ruiz, 2012). However, these

tools carry a risk that security analysis will focus only on known threats from

an attack library. Such tools cannot (currently) analogize from closely related

threats the way an experienced person can. Threat analysis that could reliably

extend that knowledge to prevent new systems from making mistakes others

have made would be a useful step forward. As more such tools are developed,

it will be important to consider the balance between human and automated

security design analysis. After all, to the extent that you need software engineers

to create new functionality, that new functionality and the new combinations

that result may expose new threats. It’s not impossible to imagine a tool that

would fi nd threats against code not yet written, but it’s hard to imagine one

that would do so as comprehensively as an expert threat modeler.

Summary

A wide variety of tools are available for threat modeling. General-purpose tools

such as whiteboards and bug-tracking systems can be very helpful, and tools

such as word processors, spreadsheets, and diagramming tools can be used to

214 Part III ■ Managing and Addressing Threats

c11.indd 01:56:23:PM 01/08/2014 Page 214

help you threat model. Also available are a variety of specialized threat modeling

tools. Microsoft has shipped several of these free, including Elevation of Privilege

and the SDL Threat Modeling Tool, and you can fi nd other commercial and

open-source tools that may aid your efforts. There is also demand for tools that

can automate model creation or threat identifi cation, although such tools may

come at a high price if they appear to fi nd threats while missing new threats or

are used too late in the development process.

c12.indd 07:52:27:AM 01/15/2014 Page 215

Par t

IV
Threat Modeling in Technologies

and Tricky Areas

Part IV is where this book moves away from threat modeling as a generic approach,

and focuses on threat modeling of specifi c technologies and tricky areas. In other

words, this part moves from a focus on technique to a focus on the repertoire

you’ll need to address these tricky areas.

All of these technologies and areas (except requirements) share three proper-

ties that make it worth discussing them in depth:

 ■ Systems will have similar threats.

 ■ Those threats and the approaches to mitigating them have been extensively

worked through, so there’s no need to start from scratch.

 ■ Naïve mitigations fall victim to worked-through attacks. Therefore, you

can abstract what’s been done in these areas into models, and you can

learn the current practical state of the art in handling each.

The following chapters are included in this part:

 ■ Chapter 12: Requirements Cookbook lays out a set of security require-

ments so that you don’t have to start your requirements from a blank

slate, but can borrow and adapt. Much like the other chapters in this

part, requirements are a tricky area where specifi c advice can help you.

 ■ Chapter 13: Web and Cloud Threats are the most like other threat model-

ing, but with a few recurring threats to consider. (That is, while an awful

216 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 216

lot of words have been written on the security properties of web and

cloud, they’re actually only a little more complex to threat model than

other operational environments.)

 ■ Chapter 14: Accounts and Identity are far more nuanced than web or

cloud, and begin to intrude on the human world, where poor choices

in design can cause people to avoid your service or work around your

security measures.

 ■ Chapter 15: Human Factors and Usability issues are at the overlap of the

human and technological worlds, and both the modeling of threats and

how to address them are less developed. That makes them no less critical,

only more of a challenge and opportunity for innovation.

 ■ Chapter 16: Threats to Cryptosystems is a chapter with more modest

goals, not because cryptography is any harder than the other subjects,

but because it’s easier to get wrong in ways that look fi ne under casual

inspection. As such, this chapter aims to familiarize you with the world

of cryptography and the threat terminology that is unique to the fi eld,

relating it to the rest of the threats in the book.

217

c12.indd 07:52:27:AM 01/15/2014 Page 217

Important threats violate important security requirements. Ideally, those require-

ments are explicit, crisp, agreed-on within the development organization, and

understood by customers and the people impacted by the system. Unfortunately,

this is rarely the case. In part, that’s because requirements are very diffi cult to

do well. That makes requirements a tedious way to start a project, and as the

agile folks will tell you, YAGNI (“you ain’t gonna need it”)—so we should skip

straight to user stories, right? Maybe, but maybe not.

As you discover threats, you’ll be forced to decide whether the threat mat-

ters. Some of that decision will be based on a risk calculation, and some will be

based on a requirements calculation. If your system is not designed to maintain

security in the face of hostile administrators, then all effort spent on mitigating

hostile administrators will be wasted.

That said, this chapter starts with an explanation of the cookbook approach

and a discussion of the interplay of requirements, threats, and mitigations.

You’ll then learn about ways to think about business requirements, and look at

how to use common security frames to help with your requirements. (A frame

here is a way of structuring how you look at a problem, while a framework is

a breakdown which includes specifi c process steps.) The frames are “prevent/

detect/respond” and “people, process, technology,” with requirements in devel-

opment contrasted with requirements in acquisition. Next you’ll learn how to

use compliance frameworks and privacy to drive your requirements. You

can use these sections to decide what sort of requirements you might need.

C H A P T E R

12

Requirements Cookbook

218 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 218

Each of these sections may be more useful to product management than to

developers. The chapter then delves deep into the more technology-centered

STRIDE requirements. The STRIDE requirements are the most deeply technical

and “actionable” of the requirements. You should not succumb to the temptation

to make those the only requirements you consider. The chapter closes with a

discussion of non-requirements.

Why a “Cookbook”?

A great many systems are available for requirements elicitation. Most of them (at

best) skim over security. This chapter does not intend to replace your requirements

approach, but to supplement it with a set of straw-man requirements, designed

to be easily adapted to the specifi c needs of your system. The intent is, much

like a cookbook, to give you ideas that you can easily turn into real “food.” Also like

a cookbook, you can’t simply take what’s here (the raw ingredients) and serve

it to your dinner guests; but you can use what’s here to prepare a scrumptious

set of requirements. As you consider what you want to build, you can refer to

this section for requirements that crystalize what you’re thinking about.

Of course, you’ll need more detail than the sample requirements can provide.

For example, “Anonymous people can create/read/update/delete item” is a good

starting point, but what sort of items can they create, read, update, or delete?

Wikipedia has a nuanced set of answers for create, update, and delete, and

another set of nuanced answers for what can be read. There’s a very different

set of answers on Google.com or Whitehouse.gov. The requirements examples

shown cannot include the local or specifi c knowledge needed to make them

concrete.

Most of these starting points are grouped with several related starting points.

To take some examples from the section on STRIDE authentication require-

ments, after the requirement “Anonymous people can create/read/update/

delete items,” the next requirement is “All authenticated users can create/read

/update/delete item,” followed by “An enumerated subset of users can create/

read/update/delete items.” In this case, you might well need all three require-

ments expanded into your project’s authentication requirements. In contrast,

the section on authentication strength includes “We will control the authentica-

tion database” and “We will allow an outside organization (such as Facebook)

to control our authentication database.” These are both reasonable choices

that organizations make, but you can’t make both of them. The next require-

ment splits the difference with “We will allow an outside organization (such

as Facebook) to control part of our authentication database, such as ‘signed in

users,’ but not administrators.”

 Chapter 12 ■ Requirements Cookbook 219

c12.indd 07:52:27:AM 01/15/2014 Page 219

The Interplay of Requirements, Threats, and Mitigations

The same sort of task interplay as discussed in the previous section takes place

on a broader scale between threats, requirements, and mitigations. As threats are

discovered, some of them will violate explicit requirements. Others will violate

implicit requirements, offering an opportunity to improve the requirements list.

Other threats may lead to discussion of whether they violate a requirement or

not, again leading to possible clarifi cation. Thus, fi nding threats helps you iden-

tify requirements. Discussion of threats may also lead to a discussion about the

diffi culty of addressing a given threat. Such discussion can also feed back into

requirements when a threat can’t be mitigated. Mitigations drive requirements

far more often than requirements drive mitigations. (In fact, I can’t think of a

case where a requirement drives a mitigation without a threat, except perhaps

it’s a fi ne defi nition of compliance, and that may be why so many security profes-

sionals resent compliance work.) This interplay is shown visually in Figure 12–1.

Requirements

Threats Mitigations

Threats help identify
requirements

Real threats violate
requirements Compliance

Impossible to mitigate
implies non-requirement

Threats, mitigations interplay

Figure 12-1: The interplay of threats, requirements, and mitigations

You might have noticed a reductio ad absurdum attack on this perspective.

That is, taken to an extreme, it quickly becomes ridiculous. For example, if a

product were to declare that the network is trusted, and all network threats

are irrelevant, that would be a pretty silly decision to make, and hard to justify

in front of customers if the product handles any sensitive data. However, the

extreme position isn’t what you should take. If you are new to threat modeling,

be extremely cautious about removing requirements because you’re unsure how

to mitigate the threats. To check your assumption that mitigation is impossible,

you should plan to spend days to weeks investigating what others have done

in similar circumstances. As you develop more experience in security, that

investigation will go faster, as your toolbox will be more varied.

220 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 220

Business Requirements

In this section you learn about the business requirements for security. These

are the requirements that will make the most sense to business people. Some

organizations may call these “goals,” or “mission,” or “vision.”

Outshining the Competition

Your organization may be in a situation in which security properties or features

are either a customer requirement or a competitive differentiator. In those

scenarios, you can start with a requirement or requirements selected from the

following list:

 1. The product is no less secure than the typical competitor.

 2. The product is no less secure as measured by X than the typical competitor.

 3. The product is no less secure as measured by X than market leader Y.

 4. The product will ship fewer security updates than the competition. (This

can incentivize hiding vulnerabilities, which you shouldn’t do.)

 5. The product will have fewer exploitable vulnerabilities than the typical

competitor.

 6. The product will have fewer exploitable vulnerabilities than the market

leader Y.

 7. The product will be viewed as more secure than the typical competitor.

 8. The product line will be viewed as more secure than the typical competitor.

 9. We will be able to use security as a competitive advantage.

 10. We will be able to use this security feature/property as a competitive

advantage.

Industry Requirements

If your product is sold for a particular industry or use, there may be industry-

specifi c requirements which apply. For example, if you’re building payment

processing software, you’ll need to comply with industry rules. If you sell medi-

cal devices, you’ll want to ensure that your devices have substantial defense

in depth, as your ability to get them recertifi ed quickly may be controlled by

law. If you’re building tools for emergency responders, they may come under

particular attack. You should consider how your particular circumstances will

drive your requirements.

 Chapter 12 ■ Requirements Cookbook 221

c12.indd 07:52:27:AM 01/15/2014 Page 221

Scenario-Driven Requirements

The use of stories, scenarios, or use cases can be a strong general approach to

requirements elicitation, so it is natural to hope that security requirements might

also be derived from them. That is a reasonable hope, but I am not aware of any

structured approach for doing so for security requirements.

The primary challenge is that security is rarely a goal of a feature. When

explaining what Alice will do as she goes about her day, few product managers

say “and then we’ll force her to log in again, since her session timed out over

lunch” or “and then Mallory will try to break into the product by. . .” Even for

security features, such as access control, it’s rare to have a product manager

defi ne a scenario like “Alice adds a group to allow write access to this fi le, and

then tests to see whether the explicit deny rule for Bob still holds.”

Prevent/Detect/Respond as a Frame for Requirements

Prevent/detect/respond is a common way for organizations to think about

operational security. I’m aware of a large bank that, having adopted this way

of seeing the world, focuses most of its energy on response, assuming that its

systems will be compromised, and focusing on reducing mean time to repair.

Prevent/detect/respond can be used as a frame for thinking about requirements

in development, to ensure that your technology addresses each area. It can also

be used in technology acquisition or operations.

Prevention

STRIDE threat modeling is very focused on ensuring that you prevent threats.

One element not well covered by STRIDE is vulnerabilities, and their manage-

ment. Another is operational security approaches to prevention.

Operational Security Preventive Requirements

Operational isolation requirements focus on reducing attack surface by isolat-

ing systems from each other.

 1. All production systems will be isolated from the public Internet by fi rewalls.

 2. All production systems will be isolated from internal development and

operational systems (such as HR).

 3. All traversals of isolation boundaries will be authenticated by something

beyond IP and port numbers.

222 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 222

 4. All production systems will be deployed on VMs that are distinct from

other production systems (that is, one application, one VM).

 5. All cloud systems will be isolated from competitors. (This is easy to write,

and hard to achieve.)

Least privilege requirements are focused on making it more diffi cult for an

attacker to take advantage of an intrusion. Least privilege is easy to say and

practically challenging to achieve. In the list that follows, “with privileges”

means emphatically “as root/administrator,” but also those points in between

a “normal” user and the most privileged.

 1. No production application will run with privileges.

 2. No production application will run with privileges without undergoing

a threat model analysis and penetration test.

 3. Any production application we create that requires privileges will have

those privileges isolated into a small component.

 4. Application acquisition will include a discussion of threat models and

operational security guidance.

Account management for prevention includes account lifecycle (as discussed

in Chapter 14, “Accounts and Identity”), when it’s made operational. Managing

accounts across a small organization was challenging even before the days of

cloud services, which make it even harder.

 1. Account creation will be managed and tracked, and all service accounts

will have a responsible person.

 2. Accounts for people will be terminated when a person leaves.

 3. Accounts will be periodically audited or reviewed to ensure that there is

someone responsible for each.

Vulnerability Management

Vulnerability is a term of art that refers those accidental fl aws which can be

exploited by an attacker. This is in contrast to features that can be abused. In

other words, a vulnerability is something that everyone agrees ought to be fi xed.

The exploitation of vulnerabilities can often be automated, so in order to prevent

exploitation it’s important to consider the vulnerability lifecycle from discovery

through coding a fi x, testing that fi x, and delivering it. If you develop software,

some of the vulnerabilities discovered will be in your code, while others will

be in code on which you depend. You’ll need to be able to handle both sorts. In

each case, you’ll need to take the fi x, test it, and deliver it onwards to people in

operations. Sometimes those operations people will be in the same organization,

 Chapter 12 ■ Requirements Cookbook 223

c12.indd 07:52:27:AM 01/15/2014 Page 223

but oftentimes they’ll be external. If you’re in operations, you’ll need to be able

to discover vulnerability reports from your suppliers, and manage them. You

may also get vulnerability reports about the systems you operate, and you’ll

need to manage those as well.

Once you have a way to learn about the updates, you’ll need a way to fl ow

those updates through to your software and/or deployed systems. If you develop

complex software, good unit tests of the functionality you use in outside com-

ponents will help you rapidly test security updates and identify issues that

might come with them. Maybe that’s part of a continuous deployment strategy

for your site, or perhaps it’s something like running a security response process

the way Microsoft does (Rains, 2013) so your customers can learn about, receive,

and deploy your updates in their environment.

Vulnerability Reports about Your Products or Systems

Properly managing inbound vulnerability reports is an important task, and you

should consider how you’ll encourage people to report vulnerabilities to you.

There is an alternative approach, which is “we will sue security researchers to

inhibit discovery and reporting of security fl aws.” This backfi res. For example,

after Cisco sued researcher Mike Lynn for exposing fl aws in its products, Cisco

CSO John Stewart said “we did some silly things” and “we created a fi restorm”

(McMillan, 2008).

Product vulnerability management requirements might include:

 1. We will have a public policy encouraging the reporting of security fl aws.

 2. We will have a public policy encouraging the reporting of security fl aws

and make it easy to do so.

 3. We will have a public policy encouraging the reporting of security fl aws

by paying for them.

 4. We will have a public policy encouraging the reporting of security fl aws

in our online services.

 5. We will have a public policy encouraging the reporting of security fl aws in

our online services, and explain what testing is acceptable or unacceptable.

 6. We will have automatic update functionality built into our product.

 7. We will have automatic update functionality built into our product, and

it will be on by default.

 8. We will support only the latest version of this product, and security fi xes

will require an update.

 9. We will support only the latest version of this product, and security fi xes

will require an update and those updates may include feature changes.

224 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 224

 10. We will have a public policy on support lifetime, and produce security

fi xes for all currently supported products.

 11. We will have a public channel for vulnerability announcements that is

designed to satisfy those looking to sign up to lots of channels to track all

the software they operate. As such, it will be nothing but vulnerability

announcements.

Managing Vulnerabilities in External Code

It is important to track the components on which you depend and their security

updates. This applies to both development and operations, and to both com-

mercial and open-source components. Your acquisition process should include

understanding how an organization notifi es customers of security updates. If

there’s no mail list, RSS feed, or other mechanism established for security update

notifi cations, that’s probably a problem. Some possible requirements include:

 1. We will only discover security issues when they’re important enough for

the media to talk about.

 2. Each group will maintain its own list of dependencies.

 3. We will maintain a single list of dependencies to track for software updates.

 4. We will ensure that we track dependencies, and have a person assigned

to reading the updates and generating action as appropriate.

 5. Our dependency-tracking SLA will be no more than four hours from

announcement to bug fi led, 24 × 365.

 a. The response will be a risk assessment and possibly an action plan.

 b. The response will be to test and roll all patches of severity X without

bothering with risk assessment.

 c. The response will be to deploy all patches and believe in our rollback

practices.

 6. We will maintain a testbed to roll out new patches before putting them

into production.

 7. We will use virtual machines taken from production to test new patches

before rolling them into production.

 8. We will have patch management software that can deploy to all operational

services.

Operationally managing vulnerabilities is more broad than managing patches.

Sometimes a vendor will release an advisory about a problem before there’s a

patch, and you’ll have to decide if and how you want to manage such reports.

An advisory may involve work in addition to or in place of patching.

 Chapter 12 ■ Requirements Cookbook 225

c12.indd 07:52:27:AM 01/15/2014 Page 225

Detection

Detecting security problems is a challenge in the chaos of modern operations.

Even in regulated industries, most intrusions are detected by a third party.

The right way to perform security logging and analysis seems to be elusive.

Nevertheless, if you want to use prevent/detect/respond as a frame for thinking

about requirements, useful requirements can be found in this section. There are

two major goals to think about: incident detection and incident analysis. From

a requirements perspective, incident detection involves logging and ensuring

that the logs are analyzed. There are four main types of monitoring: change

detection, signature attack detection, anomaly attack detection, and impact

detection. These are discussed further in Chapter 9 “Tradeoffs When Addressing

Threats” under “Wait and See.” Incident analysis involves recording enough

state transitions that an analyst can reconstruct what happened.

Operational requirements:

 1. We will detect attacks of type X within time Y.

 2. We will detect 75 percent of attacks of type X within time Y, and 50 percent

of the remainder within Y.

Product requirements:

 1. Our product will use the word “security” in all log messages that we

expect are security related.

 2. Our product will log in a way to help detect attacks.

 3. Our product will log login attempts in a way to help detect attacks.

 4. Our product will track repeated attempts to perform any action, and fl ag

such in the logs.

There is a fuzzy line between detection and response requirements. Rigidly

categorizing them probably isn’t useful.

Response

Incident response teams often use an approach that mirrors the one sug-

gested by Ripley in the movie Aliens, “I say we take off and nuke the entire

site from orbit. It’s the only way to be sure.” Planning for that in product

threat modeling involves a good separation between your product and its

confi guration and data. That separation enables the response team to nuke

the product install (which may be compromised) while preserving the con-

fi guration and data (which may also be compromised, but can perhaps be

cleaned up). In the same vein, publishing a set of signatures or hashes for the

code you ship will help a response team check the integrity of your product

after a compromise.

226 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 226

In operational threat modeling for response, there is a much longer set of

requirements from which you can build:

 1. We will have an incident response plan.

 2. We will have an incident response plan in a binder on a shelf somewhere.

 3. We will have an incident response plan and run annual/quarterly/monthly

drills to ensure we know how to operate.

 4. Our intrusion-detection SLA will be no more than four hours from detec-

tion to incident response execution, 24 × 365.

 5. Our intrusion-detection SLA will be no more than eight business hours

from detection to incident response execution during normal business

hours.

 6. Our incident response plan will [not] be designed to preserve court-quality

evidence.

 7. The senior administrators will be trained in our incident response plan.

 8. All administrators will be trained in our incident response plan.

 9. All administrators will have a wallet card with fi rst response steps and

contact information.

 10. All incidents will have a lessons learned document produced.

 11. All incidents will have a lessons learned document produced, appropriate

to the scale of the incident.

 12. Lessons learned documents will be shared with the appropriate people.

 13. Lessons learned documents will be shared with all employees.

 14. Lessons learned documents will be shared with all employees and partners.

 15. Lessons learned documents will be published when we are required to

report a breach so others can learn from our mistakes.

 16. Lessons learned documents will be published so others can learn from

our mistakes.

The act of publishing lessons learned documents may seem unusual, but it

is increasingly common practice, and the transparency has been benefi cial to

business. For example, after a major outage at Amazon, they published a root

cause analysis, and Netfl ix announced that they had used the information to

improve their own service (Netfl ix, 2011).

C R O S S  R E F E R E N C E See also the earlier section “Vulnerability Management.”

 Chapter 12 ■ Requirements Cookbook 227

c12.indd 07:52:27:AM 01/15/2014 Page 227

People/Process/Technology as a Frame for
Requirements

It’s also common for people to use people/process/technology as a frame for

thinking about security, so it may help you to use it as a way to fi nd requirements.

People

There are two major categories of security requirements for people: trustworthi-

ness and skills. Trustworthiness is a matter of how much authority and discretion

the people in the system are expected to have. Organizations do various levels

of background checking at hiring time or as an ongoing matter. Such checks

can be expensive and intrusive, and may be constrained or required by local

law. If your product is intended for use by highly trusted people, you should be

explicit about that. Requirements for trustworthiness can be somewhat managed

by audit and retributive measures, which impose development requirements

regarding logging and operational requirements around the audit process. Skill

requirements should also be clearly documented. It is sometimes helpful (and

usually tricky) to have a certifi cation of some sort that attempts to assess the

skills of an individual.

Security requirements focused on people might include:

 1. Employees with cash management responsibility will undergo background

checks for fi nancial crimes.

 2. Employees with cash management responsibility will undergo credit

checks.

 3. Employees with cash management responsibility will undergo regular

credit checks.

 4. Employees dealing with children will be required to certify that they do

not have a criminal conviction.

 5. Employees dealing with children will be required to certify that they do

not have a criminal conviction in the last seven years.

 6. Employees dealing with children will undergo a criminal background

check.

 7. Prospective employees will have an opportunity to contest information that

is returned, as we are aware that background checks are often inaccurate.

228 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 228

If you are not familiar with the issues of accuracy in background checks,

there are fascinating reports available, including ones from the National

Consumer Law Center (Yu, 2012) or the National Employment Law Project

(Neighly, 2013).

Process

Understanding how the product’s technology is to be operated can also drive

security requirements. Drafting a security operations guide can be a good way

to elicit product security requirements.

Technology

It is very tempting to say that this entire book is about the technology, so “this

section intentionally left blank.” But that’s not really the case. This book shows

that models of your technology are the best place to start threat modeling. But

all technology interacts with other technology, so what are the limits or scope

of how you approach this? The best answer when you’re getting started is to

focus on those technologies where you can most directly address threats. As

your skills grow, looking along your supply chain (and possibly the supply

chains you are part of) may be a good way to expand your horizons.

Development Requirements vs. Acquisition
Requirements

When you’re developing technology from scratch, the set of security require-

ments you might choose to address is much larger than when you’re acquir-

ing technology from someone else. This issue is exacerbated by technological

ecosystems. For example, the Burroughs 5500 computers of the 1960s had a

memory architecture that was resistant by design to stack-smashing sorts of

attacks (Hoffman, 2008; Shostack, 2008). However, it is challenging to procure

a system with such features today.

In reality, few systems are really developed “from scratch.” The security

requirements of every project are constrained by its inputs. It is helpful to every-

one along the chain to document what security requirements you do or do not

support. For example, if you are developing on Windows, defending against the

administrator account is not supported (Culp, 2013). Similarly, before Windows

8, you cannot defend against apps running as the same user. Windows 8 adds

some capabilities in this area (Hazen, 2012).

 Chapter 12 ■ Requirements Cookbook 229

c12.indd 07:52:27:AM 01/15/2014 Page 229

Compliance-Driven Requirements

An ever-expanding set of security requirements is driven by compliance pro-

grams. Those compliance regimes may be imposed on you or your customers,

and they make an excellent source of security requirements. More rarely, they’re

even a source of excellent security requirements. (It’s challenging to write broad

requirements that are specifi c enough to engineer from.) This section covers

three such requirement sets: the Cloud Security Alliance (CSA) control matrix

and domains, the United States NIST Publication 200, and PCI-DSS (the Payment

Card Industry Data Security Standard). To the extent that you’re building tech-

nology for a single organization, you may have security requirements directly

imposed. If you’re building technology to sell, or give away, then your customers

may have requirements like these. If you expect to encounter a set of compli-

ance requirements from your customers, it will probably be helpful to create or

use a single meta-framework that covers all the issues in the frameworks you

need to comply with, rather than attempt working with each one. There are

commercially available “unifi ed compliance frameworks,” and depending on

the number of compliance requirements you face, it may be worth buying one

for speed, coverage, or expertise. The CSA framework can be a useful starting

point if you need something free. The requirements that follow are presented

as places from which to derive more detailed requirements. They should not be

used to replace an appropriately detailed understanding of your requirements

for compliance purposes.

Cloud Security Alliance

The CSA is a non-profi t organization dedicated to cloud security. They have

produced two documents that are helpful for security requirements: the controls

domains and the controls matrix.

The fi rst document maps controls into a set of domains, including governance

and enterprise risk management, legal issues, compliance and audit, informa-

tion management and data security, traditional security, business continuity

and disaster recovery, data center operations, incident response, application

security, encryption and key management, identity and access management,

virtualization, and security as a service. This is a fi ne list of areas to consider, and

the CSA has a lot more documentation for you to dig into. (They also consider

architecture, and portability and interoperability, but those seem somewhat

less relevant for security.)

The CSA also has a Cloud Control Matrix of 98 control areas, with mappings

that show their applicability to architectural areas (physical, network, compute,

230 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 230

storage, application, and data), to corporate governance, to cloud service delivery

models (SaaS/PaaS/IaaS), and to service providers versus tenants. Each control

area is also mapped to COBIT, HIPAA/HITECH, ISO/IEC 27001–2005, NIST

SP800–53, FedRAMP, PCI DSS, BITS Shared Assessments SIG v6 & AUP v5,

GAAP, Jericho Forum, and the NERC CIP.

The requirements documented in the Cloud Controls Matrix are designed to

be used as a basis for cloud operational security. Some of the requirements are

most relevant to cloud services, but it’s a fi ne resource to start with, with the

advantages of being both freely available and already mapped to a large set of

other sets of controls.

NIST Publication 200

Requirements in this publication are a mixed set, ranging from planning and

risk assessment to physical environment protection and technical requirements,

such as authorization and system integrity. Federal agencies are required to

“develop and promulgate formal, documented policies and procedures . . . and

ensure their effective implementation” (NIST, 2006). US Government agencies

must also meet the controls laid out in NIST Special Publication 800–53. Items

marked with a star align to one or more STRIDE threats, so you might cross-

check the section “The STRIDE Requirements” later in this chapter.

For each item in this list, consider if there’s a need to address the issue in

your product requirements:

 ■ Access control, including authorization*

 ■ Awareness and training

 ■ Audit and accountability including traceability of actions back to accounts*

 ■ Certifi cation, accreditation, and security assessments, including assess-

ments of whether information systems are suitably protected

 ■ Confi guration management, which imposes confi guration and manage-

ment requirements

 ■ Contingency planning

 ■ Identifi cation and authentication*

 ■ Incident response

 ■ Maintenance

 ■ Motherhood and apple pie (just kidding)

 ■ Media protection

 ■ Physical and environment protection

 ■ Planning, including plans for the organizational information systems

and controls

 Chapter 12 ■ Requirements Cookbook 231

c12.indd 07:52:27:AM 01/15/2014 Page 231

 ■ Personnel security, including criteria for who’s hired, managing termina-

tion, and penalties for compliance failures

 ■ Risk assessment of threats (including risks to mission, functions, image,

or reputation) to the organization or individuals

 ■ Systems and service acquisition, including allocating resources and deploy-

ing system development life cycles that address security

 ■ System and communication protection*

 ■ System and communication integrity*

PCI-DSS

The Payment Card Industry Data Security Standard (PCI-DSS) is a set of stan-

dards for those processing payment card data (PCI, 2010). These standards are

generally incorporated into contracts associated with credit card processing.

Note the wide variance in specifi city—from “have a security policy” to “do not

use default passwords”—in the following requirements:

 1. Install and maintain a fi rewall confi guration to protect cardholder data.

 2. Do not use vendor-supplied defaults for system passwords and other

security parameters.

 3. Protect stored cardholder data.

 4. Encrypt transmission of cardholder data across open, public networks.

 5. Use and regularly update anti-virus software.

 6. Develop and maintain secure systems and applications.

 7. Restrict access to cardholder data by business need-to-know.

 8. Assign a unique ID to each person with computer access.

 9. Restrict physical access to cardholder data.

 10. Track and monitor all access to network resources and cardholder data.

 11. Regularly test security systems and processes.

 12. Maintain a policy that addresses information security.

Privacy Requirements

You’ll fi nd there are a few main motivations for privacy, including legal com-

pliance and a desire to make only those promises that can be kept—to avoid

customer anger. This section covers a selection of important privacy require-

ments frameworks. They are important because they underlie many laws or are

infl uential with regulators (Fair Information Practices, Privacy by Design), can

232 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 232

help you avoid privacy blow-ups (Seven Laws of Identity), are pragmatic, and

are designed to be accessible to non-specialist software developers (Microsoft’s

Privacy Standards for Developers).

Fair Information Practices

Fair Information Practices (FIP) is a concept that goes back to a 1973 report for

the United States Department of Health, Education, and Welfare, which put forth

fi ve core fair information Practices. Along the way, practices were promoted

to principles, and if you’re paying close attention, you’ll notice FIP expanded to

either, or sometimes even both (Gellman, 2013). The difference is minor, but I’ll

hew to the term used in the source discussed. The original enumeration was

as follows:

 1. Notice/Awareness

 2. Choice/Consent

 3. Access

 4. Security

 5. Enforcement/Redress

These form the basis for the 1980 OECD “Guidelines on the Protection of

Privacy and Transborder Flows of Personal Data.” The OECD put forth eight

Principles. The European Union’s Data Protection Directive and Canada’s Personal

Information Protection and Electronic Documents Act are also based on FIPs,

and each has divided them into slightly different lists. These high-level prin-

ciples may be a useful checklist when evaluating security and privacy issues

at design time. Which list you should use will depend on a number of factors,

including the location of the organization and its customer base. Be aware that

many software engineers fi nd these lists are too generic to be of much use when

designing a system.

Privacy By Design

Privacy by Design is a set of principles created by the Ontario Privacy Commissioner

with the goal of helping organizations embed privacy into product design. It

outlines seven main principles, quoted below:

 1. Proactive

 2. By Default

 3. Embedded

 4. Positive Sum

 5. Life-cycle Protection

 Chapter 12 ■ Requirements Cookbook 233

c12.indd 07:52:27:AM 01/15/2014 Page 233

 6. Visibility/Transparency

 7. Respect for Users

Privacy by Design has been criticized as “vague” and leaving “many open

questions about their application when engineering systems” (Gürses, 2011).

The Seven Laws of Identity

Kim Cameron of Microsoft has put forward a set of seven principles he calls the

Laws of Identity for digital identity systems (Cameron, 2005). They are not overall

privacy requirements, but a great deal of privacy relates to how a system treats

“identity,” a concept further discussed in Chapter 14 “Accounts and Identity.”

They may be an interesting complement to contextual integrity (discussed in

Chapter 6 “Privacy Tools”). These are extracted from a document that describes

and contextualizes each law:

 1. User Control and Consent: Technical identity systems must only reveal

information identifying a user with the user’s consent.

 2. Minimal Disclosure for a Constrained Use: The solution that discloses

the least amount of identifying information and best limits its use is the

most stable long-term solution.

 3. Justifi able Parties: Digital identity systems must be designed so the dis-

closure of identifying information is limited to parties having a necessary

and justifi able place in a given identity relationship.

 4. Directed Identity: A universal identity system must support both omni-

directional identifi ers for use by public entities and uni-directional identi-

fi ers for use by private entities, thus facilitating discovery while preventing

unnecessary release of correlation handles.

 5. Pluralism of Operators and Technologies: A universal identity system

must channel and enable the inter-working of multiple identity technolo-

gies run by multiple identity providers.

 6. Human Integration: The universal identity metasystem must defi ne

the human user to be a component of the distributed system integrated

through unambiguous human-machine communication mechanisms

offering protection against identity attacks.

 7. Consistent Experience Across Contexts: The unifying identity metasystem

must guarantee its users a simple, consistent experience while enabling

separation of contexts through multiple operators and technologies.

These laws can be reasonably easily inverted into threats, such as “does the

system get appropriate consent before revealing information?” or “does the sys-

tem disclose identifying information not required for a transaction?” However,

234 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 234

this runs the risk of losing the richness of the Laws of Identity, so it’s left as an

exercise for you.

Microsoft Privacy Standards for Development

The Microsoft Privacy Standards for Developers (MPSD) is a prescriptive docu-

ment that, for a set of scenarios, gives advice about how to address them. However,

the standards are not focused on the discovery of privacy issues. They focus

instead on a set of scenarios (notice, choice, onward transfer, access, security,

and data integrity) and requirements for those scenarios (Friedberg, 2008).

The difference between these privacy standards and the more principle-oriented

approaches is a result of the customer-focus. The MPSD are explicitly based on

the FIPs, but are designed to provide practical advice for developers. Making

it easy for (a defi ned) someone to use the document increases the effectiveness

of an approach, and the audience-focus of the MPSD could well be emulated

by other documents to help improve privacy.

Which of these privacy requirements frameworks will best inform your

technology depends on what you’re building, and for whom. FIPs or Privacy by

Design may spark valuable discussion of your designs or goals. If your system

is focused on people, the “Seven Laws” can help. If you lack privacy expertise,

the MPSD will help (but it is not intended to replace professional advice).

The STRIDE Requirements

You may recall that STRIDE is the opposite of properties that you want in a sys-

tem, so properly this section ought to be called “The AINCAA Requirements,”

but that’s just not very catchy. The relationship between STRIDE and the desired

properties is shown in Table 12–1.

Table 12–1: STRIDE and AINCAA

THREAT DESIRABLE PROPERTY

Spoofi ng Authentication

Tampering Integrity

Repudiation Non-Repudiation

Information Disclosure Confi dentiality

Denial of Service Availability

Elevation of Privilege Authorization

The following subsections are organized according to the desirable property

shown in Table 12–1.

 Chapter 12 ■ Requirements Cookbook 235

c12.indd 07:52:27:AM 01/15/2014 Page 235

Authentication

Authentication is the processes or activity which increases your confi dence that

something is genuine. For example, entering a password increases the system’s

confi dence that the person behind the keyboard really is authorized to use the

system.

Is Authentication Required for Various Activities?

Different systems require different levels of authentication. As discussed in the

chapter introduction, many websites offer read content to anonymous people

(that is, no authentication is required). Some, like Wikipedia, offer write access

as well. Some requirements you can build on include:

 1. Anonymous people can create/read/update/delete items.

 2. All authenticated users can create/read/update/delete items.

 3. An enumerated subset of users can create/read/update/delete items.

How Strong an Authentication Is Required?

As stated above, different systems require different levels of authentication, and

different forms of control for the authentication system. Sample requirements

include:

 1. Single-factor authentication is suffi cient for activity X.

 2. Single-factor authentication plus a risk management check is suffi cient

for activity X.

 3. Two-factor authentication is suffi cient for activity X.

 4. We will control the authentication database.

 5. The IT/marketing/sales department will control the authentication database.

 6. We will allow an outside organization (such as Facebook) to control our

authentication database.

 7. We will allow an outside organization (such as Facebook) to control

part of our authentication database, such as “signed-in users” but not

administrators.

 8. Authentication should only be possible for people in IP range X.

 9. Authentication should only be possible for people in physical location X

(such as in the building or in the United States).

Note that systems to physically locate people are either weak, buggy (that is,

high false positive, false negative rates) or exceptionally expensive (such as a

dedicated air-gap network).

236 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 236

Account Life Cycle

The ways in which accounts are managed will vary based on your requirements.

Sample requirements include:

 1. Anyone can create an account.

 2. Anyone with an e-mail address can create an account.

 3. Anyone with a validated e-mail address can create an account.

 4. Anyone with a credit card number can create an account.

 5. Anyone with a valid, authorizable credit card can create an account.

 6. Anyone with a credit card who can tell us how much we charged can

create an account.

 7. Anyone with a bank account who can tell us how much we charged can

create an account.

 8. Only an authorized administrator can create normal accounts.

 9. Only two authorized administrators can create a new administrator account,

 a. and all other admins are notifi ed,

 b. and an auditing team is notifi ed. (This is perhaps a non-repudiation

requirement, but you can also think of it as part of the account life

cycle.)

 10. Anyone can close their account at any time, and the data is deleted as soon

as possible.

 11. Anyone can close their account at any time, and the data is deleted after

a cooling off period.

 12. Anyone can close their account at any time, and the data is kept for busi-

ness purposes.

 13. Anyone can close their account at any time, and the data is kept for N time

to satisfy regulatory requirements.

 14. Administrator participation is required to close an account.

 15. When administrator participation is required to close an account, the

account must be globally inaccessible within N minutes.

Integrity

Sample integrity requirements include:

 1. Data will be protected from arbitrary tampering.

 2. This data will only be subject to modifi cation by an enumerated set of

authorized users.

 Chapter 12 ■ Requirements Cookbook 237

c12.indd 07:52:27:AM 01/15/2014 Page 237

 3. These fi les/records will only be subject to modifi cation by enumerated

authorized users.

 4. These fi les/records will only be subject to modifi cation by enumerated

authorized users, and edit actions will be logged.

 5. These fi les/records will only be subject to modifi cation by enumerated

authorized users, and edit content will be logged.

 6. These fi les/records will be unwritable when the system is in operation.

 7. These fi les/records will be append-only when the system is in operation.

 8. Modifi cations to these fi les/records will be cryptographically detectable.

 9. Modifi cations to these fi les/records will be cryptographically detectable

with commonly available tools.

 10. Data sent over this inter-process channel will be protected from tampering

by the operating system.

 11. Data sent over this channel will be protected from tampering by a cryp-

tographic integrity mechanism.

 12. Messages will be protected from tampering by a cryptographic integrity

mechanism.

You’ll notice that there are integrity requirements on channels and messages.

The channel is what the message travels down. Protection in the channel doesn’t

protect the data once it has left the channel.

For example, consider e-mail. Imagine a well-encrypted, tamper-resistant,

replay-protected channel between two mail servers. The operators of those

servers have confi dence that the messages are well protected in that channel;

but a person on one end or the other could alter a message, and forward it. If

the messages themselves have tamper resistance, then that can be detected.

Such tamper resistance could be imparted, for example, by a cryptographic

signature scheme.

Non-Repudiation

Recall that non-repudiation can cover both business and technical requirements.

Sample requirements include:

 1. The system shall maintain logs.

 2. The system shall protect its logs.

 3. The system shall protect its logs from administrators.

 4. The logs will survive compromise of a host; for example, by writing logs

to a remote system.

238 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 238

 5. The logs will allow account compromise to be differentiated from a behav-

ior change.

 6. The logs will resist counterparty fraud; for example, by using cryptographic

signatures.

 7. The logs will resist insider tampering; for example, with hash chains or

write-once media.

Confi dentiality

Sample confi dentiality requirements include:

 1. Data in fi le/database will be available only to these authorized users.

 2. Data in fi le/database will be available only to these authorized users, even

if computers/disks/tapes are stolen.

 3. Data in fi le/database will be available only to these authorized users, even

if computers are stolen while turned on.

 4. The name/existence of this datastore will only be exposed to these autho-

rized users.

 5. The content of communication between Alice and Bob will only be exposed

to these authorized users.

 6. The topic of communication between Alice and Bob will only be exposed

to these authorized users.

 7. The existence of communication between Alice and Bob will only be

exposed to these authorized users.

Availability

Sample availability requirements include:

 1. The system shall be available 99 percent of the time.

 2. The system shall be available 100 percent of the time.

 3. The system shall be available 100 percent of the time, and we will pay our

customers if it’s not.

 4. The system shall be available for N percent of the time, including planned

maintenance.

 5. Only authenticated users will be able to cause the system to spend 10×

more CPU than they have spent.

 6. The system will be able to resist a simple DoS such as synfl ooding by a

50,000-host botnet.

 Chapter 12 ■ Requirements Cookbook 239

c12.indd 07:52:27:AM 01/15/2014 Page 239

 7. The system will be able to resist a simple DoS such as HTTPS connection

initiation by a 50,000-host botnet.

 8. The system will be able to resist a customized DoS by a 50,000-host botnet.

The selection of 50,000 is only somewhat arbitrary. It is large enough to be a

substantial threat, while small enough that there are likely quite a few of them

out there.

Authorization

Sample authorization requirements include:

 1. The system shall have a central authorization engine.

 2. The system shall have a central authorization engine with a confi gurable

policy.

 3. Authorization controls shall be stored with the item being controlled, such

as with an ACL.

 4. Authorization controls shall be stored in a central location.

 5. The system shall limit who can read data at a higher security level.

 6. The system shall limit who can write data to a higher integrity level.

 7. The authorization engine should work with accounts or account groups.

 8. The authorization engine should work with roles (properties of accounts).

There is a tension between storing authorization controls centrally versus

with the objects being protected. The former is easier to manage but harder for

normal people to understand (often to the point of being unsure where to go).

The system controlling who can read from a higher integrity level is analogous

to military data classifi cation schemes. Someone with a secret clearance can’t

read a top-secret document. (This was fi rst formalized as the Bell-LaPadula

model [Bell, 1973]). Controlling who can write to a higher integrity level is also

very useful, and is described by the Biba model (Biba, 1977). The Biba model is

a description of how an operating system protects itself from programs run-

ning as a normal user.

Cloud and DevOps Authorization and Audit

Much of cloud operations eventually boils down to a set of authorization ques-

tions. Who is authorized to make which changes, and who made which changes.

The lists might not line up, because policy and implementation don’t always

perfectly line up. As organizations move, intentionally or not, toward DevOps

models, these questions become trickier. The requirements also change. Rather

240 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 240

than a formal handoff from development to test, the code is promoted to pre-

production, and then to production. Sample DevOps requirements include:

 1. Any developer is authorized to push code to pre-production.

 2. Any developer is authorized to push code to production.

 3. Any production change requires only test pass complete.

 4. These production changes only are possible with test pass completion.

 5. Every production change requires human signoff.

 6. Every change must be designed and tested to roll back.

 7. Every production change can be tracked to a person.

 8. Every production change can be tracked to a test run.

Non-Requirements

Just as enumerating requirements is important, so is being explicit about what

the system won’t do. Some attacks are too expensive to deal with (for example,

you might accept that the KGB could subvert your employees). Others may

require capabilities that the operating system, chip-maker, and so on, do not

currently supply. Whatever the reason, the things that your system doesn’t do

should be explicit, so your management, operations, or customers are not sur-

prised. The following sections consider three ways to express and communicate

non-requirements: operational guides, warnings and prompts, and Microsoft’s

“10 Immutable Laws of Security.”

Operational Non-Requirements

Sometimes there will be things that can’t be secured in the code but must be

addressed in operations. The simplest example is reading the logs to detect attacks.

Other goals, such as defending against malware or a malicious admin, can be

attractive distractions. They generally fall outside of what you should worry

about. You should document these as either requirements or non-requirements

and engineer appropriately.

Have an Operational Guide

Documenting these in an operational guide serves two purposes: transparency

and requirements elicitation. Transparency is useful because it helps your cus-

tomers set their expectations appropriately, and avoid unpleasant surprises. The

second purpose, requirements elicitation, means that as you document what an

operator needs to do, you may well decide that the requirements are unrealistic,

 Chapter 12 ■ Requirements Cookbook 241

c12.indd 07:52:27:AM 01/15/2014 Page 241

and decide to either add features to make something more feasible, or remove

features that can’t be used securely.

Defend against Malware in the Right Way

Trying to defend a system against malware that is already on the system is a

complex and probably futile effort for most products. The exceptions are oper-

ating systems creators and security software creators. If you’re not in either

group, and if the malware is running inside the same trust boundaries as your

code, there’s little you can do.

Most software systems should focus on preventing the elevation of privi-

lege threats that allow malicious software to run. You should assume that the

system is working on behalf of the people authorized to run code. (Obviously,

this doesn’t apply if you’re creating an operating system or anti-virus product.)

Decide if Defending against Admin Is a Requirement

Most systems should not try to defend against the malicious admin. (The same

principle as malware applies, but worse.) If the admin of a system is malicious,

then they can do a wide variety of things. Some cryptographic systems may

allow your data to transit these systems safely, but if you decrypt data on a

system controlled by a malicious admin, they can capture your password or the

plaintext of your documents. (Worse, they can get tricky. For example, telling

you that a good cryptographic key didn’t work, tricking you into entering other

passwords you commonly use.)

If you’re creating a high-assurance system of some form, you might have a

requirement to always apply a two-person rule to defend against administra-

tors. If that’s the case, then you have a fi ne challenge ahead.

Warnings and Prompts

Some things that can’t be secured in the code are suffi ciently dangerous that

there should be a warning before allowing the system to proceed. These things

can be considered non-requirements, or they can be used to drive requirements

that improve the architecture of the system. See Chapter 15 “Human Factors

and Usability” for more information.

Microsoft’s “10 Immutable Laws”

Microsoft’s “10 Immutable Laws of Security” are an example of how to explain

what your system doesn’t do. The second paragraph of that document opens

with “Don’t hold your breath waiting for an update that will protect you from

242 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c12.indd 07:52:27:AM 01/15/2014 Page 242

the issues we’ll discuss below. It isn’t possible for Microsoft or any software

vendor to ‘fi x’ them, because they result from the way computers work” (Culp,

2013). The fi rst several “laws” are as follows:

Law #1: If a bad guy can persuade you to run his program on your com-

puter, it’s not solely your computer anymore.

Law #2: If a bad guy can alter the operating system on your computer, it’s

not your computer anymore.

Law #3: If a bad guy has unrestricted physical access to your computer,

it’s not your computer anymore.

Law #4: If you allow a bad guy to run active content in your website, it’s

not your website anymore.

Law #5: Weak passwords trump strong security.

Law #6: A computer is only as secure as the administrator is trustworthy.

You might note that laws 1, 2, and 4 sure do seem like slight variations on

one another. That’s to draw out the implications.

Summary

In this chapter, you’ve learned that good security requirements act as a comple-

ment to threat modeling, enabling you to make better decisions about threats

you discover with the techniques in Part II of this book.

You’ve been given a set of base requirements that are designed to help you

do the following:

 ■ Understand the space of security requirements better.

 ■ Quickly crystalize more precise requirements.

This chapter should serve as a practical, go-to resource when you’re work-

ing through requirements at a business or technology level. The business level

includes requirements driven by competitive pressure and industry, and require-

ments to handle vulnerabilities that your code might contain.

You’ve also seen how to use people/process/technology and prevent/detect/

respond to inform your requirements process. Compliance frameworks, including

those from the Cloud Security Alliance, the U.S. government, and the payment

card industry can be used as a base for your requirements.

You’ve learned about a variety of sources for privacy requirements. Lastly,

you’ve been reminded how the STRIDE threats violate properties, and how

those properties can be developed into requirements.

243

c13.indd 02:56:22:PM 01/08/2014 Page 243

In many ways, threat modeling for the web and cloud are very much like threat

modeling for anything else, but these unique environments have some recur-

ring threats, which are covered in this chapter.

This chapter is organized into web threats, cloud threats, cloud provider

threats, and mobile threats. Web threats are broken into website threats, web

browser, and plugin threats. Many of the cloud threats are expressed with

respect to infrastructure as a service (IaaS) and platform as a service (PaaS). It

closes with a section on mobile threats.

Web Threats

The web is composed of a simple and powerful set of protocols and languages.

It has become a cliché to say that it has changed everything. It’s easy to forget

that the web is software like other software. Although you might assume that

you need to threat model it in some new ways, the truth is that it’s like most

other software, so techniques such as STRIDE and attack trees work well for

web technologies.

C H A P T E R

13

Web and Cloud Threats

244 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c13.indd 02:56:22:PM 01/08/2014 Page 244

Website Threats

Public websites receive large amounts of scrutiny, and suffer from all that the

world can throw at them. The classic STRIDE threats all apply, as do a slew of

web-specifi c attacks that happen when you forget that there’s a trust bound-

ary between them and the apparently nice doggy that is wagging its tail and

slobbering in remarkably cleverly formed SQL in your forms and JavaScript in

your URLs in order to cause harm.

Usually, threats such as SQL injections and XSS are handled later in the soft-

ware engineering process. You’ll be developing using patterns, libraries, and

frameworks that make each threat less likely, using appropriate testing tools

to catch problems during testing, and watching the logs after deployment. So

you’re done, right? Unfortunately, no. You should be threat modeling to fi nd

the unique threats your site will be vulnerable to, such as your ad provider,

your analytics code, and that authentication database you’re using from some

crazy start-up in San Francisco. A standard data fl ow diagram (DFD) showing

where the data comes from for your server is essential, and a client-side DFD

is also a pretty good idea, if only to ensure that you have a good test suite. A

client-side DFD can also be a good way to create a list that helps you track when

your dependencies issue security updates.

Web Browser and Plugin Threats

The web browser has become people’s primary portal onto the Internet, and

occasionally their last line of automated defense against attacks. Anyone consid-

ering building a web browser needs at least one expert with a deep knowledge

of the history of browser security issues.

Browser companies could substantially help matters by being super-diligent

about their security goals, and how those goals manifest between tabs, websites,

and the OS hosting the browser. Clarity from browser creators on how to create

a plugin that does not violate security would also be most welcome.

Web plugins or add-ons that extend browser security are becoming less and

less common, in part because the two best-known and widely deployed plugins,

Java and Flash, have both suffered serious and ongoing security problems.

Another reason plug-ins are becoming less common is Apple’s willingness to

exclude Flash from the iPhone.

Any of the building blocks for fi nding threats can be applied to a web browser.

For example, the STRIDE threats all apply to a web browser. There’s spoofi ng

of web pages for phishing or other goals, cross-tab tampering and tampering

with fi les included from other servers. There’s information disclosure about

 Chapter 13 ■ Web and Cloud Threats 245

c13.indd 02:56:22:PM 01/08/2014 Page 245

browser history vis CSS sniffi ng, and similar examples exist for each STRIDE

threat. There are also very specifi c attack libraries available for web browsers

and website designers.

If you’re going to create a browser plugin, there are two unique elements to

consider: the browser’s security model and the browser’s privacy model. You

should also realize that auto-update is important and must be done securely.

Browser Security Model

You must deeply understand and respect the browser’s security model, and not

accidentally break it. This security model includes elements such as the same-

origin policy, the boundaries between pages, and what can and can’t open a

new window, resize a window, and so on. You must also remember to treat the

other sides of connections as malicious with respect to the browser. That is, from

the browser’s perspective, your component that sits on a web server could be

under the control of an attacker, who can then send malicious content to your

plugin and compromise additional systems. (Similarly, your plugin may be

modifi ed or run through a proxy that rewrites data to attack the server compo-

nents.) However, there are times when breaking the browser security model is

intentional and appropriate. For example, some security testing plugins do so.

Several experts have told me in all seriousness that browser security models are

now so complex that I should not even write a section about this. I’m tempted to

say that browser plugins, like crypto, is a domain for which you need expertise

and penetration testing. It would be wonderful if browser manufacturers could

fi x this, and offer easier to understand plugin models so that plugins could be

developed without putting the people who install them at risk. For a history

of the three fl aws in one popular plugin, see Mark Pilgrim’s article “Avoid

Common Pitfalls in Greasemonkey” (O’Reilly Network, 2005). (As an aside,

Pilgrim’s blog post is a good example of a “Note to API Callers,” as discussed

in Chapter 7, “Processing and Managing Threats.”) For a book-length treatment

of the full complexity of modern browsers, see Michal Zalewski’s The Tangled

Web (No Starch Press, 2011).

Browser Privacy Model

Similar to respecting the browser’s security model, your plugin should respect

the browser’s privacy model. You should not allow tracking or surveillance in

any way that the browser does not, and you should ensure that your controls

are at least as accessible as those offered by the browser.

246 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c13.indd 02:56:22:PM 01/08/2014 Page 246

Auto-Update

It is very likely that you will have numerous security issues with your plugin,

and you should therefore ensure that it’s easy to report bugs to you, and that

your updater works well with the browser’s auto-update mechanism, and that

you have a security update process that can deliver security updates without

any tradeoffs such as new or changed user interfaces, new licenses, or similar

impediments to upgrading.

Cloud Tenant Threats

You can use an attacker grouping approach to break out cloud threats. There

are two main classes of new attackers (threats) when you move an IT system

to the cloud: those from insiders at the cloud operator, and those from your

fellow tenants of the cloud system. There are generally some new instances of

availability threats, based on the increased complexity of connectivity. There

are also two sets of legal threats: those that add complexity and/or effort or

reduce the assurance of compliance, and the different legal standards around

data given to third parties. Lastly, there’s a hybrid of those legal threats, which

are threats to forensic response. In this section, you’ll see the term cloud provider
used to refer to an organization that offers any combination of infrastructure,

platform, or software as a service. Their customer is you, and like their other

customers, you are a tenant of their service. Attackers might be tenants, or those

who have broken in.

Insider Threats

When you move your data or operations to someone else’s cloud, you add a

trust boundary. That boundary has the employees and contractors of the cloud

operator inside of it, with your data. As administrators, they have unavoidable

technical access to the data you provide. They may intentionally attack you, fall

victim to an attack themselves, accidentally misconfi gure software, or fail to

perform maintenance, such as wiping disks between re-allocations.

There are two ways to mitigate this threat: contractually and cryptographically.

Contractual approaches dominate today because they’re easier; and for most of

the risks, it turns out that a contract is suffi cient. However, contracts may not

be subject to negotiation unless you’re spending lots of money. Unfortunately,

companies often use contracts to protect personal information, where much of

the risk is external to the companies signing the contracts.

The cryptographic approach is to encrypt the data (and possibly obfuscate

the code) before sending it. This is easier with a cloud storage system than with

software as a service. Well-encrypted, integrity-protected, and authenticated

 Chapter 13 ■ Web and Cloud Threats 247

c13.indd 02:56:22:PM 01/08/2014 Page 247

data can be stored anywhere with a very low reduction in safety. (The encrypted

state of the data will infl uence what processing can be done on the encrypted

data. There is interesting cryptographic research on processing encrypted data,

which as of this writing usually isn’t part of the standard crypto libraries that

you should use.) Of course, the keys need to be stored securely, or you’re trading

confi dentiality and integrity for availability.

Co-Tenant Threats

These threats are to tenants of “infrastructure as a service” (IaaS) and to a lesser

degree “platform as a service” (PaaS), whereby the provider/tenant trust bound-

ary allows tenants to execute arbitrary code inside the data center. In IaaS, the

code execution privileges are effectively unlimited, although they may formally

be limited to what a non-administrative account can do. In PaaS, the code that

is supposed to execute is far more limited. Historically, few platforms were

constructed with a threat model that the most important attacker is already on

the system. It is far more common, and probably even appropriate, for platform

designers to worry about the trust boundary between the system and those

who cannot execute any code. Unless the platform software has been carefully

constructed to resist elevation of privilege attacks and to prioritize fi nding and

fi xing those, there are likely vulnerabilities that allow an attacker to violate the

rules. That leads to second-order threats to the cloud tenants.

There is also a set of threats from other tenants, ranging from the trivial to

the movie plot. At the trivial end, you may be behind the same single fi rewall

as your competitor, or someone without an IT department. You might also be

on the same domain as they are, such as cloudapp.net or s3.amazonaws.com.

Some defenses, such as fi rewalls, need to be managed as part of the cloud

deployment. Your systems may also come under attack as stepping-stones to

other tenants of the cloud provider. Beyond that, another tenant might try to

bust out of their virtual machine and take over a host, giving them access to

your machine as well (if you’re sharing machines). An attacker might also be

able to access the network or storage (either local cache or storage specifi c to the

cloud). Another tenant might be taken over to run a DoS attack against you, or

an attacker might sign up to do so.

Threats to Compliance

There are three typical issues here. First, for many compliance regimes—but

most notably PCI and HIPAA—the entire stack, including physical security,

needs to be compliant. Therefore, the only way to have a PCI assessed app is for

your cloud provider to be assessed PCI compliant. Second, there can be issues

with auditing and logging. Not all cloud operators will provide logs of access to

their APIs or web consoles. This can lead to technical issues, such as it may be

248 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c13.indd 02:56:22:PM 01/08/2014 Page 248

impossible to see who added or changed accounts. That technical issue can lead

to a compliance issue. The fi nal issue is when you get into the PaaS and SaaS

market, you often lose the ability to leverage cryptography at the fi lesystem or

database level, as well as any concept of end-to-end encryption.

Legal Threats

The primary new legal threat when you move data to the cloud relates to laws

that (at least in the U.S.) substantially reduce your ability to know about or

challenge legal requests for your information, such as subpoenas or warrants.

Data you store on your own systems is often more legally protected than data

you store on someone else’s systems. The legal demands served on your cloud

provider may also contain provisions forbidding them from telling you about

those demands, or you may be informed after the data has already been provided.

Of course, there’s also the need to negotiate agreements related to privacy,

security, and reliability. Contractual provisions for both privacy and security

need to cover your business needs and your compliance needs. Privacy is cov-

ered by a hodge-podge of U.S. regulations. In the European Union, and those

places with a safe harbor agreement for data from European countries, there’s a

set of requirements, most importantly for the organization holding the data to

name a data custodian. That custodian has certain responsibilities, and you’ll

need to address those if you’re moving data collected under EU or other similar

privacy regimes.

It is, of course, important to consider these issues with your attorney; this

section is intended only to outline some of the points you should discuss with

them. Your attorney may have additional concerns.

Threats to Forensic Response

After an intrusion, your VM may be shut down by the cloud provider. You may

have instantiated a system large enough that performing complete snapshot or

a memory dump is time consuming; but most important, you may not have a

defensible chain of custody.

Miscellaneous Threats

Some cloud providers offer easy to use virtual machine images, uploaded by

kind strangers for your convenience, and out of the goodness of their hearts.

 Chapter 13 ■ Web and Cloud Threats 249

c13.indd 02:56:22:PM 01/08/2014 Page 249

Sometimes, the people who uploaded them really did so out of the goodness

of their hearts. Other times, the images are not so safe, and trusting them for

anything serious is probably foolish.

Cloud Provider Threats

There is also a set of threats to the cloud provider that cloud providers must

consider, and cloud customers should consider. These are all threats from or

caused by the folks to whom you give access to your systems. These are split

into threats caused by malicious behavior by the tenant that targets the pro-

vider, such as attempts by the tenant to hack the provider; and threats caused

by tenant behavior, such as blacklisting.

Threats Directly from Tenants

The largest threat is that a tenant will fi nd a way to break out of whatever sand-

box you put them in, and be able to take actions you don’t want them taking.

Those actions might be on the order of running code on the raw hardware and

tampering with either your billing or your other customers, or it might be con-

necting to networks that should be fi rewalled off. In particular, US-CERT has

warned about threats to the IPMI (Intelligent Platform Management Interface)

(US-CERT, 2013). These threats are sometimes managed by putting IPMI on

an isolated network. If a tenant breaks out, they may be able to access such a

management network. The sandbox escape threats are more likely when clients

are held back by fewer security boundaries. Thus, a client in a Software as a

Service (SaaS) environment has more barriers than one trying to escape from

an Infrastructure as a Service offering.

There’s also a fraud (repudiation) threat, which is that a new tenant might

sign up with someone else’s personal data and/or credit card, preparatory to

committing fraud, running a botnet, or DDoSing a game server. These threats

can be partially addressed by charging the card immediately for the fi rst por-

tion of service, or charging a sign-up fee, although that may be inhibitory to

new business. If there are throttles for e-mail sent or similar things, it may be

useful to tie them to length of tenancy.

Unfortunately, many of the ways to address these threats are at odds with the

low-friction, get-started-quickly value proposition that cloud providers want to

offer. There may be interesting ways to address these trade-offs that have yet

to be invented, but for now appropriate monitoring for anomalies is important.

250 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c13.indd 02:56:22:PM 01/08/2014 Page 250

Such monitoring has to build on the unique elements of the business, so custom

code will be needed.

Threats Caused by Tenant Behavior

There’s a set of threats that tenants can cause, including spamming and piracy.

These problems are magnifi ed in those cases where accounts are free to anyone,

and essentially anonymous. These threats are less clear-cut than issues such as

spoofi ng, tampering, or information disclosure. If your requirements are clear,

there’s no question about whether the threat violates them. In contrast, perhaps

the e-mails are all going to an authorized list? Perhaps the person who uploaded

that song is the artist, or is authorized to do so? Or perhaps the use of an image

is permissible under the law? This lack of clarity makes these threats harder to

manage than the classical security violations.

The United States has a somewhat clear set of rules regarding notice and take
down. These give cloud providers a legal defense against copyright claims until

they receive a formalized notice of infringement, after which they must take

certain actions, generally taking down the content. Following those processes

is prudent, as jumping to judgment and action on a notice may threaten the

protections you otherwise have.

These threats lead to an indirect threat to the provider and other tenants, which

is backlash from the attacks. That backlash can include visits or calls from law

enforcement, reports from other parties that require investigation or response,

and blacklisting. Once a tenant has sent spam, been part of a botnet, and so

on, there’s a risk that the IP, subnet, or ASN may be blacklisted. The behaviors

that lead to blacklisting may be violations of the terms of service. Responding

to the behavior and getting IP addresses de-listed is likely a manual and time-

consuming task.

Mobile Threats

Threats to mobile devices are generally similar to threats to other computers.

For example, someone who can run code on the device may read your fi les,

use your authentication data, etc. There are a few additional threats for mobile

devices, including increased likelihood of device loss, diffi culty managing the

devices, and business models confl icting with security updates.

The threat of device loss is clearly higher for mobile devices than for serv-

ers. The two main ways to address device loss are device wipe and data wipe.

Device wipe can cause confl ict, as many devices are owned by your employees

 Chapter 13 ■ Web and Cloud Threats 251

c13.indd 02:56:22:PM 01/08/2014 Page 251

or contractors, so in wiping their device, you may be deleting data that is not

yours to delete. Data wipe can be accomplished by sending encrypted data to

the device, and only sending the key needed to access the data when the data

is accessed.

Many mobile devices are locked to specifi c software providers, and constrain

which software can be loaded onto the device. This may threaten the ability

of a compliance team to load them up with compliance-ware. When a mobile

device is locked, then you defi ne the person holding the device as a threat. The

device and its physical shell become a trust boundary that you must carefully

consider, as all communication is subject to tampering, denial of service, and

information disclosure.

Lastly, many wireless carriers threaten the ability of the software makers to

deliver patches to devices in the fi eld, claiming that arbitrary patching threatens

them with bricked devices and support costs. This means that fi elded mobile

devices can be vulnerable to security problems that are fi xed in newer versions

of software.

Summary

The web is comprised of software which can be threat modeled like any other

software. There are a variety of recurring threat classes that are best managed

by using safer languages and test frameworks that focus on those classes. These

threats are things like XSS and SQL injection. There are also recurring patterns

within the web and cloud that you should consider when threat modeling.

The browser and its plugins have threat models that should be documented

by the browser maker. Those threat models should cover both security and

privacy, and you need to understand them to program the browser.

Cloud tenants come under threat from insiders at the cloud provider and

from co-tenants. Limits on code execution make attacking your co-tenants

harder, so as you move up the stack from IaaS to PaaS to SaaS, co-tenant attacks

become less likely. There are also a variety of threats to compliance and legal

threats that cloud tenants must account for. In addition, forensic response may

be threatened if you are a cloud tenant.

Cloud providers have to worry about threats of their tenants attacking them,

and the side effects that can occur when their tenants attack others. In particu-

lar, if tenants can access management networks that are normally isolated, the

impact on security can be exceptionally large.

Mobile computers, including laptops, tablets, and phones are much like other

computers, except the frequency of device loss is far higher. Some mobile devices

252 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c13.indd 02:56:22:PM 01/08/2014 Page 252

are locked in ways that restrict the loading of software, making it hard to add

compliance-ware, and possibly changing the threat model to include the person

who uses the device. Such locking may also threaten patching, leaving devices

vulnerable to known issues, and effectively removing the “need to fi nd a vul-

nerability” barrier to attack.

253

c14.indd 07:52:38:AM 01/15/2014 Page 253

If you don’t get account management right, you open the door to a slew of

spoofi ng threats. Your ability to rely on the person behind a keyboard being

the person you’ve authorized falls away. This chapter discusses models of how

computers identify and account for their users, and the interaction of those

accounts with a variety of security and privacy concerns. Much of the chapter

focuses on threat modeling, but some of it delves into thinking about elements

of security and the building blocks that are used. The repertoire in this chapter

is specialized, but frequently needed, which makes it worth working through

these issues in detail.

As the world becomes more digital, we interact not with a person in front

of us but with their digital avatars and their data shadows. These avatars

and shadows are models of the person. Remember: All models are wrong, and

some models are useful. When the model is a model of a person, he or she may

take offense at how they have been represented. The offense may be fair or

misplaced, but effective threat modeling when people are involved requires an

understanding of the ways in which models are wrong, and the particular ways

in which wrong models can impede your security, your business, as well as the

well-being, dignity, and happiness of your current or prospective customers,

citizens, or visitors.

Despite the term identity being in vogue, I do not use it as a synonym for

account. The English word identity has a great many meanings. At its core is

the idea of oneness, a consistency of nature—that this person is the same one

C H A P T E R

14

Accounts and Identity

254 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 254

you spoke with yesterday. Identity refers to self, personhood, character, and the

presentation of self in life. To speak of “identity issuance” reveals either a lack of

grounding in sociology and psychology, or a worrisome authoritarian streak, in

which the identity of a human is defi ned and controlled by an external authority.

It is often tempting to model accounts as permanently good or bad, as a

description of the person behind it. This is risky. Accounts can change from

good to bad when an attacker compromises one, or when a bad creator decides

to abuse them, which may be immediate or after a long period of “reputation

establishment.”

This chapter starts with the life cycle of accounts, including how they are

created, maintained, and removed. From there, you’ll learn about authentication,

including login, login failures, and threats against authenticators, especially

the most common authentication technology, passwords, as well as the various

threats to passwords. That’s followed by account recovery techniques, threat

models for those, and a discussion of the trade-offs associated with them. The

chapter closes with a discussion of naming and name-like systems of identifi ers

such as social security numbers.

Account Life Cycles

Over the lifetime of most systems, accounts will be created, maintained, and

removed. Creation may take many forms, including the authorization of a feder-

ated account. Maintenance can include updating passwords or other informa-

tion used for security. People are often not aware of or motivated to perform

such maintenance, which has resulted in the creation of technical tools such as

password expiry, which tries to either prod them or force their hand. People’s

awareness varies and is usually lower with lower-value accounts (when was

the last time you looked at your e-mail from Friendster, or logged into your

home wireless router?) Lastly, accounts will eventually need to be removed

for a variety of reasons, and doing so exposes threats such as identifi er re-use.

Account Creation

The life cycle of an account starts when the account is opened. Ideally, that hap-

pens with proper authorization, which means very different things in different

contexts. You can roughly model this based on how deep the relationship is

between the person and an organization.

For Close Relationship Accounts

Some accounts require and validate a good deal of information about a person

as the account is created. These accounts are typically of very high value to the

 Chapter 14 ■ Accounts and Identity 255

c14.indd 07:52:38:AM 01/15/2014 Page 255

person, and incur high risk to the organization. Examples include a bank account

or a work account with access to corporate e-mail and documents. Because of

the sensitive nature of these accounts, the account creation process is typically

more cumbersome, possibly including verifi cation steps and approvals. Such

accounts are likely to be strictly limited in terms of how many a person may

have at one time.

When people understand that the security requirements for these accounts

may exceed those of other types of accounts, they might use better (or at least

different) passwords, and the threat of lying about key data is somewhat reduced.

For Free Accounts

There are many online accounts that require little to nothing when signing up:

an e-mail address, perhaps. For these types of accounts, people will often pro-

vide personal information that is funny, aspirational, or completely inaccurate.

They do this to present an identity or persona, or for political or privacy reasons.

(I discovered recently that several of my online accounts say I am in Egypt, a

country I haven’t visited in 20 years. I likely set it during the Arab Spring, and

had no reason to change it since then.) If you rely on this information, these ten-

dencies to enter funny or aspirational information are a threat to you, while your

attempts to “validate” or constrain it can seem like a threat to your customers.

Free accounts are more likely to be used by more than one person—for example,

a family or team calendar. When someone leaves the team, the account manage-

ment implications are less than when someone is no longer authorized to access

a bank account. In the worst case scenario, the free account can be replaced

trivially, although the contents might not be. Free accounts are often used for a

variety of mischief, including but not limited to spam, or fi le-sharing for music,

books, or movies. Each of these threatens to annoy you, your customers, or the

Internet at large in various ways and to various degrees.

At the Factory

Systems that ship with a single default account created at the factory should

require a password change at setup; otherwise, the password will be available

to anyone via a search engine. You might also be able to ship with a unique

password printed onto a device or a sticker.

Federated Account Creation

Accounts are often created based on an account elsewhere, such as a Facebook or

Twitter login, or a corporate (active directory) account. Federation systems such

as OAUTH or Active Directory Federation Services (ADFS) allow this to happen

256 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 256

somewhat seamlessly. While federation reduces the burden on individuals who

want to create new accounts, it exposes risk in that a breached federated system

may be a stepping-stone to your system (depending on where and how authen-

tication tokens are stored). It may pose privacy threats by requiring the linkage

of accounts. It may also increase the impact of threats by making the federated

account a more valuable target. Lastly, users are often forgetful about where

they’ve federated, and leave federation in place even after they no longer use it.

Creating Accounts That Don’t Correspond to a Person

We often want to think “one account for one person.” Security experts advise

against shared accounts for good reasons of (ahem) accountability. There are

many reasons why that advice is violated. Some accounts are set up for more

than one person—for example, a married couple may have a joint bank account.

Often times, they will share a single login/password combination, even if you’ve

made it easy to set up several (computer) accounts to connect to a single bank

account. Similarly, many people might share one work account. It is important

to think about what happens when one or more participants in such a shared

account are no longer authorized to use it. For the married couple with a joint

bank account, what’s the right system? That both spouses have a (system) account

that is authorized to access the (bank) account? Similarly, a traditional landline

phone is an account for a family. If you call 867–5309, you might get someone

in Jenny’s family.

Andrew Adams and Shirley Williams have been exploring these issues and

have a short, readable paper “What’s Yours Is Mine, and What’s Mine Is My

Own” (Adams, 2012). Taking a cue from the world of law, they suggest consider-

ing several types of joint accounts: several, shared, subordinate, and nominee.

Several accounts are those that refl ect the intersection of individuals where each

has complete authority over the account. Shared accounts are those for which all

members of a group can see information, but some subset of users can control

what others can change. For example, members of an LLC could all see the

fi nancials, but only the treasurer can issue payments. Subordinate accounts might

be created by a parent or guardian, and allow one or more supervisory accounts

to see some, but perhaps not all, of the child’s activity. (For example, parents

might be able to see correspondent e-mail addresses, but not contents.) Finally,

nominee accounts might allow access to the account after some circumstance, such

as death. (Nominee accounts in this sense relate closely to Schechter, Egelman,

and Reeder’s trustees, covered later in the section “Active Social Authentication.”)

In any or all of these sorts of systems, there might be one login account that is

used by everyone who has access to the joint account, or one login per person—it

depends primarily on your development decisions and the usability of a joint

account system.

 Chapter 14 ■ Accounts and Identity 257

c14.indd 07:52:38:AM 01/15/2014 Page 257

It’s also important to avoid believing that there is a one-to-one correspon-

dence between the existence of an account and a human being who controls

it. This is easily forgotten, although identity masking is common enough that

it has many names, such as sockpuppets, astroturfi ng, Sybyls, and tentacles. Each

of these is a way to refer to a set of fake people under the control of a group

or person hoping to use social proof for the validity of their position. (Social

proof is the idea that if you see a crowd doing something, you’re more likely to

believe it’s OK.) Credit for this point belongs to Frank Stajano and Paul Wilson,

as described in their paper “Understanding scam victims: seven principles for

systems security” (Stajano, 2011).

Account Maintenance

Over time, it turns out that nearly everything about the person who uses an

account can change, and many of those changes should be refl ected with the

account. For example, almost everyone will change data such as their phone

number or address; but other things about them can change as well—name,

gender, birthday, biometrics, social security number. (Birthdays can change

because of inaccurate entry, inaccurate storage, or even discovery of a discrep-

ancy between documents and belief.) Even biometrics can change. People can

lose the body part being measured, such as a fi nger or an eye. Less dramatically,

cuts to fi ngers can alter a fi ngerprint pattern, and older people have harder to

read fi ngerprints.

If you store such data, you need mechanisms for changing it. It’s important

to align the change of these records with the security implications of a change.

If you use the phone or physical mail to authenticate, ensure that you do every-

thing appropriate to authenticate a phone number change. For a customer

change of address, many wise banks send letters to both the new address and

the old address, and turn their risk algorithms way up for a month or so after

such a change. When users are not aware that data such as phone number will

be used as an authentication channel, they are far less likely to keep it up to

date. Even when they are aware that such data may be used for that purpose,

they are unlikely to remember to update every system with which their phone

number is associated.

Notifying the Real Person

Many services will let their customers know about unusual security events. For

example, Microsoft will send text messages or e-mail to notify that additional

e-mail addresses have been added to an account, and LiveJournal will send

an e-mail if a login happens from a browser without a cookie. Such notifi cations

are helpful, insofar as your customers are probably motivated to protect their

258 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 258

accounts; and risky, as your customers may not understand the messages. They

may become more concerned than is appropriate, driving customer support costs,

dissatisfaction, or brand impact. Additionally, there’s a risk that attackers will

fake your security messages for phishing-like attacks. The right call is a matter

of good threat modeling, including good models of scenarios.

You can mitigate the risks by using scamicry-resistant advice (see

Chapter 15 “Human Factors and Usability”), ensuring that you have low false

positives, and using time as your ally. Time is an ally because you can delay

authorizing important changes such as payments or backup authentication

options until you have more information. That might be someone logging in

from a frequently seen IP address or computer, demonstrating access to e-mail,

or otherwise adding more information to your decisions. For more on delays,

see “Avoiding Urgency” in Chapter 15. See also the “Account Recovery” section

later in this chapter.

Account Termination

Customers may stop paying, leave, or pass away. Workers may quit or be fi red.

Therefore, it is important to have ways to terminate accounts fully and prop-

erly. Changing their passwords may not be enough. They might have e-mail

forwarding or scheduled processes that run; or they may be able to use account

recovery tools to get back in. This is actually the space in which many “identity

management systems” play: helping enterprises manage the relationship between

a person and the dozens to hundreds of accounts on disparate systems that

they might possess. (Now get off my lawn before I hit you with my typewriter.)

When you terminate an account, you need to answer at least two important

questions. First, what do you do with the objects that the account owns, including

fi les, e-mail messages, websites, database procedures, crypto keys, and so on?

Second, is the account name reserved or recycled? If you recycle account names,

then confusion can result. If you don’t, you risk exhausting the namespace.

Account Life-Cycle Checklist

This checklist is designed to be read aloud at a meeting. You’re in a bad state if

for any of these questions:

 ■ You can’t answer yes.

 ■ You can’t articulate and accept the implications of a no.

 ■ You don’t know.

 1. Do we have a list of how accounts will be created?

 2. Do all accounts represent a single person?

 Chapter 14 ■ Accounts and Identity 259

c14.indd 07:52:38:AM 01/15/2014 Page 259

 3. Can we update each element of an account?

 4. Does each update notify the person behind the account?

 5. Do we have a way to terminate accounts?

 6. Do we know what happens to all the data associated with an account

when it’s terminated?

Authentication

Authentication is the process of checking that someone is who they claim to

be. Contrast that with authorization, which is checking what they’re allowed

to do. For example, the person in front of you might really be Al Cohol, but that

doesn’t entitle them to a free drink.

Figure 14-1 shows a simple model of the authentication process. First, a person

enrolls in some way, which varies from the simple (entering a username and

password on a website) to the complex (going through an extensive background

check and signing paperwork to trigger a create account process). Later, someone

shows up and attempts to authenticate as the person who enrolled.

Enrollment

Authentication
Requestor

Account name

Response

Authenticator(s)

Please authenticate

Account, validation data

Figure 14-1: A simple model of authentication

Many of the threats covered in this chapter can be discovered by applying

techniques such as STRIDE or attack trees to Figure 14-1. However, because the

threats have been discovered, and the mitigations have been worked through,

this chapter summarizes much of what’s known so that you don’t have to re-

invent it.

The traditional three ways to authenticate people have required either “some-

thing you know, something you have, something you are,” or some combination

260 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 260

of those. Passwords are an example of something you know. Something you have

might include proximity cards or cryptographic devices such as RSA tokens.

Something you are is measured with tools such as fi ngerprint or retina scanners.

These methods of authenticating people are often termed authentication factors,
and multi-factor authentication refers to the use of several factors at one time.

It is important that factors be independent and different. If a system consists of

something you have, an ATM card, and something you know, a PIN, and you

write your PIN on the card, the security of the system is substantially reduced.

Similarly, if the something you have is a phone infected with malware because

it’s synced to a desktop computer, then the ability of the phone to add security

as a second factor is greatly reduced. Using more than one of the same sort of

factor is sadly frequently confused with multi-factor authentication.

These three factors have been sarcastically reframed as “something you’ve

forgotten, something you’ve lost, and something you were.” (This is often attrib-

uted to Simson Garfi nkel, although he does not take credit for it [Garfi nkel,

2012]). This reframing stings because each is a real problem. Two additional

factors are also sometimes considered: who you know, also called social authen-
tication, and discussed later in the section “Account Recovery,” and how you

get the message, sometimes called multi-channel authentication. Multi-channel

is heavily threatened by the integration of communication technologies, and

good modeling of the channels often reveals how they overlap. For example,

if you think that a phone is a good additional channel, walking through how

phones are used might uncover possible vulnerability vectors such as syncing

(and associated infection risk) and how products like Google Voice are putting

text messages in e-mail.

In this section, you’ll learn about login and especially handling login fail-

ures, followed by threats to what you have, are, and know. Threats to what you

know spans passwords and continues into the knowledge-based authentication

approach to account recovery.

Login

We’re all familiar with the login process: Someone presents an identifi er and

authenticator, and asks to be authenticated in some way. As shown in Figure

14-2, there are many spoofi ng threats in this simple process, including that the

client or server may make false claims of identity, and the local computer may

be presenting a false UI. (It’s that last threat which pressing Ctrl+Alt+Delete

[CAD] addresses: CAD is a secure attention sequence, one that the operating

system will always respond to, rather than passing to an application.)

 Chapter 14 ■ Accounts and Identity 261

c14.indd 07:52:38:AM 01/15/2014 Page 261

Spoof Client

Obtain
credentials

Transit

Change
management

Storage

At server

At KDC

Authentication
UI

Insufficient
authentication

Local login Null creds

Guest/anon
creds

Predictable
creds

Factory default
creds

Downgrade
authentication

Privileged
access

Remote spoof

At 3rd party

At client

Federation
issues

Backup
authentication

Knowledge based
authentication

(KBA)

Chained
authentication

Information
disclosure
(e-mail)

No
authentication

Other
authentication

attack

Figure 14-2: Spoofing an external entity threat tree

Let’s fi rst consider spoofi ng threats at the server, whether you describe the

threat as threats of the server being spoofed or of the server spoofi ng; it’s six

of one, half a dozen of the other. The key is that the client is, for whatever

reason, confused about the identity of the server it’s talking to. As discussed

previously, the key to mitigating these threats is mutual authentication, and in

particular cryptographic authentication. If you’re implementing a new login

262 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 262

system, performing a literature review of the many previous systems and their

failure modes is a very worthwhile endeavor. Spoofi ng of the client occurs in

several forms, and an attack tree is a useful way to keep track of them.

The spoofi ng of an external entity threat tree is discussed in detail in Appendix

B, “Threat Trees.”

Login Failures

A login system is designed to keep the wrong people out. In a very real way,

it’s an interface that’s intended to stymie people and present error messages,

except when the right person jumps through a set of carefully designed hoops.

Therefore, you have to design for failures by both those you want to see fail and

those you want to see succeed. These are a fi rst tension. Keep that tension in

mind as you make choices. Do you tell the person what went wrong, and do you

lock the account in some way? The second tension is that people are frustrated

with security measures, and angry if their accounts are compromised. They’ll

be angry if their low-value accounts are compromised and used for spam or

whatnot, and they’ll be more deeply hurt if their bank account is drained or

there are other real-world impacts.

No Such Account

“Incorrect username or password” is a common error message, based on the

reasonable thinking that attackers who cannot discern if an account exists must

waste energy attacking it, possibly also tripping alarms. There may well have

been a time when this was commonly true, and there may yet be systems where

account existence is hard to check. Today, with account recovery systems, it is

harder to justify the usability loss associated with the “username or password”

message. Additionally, with many systems using an e-mail address as a login

mechanism, even if your system diligently hides all information disclosure

threats around the existence of an account, someone else may well give it away

(Roberts, 2012). It is time to accept that account existence is something an attacker

can easily learn, and gain the usability benefi ts of telling real people that they’ve

misspelled their account identifi er.

Insuffi cient Authentication

As the many inadequacies of passwords become increasingly apparent, services

are choosing to look at more data available at login time to make an authentication

decision. With a classical web browser, this will frequently include checking the

IP address, a geolocation based on that IP, browser version information, cookies,

 Chapter 14 ■ Accounts and Identity 263

c14.indd 07:52:38:AM 01/15/2014 Page 263

and so on. If you are going to create such a system, note that there’s a threat. The

specifi c version is cookie managers. You should plan for 20 percent–50 percent

of your real customers to regularly delete their cookies (Nguyen, 2011; Young,

2011). Tell people if cookie deletion will affect the need for account recovery.

This can be generalized to a mismatch between expectations and your sys-

tem. If other events will trigger account recovery, you should strongly consider

setting people’s expectations. Be very clear about what information you expect

would be diffi cult for an attacker to determine about your algorithms. That’s

not to say you should reveal the information. Joseph Bonneau makes the claim

that obscurity is an essential part of doing authentication well (Bonneau, 2012a).

His arguments are solid, but they resolve the tension between limiting attacker

information and usability in a way that leads to frustration for the real account

owners. Of course, the frustration of your having a bank account drained is also

very real. For more on obscurity, see the section “Secret Systems: Kerckhoffs

and His Principles” in Chapter 16 “Threats to Cryptosystems.”

Account Lockout

When a login attempt fails, you can choose to lock the account for some length

of time—ranging from a few seconds to forever. The forever end of the spectrum

requires some form of reset management, an exercise left to the reader. If you

select shorter lengths of time, you can use fi xed or increasing delays (also called

backoff). You can apply delays to accounts or endpoints, such as an IP address

or an address range, or both.

If the number of failures is represented as f, something like (f−3) × 10 or

(f−5)2 seconds offers a reasonable mix of increasing security with each failure

while not annoying people with unreasonable delays. (Of course, (f−5)2 is sort

of pathological if you don’t handle the small integers well.) The system designer

can either expose the backoff or hide it. Hiding it (by telling the person that

their attempt to log in failed) may result in people incorrectly believing that

they’ve lost their password, and thus driving the need for backup authentica-

tion that works faster.

Requirements for scenarios of keyboard login attempts versus network login

attempts may be different. It might be reasonable to allow more logins via a

physical keyboard. Of course, a physical keyboard is sometimes a slippery

concept, easily subject to spoofi ng over USB or Bluetooth.

Threats to “What You Have”

Using the authentication categories of what you have, what you are, and what you

know, “what you have” includes things such as identity cards or cryptographic

hardware tokens. The main threats to these are theft, loss, and destruction.

264 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 264

The threat of theft is in many ways the most worrisome of the threats to “what

you have.” Some of these authenticators, such as proximity cards to unlock

doors do not require anything else. (That is, you don’t login to most doors with

your handprint.) In most organizations, there is not a strong norm ensuring

that the card is worn such that the face is easily visible, and an attacker who

steals a card can simply put it in their wallet. Even with a “visible face” norm,

matching photo to face tends to be challenging (see the next section for more

discussion about this).

Other authenticator devices are often carried in bags, so someone who steals

a laptop bag will obtain both the laptop and the authentication token. Some of

these tokens only have a display, while others also have an input function, so

using the token is a matter of what you have and what you know. The display-

only tokens are cheaper, easier to use, and less secure. The appropriate trade-off

is likely a matter of “chess playing.” If you use the display-only tokens, is that

still what an attacker would go after, or does it make it hard enough that the

attacker will attack somewhere else? As of 2012 or so, a number of companies

are making authenticators that are the same size and thickness as credit cards

and which have both input buttons and e-ink displays. These are more likely

to be carried in a wallet than the older “credit card–size” tokens, which were

very thick compared to a credit card.

The threats of loss and destruction are relatively similar. In each case, the

authorized person becomes unable to authenticate. In the case of destruction

or damage, there’s more certainty that the authentication token wasn’t stolen.

Threats to “What You Are”

Measuring “what you are” is a tremendously attractive category of authentica-

tion. There’s an intuitive desire to have ways to authenticate people as people,

rather than authenticate something they can loan, lose, or forget. Unfortunately,

it turns out that the desire and the technical reality are different. All biometric

systems involve some sort of sensors, which take measurements of a physi-

cal feature. These sensors and their properties are an important part of the

threat model. The data that is stored must be stored in a way which the sensor

can reliably generate. The form into which sensor data is converted is called a

template. All of this is shown in Figure 14-3, which looks remarkably similar to

14-1. Clever readers may notice that neither fi gure contains trust boundaries.

Different systems place the trust boundaries in different places. For example,

if you log in to your bank over the Internet using a fi ngerprint reader, there’s

a different trust boundary than if that reader is located in their branch offi ce.

Many of the threats against biometrics can be quickly derived from a model

like the one shown in Figure 14-3.

 Chapter 14 ■ Accounts and Identity 265

c14.indd 07:52:38:AM 01/15/2014 Page 265

Authenticator(s)
Sensor

Sensor

Response

Authenticator(s)

Please
authenticate

Measures

Enrollment

Authentication
Requestor

Account, template

Figure 14-3: A model of biometric authentication

Some of those threats include the following:

 ■ Attacking templates, either tampering with them to allow impersonation,

or analyzing disclosed templates to create input that will fool the system

 ■ Acquiring an image of the body part being measured, and using it to

create input that will fool the system. This is spoofi ng against the sensor.

 ■ Adjusting the body so that the measurement changes. This is often a

denial-of-service attack against the system, possibly executed for innocent

reasons.

Each of these is discussed in more depth over the next several paragraphs.

Attacking templates may be easier than is comfortable for advocates of bio-

metrics, many of who have claimed that the stored template data could not

be used to reconstruct the input that will pass the biometric. This has proven

to be false for fi ngerprints (Nagar, 2012), faces (Adler, 2004), and irises (Ross,

2005), and will likely prove false for other templates. Resisting such attacks is

probably in tension with managing the false positive and false negative rates

associated with the system. Worse, the people who are being authenticated are

usually not given a choice about the system. Therefore, even if reconstruction-

resistant templates were designed, the distribution of incentives likely argues

against their use.

Acquiring an image of the body part being measured can often come from

an “in the wild” image. For facial biometrics, this may be as easy as search-

ing (ahem) Facebook or LinkedIn. Fingerprints can come from a fi ngerprint

left on a glass, a car door, or elsewhere. A search for “fi ngerprint” on Flickr

shows thousands of images of people’s fi ngerprints. One person’s art leads to

266 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 266

another’s artful attack. Of course, there are less artful attacks, such as chopping

off the body part to be measured. This has actually happened to the owner of

a Mercedes-Benz with a fi ngerprint reader—a Mr. Kumaran in Malaysia (see

“Malaysia car thieves steal fi nger.” [Kent, 2005]).

Once you have a body part or an image thereof, you need to present it to the

sensor in a convincing way. To reduce the incentive for taking body parts, there

is sometimes “liveness” testing by the sensors. For example, fi ngerprint sensors

might look for warmth or evidence of a pulse, while eye scanners might look for

natural movements of the eye. Such testing turns out to be harder than many

people expect, with facial recognition bypassed by waving a photo around;

and, famously, fi ngerprints rendered with Gummy Bears (Matsumoto, 2002),

recently repeated to some fanfare when a well known phone manufacturer

experienced the same problem, possibly having failed to perform a literature

review (Reiger, 2013).

Some systems measure activity, such as typing or walking, so the “image”

captured needs to be more complex, and replaying it may similarly be harder,

depending on where the sensor and data fl ows are relative to the trust bound-

aries. Attacks that are easy in a lab may be hard to perform in front of an alert,

motivated, and attentive guard. However, in 2009, it was widely reported that

Japan deported a South Korean woman who “placed special tapes on her fi ngers”

to pass through Japan’s fi ngerprint checks at immigration (Sydney Morning

Herald, 2009).

For honest people, changing their fi ngerprints (or other biometrics) seems

very diffi cult. However, there are a variety of factors and scenarios that make

fi ngerprints harder to take or measure, including age; various professions such

as surgeons, whose fi ngerprints are abraded by frequent scrubbing; hobbies

such as woodworking, where heavy use of sandpaper can abrade the ridges;

and cancer treatment drugs (Lyn, 2009).

There are also a few threats that are harder to see in the simple model. The

fi rst is “insult rates,” the second is suitability and externalities. The biometrics

industry has long had a problem with what they call the “insult rate.” People

are deeply offended when the machine doesn’t “recognize” them, and if the

people being measured are members of the general public, staff need to be

trained to handle the problem gracefully. The second insult issue is that many

people associate fi ngerprinting with being treated like a criminal. Is it suitable

to treat your customers in a way that may be so perceived? Organizations should

carefully consider the issue of offense, and well-meaning people should also

consider the issue of desensitization caused by overuse of biometrics. This is an

externality, where the act of an organization has a cost on others.

Many of the desirable properties of authenticators are not available in bio-

metrics. Biometric sensors are less precise than a keyboard, which makes it

harder to derive cryptographic keys. Another property that you’d like for your

 Chapter 14 ■ Accounts and Identity 267

c14.indd 07:52:38:AM 01/15/2014 Page 267

authentication secrets is that they are shared between one person and one orga-

nization, and you want to change those secrets now and then. But most people

only have 10 fi ngers. (A few have more, and more have less.) Therefore, the threat

of information disclosure by anyone who has a copy of your fi ngerprint has

an impact on everyone who relies on your fi ngerprint to authenticate you. Of

course, that applies to all biometrics, not just fi ngerprints. Overuse of biomet-

rics makes these threats more serious for everyone who needs to rely on them.

One last comment on biometrics before moving on: Photographs are also

a biometric, one that people can use very well, if the photograph is shown to

motivated people in a high quality and reasonable size. People do an excellent

job of recognizing family and friends. However, using photographs to match

strangers to their ID photos turns out to be far more diffi cult, at least when

the photograph is the size that appears on a credit card. (See Ross Anderson’s

Security Engineering, Second Edition [Wiley, 2008] for a multi-page discussion of

the issue. To summarize, participants in an experiment rarely detected that a

photo ID did not match the person using it. However, it appears that the use of

such photos may act as a deterrent to casual crime.)

Threats to “What You Know”

Passwords are the worst authentication technology imaginable, except for all

those others that have been tried from time to time. We all have too many of

them, decent ones are hard to remember, and they’re static and exposed to a

potentially untrustworthy other party. They are also memorizable, require no

special software, can be easily transmitted over the phone, and are more crisp

than a biometric, which allows us to algorithmically derive keys from them.

For a detailed analysis of these trade-offs, see Joseph Bonneau’s “The quest to

replace passwords” (Bonneau, 2012c). These tradeoffs mean that passwords are

unlikely to go away, and most systems that have accounts are going to need to

store passwords, or something like them, in some way.

In the aforementioned paper, Bonneau and colleagues lay out a framework for

evaluating the usability, deployability, and security of authentication systems.

Their security characteristics are outlined in the form of a security proper-

ties checklist, which will be useful to anyone considering the design of a new

authentication scheme. They are listed here without discussion because anyone

considering such a task should read their paper:

 1. Resilient to physical observation

 2. Resilient to targeted impersonation (such as attacks against knowledge-

based backup authentication)

 3. Resilient to throttled guessing (this is my online attacks category)

 4. Resilient to unthrottled guessing (this is offl ine attacks)

268 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 268

 5. Resilient to internal observation (such as keylogging malware)

 6. Resilient to leaks from other verifi ers

 7. Resilient to phishing

 8. Resilient to theft

 9. No trusted third party

 10. Requiring explicit consent

 11. Unlinkable

Threats to Passwords

Threats to password security can be categorized in several different ways, and

which is most useful depends on your scenario. I’ll offer up a simple enumeration:

 ■ Unintentional disclosure, including passwords on sticky notes, wikis, or

SharePoint sites, and phishing attacks

 ■ Online attacks against the login system

 ■ Offl ine attacks against the stored passwords

Online attacks are attempts to guess the password through defenses such

as rate limiting. Offl ine attacks bypass those defenses and test passwords as

quickly as possible, often many orders of magnitude faster. Password leaks are a

common problem these days, and they’re a problem because they enable offl ine

attacks, ranging from simple lookups to rainbow tables to more complex crack-

ing. Good password storage approaches can help guard against offl ine attacks.

Passwords stored on web servers is a common issue in larger operational envi-

ronments. Phishing attacks come in a spectrum from untargetted to carefully

crafted after hours of research on sites such as Facebook or LinkedIn. There's a

model of online social engineering attacks is in Chapter 15.

Password Storage

This section walks you through information disclosure threats to stored pass-

words, building up layers of threats and cryptographic mitigations to bring you

to an understanding of the modern approaches to password storage.

If you don’t cryptographically protect your list of usernames and passwords,

then all that’s required to exploit it after information disclosure is to look up

the account the attacker wishes to spoof, and then use the associated login. The

naive defense against this is to store a one-way hash of the password. (A one-way

hash is a cryptographic function that takes an arbitrary input and produces a

fi xed-length output.) The way to attack such a list is to take a list of words and

for each word in the list, hash the word, and search for that hash in the list of

 Chapter 14 ■ Accounts and Identity 269

c14.indd 07:52:38:AM 01/15/2014 Page 269

hashed passwords. The list of words is called a dictionary, and the attack is

called a dictionary attack. Each hashed dictionary word can be compared to

each stored password. (If it matches, then you know what word you hashed,

and that’s the password.)

The defense against the speedup from comparing to each stored password

is to add a salt to the password before hashing it. A salt is a random string

intended to be different with different account passwords. Using a salt slows

down an attacker from comparing each hash to all stored passwords to compar-

ing each hash to that one password with the same salt (or those few passwords

with the same salts). Salts should be random so that Alice@example.com has a

different salt at different systems, and thus her stored, hashed password will

be different even if she’s using the same password at different systems. Salts

are normally stored as plaintext with the hashed passwords.

Attackers might try to use modifi ed versions of dictionary words. Software

has been available for a long time that will take a list and permute each word

in it, by changing o to 0, l (the letter, el) to 1, adding punctuation, and so on.

Dictionaries are available for a wide variety of common languages, ranging from

Afrikaans to Yiddish. There are also password-cracking lists of proper names,

sports teams, and even Klingon. It’s possible to store the hashed wordlist for a

given hash, engaging in a “time-memory trade-off.” These lists are called rainbow
tables, and many are downloadable from the Internet. (Technically, rainbow tables

store a special form of chains of hashes, which matter more if you are going to

design your own storage mechanism; but given that smart people have spent

time on this, you should use a standard mitigation approach.)

Unless you’re implementing an operating system, it’s almost certain that you’ll

want to store passwords that have been hashed and salted. The best pattern

for this is roughly to take a password and salt, and shove them through a hash

function thousands of times. The goal is to ensure that there’s time after the

detection of an accidental information disclosure for your customers to change

their passwords. There are three common libraries for this: bcrypt, scrypt, and

PBKDF2. All are likely to be better than anything you’d whip up yourself, and

they are freely available in many languages.

 ■ bcrypt: This is what I recommend. There is more freely available code,

which is better documented and has more examples (Muffett, 2012). The

bcrypt library also has an adaptive feature, which enables password stor-

age to be strengthened over time without access to the cleartext (Provos,

1999). Do note that the name bcrypt is overloaded; at least one Linux

package named bcrypt performs Blowfi sh fi le cryptography.

 ■ scrypt: This may offer more security if you use it correctly. However,

while documentation explains how to use the function for fi le encryption,

it does not clearly address its use as a password storage tool (as opposed

to a fi le encryption tool).

270 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 270

 ■ PBKDF2 (Password-Based Key Derivation Function 2): This offers less

defense, does not offer adaptivity, and there’s only one reason to use it

when bcrypt is available for your platform: because it’s a NIST Standard

(Percival, 2012; Openwall, 2013).

Even after you hash the passwords, you want to ensure that the hashes are

hard to get. Even with salting, modern password cracking with dictionaries

of common passwords is shockingly fast, on the order of eight billion MD5

passwords tested per second (Hashcat, 2013). At that speed, testing the million

most common passwords with 100 variants of each takes less than a second.

If you are implementing an operating system, then the storage of passwords

(or password equivalents) is a more complex issue. There are good usability

reasons to keep authenticators in memory. This allows for the authenticator to

be used without bothering the user. For example, Windows domain members

can authenticate to a fi le share or Exchange without retyping their password,

and unix users will often use ssh-agent, or the Mac OS keychain to help them

authenticate. These patterns also lead to issues where an attacker can imperson-

ate the account if they’re inside the appropriate trust boundary.

There is no great solution short of keeping them out, which is, empirically,

challenging. Relying on hardware such as smartcards or TPMs to ensure that the

secrets don’t leave the machine is helpful, as it provides a temporal bound, but

an attacker who can execute code as the user can still authenticate as the user.

The alternative of requiring action per authentication is highly inconvenient and

would probably not solve the problem, because frequent authentication requests

would desensitize people to requests for authentication data.

Using static strings for authentication means that the system to which a

person is authenticating can spoof that person. There are a variety of clever

cryptographic ways to avoid this, all of which have costs at deployment time, or

other issues that make them harder to deploy than passwords (as noted earlier

in “Authentication”).

Password Expiration

In an attempt to respond to the threat of information disclosure involving

passwords, many systems will expire them. By forcing regular changes, an

attacker who comes into possession of a password has a limited window of

time in which to use it. When systems force password changes, there are a few

predictable ways in which people respond. Those include changing their pass-

word and then changing it back, transforming it to generate a new password

(password1 becomes password2, or Decsecret becomes Jansecret), or picking

a completely new password. (Hey, it could happen, and the person might not

even write down the new password.)

This leads to an argument for controlling those human behaviors by storing

password history, and sometimes also limiting the rate of password change.

 Chapter 14 ■ Accounts and Identity 271

c14.indd 07:52:38:AM 01/15/2014 Page 271

Systems that store password history create an additional risk, which is that

the stored passwords might be obtained, and an attacker who has access to a

series of passwords can use either human or algorithmic pattern recognition to

make very accurate guesses about what a person’s next password is likely to be

(Thorsheim, 2009; Zhang 2010). If you must store history, it is probably sensible

to use an in-place adaptive algorithm such as bcrypt to store the historical pass-

words with a level of protection that would lead to unacceptable performance

in interactive login.

I am not aware of any evidence that password expiration systems have any

impact on the rate at which compromises happen. There is excellent evidence

that normal people do not change their passwords unless forced, and as such

there is a cost to password expiry that is hard to justify. The main reason to pay

the cost of such a system is because a compliance program insists on it.

Authentication Checklist

This checklist is designed to be read aloud at a meeting. You’re in a bad state if

for any of these questions:

 ■ You can’t answer yes.

 ■ You can’t articulate and accept the implications of a no.

 ■ You don’t know.

 1. Do we have an explicit list of what data is used in authentication?

 2. Is it easy for us to add factors to that list?

 3. Do we have easy to understand error messages?

 4. If we’re hiding authentication factors, what is our estimate of how long

it would take for an attacker to fi nd out about each?

 5. Have we reviewed at least the information in the book for each authenti-

cation factor?

 a. Have we looked up the relevant references?

 b. Have we looked for additional threats based on those references?

 6. Are we storing passwords using a cryptographically strong approach?

Account Recovery

We’ve all seen the “Forgot your password?” feature that so many sites offer.

There are many varieties of this, including the following:

 ■ E-mail authentication

 ■ Social authentication

272 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 272

 ■ Knowledge-based authentication

 ■ Secret question/secret answer (or)

 ■ Data from public records, such as your address on a given date

There are many varieties of these systems because, much like passwords,

they are highly imperfect. This section provides an overview of the trade-offs

involved. It begins with a discussion of time in account recovery, then explains

account recovery via e-mail and social authentication, both of which are simple

and relatively secure when compared to the more familiar knowledge-based

(“secret question”) systems covered at the end of this section.

All of these systems are abused by attackers. Famous examples include U.S.

vice presidential candidate Sarah Palin’s e-mail being taken over (the questions

were birth date, zip code, and “Where did you meet your husband?” [Campanile,

2008]).

These systems should focus on recovering the account. The focus on “forgot-

ten passwords” often leads system designers into the trap of giving people their

previous password. This leads to the plaintext storage of passwords, which is

usually not needed. Customers don’t really care about their password or need

it back. They care about the account (or what it enables) and need access to the

account. Therefore, you should focus on restoring account access. The only

substantial exception to this is encrypted data, for which it may be the case

that an encryption key is derived from the password. You should investigate

other ways to back up those encryption keys, such that you don’t need to store

passwords in plaintext.

When an account is recovered, it may be possible to throw away informa-

tion that an attacker could exploit, such as payment information or mailing

address. This information is usually easy to re-enter and has value to an attacker.

(Addresses are useful for chained authentication attacks and stalking.) If you

inform people why the data is gone, they are likely to be understanding. What

data you choose to destroy as part of the account recovery process will depend

on your business.

Time and Account Recovery

Time is an important and underrated ally in account recovery systems. The odds

that users will need to use their account recovery option within fi ve minutes

(or even fi ve days) of their last successful login are low. You might want the

account recovery options for an account to be disabled until some specifi ed

amount of time has elapsed since the last successful login. (This point was

made by my colleague and usable security expert Rob Reeder.) It is tempting

to suggest offering fake account recovery options until then, but that might

frustrate your real users.

 Chapter 14 ■ Accounts and Identity 273

c14.indd 07:52:38:AM 01/15/2014 Page 273

The person driving an account recovery process might be the authorized

account holder or an attacker. Your process should balance ease of use with

challenge, and speed with an opportunity for the real account holder to inter-

vene. For example, if you send password recovery e-mails, you should notify the

person via every channel available to you. These notifi cations should contain

instructions for the case that the receiver didn’t initiate the account recovery, and

possibly an explanation of why you’re “spamming” them. These notifi cations

and delays are more important when other risk factors are visible (for example,

the account logs in from one IP address 90 percent of the time, but today logged

in from the other side of the world).

Time also plays into account recovery in terms of what happens after the instant

of getting into the account. Some system designers think they’re done when a

new password has been set. If the password was changed by an attacker, how

does your customer recover his or her account? Perhaps after account recovery

(but not normal password changes) the old password could work for some

time period? However, then an attacker with the password is not locked out.

There is no single obvious answer, and the right answer will differ for accounts

associated with close relationships (work, banks, etc.) versus casual accounts.

Time is also a threat to account recovery systems. Over time, information that

people have given you will decay. Their credit cards will become invalid, and

their e-mail addresses, billing addresses, and phone numbers will likely change.

If you rely on such information, consider allowing it to decay over time, being

revalidated or removed from the system’s recovery options.

E-mail for Account Recovery

If you have an e-mail address for your customer, you can send mail to it. That

mail can contain a password or a token of some form. If you e-mail the customer

a password, you should e-mail a new, randomly generated password. In fact,

that should be all you can do, because you should take the preceding advice

and not be able to e-mail them their old password. However, e-mailing them a

password exposes the password to information disclosure threats on a variety

of network connections and in storage at the other end. Some people will argue

that it’s better to not expose the password, but instead use a one-use token that

allows the person to reset their password. The token should be a large random

number, say 128–1,024 bits. You can send this either as a string they copy and

paste into a browser form or as a URL. Hopefully it is obvious that the code

which actually resets the password must confi rm that the account actually

requested a password reset, that the e-mail didn’t bounce, and that the token

is the one that was sent.

Either approach is vulnerable to information disclosure attacks. These attacks

rely on either network sniffi ng or access to the backup e-mail address. You can

274 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 274

partially mitigate these threats by crafting a message that does not contain all

the information needed to recover the account. For example, if the system sends

a URL with a recovery token, then it should not contain the account name. Thus,

someone who intercepts or obtains the e-mail would need additional informa-

tion if the account name is not the e-mail address. In systems where the e-mail

address is the account name, that obviously doesn’t work. You can add a layer of

mitigation by checking cookies and possibly also by confi rming that the browser

they’re using is sending the same headers as it was when someone requested

a password reset. If you do that, there is a cookie deletion threat, which can

be managed by telling people that they need to keep the page where they’ve

requested a password reset.

Knowledge-Based Authentication

A variety of systems use various non-password information, which, it is hoped,

only the real person behind the account knows. Of course, such information isn’t

really perfect for authentication. It must be known by the relying party so that

it can be confi rmed. Such information has the weakness that it may be known

to other relying parties, or it may be discoverable by an attacker. The spectrum

of such information runs from information that’s widely available to the public

through information that might be known only to the relying party. (Known

only to the relying parties is a property that many hope is true of passwords.)

This section considers three forms of knowledge-based authentication:

 ■ Secret questions/secret answers

 ■ Data from public records, such as your address on a given date

 ■ Things only a few groups other than the organization and customer know,

such as the dollar amount of a given transaction. “What is your password?”

is one logical end of this knowledge-based authentication spectrum.

As mentioned earlier, ideally, the answers to these questions are known only

to the real person behind the account, are exposed only to the proper account

system, and people know they should keep it secret. Each of these systems can

be threat modeled in the same ways.

Security

There are several classes of attack on the security of questions. The biggest

ones are guessing and observation. The diffi culty of each can be quantifi ed,

(possibly with respect to a specifi c category of attacker). Guessing diffi culty is

based on the number of possible answers. For example, “what color are your

 Chapter 14 ■ Accounts and Identity 275

c14.indd 07:52:38:AM 01/15/2014 Page 275

eyes?” has very few possible answers. Guessing diffi culty is also based on prob-

ability. Brown eyes outnumber blue, which outnumber green. There are also

attacks where the answer to the question can be found (observed) elsewhere.

For example, information about addresses is generally public. This approach to

measurement has been formalized by Bonneau, Just, and Matthews (Bonneau,

2010). They measured the guessing diffi culty for people’s names (parent names,

grandparent names, teacher names, best friends) and place names (where you

went to school, last vacation). They also comment on the relatively small num-

ber of occupations that our grandparents engaged in, and the small number of

movies that are common favorites.

Observation diffi culty refers to how hard it would be to fi nd the answer from

a given perspective. For example, mothers’ maiden names are often accessible

because of genealogy websites. Some questions are also subject to attack by

memes such as “Your Porn Star Name” or “20 Facts About Me.” The current fi rst

search result for “porn star name” suggests that you should form it from “your

fi rst pet’s name and the street you grew up on.” Relying on such information

being secret is a bad choice. It is a bad choice because people don’t expect that

the information in question will need to be kept private. No one would fi nd it

entertaining to be asked for a password in order to generate a porn star name;

they’d fi nd it worrisome. Observation diffi culty can only be measured in rela-

tion to some set of possible observers. Therefore, attacker-centered modeling

makes sense for measuring observation diffi culty.

Usability

Knowledge-based authentication systems also suffer many usability problems,

including the following:

 ■ Applicability: Does the item apply to the whole population? Questions

about the color of your fi rst car only apply to those who have owned

cars; questions about the name of your fi rst pet only apply to pet owners.

 ■ Memorability: Will people remember their answer? Studies have shown that

20 percent or so will forget their answers within three months (Schechter,

2009a).

 ■ Repeatability: Can someone correctly re-enter their answer (“Main St”

vs. “Main Street”), and is the answer still the same as it was 10 years ago?

(Is Avril Lavigne still your favorite singer?) Repeatability is also called

stability in some analyses.

 ■ Facts versus preferences: There is some evidence that preferences are

more stable over time. However, entropy, and thus resistance to guessing

attacks, is lower, and some preferences may be revealed to observation.

276 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 276

 ■ Privacy: Some questions can seem intrusive, creepy, or too personal to

users. Also, under the privacy laws of many countries, information can

only be used for the purpose for which it was collected. Using such infor-

mation for authentication may run afoul of such laws.

 ■ Internationalization: The meaning of some questions does not carry across

cultures. Facebook has reported that people in Indonesia don’t name their

pets, and so the usual answer to that question is “cat” (Anderson, 2013b).

Aligning security with the mental models of your customers is great if you

can manage it, but it may be suffi cient to avoid surprising your customer. To

illustrate the difference, a website decided that cookies were part of the login

process, and if your cookies were deleted, you would need not only your pass-

word, but also your secret question. Because my secret answer was something

like “asddsfdaf,” this presented a problem. The design surprised me, and pre-

vented me from logging back in, which is the state my account is probably in

to this day.

Additionally, systems can be open question or open answer. Open-question

systems are of the form “please enter your question.” It turns out that such

systems result in questions with few answers (e.g., “What color are my eyes?”;

“What bank is this?”).

If You Must Use a Knowledge-Based Authentication System

Look for information in your system that can be used, such as “What was the

dollar amount of your last transaction?” The information should be available

to few parties;, thus, the last LinkedIn connection you added is poor. If your

organization has features to enable social sharing, nothing that is shared should

be usable to authenticate. It should also be hard for an attacker to infl uence;

thus, “Who was the last person who e-mailed you?” is bad. Finally, it should

be hard for an attacker who has broken in to extract all the information they

would need to retake the account.

One way to reduce the chance that the attacker can extract all the information

from the account is to augment the last dollar amount question with a fi nancial

account number question. If you use fi nancial account numbers, be sure to

require more than fi ve digits. (Four digits is the U.S. limit to how many may be

displayed; using fi ve means an attacker only needs to guess, on average, fi ve

times to get in. Consider asking for six or eight.) When someone gets the answers

right, consider sending a message to all the backup contact information you

have, offering the real account owner a chance to challenge the authentication.

That said, however, consider using social authentication, covered in the section

of the same name, in place of knowledge-based authentication.

 Chapter 14 ■ Accounts and Identity 277

c14.indd 07:52:38:AM 01/15/2014 Page 277

Chained Authentication Failures

As many organizations develop backup authentication schemes, avoiding chained

and interlock authentication failures is an important issue. A chained failure is

where an attacker who takes over an account at one site can see all the infor-

mation they’ll need to authenticate to another site. An interlocking failure is

where that’s bi-directional. For example, if you set your Gmail account recovery

to Yahoo mail, and your Yahoo mail to recover with Gmail, then your recovery

options are interlocked. Unfortunately, it’s normally an issue that end users

must manage for themselves.

N O T E This issue came to widespread attention after an August 2012 article in

Wired, “How Apple and Amazon Security Flaws Led to My Epic Hacking” (Honan, 2012).

It’s worth recounting the details and then analyzing them. The names of the compa-

nies are taken from the Wired story. Note that these are large, mature companies with

employees focused on security. The story is presented solely to help others learn. The

steps that led to the “epic hacking” are as follows:

 1. Attacker calls Amazon and partially authenticates with victim’s name, e-mail

address, and billing address. Attacker adds a credit card number to the account.

 2. Attacker calls Amazon again, authenticating with victim’s name, e-mail address,

billing address, and the credit card number added in step 1. Attacker adds a new

e-mail address to the account.

 3. Attacker visits Amazon.com, and sends password reset e-mail to e-mail address

from step 2.

 4. Attacker logs in to Amazon with the new password. Attacker gathers last four

digits of real credit card numbers.

 5. Attacker calls Apple with e-mail address, billing address, and last four digits of

the credit card. Apple issues a temporary credential for an iCloud account.

 6. Attacker logs into iCloud and changes passwords.

 7. Attacker visits Gmail and sends account reset e-mail to compromised Apple

account.

 8. Attacker logs into Gmail.

So what went wrong here?

 ■ All the attacks used backup authentication methods.

 ■ Several places used data that’s mostly public to authenticate.

 ■ Amazon allowed information that can be used to authenticate to be added with

less authentication.

 ■ The Wired writer took the advised approach and interlinked all of his accounts.

278 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 278

Returning to the issue of chained authentication failures, it is hard to prevent

people from using their preferred e-mail provider. It is perhaps impossible for

a company to determine where it stands in a daisy chain of authentications. It

might be possible to detect authentication loops, manage the privacy concerns

such a process could raise, and handle the loop in a clever way.

Social Authentication

As mentioned earlier, the traditional methods of authentication are what you

have, what you know, and what you are. In a 2006 paper, John Brainard and

colleagues suggested a fourth: who you know, presenting it as a way to handle

primary authentication (Brainard, 2006).

Social authentication is authentication based on social contact of various

forms. It is already in use at a great many businesses that send a replacement

password to your manager if you’re locked out. This leverages the expectation

that managers ought to be able to get in touch with their employees and authen-

ticate them. Social authentication may also help with making your system more

viral. When someone is selected as a trustee, you might want to round-trip an

e-mail message to them to ensure that the details are valid, and you may want

to recheck that address from time to time. Such messages can have the added

value of marketing your service, as you might need to explain what the service

is. Try hard to not eliminate the security value by spamming.

Passive Social Authentication

In early 2012, Facebook deployed a backup authentication mechanism that asks

users to identify a set of people connected to that user (Fisher, 2012; Rice, 2011).

This is passive authentication in the sense that your Facebook contacts are not

actively involved in the authentication process. Such systems are easier to deploy

if you have a rich social graph of some type.

However, the data needed to bypass such a system is sometimes available to

(and perhaps via) Facebook, LinkedIn, Google, and a growing number of other

companies. Other problems include photos that don’t include an identifi able

face and photos that contain a name badge (for example, from a conference).

Facebook also explored use of their social graph to make collaboration more

diffi cult, selecting people who are less likely to be known to a single attacker,

or friends of the attacker. Of course, because the attacker is unknown, they can

only do this by looking for distinct subgraphs (Rice, 2011).

Active Social Authentication

Active social authentication uses a real-world relationship to recover access to an

account. Such systems are most obvious when a manager gets a new password

 Chapter 14 ■ Accounts and Identity 279

c14.indd 07:52:38:AM 01/15/2014 Page 279

and provides it to an employee, but it’s possible to build deeper systems that use

a variety of account “trustees.” One such system was developed experimentally

by Stuart Schechter, Serge Egelman, and Rob Reeder (Schechter, 2009b). It is

reviewed here in depth because it’s superior in many ways to knowledge-based

systems, and because many of the details show interesting design points.

They use a system of trustees who reauthorize access to an account. Their

test used a system of four trustees selected by the account holder, and required

concurrence of three trustees. When an account goes into recovery, each trustee

is sent an e-mail with a subject line of “**FOR YOU ONLY**.” The body of the

message starts with “Do not forward any part of this e-mail to anyone,” and con-

tinues with an explanation of what to do. The e-mail then goes on to encourage

the recipient to visit a given URL. When the recipient does so, he or she is asked

to explain why an account recovery code is being requested. The reasons are

listed from riskiest to least risky so that someone who selects the fi rst option(s)

will see an additional level of warning before being allowed to get a recovery

code. The reasons given are as follows:

 ■ Someone helping William Shakespeare (or who claimed to be helping)

asked for the code

 ■ An e-mail, IM, SMS, or other text message that appears to be from William
Shakespeare asked for the code

 ■ William Shakespeare left me a voicemail asking for the code, and I will

call him back to provide it

 ■ I am speaking to William Shakespeare by phone right now and he has

asked for the code

 ■ William Shakespeare is here with me in person right now and he has

asked me for the code

 ■ None of the above reasons applies. I will provide my own:

After selecting one of these, and possibly seeing additional warnings about

signs of fraud, the trustee is asked to pledge to the veracity of the answer and

their understanding of the consequences of being duped. They are required to

type their name and then press a button that says “I promise the above pledge

is true.” The trustee is then given a six-character code, and instructed to provide

it either in person or in a phone call. The system will then e-mail all the other

trustees, encouraging them to call or visit the account holder. This process has

several useful properties, including increased security and alerting the account

holder if they didn’t initiate the account recovery.

There are a number of issues with the system as presented. One is time. This

social approach takes longer to complete than knowledge-based approaches.

Another is that in the initial reliability experiment, many participants did

not succeed at recovering their account. Of 43 participants in the weeklong

280 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 280

reliability experiment, 17 abandoned the experiment. Of the 26 who actively

participated, 65 percent were able to recover their account. Two of the failures

didn’t remember their trustees or use the “look them up” feature, and another

two were too busy to participate in the study. Looking at the 22 who actively

participated, 77 percent of them succeeded at account recovery, which seems

poor, but it’s comparable to knowledge-based systems. It seems likely that more

people would succeed if they really were trying to recover their account, and

had nominated appropriate trustees.

Despite these concerns, social authentication is a promising area for account

recovery, and I am optimistic that new systems will be developed and deployed,

replacing knowledge-based account recovery for casual accounts.

Attacker-Driven Analysis of Account Recovery

Knowing who is attacking is a useful lens into how account recovery systems

work, because there are sets of attackers who obviously have more access to

data. Spouses or ex-spouses, family members, and others will often know (or

be able to tease out information about) your fi rst car, the street you grew up on,

and so on. Attackers include, but are not limited to, the following:

 ■ Spouses

 ■ Friends

 ■ Social network “friends” and contacts

 ■ Attackers with current access to your account

 ■ Attackers with access to an account on another system

 ■ Attackers with access to a data broker’s data

In “It’s No Secret: Measuring the Security and Reliability of Authentication

via ‘Secret’ Questions” (Schechter, 2009a), the authors categorize 25 percent of

question/answer pairs in use at large service providers as vulnerable to guess-

ing by family, friends, or coworkers. Spouses generally have unfettered access

to records, fi nancial instruments such as credit cards, and the like. Friends will

often know about biographical information. Social network contacts can use

attacks like the “Your Porn Star Name” game to get access to elements of personal

history that social networks such as Facebook don’t make public. The social

networks themselves change what information they show as public, meaning

your analysis of knowledge-based account recovery must be regularly revisited.

Another important set of attackers is online criminals, who have found ways

to access information stored by data brokers. This information is often marketed

as “out of wallet” authentication. That criminals have access to such data empha-

sizes the need to use data known only to you and your customers (Krebs, 2013).

 Chapter 14 ■ Accounts and Identity 281

c14.indd 07:52:38:AM 01/15/2014 Page 281

Multi-Channel Authentication

Many systems claim to use additional channels for authentication. Some of

them even do, but modeling what counts as a channel in a converged world is

challenging. In particular, when a smartphone is synced to a computer, the act

of syncing often involves giving one computer full authority to read or write

to anything in the other. This means that smartphones are a risky source of

additional channels. The computer is a threat to the smartphone, and vice versa.

Physical mail is a fi ne example of an additional channel, with the obvious issue

that it’s quite slow.

Account Recovery Checklist

This checklist is designed to be read aloud at a meeting. You’re in a bad state if

for any of these questions:

 ■ You can’t answer yes.

 ■ You can’t articulate and accept the implications of a no.

 ■ You don’t know.

 1. Do we have explicit reasons that we need an online account recovery

feature?

 2. Have we investigated active social authentication as an approach?

 3. If you’re using active social authentication, then have we tried to address

the attacks by friends problem?

 4. Have we tested the usability and effi cacy of our approach for both the

authorized customer and one or more sorts of attacker?

If you’ve decided to use a knowledge-based authentication system, you’ll

probably jump from #2 to the following list:

 1. Will our system use only information that only we and our customer

should know?

 2. Will our system resist attacks like “Your Porn Star Name” game?

 3. Will our system resist attack by spouses?

 4. Will our system resist attackers who have broken in and scraped the

account?

 5. Will our system resist attackers who have access to information bought

and sold by data brokers?

282 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 282

 6. Have we considered the various usability aspects of knowledge-based

authentication?

 7. Do we use time and account-holder notifi cation as allies?

Names, IDs, and SSNs

A great many technological systems seem to end up using human names and

identifi ers. The designers of these systems often make assumptions that are not

true, or are perhaps even dangerous. A good model of names, identifi ers, and

related topics helps you threat model effectively, limiting what you expect to gain

from using these identifi ers. Many reliability and usability threats are associ-

ated with these topics. In this section, you’ll learn about names, identity cards

and documents, social security numbers and their misuse, and identity theft.

Names

“What’s in a name?” asked Shakespeare, for a very good reason. A name is an

identifi er, and between diminutives, nicknames, and married names, many

people use more than one name in the course of their life. Useful names are also

relative. You and I mean something different by “mom”‘ or “my wife.” I often

mean different people when I say “Mike.” (At work, my three-person team has

a Mike, and my boss’s boss is named Mike; and that’s just at work.)

“Real Names”

It is tempting to set up a new system that requires people to use their “real

names.” It is widely believed that a real-name system is easier to validate, and

that people will comment more usefully under their real names. Both of these

claims are demonstrably false. South Korea rolled out and then scrapped a regu-

lation requiring real names, having found that it did not prevent people “from

posting abusive messages or spreading false rumors” (Chosunilbo, 2011). Internet

comment management company Disqus has analyzed its data and discovered

that 61 percent of its commenters were obviously using pseudonyms, and only

4 percent used what appeared to be a real name. They also found that both real

name and pseudonym comments were marked as spam at approximately the

same rates (9 percent and 11 percent respectively).

However, the cost of real name requirements can be high. Google’s G+ system

required real names on rollout. They did so with a set of “name police,” who

rejected real names and violated their own policies. These “nymwars” as they

came to be known had a dramatic effect on the adoption of Google+, and I’ve

argued elsewhere that it was singularly responsible for G+ not killing Facebook

 Chapter 14 ■ Accounts and Identity 283

c14.indd 07:52:38:AM 01/15/2014 Page 283

(Shostack, 2012b). Germany has a law forbidding such policies (Essers, 2012).

Both demands for real names and attempts to impose rules on those names

continues to happen and cause outrage. For example, see “Please Enter a Valid

Last Name” (Neilsen Hayden, 2012).

Patrick McKenzie published a list titled “Falsehoods Programmers Believe

About Names.” The list is worth reading in full, but here are the fi rst nine items

(McKenzie, 2010):

 1. People have exactly one canonical full name.

 2. People have exactly one full name which they go by.

 3. People have, at this point in time, exactly one canonical full name.

 4. People have, at this point in time, one full name which they go by.

 5. People have exactly N names, for any value of N.

 6. People’s names fi t within a certain defi ned amount of space.

 7. People’s names do not change.

 8. Peoples names change, but only at a certain enumerated set of events.

 9. Peoples names are written in ASCII, or some other single character set.

The list continues through another 30 false assumptions. Two items can be added to

the list, based on reading the comments. First, you can exclude certain characters

from people’s names without offending them. Second, the name people give

you is one they use outside your system. Many programmers seem offended at

being asked to deal with this. A great many comments are of the form “people

should just deal with it and offer a Romanized version of their name.” Other

commenters point out that lying about your name is in some instances a felony,

and how changes in names or transliteration can lead to real problems. Many

Americans were introduced to this by the TSA (airport security) when they

checked that identity documents matched names on tickets. Discrepancies

such as “Mike/Michael” lead to trouble. At best, a system that refuses people’s

preferred names threatens to appear arrogant and offensive to those who are

mis-addressed.

So what should you do? Don’t use human names as account names. Treat

human names as a single fi eld, and use what people enter. If you’d like to be

informal, ask your customers for both a full name and how the system should

address them.

Account Names

Unlike human names, it is possible to make account names unique by having

some authority that approves names before they can be used. (I am aware of

some countries that do this at birth, but none that require a renaming when

284 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 284

someone moves there.) Names can be unique or currently unique. Someone had

my microsoft.com e-mail before me. The last I heard, his kids were knocking

it out of the little league park, and his wife still loved him (muscle memory on

typing his e-mail address, or so she claimed). Therefore, uniqueness is helpful,

but it leads to all the easily remembered e-mail addresses being taken.

If your account system relies on someone else maintaining uniqueness for-

ever, while in fact they maintain uniqueness at a given time, you can run into

trouble. For example, if that other Adam and I both sign up for LinkedIn with

our @microsoft.com addresses, what should LinkedIn do? They can probably

handle that by now, and you’ll need to do so as well. (A draft of this section

threatened to magnify this problem by including my e-mail address.)

“Meaningful ID”

Carl Ellison has coined the term meaningful ID and defi ned it as follows: “A

meaningful ID for use by some human being is an identifi er that calls to that

human user’s mind the correct identifi ed entity” (Ellison, 2007). This is a good

model for an important use case for names, which is to call to mind a specifi c

person.

Ellison provides some requirements for meaningful IDs:

 1. Calling a correct entity to the human’s mind implies that the human

being has a body of memories about the correct entity. If there are no such

memories, then no ID can be a meaningful ID.

 2. What works to call those memories to one observer’s mind may not work

for another observer. Therefore, a meaningful ID is in general a function

of both the identifi ed entity and the person looking at it.

 3. The meaningful ID needs to attract attention or be presented without

distracting clutter, so that it has the opportunity to be perceived.

 4. When a security decision is to be made, the meaningful ID(s) must be

derived in a secure manner, and competing IDs that an attacker could

introduce at-will should not be displayed.

Ellison suggests that the best identifi er to present to a person is probably a

nickname selected by the person who must rely on it, or a picture taken by that

relying party. Implicitly, a system must perform the translation, and be designed

to mitigate spoofi ng threats around the nickname shown.

Zooko’s Triangle

You may have noticed that the requirements for a meaningful ID are in tension

with the requirements for account names. Meaningful IDs are selected by people,

to be evocative for themselves, while account names are mediated by some

 Chapter 14 ■ Accounts and Identity 285

c14.indd 07:52:38:AM 01/15/2014 Page 285

authority. It turns out that there are many such tensions associated with names.

One very useful model of these tensions is “Zooko’s Triangle,” named after its

creator, Zooko Wilcox-O’Hearn, and shown in Figure 14-4. The triangle shows

the properties of decentralized, secure, and human-meaningful (Zooko, 2006).

Human-Meaningful

Secure Decentralized

Figure 14-4: Zooko’s Triangle

The idea is that every system design focuses on one or two of these proper-

ties, which requires a trade-off with the others. The choice can be implicit or

explicit, and the Triangle is a useful model for making it explicit.

Identity Documents

Deferring the issue of identifying your users to a government agency is attrac-

tive. Having someone look at or make a copy of a government-issued identity

document may constitute suffi cient due diligence, especially if you are in a

regulated industry. Looking at the documents and storing copies exposes you

to very different threats. If you store them and lose control of the storage, you’ll

need to notify those people if you lose control of the documents (under a wide

variety of state breach disclosure laws). This is an information disclosure threat

against a data store, and the risk elimination mitigation is to not have that data

store. It may be suffi cient to ensure that you check the documents. If you are

not required by law to expose yourself to such liabilities, then having copies of

identity documents seems foolishly risky.

Another issue with identity documents is that many people lack them for a

wide variety of reasons. Many American citizens lack identity documents. This

issue gained attention in the run-up to the 2012 election, as many states passed

voter ID laws. Setting aside the emotional political questions, these laws drew

attention to the fact that roughly 11 percent of voting-age Americans do not have

current and valid government-issued photo ID (Brenner, 2012). It is important to

consider how you’ll handle those customers without valid ID, or whose ID is not

of the form you expect. For example, 20 million Americans don’t have a driver’s

license (Swire, 2008). Your response to those without the ID you want might be

to threaten to or actually refuse them service, but check with your sales and

marketing departments before cutting off so many of your potential customers.

286 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 286

Many times, it seems attractive to address fraud issues by asking people to

show copies of such documents. If the document is shown over the Internet,

any fool with a printer can make a spoof that’s good enough for their webcam.

Similarly, any college student or illegal immigrant can acquire a document that’s

good enough to fool the majority of people paid to check the documents. As

the value of such documents increases, so does the motivation to either forge

them or corrupt the offi cial issuance process. This is an economic threat to both

your system and the integrity of the system as a whole. Regardless, knowing

what an ID card says does not mean that the person with a given ID card is

the same person who opened the account. This is a spoofi ng threat. (After all,

given the breaches that happen, all the data on a given ID card may be avail-

able to a fraudster.)

In short, looking at ID cards may be a helpful step, but it would refl ect poor

threat modeling to assume that it will solve all your authentication problems.

Social Security Numbers and Other National Identity Numbers

This section reviews risks associated with the United States social security number

(SSN). Over the last fi ve to ten years, the use of SSNs has declined substantially

as a result of new laws. As of this writing, it is illegal to deny someone goods or

services because they will not give you their SSN in Alaska, Kansas, Maine, New

Mexico, and Rhode Island (Hillebrand, 2008). A large number of state laws also

restrict their use, too numerous to list here (Bovbjerg, 2005). The fi rst problem

is that many developers are unaware of these laws, and their lack of awareness

may put their employers at risk. The second problem with SSNs is that some

organizations use them as identifi ers, while others use them for authenticators.

(Recall that an identifi er is a label for a person or other entity. An authenticator

is how you prove that claim.) A few remarkable organizations manage to use

them for both, but that’s not a model you want to emulate.

SSNs Are Poor Identifi ers

Social security numbers make poor identifi ers even if all your customers are

American citizens who happen to be willing to give you their SSN. Not every

American has an SSN, and not everyone legally residing in the United States

is a citizen. For example, many teachers participate in the Teacher Retirement

System, which does not use SSNs. Many legal residents are not able to get an

SSN. Second, SSNs lack a check digit, so it’s easy to accidentally transpose or

mistype digits. When you do, you have a roughly one-in-three chance of get-

ting someone else’s SSN. (Roughly 300–400 million SSNs have been issued, and

the number space is nine digits.) Third, except for those who work at the Social

Security Administration, the identifi ers are outside your control.

 Chapter 14 ■ Accounts and Identity 287

c14.indd 07:52:38:AM 01/15/2014 Page 287

SSNs Are Poor Database Keys

Even if you collect SSNs, you should ensure that your account identifi er and

database keys are ones that you control. Otherwise, you’ll need to deal with a

way to change your account identifi er. As the Social Security Administration

notes, “Applying for a new number is a big decision. It may impact your abil-

ity to interact with federal and state agencies, employers, and others. This is

because your fi nancial, medical, employment and other records will be under

your former Social Security number . . .” (Social Security Administration, 2011).

It is unclear whether the SSA is using SSNs as account identifi ers, or if they

are warning that many others do so. If they are using the SSA as an account

identifi er, that might be reasonable, but it would also seem reasonable that they

have a way to manage an update. If they have chosen a mitigation strategy of

risk transfer to citizens, then reasonable people might be skeptical that that’s a

decision a government should be making.

SSNs Are Poor Authenticators

SSNs are known to many parties. As stated earlier in the discussion of knowledge-

based authentication, answers to authentication questions should be known to

only a few parties. Unfortunately, between schools, banks, insurance companies,

utility companies, employers, tax preparation, gyms, and other entities that

have made SSNs a condition of participation, the SSNs of most Americans are

available fairly widely, and are often leaked in data breaches.

Even if they were not, Alessandro Acquisti and Ralph Gross have shown

that they can predict many SSNs based on date and location of birth. They

could “identify in a single attempt the fi rst fi ve digits for 44 percent of deceased

individuals who were born after 1988 and for 7 percent of those born between

1973 and 1988.” They were also able to “identify all nine digits for 8.5 percent

of those individuals born after 1988 in less than 1,000 attempts” (Power, 2009).

In further work with Fred Stutzman, they were able to add facial recognition,

using a dataset of faces on Facebook and an online dating site to fi nd names

and birth dates. They were able to guess a substantial number of SSNs or par-

tial SSNs from three webcam pictures (Acquisti, 2011). As they point out, this

technology will get better and better as facial recognition technology improves,

and as labeled face data becomes more widely available.

Finally, social security numbers are routinely published by the Social Security

Administration after people die, in the Social Security Death Master File (SSDMF)

[Social Security Administration, 2012]. Some organizations check the SSDMF to

prevent new account fraud. However, when someone dies, their account does

not necessarily go away. For example, bank accounts might be maintained by

an estate during probate. A phone might be kept active for several months to

288 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 288

enable people to get in touch. If you are using SSNs or some portion of the SSN

as an authenticator, it will have been made public, making your authenticator

far less useful.

Why Not Publish the SSN List?

One innovative response to the issue of “are SSNs well known?” is to simply

publish the list, thus clarifying the true state of the system (Lindstrom, 2006).

This is attractive in a number of ways. However, the law states “Social secu-

rity account numbers and related records that are obtained or maintained

by authorized persons pursuant to any provision of law enacted on or after

October 1, 1990, shall be confi dential, and no authorized person shall disclose

any such social security account number or related record” (42 USC 405(c)(2)

(C)(viii)). Therefore, any source with an authoritative list is legally prohibited

from publishing it. Rather than change the law to allow publication of the list,

a sane new law should prohibit the use of SSNs as identifi ers or authenticators,

and restrict their use in both the public and private sectors. (Given the lack of

a check digit, associating two records based on an SSN should probably be

treated as negligent.)

Other National Identity Schemes

The preceding section is very U.S.-centric, and may therefore seem irrelevant to

those in other countries, but it is not. The same sorts of issues crop up with any

national identifi er scheme, although the semi-private nature of the SSN seems

to have exacerbated the confl ation of its use as both identifi er and authenticator.

Wherever you are considering using a government-issued identifi er, (or other

identifi er provided by another organization) you should ask the following

questions:

 ■ Does everyone have one?

 ■ Does it have a check digit?

 ■ Will you ever serve tourists, students, refugees, or other foreigners?

 ■ Can an individual get a new ID, and if so does it have the same fi eld values?

 ■ How will the system handle identity fraud in the future? (Even if the

citizen can’t change their number now, they may be able to in the future.

You should store it as a fi eld, not as your identifi er or database key.)

 Chapter 14 ■ Accounts and Identity 289

c14.indd 07:52:38:AM 01/15/2014 Page 289

If you want to use it as an authenticator, perhaps as part of an electronic ID

scheme, ask how many people have access to the authentication data associated

with the card.

Identity Theft

There is a common worry in the United States, referred to as identity theft.

Elsewhere, I’ve written that the term fraud by impersonation is a more accurate

description of the crime, and that it’s a crime facilitated by inappropriate alloca-

tion of costs and benefi ts (Shostack, 2003). In particular, it’s easy for organizations

that trade in information to be paid even when the information turns out to

be highly inaccurate. The cost to them is that they may need to update it. The

threat to a data subject may be denial of credit, denial of a job or a volunteer

opportunity, or even an inappropriate arrest. Other cost distributions would

likely result in more socially desirable outcomes.

However, the term identity theft may be appropriate when you consider its

emotional impact on a subset of victims where records with information about

them have become inextricably linked to those of the perpetrator, and whose

ability to engage in normal activities is inhibited by the emotional burden of

further false accusations, and the fear of those accusations. Those people really

have had their “good name” stolen (Identity Theft Resource Center, 2009). There

may be a good case that their good name isn’t stolen by the impersonator, but

by those who intermix records and re-distribute the misinformation.

How does this play into threat modeling? Linkage is a threat to your data

integrity and to your customer’s satisfaction. System designers should take care

when linking information from disparate sources. If your system has features

or processes that allow people to access and correct information you store, you

should ensure that those corrections are not accidentally overridden by the

same data from a source whose data has been corrected. (That is, if Alice tells

you that Bob is a deadbeat, and Bob shows you his cancelled checks paying his

debt to Alice, you’ll correct your record. Next month, Alice may well include

Bob in her list of deadbeats again. Do you want Bob to be a happy customer?

If so, you should be careful to not require that he correct your data repeatedly.)

Tracking where your data is from can help with these issues. If you sell data

about people, you can provide information about where you got the data to

help your customers deliver better service. The most important distinction is

between your direct observation and information you receive from elsewhere.

You can either name the source, or, if the source is commercially sensitive, give

them an alias.

290 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c14.indd 07:52:38:AM 01/15/2014 Page 290

Names, IDs, and SSNs Checklist

This checklist is designed to be read aloud at a meeting. You’re in a bad state if

for any of these questions:

 ■ You can’t answer yes.

 ■ You can’t articulate and accept the implications of a no.

 ■ You don’t know.

 1. Do we know who controls our account namespace?

 2. Do we have a way for our customers to assign a meaningful ID to things

they need to securely identify?

 3. Do we know what trade-offs we’ve made between global, meaningful,

and secure?

 4. Are we relying on identity documents? If so, are we storing copies of those

documents, and who has signed off on that risk?

 5. Are we using SSNs or similar identifi ers at all?

Summary

 In a good model of accounts, they exist at the intersection of the human and

the machine, and threats are abundant at that boundary. Those threats include

authentication threats and confusion about names and identifi ers.

Accounts are a focal point for threats, which occur throughout the account

life cycle, including account creation, maintenance, and termination. Risks of

information disclosure to bad actors cause many systems to treat the people

behind the accounts as attackers, rather than allies. Many of the authentication

factors that are hidden are easily learned by a motivated attacker, while your

real customers are left frustrated and in the dark. Good modeling that exposes

how easy or hard it is to learn the obscured elements of authentication can

help you make good choices, especially about notifying the person behind the

account of what’s happening.

Authentication is hard. Creating a workable authentication system that sat-

isfi es both an organization and its customers is hard. The framework of what

you know, what you have, and what you are gives you a way to think about

authentication, with “what channel are we using?” and “who you know” being

interesting additions to the framework. However, each of these elements has

threats against it, which have been worked through in great depth, and there

are established patterns and limits for each.

If authentication is hard, backup authentication is even harder. A variety of

knowledge-based authentication techniques can be used to recover access to

 Chapter 14 ■ Accounts and Identity 291

c14.indd 07:52:38:AM 01/15/2014 Page 291

an account. When you use one, you should focus on account recovery, not pass-

word recovery, because you should not store passwords in plaintext. There are

many problems with knowledge-based authentication, including security and

usability. It may be preferable to use a social authentication technique; although

they are new and less familiar, they are likely more secure.

Unlike authentication, names are relatively easy, once you accept that they lack

certain properties, and you understand the risks that they carry. Avoid the “real

name” trap, and consider where on Zooko’s Triangle your system should be: Are

names memorable, globally unique, or secure? (Pick any two.) It is tempting to

defer the problem to identity documents, which can help a carefully designed

system but carry risks of their own. Designers often want to use social security

numbers, which are poor identifi ers, poor database keys, and poor authenticators.

Despite those fl aws, they are often used, bringing privacy and security threats

along with them. One of those threats is identity theft, and there are patterns

that can help you avoid contributing to the problem.

293

c15.indd 02:16:32:PM 01/16/2014 Page 293

Usable security matters because people are an important element in the security

of any system. If you don’t consider how people will use your system, the odds

are against them using it well. The security usability community is learning to

model people, the sorts of decisions you need them to make, and the sorts of

scenarios in which they act. The toolbox for addressing these issues is small but

growing, and the tools are not yet as prescriptive as you might like. As such,

this chapter gives you (in particular the security expert) deeper background

than some other chapters, and the best advice available.

Because humans are different from other elements of security, and because

the models, threats, and means of addressing them are different, this chapter

covers challenges of modeling human factors in terms of security, and the

techniques available to address them.

The chapter starts with models of people, as they motivate everything in this

chapter. It continues with models of software which are useful for human factors

work. These two models interact with threat elicitation techniques which are

covered next, and are similar to those you learned about in Part II of this book.

Threats in this chapter include those in which an attacker tries to convince a

person to take action, and threats in which the computer needs to defer to a

person for a decision. After threat elicitation, you’ll learn tools and techniques

for addressing human factors issues, as well as some user interface principles for

addressing those threats, and advice for designing confi guration, authentication,

C H A P T E R

15

Human Factors and Usability

294 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 294

and warnings. These are the human-factors equivalents of the defensive tactics

and technologies covered Chapter 8 “Defensive Tactics and Technologies.” From

there, you’ll learn about testing for human factors issues, mirroring what you

learned in Chapter 10 “Validating That Threats are Addressed.” The chapter

closes with my perspective on usability and ceremonies.

Threat modeling for software or systems generally involves keeping two

models in mind: a model of the software, and a model of the threats. Considering

human factors adds a third model to the mix: a model of people. Ironically, that

additional cognitive load can present a real usability challenge for those threat

modeling human factors.

A FEW BRIEF NOTES ON TERMINOLOGY

 ■ Usability refers to the subset of human factors work designed to help people

accomplish their tasks. Usability work includes the creation of user interfaces.

User interfaces, along with their discoverability, suitability for purpose, and the

success or failure of the people using those interfaces, make up one or more

user experiences.

 ■ Human factors covers how technology needs to help people under attack, how

to craft mental models, how to test the designs you’re building.

 ■ Ceremony refers to the idea of a protocol, extended to include its “human

nodes.” For now, consider a ceremony to be similar to a user experience, but

from the perspective of a protocol analyst. Ceremonies are explained in depth

later in the chapter.

 ■ People are at the center of this chapter. You’ll see them referred to as users in

user testing, user interface, and similar terms of art, and sometimes as humans,

to align with sources.

Models of People

This chapter opens with models of people because they are at the center of the

work you will sometimes need to do when addressing security where people

are in the loop. This is a new type of model which parallels models of software

and threats.

We all know some people, know how they behave, what they want. Aren’t

these informal models enough? Unfortunately, the answer seems to be no.

(Otherwise, security wouldn’t have a usability problem.) There are two reasons

to create more structured models. First, people who work in software usually

construct informal models of people that appear good enough for day-to-day

use (but are often full of contempt for normal folks). They aren’t robust enough

 Chapter 15 ■ Human Factors and Usability 295

c15.indd 02:16:32:PM 01/16/2014 Page 295

to lead us to good decisions. Second, and more important, our implicit models

of people are rarely focused on how people make security decisions.

As a profession, we need better models showing how people arrive at a security

task, their mental models of the security tasks they’re being asked to do, or the

security-related skills or knowledge we can expect various types of people to

have. It might be possible to build all that into a single model, or we might have

several models which are designed to work together. Additionally, we’d like a

set of models that help those who are not experts in usable security.

Even if we had those models, attaining a consistent and repeatable auto-

mated analysis of the human beings within a ceremony is unlikely. (There’s an

argument that it is probably equivalent to developing artifi cial intelligence: If

a computer could perfectly predict how a human being will respond to a set

of stimuli, then it could exhibit the same responses. If it could exhibit the same

responses, then it could pass the Turing test.) However, recall that all models

are wrong, and some models are useful. You don’t need a perfect model to

help you predict design issues. All of the models in this chapter are on the less

structured end of the spectrum and are most useful in a structured brainstorm

or expert consideration of a ceremony.

Applying Behaviorist Models of People

Does the name Pavlov ring a bell? If so, one explanation is that your repeated

exposure to a stimulus has conditioned a response. The stimulus is stories about

Pavlov’s famous dog experiments. The behaviorists believe that all observable

behaviors are learned responses to stimuli. The behaviorist model has obvious

and well-trod limitations, but it would not have had such a good run if it didn’t

at least have some explanatory or predictive power. Some of the ways in which

behavioral models of people can apply to ceremonies are explored in this section.

Conditioning and Habituation

People learn from their environment. If their environment presents them with

frequently repeated stimuli, they’ll learn ways to respond to those stimuli. For

example, if you put a username/password prompt in front of people, they’re

likely to fi ll it out. (That’s a conditioned response, as pointed out by Chris Karlof

and colleagues [Karlof, 2009].) It is hard for people to evoke deep, careful thought

each time they encounter the stimulus, because such effort would usually be

wasted. Closely related to this idea of a conditioned response is a habituation

response such as automatically clicking a button in a dialog you have repeatedly

seen (e.g., “Some fi les might be dangerous”).

It’s hard to argue that such behavior is even wrong. Aesop’s tale about the boy

who cried wolf ends with the boy not getting help when a real wolf appears.

296 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 296

People learn to ignore repeated, false warnings, for good reasons. If thinking

carefully about the dialog mentioned in the example takes fi ve seconds and

a person sees it 30 times per day, that’s three minutes per day, or 1,000 min-

utes per year spent thinking about that one dialog. Suppose someone were

successfully attacked once per year by a malicious fi le that exploits a bug not

yet patched on the computer, and their anti-virus wouldn’t catch it. Will the

cost of cleanup exceed 16 hours? If not, then the person is rationally ignoring

the advice to spend those fi ve seconds (Herley, 2009).

Conditioning and habituation can be addressed by reducing the frequency

of the stimulus. For example, the SmartScreen feature in Windows and Internet

Explorer checks whether a fi le is from a leading publisher or very frequently

downloaded and simply asks the person what to do with the fi le, rather than

issuing a warning. Conditioning can also be addressed by ensuring that the

ceremony conditions people to take steps for their security (see “Conditioned-

Safe Ceremonies” later in this chapter for more information).

Wicked Environments

Educators have a concept of “kind” learning environments. A kind learning

environment includes appropriate challenges and immediate feedback. These

environments can be contrasted with wicked environments, which make learning

hard. Jay Jacobs has brought the concept of wicked environments to information

security. Quoting his description:

[Feedback is] the prime discriminator between a kind and wicked environment and
consequently the quality of our intuition. A kind environment will offer unambigu-
ous, timely, and accurate feedback. For example, most sports are a kind environ-
ment. When a tennis ball is struck, the feedback on performance is immediate and
unambiguous. If the ball hits the net, it was aimed too low, etc. When the golf ball
hooks off into the woods, the performance feedback to the golfer is obvious and imme-
diate. However, if we focus on the feedback within information security decisions,
we see feedback that is not timely, extremely ambiguous, and often misperceived
or inaccurate. Years may pass between an information security decision and any
evidence that the decision was poor. When information security does fail, proper
attribution to the decision(s) is unlikely, and the correct lessons may not be learned,
if lessons are learned at all. Because of this untimely, ambiguous, and inaccurate
feedback, decision makers do not have the opportunity to learn from the environ-
ment in which the risk-based decisions are being made. It is safe to say that these
decisions are being made in a wicked environment.

—Jay Jacobs, “A Call to Arms” (ISSA

Journal, 2011)

 Chapter 15 ■ Human Factors and Usability 297

c15.indd 02:16:32:PM 01/16/2014 Page 297

As a simple heuristic, you can ask, is this design wicked or kind? What can you

do to provide better feedback or make the feedback more timely or actionable?

Cognitive Science Models of People

Cognitive science takes an empirical approach to behavior, and attempts to build

models from observation of how people really behave. In this section, you’ll

learn about a variety of models of people that are in the cognitive science mold.

They include the following:

 ■ Carl Ellison’s “ceremonies” model of people

 ■ A model based on the work of behavioral economist Daniel Kahneman

 ■ A model derived from the work of safety expert James Reason

 ■ A framework explicitly for reasoning about humans in computer security

by CMU professor Laurie Cranor

 ■ A model derived from work on humans in security by UCL professor

Angela Sasse

These models overlap in various ways. Each is, after all, a model of people.

In addition, each of these can inform how you threat model the human aspects

of a system you’re building.

Ellison’s Ceremonies Model

A ceremony is a protocol extended to include the people at each end. Security

architect and consultant Carl Ellison points out that we, as a community, can learn

from post-mortems of real ceremony errors, or perform tests on candidate ceremo-

nies. He describes a model of “installing” programs on “human nodes” by means

of a manual, training, or a contract that mandates certain user behavior. Models

that require people to make decisions using the identity of the source require that

the system effectively communicates about identity to the human node, using a

meaningful ID—a concept covered in depth in Chapter 14, “Accounts and Identity.”

Ellison defers the creation of a full model to experimental psychologists or

cognitive scientists; and in that mode, the following sections summarize a few

models that refl ect some of the more insightful cognitive scientists whose work

applies to security.

The Kahneman Model

This model is an attempt to extract some of the wisdom in Thinking Fast and

Slow (Straus and Giroux, 2011). That excellent book is by Daniel Kahneman, the

298 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 298

Nobel Prize-winning founder of behavioral economics. It is chock-full of ways

in which people behave that do not resemble a computer, and anyone preparing

to threat model for human factors will probably fi nd it repays a close reading.

Following are some of the concepts presented in Kahneman’s book and ideas

about how they can be applied to threat modeling:

 ■ WYSIATI, or What You See Is All There Is: This concept appears so

frequently that Kahneman abbreviates it. The concept is important to threat

modeling because it underscores the fact that the information currently

presented to a person carries great weight in terms of any decisions they’re

being asked to make. For example, if a person is told they must contact

their bank right now to address a problem, they are perhaps unlikely to

remember that their bank never answers the phone after 4:00 P.M., never

mind on a Saturday. Similarly, if a person doesn’t see a security indicator

(such as a lock icon in a browser), they’re unlikely to notice it’s not there.

If an attacker presents cleverly designed advice “for security,” it might

crowd out other advice the person has already received.

 ■ System 1 versus System 2: System 1 refers to the fast part of your brain,

which does things like detect danger, add 2+3, drive, or play chess (if

you’re a chess master). System 2 refers to the part of your brain that makes

rational, considered decisions. System 1 infl uences our decision-making

more than most people realize, or are willing to admit, perhaps including

clicking away annoying dialogs. If clicking away dialogs is really system

1 activity, a system design that relies on system 2 when a dialog appears

requires you to work hard to ensure that system 2 kicks in.

 ■ Anchoring: Anchoring effects are absolutely fascinating. If you ask people

to write down the last two digits of their SSN, people with low values for

those digits will subsequently estimate unrelated numbers to be lower,

whereas those with high values will estimate higher. Similarly, the sales

technique of saying something like “this is a $500 camera, but just today

it’s $300” makes you think you’re getting a great deal, even if your budget

a moment ago was $200. Perhaps anchoring effects crowd out wisdom

when people are presented with scams or are being conned into behaving

in ways that they otherwise would not.

 ■ Satisfi cing: Satisfi ce is a rotten word but it’ll do, absent a better one to

describe the reality that people attempt to make decisions that are good

enough, because the cost of a great decision is too high, or because “decision-

making energy” has been exhausted. For example, most people’s savings

 Chapter 15 ■ Human Factors and Usability 299

c15.indd 02:16:32:PM 01/16/2014 Page 299

and investment choices are based on a subset of all possible investments,

because evaluating options is time-consuming. In security, perhaps people

allow system 1 to assess something, make a call regarding whether it’s

suffi cient, and move on.

Reason’s Many Models

Professor James Reason studies the ways in which accidents happen in large

systems. His work has lead to the creation of a plethora of models of human

error. It could be highly productive to take those models and create prescriptive

advice for threat modeling.

For example, his model of “strong habit intrusions” describes how the rules,

or habits, that help us get through the day can be triggered inappropriately by

“environment[s] that contain elements similar or identical to those in highly

familiar circumstances. (For example, ‘As I approached the turnstile on my

way out of the library, I pulled out my wallet as if to pay—although I knew

no money was required.’)” These strong habit intrusions might be usable as a

threat elicitation heuristic.

Some of the other models he has presented include the following:

 ■ A Generic Error-Modeling System, or GEMS (covering errors, lapses,

and slips)

 ■ An intention-centered model

 ■ A model driven by the ways errors are detected

 ■ An action model that includes omissions, intrusions, repetitions, wrong

objects, mis-orderings, mis-timings, and blends

 ■ A model based on the context of the errors

All but the fi rst model are covered in depth in The Human Contribution: Unsafe

Acts, Accidents and Heroic Recoveries (Ashgate Publishing, 2008).

The Cranor Model

In contrast to the creators of the previous models, CMU Professor Lorrie

Faith Cranor focuses specifi cally on security and usability. She has created “A

Framework for Reasoning About the Human in the Loop” (Cranor, 2008). Like

Ellison’s ceremonies paper, her paper is easy and worthwhile reading; this sec-

tion simply summarizes her framework, which is shown in Figure 15-1.

300 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 300

Human Receiver

Personal
Variables

Intentions

Co
m

m
un

ic
at

io
n

De
liv

er
y

Co
m

m
un

ic
at

io
n

Pr
oc

es
si

ng
Ap

pl
ic

at
io

n

Capabilities

Communication
Impediments

Environmental
Stimuli

Interference

Demographics
and Personal

Characteristics

Knowledge
and

Experience

Attitudes
and Beliefs

Motivation

Attention Switch

Attention
Maintenance

Comprehension

Knowledge
Acquisition

Knowledge
Retention

Knowledge
Transfer

Communication Behavior

Figure 15-1: Cranor’s human-in-the-loop framework

Much like Ellison, Cranor’s model puts a person at the center of a model in

which communication of various forms may infl uence behavior. However, “it is

not intended as a precise model of human information processing, but rather it

is a conceptual framework that can be used much like a checklist to systemically

analyze the human role in secure systems.” The components of her model are:

 ■ Communications: The model considers fi ve types of communication:

warnings, notices, status indicators, training, and policy. These are roughly

ordered by how active or intrusive the communications are, and they

are generally self-explanatory. One noteworthy element of training that

Cranor calls out is that effective training (by defi nition) must lead people

to recognize a situation where their training should be applied. There is

an interesting relationship to what Reason calls rule misapplication. Rule

misapplication may be more common when training is not regularly

re-enforced or when the situations in which the training should be trig-

gered are infrequent.

 ■ Communications impediments: These include any interference that

prevents the communication from being received, and environmental

stimuli that may distract the person from a communication that they have

received, leading them to perform a different action. It is important to look

for both behavior under attack and under non-attack, and ensure that

communications reliably occur at the right time and only the right time.

 ■ The human receiver: This has six different components, and the “relation-

ships between the various components are intentionally vague.” However,

the left-hand column relates to the person, while the right-hand column

roughly refl ects the chain of events for handling the message.

 Chapter 15 ■ Human Factors and Usability 301

c15.indd 02:16:32:PM 01/16/2014 Page 301

 ■ Personal Variables: Includes the person’s background, education,

demographics, knowledge, and experience, each of which may play

into how a person reacts to a message

 ■ Intentions: Includes attitudes, beliefs, and motivations

 ■ Capabilities: Even a person who gets a message, wants to act on it,

and knows how to act on it may not be able to. For example, he or she

might not have a smartcard or a smartcard reader.

 ■ Communication Delivery: This is related to the person’s attention

being switched to the communication and maintained there.

 ■ Communication Processing: Determine whether the person under-

stands the message and has the knowledge to act on it.

 ■ Application: Does the person understand, from formal or informal

training, how to respond to the situation, and can they transfer that

knowledge to the specifi c facts at hand?

Cranor presents a model that describes how to use her framework, shown

in Figure 15-2. It consists of task identifi cation, task automation, failure iden-

tifi cation in two ways (her framework and user studies), and mitigating those

failures, again using user studies to ensure that the mitigations are functional.

Cranor also usefully presents a set of questions to ask and factors to consider

for each element of the model.

Task
Identification

Task
Automation

Failure
Identification

Failure
Mitigation

Human-in-the-loop
Framework

User Studies

User Studies

Figure 15-2: Cranor’s human threat identification and mitigation process

Sasse’s Model

UCL Professor Angela Sasse also has a model of failures situated in organi-

zational systems, including management and policies, preconditions, produc-

tive activities, and defenses that surround the decision-makers (meaning any

person, rather than only executives). It is fundamentally a compassionate model

of people, based on the reality that most people generally want to be secure,

and that their deviations from security are understandable if you take the time

to “walk a mile in their shoes.”

302 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 302

The most important threat modeling take-away from Sasse is her approach to

those who make decisions that confl ict with the suggestions of security experts.

Oftentimes, security experts bemoan that “in a contest between being secure

and dancing pigs, dancing pigs will win every time” or “stupid users will click

anything you put in front of them.” In contrast, she seeks to understand those

decisions and the logic that underlies them. Such an understanding is essential

to useful models of people.

Heuristic Models of People

The models of people described in this section are less associated with a single

researcher, or otherwise don’t quite fi t into the way behaviorist or cognitive

science models of people are presented, but they have been repeatedly and

effectively used in studying how people’s observed behavior differs from the

expectations embedded in systems.

Goal Orientation

People want to get to the task at hand. If a security process stands between

them and their goal, then they are likely to view that process as a hindrance.

That means they may read a warning dialog as if it says “Do you want to get

the job done?” and click OK. Because of this usability, practitioners will often

state that, “security is a secondary task.”

There are two main ways to address issues found in goal orientation. The

fi rst is to make the obvious path secure. If that’s possible, it’s by far the best

course. The second is to think about when the security information is provided

in the ceremony. There are two options: Go early or go late. Going early means

providing the information needed as the person is thinking about what to do,

rather than as they’re committed to a path. For example, an operating system

could display an application downloaded from the Internet with a spiky icon

overlay, rather than (or in addition to) displaying a warning after someone has

double-clicked it. Going late means delaying the decision as long as possible, so

that the person has a chance to back out. This approach is used in the gold bar

pattern, whereby the secure option is taken by default, and insecure options are

made available in a gold bar along the top of the window. This is suffi cient to

review the document, but not to edit or print it. A nontargeted attack is unlikely

to convince anyone to exit the sandbox and expose themselves to more risk. See

“User Interface Tools and Techniques” later in this chapter for more information

about the gold bar pattern.

 Chapter 15 ■ Human Factors and Usability 303

c15.indd 02:16:32:PM 01/16/2014 Page 303

Confi rmation Bias

Confi rmation bias is the tendency people have to look for information that will

confi rm a pre-existing mental model. For example, believers in astrology will

remember the one time their horoscope just nailed what was about to happen,

and discount the other 364 days when it was vague or just plain wrong. Similarly,

if someone believes they urgently need to contact their bank, they may be less

likely to notice slight oddities in the bank’s login page.

Scientists and engineers have learned that looking for ways to disprove

an idea is much more powerful that looking for evidence which confi rms it.

Unfortunately, looking for counter-evidence seems to be at odds with how

people tend to work. Recalling the discussion of system 1 and system 2 in the

section on Kahneman’s work, there may be elements of system 1 versus system

2 at play here. System 1 may see a data point and collect it (feeding confi rma-

tion bias) or discard it as anomalous, preventing you from seeing the problem.

Addressing confi rmation bias is tricky in general, and may be trickier in

security circumstances. It might be possible to condition or train people to look

for evidence of evil, and use that to undercut confi rmation bias.

IS THIS SECTION FULL OF CONFIRMATION BIAS?

It is easy to fi nd examples of these hueristics once you watch for them, which raises a

worry that they are easy, rather than good explanations. Worse, in putting them here,

I may be subject to confi rmation bias. Perhaps in reality, some other factor is at work,

and using one of these will be misleading. This risk is associated with many of the heu-

ristics in this section, and a poor understanding of the cause may lead to selecting a

poor solution. This should not be taken as an argument against using them, but a cau-

tion and a reminder of the importance of doing usability testing.

Compliance Budget

The term compliance budget appears in the work of Angela Sasse (introduced

above), who has performed anthropological studies of British offi ce workers.

Her team noticed that after repeated exposure to the same security policies or

tasks they were supposed to perform, the workers would respond differently

(Beautement, 2009). During their interviews about security compliance, she

noted that the workers were effectively allocating a “budget” to perform secu-

rity tasks. They may or may not understand the tasks, but they would spend

time and energy on them until their budget was exhausted, and then move on

to other work tasks. When security requests were considered not as platonic

304 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 304

tasks to be accomplished, but as real tasks situated against other tasks, worker

behavior was fairly consistent.

Therefore, as you design systems, track how many security demands are being

made in each of your scenarios. There is no “right” amount, but fewer is better.

Optimistic Assumptions

Many protocols impose optimistic assumptions about the capabilities of their

human nodes. For example, people are sometimes expected to know where a

browser’s lock icon should be. (Top or bottom, left or right? In the main display

area, obviously.) The lock cleverly disappears when it’s not needed, which we

optimistically assume doesn’t make this question harder.

So how do you use this in threat modeling? As you go through the process, you

should be keeping a list of assumptions you fi nd yourself making (see Chapter 7,

“Processing and Managing Threats”). For each optimistic assumption, look for

a weaker assumption, or a way to buttress the assumption.

Models of Visual Perception

In work released as this book was being completed, Devdatta Akhawe and

colleagues argue that limitations of human perception make UI security diffi cult

to achieve. They present a number of attacks, including destabilizing perception

of the pointer, attacking peripheral vision, attacking motor adaptations of the

brain, mislocalization related to fast-moving objects, and abusing visual cues

(Akhawe, 2013). Studying models of visual perception will probably be a fruitful

area of research over the next few years.

Models of Software Scenarios

There are (at least) two ways to model a scenario, including a software-centered

model and an attack-centered model. In this section, you’ll learn about model-

ing both for threat modeling human factors. The software-centered models are

somewhat easier, insofar as you know what sorts of circumstances will invoke

them. The software models include scenario models of warnings, authentications,

and confi gurations and models that use diagrams to represent the software. The

attack-centered model is somewhat more broad. That is, if an attacker wants

your software to do something, where can they force it?

Modeling the Software

You can model the goals and affordances of the software that a particular

feature is intended to offer. (An affordance is whatever element of the user

 Chapter 15 ■ Human Factors and Usability 305

c15.indd 02:16:32:PM 01/16/2014 Page 305

interface that communicates about the intended use.) One useful model of the

interactions you’ll offer includes warnings, authentications, and confi guration

(Reeder, 2008b). In that model, warnings are presented in the hope of deter-

ring dangerous behavior, and include warnings dialogs, prods, and notifi ca-

tions. Authentications include the person authenticating to a computer either

locally or via a network, and the remote system authenticating to the person.

Confi guration includes all those ways in which the person makes a security

decision regarding the confi guration of a computer or system.

These are not always distinct in practice. A single dialog will commonly

both warn and ask for confi guration or consent. Considering them separately

helps you focus on the unique aspects of each, and ensure that you’re provid-

ing the information that a person needs. In addition, the same advice applies

to the warning regardless of the further content. So it applies to authentication,

confi guration, and consent. The types of information that you’ll need to present

so that the warning is clear doesn’t change because of the additional context

or decisions.

Warnings

A warning is a message from one party to another that some action carries risk.

Generally, such messages are intended as a risk transference from one party to

another, and they may have varying degrees of legal or moral effectiveness in

actually transferring risk. Good warning design is covered later in this chapter

in the section “Explicit Warnings.”

Good warning design clearly identifi es the potential problem, how likely it

is, and what can be done to avoid it. Good warnings avoid “the boy who cried

wolf” syndrome.

Authentication

People are astoundingly good at recognizing other people. It’s probably an

evolved trait. However, it turns out to be very diffi cult to authenticate people

to machines or machines to people. Authentication is the process of proving

that you are who you’ve said you are in a manner that’s suffi cient for a given

context—authenticating that you’re a student at State University is generally less

important than authenticating that you’re the missing heir to a massive fortune.

Authentications are generally one party authenticating to another, such as a

client authenticating itself to a server. They are sometimes bi-directional, and

the authentication system in use in each direction may differ. For example, a

web browser might connect to a bank and validate a digital certifi cate to start

SSL. This is the server being authenticated via PKI to a client. The client will

then authenticate via a password to the bank. There are also authentications

that involve more parties.

306 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 306

The best advice on authentication (in both directions) is to treat it as a

ceremony and pay close attention to where information comes from, how it

could be spoofed, and how it will be validated in the real world.

Confi guration

There are many ways to group confi guration choices that can be made, including

confi gurations made in advance, and confi gurations to allow or deny a specifi c

activity. For each, it is helpful to consider the person’s mental model, and the

diffi culty of testing their work. Useful techniques might include asking “how

others might see the state of the system,” whether “X can do Y,” or having the

person “describe the changes just made.” Confi guring a system for security is

hard. The person performing the confi guration needs to instruct the computer

with a degree of precision that’s required in few other areas of life, and con-

structing tests to ensure that it’s been done right is often challenging for both

technical and nontechnical people. Confi guration tasks can be broken out into:

 ■ Confi guration such as altering a setting

 ■ Consenting to some set of terms

 ■ Authorization or permission settings

 ■ Verifi cation of settings or claims (such as the state of a fi rewall or identity

of a website)

 ■ Auditing or other investigation into the state of a system so people can

view and act if appropriate

As you think about confi guration, consider using a framework of who, what,

why, when, where and how:

 ■ Who can perform the confi guration? Is it anyone? An administrator? Is

there a parental role?

 ■ What can they confi gure, and to what granularity? Is it on/off? Is it details

intrinsic to the feature being confi gured (e.g., the fi rewall can block IP

addresses or ports), or extrinsic, such as “this user cannot contact me”?

The latter requires each channel of contact to know it must check the ACL.

 ■ Why would someone want to confi gure the feature, and use those sce-

narios to determine what the user interface will be, and what mistakes

they might make.

 ■ When will someone be making confi guration choices? Is it proactive or

reactive? Is it just in time?

 Chapter 15 ■ Human Factors and Usability 307

c15.indd 02:16:32:PM 01/16/2014 Page 307

 ■ Where will someone make the change? (And how will they fi nd that

interface?)

 ■ How will users implement their intent? “How” is not only how they

make a change, but how they can test it—for example, Windows “effec-

tive permissions” or the LinkedIn “Show me how others see this profi le.”

Consider how users can see the confi guration of the system as a whole.

Good design of a confi guration system is hard. Decisions made early can

make changes impossible or extremely expensive. For example, Reeder has

shown that people have a hard time with elements of the Windows fi le per-

mission model, and that changing to a “specifi city preference” over the deny

precedence appears to align better with people’s expectations (Reeder, 2008a).

However, changing that ordering would break the way one access control rules

have been confi gured on possibly hundreds of millions of systems, and each

rule would require manual analysis to understand why it’s set the way it is,

what the change would mean, and how to best repair it.

Diagramming for Modeling the Software

There are a variety of diagram types that can be useful for human factors analysis,

including swim lanes, data fl ow diagrams, and state machines. Each is a model

of the software, system, or protocol. In this section, you’ll learn about how each

can be modifi ed for use in looking at the human in the loop.

Swim Lanes

You learned about swim lane diagrams for protocols in Chapter 2, “Strategies

for Threat Modeling.” These diagrams can be adapted for modeling people. In

ceremony analysis, you add swim lanes representing each participant, as shown

in Figure 15-3 (reproduced from Ellison’s paper on ceremonies [Ellison, 2007]).

There is an implicit trust boundary between each lane. In this diagram, S is the

server, A1 and A2 are attackers, CC is the client, and CA is a certifi cate authority.

This diagram is worth studying, especially when you realize that A1 and A2

are machines controlled by attackers. Note that the attacker A is not shown;

what this attacker knows is not relevant to the security of C, the person being

tricked. Also note that messages from computers to humans (“S,” short for

server) and humans to computers (“click”) are shown as protocol messages. It

is very important to ensure the messages between computers and humans are

clearly shown, and the contents of each is modeled. Such modeling will help

you identify unreasonable assumptions, information not provided, and other

communications issues.

308 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 308

a

S A1 A2 CC
C R

CA

b

TLS a1 to aS

TLS to a1

GET page at aS

GET page at a1

login
login

login

password

password
password

click
S

S, a1

KR
KR

KR

Figure 15-3: Ellison’s diagram of the HTTPS ceremony

State Machines

State machines are often used to model the state of inanimate objects. The states

of machines are simple compared to the states of humans. However, that doesn’t

mean that a state machine can’t help you think about the state of people using

your software. For example, consider Figure 15-4, which explores possible states

of a person trying to visit a website and being blocked by a security warning.

The state machine has two exit states: reading a web page and considering

alternative options. They are indicated by darker lines around the states.

Quick consideration of this model reveals several issues:

 ■ If a “bypass this warning” button is easily visible, it may be pressed by

an annoyed person.

 ■ If people feel overwhelmed by security decisions, they’ll likely bypass

the warning.

 ■ The “stars must align” to get someone to the state of considering alterna-

tive plans.

 Chapter 15 ■ Human Factors and Usability 309

c15.indd 02:16:32:PM 01/16/2014 Page 309

Start

Visiting web page

Reading web page

Click on link
(or)
type URL

Page
renders

Security
interrupt

Click
bypass

Click bypass

Annoyance

Decide it’s not risky/
they won’t

understand/etc.

Overwhelmed

Can’t find
bypass

Worrying about security

Recall past
experience

Investigate warning

Warning is
unclear

Frustration

Considering
alternate plans

Warning is
clear

Figure 15-4: A human state machine

You can also use state machines in conjunction with ceremonies. In a ceremony,

a node can be modeled as state (including secrets), a state machine with its inputs

and outputs, service response times, including bandwidth and attention, and

a probability of errors of various sorts. (Ellison provides a longer list with fi ner

granularity for the same set of attributes [Ellison, 2007].)

Modeling Electronic Social Engineering Attacks

A project at Microsoft needed a comprehensive way to describe electronic social

engineering attacks. In this context, electronic means roughly all those social

engineering attacks that are not in person or over the phone.

We came up with the channels and attributes shown in Table 15-1, which

we have found to be a useful descriptive model. It is intended to be used like

a Chinese menu, whereby you choose one from column A, one from column

B, and so on.

You’ll probably fi nd that the descriptors here are suffi cient for describing

most online social engineering attacks. Unfortunately, some evocative detail is

lost (and some verbosity is gained) as you generalize from “a Nigerian prince

spam” to “e-mail pretending someone to be someone you don’t know, exploiting

310 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 310

greed” or from “phishing” to “a website pretending to be an organization you

have a relationship with and for which you need to enter credentials in order

to do business.” However, the resultant model descriptions capture the relevant

details in a way that can inform either training or the design of technology to

help people better handle such attacks.

Table 15-1: Attributes of Electronic Social Engineering Attacks

CHANNEL

OF

CONTACT

THING

SPOOFED

PERSUASION

TO INTERACT

HUMAN ACT

EXPLOITED

TECHNICAL

SPOOFING

E-mail An operating

system or product

user interface

element, such as

a Mac OS warn-

ing, or a Chrome

browser pop-up

Greed/promise

of reward

Open

document

System dialog

or alert

Website A product or

service

Intimidation/

fear

Click link Filename

(extension

hiding)

Social

network

A person you

know

Maintaining

a social

relationship

Attach device/

USB stick

File type (other

than extension

hiding)

IM An organization

you have a rela-

tionship with

Maintaining

a business

relationship

Install/run

program

Icon

Physical* An organization

you don’t have a

relationship with

Curiosity Enter

credentials

Filename

(multi-lingual)†

A person you

don’t know

Lust/prurient

interest

Establish a

relationship‡

An authority

* Physical is at odds with the online nature of most of these, but sometimes there’s an interesting overlap, like a
USB drive left in a parking lot.

† Multi-lingual spoofing involves use of languages written left to right and right to left in the same name. There is
no way to do so which meets all cultural and clarity requirements.

‡ Establishing a relationship also overlaps; much, but not all electronic social engineering is focused on the instal-
lation of malware.

The Technical Spoofi ng column contains details that are sometimes clarify-

ing. Those elements are more specifi c versions of the “user interface element”

at the top of the Thing Spoofed column.

 Chapter 15 ■ Human Factors and Usability 311

c15.indd 02:16:32:PM 01/16/2014 Page 311

Threat Elicitation Techniques

Any of the threat discovery techniques covered in Part II of this book can prob-

ably be applied to a user experience. Spoofi ng seems particularly relevant. You

can bring any of those to bear while brainstorming. The ceremony approach

offers a more structured way to fi nd threats. You can also consider the models

of humans presented earlier while considering what a “human state machine”

might do, or as ways to explain the results of the tests you perform.

Brainstorming

The models of people and scenarios provided so far can help anyone fi nd threats

by brainstorming. That’s much more likely to be productive with participation

from either security or usability experts. Different goals of these specialists may

lead to clashes, however, as usability experts will likely tend toward making it

easy to get back to the primary task, and security experts will tend to focus on

the risk of doing so. Either structure or moderators may help you.

The Ceremony Approach to Threat Modeling

The ceremony approach to threat modeling, created by Carl Ellison, (and

mentioned briefl y earlier) is most like “traditional” threat modeling. It starts

from the observation that any network protocol, suffi ciently fully considered,

involves both computers and humans on each end. He developed this obser-

vation into an approach to analyzing the security of ceremonies. “Ceremony

Design and Analysis,” the paper in which Ellison presents his model, is free,

easy to understand, and worth reading when considering the human aspects

of your threat model. It introduces ceremonies as follows:

[The ceremony is] an extension of the concept of network protocol, with human
nodes alongside computer nodes and with communication links that include UI,
human-to-human communication and transfers of physical objects that carry data.
What is out-of-band to a protocol is in-band to a ceremony, and therefore subject
to design and analysis using variants of the same mature techniques used for the
design and analysis of protocols. Ceremonies include all protocols, as well as all
applications with a user interface, all workfl ow and all provisioning scenarios.
A secure ceremony is secure against both normal attacks and social engineering.
However, some secure protocols imply ceremonies that cannot be made secure.

—Carl Ellison, “Ceremony Design and

Analysis” (IACR Cryptology ePrint

Archive 2007)

312 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 312

In a “normal” protocol, there are two or more nodes, each with a current state,

a state machine (a set of states and rules for transitioning between them), and a

set of messages it could send. Ellison extends this to humans, noting that humans

can be modeled as having a state, messages they send and receive, and ways to

transition into different states. He also notes that they are likely to make errors

parsing messages. Ellison calls out three important points about ceremonies:

 ■ “Nothing is out of band to a ceremony.” If there’s an assumption that

something happens out of band, you must either model it or design for

it being insecure.

 ■ Connections (data fl ows) can be human to human, human to computer,

computer to computer, physical actions, or even legal actions, such as

Alice sells Bob a computer.

 ■ Human nodes are not equivalent to computer nodes. Failure to take into

account the way humans really act will break the security of your system.

Ceremony Analysis Heuristics

There are a set of threats that can be discovered simply and easily with some

heuristics, and a set of threats that are more likely to be found with more struc-

tured work. Each heuristic has advice for addressing the threat. The fi rst four

are extracted from Ellison’s “Ceremony Design and Analysis” (IACR Cryptology

ePrint Archive 2007) to contextualize them as heuristics, while the fi nal two are

other heuristics that may help you.

Missing Information

The fi rst issue to look for is missing information. Does each node has the

information you expect it to act upon? For one trivial example, in the HTTPS

scenario, the person is expected to know that the server name (S) does not match

the URL (A1). However, the message from the computer contains only a server

name, not a URL. Therefore, the analysis is particularly trivial: The designer

has asked a person to make a decision but has not provided the information

necessary to make it.

Ensure that you’re explicit about decisions people will need to make, what

information is needed to make them, and display it early enough that the person

won’t anchor on some other element, and close enough to where it is needed

that other information will not be distracting.

Distracting Information

If you’d like to ensure that a person acts on information you present, keep in

mind that each additional piece of information acts as a distractor, and may

 Chapter 15 ■ Human Factors and Usability 313

c15.indd 02:16:32:PM 01/16/2014 Page 313

feed into confi rmation bias. In discussing the human phase of verifying that a

cryptographically signed e-mail was really signed, Ellison offers the screenshot

shown in Figure 15-5, pointing out fi ve elements that a human might look at,

including the “From: address,” the picture, the “Signed by” address, the text

of the message, and other contextual information that the human might have

available. The only element that the (cryptographic) protocol designer wants you

to look at is the “Signed by” address, which is the fi fth element displayed, after

“From,” “To,” “CC,” and “Subject”—all of which appears underneath various

GUI elements, including the window title, taken from the e-mail subject. There

is also a picture, and a small icon (reproduced from Ellison, 2007).

Figure 15-5: An e-mail interface

To address the possibility of distraction, information not key to the ceremony

either should not be displayed or should be de-emphasized in some way or

ways. In particular, you should take care to avoid showing information that is

easily substituted or confused for the information that you want the person to

use in the ceremony.

Underspecifi ed Elements

Because a ceremony is all inclusive, it requires us to shine light where system

architects might otherwise hand-wave. For example, how did a PKI root key on

a system become authorized to suppress or send messages to the owner of that

computer? (PKI root keys often suppress warning messages, and may activate

messages, such as a green URL bar or a lock within the browser.) To address

underspecifi ed elements, specify them. It may be a practical requirement to

accept risks associated with them, but a concrete statement of the risk might

enable you to fi nd a way to address it.

314 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 314

Fuzzy Comparison

People are pretty bad at comparing strings. For example, are the strings 82d6937ae

236019bde346f55bcc84d587bc51af2 and 82d6937ae236019bde346f55bcc84d857b

c51af2 the same string? Go on, check. It’s important. I’m hopeful that when

this book is laid out, the strings don’t show up one above the next (and put in

extra words to try to mitigate that threat from layout). So, did you check? I’m

willing to bet that even most of you, reading the freaking gnarly specifi cs part

of a book on threat modeling, didn’t go through and compare them character

by character. That may partly be because the answer doesn’t really matter; but

mostly it’s because people satisfi ce—that is, we select answers that seem good

enough at the time. The fi rst (and maybe last) characters are the same, so you

assume the rest are too. Often, attackers can do something to push the person

to a fuzzy match that they will pass.

To address fuzzy comparison, look for ways to represent the bits so that they are

easily compared. For example, because people are excellent at recognizing faces,

can you use faces to represent data? How about other graphical representations?

For example, there’s a set of techniques for turning data into an image called a

visual hash, as shown in Figure 15-6 (Levien, 1996; Dalek, 1996), although there

is little or no security usability analysis of these, and they have not taken off.

Figure 15-6: The snowflake visual hash

It may be possible to replace a long string of digits with a string of words,

tapping into system 1 word recognition and improving comparability. Lastly, if

none of those methods will work, try to create groups of four or fi ve digits so that

at least people fi nd natural breakpoints when carrying out the comparative task.

 Chapter 15 ■ Human Factors and Usability 315

c15.indd 02:16:32:PM 01/16/2014 Page 315

Kahneman, Reason, Behaviorism

The entire section “Models of People,” presented earlier, is suffused with

perspectives that can be used as heuristics, or as a review list, asking yourself

“how could this apply?”

The Stajano-Wilson Model

Frank Stajano and Paul Wilson have worked with the creators of the BBC’s “Real

Hustle” TV show to create a model of scams (Stajano, 2011). Their principles are

quoted verbatim here, and could be adapted to use for threat elicitation:

 1. Distraction Principle: While we are distracted by what grabs our interest,

hustlers can do anything to us and we won’t notice.

 2. Social Compliance Principle: Society trains people to not question author-

ity. Hustlers exploit this “suspension of suspiciousness” to make us do

what they want.

 3. Herd Principle: Even suspicious marks let their guard down when every-

one around them appears to share the same risks. Safety in numbers? Not

if they’re all conspiring against us.

 4. Dishonesty Principle: Our own inner larceny is what hooks us initially.

Thereafter, anything illegal we do will be used against us by the fraudsters.

 5. Kindness Principle: People are fundamentally nice and willing to help.

Hustlers shamelessly take advantage of it.

 6. Need and Greed Principle: Our needs and desires make us vulnerable.

Once hustlers know what we want, they can easily manipulate us.

 7. Time Principle: When under time pressure to make an important choice,

we use a different decision strategy, and hustlers steer us toward one

involving less reasoning.

The discussion of the herd principle points out how many variations of the

sock puppet/Sybil/tentacle attacks exist, a point for which I’m grateful.

Integrating Usability into the Four-Stage Framework

This chapter advocates looking at usability and ceremony issues as a distinct

set of activities from modeling technical threats. It may also be possible to

bring usability into the four-stage framework by considering it in two places:

mitigation and validation. If the general approach of thinking of mitigations as

“change the design, use a standard mitigation; use a custom mitigation, accept

the risk” is extended with “transfer risk by asking the person,” then that makes

316 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 316

a natural jumping off point to the techniques outlined in this chapter. Similarly,

in validation, if a user interface asks the person to make a security or privacy

decision, then assessing it with techniques from this chapter will help. This

approach, illustrated in Figure 15-7, was developed by Brian Lounsberry, Eric

Douglas, Rob Reeder, and myself.

Model

Find
Threats

Address
Threats

Validate

Design
Interface

User
Testing

Transfer Risk?

User Interface?

Figure 15-7: Integrating usability into a flow

Tools and Techniques for Addressing Human Factors

Having discussed how to fi nd threats, it’s now time to talk about how you can

address them. This section begins with myths about people that we as a com-

munity need to set aside, it continues with design patterns for helping you fi nd

a good solution, and then describes a few design patterns for a kind learning

environment.

In an ideal world, everyone would have time to carefully consider each secu-

rity decision that confronts them, research the trade-offs, and make a call that

refl ects their risk acceptance given their goals and options. (Also in that ideal

world, technology producers would be happy to invest the effort needed to

help them.) In the real world, people typically balance their investment of effort

against perceived risk, their perception of their own skill, time available, and a

host of other factors. Worse, in the case of security, there sometimes is no “right”

decision. If you get an e-mail from your boss asking you to print a presenta-

tion for an impromptu meeting with the CEO that’s happening right now, you

can’t call to make sure it’s really from the boss. You might want to accept the

risk that someone has taken over your boss’s e-mail. You want to make it easy

for people to quickly reach the decision that they would make if they had all

 Chapter 15 ■ Human Factors and Usability 317

c15.indd 02:16:32:PM 01/16/2014 Page 317

the time in the world. You want to make it possible for people to dig deeper,

without requiring they do so.

Myths That Inhibit Human Factors Work

There are a number of myths that are threats to human factors work in secu-

rity. They all center on contempt for normal people. People are not, as is often

claimed, the weakest link, or beyond help. The weakest link is almost always

a vulnerability in Internet-facing code. Society trusts normal adults to drink

alcohol, to operate motor vehicles (ideally not at the same time), and to have

children. Is using a computer safely so much harder? If so, whose fault is that?

Following are some common myths about human behavior in terms of security:

 ■ “Given a choice between security and dancing pigs, people will choose

dancing pigs every time.” So why make that a choice? More seriously, a

better way to state this is, “Given a choice between ignoring a warning

that they’ve clicked through a thousand times before without apparent

ill effects and without being entertained, people will bypass a warning

every time.”

 ■ “People don’t care about security,” or “People don’t want to think about

security.” Either or both may well be true. However, people do care about

consequences such as having to clean their system of a virus or dealing

with fraudulent charges on their debit cards.

 ■ “People just don’t listen.” People do listen. They don’t act on security

advice because it’s often bizarre, time consuming, and sometimes followed

by, “Of course, you’ll still be at risk.” You need to craft advice that works

for the people who are listening to you.

 ■ “My mom couldn’t understand that.” Your mom is very smart. After all,

she raised you, and you’re reading this book. QED. More seriously, you

should design systems that your customers will understand.

Design Patterns for Good Decisions

The design patterns for mitigating threats that exploit people are similar to

those for other categories of threats. This section describes the four high-level

patterns: minimize what you ask of people, conditioned-safe ceremonies, avoid

urgency, and ensure a path to safety.

Minimize What You Ask of People

If people are not good at being state machines running programs, it seems

likely that the less that is asked of them, the fewer insecurities a ceremony

318 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 318

will have. People must be involved when they have (or can reasonably be expected

to have) information that other nodes need to make appropriate decisions. For

example, Windows Vista introduced a dialog that asked people what sort of

network they had just connected to. This elicited information (such as home,

work, or coffee shop) that the computer can’t reliably determine, and it was used

to confi gure the fi rewall appropriately. A person must also be involved when

making decisions about meaningful IDs. There are likely other data points or

perspectives that a program must ask of a person.

There are two specifi c techniques to minimize what’s asked of people: listing

what they need to know, and building consistency:

 ■ Listing what people need to know: Simply making a list of what people

need to know to make a security decision is a powerful technique that

Angela Sasse advocates. The technique has several advantages. First, it’s

among the simplest techniques in this book. It requires no special training

or equipment. Second, the act of writing down a list tends to impose a

reality check. When the list gets longer than one unit (whiteboard, page,

etc.), even the most optimistic will start to question whether it’s realistic.

Finally, making a list enables you to use that list as a checklist, and asking

how the customer will learn each item on the list is an easy (and perhaps

obvious) next step.

 ■ Building consistency: People are outstanding at fi nding patterns, some-

times even fi nding patterns where none exist. They use this ability to build

models of the world, based on observations of consistency. To the extent

that your software is either inconsistent with itself or with the expecta-

tions of the operating environment, you are asking more of people. Do not

do so lightly. Consistency relates to the wicked versus kind environment

problem raised by Jacobs. Ensuring that your security user experiences

are consistent within a product is a very worthwhile step, as is ensuring

that it’s consistent with the interfaces presented by other products. This

consistency makes your product a kind learning environment. Of course,

this must be balanced with the value of innovation and experimentation.

If everything is perfectly consistent, then we can’t learn from differences.

However, we can try to avoid random inconsistency.

Conditioned-Safe Ceremonies

Consistency will probably help the people who use your system, but a

conditioned-safe approach may be even better. The concept of a conditioned-

safe ceremony (CSC) is built on the observation that conditioning may play

both ways. In other words, rather than train people to expect random shocks or

 Chapter 15 ■ Human Factors and Usability 319

c15.indd 02:16:32:PM 01/16/2014 Page 319

interruptions from security, you could train or condition them to act securely.

In their paper introducing the idea (Karlof, 2009), Chris Karlof and colleagues

at University of California, Berkeley, proposed four rules governing the use of

conditioned-safe ceremonies:

 1. CSCs should only condition safe rules, those that can safely be applied

even in circumstances controlled by an adversary.

 2. CSCs should condition at least one immunizing rule—that is, a rule which

will cause attacks to fail.

 3. CSCs should not condition the formation of rules that require a user

decision to apply the rule.

 4. CSCs should not assume people will reliably perform actions which are

voluntary, or that they have not been trained/conditioned to perform

each time.

They also discuss the idea of forcing functions. In this context, a forcing function

is “a type of behavior-shaping constraint designed to prevent human error,” for

example, a car that can be started only when the brake pedal is pressed. People

regularly make the mistake of omitting steps in a process (it may be one of the

most common types of mistakes), and they rarely notice when they’ve omitted

a step. Forcing functions can help ensure that people complete important steps.

The forcing function will only work when it is easier to execute than avoid, where

avoidance may include avoiding use of the feature set that includes a forcing

function. They use the example of Ctrl+Alt+Delete to bring up the Windows

Login screen as a forcing function.

Avoiding Urgency

One of the most consistent elements of current online scams is urgency. Urgency

is a great tool for the online attackers. They maintain control of the experience,

sending the prospective victim to actions of their choice. For example, in a

bank phishing scam, if the person sets the e-mail aside, they may later fi nd a

real e-mail from the organization, they may use a bookmark, or they may call

the number on the back of their card. The fake website may be taken down,

blacklisted, or otherwise become unavailable. Therefore, avoiding urgency helps

your customers help themselves.

Avoiding urgency can involve something like saying, “We will take no action

unless you visit our site and click OK. You can always reach our real security

actions through a bookmark, or by using a search engine to get to our site.”

If you’ve conditioned your customers to expect urgency from you, then urgency

is less likely to act as a red fl ag. Make it harder for the attacker by avoiding

urgency in your messages to customers.

320 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 320

Ensuring an Easy Path to Safety

When people are being scammed, is there a way to get back to a safe state? Is

it easy to discover (or remember) and take that path to safety? For example, is

there always an easy way to access messages you send from your home page?

If there is, then potential phishing victims can take control of the experience.

They can go to their bookmarked website and get the message. You might use

a pattern like the gold bar (discussed in the section “Explicit Warnings,” later

in this chapter) or an interstitial page to notify people about important new

messages, so they learn that they can fi nd new messages from your site.

If that’s always available, then attackers will need to convince people that that

system is broken for whatever reason. Today, that’s easy, because “go to your

bookmark” is lumped in with a barrage of confusing and questionable security

advice. (The path to safety pattern was identifi ed by Rob Reeder.)

Design Patterns for a Kind Learning Environment

A kind learning environment contrasts with a wicked one. If you’re an attacker,

you want the world to be wicked. You want people to be confused and unsure

of how to defend themselves, because it makes it easier to get what you want.

The following sections provide advice for how to promote a kind environment.

Avoid “Scamicry”

Scamicry is an action by a legitimate organization that is hard for a typical per-

son to distinguish from the action of an attacker—for example, a bank calling

a customer and demanding authentication information without an easy way to

call back and reach the right person. How can Alice decide whether it’s her bank

or a fraudster? Trust caller ID? That’s trivial to spoof. Similarly, the bank can

choose how to track clicks on its marketing campaigns. It can use the domain

of the marketing company (example.com/bank/?campaign=123;emailid=345)

or it can use a tracking URL within its own domain (bank.com/marketing

/?campaign=123;emailid=345) Alice might want to look at the domain to make

a decision (and many security people advise her to do so); but if the bank rou-

tinely sends e-mail messages with links to tracking domains, then Alice can’t

look at the URL and decide if it’s really her bank. Scamicry makes the world

a more wicked environment, disempowers people, and empowers attackers.

 Chapter 15 ■ Human Factors and Usability 321

c15.indd 02:16:32:PM 01/16/2014 Page 321

WHAT IS SCAMICRY?

My team coined the term scamicry after I received a voicemail claiming to be from a

bank. The caller said they needed a callback that day to a number that wasn’t listed on

their website’s Contact Us page. I had written a large check for something, and it trig-

gered their fraud department. However, there was no clear reason for the “call in the

next four hours” requirement in the voicemail. The bank could presumably have put

their fraud team’s number on their website, held the check for a day or so (although

this may have been constrained by regulations on check processing). In discussing

the experience, we realized that it was a common pattern, and that perhaps naming it

would help to identify and then overcome it.

Sometimes it can be remarkably hard to avoid violating common advice, and

that should cause us to question the wisdom of that advice. (See the next section

for more on good security advice.)

If the steps of a ceremony involve one party violating common security advice,

or encouraging another party to do so, then that’s a sub-optimal ceremony

design. You can think of scamicry as an organization making the usable security

problem more wicked.

In their paper on scams, Frank Stajano and Paul Wilson include an insight

closely related to scamicry:

System architects must coherently align incentives and liabilities with overall
system goals. If users are expected to perform sanity checks rather than blindly
follow orders, then social protocols must allow “challenging the authority”; if, on
the contrary, users are expected to obey authority unquestioningly, those with
authority must relieve them of liability if they obey a fraudster. The fi ght against
phishing and all other forms of social engineering can never be won unless this
principle is understood.

—Stajano and Wilson, “Understanding

Scam Victims” (Communications of the

ACM, 2011)

I would go further, and say that understanding is insuffi cient; intentional

design and coordination between a variety of participants in the “phished

ecosystem” is needed.

322 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 322

Properties of Good Security Advice

There’s a tremendous amount of advice about how people should act online.

In the discussion of behaviorist models of people, you learned about people

rationally ignoring security advice. Part of the problem is that there’s too much

of it, creating a wicked environment. The reasonable question is how should

you form good advice? Consider whether your advice meets the following fi ve

properties (Shostack, 2011b; Microsoft, 2011):

 ■ Realistic: Guidance should enable typical people to accomplish their goals

without inconveniencing them.

 ■ Durable: Guidance should remain true and relevant, and not be easy for

an attacker to use against your people.

 ■ Memorable: Guidance should stick with people, and should be easy to

recall when necessary.

 ■ Proven effective: Guidance should be tested and shown to actually help

prevent social engineering attacks.

 ■ Concise and consistent: The amount of guidance you provide should

be minimal, stated simply, and be consistent within all the contexts in

which you provide it.

User Interface Tools and Techniques

Ideally, you should address threats in a way that doesn’t require a person to do

something. This has the advantage of being more reliable than even the most reliable

person, and not conditioning people to click through warnings. Unfortunately, it’s

not always possible. The methods in this section are a strong parallel to those in

Chapter 8. You’ll learn about confi guration, and how to design explicit warnings

and patterns that attempt to force a person to pay attention. This section does

not cover authentication, as threats to such systems are covered under spoofi ng

in Chapter 3, “STRIDE,” in the discussion of threats to usability in this chapter,

and in Chapter 14.

Confi guration

Confi guration tasks are generally performed by people because a prompt encour-

ages them to check or improve their security. That prompt could be a story in

 Chapter 15 ■ Human Factors and Usability 323

c15.indd 02:16:32:PM 01/16/2014 Page 323

the news or told by a friend, a policy or reminder e-mail, or an attacker trying

to reduce their security (probably as a step to a more interesting goal).

The goals of confi guration are as follows:

 ■ Enable the person to complete a security- or privacy-related goal.

 ■ Enable the person to complete the goal effi ciently.

 ■ Help people understand the effects of the task they’re undertaking.

 ■ Minimize undesirable side-effects.

 ■ Do not frustrate the person.

Some metrics you can consider or measure as you’re building confi guration

interfaces include the following:

 ■ Discoverability: What fraction of people can go from getting a prompt

to fi nding the appropriate interface to accomplish their task? Obviously,

it’s important that a test not tell the person how to do this, nor start them

on the confi guration screen.

 ■ Accuracy: What fraction of people can correctly complete the task they

are given?

 ■ Time to completion: How long does it take to either complete the task or

give up? Time to abandonment is likely to be higher, as test subjects will

try to please the experimenter or appear diligent or intelligent.

 ■ Side-effect introduction: What fraction of people do something else by

accident while accomplishing the main task?

 ■ Satisfaction: What fraction of people rate the experience as satisfying,

given a scale from “satisfying” to “frustrating”?

The preceding two lists are derived from (Reeder, 2008b).

Explicit Warnings

A useful warning consists of a message that there’s danger, an assessment of

the impact associated with the danger, and steps to avoid the danger. A good

warning may also contain some sort of attention-capturing device, such as a

picture of a person falling off a ladder. That’s a very general defi nition of a useful

warning. For more specifi c advice, consider the NEAT/SPRUCE combination

or the Gold Bar pattern.

324 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 324

NEAT and SPRUCE

NEAT and SPRUCE are mnemonics for creating effective information security

warnings. Wallet cards created by Rob Reeder read: “Ask yourself: Is your

security or privacy UX (user experience)”:

 ■ Necessary? Can you change the architecture to eliminate or defer this

user decision?

 ■ Explained? Does your UX present all the information the user needs to

make this decision? Have you followed SPRUCE (see below)

 ■ Actionable? Have you determined a set of steps the user will realistically

be able to take to make the decision correctly?

 ■ Tested? Have you checked that your UX is effective for all scenarios, both

benign and malicious? (Our cards refer to the UX being NEAT, which has

been changed here to effective to encourage testing the warning.)

SPRUCE is a checklist for what makes an effective warning:

 ■ Source: State who or what is asking the user to make a decision

 ■ Process: Give the user actionable steps to follow to make a good decision

 ■ Risk: Explain what bad result could happen if the user makes the wrong

decision

 ■ Unique knowledge user has: Tell the user what information they bring

to the decision

 ■ Choices: List available options and clearly recommend one

 ■ Evidence: Highlight information the user should factor in or exclude in

making the decision

The cards are available as a free PDF from Microsoft (SDL Team, 2012). So

why a wallet card? In a word, usability. Rob Reeder reviewed everything he

could fi nd on creating effective warnings, and summarized it in a 24-page

document. That document contained 68 elements of advice. In working

with real programmers, however, he discovered that was way too long, and

created our NEAT guidance: Warnings should be necessary, actionable, explained,

and tested. The SPRUCE extension was joint work with myself and Ellen Cram

Kowalczyk (Reeder, 2011a).

The “Gold Bar” Pattern

A gold bar pattern combines warning, confi guration, and sometimes other

safety features into a non-intrusive dialog bar appearing across the top or

bottom of a program’s main window. You’ve probably seen the pattern in Microsoft

Offi ce and in browsers, including IE and Firefox.

 Chapter 15 ■ Human Factors and Usability 325

c15.indd 02:16:32:PM 01/16/2014 Page 325

The interface appears non-modally while the program does as much as it

safely can. For example, a Word document from the Internet will render, allow-

ing you to read it. A bar appears across the top, informing you that this is a

safer, limited version of Word. (Underneath, Word has opened the document

in a sandboxed and limited version of the program that has less attack surface

and functionality. If you watch carefully when clicking one of these, you’ll

notice that Word disappears and reappears. That’s the viewer closing and the

full version launching Malhotra, 2009.)

This pattern has a number of important security advantages. First and fore-

most, it may eliminate the need for the person to make a decision at all. Second,

it delays security decision-making to a point when more information is available.

Third, it replaces dialogs that said things like “While fi les from the Internet can

be useful, this fi le type can potentially harm your computer,” or “Would you

like to get your job done?”

The gold bar pattern has limits. The bars are intended to be subtle, which

can result in them being overlooked. Their size limits the amount of text within

the bar. They can also fail to align with the mental model of the person expe-

riencing them. For example, someone might ask, “Why is e-mail from my boss

treated as untrusted, and why do I need to leave the protected mode to print?”

(Because your boss’s computer might be infected, and because printing exposes

substantial attack surface. However, those are neither obvious nor explained in

the interface.) Lastly, because the bars are subtle, they fail to impose a strong

interrupt and may therefore fail to invoke system 2, described earlier. System

1 is the faster, intuitive system, whereas system 2 processes complex problems.

They were introduced earlier in the section “Cognitive Science Models of People.”

Patterns That Grab Attention

There is a whole set of patterns that try to force people to slow down before

doing something they’ll regret. This section reviews some of the more interest-

ing ones. It might help to conceptualize these as ways to invoke system 2. The

goal of these mechanisms is to get people encountering them to avoid jumping

to the answer using system 1 and instead bring in their system 2.

Hiding the Dangerous Choice

Internet Explorer’s SmartScreen Filter doesn’t put the dangerous run button

directly in front of people. It has used a variety of strategies for this. For example,

one post-download dialog, shown in Figure 15-8, has buttons labeled Delete,

Actions, and View Downloads. When shown this warning, IE users choose to

delete or not run malware 95 percent of the time. This interface design has been

combined with other usable security wins, including showing the dialog (on

average) only twice per year, which may make the hiding pattern less intrusive

326 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 326

(Haber, 2011). It is hard to disentangle the precise elements that make this so

effective, but much of it has to do with the combination of elements, refi ned

through extensive testing.

Figure 15-8: An IE SmartScreen Filter warning dialog

Modal Dialogs

Modal dialogs are those that capture focus and cannot be closed until a person

resolves the choice in the dialog. Modal dialogs fell out of favor for a variety of

accidental reasons. For example, a fl oating modal dialog box was not always

the front-most window in an interface, or it could pop up on another monitor

or virtual workspace. Modal dialogs also interrupt task fl ow. Lightboxing is the

practice of displaying a darkened interface with only the modal dialog “lit up.”

This addresses many of the accidental issues with modal dialogs, and it is com-

monly used by websites.

Spiky Buttons

Keith Lang has proposed the use of less friendly user interface elements, such

as spiky buttons (Lang, 2009). A sample is shown in Figure 15-9. In a blog

discussion about it, the question of how quickly people would habituate to it

was raised. Others suggested more standard stop imagery would work better

(37Signals, 2010). Spiky buttons may be more of a “don’t jump there” message

than a “pay attention” message, but without experimentation and a set of people

with ongoing exposure to them, it’s hard to say. To the best of my knowledge,

it has not been used.

Figure 15-9: A spiky button

Delay to Click

When you attempt to install a Firefox add-in, Firefox imposes a delay of four

seconds. As shown in Figure 15-10, the Install button is grayed out, and displays

 Chapter 15 ■ Human Factors and Usability 327

c15.indd 02:16:32:PM 01/16/2014 Page 327

a countdown from (4). Somewhat surprisingly, this is actually not designed to get

you to stop and read the dialog, although it may have that effect. It is intended to

block an attack whereby a site shows a CAPTCHA-like interface with the word

“only” displayed. The site attempts to install the software when you type the

“n,” triggering a security dialog; when you type the “y,” it triggers the “yes” in

the dialog, which now has focus (Ruderman, 2004). A related technique, a 500ms

delay, is used for other dialogs, such as the geolocation prompt (Zalewski, 2010).

Figure 15-10: Firefox doesn’t care if you read this.

Testing for Human Factors

Like every way you address threats, it is important that you test those mitiga-

tions for threats that involve people. If an attacker is trying to convince someone

to take action, does your interface help the potential victim make a security

choice, while letting them get their normal work done? Unfortunately, people are

surprising, so testing with real people is a useful and important step.

There are a few issues that make the testing of any security-relevant user

interface challenging. The best summary of those issues is in a document by

usable security researcher Stuart Schechter (Schechter, 2013). That document is

focused on writing about usable security experiments (rather than designing

or performing them). However, it still contains very solid advice that will be

applicable. You can also fi nd excellent guidance on usability testing in books

such as Rubin’s “Handbook of Usability Testing” (Wiley, 2008), which unfortunately

doesn’t touch on the unique issues in testing security scenarios.

328 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 328

Benign and Malicious Scenarios

Normal usability testing asks a question such as “Can someone accomplish

task X with reasonable effort?” Good ceremony testing requires testing “Can

someone accomplish task X and raise the right exception behavior only when

under attack?” That requires far more subtle test design. (That is, unless you

expect that your attackers will start with “This fi le really is malicious! Please

click on it anyway!”) It also requires at least twice as many tests. Lastly, unless

you have reason to believe that most people will only encounter the user experi-

ence being tested extremely rarely, a good test needs to include some element

of getting people familiar with the new user experience before springing an

attack on them.

Ecological Validity

Participants in modern user studies tend to be aware that they’re being studied.

The release forms and glass walls tend to give it away. Also, people participating

in a user study tend to expect that the tasks asked of them are safe. They have

good reason to expect that. The trouble is that if you think what’s being asked

of you is safe, or at least a designed experience, then you may not worry about

things (such as tasks, indicators, or warnings) that would normally worry you.

Alternately, people being studied often spend time trying to fi gure out what’s

being studied, or what behaviors will please the experimenters. Researchers

refer to this as the ecological validity problem, and it’s a thorny one. The best

sources of current thinking are SOUPS (the Symposium On Usable Privacy and

Security) and the security track of the ACM SIGCHI conference. (SIGCHI is the

Special Interest Group on Computer-Human Interaction.)

General Advice

The following list is derived from a conversation with Lorrie Cranor, who

accurately points out that a simple checklist will be suffi cient to explain how to

perform effective usability testing. Any errors in this are mine, not Dr. Cranor’s:

 ■ It is hard to predict how people are going to behave without doing a user

study, so user studies are important.

 ■ Find someone, either a colleague or a consultant, who knows how to do

user studies and work with that person.

 ■ The user study expert you work with is unlikely to know much about

threat modeling or to have done a usable security study before. You will

need to help them understand what they need to know about security

and threat modeling.

 Chapter 15 ■ Human Factors and Usability 329

c15.indd 02:16:32:PM 01/16/2014 Page 329

 ■ As you work with the usability expert to design a user study, keep in

mind that you need to fi nd a way to study how people behave in situa-

tions where they are under an active attack. The tricky part is fi guring

out how to put your study participants in a situation that simulates these

threats without actually putting anyone at risk. (See the preceding section

on “Ecological Validity.”)

 ■ Security user studies frequently use deception in order to simulate a

security threat. For example, a study on web browser phishing warn-

ings was advertised as being about online shopping. Participants were

instructed to make an online purchase and check their e-mail to get the

receipt so they could be reimbursed. When they checked their e-mail, they

had a message that appeared to be from the vendor where they made a

purchase, encouraging them to log in to a website that was actually a

phishing website. When they tried to log in to that website, it triggered

a warning in their web browser and experimenters could observe how

participants responded to such warnings. Use of deception in a study

design will raise ethical issues.

 ■ Some security user studies use role-playing or hypothetical scenarios. For

example, a study on text passwords asked participants to imagine that

their e-mail account password had been compromised and they were

required to create a new password. (Ur, 2012) A study on the usability

of PGP asked participants to play the role of a campaign volunteer in a

political election and send and receive e-mails, being careful to use PGP

to ensure that campaign strategy information didn’t fall into the wrong

hands (Whitten, 1999).

Perspective on Usability and Ceremonies

As of 2011, roughly half of the malware running on Windows computers was

being installed using techniques that tricked a person into doing something

they didn’t intend (Microsoft, 2011). Phishing attacks continue to plague the

Internet, although it’s hard to measure how much impact they have. The time

when we can design systems without considering the people using them is long

past. We need to learn how to do better at modeling both people and systems,

and integrating the models, but we have ways that can be made to work. They

are less prescriptive than I would like to see, and that should inform your deci-

sions about who engages with them, and how you plan for them.

You’ll need people with more breadth than is required for many other security

tasks. People with backgrounds in sociology, anthropology, or psychology will

330 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 330

have perspectives that are different from those with a computer science or engi-

neering background. Usability specialists will also be useful in threat modeling

sessions that focus on people, and in discussions of design changes to address

usability. In addition, keep in mind that performing ceremony analysis or using

other techniques in this chapter will take longer than other threat modeling

techniques, and you’ll also need more time for ancillary tasks like training and

making sure everyone agrees on the goals and scope of an analysis. There is a

risk of getting bogged down in elements which feed into your ceremony, rather

than analyzing what’s unique to you.

Ceremonies provide a fascinating framework for bringing humans into threat

modeling. They show us ways to integrate people into existing analysis tech-

niques, and support the assertion that ignoring people is no longer acceptable.

At the same time, they do have limitations, many acknowledged in Ellison’s

paper. I’d like to address two:

 ■ Effective ceremony analysis requires more maturity and experience than

other forms of threat modeling, as it involves an understanding of both

technology and people. I am hopeful that this will not dissuade anyone

from trying it, and that we will learn a great deal about how to do it well

over the next few years.

 ■ The other aspect is the idea that “nothing is out of band to a ceremony.”

This is challenging for a prescriptive and bounded threat modeling exer-

cise. It summons and celebrates the specter of projects designed to run

forever, so when can you effectively say that a ceremony analysis has

run its course? One part of the answer is that you know where all data

needed for, or used in, the ceremony crosses a trust boundary. You may

not need to know where it ultimately came from, but only how much

trust you’re placing in the provider. Similarly, in looking for threats, it

may be suffi cient for your business purposes to run through the section

“Ceremony Analysis Heuristics,” or you might prefer to run usability

tests. Similarly, you may get to a point where the next useful mitigation

requires 25 percent of the project’s budget, and decide that a particular

risk is thus acceptable and document it.

A last quote from Reason sums up issues relating to human factors and

usability better than I can.

The managers of complex and hazardous technologies face a very tough question:
how do they control human behavior so as to minimize the likelihood of unsafe viola-
tions without stifl ing the intelligent wariness necessary to recognize inappropriate

 Chapter 15 ■ Human Factors and Usability 331

c15.indd 02:16:32:PM 01/16/2014 Page 331

procedures and avoid mis-appliances? The answer must surely lie in how they
choose to deploy the variety of systemic controls that are available for shaping the
behavior of its human elements.

James Reason, The Human Contribution

(Ashgate Publishing, 2008)

It’s a fi ne issue to consider in designing and analyzing technologies of any

complexity, and all technology today operates in the hazardous world of the

Internet.

Summary

If you don’t try to help the people who will use your system to use it securely,

they will probably fail. Modeling for systems that involve people is harder than

other threat modeling. You must add models of people to both your model

of the software and your model of the threats. Working with three models is

harder than working with two, and models of people are less crisp than models

of technology.

Models of people from behaviorists and cognitive scientists are useful for

understanding how people will behave in a variety of circumstances. The

behaviorist models include conditioned responses and kind versus wicked learn-

ing environments. Kahneman teaches us that what you see is all there is; that

system 1 and 2 interact in surprising but predictable ways; and that anchoring

and satisfi cing are common and important biases we all have. Others, like Reason,

Cranor, and Sasse, also offer important lessons. Reason has many models of

errors; Cranor provides a systematic approach to thinking about security with

a human in the loop; and Sasse reminds us that security is but one of many

things people want.

There are also heuristics you can use when working to help people, ranging

from goal orientation to confi rmation bias or a compliance budget. You also

saw that there’s a tendency for system designers to make optimistic assump-

tions about people. Models of the software can be extended to take into account

human factors issues. You can model scenarios as warnings, authentications, or

confi guration; and you can extend a variety of diagrams to include or represent

people. Lastly, you can model the techniques of electronic social engineering.

All the techniques for fi nding threats work when you include models of

people. Brainstorming about them is, like other brainstorming, a tool that works

better when you have security and usability experts in the room. You can also

332 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c15.indd 02:16:32:PM 01/16/2014 Page 332

use ceremony analysis and a variety of ceremony-specifi c heuristics for fi nding

threats, including missing information, distracting information, underspecifi ed

elements, fuzzy comparison, and a set of principles taken from cognitive scientists.

There are a plethora of building blocks for addressing threats. Many of these

are design patterns, such as minimizing what you ask of people, conditioned

safe ceremonies, avoiding urgency, and ensuring an easy path to success. There

are also patterns for kind learning environments, such as avoiding scamicry

and creating good security advice. You can also use more specifi c techniques,

such as Gold Bars, NEAT and/or SPRUCE, and a set of patterns for grabbing

people’s attention.

Lastly, like all solutions to threats, you need to test for human factors. Such

testing is challenging and worthwhile. You need to test in both benign and

malicious scenarios, ensure that your tests don’t cause people to behave differ-

ently (that is, ensure they have ecological validity), and work with people who

have experience with testing for human factors.

333

c16.indd 07:53:2:AM 01/15/2014 Page 333

Cryptography is the art of communicating securely in the presence of adversaries.

Cryptography, or crypto, as nearly everyone calls it (to save two syllables),

fi gures into a good number of defenses. You can use it as part of how you address

spoofi ng, tampering, repudiation, and information disclosure. It’s important for

people working in and around security to understand cryptographic tools; and

perhaps more important, to understand the common mistakes made while using

them, because failing to understand these mistakes can lead to overconfi dence,

and mistakes made by overconfi dent people are a major source of real-world

problems.

Cryptographers have been enumerating threats for a very long time. They have

done more than most other branches of security to quantify the security of their

systems, and have over a long time evolved their thinking about threat models

(in the sense of what attacks they worry about). And frankly, crypto can be a lot

of fun. If you want to dabble in cryptography, the right place to get started is by

breaking cryptosystems. (In a lab, not breaking into other people’s systems in

possible violation of ethics or law. Thanks! I knew you’d understand.) There are

many targets, and the worst you’ll do is not break anything. In contrast, if you

try to get started by building cryptosystems without developing knowledge of

how to break them, you’ll inevitably have false confi dence in what you’ve built.

It’s easy to build a cryptosystem whose fl aws you can’t see.

This chapter is mostly a reference chapter. It does not replace a good text on

cryptography, but encourages you to use the largest building blocks available,

C H A P T E R

16

Threats to Cryptosystems

334 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 334

rather than rolling your own. If you need to roll your own, you need to fi rst read

all of Cryptography Engineering by Niels Ferguson, Bruce Schneier, and Yoshi

Kohno (Wiley, 2012). I don’t want to scare anyone away from crypto, nor do

I want you to be overconfi dent.

In this chapter, you’ll fi rst learn about cryptographic primitives. Primitives

are the smallest units of cryptography that anyone will ever use. (They’re often

called building blocks, but this book uses “building block” to refer to the build-

ing blocks in the 4-stage model.) After the cryptographic primitives, you’ll learn

about the classic crypto attackers and attacks against cryptosystems. Those are

followed by advice on building with crypto, and a set of things worth remember-

ing. The chapter closes with a discussion of an over-reliance on secrecy to protect

a system in the context of Kerckhoffs, the person who crystalized that discussion.

Cryptographic Primitives

There are only a few basic cryptographic primitives: symmetric and asymmetric

encryption, hash functions, and pseudo-random number generators (PRNGs).

Understanding them will help you avoid mistakes in their use. This section

also covers a set of techniques that are useful for preserving privacy—that is,

preventing certain types of information disclosure attacks. Lastly, you’ll look

at a few important modern constructions that you should be familiar with.

Basic Primitives

The primitives just mentioned are at the very heart of cryptography. If you

don’t understand them, they’re easy to confuse, and confusing them will leave

you or your customers insecure. This section uses some standard conventions

and terminology: Alice and Bob are typically the people who want to commu-

nicate. They do this by sending messages, which are also called plaintext. The

cryptosystems they’ve agreed to use often have ciphers and sometimes keys.
A cipher has various functions, such as encrypt and decrypt. The following

sections begin with the category of system you’re most likely familiar with,

symmetric cryptosystems. The others are shown in table 16–1.

Table 16–1: Cryptographic Primitives

PRIMITIVE GOAL INPUT OUTPUT

Symmetric

cryptography

Confi dentiality Plaintext (any

length)

Ciphertext (same length)

Asymmetric Authentication Plaintext (any

length)

Fixed length signature

 Chapter 16 ■ Threats to Cryptosystems 335

c16.indd 07:53:2:AM 01/15/2014 Page 335

PRIMITIVE GOAL INPUT OUTPUT

Asymmetric Key agreement Counterparty

information

A session key

Hash Fingerprint Plaintext (any

length)

Fixed length message depen-

dent fi ngerprint

PRNG Randomness Various Hard to predict bits

Symmetric Cryptography

Symmetric encryption systems—also known as private key or secret key systems,

or even just ciphers—use a key known to both (or all) sides of a conversation,

thus the name symmetric. The Caesar cipher is an example of a (very simple)

symmetric system. Letters are shifted three letters to the right, with A being

represented by D, B by E, and so on. Someone must either know the key, guess

the key or break the system to read the message. Ideally, you use a system that

is harder to break.

Assume that Alice and Bob have shared a key. The original, unencrypted

message Alice wants to send to Bob is the plaintext. She and Bob have previ-

ously agreed on a symmetric cipher to use, along with a key. The plaintext and

key are inputs to the cipher’s encryption function, which outputs a ciphertext.

She sends this ciphertext to Bob, not worrying about who might see it, because

if the cryptosystem is strong, that ciphertext is unintelligible to everyone without

the key. Those with the key feed the key and the ciphertext to the decryption

function, which outputs the plaintext. The symmetry of the system results from

the same key being used on both ends. Symmetric systems protect against infor-

mation disclosure attacks when the key is secure. Unfortunately, establishing

the key in a secure way is tremendously tricky. Years ago, governments would

send keys in briefcases handcuffed to couriers, which is expensive and slow.

There are two types of symmetric algorithms, block ciphers and stream ciphers.
A block cipher takes a block of input (often 128 bits) and encrypts it with a key,

producing an output block of the same size as the input. Many constructions that

use a block cipher also use an initialization vector (IV). This is a random number

that is input to the cipher along with the key and the fi rst block to ensure that

identical plaintexts are not encrypted the same way.

A stream cipher takes a key and produces a key stream. That key stream

can be XORed with a plaintext bit stream to produce ciphertext. The same key

stream is produced at the receiver, which can then use XOR to get the plaintext.

If you ever reuse a key stream, your ciphertexts can be XORed, and the output

of that is the XOR of the plaintexts. That’s highly undesirable. The most com-

mon stream cipher, RC4, has a host of issues. Be sure to review the advice in

336 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 336

Cryptography Engineering before you use RC4. (Let me save you time—RC4 is

not mentioned in Cryptography Engineering, because it’s so hard to use securely,

but as you review the advice there, you’ll fi nd something that will work safely.

Just don’t use RC4.)

The simple rule for symmetric encryption is to use AES in CBC or CTR mode.

AES is the U.S. “Advanced Encryption Standard,” and the modes refer to the

precise ways bits are managed. (CBC is “cipher block chaining,” while CTR is

“counter” mode.) The pros and cons of each are subtle, and debate rages on.

However, using one or the other will almost always be the right choice. To be

explicit, this means you should avoid ECB mode. ECB stands for “electronic

code book,” although you can think of it as “extreme cryptographic blunder”

because it’s an extreme cryptographic blunder to use the mode.

Asymmetric Cryptography

In an asymmetric encryption system, each party has a set of mathematically

related keys, and through the use of really cool math, manages a variety of

useful results, including encryption, key agreement, and digital signatures.

Asymmetric encryption systems are also called public key systems, because

one of the keys is made public.

N O T E Asymmetric cryptography is also known as public key encryption.

This section presents a simplifi ed version of the math that doesn’t use much

more than high school algebra and then discusses how asymmetric systems

can be used.

Alice and Bob each pick a number. Alice picks a, Bob picks b. They then agree

on a number g. Maybe their number is the closing of the Dow Jones index on

the previous day. It can be public; it just needs to be hard for an adversary to

infl uence.

Alice calculates A = ga and Bob calculates B = gb. Alice then sends A, and Bob

sends B. Then Alice calculates a secret key, s = Ba, and Bob calculates s = Ab.

Now, because multiplication is commutative, Ab = Ba (or, really, gab = gba). If you

assume that it’s hard to calculate a from g and ga, then it’s hard for anyone who

doesn’t know a or b to fi gure out what s is. Alice and Bob have now agreed on a

secret without ever sending that secret back and forth. It’s not that hard to fi gure

the nth root of ga, and from there you can approximate, but this is a simplifi ed

description. Therefore, to get more security, we’ll add one more element, which

is that Alice and Bob do all of this math modulo p. Math modulo p is like clock

arithmetic. 12 hours after 7, it’s 7. So 7 modulo 12 is 7, and 19 modulo 12 is also

7. We can replace 12 with any other number, which is called p. When a, b, g, and

p are large, and satisfy certain mathematical properties, then fi guring out a or

b from ga and gb is hard. Because it’s hard, Alice and Bob could use s as a key

 Chapter 16 ■ Threats to Cryptosystems 337

c16.indd 07:53:2:AM 01/15/2014 Page 337

in a symmetric encryption system. They want to do this because symmetric

encryption is fast, and asymmetric encryption is slow.

This is way cool, and it’s worth taking a few moments to work through some

of the math yourself to see it work. However, if you use the preceding system as

presented, you will be successfully attacked. The example is designed to help

you get a feel for what’s possible and why. It is not intended to replace a full

college-level course in mathematical cryptography, which is needed before you

can make interesting mistakes in this space.

Once you’ve worked through the math, you can use asymmetric systems for

three things beyond online key agreement: encryption, offl ine key exchange,

and signatures. The cryptosystem’s encrypt function allows anyone to encrypt

a message using a public key so that only the person with the private key can

read it. If the message is the key to another, then that key can be used to encrypt

or decrypt messages. (The usual reason for this is that symmetric systems are

much, much faster than asymmetric systems.) Most important, asymmetric

signature systems can be used to sign a message, and anyone with the public

key can verify the signature. A quirk of the math in RSA, one of the fi rst public

key cryptosystems, leads many people to overgeneralize with the claim that

signatures are the inverse of encryption.

The pitfalls related to effective key exchange, signatures, and encryption are

substantial and often subtle. Using systems such as Diffi e-Hellman, RSA, or

DSA as originally presented is foolish.

Hashes

The third important building block are hashes, also called one-way functions, or

message digests. A hash takes an input of some arbitrary length and produces

a fi xed-length digest or hash of the input. Ideally, any change to the input com-

pletely transforms the output. This means that other building blocks can assume

they’ll always see a fi xed-length input. For example, a signature algorithm can

assume that it will always see input of the same length, and defer the problem

of arbitrary length input to the hash function.

Hashes are also used to store passwords, usually with a salt. A salt is an

additional input to a hash function, designed to ensure that identical inputs

create different outputs. Therefore, if Alice and Bob are both using the password

Secret1, then the simple approach to storing a hash of each of their passwords

would reveal that Alice and Bob have the same password (but not what it is).

With salting, the threat from sorting is mitigated. There’s other threats, and more

information on the storage of passwords in Chapter 14, “Accounts and Identity.”

Hashes can also be used to create fi ngerprints. A fi ngerprint in this context is

a hash of something longer, designed to be used by people to authenticate that

each person has the same copy of the longer thing (such as a fi le or message).

338 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 338

This approach is useful because hashes are faster to calculate than digital sig-

natures. For example, if you want to sign a copy of a web browser, you could

calculate the signature on all the millions of bytes of the browser, or you could

calculate the signature on the 16 to 64 bytes (128 to 512 bits) of a hash. It’s also

possible for people to validate a fi ngerprint. Some people will print public key

fi ngerprints on a business card to allow you to validate the authenticity of that

public key. Printing the entire key would be less usable.

Lastly, hashes can be used to calculate message authentication codes (MACs).

A message authentication code uses a key known to each side of a protocol, and

the key and message are hashed together to produce a MAC. The key is kept

private on each endpoint, while the message and MAC are sent.

The most famous of these hashes, MD5, has now been effectively and pub-

licly broken. Do not expect MD5 to give you any security, although sometimes

you’ll need to use it because of a counterparty. Instead, use the latest in the

SHA series from NIST.

Randomness

The fi nal important cryptographic primitive is random numbers, sometimes

provided by dice. But of course dice are too slow to provide enough random

numbers for cryptographic use, so they are usually provided by pseudo-random

number generators (PRNGs). For a simple example, if Alice chooses her public

key based on a bad random number source (say, microseconds since boot), then

an attacker can decide how long he thinks most systems will stay up, and start

searching at the median value. If Alice uses a good random number, then the

search is much harder. The essence here is that you have some entropy (infor-

mation unknown to the attacker), and you want to make the best possible use

of that entropy.

If you have access to a good hardware source of randomness, which produces

lots of entropy, use it. Otherwise, you’ll need to use a PRNG to give you more

pseudo-random bits. Unfortunately, PRNGs are incredibly diffi cult to build

well, and many things that appear random in computer systems turn out to be

somewhat predictable. That’s why John von Neumann has said “Anyone who

considers arithmetical methods of producing random digits is, of course, in a

state of sin” (von Neumann, 1951). Fortunately, most operating systems now

include decent-quality PRNGs. Make sure you’re using one everywhere you

need randomness.

Note that randomness is easier for human-operated endpoints, which can take

randomness from keyboard interrupts, mouse movements, and other inputs

that are hard for an attacker to observe. If you have machines in a data center,

you may need to augment randomness. There are hardware devices to do this,

sometimes included in a CPU.

N O T E As this book went to press, a great deal of controversy erupted over possible

backdoors in random number generators. The advice remains that you should rely

 Chapter 16 ■ Threats to Cryptosystems 339

c16.indd 07:53:2:AM 01/15/2014 Page 339

on the operating system. The risk associated with altering PRNGs is larger than the

risk that your library's RNG is malicious. You want to avoid the sorts of mistakes the

Debian maintainers introduced into OpenSSL (Debian, 2008). If you are implementing

an operating system, then use the hardware RNG with the mixing approach now used

by FreeBSD (Goodin, 2013).

Privacy Primitives

There is a small number of primitives that are useful for addressing informa-

tion disclosure:

 ■ Steganography: This is the art of hiding messages—for example, encod-

ing your message in the least-signifi cant bits of an image fi le, such as a

photograph. Effective steganography is useful for hiding messages from

attackers to conceal the existence of communication. It is also used to

encode anti-piracy information in audio and video (“watermarking”). If

you need to implement steganography, the best work tends to appear at

the Information Hiding Conference.

 ■ Mixes and Mix networks: These are tools for taking a set of messages,

mixing them together, and then sending them out in a way that unlinks

the messages from the sender. They generally require latency to work.

 ■ Onion routing: This is a technique for sending messages over a network

that unlinks messages from senders, like mix networks. Each message is

wrapped in multiple layers of encryption which are wrapped or unwrapped

one at a time (like an onion). Tor is the best-known onion router imple-

mentation today.

 ■ Blinding: These techniques allow a system to sign a message without seeing

it. Blinding is covered in Chapter 8, “Defensive Tactics and Technologies,”

in the section on mitigating privacy threats.

Modern Cryptographic Primitives

These primitives are more specifi c than the basic primitives introduced above.

When your problem can be addressed with one of these, that’s far better than

cobbling something together.

Perfect Forward Secrecy

Perfect forward secrecy (PFS) is a property that ensures that if one of the (long-

term) keys involved in a protocol is later compromised, then the messages which

were sent under a forward secrecy scheme cannot be decrypted.

340 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 340

Authenticated Key Exchange

Authenticated key exchange (AKE) is so hard to do right that cryptographers

are now developing primitives to address it. AKE is focused on channels

(confi dential, authenticated, integrity-protected) created over an adversary-

controlled connection. There is a related problem, authenticated and confi -

dential channel establishment (ACCE), which is similarly complex. If you

fi nd yourself in these spaces, defer to experts and their work. See “On the

Security of TLS Renegotiation”(Giesen, 2013) for the state of the art as this

book is being written.

Random Oracles

An oracle is a construct that answers questions put to it. In cryptography, the

answers an oracle gives are consistent. The random oracle is one that responds

to any query with a response chosen randomly from all possible responses. For

any given query, it will always return the same response. A random oracle acts

much the way we want hash functions to act, but it is mathematically simple.

Oracles are almost always available to the attacker.

If you see a proof of something with a random oracle, be aware that today’s

hash functions are not random oracles.

Proven Cryptosystems

When reading about a cryptosystem, you will occasionally see that it is accom-

panied by a mathematical proof, and you may be tempted to consider any

proven cryptosystem superior to those without proofs. It is helpful to be aware of

three things. First, the proofs may or may not cover the same things that you’re

worried about (unless you have a personal burning hatred of second preim-

ages). Second, the proofs are sometimes exceptionally complex mathematical

constructs, which can be hard even for mathematicians to follow. If the system

has been altered to make a proof possible, then there’s a trade-off. It may be the

right one, and you should evaluate that against your needs. Lastly, most proofs

rest on a set of implicit assumptions that cryptographers expect their audience

will understand (Koblitz, 2007).

Certifi cates and PKI

If Alice publishes a public key, such as A, then anyone who knows that the

private part of key A is maintained by Alice can encrypt a message such that

only Alice can read it. You can think of this like a set of public mailboxes with

names on them. One is labeled Alice, another is labeled Bob. Anyone can walk

up to the appropriate mailbox and drop in a letter for Alice or Bob. Only Alice

can decrypt messages dropped in the Alice box, and only Bob can decrypt

 Chapter 16 ■ Threats to Cryptosystems 341

c16.indd 07:53:2:AM 01/15/2014 Page 341

messages in the Bob box, because each has the appropriate private key. Anyone

can create a mailbox with their name on it, and anyone can (virtually) walk

up and drop a message in that mailbox. Of course, nothing prevents me from

creating a mailbox with your name on it, which means I have a key needed to

read messages intended for you. If I can trick some senders into sending me

messages for you, then I can read those messages. If I’m clever, once I read them,

I can forward them on so you’ll never know they were read by someone else.

In theory, if all these public keys are collected into a directory, then anyone

can use the directory to look up the key for a person. Among the many troubles

with this in practice are the many people named Alice, or fi guring out if Bob

is Bob, Bobby, Robert, or something else in the directory. Some party may

attempt to vouch for who’s who, creating certifi cates of various forms, by sign-

ing a public key and some associated identifying information. These parties

are often called certifi cate authorities or certifi cate issuers. The snarky may ask

who made them authorities.

Each certifi cate has either two or three parts, depending on how you count.

Using the most common way of counting, a certifi cate has two parts: the public

and the private. The public part includes a public key and a signature on it. The

other counting method identifi es a public part, a private part, and a certifi cate

fi le. When sending certifi cates, it is important to only send the public part or the

certifi cate fi le. The private part should never be shared. You want to share

the public part and the certifi cate, and it’s fi ne to do so, or to reveal the fi nger-

print of either. Ideally, the private key is generated on the machine on which it

will be used, and never leaves that machine.

Classic Threat Actors

In discussing protocols, cryptographers use names for the participants. This

helps people keep track of the human meaning of the variables. The fi rst letter

of the name is used as the mathematical variable:

 ■ Alice and Bob are the classic actors in cryptographic protocols. They were

introduced in the fi rst paper on RSA, and have been with us ever since,

communicating in the presence of adversaries. Sometimes there are addi-

tional participants, with names added in alphabetic order, such as Carol,

Chuck, or Dave. The additional participants will usually not include “E”

names, because those are reserved for Eve, the oldest attacker. Generally,

references to “Alice and Bob” mean “the parties trying to communicate

securely.”

 ■ Eve is an eavesdropper. She is able to tap into the network between Alice

and Bob, but is either unwilling or unable to modify their communications.

Another way to state this is that Eve only takes advantage of information

disclosure threats to violate confi dentiality. If you’re a movie fan, you’ll

342 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 342

know that Eve may have three faces, but she almost always goes by “Eve.”

Other actor names show more variation.

 ■ Mallory can also tap into the network but is willing and able to create,

destroy, or modify communication content. Usually, Mallory is able to

eavesdrop as well, and if he can’t, the reason why should be clearly and

convincingly articulated. Mallory is occasionally called some other M name.

Mallory takes advantage of network spoofi ng, tampering, information

disclosure, and denial-of-service threats. Sometimes a message created

by Mallory can implement a repudiation threat, but that’s a second-order

effect of successful spoofi ng or tampering.

 ■ Alice or Bob as traitor can happen because sometimes Alice or Bob are not

only communicating in the presence of adversaries. Sometimes after a

betrayal, blackmail, or other threat, Bob has actively turned against Alice

(or vice versa). These attacks commonly subvert a shared secret or, by

carefully constructing messages, convince Alice to solve equations that

either leak information about her private keys or trick her or her soft-

ware into having those keys perform operations not intended by Alice.

These threats map less well to STRIDE, but they are usually information

disclosure or elevation of privilege (insofar as Bob is getting answers not

intended by Alice). Even when Alice and Bob are trustworthy, insuffi cient

authentication can lead to the same impacts.

 ■ Trent is a “trusted third party” who, by mutual agreement, can perform

operations that everyone will believe. (See the “Perspective” sidebar

immediately after this list for more on trust.)

 ■ Victor is also a trusted third party, but one who only performs verifi ca-

tion operations.

N O T E The word “trust” is used in a somewhat unusual way by cryptographers:

Trusted parties can betray the people who trust them. The term is used to describe what

the trusted party can do, rather than what you expect them to do. Therefore, “a trusted,

but not trustworthy person was caught selling secrets.” This use of “trust” leads to a

great deal of confusion. Terms like “relied-upon” are more clear, but sometimes awk-

ward to use. When you see systems that assert trust in Trent or Victor, ask yourself, do

you want to rely on that party to behave in a trustworthy way, and what’s the downside

if they betray you? Are there alternatives that allow you to address that threat?

Attacks Against Cryptosystems

Successful cryptographic attacks usually either lead to information disclosure

or allow tampering that the cryptography is intended to prevent. The following

list of cryptographic attacks, focuses both on attacks that help you understand

 Chapter 16 ■ Threats to Cryptosystems 343

c16.indd 07:53:2:AM 01/15/2014 Page 343

what can go wrong with your systems and on attacks that are reasonably under-

standable to those who are not specializing in cryptography.

N O T E Linear and diff erential cryptanalysis are intentionally excluded from this

list. They are mathematical attacks on the design of cryptosystems, and if you’re engi-

neering software, then the recommended algorithms have been vetted against those

attacks, so you can’t accidentally make yourself vulnerable. The excluded attacks are

complex to describe and easy to describe incorrectly. More importantly, if you are apply-

ing the overall advice to use well-understood primitives, they are unlikely to be relevant.

 ■ Known ciphertext: Known ciphertext attacks are those for which nothing

but the ciphertext is available to Eve (or the ciphertext and addressing

information). For example, a radio intercept of a ciphertext might include

some indicator of the recipient. Ideally, the best attack against such mes-

sages is a brute-force one, whereby Eve (who we assume has knowledge

of the cryptosystem) must try each possible key to determine whether the

message can be decrypted.

 ■ Chosen ciphertext: A chosen ciphertext is an attack in which Mallory

can insert a chosen ciphertext. For example, if your payroll database has

(block-)encrypted salary values, you might not know the CEO’s salary,

but it might be fun to insert the ciphertext of his salary in the database

cell that applies to you. There’s also a set of attacks in which inserting

chosen ciphertext gets you less information than the full plaintext, but

such information disclosure can often be leveraged into a larger attack.

 ■ Chosen plaintext: Choosing your opponent’s plaintext is a great attack and

often seems fanciful. However, during World War II, allied cryptanalysts

were trying to fi gure out Japanese code names for islands. They instructed

the base at Midway Island to radio (in the clear) that they were running

out of water. Shortly after that, they intercepted a message that stated “AF

is short on water,” thus indicating that AF was Midway. (Presumably, the

intercept was in Japanese. [Kahn, 1996].) It is usually surprisingly easy

to get your plaintext into modern protocols, because everything is being

done by programs that have no ability to notice that their input is bizarre.

 ■ Adaptive chosen: These are variants of the chosen ciphertext or plaintext

attacks in which the adversary can inject something, observe your response,

and then inject something else.

 ■ Man-in-the-middle (MITM): These are executed by Mallory, sitting on

the network and altering traffi c as it goes by, preventing Bob from see-

ing Alice’s real messages. It is almost always a mistake to assume that

Mallory can’t do this because of any non-cryptographic reason. Even if

you are building for a very specifi c and controlled environment, over the

lifetime of your implementation the environment is likely to change in

344 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 344

unpredictable ways. MITM attacks include (but are not limited to) relay,

replay, refl ection, and downgrade attacks.

 ■ Relay, or chess master, attacks: How do you beat a chess master if you’re

a rank amateur? It’s easy! Play chess by mail against two masters at once.

If you’re trying to convince one chess master to vouch for your skills, this

is an interesting attack. Of course, not everyone cares how good you are

at chess, but the attack generalizes.

The modern approach is to be a MITM between Alice and Bob. If Alice is

a web browser, and Bob is a web server, then Mallory can present a web

server to Alice, Alice will dutifully enter her password, and Mallory will

submit it via HTTPS to Bob.

 ■ Replay: A replay attack is one in which Mallory captures messages and

resends them. For example, let’s say Mallory knows that spymaster Alice

uses time to address messages to her fi eld agents. (That is, Bob listens at

7:30, Charlie listens at 8:00.) After Alice sends the encrypted, authenticated

message “You’ve been discovered! Flee!” at 7:30, Mallory gleefully re-

broadcasts it every half-hour for weeks, with police waiting by the ticket

counters at the train station.

 ■ Refl ection: In these attacks, Mallory plays back Alice’s content to Alice.

They’re a little more subtle than replay, refl ection, or other MITM attacks.

For example, let’s say there’s an authentication protocol that relies on a

secret key, k, and the authentication consists of encrypting a random nonce

with k. Then Alice would send a hello, Bob sends n, and Alice sends n

back encrypted with key k. When Bob receives n encrypted with k, he

moves to an authenticated state. If Mallory wants to impersonate Alice,

then he watches Bob send n, and then asks Bob to authenticate himself,

with the same nonce, n. Bob conveniently sends Mallory the encrypted

nonce, which Mallory then sends, pretending to be Alice.

 ■ Downgrade attacks: These are attacks against protocols, executed by

a MITM. Downgrade attacks can occur when an insecure version of a

protocol is updated but the client or server is unsure what version the

other side speaks. Mallory stands in the middle, impersonating each to

the other, and forces them to use the less secure version. There are three

classes of defense against downgrades: The fi rst hashes all previous mes-

sages into the later messages; the second relies on one side or the other

(or both) having a memory of what version its counterparties use, and

that memory is used to detect and either alert or refuse the change; while

the third and most secure defense involves not speaking the old version.

 ■ Birthday attacks: These are named after the surprising fact that if you

have just 23 people in a room, there’s a 50 percent chance that two of them

 Chapter 16 ■ Threats to Cryptosystems 345

c16.indd 07:53:2:AM 01/15/2014 Page 345

will have the same birthday, and a 99 percent chance with 57 people. You

can fi nd many good explanations of this online, so let’s discuss the attack.

An attacker generates a set of documents, looking for any two that will

hash to the same value. Hashes, like birthdays, have a fi xed set of possible

values. When an attacker has two documents that have the same hash,

she can substitute one for the other. For example, one document might

say “attack at dawn,” the other might say “retreat at 7:15.” If they hash

to the same thing, software is unlikely to catch the substitution.

 ■ Traffi c analysis: These attacks involve looking at a set of messages and

learning things from the patterns without ever actually understanding the

message. For example, if Bob and Charlie routinely retransmit Alice’s mes-

sages, perhaps Alice is more senior to them in the organization. Similarly,

if Alice always responds quicker to Charlie’s messages than to Bob’s, then

perhaps Alice reports to Charlie. Thus, information is disclosed to Eve

even if she can’t obtain any message content. Message size can also play

an important role in traffi c analysis. For example, if your “buy” button

is the only 3,968 byte image on your site, an attacker watching HTTPS

traffi c can identify the request for that image.

 ■ Length extension attacks: If Mallet knows the hash of “foo,” it is trivial

for him to calculate the hash of “foobar.” That’s true even if “foo” is a

complex data structure containing secrets known only to Alice and Bob.

This attack affected a lot of people using hashes for authentication in URLs,

to which attackers could add extra parameters (Duong, 2009).

 ■ Timing attacks: Subtle differences in the time it takes to perform crypto-

graphic operations can reveal information such as the length of a message,

where in your code an operation fails, or the hamming weight of a private

key. (Hamming weight is the sum of the 1 bits in a string.) These differ-

ences can be detected over network connections. The simplest mitigation

is to always specify a fi xed length of time before returning.

 ■ Side channel attacks: These are focused on extracting information from

the physical state of the computer. For example, the power draw of a

computer changes as it executes instructions and the CPU makes a small

amount of sound. In various quantum cryptographic systems, mirrors are

used, and the positions and movements of the mirrors reveal information.

“Acoustic Cryptanalysis: On Nosy People and Noisy Machines” (Shamir,

2013) contains a clear introduction to acoustic cryptanalysis.

 ■ Rubber hose cryptanalysis: Sometimes the easiest way to beat a cryp-

tosystem is to beat the person using it until they give you the key. The

degree of violence varies by locale and attacker. Some may literally use a

rubber hose, others may just lock Alice up until she gives in.

346 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 346

Building with Crypto

This section discusses a few points of cryptographic engineering, including

making choices about cryptosystems to use, planning for upgrades, authenticat-

ing at the outermost layer, and some techniques for managing keys.

Making Choices

Because cryptography is hard, it’s easy to decide that the right design includes

fl exibility and negotiation. If you’re designing a protocol, and you’re not sure if

you should use CBC or CTR mode, why not negotiate it at the start? The reason

is because such negotiation explodes your attack surface, your analysis work,

your future compatibility work, and your test plan. It provides all sorts of places

for a MITM or other attacker to wedge themselves in. Therefore, make a deci-

sion about what you’re building, and keep it simple. (This point derives from

Thomas Ptacek’s blog article “Applied Cryptography Engineering” [Ptacek, 2013]).

If you have multiple authentication options, then the attacker gets to choose the

weakest one to attack. Once they can attack authentication, they can perform

all sorts of other attacks.

Preparing for Upgrades

To the extent that you’re building your own protocols, you should assume that

there will be failures. A useful defensive pattern is to incorporate a hash of all

previous messages you’ve sent into the next message. However, a MITM who is

terminating the connections and relaying the data can still bypass this. If you

do not have a plan and test suite for upgrades, you almost certainly will end

up being unable to securely upgrade.

Key Management

Key management is about ensuring that each party has the right cryptographic

keys, and that there’s some mapping between each cryptographic key and an

account or roles within a system.

The cryptographic methods for key management can be split into symmetric

systems—that is, those that rely on a shared key—and asymmetric systems.

Shared key systems usually mean Kerberos. If you need to use a shared key

system, Kerberos has much to recommend it. Such systems suffer from spoof-

ing problems, whereby each entity which knows a key can use it in ways that

implicate the other parties associated with that key.

Asymmetric systems reduce the problem of distributing keys in a confi den-

tial and authentic way by removing the confi dentiality requirement; therefore,

 Chapter 16 ■ Threats to Cryptosystems 347

c16.indd 07:53:2:AM 01/15/2014 Page 347

asymmetric systems are generally preferable. You still need to authenticate keys,

and there are a number of ways to do so:

 ■ Perhaps the simplest is variously called TOFU (trust on fi rst use) or persistence.

The idea, introduced to a broad audience by SSH, was to get a key on fi rst

connect and to then persist that key, warning the user if it changed. There

are two malicious scenarios in which it would change, and one benign

one. The malicious scenarios are the start or end of a man-in-the-middle

attack (either way, the key changes). In the benign scenario, the systems

administrator changes the key. Key rotation is generally desirable, as it

limits exposure to undetected compromise, however, it can be operation-

ally diffi cult to do in a secure and smooth way.

 ■ A system called Convergence builds on the idea of memory by sharing the

key that various participants see. Discord between perspectives is gener-

ally indicative of an attack (Marlinspike, 2011). A wrinkle is the common

security goal of “one key, one service, one machine.” For example, a

100-machine “web farm” at a bank might have 100 different keys, one per

machine, and the Convergence system will issue a lot of alarms.

 ■ PGP introduced a system called web of trust. The idea is that each par-

ticipant maintains their own set of keys, and any participant can sign a

key. Such a signature indicates that they vouch for the key mapping to

an identifi er (in PGP’s case, e-mail addresses and names). Web of trust

doesn’t scale particularly well, in part because of usability, and in part

because the meaning of a signature varies from person to person.

 ■ Another option is having a limited set of parties vouch for the keys, by

issuing certifi cates. There’s an entire industry of organizations that will

sign cryptographic keys for a fee under the banner of “public key infra-

structures” or PKI. There are also mechanisms such as DNSSEC. DNSSEC

is built on a root key, operated by Verisign on behalf of ICANN, which

is responsible for delegating (signing) various zones, such as .com. There

are a variety of systems, most prevalently DANE, for inserting other

keys into the DNSSEC root of trust. Criticisms of DNSSEC include that

Verisign also operates a wiretapping infrastructure business, the Verisign

NetDiscovery Lawful Interception Service, (Verisign, 2007) and that the

company is based primarily in the United States, where it may be subject

to a variety of interference.

 ■ PKI can be seen as a limited web of trust, with only a few entities able

to vouch for a key. Certifi cate Pinning takes that limitation a step further,

with software deciding that only a small set of certifi cate issuers will be

allowed to issue certifi cates that will be relied upon. For example, Google’s

Chrome web browser limits who can issue a certifi cate for Gmail.

348 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 348

Authenticating before Decrypting

Moxie Marlinspike, who created the Perspectives system, asserts that all cryp-

tographic systems should ensure that they authenticate a message before doing

anything else (Marlinspike, 2011). He outlines a number of attacks that were

made possible by violating what he calls his “Cryptographic Doom Principle.”

Of course, you need to remember to check the message authentication code

in constant time. (The authenticate before decrypting approach is also called

“encrypt-then-MAC.”)

Things to Remember About Crypto

This advice is more general than the advice for builders, but it’s a set of things

which you should remember as you’re using crypto.

Use a Cryptosystem Designed by Professionals

The design and analysis of new cryptosystems is a specialized fi eld of math-

ematics, and the tools that cryptanalysts have developed over the last 40 years

go through amateur systems like a chainsaw goes through puppies. Really. It’s

that ugly. If you don’t know what an adaptive chosen plaintext attack is or why

you’d need to worry about it, let me simplify this: Use the highest level protocol

or system designed by professionals which meets your security requirements.

There is only one exception to this advice: If you work for a national cryp-

tographic agency, you may have in-house algorithms. Please send me a copy.

I’ll review them and let you know if they’re acceptable. Other than that, just

don’t do it.

Use Cryptographic Code Built and Tested by Professionals

This might look like a restatement of the previous point. It’s not. Rather, you

should use the crypto libraries built into your operating system, or otherwise

use an implementation that’s solid and well tested. A lot of subtle mistakes can

creep in if you implement your own. In short, it is faster, cheaper, and more

reliable to use crypto than to re-implement it.

N O T E Several of the issues discussed in this chapter are the subject of fi erce debate

in the cryptographic engineering or research communities. Which block cipher

mode to use or how to gather and manage randomness are not simple questions. If

you’re interested in those debates, you can fi nd them. Or you can leave them to those

professionals.

 Chapter 16 ■ Threats to Cryptosystems 349

c16.indd 07:53:2:AM 01/15/2014 Page 349

Cryptography Is Not Magic Security Dust

Cryptography offers a powerful toolset for solving problems. However, you

have to apply the tools appropriately to solve a well-defi ned problem at hand.

For example, if you’re coding an SSL connection (using a standard SSL library,

of course), have you thought through the failure modes and what you want to

have happen in each, and implemented that error-handling code?

Assume It Will All Become Public

This is a restatement of Kerckhoffs’s Principle, “The system must not require

that it is a secret, and it must be able to fall into enemy hands.” The upshot

of this is that your system will almost always include two parts: a system,

which is widely known and deployed, and a key, which is regularly and easily

changed—see, for example, the password management systems in Chapter 14

Those password management systems are the best we know how to do, in large

part because security experts have discussed them at length. The only secrets

are the passwords themselves; and those are (relatively) easily changed. See the

“Secret Systems: Kerckhoffs and His Principles” section later in this chapter for

more details on Kerckhoffs’s Principle.

There are many ways in which programmers violate this principle, but one

is so common it’s worth calling out: embedding a symmetric key in your code.

That key is available to everyone with a debugger. Don’t do it.

You Still Need to Manage Keys

Key management is hard. All the preceding discussion aside, there are times

when you want to manage keys either with local code or manually to ensure

that what’s happening is what you think is happening. For example, OpenSSL

can’t check whether the domain name matches the certifi cate presented, because

that’s a separate layer. Similarly, the CertGetCertificateChain() call will by

default chain to any of the 100 or so roots in the Windows Root Certifi cate Store.

Whatever keys you are managing, you’ll need to ensure that you can create

them (with suffi cient entropy available), store them securely, and revoke or

expire them appropriately.

Secret Systems: Kerckhoff s and His Principles

Auguste Kerckhoffs proposed a set of principles for cryptosystems in 1883.

There are two that are generally referred to as “Kerckhoffs’s Principle.” They

follow his fi rst principle, which is that a system must be undecipherable. The

two that are often invoked today are as follows:

350 Part IV ■ Threat Modeling in Technologies and Tricky Areas

c16.indd 07:53:2:AM 01/15/2014 Page 350

 1. [The cryptographic system] must not be required to be secret, and it must

be able to fall into the hands of the enemy without inconvenience.

 2. Its key must be communicable and retainable without the help of written

notes, and changeable or modifi able at the will of the correspondents.

From these, we get a variety of restatements, many of which lose the subtlety

of the original (and in at least one case, the translation adds an interesting

subtlety) [Kerckhoffs, 1883; Petitcolas 2013]. The core concept is that the sys-

tem must not be secret, which implies that we need something that users

can modify. This can be read as an early statement that security by obscurity

doesn’t work. While that’s true, at some level, security requires that some

things (such as keys) remain secret. It may be helpful to consider the difference

between obscurity, in the sense of diffi cult to fi nd, and secret, in the sense of

intentionally hidden.

Kerckhoffs’s principles survive because they carry with them a lot of subtle

wisdom. For example, the fi rst part of Kerckhoffs’s third principle relates to

useful properties of passwords.

There is nothing inherently wrong with a system being secret, as long as

everyone relying on the security of the system has suffi cient confi dence that

it has undergone suffi cient security scrutiny. If your customers or prospects

are arguing about the security of your secret sauce, then by defi nition they

do not have suffi cient confi dence in the scrutiny and threat modeling it has

undergone.

There is another aspect of secrecy, which is that it works differently in the

physical and computer worlds. In the physical world, attackers who wants to

steal the Colonel’s secret recipe have to physically enter the kitchen and watch

as the secret herbs and spices are blended. Doing so puts them at risk. They

are at risk of exposure, being challenged, or even arrested for trespassing.

Even probing the security measures around the kitchen involves a degree of

risk. Contrast that with trying to break the security of a popular program. It’s

popular, so anyone can get a copy. You can set up a computer, and probe away

to your heart’s content. You can debug your exploit code in the comfort of your

own home, with zero risk.

This difference is usually implicit, and leads to very different thinking

about the value of secrecy around security measures in various communi-

ties. Protecting the location of a security camera makes a lot less sense if

you’ve released a brick-for-brick model of your headquarters (Swire, 2004).

Similarly, it may be that when you operate a service, you can get more value

from obscurity than when you ship a product. That’s because you may be

able to observe probing. However, you only get that value from obscurity if

you actually have ways to detect such probes, analyze what you detect, and

respond when appropriate.

 Chapter 16 ■ Threats to Cryptosystems 351

c16.indd 07:53:2:AM 01/15/2014 Page 351

Summary

Cryptography is an important set of tools and techniques for addressing threats.

There are a wide variety of very sharp tools in the cryptographer’s toolbox.

The most important are symmetric and asymmetric cryptosystems, hashes,

and randomness. You should understand each of these well enough to avoid

misusing them. There are more specifi c primitives for privacy, and a wide set

of more specifi c tools such as forward secrecy and certifi cates. Cryptographers

like to name the parties to their protocols. The names have a pattern and you’ll

sometimes see that pattern outside of cryptographic documents.

There are a wide variety of threats to cryptosystems; it is likely the area

where threats and mitigations have been studied the longest. This chapter has

presented a small attack library; more complete ones fi ll entire books.

If you fi nd yourself building with cryptography, you’ll want to make choices,

not offer up an infi nite list of options (and test cases). Such a list of options will

make it harder to plan for upgrades, which is a tremendously important thing to

get right from the start. Many of your problems will involve key management.

Key management ranges from persistence to a trusted third party vouching for

a key. Recall that “trusted” in security is an inverse of its use in polite society:

The trusted party is the one who can betray you, and minimizing trust (who

can betray you) is a good engineering goal.

You should always use a cryptosystem designed, implemented, and tested

by professionals. Your operating system probably comes with a library of these.

You should assume that your cryptosystem will become public, and not let that

worry you.

What you should worry about is that cryptography is hard. Your goal should be

to do it well enough that rather than attacking your crypto, the attackers bypass

it. That brings you back into the chess games and “how deep to go” questions

which you learned about in Chapter 7 “Processing and Managing Threats.”

c16.indd 07:53:2:AM 01/15/2014 Page 352

c17.indd 10:6:24:AM 01/09/2014 Page 353

Par t

V
Taking It to the Next Level

Up to this point, you’ve been learning what’s known about threat modeling.

From this point on, it’s all focused on the future: the future of threat modeling

in your organization, and the future of threat modeling approaches.

This part of the book contains the following three chapters:

 ■ Chapter 17: Bringing Threat Modeling to Your Organization includes

how to introduce threat modeling, who does what, how to integrate it into

a development process, how to integrate it into roles and responsibilities,

and how to overcome objections to threat modeling.

 ■ Chapter 18: Experimental Approaches includes a set of emerging

approaches to operations threat modeling, the “Broad Street” taxonomy,

adversarial machine learning, threat modeling a business, and then gets

cheeky with threats to threat modeling approaches and a few thoughts

on effective experimentation.

 ■ Chapter 19: Architecting for Success provides some fi nal advice on going

forward—all the mental models, touchpoints, and process design advice

to help you develop new and better approaches to threat modeling, along

with a few last words on artistry in your threat modeling.

c17.indd 10:6:24:AM 01/09/2014 Page 354

355

c17.indd 10:6:24:AM 01/09/2014 Page 355

This chapter starts from the assumption that your organization does not threat

model. If that assumption is wrong, the chapter may still help you bring more

advanced threat modeling to your organization, or better organize the threat

modeling you perform to generate greater impact. What you’ve learned through

this point in the book can be applied by an individual without organizational

support. This chapter is for those who want to infl uence the practices of the

organization they’re working for. (Consultants will also fi nd it helpful.)

There are many ways to introduce a new practice to your organization. One is

to stand up in front of everyone and say, “I just read this awesome book, and we

should totally do this!” Another is to say, “I just tried this, and look how many

bugs I found!” Yet another would be to intrigue people with a copy of Elevation

of Privilege, saying “Check out this cool card game!” Each of these represents a

strategy, and different strategies will work or not in different situations. There

are many good books on how to work within an organization. Sam Lightstone’s

Making It Big in Software is one of the more comprehensive for software profes-

sionals (Pearson, 2010). Obviously, one chapter can’t provide all the information

that a full book will, but in this chapter you’ll learn a few key strategies and

how to apply each of them to individual contributors. The chapter also includes

a section on convincing management because management will almost always

want evidence that threat modeling is worthwhile, and that evidence will almost

certainly involve the experiences of individual contributors.

C H A P T E R

17

Bringing Threat Modeling to

Your Organization

356 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 356

Up to now, you’ve been learning about the tasks and processes of threat

modeling, with the focus on threat modeling itself. In this chapter, you’ll learn

about how threat modeling interfaces with how an organization works. The

chapter opens with a discussion about how to introduce threat modeling to

an organization including how to convince individual contributors and how

to convince management. From there, it covers who does what, including pre-

requisites, deliverables, roles and responsibilities, and group interaction issues

such as decision models and effective meetings. Next, the chapter discusses

integrating threat modeling into a software development process, including

agile threat modeling, how testing and threat modeling relate, and how to

measure threat modeling, along with HR issues such as training, ladders, and

interviewing. The chapter closes with a discussion of how to overcome objec-

tions. Of course, overcoming objections is part of convincing people, but the

details you learn about who does what and how to integrate into a process

will inform how you overcome objections. For example, you can’t overcome

an objection that “we’re an agile shop” until you know how threat modeling

connects to agile development.

How To Introduce Threat Modeling

This section covers how to “sell” an idea in general, then how to sell it to indi-

vidual contributors and then management. That’s the path you’ll need to follow,

both in the book and in the workplace. Figure out how to make a convincing

case, then make that case to the people who will be doing the work, and the

people who will be managing them.

After reading the preceding chapters and exploring the techniques, you’re

obviously excited to ask your organization to start threat modeling. Your excite-

ment may not lead to their excitement. Even with Elevation of Privilege, threat

modeling may not be enough fun for a game night with your family. Threat

modeling is a serious tool to reach a goal. The more clearly you can state your

goal, the better you’ll be able to achieve it. The more clearly you can state how

your goal differs from your current state, the easier it will be to draw a straight

line between the two. For example, if your organization does no threat model-

ing and has no one with experience doing so, perhaps a useful goal would be a

threat modeling exercise that results in fi xing a security bug in the next release.

You might also consider that as a milestone along the way to a greater goal, such

as not losing sales because of security concerns.

In order to introduce threat modeling into an organization, you need to con-

vince two types of people that it’s worthwhile: the individual contributors who

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 357

c17.indd 10:6:24:AM 01/09/2014 Page 357

will participate and the managers who reward them. Without both of those sets

of people on board, threat modeling will not be adopted. And so you’re going

to need to “sell” them. Technical people are often averse to sales, but competent

enterprise sales people have many tricks and even a few skills which may help

you get your ideas implemented. The salespeople you want to borrow from aren’t

the type who sell used cars. They're the type who spend weeks or months to

understand an organization and get their product paid for and implemented.

Salespeople have ways of understanding the world and bending it to their

will. They understand the value of knowing who can sign a check, and who

can effectively say “no.” They know that as you “work an organization” to get

someone to sign that check, it’s valuable to identify how each person you work

with gets both an “organizational win” and a “personal win.” For example, if

you’re buying a new database system, the organizational win might be more

fl exibility in designing new queries, and the personal win might be gaining a

new skill or technology for your resume. Salespeople also learn that it’s useful

to have a “champion” who can help you understand the organization and the

various decision makers you’ll need to convince along the way. Within larger

organizations, having such a champion you can bounce such ideas off of and

strategize with can be a good complement to your technical arguments.

Applying those sales lessons to threat modeling, you can ask the following:

Who signs off? It’s probably someone like a VP of R&D who could require that

no code goes out the door without a threat model. Why will your VP sign off?

Fewer bugs? More secure products? Competitive edge? Fewer schedule changes

due to fi xing security bugs late? What will their personal win be? That’s hard

to predict. It might be something like helping their engineers add new skills, or

less energy spent on making hard security decisions about those bugs.

Convincing Individual Contributors

If you’re the only person in the room who wants the team to do something, few

managers will sign off. You must convince individual contributors that threat

modeling is a worthwhile use of their time. You should start with fun, which

means Elevation of Privilege. If you don’t have one of the professionally produced

Microsoft or Wiley decks, spend a bit of energy to print a copy or two in color.

Making an activity fun keeps people engaged, and it may help you overcome

past poor experiences. Besides, fun is fun. Bringing pizza and beer rarely hurts.

But fun is not enough. At some point you’ll need to give everyone a business

reason to keep showing up. Maybe modeling the software with good diagrams

helps people stay aligned with what’s being built. Maybe good security bugs

are being found and fi xed. Maybe a competitor is falling behind because they’re

spending all their time cleaning up after a security failure. Identifying the value

your team will receive is key to convincing management. Additionally, your

358 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 358

effort may not be enough. Having a respected engineer as a champion can be

a tremendous help.

N O T E A test lead in Windows wrote “I can’t overstate how much having Larry’s

support for [this tool] helped us gain credibility in the development community. You

should fi nd a Larry equivalent . . . and make sure he is sold on evangelizing the new

process/tool.”

There are many objections you might face, which are covered in depth

in the “Overcoming Objections to Threat Modeling” section at the end of

this chapter. One objection is so common and important that it’s threaded

throughout the chapter, and worth discussing now: YAGNI. (For those who

haven’t encountered it, YAGNI is the agile development mantra of “You Ain’t

Gonna Need It.”) YAGNI is a mantra because it’s a great way to push back

on red tape in the development or operations process. The really tricky chal-

lenge in bringing in any new process is that your organization has not gone

out of business despite not having that new process—so how do you convince

anyone to invest in it?

Convincing Management

Management, at its core, is about bringing people together to accomplish a task

(Magretta, 2002). You need management to accomplish tasks that are bigger than

one person can do alone. That management can be implicit and shared when two

people are collaborating, it can be a general ordering troops into a dangerous

situation, and it can be all sorts of things in between. Tim Ferris has written:

“The word decision, closely related to incision, derives from the meaning “a

cutting off.” Making effective decisions—and learning effectively—requires

massive elimination and the removal of options” (Ferriss, 2012).

This matters to you because management is management in part because of

their ability to say no to good ideas. That sounds harsh, and it is; but you and

your coworkers probably have dozens of good ideas every month. A manager

who says yes to all of them will never bring a project to fruition. Therefore, an

important part of management’s job is to eliminate work that isn’t highly likely

to add enough business value. By default, you don’t need whatever the fl avor

of the month is, and this month, what you don’t need may appear to be threat

modeling.

Therefore, to convince management, you need a plan with some “proof points.”

(I really hate that jargon, but I’m betting your management loves it, so I’m going

to hold my nose and use it.) One of the very fi rst proof points will probably be

buy-in from a co-worker.

Your plan needs to explain what to do, the resources required, and what value

you expect it to bring. The way to present your play will vary by organization.

The more your proposal aligns with management’s expectations, the less time

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 359

c17.indd 10:6:24:AM 01/09/2014 Page 359

they’ll spend fi guring out what you mean, and that means more time spent on

the content itself. Do you want to train everyone, or just a particular group? Do

you want to stop development for a month to comprehensively threat model

everything? You’ll need more proof points for that. Do you want to require a for-

mal, documented threat model for each sprint? What resources will be required?

Do you need a consultant or training company to come in? How much time

do you want from how many people? What impact is this investment going to

have? How does that compare to other efforts, either in security or some other

“property,” or even compared to feature work? What evidence do you have that

that impact will materialize?

If you are at a smaller organization, this will be less formal than at a large

organization. At a large organization, you may fi nd yourself presenting to lay-

ers of management and even senior executives. If you are used to presenting to

engineers, presenting to executives can be very different. Nancy Duarte has an

excellent and concise summary of how to do that in a Harvard Business Review

article titled “How to Present to Senior Executives” (Duarte, 2012). Whoever

you’re presenting to, if you are not used to presenting at all, consider it a growth

opportunity, not a threat.

Who Does What?

If you want an organization to start doing something, you’ll need to fi gure out

exactly who does what and when. This section covers a set of project manage-

ment issues, such as prerequisites, deliverables, roles and responsibilities, and

group interaction topics such as decision models and effective meetings.

Threat Modeling and Project Management

Project management is a big enough discipline to fi ll books and offer competing

certifi cations. If your organization has project managers, talk to them about fi t-

ting threat modeling into their approach. If not, some baseline questions you’ll

need to answer include the following:

 ■ Participants: Who’s involved?

 ■ Tasks: What do they do?

 ■ Training: How do we help them do it?

 ■ Prep work: What needs to be done before a kick-off?

 ■ Help: What do they do when confused?

 ■ Confl ict management: Who makes a call when different participants

disagree and can’t reach a consensus?

 ■ Deliverables: What do the people produce?

360 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 360

 ■ Milestones: When are deliverables due?

 ■ Interaction: How does communication occur (in-person meetings, e-mail,

IRC, wikis, etc.)?

As you roll out threat modeling, you’ll also need to defi ne tactical process

elements for deliverables such as the following:

 ■ What documents need to be created?

 ■ What tooling should be used, and where do you get it?

 ■ Who creates those documents, and who signs off on them?

 ■ When are those documents required, and what work can be held up until

they’re done?

 ■ How are those documents named?

 ■ Where can someone go to fi nd them?

Most of both lists are self explanatory. The answer to “who” are roles. For

example, developers create software diagrams, and development managers sign

off on them. Naming is a question of what conventions have been established.

For example, is it TM-Featurename-owner.html? Featurename-threat-model

.docx? Feature.tms? Feature/threatmodel.xml?

Once you’ve answered these questions, you’ll need to inform those who

will be threat modeling. That might be done with a training course, an e-mail

informing people of a new process, or it might be a wiki that defi nes your

development or operational process. The approach should line up with how

other processes roll out.

Prerequisites

In thinking about threat modeling, it’s helpful to defi ne what you need to kick

off the threat modeling activity and what the deliverables will be. For example,

creating a preliminary model of the software such as a data fl ow diagram (DFD)

and gathering the project stakeholders in a room might be your prerequisites,

along with getting Elevation of Privilege (and enough copies of this book for

everyone!). How you divide the tasks is up to you. Having explicit prerequisites

and deliverables can help you integrate threat modeling into other software

engineering. It’s important to have the right amount of process for your orga-

nization, and to respect the YAGNI mantra. Even if your organization isn’t one

where that’s regularly invoked, it’s a good idea to focus on the highest value work.

Deliverables

If you’re part of an organization that thinks in terms of projects and deliverables,

you can consider threat modeling as a project with its own deliverables, or you

can integrate smaller activities into other parts of development.

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 361

c17.indd 10:6:24:AM 01/09/2014 Page 361

If you treat threat modeling as a project in and of itself, there are a number of

deliverables you could look for. The most important include diagrams, security

requirements and non-requirements, and bugs. These should be treated like any

other artifact created as part of the project, with ownership, version control, and

so on. These documents should be focused on the security value you gain from

creating them. Some approaches suggest that documents be created especially

for the security experts involved in threat modeling, or that the documents

must have large sections of introductory text copied in from elsewhere, such

as requirements or design documentation. That doesn’t add a lot of value. You

might be surprised that a list of threats is not a deliverable. That’s because lists

of threats are not consumed anywhere else in development. Unlike architec-

tural diagrams, requirements, and bugs, they are not easily added. (Bugs are a

good intermediate deliverable, and are the way to bring threat lists beyond the

threat modeling tasks.)

You’ll need to defi ne what the deliverables are called, where they’re stored,

what gates or quality checks are in place, and where they feed into. These

deliverables are delivered to, and must be of a quality that’s acceptable to, the

project owner. Even if they are created or used by security experts, they should

be designed for use by the folks to whom they are delivered. Depending on

how structured an approach to threat modeling you have, there may be other,

intermediate documents created as part of the process.

So when should you produce these deliverables? If you consider threat modeling

as part of other work, you could look at maintaining or updating your software

model as something that happens at the start of a sprint. Finding threats could

happen as part of that model, as part of test planning, or at another time that

makes sense for your project. Addressing threats can become a step in bug triage.

As the participants become more experienced and an organization’s threat-

modeling muscles develop, the approach will likely become less rigid, and more

fl uid, and stepping between activities more natural. Such a process might look

like what is illustrated in Figure 17-1.

• Create
• Update

• Against
 System
• Against
 Mitigations

• Redesign
• Mitigate

• Models
• Mitigations

Model Find Threats Address Threats Validate

Figure 17-1: A four-stage approach with feedback

It’s also possible to develop an organization’s capabilities around the interplay of

requirements, threats, and mitigations, as discussed in Chapter 12, “Requirements

362 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 362

Cookbook.” As described there and shown in Figure 12-1, reproduced here as

Figure 17-2, real threats violate requirements and can be mitigated in some way.

Requirements

Threats Mitigations

Threats help identify
requirements

Real threats violate
requirements Compliance

Impossible to mitigate
implies non-requirement

Threats, mitigations interplay

Figure 17-2: The interplay of threats, requirements, and mitigations

Direct interaction is much more common between threats and requirements

and threats and mitigations. The interaction between threats and requirements

may lead to you trying to implement both a threat modeling process and a

requirements process at the same time. Doing so would be a challenging task,

and should not be taken on lightly.

Individual Roles and Responsibilities

When an organization wants work done, it assigns that work to people. This

section covers how you can do so.

There are roughly three models that can be employed:

 ■ Everyone threat models.

 ■ Experts within the business are consulted.

 ■ Consultants (internal or external) are used.

Each has advantages and costs. Having everyone perform threat modeling

will get you basic threat models, and an awareness of security throughout the

organization. The cost is that everyone needs to develop some skill at threat

modeling, at the expense of other work. Using the second model, experts within

the organization report to whomever owns product delivery, and they work as

part of the product team on security. The advantage is that one person owns

delivery of the threat model and how that’s integrated into the product. The

disadvantage is that person needs to be present at all the right meetings, and

that won’t always happen. Even with the best intentions, people may not realize

they’re going to make security decisions, or the security person may be triple-

booked when everyone else is available. The fi nal model uses consultants, either

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 363

c17.indd 10:6:24:AM 01/09/2014 Page 363

from within the company or external. Either way, consultants offer the advantage

of specialization in threat modeling, but the disadvantage of lacking product

context. External consultants can be extra valuable because management values

what it pays for, and external consultants can sometimes deliver bad news with

less worry about politics. However, external consultants may be more restricted

than internal ones in terms of what they may be exposed to. Furthermore, exter-

nal consultants often deliver a report that is fi led away, without further action

taken. You can mitigate that risk by having one of their deliverables be a list of

bugs, which either they or someone in your organization can fi le.

An additional consideration is how people get help when needed. In smaller

organizations, this can be organic; in larger ones, having a defi ned way to get

help can be very helpful.

The next question is what sort of skill sets or roles should be assigned threat

modeling tasks? The answer, of course, is that there’s more than one way to do

it, and the right way is the one that works for your organization. Even within

one organization, there might be multiple right ways to do it, and multiple right

ways to split up the work.

For example, one business unit within Microsoft has made threat modeling

a part of the program management job. In another it is driven by the software

developers. Yet another has split it up so that development owns creating the

diagrams, and test owns ensuring that there’s an appropriate test plan, includ-

ing fi nding threats against the system with STRIDE per element. What works

for your organization cannot be a matter of one person succeeding at the tasks.

Don’t get me wrong—that’s a necessary start. If no enthusiast has succeeded at

the tasks and produced bugs that were worth fi xing, you can’t expect anyone else

to waste their time. That may seem harsh, but if you, as the enthusiast reading

this book, can’t demonstrate value, how can others be expected to?

Group Interaction

Three important elements of group interaction are who’s in the group, how they

make decisions, and how to hold effective meetings.

Group Composition

As you move from an individual threat modeling to a group effort, a natural

question is what sorts of people form the group? Generally, you’ll want to include

the following (example job titles are shown in parentheses):

 ■ People who are building the system (developers, architects, systems

administrators, devops)

 ■ People who will be testing the system (QA, test)

364 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 364

 ■ People who understand the business goals of the system (product manag-

ers, business representatives, program managers)

 ■ People who are tracking and managing progress (project managers, project

coordinators, program managers)

Decision Models

In any group activity, there is a risk of confl ict, and organizations take a variety

of approaches to managing those confl icts and reaching decisions. It is important

to align threat modeling decision making with whatever your organization does

to make decisions, and consider where decisions may need to be made. The issues

most likely to be contentious are requirements and bugs. For requirements, the

issue is “what’s a requirement?” For bugs, issues can include what constitutes a

bug, what severity bugs have, and what bugs can be deferred or not fi xed. Tools

like bug bars can help (as covered in Chapter 9, “Trade-Offs When Addressing

Threats”), but you will still need a way to resolve disputes.

There are a variety of decision matrices that break out decision responsibil-

ity in various ways. One of the most common is RACI: Responsible, Approver,

Consulted, Informed. Responsible indicates those people who are assigned tasks

and possibly deliverables. The approver makes decisions when confl ict can’t

be handled otherwise. Those who are consulted may expect that someone will

ask for their opinions, but they do not have authority to make the decisions.

The last group is kept informed about progress. Various implementations will

defi ne who is expected to escalate or object in various ways, with those in the

informed or consulted categories less expected to escalate. Table 17-1 shows

part of a sample RACI matrix for security activities including threat model-

ing (Meier, 2003). The line listed as design principles is similar to my use of

“requirements.”

Table 17-1: A Sample RACI Matrix for Threat Modeling and Related Tasks

TASKS ARCHITECT

SYSTEM

ADMINIS

TRATOR DEVELOPER TESTER

SECURITY

PROFES

SIONAL

Threat Modeling A I I R

Security Design

Principles

A I I C

Security

Architecture

A C R

Architecture Design

and Review

R A

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 365

c17.indd 10:6:24:AM 01/09/2014 Page 365

Another large (product) team at Microsoft broke out threat modeling by

discipline and activity within threat modeling, using a model of “own (O),

participate (P), and validate (V),” as shown in Table 17-2.

Table 17-2: Threat Modeling Tasks by Role

SESSION ARCHITECT

PROGRAM

MANAGER

SOFT

WARE

TEST

PENETRA

TION

TEST DEVELOPER

SECURITY

CONSUL

TANT

Requirements O O V P V

Model

(software)

P P O V O

Threat

Enumeration

P P V O V

Mitigations P P O V O

Validate O O P P P V

Eff ective TM Meetings

A great deal has been written about how to run an effective meeting, because

running an effective meeting is hard. Common issues include missing or

unclear agendas, confusion over meeting goals, and wasting time. This leads

to a lot of people working hard to avoid meetings, and I’m quite sympathetic

to that goal. Threat modeling often includes people with different perspectives

discussing complex and contentious topics. This may make it a good candi-

date for holding one or more meetings, or even setting up a regular meeting

for a long threat modeling project. It’s also helpful to defi ne the meetings as

either decision meetings, working meetings or review meetings. Each may be

required, and clarity about the goals of a meeting makes it more likely that it

will be effective.

The agenda for a threat modeling meeting can be complex because numerous

tasks might need to be handled, including the following:

 ■ Project kickoff

 ■ Diagramming or modeling the software

 ■ Threat discovery

 ■ Bug triage

366 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 366

These different tasks may lead to different meeting structure or goals:

 ■ Creating a model of the software with a diagram can be a collaborative,

action-oriented meeting with a clear deliverable. If the right people are

in the room, they can likely judge whether the model of the software is

complete.

 ■ Threat discovery can be a collaborative brainstorming meeting, and while

the deliverables are clear, completeness is less obvious.

 ■ Bug triage may be performed in a decision meeting with an identifi ed

decision process or decision maker.

These different goals are often overlapped into a single “threat modeling”

meeting. If you need to overlap, consider using three whiteboards or easels:

one for diagrams, one for threats, and one for the bugs. Label each clearly and

explain that each is different and has different rules. Physically moving from

one whiteboard to the next can help establish the rule set for that portion of

a meeting. However, it is challenging to go from collaborative to authoritative

and back within a single meeting. Generally, that means it will be challenging

to triage bugs in a diagram or threat-focused meeting. Similarly, threat model-

ing meetings with a goal of creating a document are probably not a good use

of everyone’s time. Finally, holding a meeting without a designated note taker

will be a lot less effective.

A good threat modeling meeting focuses on tasks that require each person

in the room to be present. It is likely that the meeting will require people from

each discipline in your organization (such as programmers and testers). A

threat model review with the wrong folks is not just a waste of time, it risks

leaving you and your organization with a false sense of confi dence. Make sure

that you have the right architects, drivers, or whatever else is organizationally

appropriate. These people can be quite busy, so it helps to ensure that they get

value from the meetings, which in turn helps to ensure that the entire team

shares a mental model of the system, which makes development and operations

fl ow more smoothly.

One last comment about meetings. Words matter greatly. Threat modeling can

be contentious under the best of circumstances. Meetings are far more likely to

be effective if discoveries and discussions are about the code or the feature, rather

than Alice’s code or Bob’s feature. They’ll also be more effective if those present-

ing the system focus on what’s being built, rather than the whys. (I recall one

meeting in which every third sentence seemed to be about why the system was

impenetrable. What turned out to be impenetrable was the description, not the

system.) Similarly, you want to avoid words that infl ame anyone. For example,

if people believe that discussing attacks implies advocating criminal activity,

then it’s probably best to use another word such as threat or vulnerability; or

if a team is concerned that the term “breach” implies mandatory reporting,

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 367

c17.indd 10:6:24:AM 01/09/2014 Page 367

it might be better to discuss incidents. As a last fallback, you can say “issue” or

“thing.” If your threat modeling meetings become contentious, it may help to

start with a brief statement from the meeting leader about the scope, goals, and

process for the meeting, or even to have neutral moderators join in. The skill sets

required of the moderators will depend on what turns out to be contentious.

Diversity in Threat Modeling Teams

Regardless of what you’re threat modeling, it’s useful to bring a diverse set of

skills and perspectives to bear on analyzing a system. If you’re building software,

that includes those who write and test code, while if it’s an operational project,

it might be systems managers and architects. Unless it’s a small project, it will

probably also include project management.

You’ll need to fi gure out to what extent customers or customer advocates

should be involved. Often, these perspectives will inform your decisions about

what’s important, what’s an acceptable threat, or where you need to focus your

attention.

For example, in discussing their voting system threat model, Alec Yanisac and

colleagues mention the enormous value they observed from bringing together

technologists, election offi cials, and accessibility experts with voting systems

vendors. They attributed a great deal of their success to having the various

parties in the same place to discuss trade-offs and feasibility (Yanisac, 2012).

Bringing in a wide set of skills, perspectives, and backgrounds can slow

down discussion as people go through the team formation process of “storm-

ing, forming, norming and performing.” The more diversity in the group, the

longer such a process will take. However, the more diverse group will also be

able to fi nd a broader set of threats.

Threat Modeling within a Development Life Cycle

Any organization that is already developing software has some sort of process

or system that helps it move the software from whiteboard to customers. Smart

organizations have formalized that process in some way, and try to repeat the

good parts from cycle to cycle. Sometimes that includes security activities, but

not always.

N O T E A full discussion about how to bring security into your development life

cycle is beyond the scope of this book. One could make the case that threat modeling

should always be the fi rst security activity an organization undertakes, but that sort

of one-size-fi ts-all thinking is one of the ideas that I hope this book puts to rest. Other

activities, such as fuzzing, may have a lower cost of entry and produce bugs faster.

368 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 368

On the other hand, an hour of whiteboard threat modeling can point that fuzzer in the

right direction. More important, it’s helpful to think of security as something that per-

meates through development and deployment. One good resource for thinking about

this is the Security Development Lifecycle Optimization Model (http://www

.microsoft.com/security/sdl/learn/assess.aspx).

Development Process Issues

In this section, you’ll learn about bringing threat modeling into either waterfall

or agile development, how to integrate threat modeling into operational plan-

ning, and how to measure threat modeling.

Waterfalls and Gates

If you’re using something like a waterfall process, then threat modeling plays

in at several stages, including requirements, design, and testing. (You doubtless

slice your development process a little differently than the next team, but you

should have roughly similar phases.) During requirements and design, you

create models of the software, and you fi nd threats. Of course, you let those

activities infl uence each other. During testing, you ensure that the software you

built matches the model of the software you intended to build, and you ensure

that you’re properly resolving your bugs.

If your process includes gates (sometimes also called functional milestones),

such as “we can’t exit the design phase until . . . ,” then those gates can be help-

ful places to integrate threat modeling tasks. Following are a few examples:

 ■ We can’t exit design without a completed model of the software for threat

identifi cation, such as a DFD.

 ■ We can’t start coding until threat enumeration is complete.

 ■ Test plans can’t be marked complete until threat enumeration is complete.

 ■ Each mitigation is complete when there’s a feature spec (or spec section)

to cover the mitigation.

Threat Modeling in Agile

The process of diagramming, identifying, and addressing threats doesn’t need

to be a waterfall. It’s been presented like that to help you understand it, but

you can jump back and forth between the tasks as appropriate for your team or

organization. There’s nothing inherent to threat modeling that is at odds with

being agile. (There is an awful lot of writing on threat modeling that is process

heavy. That’s not the same as threat modeling being inherently process heavy.)

Feel free to apply YAGNI to whatever extent it makes sense for you.

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 369

c17.indd 10:6:24:AM 01/09/2014 Page 369

Now, you might get super-duper agile and say, “Threat models? We ain’t

gonna need them.” That may be true. You’ve probably gotten away without

threat models to date, and you’re worried that threat modeling as described

doesn’t feel agile. (If that’s the case, thanks for reading this far.) One agile prac-

tice that seems to relate very closely to threat modeling is test-driven design.

In test-driven design, you carefully consider your tests before you start writing

code, using the tests to drive conversations about what the code will really do.

Threat modeling is a way to think through your security threats, and derive a

set of test cases.

If you believe that threat modeling can be useful, you’ll need a model of the

software and a model of the threats. That can be a whiteboard model, using

STRIDE or Elevation of Privilege to drive discussion of the threats.

Even if you’re not an agile maven, YAGNI can be a useful perspective. When

you’re adding something to the diagram, are you going to need that there? When

you identify a threat, can you address it? Someone taking out the hard drive

and editing bits is hard to address. You won’t need that threat.

If you’re in the YAGNI camp, you might be saying, “That last security problem

was really a painful way to spend a week,” or you might be looking at these

arguments and asking, “Do we have important security threats?” If you are

in an “already experiencing pain” scenario, then you probably don’t need any

more selling. Pick and choose from the techniques in this book to fi nd a set of

trade-offs that work in your agile environment. If you’re in the skeptical camp,

you’ve looked at a lot of arguments for an appropriately sized investment in

threat modeling. That is, invest in a small agile experiment: Try it yourself on

a real system, and see if the result justifi es doing more.

Operations Planning

Much like planning development, there’s more than one way to plan for new

deployments of networks, software, or systems. (For simplicity, please read sys-

tems as inclusive of any technology you might be planning to deploy.) Integrating

threat modeling into deployment processes involves the maintenance of models

of the system. These models are, admittedly, rarely prioritized, but without

knowing what a system looks like, understanding the scope or impact of a

change due to a new deployment is more challenging.

Finding threats against a system is a matter of understanding the changes

that occur as systems are operated or modifi ed, and ensuring that you look for

threats where changes are happening. Often, but not always, the new threats

are associated with changes to connectivity (including fi rewalls).

The (acceptance or deployment) testing of a change should include any planned

mitigations, checking to see whether the mitigations were deployed, and check-

ing that they both allow what’s planned, and prevent what they are expected

370 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 370

to deny. Checking the deny rules can be a tricky step. It’s easy to fi nd one case

and see if it’s denied, but checking the full set of what should be denied can

be challenging.

Testing and Threat Modeling

Don’t underestimate the value of skilled testers to threat modeling. The test-

ing mindset that asks the question “How can this break?” overlaps with threat

modeling. Each threat is an answer to that question. Each layer of threat miti-

gation and response is a bug variant. Looking for the weakest link is similar

to test planning. Unit tests can look like vulnerability proof-of-concept code.

Therefore, your testers (under whatever name they work) are natural allies.

Furthermore, threat modeling can solve a number of problems for testers,

including the following:

 ■ Testing is undervalued.

 ■ Limited career advancement

 ■ Exclusion from meetings

Testing is sometimes undervalued, and testers often feel their work is not

valued. Helping them fi nd important bugs can increase the importance of test-

ing, and help security practitioners get those bugs fi xed.

Related to the problem of being undervalued, testers often feel like their

career path is more limited than that of developers. Working with testers to

enable them to perform effective security tests can help open new career paths.

Lastly, developers and architects often feel that architectural choices are

detached from testing or testability, and do not bother to include testers in

those discussions. When threat modeling drives security test planning, seeing

the software models early becomes an important part of test activity, and this

may drive greater inclusion.

This can be a virtuous circle, in which quality assurance and threat modeling

are mutually reinforcing.

Measuring Threat Modeling

In any organization, it is helpful to be able to measure the quality of a product.

Measuring threat modeling is a complex topic, in the same way that measuring

software development is tricky. The fi rst blush approaches, such as measur-

ing the number of diagrams or lines of code, don’t really measure the right

things. The appropriate measurements will depend on the threat modeling

techniques you’re using and the security or quality goals of the business. You

can measure how much or how broadly a larger business is applying threat

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 371

c17.indd 10:6:24:AM 01/09/2014 Page 371

modeling, and you can measure the threat model documents themselves. When

you measure the models themselves, two approaches can be used: pass or fail,
and additive scoring.

Either approach can start from a checklist. For example, in the Microsoft SDL

Threat Modeling Tool, there’s a four-element checklist per threat. (Does the threat

have text? Does the mitigation have text? Is the threat marked “complete”? Is

there a bug?) At the end, each threat has either a score of 0–4 or a pass (at 4). You

could apply similar logic to a data fl ow diagram. Is there at least one process

and one external entity? Is there a trust boundary? Is it labeled? You can assess

the model as a whole. In The Security Development Lifecycle, Howard and Lipner

present the scoring system shown as Table 17-3 (Microsoft Press, 2006).

Table 17-3: Measuring Threat Models

RATING COMMENTS

0 – No threat model No TM in place, unacceptable

1 – Not acceptable Out of date indicated by design changes or document age

2 – OK DFD with “assets” (processes, data stores, data fl ows), users, trust

boundaries

At least one threat per asset

Mitigations for threats above a certain risk level Current

3 – Good Meets the OK bar, plus:

Anon, authenticated local and remote users shown

S,T,I,E threats all accepted or mitigated

4 – Excellent Meets the good bar, plus:

All STRIDE threats identifi ed, mitigated, plus external security notes

and dependencies identifi ed

Mitigations for all threats

“External security notes” include plan for customer-facing

documentation

A more nuanced approach would score the various building blocks separately.

Diagram scoring might involve a quality ranking by participants, tracking

the rate of change (or requested changes), and the presence of the appropriate

external entities. Threat scoring could entail a measure of threats identifi ed (as

in Table 17-3), or perhaps coverage of fi rst- and second-order threats.

You might also use a combination of pass/fail and additive. For example,

if you were using a bar and each threat needs a 5 on some 7-point scale, you

could then sum the threats, requiring a 50, or 10 points per DFD element, or you

could start from whatever level the “good” threat models you look at seem to

be hitting. You might also require an improvement over a prior project, perhaps

10 percent or 15 percent higher scores. Such an approach encourages people to

do better without requiring an unreasonable investment in improvement for

a given release.

372 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 372

MEASURING THE WRONG THING

People focus their energy on the things that are measured by those who reward them.

People also expect that if you’re measuring something, there’s a pass bar that indi-

cates what is good enough. Both of these behaviors are risks for threat modeling for

the same reason that few organizations measure lines of code or bugs as a measure of

software productivity: Measurements can drive the wrong behavior. (There’s a classic

Dilbert on wrong behaviors, with the punch line, “I’m gonna write me a new minivan

this afternoon!” [Adams, 1995])

Therefore, measuring threat modeling might be counterproductive. It may be that

measuring is a useful way to help people develop threat modeling muscles. You might

be able to use people’s instinct to “game” the scoring system by awarding points for

reporting (good) bugs in the threat modeling approach .

One other possible issue with a measurement scale is that it’s likely to stop too

early. The Howard–Lipner scoring system described earlier stops at “excellent,” reduc-

ing the incentive to strive beyond that point. What if it had an “awesome” level, which

was awarded at the discretion of the scorer?

When to Complete Threat Modeling Activities

The tasks discussed in this section relate closely to the section “Iteration” in

Chapter 7, ”Digging Deeper into Mitigations.” The difference is that as threat

modeling moves from an individual activity (as discussed in Chapter 7 to an

activity situated within an organization (as discussed in this chapter), the orga-

nization may want some degree of consistency.

Two organizational factors affect when to complete threat modeling:

 ■ Is it a separate activity?

 ■ How deep do you go?

Threat modeling can be a separate activity or integrated into other work. It

is very helpful to threat model early in the development cycle, when require-

ments and designs are being worked out. This is threat modeling in the sense

of requirements analysis, fi nding threats, and designing mitigations. As you get

close to release or delivery, it is also helpful to validate that the models match

what you’ve built, that the mitigations weren’t thoughtlessly pushed to the next

version or a backlog, and that the test bugs have been addressed.

The question of how deep you go is an important one. Many security prac-

titioners like to say “you’re never done threat modeling.” Steve Jobs liked to

say “great artists ship.” (That makes you wonder, was he familiar with the

career of Leonardo da Vinci? On the other hand, Leonardo’s work languished

in obscurity for hundreds of years.) It is almost always a good idea to start with

breadth fi rst, and then iterate through threat modeling your mitigations. How

long you should continue is an understudied area. In a security-perfect world,

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 373

c17.indd 10:6:24:AM 01/09/2014 Page 373

you could continue as long as you’re productively fi nding threats, and then

stop. One good way to justify needing more time to threat model mitigations

is if you can fi nd attacks against them with a few minutes of consideration or

by reviewing similar mitigations. Unfortunately, that requires experience, and

that experience is expensive.

Postmortems and Feedback Loops

There are two salient times to analyze your threat modeling activity: imme-

diately after reaching a milestone and after fi nding an issue in code that was

threat modeled and shipped. The easiest is right after some milestone, while

the potentially more valuable is when threats are found by outsiders. After a

milestone, memories are fresh, the work is recent, and the involved participants

are available. You can ask questions such as the following:

 ■ Was that effective?

 ■ What can we do better?

 ■ What tasks should we ensure that we continue to perform?

All of the standard sorts of questions that you ask in a development or opera-

tions after-incident analysis can be applied to threat modeling.

The second sort of analysis is after an issue is found. You’ll want to consider

whether it’s the sort of thing that your threat modeling should have prevented;

and if you believe it is, try to understand why it was not prevented. For example,

you might have not thought of that threat, which might mean spending more time

fi nding threats, or adding structure to the process. You might misunderstand

the design or deployment scenarios, in which case more effort on appropriate

modeling might be helpful. Or you might have found the threat and decided it

wasn’t worth addressing or documenting.

Organizational Issues

These issues relate less to process and more to the organizational structures that

surround threat modeling. These issues include who leads (such as program-

mers or testers or systems architects), training, modifying ladders, and how to

interview for threat modeling.

Who Leads?

The question of who is responsible for ensuring that threat modeling happens

varies according to organization, and depends heavily on the people involved

and their skills and aptitudes. It also depends on to what degree the organiza-

tion is led by individuals driving tasks versus having a process or collaborative

approach.

374 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 374

Breaking threat modeling into subtasks, such as software modeling, threat

enumeration, mitigation planning, and validation, can offer more fl exibility to

assign the tasks to different people. The following guidelines may be helpful:

 ■ Developers leading threat modeling activity can be effective when devel-

opers are the strongest technical contributors or when they have more

decision-making power than people in other roles. Developers are often

well positioned to create and provide a model of the software they plan

to build, but having them lead the threat modeling activity carries the risk

of “creator blindness”—that is, not seeing threats in features they built,

or not seeing the importance of those threats.

 ■ Testers driving the process can be effective if your testers are technical;

and as discussed earlier in the section “Testing and Threat Modeling,”

it can be a powerful way to align security and test goals. Testers can be

great at threat enumeration.

 ■ Program managers or project managers can lead. A threat model

diagram or threat list is just another spec that they create as part of making

a great product. Program/project managers can ensure that all subtasks

are executed appropriately.

 ■ Security practitioners can own the process, as long as they understand the

development or deployment processes well enough to integrate effectively.

Depending on the type of practitioner, they can be intensely helpful in

threat enumeration, mitigation planning, and validation.

 ■ Architects (either IT architects or business architects) can also own threat

modeling, ensuring that it’s a step that they execute as they develop a new

design. Much like developers, architects are well positioned to provide

a model of the system being built, but can be at risk of creator blindness.

Regardless of who owns, leads, or drives, threat modeling tasks tend to span

disciplines and require collaboration, with all the trickiness that can entail.

Training

From the dawn of time, threat modeling has been passed down from master to

apprentice. Oh, who am I kidding? People have learned to threat model from

their buddies. It’s typically experiential learning, without a lot of the structure

that this book is bringing to the fi eld. That kind of informal apprenticeship has

(you’ll be shocked to learn) pros and cons. The advantage is having someone

who can answer questions. The disadvantage is that without any structure,

when the mentor leaves sometimes the “apprentices” fl ail around. Thus, the

trick for security practitioners is to truly mentor, rather than dominate. That

might involve leading questions, or debriefs before or after tasks.

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 375

c17.indd 10:6:24:AM 01/09/2014 Page 375

When an organization begins its foray into threat modeling, participants

need to be trained and told how they’ll be evaluated. Threat modeling includes

a large set of tasks, and it’s important to be clear about what those tasks entail

and how they should be accomplished. This takes very different forms in dif-

ferent organizations, including approaches like written process documentation,

brown bag lunches, formal classroom training, computer-based training, and

my favorite, Elevation of Privilege. Of course, Elevation of Privilege doesn’t cover

process elements such as what documents need to be created, so that can be

integrated into the skill-teaching portion of a training.

Modifying Ladders

Job “ladders” are a common way to structure and differentiate levels of seniority

within an organization. For example, someone hired right out of school would

start as a junior developer, be promoted to developer, then senior developer.

So let me get this out of the way. Ladders are a big company thing. They’re

bureaucracy personifi ed, and refl ect what happens when humans are treated

as resources, not individuals. If your company is a small start-up, ladders are

antithetical to the artisanal approach that it personifi es; but if you want to intro-

duce threat modeling to a company that uses them, they’re a darned useful tool

for setting expectations.

When you have an idea of what threat modeling approach and details work

for your organization, and when you have a set of people repeatedly perform-

ing threat modeling tasks and demonstrating impact, talk to your management

about what they see. Are all the people doing the same tasks in the same way?

Are they delivering to the same quality and with similar impact, or are there

distinctions? If there are distinctions, do they show up among individuals at

different levels on the current ladders? If so, great; those distinctions are can-

didates for addition to the core or optional skills that defi ne a ladder.

If, for example, your organization has fi ve levels on the software engineer-

ing ladders, with a 1 being just out of college, and a 5 being the top, determine

whether some level of subcompetency in threat modeling, such as diagram

creation or using STRIDE per element, can be added to the ladder, at level 2 or

3, and then everyone who wants to be promoted must demonstrate those skills.

At the higher end, perhaps refactoring or operational deployment changes have

been rolled out to address systemic threats. Those would be candidate skills to

expect to see at level 4 or 5.

Interviewing for Threat Modeling

When threat modeling becomes a skill set you hire or promote for, it can help to

have some interview techniques. This section simply presents some questions

376 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 376

and techniques to get you started. The same questions apply effectively to soft-

ware and operations folks, but the answers will be quite different.

General knowledge

 1. Tell me about threat modeling.

 2. What are the pros and cons of using DFDs in threat modeling?

 3. Describe STRIDE per element threat modeling.

 4. How could you mitigate a threat such as X?

 5. How would you approach mitigating a threat such as X?

Questions 4 and 5 are subtly different; the former asks for a list, whereas

the latter asks the interviewee to demonstrate judgment and be able to discuss

trade-offs. Depending on the circumstance, it might be interesting to see if

the candidate asks questions to ensure he or she understands the context and

constraints around the issue.

Skills testing

 1. Have the candidate ask you architectural questions and draw a DFD.

 2. Give the candidate a DFD, and ask them to fi nd threats against the system.

 3. Give the candidate one or more threats and ask them to describe (or code)

a way to address it.

Behavior-based questioning

Behavior-based interviewing is an interview technique in which questions

are asked about a specifi c past situation. The belief is that by moving away from

generic questions, such as “How would you approach mitigating a threat such as

X?” to “Tell me about a time you mitigated a threat such as X,” the interviewee

is moved from platitudes to real situations, and the interviewer can ask probing

questions to understand what the candidate really did. Of course, the questions

suggested here are simply starting points, and much of the value will result

from the follow-up questions:

 1. Tell me about your last threat modeling experience.

 2. Tell me about a threat modeling bug that you had to fi ght for.

 3. Tell me about a situation in which you discovered that a big chunk of a

threat model diagram was missing.

 4. Tell me about the last time you threat modeled an interview situation.

Threat Modeling As a Discipline

The last question related to who does what is: “Can we as a community make

threat modeling into a discipline?” By a discipline, I mean, can enthusiasts expect

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 377

c17.indd 10:6:24:AM 01/09/2014 Page 377

threat modeling to be a career description, in the way that software engineer

or quality assurance engineering is a career?

Today, it would be an unusual VP of engineering who didn’t have a strategy

for achieving a predictable level of quality in any releases, and a person or team

assigned to ensure that it happens. It’s no accident that the past few decades have

seen the development of software quality assurance as a discipline. The people

who cared greatly about software quality spent time and energy discussing what

they do, why they do it, and how to sell and reward it within an organization.

Whatever name it goes by, and whatever nuances or approaches an organization

applies, quality assurance has become a recognized organizational discipline.

As such, it has career paths. There are skill sets that are commonly associated

with titles or ladder levels. There are local variations, and an important divi-

sion between those who write code to test code and a shrinking set that is paid

to test software manually. However, there are recognized types of impact and

leadership, along with a set of skills related to strategy, planning, budgeting,

mentoring, and developing those around you—all of which are expected as

one becomes more senior. Those expectations (and the associated rewards) are

a result of testers forming a community, learning to demonstrate value to their

organization and sharing those lessons with their peers, and a host of related

activities. Furthermore, the discipline exists across a wide variety of organiza-

tions. You can move relatively smoothly from being a “software development

engineer in test” at one company to a “software engineer in test” at another.

Should threat modelers aspire to the same? Is threat modeling a career path?

Is it the sort of skill set that an organization will reward in and of itself, or is

threat modeling more analogous to being able to program in Python? That is,

is it a skill set within the professional toolbox of many software developers,

but one that you don’t expect every developer to know? It may be something

your organization already does, and if a candidate knows Perl, not Python, then

you’ll expect that he or she can pick up Python. Or threat modeling may be

more similar to version control in your organization. You expect a candidate at

one level above entry grade to be able to talk about version control, branches,

and integration, but that may not be suffi cient to hire the person. Conversely,

perhaps only a basic skill level is required, and hiring managers don’t expect

most people to develop much beyond that.

Perhaps threat modeling is more similar to performance expertise. There are

tools to help, such as profi lers, and it’s easy to get started with one. There are

also people with a deep knowledge of how to use them, who can have detailed

conversations about what the tools mean. Expertise in making systems fast can

be a real differentiator for some engineers in development or operations.

Nothing in this section should be taken as an argument that threat model-

ing can’t develop to the extent that quality has. Quality as a discipline has been

developing for decades, and it’s entirely possible that over time, the security,

378 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 378

development, or operations communities will see ways to make threat model-

ing a discipline in and of itself. In the meantime, we need to develop its value

proposition within today’s disciplines and career ladders.

Customizing a Process For Your Organization

As discussed in Chapter 6 “Privacy Tools,” the Internet Engineering Task Force

(IETF) has an approach to threat modeling that is focused on their needs as a

standards organization. You can treat it as an interesting case study of how the

situation and demands of an organization infl uence process design. The approach

is covered in “Guidelines for Writing RFC Text on Security Considerations”

(Rescorla, 2003). The guidelines cover how to fi nd threats, how to address them,

and how to communicate them to a variety of audiences. What threats the IETF

will consider was the subject of intense discussion at their November, 2013

meeting (Brewer, 2013). That discussion continues as this book goes to press,

but the approach used over the last decade will remain a valuable case study.

The document by Rescorla focuses on three security properties: confi dential-

ity, data integrity, and peer authentication. There is also a brief discussion of

availability. Their approach is explicitly focused on an attacker with “nearly

complete control of the communications channel.” The document describes

how to address threats, providing a repertoire of ways that network engineers

can provide fi rst and second order mitigations and the tradeoffs associated

with those mitigations. The threat enumeration and designing of mitigations

are precursors to the creation of a security consideration section. The security

considerations section is required for all new RFCs, and so acts as a gate to ensure

that threat enumeration and mitigation design have taken place. These sections

are a form of external security note, focused on the needs of implementers, and

they also disclose the residual threats, a form of non-requirement. These forms

are discussed further in Chapter 7 and Chapter 12.

You’ll note that their threats are a subset of STRIDE, without repudiation or

elevation of privilege. This makes sense for the IETF, defi ning the behavior of the

network protocols, rather than the endpoints. The IETF’s situation is somewhat

unusual in that respect. Few other organizations defi ne network protocols. But

many organizations ship products in a family, and the products in that family

will often face similar threats, allowing for a learning process and some reuse

of work. The IETF is also a large organization that can amortize that work over

many products.

However, the IETF, like your organization, can make decisions about what

threats matter most to them, to assemble lessons about mitigation techniques,

and to develop an approach to communicating with those who use their prod-

ucts. You can learn from what the IETF does.

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 379

c17.indd 10:6:24:AM 01/09/2014 Page 379

Overcoming Objections to Threat Modeling

Earlier, you learned that your plan needs to explain what to do, what resources

are required, and what value you expect it to bring. Objections can be raised

against each of these, so it’s important to talk about handling them. As you

develop a plan, many of the objections that will be raised are valid. (Even invalid

objections probably have a somewhat valid basis, even if it’s only that some-

one doesn’t like change or they like to argue.) Some of these objections will be

feedback-like, and expressed as ways to improve your plan. To the extent that

they don’t remove value, incorporating as many of these as possible helps people

realize that you’re listening to them, which in turn helps them “buy in” and

support your plan. Obviously, if a suggestion is counterproductive, you want

to address it. For example, someone might say, “Don’t we need to start threat

modeling from our assets?” and you could respond, “Well, that’s a common

approach, but I haven’t seen it add anything to threat models and it often seems

to be a rathole. And since Alice has already expressed concern about the cost of

these tasks, maybe we should try it without assets fi rst.”

As you listen to objections, it may be helpful to model them as threats to one

or more elements of the plan (resource, value, or planning), and start from the

overall response, getting more specifi c as needed. Note that (all models are wrong)

these meld together pretty quickly, and (some models are useful) it might be

useful to ask clarifying questions. For example, if someone is objecting to the

number of people involved, is that a concern about the resourcing involved, or

about the quality of the evidence relative to the proposal?

Resource Objections

Objections in this group relate to the input side of the equation. At some point,

even the largest organizations have no more money to spend on security, and

management will start making trade-offs; but before you get there, you may

well reach objections to the size of the investment. Examples include too many

people or too much work per person.

Too Many People

How many people are you proposing get involved in threat modeling? It may

be that your proposal really does take time from too many people. This may

be a resource objection, or it may be a way of presenting a value objection (it’s

too many people for the expected value), or it may be a proof objection—that

is, your evidence is insuffi cient for the organization to make the investment.

380 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 380

Too Much Work per Person

There are only 24 hours in a day, and only 8 or 10 of them are working hours. If

you’re proposing that your most senior people should spend an hour per day

threat modeling, that requires pushing aside that much other work. Especially

if they’re senior people, that work is probably important and requires their time.

A typical software process might incorporate not only the feature being worked

on, but properties such as security, privacy, usability, reliability, programmabil-

ity, accessibility, internationalization, and so on. Each of these is an important

property, and at the end of the day, it can overwhelm the actual feature work

(Shostack, 2011b). You’ll need to craft your proposal to constrain how much time

is asked of each person. You may want to suggest what should be removed from

people’s workload, but doing so may anger someone who has worked to ensure

that those tasks happen.

Too Much Busywork/YAGNI

A lot of activities associated with older approaches to threat modeling are like

busywork, or they invite the objection that “you ain’t gonna need it”. Examples

include entering a description of the project into a threat modeling tool (hey, it’s

in the spec) or listing all your assumptions (what do you do with that?). If you

get this objection, you’ll want to show how each of your activities and artifacts

is used and valued by people later in the chain.

Value Objections

Objections in this group relate to the output side of the equation. Someone

might well believe that security investments are a good idea, but this particular

proposal doesn’t reach the bar.

“I’ve Tried Threat Modeling. . .”

Many people have tried various threat modeling approaches, and many of

those approaches provided incredibly low value for the work invested. It is tre-

mendously important to respect this objection, and to understand exactly what

the objector has done. You might even have to listen to them vent for a while.

Once you understand what they did and where it broke down, you’ll need to

distinguish your proposal by showing how it is different.

There are both practical and personal objections based on past experience.

The practical objections stem from complex, ineffi cient, or ineffective approaches

that have been advocated elsewhere. Those objections inform the approaches

in this book. However, there are also personal objections, from where those

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 381

c17.indd 10:6:24:AM 01/09/2014 Page 381

ineffective approaches were pushed in ways that repelled people. There are a

number of mistakes you should avoid, including:

 ■ Not training people in what you want them to do

 ■ Give people contradictory or confusing advice.

 ■ Threat model when it’s too late to fi x anything.

 ■ Condescend to people when they make mistakes.

 ■ Focus on process, rather than results.

“We Don’t Fix Those Bugs”

If your approach to threat modeling is producing many bugs that are resolved

with something like WONTFIX, then that’s a problem. It might be that the approach

fi nds bugs that don’t matter, or it might be that the organization sets the bar high

for determining which bugs matter. In either event, some adjustment is called

for. If it’s the approach, can you categorize the bugs that are being punted? Is it

entities outside some boundary? Stop analyzing there. Is it a class of unfi xable

bugs? Document it once, and stop fi ling bugs for it. If it’s one of the STRIDE types,

perhaps lowering the priority until the organization is more willing to accept

those bugs will help you address other security bugs. If it’s the organizational

response, is a single individual making the call? If so, perhaps talking to that

person to understand their prioritization rationale would help.

“No One Would Ever Do That”

This objection (and its close relative, “Why would anyone do that?”) is less an

objection to threat modeling per se than to specifi c bugs being fi xed. Generally,

the best way to address these concerns is to look through the catalog of attackers

in Appendix C “Attacker Lists” and fi nd one who plausibly might “do that,” and/

or fi nd an instance of a similar attack being executed, possibly against another

product. If you respond by saying “If I can fi nd you an example, will you agree

to fi x it?” then you distinguish between where the objector really thinks no one

would ever do that, and where the real objection is that the fi x seems hard or

changes a cherished feature.

Objections to the Plan

If you have a reasonable amount of investment to produce a reasonable return,

you may still not get approval. Recall that management is management because

they’ll say no to good ideas. Therefore, your threat modeling proposal not

only has to be good enough to overcome that bar, it has to overcome that bar

in the particular circumstances when the proposal is made. Several of those

382 Part V ■ Taking It to the Next Level

c17.indd 10:6:24:AM 01/09/2014 Page 382

circumstances relate to the state of the organization, and include factors such

as timing and recent change, among other things. They also include things

particular to your plan, such as other security activity or the quality of evidence

you provide for your plan.

Timing

Management may already be investing in a couple of pilot projects, or one may

have just blown up in their face. It may be the day after the budget was locked.

A global recession may have just hit. These are hard objections to overcome.

The best bet may be to ask when would be the right time to come back.

Change

Changing the behavior of individuals is hard, and changing the behaviors of an

organization is even harder. Change requires adjustment of people, processes,

and habits. Each adjustment, however much it will eventually help, requires time

and energy that are taken away from productive work. Each person involved

in a change wants to know how it will impact them; and if the impact is not

positive, they may oppose or impede it. As such, people often fear change, and

managers fear kicking off changes. If your organization has just been through

a big change or a diffi cult change, appetite for more may be lacking.

Other Security Activity

The challenge may be that you have a decent investment proposal and decent

return but the return on another security investment is higher. The ways to

overcome this are either an adjustment to the investment or fi nding a way to

improve the return. A key part of that strategy is emphasizing that fi nding bugs

early is cheaper than fi nding them late. For some bugs that’s because you avoid

dependencies on the bug, but for many it’s because the cheapest bugs to fi x are

the ones that you head off before you implement them. Similarly, if you can

show that threat modeling could have prevented a class of bugs that continue

to cause problems, then that may be suffi cient justifi cation.

Quality of Evidence

A fi nal challenge to your plan may be that the quality of your proof points is

insuffi cient in some way. If so, ask clarifying questions as discussed earlier,

but it may simply be that you need more local experience with threat model-

ing before it can be formally sanctioned, or you need to gather additional data

through a pilot project or something similar.

 Chapter 17 ■ Bringing Threat Modeling to Your Organization 383

c17.indd 10:6:24:AM 01/09/2014 Page 383

Summary

Getting an organization to adopt a new practice is always challenging. On the

one hand, the issues you face will have a great deal in common with the issues

faced by others who have introduced threat modeling. On the other hand, how

you face them and overcome them will have aspects unique to your organiza-

tion. Everyone will need to “sell” their case to individual contributors and to

management.

Along the way to convincing people, you’ll have to answer a variety of questions

related to project management and roles and responsibilities, and ensure that

those answers fi t your organization’s approach to building systems. Generally,

that will include understanding the prerequisites to various tasks, and what

deliverables those tasks will produce. As you execute the required tasks, you’ll

run into interaction issues, so you need to understand how decisions will be

made. The decision models are likely different for different threat modeling

tasks. Some of those tasks will require meetings, and making meetings effective

can be tricky, especially if you overload agendas, meeting goals, and decision

models. Such overload is common to threat modeling.

Organizations vary in terms of delivering technology, and they deliver tech-

nology of different types. Some organizations use waterfalls with gates and

checkpoints; others are more agile. All organizations need to roll out systems,

and some also deliver software. Each development and deployment approach

will have different places to integrate threat modeling tasks. Most organizations

also have organized testing, and testing can be a great complement to threat

modeling. How an organization approaches technology also has implicatio ns

for how it hires, rewards, and promotes people, including factors such as train-

ing, career ladders, and interviewing.

When attempting to bring threat modeling to an organization, you’ll encoun-

ter a variety of objections that you’ll need to address. Those objections can be

roughly modeled as resource objections, value objections, and objections to

the plan; and each can be understood and approached in the various ways

described in this chapter.

c17.indd 10:6:24:AM 01/09/2014 Page 384

385

c18.indd 02:18:22:PM 01/16/2014 Page 385

Today’s approaches to threat modeling are good enough that a wide variety of

people with diverse backgrounds and knowledge can use them to fi nd threats

against systems they are developing, designing, or deploying. However, there’s

no reason to believe that current approaches are the pinnacle of threat modeling.

The same smart people who are fi nding new ways to reconceptualize program-

ming and operations will fi nd new ways to approach threat modeling.

This chapter presents some promising approaches with one or more identi-

fi able issues to overcome. Those issues can include a lack of success with the

method when used by those other than its inventors or a lack of prescriptiveness.

Those approaches include looking in the seams; operational threat modeling

approaches, including the FlipIT game and kill chains; the Broad Street taxonomy;

and adversarial machine learning. This chapter also discusses threats to threat

modeling approaches, risks to be aware of as you create your own techniques

or approaches, and closes with a section on how to experiment.

Some of these approaches are like Lego building blocks, and can easily be

attached to modeling software with DFDs and STRIDE, while others take a dif-

ferent approach to a problem, and are harder to snap together. The approaches

that can be plugged into other systems include a discussion about how you

can do that.

C H A P T E R

18

Experimental Approaches

386 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 386

Looking in the Seams

You can fi nd threats by bringing teams together to discuss the design of their

software, and using the resultant arguments as a basis for investigation. The

premise is that if two teams have different perspectives on how their software

works, then it’s likely the software has seams that an attacker could take advan-

tage of. This technique has been around for quite a long time, and is routinely

borne out in conversations with experts (McGraw, 2011). Why then is it listed

under experimental? Because there is limited advice available about what to

do to actually make it work.

One team at Microsoft has produced a methodology it calls intersystem review

(Marshall, 2013). This methodology was designed to build on DFDs and STRIDE,

and it works well with them. The questions (listed below) can probably be applied

to other approaches. What follows is a version of the intersystem review process,

edited to make it more generally applicable. Thanks to Andrew Marshall of

Microsoft for agreeing to share the work which forms the basis for this section.

The participants in an intersystem review are development, test, and program

management contacts for both (or all) sides of the system, along with security

experts. Before meeting in person, someone responsible for security should

ensure that the threat models for each team are documented, and pay close

attention to the external dependency lists. Unless otherwise noted/decided,

that responsible person should ensure that each step in the process, described

as follows, is completed.

The terms product and product group are intended to be interchangeable with

“service,” and the approach here may even be applied between companies,

agencies, or other entities. The fi rst two steps are assigned to the product group,

as they are most likely to understand their own systems.

 1. For each system, the product group should document data obtained from

other products:

 a. For what purpose or purposes is data validated?

 b. What purposes/use cases/scenarios are known not to be supported?

 c. Is there an assumption that specifi c validation or tests will be performed

by the receiver? (If so, is that in the developer documentation and any

sample code?)

 d. Does inbound data have any particular storage, security, or validation

concerns associated with it?

 e. What edge cases are developers and testers concerned about?

 Chapter 18 ■ Experimental Approaches 387

c18.indd 02:18:22:PM 01/16/2014 Page 387

 2. For each system, the product group should document data sent to other

products:

 a. What promises does the product make about content, format, integrity

or trustworthiness of the data?

 b. What purposes is the data suitable for?

 c. What validation is the recipient expected to perform? Where are those

requirements documented?

 d. What expectations are there for privacy or data protection by the

receiver?

 e. What edge cases are developers and testers concerned about?

 3. Create a system model including each system and the trust boundaries.

The model can be imperfect, and imperfection may provoke discussion.

 4. Have the cross-system group meet in person. The agenda should include:

 a. If the participants are new to intersystem-review, explain the goals of

the process and meeting.

 b. A walk-through of the diagrams and scenarios each component supports

 c. Document design, coding, and testing assumptions made by each

team on data received by dependencies. Outside the meeting, these

assumptions can be checked.

 d. Deep-dive into edge cases, especially around error handling and recovery.

 e. Review prior security bugs specifi c to services or interfaces exposed

at the trust boundaries.

Depending on the relationship between the systems involved, it may be

helpful to pre-defi ne a decision model with respect to bugs identifi ed during

the meeting. Such a decision model is especially important if participants may

suggest or demand bugs be fi led or addressed in code other than their own,

and if that otherwise wouldn’t be the case. For example, participants might not

have that ability if the seams are between two organizations. Also helpful is an

assigned note taker or recording of the meeting.

Operational Threat Models

The models described in this section, FlipIT and kill chains, are designed to

be of value to people operating systems. They span a gamut, from the deeply

theoretical approach of FlipIT to the deeply practical kill chains.

388 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 388

FlipIT

FlipIT is a game created by Ari Juels, Ron Rivest, and colleagues. (Ari is Chief

Scientist for RSA, Inc., and Ron is one of the creators of the RSA cryptosystem.)

FlipIT is played by two players, each of whom would like to control an IT system

for as long as possible. Each can, at any time, and at some cost, check to see if

they control the system, and if they do not, take control. Whoever controls the

system at a given time is earning points, but the score is hidden until the end

of the game (otherwise, it would leak information about who’s in control). The

object of the game is to have more points than your opponent at the end. Perhaps

obviously, FlipIT is more a game in the sense of the Prisoner’s Dilemma than

a game like Monopoly. To help you get a sense for the game, there is a simple

online demonstration (Bowers, 2012), and it has a certain charm and ability to

pull you into playing.

FlipIT is a model of an IT system and an intruder. Each would like to con-

trol the system at a minimal cost. Its authors have used FlipIT as a model to

demonstrate how password changes can be made more secure at a lower cost.

I’m optimistic that FlipIT can be effectively used to model a system’s security

in additional interesting ways. FlipIT is listed as experimental because to date

only its authors have used it to fi nd new insights.

FlipIT is a very different sort of model compared to other forms of operational

threat modeling, and if it’s possible to integrate it with other approaches, how

to do so is not yet clear.

Kill Chains

The concept of “kill chains” comes from analysis at the US Air Force. There

have been several attempts to apply kill chain approaches to operational threat

modeling. The essential idea of a kill chain is that most attacks involve more

than simply taking over a computer or gathering usernames and passwords

via phishing. There is a chain of events that includes such steps, but as technol-

ogy exploitation becomes commercialized and weaponized, understanding the

chain of activity gives defenders more opportunities to interfere with it. These

kill chain models seem to benefi t from customization to align with the mental

models of defenders who are using them.

The models in a kill chain approach model both the actions of the attack-

ers and the reactions of the defenders. The idea was introduced in a paper

“Intelligence-Driven Computer Network Defense Informed by Analysis of

Adversary Campaigns and Intrusion Kill Chains,” by Eric Hutchins and col-

leagues at Lockheed Martin (Hutchins, 2011). You’ll see these referred to as

 Chapter 18 ■ Experimental Approaches 389

c18.indd 02:18:22:PM 01/16/2014 Page 389

“LM kill chains” in this section. There is also work from Microsoft on “threat

genomics” which is closely related and discussed below.

Kill chains are fairly different from other threat elicitation approaches. They

are like Erector Sets while STRIDE is like Legos. There might be an opportunity

to use the defensive technologies as a bridge to other defensive techniques or

tools, but it could be awkward.

LM Kill Chains

The LM kill chain paper presents the idea of using kill chains to drive defensive

activity. The authors’ approach models attacker activity in terms of indicators.

These indicators are either atomic, computed, or behavioral. An atomic indi-

cator is one that cannot be further broken down while retaining meaning. A

computed indicator is also derived from data in the incident (rather than an

interpretation), and can take forms such as a regular expression. A behavioral

indicator is created by combining atomic and computed indicators, and might

be a sentence designed for a person to read and consider.

The LM kill chain model outlines seven phases that attackers go through:

 ■ Reconnaissance: Research, identifi cation and selection of targets

 ■ Weaponization: Combining an exploit and remote access tool into a

package for delivery

 ■ Delivery: Delivering the package to the target. LM reports that e-mail,

websites, and USB media were most commonly observed.

 ■ Exploitation: Some action to trigger intruder code, often via a vulner-

ability in an OS or application (See also the section “The Broad Street

Taxonomy,” later in this chapter.)

 ■ Installation: Installing the remote access tool into the targeted system

 ■ Command and Control (C2): Establishing and using a communications

channel with the attacker

 ■ Actions on Objectives: The actual work that motivates all of the above

The model also posits that there are defensive actions that a defender can

take, and includes a table (redrawn as Table 18-1) with an information operations

doctrine of detect, deny, disrupt, degrade, deceive, and destroy. The defensive

doctrine is derived from the U.S. military. The acronyms used are: IDS (Intrusion

Detection System), NIDS (Network IDS), HIDS (Host IDS), NIPS (Network

Intrusion Prevention System), and DEP (Data Execution Protection).

390 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 390

Table 18-1: LM Courses of Action Matrix

PHASE DETECT DENY DISRUPT DEGRADE DECEIVE DESTROY

Recon Web

analytics

Firewall

ACL

Weaponize NIDS NIPS

Deliver Vigilant

User

Proxy

Filter

In-Line AV Queuing

Exploit HIDS Patch DEP

Install HIDS “chroot”

Jail

AV

C2 NIDS Firewall

ACL

NIPS Tarpit DNS

Redirect

Actions on

Objectives

Audit Log Quality of

Service

Honeypot

Source: Hutchins, et al. 2011.

The paper usefully shows how indicators can provide a way to look earlier

and later in the chain to fi nd other aspects of an intrusion, and how common

indicators may show that multiple intrusions were made by the same attacker.

Taking data from other phases to fi nd places to look for indicators of attack is

an important way to model and focus defender activity.

Threat Genomics

Another approach that shows promise is Espenschied and Gunn’s threat genom-

ics (Espenschied, 2012). This work models the detectable changes that attackers

introduce into an operational system. In contrast to the LM model, the threat

genomics model focuses on detectable changes, rather than operational steps,

that an attacker would progress through. The approach aims to build a model

of an attack from those changes, and then apply the models to improve detec-

tion and predictive capabilities. Threat genomics models are a set of what the

authors call threat sequences. A sequence is a set of state transitions over time.

The states are as follows:

 ■ Reconnaissance

 ■ Commencement

 ■ Entry

 ■ Foothold

 ■ Lateral movement

 ■ Acquired control

 Chapter 18 ■ Experimental Approaches 391

c18.indd 02:18:22:PM 01/16/2014 Page 391

 ■ Acquired target

 ■ Implement/execute

 ■ Conceal and maintain

 ■ Withdraw

Note that the states are not sequential, and not all are required. For example,

an attack that installs a remote access tool may involve entry and foothold as

the same action. Steps such as reconnaissance or lateral movement may not be

required at all. (This is in contrast to the LM model.) The sequences are based

on observable indicators, such as log entries. Note that this model “sits above”

many of the “security indicators” systems, such as OpenIOC, STIX, and so on.

The sequences are intended to move analysts away from interpreting individual

indicators or correlations to interpreting correlations between sequences.

After an attack, if investigators piece together enough elements of the sequence,

then the sequence and/or its details may provide information about an attacker’s

tools, techniques, and procedures. If these are graphed, then different graphs

may help to distinguish between attackers. A sample sequence from Espenschied

and Gunn’s paper is shown in Figure 18-1.

Withdraw [fw logs]

[proxy alert]

[NIDS alert]

[event log]

[SIM AD feed]

[HIDS]

[event log]

[DLP alert]

[log integrity]

[audit]

Conceal &
Maintain

Implement/
Execute
Acquire
Target

Acquire
Control
Lateral

Movement

Foothold

Entry

Commence

Reconnais-
sance

Base Action Source

Threat Sequence

Time

Figure 18-1: Threat genomics example

The sequences model enables an investigator to understand where indicators

should be present. For example, before a target can be acquired, the attacker has

to enter and establish a foothold.

This model is also a helpful way to consider what data sources would detect

which state transitions. For example, domain controller change reports may help

discover control acquisition, but they will not directly help you fi nd the initial

392 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 392

point of entry. Figure 18-2, taken from the paper, shows a sample mapping of

data sources to transitions.

Data Source
Web server logs

1 2 3 4 5 6 7 8 9 10

Email server logs
DB logs

VLAN logs
AD domain change reports
OS Windows event logs
OS other desktop logs
AV logs
Host scan logs

HIDS
ACS/FEP event logs
Web proxy logs
IDS/IPS logs
Firewall logs

TwCSec assessment

Figure 18-2: Mapping data sources to transitions

If a column is missing, you should consider whether that transition is some-

thing you want to detect. The list of possible rows is long. If a defensive tech-

nology row doesn’t match any column, it’s worth asking what it’s for, although

the failure to fi nd a match may result from it simply not lining up well with the

threat genomics approach. The defensive technologies shown should be taken as

examples, not a complete list. Threat genomics is listed as experimental because

to date (as far as I know) only its authors have made use of it.

The “Broad Street” Taxonomy

I developed the “Broad Street Taxonomy” and named it after a seminal event in

the history of public health: Dr. John Snow’s identifi cation of a London street water

pump as the source of contamination during an outbreak of cholera in 1854. Not

only did he demonstrate a link, but he removed the handle of the water pump,

and in doing so probably altered the course of the epidemic. For more on the

history of that event, see The Ghost Map by Steven Johnson (Penguin, 2006). It is

both a taxonomy, that is a system for categorizing things, and a model, in that it

abstracts away details to help focus attention on certain aspects of those events.

I chose the name Broad Street to focus attention on the desire to understand

 Chapter 18 ■ Experimental Approaches 393

c18.indd 02:18:22:PM 01/16/2014 Page 393

how computers come to harm, and it enables activities to address those causes.

The use of an aspirational, rather than a functional name, was also driven by

the fact that the taxonomy categorizes a set of things that are somewhat tricky

to describe. Part of the reason they are tricky to describe is that the taxonomy

groups them together for the fi rst time. By analogy, before Linnaeus built a

tree of life, vertebrae referred only to backbones, not the set of creatures with

backbones. By categorizing living organisms, he created a new way of seeing

them. (My aspirations are somewhat less . . . broad.)

So what does Broad Street model? The taxonomy is designed to clarify how

computers are actually compromised (“broken into”) for malware installations,

and it has shown promise for use in incident root cause analysis. It focuses only

on issues that have been repeatedly documented in the fi eld. The taxonomy helps

understand compromises in a way that can effectively drive product design

and improvement. The value of the model is its focus on the means of compro-

mise for an important set of compromises. However, Broad Street is neither a

model of compromise nor a model of how malware gets onto systems. It’s not a

model of compromise because it doesn’t touch on compromises that start with

stolen credentials. Nor is it a complete model of how malware gets onto systems,

as it excludes malware that is installed by other malware.

N O T E The model has had a deep impact at Microsoft, resulting in an update to

AutoPlay being shipped via Windows Update, but its use has been limited elsewhere

(so far).

Before getting into the taxonomy itself, note that Broad Street does not align

well with software development threat modeling; its model of the world is too

coarse to be of use to most developers, who consider particular features. Thus,

continuing with the toy analogies, Broad Street is like Lincoln Logs.

When represented as a taxonomy, Broad Street includes a set of questions that

are designed to enable defenders to categorize an attack in a consistent way. The

questions are ordered, and presented as a fl owchart, as shown in Figure 18-3.

The questions are designed to be applied to a single instance of compromise, or,

in the case of malware that uses several different approaches to compromise a

system, serially across each technique, resulting in each technique having a label.

The questions are explained after the fl owchart. The simplifi ed presentation in a

fl owchart is easy to use, but many nodes have nuances that are hard to capture

in the short labels. The exit condition for categorizing an attack is that an attack

must have a label. Note that in Figure 18-3, there are boxes labeled “I’m unsure”

and “hard to categorize.” These are intended for those using the taxonomy to

record those problems. (Figure 18-3 shows version 2.7 of the taxonomy.)

User ran/installed
software w/extra

functionality

3. User intent to
run?

2. Deception?
1. User

interaction?

4. Used ‘sploit? 5. Used ‘sploit? 6. Used ‘sploit? 7. Configuration
available?

Socially
Engineered
Vulnerability

User-
Interaction

Vulnerability

“Classic”
Vulnerability

Opt-in botnet
11. Software

installed?
Misuse of authZ

access

Instance of
compromise

I’m unsure Hard to categorize

5. Feature Abuse

Other Feature abuse
(Describe)

File Infecting

Password Brute
force

Autorun (USB/
removable)

Autorun (network/
mapped drive)

Office Macros

Other config issue
(Describe)

no

no no no

no no

yes

yes yes yes

yes

yes yes

User tricked into
running software

9. Vulnerability
known?

Custom software,
known

Custom software,
discovered

Other Vuln
(Describe)

10. How
long update
available?

Zero-day Update available
Update long

available

Vulnerability

Unsupported

Custom software COTS/FOSS (“off the shelf”)

Yes No

Not yet Up to a year More than a year

8. Bespoke
software?

Figure 18-3: The Broad Street Taxonomy

 Chapter 18 ■ Experimental Approaches 395

c18.indd 02:18:22:PM 01/16/2014 Page 395

 1. User interaction? The fi rst question the taxonomy poses is whether a

person has to perform some action that results in a compromise. Asked

another way, if no one is logged into the computer, can the attack work? If

the answer is yes, the fl ow proceeds to question 2; if no, the fl ow proceeds

to question 6.

 2. Deception? The second question is one of deception. Deception often

entails convincing someone that they will get some benefi t from the action,

or suffer some penalty if they don’t do it, using any of a variety of social

engineering techniques. (Table 15-1 provides ways to describe such tech-

niques.) Examples of deception might include a website telling people

that they need to install a codec to watch a video, or an e-mail message

that claims to be from the tax authorities. There are a variety of actions

that a “normal person” will believe are safe, such as browsing well-known

websites or visiting a local fi le share. (Earlier variants of the taxonomy

addressed this by asking, “Does the user click through a warning of some

form?” and while that is still a good criterion, it is hard to argue that remov-

ing warnings from software should lead to changing the way something

is categorized.) If propagation requires deceiving the victim, the fl ow

proceeds to question 3. If it doesn’t, question 3 is skipped and the fl ow

proceeds to question 5.

 3. User intent to run (software)? If interaction is required, is the person aware

that the action they are taking will involve running or installing software?

If the answer is yes, the incident can be categorized by the endpoint: User

ran/installed software (with unexpected functionality). The person runs the

software, which does unexpected and malicious actions in addition to,

or instead of, the software’s desired function. A signifi cant overlap exists

between this and the traditional defi nitions of Trojan Horse software. The

analogy with the Trojan Horse from Greek mythology refers to the way

a lot of malware gains access to victims’ computers by masquerading as

something innocuous: malicious programs represented as installers for

legitimate security programs, for example, or disguised as documents for

common desktop applications. This label can cause two types of confu-

sion. First, it could lead to multiple endpoints with the same label. Second,

many security vendors defi ne “trojan” [sic] as a program that is unable to

spread of its own accord.

 4. Used ‘sploit?/Deserves a CVE? These questions have the same intent.

Different presentations of the taxonomy use different presentations of this

question, selected to be more usable for a particular audience. This ques-

tion has the same meaning for nodes (4, 5, and 6) of the process fl ow, and

determines whether or not a vulnerability is involved. Because the term

“vulnerability” can be open to interpretation, the question asks whether

the method used to install the software is of the sort often documented

396 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 396

in the Common Vulnerabilities and Exposures list (CVE), a standardized

repository of vulnerability information maintained at cve.mitre.org.

(“Deserves” is used to cover situations in which the method meets the

CVE criteria but has not yet been assigned a CVE number, as with a pre-

viously undisclosed vulnerability. However, the CVE does not cover less

frequently deployed systems, so “deserving of a CVE” may be read as “a

thing which would get a CVE if it were in a popular product.”) This ques-

tion can also be read as “Was an exploit used?” (where exploit refers to a

small piece of software designed to exploit a vulnerability in software, and

often written as “sploit”). If question 4 is answered no, then the incident is

categorized: User tricked into running software. This result indicates a false

badging, such as a malicious executable named document.pdf.exe with

an icon similar or identical to the one used for PDF fi les in Adobe Reader.

The victim launches the executable, believing it to be an ordinary PDF

fi le, and it installs malware or takes other malicious actions. If question

4 is answered yes, then you can categorize the means of compromise as

socially engineered vulnerability, and possibly further categorize it through

the vulnerability subprocess (nodes 8, 9 and 10).

 5. Deserves a CVE? If question 5 is answered yes, then you can categorize it

as a user-interaction vulnerability, and possibly further categorize it through

the vulnerability subprocess. The taxonomy does not use the popular

“drive-by-download” label because that term is used in several ways.

One is analogous to these issues; the others are what are labeled: User

runs/installs software with extra functionality and User tricked into running

software. If it does not deserve a CVE, then you can refer to the endpoint

as an Opt-in botnet, a phrase coined by Gunter Ollman (Ollman, 2010). In

some cases, people choose to install software that is designed to perform

malicious actions. For example, this category includes Low Orbit Ion

Cannon (LOIC), an open-source network attack tool designed to perform

DoS attacks.

 6. Deserves a CVE? If question 6 is answered yes, then you should categorize

it as a classic vulnerability, and possibly further categorize it through the

vulnerability subprocess.

 7. Confi guration Available? Can the attack vector be eliminated through

confi guration changes, or does it involve intrinsic product features that

cannot be disabled through confi guration? Confi guration options would

include things like turning the fi rewall off and using a registry change to

disable the AutoRun feature. If the answer is yes—in other words, if the

 Chapter 18 ■ Experimental Approaches 397

c18.indd 02:18:22:PM 01/16/2014 Page 397

attack vector can be eliminated through confi guration changes—the fl ow

terminates in one of four endpoints:

 a. AutoRun (USB/removable): The attack took advantage of the AutoRun

feature in Windows to propagate on USB storage devices and other

removable volumes.

 b. AutoRun (network/mapped drive): The threat takes advantage of the

AutoRun feature to propagate via network volumes mapped to drive

letters.

 c. Offi ce Macros: The threat propagates to new computers when victims

open Microsoft Offi ce documents with malicious macros.

 d. Other confi guration issue: This catch-all is designed to accumulate

issues over time until we can better categorize them.

If the answer is no—in other words, if the attack vector uses product fea-

tures that cannot be turned off via a confi guration option—then the vector

is called feature abuse, which includes three subcategories:

 a. File infecting viruses: The threat spreads by modifying fi les, often

with .exe or .scr extensions, by rewriting or overwriting some code

segments. To spread between computers, the virus writes to network

drives or removable drives.

 b. Password brute force: The threat spreads by attempting brute-force

password attacks—for example, via ssh or rlogin or against available

SMB volumes to obtain write or execute permissions.

 c. Other feature abuse: This is another catch-all, designed to accumulate

issues over time until we can better categorize them.

 8. Bespoke Software Project? This question is designed to distinguish locally

developed software from widely available software. Vulnerabilities are not

unique to commercial (or open-source) software, and other exploit analyses

have found that vulnerabilities in custom software, such as website code,

account for a signifi cant percentage of exploitation (Verizon, 2013).

 9. Vulnerability known? This question serves to distinguish between

issues discovered by the owner/operator/creator of the software and

those found by an attacker. For vulnerabilities discovered by an orga-

nization, there is some period of time between discovery and patching

while the vulnerability is reproduced, and code is fi xed and tested. One

endpoint here, Custom software, known (to owner), is for that set. The other

398 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 398

endpoint, Custom software, discovered (by attacker), is for those vulnerabilities

fi rst found by an attacker.

 10. How long update available? (The abbreviated text fi ts in a box, and means

“how long has the update been available to install?”):

 a. Zero-day: Refers to a vulnerability for which no patch was available

from the software creator at the time of exploitation.

 b. Update available: Refers to a vulnerability for which a patch was avail-

able from the software creator for up to a year at the time of exploitation.

 c. Update long available: Refers to a vulnerability for which a patch

was available from the software creator for over a year at the time of

exploitation.

 d. Unsupported: Refers to a vulnerability in the software that the creator

no longer supports, including when the creator is out of business.

The Broad Street Taxonomy is a way to categorize and model an important

set of things which are not otherwise brought together. Modeling those things

in a new way has helped to improve the security of systems, and that modeling

and categorization is worth exploring in additional areas.

Adversarial Machine Learning

Because machine learning approaches help solve a wide variety of problems,

they have been applied to security, some in authentication, others in spam or

other attack detection spaces. Attackers know this is happening, and have started

to attack machine learning systems. As a result, academics and defenders are

starting to examine a security subfi eld called adversarial machine learning. In a

paper of that name, the authors propose a categorization with three properties

(Huang, 2011). The properties are infl uence, security goals, and attacker goals.

The infl uence property includes attacks against the training data, and exploratory

attacks against the operational system. The second property describes what

security goal is violated, including integrity of the detector’s ability to detect

intrusions; and availability, meaning the system becomes so noisy that real

positives cannot be detected. The security goals also include privacy, meaning

attacks that compromise information about the people using the system, and it

appears to be a subset of information disclosure attacks. The third category is

a spectrum of attacker goals, from targeted to indiscriminate.

The paper lays out the taxonomy including descriptions of further attacks in

detail, walks through a number of case studies, and discusses defenses. (False

negatives are included in their bulleted explanation of availability, but not in the

text. Their taxonomy may be more clear if you treat induction of false negatives

 Chapter 18 ■ Experimental Approaches 399

c18.indd 02:18:22:PM 01/16/2014 Page 399

as an integrity attack, and caused false positives as an availability attack.) This

is a fi eld that is likely to explode over the next few years, as more people believe

that big data and machine learning will solve their security problems.

Adversarial machine learning can be contextualized as a second-order threat

that is relevant when machine learning is used as a mitigation technique.

Currently, there is no clean model demonstrating how machine learning can

help mitigate threats, which inhibits saying exactly where adversarial machine

learning will help or hurt.

Threat Modeling a Business

How to threat model something bigger than a piece of software or a system

being deployed is a fair question, and one that security and operations people

would like to be able to address in consistent, predictable ways that offer a high

return on investment.

There appears to be tension between scope and the value that organizations

receive for their threat modeling investments. That is, threat modeling more

specifi c technologies is easier than threat modeling something as large and

complex as a business. Perhaps at some level, all organizations are similar? At

another level, each one has unique assets and threats against those assets. The

most mature system for modeling a business is OCTAVE-Allegro from CERT-CC.

OCTAVE is the Operationally Critical Threat, Asset, and Vulnerability

Evaluation approach to risk assessment and planning. There are three, inter-

linked methods: the original; an OCTAVE-S method for smaller organizations;

and OCTAVE-Allegro, which is positioned as a streamlined approach. All are

designed for operational risk management, rather than development time, and

all focus on operational risks.

The methodology is freely available from the CERT.org website, and it is

clearly organized into a set of phases and activities, with defi ned roles and

responsibilities. The free materials include worksheets, examples and a book.

Training classes are also offered. It is one of the more fully developed method-

ologies available, and those looking to create a new approach should examine

OCTAVE and understand why each element is present.

OCTAVE Allegro consists of eight steps organized into four phases:

 1. Develop risk measurement criteria and organizational drivers.

 2. Create a profi le of each critical information asset.

 3. Identify threats to each information asset.

 4. Identify and analyze risks to information assets and begin to develop

mitigation approaches.

400 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 400

Risks are to be brainstormed (or approached with a provided threat tree) in

six areas, each of which has an associated worksheet:

 ■ Reputation and customer confi dence

 ■ Financial

 ■ Productivity

 ■ Safety and health

 ■ Fines/legal penalties

 ■ User-defi ned

The documentation notes that “working through each branch of the threat

trees to identify threat scenarios can be a tedious exercise.” This is an ongoing

challenge for all such methodologies, and one that offers a real opportunity

for helping a large set of organizations if someone fi nds a good balance here.

OCTAVE and its family do not interconnect in obvious ways with other methods.

Perhaps this family of systems is like Revel model airplanes. If the kit is what

you need, it’s what you need, but it may be a little tedious to put it together?

Threats to Threat Modeling Approaches

Henry Spencer said, “those who don’t understand Unix are condemned to rein-

vent it, poorly.” The same applies to threat modeling. If you don’t understand

what has come before, then how can you know if you’re doing something new?

If you know you’re doing something new but you’re changing training, tasks,

or techniques at random, how can you expect the outcome to be better? If you

don’t understand the issues in what came before, how do you know if you’re

tweaking the right things?

There are a number of common ways to fail at threat modeling. The fi rst is

not trying, which is self-evident. Some additional important ones are discussed

in this section. They are broken into dangerous deliverables and dangerous

approaches.

Dangerous Deliverables

These are two outputs which tend to lead to failure. The fi rst is to create an

enumeration of all assumptions (made worse by starting with that list), the

second is threat model reports.

Enumerate All Assumptions

The advice to “enumerate all assumptions” is common within threat modeling

systems, yet it is full of fail. It’s full of fail for a number of reasons, including

 Chapter 18 ■ Experimental Approaches 401

c18.indd 02:18:22:PM 01/16/2014 Page 401

that enumerating all assumptions is impossible; and even if it were possible, it

would be an unbounded and unscoped activity. It’s also highly stymieing. Let’s

start with why enumerating all assumptions is not possible.

Using a simple example, I could write, “I assume readers of this book speak

English.” That sentence contains a number of assumptions, such as that this

book will be read, and that it will be read in English. Both assumptions are, in

part, false. I could assume that reading, in the sense I’m using it, incorporates

an audio-book (hey, an author can hope, or at least look forward to text-to-

speech improving). It also incorporates the assumption that the book won’t be

translated. Underlying the word “English” is the strange belief that there exists

a defi nable thing that we both call the English language, and that each of the

terms I use will be read by the reader in the manner in which I intend it. You

could reasonably argue that those assumptions are silly and irrelevant to our

purposes. You could do so even if you were steeped in arguments over what

a language is, because our goal here is to discuss threat modeling; and to the

extent that we’re within the same communities of practice and considering threat

modeling as a technical discipline, you’d be right. However, threat modeling

is not a single community of practice. Experts in different things are expert in

different things, and the assumptions they make that matter to one another are

not obvious in advance. That’s why they are assumptions, rather than stated.

Therefore, asking people to start a threat modeling process by enumerating

assumptions is going to stymie them.

Even though enumerating all assumptions is impossible, tracking assump-

tions as you go can be a valuable activity. There are a few key differences that

make this work. First, it’s not fi rst—that is, it doesn’t act as an inhibitor to get-

ting started. Second, it relies on documenting what you discover through the

natural fl ow of work. Third, assumptions are often responsible for issues falling

between cracks, so investigating and validating assumptions often pays off.

(See the discussion of intersystem review in the “Looking in the Seams” section

earlier in this chapter for advice on teasing out assumptions from large systems.)

Threat Model Reports

Threat modeling projects have a long and unfortunate history of producing a

report as a fi nal deliverable. That’s because very early threat modeling was done

by consultants, and consultants deliver reports. Their customers turn those into

bugs, or perhaps more commonly, shelfware. Reports are not, in and of them-

selves, bad. A good threat analysis can be a useful input to requirements, can

help software engineers think about problems, and can be a useful input into

a test plan. Good notes to API callers or non-requirements can help things not

fall through the seams. A good analysis might turn the threats into stories so

they stay close to mind as software is being written or reviewed. This is an area

where attacker-centric modeling may help. A good story contains confl ict, and

confl ict has sides. In this case, you are one side, and an attacker is the other side.

402 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 402

Dangerous Approaches

Sometimes, looking at what you should not do can be more instructive than

looking at what you should do. This section describes some approaches to threat

modeling that share a common characteristic: They are all ways to fail.

 ■ Cargo culting: The term cargo cult science comes to us from Richard

Feynman:

In the South Seas there is a cargo cult of people. During the war they saw air-
planes with lots of good materials, and they want the same thing to happen now.
So they’ve arranged to make things like runways, to put fi res along the sides of the
runways, to make a wooden hut for a man to sit in, with two wooden pieces on
his head to headphones and bars of bamboo sticking out like antennas—he’s the
controller—and they wait for the airplanes to land. They’re doing everything right.
The form is perfect. It looks exactly the way it looked before. But it doesn’t work.
No airplanes land. So I call these things cargo cult science, because they follow
all the apparent precepts and forms of scientifi c investigation, but they’re missing
something essential, because the planes don’t land.

from Surely You’re Joking, Mr. Feynman!
(Feynman, 2010)

The complexities of threat modeling will sometimes combine with demands

by leadership to result in cargo-cult threat modeling. That is, people go

through the motions and try to threat model, but they lack an understand-

ing of the steps, completing them by rote. If you don’t understand why

a step is present, you should eliminate it, and see if you get value from

what remains.

 ■ The kitchen sink: Closely related to cargo culting is the “kitchen sink”

approach to the threat modeling process. These systems are sometimes

developed by adherents of several approaches who need to work together.

No one wants to leave out their favorite bit, and either no one wants to

make a decision or no one is empowered to make it stick. The trouble

with the kitchen sink approach is that effort is wasted, and momentum

toward fi xing problems can be lost.

 ■ Think like an attacker: The advice to think like an attacker is common,

and it’s easy to repeat it without thinking. The problem is that telling

most people to think like an attacker is like telling them to think like a

professional chef. Even my friends who enjoy cooking have little idea

how a chef approaches what dishes to put on a menu, or how to manage

a kitchen so that 100 people are fed in an hour. Therefore, if you’re going

to ask people to think like an attacker, you need to give them supports,

 Chapter 18 ■ Experimental Approaches 403

c18.indd 02:18:22:PM 01/16/2014 Page 403

such as lists of attacker goals or techniques. Effort to become familiar

with those lists absorbs “space in the brain” that must be shared with the

system being built and possible attacks (Shostack, 2008b). “Think like an

attacker” may be useful as an exhortation to get people into the mood of

threat modeling (Kelsey, 2008).

 ■ You’re never done threat modeling: Security experts love to say that

you’re never done threat modeling, and there are few better ways to

ensure that you’re never going to get it included in a project plan. If you

can’t schedule the work, if you can’t describe a deliverable that fi ts into

a delivery checklist, then threat modeling is unlikely to be an essential

aspect of delivery.

 ■ This is the way to threat model: Another idea that hurts threat modeling

is the belief that there’s one right way to do it. One outgrowth of this is

what might be called the “stew” model of threat modeling: just throw in

whatever appeals, and it’ll probably work out. Similarly, too much advice

on threat modeling currently available is not clearly situated or related to

other advice, and as such there is often an implicit stew approach. If you

select ingredients from random recipes on the Internet, you’re unlikely to

make a tasty stew; and if you select ingredients from random approaches

to threat modeling, do you expect anything better? Good advice on threat

modeling includes the context in which an approach, methodology, or

task is intended to be used. It also talks about prerequisites and skills.

It is made concrete with a list of deliverables, but more important, how

those deliverables are expected to be used.

 ■ The way I threat model is...: Every approach that has been criticized in

this book has not only advocates, but advocates who have successfully

applied the approach. They are likely outraged that their approach is

being questioned, and with good reason. After all, it worked for them.

However, that’s no guarantee that it will work for others. One key goal of

this book is to provide structured approaches to threat modeling that can

be effectively integrated into a development or operations methodology

in a cost-effective way. A useful approach to threat modeling will scale

beyond its inventor.

 ■ Security has to be about protecting assets: This is so obvious a truism

that it’s nearly unchallengeable. If you’re not investing to protect an asset,

why are you investing? What is the asset worth? If you’re investing more

than the value of the asset, why do it? All of these are great questions, and

well worth asking. It’s hard to argue with the importance of either. If you

have no assets to protect, don’t invest in threat modeling. At the same time,

these questions aren’t always easy to answer. Modeling around assets is

404 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 404

easier with operational systems than with “boxed” software (although the

software-centric approach does tend to work well for operational systems).

The importance of the question, however, isn’t always aligned with when

it should be asked, or even with the project at hand. “What gives mean-

ing to your life?” is an important question, but if every software project

started with that question, a lot of them wouldn’t get very far.

How to Experiment

After reading about all the ways that threat modeling can go astray, it can be

tempting to decide that it’s just too hard. Perhaps that’s true. It is very hard to

create an approach that helps those who are not expert threat modelers, and it’s

very hard to create an approach that helps experts—but it is not impossible. If

you have an understanding of what you want to make better, and an understand-

ing of what has failed, many people will make something better, something

that works for their organization in new ways. To do that, you’ll want to defi ne

a problem, fi nd aspects of that problem that you can measure, measure those

things, introduce a change, measure again, and study your results.

Defi ne a Problem

The fi rst step is to know what you’re trying to improve. What is it about the

many systems in this book and elsewhere that is insuffi cient for your needs?

Why are they not working? Defi ne your goal. You may end up solving a differ-

ent problem than you expect, and that may be OK; but if you don’t know where

you’re going, you’re unlikely to know if you’ve arrived.

Developing a good experiment around threat modeling is challenging. Perhaps

more tractable is interviewing developers or surveying them after a task. Knowing

what you’re trying to improve can help you decide on the right questions to ask.

Are you trying to get threat modeling going? In that case, perhaps ask partici-

pants if they think it was worthwhile and how many bugs they fi led. Are you

comparing two systems to fi nd more threats? Are you trying to make the process

run faster? See how long they spent, and how many bugs they fi led. Knowing

what you’re trying to achieve is a key part of measuring what you’re getting.

Find Aspects to Measure and Measure Them

It’s easy to make changes and hope that they have the appropriate results. It

can be harder to experiment, but the best way to understand what you’ve done

 Chapter 18 ■ Experimental Approaches 405

c18.indd 02:18:22:PM 01/16/2014 Page 405

is to structure an experiment. Those experiments can be narrow, such as creat-

ing better training around STRIDE, or broader, such as replacing the four-stage

model. At the core of an experiment should be some sort of testable hypothesis:

If we do X, we’ll get better results than we do with Y.

Designing a good experiment involves setting up several closely related

tests, with as few variances between them as possible. Therefore, you might

want to keep the system used in the test the same. You might want to use the

same people, but if they’re threat modeling the same system twice, then data

from one test might taint the other. Putting people through multiple training

sessions might show a different result from putting them through one (in fact,

you’d hope it would). Therefore, you might bring different people in, but how

do you ensure they have similar skills and backgrounds? How do you ensure

that what you’re testing is the approach, rather than the training? Perhaps one

training has a better-looking presenter, or show more enthusiasm when covering

one approach versus another. You should also review the advice on running

user tests in Chapter 15 “Human Factors and Usability.”

Study Your Results

If you’ve done something better, how much better is it? What’s the benefi t?

Does it lead you to think that the line of inquiry is complete, or is there more

opportunity to fi x the issues that are causing you to experiment? What will it

cost to roll it out across the relevant population? Can the new practices coexist

with the old, or will they be confusing? These factors, along with the size and

dispersion of an organization, infl uence the speed and frequency of new rollouts.

When you’ve built something new and useful, you should give it a name. Just

as you wouldn’t call your new programming language “programming language,”

you shouldn’t name what you created “threat modeling.” Give it a unique name.

Summary

 There are many promising approaches to threat modeling, and a lot of ways in

which experimentation will improve our approaches. Knowing what has been

done and what has failed are helpful input to such experiments.

The fi rst promising approach is to look in the seams between systems, and

this chapter gives you a structured approach to doing so. You also looked at

a few other approaches to operational threat modeling that show promise,

including the FlipIT game and two kill chain models. There is also a Broad

Street Taxonomy, which is designed to help understand bad outcomes in the

real world. Lastly, there is an emergent academic fi eld studying adversarial

406 Part V ■ Taking it to the Next Level

c18.indd 02:18:22:PM 01/16/2014 Page 406

machine learning, which will be an important part of understanding when

machine learning systems can help you mitigate threats.

This chapter also examined a long list of threats to threat modeling approaches,

including dangerous deliverables (lists of assumptions and threat model reports)

and dangerous approaches. The dangerous approaches include cargo culting and

throwing in everything but the kitchen sink. They also include exhorting people

to “think like an attacker”; telling them (or yourself) “you’re never done threat

modeling”; saying “the way to threat model is”; or “the way I threat model is”;

and the ever-popular distraction, “security has to be about assets.”

Knowing all of this sets you up to innovate and experiment. You should do

so for a problem that you can clearly articulate and for which you can measure

the results of an experiment (as challenging as that can be).

407

c19.indd 07:54:5:AM 01/15/2014 Page 407

There is no perfect or true way to threat model; but that is not to say that there

are no poor approaches documented, approaches that have never worked for

anyone but their author, and it is not to say that you can’t compare approaches

and decide that some are better or worse. One readily observable indicator is

whether the authors describe organizational factors in depth, such as the degree of

expertise needed, or inputs and outputs. Another indicator is whether the system

has proponents (other than its creators) who make use of it in their own work.

This chapter closes the book by looking at the ways in which the threat

modeling practitioner’s approach, framing, scope, and related issues can help

you design new processes or roll processes out successfully. In other words, it

moves from focusing on how threat modeling can go wrong to how to make

it work effectively.

This chapter begins with a discussion of fl ow and the importance of know-

ing the participants, and then covers boundary objects and how “the best is

the enemy of the good.” It closes with a discussion of how “the threat model”

is evolving and artistry in threat modeling.

Understanding Flow

Flow is the state of full immersion and participation in an activity. It refl ects

a state of undistracted concentration on a task at hand, and is associated with

C H A P T E R

19

Architecting for Success

408 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 408

effective performance by experts in many fi elds. In his book Finding Flow, Mihaly

Csíkszentmihályi (Basic Books, 1997) describes how “the person is fully immersed

in what he or she is doing, characterized by a feeling of energized focus, full

involvement, and success.” Many structured approaches to threat modeling

actively inhibit fl ow in both beginners and experts, and few allow it to emerge.

The documented and common elements of fl ow include the following:

 1. The activity is intrinsically rewarding

 2. People become absorbed in the activity*

 3. A loss of the feeling of self-consciousness*

 4. Distorted sense of time

 5. A sense of personal control over the situation or activity*

 6. Clear goals*

 7. Concentrating and focusing

 8. Direct and immediate feedback*

 9. Balance between ability level and challenge*

Items with an asterisk (*) are those for which I have personally witnessed

regular or systematic failures of threat modeling systems to achieve this property.

Flow is the most important test of an approach, methodology, or task for threat

modeling. Knowing who will fi nd fl ow in an approach is a key to architecting

for success. If your audience can’t fi nd fl ow, their ability to fi nd threats will be

dramatically inhibited. Without fl ow, threat modeling is a chore, and it is less

likely to be a part of an engineering process.

This is not to argue that fl ow is always a criteria for assessing security processes,

especially those beyond threat modeling, but it offers a model for addressing

a class of issue. As an example, many approaches to threat modeling have no

clearly stated and achievable goal. For example, a goal might be to “fi nd all

possible security problems.” This is an exceptionally broad goal and one whose

achievement is subject to extended argument. Similarly, many processes require

diagrams but offer no criteria for what constitutes “suffi cient” diagramming.

These sorts of problems can be predicted or addressed using fl ow as a model

of people.

One element of fl ow is the balance of ability level and challenge, which is

sometimes represented as a fl ow channel (see Figure 19-1). The idea is that a

person starts an unfamiliar task in state A1. From there, if the challenge is too

low relative to their skills, they move to boredom (A2). If the challenge is too

high relative to their skills, they move to anxiety (A3). When challenge and

skills are balanced, they can learn new skills, take on greater challenges, and

experience fl ow (A4).

 Chapter 19 ■ Architecting for Success 409

c19.indd 07:54:5:AM 01/15/2014 Page 409

A2

A4

Boredom

Skills

Ch
al

le
ng

es

(High)

From Flow: The Psychology of Optimal Experience
by Mihaly Csikszentmihalyi

(Low)

(Low)

(High)

Flow
Channel

Anxiety

A3

A1

Figure 19-1: The flow channel

If you are developing a system and fi nd that your participants are either bored

or anxious, look for ways to better help them achieve a fl ow state.

Flow and Threat Modeling

For far too many people, the attempt to threat model leaves them anxious or

scared. The balance is skewed toward challenge, and people don’t see a way to

develop their skills. They’re overwhelmed by the details and the requirements.

Advocates of threat modeling can unintentionally push people toward anxious-

ness by overwhelming them with details and possibilities. When someone has

no basis for comparison or decision making, they’re easily overwhelmed with

“you might do it like this or that,” or with decision fatigue. (The reason it’s so

hard to choose between 80 varieties of toothpaste is because most people don’t

have any idea what makes one toothpaste better than another, and the differ-

ences may not matter a lot.)

Following are three key aspects of aligning threat modeling with fi nding fl ow:

 ■ Clear goals: Many threat modeling processes are focused on a report, or

don’t have clear internal steps. To the extent that it’s possible, each system

in this book has clear goals, exit criteria, and self-checks.

 ■ Direct and immediate feedback: There are a variety of levels at which

feedback is important. Is this a good threat? Have we examined this sys-

tem “suffi ciently”? Microsoft’s SDL TM Tool provides instant feedback

410 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 410

on diagrams, and you can expect other tools to provide better feedback

on other elements of threat models over time (or, if they don’t, encourage

their creators to consider it). The tool is disucssed further in Chapter 11,

“Threat Modeling Tools.”

 ■ Balance between ability and challenge: Some of the systems in this book

are for experts. Others (especially Elevation of Privilege) are for beginners.

Selecting a system that’s appropriate for the skills you have will help you

develop new ones. Jumping to something that’s too hard will be frustrat-

ing, and too easy to quit.

The ideal state for anyone, in any task they care about, is the fl ow channel,

where ability and challenge are balanced. The structures in Elevation of Privilege

are useful because they help people get to that balance in a nonthreatening

way—but the challenges don’t stop there. If you’re a threat modeling expert,

you can often fi nd fl ow by looking for a personal challenge in a threat model-

ing session. The most elegant threat? The most impactful? The threat that will

crystalize a requirement or non-requirement? The threat that will highlight the

technical debt impact of a design? Perhaps it’s not the best threat, but the most

threats, or the most ways in which a certain STRIDE type can appear. Maybe

it’s a beginner who needs effective coaching?

This idea of fi nding something to improve relates to a body of work on

deliberate practice. Deliberate practice is a term of art meaning an assigned practice

task with a defi ned focus area (Ericsson, 1993). A good music teacher might assign

two new students vastly different pieces to play, with one focusing on rhythm,

the other focusing on dexterity. Each piece would be selected against a weakness

that the teacher can see. (A popular author contorted this into “10,000 hours of

work will make you an expert.”) There’s good evidence that expertise develops

faster with deliberate practice, and threat modeling will improve when we start

to develop example systems that help people work through common failings.

In the SDL TM Tool, people model software at the start of threat modeling. They

do so in whiteboard-like diagrams to minimize cognitive load (see the section

“Beware of Cognitive Load” later this chapter.) They happen at the beginning to

enable a positive feedback experience (“You’ve successfully created a diagram!”).

Contrast this with other approaches that begin with something like “Create a

list of all the assets in the system.” Making a list of assets is not something most

developers do, so starting a threat modeling exercise from a diagram can be

seen as more likely to lead to a fl ow experience, and less likely to inhibit one.

The most trenchant critique of the SDL Threat Modeling Tool (which I created)

is that it can be tedious. The STRIDE-per-element approach used in the tool can

be seen as problematic in that similar issues tend to crop up repeatedly in a

threat model. Therefore, as people use the tool, they fi nd themselves repeatedly

entering the same threat, copying and pasting, or entering a reference. It’s not

a great use of people’s precious time. I take some small pride in having created

 Chapter 19 ■ Architecting for Success 411

c19.indd 07:54:5:AM 01/15/2014 Page 411

a tool that helps people who previously couldn’t perform these tasks reach the

point where they can execute the key elements of the tasks and even get bored

with them.

But my pride is not what’s important. What’s important is a tool that chal-

lenges people more appropriately, enabling them to do better at threat model-

ing. Someone once said that a video game is a program with a user interface

that’s so compelling that you keep using it for fun. A compelling video game

offers tools for you to master, trickier environments for you to explore, and big-

ger monsters to fi ght so that the challenge presented keeps increasing. Threat

modeling tools could do the same.

Stymieing People

One of the opposites of fl ow is when people feel stymied by what’s in front of

them. Sometimes that’s because the problem at hand is hard. Often, it’s because

the person doesn’t know where to start, because the problem is too big, or they

don’t know what success looks like. When no one knows what success looks like,

one way to overcome that is to look for ways to break the problem into smaller

chunks, or look for other ways to get started. (The trope that “you need to crawl

before you can walk” often comes up in these circumstances.)

A variant of this is the claim that threat modeling doesn’t fi nd anything

interesting (see, for example, Osterman, 2007). Sometimes, threat modeling

can involve walking through a lot of possibilities but fi nding few interesting

threats. This doesn’t feel good; but if you have skilled practitioners performing

the threat modeling and still not fi nding anything, you can rest easier. You have

assurance that the designers probably did a good job of threat modeling, either

explicitly or implicitly.

Beware of Cognitive Load

Cognitive load is the amount of information you’re asking someone to keep in

their working memory at one time. When there’s too much, people are forced

to fall back to cheat sheets, work much more slowly, or go back to their e-mail.

Cognitive load can be another inhibitor of fl ow.

Whiteboard diagrams are familiar to almost everyone in software. Data fl ow

diagrams and swim lane diagrams are almost as familiar. Their cognitive load

is small. UML and other diagrams are both more complex and less familiar, so

for many, the load is greater. Therefore, you should generally prefer data fl ow

and swim lane diagrams, so that the energy can be spent on the unique security

tasks in threat modeling. If everyone on a team is deeply familiar with UML,

then it may be a better choice, as UML is more expressive than DFDs. See the

section “Boundary Objects,” later in this chapter.

412 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 412

Formal systems can offer an interesting example of cognitive loading. When

people encounter a new notational system for the fi rst time, or the fi rst time

in a long time, they have to think about what something like ∩ means (hint,

it’s set union or intersection), or how to pronounce φ (“phi”). The energy spent

on such subtasks distracts from the nominal goal. Of course, there are good

reasons to use such notations, including precision. There is no universal “good

decision” regarding something like notation. There are simply decisions that

provide various participants with different value in different situations. One

such value would be that the expected participants can discover and address

threats. You should focus on that.

Avoid Creator Blindness

Another important aspect to understanding people in a threat modeling ses-

sion is what I call creator blindness. This is the set of cognitive factors that make

it diffi cult to proofread your own work, or judge an artistic work in progress.

When the technology you’re creating is a program of any complexity, making it

work properly, meeting all the stated and unstated requirements, will expand

to take up all available room. The cognitive load involved in thinking about the

technology and how to attack it is enough to overwhelm nearly anyone. This

is part of why Eric Raymond claims that “All bugs are shallow with enough

eyes” (Raymond, 2001). Other people will see your bugs faster than you will.

Security professionals will see security bugs faster than others, but trying to

threat model your own creation is a tough challenge. If you need to analyze

your own technology, use the structures in Part II of this book to help draw you

into looking at it in a new light.

The problem of being unable to assess your own system also shows up in the

design of threat modeling approaches. The person who designs a new threat

modeling approach is emotionally involved with the pride of creation, which

hinders their ability to assess their own work. The use of structured experiments,

as described at the end of the previous chapter, can help with this variant of

creator blindness, as can the tools in this chapter.

Assets and Attackers

This book has been critical of asset-centered modeling, and it has been critical

to attacker-centric modeling. Not to beat a dead horse, this section examines

them again in light of factors such as fl ow and boundary objects. Asset-centric

approaches require developers to focus on something other than the software

they’re building. That takes them into an unfamiliar space. The jargon “every-

thing in the diagram is an asset” leads to extra cognitive load from using a

different word (asset) than is natural (such as computer).

 Chapter 19 ■ Architecting for Success 413

c19.indd 07:54:5:AM 01/15/2014 Page 413

Attacker-centric approaches also stymie fl ow. The initial requirement to

create a set of attackers means putting energy into a subdeliverable, although

Appendix C, “Attacker Lists” can reduce or replace that work. Flow is also

stymied by the demand to “think like an attacker” or even “this attacker.” As

discussed in the previous chapter, asking someone to “think like an attacker”

can be a tall order (like “think like a professional chef”), and many people will

be stymied and have no idea where to start.

Knowing the Participants

The better you understand the people who will be doing threat modeling, the

better you can select or design a system that will work for them, and teach them

how to perform. Are you designing a system for experts or newcomers? Those

new to threat modeling will appreciate structure, while experts will fi nd that it

chafes. Are you teaching people who work on a particular technology? If your

audience is the Microsoft Windows product group, you might fi nd that a set of

unix examples fails to resonate or communicate the details that matter to you.

You can divide participants into two major groups: those who want to develop

deep expertise in threat modeling and those who don’t. Both are reasonable

desires. Many people are far more skilled in database design than I am; but I

know enough to know what I don’t know, and enough that I can sit in a design

meeting and not feel like a waste of a chair. I used to refer to people who are

not expert in threat modeling as “non-experts” until I realized how deeply situ-

ated in my worldview that is, and how dismissive it can sound. It’s important to

respect people’s desires regarding the skills they want to develop (although it

is reasonable to respectfully try to infl uence those choices and desires). I some-

times fall into the term non-expert, but I prefer to use “expert in other things.”

Those who don’t want to become threat modeling experts can still be asked

to develop a basic degree of familiarity. As discussed in Chapter 17, “Bringing

Threat Modeling to Your Organization,” much like version control, you can

reasonably expect a skilled software engineer to have some familiarity with

concepts such as checking code into a branch, and managing branches. Similarly,

you can look forward to a world in which every reasonably skilled software

engineer will have some familiarity with threat modeling and why it’s worth-

while, and in which a shop that doesn’t threat model is viewed with as much

disdain as one that does version control by copying source onto a random USB

drive once a week and throwing them in a drawer.

Threat modeling experts will have to engage differently in such a world,

and it will be a better world for many people. A typical engagement will have

much deeper questions, and that puts a different burden on the threat modeling

experts. Less frequently will a threat modeling expert be able to enter a room and

414 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 414

have something useful to say after a simple glance at a diagram. The “obvious”

threats will be found and addressed more frequently by experts in other things.

Security experts will get value from experts in other things when those

folks are not leaning on the security experts all the time. They can review

instead of create, which frees up time to focus on the trickier, more challenging,

deeper threats. At the same time, it can be scary to have experts in other things

learn some of the magic tricks that you perform. It threatens the way security

professionals self-identify and how they present themselves. Some security profes-

sionals will be scared of the change, and not want to move it ahead. Those who

do drive change to their organization will fi nd themselves increasingly valued

by management and future employers.

These comments on participants are quite general. Understanding your own

participants and especially the technical leaders will be a key part of making a

process that works. Not understanding the participants is a sure route to failure.

Understanding your participants and explicitly documenting the salient attributes

of your environment are important components of a successful threat modeling

process, both within your organization and when others try to learn from it.

Boundary Objects

The concept of a boundary object has been quite useful to me in designing threat

modeling approaches that work for a wide set of participants. It is perhaps most

easily understood through an example: A set of experts were working on a

museum exhibit about birds. Some experts focused on the learning objectives

and how the exhibit as a whole would come together. Other experts focused

on the individual displays. The bird watchers wanted to focus on comparing

the birds, such as markings on the chest, the different beaks. The evolutionary

biologists wanted to show the birds in their niches, and how they could have

evolved into them. The exhibit wasn’t coming together. Each group had its own

jargon, its own perspective, its own way of thinking about what made a given

bird interesting or not interesting. Long story short, what helped was when the

participants had the bird under discussion in the room with them, and could

point to salient features. The bird acted as a boundary object, something they

could all focus on in their discussions (Star, 1989). Ironically and unfortunately,

there is no easy introduction to this fi eld. That is, it lacks a boundary object.

In crafting a threat modeling approach that will include a variety of par-

ticipants, boundary objects can help. The Microsoft SDL TM Tool includes

two by-design boundary objects: diagrams and bugs. At the beginning of this

chapter, you learned how creating those diagrams at the start of the process

reduces friction to a fl ow state, and how the choice of diagram type interacts

with cognitive load. There’s another important aspect to the diagram, which is

 Chapter 19 ■ Architecting for Success 415

c19.indd 07:54:5:AM 01/15/2014 Page 415

that it acts as a boundary object. Both software developers and security geeks

can point at the diagram and use it as a focal point for conversation. Their indi-

vidual jargon, perspectives, and ways of thinking meet when someone goes to

the whiteboard, jabs at a line, and says, for example, “Right here, what data goes

from foo to bar?” That data fl ow is the boundary object.

The second boundary object in the tool is the bug. The bug acts as an object

that both developers and threat modeling experts can point to when discuss-

ing an issue. This is why the SDL TM Tool includes buttons that fi le bugs with

a single click, and threats are portrayed as less complete if a bug hasn’t been

fi led. Using boundary objects at the beginning and end of a process is a good

design pattern for any system passed between people with different skill sets.

There may be other boundary objects, and looking for them as you work with

different communities is a great practice in architecting for success.

The Best Is the Enemy of the Good

There are a number of scenarios in which aspirations of security perfection lead

to either not shipping or shipping without security. Aspiring to the best security

is admirable, as is delivering good security. Finding the right balance between

the good and the best is tricky in many areas of life. Getting the wrong balance

can have all sorts of downsides.

There are some threat-modeling-specifi c risks to be aware of. One is that

effort focused on defending against a more powerful adversary might distract

from effort to defend against attacks by other adversaries. For example, effort

to make it harder to exploit vulnerabilities by corrupting memory and exploit

vulnerabilities is deeply technically challenging. It may be that work to prevent

the more common social engineering attacks is set aside to focus on the interest-

ing technical challenge. Paul Syverson has shown that in comparing privacy

technologies of low- and high-latency mixes, some simple attacks work better

on the higher security, high-latency mixes. In each of these cases, the trade-offs

are not simple ones (Syverson, 2011).

Another risk is that your security may be different with respect to different

adversaries with different capabilities. It’s not always the case that adversaries

are a strict superset of one another. For example, two attackers might have dif-

ferent risk tolerance. A technically weaker attacker—say, a criminal running

malware—might be more willing to take risks than a technically more power-

ful attacker such as an intelligence agency. There is also a risk that a threat is

anchored in defenders’ minds. That is, they become overly-focused on a threat

to the exclusion of others. For example, privacy threats from smart meters are

complex to defend against, and easily understood. There is a set of threats to

privacy that are easier to execute and easier to defend against, but the more

subtle surveillance threats get more attention (Danezis, 2011). A real-world

416 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 416

example of this can be found in the Predator drone system. The story is well

summarized in a Wired article:

The original Predator, just 27 feet long, was little more than a scaled-up model
plane with an 85-horsepower engine. It had a payload of just half a ton for all its
fuel, cameras and radios. And encryption systems can be heavy. (Big crypto boxes
are a major reason the Army’s futuristic universal radio ended up being too bulky
for combat, for example.) With the early Predator models, the Air Force made the
conscious decision to leave off the crypto. The fl ying branch was well aware of the
risk. “Depending on the theater of operation and hostile electronic combat systems
present, the threat to the UAVs could range from negligible with only a potential of
signal intercept for detection purpose, to an active jamming effort made against an
operating, unencrypted UAV” the Air Force reported in 1996. “The link charac-
teristics of the baseline Predator system could be vulnerable to corruption of down
links data or hostile data insertions.”

“Most U.S. Drones Openly Broadcast

Secret Video Feeds” (Shachtman, 2012)

The threats are easily found via STRIDE or other threat modeling, and include

signal intercept (information disclosure of location), active jamming (DoS),

corruption of downlinks (tampering, information disclosure), and hostile data

insertions (EoP). The standard approach to mitigating network threats is the

use of cryptography. Thus, the mitigations are also well understood, with the

possible exception of location tracking, for which military aircraft typically use

spread spectrum or narrow-beam communications.

However, the mitigation description in the article is slightly inaccurate. It is

more clearly stated as “NSA-approved encryption systems can be heavy.” The

NSA wants a variety of shielding and self-destruct mechanisms to address threats

of electromagnetic emissions and disclosure of cryptosystems or keys. These

are reasonable threats to mitigate in the NSA’s book, but as a result of requir-

ing these as a “package deal,” the version 1 system used no crypto. Application

compatibility concerns have kept crypto out ever since. This is a great example

of allowing the best to be the enemy of the good. It might have been possible to

deploy with publicly available cryptographic systems without additional layers

of protection in the fi rst releases, and then add more protections later. (There

are possible concerns about key management, which are likely solvable with

public key cryptography. Again, if you allow the best to be the enemy of the

good, you end up with control channels in the clear.)

Closing Perspectives

As this book draws to a close, there are two topics that remain. The fi rst is the

claim that the threat model has changed, and what you can do with such a claim.

 Chapter 19 ■ Architecting for Success 417

c19.indd 07:54:5:AM 01/15/2014 Page 417

The second is the matter of artistry in threat modeling. It will likely surprise no

one that I am fond of threat modeling, and see room for artistry.

“The Threat Model Has Changed”

If I had a dollar for every time I’d heard that “the threat model has changed” in

the last few months, I certainly wouldn’t tell readers of this book where I was

keeping them. It’s worth breaking this claim down a little, and understanding

what it means.

So fi rst, what’s “the threat model?” This phrase often means some set of

threats that everyone needs to worry about. And over the last 50 years, that’s

been revolutionized at least twice. One revolution was the rise of personal

computers, when anyone could obtain a computer that was under their control

and use it as a base of operations. The second was the rise of interconnected

networks. Most important was the Internet, but the rise of networks in general

made it possible for remote attackers to come after you. There’s a good case that

the extension of the Internet and inexpensive computers to the poorest parts

of the world represents a third such revolution, in which our assumptions about

the economics of attacks have been shattered.

There are other, smaller, but still important changes recently. These include the

rise of criminal markets, the normalization of the Internet as a battlefi eld, and

the rise of online activism. There has been a rise of online marketplaces where

specialists in techniques such as exploit development, phishing, or draining bank

accounts can buy and sell their skills. This rise in the effi ciency of attackers and

their ability to collaborate is clearly important, although how much the change

in attacker economics will change the threat model is still playing out. Another

important change is the apparent willingness of governments to invest in the

continuation of politics by “cyber” means. Some label this war, others espionage.

I think it is probably something new, and the ways in which organizations can

fi nd themselves under sustained, persistent attack by paid attackers is a change

to the threat model. The third change is the rise of online activists. Although

the term “hacktivism” was coined in 1996, the eagerness of people around the

world to take up attack tools and apply them seems new and different.

There is another sense in which the phrase “the threat model has changed”

is used. It also means the threats which matter enough to infl uence require-

ments has changed. This is how many people are using it in the wake of Edward

Snowden’s revelations about Internet spying. We have long known (in general

terms) that the Internet is either heavily monitored or highly susceptible to such

monitoring, and that knowledge was insuffi cient to motivate action. Many of

those asserting that the threat model has changed are really asserting that the

valid requirements have changed.

Not all of the revelations are things we knew. For example, efforts by US agen-

cies to introduce weakened cryptosystems into American standards represent

418 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 418

new threats. (This is simplifi ed for the sake of an example.) Nonetheless, many

of the revelations are changing the requirements end of the threat model, rather

than revealing new threats.

Lastly, there is a tension between two perspectives. The fi rst is that “all this

has happened before, and all this will happen again.” In many ways, the attacks

change slowly, and new threats are often slight variations on the old threats.

The other perspective is that attacks always get better. Both are right. What is

perhaps most important is when someone tells you that the threat model has

changed, you understand the ways in which it has changed, and what that may

require or enable you to better secure.

On Artistry

“If you have to ask what jazz is, you’ll never know.”

Louis Armstrong

Many security experts learned to threat model the way blues or jazz musicians

would learn to play: apprenticed to a master. This has many advantages, and a

huge downside. The downside fi rst: It’s hard to decide if the heroin addiction

is part of what you need to learn. More to the point, it’s hard to know if the

masters are doing it the way they do it because that’s the best way, or because

that’s how they learned it.

An early reviewer commented that this book turns threat modeling into a

mechanical exercise, and takes the art out of it. For the early parts of this book,

that is correct, intentional, and essential. Truly excellent threat modeling is not

something that everyone can achieve. Anyone can pick up a camera and take

a picture. It’s easy to produce a .jpg fi le that captures the light in a scene. With

an understanding of technique, deliberate practice, and critiques someone can

regularly produce a decent picture. With all that and talent, they can produce

great pictures. This book introduces the practitioner to the techniques and

provides guidance and structure; but all the books in the world don’t obviate

the need to practice and learn. Systems to be threat modeled abound. Find

a teacher or even a partner student and take them on. Competency requires

a mastery of the “tools” that can only result from using them. It requires

critiques and asking how you can do better. It requires someone telling you

where your work is lacking. With decent tools and feedback, anyone can

become competent.

It’s perfectly reasonable to want to aim higher than that, and many of the

people who read the closing chapters of a book on threat modeling are likely

aiming higher—and to them I want to say that the mechanical aspects are

necessary but not suffi cient.

To produce art requires practice and experience. It may be that you’re the

Salvador Dali of threat modeling. That’s awesome. As anyone who’s ever really

studied a Dali painting knows, Dali had incredible technique to back up his

 Chapter 19 ■ Architecting for Success 419

c19.indd 07:54:5:AM 01/15/2014 Page 419

talent. He didn’t just say, “Hey, this would be a fun image.” He made the clock

melt on canvas. Anyone can put a urinal in a room and call it art. Developing

a deep understanding of what makes a threat model good and what helps an

organization deliver good threat models is part of greatness, and technique

provides a needed foundation for your artistry.

Another interesting question is should an organization aim for process or

artistry? In a fascinating Harvard Business Review article (“When Should a

Process Be Art?”), Joseph Hall and M. Eric Johnson take aim at this question.

They say when a process has variable inputs and customers value distinctive

outputs, an artistic process might be a good answer. In their model, an artistic

process is one where highly skilled professionals exercise judgment. They give

the example of Steinway pianos, each made with wood whose variation impacts

the instrument. Threat modeling certainly has varied inputs of requirements

and software, and the output that’s most helpful can be different. So it may well

be a good candidate for an artistic process if your organization can support one.

The essence is to fi gure out where artistry is appropriate, to create processes to

support and judge the artistic work, and to periodically re-evaluate the balance

between art and science. See (Hall, 2009) for more.

Summary

There is a set of prescriptive tools that you can use to design better processes.

The fi rst is attention to fl ow, that state of full engagement that can lead to out-

standing results. There is a set of conditions for fl ow, and each can be consid-

ered by a system designer. Doing so requires that you understand who will be

executing the tasks using the approach you’re designing. People with different

backgrounds will have different skills, and thus respond differently to the same

challenge. They will also see objects differently. Artifacts such as diagrams and

bugs can work as boundary objects, enabling people with different skills and

from different disciplines to meet on common ground.

With these tools, and with all the good aspirations in the world, it can be

tempting to aim for perfect security. Perfect security is a worthwhile goal,

but so is shipping. Unfortunately, sometimes the two goals are at odds, and

a team will need to make trade-offs. It’s important to not allow the “best,” or

your highest aspirations for a system, to become the enemies of shipping with

good security.

Finding a balance between all these factors is where threat modeling moves

from practical and prescriptive toward artistry. This book has focused on the

practical and prescriptive, because those have been lacking. The tasks involved

in threat modeling have often been too hard. There is a great deal of artistry

to be found in fi nding the best threats, the most clever redesigns, or the most

elegant mitigations.

420 Part V ■ Taking it to the Next Level

c19.indd 07:54:5:AM 01/15/2014 Page 420

Now Threat Model

So now we arrive at the end of this book, and the start of something better.

This book has presented the state of threat modeling as 2013 draws to a close.

I hope it has come together in a form that you can use either to begin threat

modeling or to improve your threat modeling. Parts II and III should provide

enough prescriptive advice and detailed, actionable information that you feel

comfortable assembling the “Lego blocks” into something that works for your

organization. Part IV on specifi cs should get you through those gnarly spots.

This closing chapter should help you understand what makes a threat model-

ing approach succeed or fail. I encourage you to now put the knowledge you’ve

gained to good use. Go threat model, and make things more secure.

421

bapp01.indd 02:19:48:PM 01/16/2014 Page 421

This appendix provides you with a set of lists containing common answers to

“What’s your threat model?” and “What are your assets?”

Common Answers to “What’s Your Threat Model?”

The question “What’s your threat model?” can help you quickly express who or

what you’re worried about. Some typical answers include the following:

 ■ Someone with user-level access to the machine

 ■ Someone with admin-level access to the machine

 ■ Someone with physical access to a machine or site

Network Attackers

Attackers that are in a good position to attack via the network include the

following:

 ■ Eve or Mallory

 ■ Using available software

 ■ Creating new software

 ■ Your ISP

A P P E N D I X

A

Helpful Tools

422 Appendix A ■ Helpful Tools

bapp01.indd 02:19:48:PM 01/16/2014 Page 422

 ■ Your cloud provider, or someone who has compromised them

 ■ The coffee shop or hotel network

 ■ The Mukhbarat or the NSA

 ■ A compromised switch or router

 ■ The node at the other end of a connection

 ■ A trusted node that’s been compromised

Physical Attackers

This section considers those physically attacking a technical system, not those

attacking people. Examples include the following:

 ■ Possession of a machine for unlimited time

 ■ A thief who has stolen the machine

 ■ Police or border agents who seize the machine

 ■ Time-limited but physically unconstrained access

 ■ For fi ve minutes

 ■ For an hour

 ■ The janitor*

 ■ Hotel maids*

 ■ Physically constrained access to a machine

 ■ Can insert a USB key (“Can I just plug my phone in to recharge?”)

 ■ Physical, in-line keyloggers

 ■ Access via Bluetooth or other radio protocols

 ■ Ninjas

 ■ Pirates (the kind with guns)

*Either of whom can be a techie in a uniform

There is an equivalent set of threats to the integrity and confi dentiality of a

network:

 ■ Access to the network for an (effectively) unlimited time (easiest with

wireless networks, including WiFi, microwave or satellite links)

 ■ Time-limited access that allows plugging in of a “leave behind” box, such

as those made by the company Pwnie Express

 ■ Physically and temporally constrained access, such as a guest plugging

into a conference room network

 Appendix A ■ Helpful Tools 423

bapp01.indd 02:19:48:PM 01/16/2014 Page 423

Attacks against People

There’s a variety of ways in which people are attacked. Cryptographers are fond

of talking about “rubber hose” cryptanalysis (also known as beating someone

until they talk). It can be fascinating to consider what happens if each person

(or class of person, such as sysadmins) in a system goes bad, but these attacks

can be tremendously expensive to prevent.

For example, there is a model outlining how secret agents convince people

to become spies using the following four methods (Shane, 2008):

 ■ Money

 ■ Ideology

 ■ Coercion

 ■ Ego

In this micro-model, coercion includes persuasions like rubber hose crypt-

analysis, the Zapata cartel kidnapping a family member, and so on. Similarly,

ego includes using sex as bait. Always remember to focus on the threats that

you can mitigate.

Supply Chain Attackers

There is a set of people who can attack you through the supply chain that deliv-

ers technology to your environment. These attackers are commonly worried

about, but they are hard to protect yourself against. They can attack hardware,

software, and fi rmware, along with documentation. What’s more in the era of

using search engines to solve all technical problems, an attacker can augment

their attacks with well-crafted untrustworthy advice on random websites in

the hopes of infl uencing people to act in certain ways. Supply chain attackers

include the following:

 ■ System designers

 ■ For your system

 ■ For components on which you depend

 ■ System builders

 ■ The factory in China building your widgets

 ■ A supplier to that factory who delivers parts

 ■ A supplier to that factory who delivers machines

 ■ The delivery chain

424 Appendix A ■ Helpful Tools

bapp01.indd 02:19:48:PM 01/16/2014 Page 424

Privacy Attackers

These are attackers who might violate people’s privacy. They include the

following:

 ■ Marketers

 ■ Systems designers who rely on advertising models

 ■ Component libraries who sell to marketers

 ■ Data brokers

 ■ Stalkers

 ■ Identity thieves

 ■ The NSA or other national intelligence agencies

 ■ Police

 ■ Constrained by laws in the way democracies expect

 ■ Not/less constrained by law

 ■ Those linking databases

Non-Sentient “Attackers”

Non-sentient attackers such as the following generally don’t attack the con-

fi dentiality or integrity of your systems, but they can absolutely impact its

availability:

 ■ Natural disasters (as appropriate for your region)

 ■ Public health disasters

The Internet Threat Model

As discussed in Chapter 17, “Bringing Threat Modeling to Your Organization,”

the IETF has adapted a standard threat model for the design of new Internet

protocols. The document is a fascinating example of how security experts can

design a custom threat modeling approach for an organization. Note that rev-

elations by Edward Snowden in late 2013 may change this model.

The Internet environment has a fairly well understood threat model. In gen-
eral, we assume that the end-systems engaging in a protocol exchange have not
themselves been compromised. Protecting against an attack when one of the
end-systems has been compromised is extraordinarily diffi cult. It is, however,
possible to design protocols which minimize the extent of the damage done under
these circumstances.

 Appendix A ■ Helpful Tools 425

bapp01.indd 02:19:48:PM 01/16/2014 Page 425

By contrast, we assume that the attacker has nearly complete control of the com-
munications channel over which the end-systems communicate. This means that the
attacker can read any PDU (Protocol Data Unit) on the network and undetectably
remove, change, or inject forged packets onto the wire. This includes being able to
generate packets that appear to be from a trusted machine. Thus, even if the end-
system with which you wish to communicate is itself secure, the Internet environment
provides no assurance that packets which claim to be from that system in fact are.

Rescorla and Korver, Security Consider-
ations Guidelines (RFC 3552)

The IETF also considers two classes of limited threat models: passive attack-

ers who will read from but not write to the network, and active attackers who

can write, and possibly read.

Assets

Please only use this section after you have considered the risks and diffi culties

of asset-centric modeling, as discussed in Chapters 2 “Strategies for Threat

Modeling” and 19 “Architecting for Success.”

Computers as Assets

You can label various types of computers as assets, including the following:

 ■ Computers used by individuals

 ■ This computer

 ■ A laptop

 ■ A mobile phone

 ■ iPad/Kindle/Nook

 ■ etc.

 ■ Servers

 ■ Web server

 ■ E-mail server

 ■ Database server

 ■ etc.

 ■ Security systems

 ■ Firewall

 ■ VPN concentrator

 ■ Log server

426 Appendix A ■ Helpful Tools

bapp01.indd 02:19:48:PM 01/16/2014 Page 426

 ■ Functional groups

 ■ Development systems

 ■ Financial systems

 ■ Manufacturing systems

People as Assets

You can think of people as assets who could come under attack. (Of course, it is

more correct to consider them as resources.) Some groups of people you might

consider include the following:

 ■ Executives

 ■ Executive assistants

 ■ Sysadmins

 ■ Sales people

 ■ Janitorial staff

 ■ Food-processing staff

 ■ Contractors of various stripes

 ■ Any employee

 ■ Citizens

 ■ Immigrants

 ■ Minorities

 ■ People living with disabilities

Processes as Assets

You can consider your processes as assets. Examples include the following:

 ■ Issuing a check/money transfer (including refunds)

 ■ Shipping product (or product keys)

 ■ Software or product development

 ■ Deployment

 ■ Manufacturing

 ■ Integrity of product

 ■ Safety of workers

 ■ Hiring

 Appendix A ■ Helpful Tools 427

bapp01.indd 02:19:48:PM 01/16/2014 Page 427

Intangible Assets

The reasoning behind including intangible assets is that because they’re listed

on the balance sheet, they should be listed in the threat model. However, there’s

a chasm between these assets and threats that you can mitigate. Regardless,

here are some examples:

 ■ Reputation or goodwill

 ■ Intellectual property

 ■ Stock price

 ■ Executive attention

 ■ Operational staff attention

 ■ Employee morale

Stepping-Stone Assets

 These are assets in the most limited sense, but they are sometimes used:

 ■ Authentication data

 ■ Username/password

 ■ Physical access tokens

 ■ Mobile phones pretending to be access tokens

 ■ Network access

 ■ Access to a particular computer

429

bapp02.indd 06:45:12:PM 01/20/2014 Page 429

These threat trees are worked-through analyses, intended to act as both models

and resources. Each tree is presented twice, fi rst as a graphical tree and then as

a textual one. The versions contain the same data, but different people will fi nd

one or the other more usable. The labels in the trees are, by necessity, shorthand

for a longer attack description. The labels are intended to be evocative for those

experienced with these trees. Toward this goal, some nodes have a label and

a quoted tag, such as “phishing.” Not all nodes are easily tagged with a word

or an acronym. The trees in this appendix are OR trees, where success in any

node leads to success in the goal node. The rare exceptions are noted in the text

and diagrams.

This appendix has three sections: The main body is a set of 15 STRIDE threat

trees. That is followed by three trees for running code on a server, a client, or a

mobile device, as those are common attacker targets. The last tree is “exploiting

a social program,” illustrating how systems such as e-mail and instant mes-

senger programs can be exploited. The appendix ends with a section on tricky

fi lenames, and their use in certain classes of attacks which trick people.

A P P E N D I X

B

Threat Trees

430 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 430

STRIDE Threat Trees

These trees are organized according to STRIDE-per-element. Each has as its

root node the realization of a threat action. These STRIDE trees are built on the

ones presented in The Security Development Lifecycle (2006). The trees are focused

on fi rst-order threats. Once you have elevated privileges to root, you can do an

awful lot of tampering with fi les on that system (or other mischief), but such

actions are not shown in the trees, as including them leads to a maze of twisty

little trees, all alike.

Each tree in this section is followed by a table or tables that explains the node

and discusses mitigation approaches, both for those developing a system and

those deploying it (“operations”) who need stronger security. The term “few” in

the mitigations column should be understood as meaning there is no obvious

or simple approach. Each of the ways you might address a threat has trade-offs.

In the interests of space and focused threat modeling, those trade-offs are not

discussed in this appendix. In a very real sense, when you start considering

those trade-offs, threat modeling has done its job. It has helped you fi nd the

threat. What you do with it, how you triage and address the bugs from those

threats, is a matter of good engineering.

The trees presented in this section are shown in Table B-0. In this appendix,

the labels differs from normal Wiley style, in ways that are intended to be easy

(or easier) to use given the specifi c information in this appendix.

 ■ Tables are numbered to align with the fi gures to make it easier for you

to go back and forth between them. Thus, fi gure B-1 is referenced by

Tables B-1a, B-1b, B-1c, B-1d and B-1e, while fi gure B-2 is referenced by

a single table B-2.

 ■ Many tables are broken into smaller logical units. The breakdown is driven

by a desire to have tables of reasonable length.

 ■ Where there are multiple tables per tree, they are referred to as subtrees.

Each subtree is labeled with a combination of category (“spoofi ng”) and

subnode (“by obtaining credentials”).

 ■ Numbering of tables starts at zero, because you’re a programmer and

prefer it that way. (Or perhaps because we wanted to start fi gures at B-1,

making this table hard to number.)

Table B-0 does not have a fi gure associated with it.

 Appendix B ■ Threat Trees 431

bapp02.indd 06:45:12:PM 01/20/2014 Page 431

Table B-0: STRIDE-per-Element

DFD APPLICABILITY

THREAT TYPE MITIGATION

EXTERNAL

ENTITY PROCESS

DATA

FLOW

DATA

STORE

S – Spoofi ng Authentication B-1* B-2 B-3*

T – Tampering Integrity B-4 B-5 B-6

R

– Repudiation

Non-repudiation B-7 B-7 B-8*

I – Information

Disclosure

Confi dentiality B-9 B-10 B-11

D – Denial of

Service

Availability B-12 B-13 B-14

E – Elevation of

Privilege

Authorization B-15

*(B-1) Spoofing an external entity is shown as spoofing a client in the following tables.

*(B-3) Spoofing of a data flow is at odds with how STRIDE-per-element has been taught.

*(B-8) Repudiation threats matter when the data stored is logs.

N O T E The spoofi ng of a data fl ow is at odds with how STRIDE-per-element has gen-

erally been taught or presented, but it is in alignment with how some people naturally

think of spoofi ng. It’s less-tested content; and as you gain experience, you’re likely to

fi nd that the threats it produces overlap heavily with spoofi ng of a client or tampering

with a data fl ow.

Each tree ends with “other,” a node without further discussion in the explana-

tory text because given its unanticipated nature, what to add is unclear. Each

tree is technically complete, as “other” includes everything. Less glibly, each tree

attempts to focus on the more likely threats. Therefore, for example, although

backup tape data stores are subject to both tampering and information dis-

closure, the disclosure threats are far easier to realize, so the backup threats

are not mentioned in the tree for tampering with a data store. Generally, only

security experts, those aspiring toward such expertise, or those with very high

value targets should spend a lot of time looking for those “others.” It is tempt-

ing, for example, when writing about tampering with a process, to declare that

432 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 432

those threats “matter less.” However, which threats matter is (ahem) a matter

of requirements.

As a community, we know relatively little about what threats manifest in

the real world (Shostack, 2009). If we knew more about which threats are likely,

we could create trees optimized by likelihood or optimized for completeness,

although completeness will always need some balance with pedantry and

usability. Such balance might be provided by tree construction or how the tree

is presented. For example, a software system that contains the trees could pre-

sent various subsets.

Spoofi ng an External Entity (Client/ Person/Account)

Figure B-1 shows an attack tree for spoofi ng by/of an external entity. Spoofi ng

threats are generally covered in Chapter 3, “STRIDE,” and Chapter 8, “Defensive

Tactics and Technologies,” as well as Chapter 14, “Accounts and Identity.”

 ■ Goal: Spoof client

 ■ Obtain existing credentials

 ■ Transit

 ■ Federation issues

 ■ Change management

 ■ Storage

 ■ At server

 ■ At client

 ■ At KDC

 ■ At 3rd party

 ■ Backup authentication

 ■ Knowledge-based authentication (KBA)

 ■ Information disclosure (e-mail)

 ■ Chained authentication

 ■ Authentication UI

 ■ Local login Trojan (“CAD”)

 ■ Privileged access Trojan (./sudo)

 ■ Remote spoof (“phishing”)

 ■ Insuffi cient authentication

 ■ Null credentials

 Appendix B ■ Threat Trees 433

bapp02.indd 06:45:12:PM 01/20/2014 Page 433

 ■ Guest/anonymous credentials

 ■ Predictable credentials

 ■ Factory default credentials

 ■ Downgrade authentication

 ■ No authentication

 ■ Other authentication attack

Spoof Client

Obtain
credentials

Transit

Change
management

Storage

At server

At KDC

Authentication
UI

Insufficient
authentication

Local login Null creds

Guest/anon
creds

Predictable
creds

Factory default
creds

Downgrade
authentication

Privileged
access

Remote spoof

At 3rd party

At client

Federation
issues

Backup
authentication

Knowledge based
authentication

(KBA)

Chained
authentication

Information
disclosure
(e-mail)

No
authentication

Other
authentication

attack

Figure B-1: Spoofing an external entity (client)

434 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 434

Also consider whether tampering threats against the authorization process

should be in scope for your system.

Table B-1a: Spoofi ng by Obtaining Existing Credentials Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Transit If the channel over

which authentica-

tors are sent is not

encrypted and authen-

ticated, an attacker may

be able to copy a static

authenticator or tam-

per with the connec-

tion, piggybacking on

the real authentication

Use standard authen-

tication protocols,

rather than develop

your own. Confi rm

that strong encryption

and authentication

options are used.

Tools such as SSL,

IPsec, and SSH

tunneling can be

added to protect a

weak transit.

Federation

issues

If authentication is fed-

erated, failures at the

trusted party can be

impactful.

Change the

requirements.

Logging, to help

you know what’s

happening

Tunneling, to

improve network

defense (but a

federation system

with weak cryp-

tography will have

other issues)

Change

management

If your authentication

change management

is weaker than the

main authentication,

then it can be used as

a channel of attack.

This relates closely to

backup authentication

issues.

Ensure that

change manage-

ment is strongly

authenticated.

Logging and

auditing

 Appendix B ■ Threat Trees 435

bapp02.indd 06:45:12:PM 01/20/2014 Page 435

Table B-1b: Spoofi ng by Obtaining Existing Credentials: Attacking Storage Subtree

TREE NODE EXPLANATION DEVELOPER MITIGATION

OPERATIONAL

MITIGATION

At server The server stores

the authenticator in

a way that’s vulner-

able to information

disclosure or tamper-

ing. Information dis-

closure is worse with

static approaches

such as passwords

than with asymmetric

authentication.

Ensure that the authen-

ticators are well locked

down. Seek asymmetric

approaches. If using pass-

words, see Chapter 14 for

storage advice.

Consider adjust-

ing permissions

on various fi les

(and the impact

of doing so).

At client The client stores

authenticators in a

way that an attacker

can steal.

The balance between

usability and credential

prompting can be hard.

Ensure that the credentials

are not readable by other

accounts on the machine.

If you’re designing a high-

security system, consider

hardware techniques to

augment security (TPM,

smartcards, hardware secu-

rity modules).

Treat authen-

tication as a

probabilistic

decision, and

use factors such

as IP or machine

fi ngerprints

to augment

authentication

decisions.

At KDC (key

distribution

center)

If a KDC is part of

a symmetric-key

authentication

scheme, it may need

to store plaintext

authenticators.

To minimize the attack

surface, design the KDC to

perform as few functions as

possible.

Write your security opera-

tions manual early.

Protect the

heck out of the

machine with

fi rewalls, IDS, and

other techniques

as appropriate.

At third

party

People reuse pass-

words, and other

parties may leak pass-

words your custom-

ers use.

Avoid static passwords alto-

gether. If your usernames

are not e-mail addresses,

exploiting leaks is much

harder. For example, if the

Acme company leaks that

“foobar1” authenticates

Alice@example.com, attack-

ers can simply try Alice@

example.com as a user-

name; but if the username

which leaks is Alice, the

odds are that another per-

son has that username at

your site.

Code to detect

brute-force

attempts, or an

upswing in suc-

cessful logins

from a new loca-

tion or IP.

436 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 436

Table B-1c: Spoofi ng Backup Authentication Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Knowledge-

based authen-

tication (KBA)

KBA schemes have

many problems, includ-

ing memorability and

secrecy. See Chapter 14.”

Use social authen-

tication or other

schemes rather than

KBA.

Use a password

management

tool, and treat

each KBA fi eld as a

password.

Information

disclosure

Attacker can read

backup authentication

messages containing

secrets that can be used

to authenticate. This

most frequently appears

with e-mail, but not

always.

Use social authenti-

cation. If you can’t,

don’t store pass-

words in a form you

can send, but rather

create a random

password and require

the person change

it, or send a one-use

URL.

If the product

you’re using has

this problem, it’s

probably non-

trivial to graft

something else

onto it.

Chained

authentication

Attackers who take

over e-mail can abuse

e-mail information

disclosure as well as

disclosures after taking

over accounts. See “How

Apple and Amazon

Security Flaws Led to My

Epic Hacking,”(Honan,

2012) for more

information.

Use social authenti-

cation, and consider

treating authentica-

tion in a probabilistic

fashion. If you can’t,

avoid relying on

authenticators that

other organizations

can disclose. (No

claim that’s easy.)*

These issues are

hard to fi x in

development, and

even harder in

operations.

*It is tempting to suggest that you should not display data that other sites might use for authentication. That
advice is a “tar pit,” leading to more questions than answers. For example, some organizations use the last four
digits of a SSN for authentication. If you don’t display those last four digits, should you display or reveal other
digits to someone who can authenticate as your customer? If you do, you may help an attacker construct the full
number. It is also tempting to say don’t worry about organizations that have made poor decisions, but backup
authentication is a real challenge, and characterizing those decisions as poor is easy in a vacuum.

 Appendix B ■ Threat Trees 437

bapp02.indd 06:45:12:PM 01/20/2014 Page 437

Table B-1d: Spoof Authentication UI Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Local login

Trojan (“CAD”)

An attacker

presents a login

user interface to

someone

Use of secure atten-

tion sequences to

reach the OS

Always press

Ctrl+Alt+Delete (CAD)

to help keep your login

information secure.

Privileged

access Trojan

(./sudo)

An attacker alters

the PATH variable

so their code will

load fi rst.

Hard to defend

against if the envi-

ronment allows for

customization

Don’t use someone

else’s terminal session

for privileged work.

Remote

spoofi ng

(“phishing”)

A website* presents

itself as a diff erent

site, including a

login page.

Reputation ser-

vices such as IE

SmartScreen or

Google’s Safe

Browsing

Reputation services that

search for abuses of your

trademarks or brand

* Currently, phishing is typically performed by websites, but other forms of remote spoofing are feasible. For
example, an app store might contain an app falsely claiming to be from (spoofing) Acme Bank.

Table B-1e: Spoofi ng Where There’s Insuffi cient Authentication Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Null credentials The system allows

access with no

credentials. This

may be OK, for

example, on a

website.

Add authentication. Disable that

account.

Guest/anony-

mous credentials

The system has

a guest login.

Again, that may

be OK.

Remove the guest

account.

Disable that

account.

Continues

438 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 438

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Predictable

credentials

The system uses

predictable user-

names or a poor

random generator

for passwords.

If assigning passwords,

use strong randomness.

If usernames are unlikely

to be easily discovered,

arbitrary usernames may

help.

Reset passwords,

assign new

usernames.

Factory default

credentials

The system ships

with the same

credentials, or cre-

dentials that can

be guessed, like

those based on

Ethernet ID.

Force a password

change on fi rst login,

or print unique; pass-

words on each device/

documentation.

Change the

password.

Downgrade

authentication

An attacker can

choose which of

several authenti-

cation schemes

to use.

Remove older/weaker

authentication schemes,

turn them off by default,

or track which each cli-

ent has used.

Turn off weaker

schemes.

There is no table for either no authentication (which is hopefully obvious; change

that if the requirements warrant such a change) or other authentication attack.

Spoofi ng a Process

Figure B-2 shows an attack tree for spoofi ng a process. Spoofi ng threats are

generally covered in Chapter 3, and Chapter 8. If an attacker has to be root,

modify the kernel, or similarly, use high privilege levels to engage in spoofi ng

a process on the local machine; then, generally, such attacks are hard or impos-

sible to mitigate, and as such, requirements to address them are probably bad

requirements.

Spoof Process

Load pathName
squatting

Remote system
spoofing

Figure B-2: Spoofing a process

Table B-1e (continued)

 Appendix B ■ Threat Trees 439

bapp02.indd 06:45:12:PM 01/20/2014 Page 439

Goal: Spoof process

 ■ Name squatting

 ■ Load path

 ■ Remote system spoofi ng

Table B-2: Spoofi ng a Process

TREE

NODE EXPLANATION DEVELOPER MITIGATION

OPERATIONAL

MITIGATION

Name

squatting

The attacker con-

nects to a commu-

nication endpoint,

such as a fi le,

named pipe, socket,

or RPC registry

and pretends to be

another entity.

Use the OS for naming, permis-

sions of synchronization points.

Possibly

permissions

Load path The attacker

deposits a library,

extension, or other

element in a way

that the process will

trust at next load.

Name the fi les you want with

full paths (thus, refer to

%windir%\winsock.dll,

not winsock.dll or ~/.login,

not .login).

Check permis-

sions on fi les.

Remote

system

spoofi ng

Confuse a process

about what a

remote process is

by tampering with

(or “spoofi ng”) the

data fl ows.

See tampering, spoofi ng data

fl ow trees (B5 and B3).

See tampering,

spoofi ng data

fl ow trees.

Spoofi ng of a Data Flow

Figure B-3 shows an attack tree for spoofi ng a process. Spoofi ng threats are

generally covered in Chapter 3, and Chapter 8; and many of the mitigations are

cryptographic, as covered in Chapter 16, “Threats to Cryptosystems.” Spoofi ng

a data fl ow is an amalgamation of tampering with a data fl ow and spoofi ng a

client, which may be a more natural way for some threat modelers to consider

attacks against network data fl ows. It is not traditionally considered in STRIDE-

per-element, but it is included here as an experimental approach.

440 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 440

Spoof Data
Flow

Spoof
endpoint

Forge keys Weak
authentication

Take over
endpoint (EoP)

Weak key
generation

Spoof
endnode

Via PKI MITM

Spoof packets Other spoofing
data flow

On-path
injection

Blind injection

Steal keys

Figure B-3: Spoofing of a data flow

Goal: Spoof a data fl ow

 ■ Spoof endpoint

 ■ Steal keys

 ■ Forge keys

 ■ Weak key generation

 ■ Via PKI

 ■ Weak authentication

 ■ Spoof endnode

 ■ MITM

 ■ Take over endpoint

 ■ Spoof packets

 ■ Blind injection

 ■ On-path injection

 ■ Other spoofi ng data fl ow

Table B-3a: Steal/forge Keys Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Steal

keys

Information disclosure where the

data is crypto keys. Generally, see

the information disclosure trees

(B11, and also B9 and B10).

OS tools for

secure key

storage

Hardware secu-

rity modules

 Appendix B ■ Threat Trees 441

bapp02.indd 06:45:12:PM 01/20/2014 Page 441

Table B-3b: Forge Keys Subtree

TREE NODE EXPLANATION DEVELOPER MITIGATION

OPERATIONAL

MITIGATION

Weak key

generation

If a system is gener-

ating keys in a weak

way, an attacker can

forge them.*

Avoid generating keys at

startup, especially for data

center machines or those

without hardware RNGs.

Regenerate keys

Via PKI There are many ways

to attack PKI, includ-

ing misrepresenta-

tion, legal demands,

commercial deals, or

simply breaking in.†

Key persistence, perspec-

tives/Convergence-like

systems

Few

* Some examples of weak key generation include (Debian, 2008) and (Heninger, 2012).

† Examples of misrepresentation include Verisign issuing certificates for Microsoft (Fontana, 2001). A legal
demand might be like the one issued to Lavabit (Masnick, 2013). Commercial deals include ones like Verisign’s
operation of a “lawful intercept” service (Verisign, 2007).

Table B-3c: Weak Authentication Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Spoof

endnode

Any non-cryptographically

secured method of refer-

ring to a host, including MAC

address, IP, DNS name, etc.

Use cryptography

properly in the

authentication

scheme.

Tunneling

MITM Man-in-the-middle attacks Strong authentica-

tion with proper

crypto

Tunneling

Table B-3d: Spoof Packets Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

On-path

injection

A network attacker can see

the normal packet fl ow and

insert their own packets.

Cryptographic channel

authentication and/or

message authentication

Tunneling

Blind

injection

An attacker cannot see pack-

ets and learn things such as

sequence numbers, or see

responses, but injects pack-

ets anyway.

Cryptographic channel

authentication and/or

message authentication

Tunneling

442 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 442

The “take over endpoint” node should be self-explanatory.

Tampering with a Process

Figure B-4 shows an attack tree for tampering with a process. Tampering threats are

generally covered in Chapter 3, and Chapter 8, and are touched on in Chapter 16.

Tamper
Process

Corrupt State

Input validation
failure

Access to
memory Caller

CalleeLocal
user/program

Local admin Spoof an
external entity

subprocess
or dependency Call chain Other tampering

with the process

Figure B-4: Tampering with a process

Goal: Tamper with a process

 ■ Corrupt state

 ■ Input validation failure

 ■ Access to memory

 ■ Local user/program

 ■ Local admin

 ■ Call chain

 ■ Caller

 ■ Callee

 ■ Spoof an external entity

 ■ Subprocess or dependency

 ■ Other tampering with the process

Also consider whether these threats apply to subprocesses, or what happens

if callers or callees are spoofed.

 Appendix B ■ Threat Trees 443

bapp02.indd 06:45:12:PM 01/20/2014 Page 443

Table B-4a: Corrupt State Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Input validation

failure

If inputs are not appropri-

ately validated, memory

corruption can result in

EoP or DoS.

Carefully vali-

date all input for

the appropriate

purpose.

None for the

threat, sandbox-

ing can contain

impact

Access to mem-

ory (local user/

program)

A user with authorized

write access to memory

can tamper with the

process. It’s important to

realize that on many oper-

ating systems, this is the

case for all programs the

user runs. (Can you freely

attach a debugger? If so,

a program you’re running

can do the same.)

Create new

account;

Review shared

memory

permissions.

few

Access to mem-

ory (local admin)

A local admin with a

debugger can be a threat

(e.g., you’re trying to use

DRM).

Memory pro-

tection and

anti-debugging

schemes, generally

used by DRM and

other malware

separate

machines

Table B-4b: Call Chain Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Caller Untrusted code

may call your code,

passing it malicious

parameters.

Input

validation

Permissions can be used to

ensure that lower-trust code

can’t execute untrustworthy

applications.

Callee Your callees can

tamper with memory

(e.g., via extension

points).

Design more

constrained

APIs.

Ensure that only trusted/

trustworthy callees are

called, or trustworthy

plugins are installed.

Subprocess

or

dependency

This is the same as

the previous two,

expressed diff erently

in the hopes of being

evocative.

444 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 444

Tampering with a Data Flow

Figure B-5 shows an attack tree for tampering with a data fl ow. Tampering

threats are generally covered in Chapter 3, and Chapter 8, cryptography will

often play a part in addressing them, and is covered in Chapter 16.

Generally, if you don’t prevent spoofi ng of a data fl ow, you have tampering

and information disclosure problems.

Data fl ow threats can apply to channels or messages, or both. The difference

is easiest to see with examples: E-mail messages travel over an SMTP channel,

whereas HTML (and other format) messages travel over HTTP. The question of

which you need (either, neither, or both) is a requirements question.

Tamper Data
Flow

Message

No message
integrity

Channel

No channel
integrity

Weak channel
integrity

Man in the
middle

Replay

Reflection

Collisions

Spoofing
endpoint

Exploiting
PKI

Time or
ordering

Upstream
insertion

Other tampering
with data flow

Weak message
integrity

Weak key
manangement

Figure B-5: Tampering with a data flow

Goal: Tamper with a data fl ow

 ■ Message

 ■ No message integrity

 ■ Weak message integrity

 Appendix B ■ Threat Trees 445

bapp02.indd 06:45:12:PM 01/20/2014 Page 445

 ■ Weak key management

 ■ Channel

 ■ No channel integrity

 ■ Weak channel integrity

 ■ Weak key management

 ■ Man in the middle

 ■ Spoof endnode (or endpoint)

 ■ Exploiting PKI

 ■ Time or ordering

 ■ Replay

 ■ Refl ection

 ■ Collisions

 ■ Upstream insertion

 ■ Other tampering with data fl ow

Table B-5a: Tampering with a Message Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No message

integrity

Nothing protects

message integrity

from tampering.

Add integrity

controls.

Very dependent on the

data fl ow. Tunneling may

help address parts of the

threat, but really provides

channel integrity.

Weak mes-

sage integrity

Weak algorithm, such

as MD5

Use a better

algorithm.

As above

Weak key

management

Weak key manage-

ment can lead to

problems for the

messages.

Use better key

management.

As above

Table B-5b: Tampering with Channel Integrity Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No channel

integrity

Nothing protects

channel integrity.

Add integrity

controls.

Tunneling over an integ-

rity-protected transport

can help.

Weak channel

integrity

Weak algorithm, such

as MD5

Use a better

algorithm.

As above

Continues

446 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 446

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Weak key

management

Key management

can be bad for either

channels or messages

or both.

Use better key

management.

As above

Man in the

middle

Man in the middle

attacks that allow data

tampering

Strong

authentication

Tunneling

Spoofi ng

endpoint

See tree B3.

Exploit PKI Attack the PKI system Key pinning Convergence, Persistence

Table B-5c: Tampering with Time or Ordering Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Replay Attacker resends messages

that the system really sent .

Message identifi ers,

and tracking what’s

been seen

Tunneling may

help.

Refl ection Attacker takes a message and

sends it back to the sender.

Careful protocol

design

Tunneling may

help.

Collisions Attacker sends (possibly

invalid) messages with

sequence numbers, causing

real messages to be ignored.

Manage identifi ers

after validation.

Few

Table B-5d: Tampering via Upstream Insertion Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Upstream

insertion

Rather than tamper

with the data fl ow

directly, convince an

endnode to insert the

data you want.

Input validation on places

where messages could be

inserted; output validation

on places where you send

them.

Possibly

fi rewalling

Tampering with a Data Store

Figure B-6 shows an attack tree for tampering with a data store. Tampering

threats are generally covered in Chapter 3, and Chapter 8.

Table B-5b (continued)

 Appendix B ■ Threat Trees 447

bapp02.indd 06:45:12:PM 01/20/2014 Page 447

Tamper
Data Store

Not protected

Bypass
protection rules

Confuse request
(links, etc.) Capacity failures

Discard

Wraparound

OtherBypass
protection system

Weak protection Bypass monitor

Bypass integrity
checker

Use another
program to write

Physical access

No protection

Figure B-6: Tampering with a data store

Goal: Tamper with a data store

 ■ Not protected

 ■ Confuse request

 ■ Bypass protection rules

 ■ Weak rules

 ■ No protection

 ■ Bypass protection system

 ■ Bypass monitor

 ■ Bypass integrity checker

 ■ Use another program to write

 ■ Physical access

 ■ Capacity failures

 ■ Discard

 ■ Wraparound

 ■ Other

448 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 448

You might consider tampering with the monitor or elevation of privilege

against it; however, often at that point the attacker is admin, and all bets are

. . . more complex. Capacity failures are an interesting balance of tampering

and denial of service, but they can certainly result in tampering effects that are

valuable to an attacker.

Table B-6a: Tamper with a Data Store Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Not

protected

There’s no protection

for data; for example, it’s

on a fi lesystem with no

permissions, or a glob-

ally writable wiki.

Add protections as

appropriate.

Physical access

control

Confuse

request

Can a data element

have multiple names,

for example through

links or inclusion?

Check permissions on the

resolved object (after name

canonicalization).

Probably none

with reasonable

eff ort

Table B-6b: Tamper by Bypassing Protection Rules Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Weak

protection

The rules (ACLs, permis-

sions, policies) allow

people with questionable

justifi cation to alter the

data.

Ensure your code cre-

ates data with appro-

priate permissions.

Change the

permissions.

No

protection

The rules allow anyone to

write to the data store.

As above As above

 Appendix B ■ Threat Trees 449

bapp02.indd 06:45:12:PM 01/20/2014 Page 449

Table B-6c: Tamper by Bypassing a Protection System Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Bypass

monitor

Exploit the lack of a

“reference monitor”

through which all

access requests pass,

or take advantage of

bugs.

Good design, exten-

sive testing

Use a better system.

Bypass

integrity

checker

Attack either the

integrity checker

code or its database

(often out of scope).

None Read-only database,

boot from separate OS

Use another

program to

write

If you can’t put data

into a store, can

another program do

so on your behalf?

Can you put it some-

where else?

Ensure you under-

stand the data you’re

writing on behalf of

other processes.

Remove/block the

proxy program.

Physical

access

Reboot the system

into another OS.

Encrypted fi lesystem

or integrity checks

with a crypto key

stored elsewhere

Encrypted fi lesystem,

physical protection

Table B-6d: Tampering via Capacity Failures Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Discard Refers to new data not

being recorded

Shutdown or switch

to wraparound.

More storage

Wraparound Refers to the oldest

data being deleted to

make room

Shutdown or switch

to discard.

More storage

450 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 450

The developer mitigations in Table B-6d are slightly less tongue-in-cheek

than it may appear. After all, when you are out of storage, you’re out of storage;

and at that point you must choose either to allow the storage issue to stop the

system or to make room in some fashion. Not shown in the table are compression

and moving data to another store somewhere, both of which can be legitimate

approaches.

Repudiation against a Process (or by an External Entity)

Figure B-7 shows an attack tree for repudiation against a process, or by an

external entity. Repudiation threats are generally covered in Chapter 3, and

Chapter 8, as well as in Chapter 14.

Message

Deny sending Deny receipt Real Fake

Repudiation
Process

Account
takeover

Replay

Other
repudiation

attack

Assert not
proper account

Assert
tampering

Figure B-7: Repudiation against a process

Goal: Repudiation

 ■ Account takeover

 ■ Real

 ■ Fake

 ■ Message

 ■ Deny sending

 ■ Deny receipt

 ■ Assert tampering

 ■ Assert not proper account

 Appendix B ■ Threat Trees 451

bapp02.indd 06:45:12:PM 01/20/2014 Page 451

 ■ Replay

 ■ Other

Table B-7a: Repudiate by Account Takeover Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Real The account was actually

compromised.

Stronger

authentication

Additional authentica-

tion tools

Fake Someone asserts that the

account was taken over.

Strong logging Strong logging,

penalties*

* If you impose penalties, you will inevitably impose them on innocent customers. Be judicious.

Table B-7b: Message Repudiation Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Deny

sending

Claim that a message wasn’t sent. Digital

signatures

Logging

Deny

receipt

Claim that a message wasn’t

received.

Web bugs,

logs

Logging, possibly

fi rewalls to block

web bugs

Assert

tampering

Claim that a message has been

altered.

Digital

signatures

Log message

hashes in a reliable

way.

Assert not

proper

account

E-mail from barack.obama37@

example.com is probably not

from the president of the United

States.

Meaningful

IDs, nick-

names (See

Chapter 15,

“Human

Factors and

Usability.”)

Process?

Replay If your messages are of the form

“sell 1,000 shares now,” then an

attacker might be able to claim

your sale of an extra 1,000 shares

was in error.

Design proto-

cols that are

more precise.

Logging

452 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 452

Repudiation, Data Store

Figure B-8 shows an attack tree for repudiation in which logs are involved.

Repudiation threats are generally covered in Chapter 3, and Chapter 8.

Transaction

Repudiation,
Data Store

Tamper with
logs

No logs

Insufficient logs

Logs scattered

Logs not
synchronized

Logs not
capturing

authentication

OtherDoS logs Attack through
logs

Figure B-8: Repudiation, Data Store

Goal: Repudiation (data store focus)

 ■ Transaction

 ■ No logs

 ■ Insuffi cient logs

 ■ Logs scattered

 ■ Logs not synchronized

 ■ Logs not capturing authentication

 Appendix B ■ Threat Trees 453

bapp02.indd 06:45:12:PM 01/20/2014 Page 453

 ■ Tamper with logs

 ■ DoS logs

 ■ Attack through logs

 ■ Other

Table B-8a: Transaction Repudiation Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No logs There are no logs. Log Log (It’s better than

bad, it’s good!)

Insuffi cient logs The logs don’t tell you

what you need.

Scenario

analysis

Perhaps a logging

proxy

Logs scattered Your logs are all over

the place, responding

to a repudiation claim is

too expensive.

Scenario

analysis

Log consolidation

Logs not

synchronized

Your systems have dif-

ferent times, meaning

correlating your logs is

hard.

Few Set all systems to

work in UTC and use

a local time server.

Logs not capturing

authentication

Your logs don’t cap-

ture the inputs to

authentication deci-

sions, such as Geo-IP or

fi ngerprinting.*

Log more Few

* Also, manage privacy issues here, and information disclosure risks with logs exposing authentication informa-
tion.

Table B-8b: Redupidation Attacks through Logs Subtree

TREE

NODE EXPLANATION DEVELOPER MITIGATION

OPERATIONAL

MITIGATION

Attack

through

logs

Logs are often seen as

“trusted” but usually con-

tain information of vary-

ing trustworthiness.

Be careful about what

assumptions you make, and

ensure you document what

your logs contain.

Few

See also denial of service (Figure and Tables B14) and tampering with data

stores (Figure and Tables B-6).

454 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 454

Information Disclosure from a Process

Figure B-9 shows an attack tree for information disclosure from a process.

Information disclosure threats are generally covered in Chapter 3, and Chapter 8.

Corrupt process Swap/other VM LogsSide channels

Timing

Emissions

Information
Disclosure
Process

Protocol

Banners

Behavior

Other

Sound

Other radiation

Power draw

Filesystem effects

Figure B-9: Information disclosure from a process

Goal: Information disclosure from a process

 ■ Side channels

 ■ Timing

 ■ Power draw

 ■ Filesystem effects

 ■ Emissions

 ■ Sound

 ■ Other radiation

 Appendix B ■ Threat Trees 455

bapp02.indd 06:45:12:PM 01/20/2014 Page 455

 ■ Protocol

 ■ Banners

 ■ Behavior

 ■ Logs

 ■ Corrupt process

 ■ Other

 ■ Swap/Virtual memory

As a class, side channels are like metadata; they’re unintentional side-effects

of computation, and they are often surprisingly revealing.

Table B-9a: Information Disclosure via Side Channels Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Timing How long the code

takes to complete

can reveal infor-

mation about its

secrets, especially

cryptographic

secrets.

Design for cryptogra-

phy to take constant

time. Yes, that’s

annoying.

None

Power draw Power draw can

be surprisingly

revealing about

operations.

Cryptographic blind-

ing can help.

If you have power sup-

plies that monitor draw,

ensure the logs they

produce are protected.

Filesystem

eff ects

Code will often write

revealing informa-

tion to disk.

Create a private

directory and put

your interesting tid-

bits in there.

Separate VMs.

Emissions

Sound Startlingly,

processors make

sound that can be

used to learn about

cryptographic keys

(Shamir, 2013).

Architect to keep

untrustworthy par-

ties off (and far

from) machines with

important keys.

Remove microphones.

Other

radiation

Other forms of

radiation, including

van Eck (sometimes

called “TEMPEST”)

and light can reveal

information.

There are fonts that

are designed to make

van Eck attacks chal-

lenging; they may

violate rules regard-

ing accessibility.

Shielding

456 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 456

Table B-9b: Information Disclosure via Protocol Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Banners If your process

announces what it is

(for example, “HELO

sendmail 5.5.1”), that

may be valuable to

an attacker.

Consider the risk

trade-off s for banners;

what value do you get

by revealing a version?

Sometimes, banners can

be altered; the value of

doing so may or may not

be worth the eff ort.

Behavior Oftentimes, new ver-

sions of a program

behave diff erently in

ways that an attacker

can observe.

It can be hard to

avoid subtle behavior

changes when you

update code for secu-

rity purposes.

Ensure that your security

does not depend on

keeping the versions

you’re running secret.

Table B-9c: Additional Information Disclosure Threats Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Logs Logs often contain impor-

tant process data. Ensure

that you log the right

data to the right logs. (For

example, log login failures

to a log that only admin

can read; don’t log pass-

words at all.)

If you control the logs

(e.g., a database system

with its own logs), design

your logs with informa-

tion disclosure in mind. If

you’re using system logs,

don’t attempt to change

permissions on them.

Ensure that you

keep log permis-

sions properly

set.

Swap/Virtual

memory

Important secrets like

cryptographic keys should

not be swapped out.

Use the appropriate sys-

tem calls to protect them.

No extra activity

Corrupt

process

If you can tamper with or

elevate privileges against

a process, you can use that

to disclose information.

Use a security develop-

ment life cycle to prevent

these.

None

Information Disclosure from a Data Flow

Figure B-10 shows an attack tree for information disclosure from a data fl ow.

Information disclosure threats are generally covered in Chapter 3, Chapter 8

and Chapter 16.

 Appendix B ■ Threat Trees 457

bapp02.indd 06:45:12:PM 01/20/2014 Page 457

Generally, if you don’t prevent spoofi ng of a data fl ow, you have tampering

and information disclosure problems.

Data fl ow threats can apply to channels or messages, or both. The difference

is easiest to see with examples: E-mail messages travel over an SMTP channel,

whereas HTML (and other format) messages travel over HTTP. The question of

which you need (either, neither, or both) is a requirements question.

Info Disclosure
Data Flow

Observe
message

No
confidentiality

Observe
channel

No
confidentiality

Weak
confidentiality

Man in the
middle

Side
channels Effects OtherTamper with

data flow

Weak
confidentiality

Figure B-10: Information disclosure from a data flow

Goal: Information disclosure from a data fl ow

 ■ Observe message

 ■ No confi dentiality

 ■ Weak confi dentiality

 ■ Observe channel

 ■ No confi dentiality

 ■ Weak confi dentiality

 ■ Man in the middle (See Tables B3 spoofi ng data fl ows.)

 ■ Side channels

 ■ Effects

 ■ Other and spoofi ng

See also tampering with data fl ows (Figure and Tables B3 and B5, many of

which can lead to information disclosure.

458 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 458

Table B-10a: Information Disclosure by Observing a Message Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No

confi dentiality

Nothing protects

the contents of a

message.

Cryptographic (or

permissions for on-

system fl ows)

There may be message

protection add-ons

available, such as PGP,

or tunneling for channel

protection may help.

Weak

confi dentiality

The confi dential-

ity of messages is

weakly protected.

As above As above

Table B-10b: Information Disclosure by Observing a Channel Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No

confi dentiality

Nothing protects the con-

tents of the channel. Even

if you have good message

protection, data about the

messages (who talks to

whom) can be revealing.

Encrypt the entire

channel. If you’re

worried about who

talks to whom, see

B-10c.

Tunneling

Weak

confi dentiality

The contents of the channel

are weakly protected.

Improve the

encryption.

Tunneling

MITM See B3, spoofi ng data fl ows.

Table B-10c: Other Information Disclosure Threats Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Side

channels

Data about who talks to whom

can be interesting. See the

discussion of traffi c analysis in

Chapter 3.

See Chapter 3. Private network

connections may

help.

Eff ects However well you protect the

data fl ows, sometimes you take

action, and those actions can be

revealing.

None Operational

discipline

 Appendix B ■ Threat Trees 459

bapp02.indd 06:45:12:PM 01/20/2014 Page 459

Information Disclosure from a Data Store

Figure B-11 shows an attack tree for information disclosure from a data store.

Information disclosure threats are generally covered in Chapter 3, Chapter 8,

and Chapter 16.

Information
Disclosure Data

Store

Bypass
protectionMetadata Surprise Side channelsStorage attacks

Other

Name

Size

Timestamps

Other

Occluded data Physical
access

Reused
memory

Backup

Non-cleaned
storage

No protection

Bypass
monitor

Canonicalization
failures

Use other
consumers

Weak
permissions

Figure B-11: Information disclosure from a data store

Goal: Read from a data store

 ■ Bypass protection

 ■ Canonicalization failures

 ■ No protection

 ■ Bypass monitor

460 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 460

 ■ Weak permissions

 ■ Use other consumers

 ■ Metadata

 ■ Name

 ■ Size

 ■ Timestamps

 ■ Other

 ■ Surprise

 ■ Occluded data

 ■ Side channels

 ■ Storage attacks

 ■ Physical access

 ■ Non-cleaned storage

 ■ Reused memory

 ■ Backup

 ■ Other

Table B-11a: Information Disclosure by Bypassing Protection Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Canonicalization

failures

Can a data ele-

ment have mul-

tiple names—for

example, through

links or inclusion? If

so, diff erent names

may be processed

diff erently.

Check permissions

on the resolved

object (after name

canonicalization).

Probably none

with reasonable

eff ort

No protection The system off ers no

protection, perhaps

by design.

Use another system, or

add protection.

Physical

protection

Bypass monitor Exploit the lack of a

“reference monitor”

through which all

access requests pass,

or take advantage of

bugs.

Redesign is probably

easier than the sorts of

extensive testing that

might fi nd all the bugs.

Use a better

system.

 Appendix B ■ Threat Trees 461

bapp02.indd 06:45:12:PM 01/20/2014 Page 461

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Weak permissions The permissions are

too permissive.

Stronger permissions Stronger

permissions

Use other

consumers

Find another pro-

gram that can read

the data and use it

to read for you.

Don’t open arbitrary

fi les and pass on their

contents.

Remove or

block that

program with

permissions.

Table B-11b: Information Disclosure through Metadata and Side Channels Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Name A fi lename can

reveal information,

such as “Plans to

layoff Alice.docx”.

Private directories, and

allowing people to defi ne

where data is stored

Permissions

Size The size of a fi le can

reveal information.

Ensure that your fi les are

of standard size. (This is

rarely needed but it might

be for your data types.)

Permissions

Timestamps When a fi le is cre-

ated can reveal inter-

esting information.

Private directories, and

allowing people to defi ne

where data is stored

Operational

security to con-

ceal timestamps

Side channels Aspects of behavior

such as a disk fi lling

up or being slow can

reveal information.

Possibly quotas, pre-allo-

cating space to conceal

actual usage

Reducing side

channels is a

large investment.

Other If you’re concerned

about the preceding

issues, there’s a wide

variety of ways to be

clever.

Steganography,

encryption

Isolation

Table B-11c: Information Disclosure from Surprise Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Occluded

data

Data for purposes such as

change tracking, etc., can

be revealing.

Tools to help view,

inspect, or remove

such data

Procedures and train-

ing for publication

462 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 462

Table B-11d: Information Disclosure via Storage Attacks Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Physical

access

Physical access is

awesome if you

believe your oper-

ating system will

protect you.

Encryption Physical security

Non-

cleaned

storage

When you release

storage, does the

OS clean it?

Manually overwrite

sensitive data, usually

repeatedly. Note that

this works poorly with

fl ash-based storage.

Destroy disks, rather than

resell them. You can over-

write spinning media, but

fl ash storage wear level-

ing makes information

disclosure threats hard to

manage.

Reused

memory

When you release

storage, does the

OS clean it?

As above None

Backup What happens

to those off site

tapes?*

Cryptography Cryptography

* Threats to backup can also allow tampering. However, completing a tampering attack with a backup tape is far
more complex than information disclosure through such tapes.

Denial of Service against a Process

Figure B-12 shows an attack tree for denial of service against a process.

Denial-of-service threats are generally covered in Chapter 3, and Chapter 8.

Denial of Service
Process

Consume
fundamental

resource

Consume
application
resource

Input validation
failures Hold locks Other

Figure B-12: Denial of service against a process

 Appendix B ■ Threat Trees 463

bapp02.indd 06:45:12:PM 01/20/2014 Page 463

Goal: Denial of service against a process

 ■ Consume application resource

 ■ Consume fundamental resource

 ■ Input validation failures

 ■ Hold locks

 ■ Other

Table B-12: Denial of Service against a Process

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Consume appli-

cation resource

Application

resources include

connections, or

buff ers or struc-

tures that manage

business logic.

Dynamically

allocated

resources

VMs or load balancing

Consume funda-

mental resource

Fundamental

resources include

disk, memory, or

bandwidth.

Use OS quotas. VMs or load balancing

Input validation

failures

An input failure

that crashes the

application

Careful input

validation

Process restarting. (Be

careful that you don’t allow

DoS to turn into EoP by

giving attackers as many

chances as they need.)

Hold locks To the extent that

an application can

hold locks, it can

deny service to

other locks.

Give up your

locks quickly.

One VM per application

Denial of Service against a Data Flow

Figure B-13 shows an attack tree for denial of service against a data fl ow.

Denial-of-service threats are generally covered in Chapters 3, and Chapter 8.

464 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 464

Denial of Service
Data Flow

PreplayCorrupt message Incapacitate
channel Other

Consume
fundamental

resource

Consume
application
resource

Incapacitate
endpoints

Squatting

DoS process

No message
integrity

Weak message
integrity

Figure B-13: Denial of service against a data flow

Goal: Denial of service against a data fl ow

 ■ Preplay

 ■ Corrupt messages

 ■ No integrity

 ■ Weak integrity

 ■ Incapacitate channel

 ■ Consume fundamental resource

 ■ Consume application resource

 ■ Incapacitate endpoints

 ■ Squatting

 ■ DoS against process

 ■ Other

 Appendix B ■ Threat Trees 465

bapp02.indd 06:45:12:PM 01/20/2014 Page 465

Table B-13a: Denial of Service via Preplay Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Preplay An attacker initiates a

connection or action

before you, absorbing

cycles.

Proof of work doesn’t

work, but consider drop-

ping connections that

seem slow.

Mmm, capacity

Table B-13b: Denial of Service via Corrupt Messages Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

No

integrity

If the channel has no

integrity, an attacker

along or close to the

path can corrupt

messages.

Add integrity checks. Add capacity or, if

feasible, tunneling.

Weak

integrity

Similar to no integrity,

but with an unkeyed

checksum, or a

non-cryptographic

checksum

Use a cryptographically

strong checksum with

keying.

Add capacity or, if

feasible, tunneling.

Table B-13c: Denial of Service By Incapacitating a Channel Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Consume funda-

mental resource

Typically, bandwidth

is the fundamental

resource, but it can

also be CPU.

Use TCP, not UDP,

so you can at least

require that end-

points be able to

respond.

Bandwidth—

sweet, sweet

bandwidth

Consume appli-

cation resource

Anything that your

application can pro-

vide can be consumed.

For example, if you

have a state-based fi re-

wall with static tables

of state data, that table

can be fi lled.

Avoid fi xed

allocations.

VMs and load

balancers

Continues

466 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 466

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Incapacitate

endpoints

Do something to kill

the endpoint.

Ensure your end-

points can’t be

incapacitated.

fail-over

Squatting Show up before the

real application to

claim a port, a named

pipe, etc.

None Permissions

DoS against

process

Cause the process

to spin in some way,

making the channel

unusable.

As above VMs and load

balancers

Denial of Service against a Data Store

Figure B-14 shows an attack tree for denial of service against a data store.

Denial-of-service threats are generally covered in Chapter 3, and Chapter 8.

Denial of Service
Data Store

Squatting Corrupt dataIncapacitate
container

Exceed capacity

Fundamental App specific

Bandwidth

Other

Quotas

Deny access
to store

Figure B-14: Denial of service against a data store

Goal: Denial of service against a data store

 ■ Squatting

Table B-13c (continued)

 Appendix B ■ Threat Trees 467

bapp02.indd 06:45:12:PM 01/20/2014 Page 467

 ■ Corrupt data (See tamper with data store, Figure B-6.)

 ■ Incapacitate container

 ■ Deny access to store

 ■ Exceed capacity

 ■ Fundamental

 ■ App specifi c

 ■ Quotas

 ■ Bandwidth

 ■ Other

Exceed capacity or bandwidth means I/O operations per second, and if sus-

tained, that can have knock-on effects as I/O is queued.

Table B-14a: Deny Service by Squatting Subtree

TREE

NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Squatting Show up before the real

application to claim a

port, a named pipe, etc.

Assign per-

missions to

the object in

question.

Assign permissions to

the object in question.

Table B-14b: Deny Service by Incapacitating a Container Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Deny access to

store

An attacker might

deny access to a

store by adding an

ACL or taking and

holding a lock.

Put the store some-

where that attackers

are limited in their

ability to add ACLs

or locks. Test to see

if you can access the

store; fail gracefully.

Move the store some-

where an attacker

can’t change permis-

sions, possibly using a

link to redirect.

Exceed capacity Fill the data store

in some way, either

fundamental, or

app specifi c, or

by hitting quotas

or bandwidth

constraints.

Continues

468 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 468

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Fundamental Absorb a funda-

mental resource

such as disk space.

Fail gracefully. More storage

App specifi c If the application

has resource limits,

fi ll them up; for

an example, see

US-CERT, 2002.

Avoid fi xed

allocations.

None

Quotas A quota can work

like a fundamental

resource restric-

tion, while hold-

ing the DoS to a

single application

or account, rather

than a system.

Design choices

about appropriate

trade-off s

Deployment choices

about appropriate

trade-off s

Bandwidth Even if the data

store can hold

more data, net-

work bandwidth or

buff ers on either

end of a connec-

tion can fi ll up.

Dynamic buff ers may

help postpone the

issues.

More bandwidth, or

(especially in cloud/

data centers) move

the processes closer

to the system that is

writing.

Elevation of Privilege against a Process

Figure B-15 shows an attack tree for elevation of privilege against a process.

Elevation of privilege threats are generally covered in Chapter 3, and Chapter 8.

Goal: Elevation of privilege against a process

 ■ Dynamic corruption

 ■ Input validation failure

 ■ Access to memory

Table B-14b (continued)

 Appendix B ■ Threat Trees 469

bapp02.indd 06:45:12:PM 01/20/2014 Page 469

 ■ Static corruption (See tamper with data store, Figure B-6.)

 ■ Insuffi cient authorization

 ■ Cross domain issues

 ■ Call chain issues

 ■ Design issues

 ■ Usability

EoP Process

Dynamic
corruption

Input validation
failure

Access to
memory

Static
corruption

Insufficient
authorization Other

Design issues

Usability

Cross-domain
issues

Call chain
issues

Figure B-15: Elevation of privilege against a process

Table B-15a: Elevate Privilege by Dynamic Corruption Subtree

TREE NODE EXPLANATION

DEVELOPER

MITIGATION

OPERATIONAL

MITIGATION

Input valida-

tion failures

Input can alter control

fl ow (e.g., via stack smash-

ing or heap overfl ow).

Careful design, input

validation for pur-

pose, fuzzing

Sandboxing can

partially mitigate

the eff ects.

Access to

memory

Sometimes code will

attempt to defend against

administrators or other

local accounts.

See “Tampering with

a Process”.

Use the OS.

470 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 470

Table B-15b: Exploit Insuffi cient Authorization to Elevate Privileges Subtree

TREE

NODE EXPLANATION DEVELOPER MITIGATION

OPERATIONAL

MITIGATION

Cross-

domain

issues

Applications that

use a “same origin”

policy or a “no cross

domain” policy can

be impacted by

failures in that secu-

rity model. These

models are fre-

quently used in web

applications.

Ensure that security checks

are centralized into a refer-

ence monitor that makes

names canonical and then

runs checks. Be careful

with common domains

and DNS issues that can

result from load balanc-

ing or cloud services. (For

example, is Amazon S3 or

Akamai, along with all their

customers, inside your trust

boundary?)*

Your own

domain(s) will

probably help.

Call-chain

issues

See “Tampering with

a Process (Figure B4)

above.

Design

issues

(usability)

If your authorization

system is hard to use,

people are less likely

to use it well.

Perform human-factors tests

early in the design.

Tools to analyze

permissions

* Amazon and Akamai are mentioned to be evocative, not to disparage their services.

Other Threat Trees

These trees are intended to be templates for common modes of attack. There

are several tensions associated with creating such trees. First is a question of

depth. A deeper, more specifi c tree is more helpful to those who are experts in

areas other than security. Unfortunately, through specifi city, it loses power to

shape mental models, and it loses power to evoke related threats. Second, there

is a tension between the appearance of completeness and the specifi city to an

operating system. For example, exploit domain trust is Windows specifi c, and it

can be derived from either “abuse feature” or “exploit admin (authentication)”

or both, depending on your perspective. As such, consider these trees and the

audience who will be using them when deciding if you should use them as is

or draw more layers.

Unlike the STRIDE trees shown earlier, these trees are not presented with

a catalog of ways to address the threats. Such a catalog would be too varied,

based on details of the operating systems in question.

 Appendix B ■ Threat Trees 471

bapp02.indd 06:45:12:PM 01/20/2014 Page 471

Running Code

The goal of running code can also be seen as elevation of privilege with respect

to a system. That is, the attacker moves from being unable to run code (on that

system) to the new privilege of being able to run code (on that system). These

trees also relate to the goal of exploiting a social program, which is presented

next. The key difference is that the trees in this section focus on “run code,”

and that is not always an attacker’s goal. These trees do not contain an “other”

node, but the categories are designed to be broad.

On a Server

In this context, a server is simply a computer that does not have a person using

it, but rather is running one or more processes that respond to network requests.

The goal is “run code” rather than “break into,” as breaking in is almost always a

step along a chain, rather than a goal in itself, and the next step toward that goal

is almost always to run some program on that machine. This tree, as shown in

Figure B-16, does not distinguish between privilege levels at which an attacker

might run code.

Abuse a feature Physical
access Supply chain

Hardware

Software

Shipped

Update

Intent

Accident/misled

Run code on
server

Exploit a code
vulnerability

Exploit
authentication

Administrator
action

Figure B-16: Run code on a server

Goal: Run code on a server

 ■ Exploit a code vulnerability

 ■ Injection vulnerabilities

472 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 472

 ■ Script injection

 ■ Code injection (including SQL and others)

 ■ Other code vulnerabilities

 ■ Abuse a feature

 ■ Exploit authentication

 ■ Physical access

 ■ Supply chain

 ■ Tamper with hardware

 ■ Tamper with software

 ■ As shipped

 ■ Tamper with an update

 ■ Administrator action

 ■ Intentional

 ■ Accident/mislead

Tampering with software updates may be targetable or may require a broad

attack. Injection vulnerabilities are a broad class of issue where code/data con-

fusion allows an attacker to insert their code or scripts.

On a Client

All of the ways that work to break into a “server” work against a client as well,

although the client may have less network attack surface. As shown in Figure B-17,

the new ways to break in are to convince the person to run code with additional

or unexpected functionality or to convince them to pass unsafe input to code

already on their machine. You can either convince them to run code knowing

they’re running code but not understanding what impact it will have, or confuse

them into doing so, such as by using a fi le with a PDF icon and displayed name

which hides its executable nature. (See the section below on “Attack with Tricky

Filenames.”) If you’re convincing a victim to pass unsafe input to a program

on their machine, that input might be a document, an image, or a URL (which

likely will load further exploit code, rather than contain the exploit directly).

These attacks on the person can come from a variety of places, including

e-mail, instant message, fi le-sharing applications, websites, or even phone calls.

Goal: Run code on a client

 ■ As server

 ■ Convince a person to run code

 ■ Extra functionality

 Appendix B ■ Threat Trees 473

bapp02.indd 06:45:12:PM 01/20/2014 Page 473

 ■ From a website

 ■ Tricked into running

 ■ Convince person to open an exploiting document (possibly via a

document, image, or URL)

 ■ Watering hole attacks

 ■ Website

 ■ Filesharing

 ■ Other

 ■ “What’s this?”

Website

Filesharing

Other

Run code on
client

As server Convince to run
code

Convince to
open exploiting

doc/link

Watering hole
attacks

Extra
functionality

Tricked into
running

“What’s this?”

Figure B-17: Run code on a client

Those paying attention might notice that this is informed by the Broad Street

Taxonomy, as covered in Chapter 18, “Experimental Approaches.” Watering

hole attacks are similar to “convince person to open an exploiting document,”

but they target a possibly broad class of people. That may range from targeting

those interested in an obscure government website to those visiting a program-

ming site. (Attack code in either place may involve some discretion based on

target IP, domain, or other factors.) Watering hole attacks can also impact those

downloading content from fi le-sharing services and the like. The last category

(“What’s this?”) refers to attacking a person via a fi le on a fi le share, USB key,

or other device, so curious users click an executable because they’re curious

what it does.

474 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 474

On a Mobile Device

The term mobile device includes all laptops, tablets, or phones. Attacks against

mobile devices include all client attacks, and physical access has added promi-

nence because it is easier to lose one of these than a refrigerator-size server. The

additional attacks are shown in Figure B-18.

As client

Run code on
mobile device

Convince to
run code*

Physical
access

Figure B-18: Run code on a mobile device

Goal: Run code on a mobile device

 ■ As client

 ■ Convince to run code* (may be modifi ed by app stores)

 ■ Physical access has greater prominence

*Convincing someone to run code may be changed by the presence (or man-

date) of app stores. Such mandates lead to interesting risks of jailbreaks carrying

extra functionality.

Attack via a “Social” Program

For longer than the Internet has been around, people have been attacked at a

distance. Most countries have a postal police of some form whose job includes

preventing scammers from taking advantage of people. The Internet’s amazing

and cheap channels for connecting people have brought many of these online,

and added a set of new ways people can be taken advantage of, such as exploit-

ing vulnerabilities to take over their computers.

The threat tree shown in Figure B-19 can be used in two ways. First, it can

be used as an operational threat model for considering attack patterns against

e-mail clients, IM clients, or any client that a person uses in whole or in part

to connect with other people. Second, it can be used as a design-time model to

ensure that you have defenses against attacks represented by each part of the tree.

Goal: Attack via a “social” program

 ■ Run code

 ■ Unattended exploit

 ■ Exploit vulnerability via document

 Appendix B ■ Threat Trees 475

bapp02.indd 06:45:12:PM 01/20/2014 Page 475

 ■ Reason to act + belief in safety

 ■ Belief in safety

 ■ Human action

 ■ Visit a website

 ■ Phishing

 ■ Exploit vulnerability*

 ■ Ad revenue

 ■ Other

 ■ Drive other action

Run code

Reason to act

Belief in safety

Human action

Visit website

Phishing

Ad revenue

Other

Attack via social
program

Unattended
Exploit

Exploit vuln
with assistance

Drive other
action

Exploit vuln*

Figure B-19: Using a social program to attack

*The “Exploit vulnerability” reason to get a person to visit a website means

that the attacker does something to convince a person to visit a website where

there’s exploit code waiting. It is duplicative of the “exploit vuln with assistance.”

It is suffi ciently common that it’s worth including in both places. (There is

an alternative for attackers, which is to insert their exploit into an advertisement

shown on the web.)

476 Appendix B ■ Threat Trees

bapp02.indd 06:45:12:PM 01/20/2014 Page 476

This tree intentionally treats attacks by administrators or the logged-in account

as out of scope. The “logged-in account” here refers to acts taken either by that

person or by code running with the privileges of that account. Once code is

inside that trust boundary, it can most effectively (or perhaps only) be managed

by code running at a higher privilege level. Almost by defi nition that is out of

scope for such a social program. You might have an administrative module that

runs at higher privilege and, for example, acts as a reference monitor for certain

actions, but code running as the logged-in account could still change the user

interface or generate actions.

Attack with Tricky Filenames

A simple model of convincing a person to act requires both a reason for them

to act and a belief that the act is safe, or suffi ciently safe to override any caution

they may feel. The reasons that attackers frequently use to get people to act are

modeled in Table 15-1 of Chapter 15. A belief in safety may come from a belief

that they are opening a document (image, web page, etc.) rather than running

a program. That belief may be true, and the document is carrying a technical

exploit against a vulnerability. It may also be that the document is really a

program, and named in a way that causes the user interface to hide parts of

the name. Hiding parts of the name can be a result of extension hiding in Mac

OS, Windows, or other environments. It can also be a result of various complex

issues around mixing displayed languages whose text directions are different

(read left to right or right to left). For example, what’s the correct way to write

Abdul’s Resume? Should it be resume ? If, rather than having that resume

in a fi le named .doc, it’s a .exe, where should the .exe be displayed relative to

? On the one hand, the Arabic should be displayed farthest right, but

that will confuse those who expect the extension there. If the extension is on

the far right, then the Arabic is displayed incorrectly. It’s easy for a person to

get confused about what a fi le extension really is.

Entertainingly, Microsoft Word took the text entered as “Abdul (in Arabic)

Resume” and re-rendered it as “R” “e” “s” “u” “m” “e” “L/lam” etc. Abdul,

and then re-arranged the question mark typed after the name to be between

those words. (Which just goes to show...the issues are complex, and there’s no

obviously right answer.)

477

bapp03.indd 02:6:8:PM 01/10/2014 Page 477

As discussed in Chapter 2, “Strategies for Threat Modeling,” focusing on attack-

ers is an attractive way to make threats real. This appendix provides you with

an understanding of attackers at a variety of levels of details. The fi rst section

is four lists of attackers with limited detail about each. That is followed by a

discussion of “personas,” and then a fully worked out system of threat personas.

Many projects have fl oundered because creating these models is challeng-

ing. This appendix is presented with the hope that it will help you, and the

(cynical) expectation that it will help you by helping you “fail faster.” That is,

by providing these lists, you can experiment with a variety of attacker models,

rather than needing to create your own to try them out. By failing faster, you

can learn lessons and move along, rather than getting mired in an approach.

There is one other attacker worth considering, and that is the expert witness.

If you expect your product (or evidence from it) to be used in court, consider

how each element of the product, process, or system might come under attack

by a motivated skeptic. For an example of this, see “Offender Tagging” by Ross

Anderson (Anderson, 2013).

A P P E N D I X

C

Attacker Lists

478 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 478

Attacker Lists

This section lays out four sets of attackers which have been developed to vari-

ous degrees.

Barnard’s List

One set of attackers was developed by Robert Barnard in Intrusion Detection

Systems (Barnard, 1988) and is covered in Ross Anderson’s Security Engineering,

2nd Edition (Wiley, 2008, pp. 367-68). It consists of four attackers. Derek, a 19-year-

old addict, is looking to steal to pay for his drugs. Charlie is a cat burglar who

has been convicted seven times. Bruno is a “gentleman criminal” who steals art

or other high-value items. Abdurrahman heads a cell of militants with military

weapons training and technical support from a small government.

Verizon’s Lists

Another set of attackers appears in the Verizon Data Breach Intelligence Report,

and is derived from observation of their data. It consists of three types of actors

who appear regularly: organized crime, state affi liated, and activists. Each is

characterized by the industry of victims they attack, the region in which they

operate, common actions, and the sorts of assets they go after. (Verizon, 2013).

N O T E Verizon uses the word “asset” to refer to either a machine type, such as “mail

server,” or the data that the attackers want, or both. This is yet another example of

how the term can reduce clarity, rather than add it, as discussed in Chapter 2.

This attacker set is best suited for operational threat modeling. A slight vari-

ant of this is used by the security company Securosis, which adds “competitor,”

and replaces “activists” with “unsophisticated” (Securosis, 2013).

Verizon’s RISK team also has what they call the “A4 Threat Model.” A4 refers

to Actors, Actions, Assets, and Attributes. (Verizon, 2013). Based on conversa-

tions with the creators, that model may be better for categorizing incidents than

predicting them.

OWASP

The Open Web Application Security Project (OWASP) has a set of attackers in

(OWASP, 2012). The OWASP enumeration of threat agents is quoted verbatim

below:

 ■ Non-Target Specifi c: Non-Target Specifi c Threat Agents are computer

viruses, worms, trojans, and logic bombs.

 Appendix C ■ Attacker Lists 479

bapp03.indd 02:6:8:PM 01/10/2014 Page 479

 ■ Employees: Staff, contractors, operational/maintenance personnel, or

security guards who are annoyed with the company

 ■ Organized Crime and Criminals: Criminals target information that is of

value to them, such as bank accounts, credit cards, or intellectual prop-

erty that can be converted into money. Criminals will often make use of

insiders to help them.

 ■ Corporations: Corporations who are engaged in offensive information

warfare or competitive intelligence. Partners and competitors come under

this category.

 ■ Human, Unintentional: Accidents, carelessness

 ■ Human, Intentional: Insider, outsider

 ■ Natural: Flood, fi re, lightning, meteor, earthquakes

Intel TARA

Intel has a system called Threat Agent Risk Assessment (TARA) that includes

a Threat Agent Library and a Methods and Objectives Library. The system is

described in a white paper from Intel, but the complete libraries are considered

confi dential (Rosenquist, 2009). The Intel TAL consists of 22 threat agents, and a

16-agent derivative is included in the U.S. Department of Homeland Security’s “IT

Sector Baseline Risk Assessment.” A list of “Threat Agent Profi les” is included

in Figure 4 of the TARA paper, and it includes the following agents:

 ■ Competitor

 ■ Data miner

 ■ Radical activist

 ■ Cyber vandal

 ■ Sensationalist

 ■ Civil activist

 ■ Terrorist

 ■ Anarchist

 ■ Irrational individual

 ■ Government cyber warrior

 ■ Organized criminal

 ■ Corrupt government offi cial

 ■ Legal adversary

 ■ Internal spy

 ■ Government spy

480 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 480

 ■ Thief

 ■ Vendor

 ■ Reckless employee

 ■ Untrained employee

 ■ Information partner

 ■ Disgruntled employee

Personas and Archetypes

It’s possible to start from a simple list of attacker archetypes, such as those

shown in the previous section. When doing so, it’s easy to fi nd yourself arguing

about the resources or capabilities of such an archetype, and needing to fl esh

them out. For example, what if your terrorist is state-sponsored, and has access

to government labs? These questions make the attacker-centric approach start

to resemble “personas,” which are often used to help think about human inter-

face issues. You can use lessons from that community to inform your approach.

Although he didn’t invent the word, usability pioneer Alan Cooper developed

the concept of personas in his 1998 book, “The Inmates are Running the Asylum”

(SAMS, 1999). In more recent work, “About Face 3: The Essentials of Interaction

Design” (Wiley, 2012), Cooper and his colleagues integrate personas into a more

in-depth process, and stress that personas are based on research. Cooper defi nes

a seven step process for creating personas.

 1. Identify behavioral variables.

 2. Map interview subjects to behavioral variables.

 3. Identify signifi cant behavior patterns.

 4. Synthesize characteristics and relevant goals.

 5. Check for completeness and redundancy.

 6. Expand descriptions of attributes and behaviors.

 7. Designate persona types.

They defi ned this process because experience with less structured approaches

didn’t lead to effective product design. They stress that persona development

must be an intensive data- and research-driven process. If you’re willing to go

through that sort of process for an attacker set, then you may fi nd more suc-

cess with attacker-driven threat modeling. For step 2, you may be able to fi nd

multiple attackers of each type and induce them to go through your interviews.

Then, with such a persona set in hand, you may able to create useful scenarios

and requirements.

 Appendix C ■ Attacker Lists 481

bapp03.indd 02:6:8:PM 01/10/2014 Page 481

A key aspect of Cooper’s approach to scenarios and requirements is that people

are using a product to accomplish goals, and the reason for the personas is to

ensure that features are created in support of those goals. Unless you include a

“give me administrator access” button, attackers are unlikely to use the features

you create in the way you intend to accomplish their goals.

With that explanation of personas, let’s proceed to a fully-worked set of attacker

personas.

Aucsmith’s Attacker Personas

The remainder of this appendix is a reformatted and very gently edited ver-

sion of a document, “Threat Personas,” (Aucsmith, 2003) created between 1999

and 2003 by Dave Aucsmith, Brendan Dixon, and Robin Martin-Emerson at

Microsoft, and it appears here with the kind permission of Microsoft. Note

that some of the list elements were left empty in the original, and those have

been left empty here.

It is included because it is a well-worked-through and empirical approach

to persona-driven threat modeling. It can help you by accelerating experi-

ments with such approaches. However, you should also see the cautions in

Chapter 2, before attempting to use these personas.

Background and Defi nitions

All computer systems have both users and, in some sense, anti-users: those

trying, for one reason or another, to break into, control, or misuse a computer

system and the data it manages. Anti-users, like computer users, fall into a few

patterns that describe “threat personas” engaged in “threat scenarios.”

Classifi cation of anti-users, based on an analysis of FBI cyber-attack data,

clusters best when using two key axes: Motivation and Skill. There are four

different motivations driving anti-users:

 ■ Curiosity: ”Because it was there” compels some anti-users. They want

to experiment and try things out, perhaps indulging in a little vandalism

along the way. They’re not motivated by fame or gain (yet), but wile away

the hours for their own enjoyment. A common physical analogy is kids

who vandalize local parks for no apparent reason.

 ■ Personal fame: Some anti-users want fame; they like to see their name “in

lights” or to be known among their friends and comrades. Financial gain

is not a goal. These anti-users purposely leave marks for others to see, to

build their own reputation. A physical analogy might be those who block

streets to protest the WTO.

482 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 482

 ■ Personal gain: A growing number of anti-users use their skills for personal

gain. These range from spammers (who co-opt innocent systems for use

as spam mailers) to those that commit fi nancial fraud (such as by stealing

credit card numbers). What sets these apart is the desire for personal fi nan-

cial gain. Bank robbers, in the physical world, have the same motivation.

 ■ National interests: Political interests drive a select number of anti-users.

To them, “hacking” is just another tool for accomplishing a political end.

There are legitimate anti-users, such as those protecting a country’s national

interests, and illegitimate anti-users seeking to undermine that same inter-

est. A legitimate anti-user, for example, might crack into a terrorist’s

computer to learn of an impending attack; an illegitimate anti-user, by

contrast, may attack an airline reservation system to learn fl ight passenger

details. The nation they serve, by standard defi nitions, might or might not

exist (such as Al-Qaeda). Physical analogies abound and span the globe.

They include the NSA (National Security Agency) in the US, the GCHQ

in Britain, and other known (or unknown) organizations.

Anti-users also have varying levels of skill:

 ■ The script kiddie: Because programs, once written, may be used by any-

one, not all anti-users are themselves programmers. Some merely use

the tools and applications others develop. These script-kiddies do not

have any real system knowledge—they only understand how to follow

instructions and use the different available tools.

 ■ The undergraduate: A little knowledge can go a long way. A number

of anti-users have bits of experience coupled with some undergraduate

experience. They employ these much like the script kiddies: They mostly

use tools and applications other write. They might try some minor modi-

fi cations, such as tailoring the attack or slightly altering the data used,

but they lack the skills to do anything more than twist and adjust a few

dials and settings.

 ■ The expert: Advanced anti-users supply the tools and applications. They

write the worms and viruses. They write the worm generators and virus

generators. They write the applications that snoop networks for weak-

nesses. They’re quite comfortable working in the kernel of their favorite

operating system or reading protocol traces. Advanced anti-users are the

experts of the underground.

 Appendix C ■ Attacker Lists 483

bapp03.indd 02:6:8:PM 01/10/2014 Page 483

 ■ The specialist: Virtually any skill has a value to someone, and “hack-

ing” skills are worth a great deal to some. A few anti-users, through very

specialized training (such as Ph.D. work) and access to critical resources

(such as signifi cant monetary funds and source listings), develop extremely

specialized abilities. These specialists do not often leave traces of their

work. They work carefully and methodically. Snooping and breaking

computer systems is their job, not just their pastime.

When applied to the FBI data, these motivation and skill categories yield

eight, distinct threat personas grouped by fi ve different “behaviors”—a two-way

interaction between motivation and skill—as depicted in the following fi gure.

The following sections cover each persona in detail.

484 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 484

Personas

David “Ne0phyate” Bradley – Vandal

Overview

MOTIVATION

❖ Curiosity

❖ Experimentation

SKILL AND

EDUCATION

❖ Quintessential script kiddie

❖ Freshman in computer science

SPAN OF INFLUENCE ❖ None

COLLABORATION

❖ Depends on “publicly” available tools and applications

❖ Does not contribute to others; is a “lurker”

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE ❖ None

Core Profi le

Chief Motivation

 ■ Curiosity

 Appendix C ■ Attacker Lists 485

bapp03.indd 02:6:8:PM 01/10/2014 Page 485

Background, Experience, and Education

 ■ Most common type of attacker; frequently participates in DDoS attacks

 ■ Has played with computers for years; is the computer “expert” for his

family and friends

 ■ Frequently plays computer games

 ■ Very little programming experience, restricted to scripting websites

 ■ Has “no clue” regarding details of the attacks he launches, but he is per-

sistent and has the time. He’ll try anything without regard for the con-

sequences (e.g., run attacks meant for Windows against Linux systems).

 ■ Never attacks early in the morning (because he’s sleeping); attacks most

always occur late in the evening or on weekends

 ■ Currently a freshman in computer science

Employer

 ■ None, is a full-time student

Previous Accomplishments

 ■ Launched a three-day TCP/IP “SYNC fl ood” DoS attack against a non-

profi t organization; also tried using an ICMP “ping-of-death” attack

(which failed)

 ■ Recently knocked all friends off of an IRC (Internet Relay Chat) session

using a DoS (Denial of Service) script

 ■ Unsuccessfully attempted to gain administrator (aka “root”) access to the

Department of Computer Science lab computers

 ■ Took part in two of the large DDoS attacks launched against well-known

sites (e.g., Yahoo!)

 ■ More or less attended class during the last week

Span of Influence

 ■ None, depends highly on others

Scope of Attacks

 ■ Popular websites

 ■ His school’s network

486 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 486

 ■ Friends’ computers

 ■ Computers on his cable modem network segment (e.g., his neighbors)

JoLynn “NightLily” Dobney – Trespasser

Overview

MOTIVATION

❖ Personal fame; bragging rights

❖ Experimentation

SKILL AND

EDUCATION

❖ Basic programming and network knowledge

❖ Self-taught

❖ Heavily reads news groups

SPAN OF INFLUENCE ❖ None

COLLABORATION

❖ Depends on “publicly” available tools and applications

❖ Does not contribute to others; is a “lurker”

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE ❖ Limited; typical low-level system jockey

Core Profi le

Chief Motivation

 ■ Personal fame

 Appendix C ■ Attacker Lists 487

bapp03.indd 02:6:8:PM 01/10/2014 Page 487

Background, Experience, and Education

 ■ Has played with computers for years; is the computer “expert” for her

family and friends

 ■ Frequently plays computer games

 ■ Has a little more knowledge and experience than script kiddies, but not

much more—likes to experiment, though, and try new things

 ■ Some programming experience; can write some system scripts and con-

fi gure standard components (e.g., network router)

 ■ Mostly self-taught; possible computer tech degree

Employer

 ■ Computer technician in a medium-size manufacturing plant

Previous Accomplishments

 ■ Periodically shuts down local library website through IRC-based DDoS

(distributed denial-of-service) attacks

 ■ Nightly runs scripts to fi nd open computers on cable modem network

segment

 ■ Planted a Sub7 Trojan horse program (a “backdoor” allowing continued

access to the computer) on open computers

 ■ Attacked her local community library, with persistent DoS attacks, to

contest a $0.25 late-return fi ne

 ■ Unintentionally destroyed data used by a medium-size website when the

Trojan horse she implanted caused the web server to fault

Span of Influence

 ■ None, depends highly on others

Scope of Attacks

 ■

488 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 488

Sean “Keech” Purcell – Defacer

Overview

MOTIVATION

❖ Seeks to change public opinion; vent personal anger

❖ Conscience; morally-motivated political goals

❖ Personal fame

SKILL AND EDUCATION

❖ Enrolled in an MS in computer science program

❖ Attends Black Hat (“hacker” convention)

SPAN OF INFLUENCE

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE

Core Profi le

Chief Motivation

 ■ Political purposes

 Appendix C ■ Attacker Lists 489

bapp03.indd 02:6:8:PM 01/10/2014 Page 489

Background, Experience, and Education

 ■ Moderate programming and network experience, mostly in applications

 ■ Completed an undergraduate in computer science

 ■ Enrolled in an MS in computer science program

 ■ Relatively sophisticated and reasonably skilled (He doesn’t write the

original exploit but he can cobble together new combinations and modify

how the exploit works.)

 ■ Active member of the “Animal Liberation Front” (ALF) that recently

released 10,000 minks from “captivity” on a local mink farm

 ■ Differs from a terrorist only by a matter of degree; he has the same essential

motivation and uses similar (though less sophisticated) methods

Employer

 ■ Currently a full-time student

Previous Accomplishments

 ■ Recently changed the FRAMESET URLs of a wood products company’s

home page; he left the company’s name intact but replaced the content

with a political diatribe against their tree harvesting techniques

 ■ Changed the home page of a wood products company, by exploiting an

IIS vulnerability, to point to the home page of an environmental advocacy

group

 ■ Successfully launched a DDoS attack against the same wood products

company

Span of Influence

 ■

Scope of Attacks

 ■

490 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 490

Bryan “CrossFyre” Walton – Author

Overview

MOTIVATION ❖ Personal fame among his small circle of “authors”

SKILL AND

EDUCATION
❖ Holds an MS in computer science

SPAN OF INFLUENCE

COLLABORATION

❖ Contributes “public” tools for others to use

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE

Core Profi le

Chief Motivation

 ■ Personal fame among fellow “authors”

Background, Experience, and Education

 ■ Has played with computers for years; is the computer “expert” for his

family and friends

 Appendix C ■ Attacker Lists 491

bapp03.indd 02:6:8:PM 01/10/2014 Page 491

 ■ Extensive programming and network experience, both in applications

and systems

 ■ Holds an MS in computer science

 ■ Reads and contributes to news groups; seen as one of the “experts”

 ■ Is hard to track down and little concrete information is known about him;

what is known has been learned by rumor and innuendo.

 ■ He writes the exploit, perhaps just the kernel of the attack; he lets others

(using toolkits) build and launch the actual worm or virus.

 ■ Often learns about holes by examining the patches and fi xes we ship (e.g.,

he compares the code before and after applying the patch)

Employer

 ■ A medium-size network management company

Previous Accomplishments

 ■ Wrote and launched Slammer (a very sophisticated worm); it was unusual

that he elected to write and launch the worm himself.

 ■ Wrote the core of the MSBlaster worm; others packaged his exploit and

launched the worm.

 ■ Wrote a few less successful exploits against IIS and Apache

 ■ Wrote a series of time-limited worms to test propagation techniques

 ■ Recently contributed a new worm tool that makes it easy to launch the

same worm against different operating systems

Span of Influence

 ■ Highly infl uential

Scope of Attacks

 ■

492 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 492

Lorrin Smith-Bates – Insider

Overview

MOTIVATION

❖ Personal gain

❖ Intense dislike for her employer

SKILL AND

EDUCATION

❖ Holds a BS in computer science

❖ Three years of experience as a database administrator

SPAN OF INFLUENCE

❖ Very limited

❖ Does not actively participate in the underground community

COLLABORATION ❖ None

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE

❖ Three years of experience as a database administrator

❖ Held two summer internships while completing her under-

graduate degree (one as a phone-support technician,

another as a network jockey)

Core Profi le

Chief Motivation

 ■ Personal gain

 Appendix C ■ Attacker Lists 493

bapp03.indd 02:6:8:PM 01/10/2014 Page 493

Background, Experience, and Education

 ■ Regularly uses computers but is not avid user (e.g., not a frequent gamer)

 ■ Some programming experience; mostly application level, some systems level

 ■ Has held internships as a phone-support technician and as a network jockey

 ■ Has been employed for the last three years as a database administrator

for the accounting database; highly trusted by the organization, usually

has access to bookkeeping functions and/or systems

Employer

 ■ Medium-size retail fi rm

Previous Accomplishments

 ■ Recently modifi ed the access permissions on the purchasing database.

Set herself up as a vendor and billed the company for consumables; was

caught when the discrepancy was detected during an in-depth audit

 ■ In her previous job, with a large NY bank, she initiated a false interbank

transfer (SWIFT) into an accomplice’s London account.

Span of Influence

 ■ Very limited

 ■ Does not actively participate in the underground community

Scope of Attacks

 ■ Limited to her current employer

494 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 494

Douglas Hite – Thief

Overview

MOTIVATION

❖ Personal gain

❖ The thrill of succeeding

SKILL AND EDUCATION

❖ Holds a BS in computer science

❖ Has eight (or more) years of system-level programming

experience

SPAN OF INFLUENCE

COLLABORATION

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE ❖ Systems-level programmer for several years

Core Profi le

Chief Motivation

 ■ Personal gain

Background, Experience, and Education

 ■ Has played with computers for years; is the computer “expert” for his

family and friends

 Appendix C ■ Attacker Lists 495

bapp03.indd 02:6:8:PM 01/10/2014 Page 495

 ■ Frequently plays computer games

 ■ A great deal of programming experience, in both applications and espe-

cially systems

 ■ Holds a BS in computer science

 ■ Has eight (or more) years of system-level programming experience writ-

ing drivers for remote-control devices

 ■ He is, effectively, a member of organized crime moving into the computer

world; the fastest growing segment of computer crime (e.g., the Russian

Mafi a is getting very good at this).

Employer

 ■ Crime-based organization

 ■ May hold a day job?

Previous Accomplishments

 ■ Obtained credit-card numbers from CDNow via a 24-byte SQL injection

attack. He then offered goods on eBay, which, when purchased, he bought

using one of the stolen numbers (pocketing the auction price and leaving

the victim with “hot” goods).

 ■ Attacked a medium-size doctor’s offi ce just before payday, redirecting

all direct-deposit information to his own account(s). Then, after payday,

he redirected the direct-deposit information back to the correct entries,

covering his tracks.

 ■ Modifi ed DNS entries for a ticket agency’s computers. This redirected a

FORM POST to purchase tickets to a false clearinghouse. He collected the

real tickets and cashed them in for face value at different airports.

Span of Influence

 ■

Scope of Attacks

 ■

496 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 496

Mr. Smith – Terrorist

Overview

MOTIVATION

❖ National interests

❖ Highly motivated by ideology

SKILL AND

EDUCATION

❖ Holds an MS in computer science

❖ Seven (or more) years experience in systems-level

programming

SPAN OF INFLUENCE

❖ Limited to his ideological organization

❖ Quiet and does seek to infl uence “outsiders”

COLLABORATION

❖ Member of an ideological organization

❖ Works with assigned “team” members

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE ❖ Several years of experience as a systems-level programmer

Core Profi le

Chief Motivation

 ■ National interests (motivated by ideology)

 Appendix C ■ Attacker Lists 497

bapp03.indd 02:6:8:PM 01/10/2014 Page 497

Background, Experience, and Education

 ■ Holds an MS in computer science

 ■ Seven (or more) years experience in systems-level programming

 ■ Trained in weapons and explosives

 ■ Deeply committed to the ideological principles of his organization

Employer

 ■

Previous Accomplishments

 ■ Hacked into a Kuwaiti airline reservation system and found fl ights car-

rying members of the Kuwaiti royal family. He relayed this information

to a compatriot who then blew up the plane in fl ight.

 ■ Stole information on aerosol physics to assist with manufacturing chemi-

cal weapons

 ■ Located a truck shipment of organophosphates (used to make nerve gas)

in England. He then assisted with hijacking the truck.

Span of Influence

 ■ Limited to his ideological organization

 ■ Quiet and does seek to infl uence “outsiders”

Scope of Attacks

 ■ Worldwide

498 Appendix C ■ Attacker Lists

bapp03.indd 02:6:8:PM 01/10/2014 Page 498

Mr. Jones – Spy

Overview

MOTIVATION ❖ National interests

SKILL AND

EDUCATION

❖ Holds a Ph.D. in computer science

❖ Continuous and ongoing education and training

SPAN OF INFLUENCE

COLLABORATION

TOOLS AND

TECHNOLOGIES

IT EXPERIENCE

Core Profi le

 Chief Motivation

 ■ National interests

Background, Experience, and Education

 ■ Holds a Ph.D. in computer science (His thesis was “Fault Injection into

Cryptographic Protocols.”)

 ■ Actively engaged in continuous education and training

 ■ Has access to most source code (legally or illegally obtained)

 Appendix C ■ Attacker Lists 499

bapp03.indd 02:6:8:PM 01/10/2014 Page 499

Employer

 ■ Government agency

Previous Accomplishments

 ■ By bridging through a dual-homed (two network cards) laptop, he simul-

taneously connected to both the Internet and a VPN. He then “echoed”

every packet sent or received, using modifi ed network drivers, to a secure

collection point.

 ■ Modifi ed the random number generator in an OEM software image by

reducing the complexity of the LFSR and then encrypting the output with

a public key.

Span of Influence

 ■

Scope of Attacks

 ■ Worldwide

501

bapp04.indd 12:17:39:PM 01/17/2014 Page 501

This appendix discusses the threats in the Elevation of Privilege card game. It

goes beyond the material included in the game, with the goal of making the

game more helpful. Each bulleted item in the lists that follow includes the card,

the threat, a brief discussion, and possibly a reference or comments about how

to address it.

The aces are all of the form “You’ve invented a new type of attack.” The intent

of “new” is “not clearly covered in a card,” rather than “never before seen.” How

to interpret “clearly covered” is up to the group that’s playing. You might be

liberal, and encourage use of the aces, especially by those who are not security

experts. You might be harsh, and set a high bar for security experts. It depends

on the tone of your gameplay. However you decide to interpret it, be sure to write

down the threat and address it. There is no per-threat-type discussion of Aces.

For more on the motivation, design, and development of Elevation of Privilege,
see my paper “Elevation of Privilege: Drawing Developers into Threat Modeling”

(Shostack, 2012).

Spoofi ng

Many of the concepts here are discussed at length in Chapter 14 “Accounts and

Identity.”

A P P E N D I X

D

Elevation of Privilege: The Cards

502 Appendix D ■ Elevation of Privilege: The Cards

bapp04.indd 12:17:39:PM 01/17/2014 Page 502

2 of Spoofi ng. An attacker could squat on the random port or socket that the

server normally uses. Squatting is a term of art for a program that occupies the

resource before your program starts. If you use a random port (registered with

some portmapper), how can a client ensure that they’re connecting to the right

place? If you use a named object or a fi le in /tmp, the same sort of issues will

apply. You can address this by using ACLs to ensure that the named object is

restricted to your code, and that it is not transient (that is, it exists regardless of

whether your code is running). You can also use an object in a private directory,

rather than /tmp. If you use a port, you’ll need to authenticate after connection,

as other programs can start listening on that port. Unix systems have reserved

ports on which only root can listen, but using that requires that your code runs

as root or SUID root; or, if you break your code into a privileged listener and

a larger unprivileged processor, the root component has to synchronize over

some mechanism that then may be vulnerable to squatting.

3 of Spoofi ng. An attacker could try one credential after another and there’s noth-
ing to slow them down (online or offl ine). This refers to brute-force attacks. Online

as a term of art here means all attacks for which some code you’ve written has

a chance to intercede; offl ine means the attacker has a copy of the datastore on

which your authentication code relies, and the attacker can use whatever attack

tools they’d like. Resisting online attacks involves backoff and possibly lockout,

while resisting offl ine attacks involves salts and iterated hashes (as discussed

in Chapter 14.

4 of Spoofi ng. An attacker can anonymously connect because we expect authentica-
tion to be done at a higher level. This may be a reasonable assumption, but have

you validated it?

5 of Spoofi ng. An attacker can confuse a client because there are too many ways to

identify a server. This can refer to the human or software clients. If your systems

have several names (for example, a WINS name, a DNS name, and a branding

name), what ensures that the client always sees the same thing?

6 of Spoofi ng. An attacker can spoof a server because identifi ers aren’t stored on

the client and checked for consistency upon reconnection (that is, there’s no key per-
sistence). This refers to “trust on fi rst use,” (TOFU) as performed by SSH and

other protocols.

7 of Spoofi ng. An attacker can connect to a server or peer over a link that isn’t
authenticated (and encrypted). This can result in the server, peer, or client being

spoofed.

8 of Spoofi ng. An attacker could steal credentials stored on the server and reuse

them (for example, a key is stored in a world-readable fi le). Or the key could be stored

so that only a few principals can read it, but it’s still vulnerable to theft. You

may want to use hardware that is designed to hold high-value keys, rather than

store them on the fi le system.

 Appendix D ■ Elevation of Privilege: The Cards 503

bapp04.indd 12:17:39:PM 01/17/2014 Page 503

9 of Spoofi ng. An attacker who obtains a password can reuse it (use stronger

authenticators). This may have a complex interplay with your requirements, but

it’s always worth asking whether passwords can be removed from the system.

(There’s a discussion of those trade-offs in Chapter 14.)

10 of Spoofi ng. An attacker can choose to use weaker or no authentication. Many

systems have negotiated authentication, sometimes including no authentication.

Consider the options that you want or need to make available.

Jack of Spoofi ng. An attacker could steal credentials stored on the client and reuse

them. There’s a wide variety of ways that credentials are stored on clients, and

you cannot directly prevent any of them. These mechanisms include primarily

cookies and passwords. Consider additional authentication mechanisms such as

IP addresses or device fi ngerprinting, and be careful to not break the person’s

mental model. Also remember that many people delete cookies.

Queen of Spoofi ng. An attacker could go after the way credentials are updated

or recovered (account recovery doesn’t require disclosing the old password). Backup

authentication is hard, so don’t miss the discussion of threats in Chapter 14.

King of Spoofi ng. Your system ships with a default admin password and doesn’t
force a change. If your systems all have the same default admin password, it will

end up on the web and available to unskilled attackers. If you use an algorithm

to determine it, such as the media access control (MAC) address, or some hash

of the address, that too will likely become known.

Tampering

Many of the issues brought up by tampering threats are addressed with crypto,

covered in depth in Chapter 16 “Threats to Cryptosystems.”

2 of Tampering. There is no 2 of Tampering card, as we were unable to fi nd

a tampering threat we thought would be common enough to warrant a card.

Suggestions to the author are welcome, care of the publisher, or via various

social media. (Naming platforms is attractive, and at odds with my aspiration

towards having written a classic text.)

3 of Tampering. An attacker can take advantage of your custom key exchange or

integrity control that you built instead of using standard crypto. Creating your own

cryptosystem can be fun, but putting it into production is foolhardy.

4 of Tampering. Your code makes access control decisions all over the place, rather

than with a security kernel. A security kernel (sometimes called a reference monitor)

is a single place where all access control decisions can be made. The advantage

504 Appendix D ■ Elevation of Privilege: The Cards

bapp04.indd 12:17:39:PM 01/17/2014 Page 504

of creating one is consistency, and the forcing function of considering what the

API should be, which means you need to consider the appropriate parameters

in each authentication.

5 of Tampering. An attacker can replay data without detection because your code

doesn’t provide time stamps or sequence numbers. Generally, time stamps are harder

to use well, because they require synchronized clocks. Also, time stamps may

have a larger attack surface than sequence numbers used only for your purposes.

(Additionally, someone might attack your clock for unrelated reasons, so again,

time stamps are riskier.)

6 of Tampering. An attacker can write to a datastore on which your code relies. If
you like it, then you should have put an ACL on it.

7 of Tampering. An attacker can bypass permissions because you don’t make names

canonical before checking access permissions. If your code checks permissions on ./

rules, and attackers can make ./rules a link, then they can add whatever permis-

sions they would like. Expand that to a full and canonical path.

8 of Tampering. An attacker can manipulate data because there’s no integrity

protection for data on the network. Generally, the ways to fi x this will be SSL, SSH,

or IPsec.

9 of Tampering. An attacker can provide or control state information. If your sys-

tem relies on something that an attacker can change, such as a URL parameter

of authenticated=true or username=admin, then a redesign is probably in order.

10 of Tampering. An attacker can alter information in a datastore because it has

weak ACLs or includes a group that is equivalent to everyone (“all Live ID holders”).

These two examples (of weak ACLs and everyone groups) are not exactly the

same things, but we wanted to get them both in. The fi x to either involves

changing the permissions.

Jack of Tampering. An attacker can write to some resource because permissions

are granted to the world or there are no ACLs. This is a slightly more broad version

of number 10.

Queen of Tampering. An attacker can change parameters over a trust boundary and

after validation (for example, important parameters in a hidden fi eld in HTML, or pass-
ing a pointer to critical memory). Generally, you address these with pass-by-value,

rather than pass-by-reference. You validate and use the values you’re passed.

King of Tampering. An attacker can load code inside your process via an exten-
sion point. Extension points are great. It’s very hard to create systems that load

someone else’s code in a library without exposing yourself to security (and

reliability) risks.

Repudiation

Many of these threats are threats to logging, as logging is an essential part of

non-repudiation. Repudiation threats are often an interesting foil for require-

ments, but they are covered less well by Elevation of Privilege.

 Appendix D ■ Elevation of Privilege: The Cards 505

bapp04.indd 12:17:39:PM 01/17/2014 Page 505

2 of Repudiation. An attacker can pass data through the log to attack a log reader,
and there’s no documentation regarding what sorts of validation are done. Attackers

can be distinguished by what data elements they can insert. Any web user can

insert a URL into your HTTP logs by requesting it. The time stamp fi eld is under

the control of (a possibly subverted) web server. Your logs should distinguish

who can write what.

3 of Repudiation. A low privilege attacker can read interesting security information

in the logs. You should ensure that interesting security information is stored in

logs that are protected.

4 of Repudiation. An attacker can alter digital signatures because the digital signa-
ture system you’re implementing is weak, or uses MACs where it should use a signature.
This attack is less about logs, more about the use of crypto to either authenticate

or provide non-repudiation. If you’re using MACs (message authentication

codes), those are generally based on symmetric crypto, and as such provide

only integrity, not non-repudiation with respect to the other end of a connection.

5 of Repudiation. An attacker can alter log messages on a network because they

lack strong integrity controls. Over a network, where the threat includes those

from untrusted entities with network access, a MAC can provide integrity to

support non-repudiation. This threat assumes both ends are trustworthy, unlike

the 4 of Repudiation.

6 of Repudiation. An attacker can create a log entry without a time stamp (or no

log entry is time stamped). If you trust the other end of a connection to provide

time stamps, what happens when they don’t?

7 of Repudiation. An attacker can make the logs wrap around and lose data.

A challenge with logs is what to do when you have a lot of them. You can either

lose data or availability (by shutting down when you can’t log). You should make

a decision based on which is appropriate for your system.

8 of Repudiation. An attacker can make a log lose or confuse security information.

For example, if you have a system that compresses logs (“previous message

repeated a gajillion times”) does that work only on identical messages?

9 of Repudiation. An attacker can use a shared key to authenticate as different
principals, confusing the information in the logs. This relates to the 4 of Repudiation,

and showcases the value of asymmetric cryptography versus shared keys.

10 of Repudiation. An attacker can get arbitrary data into logs from unauthenti-
cated (or weakly authenticated) outsiders without validation. If you have a centralized

logging point, what does it record about where data comes from, and how does

it authenticate those systems?

Jack of Repudiation. An attacker can edit logs, and there’s no way to tell (perhaps

because there’s no heartbeat option for the logging system). You can heartbeat so that

there’s some indication logs were working, and there are more robust systems

that use cryptography (often in the form of hash chains or trees).

Queen of Repudiation. An attacker can say, “I didn’t do that,” and you would have

no way to prove them wrong. This is a business requirement threat, and your logs

must capture the sorts of things that your customers might deny having done.

506 Appendix D ■ Elevation of Privilege: The Cards

bapp04.indd 12:17:39:PM 01/17/2014 Page 506

King of Repudiation. The system has no logs. (It’s tempting to say that this one

is self-explanatory, but Elevation of Privilege is designed to draw developers into

threat modeling.) Logs can be helpful not only in debugging and operations,

but also in attack detection or reconstruction, and in helping to settle disputes.

Your logs should be designed to address each of those scenarios.

Information Disclosure

Many information disclosure threats are best addressed with cryptography.

2 of Information Disclosure. An attacker can brute-force fi le encryption because

no defense is in place (example defense: password stretching). Password stretch-

ing refers to taking a password and iterating over it thousands of times to make

a better cryptographic key, which is then used to encrypt the document (rather

than using the password directly).

3 of Information Disclosure. An attacker can see error messages with security-

sensitive content. For example, your web error page says “Cannot connect to

database with password foobar1.” The right pattern is a unique error code and

perhaps pointing to the relevant logs. This can also relate to the 3 of Repudiation

(a low-privilege attacker can read interesting security information in the logs).

4 of Information Disclosure. An attacker can read content because messages (for

example, an e-mail or HTTP cookie) aren’t encrypted even if the channel is encrypted.

The distinction between channel and message encryption is important. The

channel is something like an SMTP connection, and even if that’s encrypted,

data is in the clear at endpoints.

5 of Information Disclosure. An attacker might be able to read a document or data

because it’s encrypted with a nonstandard algorithm. Use standard cryptographic

algorithms.

6 of Information Disclosure. An attacker can read data because it’s hidden or

occluded (for undo or change tracking) and the user might forget that it’s there. Change

tracking is a lovely feature, and modern Microsoft products tend to have a

“prepare for sharing” sort of function. If your data formats have similar issues,

you’ll want similar functionality.

7 of Information Disclosure. An attacker can act as a “man in the middle” because

you don’t authenticate endpoints of a network connection. Failures to authenticate

lead to failures of confi dentiality. You’ll generally need both.

8 of Information Disclosure. An attacker can access information through a search

indexer, logger, or other such mechanism. This can refer to a local search indexer,

such as the Mac OS Spotlight; or a web indexer, such as Google.

 Appendix D ■ Elevation of Privilege: The Cards 507

bapp04.indd 12:17:39:PM 01/17/2014 Page 507

9 of Information Disclosure. An attacker can read sensitive information in a fi le

with bad ACLs. Bad ACLs! No biscuit! This really should have read “weak,” rather

than “bad,” and the fi x is more restrictive ACLs or permissions.

10 of Information Disclosure. An attacker can read information in fi les with no

ACLs. Therefore, add some.

Jack of Information Disclosure. An attacker can discover the fi xed key being

used to encrypt. You likely don’t use the same physical key to unlock every door

you’re authorized to open, so why use the same cryptographic key?

Queen of Information Disclosure. An attacker can read the entire channel
because the channel (for example, HTTP or SMTP) isn’t encrypted. As more and

more data passes over untrustworthy networks, the need for encryption will

continue to increase.

King of Information Disclosure. An attacker can read network information

because there’s no cryptography used.

Denial of Service

Threats 3–10 are constructed from three properties, shown in parentheses after

the text description:

 ■ Is the threat to a client or a server? Threats to servers likely affect more

people.

 ■ Is the attacker authenticated or anonymous? Threats in which an attacker

needs credentials have a smaller pool of attackers (or require a preliminary

step of acquiring credentials), and it may be possible to retaliate in some

way, acting as a deterrent.

 ■ Does the impact go away when the attacker does (temporary versus
persistent)? Persistent issues that require manual intervention or destroy

data are worse than threats that will clear up when the attacker leaves.

There is no discussion of these threats per card, but the cards are listed for

reference or use in checking aces.

2 of Denial of Service. An attacker can make your authentication system unusable

or unavailable. This refers to authentication systems that use either backoff or

account lockout to prevent brute-force attacks. Fixing the issues raised by the 3

of Tampering can lead you here.

3 of Denial of Service. An attacker can make a client unavailable or unusable

but the problem goes away when the attacker stops (client, authenticated, temporary).

508 Appendix D ■ Elevation of Privilege: The Cards

bapp04.indd 12:17:39:PM 01/17/2014 Page 508

4 of Denial of Service. An attacker can make a server unavailable or unusable

but the problem goes away when the attacker stops (server, authenticated, temporary).

5 of Denial of Service. An attacker can make a client unavailable or unusable

without ever authenticating, but the problem goes away when the attacker stops (client,
anonymous, temporary).

6 of Denial of Service. An attacker can make a server unavailable or unusable

without ever authenticating, but the problem goes away when the attacker stops (server,
anonymous, temporary).

7 of Denial of Service. An attacker can make a client unavailable or unusable

and the problem persists after the attacker goes away (client, authenticated, persistent).
8 of Denial of Service. An attacker can make a server unavailable or unusable

and the problem persists after the attacker goes away (server, authenticated, persistent).
9 of Denial of Service. An attacker can make a client unavailable or unusable

without ever authenticating, and the problem persists after the attacker goes away (cli-
ent, anonymous, persistent).

10 of Denial of Service. An attacker can make a server unavailable or unusable

without ever authenticating, and the problem persists after the attacker goes away (server,
anonymous, persistent).

Jack of Denial of Service. An attacker can cause the logging subsystem to stop

working. An attacker who can cause your logging to stop can execute attacks

that are then harder to understand and possibly harder to remediate.

Queen of Denial of Service. An attacker can amplify a denial-of-service attack

through this component with amplifi cation on the order of 10:1. Amplifi cation refers to

the defender’s resource consumption versus the attacker’s. An attacker who just

sends you a lot of data is consuming bandwidth at a ratio of 1:1. An attacker who

sends a DNS request for a public key is sending dozens of bytes and receiving

hundreds, so there’s an amplifi cation of 10:1 or so.

King of Denial of Service. An attacker can amplify a denial-of-service attack

through this component with amplifi cation on the order of 100:1. As per the Queen,

but tenfold worse.

Elevation of Privilege (EoP)

 2–4 of Elevation of Privilege. There are no cards for the 2, 3, or 4 of Elevation of

Privilege, as we were unable to fi nd EoP threats we thought would be common

enough to warrant cards. Suggestions are welcome.

5 of Elevation of Privilege. An attacker can force data through different validation

paths which give different results. If you have different code performing similar

validation, then it’s hard for your other functions to know what will be checked.

This is a great opportunity to refactor.

 Appendix D ■ Elevation of Privilege: The Cards 509

bapp04.indd 12:17:39:PM 01/17/2014 Page 509

6 of Elevation of Privilege. An attacker could take advantage of .NET permissions

you ask for but don’t use. The .NET Framework is an example; since the game was

created, frameworks with permissions have become quite trendy, appearing in

many mobile and even desktop operating systems. Asking for permissions you

don’t need reduces the security value of these frameworks.

7 of Elevation of Privilege. An attacker can provide a pointer across a trust
boundary, rather than data that can be validated. This is the pass-by-reference/

pass-by-value issue yet again. If you’re going to make trust decisions, you need

to ensure that the resources on which you’re acting are outside the control of

a potential attacker. This issue often appears when pointers are used to make

kernel/userland or interprocess communication faster.

8 of Elevation of Privilege. An attacker can enter data that is checked while still
under the attacker’s control and used later on the other side of a trust boundary. This

is a more open variant of the 7, using any data, rather than a pointer.

9 of Elevation of Privilege. There’s no reasonable way for callers to fi gure out
what validation of tainted data you perform before passing it to them. This can be

solved by API design, so that fi elds are marked as “trustworthy” or not, or by

documentation, which people are unlikely to read.

10 of Elevation of Privilege. There’s no reasonable way for a caller to fi gure out
what security assumptions you make. Perhaps this card should read “what security

requirements you impose on them,” but it’s late for that. This card is a variant

of the 9, intended to frame the issue because it’s so frequent that extra chances

to fi nd it are good.

Jack of Elevation of Privilege. An attacker can refl ect input back to a user, such as

cross-site scripting. This card combines the 9 and 10, throwing in a trust boundary

and some jargon. Here, an attacker fi nds a way to make data that comes from

them appear to come from you, taking advantage of trust in you. Performing

input and output validation can help here.

Queen of Elevation of Privilege. You include user-generated content within

your page, possibly including the content of random URLs. This should be read more

broadly than simply web pages (although there’s a lot of fun to be had there). If

what you think came from Alice came from Bob, what are the security implica-

tions of sending that back to Alice?

King of Elevation of Privilege. An attacker can inject a command that the system

will run at a higher privilege level. Command injection attacks include use of control

characters, such as the apostrophe or semicolon. When these are inserted in the

right way to dynamic code, they can lead to an attacker being able to run code

of their own choosing. You need to transform your input into a canonical form.

Loop until the input doesn’t transform anymore, then check it.

511

bapp05.indd 12:19:50:PM 01/17/2014 Page 511

This appendix lays out four example threat models. The fi rst three are presented

as fully worked-through examples; the fourth is a classroom exercise presented

without answers in order to encourage you to delve in. Each example is a threat

model of a hypothetical system, to help you identify the threats without getting

bogged down in a debate over what the real threat model or requirements are

for the particular product.

The models in this appendix are as follows:

 ■ The Acme database

 ■ Acme’s operational network

 ■ Sending login codes over a phone network

 ■ The iNTegrity classroom exercise

Each model is structured differently because there’s more than one way to

do it. For example, the Acme database is modeled element by element, which is

good if your primary audience is component owners who want to focus their

reading on their components; while the Acme network is organized by threat,

to enable systems administrators to manage those threats across the business.

The login codes model shows how to focus on a particular requirement and

consider the threats against it.

A P P E N D I X

E

Case Studies

512 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 512

The Acme Database

The Acme database is a software product designed to be run on-premises by

organizations of all sizes. The currently shipping version is 3.1, and this is the

team’s fi rst threat model. They have chosen to model what they have and then

determine how each new feature interacts with this model as part of the same

process in which they do performance and reliability analysis. This modeling is

inspired by a series of recent design fl aws that affected company revenue. The

output of this modeling would be a clear list of bugs and action items. Because

the important take-away from this appendix is not the bugs or action items,

but the approach that fi nds them in your software or system, the bug list is not

provided as a list.

Security Requirements

Acme has formalized security requirements for the fi rst time. Those require-

ments are as follows:

 ■ The product is no less secure than the typical competitor (Acme’s software

is currently very insecure, and as such, stronger goals are deferred to a

later release).

 ■ The product can be certifi ed for sales to the U.S. government.

 ■ The product will ship with a security operations manual. A security con-

fi guration analysis tool is planned but will ship after the next revision.

 ■ Non-requirement: protect against the DBA.

 ■ As the product will hold arbitrary data, the team will not be actively look-

ing for privacy issues but nor will they be willfully blind.

 ■ Additional requirements will be applied to specifi c components.

Software Model

After a series of design meetings over the course of a week, run by Paul (project

management lead) and attended by Debbie (architecture), Mike (documenta-

tion), and Tina (test), the team agrees on the model shown in Figure E-1. These

meetings took longer than expected, because details emerged whose relevance

to the threat model was not initially clear, leading to a discussion of questions

such as “Does this add a trust boundary,” and “Does this accept connections

across a trust boundary?”

 Appendix E ■ Case Studies 513

bapp05.indd 12:19:50:PM 01/17/2014 Page 513

Web Clients

SQL Clients

Front End(s)

External Entity

Key:

Process Data Store

DB Admin

Data Management Logs

Log analysis

Acme SQL Account

DB Cluster

DBA (human)
 DB

Users
(human)

Database

data flow
Trust

Boundary

Figure E-1: The Acme database

Threats and Mitigations

The threats identifi ed to the system are organized by module, to facilitate module

owner review. They were identifi ed three ways:

 ■ Walking through the threat trees in Appendix B, “Threat Trees”

 ■ Walking through the requirements listed in Chapter 12, “Requirements

Cookbook”

 ■ Applying STRIDE-per-element to the diagram shown in Figure E-1

Acme would rank the threats with a bug bar, although because neither the

bar nor the result of such ranking is critical to this example, they are not shown.

Some threats are listed by STRIDE, others are addressed in less structured text

where a single mitigation addresses several threats. The threats are shown in

italic to make them easier to skim.

Finding these threats took roughly two weeks, with a one-hour threat identi-

fi cation meeting early in the day during which the team examined a component

and its data fl ows. The examination consisted of walking through the threat

trees in Appendix B and the requirements checklist in Chapter 12, and then

514 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 514

considering whether other aspects of STRIDE might apply to that one compo-

nent (and its data fl ows). Part of each meeting was reserved for follow-up from

previous meetings. Part of the rest of the day was used for follow-up to check

assumptions, fi le bugs as appropriate, and ensure that component owners were

aware of what was found. Those two weeks could have been compressed into

a “do little but threat model” week, but the team chose a longer time period to

avoid blocking other work that depended on them, and to give the new skills

and tasks time to “percolate”—that is, time for refl ection, and consideration of

what the team was learning.

Front Ends

The front ends are the interface between the database and various clients, rang-

ing from websites to complex programs that make SQL queries. The front ends

are intended to handle authentication, load balancing, and related functions so

that the core database can be as fast as possible.

Additional requirements for the front end are taken from the “Requirements

Cookbook,” Chapter 12:

 ■ Only authenticated users will have create/read/update/delete permis-

sions according to policies set by database designers and administrators.

(This combines authorization and confi dentiality requirements.)

 ■ Single-factor authentication will be suffi cient for front-end users.

 ■ Accounts will be created by processes designed by customers deploying

the Acme DB software.

 ■ Data will be subject to modifi cation only by enumerated authorized users,

and actions will be logged according to customer confi guration. (Such

confi guration will need to be added to the security operations guide.)

The threats identifi ed are as follows:

 ■ Spoofi ng: The authentication from both web and SQL clients is weaker

than the team would like. However, the requirement to support web

browsers and third-party SQL clients imposes limits on what can be

required. Product management has been asked to determine what current

customers have in place, and a discussion will be added to the product

security operations guide.

 ■ Tampering: A number of modules included for authentication were poorly

vetted for security properties. It seems at least one has an auto-update

feature whose security properties and implications require analysis.

 ■ Repudiation: Logging at the front end is nearly non-existent, but what logs

exist are stored on the front end, and will need to be sent to the back end.

 Appendix E ■ Case Studies 515

bapp05.indd 12:19:50:PM 01/17/2014 Page 515

 ■ Information Disclosure: There are both debugging interfaces and error mes-

sages, which reveal information about the database connection parameters.

 ■ Denial of Service: Reliability engineering has already removed most of

the application-specifi c static limits, but how to confi gure a few will be

added to the operations guide.

 ■ Elevation of Privilege: A separate security engineering pass will perform

a variety of testing on input validation. Additionally, the front-end team

will document the limited validation it performs on data, and review

that against assumptions that the core database makes about protection.

Connections to Front Ends

The web front end always runs over SSL, addressing tampering and information

disclosure issues. The SQL client and client libraries will be upgraded so that

connecting without SSL requires setting special options (one on the server to

allow such connections, one on the client to allow fallback). The Acme client and

libraries will always attempt to connect with SSL fi rst, unless a second option,

“DontEvenBotherWithSecurity,” is set.

Denial-of-service threats are again generally well addressed by the reliability

and performance engineering that has already been done. The security team

sends a congratulatory box of donuts to the reliability team.

Core Database

Requirements:

 ■ All database permissions rules will be centralized into a single authoriza-

tion engine to enforce confi dentiality, integrity, and authorization policies.

Threats:

 ■ Spoofi ng: The core database is designed to run on a dedicated system,

and as such is unlikely to come under spoofi ng attacks. The one excep-

tion, which will be analyzed further, is that the front end has the ability

to impersonate and perform actions as any user account.

 ■ Tampering: Input validation raises questions of SQL injection, and those

lead to questions about what assumptions are being made about the

front ends. An intersystem review is planned according to the approach

described in Chapter 18 “Experimental Approaches.”

 ■ Repudiation: Reviews found that the database logs nearly everything

originating from the front end, except several key session establishment

APIs fail to log how the session was authenticated.

516 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 516

 ■ Information Disclosure: SQL injection attacks against the database can

lead to information disclosure in all sorts of ways. The team plans to

investigate ways to architecturally restrict SQL injection attacks.

 ■ Denial of Service: Various complex cross-table requests may have a

performance impact. A tester is assigned to investigate clever ways to

perform small, expensive queries.

 ■ Elevation of Privilege: A review fi nds two routines that by design allow

any caller to run arbitrary code on the system. The team plans to add

ACLs to those routines and possibly turn them off by default.

Data (Main Data Store)

Preventing tampering, information disclosure, and denial of service all rely on the

presence of a limited set of connections, with those connections controlled by

operating system permissions. If the data store is remote and runs on network

attached storage, the storage controller can bypass all the controls on the data.

Additionally, the network connections would be vulnerable. The team will

document this, and perhaps add additional cryptographic features in a future

release that address such threats with untrusted data stores. That decision will

hinge on how important the business requirement is, the effort involved in

implementation, and possible performance impact.

Management (Data Store)

The same problems that could affect the data store are magnifi ed if the man-

agement data store is on remote storage. The team plans to move management

data to the same device as the database, and document the security effect of

moving it elsewhere.

Connections to the Core Database

The team has been assuming that these connections are within a security bound-

ary, with the previously unstated assumptions that the front ends, database, and

DB admin portals would be on a trusted network. Given the work to address

all the threats that this assumption allowed, and to ensure performance, that

assumption is updated to an isolated network for those with a packet fi lter. That

assumption is added to the operations guide. A bug to encrypt and authenticate

between components is fi led for a future version.

 Appendix E ■ Case Studies 517

bapp05.indd 12:19:50:PM 01/17/2014 Page 517

DB Admin Module

The requirements are as follows:

 ■ Authentication Strength: Required authentication strength is debated,

and a bug is opened to ensure that the agreed upon requirement is crisp.

 ■ Account creation: Creating new DBA accounts will require two adminis-

trators, and all administrators will be notifi ed. (This will be a new feature.)

 ■ Sensitive Data: There can be requirements to protect information from

DBAs—for example, a column of social security numbers. This will be

supported in two ways: fi rst, with the option to create a deny ACL for

an object, and second, with the option to encrypt data with a key that’s

passed in. (There’s a third option, which is for the caller to encrypt the

data, but that’s always been implicitly present.) All three are to be docu-

mented, along with a discussion of the importance of key management,

and the known plaintext attacks against simplistic encryption of a small

set of a billion SSNs.

 ■ Spoofi ng: The DBA can connect in two ways: via a web portal and via

SSH. The web portal uses SSL, which incorporates by reference all several

hundred SSL CAs in a browser, and as such the portal may be spoofable.

That may or may not be acceptable risk, so it is now documented in the

operations guide. The DBA currently connects with single-factor authenti-

cation, and it may be that support for stronger authentication makes sense.

 ■ Tampering: The DBA can tamper, and in some sense that’s their job.

 ■ Repudiation: The admin can change logs. This is documented as a risk,

and while logged, the risk is recursive.

 ■ Information Disclosure: Previously, the DBA login page provided a great

deal of “dashboard” and overview information pre-login as a convenience

feature. That is now confi gurable, and the default state is under discus-

sion. It may also be necessary to protect against DBAs, a requirement set

that the team (and author) missed when applying STRIDE-per-element,

and discovered when checking requirements.

 ■ Denial of Service: The DBA module can turn off the database, re-allocate

storage space, and prioritize or de-prioritize jobs. Ancillary denial-of-

service attacks may also be possible, which are not logged.

 ■ Elevation of Privilege: There is a single type of DBA. It may be sensible to

add several layers, and clarifying customer requirements should precede

such work.

518 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 518

Logs (Data Store)

Unlike the main data store, logs are, by design, read by log analysis tools that

are outside the trust boundary.

 ■ Tampering: The logs are presented as read-only to the analysis tools.

 ■ Repudiation: The logs are key to analyzing an attempt at repudiation, but

it turns out that not all logs are delivered to the central log store. Some

are held in other locations, which is tracked in a set of bugs.

 ■ Information Disclosure: Because the log analysis code is outside the

trust boundary, the logs must not contain information that should not be

disclosed, and a review of logging will be required, especially focused on

personal information.

 ■ Denial of Service: The log analysis code has the capability to make numer-

ous requests. If logs are stored on the same system as the main database,

then managing log requests could limit database performance by consum-

ing resources needed for controller bandwidth, disk operations, and other

tasks. This issue is added to the operations guide, with a suggestion to

send logs to a separate system.

Log Analysis

The threats are as follows:

 ■ Spoofi ng: All the typical spoofi ng threats are present (roughly everything

covered in Appendix B’s fi gure and table B-1 applies). As the number of

database users is typically small, the team decides to add persistent track-

ing of login information to aid in authentication decisions.

 ■ Tampering: The log analysis module has several plugins to connect to

popular account management tools, each of which presents a tampering

threat. As the logs are already read-only with respect to the log analysis

tool, tampering threats are less important.

 ■ Repudiation: The log analysis tools may help an attacker fi gure out how

to engage in a repudiation that is hard to dispute.

 ■ Information Disclosure: The log analysis tools, by design, expose a great

deal of information, and a bug was fi led based on the Information Disclosure

item under “Logs (Data Store)” to control that information. (In a real threat

model, you’d just refer to a bug number.)

 ■ Denial of Service: Complex queries from log analysis can absorb a lot of

processing time and I/O bandwidth.

 ■ Elevation of Privilege: There are probably a number of elevation paths

based on calls from the log analysis module to other parts of the system,

designed in before trust boundaries were made explicit.

 Appendix E ■ Case Studies 519

bapp05.indd 12:19:50:PM 01/17/2014 Page 519

In summary, it seems that Acme’s development team has learned a lot, and

has a good deal of work in front of them. Because this work was kicked off after

a series of embarrassing security incidents, management is cautiously optimistic.

They have a set of issues to work on, and if more incidents happen, they can

use those incidents to see if their threat modeling work found the threats, and

prioritize that fi x. They believe such surprises are far less likely than they were

before they started threat modeling.

Acme’s Operational Network

The Acme Corporation are makers of fi ne database software. It used to produce

jet-propelled pogo sticks, tornado seeds, and other products before a leveraged

buyout drove it to a more traditional corporate structure, including a more

traditional operational network. After its project to threat model its software

goes well, producing useful and actionable bugs, it decides to take a crack at

modeling its internal network.

Security Requirements

These requirements were built on those from the Requirements Cookbook (see

Chapter 12):

 1. Operational vulnerability management will track all products deployed

on the attack surface.

 a. Henceforth, all newly deployed software will be checked to ensure it

has a vulnerability announcement policy.

 b. Paul, a project coordinator, has been assigned to track down vulner-

ability announcement policies per product in use, and to subscribe to

all of them.

 2. Operations will ensure that its fi rewalls align with the trust boundaries

shown in diagrams.

 3. The sales portion of the network will need to be PCI compliant.

 4. Complete business requirements are somewhat hard to pin down, and

of the form “Let’s not have bad stuff happen.” Those will be made more

precise as questions of how to mitigate are analyzed, using the feedback

process between threats, mitigations, and requirements shown in Figure

12-1 (in Chapter 12).

Acme has decided to focus on a STRIDE threat-oriented approach, as it worked

reasonably well for their software threat modeling. They are aware that a balance

between prevent, detect, and respond is probably also important, but wanted

to build on their success with software modeling, and so will consider those

requirements at a later date.

520 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 520

Operational Network

Acme’s operational network was shown earlier in Chapter 2, “Strategies for

Threat Modeling” and is reproduced here as Figure E-2. The remainder of this

section is written in the form of a summary, as if it were from the team. The

main thing missing is bug numbers, because adding fake bug numbers won’t

make the examples more readable.

Acme Corporate Network

Internet

Payroll

HR

Directory

Sales/CRM

Operations

Production

Desktop &
Mobile

E-mail &
Intranet Servers

Development
Servers

HR mgmt

Figure E-2: Acme’s operational business network

The team has decided that this diagram will suffi ce to get started even though

there are several obvious bugs, including the fact that it does not show payment

processing. That will be considered later, as making sure no one steals the plans

for the rocket-powered pogo sticks or dehydrated boulders is considered a top

priority.

The systems that make up the operational network are as follows:

 ■ Desktop and mobile: are the end-user systems that everyone in the com-

pany uses.

 ■ E-mail and intranet: are an Exchange server and a set of internal wikis

and blog servers.

 ■ Development servers: includes the local source-control repository, along

with bug tracking, build, and test servers.

 ■ Production: This is where products are made using a just-in-time approach.

It includes an operations network that is full of machine tools and other

equipment that is fi nicky and hard to keep operational, never mind secure.

 Appendix E ■ Case Studies 521

bapp05.indd 12:19:50:PM 01/17/2014 Page 521

 ■ Directory: This is an Active Directory server, which is used for account

management across most of the systems at Acme.

 ■ HR Management: This is a personnel database, time-card system for

hourly employees, and related services.

 ■ Website/Sales/CRM: This is the website through which orders are placed.

The website runs at an IaaS cloud provider. It has a direct connection to

the production shop. The website is locally built and managed with a

variety of dependencies.

 ■ Payroll: This is an outsourced payroll company.

Threats to the Network

The team made an initial decision to look at operations threat by threat, rather

than system by system, as looking at the systems makes it a little harder to rank

threats (and would result in a threat model that looks like the prior example).

In the interests of presenting a somewhat compact example, additional require-

ments are only called out occasionally.

Spoofi ng

The team decided to look at spoofi ng threats by the victim—that is, what hap-

pens if someone spoofs the connection to each system or set of systems within

the diagram.

The requirements for Acme’s network are as follows:

 ■ No anonymous access to corporate systems.

 ■ There may be a requirement for whistleblower anonymity. The ques-

tion is sent to legal.

 ■ Single-factor authentication is suffi cient for all systems.

 ■ All systems should default to authorization against the directory system.

 ■ Account creation is performed by a single administrator.

The requirements for the website are as follows:

 ■ Facebook logins will be accepted.

 ■ Anyone with a validated e-mail account can create an account.

Spoofi ng threats to specifi c areas of the operational network include:

 ■ Desktop and mobile: Several developers have installed their own remote

access software, believing that “no one would ever fi nd it” is suffi cient

security. Rather than have a debate on the subject, the team realized there’s

522 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 522

no good alternative, and adds this as justifi cation for the VPN project to

move faster.

 ■ E-mail and intranet services: These services are exposed to the Internet.

Password protection on the intranet servers is spotty, as some of them

were deployed with the assumption that they’re “behind the fi rewall,”

while others were deployed with a shared username/password, and yet

others really do need exposure to the Internet for mobile workers. That

last need will be addressed with a VPN, which is not yet deployed.

 ■ Development servers: These servers being spoofed seems to turn largely

into an integrity (tampering) threat against either source or development

documents.

 ■ Production: Most obviously, someone could drive the creation of extra

products, have those products either stack up in the warehouse or, worse,

be delivered to fake customers. More subtly, a rascally attacker might

be able to deliver fake product plans, resulting in product malfunctions,

unhappy customers, and bad press for the company and its products.

 ■ Directory: The biggest issue would be spoofi ng of HR management. If

someone can pretend to be HR, they end up with a lot of power.

 ■ HR Management: The digital data fl ows are almost exclusively outbound.

Inbound processes still involve a lot of face-to-face discussion and paper

forms.

 ■ Sales/CRM: These systems have a direct connection to production, where

orders are sent. It turns out that the server in production will take entries

authenticated only by IP address, and anyone with that address can enter

orders.

 ■ Payroll: Spoofi ng threats to the payroll system loom large in everyone’s

mind, especially because HR e-mails payroll data every week. Unfortunately,

the payroll company has no options to use anything stronger than a user-

name and password. After a raucous debate, the team decides to fi le a bug

(also noting the information disclosure and tampering threats associated

with e-mail), and then moves to other threats.

 ■ Other spoofi ng: A single directory server acts as a single point of failure

for spoofi ng security. While this worries some team members, the “solu-

tion” of adding a second directory system doesn’t help because even after

a lot of work to keep them in sync, most spoofi ng attacks will have two

potential targets.

 Appendix E ■ Case Studies 523

bapp05.indd 12:19:50:PM 01/17/2014 Page 523

Tampering

Currently, a great deal of reliance is placed on fi rewalls to prevent tampering

attacks. Few of the internal data fl ows are integrity protected. Many of the

following threats can be implemented either against the endpoint or against

network data fl ows:

 ■ Desktop and mobile: There is little control over what software runs on

desktops across the company. Developers run high-privilege accounts on

both their e-mail and development machines. There’s no integrity check-

ing or whitelisting software in use.

 ■ E-mail and intranet: The e-mail servers are reasonably well protected,

while the intranet servers are a mixed bag. One wiki runs off a common

account, known to most of the developers.

 ■ Development servers: The source control server is fairly locked down,

with constrained access that seems to have been implemented to log all

changes. The test servers are known to be a mess, with anyone able to

make changes; and tracking what has changed when and where is manual.

 ■ Production: The department has a wide variety of equipment, some of

which even talks to each other without humans involved. Tampering

threats abound, from tampering with raw materials to tampering with

computer-controlled devices in order to produce either subtly or very

wrong output, to tampering with delivery instructions.

 ■ Directory: This is fairly locked down, with a limited number of admin-

istrator accounts, all of whom can tamper by design. However, anyone

who breaks in or misbehaves here can likely obtain full credentials to do

so elsewhere in the network.

 ■ HR management: These systems are not as locked down as anyone would

like. An employee who made changes there could likely do so undetected

by technology. The change would have to be noticed by a person. Changes,

such as not paying a salary, would be caught by employees, while pay-

ing too much would (we hope) be caught by accounting. Changes to job

titles, dates of hire (which affect pension, vacation, and other benefi ts)

would likely go undetected.

 ■ Sales/CRM: There are a number of issues. Perhaps most important, someone

who can alter data on that site can alter prices, either subtly or aggres-

sively. Someone can also alter customer records, making a new customer

524 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 524

appear long-standing or vice-versa, and changing how they are treated

by customer service or anti-fraud.

 ■ Payroll: The tampering attacks here range from the obviously bad, such

as adding employees or changing salaries, to the more subtle, such as

changing tax withholding or deductions at the same time (“We’re sorry,

Mr. Smith, but we have not received insurance premiums from you. . .”).

Repudiation

The team decided to focus most repudiation attention on sales order repudia-

tion, and has planned a review of logs on the sales server. There are certainly

other repudiation issues they could examine, including repudiation of check-

ins to the development servers, repudiations of HR changes, or repudiation

of changes to production. However, for a fi rst pass at threat modeling, other

threats are given priority.

Information Disclosure

Acme is very protective of trade secrets regarding product creation, and worried

about the contents of the customer support database, as a few customers seem

to regularly encounter product reliability issues. Customer support believes that

many of these customers are merely hasty, not taking time to read the instruc-

tions. Threats apply to:

 ■ Desktop and mobile systems: Unfortunately, these must have access to

most data. Data encryption software may be an important addition here,

to protect against information disclosure if the machines are stolen. This

mitigation applies across most of the systems in the company, and is not

repeated per section.

 ■ E-mail servers: E-mail contains a tremendous amount of confi dential

information. The team considers a pilot project for e-mail encryption.

 ■ Intranet servers: These servers are a different beast. It’s challenging to

add encryption for application data such that only certain readers have

the keys (in contrast to full disk encryption). It might be possible to use

a more well-considered set of permissions. Additionally, it’s possible to

add SSL to most of these servers.

 ■ Development servers: It is similarly challenging to use encryption for

application data.

 ■ Production servers: These are locked down primarily for reliability rea-

sons, which has nice side effects for security.

 Appendix E ■ Case Studies 525

bapp05.indd 12:19:50:PM 01/17/2014 Page 525

 ■ HR management: These include information on salaries, performance

reviews, suffi cient personal data to commit identity theft, as well as a

host of information on prospective candidates.

 ■ Sales/CRM: These systems contain information about upcoming sales,

coupon codes, customer names and addresses, and—probably acciden-

tally—credit card numbers. The data fl ow from sales to production needs

to have encryption added.

Denial of Service

Somewhat similar to repudiation, denial-of-service threats are treated as a lower

priority than spoofi ng, tampering, or information disclosure. The team notes that

production is dependent on a non-scalable set of machines and skilled machine

operators, and so a leap in sales would be a denial of vacation.

Elevation of Privilege

Outsiders can attempt to elevate to insider privileges via desktop (attacking via

e-mail, IM, and web browsing), and attacking sales/CRM or payroll, each of

which is exposed to the Internet. To address the desktop elevation attacks, the

team looks to vulnerability management and sandboxing. The web applications

that deliver sales and CRM are exposed to a variety of attacks, including SQL

and command injection, cross-site scripting (XSS), cross-site request forgery

(CRSF), and other web attacks. Testing for those attacks will be managed by the

QA team, which will need additional security training. The team resolves to

ask external vendors some questions about patching and secure development

at the payroll company. Acme has decided to defer insider threats for now, as

there’s a lot to be done in the near term.

In summary, Acme has used STRIDE threat modeling and a model of their

operational network to identify many threats. Again, they have moved from a

vague sense of unease to a well justifi ed set of concerns, which they can work

through. From here, they’d need to decide on a prioritization scheme for those

concerns, or consider additional security requirements, depending on their

unique needs.

Phones and One-Time Token Authenticators

Chapter 9, “Trade-Offs When Addressing Threats,” describes a threat model

(shown in Figure E-3) that illustrates how threat models can be used to drive the

evolution of an architecture. This model is also a useful example of a focused

526 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 526

threat model. It ignores a great deal of important mechanisms, and shows how

the trust boundaries and requirements can quickly identify threats. It should not

be taken as commentary on any particular commercial system, some of which

may mitigate threats shown here. Also, many of these systems support text to

speech that can read the code to a person using an old-fashioned telephone;

the alternatives suggested in the following material do not have that capability.

Login System Telco interface Number routing

1. Authentication
Challenge

Expected OTT
Organization

2. Phone #
2a Phone #

2b Telco

2c Telco

Google Voice

4. OTT

5. OTT

Roaming Routing

Femtocell Routing

3. phone #,
OTT

Customer Effective
Telco

iMessage

Mobile Phone

(or)
(Non-exclusive)

Figure E-3: A one-time token authentication system

The Scenario

A wide variety of systems are designed to send auxiliary passwords—one-time
tokens (OTT)—over the phone network to someone’s phone. During an enroll-

ment phase, the user is asked to provide a phone number, which is then associ-

ated with the account. The scenario shown in Figure E-3 starts when someone

attempts to log in (to an account with which a phone is associated) at the “Login

system.” A model of how that works is as follows:

 1. The login attempt triggers a message to some telephone company (“telco”)

interface, and that message is a phone number and a message to be sent

to the phone number.

 Appendix E ■ Case Studies 527

bapp05.indd 12:19:50:PM 01/17/2014 Page 527

 2. The telco interface does some form of lookup to fi nd out how to route the

message. That’s modeled as a “number routing” process in a separate trust

domain. There are a number of ways in which mobile phones associate

with other phone carriers, including roaming and femtocells. Similarly,

but not shown, with U.S. phone number portability, simple routing by

area code and exchange no longer works, even for landlines. The number

routing system returns a pointer to a “Customer effective telco.”

 3. The telco interface then sends the phone number and OTT to the customer’s

effective telco.

 4. The OTT is then sent to one or more systems that may be delivering the

message. That might simply be the phone in question, but it could also be

an interface such as Google Voice or Apple iMessage. (All products are

listed for illustrative purposes only.)

 5. The person enters the OTT at the login page, and it is compared to the

expected value.

The security requirement is that the OTT is not disclosed to an attacker. There

are three requirements which might apply. First, the OTT should get through

intact—that is, free of tampering. Second, the system should remain operational.

Both those requirements apply to almost any variant of this system, and as such

they do not enhance the value you get from a comparative threat model. The

third requirement which may be relevant is privacy; people may not want to

give you their mobile phone number and risk it being abused for sales calls or

other purposes. This is a threat to your ability to use OTT to improve authentica-

tion. The privacy issue would weigh in favor of applications on mobile devices.

The Threats

This model focuses on threats to the confi dentiality of the OTT. Some of those

are direct threats, others are impacts of fi rst-order threats such as spoofi ng and

tampering:

 1. The login system and telco interface communicate inside a trust boundary,

and you can ignore threats there for this model.

 2. The phone number being sent to a routing service outside the trust bound-

ary presents a number of threats. If the reply is not accurate, step 3 will

expose the OTT. The reply can be inaccurate for a variety of reasons,

including but not limited to the following:

 ■ Lies (inaccurate or misleading data regardless of whether that’s acci-

dental, intentional by the database, or intentional by someone who’s

hacked the database) from the roaming database

 ■ Lies from the femtocell database

528 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 528

 ■ Attacks against the routing service (EoP, tampering, spoofi ng)

 ■ Attacks against the return data fl ow (tampering, spoofi ng)

 3. The “customer effective telco” can see the OTT.

 4. Systems designed to improve text message processing can see the OTT.

Possible Redesigns

Information disclosure threats can be addressed by adding cryptographic func-

tions. Simplifi ed versions of ways to do that include the following:

 ■ Send a nonce, encrypted to a key held on a smartphone, then send the

decrypted nonce to the authentication server (message 1 = ephone(noncen),

message 2 = noncen). Then the server checks whether the noncen is the one

that it encrypted for the phone, approving the transaction if it is.

 ■ Send a nonce to the smartphone, and then send a signed version of the

nonce to the server [message 1 = noncephone, message 2 = signkey(phone)

(noncephone)]. The server validates that the signature on the noncephone is

from the expected phone’s key, and is a good signature on the expected

nonce. If both those checks pass, then the server approves the transaction.

 ■ Send a nonce to the smartphone. The smartphone hashes the nonce with

a secret value it holds, and sends back the hash.

For each of these, it’s important to manage the keys appropriately, and it’s

probably useful to include time stamps, message addressing, and other elements

to make the system fully secure. Including those in this discussion makes it

hard to see how cryptographic building blocks could be applied.

The key in all design changes is understanding the differences introduced by

the changes, and how those changes interact with the software requirements

as a whole.

Redesigns that focus on using the phone as a processor preclude the use

of an old-fashioned telephone, or even a mobile phone (of the kind where the

end user can’t easily install software). Because such phones still exist, it may

be that the threats just enumerated are considered acceptable risk, or even an

improvement over traditional passwords.

Sample for You to Model

You can use the models presented above as training models with answer keys.

(That is, use the software model in Figure E-1 and the operational model in Figure

E-2 and fi nd threats against them yourself. You can treat the example threats

 Appendix E ■ Case Studies 529

bapp05.indd 12:19:50:PM 01/17/2014 Page 529

as an answer key; but if you do, please don’t feel limited to or constrained by

them. There are other example threats.) In contrast this section presents a model

without an answer key. It’s a lightly edited version of a class exercise that was

created by Michael Howard and used at Microsoft for years. It’s included with

their kind permission. I’ve personally taught many classes using this model, and

it is suffi ciently detailed for newcomers to threat modeling to fi nd many threats.

Background

This tool, named iNTegrity, is a simple fi le-integrity checking tool that reads

resources, such as fi les in the fi lesystem, determining whether any fi les or reg-

istry keys have been changed since the last check. This is performed by looking

at the following:

 ■ File or key names

 ■ File size or registry data

 ■ Last updated time and date

 ■ Data checksum (MD5 and/or SHA1 hash)

Architecturally, the tool is split into two parts: a host component and an

administrative console. As shown in Figure E-4, one client can communicate

with multiple servers, rather than running the tool locally on each computer.

iNTegrity Admin
Console

iNTegrity Host
Software

iNTegrity Host
Software

iNTegrity Host
Software

Figure E-4: The networked host/admin console nature of the iNTegrity tool

In another operational environment, it might be known that a machine has

been compromised and can no longer be trusted, and the server and client soft-

ware can be run off, say, a bootable CD or USB drive. In this case, the integrity-

checking code is running under a trusted, read-only Windows environment, and

the host and admin components both read data from the compromised machine,

530 Appendix E ■ Case Studies

bapp05.indd 12:19:50:PM 01/17/2014 Page 530

but not using the potentially compromised OS. The host process does not run

as a Windows service in this mode, but as a standalone console application.

The Host Component

This small host component is written in C++ and runs as a service on a Windows

server. Its role is to take requests from the admin console and respond to those

requests. Valid requests include getting information about host component ver-

sion, and recursive and non-recursive fi le properties. Note that the host software

performs no analysis; it sends raw integrity data (fi lenames, sizes, hashes, ACLs,

and so on) to the admin console, which performs the core analysis.

The Admin Console

The admin console code stores and analyzes resource (fi le, registry) version

information that comes from one or more host processes. A user can instruct

the admin console to connect to a host running the iNTegrity host software,

get resource information, and then compare that data with a local, trusted data

store of past resource information to see if anything has changed.

The iNTegrity Data Flow Diagrams

The iNTegrity data fl ow diagrams are shown in Figures E-5 and E-6.

Admin Console

iNTegrity
Application

Resource integrity
information

Analyze
infrastructure

Figure E-5: Context diagram

N O T E The iNTegrity example comes from a time when the standard advice was to

create a context diagram, which can be helpful when an external threat modeling con-

sultant is being used, acting as a forcing function to consider the scope and boundar-

ies of the threat model.

 Appendix E ■ Case Studies 531

bapp05.indd 12:19:50:PM 01/17/2014 Page 531

Integrity host
software

INTegrity
Admin

Console

filesystem

registry

instructions

Admin

Integrity change
information

Integrity filesConfig data

Registry data

Raw FS data

commands

domain admin

administrator

Resource integrity
data

Read settings

update
read

Figure E-6: Main DFD

Exercises

 The following exercises were designed to walk students through the activities

they’ll need to perform to fi nd threats. They can be used by readers of this

example without modifi cation:

 1. Identify all the DFD elements. (People often miss the data fl ows.)

 2. Identify all threat types to each element.

 3. Identify three or more threats: one for a data fl ow, one for a data store,

and one for a process.

 4. Identify fi rst-order mitigations for each threat.

Extra credit: The level 1 diagram is not perfect. What would you change,

add, or remove?

533

bgloss.indd 08:42:42:PM 01/15/2014 Page 533

This glossary is intended to provide practical defi nitions of terms to help you

understand how they are used in threat modeling and in this book. I have aimed

for clarity, consistency, and brevity.

I have tried to be clear in context, but I avoid attempts to declare one meaning

or another “correct” or superior to others.

ACL (access control list) — This allows or denies access to fi les. ACL is

often used interchangeably with permissions, despite the fact that Windows

or other ACLs have some technically important differences from unix

permissions—in particular, the fl exibility of the semantics of a list of rules,

rather than a fi xed set of permission bytes.

administrator — The most privileged account on a system, and the name of

the most privileged account on a Windows system. The text is contextually

clear when an issue is specifi c to a design element or feature of Windows.

Often used in the text interchangeably with “root,” the most privileged

account on unix systems.

AINCAA — The properties violated by the STRIDE threats. Those properties

are as follows: Authentication, Integrity, Non-repudiation, Confi dentiality,

Availability, and Authorization.

AJAX (Asynchronous JavaScript and XML) — Generally, AJAX refers

to a style of programming websites and the relevant design of the back

Glossary

534 Glossary

bgloss.indd 08:42:42:PM 01/15/2014 Page 534

end which results in a more fl uid and interactive experience than pushing

the Submit button.

Alice and Bob — Protagonists in cryptographic protocols since time imme-

morial, or perhaps since Rivest, Shamir, and Adleman used them when

introducing the RSA cryptosystem.

API (application programming interface) — A way for programmers to

control a piece of technology.

archetype — A kind of model of a personality or behavior pattern.

ASLR (Address Space Layout Randomization) — Randomizing the

address space of a process makes writing effective stack-smashing attacks

more diffi cult. While ASLR is a specifi c technique, it is usually used in

this book as an exemplar of a set of defensive techniques with the goal of

preventing memory corruption or control-fl ow attacks.

ASN (Autonomous System Number) — Used in Internet routing, the

ASN refers to a complete set of Internet addresses that should be routed

to the same place.

asset — An object of value, possibly intangible, in the sense that goodwill

is an asset carried on a company’s books. In threat modeling, it has two

particular meanings. One, it is a thing that either an attacker will pursue

or someone wants to protect or is a stepping stone to either. Two, it can

mean a computer or other piece of technology, where asset is a synonym

for a more common word.

attack surface — Places where a trust boundary can be traversed, whether

by design or by accident.

authentication — The process of increasing another’s confi dence in an

identifi cation. “Alice Smith authenticated herself by showing her com-

pany badge.”

AuthN, AuthZ — These abbreviations for authentication and authoriza-

tion, respectively, are often used because they are both shorter to write

and can be easily skimmed.

authorization — The process of checking whether an identifi ed entity is

allowed to take some action. The entity can be a person or a technological

system of some form. “Alice is not authorized to view the contents of the

layoffs directory.”

availability — The property of being available for intended service. Denial-

of-service attacks are intended to reduce, impair, or eliminate availability.

Bell-LaPadula — A classic model of confi dentiality, based on military

classifi cation schemes. In Bell-LaPadula’s model, systems with higher

privilege can read from lower privilege systems, but not write to them.

 Glossary 535

bgloss.indd 08:42:42:PM 01/15/2014 Page 535

(Think of a system running as “secret”; it can read unclassifi ed systems

but not write to them, as that could reveal secret information.)

belt-and-suspenders — An approach in which you have multiple controls

in place—for example, using both a belt and suspenders to hold your

pants up.

best practice — A term used either aspirationally or as a means of stifl ing

debate. The aspirational use is of the form “we should use best practices

for securing this system.” The debate-stifl ing form is “you need to enforce

password changes, it’s on our best practices list.” It is a best practice to

apply “fi ve whys” when told something is a best practice. “Five whys” is

a practice attributed to Toyota for understanding root causes. At its core,

ask why, and then ask why of the answer fi ve times to fi nd a root cause.

Biba — Another classic security model, this one based on integrity. Systems

at a lower integrity level cannot write to a higher integrity level.

Bob — See Alice and Bob.

 CAPTCHA (Completely Automated Public Turing test to tell Computers
and Humans Apart) — Those irritating and often unreadable words

and/or numbers presented online before you can submit something are

designed to be easy for humans and hard for computers, but they end

up being easy for computers and hard for everyone except those people

who are paid a dollar or two to sit and solve them all day. On the bright

side, at least those poor folks have a job.

ceremony — A term for a protocol that has been defi ned to include the

people involved in the protocol. This is a useful way to analyze usability

and human factors issues, and is covered at length in Chapter 15.

ciphertext — The encrypted version of a message. If e means encrypt, k
is a key, and p is plaintext, a ciphertext message is ek(p).

ciphertext, known — See known ciphertext.

confi dentiality — The security property describing information restricted

to a set of authorized people, and only disclosed to them.

control-fl ow attack — An attack on a program which alters the control

fl ow. Stack-smashing attacks are an example of control fl ow attacks, where

attacker-supplied data overwrites the program’s stack.

CSA (Cloud Security Alliance) — Quoting its website, “The Cloud Security

Alliance (CSA) is a not-for-profi t organization with a mission to promote

the use of best practices for providing security assurance within Cloud

Computing, and to provide education on the uses of Cloud Computing

to help secure all other forms of computing.”

536 Glossary

bgloss.indd 08:42:42:PM 01/15/2014 Page 536

CSC (Conditioned-safe ceremony) — A ceremony that involves a step

designed to result in people engaging in that step by rote. See also ceremony.

CSRF (Cross-site request forgery) — A type of web attack whereby an

attacker convinces your browser to request one or more web pages, using

your cookies, without your participation.

DBA (Database administrator) — The privileged person or set of people

who have administrative rights to a database.

DDoS (distributed denial of service) — A denial-of-service attack carried

out by more than one machine.

DFD (data fl ow diagram) — Diagrams which show the data fl ow of a

system. Sometimes called threat model diagrams, because they're so

useful in threat modeling.

DoS (denial of service) — The class of attack that violates availability.

DREAD (Damage, Reproducibility, Exploitability, Affected Users,
Discoverability) — Developed and then retired by Microsoft. Discussed

in Chapter 9.

DRM (digital rights management) — Schemes that treat the purchaser

of a digital object as a threat, and attempt to prevent them from usefully

accessing a fi le except using certain programs. Also called digital restric-

tions management.

EAL (Evaluation Assurance Level) — An EAL is an element of the Common

Criteria for security evaluation promulgated by major Western govern-

ments and Japan.

EoP (elevation of privilege) — Both a category of threat and (capitalized)

the name of the threat modeling game. As a threat, EoP refers to a way in

which people can exceed their authorization (or privileges). This includes

gaining the capability to run code on a computer (aka breaking in), or

moving from a restricted account to a more privileged one.

escalation of privilege — A synonym for elevation of privilege.

exploit — In its traditional sense, exploit refers to taking advantage of or

unfairly benefi tting from the work of another. In the technical sense, it

can mean taking advantage of a program fl aw such that an attacker gains

some benefi t. For example, “The document contains an exploit” means

that a fl aw in the program has been identifi ed, and the document has been

carefully constructed to take advantage of that fl aw.

femtocell — A small computer with integrated radios and networking,

designed to augment cellular phone service. A femtocell is a natural place

to execute man-in-the-middle attacks.

 Glossary 537

bgloss.indd 08:42:42:PM 01/15/2014 Page 537

formal — Either a structured approach (often with pre- and post-conditions)

or a mathematical structuring. It is used in both ways in this book.

FQDN (fully qualifi ed domain name) — A domain name ending in a

recognized top-level domain (such as .com) or, more precisely, ending

with “.”—the root of domain trust. (Thus, microsoft.com. is an FQDN.)

friendly fraud — Term used by payments processors to refer to when

a family member, roommate, or other person uses a credit card, and the

owner of the card denies knowing anything about the charges.

GEMS (Generic Error Modeling System) — James Reason’s model describ-

ing how people make mistakes.

global passive adversary — An entity which can eavesdrop around the

world. Used either to specify a precise capability with which to judge the

security of a design, or to avoid political discussion that can result from

naming a particular country’s spies. Revelations of NSA practices in the

summer of 2013 should lead to skepticism over the euphemistic variant.

GOMS (Goals, Operators, Methods, and Selection) — Rules to an early

model of how people process information.

heap overfl ow — An exploitable condition whereby attackers can write

data to the dynamically allocated heap in a way that allows them to infl u-

ence or replace normal operation of a program.

IaaS (Infrastructure as a Service) — A cloud offering in which clients buy

power, network, and CPU cycles, and run their own systems on top of

them, often in the form of complete virtual machines. See also PaaS, SaaS.

IC (individual contributor) — Someone whose work does not involve

managing others.

IETF (Internet Engineering Task Force) — The folks who defi ne how

computers on the Internet talk to each other.

IETF threat modeling — Personal shorthand for my interpretation of RFC

3552 as an approach to threat modeling. To the best of my knowledge,

the IETF does not endorse a methodology for, or a structured approach

to, threat modeling.

information disclosure — A threat that violates confi dentiality.

IOI (item of interest) — In privacy threat modeling, an IOI is an aspect

of the system of interest to attackers. For an excellent source for privacy

terminology, see “A Terminology for Talking About Privacy by Data

Minimization” (Pfi tzman, 2010).

integrity — The property that an object is whole, undivided, and of the

form that its creators intended and its reliant parties expect. The property

violated by tampering.

538 Glossary

bgloss.indd 08:42:42:PM 01/15/2014 Page 538

known ciphertext — An attack that works when the encrypted version

of a message is available to the adversary.

meaningful ID — An identifi er that is meaningful to the human using

it, which brings to mind exactly one entity. See both Chapter 14, and

Chapter 15.

MITM (man-in-the-middle) — An attack in which someone can inter-

cede between the participants in a protocol, spoofi ng Alice to Bob (so

that Bob believes that someone else is Alice) and Bob to Alice (such that

Alice believes that same someone else is Bob). Often, cryptographers call

this MITM “Mallory.” Thus, Bob believes that Mallory is Alice, and Alice

believes that Mallory is Bob. Hijinks, as they say, tend to ensue.

model — As a noun, a simplifi ed or abstracted description of a thing,

system, or process; as a verb, the act of devising, creating, or using such

an abstracted or simplifi ed description.

Mukhabarat — The Arabic term for an intelligence or state security agency.

Sometimes invoked as an alternative to talking about the U.S. National

Security Agency or other passive adversaries, although events of the Arab

Spring exposed a willingness to engage in active attacks.

NIST — The United States National Institutes of Standards and Technology.

non-repudiation — The security property that people cannot falsely

repudiate (deny) their actions.

NSA (National Security Agency [United States]) — Often invoked because

of its powerful capabilities to listen to a wide swath of traffi c, or its skills

in making or breaking cryptographic algorithms. Generally, NSA is used

as an example of a global passive adversary.

OECD — Organization for Economic Cooperation and Development.

PaaS (Platform as a Service) — A cloud computing offering whereby

the client buys a system, such as a web stack on a given OS, and runs

their own applications on top of it. For example, Google App Engine is a

Platform as a Service.

permissions — See ACL.

persistence — keeping track of cryptographic keys you receive to detect

changes. Also called “TOFU.”

PKI (public key infrastructure) — An approach to key authentication in

which a trusted third party authenticates keys. Subject to a variety of threats.

PM — Program manager or program management. At Microsoft, program

managers are engineers with responsibility for all non-code, non-test

deliverables, often including vision, specs, timelines, and delivery of the

 Glossary 539

bgloss.indd 08:42:42:PM 01/15/2014 Page 539

product. This role carries a great deal of implicit meaning and expectation,

and the best description I know of can be found in “The Zen of Program

Management” (Microsoft, 2007).

race conditions — A class of security incidents in which there’s a delay

and a possibility of changing things between the checking of a condition

(such as the target of a symbolic link) and the use of that check’s results.

Also called TOCTOU (time of check, time of use).

reference monitor — The software that enforces security policies, such

as access to objects. Acting as a reference monitor for operating system

objects is one function an OS kernel provides.

repudiation — The act of denying responsibility for an action.

RFC (Request for Comments) — The standards documents issued by the

IETF (Internet Engineering Task Force).

root — The most privileged account on a unix system. The text is contextu-

ally clear when an issue is specifi c to a design element or feature of unix.

Often used in the text interchangeably with “administrator”.

SaaS (Software as a Service) — A cloud offering in which the client buys

a business package of some type, such as CRM, and the CRM is operated

by a company, such as Salesforce.com. Contrast with PaaS and IaaS.

Scamicry — Behavior which is hard to distinguish from behavior by

scammers. For example, the use of obscure domains to accept e-mail click

through is used by attackers (leading to advice to check URLs) and by

legitimate organizations (leading to that advice being less valuable, and

to people being confused.) Scamicry prevents people’s natural pattern

recognition from working well around information security.

SDL (Security Development Lifecycle) — The set of activities under-

taken by an organization to prevent the introduction of security issues in

software development.

SIPRNet (Secret Internet Protocol Router Network) — The air-gapped

IP network operated by the United States defense department.

social proof — A phenomenon where people believe that what others are

doing is acceptable (or safe) behavior. Sometimes exploited by attackers

whose collaborators act the way they want you to act.

sockpuppet — The account used in a sockpuppet attack.

sockpuppet attack — Describes an attack whereby someone creates a set

of accounts to create the impression that their position has more support

than it otherwise might appear to have. Also called in various communi-

ties Sybils or tentacles. The offl ine versions include social proof and, in

politics, astroturfi ng.

540 Glossary

bgloss.indd 08:42:42:PM 01/15/2014 Page 540

spoofi ng — The category of threats that violate authentication by pretend-

ing to be someone or something else.

SQL injection — A category of attack whereby a SQL command is “injected”

into a query by an attacker.

SSDL (secure software development lifecycle) — A synonym for SDL.

SSN (social security number) — See Chapter 14 for discussion.

stack smashing — A subset of buffer overfl ow in which the attacker over-

writes the program stack, leading to a change in control fl ow.

steganography — The art of secret writing. Invisible inks are an example

of a steganographic technique, as is altering the least signifi cant bits of an

image to carry a message.

stepping-stone asset — Something an attacker wants to take over in order

to gain access to some further target. See things attackers want asset, things

you protect asset.

STRIDE — Spoofi ng, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privilege. A mnemonic for fi nding

threats. Often incorrectly (and sometimes frustratingly) called a classifi ca-

tion system or taxonomy.

Sybil, Sybil attack — See sockpuppet, sockpuppet attack.

System 1, System 2 — Psychological terms describing two approaches

to thinking and decision making—a fast automatic system, and a slower,

more deliberative system. System 1 responses are fast and require little

conscious thought; in contrast, System 2 is slower and more deliberate.

See Chapter 15, or Thinking, Fast and Slow (Kahneman, 2011) for more

information.

tampering — Attacks that violate the integrity of a system, fi le, or data fl ow.

tentacles — See sockpuppet attack.

things attackers want asset — An asset with the property that an attacker

wants to copy, delete, tamper with, or otherwise attack for gain. Contrast

with stepping-stone asset.

things you protect asset — An asset with the property that you protect

because it’s important to you, rather than because you expect an attacker

to go after it.

threat discovery — A synonym for threat enumeration.

threat elicitation — A synonym for threat enumeration.

 Glossary 541

bgloss.indd 08:42:42:PM 01/15/2014 Page 541

threat modeling — The use of abstractions to aid in thinking about risk.

See the Introduction for explicit discussion of the various ways in which

the term is used.

Time of check/Time of use issue — Sometimes abbreviated TOCTOU;

see race condition.

TM (threat modeling) — Not to be confused with trademark or ™, a legal

process for the protection of brands to reduce confusion.

TMA (Threat model analysis) — Either an activity to look for threats,

or the written output of such a process. Used in the early days of threat

modeling at Microsoft, but it sometimes crops up elsewhere.

TOFU (trust on fi rst use) — Keeping track of cryptographic keys you’ve

seen to avoid asking people repeated questions about trusting those keys.

Also called persistence.

transitive asset — A phrase used in Swiderski and Snyder’s Threat Modeling

(Microsoft Press, 2004) to refer to what I call a stepping-stone asset.

trust boundary — The place where more than one principal interacts—thus,

where threats are most clearly visible. Threats are not restricted to trust

boundaries but almost always involve actions across trust boundaries.

trust levels — A description of the security context in which an entity

works. Things at the same level are isomorphic—there is no advantage to

going from one to another. If some code has different privileges (permis-

sions, etc.), then that code is at different trust levels.

trusted — A way of describing an entity that can violate your security

rules, and is trusted not to do so.

trusted third party — A party who, by mutual agreement, can screw other

participants. Seriously, that’s what trusted means. You expect them to

perform reliably, and if they don’t, you’re out of luck.

TOCTOU (time of check/time of use) — See race condition.

tunneling — An approach to networking whereby one protocol is encap-

sulated in another to gain some advantage. Common examples include

SSH and SSL.

TTL (time to live) — A value set in a network protocol with the intent of

decrementing the value at each network hop. Not all tunneling systems

will reduce TTL as they move packets.

UX (user experience) — A superset of the user interface elements, includ-

ing how the person experiences them, and expectations about the skills,

experiences, and training the person may have.

542 Glossary

bgloss.indd 08:42:42:PM 01/15/2014 Page 542

vendor — The person or people who create software. Used because it’s

less verbose than “the people who make your software,” but I mean no

disrespect to the creators of open-source or free/libre software.

WYSIATI (What You See Is All There Is) — A term coined by Daniel

Kahneman (Farrar, Straus and Giroux, 2011) to refer to a set of ways in

which human perception and recollection diverge from what we might

hope.

WYTM — What’s your threat model? A question asked to clarify under-

standing of risks. The answer is generally a few words, such as “global

passive adversary” or “someone who can run code as a different account

on the machine.”

YAGNI (You Ain’t Gonna Need It) — This saying comes from the extreme

programming (XP) movement, and emphasizes building only the prod-

uct you’re shipping, and as little else as you can get away with shipping.

Security requirements and threat models are often viewed as things you

ain’t gonna need, which is often incorrect.

543

bref.indd 03:32:13:PM 01/20/2014 Page 543

37 Signals. “Aggressive, spiky button vs. rounded corner button,”

Signal vs. Noise, April 5, 2010, https://37signals.com/

svn/posts/2255-aggressive-spiky-button-vs-rounded-corner-button.

Abi-Antoun, Marwan, and Jonathan Aldrich. “Static Extraction and Conformance

Analysis of Hierarchical Runtime Architectural Structure Using

Annotations.” In ACM SIGPLAN Notices, vol. 44, no. 10, pp. 321–40

(ACM, 2009).

Abi-Antoun, Marwan, and Jeffrey M. Barnes. “Analyzing Security Architectures,”

Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering, pp. 3–12 (ACM, 2010).

Acquisti, Alessandro, Ralph Gross, and Fred Stutzman. “Faces of Facebook: Or,

How the Largest Real ID Database in the World Came to Be.” BlackHat

USA, August, 2011. Draft available online at http://www.heinz.cmu

.edu/~acquisti/face-recognition-study-FAQ/

acquisti-faces-BLACKHAT-draft.pdf.

Adams, A. A., and S. A. Williams, “What’s Yours Is Mine and What’s Mine’s

My Own,” unpublished draft, May 8, 2012, http://opendepot.org/

id/eprint/1096.

Adams, Scott, Dilbert cartoon, published November 13, 1995, http://

thedilbertstore.com/comic_strips/1995/11/13.

Bibliography

544 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 544

Adida, Ben, et al. “CALEA II: Risks of Wiretap Modifications to Endpoints,”

Center for Democracy and Technology, May 17 2013, https://www.cdt

.org/files/pdfs/CALEAII-techreport.pdf.

Adler, Andy. “Images Can Be Regenerated from Quantized Biometric Match

Score Data,” Electrical and Computer Engineering, Canadian Conference

on, vol. 1, pp. 469–72 (IEEE, 2004).

Akhawe, Devdatta, Warren He, Zhiwei Li, Reza Moazzezi, and Dawn Song.

“Clickjacking Revisited: A Perceptual View of UI Security,” BlackHat USA,

August, 2013, http://www.cs.berkeley.edu/~devdatta/clickjacking.pdf.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language

(New York: Oxford University Press, 1977).

Anderson, Ross. Security Engineering: A Guide to Building Dependable Distributed

Systems (Indianapolis: Wiley, 2008).

. “Offender Tagging,” Light Blue Touchpaper blog, last modified

September 2, 2013, http://www.lightbluetouchpaper.org/2013/09/

02/offender-tagging/.

. “Security and Human Behavior 2013,” Light Blue Touchpaper blog, last

modified June 6, 2013, http://www.lightbluetouchpaper.org/2013/06/

03/security-and-human-behaviour-2013/.

ANSI Z535. “Brief Description of all Six Standards and Safety Color Chart,”

accessed October 15, 2013, http://www.nema.org/Standards/z535/

Pages/ANSI-Z535-Brief-Description-of-all-Six-Standards-and

-Safety-Color-Chart.aspx.

Asadollahi, Yahya, Vahid Rafe, Samaneh Asadollahi, and Somayeh

Asadollahi. “A Formal Framework to Model and Validate Event-Based

Software Architecture,” Procedia Computer Science 3 (2011): 961–66 and

http://asmeta.sourceforge.net/.

Asadollahi, Yahya, Vahid Rafe, Samaneh Asadollahi, and Somayeh

Asadollahi. “A Formal Framework to Model and Validate Event-Based

Software Architecture,” Procedia Computer Science 3 (2011): 961–66 and

http://asmeta.sourceforge.net/.

Aucsmith, David, Brendon Dixon and Robin Martin-Emerson, “Threat Personas”,

Microsoft internal document, version 0.9, 2003.

Barnard, R.L. Intrusion Detection Systems (Buttersworth, 1988) as cited in Anderson

(2008), supra.

Beautement, Adam, M. Angela Sasse, and Mike Wonham. “The compliance

budget: managing security behaviour in organisations,” In Proceedings of
the 2008 workshop on New security paradigms, pp. 47-58. ACM, 2009.

Beckert, Bernhard, and Gerd Beuster. “A Method for Formalizing, Analyzing,

and Verifying Secure User Interfaces.” In Formal Methods and Software

Engineering, pp. 55–73 (Berlin: Springer, 2006).

 Bibliography 545

bref.indd 03:32:13:PM 01/20/2014 Page 545

Bell, D. Elliott, and Leonard J. LaPadula. “Secure Computer Systems: Mathematical

Foundations,” MTR-2547 (Bedford: The MITRE Corporation, 1973).

Bella, Giampaolo, and Lizzie Coles-Kemp. “Seeing the Full Picture: The Case for

Extending Security Ceremony Analysis,” Proceedings of the 9th Australian

Information Security Management Conference, Edith Cowan University, Perth

Western Australia, 5–7 December, 2011.

Biba, K. J. “Integrity Considerations for Secure Computer Systems.” MTR-3153.

(Bedford: The MITRE Corporation, 1977).

Biham, Eli, Alex Biryukov, and Adi Shamir. “Cryptanalysis of Skipjack reduced

to 31 rounds using impossible differentials.” In Advances in Cryptology
--Eurocrypt’99, pp. 12-23 (Berlin Heidelberg: Springer, 1999).

Bonneau, Joseph. “Authentication Is Machine Learning,” Light Blue

Touchpaper blog, December 14, 2012 (see in particular comment 2

by Bonneau), http://www.lightbluetouchpaper.org/2012/12/14

/authentication-is-machine-learning/.

. “Authenticating Humans to Computers: What I Expect for the Next

Ten Years,” streamed live on November 29, 2012, https://www.youtube.

com/watch?v=_bnj5Qa_9iU&feature=plcp.

Bonneau, Joseph, Cormac Herley, Paul C. Van Oorschot, and Frank Stajano. “The

Quest to Replace Passwords: A Framework for Comparative Evaluation

of Web Authentication Schemes.” In Security and Privacy (SP), 2012 IEEE

Symposium on, pp. 553-67 (IEEE, 2012).

Bonneau, Joseph, Mike Just, and Greg Matthews. “What’s in a Name?” In

Financial Cryptography and Data Security, pp. 98–113 (Berlin, Heidelberg:

Springer, 2010).

Bovbjerg, Barbara D. “Federal and State Laws Restrict Use of SSNs, Yet

Gaps Remain,” U.S. GAO, GAO-05-1016T, September 15, 2005,

http://www.gao.gov/new.items/d051016t.pdf.

Bowers, Kevin D., Marten van Dijk, Robert Griffin, Ari Juels, Alina Oprea, Ronald

L. Rivest, and Nikos Triandopoulos. “Defending Against the Unknown

Enemy: Applying FLIPIT to System Security.” In Decision and Game Theory

for Security, pp. 248–63 (Berlin: Springer, 2012), http://www.emc.com/

emc-plus/rsa-labs/presentations/flipit-gamesec.pdf.

Bowker, Geoffrey C., and Susan Leigh Star. Sorting things out: Classification and

its consequences, (Cambridge: The MIT Press, 2000).

Boyd, Colin, and Anish Mathuria. Protocols for Authentication and Key Establishment
(Berlin: Springer, 2003).

Brainard, John, Ari Juels, Ronald L. Rivest, Michael Szydlo, and Moti Yung.

“Fourth-Factor Authentication: Somebody You Know,” In 2006 ACM

Conference on Computer and Communications Security, pp. 168–78.

546 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 546

Brenner Center for Justice. “Voter ID,” last updated October 15, 2012,

http://www.brennancenter.org/content/section/category/voter_id.

Brewer & Darrenougue. “Minutes of the IETF 88 Plenary,” November 6, 2013, http://

www.ietf.org/proceedings/88/minutes/minutes-88-iab-techplenary.

Buley, Taylor. “Netflix settles privacy lawsuit, cancels prize sequel,” Forbes Firewall

blog, March 12, 2010, http://www.forbes.com/sites/firewall/2010/03/

12/netflix-settles-privacy-suit-cancels-netflix-prize-two-sequel/.

Cameron, Kim. “The Laws of Identity,” last revised May, 2005, http://

www.identityblog.com/?p=352.

Campanile, Carl. “Dem Pol’s Son Was ‘Hacker’,” New York Post, September

19, 2008.

Celis, David. “Stop Validating E-mail Addresses with Complicated Regular

Expressions,” September 12, 2006, http://davidcel.is/blog/2012/09/

06/stop-validating-email-addresses-with-regex/.

Chandler, Raymond. Trouble Is My Business: A Novel. Random House Digital,

Inc., 2002, http://books.google.com/books?id=TrGxX4kZNLIC

Chen, Raymond. “It rather involved being on the other side of this airtight

hatchway. . .” The Old New Thing blog, May 8, 2006, http://blogs.msdn

.com/b/oldnewthing/archive/2006/05/08/592350.aspx.

Chosunilbo. “Real-Name Online Registration to Be Scrapped,” The Chosunilbo,

last revised December 30, 2011, http://english.chosun.com/site/

data/html_dir/2011/12/30/2011123001526.html.

Clarke, Roger. “An Evaluation of Privacy Impact Assessment Guidance

Documents,” International Data Privacy Law 1, no. 2 (2011): 111–20, http://

idpl.oxfordjournals.org/content/early/2011/02/15/idpl.ipr002

.full.pdf, http://idpl.oxfordjournals.org/content/1/2/111.abstract.

. “Privacy Impact Assessment,” May 26, 2003, h t t p : / /

www.rogerclarke.com/DV/PIA.html.

. “Privacy Impact Assessment: Its Origins and Development,” April

2009, http://www.rogerclarke.com/DV/PIAHist-08.html.

. “Cloud Controls Matrix,” Version 3, September 26, 2013, https://

cloudsecurityalliance.org/research/ccm/.

Cloud Security Alliance (CSA). “Security Guidance,” Version 3, November 14,

2011, https://cloudsecurityalliance.org/research/security-guidance

/peer-review/.

Convery, S., D. Cook, and M. Franz. “An Attack Tree for the Border Gateway

Protocol (Draft 1), Routing Protocol Security, expired March 17, 2004,

http://web.eecs.umich.edu/~zmao/eecs589/papers/

draft-convery-bgpattack-01.txt.

 Bibliography 547

bref.indd 03:32:13:PM 01/20/2014 Page 547

Cooper, Alan, and Paul Saffo. The Inmates Are Running the Asylum (Indianapolis:

SAMS, 1999).

Cooper, A., H. Tschofenig, B. Aboda, J. Peterson, J. Morris, M. Hansen, R. Smith.

“Privacy Considerations for Internet Protocols,” RFC 6973, July 2013,

http://www.rfc-editor.org/rfc/rfc6973.txt.

Cooper, Alan, Robert Reimann, and David Cronin. About Face 3: The Essentials

of Interaction Design (Indianapolis: John Wiley & Sons, 2012).

Cranor, Lorrie Faith. “A Framework for Reasoning About the Human in the

Loop,” UPSEC 8 (2008): 1–15.

Csikszentmihalyi, Mihaly. Finding flow: The psychology of engagement with
everyday life. (New York: Basic Books, 1997).

. Flow: The psychology of optimal experience. (New York: Harpercollins, 1990).
Culp, Scott, and Angela Gunn. “Ten Immutable Laws of Security (Version

2.0),” accessed October 16, 2013, http://technet.microsoft.com/

en-us/library/hh278941.aspx.

CyberSource. “2012 Online Fraud Report,” CyberSource, Fourteenth Annual

Industry Report, accessed October 16, 2013, http://forms.cybersource

.com/forms/NAFRDQ12012whitepaperFraudReport2012CYBSwww2012.

Dalek, Calum T, “Fingerprinting,” Wired, vol. 4, no. 9, page 47, September 1996,

http://www.wired.com/wired/archive/4.09/eword.html.

. “Covert Communications Despite Traffic Data Retention.” In Security

Protocols XVI, pp. 198–214 (Berlin: Springer, 2011).

Danezis, George. Personal communication, 2011.

Debian Project. “Debian Security Advisory DSA-1571-1 openssl — Predictable

Random Number Generator,” published May 13, 2008, http://www.debian

.org/security/2008/dsa-1571 ., https://wiki.debian.org/

SSLkeys#Technical_Summary

Deng, Mina. “Privacy preserving content protection,” Ph.D diss., Ph. D. thesis,

Katholieke Universiteit Leuven-Faculty of Engineering, 2010.

Disquss. “Pseudonyms Drive Community,” Disquss corporate blog, accessed

October 16, 2013, http://disqus.com/research/pseudonyms/.

Duarte, Nancy. “How to Present to Senior Executives,” Harvard Business Review,

October 4, 2012, http://blogs.hbr.org/cs/2012/10/how_to_present_

to_senior_execu.html.

Duong, Thai, and Juliano Rizzo. “Flickr’s API Signature Forgery Vulnerability,”

September 2009, http://netifera.com/research/flickr_api_

signature_forgery.pdf.

EAC Advisory Board. “Elections Operations Assessment: Threat Trees and Matrices

and Threat Instance Risk Analyzer,” Elections Assistance Commission,

December 23, 2009, submitted by University of South Alabama, http://

www.eac.gov/assets/1/Page/Election%20Operations%20Assessment%20

548 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 548

Threat%20Trees%20and%20Matrices%20and%20Threat%20Instance%20

Risk%20Analyzer%20%28TIRA%29.pdf.

Ellison, Carl M. “Ceremony Design and Analysis,” IACR Cryptology ePrint

Archive (2007): 399. https://eprint.iacr.org/2007/399.pdf.

Ericsson, K. Anders, Ralf T. Krampe, and Clemens Tesch-Römer. “The role of

deliberate practice in the acquisition of expert performance.” Psychological

review 100, no. 3 (1993): 363.

Espenschied, Jonathan, and Angela Gunn. “Threat Genomics,” MetriCon

7, August 7, 2012, http://www.securitymetrics.org/blog/2012/08/

19/metricon-7/?page=Metricon7.0.

Essers, Loek. “German Privacy Regulator Orders Facebook to End Its Real

Name Policy,” ITworld, December 17, 2012, http://www.itworld.com/

print/328387.

Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering

(Indianapolis: Wiley, 2012).

Ferriss, Timothy. The 4-Hour Chef: The Simple Path to Cooking Like a Pro, Learning

Anything, and Living the Good Life, as cited in “Cheat Sheets for Everything.”

Boing Boing, November 21, 2012, http://boingboing.net/2012/11/

21/timothy-ferriss-cheat-sheets.html.

Feynman, Richard P. “Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious

Character (New York: W.W. Norton & Company, 2010).

FIPS. “Data Encryption Standard,” Federal Information Processing Standards

Publication 46-2, supersedes FPS PUB 46-1, January 22, 1988, http://www

.itl.nist.gov/fipspubs/fip46-2.htm.

Fisher, Dennis. “Inside Facebook’s Social Authentication System,”

ThreatPost b log, March 8 , 2012 , h t t p : / / t h r e a t p o s t

.com/inside-facebooks-social-authentication-system-030812/76300.

Fontana, John. “VeriSign Issues Fraudulent Microsoft Code-Signing Certificates,”

Network World Fusion, March 22, 2001, http://www.networkworld.com

/news/2001/0322vsign.html.

Friedberg, Jeffrey, et al. “Privacy Guidelines for Developing Software Products

and Services,” version 3.1, September, 2008.

Garfinkel, Simson, personal communication, November 2012.

Gawande, Atul. The Checklist Manifesto (Penguin Books: 2010).

Gellman, Robert. “Fair Information Practices: A basic History,” version 2.02 of

November 11, 2013, http://bobgellman.com/rg-docs/rg-FIPShistory.pdf.

Green, Robert Lane. You Are What You Speak (New York: Random House, 2011).

Giesen, Florian, Florian Kohlar, and Douglas Stebila. “On the Security of TLS

Renegotiation,” 2013, http://eprint.iacr.org/2012/630.pdf.

Goldberg, Ian Avrum. “A Pseudonymous Communications Infrastructure for

the Internet.” Ph.D diss., University of California, 2000.

 Bibliography 549

bref.indd 03:32:13:PM 01/20/2014 Page 549

Goldberg, Ian A., Matthew D. Van Gundy, Berkant Ustaoglu, and Hao Chen.

“Multi-Party Off-the-Record Messaging,” 2008, http://www.cypherpunks

.ca/~iang/pubs/mpotr.pdf.

Goodin, Dan “’We cannot trust’ Intel and Via’s chip-based crypto, FreeBSD

developers say” December 10, 2013 http://arstechnica.com/

security/2013/12/we-cannot-trust-intel-and-vias-chip-bas\ ed-

crypto-freebsd-developers-say/

Gordon, Lawrence A., and Martin P. Loeb. “The Economics of Information

Security Investment,” ACM Transactions on Information and System

Security (TISSEC) 5, no. 4 (2002): 438–57.

. Managing Cybersecurity Resources: A Cost-Benefit Analysis (New York:

McGraw-Hill, 2006).

Gürses, Seda, Carmela Troncoso, and Claudia Diaz. “Engineering Privacy By

Design,” COSIC 2011, last accessed October 16, 2013, http://www.cosic

.esat.kuleuven.be/publications/article-1542.pdf.

Haber, Jeb. “SmartScreen® Application Reputation in IE9,” IEBlog, May

17, 2011, http://blogs.msdn.com/b/ie/archive/2011/05/17/

smartscreen-174-application-reputation-in-ie9.aspx.

Hall, Joseph M., and M. Eric Johnson. “When Should a Process Be Art,” Harvard

Business Review, March 2009.

Hashcat, Hashcat advanced password recovery product page, http://hashcat

.net/oclhashcat/, visited December 7, 2013.

Hazen, John. “Delivering Reliable and Trustworthy Metro Style Apps,”

Building Windows 8, May 17, 2012, http://blogs.msdn.com/b/b8/

archive/2012/05/17/delivering-reliable-and-trustworthy-metro-

style-apps.aspx.

Heckman, Rocky. “Application Threat Modeling v2,” TechRepublic

/U.S., March 7, 2006, h t t p : / / w w w . t e c h r e p u b l i c . c o m /

article/application-threat-modeling-v2/6310491.

Heitgerd, Janet L., et al. “Community Health Status Indicators: Adding a

Geospatial Component,” accessed October 15, 2013, Preventing Chronic

Disease 2008;5(3). http://www.cdc.gov/pcd/issues/2008/jul/07_0077.htm.

Heninger, Nadia, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.

“Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network

Devices,” In Proceedings of the 21st USENIX Security Symposium, August 2012.

Herley, Cormac. “So Long, and No Thanks for the Externalities: The Rational

Rejection of Security Advice By Users,” In Proceedings of the 2009 Workshop

on New Security Paradigms Workshop, pp. 133–44 (ACM, 2009).

Hill, Sad. “Caution Sign Has Sharp Edges Do Not Touch,” Sad Hill

News, November 9, 2010, http://sadhillnews.com/2010/11/09/

us-bans-toner-travel-and-font-usage-unknown-missile-launches/

caution-sign-has-sharp-edges-do-not-touch-sad-hill-news.

550 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 550

Hillebrand, Gail. “Social Security Number Protection Legislation for States,”

Consumers Union, June 2008, http://www.consumersunion.org/

pub/core_financial_services/004801.html.

Hoffman L. Personal communication. See also the Burroughs tribute page,

available at http://www.ianjoyner.name/Burroughs.html.

Honan, Mat. “How Apple and Amazon Security Flaws Led to My Epic

Hacking,” Wired, August 6, 2012, http://www.wired.com/gadgetlab/2012/

08/apple-amazon-mat-honan-hacking/.

Howard, Michael. “Secure Coding Secrets,” Microsoft Security Development

Lifecycle blog, November 18, 2008, http://blogs.msdn.com/b/

sdl/archive/2008/11/18/secure-coding-secrets.aspx.

Howard, Michael, and David LeBlanc. Writing Secure Code (Redmond: Microsoft

Press, 2002) and also 2nd edition, 2009.

Howard, Michael, and Steve Lipner, The Security Development Lifecycle, (Redmond:

Microsoft Press, 2006)

Huang, Ling, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein,

and J. D. Tygar. “Adversarial Machine Learning,” In Proceedings of the 4th

ACM Workshop on Security and Artificial Intelligence, pp. 43–58. ACM, 2011,

http://blaine-nelson.com/research/pubs/Huang-Joseph-AISec-2011.

Hutchins, Eric M., Michael J. Cloppert, and Rohan M. Amin. “Intelligence-

Driven Computer Network Defense Informed By Analysis of Adversary

Campaigns and Intrusion Kill Chains,” Leading Issues in Information Warfare

and Security Research 1 (2011): 80; http://www.lockheedmartin.com/

content/dam/lockheed/data/corporate/documents/

LM-White-Paper-Intel-Driven-Defense.pdf.

Identity Theft Resource Center. “Identity Theft: The Aftermath 2008,” May 28,

2009, http://www.idtriskmgtgroup.com/documents/Aftermath_2008_

Highlight.pdf.

Ingoldsby, Terrance R. “Attack Tree-Based Threat Risk Analysis,” Amenaza

Technologies Ltd. Copyright 2009, 2010; http://www.amenaza

.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf and

http://www.screencast.com/users/Amenaza/folders/Default/media/

a18cb16a-f88f-4161-b1a4-124e5f06376d.

Jacobs, Jay. “A Call to Arms: It Is Time to Learn Like Experts,” ISSA Journal,
November 2011, http://beechplane.files.wordpress.com/2011/11/

a-call-to-arms_issa1111.pdf.

Jakobsson, Markus, Erik Stolterman, Susanne Wetzel, and Liu Yang. “Love and

Authentication,” Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pp. 197–200 (ACM, 2008).

Johnson, Steven. The Ghost Map: The Story of London’s Most Terrifying Epidemic and

How It Changed Science, Cities, and the Modern World (New York: Penguin,

2006).

 Bibliography 551

bref.indd 03:32:13:PM 01/20/2014 Page 551

Jones, J. “An introduction to factor analysis of information risk (fair),”

Norwich Journal of Information Assurance 2, no. 1 (2006): 67,

riskmanagementinsight.com/media/documents/FAIR_Introduction.pdf.

Just, Mike. “Designing and Evaluating Challenge-Question Systems,” Security

and Privacy, IEEE 2, no. 5 (2004): 32–39.

Kahn, David. The Codebreakers (New York: Scribner, 1996).

Kahneman, Daniel. Thinking, Fast and Slow (New York: Farrar, Straus and Giroux,

2011).

Kahney, Leander, “Twist a pen, open a lock,” Wired.com, Sep 17 2004, http://

www.wired.com/culture/lifestyle/news/2004/09/64987.

Karlof, Chris, J. Doug Tygar, and David Wagner. “Conditioned-Safe Ceremonies

and a User Study of an Application to Web Authentication,” SOUPS, 2009.

Kelsey, John. Comment on “Think Like an Attacker?” Emergent Chaos blog,

September 19, 2008, http://emergentchaos.com/archives/2008/

09/think-like-an-attacker.html.

Kent, Jonathan. “Malaysia Car Thieves Steal Finger,” BBC News online, March

31 2005, http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm.

Kerckhoffs, Auguste. “La cryptographie militaire,” Journal des sciences

militaires, vol. IX, pp. 5–38, Jan. 1883, pp. 161–191, Feb. 1883.

Kim, Gene, Kurt Milne, and Dan Phelps. “Prioritizing IT Controls for Effective

Measurable Security,” IT Process Institute (2006).

Kim, Gene H., and Eugene H. Spafford. “The Design and Implementation of

Tripwire: A File System Integrity Checker,” In Proceedings of the Second

ACM Conference on Computer and Communications Security, pp. 18–29. ACM,

1994, http://dl.acm.org/citation.cfm?id=191183.

Klien, Gary, Sources of Power (Cambridge: MIT Press, 1999).

Koblitz, Neal, and Alfred J. Menezes. “Another look at ‘provable security’,” Journal

of Cryptology 20, no. 1 (2007): 3–37. And generally, http://anotherlook.ca.

Kocher, Paul, “Surviving Moore’s Law: Security, AI, and Last

Mover Advantage,” Usenix Security 2006, h t t p s : / / w w w

.usenix.org/conference/15th-usenix-security-symposium/

surviving-moores-law-security-ai-and-last-mover-advantage.

Kohnfelder, Loren, and Praerit Garg, The threats to our products, Microsoft

Interface, April 1, 1999. Available at http://blogs.msdn.com/sdl/

attachment/9887486.ashx.

Komanduri, Saranga, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek,

Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. “Of

Passwords and People: Measuring the Effect of Password-Composition

Policies,” In Proceedings of the SIGCHI Conference on Human Factors in

552 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 552

Computing Systems, pp. 2595–2604. ACM, 2011, http://www.pdl.cmu

.edu/PDL-FTP/Storage/mazurek-chi11_abs.shtml.

Krebs, Brian, “Data Broker Giants Hacked by ID Theft Service,”

September 25, 2013, http://krebsonsecurity.com/2013/09/

data-broker-giants-hacked-by-id-theft-service/.

Lang, Keith. “The Science of Aesthetics,” UXAustralia 2009, http://vimeo

.com/6527897, and comments https://twitter.com/songcarver/

status/283070446990151681.

Laser Software. http://laser.cs.umass.edu/release/.

Laurie, Ben, and Richard Clayton. “Proof-of-Work Proves Not to Work, version

0.2,” Workshop on Economics and Information Security, 2004.

LeBlanc, David, “Practical Windows Sandboxing” blog series, July 27, 2007,

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/

practical-windows-sandboxing-part-1.aspx.

Levien, Raph. “Snowflakes As Visual Hashes,” post to “Best of Security” mailing list, May

17, 1996, http://marc.info/?l=best-of-security&m=96843702220490&w=2.

Lightstone, Sam. Making It Big in Software: Get the Job. Work the Org. Become Great
(Boston: Pearson, 2010).

Lindstrom, Peter. “A Modest Proposal to Eliminate the SSN Façade,” Spire

Security Viewpoint blog, April 11, 2006, http://spiresecurity

.typepad.com/spire_security_viewpoint/2006/04/a_modest_propos.html.

Lipner, Steve. Personal communication, 2008.

Lyn, Tan Ee. “Cancer Patient Held at Airport for Missing Fingerprint,”

Reuters, May 27, 2009, http://www.reuters.com/article/2009/05/27/

us-fingerprints-idUSTRE54Q42P20090527?feedType=RSS&feedName=od

dlyEnoughNews&rpc=22&sp=true.

Magretta, Joan. What Management Is (New York: Simon and Schuster, 2002).

Malhotra, Vikas. “Protected View in Office 2010,” Microsoft Office 2010

Engineering blog, August 13, 2009, http://blogs.technet.com/b/

office2010/archive/2009/08/13/protected-view-in-office-2010.aspx.

Marlinspike, Moxie. “The Cryptographic Doom Principle,” Thought Crime

blog, December 13, 2011, http://www.thoughtcrime.org/blog

/the-cryptographic-doom-principle/.

. “The Convergence System: SSL and The Future of Authenticity,”

a talk given at BlackHat, July 2011, http://www.blackhat.com/html/

bh-us-11/bh-us-11-briefings.html#Marlinspike.

Marshall, Andrew. “Intersystem Review: Tearing at the Seams Between Dependent

Threat Models,” Microsoft internal document, January 2013.

 Bibliography 553

bref.indd 03:32:13:PM 01/20/2014 Page 553

Martina, Jean Everson, and Marcelo Carlomagno Carlos. “Why Should We

Analyze Security Ceremonies?,” First CryptoForma Workshop, May 2010,

http://www.marcelocarlomagno.com/downloads/pdf/martina2010.pdf.

Masnick, Mike. “Lavabit Details Unsealed: Refused to Hand Over Private

SSL Key Despite Court Order and Daily Fines,” TechDirt, October 2,

2013, http://www.techdirt.com/articles/20131002/14500424732/

lavabit-details-unsealed-refused-to-hand-over-private-ssl-key-

despite-court-order-daily-fines.shtml.

Margosis, Aaron, “Problems of Privilege, Find and Fix LUA Bugs,” Technet

Magazine, August 2006, http://technet.microsoft.com/en-us/

magazine/cc160944.aspx.

Matsumoto, Tsutomu, Hiroyuki Matsumoto, Koji Yamada, and Satoshi Hoshino.

“Impact of Artificial ‘Gummy’ Fingers on Fingerprint Systems,” Proceedings

of SPIE Vol. #4677, Optical Security and Counterfeit Deterrence Techniques

IV, Thursday-Friday 24-25 January 2002, http://cryptome.org/gummy.htm.

McCullagh, Declan, “AOL’s disturbing glimpse into users’ lives”, August 7,

2006 CNet, http://news.cnet.com/2100-1030_3-6103098.html.

McGraw, Gary, and John Steven. “An Interview with John Steven,” Silver Bullet

Security Podcast, Show 068, November 30, 2011, http://www.cigital

.com/silver-bullet/show-068/.

McKenzie, Partick, “Falsehoods Programmers Believe About Names,” June 17, 2010

http://www.kalzumeus.com/2010/06/17/

falsehoods-programmers-believe-about-names/

McMillan, Robert . “CSO says Cisco security is growing up,”

Infoworld, August 6, 2008, http://www.infoworld.com/d/

security-central/cso-says-cisco-security-growing-705.

. “Google Attack Part of Widespread Spying Ef fort ,”

Computerworld, January 13, 2010, http://www.computerworld.com/

s/article/9144221/Google_attack_part_of_widespread_spying_effort.

McRee, Russ, “IT Infrastructure Threat Modeling Guide” June 22, 2009

http://blogs.technet.com/b/secguide/archive/2009/06/22/it-

infrastructure-threat-modeling-guide.aspx

McWhorter, John. The Power of Babel: A Natural History of Language (New York:

HarperCollins, 2003).

Meier, J. D. Improving Web Application Security: Threats and Countermeasures

(Redmond: Microsoft Press, 2003) or http://msdn.microsoft.com/

en-us/library/ms994812.aspx.

Microsoft. “Assess Your Security,” Microsoft Security Development Lifecycle

(SDL) Optimization Model, last accessed October 16, 2013, http://

www.microsoft.com/security/sdl/learn/assess.aspx.

554 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 554

Microsoft. SIR, vol. 11, Microsoft Security Intelligence Report, 2011, Last accessed

October 16, 2013, http://www.microsoft.com/security/sir/default.aspx.

. “The Zen of Program Management,” Microsoft JobsBlog, February 14,

2007, http://microsoftjobsblog.com/zen-of-pm.

Microsoft SDL Team. “Appendix N: SDL Security Bug Bar (Sample),” 2012,

http://msdn.microsoft.com/en-us/library/windows/desktop/cc307404

.aspx.

Miller, George A. “The magical number seven, plus or minus two: some limits

on our capacity for processing information,” Psychological review 63,

no. 2 (1956): 81.

Miller, Robert B., Stephen Heiman, and Tad Tuleja. The New Strategic Selling: The

Unique Sales System Proven Successful by the World’s Best Companies (New

York: Business Plus, 2005).

MITRE. “Attack Patterns: Knowing Your Enemies in Order to Defeat Them,”

BlackHat, Washington, D.C., 2007, http://capec.mitre.org/documents

/Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_

Them-Paper.pdf.

. “CAPEC-89: Pharming,” last updated June 21, 2013, http://

capec.mitre.org/data/definitions/89.html.

. “CAPEC-1000, Mechanism of Attack,” last updated June 21, 2013,

http://capec.mitre.org/data/definitions/1000.html.

Moore, Andrew P., Robert J. Ellison, and Richard C. Linger. “Attack Modeling

for Information Security and Survivability,” No. CMU-SEI-2001-TN-001.

Carnegie-Mellon University, Pittsburgh, PA, Software Engineering Institute,

2001, http://www.sei.cmu.edu/library/abstracts/reports/01tn001.cfm.

Muffett, Alec. “Regulators, Password Hashing & Crypto Considered As a

Branding Exercise: #bcrypt #security /cc @schneierblog @glynwintle,”

dropsafe blog, June 15, 2012, http://dropsafe.crypticide.com/article/

9439/comment-page-1#comment-47595.

Murray, Mike. Forget the Parachute, Let Me Fly The Plane (Seattle:

Amazon Digi ta l Services , 2011) h t t p : / / w w w . a m a z o n

.com/Forget-Parachute-Let-Fly-Plane-ebook/dp/B004ULVMKC.

Nagar, Abhishek. “Biometric Template Security,” Ph.D diss., Michigan State

University, 2012.

Narayanan, Arvind, and Vitaly Shmatikov. “Robust de-anonymization of large

sparse datasets,” In Security and Privacy, 2008. SP 2008. IEEE Symposium

on, pp. 111-125. IEEE, 2008.

 Bibliography 555

bref.indd 03:32:13:PM 01/20/2014 Page 555

Nather, Wendy. “All about ‘cheeseburger risk’,” 415 Security Blog, January 15,

2013, http://informationsecurity.451research.com/?p=4851.

National Bureau of Standards. “Guidelines for Automatic Data Processing

Physical Security and Risk Management,” FIPS Pub 31, 1974, pp. 12–14.

Neighly, Madeline, and Maruice Emsellem. “Wanted: Accurate FBI

Background Checks for Employment,” National Employment

Law Project, July 2013, http://www.nelp.org/page/-/SCLP/2013/

Report-Wanted-Accurate-FBI-Background-Checks-Employment.pdf.

Neilsen Hayden, Patrick. “Please Enter a Valid Last Name,” Making

Light blog, December 11, 2012, http://nielsenhayden.com/

makinglight/archives/014624.html.

Netflix. “Lessons Netflix Learned from the AWS Outage,” Netflix,

April 29, 2011, http://techblog.netflix.com/2011/04/

lessons-netflix-learned-from-aws-outage.html.

Nguyen, Duc. “Your Face Is Not your password,” BlackHat DC 2009,

http://www.blackhat.com/presentations/bh-dc-09/Nguyen/

BlackHat-DC-09-Nguyen-Face-not-your-password.pdf.

Nguyen, Joe. “Cookie Deletion: Why It Should Matter to Advertisers and

Publishers,” ClickZ.com, March 2, 2011, http://www.clickz.com/

clickz/column/2281571/cookie-deletion-why-it-should-matter-

to-advertisers-and-publishers.

Nissenbaum, Helen. Privacy in context: Technology, policy, and the integrity of social
life (Palo Alto: Stanford University Press, 2009).

NIST. “Minimum Security Requirements for Federal Information and

Information Security,” FIPS Pub 200, March 2006, http://csrc.nist.gov/

publications/fips/fips200/FIPS-200-final-march.pdf.

OECD. “OECD Guidelines on the Protection of Privacy and Transborder Flows

of Personal Data, updated 2013, http://www.oecd.org/document/18/

0,3746,en_2649_34223_1815186_1_1_1_1,00.html.

Office of the Victorian Privacy Commissioner. ‘‘A Guide to Completing

Parts 3 to 5 of Your Privacy Impact Assessment Report,” Office of the

Victorian Privacy Commissioner, Australia, 2009, https://www.privacy

.vic.gov.au/privacy/web2.nsf/files/privacy-impact-

assessments-report-accompanying-guide/$file/guideline_05_09_no2.pdf.

. ‘‘Privacy Impact Assessment: A Guide for the Victorian Public

Sector,’’ Office of the Victorian Privacy Commissioner, Australia, April

2009, https://www.privacy.vic.gov.au/privacy/web2.nsf/files/

privacy-impact-assessments-guide/$file/guideline_05_09_no1.pdf.

556 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 556

Ollman, Gunter. “The Opt-In Botnet Generation: Social Networks, Hacktivism,

and Centrally-Controlled Protesting,” Damballa, Inc. white paper, retrieved

2010.

Openwall. “ASIC/FPGA Attacks on Modern Hashes,” pg. 45, last accessed

October 16, 2013, http://www.openwall.com/presentations/

Passwords12-The-Future-Of-Hashing/mgp00045.html.

. “GPU Attacks on Modern Hashes,” pg. 46, last accessed

October 16, 2013, http://www.openwall.com/presentations/

Passwords12-The-Future-Of-Hashing/mgp00046.html.

Osterman, Larry. “Threat Modeling Again, Presenting the PlaySound Threat

Model,” Larry Osterman’s Weblog, September 17, 2007, http://blogs

.msdn.com/b/larryosterman/archive/2007/09/17/threat-modeling-

again-presenting-the-playsound-threat-model.aspx.

OWASP. “2013 Top 10 List,” OWASP.org, last modified June 23, 2013, https://

www.owasp.org/index.php/Top_10_2013-Top_10.

. “Attack Template,” OWASP.org, last modified May 6, 2008, https://

www.owasp.org/index.php/Attack_template.

. “Cache Poisoning,” last revised April 23, 2009, https://www.owasp

.org/index.php/Cache_Poisoning.

. “Category: Attack,” OWASP.org, last modified on August 10, 2012,

https://www.owasp.org/index.php/Category:Attack.

. “XSS Filter Evasion Cheat Sheet”, last revised September 17, 2013

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

PCI Security Standards. “PCI DSS Quick Reference Guide: Understanding

the Payment Card Industry Data Security Standard Version 2.0,”

2010, https://www.pcisecuritystandards.org/documents/

PCI%20SSC%20Quick%20Reference%20Guide.pdf.

Percival, Colin. “SCrypt: A Key Derivation Function,” December 4, 2012, http://

www.daemonology.net/papers/scrypt-2012-slides.pdf.

Perlow, Jon. “New in Labs: Stop Sending Mail You Later Regret,” Official

Gmail Blog, October 6, 2008, http://gmailblog.blogspot.com/2008/10/

new-in-labs-stop-sending-mail-you-later.html.

Peterson, Gunnar, personal communication 2009.

Petitcolas, Fabien A. (translator) “La Cryptographie Militaire: Journal des Sciences

Militaires,” Janvier 1883, last updated May 29, 2013, http://www.petit-

colas.net/fabien/kerckhoffs/crypto_militaire_1.pdf and http://

www.petitcolas.net/fabien/kerckhoffs/.

Pfitzmann, Andreas, and Marit Hansen. “A Terminology for Talking About

Privacy by Data Minimization: Anonymity, Unlinkability, Undetectability,

Unobservability, Pseudonymity, and Identity Management.” Version

 Bibliography 557

bref.indd 03:32:13:PM 01/20/2014 Page 557

0.34, Aug 10 (2010), https://kantarainitiative.org/confluence/

download/attachments/45059055/terminology+for+talking+about+p

rivacy.pdf.

Pilgrim, Mark. “Avoid Common Pitfalls in Greasemonkey. How the History of

Greasemonkey Security Affects You Now,” O’Reilly Network, November

11, 2005, http://www.oreillynet.com/lpt/a/6257.

Power, Richard. “There Is an Elephant in the Room; and Everyone’s

Social Security Numbers Are Written on Its Hide,” CyBlog,

July 6, 2009, http://www.cyblog.cylab.cmu.edu/2009/07/

there-is-elephant-in-room-everyones.html.

Provos, Niels, and David Mazieres. “A Future-Adaptable Password Scheme,”

In USENIX Annual Technical Conference, FREENIX Track, pp. 81-91. 1999.

Ptacek, Thomas. “Applied Cryptography Engineering,” Sockpuppet.

org blog, July 22, 2013, http://sockpuppet.org/blog/2013/07/22/

applied-practical-cryptography/.

Ptacek, Thomas H., and Timothy N. Newsham. “Insertion, evasion, and denial

of service: Eluding network intrusion detection,” Secure Networks Inc.,

Calgary, Alberta Canada, 1998.

Rabkin, Ariel. “Personal Knowledge Questions for Fallback Authentication:

Security Questions in the Era of Facebook,” In Proceedings of the Fourth

Symposium on Usable Privacy and Security, pp. 13–23. ACM, SOUPS, July

23–25, 2008, Pittsburgh, PA.

Radke, Kenneth, Colin Boyd, Juan Gonzalez Nieto, and Margot Brereton.

“Ceremony Analysis: Strengths and Weaknesses,” In Future Challenges in

Security and Privacy for Academia and Industry, pp. 104–15 (Berlin: Springer,

2011).

Rains, Tim. “Software Vulnerability Management at Microsoft,” post to Microsoft

Security Blog, June 30, 2013, http://blogs.technet.com/b/security/

archive/2013/07/01/software-vulnerability-management-

at-microsoft.aspx and linked white paper of the same name, July 2010.

Raymond, Eric S. The Cathedral and the Bazaar: Musings on Linux and Open Source

by an Accidental Revolutionary (Sebastopol: O’Reilly, 2001).

Reason, James T. The Human Contribution: Unsafe Acts, Accidents and Heroic

Recoveries (Burlington: Ashgate Publishing, 2008).

Reeder, R. W. “Expandable Grids: A User Interface Visualization Technique and

a Policy Semantics to Support Fast, Accurate Security and Privacy Policy

Authoring.” Ph.D thesis, Carnegie-Mellon University Computer Science

Department. CMU tech report number CMU-CS-08-143 (July 2008).

558 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 558

Reeder, Rob, E. Kowalczyk, and Adam Shostack. “Helping engineers design

NEAT security warnings,” In Proceedings of the Symposium On Usable Privacy

and Security (SOUPS), Pittsburgh, PA. 2011.

Reeder, Robert W. “Measuring Trust User Experiences,” Microsoft internal

document, March 10, 2008.

Reeder, Robert W., Lujo Bauer, Lorrie F. Cranor, Michael K. Reiter, and Kami

Vaniea. “More Than Skin Deep: Measuring Effects of the Underlying

Model on Access-Control System Usability,” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2065–74. ACM, 2011,

http://www.ece.cmu.edu/~lbauer/papers/2011/chi2011-semantics.pdf.

Reiger, Frank, “Chaos Computer Club breaks Apple TouchID,” Blog

post 21 September, 2013, http://www.ccc.de/en/updates/

2013/ccc-breaks-apple-touchid.

Reiner, Rob. The Princess Bride. Buttercup Films, Ltd. 1987. (DVD)

Remes, Wim. “wow. . . Hotwire removes stored CC information from account

upon password reset. That’s actually awesome,” Twitter, July 20, 2013,

https://twitter.com/wimremes/status/358709749585416193.

Rescorla, Eric, and Brian Korver. “Guidelines for Writing RFC Text on Security

Considerations,” BCP 72, RFC 3552, July 2003, http://www.ietf.org/

rfc/rfc3552.txt.

Revuru, Anil. “Threat Analysis and Modeling (TAM) v3.0—Learn about

the New Features,” http://blogs.msdn.com/b/threatmodeling/

archive/2009/07/20/threat-analysis-and-modeling-tam-v3-0-learn

-about-the-new-features.aspx.

Rice, Alex. “A Continued Commitment to Security,” January 26, 2011, https://

blog.facebook.com/blog.php?blog_id=company&blogger=503683099 and

https://www.facebook.com/notes/486790652130.

. “Social Authentication,” Microsoft Blue Hat, December 14, 2012,

https://channel9.msdn.com/Events/Blue-Hat-Security-Briefings/

BlueHat-Security-Briefings-Fall-2012-Sessions/BH1202, and personal

communication.

Ristic̀, Ivan, SSL Threat Model, September 9, 2009 http://blog.ivanristic

.com/2009/09/ssl-threat-model.html

Roberts, Paul F. ‘‘Leaky Web Sites Provide Trail of Clues About

Corporate Executives,’’ IT World, August 13, 2012, http://

www.itworld.com/it-managementstrategy/289519/

leaky-web-sites-provide-trail-clues-about-corporate-executives.

Rosenquist, Matt, “Prioritizing Information Security Risks With Threat Agent

Risk Assessment,” Intel Corporation White Paper, December 2009.

 Bibliography 559

bref.indd 03:32:13:PM 01/20/2014 Page 559

Ross, Arun A., Jidnya Shah, and Anil K. Jain. “Toward Reconstructing Fingerprints

from Minutiae Points,” In SPIE Proceedings Vol. 5779, pp. 68–80. International

Society for Optics and Photonics, 2005.

Rubin, Jeffrey, and Dana Chisnell. Handbook of Usability Testing: How to Plan,

Design, and Conduct Effective Tests, 2nd Edition (Indianapolis: Wiley, 2008).

Ruderman, Jesse. “Race Conditions in Security Dialogs,” SquareFree

.com, July 1, 2004, http://www.squarefree.com/2004/07/01/

race-conditions-in-security-dialogs/.

Ruiz, Guifré, Elisa Heymann, Eduardo César, and Barton P. Miller. “Automating

Threat Modeling Through the Software Development Life-Cycle,” XXIII
Jornadas de Paralelismo (JP2012), Elche, Spain, September 2012. http://

www.jornadassarteco.org/js2012/papers/paper_92.pdf.

. “Detecting Cognitive Causes of Confidentiality Leaks,” Electronic Notes

in Theoretical Computer Science 183 (2007): 21–38.

Rukšenas, Rimvydas, Paul Curzon, and Ann Blandford. “Modelling and Analysing

Cognitive Causes of Security Breaches,” Innovations in Systems and Software

Engineering 4, no. 2 (2008): 143–60, http://www.eecs.qmul.ac.uk/~pc/

publications/2008/rrpcabISSE2008preprint.pdf.

Ryan, Peter. Modeling and Analysis of Security Protocols (Boston: Addison Wesley,

2000).

Saitta, Paul, Brenda Larcom, and Michael Eddington. “Trike v. 1 methodology

document [draft],” July 13, 2005, http://dymaxion.org/trike/Trike_

v1_Methodology_Documentdraft.pdf.

Salter, Chris, O. Sami Saydjari, Bruce Schneier, and Jim Wallner. “Toward

a Secure System Engineering Methodology,” In Proceedings of the 1998

workshop on New Security Paradigms, pp. 2–10 (ACM, 1998), http://www

.schneier.com/paper-secure-methodology.html.

Sassaman, Len, Meredith L. Patterson, Sergey Bratus, and Michael E. Locasto.

“Security Applications of Formal Language Theory,” IEEE Systems Journal

7(3): 489-500 (2013).

Sasse, Angela. Personal communication, 2012.

SC Magazine. “Amenaza Technologies Ltd. SecurITree” review, February 1, 2007,

http://www.scmagazine.com/amenaza-technologies-ltd-securitree/

review/1105/.

Schechter, Stuart. “Common Pitfalls in Writing About Security and Privacy Human

Subjects Experiments, and How to Avoid Them,” Microsoft Research,

560 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 560

January 15, 2013, MSR-TR-2013-5, http://research.microsoft.com/

apps/pubs/default.aspx?id=179980.

Schechter, Stuart, A. J. Bernheim Brush, and Serge Egleman. “It’s No Secret:

Measuring the Security and Reliability of Authentication via ‘Secret’

Questions,” Microsoft Research, May 17, 2009, http://research

.microsoft.com/apps/pubs/default.aspx?id=79594.

Schechter, Stuart, Serge Egelman, and Robert W. Reeder. “It’s Not What You Know,

But Who You Know: A Social Approach to Last-Resort Authentication,”

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pp. 1983–92 (ACM, 2009), http://research.microsoft.com/

apps/pubs/default.aspx?id=79349.

Schmid, Joachim. “AsmGofer,” last updated 2009, http://www.tydo.de/

doktorarbeit.html.

Schnieier, Bruce. “Announcing: Movie Plot Threat Contest,” Blog post,

April 1, 2006, https://www.schneier.com/blog/archives/2006/04/

announcing_movi.html.

. “Attack Trees,” Dr. Dobb’s Journal, December 1999, Schneier blog,

http://www.schneier.com/paper-attacktrees-ddj-ft.html.

SDL Team. “Necessary, Explained, Actionable, and Tested (NEAT) Cards” SDL

blog, October 9, 2012, http://blogs.msdn.com/b/sdl/archive/2012/10/09/

necessary-explained-actionable-and-tested-neat-cards.aspx.

SeaMonster. “Security Modeling Software,” SourceForge, last updated May 7,

2013, http://sourceforge.net/projects/seamonster/.

Securosis , Mike Rothman. “The CISO’s Guide to Advanced

Attackers: Sizing Up the Adversary [New Series],” Securosis

blog, April 16, 2013, h t t p s : / / s e c u r o s i s . c o m / b l o g /

the-cisos-guide-to-advanced-attackers-sizing-up-the-adversary.

Shachtman, Noah. “Insiders Doubt 2008 Pentagon Hack Was Foreign Spy Attack,”

Wired online, August 25, 2010, http://www.wired.com/dangerroom/2010/08/

insiders-doubt-2008-pentagon-hack-was-foreign-spy-attack/.

Shachtman, Noah, and David Axe. “Most U.S. Drones Openly Broadcast Secret

Video Feeds,” Wired online, October 29, 2012, http://www.wired.com/

dangerroom/2012/10/hack-proof-drone/.

Shamir, Adi, and Eran Tromer. “Acoustic Cryptanalysis: On Nosy People

and Noisy Machines,” last accessed on October 16, 2013, http://

tau.ac.il/~tromer/acoustic/.

 Bibliography 561

bref.indd 03:32:13:PM 01/20/2014 Page 561

Shane, Scott. “A Spy’s Motivation: For Love of Another Country,” The

New York Times, April 20, 2008, http://www.nytimes.com/2008/04/

20/weekinreview/20shane.html.

Shostack, Adam. “Adding Usable Security to the SDL,” 2011, Microsoft

Developer Network, http://blogs.msdn.com/b/sdl/archive/2011/05/04/

adding-usable-security-to-the-sdl.aspx and http://blogs.msdn.com/b/

sdl/archive/2012/10/09/

necessary-explained-actionable-and-tested-neat-cards.aspx.

. “Buffer Overflows and History: A Request” (including comments),

Emergent Chaos, October 20, 2008, http://emergentchaos.com/

archives/2008/10/buffer-overflows-and-history-a-request.html.

. “Elevation of Privilege,” Microsoft Security Development Lifecycle,

February 7, 2013, http://www.microsoft.com/security/sdl/adopt/eop

. a s p x a n d h t t p : / / w w w . h o m e p o r t . o r g / ~ a d a m /

Elevation-of-Privilege-BlackHat2010ShostackFinal.pptx.

. “Elevation of Privilege: Drawing Developers into Threat

Modeling,” white paper, December, 2012, http://blogs.msdn.com/b/

sdl/archive/2012/12/18/elevation-of-privilege-drawing-

developers-into-threat-modeling.aspx.

. “Engineers Are People, Too.” Keynote at Software and Usable Security

Aligned for Good Engineering (SAUSAGE) Workshop, reported in “DRAFT

Report on the NIST Workshop - I3P” August 2011, http://www.thei3p

.org/docs/publications/436.pdf (pg. 24); slides available at http://

www.homeport.org/~adam/Engineers-are-people-too-SAUSAGE.pptx.

. “Google+ Failed Because of Real Names,” Emergent Chaos,

January 25, 2012, http://emergentchaos.com/archives/2012/01/

google-failed-because-of-real-names.html.

. “Helping Engineers Design NEAT Security Warnings,” Microsoft

Security Development Lifecycle, May 4, 2011, http://blogs.msdn.com/b

sdl/archive/2011/05/04/adding-usable-security-to-the-sdl.aspx and

http://www.microsoft.com/en-us/download/details.aspx?id=34958.

. “Think Like an Attacker?” Emergent Chaos, September 17, 2008, http://

emergentchaos.com/archives/2008/09/think-like-an-attacker.html.

. “The Discipline of ‘Think Like an Attacker’,” Emergent Chaos,

September 22, 2008, http://emergentchaos.com/archives/2008/09/

the-discipline-of-think-like-an-attacker.html.

562 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 562

Shostack, Adam, and Danny Dhillon. “Threat Modeling: Lessons Learned and

Practical Ways to Improve Your Software,” RSA, March 4, 2010.

Shostack, Adam, and Andrew Stewart. The new school of information security.

(Boston: Addison Wesley, 2009).

Shostack, Adam, and Paul Syverson. “What Price Privacy?”

(2003) , h t t p : / / c i t e s e e r x . i s t . p s u . e d u / v i e w d o c /

download?rep=rep1&type=pdf&doi=10.1.1.144.8657.

Simidchieva, Borislava. “Yolo County Election Process Model and Fault Tree

Analysis,” Laser Library, June 9, 2010, https://collab.cs.umass.edu/

wiki/pages/T2i15688y/Yolo_County_Election_Process_Model_and_

Fault_Tree_Analysis.html.

Simidchieva, B. I., Engle, S. J., Clifford, M., Jones, A. C., Allen, B., Peisert, S., Bishop,

M., et al. (2010). “Modeling and Analyzing Faults to Improve Election Process

Robustness,” 2010 Electronic Voting Technology Workshop/Workshop

on Trustworthy Elections, Washington, D.C. Retrieved from http://www

.usenix.org/events/evtwote10/tech/full_papers/Simidchieva.pdf.

Social Security Administration. “Hearing on Identity Theft and Tax Fraud,”

May 8, 2012, http://oig.ssa.gov/newsroom/congressional-testimony/

hearing-identity-theft-and-tax-fraud.

. “New Numbers for Domestic Violence Victims,” SSA Publication

05-10093, ICN 468615, August 2011, http://www.ssa.gov/pubs/10093.html.

Solove, Daniel J. Understanding Privacy, (Cambridge: Harvard University Press,

2008).

Sportsman, Nathan. “Threat Modeling,” Praetorian presentation, 2011, http://

www.praetorian.com/downloads/presentations/Praetorian_Threat_

Modeling_Presentation.pdf.

Stack Overflow. “Using a regular expression to validate an email address,”

Stack Overflow, last accessed June 21, 2013, http://stackoverflow.com/

questions/201323/using-a-regular-expression-to-validate-an-email-

address.

Stajano, Frank, and Paul Wilson. “Understanding Scam Victims: Seven Principles

for Systems Security,” Communications of the ACM, March 2011, vol.

54, no. 3.

Star, Susan Leigh, and James R. Griesemer. “Institutional Ecology, Translations

and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum

of Vertebrate Zoology, 1907–39.” Social Studies of Science 19, no. 3 (1989):

387–420.

Stevens, James F., Richard A. Caralli, and Bradford J. Willke. “Information

Asset Profiling,” Technical Note CMU/SEI-2005-TN-021. Carnegie-Mellon

University, Pittsburgh, PA Software Engineering, 2005.

 Bibliography 563

bref.indd 03:32:13:PM 01/20/2014 Page 563

Sweeney, Latanya. “k-anonymity: A model for protecting privacy,” International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, no.

05 (2002): 557-570.

Swiderski, Frank. “Threat Modeling Tool Revealed,” Channel 9, July 9, 2004,

last accessed October 17, 2013, http://channel9.msdn.com/Blogs/

TheChannel9Team/Frank-Swiderski-Threat-Modeling-Tool-revealed.

Swiderski, Frank, and Window Snyder. Threat Modeling (Redmond: Microsoft

Press, 2004).

Swire, Peter. “A model for When Disclosure Helps Security: What Is Different

About Computer and Network Security?” Journal on Telecommunications

and High Technology Law 2 (2004).

Swire, Peter, and Casandra Q. Butts. “Addressing the Challenges of Identification

and Authentication in American Society,” Center for American Progress, June

2, 2008, http://www.americanprogress.org/issues/civil-liberties/

report/2008/06/02/4520/the-id-divide/.

Sydney Morning Herald. “Woman Fools Japan’s Airport Security Fingerprint

System,” The Sydney Morning Herald, January 2, 2009, http://www.smh

.com.au/travel/woman-fools-japans-airport-security-fingerprint-

system-20090102-78rv.html.

Syverson, Paul. “Sleeping Dogs Lie in a Bed of Onions But Wake When Mixed,”

Fourth Hot Topics in Privacy Enhancing Technologies (HotPETs 2011),

http://petsymposium.org/2011/program.php.

TASM Toolset. “Specification, Simulation, and Formal Verification of Real-Time

Systems,” ACM Digital Library, 2007, http://dl.acm.org/citation

.cfm?id=1770371.

Thorsheim, Per. “Why History May Be Bad for You,” Security Nirvana,

November 26, 2009, http://securitynirvana.blogspot.com/2009/11/

why-history-may-be-bad-for-you.html.

ThreatModeler. “Getting Started with ThreatModeler,” “Quick Start Guide,”

and “Data Sheet,” MyAppSecurity, 2013, http://myappsecurity.com/

threatmodeler/threatmodeler-resources/.

Torr, Peter. “Guerrilla Threat Modelling (or ‘Threat Modeling’ if

you’re American),” Microsoft Developer Network, February 22,

2005, http://blogs.msdn.com/b/ptorr/archive/2005/02/22/

guerillathreatmodelling.aspx.

Towle, Holly K. “Personal Data as Toxic Waste: A Data Protection Conundrum.”

Privacy and Data Security Law Journal, June, 2009

Trike. “Trike Tools,” Octotrike, last accessed October 17, 2013, http://

octotrike.org/tools.shtml.

Ur, B. P.G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek, T. Passaro, R.

Shay, T. Vidas, L. Bauer, N. Christin, and L.F. Cranor. “How does your

564 Bibliography

bref.indd 03:32:13:PM 01/20/2014 Page 564

password measure up? The effect of strength meters on password cre-

ation.” USENIX Security 2012.

US-CERT. “Risks of Using the Intelligent Platform Management Interface,”

US-CERT Alert TA13-207A, July 26, 2013, http://www.us-cert.

gov/ncas/alerts/TA13-207A.

. “State-Based Firewalls Fail to Effectively Manage Session Table Resource

Exhaustion,” CERT Vulnerability Note VU#539363, October 15, 2002, last

revised January 6, 2003, http://www.kb.cert.org/vuls/id/539363.

Van Dijk, Marten, Ari Juels, Alina Oprea, and Ronald L. Rivest. “FlipIt: The

Game of ‘Stealthy Takeover’,” Journal of Cryptology (2012): 1–59.

Van Duyne, Douglas K., James A. Landay, and Jason I. Hong. The Design of Sites:

Patterns for Creating Winning Web Sites (Boston: Pearson, 2007).

VeriSign. “VeriSign® NetDiscovery Lawful Intercept Compliance Solutions,”

White paper 00017651, November 28, 2007, http://www.verisign.

com/static/001927.pdf.

Verizon. “2013 Data Breach Investigations Report,” Verizon, 2013, http://www

.verizonenterprise.com/DBIR/2013/.

Visual Paradigm. “Data Flow Diagram,” VisualParadigm.com, December 4,

2006, http://www.visual-paradigm.com/highlight/highlightdfd.jsp.

Von Neumann, John. “Various techniques used in connection with random

digits,” Applied Math Series 12, no. 36-38 (1951): 1.

Ware, Willis H. “Records, Computers and the Rights of Citizens,” No. P-5077.

Rand, 1973. http://epic.org/privacy/hew1973report/.

Wells, Joseph, Corporate Fraud Handbook. 3rd Edition (Indianapolis: Wiley, 2011).

White, Dominic. “Corporate Threat Modeler,” SensePost, update 2010, http://

www.sensepost.com/labs/tools/management/ctm/.

. “Threat Modeling Workshop,” SensePost, update 2010, http://

www.sensepost.com/cms/resources/labs/tools/management/ctm/

ThreatModelingWorkshop-ITWebSummit2010.zip.

Whitehouse, Ollie. “Real World Application Threat Modeling By Example,”

44Con 2013.

Whitten, Alma, and J. Doug Tygar. “Why Johnny Can’t Encrypt: A Usability

Evaluation of PGP 5.0,” In Proceedings of the 8th USENIX Security Symposium,

1999.

Wikipedia. “Battle of Midway: Allied Code-Breaking,” Wikipedia.com,

last modified October 7, 2013, http://en.wikipedia.org/wiki/

Battle_of_Midway#Allied_code-breaking.

. “Birthday Problem,” Wikipedia.com, last modified October 1, 2013,

http://en.wikipedia.org/wiki/Birthday_problem.

 Bibliography 565

bref.indd 03:32:13:PM 01/20/2014 Page 565

. “Data Encryption Standard,” Wikipedia.com, last modified October

5, 2013, http://en.wikipedia.org/wiki/Data_Encryption_Standard.

. “Evaluation Assurance Level,” Wikipedia.com, October 11, 2013, http://

en.wikipedia.org/wiki/Evaluation_Assurance_Level.

. “GOMS (Goals, Operators, Methods, and Selection rules),” Wikipedia.

com, last updated August 7, 2013, http://en.wikipedia.org/wiki/GOMS.

. “Kerkhoffs Principle,” Wikipedia.com, last update October 12, 2013,

http://en.wikipedia.org/wiki/Kerckhoffs%27s_principle.

. “Responsibility Assignment Matrix (RAM),” Wikipedia.com,

last modified October 15, 2013, http://en.wikipedia.org/wiki/

Responsibility_assignment_matrix.

. “Syn Flood,” Wikipedia.com, last modified September 16, 2013, http://

en.wikipedia.org/wiki/SYN_flood.

Williams, Laurie, Michael Gegick, and Andrew Meneely. “Protection Poker:

Structuring Software Security Risk Assessment and Knowledge Transfer,”

In Engineering Secure Software and Systems, pp. 122–34. (Berlin: Springer,

2009).

“Windows 8 Integration,” Mozilla Wiki, last modified on July 29, 2012, https://

wiki.mozilla.org/Windows_8_Integration.

Yanisac, Alex, Harold Purdue, and Jeff Landry. Personal communication, 2012.

Young, Rupert . “How Often Do Users Reset or Delete Their

Cookies?”; comment on thread, h t t p : / / w w w . q u o r a . c o m /

How-often-do-users-reset-or-delete-their-cookies, Jan 26, 2011.

Yu, Persis S., and Shanon M. Dietrich. “Broken Records: How errors by criminal

background checking companies harm workers and businesses,” April

2012, available at http://www.nclc.org/issues/broken-records.html.

Zalewski, Michal. “Add a Security Delay to the Main Action of Popup Notifications

(Bug #583175),” Bug report and discussion, July 29, 2010, https://

bugzilla.mozilla.org/show_bug.cgi?id=583175.

. The Tangled Web: A Guide to Securing Modern Web Applications (San

Francisco: No Starch Press, 2011).

Zhang, Yinqian, Fabian Monrose, and Michael K. Reiter. “The Security of Modern

Password Expiration: An Algorithmic Framework and Empirical Analysis,”

Proceedings of the Seventeenth ACM Conference on Computer and communica-
tions security, pp. 176–86 (ACM, 2010).

Zooko. “Names: Decentralized, Secure, Human-Meaningful: Choose Two,”

Zooko.com, last updated January 30, 2006, http://web.archive.org/

web/20120125033658/http://zooko.com/distnames.html .

567

bindex.indd 04:44:19:PM 01/17/2014 Page 567

Index

A
Abi-Antoun, Marwan, 213
ability, challenge and, 410
About Face 3: The Essentials

of Interaction Design
(Cooper), 480

abstraction versus detail,
attack libraries, 102

ACCE. See authenticated
and confi dential channel
establishment

accept risks
business acceptance,

184–185
described, 13, 169
user acceptance, 185

accepting threats, 13
account names, 283–284
account recovery,

271–282
attacker-driven analysis,

280
checklist, 281–282
e-mail authentication,

273–274
knowledge-based

authentication,
274–278

multi-channel
authentication, 281

social authentication,
278–280

time factor, 272–273
types, 271–272

account takeover subtree,
451

account trustees, 256,
279–280

accounts, 253–291
authentication, 259–271
authentication checklist, 271
close relationship, 254–255,

273
creation, 254–257
factory, 255
federated, 255–256
free, 255
identity versus, 253–254
incorrect account or

password, 262
life cycles, 236, 254–259
life-cycle checklist,

258–259
login process, 260–263

account lockout, 263
failures, 262–263
server spoofi ng,

261–262
maintenance, 257–258
nominee, 256
overview, 216
several, 256
shared, 256–257
subordinate, 256
summary, 290–291
termination, 258
threats, 263–271
UIDs, 6, 27, 50, 141

ACFE. See Association
of Certifi ed Fraud
Examiners

ACLs, 14, 15, 16, 17, 18, 19
Acme’s operational network,

519–525
denial of service, 525
diagram, 46–47, 520–521
elevation of privilege, 525
e-mail system, 172–173
information disclosure,

524–525
repudiation, 524
security requirements,

519
spoofi ng, 521–522
tampering, 523–524
threats, 521–525

Acme/SQL database,
512–519

core database threats,
515–516

data fl ow diagram, 35–36
data stores, 516
DB Admin module, 517
denial of service, 75–76, 77,

176, 514–518
elevation of privilege, 76,

78, 176
entry points, 54
front ends threats, 514–515
information disclosure, 75,

77, 176, 514–518
logs threats, 518

568 Index ■ A–A

bindex.indd 04:44:19:PM 01/17/2014 Page 568

movie plotting, 33
repudiation, 75, 77, 176,

514–518
security requirements, 512
software model, 512–513
spoofi ng, 74, 77, 176,

514–518
STRIDE threats, 74–78
tampering, 75, 77, 176,

514–518
threats, 513–519
trust boundaries, 5–7

acoustic cryptanalysis, 345
acquired control, threat

genomics, 390–391
acquired target, 391
acquisition requirements/

development
requirements, 228

Acquisti, Alessandro, 287
Active Directory Federation

Services, 255–256
active social authentication,

278–280
Adams, Andrew, 256
adaptive chosen ciphertext

attacks, 343
Address Space Layout

Randomization. See
ASLR

addressing risks
described, 168
threat-specifi c

prioritization
approaches, 178–184

addressing threats, 12–24.
See also risk management

denial of service, 18–20
elevation of privilege,

20–22
information disclosure,

17–18
repudiation, 16–17
security patterns, 159–160
spoofi ng, 13–14

developer ways, 147
operational ways, 147

tampering, 15–16
trade-offs, 167–187

Admin console, iNTegrity
tool, 530

adoption of threat modeling.
See organizational
adoption

Advanced Encryption
Standard. See AES

adversarial machine
learning, 398–399

AES (Advanced Encryption
Standard), 336

aggregation, 113, 116
agile methodology

test-driven development,
190, 369

threat modeling,
368–369

YAGNI, 217, 358, 360, 368,
369, 380

AINCAA, 234. See
also authentication;
authorization;
availability;
confi dentiality; integrity;
non-repudiation; STRIDE

Akamai, 470
AKE. See authenticated key

exchange
Alexander, Christopher, 159
Alice and Bob, threat actors,

341, 342, 343, 344, 345
Amazon issues, 226, 277, 436
Analyze Model screen, SDL

Threat Modeling Tool,
210, 212

anchoring effects, 298
AND attack trees, 88, 89
Anderson, Ross, 34, 267, 276,

477, 478
anomaly attack detection,

179
anti-pattern, network

isolation, 15, 16
anti-users. See Aucsmith’s

attacker personas
API callers, external

security notes, 137–138
API threat models, 141–142
AppContainer, 21, 141
applicability, usability

problem, 275
appropriate security, 184
Approver, RACI matrix, 364
archetypes, 40, 480–481
architecting for success,

407–420
artistry, 418–419
best is enemy of good,

415–416
boundary objects, 414–415
closing perspectives,

416–417
fl ow, 407–413

asset-centered modeling,
412–413

attacker-centric
approaches, 412–413

channel, 409
cognitive load, 411–412
creator blindness, 412
elements, 408
stymied people, 411
threat modeling

alignment with fl ow,
409–411

knowledge of participants,
413–414

overview, 353
SDL Threat Modeling Tool,

414–415
summary, 419–420
threat model has changed,

417–418
threat modeling experts,

413–414
architectural patterns, 159
arms races, 175, 185–186
Armstrong, Louis, 418
artistry, 418–419
ASLR (Address Space

Layout Randomization),
22, 70, 71

asset-centered threat
modeling, 34–35, 36–39,
56, 412–413

asset/entry approach, 53–54
assets

computers, 425–426
intangible, 427
overlapping defi nitions,

37–38, 56
people, 426
processes, 426
protecting, 38, 403–404
stepping-stone, 38–39, 427

Association of Certifi ed
Fraud Examiners (ACFE),
96, 97

astroturfi ng, 257
asymmetric encryption

(public key encryption),
334, 335, 336–337

asymmetric key systems,
346–347

attack libraries, 101–109
checklists, 103
literature review, 103–104
properties, 101–104
summary, 108–109

 Index ■ B–B 569

bindex.indd 04:44:19:PM 01/17/2014 Page 569

attack surfaces. See also trust
boundaries

defi ned, 6
trust boundaries versus, 6

“An Attack Tree for
the Border Gateway
Protocol,” 94

attack trees, 87–100
AND, 88, 89
OR, 88, 89, 94–95
completeness, 90, 100
election operations

assessment threat
trees, 96, 98

example, 94–95
fraud, 96, 97
grids, 92
human-viewable

representations, 91–94
mind maps, 98, 99
perspective, 98, 100
real, 96–98
root nodes, 89
Schneier on, 87, 100
structured representations,

94
subnodes, 89–90
summary, 100
using, 87–90

attacker lists, 477–499
archetypes, 40, 480–481
Aucsmith’s attacker

personas, 481–499
background and

defi nitions, 481–483
attacker-centric threat

modeling, 34–35, 40–41,
412–413

attacker-driven analysis,
account recovery, 280

attacking storage subtree,
435

attacks. See also denial of
service

command injection, 21, 22,
509, 525

control fl ow/memory
corruption, 20, 21–22

CRSF, 10, 108, 525
against cryptosystems,

342–345
logs, 69
man-in-the-middle, 15, 66,

343–344, 347, 441
network attackers, 421–422
non-sentient attackers, 424

out-of-scope, 31–32, 75, 449,
476

against people, 423
physical attackers, 422
privacy attackers, 424
via social programs, threat

tree, 474–476
SQL injections, 22, 26, 34,

189, 192, 198, 244, 251,
495, 515, 516

supply chain attackers, 423
think like an attacker,

402–403
with tricky fi lenames, 476
XSS, 108, 191, 192,

509, 525
attention grabbing patterns,

325–327
Aucsmith, Dave, 481
Aucsmith’s attacker

personas, 481–499
background and

defi nitions, 481–483
audience, attack libraries,

102
augmented contextual

integrity decision
heuristic, 119

authenticated and
confi dential channel
establishment (ACCE),
340

authenticated key exchange
(AKE), 340

authentication. See also
authorization; spoofi ng

account recovery,
271–282

attacker-driven analysis,
280

checklist, 281–282
e-mail authentication,

273–274
knowledge-based

authentication,
274–278

multi-channel
authentication, 281

social authentication,
278–280

time factor, 272–273
types, 271–272

accounts, 259–271
AINCAA, 234
authorization compared

to, 146

chained authentication
failures, 277–278

checklist, 271
decryption, 348
defi ned, 259
described, 259–271
factors, 260
insuffi cient, 262–263
login process, 260–263

account lockout, 263
failures, 262–263
server spoofi ng, 261–262

model of process, 259
OTTs, 525–528
requirements, 235–236
social, 260, 278–280
software-centered models,

305–306
SSNs, 287–288
tactics, 146–147
technologies, 148, 165

authentication UI subtree,
437

authorization, 157–159.
See also authentication;
elevation of privilege

AINCAA, 234
authentication compared

to, 146
implementing, 158
operational assurance, 158
requirements, 239–240
tactics, 157
technologies, 158–159

AutoPlay, 393
AutoRun feature, 193, 394,

396, 397
auto-update, plugins, 246
availability, 155–157. See also

denial of service
AINCAA, 234
implementing, 156
operational assurance,

156–157
tactics, 155–156

“Avoid Common Pitfalls in
Greasemonkey,” 245

avoid risks, 168
avoid urgency, 319

B
backoff, 263
backup authentication

subtree, 436
bag of tricks, 186

570 Index ■ C–C

bindex.indd 04:44:19:PM 01/17/2014 Page 570

balance, between ability and
challenge, 410

barack.obama37@example.
com, 451

Barnard, Robert, 478
Barnard’s attacker list, 478
baseline questions,

organizational adoption
of threat modeling,
359–360

basic cryptographic
primitives, 334–339

bcrypt, 269
bear metaphor, 132–133
behaviorist models of

people, 295–297
Bespoke Software Project?,

Broad Street Taxonomy,
397

best is enemy of good,
415–416

Bic pens, Kryptonite bike
locks, 181

biometrics, 14, 257, 264–267
birds, boundary objects, 414
birthday attacks, 344–345
blinding, 163–164, 339
blindness, creator, 412
block ciphers, 335, 348
bottom-up threat modeling,

50, 129
boundaries. See trust

boundaries
boundary objects, 414–415
Bowker, G. C., 104
brainstorming

human factors, 311
limitations, 34
literature review, 33–34
movie plotting, 33
normal, 31–32
pre-mortems, 32–33
scenario-specifi c, 32

Broad Street Taxonomy,
392–398

browsers
plugin threats, 244–245
privacy model, 245
security model, 245
threats, 244–245

bug bars, 180–181, 364, 513
bugs

checking, 196
fi ling, 23–24
SDL Threat Modeling Tool,

414–415

bug-tracking systems,
204–205

business acceptance,
mitigation via, 184–185

business requirements,
220–221

business risk acceptance,
184–185

bypassing protection rules
subtree, 448

bypassing protection
subtree, 460–461

bypassing protection
systems subtree, 449

C
CAD (Ctrl+Alt+Delete), 260,

432, 437
Caesar cipher, 335
call chain subtree, 443
Cameron, Kim, 233
capacity failures subtree,

449–450
CAPEC (Common Attack

Pattern Enumeration and
Classifi cation)

described, 104–107
patterns, 160
sample entry, 107
ThreatModeler, 208

cargo culting, 402
case studies, 511–531. See

also Acme’s operational
network; Acme/SQL
database

iNTegrity tool, 529–531
phones and OTTs, 525–528

CBC (cipher block chaining),
336, 346

ceremonies
analysis heuristics, 312–315
CSC, 318–319
defi ned, 294
described, 311–312
distracting information,

312–313
fuzzy comparison, 314, 332
missing information, 312
perspective, 329–331
underspecifi ed elements,

313
ceremonies model, 297
certifi cate pinning, 347
certifi cates, 340–341
chained authentication

failures, 277–278

challenge, ability and, 410
change detection, 179
changed situation, threat

model has changed,
417–418

channel, fl ow, 409
channel integrity structure,

445–446
channel subtree, 458,

465–466
checking code, 192–195
Checklist Manifesto

(Gawande), 103
checklists

account life-cycle
checklist, 258–259

account recovery, 281–282
account recovery checklist,

281–282
API threat modeling,

141–142
attack libraries, 103
authentication checklist,

271
diagramming checklist,

27–28
names-IDs-SSNs checklist,

290
threats checklist, 28
usability testing, 328–329
validate threats checklist,

28
cheeseburger approach, 178,

179
chess analogy, 131–132
chess master attacks, 344
chosen ciphertext attacks,

343
chosen plaintext attacks, 343
cipher block chaining. See

CBC
ciphers. See symmetric

encryption
ciphertext attacks, 343
Clarke, Roger, 114, 115
clicking, delay, 326–327
client spoofi ng, 262
close relationship accounts,

254–255, 273
cloud computing

IaaS, 230, 243, 247, 251, 521
PaaS, 230, 243, 247, 248, 251
SaaS, 230, 248, 249, 251
threats

overview, 215–216
provider threats, 249–250

 Index ■ C–C 571

bindex.indd 04:44:19:PM 01/17/2014 Page 571

summary, 251
tenant threats, 246–249

Cloud Control Matrix,
229–230

Cloud Security Alliance
(CSA), 229–230

code checking, 192–195
coercion, persuasion model,

423
cognitive load, 411–412
cognitive science models of

people, 297–302
color, in diagrams, 53
command and control

phase, LM kill chains,
389–390

command injection attacks,
21, 22, 509, 525

commencement, threat
genomics, 390–391

commercial threat modeling
tools, 208–213

Common Attack Pattern
Enumeration and
Classifi cation. See
CAPEC

Common Vulnerabilities
and Exposures list. See
CVE

comparative design, 170–174
completeness, attack trees,

90, 100
completing threat modeling

activities, 372–373
complex diagrams, 52–53
compliance

cloud tenant threats,
247–248

compliance-driven
requirements, 229–231

policy and compliance
LINDDUN, 112, 120–121,

151
privacy threats, 164

compliance budget, 303–304
computers, assets, 425–426
conceal and maintain, threat

genomics, 391
conditioned-safe ceremonies

(CSC), 318–319
conditioning, habituation

and, 295–296
confi dentiality, 153–155.

See also information
disclosure

AINCAA, 234

implementing, 154
operational assurance, 154
requirements, 238
tactics, 154
technologies, 155

confi guration
software-centered models,

306–307
user interface tools,

322–323
confi guration available?,

Broad Street Taxonomy,
396–397

confi rmation bias, 303
consistent experience across

context, 233
Constantine, Larry, 44
Consulted, RACI matrix, 364
container subtree, 467–468
content unawareness,

LINDDUN, 112, 120–121,
151

contextual integrity, 117–120
Contoso.exe, 80–84
control fl ow/memory

corruption attacks, 20,
21–22

convergence system, 347
Convery, S., 94
cookbook approach. See

requirements
Cooper, Alan, 114, 118, 480,

481
Corporate Fraud Handbook

(Wells), 96, 151
Corporate Threat Modeler,

208–209
corrupt messages subtree,

465
corrupt state subtree, 443
cost estimation approaches,

181–184
co-tenant threats, clouds,

247
Cranor, Laurie, 297, 299–301,

328–329, 331
Cranor model, 299–301
creation, accounts, 254–257
creator blindness, 412
cross-site request forgery

(CRSF), 10, 108, 525
cross-site scripting attacks

(XSS), 108, 191, 192, 509,
525

CRSF. See cross-site request
forgery

cryptanalysis
acoustic, 345
differential, 343
linear, 343
rubber hose, 345, 423
World War II, 343

crypto (cryptography),
333–351

advice, 348–349
attacks, 342–345
blinding, 163–164, 339
building

making choices, 346
upgrades, 346

differential privacy,
162–163

encryption, 161–162
information disclosure,

EoP game, 506–507
introduction, 333–334
magic security dust, 349
mixes, 163, 339
mix-like systems, 163, 339
phones and OTTs case

study, 528
Predator drone system, 416
privacy threats mitigation,

161–164
private information

retrieval, 162
professionals, 348
reference material, 333
RSA, 260, 337, 341, 388
split-key systems, 162
steganography, 154, 155,

339, 461
summary, 351
threat actors, 341–345
trust, 342, 351

Cryptographic Doom
Principle, 348

cryptographic primitives
AKE, 340
asymmetric encryption,

334, 335, 336–337
basic, 334–339
certifi cates, 340–341
hashes

described, 161–162, 334,
335, 337–338

hash trees, 153
visual hash, 314

modern, 339–341
PFS, 339
PKI, 340–341
privacy primitives, 339

572 Index ■ D–D

bindex.indd 04:44:19:PM 01/17/2014 Page 572

PRNGs, 334, 335, 338–339
proven cryptosystems, 340
random oracles, 340
symmetric encryption,

334, 335–336
Cryptography Engineering (

Ferguson, et al.), 334, 336
cryptosystems. See crypto
CSA. See Cloud Security

Alliance
CSC. See conditioned-safe

ceremonies
Csíkszentmihályi, Mihaly,

408, 409
CTR mode, 336, 346
Ctrl+Alt+Delete (CAD), 260,

432, 437
curiosity, Aucsmith’s

attacker personas, 481,
484

custom mitigations, 176–177
customers, external security

notes, 136
customer/vendor trust

boundary, 139
CVE (Common

Vulnerabilities and
Exposures), 395–396

D
Dali, Salvador, 418–419
DANE, 347
dangerous approaches, to

threat modeling, 402–404
dangerous choices, hiding,

325–326
dangerous deliverables,

400–401
data brokers, privacy

attackers, 424
data fl ow diagrams (DFDs).

See also fl ow; trust
boundaries

Acme/SQL database,
35–36

checklist, 27–28
color, 53
complex, 52–53
described, 44–47
entry points, 53–54
iNTegrity tool, 530–531
intersystem review,

386–387
labels, 53
operational network

model, 46–47

threat model diagrams, 44
validating, 54–56
what to include, 52

data fl ows
denial of service against

data fl ows: STRIDE
threat tree, 463–466

channel subtree,
465–466

corrupt messages
subtree, 465

diagram, 464
preplay subtree, 465
STRIDE-per-Element

diagram, 431
information disclosure

from data fl ows:
STRIDE threat tree,
456–458

channel subtree, 458
diagram, 457
disclosure threats

subtree, 458
message subtree, 458
STRIDE-per-Element

diagram, 431
spoofi ng data fl ows:

STRIDE threat tree
diagram, 440
forge keys subtree, 441
spoof packets subtree,

441
steal keys subtree, 440
STRIDE-per-Element

diagram, 431
weak authentication

subtree, 441
tampering with data fl ows:

STRIDE threat tree,
444–446

channel integrity
structure, 445–446

diagram, 444
message subtree, 445
STRIDE-per-Element

diagram, 431
time or ordering subtree,

446
upstream insertion

subtree, 446
data store subtree, 448
data stores

Acme/SQL database, 516
denial of service against

data stores: STRIDE
threat tree,
466–468

container subtree,
467–468

diagram, 466
squatting subtree, 467
STRIDE-per-Element

diagram, 431
information disclosure

from data stores:
STRIDE threat tree,
459–462

bypassing protection
subtree, 460–461

diagram, 459
metadata and side

channels subtree,
461

storage attacks subtree,
462

STRIDE-per-Element
diagram, 431

surprise subtree, 461
repudiation, data stores:

STRIDE threat tree
diagram, 452
logs subtree, 453
STRIDE-per-Element

diagram, 431
transaction repudiation

subtree, 453
tampering with data

stores: STRIDE threat
tree, 446–450

bypassing protection
rules subtree, 448

bypassing protection
systems subtree, 449

capacity failures subtree,
449–450

data store subtree, 448
diagram, 447
STRIDE-per-Element

diagram, 431
data stores, information

disclosure, 70, 71–72
database keys, SSNs, 287
data/code confusion, 20, 21
DB Admin module, Acme/

SQL database, 517
deception?, Broad Street

Taxonomy, 395
decision heuristic,

contextual integrity,
118–119

decision models,
organizational adoption
of threat modeling,
364–365

 Index ■ D–D 573

bindex.indd 04:44:19:PM 01/17/2014 Page 573

decisional interference, 113
decryption

authentication, 348
defi ned, 334

defense in depth, 158, 220
defensive tactics and

technologies. See tactics;
technologies

delay to click, 326–327
deliberate practice, 410
deliverables

dangerous, 400–401
organizational adoption

of threat modeling,
360–362

Dell web server, trust
boundaries, 51

Deng, Mina, 120. See also
LINDDUN

denial of service. See also
STRIDE

Acme’s operational
network, 525

Acme/SQL database,
75–76, 77, 176,
514–518

addressing, 18–20
availability, 155–157

AINCAA, 234
implementing, 156
operational assurance,

156–157
tactics, 155–156

defi ned, 10, 72
denial of service against

data fl ows: STRIDE
threat tree, 463–466

channel subtree, 465–466
corrupt messages

subtree, 465
diagram, 464
preplay subtree, 465
STRIDE-per-Element

diagram, 431
denial of service against

data stores: STRIDE
threat tree, 466–468

container subtree,
467–468

diagram, 466
squatting subtree, 467
STRIDE-per-Element

diagram, 431
denial of service against

processes: STRIDE
threat tree

diagram, 462

STRIDE-per-Element
diagram, 431

table, 463
DESIST, 85, 86
EoP card game, 507–508
examples, 11, 72–73
mitigation strategies/

techniques, 18–20,
155–157

Describe Environment
screen, SDL Threat
Modeling Tool, 210

deserves a CVE?, Broad
Street Taxonomy,
395–396

design
design changes, risk

management, 170–174
design patterns, human

factors, 317–322
DESIST, 85, 86
details

detail versus abstraction,
attack libraries, 102

diagrams, 25
detectability, LINDDUN,

112, 120–121, 151
detection. See also

requirements
requirements, 225
types, 178–179

developer-implemented
mitigations, 174–175

development life cycle,
threat modeling in,
367–378

development requirements/
acquisition requirements,
228

DevOps requirements,
239–240

DFDs. See data fl ow
diagrams

diagrams. See also STRIDE
threat trees; trust
boundaries

checklist, 27–28
color, 53
complex, 52–53
details, 25
DFDs

Acme/SQL database,
35–36

checklist, 27–28
color, 53
complex, 52–53
described, 44–47

entry points, 53–54
intersystem review,

386–387
labels, 53
operational network

model, 46–47
threat model diagrams,

44
validating, 54–56
what to include, 52

labels, 53
SDL Threat Modeling Tool,

414–415
state machines, 44, 49,

308–309
swim lanes, 44, 48, 118,

307–308, 411
types, 44
UML, 47–48, 411
updating, 24–25
validating, 54–56
what to include, 52

differential cryptanalysis,
343

differential privacy,
162–163

Diffi e-Hellman, 337
digital signatures, 14, 15,

148, 150, 152, 153, 336, 338,
451, 505

directed identity, 233
disasters, non-sentient

attackers, 424
discipline, threat modeling

as, 376–378
disclosure of information.

See information
disclosure

disclosure threats subtree,
458

dispute, DESIST, 85, 86
distracting information,

ceremony analysis
heuristics, 312–313

diversity in threat modeling
teams, 367

DNSSEC, 14, 147, 148, 162,
347

document assumptions as
you go, 198

Douglas, Eric, 316
downgrade attacks, 344
Draw Diagrams screen, SDL

Threat Modeling Tool,
210–212

drawing trust boundaries, 50

574 Index ■ E–E

bindex.indd 04:44:19:PM 01/17/2014 Page 574

DREAD, 180
Duarte, Nancy, 359
dynamic corruption subtree,

469

E
early web threat model, 140
easy fi xes fi rst, 180
easy path to safety, 320
ECB mode, 336
ecological validity problem,

328
effective meetings, project

management, 365–367
Egelman, Serge, 256, 279
ego, persuasion model, 423
election operations

assessment threat trees,
96, 98

electronic social
engineering attacks,
309–310

elevation of privilege.
See also authorization;
STRIDE

Acme’s operational
network, 525

Acme/SQL database, 76,
78, 176, 514–518

addressing, 20–22
authorization, 157–159

AINCAA, 234
authentication compared

to, 146
implementing, 158
operational assurance,

158
requirements,

239–240
tactics, 157
technologies, 158–159

defi ned, 10, 73
DESIST, 85, 86
elevation of privilege

against processes:
STRIDE threat tree,
468–470

diagram, 469
dynamic corruption

subtree, 469
insuffi cient authorization

to elevate privileges
subtree, 470

STRIDE-per-Element
diagram, 431

EoP card game, 508–509

examples, 11, 73–74
mitigation strategies/

techniques, 20–22,
157–159

Elevation of Privilege card
game (EoP game), 501–
509. See also STRIDE

denial of service, 507–508
download, 7
elevation of privilege,

508–509
how to play, 8–9
introduction, 206–208
organizational adoption of

threat modeling, 355,
356, 357, 360, 369, 375

repudiation, 504–506
spoofi ng, 501–503
tampering, 503–504

eliminate threats, 12–13
Ellison, Carl, 48, 284, 297,

299, 300, 307, 308, 309, 311,
312, 313, 330

e-mail
Acme’s operational

network, 172–173
authentication, 273–274
electronic social

engineering attacks,
310

encrypt, 334
encryption, 161–162

asymmetric, 334, 335,
336–337

symmetric
block ciphers, 335, 348
CBC, 336, 346
described, 334, 335–336
stream ciphers, 335

encrypt-then-MAC, 348
entry, threat genomics,

390–391
entry points, 53–54
enumerate all assumptions,

400–401
enumerating threats. See

brainstorming
environments

kind, 296, 316, 318, 320–322,
332

wicked, 295–296, 318, 320,
321, 322, 331

EoP game. See Elevation of
Privilege card game

epic hacking, 277, 436
Epp, Dana, 85

Erector sets, 29, 35, 389
escape threats, 140, 249
“An Evaluation of Privacy

Impact Assessment
Guidance Document,”
114–115

Eve, threat actor, 341–342,
343, 344, 345

evolved web threat model,
140

exclusion, 113
exec, 194
execute/implement, threat

genomics, 391
exercises, iNTegrity tool,

531
exhaustible resources, 19
exit criteria

CAPEC, 106
STRIDE, 85

experimental threat
modeling approaches,
385–406

adversarial machine
learning, 398–399

Broad Street Taxonomy,
392–398

dangerous approaches,
402–404

dangerous deliverables,
400–401

enumerate all
assumptions,
400–401

FlipIT, 388, 405
how to experiment,

404–405
intersystem review,

386–387, 515
kill chains, 388–390
OCTAVE Allegro, 399–400
operational threat models,

387–392
overview, 353
software seams, 386–387,

405
summary, 405–406
threat genomics, 390–392
threat model reports, 401
threat modeling

businesses, 399–400
experts

Aucsmith’s attacker
personas, 482

expert witness, 477
threat modeling, 413–414

 Index ■ F–H 575

bindex.indd 04:44:19:PM 01/17/2014 Page 575

explicit warnings. See
warnings

external code, vulnerability,
224

external entities
spoofi ng external entity:

STRIDE threat tree,
432–438

attacking storage subtree,
435

authentication UI
subtree, 437

backup authentication
subtree, 436

insuffi cient
authentication
subtree, 437–438

obtaining existing
credentials subtree,
434

STRIDE-per-Element
diagram, 431

threats identifi cation, 11–12
external fraud prevention,

151–152
external security notes,

tracking, 136–138

F
Fabrikam.dll, 80–83
facial recognition systems,

181, 265, 266, 287
factors, authentication, 260
factory accounts, 255
facts versus preferences,

usability problem, 275
failures

chained authentication
failures, 277–278

login, 262–263
threat modeling

approaches, 400–404
FAIR (Factor Analysis

of Information Risk),
182–184

Fair Information Practices.
See FIPs

“Falsehoods Programmers
Believe About Names,”
283

feasible threats, 12
features, working through,

126–127
federated accounts,

255–256
feedback

feedback loops, 373
threat modeling alignment

with fl ow, 409–410
femtocells, 171, 526, 527
Ferguson, Niels, 334, 336
Feynman, Richard, 402
fi les

spoofi ng, 14, 65–66
tampering, 15, 68

fi ling bugs, 23–24
fi lter and transform

approach, 198
Finding Flow

(Csíkszentmihályi), 408
fi nding threats, 59. See also

attack libraries; attack
trees; STRIDE

fi ngerprints, 181, 265, 335
FIPs (Fair Information

Practices), 232, 234
fi tness for purpose, 184, 185
FlipIT, 388, 405
fl ow, 407–413. See also data

fl ow diagrams
asset-centered modeling,

412–413
attacker-centric

approaches, 412–413
channel, 409
cognitive load, 411–412
creator blindness, 412
elements, 408
stymied people, 411
threat modeling alignment

with fl ow, 409–411
foothold, threat genomics,

390–391
forcing functions, 319
forensic response, cloud

tenant threats, 248, 251
forge keys subtree, 441
Forget the Parachute: Let Me

Fly the Plane (Murray),
130

fork, 194
four-step framework for

threat modeling. See also
mitigations; validation

attack trees, 100
checking code, 192–195
LINDDUN, 120
managing threats, 123
PIAs, 115
SDL Threat Modeling Tool

v3, 210
TRIKE, 206

usability integration,
315–316

validation, 123, 124
frame, 217. See also specifi c

frames
framework, 217. See also

specifi c frameworks
fraud

attack trees, 96, 97
Corporate Fraud Handbook,

96, 151
external fraud prevention,

151–152
by impersonation, 289

free accounts, 255
functional milestones, 368
future threat modeling

tools, 213
fuzzing, 177–178, 186
fuzzy comparison,

ceremony analysis
heuristics, 314, 332

G
Garg, Praerit, 61
gates, 368
Gawande, Atul, 103
Generate Reports, SDL

Threat Modeling Tool,
210

The Ghost Map (Johnson, S.),
392

goal orientation, 302
gold bar pattern, 324–325
Goldberg, Ian, 115–116, 151
good, best is enemy of good,

415–416
grids, attack trees, 92
Gross, Ralph, 287
group interaction,

organizational adoption
of threat modeling,
363–367

H
habituation, conditioning

and, 295–296
hacking, epic, 277, 436
Hall, Joseph, 419
Hansen, Robert, 191
harms, privacy, 112–113
hashes (one-way functions)

described, 161–162, 334,
335, 337–338

hash trees, 153
visual hash, 314

576 Index ■ I–I

bindex.indd 04:44:19:PM 01/17/2014 Page 576

herd principle, 315
heuristic models of people,

302–304
hiding dangerous choices,

325–326
HIPAA, 230, 247
host component, iNTegrity

tool, 530
how framework,

confi guration system, 307
how long update available?,

Broad Street Taxonomy,
398

how to experiment, 404–405
“How to Present to Senior

Executives,” 359
Howard, Michael, 52, 93,

371, 372, 430, 529
human factors. See also

people
brainstorming, 311
defi ned, 294
models

electronic social
engineering attacks,
309–310

software-centered,
304–309

myths, 317
overview, 216
summary, 331–332
testing, 327–329
threat elicitation

techniques, 311–316
tools and techniques,

316–322
usability

defi ned, 294
four-stage framework,

315–316
knowledge-based

authentication
systems, 275–276

overview, 216
perspective, 329–331
summary, 331–332
testing, 327–329

human integration, Seven
Laws of Identity, 233

humans, 294
The Human Contribution

(Reason), 299, 331
human-viewable

representations, attack
trees, 91–94

Hutchins, Eric, 388

I
IaaS (Infrastructure as a

Service), 230, 243, 247,
251, 521

ICANN, 347
identifi cation, 113, 114, 116.

See also LINDDUN
identifi er creation, 113
identifi ers, SSNs, 286
identity. See also accounts

accounts versus, 253–254
directed, 233
IDs

meaningful, 284–285
names-IDs-SSNs

checklist, 290
issuance, 254
meanings, 253–254
names

account, 283–284
names-IDs-SSNs

checklist, 290
real, 282–283

overview, 216
Seven Laws of Identity,

233–234
SSNs, 286–289

authentication issues,
287–288

database keys, 287
identifi ers, 286
names-IDs-SSNs

checklist, 290
national identity

schemes, 288–289
publishing list, 288

identity documents. See IDs
identity theft

described, 289
privacy attackers, 424

ideology, persuasion model,
423

IDs (identity documents)
meaningful, 284–285
names-IDs-SSNs checklist,

290
summary, 291

IETF. See Internet
Engineering Task Force

ignore risks, 169–170
IM (instant messages)

electronic social
engineering attacks,
310

impact detection, 179

impact/probability
assessments, 181–182

impersonation, fraud
by, 289

implement/execute, threat
genomics, 391

incorrect account or
password, 262

individual roles and
responsibilities, 362–363.
See also organizational
adoption, of threat
modeling

industry-specifi c
requirements, 220

information disclosure. See
also crypto; STRIDE

Acme’s operational
network, 524–525

Acme/SQL database, 75,
77, 176, 514–518

addressing, 17–18
confi dentiality, 153–155

AINCAA, 234
implementing, 154
operational assurance,

154
requirements, 238
tactics, 154
technologies, 155

data stores, 70, 71–72
defi ned, 10, 70
DESIST, 85, 86
EoP card game, 506–507
examples, 11, 70–71
information disclosure

from data fl ows:
STRIDE threat tree,
456–458

channel subtree, 458
diagram, 457
disclosure threats

subtree, 458
message subtree, 458
STRIDE-per-Element

diagram, 431
information disclosure

from data stores:
STRIDE threat tree,
459–462

bypassing protection
subtree, 460–461

diagram, 459
metadata and side

channels subtree,
461

 Index ■ J–L 577

bindex.indd 04:44:19:PM 01/17/2014 Page 577

storage attacks subtree,
462

STRIDE-per-Element
diagram, 431

surprise subtree, 461
information disclosure

from processes:
STRIDE threat tree,
454–456

diagram, 454
protocol subtree, 456
side channels subtree,

455
STRIDE-per-Element

diagram, 431
LINDDUN, 112, 120–121,

151
mitigation strategies/

techniques, 17–18,
153–155

phones and OTTs case
study, 528

processes, 70, 71
sources

data stores, 70,
71–72

processes, 70, 71
information dissemination

threats, 113
Informed, RACI matrix, 364
Infrastructure as a Service.

See IaaS
initialization vector, 335
The Inmates are Running the

Asylum (Cooper), 480
insecurity, 113
insider threats, cloud

tenants, 246–247
installation phase, LM kill

chains, 389–390
instant messages. See IM
insuffi cient authentication,

262–263
insuffi cient authentication

subtree, 437–438
insuffi cient authorization

to elevate privileges
subtree, 470

insult rates, 266
intangible assets, 427
integrity, 148–150. See also

tampering
AINCAA, 234
implementing, 149–150
operational assurance, 150
requirements, 236–237

tactics, 149
technologies, 150

iNTegrity tool, 529–531
Intel TARA, 479–480
Intelligent Platform

Management Interface,
249

interaction
group interaction,

organizational
adoption of threat
modeling, 363–367

STRIDE-per-interaction,
80–85

threats-mitigations-
requirements,
219, 362

user interaction?, Broad
Street Taxonomy, 395

internationalization, 276,
380

Internet
protocols, privacy

considerations, 114
Snowden’s revelations, 417,

424
threat model, 424–425

Internet Engineering Task
Force (IETF), 112, 114, 121,
136, 138, 378, 424, 425

interplay, threats-
mitigations-
requirements, 219, 362

intersystem review, 386–387,
515

interviewing, for threat
modeling, 375–376

intra-page threats, 140
“An Introduction to FAIR”

document, 182
intrusion, 113, 114
Intrusion Detection Systems

(Barnard), 478
IPsec, 14, 15, 17, 148, 150, 154,

434, 504
isolated network, 15, 16
issuance, identity, 254
iterate across threat

modeling, 129–130
iterative design, 170–171

J
Jacobs, Jay, 296, 318
job ladders, modifying, 375
Johnson, M. Eric, 419

Johnson, Steven, 392
Jones, Jack, 182
Juels, Ari, 388
justifi able parties, 233

K
Kahneman, Daniel, 297–298,

303, 315, 331
Kahneman model, 297–299
Kerberos, 146, 346
Kerckchoff’s Principle,

349–350
key management, 346–347,

349
keyloggers, 201, 268, 422
kill chains, 388–390
kind learning

environments, 296, 316,
318, 320–322, 332

kitchen sink approach, 402
Klein, Gary, 32
knowledge of participants,

413–414
knowledge-based

authentication,
274–278

known ciphertext attacks,
343

Kocher, Paul, 186
Kohnfelder, Loren, 61
Kohno, Yoshi, 334, 336
Kryptonite bike locks, 181

L
labels, in diagrams, 53
last-mover advantage, 186,

187
lateral movement, threat

genomics, 390–391
Laws of Identity, 233–234
layered defense, 158
learning environments

kind, 296, 316, 318,
320–322, 332

wicked, 295–296, 318, 320,
321, 322, 331

least privilege, 158,
184, 222

LeBlanc, David, 52, 55, 93,
158

legal threats, cloud tenants,
248

Lego building blocks, 29, 35,
44, 125, 385, 389, 420

length extension attacks, 345

578 Index ■ M–M

bindex.indd 04:44:19:PM 01/17/2014 Page 578

leveraging operating
systems, 14, 17, 19, 20,
22–23

“Library of Malware Traffi c
Patterns,” 102

life cycles, accounts, 236,
254–259

Lightstone, Sam, 355
Lincoln Log sets, 35, 393
LINDDUN, 112, 120–121, 151
linear cryptanalysis, 343
linkability, 116–117, 120. See

also LINDDUN
listen, 194
lists. See also checklists

SSN, 288
tracking with tables and

lists, 133–138
literature review

attack libraries, 103–104
described, 33–34

Little-JIL, 209
LM kill chains, 389–390
lockout, account, 263
log analysis tools, 153
login process, 260–263

account lockout, 263
failures, 262–263
server spoofi ng, 261–262

logs
Acme/SQL database, 518
attacking, 69
non-repudiation

technology, 153
secured log storage, 153

logs subtree, 453
look for exhaustible

resources, 19
Lounsberry, Brian, 316

M
MAC (media access control),

503
machine learning,

adversarial, 389–399
MacIver, Douglas, 80
MACs (message

authentication codes),
338, 348, 505

magic security dust, crypto,
349

maintain and conceal, threat
genomics, 391

maintenance, account,
257–258

Making It Big in Software
(Lightstone), 355

Mallory, threat actor, 342,
343, 344, 345

malware
defense, 241
keyloggers, 201, 268, 422
“Library of Malware

Traffi c Patterns,” 102
Trojans, 65, 395, 432, 437,

478, 487
management, threat

modeling adoption,
358–359

managing and processing
threats, 125–143

man-in-the-middle attack
(MITM), 15, 66, 343–344,
347, 441

marketers, privacy
attackers, 424

Marlinspike, Moxie, 347, 348
Marshall, Andrew, 386
McKenzie, Patrick, 283
meaningful IDs, 284–285
measuring threat modeling,

370–372, 404–405
media access control. See

MAC
memorability, usability

problem, 275
memory, tampering, 68
message authentication

codes. See MACs
message digests. See hashes
message repudiation

subtree, 451
message subtree, 445, 458
metadata and side channels

subtree, 461
Metasploit, 194
Microsoft Offi ce, 204, 397
Microsoft Offi ce

Isolated Conversion
Environment. See MOICE

Microsoft Privacy Standards
for Development (MPSD),
234

Microsoft’s “10 Immutable
Laws of Security,”
241–242

mind maps, 98, 99
minimal disclosure for

constrained use, 233
minimization

human factor design
pattern, 317–318

privacy threats, 160–161
mirror of STRIDE,

LINDDUN, 112, 120–121,
151

missing information,
ceremony analysis
heuristics, 312

mitigations. See also testing
Acme/SQL database,

513–519
analysis, 130–133
arms races, 175, 185–186
chess analogy, 131–132
custom, 176–177
developer-implemented,

174–175
fuzzing compared to,

177–178, 186
operational, 175–176
order, 131
overview, 12
platform-provided, 174
prioritizing, 132
privacy threats, 160–164
requirements-threats-

mitigations interplay,
219, 362

via risk acceptance,
184–185

selecting, for risk
management, 170–178

techniques and strategies
denial of service, 18–20,

155–157
elevation of privilege,

20–22, 157–159
information disclosure,

17–18, 153–155
repudiation, 16–17,

150–153
spoofi ng, 13–14, 146–148
tampering, 15–16,

148–150
MITM. See man-in-the-

middle attack
MITRE CAPEC. See CAPEC
mix networks, 339
mixes, 163, 339
mix-like systems, 163
mnemonics. See also

STRIDE
AINCAA, 234
CAPEC, 106
DESIST, 85, 86

 Index ■ N–O 579

bindex.indd 04:44:19:PM 01/17/2014 Page 579

LINDDUN, 112, 120–121,
151

MOICE, 21, 158
NEAT, 324
RACI matrix, 364
SPRUCE, 324
usefulness, 85
YAGNI, 217, 358, 360, 368,

369, 380
mobile devices

running code on, 474
threats, 250–252

modal dialogs, 326
models. See also threat

modeling
all models are wrong,

some models are
useful, 25, 52, 253, 295,
379

human factors
electronic social

engineering attacks,
309–310

software-centered,
304–309

model/reality
conformance,
195–196

people
behaviorist, 295–297
cognitive science,

297–302
Cranor, 297, 299–301,

328–329, 331
Ellison, 48, 284, 297, 299,

300, 307, 308, 309, 311,
312, 313, 330

heuristic, 302–304
Kahneman, 297–298, 303,

315, 331
Sasse, 297, 301–302, 303,

318, 331
visual perception, 304

modern cryptographic
primitives, 339–341

modifying job ladders, 375
modulo p, 163, 336
MOICE (Microsoft Offi ce

Isolated Conversion
Environment), 21, 158

money, persuasion model,
423

movie plotting, 33
MPSD. See Microsoft

Privacy Standards for
Development

multi-channel
authentication, 281

Murray, Mike, 130
musical instrument analogy,

3–4, 11, 26
myths, human factors, 317

N
names

account, 283–284
names-IDs-SSNs checklist,

290
real, 282–283
summary, 290–291

national identity schemes,
288–289. See also SSNs

national interests,
Aucsmith’s attacker
personas, 482, 488, 496,
498

National Security Agency.
See NSA

natural disasters, 424
NEAT, 324
netstat, 193
network address, spoofi ng,

14
network attackers, 421–422
network fl ooding, 19
network isolation anti-

pattern, 15, 16
network packet, tampering,

15
network tampering, 68
new technologies, 139–140
Nigerian Anti-Fraud Group,

62, 64, 65
Nissenbaum, Helen, 117–120
NIST Publication 200,

230–231
nominee accounts, 256
non-repudiation, 150–153.

See also repudiation
AINCAA, 234
implementing, 152–153
LINDDUN, 112, 120–121,

151
operational assurance, 153
tactics, 151
technologies, 153

non-requirements, 240–242
non-security code, 177
non-sentient attackers, 424
norms, contextual integrity,

117–118

NSA (National Security
Agency), 416, 422, 424,
482

nymity slider, 115–117

O
O (own), threat modeling

tasks, 365
Obama, Barack

barack.obama37@example.
com, 451

spoofi ng, 62, 64
objections to threat

modeling, 379–382
objections to plan,

381–382
resource objections,

379–380
value objections, 380–381

obtaining existing
credentials subtree, 434

OCTAVE Allegro, 399–400
“Offender Tagging”

(Anderson), 477
offi ce suites, 204
OmniGraffl e, 7
one-time tokens. See OTTs
one-way functions. See

hashes
onion routing, 339
open, 194
Open Web Application

Security Project. See
OWASP

open-source threat
modeling tools, 206–208

operating systems (OS)
leveraging, 14, 17, 19, 20,

22–23
trusting, 14, 17, 19, 20,

22–23
operational assurance

authorization, 158
availability, 156–157
confi dentiality, 154
integrity, 150
non-repudiation, 153

operational mitigations,
175–176

operational non-
requirements, 240–241

operational threat models,
387–392

operations planning,
369–370

580 Index ■ P–P

bindex.indd 04:44:19:PM 01/17/2014 Page 580

operators, pluralism of, 233
optimistic assumptions, 304
OR attack trees, 88, 89, 94–95
order, of mitigations, 131
ordering or time subtree,

446
organizational adoption, of

threat modeling, 355–383
convincing, 356–359

individual contributors,
357–358

management, 358–359
development life cycle,

367–378
development process

issues, 368–373
agile methodology,

368–369
completing threat

modeling activities,
372–373

measuring threat
modeling, 370–372

operations planning,
369–370

postmortems and
feedback loops, 373

testing, 370
waterfalls and gates, 368

EoP game, 355, 356, 357,
360, 369, 375

objections to threat
modeling, 379–382

objections to plan,
381–382

resource objections,
379–380

value objections, 380–381
organizational issues,

373–378
customizing processes,

378
interviewing for threat

modeling, 375–376
job ladders, 375
threat modeling as

discipline, 376–378
training, 374–375
who leads?, 373–374

overview, 353
project management

issues, 359–367
baseline questions,

359–360
decision models, 364–365

deliverables, 360–362
diversity in teams, 367
effective meetings,

365–367
group interaction,

363–367
individual roles and

responsibilities,
362–363

prerequisites, 360
summary, 383

OS. See operating systems
Osterman, Larry, 80, 411
ostrich approach, 179
OTTs (one-time tokens), 171,

525–528
out-of-scope attacks, 31–32,

75, 449, 476
OWASP (Open Web

Application Security
Project)

attacker list, 478–479
Top Ten Risks list, 108

own. See O

P
P (participate), threat

modeling tasks, 365
PaaS (Platform as a Service),

230, 243, 247, 248, 251
packets subtree, 441
Palin, Sarah, 272
parsing, fuzzing, 177–178,

186
participants, knowledge of,

413–414
participate. See P
passive social

authentication, 278
passwords

account recovery, 271–282
attacker-driven analysis,

280
checklist, 281–282
e-mail authentication,

273–274
knowledge-based

authentication,
274–278

multi-channel
authentication, 281

social authentication,
278–280

time factor, 272–273
types, 271–272

incorrect account or
password, 262

insuffi cient authentication,
262–263

Kerckchoff’s Principle,
349–350

threats to “what you
know,” 267–271

A Pattern Language
(Alexander), 159

patterns. See also specifi c
patterns

attention grabbing,
325–327

CAPEC, 160
defi ned, 159, 165
design patterns, human

factors, 317–322
gold bar, 324–325
MOICE, 21, 158
security, 159–160

Payment Card Industry
Data Security Standard.
See PCI-DSS

PBKDF2, 270
PCI-DSS (Payment Card

Industry Data Security
Standard), 229, 230, 231

penetration testing, 179,
191–192, 222, 245

people
assets, 426
attacks against people, 423
defi ned, 294
human factors

brainstorming, 311
defi ned, 294
electronic social

engineering attacks,
309–310

myths, 317
overview, 216
software-centered

models,
304–309

summary, 331–332
testing, 327–329
threat elicitation

techniques,
311–316

tools and techniques,
316–322

knowledge of participants,
413–414

learning environments

 Index ■ P–P 581

bindex.indd 04:44:19:PM 01/17/2014 Page 581

kind, 296, 316, 318,
320–322, 332

wicked, 295–296, 318, 320,
321, 322, 331

models
behaviorist, 295–297
cognitive science,

297–302
Cranor, 297, 299–301,

328–329, 331
Ellison, 48, 284, 297, 299,

300, 307, 308, 309, 311,
312, 313, 330

heuristic, 302–304
Kahneman, 297–298, 303,

315, 331
Sasse, 297, 301–302, 303,

318, 331
visual perception, 304

process/technology/
people frame, 227–228

real person notifi cation,
account maintenance,
257–258

security requirements,
227–228

spoofi ng, 14, 65, 66
stymied, 411
usability

defi ned, 294
four-stage framework,

315–316
knowledge-based

authentication
systems,
275–276

overview, 216
perspective, 329–331
summary, 331–332
testing, 327–329

user experience
consistent experience

across context, 233
defi ned, 294

user interface tools and
techniques,
322–327

attention grabbing
patterns, 325–327

confi guration, 322–323
warnings, 323–325

perfect forward secrecy. See
PFS

persistence, 347
personal fame, 481, 486, 490

personal gain, 482, 492, 494
personas. See Aucsmith’s

attacker personas
Perspectives system, 348
Peterson, Gunnar, 85
PFS (perfect forward

secrecy), 339
PGP, 17, 174, 329, 347, 458
phishing attacks, 66
phones and OTTs,

525–528
physical attackers, 422
physical channel, electronic

social engineering
attacks, 310

PIAs. See privacy impact
assessments

Pilgrim, Mark, 245
PKI, 340–341
plaintext

chosen plaintext attacks,
343

defi ned, 334
Platform as a Service. See

PaaS
platform-provided

mitigations, 174
plugin threats, 244–246
pluralism of operators and

technologies, 233
policy and compliance

LINDDUN, 112, 120–121,
151

privacy threats, 164
political interests,

Aucsmith’s attacker
personas, 482, 488, 496,
498

postmortems, 373
practice

deliberate, 410
threat modeling, 3–4, 11,

26
Predator drone system, 416
preferences versus facts,

usability problem, 275
pre-mortems, 32–33
preplay subtree, 465
prerequisites,

organizational adoption
of threat modeling, 360

prevent/detect/respond
frame, 221–226

prevention requirements,
221–224

primitives. See
cryptographic primitives

prioritization
mitigations, 132
threat-specifi c

prioritization
approaches, 187–184

bug bar, 180–181
cost estimation

approaches, 181–184
easy fi xes fi rst, 180
wait and see, 178–180

privacy
attackers, 424
browser privacy model,

245
cryptographic primitives,

339
differential, 162–163
ratchet, 115
security requirements,

231–234
tools, 111–121

contextual integrity,
117–120

Internet protocols, 114
LINDDUN approach,

112, 120–121, 151
nymity slider, 115–117
PIAs, 114–116
Solove’s taxonomy of

privacy harms,
112–113

summary, 121
usability problem, 276

Privacy by Design, 232–233,
234

privacy impact assessments
(PIAs), 114–115

privacy primitives, 339
privacy threats. See also

crypto
compliance and policy, 164
minimization, 160–161
mitigation, 160–164

private information
retrieval, 162

private key systems. See
symmetric encryption

PRNGs (pseudo-random
number generators), 334,
335, 338–339

probability/impact
assessments, 181–182

problem defi ning, 404

582 Index ■ R–R

bindex.indd 04:44:19:PM 01/17/2014 Page 582

processes
as assets, 426
denial of service against

processes: STRIDE
threat tree

diagram, 462
STRIDE-per-Element

diagram, 431
table, 463

elevation of privilege
against processes:
STRIDE threat tree,
468–470

diagram, 469
dynamic corruption

subtree, 469
insuffi cient authorization

to elevate privileges
subtree, 470

STRIDE-per-Element
diagram, 431

information disclosure
from processes:
STRIDE threat tree,
454–456

diagram, 454
protocol subtree, 456
side channels subtree, 455
STRIDE-per-Element

diagram, 431
information disclosures,

70, 71
people/process/

technology frame,
227–228

repudiation against
processes: STRIDE
threat tree, 450–453

account takeover subtree,
451

diagram, 450
message repudiation

subtree, 451
STRIDE-per-Element

diagram, 431
security requirements, 228
spoofi ng processes:

STRIDE threat tree
diagram, 438
STRIDE-per-Element

diagram, 431
table, 439

tampering with processes:
STRIDE threat tree

call chain subtree, 443

corrupt state subtree, 443
diagram, 442
STRIDE-per-Element

diagram, 431
testing process integration,

190–191
processing and managing

threats, 125–143
product, 386–387
product group, 386, 387, 413
professionals, crypto and,

348
programs, spoofi ng, 14
project management

issues, 359–367. See also
organizational adoption,
of threat modeling

baseline questions, 359–360
decision models, 364–365
deliverables, 360–362
diversity in teams, 367
effective meetings, 365–367
group interaction, 363–367
individual roles and

responsibilities,
362–363

prerequisites, 360
prompts, non-requirements,

241
protecting assets, 38, 403–404
protocols

Internet, privacy
considerations, 114

protocol subtree, 456
proven cryptosystems, 340
provider threats, cloud,

249–250
pruning, attack trees, 90
ps, 193
pseudo-random number

generators. See PRNGs
public health disasters, 424
public key encryption. See

asymmetric encryption

R
race conditions, 14
RACI matrix (Responsible,

Approver, Consulted,
Informed), 364

rainbow tables, 268, 269
random number generators,

334, 335, 338–339
random oracles, 340

Raymond, Eric, 412
read, 194
real attack trees, 96–98
real names, 282–283
real person notifi cation,

account maintenance,
257–258

reality/model conformance,
195–196

Reason, James, 297, 299, 300,
315, 330–331

reconnaissance
LM kill chains, 389–390
threat genomics, 390–392

red fl ag, validation, 197, 202
redesigns, phones and OTTs

case study, 528
Reeder, Rob, 265, 272, 279,

305, 307, 316, 320, 323, 324
refl ection attacks, 344
relay attacks, 344
repeatability, usability

problem, 275
replay attacks, 344
reports, threat model, 401
representations, attack trees,

91–94
repudiation. See also STRIDE

Acme’s operational
network, 524

Acme/SQL database, 75,
77, 176, 514–518

actions, 70
addressing, 16–17
defi ned, 10, 68–69
EoP card game, 504–506
examples, 11
log attacks, 69
mitigation strategies/

techniques, 16–17,
150–153

non-repudiation,
150–153

AINCAA, 234
implementing, 152–153
LINDDUN, 112, 120–121,

151
operational assurance,

153
tactics, 151
technologies, 153

repudiation, data stores:
STRIDE threat tree

diagram, 452
logs subtree, 453

 Index ■ S–S 583

bindex.indd 04:44:19:PM 01/17/2014 Page 583

STRIDE-per-Element
diagram, 431

transaction repudiation
subtree, 453

repudiation against
processes: STRIDE
threat tree, 450–453

account takeover subtree,
451

diagram, 450
message repudiation

subtree, 451
STRIDE-per-Element

diagram, 431
requirements (security

requirements), 217–242
Acme’s operational

network, 519
Acme/SQL database, 512
acquisition, 228
authentication, 235–236
authorization, 239–240
business, 220–221
compliance-driven,

229–231
confi dentiality, 238
cookbook approach,

217–218
detection, 225
development, 228
DevOps, 239–240
integrity, 236–237
non-repudiation, 237–238
non-requirements,

240–242
overview, 215, 217–218
people, 227–228
people/process/

technology frame,
227–258

prevent/detect/respond
frame, 221–226

prevention, 221–224
privacy, 231–234
processes, 228
response, 225–226
STRIDE, 234–240
summary, 242
technologies, 228
threats-mitigations-

requirements
interplay, 219, 362

resource objections, to
threat modeling,
379–380

response requirements,
225–226

responsibilities and
roles, 362–363. See also
organizational adoption,
of threat modeling

Responsible, RACI matrix,
364

review
intersystem, 386–387, 515
literature, 33–34

RFC security considerations,
138

risk acceptance, mitigations
via, 184–185

risk decomposition, FAIR,
183

risk management, 167–187
accept risks, 169
addressing risks, 168
avoid risks, 168
ignore risks, 169–170
mitigation selection,

170–178
changing designs,

170–174
risk approach tracking

table, 167
summary, 186–187
transfer risks, 169

Ristic, Ivan, 100
Rivest, Ron, 388
roles. See also organizational

adoption, of threat
modeling

roles and responsibilities,
362–363

spoofi ng, 65
root nodes, attack trees, 89
RSA, 260, 337, 341, 388
rubber hose cryptanalysis,

345, 423
Ruiz, Guifré, 213
run code on client, 472–473
run code on mobile device,

474
run code on server, 471–472
running code on client,

427–474
running code on mobile

devices, 474
running code on server,

threat tree, 417–472
running from bear

metaphor, 132–133

S
SaaS (Software as a Service),

230, 248, 249, 251
SafeStr*, 137
safety, easy path to, 320
salt, 269, 337
sandboxes, 21, 22, 23, 141,

154, 157, 158, 165, 249, 302,
325, 443, 469, 525

sanitization, validation and,
21, 22

Sasse, Angela, 297, 301–302,
303, 318, 331

Sasse’s model, 301–302
satisfi ce, 298–299, 314
scamicry, 258, 320–321, 332
scenario-driven

requirements, 221
scenario-specifi c

brainstorming, 32
scenario-specifi c elements,

threat modeling, 138–142
Schechter, Stuart, 256, 275,

279, 280, 327
Schneier, Bruce, 33, 87, 100,

334, 336
scope

attack libraries, 102
RFC security

considerations, 138
script kiddie, 482
scrypt, 269
SDL Threat Modeling Tool,

209–213, 371, 410, 414–415
SeaMonster, 206
seams, software, 386–387,

405
secondary use, 113, 114
secret key systems. See

symmetric encryption
security. See also

requirements
appropriate, 184
best is enemy of good,

415–416
browser security model,

245
knowledge-based

authentication
systems, 274–275

Microsoft’s “10 Immutable
Laws of Security,”
241–242

patterns, 159–160
secure time stamps, 153

584 Index ■ S–S

bindex.indd 04:44:19:PM 01/17/2014 Page 584

secured log storage, 153
testers-security people

overlap, 197, 202
testing, 189–190

Security Engineering, 2nd
Edition (Anderson), 34,
267, 478

security notes, external,
136–138

Secur/Tree, 209
server spoofi ng, 261–262
service denial. See denial of

service
Seven Laws of Identity,

233–234
several accounts, 256
shared accounts, 256–257
shell coding, 191
side channel attacks, 345
side channels subtree, 455
SIDS, 6
signature attack detection,

179
SIPRNet, 16
Snow, John, 392
Snowden, Edward, 417, 424
social authentication, 260,

278–280
social networks, electronic

social engineering
attacks, 310

social programs, attack via,
474–476

social security numbers. See
SSNs

socket, 194
sockpuppets, 257, 315
Software as a Service. See

SaaS
software models. See also

data fl ow diagrams;
diagrams

Acme/SQL database,
512–513

construction, 193–194
human factors, 304–309

authentication, 305–306
confi guration, 306–307
warnings, 305

using, 194–195
software seams, 386–387,

405
software-centric threat

modeling, 34–35, 41–43
Solove, Daniel, 112–113

Solove’s taxonomy of
privacy harms, 112–113

Sorting Things Out:
Classifi cation and Its
Consequences (Bowker),
104

specialist, Aucsmith’s
attacker personas, 483

Spencer, Henry, 400
spiky buttons, 326
split-key systems, 162
sploit, 394, 395, 396
spoofi ng. See also

authentication; phishing
attacks; STRIDE

Acme’s operational
network, 521–522

Acme/SQL database, 74,
77, 176, 514–518

addressing, 13–14
developer ways, 147
operational ways, 147

clients, 262
defi ned, 9, 64
electronic social

engineering attacks,
309–310

EoP card game, 501–503
examples, 10, 62, 64–65
fi les, 14, 65–66
machines, 65, 66
mitigation strategies/

techniques, 13–14,
146–148

network address, 14
Obama, 62, 64
people, 14, 65, 66
phones and OTTs case

study, 527
processes, 65–66
programs, 14
roles, 65
servers, 261–262
spoofi ng data fl ows:

STRIDE threat tree
diagram, 440
forge keys subtree, 441
spoof packets subtree,

441
steal keys subtree, 440
STRIDE-per-Element

diagram, 431
weak authentication

subtree, 441

spoofi ng external entity:
STRIDE threat tree,
432–438

attacking storage subtree,
435

authentication UI
subtree, 437

backup authentication
subtree, 436

insuffi cient
authentication
subtree, 437–438

obtaining existing
credentials subtree,
434

STRIDE-per-Element
diagram, 431

spoofi ng processes:
STRIDE threat tree

diagram, 438
STRIDE-per-Element

diagram, 431
table, 439

SPRUCE, 324
SQL database. See Acme/

SQL database
SQL injections, 22, 26, 34,

189, 192, 198, 244, 251, 495,
515, 516

squatting subtree, 467
SSH, 145, 147, 148, 150, 154,

195, 205, 347, 434, 502,
504, 517

ssh-agent, 270
sshd, 65
SSL, 10, 14, 15, 16, 17, 18, 24,

55, 96, 98, 99, 100,
515, 517

SSL mind map, 98, 99
SSNs (social security

numbers), 286–289
authentication issues,

287–288
database keys, 287
identifi ers, 286
names-IDs-SSNs checklist,

290
national identity schemes,

288–289
publishing list, 288
summary, 291

Stajano, Frank, 257, 315, 321
Stajano-Wilson model, 315
stalkers, privacy attackers,

424

 Index ■ S–S 585

bindex.indd 04:44:19:PM 01/17/2014 Page 585

starting threat model
project, 126–130

state diagrams, 44, 49,
308–309

steal keys subtree, 440
steganography, 154, 155, 339,

461
stepping-stone assets, 38–39,

427
storage attacks subtree, 462
strategies for threat

modeling. See also
diagrams; threat
modeling

asset-centered threat
modeling, 34–35,
36–39, 56, 412–413

attacker-centric threat
modeling, 34–35,
40–41, 412–413

brainstorming
human factors, 311
limitations, 34
literature review, 33–34
movie plotting, 33
normal, 31–32
pre-mortems, 32–33
scenario-specifi c, 32

software-centric threat
modeling, 34–35,
41–43

“what’s your threat
model?”, 30–31,
421–425

strcpy, 137
stream ciphers, 335
STRIDE (spoofi ng,

tampering, repudiation,
information disclosure,
denial of service,
elevation of privilege),
61–86. See also Elevation of
Privilege card game

Acme/SQL database, 74–78
AINCAA, 234
exit criteria, 85
goal, 64
intersystem review,

386–387
introduction to use, 9–11
mirror, LINDDUN

approach, 112,
120–121, 151

requirements, 234–240
summary, 85–86

understanding, 62–64
usefulness, 62–64
variants

DESIST, 85, 86
purpose, 85–86

victims, 62–63
weaknesses, 78

STRIDE threat trees, 430–470
denial of service against

data fl ows, 463–466
channel subtree, 465–466
corrupt messages

subtree, 465
diagram, 464
preplay subtree, 465
STRIDE-per-Element

diagram, 431
denial of service against

data stores, 466–468
container subtree,

467–468
diagram, 466
squatting subtree, 467
STRIDE-per-Element

diagram, 431
denial of service against

processes
diagram, 462
STRIDE-per-Element

diagram, 431
table, 463

elevation of privilege
against processes,
468–470

diagram, 469
dynamic corruption

subtree, 469
insuffi cient authorization

to elevate privileges
subtree, 470

STRIDE-per-Element
diagram, 431

information disclosure
from data fl ows,
456–458

channel subtree, 458
diagram, 457
disclosure threats

subtree, 458
message subtree, 458
STRIDE-per-Element

diagram, 431
information disclosure

from data stores,
459–462

bypassing protection
subtree, 460–461

diagram, 459
metadata and side

channels subtree,
461

storage attacks subtree,
462

STRIDE-per-Element
diagram, 431

surprise subtree, 461
information disclosure

from processes,
454–456

diagram, 454
protocol subtree, 456
side channels subtree,

455
STRIDE-per-Element

diagram, 431
overview, 430–432
repudiation, data stores

diagram, 452
logs subtree, 453
STRIDE-per-Element

diagram, 431
transaction repudiation

subtree, 453
repudiation against

processes, 450–453
account takeover subtree,

451
diagram, 450
message repudiation

subtree, 451
STRIDE-per-Element

diagram, 431
spoofi ng data fl ows

diagram, 440
forge keys subtree, 441
spoof packets subtree,

441
steal keys subtree, 440
STRIDE-per-Element

diagram, 431
weak authentication

subtree, 441
spoofi ng external entity,

432–438
attacking storage subtree,

435
authentication UI

subtree, 437
backup authentication

subtree, 436

586 Index ■ S–S

bindex.indd 04:44:19:PM 01/17/2014 Page 586

insuffi cient
authentication
subtree, 437–438

obtaining existing
credentials subtree,
434

STRIDE-per-Element
diagram, 431

spoofi ng processes
diagram, 438
STRIDE-per-Element

diagram, 431
table, 439

tampering with data fl ows,
444–446

channel integrity
structure, 445–446

diagram, 444
message subtree, 445
STRIDE-per-Element

diagram, 431
time or ordering subtree,

446
upstream insertion

subtree, 446
tampering with data

stores, 446–450
bypassing protection

rules subtree, 448
bypassing protection

systems subtree, 449
capacity failures subtree,

449–450
data store subtree, 448
diagram, 447
STRIDE-per-Element

diagram, 431
tampering with processes

call chain subtree, 443
corrupt state subtree, 443
diagram, 442
STRIDE-per-Element

diagram, 431
STRIDE-per-element, 78–80.

See also STRIDE threat
trees

STRIDE-per-interaction,
80–85

strL*, 137
strong habit intrusions, 299
structured representations,

attack trees, 94
stymied people, 411
subnodes, attack trees,

89–90

subordinate accounts, 256
subtrees. See also STRIDE

threat trees
account takeover subtree,

451
attacking storage subtree,

435
authentication UI subtree,

437
backup authentication

subtree, 436
bypassing protection rules

subtree, 448
bypassing protection

subtree, 460–461
bypassing protection

systems subtree, 449
call chain subtree, 443
capacity failures subtree,

449–450
channel integrity

structure, 445–446
channel subtree, 458,

465–466
container subtree, 467–468
corrupt messages subtree,

465
corrupt state subtree, 443
data store subtree, 448
disclosure threats subtree,

458
dynamic corruption

subtree, 469
forge keys subtree, 441
insuffi cient authentication

subtree, 437–438
insuffi cient authorization

to elevate privileges
subtree, 470

logs subtree, 453
message repudiation

subtree, 451
message subtree, 445, 458
metadata and side

channels subtree, 461
obtaining existing

credentials subtree,
434

packets subtree, 441
preplay subtree, 465
protocol subtree, 456
side channels subtree, 455
squatting subtree, 467
steal keys subtree, 440
storage attacks subtree, 462

surprise subtree, 461
time or ordering subtree,

446
transaction repudiation

subtree, 453
upstream insertion

subtree, 446
weak authentication

subtree, 441
successful threat modeling

(architecting for success),
407–420

artistry, 418–419
best is enemy of good,

415–416
boundary objects,

414–415
closing perspectives,

416–417
fl ow, 407–413

asset-centered modeling,
412–413

attacker-centric
approaches, 412–413

channel, 409
cognitive load,

411–412
creator blindness, 412
elements, 408
stymied people, 411
threat modeling

alignment with fl ow,
409–411

knowledge of participants,
413–414

overview, 353
SDL Threat Modeling Tool,

414–415
summary, 419–420
threat model has changed,

417–418
threat modeling experts,

413–414
supply chain attackers, 423
Surely You’re Joking, Mr.

Feynman! (Feynman), 402
surprise subtree, 461
surveillance

blinding, 163–164, 339
harms, 113
Internet protocols, 114

Sweeney, Latanya, 117
swim lane diagrams, 44, 48,

118, 307–308, 411
Sybyls, 257, 315

 Index ■ T–T 587

bindex.indd 04:44:19:PM 01/17/2014 Page 587

symmetric encryption
(ciphers, private key
systems)

block ciphers, 335, 348
CBC, 336, 346
described, 334, 335–336
stream ciphers, 335

symmetric key systems,
346–347

syslog, 36
syslog over TCP/SSL, 16
syslog over UDP, 16
System 1 versus System 2,

298
Syverson, Paul, 415

T
tables. See also STRIDE

threat trees
risk approach tracking

table, 167
tracking bugs and fi xing,

199
tracking with tables and

lists, 133–138
tactics, defensive. See also

technologies
authentication, 146–147
authorization, 157
availability, 155–156
confi dentiality, 154
integrity, 149
non-repudiation, 151
traps, 159

tampering. See also integrity;
STRIDE

Acme’s operational
network, 523–524

Acme/SQL database, 75,
77, 176, 514–518

addressing, 15–16
defi ned, 10, 67
DESIST, 85, 86
EoP card game, 503–504
examples, 11, 67–68
fi les, 15, 68
integrity, 148–150

AINCAA, 234
implementing, 149–150
operational assurance,

150
requirements, 236–237
tactics, 149
technologies, 150

memory, 68
mitigation strategies/

techniques, 15–16,
148–150

network packet, 15
networks, 68
phones and OTTs case

study, 527
tampering with data fl ows:

STRIDE threat tree,
444–446

channel integrity
structure, 445–446

diagram, 444
message subtree, 445
STRIDE-per-Element

diagram, 431
time or ordering subtree,

446
upstream insertion

subtree, 446
tampering with data

stores: STRIDE threat
tree, 446–450

bypassing protection
rules subtree, 448

bypassing protection
systems subtree, 449

capacity failures subtree,
449–450

data store subtree, 448
diagram, 447
STRIDE-per-Element

diagram, 431
tampering with processes:

STRIDE threat tree
call chain subtree, 443
corrupt state subtree, 443
diagram, 442
STRIDE-per-Element

diagram, 431
The Tangled Web (Zalewski)
TARA (Threat Agent Risk

Assessment), 479–480
TCP/SSL, 16
Technical Spoofi ng column,

310
technologies

defensive
authentication, 148, 165
authorization, 158–159
confi dentiality, 155
integrity, 150
non-repudiation, 153
traps, 159

new, 139–140
people/process/

technology frame,
227–228

pluralism of operators and
technologies, 233

security requirements, 228
threat modeling, 215–216

templates, 264–265
“10 Immutable Laws of

Security,” Microsoft,
241–242

tenant threats, clouds,
246–249

tentacles, 257, 315
termination, account, 258
test-driven development,

190, 369
testing (threat-model-

driven-testing),
189–202

checking code, 192–195
document assumptions as

you go, 198
human factors, 327–329
penetration tests, 179,

191–192, 222, 245
security people-testers

overlap, 197, 202
security testing, 189–190
threat modeling, 195–196,

370
usability, 327–329

testing for human factors,
327–329

Thing Spoofed column, 310
think like an attacker,

402–403
Thinking Fast and Slow

(Kahneman),
297–298

third parties, trusted, 153
threat actors, cryptography,

341–345
Threat Agent Risk

Assessment. See TARA
threat elicitation techniques,

311–316
threat genomics, 390–392
threat model diagrams,

44. See also data fl ow
diagrams

threat model has changed,
417–418

threat model reports, 401

588 Index ■ T–T

bindex.indd 04:44:19:PM 01/17/2014 Page 588

threat modeling. See also
models; strategies for
threat modeling

all models are wrong,
some models are
useful, 25, 52, 253, 295,
379

APIs, 141–142
asset-centered, 34–35,

36–39, 56, 412–413
attacker-centric, 34–35,

40–41, 412–413
bottom-up, 50, 129
businesses, 399–400
dangerous approaches,

402–404
as discipline, 376–378
experimental approaches,

385–406
adversarial machine

learning, 398–399
Broad Street Taxonomy,

392–398
dangerous approaches,

402–404
dangerous deliverables,

400–401
enumerate all

assumptions, 400–
401

FlipIT, 388, 405
how to experiment,

404–405
intersystem review,

386–387, 515
kill chains, 388–390
OCTAVE Allegro,

399–400
operational threat

models, 387–392
overview, 353
software seams, 386–387,

405
summary, 405–406
threat genomics, 390–392
threat model reports, 401
threat modeling

businesses, 399–400
failures, 400–404
four-step framework

attack trees, 100
checking code, 192–195
LINDDUN, 120
managing threats, 123
PIAs, 115

SDL Threat Modeling
Tool v3, 210

TRIKE, 206
usability integration,

315–316
validation, 123, 124

introduction, 3–28
iterate across, 129–130
measuring, 370–372,

404–405
model/reality

conformance,
195–196

operational, 387–392
organizational adoption,

355–383
agile methodology,

368–369
baseline questions,

359–360
completing threat

modeling activities,
372–373

convincing personnel,
356–359

customizing processes,
378

decision models, 364–365
deliverables, 360–362
development life cycle,

367–378
development process

issues, 368–373
diversity in teams, 367
effective meetings,

365–367
EoP game, 355, 356, 357,

360, 369, 375
group interaction,

363–367
individual roles and

responsibilities,
362–363

interviewing for threat
modeling, 375–376

job ladders, 375
measuring threat

modeling, 370–372
objections to threat

modeling, 379–382
operations planning,

369–370
organizational issues,

373–378
overview, 353

postmortems and
feedback loops, 373

prerequisites, 360
project management

issues, 359–367
summary, 383
testing, 370
threat modeling as

discipline, 376–378
training, 374–375
waterfalls and gates, 368
who leads?, 373–374

practicing, 3–4, 11, 26
running from bear

metaphor, 132–133
scenario-specifi c elements,

138–142
software-centric, 34–35,

41–43
starting project, 126–130

time management,
127–128

working through
features, 126–127

successful, 407–420
technologies, 215–216
testing, 195–196, 370
top-down, 129, 143
tricky areas, 215–216
when to threat model,

126–128
threat modeling experts,

413–414
threat modeling tools. See

also Elevation of Privilege
card game

bug-tracking systems,
204–205

commercial, 208–213
Corporate Threat Modeler,

208–209
future, 213
introduction, 203
Little-JIL, 209
offi ce suites, 204
open-source, 206–208
SDL Threat Modeling

Tool, 209–213, 371, 410,
414–415

SeaMonster, 206
Secur/Tree, 209
summary, 213–214
ThreatModeler, 208
TRIKE, 206
white boards, 204

 Index ■ U–U 589

bindex.indd 04:44:19:PM 01/17/2014 Page 589

threat sequences, 390–391
threat trees, 470–476. See also

STRIDE threat trees
attack via social programs,

474–476
attack with tricky

fi lenames, 476
running code on client,

472–474
running code on server,

471–472
threat-model-driven testing.

See testing
ThreatModeler, 208
threats. See also accept risks;

mitigations; specifi c
threats

accepting, 13
accounts

“what you are,” 264–267
“what you have,” 263–264
“what you know,”

267–271
Acme’s operational

network, 521–525
Acme/SQL database,

513–519
checklist, 28
eliminating, 12–13
feasible, 12
processing and managing,

125–143
requirements-threats-

mitigations interplay,
219, 362

tracking, 133–135
transfer, 13

threat-specifi c prioritization
approaches, 187–184

bug bar, 180–181
cost estimation

approaches, 181–184
easy fi xes fi rst, 180
wait and see, 178–180

time factor, account
recovery, 272–273

time management, threat
modeling, 127–128

time or ordering subtree,
446

time stamps, secure, 153
timing attacks, 345
tmtest, 190, 196
TOFU (trust on fi rst use),

347, 502

tools
assets, 425–427
threat modeling, 203–214
“what’s your threat

model?” answers,
421–425

top-down threat modeling,
129, 143

Tor, 163, 339
Torr, Peter, 53
tracking

assumptions, 135–136
external security notes,

136–138
threats, 133–135

trade-offs when addressing
threats, 167–187. See also
risk management

traffi c analysis attacks, 345
traitors, Alice or Bob, 342
transaction repudiation

subtree, 453
transfer risks, 169
transfer threats, 13
transformation/validation,

197–198. See also
validation

traps, defensive tactics/
technologies, 159

Trent, trusted third party,
342

tricks, bag of, 186
tricky areas, threat

modeling, 215–216
tricky fi lenames, attack

with, 476
TRIKE, 206
Trojans, 65, 395, 432, 437, 478,

487
trust

cryptosystems, 342, 351
TOFU, 347, 502
web of trust, 347

trust boundaries. See also
attack surfaces

Acme/SQL database, 5–7
attack surfaces versus, 6
customer/vendor, 139
defi ned, 5–6, 50
drawing, 50
new technologies, 139–140
using, 51
whiteboard diagrams, 6–7

trust on fi rst use. See TOFU
trusted bootloaders, 16

trusted third parties, 153
trusted third party, 342
trustees, account, 256,

279–280
trusting operating systems,

14, 17, 19, 20, 22–23
type-safe language, 20, 22,

178

U
UIDs, 6, 27, 50, 141
UML (Unifi ed Modeling

Language), 47–48, 411
undergraduate, Aucsmith’s

attacker personas, 482
underspecifi ed elements,

ceremony analysis
heuristics, 313

Understanding People
(Solove), 112

“Understanding Scam
Victims---”, 257, 321

Unifi ed Modeling
Language. See UML

Unix, 400
updating diagrams, 24–25
upstream insertion subtree,

446
urgency, avoiding, 319
US National Vulnerability

Database, 194
usability. See also human

factors
defi ned, 294
four-stage framework,

315–316
knowledge-based

authentication
systems, 275–276

overview, 216
perspective, 329–331
summary, 331–332
testing, 327–329

used sploit?, Broad Street
Taxonomy, 395–396

user acceptance, mitigation
via, 185

user control and consent,
233

user experience. See also
ceremonies

consistent experience
across context, 233

defi ned, 294

590 Index ■ V–Z

bindex.indd 04:44:19:PM 01/17/2014 Page 590

user intent to run
(software)?, Broad Street
Taxonomy, 395

user interaction?, Broad
Street Taxonomy, 395

user interface tools and
techniques, 322–327

attention grabbing
patterns, 325–327

confi guration,
322–323

warnings, 323–325
users

defi ned, 294
risk acceptance, 185
user control and consent,

Seven Laws of
Identity, 233

V
V (validate), threat modeling

tasks, 365
validation. See also testing

checklist, 28
described, 189–202
diagrams, 54–56
introduction, 24–26
red fl ag, 197, 202
sanitization, 21, 22
summary, 202
transformation/validation,

197–198
validation for purpose, 141,

469
value objections, to threat

modeling, 380–381
vendor/customer trust

boundary, 139
VeriSign, 347, 441
Verizon’s attacker lists, 478
victims, STRIDE, 62–63
Victor, trusted third party,

342
virtual whiteboarding, 204
Visio, 7, 47, 204, 210, 212
visual hash, 314
visual perception, models,

304
von Neumann, John, 338

voting, election operations
assessment threat trees,
96, 98

vulnerability
external code, 224
management, 222–223
reports, 223–224
vulnerability known?,

Broad Street
Taxonomy, 397–398

W
wait and see, 178–180
warnings

non-requirements, 241
user interface tools,

323–325
waterfalls, 368
weak authentication

subtree, 441
weaponization phase, LM

kill chains, 389–390
web browsers. See

browsers
web of trust, 347
web threats, 243–246

overview, 215–216
summary, 251

websites
electronic social

engineering attacks,
310

threats, 244
Wells, Joseph, 96, 151
what are you building?, 5–7
“what are your assets?”. See

assets
what can go wrong?, 4
what framework,

confi guration system, 306
“what you are,” threats,

264–267
“what you have,” threats,

263–264
“what you know,” threats,

267–271
What You See Is All There

Is, 298
“what’s your threat model?”,

30–31, 421–425

“What’s Yours Is Mine,
and What’s Mine Is My
Own,” 256

when framework,
confi guration system, 306

where framework,
confi guration system, 307

whiteboard diagrams
defi ned, 5
effectiveness, 43
trust boundaries, 6–7

whiteboards, 204
Whitehouse, Ollie, 192
who framework,

confi guration system, 306
why framework,

confi guration system, 306
wicked learning

environments, 296–297,
318, 320, 321, 322, 331

Williams, Shirley, 256
Wilson, Paul, 257, 315, 321
winsock.dll, 64, 439
withdraw, threat genomics,

391
witness, expert, 477
World War II cryptanalysis,

343
Writing Secure Code, Second

Edition (Howard &
LeBlanc), 52, 55, 93

X
XSS (cross-site scripting

attacks), 108, 191, 192, 509,
525

XSS Cheat Sheet Calculator,
191

Y
YAGNI (you ain’t gonna

need it), 217, 358, 360, 368,
369, 380

Z
 Zalewski, Michal, 245
Zero-Knowledge Systems,

30–31
Zimmerman, Phil, 174
Zooko’s Triangle, 284–285

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Part I Getting Started�����������������������������
	Chapter 1 Dive In and Threat Model!��
	Learning to Threat Model�������������������������������
	What Are You Building?�����������������������������
	What Can Go Wrong?�������������������������
	Addressing Each Threat�����������������������������
	Checking Your Work�������������������������

	Threat Modeling on Your Own����������������������������������
	Checklists for Diving In and Threat Modeling���
	Summary��������������

	Chapter 2 Strategies for Threat Modeling���
	“What’s Your Threat Model?”����������������������������������
	Brainstorming Your Threats���������������������������������
	Brainstorming Variants�����������������������������
	Literature Review������������������������
	Perspective on Brainstorming�����������������������������������

	Structured Approaches to Threat Modeling���
	Focusing on Assets�������������������������
	Focusing on Attackers����������������������������
	Focusing on Software���������������������������

	Models of Software�������������������������
	Types of Diagrams������������������������
	Trust Boundaries�����������������������
	What to Include in a Diagram�����������������������������������
	Complex Diagrams�����������������������
	Labels in Diagrams�������������������������
	Color in Diagrams������������������������
	Entry Points�������������������
	Validating Diagrams��������������������������

	Summary��������������

	Part II Finding Threats������������������������������
	Chapter 3 STRIDE�����������������������
	Understanding STRIDE and Why It’s Useful���
	Spoofing Threats
	Spoofing a Process or File on the Same Machine
	Spoofing a Machine
	Spoofing a Person

	Tampering Threats������������������������
	Tampering with a File����������������������������
	Tampering with Memory����������������������������
	Tampering with a Network�������������������������������

	Repudiation Threats��������������������������
	Attacking the Logs�������������������������
	Repudiating an Action����������������������������

	Information Disclosure Threats�������������������������������������
	Information Disclosure from a Process��
	Information Disclosure from a Data Store���

	Information Disclosure from a Data Flow��

	Denial-of-Service Threats��������������������������������
	Elevation of Privilege Threats�������������������������������������
	Elevate Privileges by Corrupting a Process���
	Elevate Privileges through Authorization Failures��

	Extended Example: STRIDE Threats against Acme-DB���
	STRIDE Variants����������������������
	STRIDE-per-Element�������������������������
	STRIDE-per-Interaction�����������������������������
	DESIST�������������

	Exit Criteria��������������������
	Summary��������������

	Chapter 4 Attack Trees�����������������������������
	Working with Attack Trees��������������������������������
	Using Attack Trees to Find Threats���
	Creating New Attack Trees��������������������������������

	Representing a Tree��������������������������
	Human-Viewable Representations�������������������������������������
	Structured Representations���������������������������������

	Example Attack Tree��������������������������
	Real Attack Trees������������������������
	Fraud Attack Tree������������������������
	Election Operations Assessment Threat Trees��
	Mind Maps����������������

	Perspective on Attack Trees����������������������������������
	Summary��������������

	Chapter 5 Attack Libraries���������������������������������
	Properties of Attack Libraries�������������������������������������
	Libraries and Checklists�������������������������������
	Libraries and Literature Reviews���������������������������������������

	CAPEC������������
	Exit Criteria��������������������
	Perspective on CAPEC���������������������������

	OWASP Top Ten��������������������
	Summary��������������

	Chapter 6 Privacy Tools������������������������������
	Solove’s Taxonomy of Privacy�����������������������������������
	Privacy Considerations for Internet Protocols��
	Privacy Impact Assessments (PIA)���������������������������������������
	The Nymity Slider and the Privacy Ratchet��
	Contextual Integrity���������������������������
	Contextual Integrity Decision Heuristic��
	Augmented Contextual Integrity Heuristic���
	Perspective on Contextual Integrity��

	LINDDUN��������������
	Summary��������������

	Part III Managing and Addressing Threats���
	Chapter 7 Processing and Managing Threats��
	Starting the Threat Modeling Project���
	When to Threat Model���������������������������
	What to Start and (Plan to) End With���
	Where to Start���������������������

	Digging Deeper into Mitigations��������������������������������������
	The Order of Mitigation������������������������������
	Playing Chess��������������������
	Prioritizing�������������������
	Running from the Bear����������������������������

	Tracking with Tables and Lists�������������������������������������
	Tracking Threats�����������������������
	Making Assumptions�������������������������
	External Security Notes������������������������������

	Scenario-Specific Elements of Threat Modeling��
	Customer/Vendor Trust Boundary�������������������������������������
	New Technologies�����������������������
	Threat Modeling an API�����������������������������

	Summary��������������

	Chapter 8 Defensive Tactics and Technologies���
	Tactics and Technologies for Mitigating Threats��
	Authentication: Mitigating Spoofing��
	Integrity: Mitigating Tampering��������������������������������������
	Non-Repudiation: Mitigating Repudiation��
	Confidentiality: Mitigating Information Disclosure���
	Availability: Mitigating Denial of Service���
	Authorization: Mitigating Elevation of Privilege���
	Tactic and Technology Traps����������������������������������

	Addressing Threats with Patterns���������������������������������������
	Standard Deployments���������������������������
	Addressing CAPEC Threats�������������������������������

	Mitigating Privacy Threats���������������������������������
	Minimization�������������������
	Cryptography�������������������
	Compliance and Policy����������������������������

	Summary��������������

	Chapter 9 Trade-Offs When Addressing Threats���
	Classic Strategies for Risk Management���
	Avoiding Risks���������������������
	Addressing Risks�����������������������
	Accepting Risks����������������������
	Transferring Risks�������������������������
	Ignoring Risks���������������������

	Selecting Mitigations for Risk Management��
	Changing the Design��������������������������
	Applying Standard Mitigation Technologies��
	Designing a Custom Mitigation������������������������������������
	Fuzzing Is Not a Mitigation����������������������������������

	Threat-Specific Prioritization Approaches��
	Simple Approaches������������������������
	Threat-Ranking with a Bug Bar������������������������������������
	Cost Estimation Approaches���������������������������������

	Mitigation via Risk Acceptance�������������������������������������
	Mitigation via Business Acceptance���
	Mitigation via User Acceptance�������������������������������������

	Arms Races in Mitigation Strategies��
	Summary��������������

	Chapter 10 Validating That Threats Are Addressed���
	Testing Threat Mitigations���������������������������������
	Test Process Integration�������������������������������
	How to Test a Mitigation�������������������������������
	Penetration Testing��������������������������

	Checking Code You Acquire��������������������������������
	Constructing a Software Model������������������������������������
	Using the Software Model�������������������������������

	QA’ing Threat Modeling�����������������������������
	Model/Reality Conformance��������������������������������
	Task and Process Completion����������������������������������
	Bug Checking�������������������

	Process Aspects of Addressing Threats��
	Threat Modeling Empowers Testing; Testing Empowers Threat Modeling���
	Validation/Transformation��������������������������������
	Document Assumptions as You Go�������������������������������������

	Tables and Lists�����������������������
	Summary��������������

	Chapter 11 Threat Modeling Tools���������������������������������������
	Generally Useful Tools�����������������������������
	Whiteboards������������������
	Office Suites��������������������
	Bug-Tracking Systems���������������������������

	Open-Source Tools������������������������
	TRIKE������������
	SeaMonster�����������������
	Elevation of Privilege�����������������������������

	Commercial Tools�����������������������
	ThreatModeler��������������������
	Corporate Threat Modeller��������������������������������
	SecurITree�����������������
	Little-JIL�����������������
	Microsoft’s SDL Threat Modeling Tool���

	Tools That Don’t Exist Yet���������������������������������
	Summary��������������

	Part IV Threat Modeling in Technologies and Tricky Areas���
	Chapter 12 Requirements Cookbook���������������������������������������
	Why a “Cookbook”?������������������������
	The Interplay of Requirements, Threats, and Mitigations��
	Business Requirements����������������������������
	Outshining the Competition���������������������������������
	Industry Requirements����������������������������
	Scenario-Driven Requirements�����������������������������������

	Prevent/Detect/Respond as a Frame for Requirements���
	Prevention�����������������
	Detection����������������
	Response���������������

	People/Process/Technology as a Frame for Requirements��
	People�������������
	Process��������������
	Technology�����������������

	Development Requirements vs. Acquisition Requirements��
	Compliance-Driven Requirements�������������������������������������
	Cloud Security Alliance������������������������������
	NIST Publication 200���������������������������
	PCI-DSS��������������

	Privacy Requirements���������������������������
	Fair Information Practices���������������������������������
	Privacy by Design������������������������
	The Seven Laws of Identity���������������������������������
	Microsoft Privacy Standards for Development��

	The STRIDE Requirements������������������������������
	Authentication���������������������
	Integrity����������������
	Non-Repudiation����������������������
	Confidentiality����������������������
	Availability�������������������
	Authorization��������������������

	Non-Requirements�����������������������
	Operational Non-Requirements�����������������������������������
	Warnings and Prompts���������������������������
	Microsoft’s “10 Immutable Laws”��������������������������������������

	Summary��������������

	Chapter 13 Web and Cloud Threats���������������������������������������
	Web Threats������������������
	Website Threats����������������������
	Web Browser and Plugin Threats�������������������������������������

	Cloud Tenant Threats���������������������������
	Insider Threats����������������������
	Co-Tenant Threats������������������������
	Threats to Compliance����������������������������
	Legal Threats��������������������
	Threats to Forensic Response�����������������������������������
	Miscellaneous Threats����������������������������

	Cloud Provider Threats�����������������������������
	Threats Directly from Tenants������������������������������������
	Threats Caused by Tenant Behavior��

	Mobile Threats���������������������
	Summary��������������

	Chapter 14 Accounts and Identity���������������������������������������
	Account Life Cycles��������������������������
	Account Creation�����������������������
	Account Maintenance��������������������������
	Account Termination��������������������������
	Account Life-Cycle Checklist�����������������������������������

	Authentication���������������������
	Login������������
	Login Failures���������������������
	Threats to “What You Have”���������������������������������
	Threats to “What You Are”��������������������������������
	Threats to “What You Know”���������������������������������
	Authentication Checklist�������������������������������

	Account Recovery�����������������������
	Time and Account Recovery��������������������������������
	E-mail for Account Recovery����������������������������������
	Knowledge-Based Authentication�������������������������������������
	Social Authentication����������������������������
	Attacker-Driven Analysis of Account Recovery���
	Multi-Channel Authentication�����������������������������������
	Account Recovery Checklist���������������������������������

	Names, IDs, and SSNs���������������������������
	Names������������
	Identity Documents�������������������������
	Social Security Numbers and Other National Identity Numbers��
	Identity Theft���������������������
	Names, IDs, and SSNs Checklist�������������������������������������

	Summary��������������

	Chapter 15 Human Factors and Usability���
	Models of People�����������������������
	Applying Behaviorist Models of People��
	Cognitive Science Models of People���
	Heuristic Models of People���������������������������������

	Models of Software Scenarios�����������������������������������
	Modeling the Software����������������������������
	Diagramming for Modeling the Software��
	Modeling Electronic Social Engineering Attacks���

	Threat Elicitation Techniques������������������������������������
	Brainstorming��������������������
	The Ceremony Approach to Threat Modeling���
	Ceremony Analysis Heuristics�����������������������������������
	Integrating Usability into the Four-Stage Framework��

	Tools and Techniques for Addressing Human Factors��
	Myths That Inhibit Human Factors Work��
	Design Patterns for Good Decisions���
	Design Patterns for a Kind Learning Environment��

	User Interface Tools and Techniques��
	Configuration��������������������
	Explicit Warnings������������������������
	Patterns That Grab Attention�����������������������������������

	Testing for Human Factors��������������������������������
	Benign and Malicious Scenarios�������������������������������������
	Ecological Validity��������������������������

	Perspective on Usability and Ceremonies��
	Summary��������������

	Chapter 16 Threats to Cryptosystems��
	Cryptographic Primitives�������������������������������
	Basic Primitives�����������������������
	Privacy Primitives�������������������������
	Modern Cryptographic Primitives��������������������������������������

	Classic Threat Actors����������������������������
	Attacks against Cryptosystems������������������������������������
	Building with Crypto���������������������������
	Making Choices���������������������
	Preparing for Upgrades�����������������������������
	Key Management���������������������
	Authenticating before Decrypting���������������������������������������

	Things to Remember about Crypto��������������������������������������
	Use a Cryptosystem Designed by Professionals���
	Use Cryptographic Code Built and Tested by Professionals���
	Cryptography Is Not Magic Security Dust��
	Assume It Will All Become Public���������������������������������������
	You Still Need to Manage Keys������������������������������������

	Secret Systems: Kerckhoffs and His Principles��
	Summary��������������

	Part V Taking It to the Next Level���
	Chapter 17 Bringing Threat Modeling to Your Organization���
	How To Introduce Threat Modeling���������������������������������������
	Convincing Individual Contributors���
	Convincing Management����������������������������

	Who Does What?���������������������
	Threat Modeling and Project Management���
	Prerequisites��������������������
	Deliverables�������������������
	Individual Roles and Responsibilities��
	Group Interaction������������������������
	Diversity in Threat Modeling Teams���

	Threat Modeling within a Development Life Cycle��
	Development Process Issues���������������������������������
	Organizational Issues����������������������������
	Customizing a Process for Your Organization��

	Overcoming Objections to Threat Modeling���
	Resource Objections��������������������������
	Value Objections�����������������������
	Objections to the Plan�����������������������������

	Summary��������������

	Chapter 18 Experimental Approaches���
	Looking in the Seams���������������������������
	Operational Threat Models��������������������������������
	FlipIT�������������
	Kill Chains������������������

	The “Broad Street” Taxonomy����������������������������������
	Adversarial Machine Learning�����������������������������������
	Threat Modeling a Business���������������������������������
	Threats to Threat Modeling Approaches��
	Dangerous Deliverables�����������������������������
	Enumerate All Assumptions��������������������������������
	Dangerous Approaches���������������������������

	How to Experiment������������������������
	Define a Problem�����������������������
	Find Aspects to Measure and Measure Them���
	Study Your Results�������������������������

	Summary��������������

	Chapter 19 Architecting for Success��
	Understanding Flow�������������������������
	Flow and Threat Modeling�������������������������������
	Stymieing People�����������������������
	Beware of Cognitive Load�������������������������������
	Avoid Creator Blindness������������������������������
	Assets and Attackers���������������������������

	Knowing the Participants�������������������������������
	Boundary Objects�����������������������
	The Best Is the Enemy of the Good��
	Closing Perspectives���������������������������
	“The Threat Model Has Changed”�������������������������������������
	On Artistry������������������

	Summary��������������
	Now Threat Model�����������������������

	Appendix A Helpful Tools�������������������������������
	Common Answers to “What’s Your Threat Model?”��
	Network Attackers������������������������
	Physical Attackers�������������������������
	Attacks against People�����������������������������
	Supply Chain Attackers�����������������������������
	Privacy Attackers������������������������
	Non-Sentient “Attackers”�������������������������������
	The Internet Threat Model��������������������������������
	Assets�������������
	Computers as Assets��������������������������
	People as Assets�����������������������
	Processes as Assets��������������������������
	Intangible Assets������������������������
	Stepping-Stone Assets����������������������������

	Appendix B Threat Trees������������������������������
	STRIDE Threat Trees��������������������������
	Spoofing an External Entity (Client/ Person/Account)���
	Spoofing a Process�������������������������
	Spoofing of a Data Flow������������������������������
	Tampering with a Process�������������������������������
	Tampering with a Data Flow���������������������������������
	Tampering with a Data Store����������������������������������
	Repudiation against a Process (or by an External Entity)���
	Repudiation, Data Store������������������������������
	Information Disclosure from a Process��
	Information Disclosure from a Data Flow��
	Information Disclosure from a Data Store���
	Denial of Service against a Process��
	Denial of Service against a Data Flow��
	Denial of Service against a Data Store���
	Elevation of Privilege against a Process���

	Other Threat Trees�������������������������
	Running Code�������������������
	Attack via a “Social” Program������������������������������������
	Attack with Tricky Filenames�����������������������������������

	Appendix C Attacker Lists��������������������������������
	Attacker Lists���������������������
	Barnard’s List���������������������
	Verizon’s Lists����������������������
	OWASP������������
	Intel TARA�����������������

	Personas and Archetypes������������������������������
	Aucsmith’s Attacker Personas�����������������������������������
	Background and Definitions���������������������������������
	Personas���������������
	David “Ne0phyate” Bradley – Vandal���
	JoLynn “NightLily” Dobney – Trespasser���
	Sean “Keech” Purcell – Defacer�������������������������������������
	Bryan “CrossFyre” Walton – Author��
	Lorrin Smith-Bates – Insider�����������������������������������
	Douglas Hite – Thief���������������������������
	Mr. Smith – Terrorist����������������������������
	Mr. Jones – Spy����������������������

	Appendix D Elevation of Privilege: The Cards���
	Spoofing���������������
	Tampering����������������
	Repudiation������������������
	Information Disclosure�����������������������������
	Denial of Service������������������������
	Elevation of Privilege (EoP)�����������������������������������

	Appendix E Case Studies������������������������������
	The Acme Database������������������������
	Security Requirements����������������������������
	Software Model���������������������
	Threats and Mitigations������������������������������

	Acme’s Operational Network���������������������������������
	Security Requirements����������������������������
	Operational Network��������������������������
	Threats to the Network�����������������������������

	Phones and One-Time Token Authenticators���
	The Scenario�������������������
	The Threats������������������
	Possible Redesigns�������������������������

	Sample for You to Model������������������������������
	Background�����������������
	The iNTegrity Data Flow Diagrams���������������������������������������
	Exercises����������������

	Glossary
	Bibliography
	Index

