
www.allitebooks.com

http://www.allitebooks.org

Spring Security 3

Secure your web applications against malicious
intruders with this easy to follow practical guide

Peter Mularien

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Spring Security 3

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1190510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-74-4

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Peter Mularien

Reviewers

Scott Battaglia

Carlos Sanchez

Acquisition Editor

Steven Wilding

Development Editor

Neha Patwari

Technical Editors

Meeta Rajani

Sandesh Modhe

Indexer

Hemangini Bari

Editorial Team Leader

Gagandeep Singh

Project Team Leader

Lata Basantani

Project Coordinator

Poorvi Nair

Proofreader

Lesley Harrison

Graphics

Geetanjali Sawant

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

Foreword

Spring Security was started by Ben Alex in 2003, when it was called "The Acegi
Security System for Spring" or more commonly just "Acegi Security". Over the years,
it developed under Ben's leadership into a sophisticated authentication and access-
control system and became widely adopted as the standard solution for securing
Spring Framework based applications. In the early days, there was always a small
band of contributors scattered about the globe, some of whom came and went,
some of whom are still active committers. I first became involved in 2004. Project
discussions took place at strange hours of the day, due to the time differences and
it was at least a couple of years before I met Ben in person, when he was on a trip
to Europe from his native Australia. Now we both work full-time for SpringSource,
and Spring Security, which is an official Spring Portfolio project, used in critical
applications all over the planet.

Spring Security always had trouble shaking off the reputation of being difficult
to learn. It is a "hands-on" framework where people are encouraged to customize
or extend the code to fulfill requirements that go beyond the basic out of the box
options. Most things are possible, but sometimes an in-depth understanding of the
internals is needed to satisfy a requirement, and that understanding mainly comes
with experience. The XML namespace configuration options that were introduced in
Spring Security 2.0 allow users to get started with simple use cases, but the learning
curve can be frustrating for those who want to take advantage of the full power of
the framework. This is compounded by the fact that security is a complex subject in
general, with a whole new set of unfamiliar concepts and, of course, any software
developer involved in securing an application must also be a competent engineer
with knowledge of technologies and protocols, which many developers are barely
aware of. For anyone faced with a deadline, the prospect of getting up-to-speed can
be daunting.

This is the first book dedicated to Spring Security and it will provide all the help
you need to get started, illustrated with plenty of concrete practical examples, as
well as detailed coverage of more advanced topics such as internal Spring Security
architecture, customization, and integration with single sign-on systems such as
CAS, OpenID, and Kerberos. Its publication is well-timed as it covers the recent
Spring Security 3.0 release, which involved a major restructuring of the project.

www.allitebooks.com

http://www.allitebooks.org

Peter is an experienced Spring and Spring Security user, and also a regular in the
Spring Security forum where he has answered hundreds of user questions, giving
him first hand insight into the kind of practical difficulties that people encounter.
Much of that insight has now been distilled into the contents of this book. Very
often the difficulties people have are not directly related to Spring Security, but due
to problems with other external technologies. You may not be familiar with setting
up SSL, understanding LDAP directories or the practical aspects of using different
OpenID providers, but in practice you don't care under what subject heading the
problem is listed, you just want to solve it as quickly as possible. This is where a
book of this kind can really make a difference compared to what you'll typically find
in a project reference manual. Peter provides ample coverage of these related topics,
supplying just the information you need to understand what's happening and to get
the job done.

A lot of work has gone into this book and I think it will prove to be an invaluable
resource, both for first-time Spring Security users and those who would like to
expand their existing knowledge. What you learn will stand you in good stead for
the future. Spring Security is a key member of the Spring Portfolio of Open Source
projects and will continue to be highly relevant for Spring developers. What does
the future hold for Spring Security? You can expect further integration with existing
Spring projects (such as Spring Roo, which is Ben's main focus these days) as well
as innovative support for new technologies both in the project core and through
the related Security Extensions project (which is discussed in detail in Chapter 12,
Spring Security Extensions). And of course you can influence the development of
the project yourself by getting involved, submitting patches, or proposing new
extension projects.

I wish you all the best with your projects and hope you enjoy using Spring Security.

Luke Taylor

Spring Security Project Lead

www.allitebooks.com

http://www.allitebooks.org

About the Author

Peter Mularien is currently a senior developer and architect at a mid-sized
enterprise software vendor. He has worked in web-based application development
and has been a consultant on a wide range of technologies, offering his services to
well-known as well as not so known companies, for over ten years. His Java-and
Spring-focused blog—"It's Only Software", remains quite popular for its readability
and quick tutorials on topics intended to get developers up to speed quickly on
complex technology. Peter is also a recognizable participant in the free Spring
Community Forums, ranking in the top 30 of all-time posters.

To my wife and children for your patience and love through late
nights and weekends—my deepest and devoted thanks and hugs.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Scott Battaglia holds a BS and MS in Computer Science from Rutgers University
and is finishing his MBA from Rutgers and MPH from the University of Medicine
and Dentistry's School of Public Health. He has been a software developer for
Rutgers for the past six years, initially with the Architecture and Engineering team
working on business applications, architecture, and development processes, and
now with the Identity Management team, working on open source projects such
as Spring Security, CAS and OpenRegistry, as well as participating in the IDM
re-architecture initiative at Rutgers. Scott has spoken at various conferences,
including Jasig and Educause, on a variety of topics including Spring Security,
development best practices, CAS, IDM, and Java development. He has served on
the program committee for Internet2's ACAMP and the Jasig Conferences. Scott
currently serves as the chairperson of the Jasig CAS Steering Committee, and as
the project's lead architect. In his spare time, Scott enjoys running marathons,
hiking, photography, learning new libraries and tools, and volunteering for the
Make-A-Wish Foundation of New Jersey.

Carlos Sanchez has been involved in open source for nearly ten years. He has
specialized in solving business challenges in a wide variety of industries, including
e-commerce, financial services, telecommunications, and software development.
He is a member of the Apache Maven Project Management Committee (PMC), the
Apache software Foundation, the Eclipse Foundation, and a committer in the Spring
Security project among others and he is currently the Sr. Solutions Architect at G2iX
in Los Angeles.

Carlos completed his Computer Engineering degree at the University of Coruña,
Spain, and enjoys traveling and discovering new places.

Carlos has coauthored "Better Builds with Maven"—the first book about Maven 2,
and reviewed other books about the project.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Anatomy of an Unsafe Application	 9

Security audit	 10
About the sample application	 10

The JBCP pets application architecture	 11
Application technology	 12

Reviewing the audit results	 13
Authentication	 15
Authorization	 16
Database Credential Security	 16
Sensitive Information	 17
Transport-Level Protection	 17

Using Spring Security 3 to address security concerns	 18
Why Spring Security?	 18

Summary	 19
Chapter 2: Getting Started with Spring Security	 21

Core security concepts	 22
Authentication	 22
Authorization	 23

Securing our application in three easy steps	 26
Implementing a Spring Security XML configuration file	 26
Adding the Spring DelegatingFilterProxy to your web.xml file	 27
Adding the Spring Security XML configuration file reference to web.xml	 28
Mind the gaps!	 30

Common problems	 31
Security is complicated: The architecture of secured web requests	 32

How requests are processed?	 32
What does auto-config do behind the scenes?	 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

How users are authenticated?	 37
What is spring_security_login and how did we get here?	 41
Where do the user's credentials get validated?	 43
When good authentication goes bad?	 44

How requests are authorized?	 45
Configuration of access decision aggregation	 49
Access configuration using spring expression language	 51

Summary	 55
Chapter 3: Enhancing the User Experience	 57

Customizing the login page	 57
Implementing a custom login page	 59

Implementing the login controller	 59
Adding the login JSP	 60
Configuring Spring Security to use our Spring MVC login page	 61

Understanding logout functionality	 63
Adding a Log Out link to the site header	 63
How logout works	 64

Changing the logout URL	 66
Logout configuration directives	 66

Remember me	 67
Implementing the remember me option	 67
How remember me works	 68

Remember me and the user lifecycle	 71
Remember me configuration directives	 72

Is remember me secure?	 73
Authorization rules differentiating remembered and fully authenticated sessions	 74
Building an IP-aware remember me service	 75
Customizing the remember me signature	 79

Implementing password change management	 80
Extending the in-memory credential store to support password change	 80

Extending InMemoryDaoImpl with InMemoryChangePasswordDaoImpl	 81
Configuring Spring Security to use InMemoryChangePasswordDaoImpl	 82
Building a change password page	 83
Adding a change password handler to AccountController	 84
Exercise notes	 85

Summary	 86
Chapter 4: Securing Credential Storage	 87

Database-backed authentication with Spring Security	 88
Configuring a database-resident authentication store	 88

Creating the default Spring Security schema	 88
Configuring the HSQL embedded database	 89
Configuring JdbcDaoImpl authentication store	 89
Adding user definitions to the schema	 90

Table of Contents

[iii]

How database-backed authentication works	 90
Implementing a custom JDBC UserDetailsService	 92

Creating a custom JDBC UserDetailsService class	 92
Adding a Spring Bean declaration for the custom UserDetailsService	 92

Out of the box JDBC-based user management	 93
Advanced configuration of JdbcDaoImpl	 95

Configuring group-based authorization	 96
Configuring JdbcDaoImpl to use groups	 97
Modifying the initial load SQL script	 97
Modifying the embedded database creation declaration	 98

Using a legacy or custom schema with database-resident authentication	 98
Determining the correct JDBC SQL queries	 99
Configuring the JdbcDaoImpl to use customSQL queries	 100

Configuring secure passwords	 101
Configuring password encoding	 104

Configuring the PasswordEncoder	 104
Configuring the AuthenticationProvider	 104
Writing the database bootstrap password encoder	 105
Configuring the bootstrap password encoder	 105

Would you like some salt with that password?	 106
Configuring a salted password	 108

Declaring the SaltSource Spring bean	 109
Wiring the PasswordEncoder to the SaltSource	 109
Augmenting DatabasePasswordSecurerBean	 109

Enhancing the change password functionality	 111
Configuring a custom salt source	 111

Extending the database schema	 112
Tweaking configuration of the CustomJdbcDaoImpl UserDetails service	 112
Overriding the baseline UserDetails implementation	 113
Extending the functionality of CustomJdbcDaoImpl	 113

Moving remember me to the database	 115
Configuring database-resident remember me tokens	 115

Adding SQL to create the remember me schema	 115
Adding new SQL script to the embedded database declaration	 116
Configuring remember me services to persist to the database	 116

Are database-backed persistent tokens more secure?	 116
Securing your site with SSL	 117

Setting up Apache Tomcat for SSL	 117
Generating a server key store	 118
Configuring Tomcat's SSL Connector	 118

Automatically securing portions of the site	 119
Secure port mapping	 121

Summary	 122

Table of Contents

[iv]

Chapter 5: Fine-Grained Access Control	 123
Re-thinking application functionality and security	 124

Planning for application security	 124
Planning user roles	 124
Planning page-level security	 126

Methods of Fine-Grained authorization	 127
Using Spring Security Tag Library to conditionally render content	 128

Conditional rendering based on URL access rules	 128
Conditional rendering based on Spring EL Expressions	 129
Conditionally rendering the Spring Security 2 way	 130

Using controller logic to conditionally render content	 131
Adding conditional display of the Log In link	 131
Populating model data based on user credentials	 132

What is the best way to configure in-page authorization?	 132
Securing the business tier	 134

The basics of securing business methods	 135
Adding @PreAuthorize method annotation	 136
Instructing Spring Security to use method annotations	 136
Validating method security	 136

Several flavors of method security	 137
JSR-250 compliant standardized rules	 137
Method security using Spring's @Secured annotation	 139
Method security rules using Aspect Oriented Programming	 139
Comparing method authorization types	 140

How does method security work?	 141
Advanced method security	 144

Method security rules using bean decorators	 145
Method security rules incorporating method parameters	 147
How method parameter binding works	 147
Securing method data through Role-based filtering	 149

Adding Role-based data filtering with @PostFilter	 150
Pre-filtering collections with method @PreFilter	 152
Why use a @PreFilter at all?	 153

A fair warning about method security	 154
Summary	 155

Chapter 6: Advanced Configuration and Extension	 157
Writing a custom security filter	 158

IP filtering at the servlet filter level	 158
Writing our custom servlet filter	 158
Configuring the IP servlet filter	 160
Adding the IP servlet filter to the Spring Security filter chain	 161

Table of Contents

[˘]

Writing a custom AuthenticationProvider	 162
Implementing simple single sign-on with an AuthenticationProvider	 162

Customizing the authentication token	 163
Writing the request header processing servlet filter	 164
Writing the request header AuthenticationProvider	 166

Combining AuthenticationProviders	 167
Simulating single sign-on with request headers	 169
Considerations when writing a custom AuthenticationProvider	 170

Session management and concurrency	 170
Configuring session fixation protection	 171

Understanding session fixation attacks	 171
Preventing session fixation attacks with Spring Security	 172
Simulating a session fixation attack	 173
Comparing session-fixation-protection options	 175

Enhancing user protection with concurrent session control	 176
Configuring concurrent session control	 176
Understanding concurrent session control	 177
Testing concurrent session control	 178
Configuring expired session redirect	 179

Other benefits of concurrent session control	 179
Displaying a count of active users	 179
Displaying information about all users	 180

Understanding and configuring exception handling	 182
Configuring "Access Denied" handling	 184

Configuring an "Access Denied" destination URL	 184
Adding controller handling of AccessDeniedException	 184
Writing the Access Denied page	 185

What causes an AccessDeniedException	 186
The importance of the AuthenticationEntryPoint	 187

Configuring Spring Security infrastructure beans manually	 188
A high level overview of Spring Security bean dependencies	 189
Reconfiguring the web application	 189
Configuring a minimal Spring Security environment	 190

Configuring a minimal servlet filter set	 191
Configuring a minimal supporting object set	 195

Advanced Spring Security bean-based configuration	 196
Adjusting factors related to session lifecycle	 196
Manual configuration of other common services	 197

Declaring remaining missing filters	 198
LogoutFilter	 198
RememberMeAuthenticationFilter	 199
ExceptionTranslationFilter	 202

Explicit configuration of the SpEL expression evaluator and Voter	 202

Table of Contents

[vi]

Bean-based configuration of method security	 203
Wrapping up explicit configuration	 204
Which type of configuration should I choose?	 204

Authentication event handling	 205
Configuring an authentication event listener	 207

Declaring required bean dependencies	 207
Building a custom application event listener	 207
Out of the box ApplicationListeners	 208

Multitudes of application events	 209
Building a custom implementation of an SpEL expression handler	 210
Summary	 211

Chapter 7: Access Control Lists	 213
Using Access Control Lists for business object security	 213

Access Control Lists in Spring Security	 215
Basic configuration of Spring Security ACL support	 217

Defining a simple target scenario	 217
Adding ACL tables to the HSQL database	 218
Configuring the Access Decision Manager	 220
Configuring supporting ACL beans	 221
Creating a simple ACL entry	 226

Advanced ACL topics	 227
How permissions work	 228
Custom ACL permission declaration	 231
ACL-Enabling your JSPs with the Spring Security JSP tag library	 234
Spring Expression Language support for ACLs	 235
Mutable ACLs and authorization	 237

Configuring a Spring transaction manager	 238
Interacting with the JdbcMutableAclService	 239

Ehcache ACL caching	 241
Configuring Ehcache ACL caching	 241
How Spring ACL uses Ehcache	 242

Considerations for a typical ACL deployment	 243
About ACL scalability and performance modelling	 243
Do not discount custom development costs	 245
Should I use Spring Security ACL?	 247

Summary	 247
Chapter 8: Opening up to OpenID	 249

The promising world of OpenID	 249
Signing up for an OpenID	 251

Table of Contents

[vii]

Enabling OpenID authentication with Spring Security	 252
Writing an OpenID login form	 252
Configuring OpenID support in Spring Security	 253
Adding OpenID users	 254

The OpenID user registration problem	 255
How OpenID identifiers are resolved	 255
Implementing user registration with OpenID	 258

Adding the OpenID registration option	 258
Differentiating between a login and registration request	 259
Configuring a custom authentication failure handler	 260
Adding the OpenID registration functionality to the controller	 260

Attribute Exchange	 264
Enabling AX in Spring Security OpenID	 265
Real-world AX support and limitations	 267
Google OpenID support	 267

Is OpenID secure?	 268
Summary	 269

Chapter 9: LDAP Directory Services	 271
Understanding LDAP	 272

LDAP	 272
Common LDAP attribute names	 273
Running an embedded LDAP server	 275

Configuring basic LDAP integration	 275
Configuring an LDAP server reference	 275
Enabling the LDAP AuthenticationProvider	 276
Troubleshooting embedded LDAP	 276

Understanding how Spring LDAP authentication works	 277
Authenticating user credentials	 278
Determining user role membership	 279
Mapping additional attributes of UserDetails	 282

Advanced LDAP configuration	 283
Sample JBCP LDAP users	 283
Password comparison versus Bind authentication	 284

Configuring basic password comparison	 285
LDAP password encoding and storage	 285
The drawbacks of a Password Comparison Authenticator	 286

Configuring the UserDetailsContextMapper	 287
Implicit configuration of a UserDetailsContextMapper	 287
Viewing additional user details	 287

Using an alternate password attribute	 289

Table of Contents

[viii]

Using LDAP as a UserDetailsService	 290
Notes about remember me with an LDAP UserDetailsService	 291
Configuration for an In-Memory remember me service	 291

Integrating with an external LDAP server	 292
Explicit LDAP bean configuration	 292

Configuring an external LDAP server reference	 293
Configuring an LdapAuthenticationProvider	 293
Integrating with Microsoft Active Directory via LDAP	 294
Delegating role discovery to a UserDetailsService	 297

Summary	 298
Chapter 10: Single Sign On with Central Authentication Service	 299

Introducing Central Authentication Service	 299
High level CAS authentication flow	 300
Spring Security and CAS	 301
CAS installation and configuration	 302

Configuring basic CAS integration	 303
Adding the CasAuthenticationEntryPoint	 304
Enabling CAS ticket verification	 305
Proving authenticity with the CasAuthenticationProvider	 307

Advanced CAS configuration	 309
Retrieval of attributes from CAS assertion	 309

How CAS internal authentication works	 310
Configuring CAS to connect to our embedded LDAP server	 311
Getting UserDetails from a CAS assertion	 314
Examining the CAS assertion	 315
Mapping LDAP attributes to CAS attributes	 316
Finally, returning the attributes in the CAS assertion	 318
Alternative Ticket authentication using SAML 1.1	 319

How is Attribute Retrieval useful?	 320
Additional CAS capabilities	 321

Summary	 322
Chapter 11: Client Certificate Authentication	 323

How Client Certificate authentication works	 324
Setting up a Client Certificate authentication infrastructure	 326

Understanding the purpose of a public key infrastructure	 326
Creating a client certificate key pair	 327
Configuring the Tomcat trust store	 328
Importing the certificate key pair into a browser	 330

Using Firefox	 330
Using Internet Explorer	 330

Table of Contents

[ix]

Wrapping up testing	 331
Troubleshooting Client Certificate authentication	 332

Configuring Client Certificate authentication in Spring Security	 333
Configuring Client Certificate authentication using
the security namespace	 333
How Spring Security uses certificate information	 334
How Spring Security certificate authentication works	 335
Other loose ends	 337
Supporting Dual-Mode authentication	 338

Configuring Client Certificate authentication using Spring Beans	 340
Additional capabilities of bean-based configuration	 341

Considerations when implementing Client Certificate authentication	 342
Summary	 343

Chapter 12: Spring Security Extensions	 345
Spring Security Extensions	 345
A primer on Kerberos and SPNEGO authentication	 346
Kerberos authentication in Spring Security	 349

Overall Kerberos Spring Security authentication flow	 349
Getting prepared	 350

Assumptions for our examples	 351
Creating a keytab file	 352

Configuring Kerberos-related Spring beans	 353
Wiring SPNEGO beans to the security namespace	 355
Adding the Application Server machine to a Kerberos realm	 357
Special considerations for Firefox users	 358
Troubleshooting	 358

Verifying connectivity with standard tools	 359
Enabling Java GSS-API debugging	 359
Other troubleshooting steps	 360

Configuring LDAP UserDetailsService with Kerberos	 361
Using form login with Kerberos	 362
Summary	 364

Chapter 13: Migration to Spring Security 3	 365
Migrating from Spring Security 2	 365
Enhancements in Spring Security 3	 366
Changes to configuration in Spring Security 3	 367

Rearranged AuthenticationManager configuration	 367
New configuration syntax for session management options	 368
Changes to custom filter configuration	 369

Table of Contents

[˘]

Changes to CustomAfterInvocationProvider	 370
Minor configuration changes	 371

Changes to packages and classes	 371
Summary	 373

Appendix: Additional Reference Material	 375
Getting started with JBCP Pets sample code	 375
Available application events	 376
Spring Security virtual URLs	 379
Method security explicit bean configuration	 379
Logical filter names migration reference	 382

Index	 385

Preface
Welcome to the world of Spring Security 3! I'm certainly pleased that you have
acquired the first published book fully devoted to Spring Security, and I hope that it
fulfills your every wish for a technical book on this fascinating subject. I'd like to use
this introduction to set your expectations for the pages ahead, and give you some
advice to help you along your way.

By the time you finish this book, you should feel comfortable with the architecture of
Spring Security, the incorporation of Spring Security in a web-based application, and
the integration of Spring Security with many types of external authentication and
authorization systems.

The book is largely divided into two halves. The first half (Chapters 1-7) covers
Spring Security as part of a web application from start to finish—very basic initial
setup, all the way to advanced access control list security. The second half (Chapters
8-12) covers Spring Security as part of a larger software ecosystem, illustrating
integration with common external systems such as OpenID, Microsoft Active
Directory, and LDAP. The final chapter covers migration issues when moving
from Spring Security 2 to Spring Security 3.

The book uses a simple Spring Web MVC based application to illustrate the
concepts presented in the book. The application is intended to be very simple and
straightforward, and purposely contains very little functionality—the goal of this
application is to encourage you to focus on the Spring Security concepts, and not
get tied up in the complexities of application development. You will have a much
easier time following the book if you take the time to review the sample application
source code, and try to follow along with the exercises. Some tips on getting
started are in Chapter 1, Anatomy of an Unsafe Application and Appendix, Additional
Reference Material.

www.allitebooks.com

http://www.allitebooks.org

Preface

[˘]

What this book covers
Chapter 1, Anatomy of an Unsafe Application covers a hypothetical security audit of our
e-commerce site, illustrating common issues that can be resolved through proper
application of Spring Security. You will learn about some basic security terminology,
and review some prerequisites for getting the sample application up and running.

Chapter 2, Getting Started with Spring Security reviews basic setup and configuration of
form-based authentication with Spring Security, followed by a high-level overview of
how Spring Security works from start to finish to secure web requests.

Chapter 3, Enhancing the User Experience illustrates additional user-facing functionality
supported by Spring Security that can increase the usability of secured sites,
including a remember me function, a styled login page, logout, and password
change capability.

Chapter 4, Securing Credential Storage guides you through the key configuration steps
required to secure your users' information in a JDBC database, using Spring Security
APIs. Important security concepts around safe password storage are also covered in
this chapter.

Chapter 5, Fine-Grained Access Control covers in-page authorization checking
(partial page rendering), and business-layer security using Spring Security's
method security capabilities.

Chapter 6, Advanced Configuration and Extension provides several hands-on
walkthroughs of common customizations to Spring Security implementations,
including custom servlet filters, custom authentication providers, and custom
exception handling. Session fixation and concurrent session control are analyzed
and appropriately applied to the site with required configuration steps reviewed.
Finally, explicit bean-based configuration is clearly illustrated for all Spring Security
functionality covered in the book.

Chapter 7, Access Control Lists teaches you the concepts and basic implementation
of business object-level security using the Spring Security Access Control Lists
module—a powerful module with very flexible applicability to challenging business
security problems.

Chapter 8, Opening up to OpenID covers OpenID-enabled login and user
information exchange, as well as a high-level overview of the logical flow
of an OpenID-enabled system.

Chapter 9, LDAP Directory Services provides a guide to application integration with
an LDAP directory server, including practical tips on different types of integrations
with LDAP data.

Preface

[˘]

Chapter 10, Single Sign On with Central Authentication Service shows how integration
with Central Authentication Service (CAS) can provide single sign-on support to
your Spring Security-enabled application.

Chapter 11, Client Certificate Authentication makes X.509 certificate-based
authentication a clear alternative for certain business scenarios where managed
certificates can add an additional layer of security to our application.

Chapter 12, Spring Security Extensions covers the Spring Security Kerberos extension
project, which exposes a Kerberos integration layer for user authentication in
our Spring Security application providing compatibility with a Unix Kerberos
environment or Microsoft Active Directory.

Chapter 13, Migration to Spring Security 3 lays out the major differences between
Spring Security 2 and Spring Security 3, including notable configuration changes,
class and package migrations, and important new features. If you are familiar with
Spring Security 2, we recommend that you read this chapter first, as it may make it
easier to tie the examples back to code with which you are familiar.

Appendix, Additional Reference Material covers some reference material, which we feel
is helpful (and largely undocumented) and too comprehensive to insert in the text of
the chapters.

Other notes
Please do keep in mind that in the age of open source software, open and rapid
development, and the collective wisdom of the Internet, books no longer age
gracefully. We'll certainly endeavor to maintain online content related to the book
as Spring Security changes, but keep in mind that the examples in this book were
written using Spring Security 3.0.x, and may require slight or significant adaptation
for the version of the software you are using.

The overall conceptual design of the framework, and certainly discussion of general
security topics and integrations are likely to remain fairly stable and accurate for the
near future. We're always happy to hear your suggestions and feedback—you may
pass along either through the Packt Publishing website, or at the website I personally
maintain for the book, http://www.springsecuritybook.com/.

Preface

[˘]

This book will:

Provide you with practical, example-driven implementation advice on the
Spring Security Framework.
Assume that you have some prior knowledge of Java web application
development and the concepts therein. Given that the sample application
is developed using very basic Spring MVC techniques. We assume you
have a limited understanding of how this works (we won't use advanced
Spring MVC techniques, so hopefully it is easy to follow even with no
prior experience).
Encourage you to follow along with the sample code and try out what you
are reading! While it's not required to have the code up and active in a
development environment while you're reading the book, we can guarantee
you'll get a lot more out of it if you try to follow along with the examples.

This book will not:

Teach you every step required to fully secure a production web application.
It will teach you the tools that Spring Security provides, and help you learn
(and practice) some techniques such as session fixation attacks, but a full
survey of security threats is certainly beyond the scope of this book. Where
appropriate, we point you at additional reading on the subject of web
application security practices. The most important tool you can use in this
area is your brain!
Teach you tangentially related concepts and techniques, such as AOP, Spring
MVC, LDAP, CAS, Windows Active Directory, and so on. Although we
lightly touch on these topics where relevant in the text, entire books have
been written about each of these subjects. Be smart— if you are heavily
invested in a project using an advanced technology, take the time to learn
it—you'll certainly earn a big return on your time investment.
Provide you with a complete reference of every attribute, element, and
API call. Luke and the Spring Security team and community spend a lot
of time keeping the reference manual up to date, and providing very well
documented source code. Get familiar with the code—don't be afraid to read
the JavaDoc—and use the examples and diagrams in this book to wire it all
together mentally. We have tried to cover the most common Spring Security
usage scenarios from top to the very deep bottom. This approach was taken
because we felt that providing the user with a complete understanding of the
most common topics would help them grasp additional topics with much
less effort. We apologize in advance if we do not cover your favorite feature
of Spring Security in detail!

•

•

•

•

•

•

Preface

[˘]

Some notation conventions we've tried to use in the book to help you out:

XML elements will always be surrounded with angle brackets, like
<intercept-url>, to differentiate them from XML attributes, which
will always be in code font, like use-expressions.
For conciseness, we've abbreviated the base package name
org.springframework.security as o.s.s in fully-qualified class names
found in the text and diagrams. We retain the full package names in code and
configuration samples, to avoid confusion. We try to list the fully-qualified
class names upon first mention of a particular class, so that curious folks can
know exactly where to look for a class without hunting.
Also for conciseness, we've generally omitted import statements from
Java code listings, and in some cases replaced unimportant, repeated
configuration elements with an XML comment <!-- ... -->—this is
used to focus your attention on the bits of code or configuration that we're
describing in a particular example, and shouldn't be taken as an indication
that there shouldn't be anything there!
Due to the length of some fully-qualified class names or XML configuration
lines, the code listings may wrap. We assume you know enough about Java
and XML to recognize where a line break makes sense and where it doesn't.
Remember that the source code for the book contains all the examples in case
you're not sure!

Acknowledgements and thanks
Some acknowledgements—writing a technical book involves an unbelievable
amount of research, review, support, and most of all—time, especially while holding
down a demanding full-time job and being a devoted dad! I vow never again to skim
text in a technical book <grin>.

Thank you to the Packt Publishing crew for helping this first-time author through
the very long process of publishing a technical book: Steven Wilding for approaching
me with the idea for the book, Poorvi Nair for keeping me on track, Neha Patwari
and Meeta Rajani for final review and edits, and Patricia Weir for all the overall
help. To Luke Taylor, Ben Alex, and the other contributors to the Spring Security/
Acegi project, thank you for building a wonderfully complex, interesting, and above
all useful framework. To Scott Battaglia and Carlos Sanchez, thank you for your
dedication during the technical review process—your feedback was exceedingly
valuable and much appreciated.

•

•

•

•

Preface

[˘]

To Mark Pitts, my friend and long-time co-worker, thanks for the encouragement
along the way—you will get a signed copy! To Ganesh Murthy, Matt Olson, and Kris
Huggins, thanks for the encouragement! To Jon Burns, Thierry Hubert, and Matt
Crowe, you guys are entrepreneurial inspirations. To the Voodoo Lounge crew,
long live the Voodoo Lounge! Thanks as well to all the aTao folks, old and new.

Thanks also to all the contributors to the Spring Security support forum— answering
your questions has continually improved my understanding of Spring Security,
and ultimately resulted in a much richer and more complete book.

Finally, to my wife and kids (once again!) for, most of all, the tolerance and support
for my part-time hobby—unfortunately, it won't make a very exciting bedtime story!

Who this book is for
This book is for Java developers who build web projects and applications. The book
assumes basic familiarity with Java, XML, and the Spring Framework. Newcomers to
Spring Security will still be able to utilize all aspects of this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code will be set as follows:

<c:url value="/j_spring_security_logout" var="logoutUrl"/>
Log Out

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

<http auto-config="true" use-expressions="true">
 <logout invalidate-session="true"
 logout-success-url="/"
 logout-url="/logout"/>
</http>

Preface

[˘]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "Once you
complete these changes, restart the application and look for the Change Password
action under the My Account section of the site."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/files/
downloads/9744_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Preface

[˘]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Anatomy of an Unsafe
Application

Security is arguably one of the most critical architectural components of any
web-based application written in the 21st century. In an era where malware,
criminals, and rogue employees are always present and actively testing software
for exploits, smart and comprehensive use of security is a key element
to any project for which you'll be responsible.

This book is written to follow a pattern of development that we feel provides a
useful premise for tackling a complex subject—taking a web-based application
with a Spring 3 foundation, and understanding the core concepts and strategies
for securing it with Spring Security 3.

Whether you're already using Spring Security or are interested in taking your basic
use of the software to the next level of complexity, you'll find something to help you
in this book.

During the course of this chapter, we'll:

Review the results of a fictional security audit
Discuss some common security problems of web-based applications
Learn several core software security terms and concepts

If you are already familiar with basic security terminology, you may directly skip
to Chapter 2, Getting Started with Spring Security, where we dig into the details of
the framework.

•
•
•

Anatomy of an Unsafe Application

[10]

Security audit
It's early in the morning at your job as software developer for the Jim Bob Circle
Pants Online Pet Store (JBCPPets.com), and you're halfway through your first
cup of coffee when you get the following e-mail from your supervisor:

To: Star Developer <stardev@jbcppets.com>

From: Super Visor <theboss@jbcppets.com>

Subject: Security Audit

Star,

We have a third-party security company auditing our e-commerce storefront today.
Please be available to fix any issues they might uncover, although I know you took
security into account when you designed the site.

Super Visor

What? You didn't think a lot about security when you designed the application?
Sounds like you'll have a lot to learn from the security auditors! First, let's spend
a bit of time examining the application that's under review.

About the sample application
Although we'll be working through a contrived scenario as we progress through this
book, the design of the application and the changes we'll make to it are drawn from
real-world usage of Spring-based applications.

The application is designed to be simplistic, to allow us to focus on the important
aspects of security and not get tied up in the details of ORM and complex UI
techniques. We expect you to refer to other supplementary material to cover
some of the baseline functionality that is provided as part of the sample code.

The code is written in Spring and Spring Security 3, but it would be relatively easy
to adapt many of the examples to Spring Security 2. Refer to the discussion about the
detailed changes between Spring Security 2 and 3 in Chapter 13, Migration to Spring
Security 3, for assistance in translating the examples to Spring Security 2 syntax.

Please don't use this application as a baseline to build a real online pet store. It
has been purposely structured to be simple and to focus on the concepts and
configuration that we illustrate in the book.

Chapter 1

[11]

The JBCP pets application architecture
The web application follows a standard three-tier architecture, consisting of web,
service, and data access layers, as indicated in the following diagram:

The web layer encapsulates MVC code and functionality. In this sample application,
we use the Spring MVC framework, but we could just as easily use Spring Web
Flow, Struts, or even a Spring-friendly web stack such as Apache Wicket.

In a typical web application leveraging Spring Security, the web layer is where
much of the configuration and augmentation of code takes place. As such, if you
haven't had a lot of experience with web applications, and Spring MVC specifically,
it would be wise to review the baseline code closely and make sure you understand
it before we move on to more complex subjects. Again, we've tried to make the
website as simple as possible, and the construct of an online pet store is used just to
give a sensible title and light structure to the site. This approach is in contrast to the
complex Java EE Pet Clinic sample on which many tutorials are based.

The service layer encapsulates the business logic for the application. In our sample
application, we make this a very light facade over the data access layer, to illustrate
particular points around securing application service methods.

In a typical web application, this layer would incorporate business rules validation,
composition and decomposition of business objects, and cross-cutting concerns such
as auditing.

The data access layer encapsulates the code responsible for manipulating contents
of database tables. In many Spring applications, this is where you would see the
use of an ORM such as Hibernate or JPA. It exposes an object-based API to the
service layer. In our sample application, we use basic JDBC functionality to achieve
persistence to the in-memory HSQL database.

In a typical web application, a more comprehensive data access solution would
be utilized. As ORM, and specifically data access, tend to be confusing for some
developers, this is an area we have chosen to simplify, as much as possible, for
the purposes of clarity.

www.allitebooks.com

http://www.allitebooks.org

Anatomy of an Unsafe Application

[12]

Application technology
We have endeavored to make the application as easy to run as possible by focusing
on some basic tools and technologies that almost every Spring developer would have
on their development machine. Nevertheless, we provide the supplementary Getting
Started information in Appendix, Additional Reference Material.

We recommend the following IDEs for improved productivity when working with
Spring Security, with the sample code in the book:

Eclipse 3.4 or 3.5 Java EE Bundle available at
http://www.eclipse.org/downloads/

Spring IDE 2.2 (2.2.2 or higher) available at http://springide.org/blog/

In some of the examples and screenshots in this book, you'll see Eclipse and the
Spring IDE tools used, so we'd really recommend that you give them a try.

You may also wish to try the free Spring Tool Suite (STS) distribution of Eclipse—a
bundle of Eclipse distributed by Spring Source that includes the next generation of
Spring IDE functionality (available at http://www.springsource.com/products/
springsource-tool-suite-download). Some users dislike the inclusiveness
and Spring Source branding of this IDE, but if you are doing significant Spring
development, it has a number of helpful features.

Primarily, we provide Eclipse 3.4-compatible projects that allow you to build
the code within Eclipse, and deploy instructions to Tomcat 6.x server. As many
developers are comfortable with Eclipse, we felt this was the most straightforward
method of packaging the examples. We have also provided Apache Ant build scripts
for these samples, as well as Apache Maven modules. Whatever development
environment you are familiar with, hopefully you will find a way to work through
the examples while you read the book.

Also, you'll want to download the full releases of both Spring 3 and Spring
Security 3. The Javadoc and source code are top notch if you get confused or want
more information, and the samples can provide an additional level of support or
reassurance in your learning.

•

•

Chapter 1

[13]

Reviewing the audit results
Let's return to our e-mail and see how the audit is progressing. Uh-oh, the results
don't look good:

To: Star Developer <stardev@jbcppets.com>

From: Super Visor <theboss@jbcppets.com>

Subject: FW: Security Audit Results

Star,

Have a look at the results and come up with a plan to address these issues.

Super Visor

APPLICATION AUDIT RESULTS

This application exhibits the following insecure behavior:

Inadvertent privilege escalation due to lack of URL protection and
general authentication
Inappropriate or non-existent use of authorization
Database credentials not secured and easily accessible
Personally identifiable or sensitive information is easily accessible
or unencrypted
Insecure transport-level protection due to lack of SSL encryption
Risk level: HIGH

We recommend that this application be taken offline until these issues can
be resolved.

Ouch! This result looks bad for our company. We'd better work to resolve these
issues as quickly as possible.

•

•
•
•

•
•

Anatomy of an Unsafe Application

[14]

Third-party security specialists are often hired by companies (or their partners
or customers) to audit the effectiveness of their software security, through a
combination of white hat hacking, source code review, and formal or informal
conversations with application developers and architects.

The goal of security audits is typically to provide management or clients with an
assurance that basic secure development practices have been followed to ensure
integrity and safety of customer data and system function. Depending on the
industry the software is targeted for, the auditor may also test using industry-specific
standards or compliance metrics.

Two specific security standards that you're likely to run into at some point
in your career are the Payment Card Industry Data Security Standard
(PCI DSS) and the Health Insurance Privacy and Accountability Act
(HIPAA) privacy rules. Both standards are intended to ensure safety
of specific sensitive information (credit card and medical information
respectively) through a combination of process and software controls.
Many other industries and countries have similar rules around sensitive
or Personally Identifiable Information (PII). Failure to follow these
standards is not only a bad practice, but something that could expose you
or your company to significant liability (not to mention bad press!) in the
event of a security breach.

Chapter 1

[15]

Receiving the results of a security audit can be an eye-opening experience; however,
following through with the required software improvements can be a perfect
opportunity for self-education and software improvement, and can allow you
to implement practices and policies that lead to secure software.

Let's review the auditor's findings and come up with a plan to address them in detail.

Authentication
Inadvertent privilege escalation due to lack of URL protection and general authentication.

Authentication is one of two key security concepts that you must internalize when
developing secure applications (the other being authorization). Authentication deals
with the specific identification of a single user of the system, and the mapping of that
user to an identifiable (and therefore securable) entity. Typically, a software system
will be divided into two high-level realms such as unauthenticated (or anonymous)
and authenticated as shown in the following figure:

Application functionality in the anonymous realm is the functionality that is
independent of a user's identity (think of a product listing from an online store).

Anonymous areas do not:

Require a user to log into the system or otherwise identify themselves
to be usable
Display sensitive information such as names, addresses, credit cards, orders,
and so on
Provide functionality to manipulate the overall state of the system or its data

•

•

•

Anatomy of an Unsafe Application

[16]

Unauthenticated areas of the system are intended for use by everyone, even by
users who we haven't specifically identified yet. However, it may be that, additional
functionality appears to identified users in these areas (for example, the ubiquitous
Welcome {First Name} text). Selective display of content to authenticated users is
fully supported through use of the Spring Security tag library, and is covered in
Chapter 5, Fine-Grained Access Control.

We'll resolve this finding and implement form-based authentication using Spring
Security's automatic configuration capability in Chapter 2. More complex forms of
authentication (which usually revolve around systems integration with enterprise
or other external authentication stores) are covered in the second half of this book,
starting with Chapter 8, Opening up to OpenID.

Authorization
Inappropriate or non-existent use of authorization.

Authorization is the second of two core security concepts that is crucial in
implementing and understanding application security. Authorization deals with
the appropriate availability of functionality and data to users who are authorized
(allowed) to access it. Built around the authorization model for the application is the
activity of partitioning the application functionality and data such that availability of
these items can be controlled by matching the combination of privileges, functionality
and data, and users. Our application's failure on this point of the audit indicates that
the application functionality isn't restricted by user role. Imagine if you were running
an e-commerce site and the ability to view, cancel, or modify order and customer
information was available to any user of the site!

We'll address the basic authorization problem with Spring Security's authorization
infrastructure in Chapter 2, followed by more advanced authorization, both at the
web tier in Chapter 5, and the business tier in Chapter 6, Advanced Configuration
and Extension.

Database Credential Security
Database credentials not secured and easily accessible.

Through their examination of the application source code and configuration files,
the auditors noted that user passwords were stored in plain text in the configuration
files, making it very easy for a malicious user with access to the server to gain access
to the application.

Chapter 1

[17]

As the application contains personal and financial data, a rogue user being able to
access any data could expose the company to identity theft or tampering. Protecting
access to the credentials used to access the application should be a top priority for
us, and an important first step is ensuring one point of failure in security does not
compromise the entire system.

We'll examine the configuration of Spring Security's database access layer for
credential storage, which uses JDBC connectivity, in Chapter 4, Securing Credential
Storage. In Chapter 4, we'll also look at built-in techniques to increase the security
of passwords stored in the database.

Sensitive Information
Personally identifiable or sensitive information is easily accessible or unencrypted.

The auditors noted that some significant and sensitive pieces of data, including credit
card numbers, were completely unencrypted or masked anywhere in the system.
Aside from presenting a clear case of poor data design, lack of protection around
credit card numbers is a violation of the PCI standard.

Fortunately, there are some simple design patterns and tools that allow us to protect
this information securely with Spring Security's annotation-based AOP support.
We'll examine several techniques for securing this type of data at the data access
layer in Chapter 5.

Transport-Level Protection
Insecure transport-level protection due to lack of SSL encryption.

While in the real world, it's unthinkable that an online commerce website would
operate without SSL protection; unfortunately JBCP Pets is in just this situation.
SSL protection ensures that communication between the browser client and the
web application server are secure against many kinds of tampering and snooping.

In Chapter 5, we'll review the basic options for using transport-level security as part
of the definition of the secured structure of the application, including planning which
areas of the application will be covered by forced SSL encryption.

Anatomy of an Unsafe Application

[18]

Using Spring Security 3 to address
security concerns
Spring Security 3 provides a wealth of resources that allow for many common
security practices to be declared or configured in a straightforward manner. In
the coming chapters, we'll apply a combination of source code and application
configuration changes to address all of the concerns raised by the security auditors
(and more), and give ourselves confidence that our e-commerce application is secure.

With Spring Security 3, we'll be able to make the following changes to increase our
application security:

Segment users of the system into user classes
Assign levels of authorization to user roles
Assign user roles to user classes
Apply authentication rules globally across application resources
Apply authorization rules at all levels of the application architecture
Prevent common types of attacks intended to manipulate or steal a
user's session

Why Spring Security?
Spring Security exists to fill a gap in the universe of Java third-party libraries, much
as the Spring Framework originally did when it was first introduced. Standards such
as Java Authentication and Authorization Service (JAAS) or Java EE Security do
offer some ways of performing some of the same authentication and authorization
functions, but Spring Security is a winner because it packages up everything you
need to implement a top-to-bottom application security solution in a concise and
sensible way.

Additionally, Spring Security appeals to many because it offers out of the box
integration with many common enterprise authentication systems; so it's
adaptable to most situations with little effort (beyond configuration) on the
part of the developer.

It's in wide use because there's really no other mainstream framework quite like it!

•
•
•
•
•
•

Chapter 1

[19]

Summary
In this chapter, we have:

Reviewed common points of risk in an unsecured web application
Reviewed the basic architecture of the sample e-commerce application
Discussed the strategies for securing the e-commerce application

In Chapter 2, we'll examine Spring Security's overall architecture, with a specific eye
towards the many places where it can be extended and configured to support your
application's needs.

•
•
•

Getting Started with
Spring Security

In this chapter, we'll review the core concepts behind Spring Security, including
important terminology and product architecture. We'll look at some of the options
for configuring Spring Security, and what effect they have on the application.

Most importantly, to save our jobs, we'll have to start securing the JBCP Pets online
store! We'll address our first finding—inadvertent privilege escalation due to lack of URL
protection and general authentication—from the security audit discussed in Chapter 1,
Anatomy of an Unsafe Application by analyzing and understanding how to ensure that
authentication exists to protect appropriate areas of the store.

During the course of this chapter, we'll:

Become aware of the key applications of security concepts
Implement a basic level of security on the JBCP Pets online store, using
Spring Security's quick setup option
Understand the high level architecture of Spring Security
Explore standard configurations and options for authentication
and authorization
Examine the use of Spring Expression Language in Spring Security
access control

•
•

•
•

•

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Security

[22]

Core security concepts
Since the results of that enlightening security audit, you've done some research and
determined that Spring Security provides a solid foundation on which you can build
a system to address the security issues identified in the Spring Web MVC-based
JBCP Pets online store.

In order to make effective use of the Spring Security product, it's important to review
some key concepts and terminology before we start assessing and improving our
application's security profile.

Authentication
As we discussed in Chapter 1, authentication is the process of verifying that the
users of our application are who they say they are. You may be familiar with
authentication in your daily online and offline life, in very different contexts:

Credential-based authentication: When you log in to your web-based
e-mail account, you most likely provide your username and password.
The e-mail provider matches your username with a known user in its database,
and verifies that your password matches with what they have on record. These
credentials are what the e-mail system uses to validate that you are a valid
user of the system. First, we'll use this type of authentication to secure sensitive
areas of JBCP Pets online store. Technically speaking, the e-mail system can
check credentials not only in the database but anywhere—for example, a
corporate directory server such as Microsoft Active Directory. Some of these
types of integrations are covered in the second half of this book.
Two-factor authentication: When you withdraw money from your bank's
automated teller machine, you swipe your ID card and enter your personal
identification number before you are allowed to retrieve cash or conduct
other transactions. This type of authentication is similar to username and
password authentication, except that the username is encoded on the card's
magnetic strip. The combination of the physical card and user-entered
PIN allows the bank to ensure that you should have access to the account.
The combination of a password and a physical device (your plastic ATM
card) is a ubiquitous form of two-factor authentication. In a professional,
security conscious environment, it's common to see these types of devices
in regular use for access to highly secure systems, especially dealing with
finance or personally identifiable information. A hardware device such as
RSA's SecurID combines a time-based hardware device with server-based
authentication software, making the environment extremely difficult
to compromise.

•

•

Chapter 2

[23]

Hardware authentication: When you start your car in the morning, you slip
your metal key into the ignition and turn it to get the car started. Although
it may not feel similar to the other two examples, the correct match of the
bumps on the key and the tumblers in the ignition switch function as a form
of hardware authentication.

There are literally dozens of forms of authentication that can be applied to the
problem of software and hardware security, each with their own pros and cons.
We'll review some of these methods as they apply to Spring Security in later part of
this book; in fact, the entire second half of this book is devoted to many of the most
common methods of authentication implementation using Spring Security.

Spring Security extends the Java standard security concept of an authenticated
principal (java.security.Principal), which is used to uniquely represent any one
authenticated entity. Although a typical principal is a one-to-one mapping to a single
user of the system, it could also correspond to any client of the system, such as a web
service client, an automated batch feed, and so on. In most cases, with your use of
Spring Security, a Principal will simply represent a single user, so when we refer
to a principal, you can usually equate this with "user".

Authorization
Authorization typically involves two separate aspects that combine to describe the
accessibility of the secured system.

The first is the mapping of an authenticated principal to one or more authorities
(often called roles). For example, a casual user of your website might be viewed
as having visitor authority while a site administrator might be assigned
administrative authority.

The second is the assignment of authority checks to secured resources of the system.
This is typically done at the time a system is developed, either through explicit
declaration in code or through configuration parameters. For example, the screen
that manages our pet store's inventory should be made available only to those
users having administrative authority.

A secured resource may be any aspect of the system that should be
conditionally available based on the authority of the user.
Secured resources of a web-based application could be individual web
pages, entire portions of the website, or portions of individual pages.
Conversely, secured business resources might be method calls on classes
or individual business objects.

•

Getting Started with Spring Security

[24]

You might imagine an authority check that would examine the principal, look up
its user account, and determine if the principal is in fact an administrator. If this
authority check determines the principal attempting to access the secured area is, in
fact, an administrator, then the request will succeed. If, however, the principal does
not have sufficient authority, the request should be denied.

Let's take a closer look at the example of a particular protected resource, the
Inventory: Edit page. The Inventory Edit page requires administrative access
(after all, we don't want regular users adjusting our inventory levels!), and as
such looks for a certain level of authority in the principal accessing it.

If we think about how a decision might be made when a site administrator attempts
to access the protected resource, we'd imagine that the examination of actual
authority versus required authority might be expressed concisely in terms of set
theory. We might then choose to represent this decision as a Venn diagram for the
administrative user:

Administrative User

User
Authorities

Required
Authorities

User
Administrator

Inventory Page

There is an intersection between the User Authorities (User and Administrator)
and the Required Authorities (Administrator) for the page, so the user is provided
with access.

Contrast this with an unauthorized visitor:

Chapter 2

[25]

The sets of authorities are disjoint, and have no common elements. So, the user
is denied access to the page. Thus, we have demonstrated the basic principle of
authorization of access to resources.

In reality, there's real code making this decision with consequences of the user being
granted or denied access to the requested protected resource. The following diagram
illustrates this high-level process, as it applies to Spring Security:

We can see that a component called the access decision manager is responsible for
determining whether a principal has the appropriate level of access, based on the
match between the authority possessed by the principal and the authority requested
by the resource.

The access decision manager's evaluation of whether or not access is allowed can
be as simple as evaluating the intersection of the set of authorities belonging to the
principal, and the authorities required for access to the protected resource.

Let's get to work putting a basic implementation of Spring Security in place for JBCP
Pets, and then we'll revisit authentication and authorization in much more detail.

Getting Started with Spring Security

[26]

Securing our application in three
easy steps
Although Spring Security can be extremely difficult to configure, the authors of the
product have been thoughtful and have provided us with a very simple mechanism
to enable much of the software's functionality with a strong baseline. From this
baseline, additional configuration will allow a fine level of detailed control over
the security behavior of our application.

We'll start with our unsecured online store and, with three steps, turn it into a site
that's secured with a rudimentary username and password authentication. This
authentication serves merely to illustrate the steps involved in enabling Spring
Security for our web application; you'll see that there are some obvious flaws in
this approach that will lead us to make further configuration refinements.

Implementing a Spring Security XML
configuration file
The first step in the baseline configuration process is to create an XML configuration
file, representing all Spring Security components required to cover standard
web requests.

Create an XML file in the WEB-INF directory with the name dogstore-security.xml.
The file should have the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/
 spring-security-3.0.xsd">
 <http auto-config="true">
 <intercept-url pattern="/*" access="ROLE_USER"/>
 </http>
 <authentication-manager alias="authenticationManager">
 <authentication-provider>
 <user-service>
 <user authorities="ROLE_USER" name="guest" password="guest"/>

Chapter 2

[27]

 </user-service>
 </authentication-provider>
 </authentication-manager>	
</beans:beans>

This is the only Spring Security configuration required to get our web application
secured with a minimal standard configuration. This style of configuration, using
a Spring Security-specific XML dialect is known as the security namespace style,
named after the XML namespace (http://www.springframework.org/schema/
security) associated with the XML configuration elements. We will discuss an
alternate configuration style, using traditional Spring Bean wiring as well as XML
namespaces, in Chapter 6, Advanced Configuration and Extension.

Users who dislike Spring's XML configuration will be disappointed
to learn that there isn't an alternative annotation-based configuration
mechanism for Spring Security, as there is with the Spring Framework.
This makes sense if you think through it, as Spring Security is mostly
concerned about the behavior of an entire system rather than individual
objects and classes. Still, perhaps in the future, we'll see the ability to
annotate Spring MVC controllers with security declarations instead of
specifying URL patterns in a configuration file!

Although annotations are not prevalent in Spring Security, certain aspects of Spring
Security that apply security elements to classes or methods are, as you'd expect,
available via annotations. We'll cover these in Chapter 5, Fine-Grained Access Control.

Adding the Spring DelegatingFilterProxy
to your web.xml file
Spring Security's primary influence over our application is through a series of
ServletRequest filters (we'll explain this when we review the Spring Security
architecture later in this Chapter). Think of these filters as a sandwich of security
functionality that's layered around every request to our application.

The o.s.web.filter.DelegatingFilterProxy is a servlet filter that allows
Spring Security to wrap all application requests and ensure that they are
appropriately secured.

The DelegatingFilterProxy is actually supplied by the Spring
framework, and isn't security specific. This filter is commonly used with
Spring-based web applications to bind Spring Bean dependencies to
servlet filters in conjunction with the servlet filter lifecycle.

Getting Started with Spring Security

[28]

Configure a reference to this filter by adding the following code to our
web.xml deployment descriptor, right after the end of our Spring MVC
<servlet-mapping> element:

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filterclass>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

What we're doing is applying a ServletRequest filter and configuring it to handle
requests matching the given URL pattern (/*). As the wildcard pattern we've
provided matches all URLs, this filter will be applied to every request.

If you're paying attention, you'll note that this doesn't have anything to do with
the Spring Security configuration that we performed in dogstore-security.xml
yet. For that, we'll have to add an XML configuration file reference to our
web application deployment descriptor, web.xml.

Adding the Spring Security XML configuration
file reference to web.xml
Depending on how you have configured your Spring web application, you
may or may not have an explicit reference to an XML configuration file in
your web.xml deployment descriptor. The default behavior of the Spring Web
ContextLoaderListener is to look for an XML configuration file of the same name
as your Spring Web servlet. Let's walk through the addition of the new Spring
Security XML configuration file to the existing JBCP Pet Store baseline site.

First, we have to carefully see if the site is using the Spring MVC automatic lookup
for an XML configuration file. To do this, we look at the web.xml file to see the name
of the servlet, indicated in the <servlet-name> element:

<servlet>
 <servlet-name>dogstore</servlet-name>
 <servletclass>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Chapter 2

[29]

As the name of the servlet (<servlet-name>) is dogstore, Spring's Convention
over Configuration (CoC) rules will search for an XML configuration file called
dogstore-servlet.xml in WEB-INF. We haven't overridden this default behavior,
and you can find this file, with very little Spring MVC-related configuration, in the
WEB-INF directory.

Many users of Spring Web Flow or Spring MVC really don't
understand how these CoC rules are formulated, or where in the
Spring code to get clarity of these rules. o.s.web.context.
support.XmlWebApplicationContext and its superclasses are
good places to start. The Javadoc does a good job of explaining the
configuration parameters specific to web applications based on the
Spring Web MVC framework.

It is also possible to declare additional spring ApplicationContext configuration files
that will be loaded prior to the configuration file related to the Spring MVC servlet.
This is done using the Spring o.s.web.context.ContextLoaderListener to create
an ApplicationContext independent of the Spring MVC ApplicationContext. This
is typically how non-Spring MVC beans are configured, and is usually a good place
to add Spring security configuration as well.

The location of XML files used to configure the ContextLoaderListener is listed in
a <context-param> element of our web application deployment descriptor:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/dogstore-base.xml
 </param-value>
</context-param>

Remember that the dogstore-base.xml file would typically contain standard Spring
bean definitions such as data sources, service beans, and so on. We can now add
a reference to a new XML configuration file to store Spring Security configuration
information, as seen in the updated <context-param> element:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/dogstore-security.xml
 /WEB-INF/dogstore-base.xml
 </param-value>

</context-param>

Getting Started with Spring Security

[30]

After we put the new Spring Security configuration file in the web deployment
descriptor and restart our web application, try hitting the home page at
http://localhost:8080/JBCPPets/home.do, and you'll be presented
with the following screen:

Great job! We've implemented a basic layer of security in our application using
Spring Security in just three steps. At this point, you should be able to log in using
guest as the username and password. You'll see the very basic JBCP Pets home page.

Note that for simplicity, the source code for this chapter contains a very small subset
(a single page) of the complete JBCP Pets application. This is done for the sake of
simplicity and allows you to focus on getting the application built and deployed
without worrying about the additional functionality that will be demonstrated
in later chapters. It also provides a great baseline for you to experiment with the
configuration parameters and redeploy the application very quickly to test them out!

Mind the gaps!
Stop at this point and think about what we've just built. You may have noticed some
obvious issues that will require some additional work and knowledge of the Spring
Security product before we are production ready. Try to make a list of the changes in
your mind that you think are required before this security implementation is ready
to roll out to the public-facing website.

Setting up the baseline profile of our Spring Security implementation was blindingly
fast, and has provided us with a login page, username and password authentication,
as well as automatic interception of URLs in our online store. However, there are gaps
between what the automatic configuration setup provides and what our end goal is:

We've had to hardcode the username, password, and role information of
the user in the XML configuration file. Do you remember this section of XML
we added:
<authentication-manager alias="authenticationManager">

	 <authentication-provider>

•

Chapter 2

[31]

		 <user-service>
			 <user authorities="ROLE_USER" name="guest"
password="guest"/>
		 </user-service>
	 </authentication-provider>
</authentication-manager>	

You can see that the username and password are right there in the file. It
would be unlikely that we'd want to add a new XML declaration to the file
for every user of the system! To address this, we'll need to replace this with
a database-based authentication provider (we will do this in Chapter 4,
Securing Credential Storage).
We've locked down all pages in the store, including pages that a potential
customer would want to browse anonymously. We'll need to refine the roles
required to accommodate anonymous, authenticated, and administrative
users (this is also covered in Chapter 4).
While the login page is helpful, it's completely generic and doesn't look like
our JBCP Store at all. We should add a login form that's integrated with our
store's look and feel (we'll tackle this in the next chapter).

Common problems
Many users have trouble with the initial implementation of Spring Security in their
application. A few common issues and suggestions are listed next. We want to
ensure you can run the example application and follow along!

Make sure you can build and deploy the application before putting Spring
Security in place. Review some introductory samples and documentation
on your servlet container if needed.
It's usually easiest to use an IDE such as Eclipse to run your servlet container.
Not only deployment is typically seamless, but the console log is also readily
available to review for errors. You can also set breakpoints at strategic
locations, which are triggered on exceptions to better diagnose errors.
If your XML configuration file is incorrect, you will get this (or something
similar to this): org.xml.sax.SAXParseException: cvc-elt.1: Cannot find the
declaration of element 'beans'. It's quite common for users to get confused
with the various XML namespace references required to properly configure
Spring Security. Review the samples again, paying attention to be careful of
line wrapping in the schema declarations, and use an XML validator to verify
that you don't have any malformed XML.
Make sure the versions of Spring and Spring Security that you're using
match, and that there aren't any unexpected Spring JARs remaining as
part of your application.

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Security

[32]

Security is complicated: The architecture
of secured web requests
The three step configuration that we illustrated before was impressively quick to
implement; thanks to the Spring Security's powerful baseline configuration features
and sensible out of the box defaults for authentication, which we enabled through
the presence of the auto-config attribute on the <http> element.

Unfortunately, application implementation concerns, architecture limitations, and
infrastructure integration requirements are likely to complicate your implementation
of Spring Security well beyond what this simple configuration provides. Many
users of Spring Security run into trouble moving beyond the basic configuration, as
they don't understand the architecture of the product and how all the factors work
together to define a cohesive whole.

Comprehending the overall flow of web requests and how they move through
the chain of responsibility is crucial to our success with advanced topics in Spring
Security. Keep in mind the basic concepts of authentication and authorization as
they fit into the overall architecture of our protected system.

How requests are processed?
The Spring Security architecture relies heavily on the use of delegates and
servlet filters to provide layers of functionality around the context of a web
application request.

Chapter 2

[33]

Servlet Filters (classes that implement the javax.servlet.Filter interface) are
used to intercept user requests and perform pre-or post-processing, or redirect
the request altogether, depending on the function of the servlet filter. The final
destination servlet is the Spring MVC dispatcher servlet, in the case of the JBCP
Pets online store, but in theory, it could represent any web servlet. The following
diagram illustrates how a servlet filter wraps a user's web request:

The automatic configuration attribute in the Spring Security XML configuration
file sets up a series of ten servlet filters, which are applied in a sequence through
the use of a Java EE servlet filter chain. The filter chain is a Java EE Servlet API
concept specified by the javax.servlet.FilterChain interface that allows a web
application to direct that a chain of servlet filters should apply to any given request.

Similar to a physical chain made from metal links, each servlet filter represents a link
in the chain of method calls used to process the user's request. Requests travel along
the chain, being processed by each filter in turn.

Getting Started with Spring Security

[34]

As you can infer from the analogy of a chain, servlet requests moving along a filter
chain pass from one filter to the next, in a well-defined order, finally arriving at the
destination servlet. Conversely, after the servlet handles the request and returns a
response, the filter chain call stack unwinds back through all the filters.

Spring Security takes the filter chain concept and implements its own abstraction,
the VirtualFilterChain, which provides the added functionality of allowing a
FilterChain to be dynamically constructed based on URL patterns as specified in the
Spring Security XML configuration (contrast this to the standard Java EE FilterChain,
which is specified based on the web application's deployment descriptor).

Servlet filters can be used for many purposes besides the filtering (or
request blocking) that their name might imply. In fact, many servlet filters
function as a proxy for AOP-style interception of web requests in a web
application runtime environment, as they allow functionality to occur
before and after any web request to the servlet container.
This multipurpose nature of filters is true in Spring Security as well, as
many of the filters do not directly impact the user's request.

The automatic configuration option sets up 10 Spring Security filters for you.
Understanding what these default filters do, and where and how they are
configured, is critical to advanced work with Spring Security.

These filters, and the order in which they are applied, are described in the following
table. Most of these filters will be described again as we proceed through our work
on the JBCP Pets online store, so don't worry if you don't understand exactly what
they do now.

Filter name Description
o.s.s.web.context.
SecurityContextPersistenceFilter

It is responsible for loading and storage
of the SecurityContext from the
SecurityContextRepository. The
SecurityContext represents the user's
secured, authenticated session.

o.s.s.web.authentication.logout.
LogoutFilter

It watches for a request to the virtual URL
specified as the logout URL (by default,
/j_spring_security_logout), and logs
the user out if there is a match.

Chapter 2

[35]

Filter name Description
o.s.s.web.authentication.
UsernamePasswordAuthentication
Filter

It watches for a request to the virtual URL
used for form-based authentication with
username and password (by default,
/j_spring_security_check), and attempts
to authenticate the user if there is a match.

o.s.s.web.authentication.ui.
DefaultLoginPageGeneratingFilter

It watches for a request to the virtual URL used
for form-based or OpenID-based authentication
(by default, /spring_security_login) and
generates HTML used to render a functional
login form.

o.s.s.web.authentication.www.
BasicAuthenticationFilter

It watches for HTTP basic authentication
headers and processes them.

o.s.s.web.savedrequest.
RequestCacheAwareFilter

It is used after a successful login to reconstitute
the user's original request that was intercepted
by an authentication request.

o.s.s.web.servletapi.
SecurityContextHolderAwareRequest
Filter

It wraps the HttpServletRequest with a
subclass (o.s.s.web. servletapi.
SecurityContextHolderAwareRequest
Wrapper) that extends
HttpServletRequestWrapper. This
provides additional context to request
processors further down the filter chain.

o.s.s.web.authentication.
AnonymousAuthenticationFilter

If the user hasn't already been authenticated by
the time this filter is called, an authentication
token is associated with the request indicating
that the user is anonymous.

o.s.s.web.session.
SessionManagementFilter

It handles session tracking based on
authenticated principals, helping to ensure that
all sessions associated with a single principal
are tracked.

o.s.s.web.access.
ExceptionTranslationFilter

This filter handles default routing and
delegation of expected exceptions that occur
during processing of a secured request.

o.s.s.web.access.intercept.
FilterSecurityInterceptor

It facilitates determination of authorization
and access control decisions, delegating
decisions on authorization to an
AccessDecisionManager.

Getting Started with Spring Security

[36]

Spring Security has approximately 25 filters in all that can be conditionally applied
based on your particular needs to tweak the behavior of user requests. Of course,
you can also add your own servlet filters implementing javax.servlet.Filter if
you desire.

Keep in mind that the previous table has a list of servlet filters that are automatically
populated when you have enabled the auto-config attribute in your XML
configuration file. Many of the filters from the list can be explicitly included or
excluded from your configuration through the addition of other configuration
directives, as we will see in later chapters.

You may also configure the filter chain entirely from scratch. Although this is
tedious, as there are many dependencies to wire, it can provide a high level of
flexibility in configuration and application suitability matching. We cover the
Spring Bean declarations required to perform this setup in Chapter 6.

You may wonder how the DelegatingFilterProxy is able to locate the filter
chain that's configured by Spring Security. Recall that we needed to give the
DelegatingFilterProxy a filter name in the web.xml file:

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filterclass>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>

The name of this filter is no coincidence, and in fact is expected for Spring Security
to wire itself to the DelegatingFilterProxy appropriately. Unless explicitly
configured, the DelegatingFilterProxy will look for a configured bean in the
Spring WebApplicationContext of the same name (as specified in the filter-name
element). More detail on the configurability of the DelegatingFilterProxy
is available in the Javadoc for the class.

What does auto-config do behind the scenes?
In Spring Security 3, auto-config is used solely for automatic provisioning
of following three authentication-related functions:

HTTP basic authentication
Form login authentication
Logout

•
•
•

Chapter 2

[37]

Be aware that it is also possible to declare these three pieces of functionality using
configuration elements, with a higher degree of precision than what auto-config
provides. We will see these used in later chapters to provide more advanced
functionality.

auto-config isn't what it used to be!
In releases of Spring Security prior to version 3, the auto-config
attribute performed a lot more of the setup than it does now. Much of the
configuration that was performed by auto-config in Spring Security 2
is simply performed by default, using the security namespace style of
configuration. Please refer to Chapter 13, Migration to Spring Security 3, for
additional details on migration concerns from Spring Security 2 to 3.

Besides these authentication-related functions, the remainder of the filter chain is set
up for you as soon as you use the <http> element!

How users are authenticated?
When a user provides credentials in our login form, these credentials must be
verified against a credential store in order to proceed any further in our secured
system. Verification of the credentials presented involves a series of logical
components that are used to encapsulate aspects of the authentication process.

We'll work through the example of our sample username and password login form,
referring to interfaces and implementations specific to username and password
authentication where appropriate. Keep in mind, however, that the overall architecture
of authentication is the same, whether you are authenticating a form-based login
request, using an external authentication provider such as Central Authentication
Service (CAS), or whether the user credential store is in a database or in an LDAP
directory. We'll see how the concepts we explore in form-based login carry through
to these more advanced authentication mechanisms in the second half of this book.

Getting Started with Spring Security

[38]

The important interfaces related to authentication interact as shown in the following
high-level diagram:

At a high level, you can see that there are three major components that are
responsible for much of the heavy lifting:

Interface name Description / Role
AbstractAuthenticationProcessingFilter It is found in web-based

authentication requests. Processes
the incoming request containing
form POST, SSO information, or
other user-provided credentials.
Creates a partially filled
Authentication object to pass
user credentials along the chain
of responsibility.

Chapter 2

[39]

Interface name Description / Role
AuthenticationManager It is responsible for validating

the user's credentials, and either
throwing specific exceptions (in
case of authentication failure), or
filling out the Authentication
object completely, notably including
authority information.

AuthenticationProvider It is responsible for providing
credential validation to the
AuthenticationManager. Some
AuthenticationProvider
implementations partially base
their acceptance of credentials on a
credential store, such as a database.

Implementations of two important interfaces are instantiated by the participants
in the authentication chain and used to encapsulate details about an authenticated
(or as yet unauthenticated) principal and its authority.

o.s.s.core.Authentication is an interface with which you will interact with
frequently, because it stores details of the user's identifier (for example, username),
credentials (for example, password), and one or more authorities (o.s.s.core.
GrantedAuthority) which the user has been given. A developer will commonly use
the Authentication object to retrieve details about the authenticated user, or in a
custom authentication implementation he/she will augment the Authentication
object with additional application-dependent information.

The following methods are available on the Authentication interface:

Method signature Description
Object getPrincipal() It returns the unique identifier of the principal

(for example, a username).
Object getCredentials() It returns the credentials of the principal.
List<GrantedAuthority>
getAuthorities()

It returns the set of authorities that the principal
has, as determined by the authentication store.

Object getDetails() It returns provider-dependent details about
the principal.

Getting Started with Spring Security

[40]

You'll probably note, with concern, that the Authentication interface has several
methods that simply return java.lang.Object. This can make it quite difficult to
know at compile-time what type of object you are actually getting back from a method
call on the Authentication object.

Take note that AuthenticationProvider isn't directly used or referenced by
the AuthenticationManager interface. However, Spring Security ships with
only one concrete implementation (plus a subclass) of AuthenticationManager,
o.s.s.authentication.ProviderManager, which uses one or more
AuthenticationProvider implementations as described. As the use of
AuthenticationProvider is so prevalent and well-integrated into the
ProviderManager, it's important to review how it works in the most common
scenarios with basic configuration.

Let's get into a little more detail and look specifically at the classes involved in the
processing of a web-based username and password authentication request:

Chapter 2

[41]

Let's take the abstract workflow seen in the high-level diagram and mentally
bring it forward to work through this concrete implementation of form-based
authentication. You can see that the UsernamePasswordAuthenticationFilter
is responsible (through delegation from its abstract superclass) for creating
the UsernamePasswordAuthenticationToken (an implementation of the
Authentication interface), and partially populating it based on information in the
HttpServletRequest. But where does it get the username and password from?

What is spring_security_login and how did we
get here?
You may have noticed that when you attempted to hit the home page of our JBCP
Pets store, you were redirected to the URL http://localhost:8080/JBCPPets/
spring_security_login:

The spring_security_login portion of the URL represents a default login page as
named in the DefaultLoginPageGeneratingFilter class. We can use configuration
attributes to adjust the name of this page to be something unique to our application.

It's a good idea to change the default value of the login page URL.
Not only would the resulting URL be more user- or search-engine
friendly, it'll disguise the fact that you're using Spring Security as your
security implementation. Obscuring Spring Security in this way could
make it harder for malicious hackers to find holes in your site in the
unlikely event that a security hole is discovered in Spring Security.
Although security through obscurity does not reduce your application's
vulnerability, it does make it harder for standardized hacking tools to
determine what types of vulnerabilities you may be susceptible to.
Watch out, though – this isn't the only place where the name "spring" will
show up in the URL! We'll explore this in detail in a later chapter.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Security

[42]

Let's look at the HTML source of this form (stripping out table layout information)
to figure out what the UsernamePasswordAuthenticationFilter is expecting:

<form name='f' action='/JBCPPets/j_spring_security_check'
 method='POST'>
 User:<input type='text' name='j_username' value=''>
 Password:<input type='password' name='j_password'/>
 <input name="submit" type="submit"/>
 <input name="reset" type="reset"/>
</form>

We can see that there are unusual names (j_username and j_password)
assigned to the two form fields for username and password, and the form action
j_spring_security_check isn't something that we've configured at all. Where
do these come from?

The form field names are specified by UsernamePasswordAuthenticationFilter
itself, and take their cue from the Java EE Servlet 2.x specification (in section
SRV.12.5.3), which requires that login forms use these specific field names, plus
the special form action j_security_check. This design pattern was intended to
allow authors of Java EE servlet-based applications to tie into the servlet container's
security configuration in a standard way.

As our application is not utilizing the security component of our host servlet container,
we could explicitly configure the UsernamePasswordAuthenticationFilter to
expect form fields with different names. This particular configuration change is
more complicated than you might expect; so for now, we'll trace back the lineage of
UsernamePasswordAuthenticationFilter to see how it arrived in our configuration
in the first place (although we do cover this configuration in Chapter 6).

The UsernamePasswordAuthenticationFilter is configured through the use of the
<form-login> sub-element of the <http> configuration directive. As we mentioned
earlier in this chapter, the auto-config attribute that we set will automatically add
<form-login> capability to your application if you haven't explicitly included the
directive. As you may guess, the j_spring_security_check URL doesn't map to
anything physical in our application. This is a special URL that is watched for by the
UsernamePasswordAuthenticationFilter to handle form-based login. In fact, there
are several of these special URLs that cover specific global behavior in Spring Security.
You'll find a table of these URLs in Appendix, Additional Reference Material.

Chapter 2

[43]

Where do the user's credentials get validated?
In our simple three-step configuration file, we used an in-memory credential store
to get up and running quickly:

<authentication-manager alias="authenticationManager">
 <authentication-provider>
 <user-service>
 <user authorities="ROLE_USER" name="guest" password="guest"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

We didn't wire this AuthenticationProvider to any explicit implementation,
and we see once again that the security namespace handler performs a lot of
rote configuration work on our behalf. Remember that the default implementation
of the AuthenticationManager supports configuration of one or more
AuthenticationProvider implementations. The <authentication-provider>
declaration will by default instantiate an out of the box implementation known
as o.s.s.authentication.dao.DaoAuthenticationProvider. The declaration
of the <authentication-provider> element will also automatically wire this
AuthenticationProvider to the configured (or, in our case, automatically
configured) AuthenticationManager.

The DaoAuthenticationProvider is an AuthenticationProvider that
provides a thin wrapper to implement the AuthenticationProvider interface
and then delegates to an implementation of the o.s.s.core.userdetails.
UserDetailsService interface. The UserDetailsService is responsible for
returning an implementation of o.s.s.core.userdetails.UserDetails.

If you review the Javadoc for UserDetails, you'll notice that it looks strikingly
similar to the Authentication interface we reviewed earlier. Don't get confused,
although they have a lot of overlap in method names and capabilities, they have
quite different purposes:

Interface Purpose
Authentication It stores the identity of the principal, their password, and

information about the context of the authentication request. It
can also contain post-authentication information about the user
(which may include an instance of UserDetails). Typically not
extended, except to support requirements of specialized types
of authentication.

UserDetails Intended to store a profile of the principal, including their name,
e-mail, phone number, and so on. Typically extended to support
business requirements.

Getting Started with Spring Security

[44]

Our declaration of the <user-service> subelement triggered a configuration of
the o.s.s.core.userdetails.memory.InMemoryDaoImpl implementation of the
UserDetailsService. As you'd anticipate, this implementation stores the users
configured in the XML security configuration file in a memory-resident data store.
The configuration of this service supports other attributes allowing accounts to be
disabled or locked as well.

Let's visually review how the components of the DaoAuthenticationProvider
interact to provide authentication support to the AuthenticationManager:

As you may imagine, authentication is extremely configurable. Most Spring Security
examples use either the in-memory user credentials store or the JDBC (in-database)
credentials store. We've already identified that modifying the JBCP Pets application
to store credentials in the database is a good idea, and we'll be handling this
configuration change a bit later on, in Chapter 4.

When good authentication goes bad?
Spring Security makes smart use of expected (application) exceptions to indicate
conditions whose handling is well-defined. Although you may not directly interact
with these exceptions on a day-to-day basis when working with Spring Security,
knowing about them and why they are thrown can prove to be very useful in
debugging problems, or just understanding the flow of your application.

Chapter 2

[45]

All authentication-related exceptions extend from the base class o.s.s.core.
AuthenticationException. In addition to supporting the standard exception
functionality, AuthenticationException contains two member fields that can
help in debugging failures or reporting helpful messages to our users:

authentication: Stores the Authentication instance associated with the
authentication request
extraInformation: Stores additional information that may be exception
specific. For example, UsernameNotFoundException stores the failed
username in this field.

We've listed some of the most common exceptions in the following table. The full list of
authentication exceptions is provided in Appendix, Additional Reference Material.

Exception class When is it thrown? extraInformation
Content

BadCredentialsException If no username was provided
or if the password didn't
match the username in the
authentication store.

UserDetails

LockedException If the user's account has been
indicated as locked.

UserDetails

UsernameNotFoundException If the username wasn't found
in the authentication store
or if the username has no
GrantedAuthority assigned.

String
(containing the
username)

These exceptions and others propagate up the filter chain, and are typically expected
and handled gracefully by request-processing filters, either by redirecting a user
to an appropriate page (login or access denied), or by returning appropriate HTTP
status codes, such as HTTP 403 (Access Denied).

How requests are authorized?
The final servlet filter in the default Spring Security filter chain,
FilterSecurityInterceptor, is the filter responsible for coming up with a
decision on whether or not a particular request will be accepted or denied. At this
point the FilterSecurityInterceptor filter is invoked, the principal has already
been authenticated, so the system knows that they are valid users. Remember that
the Authentication interface specifies a method (List<GrantedAuthority>
getAuthorities()), which returns a list of authorities for the principal. The
authorization process will use the information from this method to determine,
for a particular request, whether or not the request should be allowed.

•

•

Getting Started with Spring Security

[46]

Remember that authorization is a binary decision—a user either has access
to a secured resource or he does not. There is no ambiguity when it comes
to authorization.

Smart object-oriented design is pervasive within the Spring Security framework,
and authorization decision management is no exception. Recall from our discussion
earlier in the chapter that a component known as the access decision manager is
responsible for making authorization determinations.

In Spring Security, the o.s.s.access.AccessDecisionManager interface specifies
two simple and logical methods that fit sensibly into the processing decision flow
of requests:

supports: This logical operation actually comprises two methods that
allow the AccessDecisionManager implementation to report whether or
not it supports the current request.
decide: This allows the AccessDecisionManager to verify, based on the
request context and security configuration, whether access should be allowed
and the request accepted. decide actually has no return value, and instead
reports denial of a request by throwing an exception to indicate rejection.

Much like the use of AuthenticationException and subclasses that capture
expected error conditions during the authentication process, specific types of
exceptions can further dictate the action to be taken by the application to resolve
authorization decisions. o.s.s.access.AccessDeniedException is the most
common exception thrown in the area of authorization and merits special handling
by the filter chain. We'll review this in detail when we dive into advanced
configuration in Chapter 6.

The implementation of AccessDecisionManager is completely configurable using
standard Spring Bean binding and references. The default AccessDecisionManager
implementation provides an access granting mechanism based on
AccessDecisionVoter and vote aggregation.

A voter is an actor in the authorization sequence whose job is to evaluate any or all
of the following:

The context of the request for a secured resource (such as URL requesting
IP address)
The credentials (if any) presented by the user
The secured resource being accessed
The configuration parameters of the system, and the resource itself

•

•

•

•
•
•

Chapter 2

[47]

The AccessDecisionManager is also responsible for passing the access declaration
(referred to in the code as implementations of the ConfigAttribute interface) of the
resource being requested to the voter. In the case of web URLs, the voter will have
information about the access declaration of the resource. If we look at our very basic
configuration file's URL intercept declaration, we'll see ROLE_USER being declared as
the access configuration for the resource the user is trying to access:

<intercept-url pattern="/*" access="ROLE_USER"/>

Based on the voter's knowledge, it will make a decision about whether the user
should have access to the resource or not. Spring Security allows the voter to
make one of three decisions, whose logical definition is mapped to constants in
the o.s.s.access.AccessDecisionVoter interface:

Decision Type Description
Grant (ACCESS_GRANTED) The voter recommends giving access to the resource.
Deny (ACCESS_DENIED) The voter recommends denying access to the resource.
Abstain (ACCESS_ABSTAIN) The voter abstains (does not make a decision) on access to

the resource. This may happen for a number of reasons,
such as:

The voter doesn't have conclusive information
The voter can't decide for a request of this type

•
•

As you may have guessed from the design of access decision-related objects and
interfaces, this portion of Spring Security has been designed so that it can be
applicable to authentication and access control scenarios that aren't exclusively in
the web domain. We'll encounter voters and access decision managers when we
look at method-level security in Chapter 5, Fine-Grained Access Control.

Getting Started with Spring Security

[48]

When we put this all together, the overall flow of the "default authentication check
for web requests" is similar to the following diagram:

We can see that the abstraction of the ConfigAttribute allows for
data to be passed from the configuration declarations (retained in the
DefaultFilterInvocationSecurityMetadataSource) to the voter responsible
for acting on the ConfigAttribute without any intervening classes needing to
understand the contents of the ConfigAttribute. This separation of concerns
provides a solid foundation for building new types of security declarations (such
as the declarations we will see with method security) while utilizing the same
access decision pattern.

Chapter 2

[49]

Configuration of access decision aggregation
Spring Security does actually allow configuration of the AccessDecisionManager
in the security namespace. The access-decision-manager-ref attribute on the
<http> element allows you to specify a Spring Bean reference to an implementation
of AccessDecisionManager. Spring Security ships with three implementations of
this interface, all in the o.s.s.access.vote package:

Class name Description
AffirmativeBased If any voter grants access, access is immediately granted,

regardless of previous denials.
ConsensusBased The majority vote (grant or deny) governs the decision of the

AccessDecisionManager. Tiebreaking and handling of
empty votes (containing only abstentions) is configurable.

UnanimousBased All Voters must grant access, otherwise access is denied.

Configuring to use a UnanimousBased access
decision manager
If we want to modify our application to use the UnanimousBased access decision
manager, we'd require two modifications. Let's add the access-decision-manager-
ref attribute to the <http> element:

<http auto-config="true"
 access-decision-manager-ref="unanimousBased"
>

This is a standard Spring Bean reference, so this should correspond to the id
attribute of a bean. We'll go on and declare the bean (in dogstore-base.xml)
now, with the same ID we referenced:

<bean class="org.springframework.security.access.vote.UnanimousBased"
 id="unanimousBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 <ref bean="authenticatedVoter"/>
 </list>
 </property>
</bean>
<bean class="org.springframework.security.access.vote.RoleVoter"
id="roleVoter"/>
<bean class="org.springframework.security.access.vote.
AuthenticatedVoter" id="authenticatedVoter"/>

Getting Started with Spring Security

[50]

You may be wondering what the decisionVoters property is about. This property
is auto-configured until we declare our own AccessDecisionManager. The default
AccessDecisionManager requires us to declare the list of voters who are consulted
to arrive at the authentication decisions. The two voters listed here are the defaults
supplied by the security namespace configuration.

Unfortunately, Spring Security doesn't come supplied with a wide variety of voters,
but it is trivial to implement the AccessDecisionVoter interface and add our own
implementation. We'll see an example of this in Chapter 6.

The two voter implementations that we reference here do the following:

Class Name Description Example
o.s.s.access.
vote.RoleVoter

Checks that the user has the
GrantedAuthority matching
the declared role. Expects the
access attribute to define
a comma-delimited list of
GrantedAuthority names. The
ROLE_ prefix is expected, but
optionally configurable.

access="ROLE_
USER,ROLE_
ADMIN"

o.s.s.access.
vote.AuthenticatedVoter

Supports special declarations
allowing wildcard match:

IS_AUTHENTICATED_
FULLY – allows access
if fresh username and
password were supplied
IS_AUTHENTICATED_
REMEMBERED – allows
access if the user has
authenticated with
the remember me
functionality
IS_AUTHENTICATED_
ANONYMOUSLY – allows
access if the user is
anonymous

•

•

•

access=" IS_
AUTHENTICATED_
ANONYMOUSLY"

Chapter 2

[51]

Access configuration using spring expression
language
An alternative method to the standard role-based voting mechanism implemented
by RoleVoter is the use of Spring Expression Language (SpEL) expressions
to define arbitrarily complex rules for voting. The straightforward way to
implement this feature is to add the use-expressions attribute to the <http>
configuration element:

<http auto-config="true"
 use-expressions="true">

This addition will modify the behavior of the access attribute on the URL intercept
rule declarations to expect an SpEL expression. SpEL expressions allow for the use of
expression language specifications of access criteria. Instead of simple strings such as
ROLE_USER, the configuration file can specify expressions that invoke method calls,
reference system properties, compute values, and much more.

The SpEL syntax will look familiar to users of other expression-type languages, such
as Object Graph Notation Language (OGNL) used in the Tapestry framework,
among others), and JSP or JSF Unified Expression Language (used in JSP and/or
JSF development). The syntax is comprehensive enough, so covering the whole
language is quite beyond the scope of this book; however, we'll work through
several examples that should provide you with some concrete help in
constructing expressions.

An important point to note is that if you enable the SpEL expression-based access
specifications by setting the use-expressions attribute, you will disable the
automatic configuration of the RoleVoter, which understands declarations
of roles, like we saw in our simple configuration:

<intercept-url pattern="/*" access="ROLE_USER"/>

This means that your access declarations must change if you want to filter access
solely by role. Fortunately, this was anticipated, and an SpEL-bound method
hasRole is available to check roles. If we rewrote our sample configuration file
to use expressions, it would look like this:

<http auto-config="true" use-expressions="true">
 <intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>
</http>

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Security

[52]

As you might expect, the SpEL handling is supplied by a different Voter
implementation, o.s.s.web.access.expression.WebExpressionVoter,
which understands how to evaluate the SpEL expressions. The
WebExpressionVoter relies on an implementation of the o.s.s.web.access.
expression.WebSecurityExpressionHandler interface for this purpose. The
WebSecurityExpressionHandler is responsible both for evaluating the expressions,
as well as supplying the security-specific methods that are referenced in the
expressions. The default implementation of this interface exposes methods defined
in the o.s.s.web.access.expression.WebSecurityExpressionRoot class.

The flow and relationship between these classes is shown in the following diagram:

Methods and pseudo-properties for SpEL access expressions are declared by
the public methods provided by the WebSecurityExpessionRoot class, and
its superclasses.

A pseudo-property is a method that takes no parameters and
complies with JavaBeans naming convention for getters. This allows
the SpEL expression to omit the parentheses and is or get prefix
on the method. For example, the method isAnonymous() can be
accessed as the pseudo-property anonymous.

Chapter 2

[53]

The available SpEL methods and pseudo-properties which ship with
Spring Security 3 are shown in the following tables. Note that methods and
properties not marked as "web only" are available for use when securing other types
of resources that utilize SpEL, such as method calls. The examples provided illustrate
the use of the method or property in an <intercept-url> access declaration.

Method Web
only?

Description Example

hasIpAddress
(ipAddress)

Yes Used to match the IP
address of the request
to either a specific
IP address, or an IP
address plus netmask.

access="hasIpAddress('
162.79.8.30')"

access="hasIpAddress('
162.0.0.0/224')"

hasRole(role) No Used to match
a role with a
GrantedAuthority
(similar to RoleVoter
declaration).

access="hasRole('ROLE_
USER')"

hasAnyRole(role) No Used to match
from a list of roles
with the user's
GrantedAuthority.
Users matching any
of the roles will be
granted access.

access="hasRole('ROLE_
USER','ROLE_ADMIN')"

In addition to the methods in the previous table, a series of methods are provided
that can act as properties in the SpEL expressions. These do not require parentheses
or method arguments.

Property Web
only?

Description Example

permitAll No Always grants
access to any
user.

access="permitAll"

denyAll No Always denies
access to any
user.

access="denyAll"

anonymous No Indicates if
the user is
anonymous.

access="anonymous"

Getting Started with Spring Security

[54]

Property Web
only?

Description Example

authenticated No It indicates
if the user
has been
authenticated.

access="authenticated"

rememberMe No It indicates
if the user
has been
authenticated
with the
remember me
feature.

access="rememberMe"

fullyAuthenticated No It indicates
if the user
has been
authenticated
with a full set
of credentials
during this
request.

access="fullyAuthenticated"

Remember that voter implementations must return a voting decision (grant, deny, or
abstain) based on the context of the request. You may note that hasRole sounds like
it returns a Boolean response, and in fact this is true. SpEL-based access declarations
must consist only of expressions which return a Boolean result. A true result means
that the voter grants access, and a false result means that the voter denies access.

If you try to return an expression that doesn't evaluate to a Boolean, you'll
get an unfriendly exception with a message like this:
org.springframework.expression.spel.SpelException:
EL1001E:Type conversion problem, cannot convert from
class java.lang.Integer to java.lang.Boolean

In addition, it is not possible for an expression to return a result indicating
abstention, unless the access declaration is not a valid SpEL expression, in
which case the voter will abstain from voting.

If you don't mind these minor limitations, SpEL based access declarations can
provide a flexible method of configuring access decisions.

Chapter 2

[55]

Summary
This chapter provided us with a solid introduction to the twin security concepts of
authentication and authorization. We've:

Explored the high-level architecture of our secured system
Used the automatic configuration functionality of Spring Security to secure
the JBCP Pets website in three steps
Reviewed the use and importance of servlet filters in Spring Security
Examined the key actors in the authentication and authorization
processes, including detailed introductions to important objects such as
Authentication and UserDetails
Performed some configuration to experiment with the SpEL expression
language as it relates to specification of access rules

In the next chapter, we'll take the basic username and password authentication to the
next level by adding some key features to better integrate the user experience with
the flow of the website.

•
•

•
•

•

Enhancing the User
Experience

In this chapter, we'll add functionality to the JBCP Pets store to provide our users
with a more pleasant and usable experience while enhancing the website to
support many important behaviors of a secure website.

During the course of this chapter, we'll:

Customize the login and logout pages to your liking, and tie them into
standard Spring web MVC controllers
Enable remember me functionality for user convenience and understand
its security implications
Build user account management features, including change password and
forgot password functionality

Customizing the login page
You'll recall that in the previous chapter, we used the baseline security namespace
configuration functionality of Spring Security. While this provided us with very basic
login, authentication, and authorization, it's definitely not production ready. One of
the most obvious enhancements we need to make before we show off our progress
to our boss is to make the default login page look and act like the rest of our
online store.

•

•

•

Enhancing the User Experience

[58]

Recall that the login page currently is similar to the following screenshot:

The automatic configuration didn't provide us with some other important features
including the styled login page. We decide to add the following features to the site:

A login page that has the header, footer, and look-and-feel of the rest of the
JBCP Pets site
A link that allows the user to log out
A page that allows the user to change his or her password

The flow of the login and logout functionality should be similar to the following
diagram when we're done:

We'll work our way through developing this site structure through a series of
exercises. As we work through the development of true login and logout functionality,
we'll explain and explore what we're doing, so that when the time comes to extend the
basic functionality of the site, we'll have a clear understanding of what we're building!

•

•
•

Chapter 3

[59]

Implementing a custom login page
At first, we'll need to replace the default Spring Security login page with a login page
that integrates into our online store. The desired login flow should be as follows:

Implementing the login controller
We'll need to add a new Spring MVC controller to handle first the login and then
the logout functionality. The JBCP Pets site uses the Spring MVC annotation-
based mechanism for configuration of controllers and website paths and resources.
Let's create a controller called LoginLogoutController in com.packtpub.
springsecurity.web.controller with the following content:

// imports omitted
@Controller
public class LoginLogoutController extends BaseController{
	 @RequestMapping(method=RequestMethod.GET,value="/login.do")
	 public void home() {
	 }	
}

As you can see, we've added a very simple controller, and mapped its single
method to the URL, that is, /login.do. This is all we need for now to build the
baseline login page under our control, instead of the default Spring Security baseline
login page that the baseline configuration gives us. The BaseController super class
already exists from our work in Chapter 2, Getting Started with Spring Security, and
provides a convenient place to put methods that can be used from every controller
in the application.

Enhancing the User Experience

[60]

Adding the login JSP
The /login.do reference will cause the Spring MVC view resolver that we've
configured in WEB-INF/dogstore-servlet.xml to look for a JSP called
login.jsp in /WEB-INF/views. Let's add a simple JSP with a login form that
will be recognized by Spring Security. Remember that we learned in Chapter 2 that
there are 2 important elements of the login form that must be correct in order for the
appropriate actions to occur:

The form action must match the action configured in the
UsernamePasswordAuthenticationFilter servlet filter. By default,
this form action is j_spring_security_check.
The form fields for username and password must match the servlet
specifications. By default j_username and j_password are the form
field names.

We'll also tie the JSP in to the sitewide header and footer includes (we've included
these with the sample code for this chapter, but omitted them from the text, as they
aren't pertinent for now). All this leaves us with a fairly simple JSP:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<jsp:include page="common/header.jsp">
 <jsp:param name="pageTitle" value="Login"/>
</jsp:include>

<h1>Please Log In to Your Account</h1>
<p>
 Please use the form below to log in to your account.
</p>
<form action="j_spring_security_check" method="post">
 <label for="j_username">Login</label>:
 <input id="j_username" name="j_username" size="20" maxlength="50"
type="text"/>

 <label for="j_password">Password</label>:
 <input id="j_password" name="j_password" size="20" maxlength="50"
type="password"/>

 <input type="submit" value="Login"/>
</form>

<jsp:include page="common/footer.jsp"/>

Be aware that you must use a form POST, otherwise the login request will be rejected
by the UsernamePasswordAuthenticationFilter.

•

•

Chapter 3

[61]

Finally, we'll need to modify the automatic configuration settings of Spring Security
to refer to our new login page. If you're feeling adventurous at this point, we actually
have added a new, working page to our application. Try following along up to this
point and hitting the URL http://localhost:8080/JBCPPets/login.do to see
what happens.

What happened? Did you notice that your request was first intercepted by Spring
Security (redirected to spring_security_login), and then you saw the form? This
is because Spring Security still refers to the default login page generated by the
DefaultLoginPageGeneratingFilter class. Once you get past the default login
page generated by this filter, you'll be presented with your new, customized login
page. The final step is to remove the default page, and use our login form as the
login page.

Configuring Spring Security to use our Spring MVC
login page
On first glance, it seems like all we'd need to do is configure the <form-login>
element in the Spring Security configuration file to add the login-page directive,
similar to the following:

 <http auto-config="true" use-expressions="true">
 <intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>
 <form-login login-page="/login.do" />
 </http>

Now try starting up the application and hitting the home page (http://
localhost:8080/JBCPPets/home.do). If you're using Internet Explorer, you'll
notice that the page never renders at all, but the browser simply spins and spins.
Let's switch to Mozilla Firefox and try the same URL. With Firefox, you'll get more
information as to what's going on:

Enhancing the User Experience

[62]

The problem here is our rule for URL interception:

<intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>

This will require the user to have ROLE_USER to access any page matching the URL
/*—this matches every page in the application, including our new login page!

The following diagram illustrates what's happening:

We'll need to update our authorization rule set to allow anonymous users to access
our login page.

For any given URL request, Spring Security evaluates authorization
rules in top to bottom order. The first rule matching the URL pattern
will be applied. Typically, this means that your authorization rules
will be ordered starting from most-specific to least-specific order. It's
important to remember this when developing complicated rule sets, as
developers can often get confused over which authorization rule takes
effect. Just remember the top to bottom order, and you can easily find
the correct rule in any scenario!

Chapter 3

[63]

As we're adding a more specific rule, we'll put it at the top of the list. We'll end up
with the following rule set:

<intercept-url pattern="/login.do" access="permitAll"/>
<intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>

This will result in the behavior we want, enabling any user to access the login page,
while still restricting the rest of the site to authenticated users only. We're done
exploring login for now. Let's look at what we need to do to add logout functionality.

Understanding logout functionality
Logout is the term for a user-initiated action that results in the user's secure session
being invalidated. Typically, the user will also be redirected to a non-secured area of
the site after they have chosen to log out. Let's add a Log Out link to the site header,
and again browse to the site to explore how and why it works after we're done.

Adding a Log Out link to the site header
As we discussed in Chapter 2, Spring Security is aware of several special URLs that
serve as watch points for behavior to be triggered in one or more servlet filters in the
filter chain. The signature URL for logging the user out is /j_spring_security_
logout. Adding a logout link is really as simple as putting an anchor tag with the
appropriate href in the header.jsp file:

<c:url value="/j_spring_security_logout" var="logoutUrl"/>
Log Out

If you reload the site and click the Log Out link, you will find that you'll be back at
the login form. Have fun logging in and logging out for a while!

Using the JSTL URL tag to handle relative URLs
We use the JSTL core library's url tag to ensure that URLs we
provide resolve correctly in the context of our deployed web
application. The url tag will resolve URLs provided as relative URLs
(starting with a /) to the root of the web application. You may have
seen other techniques to do this using JSP expression code
(<%= request.getContextPath() %>), but the JSTL url tag
allows you to avoid inline code!

Let's see what's happening behind the scenes of this very simple operation.

Enhancing the User Experience

[64]

How logout works
What really happened when we clicked on the Log Out link?

Remember that every request for a URL goes through the entire Spring Security filter
chain, before being resolved to a servlet request. So, although the URL request for
/j_spring_security_logout doesn't correspond to a JSP in our system, it doesn't
have to be a real JSP or Spring MVC destination in order to be handled. These types
of URLs are often referred to as virtual URLs.

The URL request for /j_spring_security_logout is intercepted by the
o.s.s.web.authentication.logout.LogoutFilter. One of the many filters in
the default Spring Security filter chain, the LogoutFilter looks for this particular
virtual URL and takes action.

Let's quickly examine the configuration that the security namespace provides us
with regards to default logout functionality:

<http auto-config="true" use-expressions="true">
 <logout invalidate-session="true"
 logout-success-url="/"
 logout-url="/j_spring_security_logout"/>
</http>

This baseline configuration will look for the logout URL specified in the logout-url
attribute and log the user out. Logging the user out involves the following 3 steps:

1.	 Invalidating the HTTP session (if invalidate-session is set to true).
2.	 Clearing the SecurityContext (effectively logging the user out).
3.	 Redirecting to the URL specified in logout-success-url.

Chapter 3

[65]

The following diagram illustrates how the logout process works:

o.s.s.web.authentication.logout.LogoutHandler is an interface whose
implementation classes can be invoked upon user logout by the LogoutFilter. It
is possible (although complex) to implement your own LogoutHandler that will
be tied into the LogoutFilter lifecycle. The default set of LogoutHandlers that
are configured with the LogoutFilter are responsible for clearing the session and
cleaning up the remember me feature so that the user's session is now operating
with no remaining authentication associated. Finally, the redirection to a URL
after logout is performed by a default implementation of the interface o.s.s.web.
authentication.logout.LogoutSuccessHandler. This default implementation
simply redirects to the success URL configured (the default is /), but can be updated
to perform anything else that your application needs to be done after the user is
logged out. It is important to note that logout handlers should not throw exceptions,
as it's important for all of them to execute to avoid potential inconsistency in the
user's secured session. Take care that exceptions are properly handled and logged
when implementing your own logout handlers.

Enhancing the User Experience

[66]

Changing the logout URL
Let's test overriding the default logout URL to provide a simple example of
modifying the automatically configured behavior. We'll change the logout
URL to /logout.

Modify the dogstore-security.xml file to contain the <logout> element similar
to the following code:

<http auto-config="true" use-expressions="true">
...
..<logout invalidate-session="true"
 logout-success-url="/"
 logout-url="/logout"/>
</http>

Modify the /common/header.jsp file to change the logout link's href attribute
to match the new URL:

<c:url value="/logout" var="logoutUrl"/>
Log Out

Restart the application and try it out! You'll observe that instead of /j_spring_
security_logout, the /logout URL will be used to log the user out. You may also
notice that if you try /j_spring_security_logout, you'll get a Page not Found
(404) error, because the URL doesn't correspond to an actual servlet resource and is
no longer handled by a request filter.

Logout configuration directives
The <logout> element contains additional configuration directives that allow for
more sophisticated logout functionalities that are explained in the following table:

Attribute Description
invalidate-session If true, the user's HTTP session will be invalidated when

they log out. In some cases, this isn't desired (for example,
when a user has a shopping cart).

logout-success-url The URL to which the user will be redirected when
they log out. Defaults to /. This is handled as a
HttpServletResponse.redirect.

logout-url The URL that the LogoutFilter reads (we changed this
in the exercise).

success-handler-ref A bean reference to an implementation of
LogoutSuccessHandler.

Chapter 3

[67]

Remember me
A convenient feature to offer frequent users of the website is a remember me feature.
This feature allows a returning user to be remembered through a simple cookie,
encrypted and stored on the user's browser. If Spring Security recognizes that the
user is presenting a remember me cookie, the user will be automatically logged in
to the application, and will not need to enter a username or password.

Unlike the other features we've discussed up to this point, the remember me
feature is not automatically configured when we utilize the security namespace
style of configuration. Let's try out this feature and see how it affects the flow of
the login experience.

Implementing the remember me option
Completing this exercise will allow us to provide a simple user memory functionality
to the pet store.

Modify the dogstore-security.xml configuration file to add the <remember-me>
declaration. Set the key attribute to jbcpPetStore:

<http auto-config="true" use-expressions="true" access-decision-
manager-ref="affirmativeBased">
…
 <remember-me key="jbcpPetStore"/>
 <logout invalidate-session="true" logout-success-url="/" logout-
url="/logout"/>
 </http>

If we try the application now, we'll see nothing different in the flow. This is because
we also need to add a field to the login form allowing the user to opt in to this
functionality. Edit the login.jsp file to add a checkbox similar to the following:

<input id="j_username" name="j_username" size="20" maxlength="50"
type="text"/>

<input id="_spring_security_remember_me" name="_spring_security_
remember_me" type="checkbox" value="true"/>
<label for="_spring_security_remember_me">Remember Me?</label>

<label for="j_password">Password</label>:

When we next log in, if the Remember Me box is checked, a remember me cookie
is set in the user's browser.

Enhancing the User Experience

[68]

If the user then closes their browser and reopens it to an authenticated page on the
JBCP Pets website, they won't be presented with the login page again. Try it yourself
now—log in with the Remember Me option checked, bookmark the home page,
then restart the browser and access the home page again. You'll see that you're
immediately logged in successfully without needing to supply credentials again.

Sophisticated users wishing to exercise this functionality can also use browser
plug-ins to manipulate (remove) session cookies, such as Firecookie (http://www.
softwareishard.com/blog/firecookie/). This can often save time and annoyance
during development and verification of this type of feature on your site.

How remember me works
The remember me feature sets a cookie on the user's browser containing a Base64
encoded string with the following pieces:

The user's username
An expiration date/time
An MD5 hash of the expiration date/time, username, and password
The application key defined in the key attribute of the <remember-me> element

These bits are combined into a single cookie value that is stored on the browser
for later use.

MD5 is one of several well-known cryptographic hash algorithms. Cryptographic
hash algorithms compute a compact and unique text representation of input data
with arbitrary length, called a digest. This digest can be used at other times to verify
that unknown input precisely matches the input used to generate the hash, without
requiring the availability of the original input. The following diagram illustrates how
this works:

•
•
•
•

Chapter 3

[69]

As you can see, the unknown input can be verified against the stored MD5 hash, and
the conclusion can be drawn that the unknown input matches the known input. A
key difference between digest and encryption algorithms is that it is very difficult to
reverse engineer the original data from the digest value. This is because the digest
represents only a summary, or fingerprint, of the original data, and not the entire
data itself (which may be quite large).

Although it is impossible to decode the encrypted data, MD5 is vulnerable to
several types of attacks, including the exploit of weaknesses in the algorithm itself
and rainbow table attacks. Rainbow tables typically contain the pre-computed
hashes of millions of input values. This allows attackers to look for the hash
value in the rainbow table and determine the actual (unhashed) value. We'll see a
method of combating this in Chapter 4, Securing Credential Storage, when we review
password security.

With regards to remember me cookies, we'll see when we review the composition of
the remember me cookie that the cookie ingredients are complex enough that it would
be somewhat hard for an attacker to create a hacked cookie. In Chapter 4, we'll learn
another technique to further secure remember me itself from malicious attackers.

The cookie expires based on an expiration period of configurable length. If the user
revisits our site before the cookie expires, the cookie is presented to the application
as with any other cookie which the application has set.

In the case of the remember me cookie, the o.s.s.web.authentication.
rememberme.RememberMeAuthenticationFilter inserted into the filter chain
by the <remember-me> configuration directive will review the contents of the
cookie and use it to authenticate the user if it seems to be an authentic remember
me cookie (see the Is remember me secure? section later in this chapter for reasons why
this is done).

Enhancing the User Experience

[70]

The following diagram illustrates the different components involved in the process
of validating a remember me cookie:

The RememberMeAuthenticationFilter is inserted into the filter chain just
after the SecurityContextHolderAwareRequestFilter, and just before the
AnonymousProcessingFilter. Just as the other filters in the chain do, the
RememberMeAuthenticationFilter will also inspect the request, and if it is
of interest, action is taken.

As the diagram indicates, the filter is responsible for investigating if the user's
browser has supplied a remember me cookie as part of their request. If a remember
me cookie is found, it is Base64 decoded, and the expected MD5 hash is calculated
based on the username and password presented in the cookie. Once the cookie
passes this level of validation, the user has been logged in.

Chapter 3

[71]

You have anticipated that if the user changes their username or
password, any remember me tokens set will no longer be valid.
Make sure that you provide appropriate messaging to users if you
allow them to change these bits of their account. In Chapter 4, we
will look at an alternative remember me implementation that is
reliant only on the username and not on the password.

We see that the RememberMeAuthenticationFilter relies on an implementation of
o.s.s.web.authentication.RememberMeServices to validate the cookie. The same
implementation class is also used upon successful form-based login, if it sees a form
parameter come along with a login request that has the name _spring_security_
remember_me. The cookie is securely encoded with information as described earlier,
being stored on the browser in Base64 encoding, and containing an MD5 hash
including a timestamp and the user's password.

Note that it is still possible to differentiate between users who have been
authenticated with a remember me cookie and users who have presented username
and password (or equivalent) credentials. We'll experiment with this shortly when
we investigate the security of the remember me feature.

Remember me and the user lifecycle
The implementation of RememberMeServices is invoked at several points in the
user lifecycle (the lifecycle of an authenticated user's session). To assist in your
understanding of the remember me functionality, it can be helpful to be aware of
the points in time when remember me services are informed of lifecycle functions:

Action What should happen?
Successful login Implementation sets a remember me cookie (if the form parameter

has been sent).
Failed login Implementation should cancel the cookie, if it's present.
User logout Implementation should cancel the cookie, if it's present.

Knowing where and how RememberMeServices ties in to the user lifecycle will be
important when we begin to create custom authentication handlers, because we
need to ensure that any authentication processor treats the RememberMeServices
consistently, to preserve the usefulness and security of this functionality.

Enhancing the User Experience

[72]

Remember me configuration directives
Two configuration changes are commonly made to alter the default behavior of the
remember me functionality:

Attribute Description
Key Defines a unique key for remember me cookies

associated with our application.
token-validity-seconds Defines the length of time (in seconds). The remember

me cookie will be considered valid for authentication.
Also used to set the cookie expiration timestamp.

As you may infer from the discussion of how the cookie contents are hashed, the key
attribute is critical to security of the remember me feature. Make sure that the key
you choose is likely to be unique to your application, and long enough so that it can't
be easily guessed.

Keeping in mind the purpose of this book, we've kept the key values relatively
simple, but if you're using remember me in your own application, it's suggested that
your key contains the unique name of your application and is at least 36 random
characters long. Password generator tools (Search Google for "online password
generator") are a great way to get a pseudo-random mix of alphanumeric and
special characters to compose your remember me key.

Keep in mind that for applications that exist in multiple environments (such as
development, test, production), the remember me cookie value should include this
fact as well. This will prevent remember me cookies from inadvertently being used
in the wrong environment during testing!

An example key value in a production application might is as shown:

jbcpPets-rmkey-paLLwApsifs24THosE62scabWow78PEaCh99Jus

The token-validity-seconds attribute is used to set the number of seconds after
which the remember me token will not be accepted for the automatic login function,
even if it is otherwise a valid token. The same attribute is also used to set the
maximum lifetime of the login cookie on the user's browser.

Chapter 3

[73]

Configuration of remember me session cookies
If token-validity-seconds is set to -1, the login cookie will be
set to a session cookie, which does not persist after the user closes
their browser. The token will be valid (assuming the user doesn't close
their browser) for a non-configurable length of 2 weeks. Don't confuse
this with the cookie that stores your user's session ID—they're two
different things with similar names!

There are several other configuration directives related to advanced customization
of the remember me functionality. We'll cover some of these in the next set of
exercises, and others in Chapter 6, Advanced Configuration and Extension, when
we deal with advanced authorization techniques.

Is remember me secure?
Any feature related to security that has been added for user convenience has the
potential to expose a security risk to our carefully protected site. The remember me
feature, in its default form, runs the risk of the user's cookie being intercepted and
reused by a malicious user. The following diagram illustrates how this might happen:

Use of SSL (covered in Chapter 4) and other network security techniques can
mitigate this type of attack, but be aware that there are other techniques such as
cross-site scripting (XSS) that could steal or compromise a remembered user
session. While convenient for the user, we don't want to risk financial or other
personal information being inadvertently changed or possibly stolen if the
remembered session is misused.

Enhancing the User Experience

[74]

Although we don't cover malicious user behavior in detail in this book,
when implementing any secured system it is important to understand
the techniques employed by users who may be trying to hack your
customers or employees. XSS is one such technique, but many others
exist. It's highly recommended that you review the OWASP Top
Ten (http://www.owasp.org/index.php/Category:OWASP_
Top_Ten_Project) for a good starting list, and also pick up a web
application security reference book, where many of the techniques
demonstrated are illustrated to apply to any technology.

One common approach for maintaining the balance between convenience and
security is identifying the functional locations in the site where personal or
sensitive information could be present. Ensure these locations are protected
using authorization that checks not just the user's role, but that they have been
authenticated with a full username and password. This can be done using the
fullyAuthenticated pseudo-property supported by the SpEL expressions for
authorization rules, which we covered in Chapter 2.

Authorization rules differentiating remembered and
fully authenticated sessions
We'll fully explore advanced authorization techniques later in Chapter 5, Fine-Grained
Access Control, however, it's important to realize that it's possible to differentiate
access rules based on whether an authenticated session was remembered.

Let's assume that the user may look at and modify their "wish list" on the site when
they come in with a remembered session. This is similar to behavior found in other
major consumer-focused commerce sites, and doesn't present a risk to personally
identifiable or financial information (keep in mind that every site is different, and
don't blindly apply such rules to your secure site!). Instead, we'll concentrate on
protecting user account and ordering functionality. We want to ensure that even
remembered users who try to access account information, or place an order, are
required to authenticate themselves. Here's how we'd set up the authorization rules:

<intercept-url pattern="/login.do" access="permitAll"/>
<intercept-url pattern="/account/*.do"
 access="hasRole('ROLE_USER') and fullyAuthenticated"/>
<intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>

Chapter 3

[75]

The existing rules for the login page and ROLE_USER remain unchanged. We've
added a rule that requires requests for account information to have the appropriate
GrantedAuthority of ROLE_USER, and that the user is fully authenticated, that is,
during this authenticated session, they have actually presented a username and
password or other suitable credentials. Note the syntax of SpEL logical operators
here—and, or, and not are used for logical operators in SpEL. This was thoughtful
of the SpEL designers, as the && operator would be awkward to represent in XML!

Keep in mind that if you try this, you'll receive a 403 Access Forbidden message
if you try to access the My Account link after using remember me to log in, which
we've now suitably protected. This is because the application is still configured with
the default AccessDeniedHandler, that is responsible for catching and responding
to AccessDeniedException reports. We'll customize this behavior in Chapter 6,
when we learn how AccessDeniedException is handled.

Checking Full Authentication without Expressions
If your application does not use SpEL expressions for access declarations,
you can still check if the user is fully authenticated by using the IS_
AUTHENTICATED_FULLY access rule (For example,. access=" IS_
AUTHENTICATED_FULLY"). Be aware, however, that standard role access
declarations aren't as expressive as SpEL ones, so you will have trouble
handling complex boolean expressions.

Error handling not withstanding, you can see that this approach combines the
usability enhancements of the remember me feature with additional level of security
requiring a user to present a full set of credentials to access sensitive information.

Building an IP-aware remember me service
One way to make remember me more secure would be to tie the user's IP address
in to the cookie content. Let's walk through an example of how we would build our
own RememberMeServices implementation to do just this.

The basic approach for this implementation is to extend the o.s.s.web.
authentication.rememberme.TokenBasedRememberMeServices base class and
extend it to allow for the addition of the requestor's IP address to both the cookie
itself, and to the MD5 hash of the other remember me factors.

Extending the base class will involve overriding two key methods, and overriding
or implementing some very minor helper methods. One other twist is that we'll
have to temporarily store the HttpServletRequest (which we use to get the user's
IP address) into a ThreadLocal, as some of the base class methods don't take
HttpServletRequest as a parameter.

Enhancing the User Experience

[76]

Extending TokenBasedRememberMeServices
First, we'll extend the TokenBasedRememberMeServices class and override
specific behavior of the parent. Although the parent is override-friendly, there
are some key bits of program flow that we'd prefer not to duplicate, so we'll make
this class concise at the expense of being a little bit odd. Create the class in the
com.packtpub.springsecurity.security package:

public class IPTokenBasedRememberMeServices extends
 TokenBasedRememberMeServices {

Some simple utility methods are used to set and get a ThreadLocal
HttpServletRequest:

private static final ThreadLocal<HttpServletRequest> requestHolder =
new ThreadLocal<HttpServletRequest>();

public HttpServletRequest getContext() {
 return requestHolder.get();
}
public void setContext(HttpServletRequest context) {
 requestHolder.set(context);
}

We'll also add a utility method to get the IP address from the HttpServletRequest:

protected String getUserIPAddress(HttpServletRequest request) {
	 return request.getRemoteAddr();
}

The first interesting method that we'll override is onLoginSuccess, which is used
to set the cookie value for the remember me processor. In this method, we simply
need to set the ThreadLocal and clear it after we're done. Keep in mind the parent
method's flow—to aggregate all the information about the user's authenticated
request and synthesize that into a cookie.

@Override
public void onLoginSuccess(HttpServletRequest request,
 HttpServletResponse response,
 Authentication successfulAuthentication) {
 try
 {
 setContext(request);
 super.onLoginSuccess(request, response, successfulAuthentication);
 }
 finally
 {

Chapter 3

[77]

 setContext(null);
 }
}

The onLoginSuccess method of the parent class invokes makeTokenSignature
that is used to create the MD5 hash of the authentication credentials. We'll override
this to take the IP address from the request, and encode the returned cookie using a
utility class from the Spring framework:

@Override
protected String makeTokenSignature(long tokenExpiryTime,
 String username, String password) {
 return DigestUtils.md5DigestAsHex((username + ":" +
tokenExpiryTime + ":" + password + ":" + getKey() + ":" + getUserIPAdd
ress(getContext())).getBytes());
}

Similarly, we'll override the setCookie method to add an additional encoded bit that
includes the requesting IP address:

@Override
protected void setCookie(String[] tokens, int maxAge,
 HttpServletRequest request, HttpServletResponse response) {
 // append the IP adddress to the cookie
 String[] tokensWithIPAddress =
 Arrays.copyOf(tokens, tokens.length+1);
 tokensWithIPAddress[tokensWithIPAddress.length-1] =
 getUserIPAddress(request);
 super.setCookie(tokensWithIPAddress, maxAge,
 request, response);
}

This gives us all the pieces we need to set up the new cookie!

Finally, we'll override the processAutoLoginCookie method, which is used
to validate the contents of the remember me cookie that the user provided. The
superclass does most of the interesting work for us; however, due to the verbosity
of the parent method, we've made the choice to check the IP address before calling
the parent.

@Override
protected UserDetails processAutoLoginCookie(
 String[] cookieTokens,
 HttpServletRequest request, HttpServletResponse response)
{
 try

Enhancing the User Experience

[78]

 {
 setContext(request);
 // take off the last token
 String ipAddressToken =
 cookieTokens[cookieTokens.length-1];
 if(!getUserIPAddress(request).equals(ipAddressToken))
 {
 throw new InvalidCookieException("Cookie IP Address did not
contain a matching IP (contained '" + ipAddressToken + "')");
 }

 return super.processAutoLoginCookie(Arrays.copyOf(cookieTokens,
cookieTokens.length-1), request, response);
 }
 finally
 {
 setContext(null);
 }
}

Our code for the custom RememberMeServices is complete! Now we'll have to
perform some minor configuration. Note that the full source code for this class
(with additional comments) is included with the source for this chapter.

Configuring the custom RememberMeServices
Configuring the custom RememberMeServices implementation requires two steps.
The first is to modify the dogstore-base.xml Spring configuration file to add a new
Spring Bean definition for the class we just completed:

<bean class="com.packtpub.springsecurity.security.
IPTokenBasedRememberMeServices" id="ipTokenBasedRememberMeServicesBea
n">
 <property name="key"><value>jbcpPetStore</value></property>
 <property name="userDetailsService" ref="userService"/>
</bean>

The second minor set of changes is in the Spring Security XML configuration file.
Modify the <remember-me> element to reference our custom Spring Bean as follows:

<remember-me key="jbcpPetStore"
 services-ref="ipTokenBasedRememberMeServicesBean"/>

Finally, add an id attribute to the <user-service> declaration, if it's not
already there:

<user-service
 id="userService">

Chapter 3

[79]

Restart the web application, and you should see the new IP filtering functionality
take effect!

As the remember me cookie is Base64 encoded, we can verify our new addition by
retrieving the value of the cookie and decoding it using a Base64 decoder tool.
When we do this, we see a cookie named SPRING_SECURITY_REMEMBER_ME_COOKIE
with content similar to the following:

guest:1251695034322:776f8ad44034f77d13218a5c431b7b34:127.0.0.1

You can see the IP address right at the end of the cookie, as we had expected. You'll
also see the username, timestamp, and MD5 hash, respectively, prior to the newly
added IP address.

Debugging remember me cookies
There are two difficulties when attempting to debug issues with remember
me cookies. The first is getting the cookie value at all! Spring Security
doesn't offer any log level that will log the cookie value that was set. We'd
suggest a browser-based tool such as Chris Pederick's Web Developer
plug-in (http://chrispederick.com/work/web-developer/) for
Mozilla Firefox. Browser-based development tools typically allow selective
examination (and even editing) of cookie values. The second (admittedly
minor) difficulty is decoding the cookie value. You can feed the cookie
value into an online or offline Base64 decoder (remember to add a
trailing = sign to make it a valid Base64-encoded string!)

Note that IP-based remember me tokens may behave unexpectedly if the user is
behind a shared or load balanced network infrastructure, such as a multi-WAN
corporate environment. In most scenarios, however, the addition of an IP address
to the remember me function provides an additional, welcome layer of security
to a helpful user feature.

Customizing the remember me signature
Curious users may wonder if the expected value of the remember me form field
checkbox, _spring_security_remember_me, or the cookie name, SPRING_SECURITY_
REMEMBER_ME_COOKIE, can be changed, to obscure the use of Spring Security. While the
<remember-me> declaration does not allow this flexibility, now that we've declared our
own RememberMeServices implementation as a Spring Bean, we can simply define
more properties to change the checkbox name and cookie name:

<bean class="com.packtpub.springsecurity.web.custom.
IPTokenBasedRememberMeServices" id="ipTokenBasedRememberMeServicesBea
n">

Enhancing the User Experience

[80]

 <property name="key"><value>jbcpPetStore</value></property>
 <property name="userDetailsService" ref="userService"/>
 <property name="parameter" value="_remember_me"/>
 <property name="cookieName" value="REMEMBER_ME"/>
</bean>

Don't forget to change the login.jsp page to set the name of the checkbox form
field to match the parameter value we declared. We'd encourage you to do some
experimentation here to ensure you understand how these settings are related.

Implementing password change
management
We'll now walk through a basic extension to the in-memory UserDetailsService
that allows a user to change their password. While this feature will be more useful
when usernames and passwords are stored in the database, implementing it with an
extension to the o.s.s.core.userdetails.memory.InMemoryDaoImpl will allow us
to focus not on the storage mechanism, but the overall flow and design of this type of
extension to the framework. In Chapter 4, we'll be extending our baseline further by
moving to a database-backed credential store.

Extending the in-memory credential store
to support password change
The InMemoryDaoImpl in-memory credential store supplied with the Spring Security
framework uses a simple map to store usernames and their associated UserDetails.
The UserDetails implementation utilized by InMemoryDaoImpl is o.s.s.core.
userdetails.User, an implementation that we'll see in several other places in the
Spring Security API.

The design of this extension is purposely simple and elides some important details,
such as requiring the user to supply their old password prior to changing it. Adding
these types of features is left as an exercise for the reader.

Chapter 3

[81]

Extending InMemoryDaoImpl with
InMemoryChangePasswordDaoImpl
We'll first write our own custom class to extend the baseline InMemoryDaoImpl, and
add a method to allow us to change the user's password. As User is an immutable
object, we'll have to essentially copy the existing User object, but replace the
password with the one that the user provided. Let's declare an interface that we'll
reuse in later chapters, which illustrates a method which provides password
change functionality:

package com.packtpub.springsecurity.security;
// imports omitted
public interface IChangePassword extends UserDetailsService {	 void
changePassword(String username, String password);
}

The following code provides the change password functionality for the in-memory
user data store:

package com.packtpub.springsecurity.security;

public class InMemoryChangePasswordDaoImpl extends InMemoryDaoImpl
implements IChangePassword {
 @Override
 public void changePassword(String username,
 String password) {
 // get the UserDetails
 User userDetails =
 (User) getUserMap().getUser(username);
 // create a new UserDetails with the new password
 User newUserDetails =
 new User(userDetails.getUsername(),password,
 userDetails.isEnabled(),
 userDetails.isAccountNonExpired(),
 userDetails.isCredentialsNonExpired(),
 userDetails.isAccountNonLocked(),
 userDetails.getAuthorities());
 // add to the map
 getUserMap().addUser(newUserDetails);
 }
}

Fortunately, few tricks are required to add this simple bit of functionality to our
custom subclass. Let's review the configuration requirements needed to add this
custom UserDetailsService to our pet store.

Enhancing the User Experience

[82]

Configuring Spring Security to use
InMemoryChangePasswordDaoImpl
Now, we'll need to reconfigure the Spring Security XML configuration file to use our
new UserDetailsService implementation. Unfortunately, this is a bit harder than
we'd hope, as the <user-service> element is given special treatment in the Spring
Security configuration processor. Instead, we'll have to explicitly declare our own
bean and remove the <user-service> element we had previously declared. We'll
change this:

<authentication-manager alias="authenticationManager">
 <authentication-provider>
 <user-service id="userService">
 <user authorities="ROLE_USER" name="guest" password="guest"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

to this:

<authentication-provider user-service-ref="userService"/>

The user-service-ref attribute, as we expect by now, is a reference to a Spring
Bean with the id of userService. Thus, in our dogstore-base.xml Spring Beans
XML configuration file, we declare the following bean:

<bean id="userService" class="com.packtpub.springsecurity.security.
InMemoryChangePasswordDaoImpl">
 <property name="userProperties">
 <props>
 <prop key="guest">guest,ROLE_USER</prop>
 </props>
 </property>
</bean>

You'll note that the syntax for declaration of users isn't as readable as the <user>
elements contained within the <user-service> declaration. Unfortunately, the
<user> elements are available only when using the default InMemoryDaoImpl
implementation, and can't be reused with a custom UserDetailsService. For the
purposes of our example, this restriction makes things slightly more complex, but
in reality, storing user definitions in the configuration file isn't something anyone's
likely to do for long! For those who are interested, Section 6.2 of the Spring Security
3 reference document describes the full details of the comma-separated declarative
syntax for supplying user information.

Chapter 3

[83]

Making effective use of an in-memory UserDetailsService
A very common scenario for the use of an in-memory
UserDetailsService and hard-coded user lists is the authoring
of unit tests for secured components. Unit test authors often code
or configure the minimal context to test the functionality of the
component under test. Using an in-memory UserDetailsService
with a well-defined set of users and GrantedAuthority values
provides the test author with an easily controlled test environment.

At this point, you should be able to start the JBCP Pets application without any
reports of configuration errors. We'll finish wiring the change password
functionality up to the UI in the final two steps of this exercise.

Building a change password page
We'll build a simple password change page that will allow the user to change
their password.

This page will be tied into the My Account page through a simple link. First, we'll
add the link to /account/home.jsp file:

<p>
 Please find account functions below...
</p>

 Change Password

Next, we'll build the Change Password page itself in /account/
changePassword.jsp:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>

Enhancing the User Experience

[84]

<jsp:include page="../common/header.jsp">
 <jsp:param name="pageTitle" value="Change Password"/>
</jsp:include>
<h1>Change Password</h1>
<form method="post">
 <label for="password">New Password</label>:
 <input id="password" name="password" size="20" maxlength="50"
type="password"/>

 <input type="submit" value="Change Password"/>	
</form>
<jsp:include page="../common/footer.jsp"/>

Finally, we'll need to augment our Spring MVC-based AccountController
to handle the submission of the password change request (we've not covered
AccountController in prior chapters, but it has a simple handler for the account
home page).

Adding a change password handler
to AccountController
We'll need to add an injected reference to our custom UserDetailsService to the
com.packtpub.springsecurity.web.controller.AccountController, so that we
can make use of its change password functionality. Spring's @Autowired annotation
makes this trivial:

@Autowired
private IChangePassword changePasswordDao;

Two request handler methods will take care of rendering the form, and processing
the form submission via POST:

@RequestMapping(value="/account/changePassword.
do",method=RequestMethod.GET)
public void showChangePasswordPage() {		
}
@RequestMapping(value="/account/changePassword.
do",method=RequestMethod.POST)
public String submitChangePasswordPage(@RequestParam("password")
String newPassword) {
 Object principal = SecurityContextHolder.getContext().
getAuthentication().getPrincipal();
 String username = principal.toString();
 if (principal instanceof UserDetails) {
 username = ((UserDetails)principal).getUsername();

Chapter 3

[85]

 }
 changePasswordDao.changePassword(username, newPassword);
 SecurityContextHolder.clearContext();
 return "redirect:home.do";
}

Once you complete these changes, restart the application and look for the Change
Password action under the My Account section of the site.

Exercise notes
The astute reader will observe that this change password form is far too simple for
real-world use. Indeed, many password change implementations will be much more
complex, and will include features such as:

Password confirmation—making sure the user types the new password
correctly in two separate boxes.
Old password confirmation—adding a layer of security by requiring that
the users supply their old password in order to change it (this is especially
important when the remember me feature is in use).
Password rule validity checking—checking for password complexity and
weak or insecure passwords.

You may also have noticed when you tried the feature that you were automatically
logged out. This was caused by the SecurityContextHolder.clearContext()
call, which effectively removes the user's SecurityContext from the request, and
requires them to authenticate again. In practice, we would want to warn the user
that this would occur, or find workarounds that don't require the user to
authenticate again.

•

•

•

Enhancing the User Experience

[86]

Summary
This chapter allowed us to explore the authenticated user's lifecycle in more detail,
and experiment with structural modifications to the JBCP Pets store. We've taken
one step closer for satisfying the security auditors by adding true login and logout
functionality, and made users happier by unifying the site experience. We also
learned the following skills:

Configuration and use of a Spring MVC-based custom login page
Configuration of Spring Security logout functionality
Enabling of the remember me feature
Customization of the remember me feature to track user IP address
Implementation of change password functionality
Customization of the UserDetailsService and InMemoryDaoImpl

In Chapter 4, we'll make the exciting leap to a database-backed authentication store,
and learn how to ensure the security of passwords and other sensitive data stored
in databases.

•
•
•
•
•
•

Securing Credential Storage
Up to this point, we've updated the JBCP Pets site with user-friendly functionality,
including a custom login page, and change password and remember me features.

In this chapter, we'll make a leap to a database-backed authentication store from the
in-memory store we have used in the book until this point. We'll explore the default
expected Spring Security database schema, and will look into ways to extend JDBC
implementation with customization.

During the course of this chapter, we'll:

Understand how to configure Spring Security to utilize the services of
a JDBC-accessible database to store and authenticate users
Learn how to configure a JDBC-compatible in-memory database using
HSQLDB, for developer testing purposes
Work through the process of adapting Spring Security JDBC to an existing
legacy schema
Examine two techniques for user and password management, both with out
of the box and custom techniques
Examine different methods of configuring password encoding
Understand the password salting technique of providing additional security
to stored passwords
Solve the problem of allowing user remember me tokens to persist even if the
server restarts
Secure the application transport layer by understanding how to configure
SSL/TLS encryption and port mapping

•

•

•

•

•
•

•

•

Securing Credential Storage

[88]

Database-backed authentication with
Spring Security
An obvious issue with our more security-conscious implementation of JBCP Pets
is that our in-memory storage of users and passwords is too short-lived to be
user-friendly. As soon as the application is restarted, any new user registrations,
password changes, or other activity will be lost. This isn't acceptable, so the next
logical implementation step when securing JBCP Pets will be to reconfigure Spring
Security to utilize a relational database for user storage and authentication. The
use of a JDBC-accessible relational database will allow user data to persist through
application server restarts, and is more typical of real-world Spring Security use.

Configuring a database-resident
authentication store
The first portion of this exercise involves setting up an instance of the Java-based
relational database HyperSQL DB (or HSQL, for short), populated with the Spring
Security default schema. We'll configure HSQL to run in-memory using Spring
3's embedded database configuration feature—a significantly simpler method of
configuration than setting up the database by hand.

Keep in mind that in this example (and the remainder of the book), we'll use HSQL,
primarily, due to its ease of setup. We encourage you to tweak the configuration
and use the database of your preference if you're following along with the examples.
As we didn't want this portion of the book to focus on the complexities of database
setup, we chose convenience over realism for the purposes of the exercises.

Creating the default Spring Security schema
We've supplied an SQL file, security-schema.sql, which will create all the tables
required to implement Spring Security using HSQL. If you're following along with
your own database instance, you may have to adjust the schema definition syntax
to fit your particular database. We'll place this SQL file so that it's on the classpath
in WEB-INF/classes.

Chapter 4

[89]

Configuring the HSQL embedded database
To configure the HSQL embedded database, we'll modify the dogstore-security.
xml file to both set up the database and run SQL to create the Spring Security table
structure. First, we'll add a reference to the jdbc XML schema definition at the top
of the file:

<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/
 spring-security3.0.xsd"
>

Next, we'll declare the <embedded-database> element, along with a reference to the
SQL script:

<jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:security-schema.sql"/>
</jdbc:embedded-database>

If you start the server at this point, you should be able to see the initialization of the
HSQL database in the logs. Remember that the <embedded-database> declaration
creates this database only in the memory, so you won't see anything on disk, and
you won't be able to use standard tools to query it.

Configuring JdbcDaoImpl authentication store
We'll modify the dogstore-security.xml file to declare that we're using a JDBC
UserDetailsService implementation, instead of the Spring Security in-memory
UserDetailsService that we configured in Chapter 2, Getting Started with Spring
Security and Chapter 3, Enhancing the User Experience. This is done with a simple
change to the <authentication-manager> declaration:

<authentication-manager alias="authenticationManager">
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"/>
 </authentication-provider>
</authentication-manager>

Securing Credential Storage

[90]

The data-source-ref refers to the bean we declared using the shortcut
<embedded-database> declaration in the previous step.

Adding user definitions to the schema
Finally, we'll create another SQL file that will get executed when the in-memory
database is created. This SQL file will contain information about our default users,
admin and guest, with the same GrantedAuthority settings that we've used in
prior chapters. We'll call this SQL file test-data.sql, and we'll put it alongside
security-schema.sql in WEB-INF/classes:

insert into users(username, password, enabled) values
 ('admin','admin',true);
insert into authorities(username,authority) values
 ('admin','ROLE_USER');
insert into authorities(username,authority) values
 ('admin','ROLE_ADMIN');
insert into users(username, password, enabled) values
 ('guest','guest',true);
insert into authorities(username,authority) values
 ('guest','ROLE_USER');
commit;

Next, we'll need to add this SQL file to the embedded database configuration so that
it is loaded at startup:

<jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:security-schema.sql"/>
 <jdbc:script location="classpath:test-data.sql"/>
</jdbc:embedded-database>

After the SQL is added to the embedded database configuration, we should be able
to start the application and log in. Spring Security is now looking at the database for
authentication and GrantedAuthority information!

How database-backed authentication works
You may recall from our examination of the authentication process in Chapter 2 that
the AuthenticationManager delegates to AuthenticationProvider to validate the
credentials of the principal and ensure that it should be able to access the system at
all. The AuthenticationProvider that we have been using in Chapters 2 and 3 was
the DaoAuthenticationProvider. This provider delegates to a UserDetailsService
implementation to retrieve and validate the information about the principal from the
credential store. We can see this in the diagram from Chapter 2:

Chapter 4

[91]

As you may anticipate, the only meaningful difference between our configuration
of a database-backed authentication store and the in-memory store is the
implementation of the UserDetailsService. The o.s.s.core.userdetails.
jdbc.JdbcDaoImpl class provides an implementation of a UserDetailsService.
Instead of looking at an in-memory store (populated from the Spring Security XML
configuration), the JdbcDaoImpl looks up users in a database.

Securing Credential Storage

[92]

You may note that we didn't reference the implementation class at all. This is
because the <jdbc-user-service> declaration in the updated Spring Security
configuration will automatically configure the JdbcDaoImpl and wire it up to the
AuthenticationProvider. Later in this chapter, we'll see how to configure Spring
Security to use our own implementation of JdbcDaoImpl, which continues to support
the change password feature that we added to our custom InMemoryDaoImpl
in Chapter 3. Let's examine the configuration required to implement our own
JdbcDaoImpl subclass that supports the change password function.

Implementing a custom JDBC
UserDetailsService
As we did in one of the exercises in the previous chapter, we'll take the baseline
JdbcDaoImpl as our starting point, and extend it to support a change
password function.

Creating a custom JDBC UserDetailsService class
Create the following class in the com.packtpub.springsecurity.security package:

public class CustomJdbcDaoImpl extends JdbcDaoImpl implements
IChangePassword {
 public void changePassword(String username, String password) {
 getJdbcTemplate()
 update("UPDATE USERS SET PASSWORD = ? WHERE USERNAME = ?",
 password, username);
 }
}

You can see that this simple class extends the default JdbcDaoImpl with a function
to update the password in the database to the new password that the user ostensibly
requested. We use standard Spring JDBC functionality to do this.

Adding a Spring Bean declaration for the custom
UserDetailsService
Add the following Spring Bean declaration to the dogstore-base.xml Spring
configuration file:

<bean id="jdbcUserService"
 class="com.packtpub.springsecurity.security.CustomJdbcDaoImpl">
 <property name="dataSource" ref="dataSource"/>
</bean>

Chapter 4

[93]

Again, the dataSource Bean reference here resolves to the <embedded-database>
declaration we made to set up the HSQL in-memory database.

You'll observe that the custom UserDetailsService implementation allows us
to tweak the interaction with the database significantly. We'll use this capability to
expand the baseline functionality of the UserDetailsService in later examples.
This type of customization is very common in complex applications of Spring Security.

Out of the box JDBC-based user management
As our simple extension to JdbcDaoImpl illustrated, one might extend the class,
while retaining the baseline functionality at the same time. But what if we wanted to
implement more advanced features, such as user registration (a must for an online
store!) and user management features, allowing site administrators to create users,
update passwords, and so on?

Although these types of functions are relatively easy to write with additional JDBC
statements, Spring Security actually provides out of the box functionality to support
many common Create, Read, Update, and Delete (CRUD) operations on users in
JDBC databases. This can be convenient for simple systems, and a good base to build
on for any custom requirements that a user may have.

The implementation class o.s.s.provisioning.JdbcUserDetailsManager
conveniently extends JdbcDaoImpl for us, and provides a number of
helpful user-related methods, declared as part of the o.s.s.provisioning.
UserDetailsManager interface:

Method Description
void createUser(UserDetails
user)

Creates a new user with the given
UserDetails, including any declared
GrantedAuthority.

void updateUser(final
UserDetails user)

Updates a user with the given
UserDetails. Updates GrantedAuthority
and removes the user from the user cache.

void deleteUser(String
username)

Deletes the user with the given username, and
removes the user from the user cache.

boolean userExists(String
username)

Indicates whether or not a user (whether active
or inactive) exists with the given username.

void changePassword(String
oldPassword, String
newPassword)

Changes the password of the currently
logged-in user. The user must supply the
correct current password in order for the
operation to succeed.

Securing Credential Storage

[94]

As you can see, the changePassword method on JdbcUserDetailsManager precisely
fits a gap in the functionality of our CustomJdbcDaoImpl class – it will verify the
user's existing password when changing it. Let's review the configuration steps
required to replace our CustomJdbcDaoImpl with the JdbcUserDetailsManager.

First, we'll have to make need to declare the JdbcUserDetailsManager bean in
dogstore-base.xml:

<bean id="jdbcUserService"
 class="org.springframework.security
 .provisioning.JdbcUserDetailsManager">
 <property name="dataSource" ref="dataSource"/>
 <property name="authenticationManager"
 ref="authenticationManager"/>
</bean>

The reference to AuthenticationManager matches the alias we've previously
declared in the <authentication-manager> element in dogstore-security.xml.
Don't forget to comment out the declaration of the CustomJdbcDaoImpl bean—we
will (temporarily) not be using it.

Next, we'll have to make some minor adjustments to the changePassword.jsp page:

<h1>Change Password</h1>
<form method="post">
 <label for="oldpassword">Old Password</label>:
 <input id="oldpassword" name="oldpassword"
 size="20" maxlength="50" type="password"/>

 <label for="password">New Password</label>:
 <input id="password" name="password" size="20"
 maxlength="50" type="password"/>

Finally, we'll have to make some minor adjustments to AccountController. Replace
the @Autowired reference to the IChangePassword implementation with:

@Autowired
private UserDetailsManager userDetailsManager;

The submitChangePasswordPage also becomes much simpler, as we are
relying on information about the current authenticated principal which the
JdbcUserDetailsManager determines on our behalf:

public String submitChangePasswordPage(@RequestParam("oldpassword")
 String oldPassword,
 @RequestParam("password") String newPassword) {

Chapter 4

[95]

 userDetailsManager.changePassword(oldPassword, newPassword);
 SecurityContextHolder.clearContext();
 return "redirect:home.do";
}

Once these changes are complete, you can restart the web application and try out the
new change password functionality!

Notice what happens when you don't supply the correct password. Why do you
think this happens? Try to think through how you'd adjust the behavior to make
it more user friendly.

Although we won't demonstrate all of the functionality supported by
JdbcUserDetailsManager, we can see that it would be very easy to wire simple
JSP pages (properly secured with authorization, of course!) to allow administrators
to manage users of the site—essential for a production website!

Advanced configuration of JdbcDaoImpl
JdbcDaoImpl has a number of configuration options that allow for adapting its use to
an existing schema, or for more sophisticated adjustment of its existing capabilities.
In many cases, it's possible to adapt the configuration of the out of the box JDBC
UserDetailsService without having to write your own code.

One important feature is the ability to add a level of indirection between users and
GrantedAuthority declarations by grouping GrantedAuthority into logical sets
called groups. Users are then assigned one or more groups, whose membership
confers a set of GrantedAuthority declarations.

Securing Credential Storage

[96]

As you see in the diagram, this indirection allows the assignment of the same
set of roles to multiple users, by simply assigning any new users to existing
groups. Contrast this with the behavior we've seen this far, where we assigned
GrantedAuthority directly to individual users.

This bundling of common sets of authorities can be helpful in the
following scenarios:

You need to segregate users into communities, with some overlapping roles
between groups.
You want to globally change authorization for a class of user. For example, if
you have a "supplier" group, you might want to enable or disable their access
to particular portions of the application.
You have a large number of users, and you don't need a user-level
authority configuration.

Unless your application has a very small user base, there is a very high likelihood
that you'll be using group-based access control. The management ease and flexibility
of this rights management approach far outweighs the slightly greater complexity.
This indirect technique of aggregating user privileges by group is commonly referred
to as Group-Based Access Control (GBAC).

Group-based access control is an approach common to almost every
secured operating system or software package in the market. Microsoft
Active Directory (AD) is one of the most visible implementations of
large-scale GBAC, due to its design of slotting AD users into groups and
assignment of privileges to those groups. Management of privileges in
large AD-based organizations is made exponentially simpler through the
use of GBAC.
Try to think of the security models of the software you use—how are
users, groups, and privileges managed? What are the pros and cons of the
way the security model is written?

Let's add a level of abstraction to JBCP Pets and apply the concept of group-based
authorization to the site.

Configuring group-based authorization
We'll add two groups to the website—regular users, which we'll call "Users",
and administrative users, which we'll call "Administrators". Our existing guest
and admin user accounts will be dropped into the appropriate groups through
modifications to our SQL script that we use to set up the database.

•

•

•

Chapter 4

[97]

Configuring JdbcDaoImpl to use groups
First, we must set properties on our JdbcDaoImpl custom subclass to enable the
use of groups, and disable the use of direct authority granting to users. Add the
following to the bean definition in dogstore-base.xml:

<bean id="jdbcUserService"
 class="com.packtpub.springsecurity.security.CustomJdbcDaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="enableGroups" value="true"/>
 <property name="enableAuthorities" value="false"/>
</bean>

Note that if you are following along and still have the code and configuration
changes in place to utilize the JdbcUserManager, please revert them as we'll be
using the CustomJdbcDaoImpl for the remainder of this chapter.

Modifying the initial load SQL script
We'll simply modify the SQL that we use to populate the database to:

Define our groups
Assign GrantedAuthority specifications to groups
Assign users to groups

For simplicity, we'll create a new SQL script called test-users-groups-data.sql.

We'll add the groups first:

insert into groups(group_name) values ('Users');
insert into groups(group_name) values ('Administrators');

Next, assign roles to groups:

insert into group_authorities(group_id, authority) select id,'ROLE_
USER' from groups where group_name='Users';
insert into group_authorities(group_id, authority) select id,'ROLE_
USER' from groups where group_name='Administrators';
insert into group_authorities(group_id, authority) select id,'ROLE_
ADMIN' from groups where group_name='Administrators';

Next, create the users:

insert into users(username, password, enabled) values
('admin','admin',true);
insert into users(username, password, enabled) values
('guest','guest',true);

•
•
•

Securing Credential Storage

[98]

Finally, assign users to groups:

insert into group_members(group_id, username) select id,'guest' from
groups where group_name='Users';
insert into group_members(group_id, username) select id,'admin' from
groups where group_name='Administrators';

Modifying the embedded database creation
declaration
We'll need to update the creation of our embedded HSQL database to reference this
script in lieu of the existing test-data.sql script:

<jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:security-schema.sql"/>
 <jdbc:script location="classpath:test-users-groups-data.sql"/>
</jdbc:embedded-database>

Note that the security-schema.sql already contains declarations for the tables
required to support the group structure, so we don't need to modify that script.

At this point, you should be able to start the JBCP Pets site again and it will
behave just as before; however, the additional layer of abstraction between users
and privileges will enable us to develop some sophisticated user management
functionality in later exercises with a fraction of effort.

Let's step away from the JBCP Pets scenario for a moment and cover one more
important bit of configuration while we're in this area.

Using a legacy or custom schema with
database-resident authentication
It's common for new users of Spring Security to begin their experience by adapting
the JDBC user, group, or role mapping to an existing schema. Even though a legacy
database doesn't conform to the expected Spring Security schema, we can still
configure the JdbcDaoImpl to map to it.

Imagine we have an existing legacy database schema similar to the following figure,
onto which we are going to implement Spring Security.

Chapter 4

[99]

We can easily change the configuration of JdbcDaoImpl to utilize this schema and
override the Spring Security expected table definitions and columns that we're using
for JBCP Pets.

Determining the correct JDBC SQL queries
JdbcDaoImpl has three SQL queries which have a well-defined parameter and
set of returned columns. We must determine the SQL that we'll assign to each of
these queries, based on its intended functionality. Each SQL query used by the
JdbcDaoImpl takes the username presented at login as its one and only parameter.

Query name Description Expected SQL
columns

usersByUsernameQuery Returns one or more
users matching the
username. Only the
first user is used.

Username (string)

Password (string)

Enabled (Boolean)
authoritiesByUsernameQuery Returns one or more

granted authorities
directly provided to
the user. Typically
used when GBAC is
disabled.

Username (string)

Granted Authority
(string)

Securing Credential Storage

[100]

Query name Description Expected SQL
columns

groupAuthoritiesByUsernameQuery Returns granted
authorities and group
details provided to
the user through
group membership.
Used when GBAC is
enabled.

Group Primary Key
(any)

Group Name (any)

Granted Authority
(string)

Be aware that in some cases, the return columns are not used by the default
JdbcDaoImpl implementation, but they must be returned anyway. Spend some
time now trying to write these queries for the database diagram on the previous
page before moving on to the next step.

Configuring the JdbcDaoImpl to use custom
SQL queries
In order to use the custom SQL queries for our non-standard schema, we'll simply
configure the JdbcDaoImpl properties in the Spring Bean configuration file. Note
that in order to configure the JDBC queries on JdbcDaoImpl, you cannot use the
<jdbc-user-service> declaration. You must explicitly instantiate the bean, as
we've done with our custom JdbcDaoImpl.

<bean id="jdbcUserService"
 class="com.packtpub.springsecurity.security.CustomJdbcDaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="enableGroups" value="true"/>
 <property name="enableAuthorities" value="false"/>
 <property name="usersByUsernameQuery">
 <value>SELECT LOGIN, PASSWORD,
 1 FROM USER_INFO WHERE LOGIN = ?
 </value>
 </property>
 <property name="groupAuthoritiesByUsernameQuery">
 <value>SELECT G.GROUP_ID, G.GROUP_NAME, P.NAME
 FROM USER_INFO U
 JOIN USER_GROUP UG on U.USER_INFO_ID = UG.USER_INFO_ID
 JOIN GROUP G ON UG.GROUP_ID = G.GROUP_ID
 JOIN GROUP_PERMISSION GP ON G.GROUP_ID = GP.GROUP_ID
 JOIN PERMISSION P ON GP.PERMISSION_ID = P.PERMISSION_ID
 WHERE U.LOGIN = ?
 </value>
 </property>
</bean>

Chapter 4

[101]

This is the only configuration required to use Spring Security to read settings from
an existing, non-default schema! Keep in mind that utilization of an existing schema
commonly requires extension of the JdbcDaoImpl to support changing of passwords,
renaming of user accounts, and other user-management functions.

If you are using the JdbcUserDetailsManager to perform user management
tasks, be aware that (as of this writing) only some of the over twenty SQL
queries utilized by the class are accessible through configuration. Please refer
to the Javadoc or source code to review the defaults for the queries used by the
JdbcUserDetailsManager.

Configuring secure passwords
We recall from the security audit in Chapter 1, Anatomy of an Unsafe Application that
the security of passwords stored in cleartext was a top priority of the auditors.
In fact, in any secured system, password security is a critical aspect of trust and
authoritativeness of an authenticated principal. Designers of a fully secured system
must ensure that passwords are stored in a way in which malicious users would
have an impractically difficult time compromising them.

The following general rules should be applied to passwords stored in a database:

Passwords must not be stored in cleartext (plain text)
Passwords supplied by the user must be compared to recorded passwords in
the database
A user's password should not be supplied to the user upon demand (even if
the user forgets it)

For the purposes of most applications, the best fit for these requirements involves
one-way encoding or encryption of passwords as well as some type of randomization
of the encrypted passwords. One-way encoding provides the security and uniqueness
properties that are important to properly authenticate users with the added bonus
that once encrypted, the password cannot be decrypted.

In most secure application designs, it is neither required nor desirable to ever
retrieve the user's actual password upon request, as providing the user's password to
them without proper additional credentials could present a major security risk. Most
applications instead provide the user the ability to reset their password, either by
presenting additional credentials (such as their social security number, date of birth,
tax ID, or other personal information), or through an email-based system.

•
•

•

Securing Credential Storage

[102]

Storing other types of sensitive information
Many of the guidelines listed that apply to passwords apply equally to
other types of sensitive information, including social security numbers
and credit card information (although, depending on the application,
some of these may require the ability to decrypt).
It's quite common for databases storing this type of information to
represent it in multiple ways, for example, a customer's full 16-digit credit
card number would be stored in a highly encrypted form, but the last
four digits might be stored in cleartext (for reference, think of any internet
commerce site that displays XXXX XXXX XXXX 1234 to help you identify
your stored credit cards).

You may already be thinking ahead and wondering, given our (admittedly
unrealistic) approach of using SQL to populate our HSQL database with users, how
do we encode the passwords? HSQL, or most other databases for that matter, don't
offer encryption methods as built-in database functions.

Typically, the bootstrap process (populating a system with initial users and data) is
handled through some combination of SQL loads and Java code. Depending on the
complexity of your application, this process can get very complicated.

For the JBCP Pets application, we'll retain the embedded-database declaration and
the corresponding SQL, and then add a small bit of Java to fire after the initial load
to encrypt all the passwords in the database. For password encryption to work
properly, two actors must use password encryption in synchronization ensuring
that the passwords are treated and validated consistently.

Chapter 4

[103]

Password encryption in Spring Security is encapsulated and defined by
implementations of the o.s.s.authentication.encoding.PasswordEncoder
interface. Simple configuration of a password encoder is possible through the
<password-encoder> declaration within the <authentication-provider>
element as follows:

<authentication-manager alias="authenticationManager">
 <authentication-provider user-service-ref="jdbcUserService">
 <password-encoder hash="sha"/>
 </authentication-provider>
</authentication-manager>

You'll be happy to learn that Spring Security ships with a number of
implementations of PasswordEncoder, which are applicable for different needs and
security requirements. The implementation used can be specified using the hash
attribute of the <password-encoder> declaration.

The following table provides a list of the out of the box implementation classes and
their benefits. Note that all implementations reside in the o.s.s.authentication.
encoding package.

Implementation class Description hash value
PlaintextPasswordEncoder Encodes the password

as plaintext. Default
DaoAuthenticationProvider
password encoder.

plaintext

Md4PasswordEncoder PasswordEncoder utilizing the
MD4 hash algorithm. MD4 is not
a secure algorithm—use of this
encoder is not recommended.

md4

Md5PasswordEncoder PasswordEncoder utilizing the
MD5 one-way encoding algorithm.

md5

ShaPasswordEncoder PasswordEncoder utilizing the SHA
one-way encoding algorithm. This
encoder can support configurable
levels of encoding strength.

sha

sha-256

LdapShaPasswordEncoder Implementation of LDAP SHA
and LDAP SSHA algorithms
used in integration with LDAP
authentication stores. We'll learn
more about this algorithm in
Chapter 9, LDAP Directory Services
where we cover LDAP.

{sha}

{ssha}

Securing Credential Storage

[104]

As with many other areas of Spring Security, it's also possible to reference a bean
definition implementing PasswordEncoder to provide more precise configuration
and allow the PasswordEncoder to be wired into other beans through dependency
injection. For JBCP Pets, we'll need to use this bean reference method in order to
encode the bootstrapped user data.

Let's walk through the process of configuring basic password encoding for the
JBCP Pets application.

Configuring password encoding
Configuring basic password encoding involves two pieces—encrypting the
passwords we load into the database after the SQL script executes, and ensuring that
the DaoAuthenticationProvider is configured to work with a PasswordEncoder.

Configuring the PasswordEncoder
First, we'll declare an instance of a PasswordEncoder as a normal Spring bean:

<bean class="org.springframework.security.authentication.
 encoding.ShaPasswordEncoder" id="passwordEncoder"/>

You'll note that we're using the SHA-1 PasswordEncoder implementation. This is an
efficient one-way encryption algorithm, commonly used for password storage.

Configuring the AuthenticationProvider
We'll need to configure the DaoAuthenticationProvider to have a reference to
the PasswordEncoder, so that it can encode and compare the presented password
during user login. Simply add a <password-encoder> declaration and refer to the
bean ID we defined in the previous step:

<authentication-manager alias="authenticationManager">
 <authentication-provider user-service-ref="jdbcUserService">
 <password-encoder ref="passwordEncoder"/>
 </authentication-provider>
</authentication-manager>

Try to start the application at this point, and then try to log in. You'll notice that what
were previously valid login credentials are now being rejected. This is because the
passwords stored in the database (loaded with the bootstrap test-users-groups-
data.sql script) are not stored in an encrypted form that matches the password
encoder. We'll need to post-process the bootstrap data with some simple Java code.

Chapter 4

[105]

Writing the database bootstrap password encoder
The approach we'll take for encoding the passwords loaded via SQL is to have a
Spring bean that executes an init method after the embedded-database bean is
instantiated. The code for this bean, com.packtpub.springsecurity.security.
DatabasePasswordSecurerBean, is fairly simple.

public class DatabasePasswordSecurerBean extends JdbcDaoSupport {
 @Autowired
 private PasswordEncoder passwordEncoder;

 public void secureDatabase() {
 getJdbcTemplate().query("select username, password from users",
 new RowCallbackHandler(){
 @Override
 public void processRow(ResultSet rs) throws SQLException {
 String username = rs.getString(1);
 String password = rs.getString(2);
 String encodedPassword =
 passwordEncoder.encodePassword(password, null);
 getJdbcTemplate().update("update users set password = ?
 where username = ?", encodedPassword,username);
 logger.debug("Updating password for username:
 "+username+" to: "+encodedPassword);
 }
 });
 }
}

The code uses the Spring JdbcTemplate functionality to loop through all the users
in the database and encode the password using the injected PasswordEncoder
reference. Each password is updated individually.

Configuring the bootstrap password encoder
We need to configure the Spring bean declaration such that the bean is initialized
upon start of the web application and after the <embedded-database> bean. Spring
bean dependency tracking ensures that the DatabasePasswordSecurerBean
executes at the proper time:

<bean class="com.packtpub.springsecurity.security.
 DatabasePasswordSecurerBean"
 init-method="secureDatabase" depends-on="dataSource">
 <property name="dataSource" ref="dataSource"/>
</bean>

Securing Credential Storage

[106]

If you start the JBCP Pets application at this point, you'll see that the passwords in
the database are encoded, and login now functions properly.

Would you like some salt with that password?
If the security auditor were to examine the encoded passwords in the database, he'd
find something that would still make him concerned about the website's security.
Let's examine what the stored username and password values are for our admin
and guest users:

Username Plaintext password Encrypted password
admin admin 7b2e9f54cdff413fcde01f330af6896c3cd7e6cd
guest guest 2ac15cab107096305d0274cd4eb86c74bb35a4b4

This looks very secure—the encrypted passwords obviously bear no resemblance
to the original passwords. What could the auditor be concerned about? What if we
add a new user who happens to have the same password as our admin user?

Username Plaintext Password Encrypted Password
fakeadmin admin 7b2e9f54cdff413fcde01f330af6896c3cd7e6cd

Now, note that the encrypted password of the fakeadmin user is exactly the same
as the real admin user! Thus a hacker who had somehow gained the ability to read
the encrypted passwords in the database could compare their known password's
encrypted representation with the unknown one for the admin account, and see they
are the same! If the hacker had access to an automated tool to perform this analysis,
they could likely compromise the administrator's account within a matter of hours.

Having personally worked with a database where passwords were
encrypted in exactly this way, my engineering team and I decided to
run a little experiment and see what the SHA-1 encrypted value of the
plaintext password password was. We then took the encrypted form of
the word password and ran a database query to see how many users
in the database had this highly insecure password. To our surprise and
dismay, we found many, including a VP of the organization. Each user
got a nice follow-up email reminder about the benefits of choosing a
hard to guess password, and development quickly got to work on a more
secure password encryption mechanism!

Chapter 4

[107]

Recall our mention in Chapter 3 of rainbow table techniques that malicious users
can use to determine user passwords if they have access to the database. These
(and other) hacking techniques take advantage of the fact that hash algorithms are
deterministic—the same input always leads to the same output, and as such, if an
attacker tries enough inputs, they may happen to match an unknown output to the
result of a known input.

One common, and effective, method of adding another layer of security to encrypted
passwords is to incorporate a salt. A salt is a second plaintext component which
is concatenated with the plaintext password prior to encryption in order to ensure
that two factors must be used to generate (and thus compare) encrypted password
values. Properly selected salts can guarantee that no two passwords will ever have
the same encrypted value, thus preventing the scenario that concerned our auditor,
and avoiding many common types of brute force password cracking techniques.

Best practice salts generally fall into one of two categories:

They are algorithmically generated from some piece of data associated with
the user—for example, the timestamp that the user was created
They are randomly generated, and stored in some form
(plaintext or two-way encrypted) along with the user's password record

For example, the following diagram illustrates the simple case where the salt is the
same as the user's login name:

•

•

Securing Credential Storage

[108]

Remember that because the salt is added to the plaintext password, the
salt can't be one-way encrypted—the application needs to be able to look
up or derive the appropriate salt value for a given user's record in order
to authenticate the user!

Spring Security provides us with an interface, o.s.s.authentication.dao.
SaltSource, which defines a method to return a salt value from the UserDetails
object, along with two out of the box implementations:

SystemWideSaltSource defines a single, static salt used for every password.
This is not significantly more secure than an unsalted password.
ReflectionSaltSource uses a bean property of the UserDetails object
to get the salt value for that user's password.

Since salt values should be derivable from, or stored with each user record,
ReflectionSaltSource is the out of the box implementation that most
implementers typically use.

Configuring a salted password
As with configuring basic password encryption in the previous exercise, adding
elements to support a salted password requires changes in both the bootstrap code
and the DaoAuthenticationProvider We can examine how the workflow of salted
passwords changes bootstrap and authentication by revising the following diagram
occurred earlier in the book:

•

•

Chapter 4

[109]

Let's add a level of password security by configuring the ReflectionSaltSource
to salt our passwords!

Declaring the SaltSource Spring bean
In dogstore-base.xml, add a bean declaration for the SaltSource implementation
we're using:

<bean class="org.springframework.security.authentication.
 dao.ReflectionSaltSource" id="saltSource">
 <property name="userPropertyToUse" value="username"/>
</bean>

We're configuring the salt source to use the username property, but this is a
short-term implementation that we'll correct in a later exercise. Can you think
why this might not be a good salt value?

Wiring the PasswordEncoder to the SaltSource
We'll need to hook up the SaltSource to the PasswordEncoder, so that the
credentials the user presents upon login can be appropriately salted, prior to
comparison with stored values. This is done by adding a new declaration in
dogstore-security.xml:

<authentication-manager alias="authenticationManager">
 <authentication-provider user-service-ref="jdbcUserService">
 <password-encoder ref="passwordEncoder">
 <salt-source ref="saltSource"/>
 </password-encoder>
 </authentication-provider>
</authentication-manager>

You'll note that if you start up the application at this point, you won't be able to log
in. Just as in the previous exercise, the bootstrap database password encoder bean
needs to be modified to include the SaltSource.

Augmenting DatabasePasswordSecurerBean
We'll add a bean reference to the DatabasePasswordSecurerBean, as well as a
reference to the UserDetailsService so that we can get the appropriate password
salt for the user:

public class DatabasePasswordSecurerBean extends JdbcDaoSupport {
 @Autowired
 private PasswordEncoder passwordEncoder;

Securing Credential Storage

[110]

 @Autowired
 private SaltSource saltSource;
 @Autowired
 private UserDetailsService userDetailsService;

 public void secureDatabase() {
 getJdbcTemplate().query("select username, password from users",
 new RowCallbackHandler(){
 @Override
 public void processRow(ResultSet rs) throws SQLException {
 String username = rs.getString(1);
 String password = rs.getString(2);
 UserDetails user =
 userDetailsService.loadUserByUsername(username);
 String encodedPassword =
 passwordEncoder.encodePassword(password,
 saltSource.getSalt(user));
 getJdbcTemplate().update("update users set password = ?
 where username = ?",
 encodedPassword,
 username);
 logger.debug("Updating password for username:
 "+username+" to: "+encodedPassword);
 }
 });
 }
}

Recall that the SaltSource relies on a UserDetails object to generate the salt value.
At this point, as we don't have the database row mapped to a UserDetails object,
we'll have to make a request to the UserDetailsService (our CustomJdbcDaoImpl)
to look up the UserDetails based on the username from the SQL query response.

At this point, we should be able to start the application and properly log into the
system. If you try adding a new user with the same password (for example, admin)
to the bootstrap SQL script, you'll note that the password generated for the user is
different, because we're salting the passwords with the username. This makes the
passwords much more secure in the unlikely event that a malicious user is able to
read the passwords from the database. However, you may have some ideas as to
why using the username isn't the most secure possible salt—we'll explore this in
a later exercise.

Chapter 4

[111]

Enhancing the change password functionality
One important change that we'll need to make is to update the changePassword
functionality to refer to the password encoder implementation as well. This is as
simple as adding appropriate bean references to the CustomJdbcDaoImpl class,
and minor code changes in the changePassword method:

public class CustomJdbcDaoImpl extends JdbcDaoImpl {
 @Autowired
 private PasswordEncoder passwordEncoder;
 @Autowired
 private SaltSource saltSource;

 public void changePassword(String username, String password) {
 UserDetails user = loadUserByUsername(username);
 String encodedPassword = passwordEncoder.encodePassword
 (password, saltSource.getSalt(user));
 getJdbcTemplate().update(
 "UPDATE USERS SET PASSWORD = ? WHERE USERNAME = ?",
 encodedPassword, username);
 }

The use of the PasswordEncoder and SaltSource here will ensure that the user's
password is properly salted when changed. Curiously, use of a PasswordEncoder
and SaltSource is not supported by the JdbcUserDetailsManager, so if you are
using JdbcUserDetailsManager as a baseline for customization, you will need
to override quite a bit of code.

Configuring a custom salt source
As mentioned when we first configured password salting, username is a feasible,
but not extremely desirable, choice for a password salt. The reason for this is that
username is a salt that is under direct control of the user. If users are provided
with the ability to change their username, it would be possible for malicious users
to continuously change their user names—thus re-salting their passwords—and
possibly determine how to construct a falsely encrypted password.

More secure still would be to have a property of the UserDetails which is chosen
by the system, and never visible to, or modifiable by the user. We'll add a property
to the UserDetails object that is populated at random when a user is created. This
property will become the user's salt.

Securing Credential Storage

[112]

Extending the database schema
We'll need to ensure that the salt is stored in the database along with the user record,
so we'll add a column to the default Spring Security database schema, defined in
security-schema.sql:

create table users(
 username varchar_ignorecase(50) not null primary key,
 password varchar_ignorecase(50) not null,
 enabled boolean not null,
 salt varchar_ignorecase(25) not null
);

Next, add the bootstrap salt values to the test-users-groups-data.sql script:

insert into users(username, password, enabled, salt) values ('admin','
admin',true,CAST(RAND()*1000000000 AS varchar));
insert into users(username, password, enabled, salt) values ('guest','
guest',true,CAST(RAND()*1000000000 AS varchar));

Remember, we're replacing the insert statements that are already there with
these new ones. Note that we've chosen salt values based on random number
generation—any pseudo-random salt selection of your choice can be just as effective.

Tweaking configuration of the CustomJdbcDaoImpl
UserDetails service
Following similar steps as the custom schema exercise earlier in this chapter, we'll
add a configuration change to the query used to retrieve users from the database in
order to pick up the additional 'salt' column. We'll modify the CustomJdbcDaoImpl
bean definition in dogstore-security.xml:

<beans:bean id="jdbcUserService"
 class="com.packtpub.springsecurity.security.CustomJdbcDaoImpl">
 <beans:property name="dataSource" ref="dataSource"/>
 <beans:property name="enableGroups" value="true"/>
 <beans:property name="enableAuthorities" value="false"/>
 <beans:property name="usersByUsernameQuery">
 <beans:value>select username,password,enabled,
 salt from users where username = ?
 </beans:value>
 </beans:property>
</beans:bean>

Chapter 4

[113]

Overriding the baseline UserDetails implementation
We'll need a UserDetails implementation that tracks the salt value stored with the
user record in the database. Simply overriding the Spring standard User class is
sufficient for our purposes. Remember to add a getter and setter for the salt, so that
the ReflectionSaltSource password salter can find the right property.

package com.packtpub.springsecurity.security;
// imports
public class SaltedUser extends User {
 private String salt;
 public SaltedUser(String username, String password,
 boolean enabled,
 boolean accountNonExpired, boolean credentialsNonExpired,
 boolean accountNonLocked, List<GrantedAuthority>
 authorities, String salt) {
 super(username, password, enabled,
 accountNonExpired, credentialsNonExpired,
 accountNonLocked, authorities);
 this.salt = salt;
 }

 public String getSalt() {
 return salt;
 }

 public void setSalt(String salt) {
 this.salt = salt;
 }
}

Even though we are extending the UserDetails to capture a salt field, the process
would be the same if we wanted to store additional information about the user
from a backing store. Extension of the UserDetails object is commonly done in
conjunction with the implementation of a custom AuthenticationProvider.
We'll see an example of this in Chapter 6, Advanced Configuration and Extension.

Extending the functionality of CustomJdbcDaoImpl
We need to override the methods of JdbcDaoImpl, responsible for instantiating the
UserDetails implementation that sets the default values for User. This occurs while
loading the User from the database, and then copying the User into the instance that
actually gets returned from the UserDetailsService:

public class CustomJdbcDaoImpl extends JdbcDaoImpl {
 public void changePassword(String username, String password) {
 getJdbcTemplate().update(

Securing Credential Storage

[114]

 "UPDATE USERS SET PASSWORD = ? WHERE USERNAME = ?"
 password, username);
 }

 @Override
 protected UserDetails createUserDetails(String username,
 UserDetails userFromUserQuery,
 List<GrantedAuthority> combinedAuthorities) {
 String returnUsername = userFromUserQuery.getUsername();

 if (!isUsernameBasedPrimaryKey()) {
 returnUsername = username;
 }

 return new SaltedUser(returnUsername,
 userFromUserQuery.getPassword(),userFromUserQuery.isEnabled(),
 true, true, true, combinedAuthorities,
 ((SaltedUser) userFromUserQuery).getSalt());
 }

 @Override
 protected List<UserDetails> loadUsersByUsername(String username) {
 return getJdbcTemplate().
 query(getUsersByUsernameQuery(),
 new String[] {username},
 new RowMapper<UserDetails>() {
 public UserDetails mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 String username = rs.getString(1);
 String password = rs.getString(2);
 boolean enabled = rs.getBoolean(3);
 String salt = rs.getString(4);
 return new SaltedUser(username, password,
 enabled, true, true, true,
 AuthorityUtils.NO_AUTHORITIES, salt);
 }
 });
 }
}

The methods createUserDetails and loadUsersByUsername are adapted from the
superclass methods—the changes from the superclass methods are highlighted in the
code listing. With these changes, you should be able to restart the application and
have extra secure, randomly salted passwords. You may wish to add logging, and
experiment, to see how the encrypted values change on every run of the application,
as the bootstrap users are loaded.

Chapter 4

[115]

Keep in mind that although this example illustrated the addition of a simple field to
the UserDetails implementation, this approach can be used as a baseline to a highly
customized UserDetails object which fits the business needs of your application.
For the purposes of JBCP Pets, the auditors are now sufficiently happy with the
security of passwords in the database—a job well done!

Moving remember me to the database
Something that you may have noticed by now, with our remember me
implementation, is that it works very well until the application server is restarted,
at which point the user's session is forgotten. This could be inconvenient for our
users, who shouldn't have to pay attention to the maintenance and ups and downs
of JBCP Pets.

Fortunately, Spring Security provides the capability to persist rememberme
tokens any store implementing the o.s.s.web.authentication.rememberme.
PersistentTokenRepository interface, and ships with a JDBC implementation
of this interface.

Configuring database-resident remember
me tokens
Modifying our remember me configuration at this point to persist to the database is
surprisingly trivial. The Spring Security configuration parser will recognize a new
data-source-ref attribute on the <remember-me> declaration and simply switch
implementation classes for RememberMeServices. Let's review the steps required
to accomplish this now.

Adding SQL to create the remember me schema
We'll place the SQL file containing the expected schema definition on the classpath
in WEB-INF/classes, alongside the other bootstrap SQL scripts we've been working
with. Let's call this SQL script remember-me-schema.sql:

create table persistent_logins (
 username varchar_ignorecase(50) not null,
 series varchar(64) primary key,
 token varchar(64) not null,
 last_used timestamp not null);

Securing Credential Storage

[116]

Adding new SQL script to the embedded database
declaration
Next, add a reference to the new SQL script that we created in the <embedded-
database> declaration in dogstore-security.xml:

<jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:security-schema.sql"/>
 <jdbc:script location="classpath:remember-me-schema.sql"/>
 <jdbc:script location="classpath:test-users-groups-data.sql"/>
</jdbc:embedded-database>

Configuring remember me services to persist
to the database
Finally, we'll need to make some brief configuration changes to the <remember-me>
declaration to point it to the data source we're using:

<http auto-config="true" use-expressions="true"
 access-decision-manager-ref="affirmativeBased">
 <intercept-url pattern="/login.do" access="permitAll"/>
 <intercept-url pattern="/account/*.do"
 access="hasRole('ROLE_USER') and fullyAuthenticated"/>
 <intercept-url pattern="/*" access="hasRole('ROLE_USER')"/>
 <form-login login-page="/login.do" />
 <remember-me key="jbcpPetStore" token-validity-seconds="3600"
 data-source-ref="dataSource"/>
 <logout invalidate-session="true" logout-success-url=""
 logout-url="/logout"/>
</http>

That's all we need. Now, if we restart the application, it will no longer forget users
who previously had a valid remember me cookie set.

Are database-backed persistent tokens more
secure?
You may recall that the TokenBasedRememberMeServices we implemented in Chapter
3 use MD5 hashing across a series of user-related data to encode the cookie securely,
in a way that would be hard (but not impossible) to tamper with. The o.s.s.web.
authentication.rememberme.PersistentTokenBasedRememberMeServices class
implements handling of persistent tokens and handles token security with a validation
method, which handles potential tampering slightly differently.

Chapter 4

[117]

PersistentTokenBasedRememberMeServices creates a unique series identifier
per user, with unique tokens within that series, as the user continues to interact and
be authenticated by the site. The combination of series and token are stored in the
cookie, and used to authenticate the user against the persistent token store. Both
series and token are randomly generated, and of configurable length, making the
likelihood of successful brute force guessing by a malicious attacker extremely small.

Just like TokenBasedRememberMeServices, persistent tokens may be compromised
by cookie theft or other man-in-the-middle techniques. The use of a custom subclass
incorporating the IP address into the persistent token, as well as forcing username
and password authentication for sensitive areas of the site, are still advised when
using persistent tokens.

Securing your site with SSL
It is highly likely that you have both heard of and used SSL encryption in your daily
online life. The Secure Sockets Layer (SSL) protocol, and its successor, Transport
Layer Security (TLS), are used to provide transport level security for HTTP
transactions over the web—these are known as HTTP Secure (HTTPS) transactions.

In summary, SSL and TLS are used to secure the raw HTTP data being transmitted
between the browser client and the web server in a way that is transparent to the
user. As a developer, however, it's of critical importance to plan for the use of SSL in
the design of a secure website. Spring Security provides a number of configuration
options that allow for flexible incorporation of SSL in your web application.

Although SSL and TLS are different protocols (TLS being the more
mature and recent iteration of the protocol), most people are familiar with
the term SSL, and as such we will use this term to refer to both SSL and
TLS protocols for the remainder of this book.

While a detailed examination of the mechanics of the SSL protocol are beyond the
scope of this book, several excellent books and technical papers exist, which describe
the specifications and protocols in very fine detail (you may want to start with RFC
5246, The Transport Layer Security (TLS) Protocol Version 1.2, at http://tools.ietf.
org/html/rfc5246).

Setting up Apache Tomcat for SSL
First and foremost, if you're planning on following along with the SSL-related
examples, you'll need to configure your application server to support SSL connections.
For Apache Tomcat, this is relatively easy; if you are using another application server,
please consult the relevant sections of the documentation.

Securing Credential Storage

[118]

Generating a server key store
We'll need to use the Java keytool command to generate a key store. Open
a command prompt and enter the following command:

keytool -genkeypair -alias jbcpserver -keyalg RSA -validity 365
 -keystore tomcat.keystore -storetype JKS

Follow the prompts using the following directions. Enter the password password
for the key store and private key password.

What is your first and last name?

 [Unknown]: JBCP Pets Admin

What is the name of your organizational unit?

 [Unknown]: JBCP Pets

What is the name of your organization?

 [Unknown]: JBCP Pets

What is the name of your City or Locality?

 [Unknown]: Anywhere

What is the name of your State or Province?

 [Unknown]: NH

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=JBCP Pets Admin, OU=JBCP Pets, O=JBCP Pets, L=Anywhere, ST=NH, C=US
correct?

 [no]: yes

This will result in the creation of a file named tomcat.keystore in the current
directory. This is the key store that will be used to enable Tomcat SSL.

Be aware that the command genkeypair was called (genkey in
pre-Java 6 releases of keytool).

Remember the location of this file for the next step.

Configuring Tomcat's SSL Connector
In Apache Tomcat's conf directory, open server.xml in an XML editor (Eclipse or
equivalent will be fine), and uncomment or add the SSL Connector declaration. It
should look as follows:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"

Chapter 4

[119]

 sslProtocol="TLS"
 keystoreFile="conf/tomcat.keystore"
 keystorePass="password"/>

Ensure the tomcat.keystore file you created in the previous step is copied to the
conf directory of the Tomcat installation. After this configuration, the Tomcat server
can be started, and the JBCP Pets application should be accessible on a secure port,
at https://localhost:8443/JBCPPets/.

Take care to include the https and not http—depending on the browser, this
problem may go undetected, and you may find yourself scratching your head
as to why you are not seeing the JBCP Pets home page.

Automatically securing portions of the site
It seems reasonable to assume that if you've gone to the trouble of setting up
SSL to secure your customers' data, you would always want certain areas of the
site to fall under the umbrella of SSL protection. Fortunately, Spring Security
makes this easy, with the simple step of adding a configuration property to the
<intercept-url> declarations.

The attribute requires-channel can be added to any <intercept-url> declaration
to require that any URL matching the pattern is required to pass over a specific
protocol (HTTP, HTTPS, or any). If we secure the JBCP Pets site in this way, the
configuration would be as follows:

<http auto-config="true" use-expressions="true">
 <intercept-url pattern="/login.do" access="permitAll"
 requires-channel="https"/>
 <intercept-url pattern="/account/*.do"
 access="hasRole('ROLE_USER') and fullyAuthenticated"
 requires-channel="https"/>
 <intercept-url pattern="/*" access="permitAll"
 requires-channel="any"/>
 <!-- ... -->
</http>

If we start the application at this point, we see the following behavior:

Access to the login page and the account page, now requires HTTPS,
and the browser will automatically redirect the user from the non-secure
(HTTP) URL to the secure URL. For example, attempts to access
http://localhost:8080/JBCPPets/login.do will be redirected to
https://localhost:8443/JBCPPets/login.do.
Once the user has been switched to the HTTPS-secured URL, if he accesses
a URL that isn't required to use HTTPS, he can still remain on HTTPS.

•

•

Securing Credential Storage

[120]

We can imagine that the important security benefits of this type of configuration—
most modern application servers use the secure indicator on session cookies, so
enforcing the login page to be secure (if this is where your application's sessions are
first allocated) will ensure that the session cookie is transferred securely, and is less
subjected to session hijacking. Additionally, this wires rules about SSL encryption
directly into your security declarations, so it's very easy to ensure that all sensitive
pages in the application are properly and thoroughly secured.

The functionality of automatically redirecting users to the appropriate protocol (HTTP
or HTTPS) is implemented by the addition of another servlet filter towards the front of
the Spring Security filter chain (just after the SecurityContextPersistenceFilter).
The o.s.s.web.access.channel.ChannelProcessingFilter is automatically placed
in the filter chain if any URL declarations are indicated to require a particular protocol,
using the requires-channel attribute.

The interaction of the ChannelProcessingFilter in the processing of the request
is illustrated in the following figure:

Chapter 4

[121]

The design of the ChannelProcessingFilter lends itself to extension or
augmentation, should your application require more complex logic than ships out of
the box. Please note that although we illustrate only the SecureChannelProcessor
and RetryWithHttpsEntryPoint implementation classes in the diagram, similar
classes exist to validate and act on URLs that are declared to require HTTP.

It's important to note that, since the ChannelEntryPoint performs simple URL
rewriting with an HTTP 302 redirect, it is of course not possible to use this technique
to redirect POST URLs (although typically a POST should not transition between
secure and insecure protocols anyway, since most browsers will warn against
this behavior).

Secure port mapping
Certain environments may have HTTP or HTTPS ports other than the standard
defaults of 80/443 or 8080/8443. In this case, you must augment your application's
configuration to include explicit port mappings, so that the ChannelEntryPoint
implementations can determine which port to use when redirecting users to secure
or non-secure URLs.

This is trivial to do with the additional configuration element <port-mappings>,
which allows for specification of additional HTTP or HTTPS pairs in addition
to the defaults:

<port-mappings>
 <port-mapping http="9080" https="9443"/>
</port-mappings>

The use of port mappings can be especially important if your application server
is behind a reverse proxy.

Securing Credential Storage

[122]

Summary
In this chapter, we have:

Introduced the configuration to support a permanent security data store
using a JDBC-compatible database.
Configured JBCP Pets to use the database for user authentication and highly
secure password storage, using password encryption and salting techniques.
Evaluated techniques for managing users persisted to a database using JDBC.
Configured user assignment into security groups, conferring roles, rather
than direct role assignment. This increases the manageability of the site and
its user community.
Explored the use of Spring Security with a legacy (non-default)
database schema.
Examined configuration and application design techniques used to
incorporate HTTPS to increase the security of data transferred to and from
secured areas of the application.

In the next chapter, we'll explore some more advanced authorization capabilities
of Spring Security, and introduce the Spring Security JSP tag library for
fine-grained authorization.

•

•

•
•

•

•

Fine-Grained Access Control
Up to this point, we've updated the JBCP Pets site with more user-friendly
functionality, including a custom login page, as well as change password, and
remember me features.

In this chapter, we will first look at techniques for planning application security
and user/group assignment. After this, we will examine two ways to implement
fine-grained authorization—authorization that may affect portions of a page of
the application. Next, we will look at Spring Security's approach for securing the
business tier through method annotation and use of aspect-oriented programming.
Finally, we will review an interesting capability of annotation-based security which
allows for role-based filtering on collections of data.

During the course of this chapter, we'll learn:

The basic techniques for planning web application security and group
management, using a combination of off-the-shelf tools and critical thinking
Configuring and experimenting with different methods of performing in-page
authorization checks on content, given the security context of a user request
Performing configuration and code annotation to make caller
pre-authorization a key part of our application's business tier security
Several alternative approaches to implementing method level security,
and review the pros and cons of each type
Implementing data-based filters on Collections and Arrays using method
level annotations

•

•

•

•

•

Fine-Grained Access Control

[124]

As this chapter involves concepts that are beyond many of the isolated techniques
we've seen thus far, we've made a number of source code changes on your behalf
in order to increase the breadth of the website, and separate it into a true three-tier
system. While these changes may be of interest to you, they don't directly relate to
Spring Security, so we'll omit the details of the changes. Just don't be startled when
you see many more files associated with this chapter's source code!

Re-thinking application functionality and
security
At this point, we'd like to revisit the authorization model and flow of the JBCP
Pets application. We feel that we've got a highly secure application, but the flow
of the application is not particularly suitable for a public facing e-commerce site.
This has much to do with the fact that access to any page in the application (except
for the login page) requires that the user has a valid account and login—this is not
conducive to users browsing and shopping!

Planning for application security
It's usually the domain of the product management and the security officer, in
conjunction with engineering, to evaluate the desired functionality of the site against
the planned user communities and their needs. This planning process—if performed
effectively—relies on worksheets and diagramming to thoroughly cover the roles
and groups that the application will comprise. We'll spend a bit of time walking
through our planned expanded functionality for the JBCP Pets site to illustrate
how this process could work. The thought that you put into the security
planning process in any project you work on will pay dividends as you go into
development—endeavor to build a security profile for each and every page and
business service in your application design process!

Planning user roles
For JBCP Pets, we'll use the following table to map user classes to roles (Spring
Security GrantedAuthority values). Some of these are new roles that could be used
to classify different segments of the user population than we've used up to this point.

Chapter 5

[125]

User class Description Roles
Guest A user who isn't a remembered or

authenticated user.
None (anonymous)

Consumer / Customer A user who has established an account
and may or may not have completed a
purchase on the site.

ROLE_CUSTOMER

ROLE_USER

Customer w/
Completed Purchase

A user who has completed at least one
purchase on the site.

ROLE_PURCHASER

ROLE_USER

Administrator An administrative user responsible for
user account management, and so on.

ROLE_ADMIN

ROLE_USER

Supplier A product supplier allows access to
manage inventory of their products.

ROLE_SUPPLIER

ROLE_USER

Using these declared user classes and roles, we can now match these roles in a
coarse-grained way up against the functional definition of the site. There are many
ways that this can be done—here are a few ideas that we've found helpful in the past:

Use Microsoft Visio and Venn diagrams to indicate the overlap between
functionality and user groups (remember that we used this to a very limited
capacity in Chapter 2, Getting Started with Spring Security). This technique
is visually effective for very small application domains or coarse-grained
analysis.
Diagram individual pages, and annotate them with the user classes or roles
which are allowed to access each page. While not as visually accessible, this
approach tends to be very accurate. We illustrate an example of this in the
next section.
Use sticky note modeling and a whiteboard or sketch board. In this type
of exercise, product planners sketch out areas of a whiteboard to represent
different user roles, and affix sticky notes representing product functional
areas to each section of the whiteboard.

It can often be easier to do initial security planning in a non-digital format, as it's
quite common for group discussion to lead to significant changes in the application
security profile that are easier to adjust in a non-digital medium. Typically, security
planning at this level doesn't get down to the level of detail of individual pages or
portions of pages, but rather functional "chunks" of the application.

•

•

•

Fine-Grained Access Control

[126]

Planning page-level security
The next level of detail in security planning is security around page-level elements.
First, planning of site-wide page features is essential, to ensure consistency in users'
experience in available features from page to page as they traverse the site. Most sites
will already have a site-wide templating facility in place, as simple as jsp:include
directives (as are used in JBCP Pets), or more sophisticated, such as Apache Tiles 2.

Page-level security planning often dovetails with the process that you're already
using for user experience planning for the site—many companies use Microsoft Visio
or Adobe Dreamweaver for low-fidelity site planning, or more complex tools such
as Axure RP. Whatever the tool, make sure that planning of feature availability as it
relates to security is incorporated in the earliest designs of the site. Your UI architect
and graphic designer will appreciate discussion of elements which may or may not
appear, depending on the user's roles. Understanding the optionality of page elements
will allow good UI planners to design the page with an appropriate flexible layout
model to ensure that the page looks good regardless of the user's authorization.

Using the Right tools for the Job
A UI architect friend of mine turned me on to the excellent "Sketchy"
shape set for Visio, available at: http://www.guuui.com/
issues/02_07.php. For those familiar with Visio, this is a visually
appealing way to develop accurate, but low-fidelity mockups using
a tool that many users already understand Although no open source
Visio-compatible software currently exists, similar applications such
as Dia (http://projects.gnome.org/dia/) or OpenOffice Draw
(http://www.openoffice.org/product/draw.html) are available
for most platforms.

A sample Visio diagram annotated with security information might appear
as follows:

Chapter 5

[127]

You can see that we don't require too much detail to capture the relevant security
information, but the intention of the diagram is instantly accessible to anyone
(even non-technical users) who might review it.

Methods of Fine-Grained authorization
Fine-grained authorization refers to the availability of application features based on
the context of a particular user's request. Unlike coarse-grained authorization we
explored in Chapters 2, Getting Started with Spring Security, Chapter 3, Enhancing the
User Experience and Chapter 4, Securing Credential Storage, fine-grained authentication
typically refers to selective availability of portions of a page, rather than restricting
access to a page entirely. Most real-world applications will spend a considerable
amount of time in the details of fine-grained authorization planning.

Spring Security provides us with two methods of selective display of functionality:

Spring Security JSP Tag Libraries allow conditional access declarations to be
placed within a page declaration itself, using standard JSP tag library syntax.
Checking user authorization in an MVC application's controller layer allows
the controller to make an access decision and bind the results of the decision
to the model data provided to the view. This approach relies on standard
JSTL conditional page rendering and data binding and is slightly more
complicated than the Spring Security tag libraries; however, it is more
in line with standard web application MVC logical design.

Either of these approaches is perfectly valid when developing fine-grained
authorization models for a web application. Let's explore how each approach
is implemented through a JBCP Pets use case.

We'd like to use the results of our security planning to ensure the Log Out and
My Orders links in the site-wide menu bar appear only for users who are logged
in or have purchases (ROLE_USER and ROLE_CUSTOMER, respectively). We'd also
like to ensure that the Log In link appears for users who are browsing the site as
unauthenticated guests (users without the role ROLE_USER). We'll work through
both approaches to add this functionality, starting with the Spring Security JSP
Tag Library.

•

•

Fine-Grained Access Control

[128]

Using Spring Security Tag Library to
conditionally render content
We saw in Chapter 3 that the Spring Security tag library can be used to access
data contained in the Authentication object, and here we'll examine some other
powerful functionality of the tag library. The most common functionality used in the
Spring Security tag library is to conditionally render portions of the page, based on
authorization rules. This is done with the <authorize> tag that functions similarly
to the <if> tag in the core JSTL library, in that the tag's body will render depending
on the conditions provided in the tag attributes. Let's use the <authorize> tag to
conditionally render bits of the page.

Conditional rendering based on URL access rules
The Spring Security tag library provides functionality to render content based on
the existing URL authorization rules that are already defined in the application
security configuration file. This is done by the use of the <authorize> tag, with
the url attribute.

For example, we could ensure that the My Account link is displayed only when
appropriate, that is, for users who are actually logged into the site—recall that the
access rules we've previously defined are as follows:

<intercept-url pattern="/account/*.do"
access="hasRole('ROLE_USER') and fullyAuthenticated"/>

So, the JSP code to conditionally display the My Account link would be as follows:

<sec:authorize url="/account/home.do">
 <c:url value="/account/home.do" var="accountUrl"/>
 My Account
</sec:authorize>

This will ensure that the content of the tag is not displayed unless the user has
sufficient privileges to access the stated URL. It is possible to further qualify the
authorization check by HTTP method, by including the method attribute:

<sec:authorize url="/account/home.do"
 method="GET">
 <c:url value="/account/home.do" var="accountUrl"/>
 My Account (with 'url' attr)
</sec:authorize>

Chapter 5

[129]

Using the url attribute to define authorization checks on blocks of code is
convenient, because it abstracts knowledge of the actual authorization checks
from your JSPs and keeps them in your security configuration file.

Be aware that the HTTP method should match the case specified in your
security <intercept-url> declarations otherwise they may not match
as you expect. Also, note that the URL should always be relative to the
web application context root (as your URL access rules are).

For many purposes, the use of the <authorize> tag's url attribute will suffice to
correctly display link-or action-related content only when the user is allowed to see
it. Remember that the tag need not only surround a link, but it could even surround
a whole form, if the user doesn't have permission to submit it.

Conditional rendering based on Spring EL
Expressions
An additional, more flexible method of controlling display of JSP content is available
when the <authorize> tag is used in conjunction with a Spring Expression
Language (SpEL) expression.

Recall from our initial exploration in Chapter 2 that SpEL provides a powerful
expression language, which is further enhanced by Spring Security with constructs
allowing expressions to be built around the current secured request. If we refine
the previous example using SpEL expressions in the <authorize> tag to lock down
access to the My Account link, it might be as follows:

<sec:authorize access="hasRole('ROLE_USER') and fullyAuthenticated">
	 <c:url value="/account/home.do" var="accountUrl"/>
	 My Account (with 'access' attr)</
li>
</sec:authorize>

The SpEL evaluation is performed by the same code behind the scenes as the
expressions utilized in <intercept-url> access declaration rules (assuming
expressions have been configured). Hence the same set of built-in functions and
properties are accessible from expressions built using the <authorize> tag.

Either of these methods of utilizing the <authorize> tag provide powerful,
fine-grained control over display of page contents based on security
authorization rules.

Fine-Grained Access Control

[130]

Conditionally rendering the Spring Security 2 way
The two methods of utilizing the Spring Security JSP tag library listed previously are
actually new in Spring Security 3, and are the preferred method of securing content
within a page based on authorization rules; however, the same <authorize> tag
supports several other methods of operation, which you may encounter in legacy
code, or may in some cases better suit your needs.

Conditional display based on absence of a role
The Log In link should be displayed for users who are anonymous, that is, do not
have the ROLE_USER role. The <authorize> tag supports this type of rule with the
ifNotGranted attribute:

<sec:authorize ifNotGranted="ROLE_USER">
 <c:url value="/login.do" var="loginUrl"/>
 Log In
</sec:authorize>

You'll note that if you now attempt to access the site as an anonymous user, you'll
see a link pointing to the login form.

Conditional display based on any one of a list of roles
Similar to the last step, the Log Out link should be displayed for users who have an
account with the site and are logged in. The ifAnyGranted attribute requires the
user to have any one of several specified roles before rendering the tag body. We'll
demonstrate the use of this form with the Log Out link:

<sec:authorize ifAnyGranted="ROLE_USER">
 <c:url value="/logout" var="logoutUrl"/>
 Log Out
</sec:authorize>

Note that the ifAnyGranted attribute allows a comma-separated set of roles to be
specified to determine a proper match, the user needs to have only one of the roles
for the tag body to be rendered.

Conditional display Based on all of a list of roles
Finally, the use of the ifAllGranted attribute requires that the user has every one
of the roles listed in the tag attribute.

<sec:authorize ifAllGranted="ROLE_USER,ROLE_CUSTOMER">
 <c:url value="/account/orders.do" var="ordersUrl"/>
 My Orders
</sec:authorize>

Chapter 5

[131]

We can see that there are many ways that the authorize tag can apply to different
circumstances. Note that the three attributes we've exercised can be combined.
For example the ifNotGranted and ifAnyGranted attributes can be combined
to provide simple complex Boolean equations.

Using JSP Expressions
Each of the previous three methods of in-page authorization (ifNotGranted,
ifAnyGranted, ifAllGranted) supports a JSP EL expression which will be
evaluated to return an authorization GrantedAuthority (role, and so on.). This
allows flexibility if the list of authorization requirements may change depending
on earlier computation in the page.

Using controller logic to conditionally
render content
Let's now adapt the examples we just implemented using the <authorize> tag
to Java-based code. For the purposes of brevity, we'll implement only one of the
examples, but it should be straightforward to follow along and see how to provide
each of the examples when using controller-based authorization checks.

Adding conditional display of the Log In link
Instead of using the Spring Security <authorize> tag, we'll make the assumption
that there's a Boolean variable in the model data available to the view that dictates
whether or not it should show the Log In link. In traditional MVC fashion, the view
needn't know why the model has this value, it just needs to act on it. We will use
the Java Standard Tag Library (JSTL) if tag, along with a JSP EL expression, to
conditionally display a portion of the page.

<c:if test="${showLoginLink}">
 <c:url value="/login.do" var="loginUrl"/>
 Log In
</c:if>

Now let's review how we populate the model data from the controller with the
following code.

Fine-Grained Access Control

[132]

Populating model data based on user credentials
The object model of our controllers is set up in a sensible object-oriented pattern,
with all Spring MVC controllers extending from a single base class, com.packtpub.
springsecurity.web.controller.BaseController. This allows us to place
commonly used code in the BaseController and make it accessible to all controllers
in the application. First, we'll put in a method that will get the Authentication
implementation from the current request:

protected Authentication getAuthentication() {
 return SecurityContextHolder.getContext().getAuthentication();	
}

Next, we'll add a method that will populate the showLoginLink model data value,
using a Spring MVC-annotated method:

@ModelAttribute("showLoginLink")
public boolean getShowLoginLink() {
 for (GrantedAuthority authority : getAuthentication().
getAuthorities()) {
 if(authority.getAuthority().equals("ROLE_USER")) {
 return false;
 }
 }
 return true;
}

As this method is annotated with @ModelAttribute, it will automatically be
executed by Spring MVC when any controller extending BaseController is
invoked. We can simply repeat this design pattern for the remaining show/hide
model data directives that we covered through the additional uses of the
authorize tag.

What is the best way to configure in-page
authorization?
The major advances in the Spring Security <authorize> tag in Spring Security 3
removed many of the concerns about the use of this tag in prior versions of the
library. In many cases, the use of the url attribute of the tag can appropriately isolate
the JSP code from changes in authorization rules. You should use the url attribute of
the tag when:

The tag is preventing display of functionality that can be clearly identified by
a single URL
The contents of the tag can be unambiguously isolated to a single URL

•

•

Chapter 5

[133]

Unfortunately, in a typical application, the likelihood that you will be able to use the
url version of the tag frequently is somewhat low. The reality is that applications
are usually much more complex than this, and require more involved logic when
deciding to render portions of a page.

Although it's tempting to use the Spring Security tag library to declare bits of
rendered pages off-limits based on security criteria in the other ways we saw in
this chapter, including the if...Granted and access (SpEL) methods, there are
a number of reasons why (in many cases) this isn't a great idea:

Complex conditions beyond role membership are not supported by the tag
library. For example, if our application incorporated customized attributes on
the UserDetails implementation, IP filters, geo-location, and so on—none of
these would be supported using the standard <authorize> tag.
These could, however, conceivably be supported by a custom JSP tag, or
using SpEL expressions. Even in this case the JSP is more likely to be directly
tied to business logic than is typically encouraged.
The <authorize> tag must be referenced on every page it's used. This
leads to potential inconsistencies between rule sets that are intended to be
common, but may be spread across different physical pages. Good object
oriented system design would suggest that conditional rule evaluations be
located in only one place, and logically referred to from where they should
be applied.
It is possible (and we illustrate this using our common header JSP include)
to encapsulate and reuse portions of JSP pages to reduce the occurrence
of this type of problem, but it is virtually impossible to eliminate in a
complex application.
There is no way to validate the correctness of rules stated at compile time.
Whereas compile-time constants can be used in typical Java-based object
oriented systems, the JSP tag library requires (in typical use) hard-coded role
names, where a simple typo might go undetected for some time.
To be fair, such typos could be easily caught by comprehensive functional
tests of the running application, but they are far easier to test using standard
Java component unit testing techniques.

We can see that although the JSP-based approach for conditional content rendering is
convenient, there are some significant downsides.

All of these issues can be solved through the use of code in controllers that can
be used to push data into the application view model. Additionally, performing
advanced authorization determinations in code allows the benefits of reuse,
compile-time checks, and proper logical separation of model, view, and controller.

•

•

•

Fine-Grained Access Control

[134]

Securing the business tier
Our primary focus to this point in the book has been on securing the web-facing
portion of the JBCP Pets application; however, in real-world planning of secured
systems, equal attention should be paid to securing the service methods that allow
users access to the most critical part of any system—its data.

Spring Security has the ability to add a layer of authorization (or authorization-based
data pruning) to the invocation of any Spring-managed bean in your application.
While many developers focus on web-tier security, business tier security is arguably
just as important, as a malicious user may be able to penetrate the security of your
web tier, or may be able to access services exposed through a non-UI front-end, such
as a web service.

Let's examine the following logical diagram to see where we're interested in applying
a secondary layer of security:

Spring Security has two main techniques for securing methods:

Pre-authorization ensures that certain constraints are satisfied prior to
execution of a method being allowed—for example, that a user has a
particular GrantedAuthority, such as ROLE_ADMIN. Failure to satisfy
the declared constraints means that the method call will fail.
Post-authorization ensures that the calling principal still satisfies declared
constraints after the method returns. This is used rarely, but can provide
an extra layer of security around some complex interconnected business
tier methods.

•

•

Chapter 5

[135]

Pre-and post-authorization provide formalized support for what are generally
termed preconditions and postconditions in classic object-oriented design.
Preconditions and postconditions allow a developer to declare through runtime
checks, that certain constraints around a method's execution must always hold
true. In the case of security pre-and post-authorization, the business tier developer
is making a conscious decision about the security profile of particular methods by
encoding expected runtime conditions as part of an interface or class API declaration.
As you may imagine, this can require a great deal of forethought to avoid
unintended consequences!

The basics of securing business methods
Let's take some specific business methods in the JBCP Pets business tier and illustrate
how to apply some typical rules to them.

As part of the reorganization of the JBCP Pets codebase into a three-tier design,
we've abstracted the change password functionality seen in earlier chapters to the
business tier. Instead of making a direct call from the web MVC controller to the
JDBC DAO, we make the sensible choice of interposing a business service that can
provide additional functionality should the need arise. This is illustrated in the
following diagram:

Fine-Grained Access Control

[136]

We can see in this example that the com.packtpub.springsecurity.service.
IUserService interface would represent the business tier of the application
architecture. This is an appropriate place for us to add method level security.

Adding @PreAuthorize method annotation
Our first design decision will be to augment method security at the business tier by
ensuring that a user must be logged in as a valid user of the system before they are
allowed to change a password. This is done with a simple annotation added to the
method in the service interface definition as follows:

public interface IUserService {
 @PreAuthorize("hasRole('ROLE_USER')")
 public void changePassword(String username, String password);
}

This is all that is required to ensure that valid, authenticated users can access the
change password function. Spring Security will use a runtime aspect oriented
programming (AOP) pointcut to execute before advice on the method, and throw
an AccessDeniedException if the security constraints aren't met.

Instructing Spring Security to use method
annotations
We'll also need to make a one-time change to dogstore-security.xml, where we've
got the rest of our Spring Security configuration. Simply add the following element
right before the <http> declaration:

<global-method-security pre-post-annotations="enabled"/>

Validating method security
Don't believe it was that easy? Try changing the ROLE_USER declaration to ROLE_ADMIN.
Now log in as user guest (password guest) and try to change your password. You'll
see an error when you try to change your password:

Chapter 5

[137]

If you look at the Tomcat console, you'll see a very long stack trace, starting with:
DEBUG - Could not complete request
o.s.s.access.AccessDeniedException: Access is denied
at o.s.s.access.vote.AffirmativeBased.decide
at o.s.s.access.intercept.AbstractSecurityInterceptor.beforeInvocation
...
at $Proxy12.changePassword(Unknown Source)
at com.packtpub.springsecurity.web.controller.AccountController.
submitChangePasswordPage

Based on the access denied page, and the stack trace clearly pointing to the
changePassword method invocation, we can see that the user was appropriately
denied access to the business method because they lacked the GrantedAuthority of
ROLE_ADMIN. You can test that the change password function is still allowed for the
admin user.

Isn't it amazing that with a simple declaration in our interface, we're able to ensure
that the method in question has been secured? Of course, we do not want the generic
Tomcat 403 error page to be displayed in our production application—we'll update
this in Chapter 6, Advanced Configuration and Extension, when we examine access
denied handling.

Let's explore some other basic types of method security, and then we'll go behind the
scenes to see how and why this works.

Several flavors of method security
In addition to the @PreAuthorize annotation, there are several other ways of
declaring security pre-authorization requirements on methods. We can examine
these different ways of securing methods, and then evaluate their pros and cons
in different circumstances.

JSR-250 compliant standardized rules
JSR-250, Common Annotations for the Java Platform, defines a series of annotations,
some security-related, which are intended to be portable across JSR-250 compliant
runtime environments. The Spring Framework became compliant with JSR-250 as
part of the Spring 2.x release, including the Spring Security Framework.

While the JSR-250 annotations are not as expressive as the Spring native annotations,
they have the benefit that the declarations they provide are compatible across
implementing Java EE application servers such as Glassfish, or service-oriented
runtime frameworks such as Apache Tuscany. Depending on your application's
needs and requirements for portability, you may decide that the trade-off of
reduced specificity is worth the portability of the code.

Fine-Grained Access Control

[138]

To implement the rule we specified in the first example, we would make two
changes, first in dogstore-security.xml file:

<global-method-security jsr250-annotations="enabled"/>

Secondly, the @PreAuthorize annotation would change to the @RolesAllowed
annotation. As we might anticipate, the @RolesAllowed annotation does not support
SpEL expressions, so it looks much like the URL authorization rules we covered
early in Chapter 2. We edit the IUserService interface definition as such:

@RolesAllowed("ROLE_USER")
public void changePassword(String username, String password);

As with the previous exercise, if you don't believe this works, try changing
ROLE_USER to ROLE_ADMIN and test it out!

Note that it's also possible to provide a list of allowed GrantedAuthority names,
using standard Java 5 String array annotation syntax:

@RolesAllowed({"ROLE_USER","ROLE_ADMIN"})
public void changePassword(String username, String password);

There are also two additional annotations specified by JSR-250, @PermitAll and
@DenyAll that function as you might expect, permitting and denying all requests to
the method in question.

Annotations at the class level
Be aware that the method-level security annotations can also be
applied at the class level as well! Method-level annotations, if
supplied, will always override annotations specified at the class
level. This can be helpful if your business needs dictate specification
of security policies for an entire class at a time. Take care to use
this functionality in conjunction with good comments and coding
standards, so that developers are very clear about the security
characteristics of a class and its methods.

We'll explore how the JSR-250 annotation style and Spring Security annotation style
can co-exist in exercises later in this chapter.

Chapter 5

[139]

Method security using Spring's @Secured
annotation
Spring itself provides a simpler annotation style which is similar to the JSR-250
@RolesAllowed annotation. The @Secured annotation is functionally and
syntactically the same as @RolesAllowed. The only notable difference is that
processing of these annotations must be explicitly enabled with another attribute
on the <global-method-security> element:

<global-method-security secured-annotations="enabled"/>

As @Secured functions the same as the JSR standard @RolesAllowed annotation,
there's not really a compelling reason to use it in new code, but you may run across
it in older Spring code.

Method security rules using Aspect Oriented
Programming
The final technique for securing methods is quite possibly the most powerful
method, with an additional benefit that it needn't require code modification at all.
Instead, it uses aspect-oriented programming to declare a pointcut at a method or
set of methods, with advice that performs checks for role membership when the
pointcut matches. The AOP declarations are only present in the Spring Security
XML configuration file, and do not involve any annotations.

The following is an example of a declaration protecting all service interface methods
with administrative rights:

<global-method-security>
 <protect-pointcut access="ROLE_ADMIN" expression="execution(* com.
packtpub.springsecurity.service.I*Service.*(..))"/>
</global-method-security>

The pointcut expressions are supported under the hood with Spring AOP
support via AspectJ. Unfortunately, Spring AspectJ AOP only supports a very
small subset of the AspectJ pointcut expression language—refer to the Spring AOP
documentation for more details on supported expressions and other important
elements of programming with Spring AOP.

Fine-Grained Access Control

[140]

That said, be aware that it's possible to specify a series of pointcut declarations,
targeting different roles and pointcut targets. Here's an example where we add
a pointcut to target a method in our DAO:

<global-method-security>
 <protect-pointcut access="ROLE_USER" expression="execution(* com.
packtpub.springsecurity.dao.IProductDao.getCategories(..)) &&
args()"/>
 <protect-pointcut access="ROLE_ADMIN" expression="execution(* com.
packtpub.springsecurity.service.I*Service.*(..))"/>
</global-method-security>

Notice that the new pointcut we added uses some more advanced AspectJ syntax,
illustrating Boolean logic and the other supported pointcut, args, which can be
used to specify the type declaration of arguments.

Much as with other areas of Spring Security that allow a series of security declarations,
AOP-style method security is processed top to bottom, so it's a good idea to write the
pointcuts in most-specific to least-specific order.

Programming using AOP can be confusing for even seasoned developers. If you
intend to use AOP heavily for security declarations, it is highly suggested that you
review some of the very good books available on the subject, in addition to the
Spring AOP reference documentation. AOP can be tricky to implement, especially
diagnosing configuration errors if it doesn't work as you expect!

Comparing method authorization types
The following quick reference chart may assist you in selecting a type of method
authorization checking to use:

Method
Authorization Type

Specified As JSR Standard Allows SpEL Expressions

@PreAuthorize
@PostAuthorize

Annotation No Yes

@RolesAllowed
@PermitAll
@DenyAll

Annotation Yes No

@Secure Annotation No No
protect-pointcut XML No No

Chapter 5

[141]

Most Java 5 consumers of Spring Security will probably opt to use the JSR-250
annotations for maximum compatibility and reuse of their business classes
(and relevant constraints) across the IT organization. Where needed, these basic
declarations can be replaced with the annotations that tie the code to the Spring
Security implementation itself.

If you are using Spring Security in an environment that doesn't support annotations
(Java 1.4 or previous), unfortunately your choices are somewhat limited with method
security enforcement. Even in this situation, the use of AOP provides a reasonably
rich environment in which we can develop basic security declarations.

How does method security work?
The access decision mechanism for method security – whether or not a given request
is allowed – is conceptually the same as the access decision logic for web request
access. An AccessDecisionManager polls a set of AccessDecisionVoters, each
of which can provide a decision to grant or deny access, or abstain from voting.
The specific implementation of the AccessDecisionManager aggregates the voter
decisions and arrives at an overall decision to allow the method invocation.

Web request access decision making is less complicated, due to the fact that the
availability of ServletFilters makes interception (and summary rejection) of
securable requests relatively straightforward. As method invocation can happen
from anywhere, including areas of code not directly configured by Spring Security,
the Spring Security designers chose to use a Spring-managed AOP approach to
recognize, evaluate, and secure method invocations.

Fine-Grained Access Control

[142]

The following high level flow illustrates the main players involved in authorization
decisions for method invocation:

We can see that Spring Security's o.s.s.access.intercept.aopalliance.
MethodSecurityInterceptor is invoked by the standard Spring AOP runtime to
intercept method calls of interest. From here, the logic of whether or not to allow
a method call is relatively straightforward, as per the previous flow diagram.

At this point, we might wonder about performance of the method security feature.
Obviously, the MethodSecurityInterceptor couldn't be invoked for every method
call in the application—so how do annotations on methods or classes result in
AOP interception?

Chapter 5

[143]

First of all, AOP proxying isn't invoked for all Spring-managed beans by default.
Instead, if <global-method-security> is defined in the Spring Security configuration,
a standard Spring AOP o.s.beans.factory.config.BeanPostProcessor will be
registered which will introspect the AOP configuration to see if any AOP advisors
indicate that proxying (and interception) is required. This workflow is standard
Spring AOP handling (known as AOP auto-proxying), and doesn't inherently have
functionality specific to Spring Security. All registered BeanPostProcessors run at
initialization of the spring ApplicationContext, after all Spring Bean configurations
have occurred.

The AOP auto-proxy functionality queries all registered PointcutAdvisors to see
if there are AOP pointcuts that resolve to method invocations which should have
AOP advice applied. Spring Security implements the o.s.s.access.intercept.
aopalliance.MethodSecurityMetadataSourceAdvisor class, which examines any
and all configured method security and sets up appropriate AOP interception. Take
note that only interfaces or classes with declared method security rules will be proxied
for AOP!

Be aware that it is strongly encouraged to declare AOP rules
(and other security annotations) on interfaces, and not on
implementation classes. The use of classes, while available using
CGLIB proxying with Spring, may unexpectedly change certain
behavior of your application, and is generally less semantically
correct than security declarations (through AOP) on interfaces.

MethodSecurityMetadataSourceAdvisor delegates the decision to affect methods
with AOP advice to an o.s.s.access.method.MethodSecurityMetadataSource
instance. The different forms of method security annotation each have their own
MethodSecurityMetadataSource implementation, which is used to introspect
each method and class in turn and add AOP advice to be executed at runtime.

Fine-Grained Access Control

[144]

The following diagram illustrates how this process occurs:

Depending on the number of Spring Beans configured in your application, and the
number of secured method annotations you have, adding method security proxying
may increase the time required to initialize your ApplicationContext. Once your
Spring context is initialized, however, there is a negligible performance impact on
individual proxied beans.

Advanced method security
Method security expressiveness doesn't stop at simple role checking. In fact, some
method security annotations can utilize the full power of the Spring Expression
Language (SpEL) that we first saw in Chapter 2 with the discussion about
authorization rules in URL interceptors. This means that arbitrary expressions,
with calculation, Boolean logic, and so on can be used.

Chapter 5

[145]

Method security rules using bean decorators
An alternative form for declaring method security rules involves the use of
declarative XML, which can be included within a Spring Bean definition. Although
easier to read, this form of method security is far less expressive than pointcuts, and
far less comprehensive than the annotation-based approaches that we've reviewed
so far. Nonetheless, for certain types of projects, using an XML declarative approach
may be sufficient for your needs.

We can experiment by replacing the rules we declared in the prior examples with
XML-based declarations to secure the changePassword method. As we have used
bean auto-wiring to this point, which is unfortunately not compatible with XML
method decorators, we'll need to explicitly declare the service layer beans in order
to demonstrate this technique.

The security decorators are part of the security XML namespace. We'll first need to
include the security schema in our dogstore-base.xml file, which has been used
to contain Spring Bean definitions to this point:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/aop http://www.
springframework.org/schema/aop/spring-aop-3.0.xsd
 http://www.springframework.org/schema/jdbc http://www.
springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
 http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/security http://www.
springframework.org/schema/security/spring-security-3.0.xsd
 ">

Next (for the purposes of this exercise), remove any security annotations you may
have on the IUserService.changePassword method.

Fine-Grained Access Control

[146]

Finally, declare the bean in Spring XML syntax, with the following additional
decorator, which will declare that anyone wishing to invoke the changePassword
method must be of ROLE_USER:

<bean id="userService" class="com.packtpub.springsecurity.service.
UserServiceImpl">
 <security:intercept-methods>
 <security:protect access="ROLE_USER" method="changePassword"/>
 </security:intercept-methods>
</bean>

As with the examples earlier in this chapter, this protection can be easily verified by
changing ROLE_USER to ROLE_ADMIN and attempting to change your password using
the guest user account.

Behind the scenes, the functionality of this type of method access protection uses a
MethodSecurityInterceptor wired to a MapBasedMethodSecurityMetadataSource,
which the interceptor uses to determine appropriate access ConfigAttributes.
Unlike the more expressive SpEL-aware @PreAuthorize annotation, the <protect>
declaration takes only a comma-separated list of roles in the access attribute (similar
to the JSR-250 @RolesAllowed annotation).

It is also possible to use a simple wildcard match as part of the stated method name,
for example, we might protect all setters of a given bean as follows:

<security:intercept-methods>
 <security:protect access="ROLE_USER" method="set*"/>
</security:intercept-methods>

Method name matching can be performed by including a leading or trailing
regular expression wildcard indicator (*). The presence of such an indicator will
perform a wildcard search on the method name, adding the interceptor to any
method matching the regular expression. Please note that other common regular
expression operators (such as ? or [) are not supported. Please consult the relevant
Java documentation for assistance on formulating and understanding basic regular
expressions. Any other more complex wildcard or regex matching is not allowed.

It is not common to see this type of security declaration in new code, as more
expressive options exist, but it is good to be aware of this type of security decoration
so that you can recognize it as an option in your method security toolbelt. This
type of method security declaration can be especially useful in cases where adding
annotations to relevant interfaces or classes is not an option, such as when you are
dealing with securing components in third-party libraries.

Chapter 5

[147]

Method security rules incorporating method
parameters
Logically, writing rules that refer to method parameters in their constraints seems
sensible for certain types of operations. For example, it might make sense for us to
restrict the changePassword method further, so that a user attempting to invoke
the method must satisfy two constraints:

The user must be attempting to change their own password, or
The user is an administrator (in which case it is valid for the user to change
anyone's password, possibly through an administrative interface)

While it's easy to see how we could alter the rule to restrict the method invocation
only to administrators, it's not clear how we would determine if the user is
attempting to change their own password.

Fortunately, the SpEL binding used by the Spring Security method annotations
supports more sophisticated expressions, including expressions that incorporate
method parameters.

@PreAuthorize("#username == principal.username and hasRole('ROLE_
USER')")
public void changePassword(String username, String password);

You can see here that we've augmented the SpEL directive we used in the first
exercise with a check against the username of the principal against the username
method parameter (#username—the method parameter name prefixed with a #
symbol). The fact that this powerful feature of method parameter binding is available
should get your creative juices flowing and allow you to secure method invocations
with a very precise set of logical rules.

How method parameter binding works
Using a very similar design to what we saw in Chapter 2 with <intercept-url>
authorization expressions, an expression handler—an implementation of the interface
o.s.s.access.expression.method.MethodSecurityExpressionHandler—is
responsible for setting up the SpEL context under which expressions are evaluated.
The MethodSecurityExpressionHandler uses o.s.s.access.expression.
method.MethodSecurityExpressionRoot as the expression root, which (much as
WebSecurityExpressionRoot did for URL authorization expressions) exposes a
set of methods and pseudo-properties to the SpEL expressions for evaluation.

•
•

Fine-Grained Access Control

[148]

Almost all of the same out of the box expression bits (for example, hasRole.) that
we saw in Chapter 2 are available in the context of method security, plus one more
method involved with access control list checking (covered in Chapter 7, Access Control
Lists) and another pseudo-property that enables powerful role-based filtering of data.

You may note that the principal pseudo-property we referenced in the previous
example is one of the available expression operands that becomes more helpful in
method security expression than in SpEL expressions at the web tier. The principal
pseudo-property will return the principal placed in the current Authentication
object, typically either a String (username) or UserDetails implementation—this
means that any UserDetails properties or methods could be used to refine method
access restrictions.

The following diagram illustrates the functionality in this area:

SpEL variables are referenced with the hash (#) prefix. One important note is that
in order for method argument names to be available at runtime, debugging symbol
table information must be retained after compilation. Common methods of enabling
this are listed as follows:

If you are using the javac compiler, you will need to include the -g flag
when building your classes

•

Chapter 5

[149]

When using the <javac> task in ant, add the attribute debug="true"
In Maven, set the property maven.compiler.debug=on when building
your POM

Consult your compiler, build tool, or IDE documentation for assistance on
configuring this same setting in your environment.

Securing method data through Role-based
filtering
Two final Spring Security-dependent annotations are @PreFilter and @PostFilter,
which are used to apply security-based filtering rules to Collections or Arrays (with
@PostFilter only). This type of functionality is referred to as security trimming or
security pruning, and involves using the principal's security credentials at runtime to
selectively remove members from a set of objects. As you might expect, this filtering
is performed using SpEL expression notation within the annotation declaration.

We'll work through an example with JBCP Pets where we want to display a
special category for users who have an account on the system, called Customer
Appreciation Specials. Additionally, we'd like to use the customersOnly property
of the store Category object to ensure that certain categories of products are
displayed only to customers of the store.

The code involved is straightforward for a Spring MVC web application. The
com.packtpub.springsecurity.web.controller.HomeController that is used
to display the home page of the store, has code to expose categories—a Collection
of Category objects—to the user on the home page:

@Controller
public class HomeController extends BaseController {
@Autowired
 private IProductService productService;

 @ModelAttribute("categories")
 public Collection<Category> getCategories() {
 return productService.getCategories();
 }

 @RequestMapping(method=RequestMethod.GET,value="/home.do")
 public void home() {
 }
}

The business layer IProductService implementation delegates to a data
layer IProductDao provider. For the purposes of simplicity, the IProductDao
implementation uses a hard-coded list of Category objects.

•
•

Fine-Grained Access Control

[150]

Adding Role-based data filtering with @PostFilter
Much as we did with method security by authorization, we'll put the @PostFilter
security filtering directive at the business layer. The syntax in this case will look
as follows:

@PostFilter("(!filterObject.customersOnly) or (filterObject.
customersOnly and hasRole('ROLE_USER'))")
Collection<Category> getCategories();

Before we can understand why this works, we should review the processing flow
for the @PostFilter annotation:

Chapter 5

[151]

We can see that, again making use of standard Spring AOP constructs, the
o.s.s.access.expression.method.ExpressionBasedPostInvocationAdvice
is executed within an after AOP handler, and this advice is used to filter the
Collection or Array returned from the targeted method. As with @PreAuthorize
annotation processing, the DefaultMethodSecurityExpressionHandler is again
responsible for building the SpEL evaluation context and evaluation of the expression.

The effect that this change has on the application can be seen when accessing the
JBCP Pets home page as a guest, and then as a logged-in user. You can see that when
logged in as a registered user, the Customer Appreciation Specials category appears
for registered users!

Now that we've reviewed the processing of method post-filtering, let's pull apart the
SpEL expression we used to filter categories. For brevity, we refer to Collection
as the method return value, but be aware that @PostFilter works with either
Collection or Array method return types.

filterObject is re-bound to the SpEL context for each element in the
Collection. This means that if your method is returning a Collection
with 100 elements, the SpEL expression will be evaluated for each.
The SpEL expression must return a Boolean value. If the expression evaluates
to true, the object will remain in the Collection, while if the expression
evaluates to false, the object will be removed.

•

•

Fine-Grained Access Control

[152]

In most cases, you'll find that Collection post-filtering saves you complexity
of writing boilerplate code that you would likely be writing anyway.

Take care that you understand how @PostFilter works conceptually—unlike
@PreAuthorize, @PostFilter specifies method behavior and not a precondition.
Some object oriented purists may argue that @PostFilter isn't appropriate for
inclusion as a method annotation, and such filtering should instead be handled
through code in a method implementation.

Safety of Collection filtering
Be aware that the actual Collection returned from your method
will be modified! In some cases, this isn't desirable behavior, so
you should ensure that your method returns a Collection which
can be safely modified. This is especially important if the returned
Collection is an ORM-bound one, as post-filter modifications
could inadvertently be persisted to the ORM data store!

Spring Security also offers functionality to pre-filter method parameters which are
Collections—let's try implementing it now.

Pre-filtering collections with method @PreFilter
The @PreFilter annotation can be applied to a method to filter Collection elements
that are passed into a method based on the current security context. Functionally, once
it has a reference to a Collection, this annotation behaves exactly the same as the
@PostFilter annotation, with a couple of exceptions:

@PreFilter supports only Collection arguments, and does not support
Array arguments.
@PreFilter takes an additional, optional attribute filterTarget, which
is used to specifically identify the method parameter to filter when the
annotated method has more than one argument.

As with @PostFilter, keep in mind that the original Collection passed to the
method is permanently modified. This may not be desirable behavior, so ensure
that callers know that the Collection may be security trimmed after the method
is invoked!

•

•

Chapter 5

[153]

To explore use of this method of filtering, we'll temporarily adjust the getCategories
method that we applied the @PostFilter annotation to, by having it delegate its
filtering to a new method. Modify the getCategories method as follows:

@Override
public Collection<Category> getCategories() {
 Collection<Category> unfilteredCategories = productDao.
getCategories();
 return productDao.filterCategories(unfilteredCategories);
}

We'll need to add the filterCategories method to the IProductDao interface
and implementation. The @PreFilter annotation will be added to the interface
declaration, as follows:

@PreFilter("(!filterObject.customersOnly) or (filterObject.
customersOnly and hasRole('ROLE_USER'))")
public Collection<Category> filterCategories(Collection<Category>
categories);

Once you have the method and @PreFilter annotation declared on the interface,
simply add an empty implementation (although you could perform further filtering
within the method if business requirements dictate). Add the following method
body to ProductDao:

@Override
public Collection<Category> filterCategories(Collection<Category>
categories) {
 return categories;
}

At this point, you can verify that the functionality works properly by removing the
@PostFilter annotation from the IProductService interface, and you'll see that
the behavior is the same as before.

Why use a @PreFilter at all?
At this point, you may be scratching your head at why a @PreFilter is useful at all,
given that @PostFilter functions just the same and makes more logical sense on
methods that return data.

@PreFilter does in fact have a number of uses, some of which overlap with
@PostFilter, but remember that when declaring security restrictions, it's OK to
be redundant—it's better to be overly cautious than to potentially open yourself
up to a vulnerability.

Fine-Grained Access Control

[154]

The following are some situations where @PreFilter could be useful:

Many applications have a facility at the data layer to execute queries with a
series of parameters. @PreFilter could be used to ensure security scrubbing
of parameters passed into database queries.
There may be cases when the business tier will be assembling information
to return from many data sources. Input to each of the data sources can be
properly security trimmed so that the user doesn't inadvertently get search
results or data that they shouldn't have access to.
@PreFilter could be used to do location-or relationship-based filtering—for
example, it could form the basis of implicit search criteria based on categories
the user has clicked on, or items they have ordered.

Hopefully this provides you with some ideas on where pre-and post-filtering of
Collections can add an extra layer of security to your application!

A fair warning about method security
Take note of this very important warning about implementing and understanding
method security—in order to truly excel at implementation of this powerful type of
security, it is critical that you comprehend how it works behind the scenes. Lack of
understanding of AOP, at a conceptual and tactical level, is the number one cause
of frustration among users of method security. Make sure you read thoroughly, not
only this chapter, but also Chapter 7 of the Spring 3 Reference Documentation, Aspect
Oriented Programming with Spring.

Prior to implementing method security on an existing application, it's a good idea
to also review the application's compliance to object-oriented design principles.
You will have fewer unexpected errors when implementing method security if
your application already makes proper use of interfaces and encapsulation.

•

•

•

Chapter 5

[155]

Summary
In this chapter, we have covered most of the remaining areas in standard Spring
Security implementations which deal with authorization. We've learned enough
to take a thorough pass through the JBCP Pets online store and verify that proper
authorization checks are in place at all tiers of the application, to ensure that
malicious users cannot manipulate or access data to which they do not have access.

Specifically, we:

Learned about planning authorization, and user/group mapping in our
application design process
Developed two techniques for micro-authorization, filtering out in-page
content based on authorization or other security criteria using the Spring
Security JSP tag library and Spring MVC controller data binding
Explored several methods of securing business functions and data in the
business tier of our application and supporting a rich declarative security
model which is tightly integrated with the code

At this point, we've wrapped up coverage of much of the important Spring Security
functionality that you're likely to encounter in most standard secure web application
development scenarios.

If you've read this far without stopping for a breather, now is a good time to take a
break, review what we've learned to this point, and spend some time exploring the
sample code and the Spring Security code itself.

In the following two chapters, we'll cover several advanced customization and
extension scenarios, as well as the access control list (domain object model) module
of Spring Security. Exciting topics, for sure!

•

•

•

Advanced Configuration and
Extension

Up to now, we've covered a lot of theory, along with the architecture and usage
of the majority of Spring Security components. Our JBCP Pets commerce site is well
on its way to being a model citizen of the secured web, and we're ready to dig into
some difficult challenges.

During the course of this chapter, we'll:

Implement our own security filter, approaching an interesting problem of
augmenting site security through the use of selective IP filtering by user role
Build a custom AuthenticationProvider and the required supporting classes
Understand and implement anti-hacker measures known as session fixation
protection and concurrent session control
Utilize functionality included in concurrent session control to build some
simple user session reporting enhancements
Configure, and then customize, access denied behavior and exception handling
Build a Spring bean-based configuration of Spring Security, eschewing the
convenience of the security namespace's <http> configuration style, and
directly wiring and instantiating the entire Spring Security stack from the
ground up
Review how to configure session handling and creation with a
Spring bean-based security configuration
Examine the pros and cons of the <http> configuration style versus the
Spring bean-based configuration

•

•
•

•

•
•

•

•

Advanced Configuration and Extension

[158]

Learn about the AuthenticationEvent architecture along with available
event handlers and customization
Build a customized SpEL expression voter, and create a new SpEL method
to be used in <intercept-url> expressions

Writing a custom security filter
A common customization scenario for secured applications is the use of custom
servlet filters, which can function as additional layers of application-specific security,
enhance the user's experience by providing complementary information, and remove
potentially malicious behavior.

IP filtering at the servlet filter level
One useful enhancement that would please the JBCP Pets security auditors would
be further tightening of restrictions around use of the administrative account, or
(even better) of any user with administrative access to the site.

We'll tackle this problem with a filter that ensures that users with the ROLE_ADMIN
role can access the system only from a specified set of IP addresses. We'll do
simple address matching here, but you could easily extend this example to apply
IP masking, read the IP addresses from a database, and so on.

Studious readers will note that there are several other methods of achieving
this functionality, including more sophisticated SpEL <intercept-url> access
declarations; however, for the purpose of illustration, this is a straightforward
example to follow. Keep in mind that in the real world, things such as Network
Address Translation (NAT) and dynamic IP addresses can make IP-based rules
on public, unmanaged networks fragile.

Writing our custom servlet filter
Our custom filter will be configured to take a target role along with a list
of IP addresses for which the role will be allowed. We've called this class
com.packtpub.springsecurity.security.IPRoleAuthenticationFilter,
and defined it as follows. This code is a bit complex, so we'll omit some of the less
important bits in the code listing. Please consult the code for this chapter for the
full source code of the class.

package com.packtpub.springsecurity.security;
// imports omitted
public class IPRoleAuthenticationFilter extends OncePerRequestFilter
 {}

•

•

Chapter 6

[159]

We can see that our filter extends the o.s.web.filter.OncePerRequestFilter
base class from the Spring web library. While this isn't strictly required, it's handy
for filters with more complex configurations, intended only to be run once, so we'd
recommend it.

private String targetRole;
private List<String> allowedIPAddresses;

Our filter will have two properties—the target role (for example, ROLE_ADMIN), and
a List of allowed IP addresses. These will be configured through standard Spring
bean definition, as we'll see shortly. Finally, we get to the meat of the bean, which is
the doFilterInternal method.

 @Override
 public void doFilterInternal(HttpServletRequest req,
HttpServletResponse res, FilterChain chain)
 throws IOException, ServletException {
 // before we allow the request to proceed, we'll first get the
user's role
 // and see if it's an administrator
 final Authentication authentication = SecurityContextHolder.
getContext().getAuthentication();
 if (authentication != null && targetRole != null) {
 boolean shouldCheck = false;
 // look if the user is the target role
 for (GrantedAuthority authority : authentication.
getAuthorities()) {
 if(authority.getAuthority().equals(targetRole)) {
 shouldCheck = true;
 break;
 }
 }
 // if we should check IP, then check
 if(shouldCheck && allowedIPAddresses.size() > 0) {
 boolean shouldAllow = false;
 for (String ipAddress : allowedIPAddresses) {
 if(req.getRemoteAddr().equals(ipAddress)) {
 shouldAllow = true;
 break;
 }
 }

 if(!shouldAllow) {
 // fail the request

Advanced Configuration and Extension

[160]

 throw new AccessDeniedException(“Access has been
 denied for your IP address: “+req.getRemoteAddr());
 }
 }
 } else {
 logger.warn(“The IPRoleAuthenticationFilter should be placed
after the user has been authenticated in the filter chain.”);
 }
 chain.doFilter(req, res);		
 }
// accessors (getters and setters) omitted
}

As you can see, this code is very straightforward, and uses the SecurityContext
to acquire the Authentication information about the current secured request, just
as we've done in exercises from prior chapters. You may note that there isn't a whole
lot here that's specific to Spring Security, besides the method of acquiring the user's
role (GrantedAuthority) and the use of AccessDeniedException, to indicate that
access is denied.

Let's work through the process of configuring our custom filter as a Spring bean.

Configuring the IP servlet filter
Configuration of the filter is a simple Spring bean. We can configure it in the
dogstore-base.xml file.

<bean id="ipFilter" class="com.packtpub.springsecurity
 .security.IPRoleAuthenticationFilter">
 <property name="targetRole" value="ROLE_ADMIN"/>
 <property name="allowedIPAddresses">
 <list>
 <value>1.2.3.4</value>
 </list>
 </property>
</bean>

Using standard Spring bean configuration syntax, we can supply a list of
IP address values. In this case, 1.2.3.4 is obviously not a correct IP address
(127.0.0.1 would be a good one if you are doing local development),
but it provides us with a convenient way to test if the filter works!

Finally, we'll add the filter to the Spring Security filter chain.

Chapter 6

[161]

Adding the IP servlet filter to the Spring Security
filter chain
Servlet filters that are intended to be interjected in the midst of the Spring Security
filter chain are always positioned relative to other filters, which already exist in the
filter chain. Custom filter chain members are configured in the <http> element,
with a simple bean reference and a positioning indicator, as we'll see when we
configure the IP servlet filter:

<http>
 <custom-filter ref="ipFilter"
 before="FILTER_SECURITY_INTERCEPTOR"/>
</http>

Remember that our filter relies on the SecurityContext and Authentication
objects being available and populated, in order to verify the user's
GrantedAuthority. As such, we'll want to position this filter right before the
FilterSecurityInterceptor, which (as you may recall from Chapter 2, Getting
Started with Spring Security) is responsible for determining whether the user has
provided correct credentials to give them access to the system. At this point in the
servlet chain, the user's identity is well known, so this is the appropriate location for
the insertion of our filter.

You can restart the application now, and see that your login as the admin user will
be restricted due to the new IP filter. Play around with it a little until you really
understand how all the pieces fit together!

Extending the IP filter
For a more complex set of requirements, it may make sense to
extend this filter to allow more sophisticated matching on roles or IP
addresses (subnet matching, IP ranges, and so on). Unfortunately,
no widely available library exists in Java to perform these kinds of
calculations--which is quite surprising, considering the ubiquity of IP
filtering in secured environments.

Try enhancing the IP filter to include functionality that we haven't described
here—getting your hands dirty is the best method of learning, and adapting exercises
to real-world examples is a great way to make an abstract concept feel more concrete!

Advanced Configuration and Extension

[162]

Writing a custom AuthenticationProvider
In many scenarios where your application requirements fall outside the bounds
of standard Spring Security functionality, you'll need to implement your
own AuthenticationProvider. Recollect from Chapter 2 that the role of the
AuthenticationProvider, in the overall authentication process, is to accept
presented credentials (known as an Authentication object or authentication token)
from a principal's request and verify their correctness and validity.

Implementing simple single sign-on with an
AuthenticationProvider
Usually, an application will allow for one or more capabilities for users or agents to
sign on. However, it's also quite common, especially in widely available applications,
to allow for multiple methods of sign-on for different users of the system.

Let's assume that our system is integrating with a simple "single sign-on" provider,
where the username and password are sent in the HTTP request headers
j_username and j_password, respectively. Additionally, there's a j_signature
header that contains an encoded string with the username concatenated with the
password using an arbitrary algorithm, to further assist in request security.

Please do not use this sample as the basis of a real single sign-on solution!
It is contrived, and intended only to illustrate the steps required to
implement a fully custom AuthenticationProvider. True SSO
solutions are significantly more secure and involve multiple handshakes
to establish trustworthiness of credentials. Spring Security offers
support for several SSO solutions, including Central Authentication
Service (CAS) and SiteMinder, which we'll cover in Chapter 10, Single
Sign On with Central Authentication Service. In fact, Spring Security
provides a similar filter used for SiteMinder request header-based
authentication, the o.s.s.web.authentication.preauth.
RequestHeaderAuthenticationFilter, which is also a good
example of this type of functionality.

Our algorithm would expect the following data values in the headers, for a login by
the admin user:

Request Header Value
j_username admin

j_password admin

j_signature admin|+|admin

Chapter 6

[163]

Normally, an AuthenticationProvider will look for a particular specialization of
AuthenticationToken that has been populated by a servlet filter earlier in the chain
(earlier than the AuthenticationManager access checking is done, specifically), as
illustrated in the following diagram:

In this way there is a bit of a disconnected relationship between the supplier of the
AuthenticationToken and the consuming AuthenticationProvider. So, when
you are implementing a custom AuthenticationProvider, it's quite likely you'll
be implementing a custom servlet filter as well, whose responsibility is to supply
a specialized AuthenticationToken.

Customizing the authentication token
Our approach for this customization will be to utilize as much of Spring Security's
baseline functionality as possible. As such, we'll extend and augment base classes
like the UsernamePasswordAuthenticationToken, to add the new field to store
our encoded signature string. The resulting class, com.packtpub.springsecurity.
security.SignedUsernamePasswordAuthenticationToken, is as follows:

package com.packtpub.springsecurity.security;
// imports omitted
 public class SignedUsernamePasswordAuthenticationToken
 extends UsernamePasswordAuthenticationToken {

Advanced Configuration and Extension

[164]

 private String requestSignature;
 private static final long serialVersionUID =
 3145548673810647886L;

 /**
 * Construct a new token instance with the given principal,
credentials, and signature.
 *
 * @param principal the principal to use
 * @param credentials the credentials to use
 * @param signature the signature to use
 */
 public SignedUsernamePasswordAuthenticationToken(String principal,
 String credentials, String signature) {
 super(principal, credentials);
 this.requestSignature = signature;
 }
 public void setRequestSignature(String requestSignature) {
 this.requestSignature = requestSignature;
 }
 public String getRequestSignature() {
 return requestSignature;
 }
}

We can see that this SignedUsernamePasswordAuthenticationToken is a very
simple POJO extension of the UsernamePasswordAuthenticationToken. Tokens
need not be very complex—their sole purpose is to encapsulate presented
credentials for later verification.

Writing the request header processing servlet filter
Now, we'll write the code for the servlet filter that is responsible for translating
the request headers into our newly minted token. Again, we'll extend from the
appropriate Spring Security base class. In this case, o.s.s.web.authentication.
AbstractAuthenticationProcessingFilter fits our needs.

The base filter, AbstractAuthenticationProcessingFilter, is
a common superclass of many of the authentication-oriented filters in
Spring Security (which are OpenID, Central Authentication Service,
and form-based username and password login). This class provides
standardized authentication logic and wires other important resources
such as RememberMeServices and ApplicationEventPublisher
(covered later in this chapter) properly.

Chapter 6

[165]

Let's review the code now:

package com.packtpub.springsecurity.security;
// imports omitted
 public class RequestHeaderProcessingFilter extends
 AbstractAuthenticationProcessingFilter {
 private String usernameHeader = "j_username";
 private String passwordHeader = "j_password";
 private String signatureHeader = "j_signature";

 protected RequestHeaderProcessingFilter() {
 super("/j_spring_security_filter");
 }

 @Override
 public Authentication attemptAuthentication
 (HttpServletRequest request,HttpServletResponse response)
 throws AuthenticationException,
 IOException, ServletException {
 String username = request.getHeader(usernameHeader);
 String password = request.getHeader(passwordHeader);
 String signature = request.getHeader(signatureHeader);

 SignedUsernamePasswordAuthenticationToken authRequest =
 new SignedUsernamePasswordAuthenticationToken
 (username, password, signature);

 return this.getAuthenticationManager().authenticate(authRequest);

 }
 // getters and setters omitted below
}

We can see that our simple filter looks for three named headers, as we had
planned (configurable through bean properties, if needed), and listens by
default on the URL /j_spring_security_filter. Just as with other Spring
Security filters, this is a virtual URL that is recognized by our filter's base class,
AbstractAuthenticationProcessingFilter, upon which action is taken by the
filter in an attempt to create an Authentication token and then authenticate the
user's request.

Differentiating components participating in authentication token
workflow
It's easy to become confused by the terminology, interface, and class
names in this functional area. The interface representing authentication
token classes is o.s.s.core.Authentication, and implementations
of this interface end with the suffix AuthenticationToken. This is an
easy way to identify the authentication implementation classes that are
shipped with Spring Security!

Advanced Configuration and Extension

[166]

For the purposes of this example, we've kept the error checking to a minimum here.
Presumably, the application would be verifying whether or not all expected headers
were supplied, and reporting an exception or redirecting the user if things weren't
found to be as expected.

A minor configuration change is required to insert our filter into the filter chain.

<http auto-config="true" ...>
 <custom-filter ref="requestHeaderFilter"
 before="FORM_LOGIN_FILTER"/>
</http>

You can see that the final request in the filter code is to the AuthenticationManager,
to perform authentication. This will delegate (eventually) to the configured
AuthenticationProviders, one of which would be expected to support checking
on a SignedUsernamePasswordAuthenticationToken. Next, we'll need to write an
AuthenticationProvider responsible for doing just this.

Writing the request header AuthenticationProvider
Now, we'll write an AuthenticationProvider implementation, com.packtpub.
springsecurity.security.SignedUsernamePasswordAuthenticationProvider,
responsible for validating the signature in our custom Authentication token.

package com.packtpub.springsecurity.security;
// imports omitted
 public class SignedUsernamePasswordAuthenticationProvider
 extends DaoAuthenticationProvider {
 @Override
 public boolean supports(Class<? extends Object> authentication) {
 return (SignedUsernamePasswordAuthenticationToken
 .class.isAssignableFrom(authentication));
 }

 @Override
 protected void additionalAuthenticationChecks
 (UserDetails userDetails,
 UsernamePasswordAuthenticationToken authentication)
 throws AuthenticationException {
 super.additionalAuthenticationChecks
 (userDetails, authentication);

 SignedUsernamePasswordAuthenticationToken signedToken =
 (SignedUsernamePasswordAuthenticationToken) authentication;

 if(signedToken.getRequestSignature() == null) {
 throw new BadCredentialsException(messages.getMessage(
 "SignedUsernamePasswordAuthenticationProvider

Chapter 6

[167]

 .missingSignature", "Missing request signature"),
 isIncludeDetailsObject() ? userDetails : null);
 }

// calculate expected signature
 if(!signedToken.getRequestSignature()
 .equals(calculateExpectedSignature(signedToken))) {
 throw new BadCredentialsException(messages.getMessage
 ("SignedUsernamePasswordAuthenticationProvider
 .badSignature", "Invalid request signature"),
 isIncludeDetailsObject() ? userDetails : null);
 }
}

private String calculateExpectedSignature
 (SignedUsernamePasswordAuthenticationToken signedToken) {
 return signedToken.getPrincipal() + "|+|" +
 signedToken.getCredentials();
 }
}

You can see that we've extended a framework class, the
DaoAuthenticationProvider again, because the useful data access code there
is still required for the actual verification of the user's password, and to load
UserDetails from the UserDetailsService.

This class is a little more complicated, so we'll go through the methods one at a time.

The supports method, overridden from the superclass, indicates to the
AuthenticationManager the expected runtime type of the Authentication token
that this AuthenticationProvider has an interest in evaluating.

Next, the additionalAuthenticationChecks method is invoked by the superclass
to allow subclasses to perform any additional subclass-specific validation of the
token. This fits in perfectly with our strategy, so we simply add our new checks on
the signature of the supplied token. We're almost done with our custom "simple
SSO" implementation, so only one configuration step remains.

Combining AuthenticationProviders
A common use is the need to combine one or more AuthenticationProvider
interfaces, as the user may log into the application with one of the several methods
of authentication.

Advanced Configuration and Extension

[168]

While we haven't covered any other AuthenticationProvider up to this point,
we can assume the following desired workflow using the standard username
or password form-based authentication, and the custom simple SSO provider
that we implemented in the previous exercise. When combining multiple
AuthenticationProvider interfaces, each AuthenticationProvider will examine
the AuthenticationToken supplied by the servlet filters in the filter chain, and
handle the token only if the token type is supported. In this way, it's not generally
harmful to allow your application to simultaneously support different methods of
authentication within a single configuration stack.

Combining AuthenticationProviders is actually trivial. We simply need to declare
another authentication-provider reference in our dogstore-security.xml
configuration file.

<authentication-manager alias="authenticationManager">
 <authentication-provider ref=
 "signedRequestAuthenticationProvider"/>
 <authentication-provider user-service-ref="jdbcUserService">
 <password-encoder ref="passwordEncoder" >
 <salt-source ref="saltSource"/>
 </password-encoder>
 </authentication-provider>
</authentication-manager>

As with many of the other Spring bean references in our security configuration
file, the signedRequestAuthenticationProvider reference will resolve to our
AuthenticationProvider, which we'll configure along with our other
Spring beans in dogstore-base.xml.

<bean id="signedRequestAuthenticationProvider"
 class="com.packtpub.springsecurity.security
 .SignedUsernamePasswordAuthenticationProvider">
 <property name="passwordEncoder" ref="passwordEncoder"/>
 <property name="saltSource" ref="saltSource"/>
 <property name="userDetailsService" ref="jdbcUserService"/>
</bean>

The bean properties on our custom AuthenticationProvider are actually required
by the superclass. They'll simply refer to the same bean declarations that we've
referred to in the second authentication-provider declared along with the
AuthenticationManager.

We've finally finished with the coding and configuration required to support this
single sign-on feature, so give yourself a round of applause! However, one small
problem remains—how can we manipulate the request headers to simulate our
SSO provider?

Chapter 6

[169]

Simulating single sign-on with request
headers
Although our scenario is contrived, there are several commercial and open source
single sign-on solutions that can be configured to send credentials using HTTP
request headers; most notably CA (formerly Netegrity) SiteMinder.

It is important to note that applications integrated behind SSO solutions
are expected to be inaccessible by direct user requests. It is almost always
the case that the SSO provider functions as a proxy through which user
requests flow (and are secured) or that the provider retains all knowledge
of passwords and isolates the individual secured applications from this
knowledge.
Do not deploy an SSO-enabled application without a full understanding
of the hardware, network, and security infrastructure it is going into!

A browser extension for Mozilla Firefox, called Modify Headers (available from
http://modifyheaders.mozdev.org/), is very straightforward tool for simulating
requests that rely on manipulation on HTTP request headers. The following
screenshot illustrates how we could use the tool to add the headers that our
SSO solution is expecting:

Advanced Configuration and Extension

[170]

With all the headers marked as Enabled, we can simply visit the
URL http://localhost:8080/JBCPPets/j_spring_security_filter and
we will see that we're automatically logged into the system! You may also note
that our form-based login continues to work as well, due to our retention of both
AuthenticationProvider implementations and corresponding filters in the
filter stack.

Considerations when writing a custom
AuthenticationProvider
Although the example we have just seen was probably not illustrative of the type of
AuthenticationProvider you are likely to build, the series of steps required
for any custom AuthenticationProvider will be very similar. The important
takeaways from this exercise are:

The responsibility for populating an Authentication implementation from
the user's request is usually placed on a member of the servlet filter chain.
Depending on whether or not the data needs to validate the credentials
presented, the authentication component may be extended.
The responsibility for authenticating a user based on a valid Authentication
token should come from an AuthenticationProvider implementation.
Refer to our discussion of how AuthenticationProviders are expected
to behave, from Chapter 2, for more details.
In special cases, when an unauthenticated session is detected, a custom
AuthenticationEntryPoint may be required. We will read more about
this interface later in this chapter, and will also see some examples of a
custom AuthenticationEntryPoint in action when we review Central
Authentication Service (CAS) integration in Chapter 10.

If you keep these roles in mind when developing an AuthenticationProvider
specific to your application's needs, you'll have a lot less confusion at the time of
implementation and debugging!

Session management and concurrency
A common configuration for Spring Security is detection of the same user logging
into the secured application from different active sessions. This is known as
concurrency control, and is part of a class of configurable functionality around
session management. Although this functionality is not, strictly speaking, advanced
configuration, it tends to be quite confusing for new users, and is best picked up once
you have some familiarity with the overall operation of the Spring Security framework.

•

•

•

Chapter 6

[171]

Session management in Spring Security can be configured in two different
ways—session fixation protection and concurrency control. As some aspects of
concurrency control build upon the framework established by session fixation
protection, we'll examine session fixation first.

Configuring session fixation protection
As we are using the security namespace style of configuration, session fixation
protection is already configured on our behalf. If we wanted to explicitly configure
it to mirror the default settings, we would do the following:

<http auto-config="true" use-expressions="true">
 <!-- ... -->
 <session-management session-fixation-protection="migrateSession"/>
</http>

Session fixation protection is a feature of the framework that you most likely won't
even notice unless you try to act as a malicious user. We'll show you how to simulate
a session stealing attack, but before we do, it's important to understand what session
fixation does and the type of attack it prevents.

Understanding session fixation attacks
Session fixation is a type of attack whereby a malicious user attempts to steal the
session of an unauthenticated user of your system. This can be done by using
a variety of techniques that result in the attacker obtaining the unique session
identifier of the user (for example, JSESSIONID). If the attacker creates a cookie or
URL parameter with the user's JSESSIONID in it, they can access the user's session.

Although this is obviously a problem, typically, if a user is unauthenticated, they
haven't entered any sensitive information (assuming the site security is planned
correctly!). This becomes a more critical problem if the same session identifier
continues to be used after a user has authenticated. If the same identifier is used
after authentication, the attacker may now gain access to the authenticated user's
session without ever having to know their username or password!

Advanced Configuration and Extension

[172]

At this point, you may scoff in disbelief and think this is extremely
unlikely to happen in the real world. In fact, session stealing attacks
happen frequently. We would suggest (as we did in Chapter 3) that you
spend some time reading the very informative articles and case studies on
the subject published by the OWASP organization
(http://www.owasp.org/). Attackers and malicious users are real,
and they can do very real damage to your users, your application, or your
company, if you don't understand the techniques that they commonly use
and know how to avoid them.

The following diagram illustrates how a session fixation attack works:

Now that we have seen how an attack like this works, we'll see what Spring Security
can do to prevent it.

Preventing session fixation attacks with Spring
Security
If we can prevent the same session that the user had prior to authentication from
being used after authentication, we can effectively render the attacker's knowledge of
the session ID useless. Spring Security session fixation protection solves this problem
by explicitly creating a new session when a user is authenticated, and invalidating
their old session.

Chapter 6

[173]

Let's see the following screenshot:

We can see that a new filter, the o.s.s.web.session.SessionManagementFilter,
is responsible for evaluating if a particular user is newly authenticated. If the user
is newly authenticated, a configured o.s.s.web.authentication.session.
SessionAuthenticationStrategy determines what to do. The o.s.s.web.
authentication.session.SessionFixationProtectionStrategy will create
a new session (if the user already had one), and copy the contents of the existing
session to the new one. That's pretty much it—seems simple; however, as we can see
in the diagram, it effectively prevents the evil user from reusing the session ID after
the unknowing user has authenticated.

Simulating a session fixation attack
At this point you may want to see what's involved in simulating a session
fixation attack. To do this, you'll first need to disable session fixation protection
in dogstore-security.xml.

<session-management session-fixation-protection="none"/>

Advanced Configuration and Extension

[174]

Next, you'll need to open two browsers. We'll initiate the session in Internet Explorer,
steal it from there, and our attacker will log in using the stolen session in Firefox.
We will use the Internet Explorer Developer Tools (built into IE 8) and the Firefox
Web Developer Add-On (refer to Chapter 3 for the URL) in order to view
and manipulate cookies.

Open the JBCP Pets home page in Internet Explorer. Next, open the Developer Tools
(look in the Tools drop-down menu, or hit F12) and select View Cookie Information
from the Cache menu. Find the cookie for JSESSIONID with the appropriate domain
(this will be blank if you are using localhost).

Copy the session cookie value to the clipboard, and then log in to the JBCP Pets
site. If you repeat the View Cookie Information command, you'll see that the
JSESSIONID did not change after you logged in, making you vulnerable to a session
fixation attack!

In Firefox, open the JBCP Pets website. You will have been assigned a session cookie,
which we can view using the Cookies menu, and the View Cookie Information
menu option.

To complete our hack, we'll click the Edit Cookie option, and paste in the
JSESSIONID cookie that we copied to the clipboard from Internet Explorer
as shown in the following screenshot:

Chapter 6

[175]

Our session fixation hack is complete! If you now reload the page in Firefox, you
will see that you are logged in as the same user that was logged in using Internet
Explorer, without requiring knowledge of the username and password. Are you
scared of malicious users yet?

Now, re-enable session fixation protection and try this exercise again. You'll see
that, in this case, the JSESSIONID changes after the user logs in. Based on our
understanding of how session fixation attacks occur, this means that we have
reduced the likelihood of an unsuspecting user falling victim to this type of attack.
Excellent job!

Cautious developers should take note that there are many methods of stealing
session cookies, some of which such as Cross-Site Scripting (XSS) may make
even session fixation-protected sites vulnerable. Please consult the OWASP site
for additional resources on preventing these types of attacks.

Comparing session-fixation-protection options
The session-fixation-protection attribute has three options that allow you
to alter its behavior.

Attribute value Description
none Disables session fixation protection, and (unless other <session-

management> attributes are non-default) does not configure a
SessionManagementFilter.

migrateSession When the user is authenticated and a new session is allocated, it
ensures that all attributes of the old session are moved to the new
session. We'll see that this behavior is configurable when using
bean-based configuration, later in this chapter.

newSession When the user is authenticated, a new session is created and no
attributes from the old (unauthenticated) session will be migrated.

Advanced Configuration and Extension

[176]

In most cases, the default behavior of migrateSession will be appropriate for sites
that wish to retain important attributes of the user's session (such as click interest,
shopping carts, and so on) after the user has been authenticated.

Enhancing user protection with concurrent
session control
An enhancement to user security which naturally follows from session fixation
protection, is concurrent session control. As described previously, concurrent
session control ensures that a single user cannot have more than a fixed number of
active sessions simultaneously (typically one). Ensuring that this maximum limit
is enforced involves several components working in tandem to accurately track
changes in user session activity.

Let's configure the feature, review how it works, and then test it out!

Configuring concurrent session control
Now that we have understood the different components involved in concurrent
session control, setting it up should make much more sense. First, we need to enable
the ConcurrentSessionFilter and related bits in dogstore-security.xml.

<http auto-config="true" use-expressions="true">
<!-- ... -->
 <session-management>
 <concurrency-control max-sessions="1"/>
 </session-management>
</http>

Next, we need to enable the o.s.s.web.session.HttpSessionEventPublisher in
the web.xml deployment descriptor, so that the servlet container will notify Spring
Security (through the HttpSessionEventPublisher) of session lifecycle events.

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 org.springframework.security.web.session
 .HttpSessionEventPublisher
 </listener-class>
</listener>
<servlet>
 <servlet-name>dogstore</servlet-name>

Chapter 6

[177]

With these two configuration bits in place, concurrent session control will now
be activated. Let's see what it actually does, and then we'll review some steps
to reproduce its protection over our users' sessions.

Understanding concurrent session control
We mentioned previously that concurrent session control attempts to limit access
by the same user through different sessions. Based on our understanding of session
stealing-type attacks, we can see that concurrent session control can mitigate the
possibility that an attacker could use a stolen session while the original, unsuspecting
user, is logged in. Why do you think that is so?

Concurrent session control uses an o.s.s.core.session.SessionRegistry
to maintain a list of active HTTP sessions and the authenticated users with
which they are associated. As sessions are created and expired, the registry
is updated in real-time, based on the session lifecycle events published by
the HttpSessionEventPublisher to track the number of active sessions per
authenticated user.

An extension of the SessionAuthenticationStrategy, o.s.s.web.
authentication.session.ConcurrentSessionControlStrategy is the method by
which new sessions are tracked and a method by which concurrency control is actually
enforced. Each time a user accesses the secured site, the SessionManagementFilter
is used to check the active session against the SessionRegistry. If the user's active
session isn't in the list of active sessions tracked in the SessionRegistry, the least
recently used session is immediately expired.

Advanced Configuration and Extension

[178]

The secondary actor in the modified concurrent session control filter chain is the
o.s.s.web.session.ConcurrentSessionFilter. This filter will recognize expired
sessions (typically, sessions which have been expired either by the servlet container
or forcibly by the ConcurrentSessionControlStrategy) and notify a user that their
session has expired.

Now that we have understood how concurrent session control works, it should be
easy for us to reproduce a scenario in which it is enforced.

Testing concurrent session control
As we did with verifying session fixation protection, we will need to access two web
browsers. Follow these steps:

1.	 In Internet Explorer, log into the site as user guest.
2.	 Now, in Firefox, log into the site as the same user (guest).
3.	 Finally, go back to Internet Explorer, and take any action. You will see a

message indicating that your session has expired.

The following message will appears:

Not very friendly, but it illustrates that the session has been forcibly expired by
the software. If you were an attacker, you'd be quite upset right now! If you were a
legitimate user, however, you'd probably be confused, because this is obviously not a
friendly method of being notified that JBCP Pets is keeping an eye on your security!

Concurrent session control tends to be a very difficult concept for new
Spring Security users to grasp. Many users try to implement it without
truly understanding how it works, and what the benefits are. If you're
trying to enable this powerful feature, and it doesn't seem to be working
as you expect, make sure you have everything configured correctly, and
then review the theoretical explanations in this section—hopefully they
will help you understand what may be wrong!

In the event this occurs, we should probably redirect the user to the login page, and
provide them a message to indicate what went wrong.

Chapter 6

[179]

Configuring expired session redirect
Fortunately, there is a simple method of directing users to a friendly page (typically,
the login page), when they are flagged by concurrent session control—simply specify
the expired-url attribute, and set it to a valid page in your application:

<http auto-config="true" use-expressions="true">
<!-- ... -->
 <session-management>
 <concurrency-control max-sessions="1" expired-url=
 "/login.do?error=expired"/>
 </session-management>
</http>

In the case of our application, this will redirect the user to the standard login form, and
we could alter the page to display a friendly message indicating that we determined
they had multiple active sessions, and should log in again. Of course, the URL is
completely arbitrary, and should be adjusted to match your application's needs!

Other benefits of concurrent session control
Another benefit of concurrent session control is that the SessionRegistry exists to
track active (and, optionally, expired) sessions. This means that we can get runtime
information about what user activity exists in our system (for authenticated users,
at least).

You can even do this if you don't want to enable concurrent session control. Simply
set max-sessions to the value of -1, and session tracking will remain enabled, even
though no maximum will be enforced.

Let's look at a couple simple ways to use this.

Displaying a count of active users
You've probably seen online forums which display a count of currently active users
in the system. With session registry tracking (through concurrent session control)
enabled, this is trivial to display on each page of the application.

Let's add a simple method and bean auto-wiring to BaseController.

@Autowired
 SessionRegistry sessionRegistry;

@ModelAttribute("numUsers")
 public int getNumberOfUsers() {
 return sessionRegistry.getAllPrincipals().size();
 }

Advanced Configuration and Extension

[180]

We can see that this exposes an attribute to be used in a Spring MVC JSP page, so
we'll add a footer, footer.jsp, to the JBCP Pets site to take advantage of this.

<div id="footer">
 ${numUsers} user(s) are logged in!
</div>
</body>
</html>

Once you restart the application and log in, you can see that the active user count is
updated at the bottom of every page.

Trivial, but it illustrates the benefit of session tracking as part of the Spring Security
framework—especially as you can take advantage of this functionality right out of
the box!

We can do some more advanced data gathering from the SessionRegistry, which
can be helpful for administrators—let's see this now.

Displaying information about all users
The SessionRegistry tracks information about all active user sessions. If we want
to empower our site administrators, we can very easily put together a page listing
all active users, and the last time they interacted with the site.

Let's add a new method to AccountController (although such a function would
typically be added in an administrative area, we can suspend our belief that
JBCP Pets is a real site for a moment!), which will review the information in the
SessionRegistry and collect current session information.

@RequestMapping("/account/listActiveUsers.do")
public void listActiveUsers(Model model) {
 Map<Object,Date> lastActivityDates = new HashMap<Object, Date>();
 for(Object principal: sessionRegistry.getAllPrincipals()) {
 // a principal may have multiple active sessions
 for(SessionInformation session :
 sessionRegistry.getAllSessions(principal, false))
 {
 // no last activity stored

Chapter 6

[181]

 if(lastActivityDates.get(principal) == null) {
 lastActivityDates.put(principal, session.getLastRequest());
 } else {
 // check to see if this session is newer than the last stored
 Date prevLastRequest = lastActivityDates.get(principal);
 if(session.getLastRequest().after(prevLastRequest)) {
 // update if so
 lastActivityDates.put(principal,
 session.getLastRequest());
 }
 }
 }
 }
 model.addAttribute("activeUsers", lastActivityDates);
}

This method utilizes two API methods on SessionRegistry.

getAllPrincipals: Returns a List of Principal objects (typically
UserDetails objects) with active sessions.
getAllSessions(principal, includeExpired): Returns a List of
SessionInformation objects with information about each session for the
given Principal. Can also include information about expired sessions.

Given this explanation of the SessionRegistry API methods, the logic of the
listActiveUsers method is pretty straightforward—review all active users in the
registry, and find the session with the most recent activity on it. The combination of
Principal and last activity timestamp is inserted into a Map for display in the UI.

The UI page becomes very simple using JSTL constructs. Create listActiveUsers.
jsp in the WEB-INF/views/account directory, with the following contents
(we'll omit the header and footer for brevity):

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<h1>Active Users</h1>

 <c:forEach items="${activeUsers}" var="uinfo">
 ${uinfo.key.username}
 / Last Active: ${uinfo.value}
 </c:forEach>

•

•

Advanced Configuration and Extension

[182]

What we end up with, when we navigate to http://localhost:8080/JBCPPets/
account/listActiveUsers.do, is something like the following:

You can certainly see the power of the SessionRegistry for these types of trivial
examples. It is even possible to extend the SessionRegistry to track additional
information about user activity, such as last page viewed, last action taken, and so
on—very helpful for administrative interfaces built on top of Spring Security!

Understanding and configuring
exception handling
Spring Security uses a simple dispatcher pattern to translate exceptions thrown by
the framework into concrete actions that affect the processing of a user's request to a
secured resource. The o.s.s.web.access.ExceptionTranslationFilter, one of
the last servlet filters in the standard Spring Security filter chain, is responsible for
examining exceptions thrown during the authentication and authorization processes
(in FilterSecurityInterceptor, the culmination of the filter chain), and reacting
appropriately to them.

Chapter 6

[183]

The standard ExceptionTranslationFilter provides dispatching for three general
classes of failure, as illustrated in the following diagram:

We can see that ExceptionTranslationFilter handles the following cases:

AuthenticationException is thrown, and the user is required to log in
(in most cases—depending on the logic of the AuthenticationEntryPoint,
as we'll read later in this chapter)
AccessDeniedException is thrown, and the user hasn't logged in
AccessDeniedException is thrown, and the user has logged in, in which
case, the user is shown either an error page or a generic HTTP 403 response

Let's dive into the configuration of AccessDeniedHandler.

•

•

•

Advanced Configuration and Extension

[184]

Configuring "Access Denied" handling
To this point, when authenticated users have been denied access to a secured
resource because they lack the GrantedAuthority or other required rights, they
have been presented with the servlet container's default HTTP 403 (Access Denied)
page. This page is the result of actions taken by the default o.s.s.web.access.
AccessDeniedHandler, which is invoked by the ExceptionTranslationFilter
in response to an AccessDeniedException thrown by the framework.

While this plain error page is effective, it's not particularly attractive or user friendly.
It would be better if we were able to tie this page into the overall look and feel of our
site, and provide the user with some information about what happened.

A very basic method of handling the access denied report to the user is handled by
configuring a custom URL to which Spring Security will forward the user whose
request is denied. We note that this functions similarly to the user's initial login
request being forwarded to the login-page declared on the <form-login> element.

Configuring an "Access Denied" destination URL
Configuring the URL to which a user will be forwarded is the easiest part of this
exercise. Simply add a new element, <access-denied-handler>, within the
<http> declaration, which declares our access denied handling URL as follows:

<http auto-config="true" ...>
 <access-denied-handler error-page="/accessDenied.do"/>
</http>

Hold tight—this won't work yet, because we haven't associated this URL with
any code in our Spring MVC application. We'll need to augment the code in our
LoginLogoutController to handle this additional URL, and to push some useful
information into the model for our view to present to the user.

Adding controller handling of
AccessDeniedException
We'll need to add a controller action handler method to respond to the URL that
we just configured. Additionally, we'll inspect the AccessDeniedException and
extract some details that may be of help to the user when they see our custom access
denied page.

@Controller
public class LoginLogoutController extends BaseController{
 // Ch 6 Access Denied

Chapter 6

[185]

 @RequestMapping(method=RequestMethod.GET, value="/accessDenied.do").
 public void accessDenied(ModelMap model,
 HttpServletRequest request) {
 AccessDeniedException ex = (AccessDeniedException)
 request.getAttribute(AccessDeniedHandlerImpl
 .SPRING_SECURITY_ACCESS_DENIED_EXCEPTION_KEY);
 StringWriter sw = new StringWriter();
 model.addAttribute("errorDetails", ex.getMessage());
 ex.printStackTrace(new PrintWriter(sw));
 model.addAttribute("errorTrace", sw.toString());
 }
}

Be aware that the reference to AccessDeniedHandlerImpl is required to retrieve the
name of the request attribute that is used to temporarily store the exception thrown
during the scope of the current request.

Unfortunately, the AccessDeniedException does not typically provide enough
detail in its message to be extremely helpful to system administrators or the users
themselves. You may be interested in examining the use of AccessDeniedException
in the Spring Security framework and possibly extending it to provide more
contextual information about what the user was trying to do when an authorization
check was declined.

Writing the Access Denied page
With the controller in place, the Access Denied page is trivial to write.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<jsp:include page="common/header.jsp">
 <jsp:param name="pageTitle" value="Access Denied"/>
</jsp:include>

<h1>Access Denied</h1>
<p>
 Access to the specified resource has been denied for
 the following reason: ${errorDetails}.
</p>
Error Details (for Support Purposes only):

<blockquote>
 <pre>${errorTrace}</pre>
</blockquote>
<jsp:include page="common/footer.jsp"/>

Advanced Configuration and Extension

[186]

You can see that we have used the errorDetails and errorTrace model variables
that we set in the controller. While not beautiful, this page serves its purpose to
direct the user to other areas of the site, through the common site navigation, and
also gives them some indication about what may have gone wrong.

What causes an AccessDeniedException
When planning for exception handling, it's important to do some analysis and
understand the origin of a target exception. It's common for users of Spring Security
to get confused between AccessDeniedException (which results in an HTTP 403
page, by default) and AuthenticationException, which is typically thrown when
the user hasn't been authenticated at all. The following guidelines may help indicate
when each type of exception is thrown by the framework:

Exception type Who throws it and why?
AuthenticationException An AuthenticationProvider, when

supplied credentials are invalid, or the
account is disabled or expired
A DaoAuthenticationProvider, when an
error occurs accessing the DAO data store
RememberMeServices, when the remember
me cookie presented has been tampered with
Various specialized authentication classes
(CAS, NTLM, and so on.) for
scenario-specific use cases

•

•

•

•

AccessDeniedException An AccessDecisionManager, when the configured
Voter votes to deny access—note that this can happen
in any voting scenario, including web URL access or
method-level authorization checking.

Keep in mind that the ExceptionTranslationFilter we mentioned prior to this
exercise is the key bit that differentiates between the two types of exceptions as they
relate to the flow of the user's request and the responses of the application to the user.

Chapter 6

[187]

Pay attention to which filters precede the
ExceptionTranslationFilter in the filter chain. The
ExceptionTranslationFilter will be able to handle and react to
only those exceptions that are thrown below it in the filter chain execution
stack. Users often get confused, especially when adding custom filters
in the incorrect order, as to why the expected behavior differs from their
application's actual exception handling—in many of these cases, the order
of the filters is to blame!

While the out of the box workflow is predictable and sufficient in most cases, you
may find that you need to customize exception handling, especially if you introduce
custom subclasses of the base exceptions, which require special treatment by the
filter chain.

The importance of the
AuthenticationEntryPoint
The AuthenticationEntryPoint (which we saw as a supporting bean in the
workflow of the ExceptionTranslationFilter) plays a crucial role in the handling of
unauthenticated user requests. When the ExceptionTranslationFilter determines
that authentication is required, it reaches out to the AuthenticationEntryPoint
to inquire what should happen next. In the case of form-based authentication, the
o.s.s.web.authentication.LoginUrlAuthenticationEntryPoint is responsible
for forwarding the user to the login form.

We will see in later chapters that the AuthenticationEntryPoint is
used in a variety of authentication mechanisms for more specialized
behavior—for example, in Central Authentication Service (CAS) single-sign on,
the AuthenticationEntryPoint will ensure the user is forwarded to the
CAS portal for authentication.

In many circumstances, when implementing custom integrations with Spring
Security and a third-party authentication system (external to the web application),
you will need to implement an AuthenticationEntryPoint yourself.

Advanced Configuration and Extension

[188]

Configuring Spring Security
infrastructure beans manually
If you're working in a very complex environment where the baseline Spring
Security functionality—although very robust—doesn't cover everything, you may
end up at a point where you'll need to build the entire Spring Security filter chain
and supporting infrastructure from the ground up yourself. This is an area that is
partially documented in the Spring Security reference documentation, but tends
to trip up a lot of people. Some refer to this type of configuration as the "alternate
universe" of Spring Security.

Building and wiring all the requisite beans yourself, provides you with a very high
degree of flexibility and customization that the security namespace <http>-style
configuration won't allow.

We aren't kidding when we say that building up the requisite beans is
complex. Even a bare-bones implementation can require upwards of 25
individual bean definitions, with a clear understanding on the part of
the developer about which beans are dependent on others, and what all
the properties on each bean are for.
Keep in mind that once you step off the cliff of the convenient security
XML namespace-based configuration, you are less insulated from
changes in the Spring Security codebase and overall dependency
architecture. The security XML namespace provides a welcome layer
of abstraction and will serve most needs perfectly well.

Hopefully at this point in the book, you have understood both the architecture of
request processing and the major components involved in it; hence, you won't
be shocked at the large number of beans needing configuration. Purely to get a
better understanding of all the components that are under the surface, it can be a
useful exercise to work through configuring each and every bean, to see the final,
working configuration.

We'll spend some time here illustrating the major pieces required when setting
up the Spring Security infrastructure yourself. Note that in some cases, we may
reduce some of the detail of less interesting beans, where it doesn't really need to be
explained; however, the full configuration file required to support this is included
with the chapter source code as dogstore-explicit-base.xml. Let's walk through
the major configuration steps now.

Chapter 6

[189]

A high level overview of Spring Security bean
dependencies
We don't want to jump right into configuring beans without giving you a very high
level view of the major beans involved in the manual setup of the Spring Security
beans. Here's a dependency diagram indicating the beans we'll be configuring, and
how they interact with each other (the diagram is included with the source code of
this chapter in full size, for your reference):

Keep in mind that this diagram covers much more than the bare minimum required
to get a site up and running. We'll incrementally illustrate how to add all of these
beans, starting from the minimum set, and working our way to a full stack with
functionality comparable to what we've configured using the security namespace.

Reconfiguring the web application
For the sake of clarity, we'll create a brand new XML configuration file for this style
of configuration. This will allow us to be very precise as to what exactly is required,
and remove some of the bits we've commented and uncommented as we've worked
through exercises in previous chapters.

Advanced Configuration and Extension

[190]

To do this, we'll need to reconfigure our Spring ApplicationContext to point to this
new file. We'll call the file dogstore-explicit-base.xml, and update our web.xml
file to reference it as follows:

<web-app ...>
 <display-name>Dog Store</display-name>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/dogstore-explicit-base.xml
 </param-value>
 </context-param>

We'll no longer need the separate dogstore-security.xml file, which we had
created for convenience when using XML declarations in the security namespace.
The majority of our configuration will be using standard Spring bean wiring syntax,
with a sprinkling of security namespace decorators thrown in.

Configuring a minimal Spring Security
environment
We'll start with the bare minimum required to get the application up and running
again—this means no remember me, no logout, and no exception handling. This
allows us to focus on the bare minimum required to get Spring Security started.

First, we'll have to declare the servlet filter chain that Spring Security will use when
intercepting requests as follows:

<bean id="springSecurityFilterChain"
 class="org.springframework.security.web.FilterChainProxy">
 <security:filter-chain-map path-type="ant">
 <security:filter-chain pattern="/**" filters="
 securityContextPersistenceFilter,
 usernamePasswordAuthenticationFilter,
 anonymousAuthenticationFilter,
 filterSecurityInterceptor" />
 </security:filter-chain-map>
</bean>

Chapter 6

[191]

You can see that we're already referencing the security namespace here. Though it's
possible to manually configure the required bean properties to set up path pattern
matching and filter list combinations, the syntax for doing so using the security
namespace filter-chain-map decorator is more concise and convenient. If we
map this to the <http> style of configuration, we will note the following additional
configurable elements:

The setup of the default filter chain is implicit in the overall processing of
the <http> element and isn't directly configurable. Although the use of the
security namespace's <custom-filter> declaration allows a very high
degree of flexibility when overriding or augmenting the standard filter chain,
it doesn't let you get at the FilterChainProxy itself.
The ability to alter the filter chain based on URL pattern isn't available with
the <http> style declaration. This can be helpful if certain portions of your
application don't require certain types of processing, and you want to make
the overhead of multiple filter invocations as small as possible.

It's important to note that, unlike some configuration elements in Spring (notably,
contextConfigLocation in web.xml), the use of commas between filter names is
required here.

The order of filters is important—as discussed in Chapter 2, certain
filters must come before others. Unless you have special, specific needs,
please refer to the table in Chapter 2, when adding standard filters into a
manually configured filter chain, to ensure that you include them at the
appropriate positions. Failure to include filters in the correct order may
cause unexpected or undesired application behavior that can be very
difficult to debug!

You'll notice that the <filter-chain> element refers to many logical bean definitions
that we've not yet defined. Let's define them now, and explain each one in detail.

Configuring a minimal servlet filter set
There are two sets of objects we'll need to configure in order to support the filter
chain described earlier.

First, the servlet filters themselves must be configured. These define the processing
of user requests as they enter the web application—the difference from our use of
the security namespace is that we are closer to the metal here, and explicitly defining
much about the filters that was hidden with the simpler configuration mechanism
we'd used until now.

•

•

Advanced Configuration and Extension

[192]

Secondly, the servlet filters rely on a supporting set of security infrastructure beans.
Many of these classes will be familiar to you, as we've covered their functionality in
the architecture and functional overview in chapters 1 through 5, but the mechanism
of configuring these beans is new.

We'll handle the required filters first.

SecurityContextPersistenceFilter
The SecurityContextPersistenceFilter is used to set up the SecurityContext,
which is used throughout the scope of a request to track the authentication
information related to the requestor for the duration of the entire request. You may
remember that we accessed the SecurityContext object in the last chapter when we
wanted to get information about the currently authenticated Principal in our Java
Spring MVC controller code.

Basic configuration of the SecurityContextPersistenceFilter with reasonable
defaults for web session management requires the following configuration:

<bean id="securityContextPersistenceFilter"
 class="org.springframework.security.web.context
 .SecurityContextPersistenceFilter/>

There's a lot going on behind the scenes here, and we can get quite sophisticated
with configuration, as to how the HTTP session is managed. For now, we'll accept
this filter with defaults and move on, but we'll examine session-related configuration
options later in this chapter.

UsernamePasswordAuthenticationFilter
As we discussed in detail in Chapter 2, UsernamePasswordAuthenticationFilter
is used to process form submission and check with the authentication store for valid
credentials. Explicit configuration of this filter, mirroring the security namespace
configuration, is as follows:

<bean id="UsernamePasswordAuthenticationFilter"
 class="org.springframework.security.web
 .authentication.UsernamePasswordAuthenticationFilter">
 <property name="authenticationManager"
 ref="customAuthenticationManager"/>
</bean>

You'll notice a pattern if you have the time to delve into the classes—there's
much more that can be configured here. Again, we'll visit this once we get the
basic configuration working. We have a forward reference to a bean called
customAuthenticationManager —this is indeed the same AuthenticationManager
that's normally auto-configured by the <authentication-manager> element in the
security namespace. We'll need to configure this bean shortly.

Chapter 6

[193]

AnonymousAuthenticationFilter
Our site needs to allow anonymous access. Although there are very specific
conditions where the AnonymousAuthenticationFilter isn't required, typically
it should be used, as it adds very little overhead to request processing. You may
not recognize this filter, except for a brief mention in Chapter 2. This is because the
configuration of the AnonymousAuthenticationFilter is largely obscured by the
security namespace configuration.

The minimal configuration of the filter is as follows:

<bean id="anonymousAuthenticationFilter"
 class="org.springframework.security.web
 .authentication.AnonymousAuthenticationFilter">
 <property name="userAttribute"
 value="anonymousUser,ROLE_ANONYMOUS"/>
 <property name="key" value="BF93JFJ091N00Q7HF"/>
</bean>

Both of the properties listed here are required. The userAttribute property
indicates the username and GrantedAuthority provided to the anonymous
user. The username and GrantedAuthority may be used in our application
to validate whether or not the user is anonymous. The key may be arbitrarily
generated, but needs to be applied in a bean (the o.s.s.authentication.
AnonymousAuthenticationProvider) that we'll configure later.

FilterSecurityInterceptor
The final filter in our basic processing chain is the filter that is ultimately responsible
for checking the Authentication object, which is the result of prior processing by
the configured security filters. This is the filter that determines whether or not a
particular request is ultimately rejected or accepted.

Let's review the configuration for this filter and try working through the exercise of
mapping this filter to its corresponding location in the security namespace.

<bean id="filterSecurityInterceptor"
 class="org.springframework.security.web.access
 .intercept.FilterSecurityInterceptor">
 <property name="authenticationManager"
 ref="customAuthenticationManager"/>
 <property name="accessDecisionManager" ref="affirmativeBased"/>
 <property name="securityMetadataSource">
 <security:filter-security-metadata-source>
 <security:intercept-url pattern="/
 login.do" access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 <security:intercept-url pattern="/

Advanced Configuration and Extension

[194]

 home.do" access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 <security:intercept-url pattern="/
 account/*.do" access="ROLE_USER"/>
 <security:intercept-url pattern="/*" access="ROLE_USER"/>
 </security:filter-security-metadata-source>
 </property>
</bean>

Think for a moment before reading on. That's right, these look like the same
<intercept-url> declarations we used in the security namespace's <http>
configuration. The pattern matching and format of the access declarations is exactly
the same, but you'll note in this case that we're using some configuration magic to
use these same declarations in the context of setting a normal Spring bean property.

The <filter-security-metadata-source> element is responsible for
configuring the SecurityMetadataSource implementation used by the
FilterSecurityInterceptor, including the URL declarations and roles
required to access them.

Effective use of XML namespaces
It's common for users who are not familiar with advanced configuration
of Spring to be confused at this point. Spring XML configuration makes
effective use of XML namespaces to provide clear component-based
ownership of different elements in the configuration file. An element
indicates that it is in a namespace when it is prefixed with a colon
(:), followed by the element name. So, if we look at <security:
intercept-url>, we can see that this element's name is intercept-
url, and it is in the XML namespace called security. XML namespaces
are generally declared at the top of an XML file, with an arbitrary
prefix assignment, associated with a URI. For example, the security
namespace may be declared as xmlns:security="http://www.
springframework.org/schema/security".
What about elements with no declared namespace? These are assigned
to the default namespace for the XML document. The default namespace
is indicated by the xmlns attribute—in the case of the dogstore-
explicit-base.xml file, the default namespace is declared as
xmlns="http://www.springframework.org/schema/beans".
Elements with no namespace prefix will be implicitly assigned to the
default namespace. Understanding how XML namespaces really work
will save you hours of headaches when building complex Spring and
Spring Security configuration files.

We've now configured all the filters required for a minimal, explicitly configured
filter chain. These filters can't exist by themselves—there are a few supporting
objects that are required as well.

Chapter 6

[195]

Configuring a minimal supporting object set
The supporting objects that are required to round out our minimal configuration
are Spring beans that we've already (save one) configured in exercises in prior
chapters—thus we'll save time explaining their purpose here.

The following is a set of bean definitions needed to complete the minimal supporting
object set and start up the application:

<bean class="org.springframework.security.access
 .vote.AffirmativeBased" id="affirmativeBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 <ref bean="authenticatedVoter"/>
 </list>
 </property>
</bean>
<bean class="org.springframework.security.access
 .vote.RoleVoter" id="roleVoter"/>
<bean class="org.springframework.security.access
 .vote.AuthenticatedVoter" id="authenticatedVoter"/>
<bean id="daoAuthenticationProvider" class="org.springframework
 .security.authentication.dao.DaoAuthenticationProvider">
 <property name="userDetailsService" ref="jdbcUserService"/>
</bean>
<bean id=”anonymousAuthenticationProvider” class=”org.springframework.
security.authentication.AnonymousAuthenticationProvider”>
	 <property name=”key” value=”BF93JFJ091N00Q7HF”/>
</bean>

This configuration provides us with a minimal configuration that supports
anonymous browsing, login, and database-backed authentication (note that we
omitted the required jdbcUserService and dataSource beans for brevity—the
definitions of those beans haven't changed from their prior definitions). Remember
that the key property of the AnonymousAuthenticationProvider must match the
key property that we previously defined for the AnonymousAuthenticationFilter.

The one bean that's required, which we hadn't configured before (because the
security namespace configuration doesn't allow it), is the AuthenticationManager.
We can define this bean as follows:

<bean id="customAuthenticationManager" class="org.springframework
 .security.authentication.ProviderManager">
 <property name="providers">
 <list>

Advanced Configuration and Extension

[196]

 <ref local="daoAuthenticationProvider"/>
 <ref local=”anonymousAuthenticationProvider”/>
 </list>
 </property>
</bean>

Although the configuration of the AuthenticationManager may look trivial here,
explicit configuration of this bean is the key to many useful enhancements and
opportunities for extension of the framework, which we'll cover over the remainder
of this chapter.

After doing all this work to configure beans by hand, our site still doesn't support
some of the functionality we had when using the security XML namespace, including
logout functionality, friendly exception handling, password salting, or remember
me. So, why is this valuable?

Advanced Spring Security bean-based
configuration
As we've hinted at on several previous pages, bean-based configuration of Spring
Security, although complex, provides a level of flexibility that will be required for
complex applications with requirements above and beyond what the security XML
namespace-style configuration can allow.

We'll spend this section elucidating some of the configuration options available, and
how they might be useful. Although we cannot provide details on every possible
property, we encourage you to start exploring, based on what you've learned in this
chapter and prior chapters, and consult the Javadoc and Spring Security source code.
You are limited only by your knowledge of how the framework is put together, and
your imagination!

Adjusting factors related to session lifecycle
Spring Security has a variety of bits that can dramatically affect the lifecycle of your
users' HttpSession. Many of these are available only when you have configured the
relevant classes as Spring beans. The following table lists the bean attributes that can
affect session creation and destruction:

Chapter 6

[197]

Class Attribute Default Description
Abstract
Authentication
ProcessingFilter
(parent of
UsernamePassword
Authentication
Filter)

allowSessionCreation true If true, a new session
may be created on a
failed authentication
attempt (to store the
exception).

UsernamePassword
AuthenticationFilter

allowSessionCreation true If true, this particular
filter may create
a session to store
the last username
attempted.

SecurityContext
LogoutHandler

invalidateHttpSession true If true, the
HttpSession will
be invalidated (refer
to the Servlet spec
for details on session
invalidation).

SecurityContext
PersistenceFilter

forceEager
SessionCreation

false If true, the filter
will create a session
before executing the
remainder of the
filters in the chain.

HttpSessionSecurity
ContextRepository

allowSessionCreation true If true, the
SecurityContext
can be saved to the
session if one doesn't
exist by the time the
user's request ends.

Depending on the needs of your application, it may be prudent to analyze the size
of a typical user's session— both authenticated and unauthenticated—and adjust the
expected session lifecycle accordingly.

Manual configuration of other common
services
There are still a few more services, which we've grown used to taking advantage of,
with the security namespace automatic configuration. Let's work through adding
these so that we have a completely configured baseline implementation to work in.

Advanced Configuration and Extension

[198]

Declaring remaining missing filters
We'll augment the manually-configured filter chain with the three services that we
haven't yet configured. These include filters to handle logout, remember me, and
exception translation. Once we've completed these filters, we'll have a full stack and
can delve into some interesting configuration options available with this setup.

The following missing filters are added to our filter chain:

<bean id="springSecurityFilterChain"
 class="org.springframework.security.web.FilterChainProxy">
 <security:filter-chain-map path-type="ant">
 <security:filter-chain pattern="/**" filters="
 securityContextPersistenceFilter,
 logoutFilter,
 usernamePasswordAuthenticationFilter,
 rememberMeAuthenticationFilter,
 anonymousAuthenticationFilter,
 exceptionTranslationFilter,
 filterSecurityInterceptor" />
 </security:filter-chain-map>
</bean>

As we have done before, we now have to declare these Spring beans and configure
them, along with any dependent service beans.

LogoutFilter
The basic declaration of the LogoutFilter (used to respond to events on the virtual
URL /j_spring_security_logout, by default) is as follows:

<bean id="logoutFilter" class="org.springframework.security
 .web.authentication.logout.LogoutFilter">
 <!-- the post-logout destination -->
 <constructor-arg value="/"/>
 <constructor-arg>
 <array>
 <ref local="logoutHandler"/>
 </array>
 </constructor-arg>
 <property name="filterProcessesUrl" value="/logout"/>
</bean>

You'll note that the method of construction for the LogoutFilter is different
from any of the other authentication filters, utilizing constructor arguments in
addition to bean properties. The first constructor argument is the URL to which
the user will be sent after logout, and the second argument is a reference to a
LogoutHandler instance.

Chapter 6

[199]

The philosophy of constructors in dependency injection
If you have worked in the Spring world for a while, you have probably
discussed the proper object-oriented approach for managing required
dependencies. Although setters are convenient for users of Spring,
object-oriented purists often argue that if a particular dependency is
required for a class to function, it should be part of a constructor signature
(think of how you used to write classes prior to Spring).
As Spring Security has evolved over the years, different authors have had
different opinions about this, and we occasionally run into one or two
inconsistencies of this nature. Both styles of dependency modeling work
- which style you use really depends upon what type of modeling for
required dependencies you prefer.

We'll declare a simple LogoutHandler as follows:

<bean id="logoutHandler" class="org.springframework.security
 .web.authentication.logout.SecurityContextLogoutHandler"/>

You may recognize this LogoutHandler from the table regarding session handling
we saw a few pages ago. One benefit of explicitly configuring the logout handler is
that you can choose to adjust the default session handling behavior on logout. Once
we've configured these two bits, the Log Out link should begin to work again.

Remember that with our security namespace configuration in Chapter 3, we
had revised our application to use a logout URL which wouldn't so obviously
tie our application to Spring Security. That's why we're overriding the
filterProcessesUrl property in this bean definition to keep the configuration
underneath our application consistent, as we change the method of configuration
from security namespace declared to explicit bean declarations!

RememberMeAuthenticationFilter
You'll recall enabling remember me functionality in Chapter 3 as well. We'd like to
retain the helpful remember me feature, even in our bean-based configuration. This
involves a combination of a new filter, new supporting beans, and hooks into several
other beans. First, let's have a look at the filter.

<bean id="rememberMeAuthenticationFilter"
 class="org.springframework.security.web
 .authentication.rememberme.RememberMeAuthenticationFilter">
 <property name="rememberMeServices" ref="rememberMeServices"/>
 <property name="authenticationManager"
 ref="customAuthenticationManager" />
</bean>

Advanced Configuration and Extension

[200]

You'll note the reference to rememberMeServices, which hasn't been defined yet.
Let's define this bean now:

<bean id="rememberMeServices"
 class="org.springframework.security.web.authentication
 .rememberme.PersistentTokenBasedRememberMeServices">
 <property name="key" value="jbcpPetStore"/>
 <property name="tokenValiditySeconds" value="3600"/>
 <property name="tokenRepository"
 ref="jdbcRememberMeTokenRepository"/>
 <property name="userDetailsService" ref="jdbcUserService"/>
</bean>

Many of the configuration properties on the RememberMeServices implementation
have very similar names in the security namespace style of configuration. The major
difference between these two methods is that the details of the RememberMeServices
are abstracted from the configured application details, while in the bean-based
configuration, the bean declarer must be very aware of all the beans involved in the
remember me feature. In case you're confused, refer back to chapters 3 and 4 for
details on the classes and flow involved in the remember me feature.

We've got one more bean reference to wire up to the remember me token repository.
This bean definition is simple, as we see here:

<bean id="jdbcRememberMeTokenRepository"
 class="org.springframework.security.web
 .authentication.rememberme.JdbcTokenRepositoryImpl">
 <property name="dataSource" ref="dataSource"/>
</bean>

Finally, we'll need to declare the AuthenticationProvider, which can handle the
remember me authentication requests. This declaration looks as you might expect:

<bean id="rememberMeAuthenticationProvider"
 class="org.springframework.security
 .authentication.RememberMeAuthenticationProvider">
 <property name="key" value="jbcpPetStore"/>
</bean>

You may remember that the key attribute is shared between the
AuthenticationProvider, for token validation, and the RememberMeServices,
for token generation. Make sure these are set to the same value! You may
want to set this property value from a properties file, using the Spring
PropertyPlaceholderConfigurer utility class (or something similar).

Chapter 6

[201]

We'll now need to wire this AuthenticationProvider into the list provided to our
AuthenticationManager.

<bean id="customAuthenticationManager"
 class="org.springframework.security
 .authentication.ProviderManager">
 <property name="providers">
 <list>
 <ref local="daoAuthenticationProvider"/>
 <ref local=”anonymousAuthenticationProvider”/>
 <ref local="rememberMeAuthenticationProvider"/>
 </list>
 </property>
</bean>

RememberMeServices must also be wired into the
UsernamePasswordAuthenticationFilter, so that the RememberMeServices can
handle explicit login success (remember me cookie is updated) or failure (remember
me cookie is removed).

<bean id="usernamePasswordAuthenticationFilter"
 class="org.springframework.security.web
 .authentication.UsernamePasswordAuthenticationFilter">
 <property name="authenticationManager"
 ref="customAuthenticationManager"/>
 <property name="rememberMeServices" ref="rememberMeServices"/>
</bean>

One last thing to remember (often forgotten by users configuring bean declarations
for Spring Security) is that the RememberMeServices also functions as a
LogoutHandler, which clears the user's cookie upon logout.

<bean id="logoutFilter"
 class="org.springframework.security.web
 .authentication.logout.LogoutFilter">
 <constructor-arg value="/"/>
 <constructor-arg>
 <array>
 <ref local="logoutHandler"/>
 <ref local="rememberMeServices"/>
 </array>
 </constructor-arg>
 <property name="filterProcessesUrl" value="/logout"/>
</bean>

With all these configurations in place, we've completed our work wiring the
remember me functionality explicitly. You probably weren't aware of how
much work the <remember-me> declaration was doing behind the scenes!

Advanced Configuration and Extension

[202]

ExceptionTranslationFilter
The final servlet filter in the standard Spring Security filter chain is the
ExceptionTranslationFilter. We recall the importance of this filter in handling
overall flow of authentication and authorization in the application, from our
discussion earlier in this chapter. This final filter requires one filter definition
and two supporting beans.

<bean id="exceptionTranslationFilter"
 class="org.springframework.security.web
 .access.ExceptionTranslationFilter">
 <property name="authenticationEntryPoint"
 ref="authenticationEntryPoint"/>
 <property name="accessDeniedHandler" ref="accessDeniedHandler"/>
</bean>

The supporting beans are declared as follows:

<bean id="authenticationEntryPoint"
 class="org.springframework.security.web
 .authentication.LoginUrlAuthenticationEntryPoint">
 <property name="loginFormUrl" value="/login.do"/>
</bean>
<bean id="accessDeniedHandler"
 class="org.springframework.security.web
 .access.AccessDeniedHandlerImpl">
 <property name="errorPage" value="/accessDenied.do"/>
</bean>

You will recognize the Access Denied page defined in the errorPage directive
from the access denied configuration exercise earlier in this chapter. Similarly, the
loginFormUrl maps to the login-page attribute in the security namespace we've
seen earlier.

Explicit configuration of the SpEL expression
evaluator and Voter
Let's look at the equivalent Spring bean configuration to the use-
expressions="true" attribute of the security namespace:

<bean class="org.springframework.security
 .web.access.expression.DefaultWebSecurityExpressionHandler"
 id="expressionHandler"/>

Chapter 6

[203]

Now, we need to set up the Voter to point to the expression handler as follows:

<bean class="org.springframework.security.web.access
 .expression.WebExpressionVoter" id="expressionVoter">
 <property name="expressionHandler" ref="expressionHandler"/>
</bean>

Finally, we'll need to point our AccessDecisionManager bean to use the Voter.

<bean class="org.springframework.security.access
 .vote.AffirmativeBased" id="affirmativeBased">
 <property name="decisionVoters">
 <list>
 <ref bean="expressionVoter"/>
 </list>
 </property>
</bean>

After we've completed all this configuration, we're right back where we started
when we used the simple use-expressions="true" default settings! However,
now that we've made the configuration explicit, we could substitute the default
implementations of any or all of the classes involved with custom ones. We'll see
an example of this later in the chapter.

Bean-based configuration of method security
In Chapter 5, we configured method security using the <global-method-security>
declaration in the security namespace style of configuration. In moving to our
explicit, bean-based configuration, we must configure the required primary and
supporting classes to replicate the functionality of our <global-method-security>
declaration.

We have developed the full bean configuration to enable method security,
supporting all types of the annotations discussed in Chapter 5. As this configuration
is relatively straightforward, with few interesting configurable properties, we have
placed the entire configuration in Appendix, Additional Reference Material along with
the dogstore-explicit-base.xml configuration file for this chapter!

Advanced Configuration and Extension

[204]

Wrapping up explicit configuration
At this point, we've finished configuring the bean-based Spring Security stack and
the application should be fully functional. If you'd like to experiment with the
features of the security namespace-style configuration versus the bean configuration,
it's easiest to adjust the Spring configuration file references in web.xml to point to
one set of configuration files or the other.

security namespace configuration is handled by dogstore-base.xml and
dogstore-security.xml references in web.xml
Bean-based configuration is handled by dogstore-explicit-base.xml
reference in web.xml

From this point onwards in the book, we'll assume you're using the security
namespace configuration, in following along with exercises. If certain features are
available using bean-based configuration only, we'll note them explicitly. We'll
also include some details about bean-based configuration, as we know that some
developers prefer to have this level of control for the security framework.

Which type of configuration should I choose?
Hopefully, your head isn't reeling from all the configuration we just had to do. You
may be wondering, for a typical project, which style of configuration you should
choose. The answer, as you might expect, depends on the complexity of your project,
and the degree to which you're looking to override or customize default elements of
the Spring Security stack.

Configuration type Benefits
security namespace Powerful, abbreviated syntax for common web-

based and method-based security configuration
Users need not know the details of how
components interact behind the scenes to
configure complex features
security namespace handler code detects and
warns of many types of potential configuration
issues
Significantly reduced chance of a missed
configuration step

•

•

•

•

•

•

Chapter 6

[205]

Configuration type Benefits
Explicit Bean Definition Allows for ultimate flexibility in extension,

override, and intentional omission of standard
Spring stack
Allows for customized filter chains and
authentication methods depending on URL
patterns (using the pattern attribute of
the <filter-chain> element). This may
be required for scenarios with mixed web
service or REST authentication and user-based
authentication.
Does not directly tie configuration files to Spring
Security namespace handling.
Authentication Manager may be explicitly
configured or overridden.
Many more configuration options exposed than
with the simpler security namespace.

•

•

•

•

•

With most projects, it makes sense to start with the security namespace
configuration, and continue to use it if possible, until or unless there is a
capability your application requires which isn't supported. Keep in mind that
there is a significantly added complexity when configuring all required beans and
inter-bean dependencies yourself, and before you start, you should have a very
clear understanding of the Spring Security architecture (and probably underlying
code as well!).

Authentication event handling
One significant feature that is available only with bean-based configuration is custom
processing of authentication events. Authentication events are implemented using
the Spring event publishing mechanism, which is based on the o.s.context.
ApplicationEvent event model. The Spring event model isn't widely used, but can
be very helpful—especially in authenticated systems—when you want to tie specific
behavior to actions within the authentication realm.

The event is a typical publish-subscribe model, where notification of subscribers is
handled by the Spring runtime itself. It's important to note that by default, the Spring
event model is synchronous, so the runtime overhead of any subscribed listeners
directly impacts the perceived performance of the request that generated the event.

Advanced Configuration and Extension

[206]

At ApplicationContext initialization time, Spring will introspect all configured
beans for the presence of the o.s.context.ApplicationListener interface.
References to these beans are then retained by the configured o.s.context.event.
ApplicationEventMulticaster that manages publication of events during runtime
as they are published by the o.s.context.ApplicationEventPublisher. This
infrastructure has been around for quite some time (since Spring 1.1), so there's lots
of documentation available, should you wish to explore this area of Spring further.

The following diagram illustrates how the event publishing process comes together:

While there isn't wide use of authentication events out of the box in Spring Security
(in fact, the only notable use is concurrent session tracking, as we discussed earlier
in this chapter), tying custom listeners to authentication events can be a very
convenient way to implement auditing, management alerts, or even sophisticated
user activity tracking.

Let's work through the process of configuring a simple security event listener.

Chapter 6

[207]

Configuring an authentication event listener
Using the shorthand security namespace configuration, you cannot configure
an authentication event listener—it must be done with a Spring bean-based
configuration because the ApplicationEventPublisher implementation is
not enabled by default, and must be wired into the AuthenticationManager.

Declaring required bean dependencies
We'll first declare the ApplicationEventPublisher implementation as follows:

<bean id="defaultAuthEventPublisher"
 class="org.springframework.security.authentication
 .DefaultAuthenticationEventPublisher"/>

Next, we'll wire this into the AuthenticationManager implementation we're using.

<bean id="customAuthenticationManager"
 class="org.springframework.security
 .authentication.ProviderManager">
 <property name="authenticationEventPublisher" ref="defaultAuthEvent
Publisher"/>
 <property name="providers">
 <list>
 <ref local="daoAuthenticationProvider"/>
 <ref local="rememberMeAuthenticationProvider"/>
 </list>
 </property>
</bean>

This is the entire configuration required. If you restart the application at this point,
you will see nothing! That's because we haven't created a bean to listen to the events
that are published. We'll do this now.

Building a custom application event listener
The ApplicationListener implementation is very straightforward, and uses the
powerful Java generics infrastructure added to Spring 3 to support type safety. Our
ApplicationListener will simply log the event received to standard output, but
we'll explore a more interesting example in a later exercise.

The custom ApplicationListener is as follows:

package com.packtpub.springsecurity.security;
// imports omitted
 @Component
 public class CustomAuthenticationEventListener implements

Advanced Configuration and Extension

[208]

 ApplicationListener<AbstractAuthenticationEvent> {
 @Override
 public void onApplicationEvent(AbstractAuthenticationEvent event) {
 System.out.println("Received event of type:
 "+event.getClass().getName()+": "+event.toString());
 }
}

You'll note that we used the shorthand @Component annotation here, but we could
just as easily have explicitly defined the Spring bean in the XML configuration file.

Remember that ApplicationListener implementations must indicate what type of
event they're interested in, and they indicate this in Spring 3 by declaring through
the generic specified in the ApplicationListener interface reference. The Spring
ApplicationEventMulticaster uses some smarts to introspect the class's interface
implementation declaration and ensure the right events go to the right classes.

Brilliant generics
Those of you who are intrigued by the intricacy of generics handling and
runtime introspection of generics should definitely explore the brilliant
code behind the dispatching of ApplicationEvent using Spring's
o.s.context.event.GenericApplicationListenerAdapter.
Have a look and learn some new tricks with Java reflection!

Try starting up the application now and performing some typical activities such
as log in, log out, and login failure. You can see that, as all these activities are
performed, appropriate events will be fired and printed to the console.

Although we declared our ApplicationListener to receive all authentication
events, in most scenarios this won't be practical, as depending on the level of use
your system gets, there may be thousands of events fired per hour. By altering the
generic qualifier in the implements clause on the class, we can narrow down our
implementation to listen for a single type of event.

Out of the box ApplicationListeners
Spring Security ships with a couple of ApplicationListener implementations,
which simply tie into the Apache Commons Logging loggers used by the rest of the
Spring Security code. There are two ApplicationListener implementations, one for
authentication events and one for authorization events. You can configure them
as indicated in the following code:

Chapter 6

[209]

<bean id="authenticationListener"
 class="org.springframework.security
 .authentication.event.LoggerListener"/>
<bean id="authorizationListener"
 class="org.springframework.security
 .access.event.LoggerListener"/>

These two listeners will output to Commons Logging loggers named after each
respective class. A sample logged AbstractAuthenticationFailureEvent is
similar to the following:

WARN - Authentication event
AuthenticationFailureBadCredentialsEvent: adb; details: org.
springframework.security.web.authentication.WebAuthenticationDetails@2
55f8: RemoteIpAddress: 127.0.0.1; SessionId: B20510F25464B109CE3AE94D9
FBF981E; exception: Bad credentials

These classes can be helpful as templates if you're writing your own, similar
ApplicationListener to log interesting events!

Multitudes of application events
Spring Security provides a multitude of events intended to alert interested
parties of all points in the lifecycle of a user authentication request. The available
types of events, for which your application can listen, range from very broad (all
authentication failures) to very narrow (has a user successfully authenticated by
presenting a full set of credentials?). The full list of available events is documented
in Appendix, Additional Reference Material. Some additional notes about exception
handling and event listening are as follows:

The mapping of authorization events to exceptions thrown by the
framework is configurable with the exceptionMappings property
of the DefaultAuthenticationEventPublisher
Remember, as we saw earlier in this chapter, that tracking of HttpSession
lifecycle is handled through a web.xml configuration change, and not directly
by Spring

You can see that Spring Security's exception and event handling is quite robust, and
allows for a number of interesting scenarios around tracking and responding to an
activity, in your secured system.

•

•

Advanced Configuration and Extension

[210]

Building a custom implementation of an
SpEL expression handler
We'll illustrate a simple example of extending the base SpEL expression handler
to provide an expression that will grant access if the current minute of the day is
an even number. Although this is a contrived example, it illustrates all the steps
required to implement your own custom SpEL expression methods.

Let's create a com.packtpub.springsecurity.security.
CustomWebSecurityExpressionRoot class to set up a custom extension to
WebSecurityExpressionRoot.

public class CustomWebSecurityExpressionRoot
 extends WebSecurityExpressionRoot {
 public CustomWebSecurityExpressionRoot
 (Authentication a, FilterInvocation fi) {
 super(a, fi);
 }

 public boolean isEvenMinute() {
 return (Calendar.getInstance().get(Calendar.MINUTE) % 2) == 0;
 }
}

Next, we'll need to build a class to implement WebSecurityExpressionHandler.
We'll extend the DefaultWebSecurityExpressionHandler and override a single
method to set up our CustomWebSecurityExpressionRoot in our com.packtpub.
springsecurity.security.CustomWebSecurityExpressionHandler class.

public class CustomWebSecurityExpressionHandler
 extends DefaultWebSecurityExpressionHandler {
 public EvaluationContext createEvaluationContext
 (Authentication authentication, FilterInvocation fi) {
 StandardEvaluationContext ctx = (StandardEvaluationContext)
 super.createEvaluationContext(authentication, fi);
 SecurityExpressionRoot root = new
 CustomWebSecurityExpressionRoot(authentication, fi);
 ctx.setRootObject(root);
 return ctx;
 }
}

Chapter 6

[211]

Finally, reconfigure bean references when setting up the Voter as follows:

<bean class="com.packtpub.springsecurity.security
 .CustomWebSecurityExpressionHandler" id="customExpressionHandler"/>
<bean class="org.springframework.security.web.access
 .expression.WebExpressionVoter" id="expressionVoter">
 <property name="expressionHandler" ref="customExpressionHandler"/>
</bean>

Now we're able to use the expression to restrict access depending on whether or not
the minute on the clock is even or odd.

<security:intercept-url pattern="/*" access="evenMinute"/>

Obviously, this is a trivial example, but it illustrates the basic steps required
to implement a custom SpEL property that you could use to control access to
a particular location.

The technique of configuring a custom SpEL Voter may also
be used with the security namespace configuration by simply
defining a custom AccessDecisionManager using the
access-decision-manager-ref attribute, as we saw in Chapter 2.

Summary
In this chapter, we pushed past the standard configuration capability of the Spring
Security framework and implemented several advanced customizations. We covered
the following:

Implementing custom servlet filters to handle configurable IP-and role-based
filtering, and HTTP request header-based SSO requests
Adding a custom AuthenticationProvider and supporting implementation
classes for HTTP request header-based SSO
Examining the configuration and benefits of session fixation protection and
concurrent session handling, including a couple of tangential benefits, which
allow for user session reporting
Configuring custom access denied handling and examining when and why
AccessDeniedException is thrown, and how it is appropriate to respond to it

•

•

•

•

Advanced Configuration and Extension

[212]

Replicating our auto-configured Spring Security stack by manually
declaring all required participants using standard Spring bean XML
configuration techniques
Exploring some advanced capabilities of Spring Bean-based configuration,
including session management and event publishing
Implementing both custom and out of the box ApplicationListener to
respond to select events raised by the Spring Security framework
Implementing a custom extension to the standard SpEL expression handler,
to allow for customized URL access expressions

What an exciting chapter! We've clearly become very comfortable with the Spring
Security framework, and have performed some very advanced extensions
and customizations.

In Chapter 7, we'll wrap up our journey through the advanced configuration space
when we implement the sophisticated authorization made possible by access
control lists.

•

•

•

•

Access Control Lists
In this chapter, we will finally address the complex topic of access control lists,
which can provide a rich model of domain object instance-level authorization. Spring
Security ships with a robust, but complicated and poorly documented, access control
list module which can serve the needs of small to medium-sized implementations
reasonably well.

During the course of this chapter we'll:

Understand the conceptual model of access control lists
Review the terminology and application of access control list concepts in the
Spring Security ACL module
Build and review the database schema required to support Spring ACL
Configure JBCP Pets to use ACL secured business methods via annotations
and Spring Beans
Perform advanced configuration, including customized ACL permissions,
ACL-enabled JSP tag checks and method security, mutable ACLs, and
smart caching
Examine architectural considerations and plan scenarios for
ACL deployment

Using Access Control Lists for business
object security
The final piece of the non-web tier security puzzle is security at the business object
level, applied at or below the business tier. Security at this level is implemented
using a technique known as access control lists, or ACLs. Summing up the objective
of ACLs in a single sentence—ACLs allow specification of a set of group permissions
based on the unique combination of group, business object, and logical operation.

•
•

•
•

•

•

Access Control Lists

[214]

For example, an ACL declaration for JBCP Pets might declare that a given user has
write access to their own user profile. This might be shown as:

Username Group Object Permissions
amy Profile 123 read, write

ROLE_USER Profile 123 read
ANONYMOUS Any Profile none

You can see that this ACL is eminently readable by a human—Amy has read and
write access to her own customer profile (Profile 123); other registered users can read
Amy's profile, but anonymous users cannot. This type of rule matrix is, in a nutshell,
what ACL attempts to synthesize into a combination of code, access checking, and
metadata about a secured system and its business data. Most true ACL-enabled
systems have extremely complex ACL lists, and may conceivably have millions of
entries, across the entire system. Although this sounds frighteningly complex, proper
up-front reasoning and implementation with a capable security library can make
ACL management quite feasible.

If you use a Microsoft Windows or Unix/Linux-based computer, you experience the
magic of ACLs every single day. Most modern computer operating systems use ACL
directives as part of their file storage systems, allowing permission granting based
on a combination of user or group, file or directory, and permission. In Microsoft
Windows, you can view some of the ACL capabilities of a file by right-clicking on
a file and examining its security properties (Properties|Security tab):

Chapter 7

[215]

We can see that the combinations of inputs to the ACL are visible and intuitive as
you navigate through the various groups or users and permissions.

Access Control Lists in Spring Security
Spring Security supports ACL-driven authorization checks against access to
individual domain objects by individual users of the secured system. Much as in the
OS file system example, it is possible to use the Spring Security ACL components
to build logical tree structures of both business objects and groups or principals.
The intersection of permissions (inherited or explicit) on both the requestor and the
requestee is used to determine allowed access.

It's quite common for users approaching the ACL capability of Spring Security to be
overwhelmed by its complexity, combined with a relative dearth of documentation
and examples. This is compounded by the fact that setting up the ACL infrastructure
can be quite complicated, with many interdependencies and a reliance on bean-based
configuration mechanisms which are quite unlike much of the rest of Spring Security
(as you'll see in a moment when we set up the initial configuration).

The Spring Security ACL module was written to be a reasonable baseline, but users
intending to build extensively on the functionality will likely run into a series of
frustrating limitations and design choices which have gone (for the most part)
uncorrected as they were first introduced in the early days of Spring Security. Don't
let these limitations discourage you! The ACL module is a powerful way to embed
rich access controls in your a pplication, and further scrutinize and secure user
actions and data.

Before we dig into configuring Spring Security ACL support, we need to review
some key terminology and concepts.

The main unit of secured actor identity in the Spring ACL system is the security
identity, or SID. The SID is a logical construct that can be used to abstract the
identity of either an individual principal or a group (GrantedAuthority). The SIDs
defined by the ACL data model you construct are used as the basis for explicit and
derived access control rules when determining the allowed level of access for a
particular principal.

Access Control Lists

[216]

If SIDs are used to define actors in the ACL system, the opposite half of the security
equation is the definition of the secured objects themselves. The identification of
individual secured objects is called (unsurprisingly) an object identity. The default
Spring ACL implementation of an object identity requires ACL rules to be defined at
the individual object instance level that means, if desired, every object in the system
can have an individual access rule.

Individual access rules are known as access control entries, or ACEs. An ACE is the
combination of the following factors:

The SID for the actor to which the rule applies
The object identity to which the rule applies
The permission that should be applied to the given SID and the stated
object identity
Whether or not the stated permission should be allowed or denied for the
given SID and object identity

The purpose of the Spring ACL system as a whole is to evaluate each secured
method invocation and determine whether the object or objects being acted on in
the method should be allowed as per the applicable ACEs. Applicable ACEs are
evaluated at runtime, based on the caller and the objects in play.

Spring Security ACL is flexible in its implementation. Although the
majority of this chapter details the out of the box functionality of the
Spring Security ACL module, keep in mind however, that many of the
rules indicated represent default implementations, which in many cases
can be overridden based on more complex requirements.

Spring Security uses helpful value objects to represent the data associated with each
of these conceptual entities. These are listed in the following table:

ACL Conceptual Object Java Object
SID o.s.s.acls.model.Sid

Object Identity o.s.s.acls.model.ObjectIdentity

ACL o.s.s.acls.model.Acl

ACE o.s.s.acls.model.
AccessControlEntry

Let's work through the process of enabling Spring Security ACL components for
a simple demonstration in the JBCP Pets store.

•
•
•

•

Chapter 7

[217]

Basic configuration of Spring Security
ACL support
Although we hinted previously that configuring ACL support in Spring Security
requires bean-based configuration (which it does), you can use ACL support
while retaining the simpler security XML namespace configuration if you choose.
If you're following along with the sample code, you'll need to switch web.xml
to the security namespace configuration, using dogstore-base.xml and
dogstore-security.xml.

Defining a simple target scenario
Our simple target scenario is to disallow read access to the first category on
the JBCP Pets home page to any individual other than a user with ROLE_ADMIN
GrantedAuthority assigned. The first category is called Pet Apparel—this is the
category we'll be protecting with our pass of ACL security.

Although there are several ways to set up ACL checking, our preference is to follow
the annotation-based approach that we used in Chapter 5's method level annotations.
This nicely abstracts the use of ACLs away from the actual interface declarations,
and allows for replacement (if you want) of the role declarations with something
other than ACLs at a later date (should you so choose).

We'll add an annotation to the IProductService.getItemsByCategory method,
which requires that anyone invoking this method has an appropriate role to view
the category:

@Secured("VOTE_CATEGORY_READ")
public Collection<Item> getItemsByCategory(Category cat);

This method is invoked from the category view page of the JBCP Pets site, which is
accessible by clicking on a category from the JBCP Pets home page:

Let's get started with our configuration changes!

Access Control Lists

[218]

Adding ACL tables to the HSQL database
The first thing we'll need to do is to add the required tables to support persistent
ACL entries into our in-memory HSQL database. To do this, we'll add a new SQL
DDL file to our embedded-database declaration in dogstore-security.xml:

<jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:security-schema.sql"/>
 <jdbc:script location="classpath:test-data.sql"/>
 <jdbc:script location="classpath:remember-me-schema.sql"/>
 <jdbc:script location="classpath:test-users-groups-data.sql"/>
 <jdbc:script location="classpath:acl-schema.sql"/>
</jdbc:embedded-database>

The acl-schema.sql file will be placed in the WEB-INF/classes folder (or another
location of your choice on the application classpath), and should contain the following:

create table acl_sid (
 id bigint generated by default as identity(start with 100) not null
primary key,
 principal boolean not null,
 sid varchar_ignorecase(100) not null,
 constraint uk_acl_sid unique(sid,principal));

create table acl_class (
 id bigint generated by default as identity(start with 100) not null
primary key,
 class varchar_ignorecase(500) not null,
 constraint uk_acl_class unique(class));

create table acl_object_identity (
 id bigint generated by default as identity(start with 100) not null
primary key,
 object_id_class bigint not null,
 object_id_identity bigint not null,
 parent_object bigint,
 owner_sid bigint not null,
 entries_inheriting boolean not null,
 constraint uk_acl_objid unique(object_id_class,object_id_identity),
 constraint fk_acl_obj_parent foreign key(parent_object)references
acl_object_identity(id),
 constraint fk_acl_obj_class foreign key(object_id_class)references
acl_class(id),
 constraint fk_acl_obj_owner foreign key(owner_sid)references acl_
sid(id));

create table acl_entry (
 id bigint generated by default as identity(start with 100) not null
primary key,
 acl_object_identity bigint not null,
 ace_order int not null,

Chapter 7

[219]

 sid bigint not null,
 mask integer not null,
 granting boolean not null,
 audit_success boolean not null,
 audit_failure boolean not null,
 constraint uk_acl_entry unique(acl_object_identity,ace_order),
 constraint fk_acl_entry_obj_id foreign key(acl_object_identity)
 references acl_object_identity(id),
 constraint fk_acl_entry_sid foreign key(sid) references acl_sid(id)
);

This will result in the following database schema:

You can see how the concepts of SIDs, object identity, and ACEs map directly to the
database schema. Conceptually, this is convenient, as we can map our mental model
of the ACL system and how it is enforced directly to the database.

If you've cross referenced this with the HSQL database schema supplied with the
Spring Security documentation, you'll note that we've made a few tweaks that
commonly bite users. These are as follows:

Change the ACL_CLASS.CLASS column to 500 characters, from the default
value of 100. Some long fully-qualified class names don't fit in 100 characters.
Name the foreign keys with something meaningful so that failures are more
easily diagnosed.

Note that if you are using another database, such as Oracle, you’ll have to
translate the DDL into DDL and data types specific to your database.

•

•

Access Control Lists

[220]

Once we configure the remainder of the ACL system, we'll return to the database
to set up some basic ACEs to prove out the ACL functionality in its most
primitive form.

Configuring the Access Decision Manager
We'll need to configure <global-method-security> to enable annotations (where
we'll annotate based on expected ACL privilege), and reference a custom access
decision manager.

The access decision manager used for ACL checking must be different
than the one used for checking web URL authorization rules. This
requirement is due to the fact that all authorization checks passed
to an access decision manager must be supported by all of its
configured voters. Unfortunately, the method of checking web request
authorization differs from method request authorization, and as such
requires a separately configured access decision manager. When we
first visited method security in Chapter 5, Fine-Grained Access Control,
we didn't have to make this explicit configuration change, because the
access decision manager instantiated by the security namespace
parser was sufficient for our needs.

Configuration of the access decision manager reference is set in dogstore-security.
xml as follows:

<global-method-security secured-annotations="enabled"
access-decision-manager-ref="aclDecisionManager"/>

This is a bean reference to the access decision manager bean, which we'll define in
dogstore-base.xml:

<bean class="org.springframework.security.access.vote.
AffirmativeBased" id="aclDecisionManager">
 <property name="decisionVoters">
 <list>
 <ref bean="categoryReadVoter"/>
 </list>
 </property>
</bean>

We'll resolve the reference chain starting with the voter in the next step of the
exercise. Remember that this is an AccessDecisionManager just like any other,
and, just as the web authorization decision manager does, relies upon voters
to make authorization decisions.

Chapter 7

[221]

Configuring supporting ACL beans
With even a relatively straightforward ACL configuration, as we have in our
scenario, there are a number of required dependencies to set up. As we mentioned
previously, the Spring Security ACL module comes out of the box with a number of
components that you can assemble to provide a decent set of ACL capabilities. Take
note that all of the components we'll reference in the following diagram are part of
the framework!

One obvious difference between the ACL subsystem and the majority of the rest
of the Spring Security framework is that most of the configuration requires use of
constructor injection, instead of property injection. As we discussed with explicit
bean configuration in Chapter 6, Advanced Configuration and Extension, portions of
Spring Security are inconsistent about the forced use of constructors to ensure that
the required properties are set—just be aware of this, when you are configuring
most of the ACL-related components.

Access Control Lists

[222]

Let's begin first with configuring the categoryReadVoter. This is the
AccessDecisionVoter implementation that will consult the ACL repository
(in the database) and runtime authorization and make an access decision.

<bean class="org.springframework.security.acls.AclEntryVoter"
id="categoryReadVoter">
 <constructor-arg ref="aclService"/>
 <constructor-arg value="VOTE_CATEGORY_READ"/>
 <constructor-arg>
 <array>
 <util:constant static-field="org.springframework.security.acls.
domain.BasePermission.READ"/>
 </array>
 </constructor-arg>
 <property name="processDomainObjectClass" value="com.packtpub.
springsecurity.data.Category"/>
</bean>

The attributes that are not obvious bean references bear some explanation. The
second constructor argument, for which we've provided a value of VOTE_CATEGORY_
READ, represents the name of the security attribute that this voter can vote on. You
may remember that this matches the @Secured annotation on the method that we'll
be protecting with ACL.

The third constructor argument and property name combine to effectively declare
the ACL properties that would be expected in order to confer a successful vote
on a requestor. In this case, the declaration of the voter states that in order to be
authorized for a method requiring VOTE_CATEGORY_READ access, the requestor
must have an ACL entry indicating that they are allowed READ access on the
com.packtpub.springsecurity.data.Category domain object.

We can see that the declaration of the ACL voter is the layer of abstraction between
authorization requirements declared in code resources and the assignment of
permissions on domain objects to ACL SIDs themselves. This layer of abstraction
allows the utmost flexibility in assignment of meaningful security properties to
secured resources.

The bean reference to aclService resolves to an implementation of o.s.s.acls.
model.AclService that is responsible (through delegation) for translating
information about the object being secured by ACLs into expected ACEs.

<bean class="org.springframework.security.acls.jdbc.JdbcAclService"
id="aclService">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="lookupStrategy"/>
</bean>

Chapter 7

[223]

We'll use o.s.s.acls.jdbc.JdbcAclService, which is the implementation of
AclService. This implementation comes out of the box and is ready to use the schema
that we defined in the last step of this exercise. JdbcAclService will additionally
use recursive SQL and post-processing to understand object and SID hierarchies, and
ensure representations of these hierarchies are passed back to the AclEntryVoter.

The JdbcAclService uses the same JDBC dataSource that we've defined with
the embedded-database declaration, and also delegates to an implementation of
o.s.s.acls.jdbc.LookupStrategy, which is solely responsible for actually making
database queries and resolving requests for ACLs. The only LookupStrategy
supplied with Spring Security is o.s.s.acls.jdbc.BasicLookupStrategy,
defined as follows:

<bean class="org.springframework.security.acls.jdbc.
BasicLookupStrategy" id="lookupStrategy">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="aclCache"/>
 <constructor-arg ref="aclAuthzStrategy"/>
 <constructor-arg ref="aclAuditLogger"/>
</bean>

Now, BasicLookupStrategy is a relatively complex beast. Remember that its
purpose is to translate a list of ObjectIdentitys to be protected into the actual,
applicable ACE list from the database. As ObjectIdentity declarations can be
recursive, this proves to be quite a challenging problem, and a system which is likely
to experience heavy use should consider the SQL that's generated for performance
impact on the database.

Querying with the lowest common denominator
Be aware that BasicLookupStrategy is intended to be compatible with
all databases by strictly sticking with standard ANSI SQL syntax, notably
left [outer] joins. Some older databases (notably, Oracle 8i) did not
support this join syntax, so be sure to verify that the syntax and structure
of SQL is compatible with your particular database!
There are also most certainly more efficient database-dependent methods
of performing hierarchical queries using non-standard SQL—for example,
Oracle's CONNECT BY statement and the Common Table Expression
(CTE) capability of many other databases, including PostgreSQL and
Microsoft SQL Server.
Much as we learned in Chapter 4's example of using a custom schema for
the JdbcDaoImpl UserDetailsService, properties are exposed to
allow for configuration of the SQL utilized by BasicLookupStrategy.
Please consult the Javadoc and the source code itself to see how they are
used, so that they can be correctly applied to your custom schema.

Access Control Lists

[224]

We can see that the LookupStrategy requires a reference to the same JDBC
dataSource that the AclService utilizes. The other three references bring us
almost to the end of the dependency chain.

o.s.s.acls.model.AclCache declares an interface for a caching ObjectIdentity
to Acl mappings, to prevent redundant (and expensive) database lookups. Spring
Security ships with only one implementation of AclCache, using the third-party library
Ehcache. For simplicity at this point in the configuration, we'll avoid the additional
work of configuring Ehcache, and instead implement a simple, custom no-op
AclCache, in the class com.packtpub.springsecurity.security.NullAclCache:

package com.packtpub.springsecurity.security;
// imports omitted
public class NullAclCache implements AclCache {
 @Override
 public void clearCache() {	 }
 @Override
 public void evictFromCache(Serializable arg0) {	}
 @Override
 public void evictFromCache(ObjectIdentity arg0) {	 }
 @Override
 public MutableAcl getFromCache(ObjectIdentity arg0) {
 return null;
 }
 @Override
 public MutableAcl getFromCache(Serializable arg0) {
 return null;
 }
 @Override
 public void putInCache(MutableAcl arg0) {	}
}

This is configured through a simple bean declaration:

<bean class="com.packtpub.springsecurity.security.NullAclCache"
id="aclCache"/>

Don't worry, we will configure the Ehcache-based implementation later in this
chapter, but for now we want to focus on configuring the absolutely required
ACL components first!

Chapter 7

[225]

The next simple dependency hanging off of BasicLookupStrategy is an
implementation of the o.s.s.acls.domain.AuditLogger interface, which is
used by the BasicLookupStrategy to audit ACL and ACE lookups. Similar to the
AclCache interface, only one implementation is supplied with Spring Security which
simply logs to the console. We'll configure it with another one-line bean declaration:

<bean class="org.springframework.security.acls.domain.
ConsoleAuditLogger" id="aclAuditLogger"/>

The final dependency to resolve is to an implementation of the o.s.s.acls.
domain.AclAuthorizationStrategy interface, which actually has no immediate
responsibility during the load of the ACL from the database at all. Instead,
the implementation of this interface is responsible for determining whether a
runtime change to an ACL or ACE is allowed, based on the type of change. We'll
explain more on this later when we cover mutable ACLs, as the logical flow is
both somewhat complicated and not pertinent to getting our initial configuration
complete. The final configuration requirements are as follows:

<bean class="org.springframework.security.acls.domain.
AclAuthorizationStrategyImpl" id="aclAuthzStrategy">
 <constructor-arg>
 <array>
 <ref local="aclAdminAuthority"/>
 <ref local="aclAdminAuthority"/>
 <ref local="aclAdminAuthority"/>
 </array>
 </constructor-arg>
</bean>
<bean class="org.springframework.security.core.authority.
GrantedAuthorityImpl" id="aclAdminAuthority">
 <constructor-arg value="ROLE_ADMIN"/>
</bean>

You might wonder what the repeating references to the aclAdminAuthority
are for—the AclAuthorizationStrategyImpl provides three specific
GrantedAuthority designations to allow specific operations at runtime on
mutable ACLs. We'll cover these later in the chapter.

We're finally done with basic configuration of an out of the box Spring Security ACL
implementation. The next and final step requires that we insert a simple ACL and
ACE into the HSQL database, and test it out!

Access Control Lists

[226]

Creating a simple ACL entry
Recall that our very simple scenario is to lock down the first category in the JBCP
Pets store so that no one other than users with ROLE_ADMIN authorization can view it.
You may find it helpful to refer back several pages to the database schema diagram
to follow which data we are inserting and why.

Create a file, test-acl-data.sql in WEB-INF/classes, side by side with the other
SQL files that we're using in JBCP Pets. All the SQL explained in this section will be
added to this file—you may feel free to experiment and add more test cases based on
the sample SQL we've provided—in fact, we'd encourage that you experiment with
sample data!

First we'll need to populate the ACL_CLASS table with any or all of the domain object
classes which may have ACL rules—in the case of our example, this is simply our
Category class:

insert into acl_class (class) values ('com.packtpub.springsecurity.
data.Category');

Next, the ACL_SID table is seeded with any SIDs, which will be tied to ACEs.
Remember that SIDs can either be roles or users—we'll simply populate the roles in
our application here (note that the principal column indicates if a given entry is an
individual principal or not):

insert into acl_sid (principal, sid) values (false, 'ROLE_USER');
insert into acl_sid (principal, sid) values (false, 'ROLE_ADMIN');

The table where things start getting complicated is the ACL_OBJECT_IDENTITY table
that is used to declare individual domain object instances and their parent (if any)
and owning SID. We'll insert a row with the following properties:

Domain Object of type Category (FK to ACL_CLASS via
OBJECT_ID_CLASS column).
Domain Object PK of 1 (OBJECT_ID_IDENTITY column).
Owner SID of ROLE_ADMIN (FK to ACL_SID via OWNER_SID column).

The SQL to insert a row here, for the Category with a PK of 1, is:

insert into acl_object_identity (object_id_class,object_id_
identity,parent_object,owner_sid,entries_inheriting)
select cl.id, 1, null, sid.id, false
from acl_class cl, acl_sid sid
where cl.class='com.packtpub.springsecurity.data.Category' and sid.
sid='ROLE_ADMIN';

•

•
•

Chapter 7

[227]

Keep in mind that in a typical scenario, the owning SID would represent a principal,
and not a role; however, both types of rules function equally well as far as the ACL
system is concerned.

Finally, we'll add an ACE related to this object instance which declares that the
ROLE_ADMIN role is allowed read access to the object:

insert into acl_entry (acl_object_identity, ace_order, sid, mask,
granting, audit_success, audit_failure)
select oi.id, 1, si.id, 1, true, true, true
from acl_object_identity oi, acl_sid si
where si.sid = 'ROLE_ADMIN';

The MASK column here represents a bitmask which is used to grant permission
assigned to the stated SID on the object in question. We'll explain the details of this
later in this chapter—fortunately, it doesn't tend to be as useful as it may sound.

With the SQL file now populated, we can augment our <embedded-database>
declaration and add the final test ACL data file to the database bootstrap:

<jdbc:embedded-database id="dataSource" type="HSQL">
<!--additional SQL files omitted -->
 <jdbc:script location="classpath:acl-schema.sql"/>
 <jdbc:script location="classpath:test-acl-data.sql"/>
</jdbc:embedded-database>

Now we can start the application and run through our sample scenario. You should
see that when any user other than the administrative user attempts to access the first
category, Pet Apparel, they are denied access. Note also that if unauthenticated users
attempt to access this category, they follow the standard AccessDeniedException
handling (described in Chapter 6) and are required to log in.

We now have a basic working setup of ACL-based security (albeit, a very simple
scenario). Let's move on to some more explanation about concepts we saw during
this walkthrough, and then review a couple of considerations in a typical Spring
ACL implementation that you should consider before using it.

Advanced ACL topics
Some high-level topics that we skimmed over during the configuration of our ACL
environment had to do with ACE permissions, and the use of GrantedAuthority
indicators to assist the ACL environment in determining whether certain types of
runtime changes to ACLs were allowed. Now that we have a working environment,
we'll review these more advanced topics.

Access Control Lists

[228]

How permissions work
Permissions are no more than single logical identifiers represented by bits in an
integer. An access control entry grants permissions to SIDs based on the bitmask
which comprises the logical ANDing of all permissions applicable to that access
control entry.

The default Permission implementation, o.s.s.acls.domain.BasePermission
defines a series of integer values representing common ACL authorization verbs.
These integer values correspond to single bits set in an integer, so a value of
BasePermission. WRITE, with integer value 1, has a bitwise value of 21 or 2.
These are illustrated in the following diagram:

We can see that the sample permission bitmask would have an integer value of 3,
due to the application of both the Read and Write permissions to the permission
value. All of the standard integer single permission values shown in the diagram
are defined in the BasePermission object as static constants. You may recall that
we used one of these constants, BasePermission.READ, when we constructed our
o.s.s.acls.AclEntryVoter in our ACL configuration exercise.

The logical constants that are included in BasePermission are just a
sensible baseline of commonly used permissions in access control entries,
and have no semantic meaning within the Spring Security Framework.
It's quite common for very complex ACL implementations to invent
their own custom permissions, augmenting best practice examples with
domain-or business-dependent ones.

One issue that often confuses users is how the bitmasks are used in practice, given
that many databases either do not support bitwise logic, or do not support it in a
scalable way. Spring ACL intends to solve this problem by putting more of the load
of calculating appropriate permissions vis-à-vis bitmasks on the application, rather
than on the database.

Chapter 7

[229]

It's important to review the resolution process, where we see how the AclEntryVoter
resolves permissions declared on the method itself (in our example, with the @Secured
annotation) to real ACL permissions. The following diagram illustrates the process that
Spring ACL performs to evaluate the declared permission against the relevant ACEs
for the requesting principal:

We see that the AclEntryVoter relies on classes implementing two
interfaces, o.s.s.acls.model.ObjectIdentityRetrievalStrategy, and
o.s.s.acls.model.SidRetrievalStrategy, to retrieve the ObjectIdentity and
Sids appropriate for the authorization check. The important thing to note about
these strategies is how the default implementation classes actually determine the
ObjectIdentity and Sids to return, based on the context of the authorization check.

Access Control Lists

[230]

ObjectIdentity has two properties, type and identifier, that are derived from
the object being checked at runtime, and used to declare ACE entries. The default
ObjectIdentityRetrievalStrategy uses the fully-qualified class name to populate
the type property. The identifier property is populated with the result of a
method with the signature Serializable getId(), invoked on the actual
object instance.

As your object isn't required to implement an interface to be compatible
with ACL checks, the requirement to implement a method with a
specific signature can be surprising for developers implementing
Spring Security ACL. Plan ahead, and ensure that your domain
objects contain this method! You may also implement your own
ObjectRetrievalStrategy (or subclass the out of the box
implementation) to call a method of your choice. The name and type
signature of the method is, unfortunately, not configurable.

Unfortunately, the actual implementation of AclImpl directly compares the
Permission configured with the AclEntryVoter, and the Permission stored on the
ACE in the database, without using bitwise logic. The Spring Security community is
in debate about whether this is unintentional or working as intended, but regardless,
you will need to take care when declaring a user with a combination of permissions,
as either the AclEntryVoter must be configured with all combinations of permission,
or the ACEs need to ignore the fact that the permission field is intended to store
multiple values, and instead store a single permission per ACE.

If you want to verify this with our simple scenario, change the Read permission we
granted to the ROLE_ADMIN SID to the bitmask combination of Read and Write, which
translates to a value of 3. This would be changed in test-acl-data.sql:

insert into acl_entry (acl_object_identity, ace_order, sid, mask,
granting, audit_success, audit_failure)
select oi.id, 1, si.id, 3, true, true, true
from acl_object_identity oi, acl_sid si
where si.sid = 'ROLE_ADMIN';

You can see that if you now try to access the ACL protected Category as the admin
user, you'll be denied, even though we've declared that you have both Read and
Write access in a single ACE.

Chapter 7

[231]

Custom ACL permission declaration
As stated in the earlier discussion on permission declarations, permissions are
nothing but logical names for integer bit values. As such, it's possible to extend
the BasePermission class and declare your own permissions. We'll cover a very
straightforward scenario here, where we create a new ACL permission called
ADMIN_READ. This is a permission that will be granted only to administrative users,
and will be assigned to protect resources only administrators could read. Although
a contrived example for the JBCP Pets site, this type of use of custom permissions
occurs quite often in situations dealing with personally identifiable information (for
example, social security number, and so on—recall that we covered PII in Chapter 1,
Anatomy of an Unsafe Application).

Let's get started making the changes required to support this. The first step is to
extend BasePermission with our own com.packtpub.springsecurity.security.
CustomPermission class:

package com.packtpub.springsecurity.security;
// imports omitted
public class CustomPermission extends BasePermission {
 protected CustomPermission(int mask, char code) {
 super(mask, code);
 }
 protected CustomPermission(int mask) {
 super(mask);
 }
 public static final Permission ADMIN_READ = new CustomPermission(1
<< 5, 'M'); // 32
}

Next, we will need to extend the o.s.s.acls.domain.PermissionFactory default
implementation, o.s.s.acls.domain.DefaultPermissionFactory, to register our
custom permission logical value. The role of the PermissionFactory is to resolve
permission bitmasks into logical permission values (which can be referenced by
constant value, or by name, such as ADMIN_READ, in other areas of the application).
The PermissionFactory requires that any custom permissions be registered with
it for proper lookup.

We'll implement the com.packtpub.springsecurity.security.
CustomPermissionFactory class as follows:

package com.packtpub.springsecurity.security;
// imports omitted
public class CustomPermissionFactory extends DefaultPermissionFactory
{
 public CustomPermissionFactory() {

Access Control Lists

[232]

 super();
 registerPublicPermissions(CustomPermission.class);
 }
 public CustomPermissionFactory(Class<? extends Permission>
permissionClass) {
 super(permissionClass);
 }
 public CustomPermissionFactory(
 Map<String, ? extends Permission> namedPermissions) {
 super(namedPermissions);
 }
}

We can see that we augment the default constructor with a call to register our
CustomPermission class as an available permission.

We won't highlight all of the code available in the base class as part of the
exercises in this chapter, but we'd definitely suggest checking out the code
for the superclass to see what other functionality is there, and how it's
used in other aspects of the ACL system. For example, we'll see that the
buildFromName method will be used in the ACL-enabled JSP custom
tag which shows up later in this chapter.

We'll need to configure our CustomPermissionFactory and wire it into the
BasicLookupStrategy. We'll make the following changes in dogstore-base.xml:

<bean class="org.springframework.security.acls.jdbc.
BasicLookupStrategy" id="lookupStrategy">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="aclCache"/>
 <constructor-arg ref="aclAuthzStrategy"/>
 <constructor-arg ref="aclAuditLogger"/>
 <property name="permissionFactory" ref="customPermissionFactory"/>
</bean>
<bean class="com.packtpub.springsecurity.security.
CustomPermissionFactory" id="customPermissionFactory"/>

Now, our custom ACL permission will be available for use in the ACL framework.
Next, we'll add a new administrative user who has been explicitly assigned this
permission to secure the second category, Dog Food. We'll add the following to
test-acl-data.sql to take care of this new authorization requirement:

-- User SID
insert into acl_sid (principal, sid) values (true, 'admin2');
-- Category #2

Chapter 7

[233]

insert into acl_object_identity (object_id_class,object_id_
identity,parent_object,owner_sid,entries_inheriting)
select cl.id, 2, null, sid.id, false
from acl_class cl, acl_sid sid
where cl.class='com.packtpub.springsecurity.data.Category' and sid.
sid='admin2';

-- Give user 'admin2' access to category 2
-- "32" == 1 << 5
insert into acl_entry (acl_object_identity, ace_order, sid, mask,
granting, audit_success, audit_failure)
select oi.id, 2, si.id, 32, true, true, true
from acl_object_identity oi, acl_sid si
where si.sid = 'admin2' and oi.object_id_identity = 2;
commit;

We can see that the new integer bitmask value of 32 has been referenced in the ACE
data —this intentionally corresponds to our new ADMIN_READ ACL permission as
defined in Java code. The Dog Food category is referenced by its primary key (stored
in the object_id_identity column) value of 2, in the ACL_OBJECT_IDENTITY table.

We'll also need to declare a new AclEntryVoter in the dogstore-base.xml file:

<bean class="org.springframework.security.acls.AclEntryVoter" id="admi
nResourceReadVoter">
 <constructor-arg ref="aclService"/>
 <constructor-arg value="VOTE_ADMIN_READ"/>
 <constructor-arg>
 <array>
 <util:constant static-field="com.packtpub.springsecurity.
security.CustomPermission.ADMIN_READ"/>
 </array>
 </constructor-arg>
 <property name="processDomainObjectClass" value="com.packtpub.
springsecurity.data.Category"/>
</bean>

Additionally, we'll add this voter to the access decision manager responsible for
driving authorization decisions in our ACL protected method scenario:

<bean class="org.springframework.security.access.vote.
AffirmativeBased" id="aclDecisionManager">
 property name="decisionVoters">
 <list>
 <ref bean="categoryReadVoter"/>
 <ref bean="adminResourceReadVoter"/>

Access Control Lists

[234]

 </list>
 </property>
</bean>

And finally, we'll add the required role to the method declaration itself, in the
IProductService interface declaration:

public interface IProductService {
 // other methods omitted
 @Secured({"VOTE_CATEGORY_READ","VOTE_ADMIN_READ"})
 public Collection<Item> getItemsByCategory(Category cat);
}

With all these configurations in place, we can start up the site again and test out the
custom ACL permission. Based on the sample data we have configured, here is what
should happen when the various available users click on categories:

Username Pet apparel (Category 1) Dog Food (Category 2) Any Other
category

admin Allowed (has READ permission
via ROLE_ADMIN SID ACE)

Denied Allowed

admin2 Allowed (has READ permission
via ROLE_ADMIN SID ACE)

Allowed (has ADMIN_
READ permission via
principal SID ACE)

Allowed

guest Denied Denied Allowed

We can see that even with the use of our simple cases, we've now been able to extend
the Spring ACL functionality in a very limited way to illustrate the power of this
fine grained access control system, solely based on the combination of principal,
GrantedAuthority, individual domain objects, and business methods.

ACL-Enabling your JSPs with the Spring
Security JSP tag library
We saw in Chapter 3, Enhancing the User Experience and Chapter 5 that the Spring
Security JSP tag library offers functionality to expose authentication-related data
to the user, and to restrict what the user can see based on a variety of rules.

Chapter 7

[235]

The very same tag library can also interact with an ACL-enabled system right out
of the box! From our simple experiments above, we have configured a simple ACL
authorization scenario around the first two categories in the list on the home page.

Let's take this one step further, and use the <accesscontrollist> tag to hide the
categories that the user doesn't actually have access to.

Please refer to the table in the previous section as a refresher of the access rules we've
configured up to this point!

We'll wrap the display of each category with the <accesscontrollist> tag,
declaring the list of permissions to check on the object to be displayed:

<c:forEach var="category" items="${categories}">
<security:accesscontrollist hasPermission="READ,ADMIN_READ" domainObje
ct="${category}">
	 ${category.name}

</security:accesscontrollist>
</c:forEach>

Think for a moment about what we want to occur here—we want the user to see only
the items to which they actually have READ or ADMIN_READ (our custom permission)
access. We therefore declare the list of permissions to check as a comma-delimited
list, and the domain object on which to perform the check (specified with the JSP EL
expression ${category}).

Behind the scenes, the tag implementation utilizes the same SidRetrievalStrategy
and ObjectIdentityRetrievalStrategy discussed earlier in this chapter, so the
computation of access checking follows the same workflow as it does with
ACL-enabled voting on method security.

Spring Expression Language support for ACLs
SpEL support for an ACL-enabled system is allowed for method security only,
with the use of the hasPermission SpEL function. Typically, this type of access
check is combined with a reference to one or more parameters to the function (for
@PreAuthorize checks), or for collection filtering (with @PostAuthorize checks).

Access Control Lists

[236]

Unfortunately, the configuration requirements for enabling ACL support in method
security require us to configure all of method security explicitly using Spring Bean
configuration. As such, we will need to remove the <global-method-security>
element and replace it with the explicit method security configuration we covered
at the end of Chapter 6. While we won't repeat the configuration here (although it
is included in the code for this chapter), we do need to make the following minor
changes so that the required support classes for the ACL hasPermission check
are enabled:

<bean class="org.springframework.security.access.expression.method.
DefaultMethodSecurityExpressionHandler" id="methodExprHandler">
 <property name="permissionEvaluator" ref="aclPermissionEvaluator"/>
</bean>
<bean class="org.springframework.security.acls.AclPermissionEvaluator"
id="aclPermissionEvaluator">
 <constructor-arg ref="aclService"/>
 <property name="permissionFactory" ref="customPermissionFactory"/>
</bean>

We have updated the methodExprHandler bean definition to configure
a o.s.s.access.PermissionEvaluator implementation (the default
PermissionEvaluator implementation simply denies all permission checks). The
o.s.s.acls.AclPermissionEvaluator utilizes the AclService and related classes
to actually check the permission declared in the SpEL hasPermission expression.

With this configuration in place, we can use an alternate method to filter the list
of categories displayed on the home page (make sure you remove the tag library
additions we made in the prior exercise!).

Take note that the hasPermission function does not support
a comma-separated list of permissions (as we saw with the
<accesscontrollist> JSP tag), so we need to use SpEL
boolean logic.

Simply add the following declaration to the IProductService interface.
@PostFilter("hasPermission(filterObject, 'READ') or hasPermission(filt
erObject, 'ADMIN_READ')")
Collection<Category> getCategories();

Now, try restarting the application, and compare the list of categories shown on the
home page when logged in anonymously, as the admin user, and as the admin2 user.
Notice how the displayed list is completely driven by ACL permissions? We can see
that the hasPermission SpEL function will nicely tie our ACL-enabled application
with method-level security annotations!

Chapter 7

[237]

Mutable ACLs and authorization
Although the JBCP Pets site doesn't implement full user administration functionality,
it's likely that your application will have common features such as new user
registration and administrative user maintenance. To this point, lack of these
features—which we have worked around using SQL inserts at application
startup—hasn't stopped us from demonstrating many of the features of Spring
Security and Spring ACL.

However, the proper handling of runtime changes to declared ACLs, or the addition
or removal of users in the system, is critical to maintaining the consistency and
security of the ACL-based authorization environment. Spring ACL solves this issue
through the concept of the mutable ACL (o.s.s.acls.model.MutableAcl).

Extending the standard Acl interface, the MutableAcl allows for runtime
manipulation of ACL fields in order to change the in-memory representation of a
particular ACL. This additional functionality includes the ability to create, update,
or delete ACEs, change ACL ownership, and other useful functions.

We might expect, then, that the Spring ACL module would come out of the box with
a way to persist runtime ACL changes to the JDBC data store, and indeed it does.
The o.s.s.acls.jdbc.JdbcMutableAclService may be used to create, update, and
delete MutableAcl instances in the database, as well as to do general maintenance on
the other supporting tables for ACLs (handling SIDs, ObjectIdentity, and domain
object class names).

It takes only a slight configuration change for us to use the JdbcMutableAclService
instead of the JdbcAclService—the mutable service requires a reference to the ACL
cache, so that it can appropriately evict items from the cache when they are updated
in the database. The bean configuration is appropriately straightforward:

<bean class="org.springframework.security.acls.jdbc.
JdbcMutableAclService" id="mutableAclService">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="lookupStrategy"/>
 <constructor-arg ref="aclCache"/>
</bean>

Access Control Lists

[238]

Recall from earlier in the chapter that the AclAuthorizationStrategyImpl allows
us to specify certain roles required for actions on mutable ACLs. These are supplied
to the constructor as part of the bean configuration. The constructor arguments, and
their meanings, are as follows:

Arg # What it does
1 Indicates the authority a principal is required to have in order to take ownership

of an ACL-protected object at runtime.
2 Indicates the authority a principal is required to have in order to change the

auditing of an ACL-protected object at runtime.
3 Indicates the authority a principal is required to have in order to make any other

kind of change (create, update, and delete) to an ACL-protected object at runtime.

The JdbcMutableAclService contains a number of methods used to manipulate
ACL and ACE data at runtime. While the methods themselves are fairly
understandable (createAcl, updateAcl, deleteAcl), the correct way to configure
and use the JdbcMutableAclService is often difficult for even advanced Spring
Security users.

Let's implement an ACL bootstrap class that will replace the need for our bootstrap
SQL script, and instead insert our current ACL and ACE entries (and supporting
ObjectIdentitys and Sids) programmatically.

Configuring a Spring transaction manager
The JdbcMutableAclService uses Spring's JdbcTemplate support to interact
with a JDBC DataSource. As such, it requires the presence of a Spring JDBC
PlatformTransactionManager, and verifies (very aggressively) that all interactions
with the database are properly wrapped in transactions.

While most real applications using Spring will probably already have a transaction
manager declared, our JBCP Pets application does not. We'll simply add one in
dogstore-base.xml:

<bean id="txManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

We'll declare a reference to the bootstrap bean that we'll be coding in a moment:

<bean class="com.packtpub.springsecurity.security.AclBootstrapBean"
init-method="aclBootstrap"/>

Chapter 7

[239]

Much like our DatabasePasswordSecurerBean from Chapter 4, Securing Credential
Storage, we've configured this bean so that the aclBootstrap method will be
invoked when the Spring ApplicationContext is initialized—the perfect time
to bootstrap our application's ACL data!

Interacting with the JdbcMutableAclService
Now, we'll code up our bootstrap bean—create the com.packtpub.springsecurity.
security.AclBootstrapBean class. First, we'll use @Autowired to inject the required
dependencies:

package com.packtpub.springsecurity.security;
// imports omitted
public class AclBootstrapBean {
 @Autowired
 MutableAclService mutableAclService;
 @Autowired
 IProductDao productDao;
 @Autowired
 PlatformTransactionManager transactionManager;

Next, the actual definition of the method, which will be invoked to bootstrap the
ACL data—we'll analyze this one segment at a time.

public void aclBootstrap() {

// domain data to set up
Collection<Category> categories = productDao.getCategories();
Iterator<Category> iterator = categories.iterator();
final Category category1 = iterator.next();
final Category category2 = iterator.next();

We'll need references to the actual domain objects to be secured in order to create
ACLs for them. Recall that our ACL bootstrap SQL adds entries for only the first
two categories in our store, so we retrieve them from the Product DAO.

The JdbcMutableAclService will use an ObjectIdentity to create the initial
MutableAcl (which can then be further manipulated, as we will see). To create
an ObjectIdentity, we will need the actual domain object.

// needed because MutableAclService requires a current authenticated
principal
GrantedAuthorityImpl roleUser = new GrantedAuthorityImpl("ROLE_USER");
GrantedAuthorityImpl roleAdmin = new GrantedAuthorityImpl("ROLE_
ADMIN");
UsernamePasswordAuthenticationToken token = new UsernamePasswordAuthen
ticationToken("admin","admin",Arrays.asList(new GrantedAuthority[]
{roleUser, roleAdmin}));
SecurityContextHolder.getContext().setAuthentication(token);

Access Control Lists

[240]

The JdbcMutableAclService verifies that a user has been logged in, and uses this
logged-in user as the default owner for the created MutableAcl. Unfortunately,
this is a mandatory check, even if you are later intending to explicitly set the
ACL's owner. As this code is executing without an authenticated user, it fools the
JdbcMutableAclService into thinking that the admin user is currently authenticated.

// sids
final Sid userRole = new GrantedAuthoritySid("ROLE_USER");
final Sid adminRole = new GrantedAuthoritySid("ROLE_ADMIN");
// users
final Sid adminUser = new PrincipalSid("admin");
final Sid admin2User = new PrincipalSid("admin2");

We need to create Sids for the principals and groups which will be represented
within the ACL and ACE structure, so we explicitly create them here. Keep in mind
that if you were manipulating ACLs within the scope of the application (for example,
in a business service invoked from the UI layer), you might approach this problem
in a different way—the code here is intended only as a working example, which you
are encouraged to adapt to your situation.

// all interaction with JdbcMutableAclService must be within a
transaction
TransactionTemplate tt = new TransactionTemplate(transactionManager);	
 tt.execute(new TransactionCallbackWithoutResult() {
 @Override
 protected void doInTransactionWithoutResult(TransactionStatus arg0)
{
 // category 1 ACL
 MutableAcl createAclCategory1 = mutableAclService.createAcl(new Obje
ctIdentityImpl(category1));
 createAclCategory1.setOwner(adminRole);
 createAclCategory1.insertAce(0, BasePermission.READ, adminRole,
true);
 mutableAclService.updateAcl(createAclCategory1);

 // category 2 ACL
 MutableAcl createAclCategory2 = mutableAclService.createAcl(new Obje
ctIdentityImpl(category2));
 createAclCategory2.setOwner(admin2User);
 createAclCategory2.insertAce(0, CustomPermission.ADMIN_READ,
admin2User, true);
 mutableAclService.updateAcl(createAclCategory2);
}});

SecurityContextHolder.clearContext();
}
}

Chapter 7

[241]

Within the scope of a new database transaction, the interaction with the
JdbcMutableAclService is performed. We can see that the initial createAcl
call returns a MutableAcl object. Behind the scenes, database inserts or lookups
are performed for the ObjectIdentity and Sid. The MutableAcl itself provides
methods for creating, updating, or deleting ACEs on the ACL (remember, ACEs
declare individual permission-to-SID mappings). Finally, the MutableAcl is updated
in the database with the updateAcl method call.

Keep in mind that the JdbcMutableAclService is also responsible for ensuring the
AclCache is refreshed as MutableAcl operations are performed!

You are encouraged to experiment with the mutable ACL service and enhance the
site to support user addition and editing—the JdbcMutableAclService is quite
well documented (at the code level), and attempting to implement it will be a
good exercise in determining your readiness to fully embrace a runtime-driven
ACL model.

Ehcache ACL caching
Ehcache is an open-source, memory and disk-based caching library which is widely
used in many open-source and commercial Java products. As mentioned earlier in
the chapter, Spring Security ships with a default implementation of ACL caching,
which relies on the availability of a configured Ehcache instance, which it uses to
store ACL information in preference to reading ACLs from the database.

While deep configuration of Ehcache is not something we want to cover in this
section, we'll cover how Spring ACL uses the cache, and walk you through a basic,
default configuration.

Configuring Ehcache ACL caching
Setting up Ehcache is trivial—we'll simply declare two beans from Spring Core which
manage Ehcache instantiation and expose several helpful configuration properties:

<bean class="org.springframework.cache.ehcache.
EhCacheManagerFactoryBean" id="ehCacheManagerBean"/>
<bean class="org.springframework.cache.ehcache.EhCacheFactoryBean"
id="ehCacheFactoryBean">
 <property name="cacheManager" ref="ehCacheManagerBean"/>
</bean>

Access Control Lists

[242]

Next, we'll instantiate the Ehcache ACL cache bean:

<bean class="org.springframework.security.acls.domain.
EhCacheBasedAclCache" id="ehCacheAclCache">
 <constructor-arg ref="ehCacheFactoryBean"/>
</bean>

And finally, we'll replace the reference to our NullAclCache implementation with
the Ehcache-based one:

<bean class="org.springframework.security.acls.jdbc.
BasicLookupStrategy" id="lookupStrategy">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="ehCacheAclCache"/>
 <constructor-arg ref="aclAuthzStrategy"/>
 <constructor-arg ref="aclAuditLogger"/>
</bean>

With these configuration changes in place (and the Ehcache runtime JARs on your
classpath), ACL data will now be cached based on the Ehcache cache manager settings!

How Spring ACL uses Ehcache
While the configuration illustrated in the previous steps may seem trivial, the
addition of Ehcache to your application—especially for high volume uses—carries
with it the onus to perform a careful analysis, comparing the cost of caching against
the cost of database queries. Understanding how Ehcache is used in Spring ACL will
be critical to your planning for cache sizing and longevity.

Spring ACL will store all of the following objects (the majority of which reside
in o.s.s.acls.domain) in cache, either as keys or values, as part of its ACL
caching strategy:

ObjectIdentity (implemented by ObjectIdentityImpl)
Sid (implemented by GrantedAuthoritySid or PrincipalSid)
Acl (implemented by AclImpl), which contains:
AccessControlEntry (implemented by AccessControlEntryImpl)
Your object instance's Serializable primary key (typically a Long, unless
you have done significant customization to Spring ACL runtime classes)

As BasicLookupStrategy and MutableAclService are the only users of the ACL
cache mechanism, use of the cache is quite straightforward. Based on the potential
size of the items in the cache, it would be wise to monitor the cache during a suitable
load test to assess memory usage and longevity of cache elements.

•

•

•

•

Chapter 7

[243]

If your application is using Ehcache for other purposes (for example, Hibernate or
another ORM tool), it's likely that you'll want to segregate the Ehcache instance used
for ORM purposes from the instance used to store ACL data. This is typically done
by supplying a unique cache name when building the EhCacheFactoryBean used
by Spring ACL, as follows:

<bean class="org.springframework.cache.ehcache.EhCacheFactoryBean"
id="ehCacheFactoryBean">
 <property name="cacheManager" ref="ehCacheManagerBean"/>
 <property name="cacheName" value="springAclCacheRegion"/>
</bean>

Curiously, the Ehcache support in Spring Core has no formal documentation outside
of the Javadoc. If your use of Spring ACL and Ehcache is significant, do note that it's
likely you'll be finding yourself digging into code!

Considerations for a typical ACL
deployment
Actually deploying Spring ACL in a true business application tends to be quite
involved. We wrap up coverage of Spring ACL with some considerations that
arise in most Spring ACL implementation scenarios.

About ACL scalability and performance
modelling
For small and medium-sized applications, the addition of ACLs is quite manageable
and, while it adds overhead to database storage and runtime performance, the
impact is not likely to be significant. However, depending on the granularity with
which ACLs and ACEs are modeled, the numbers of database rows in a medium-to
large-sized application can be truly staggering, and can task even the most seasoned
database administrator.

Let's assume we were to extend ACLs to cover more of the JBCP Pets application,
to cover user accounts and orders, along with posts on the JBCP Pets customer-to-
customer forum. We'll model the data as follows:

All customers will have accounts
10% of all customers will have orders. The average number of orders per
customer will be two

•
•

Access Control Lists

[244]

Orders will be secured (read-only) per customer, but also need to be
accessible (read / write) by administrators
10% of all customers will post on the customer-to-customer forum. The
average number of posts per customer will be 20
Posts will be secured (read-write) per customer, as well as administrators.
Posts will be read-only for all other customers

Given what we know about the ACL system, we know that the database tables have
the following scalability attributes:

Table Scales with data Scalability notes
ACL_CLASS No One row required per domain class.
ACL_SID Yes (users) One row required per role

(GrantedAuthority).
One row required for each user
account (if individual domain
objects are secured per user).

ACL_OBJECT_IDENTITY Yes (domain class *
instances per class)

One row required per instance of
secured domain object.

ACL_ENTRY Yes (domain object
instances * individual
ACE entries)

One row required per ACE, may
require multiple rows for a single
domain object.

We can see that ACL_CLASS doesn't really have scalability concerns (most systems
will have fewer than 1000 domain classes). ACL_SID will scale linearly based on
the number of users in the system. This is probably not concerning, because other
user-related tables will scale in this fashion as well (user account, and so on.).

The two tables of concern are ACL_OBJECT_IDENTITY and ACL_ENTRY. If we model
the estimated rows required to model an order for an individual customer, we come
up with the following estimates:

Table ACL data per order ACL data per forum post
ACL_OBJECT_IDENTITY One row required for a

single order.
One row required for a single
post.

ACL_ENTRY Three Rows—One row
required for read access by
the owner (the customer
SID), two rows required
(one for read access, one
for write access) for the
administrative group SID.

Four rows—one row required
for read access by the customer
group SID, one row required
for write access by the owner,
two rows required for the
administrative group SID (as
with Orders)

•

•

•

Chapter 7

[245]

We can then take the usage assumptions from the previous page and calculate the
following ACL scalability matrix:

Table / Object Scale factor Estimates (Low) Estimates
(High)

Users 10,000 1,000,000

Orders # Users * 0.1 * 2 2,000 200,000
ForumPosts # Users * 0.1 * 20 20,000 2,000,000
ACL_SID # Users 10,000 1,000,000
ACL_OBJECT_IDENTITY # Orders + # Posts 22,000 2,200,000
ACL_ENTRY (# Orders * 3) + (# Posts * 4) 86,000 8,600,000

From these projections based on only a subset of the business objects likely to be
involved and secured in a typical ACL implementation, you can see that the number
of database rows devoted to storing ACL information is likely to grow linearly (or
faster) in relation to your actual business data. Especially in large system planning,
forecasting the amount of ACL data that you are likely to use is extremely important.
It is not uncommon for very complex systems to have hundreds of millions of rows
related to ACL storage.

Do not discount custom development costs
Utilizing a Spring ACL-secured environment often requires significant development
work above and beyond the configuration steps we've described to this point.
Our sample configuration scenario has the following limitations, which would
significantly impact the functionality we were to roll out ACL security to the
whole site:

SIDs and access credentials are hard-coded at application bootstrap
No facility is provided for responding to the manipulation (create and delete)
of new domain object instances, or the management of users or groups
The application does not effectively use ACL hierarchies

•
•

•

Access Control Lists

[246]

When planning Spring ACL rollout across an application, you must carefully
review all places where domain data is manipulated, and ensure these locations
correctly update ACL and ACE rules, and invalidate caches. Typically, the securing
of methods and data takes place at the service or business application layer, and the
hooks required to maintain ACLs and ACEs occur at the data access layer:

If you are dealing with a reasonably standard application architecture, with proper
isolation and encapsulation of functionality, it's likely that there's an easily identified
central location for these changes. On the other hand, if you're dealing with an
architecture that has devolved (or was never designed well in the first place), adding
ACL functionality and supporting hooks in data manipulation code can prove to be
very difficult.

As previously hinted at, it's important to keep in mind that the Spring ACL
architecture hasn't changed significantly since the days of Acegi 1.x, almost three
years ago. In that time, many users have attempted to implement it, and have
logged and documented several important restrictions, many of which are captured
in the Spring Security JIRA repository (http://jira.springframework.org/).
Issue SEC-479 functions as a useful entry point for some of the key limitations, many
of which remain unaddressed with Spring Security 3, and (if they are applicable
to your situation) can require significant custom coding to work around.

Following are some of the most important, and commonly encountered, issues:

The ACL infrastructure requires a numeric primary key. For applications
that use a GUID or UUID primary key (more and more common recently
due to more efficient support in modern databases), this can be a
significant limitation.
As of this writing, the JIRA issue SEC-1140 documents the issue that the
default ACL implementation does not correctly compare Permission
bitmasks using bitwise operators. We covered this earlier in the section
on permissions.

•

•

Chapter 7

[247]

Several inconsistencies exist between the method of configuring Spring
ACL and the rest of Spring Security. In general, it is likely that you will run
into areas where class delegates or properties are not exposed through DI,
necessitating an override and rewrite strategy that can be time-consuming
and expensive to maintain.
The Permission bitmask is implemented as an integer, and thus has 32
possible bits. It's somewhat common to expand the default bit assignments to
indicate permissions on individual object properties (for example, assigning a
bit for read of social security number of an employee). Complex deployments
may have well over 32 properties per domain object, in which case the only
alternative would be to remodel your domain objects around this limitation.

Depending on your specific application's requirements, it is likely that you will
encounter additional issues, especially with regards to the number of classes
requiring change when implementing certain types of customizations.

Should I use Spring Security ACL?
Just as the details of applying Spring Security as a whole tend to be highly business
dependent, so too is the application of Spring ACL support—in fact, this tends to be
even more true of ACL support due to its tight coupling to business methods and
domain objects. We hope that this guide to Spring ACL explained the important
high- and low-level configurations and concepts required to analyze Spring ACL
for use in your application, and can assist you in determining and matching its
capabilities to real-world use.

Summary
In this chapter, we focused on access control list based security and the specific
details of how this type of security is implemented by the Spring ACL module.
We did the following:

Reviewed the basic concept of access control lists, and the many reasons why
they can be very effective solutions to authorization.
Learned key concepts related to the Spring ACL implementation, including
access control entries, SIDs, and object identity.
Examined the database schema and logical design required to support
a hierarchical ACL system.

•

•

•

•

•

Access Control Lists

[248]

Configured all the required Spring Beans to enable the Spring ACL module,
and enhanced one of the service interfaces to use annotated method
authorization. We then tied the existing users in our database, and business
objects used by the site itself, into a sample set of ACE declarations and
supporting data.
Reviewed the concepts around Spring ACL Permission handling.
Expanded our knowledge of the Spring Security JSP tag library and SpEL
expression language (for method security) to utilize ACL checks.
Discussed the mutable ACL concept, and reviewed the basic configuration
and custom coding required in a mutable ACL environment.
Developed a custom ACL Permission, and configured the application
to demonstrate its effectiveness.
Configured and analyzed the use of the Ehcache cache manager to reduce the
database impact of Spring ACL.
Analyzed the impact and design considerations of using the Spring ACL
system in a complex business application.

This wraps up the portion of the book covering core Spring Security concepts. In the
following chapters, we'll dig into integrating Spring Security authentication with
many types of external systems. If you don't know how the technology behind these
systems (OpenID, LDAP, and so on.) works, we'll lead you through that too, so
please read on!

•

•
•

•

•

•

•

Opening up to OpenID
OpenID is a very popular form of trusted identity management that allows users
to manage their identity through a single trusted provider. This convenient feature
provides users with the security of storing their password and personal information
with the trusted OpenID provider, optionally disclosing this personal information
upon request. Additionally, the OpenID-enabled website can have confidence that
the users providing OpenID credentials is who they say they are.

In this chapter, we'll:

Learn to set up your own OpenID in less than five minutes
Configure the JBCP Pets website with a very rapid implementation
of OpenID
Learn the conceptual architecture of OpenID and how it provides your site
with trustworthy user access
Implement OpenID-based user registration
Experiment with OpenID attribute exchange for user
profile functionality
Examine the security offered by OpenID-based login

The promising world of OpenID
The promise of OpenID as a technology is to allow users on the web to centralize
their personal data and information with a trusted provider, and then use the trusted
provider as a delegate to establish trustworthiness with other sites with whom the
user wants to interact.

•
•

•

•
•

•

Opening up to OpenID

[250]

In concept, this type of login through a trusted third party has been in existence for a
long time, in many different forms (Microsoft Passport, for example, became one of
the more notable central login services on the web for some time). OpenID's distinct
advantage is that the OpenID Provider needs to implement only the public OpenID
protocol to be compatible with any site seeking to integrate login with OpenID.
The OpenID specification itself is an open specification, which leads to the fact
that there is currently a diverse population of public providers up and running
the same protocol. This is an excellent recipe for healthy competition and it is
good for consumer choice.

The following diagram illustrates the high-level relationship between a site
integrating OpenID during the login process and OpenID providers.

We can see that the user presents his credentials in the form of a unique named
identifier, typically a Uniform Resource Identifier (URI), which is assigned to the
user by their OpenID provider, and is used to uniquely identify both the user and
the OpenID provider. This is commonly done by either prepending a subdomain to
the URI of the OpenID provider (for example, https://jamesgosling.myopenid.
com/), or appending a unique identifier to the URI of the OpenID provider URI
(for example, https://me.yahoo.com/jamesgosling). We can visually see from
the presented URI that both methods clearly identify both the OpenID provider
(via domain name) and the unique user identifier.

Chapter 8

[251]

Don't trust OpenID unequivocally!
You can see here a fundamental assumption that can fool users of the
system. It is possible for us to sign up for an OpenID, which would make
it appear as though we were James Gosling, even though we obviously
are not. Do not make the false assumption that just because a user has a
convincing-sounding OpenID (or OpenID delegate provider) they are the
authentic person, without requiring additional forms of identification.
Thinking about it another way, if someone came to your door just
claiming he was James Gosling, would you let him in without verifying
his ID?

The OpenID-enabled application then redirects the user to the OpenID provider, at
which the user presents his credentials to the provider, which is then responsible for
making an access decision. Once the access decision has been made by the provider,
the provider redirects the user to the originating site, which is now assured of the
user's authenticity.

OpenID is much easier to understand once you have tried it. Let's add OpenID to the
JBCP Pets login screen now!

Signing up for an OpenID
In order to get the full value of exercises in this section (and to be able to test login),
you'll need your own OpenID from one of the many available providers, of which
a partial listing is available at http://openid.net/get-an-openid/. Common
OpenID providers with which you probably already have an account are Yahoo!,
AOL, Flickr, or MySpace. Google's OpenID support is slightly different, as we'll see
later in this chapter when we add Sign In with Google support to our login page. To
get full value out of the exercises in this chapter, we recommend you have accounts
with at least:

myOpenID
Google

•
•

Opening up to OpenID

[252]

Enabling OpenID authentication with
Spring Security
We'll see a common theme with the external authentication providers examined over
the next several chapters. Spring Security provides convenient wrappers around
provider integrations that are actually developed outside the Spring ecosystem.

In this vein, the openid4java project (http://code.google.com/p/openid4java/)
provides the underlying OpenID provider discovery and request/response
negotiation for the Spring Security OpenID functionality.

Writing an OpenID login form
It's typically the case that a site will present both standard (username and password)
and OpenID login options on a single login page, allowing the user to select from
one or the other option, as we can see in the JBCP Pets target login page.

The code for the OpenID-based form is as follows:

<h1>Or, Log Into Your Account with OpenID</h1>
<p>
 Please use the form below to log into your account with OpenID.
</p>
<form action="j_spring_openid_security_check" method="post">
 <label for="openid_identifier">Login</label>:
 <input id="openid_identifier" name="openid_identifier" size="20"

Chapter 8

[253]

maxlength="100" type="text"/>

 <input type="submit" value="Login"/>
</form>

The name of the form field, openid_identifier, is not a coincidence. The OpenID
specification recommends that implementing websites use this name for their
OpenID login field, so that user agents (browsers) have the semantic knowledge of
the function of this field. There are even browser plug-ins such as Verisign's OpenID
SeatBelt (https://pip.verisignlabs.com/seatbelt.do), which take advantage
of this knowledge to pre-populate your OpenID credentials into any recognizable
OpenID field on a page.

You'll note that we don't offer the remember me option with OpenID login. This
is due to the fact that the redirection to and from the vendor causes the remember
me checkbox value to be lost, such that when the user's successfully authenticated,
they no longer have the remember me option indicated. This is unfortunate, but
ultimately increases the security of OpenID as a login mechanism for our site, as
OpenID forces the user to establish a trust relationship through the provider with
each and every login.

Configuring OpenID support in Spring Security
Turning on basic OpenID support, via the inclusion of a servlet filter and
authentication provider, is as simple as adding a directive to our <http>
configuration element in dogstore-security.xml as follows:

<http auto-config="true" ...>
<!-- Omitting content... -->
 <openid-login/>
</http>

After adding this configuration element and restarting the application, you will be
able to use the OpenID login form to present an OpenID and navigate through the
OpenID authentication process. When you are returned to JBCP Pets, however, you
will be denied access. This is because your credentials won’t have any roles assigned
to them. We’ll take care of this next.

Opening up to OpenID

[254]

Adding OpenID users
As we do not yet have OpenID-enabled new user registration, we'll need to manually
insert the user account (that we'll be testing) into the database, by adding them to
test-users-groups-data.sql in our database bootstrap code. We recommend
that you use myOpenID for this step (notably, you will have trouble with Yahoo!,
for reasons we'll explain in a moment). If we assume that our OpenID is https://
jamesgosling.myopenid.com/, then the SQL that we'd insert in this file is as follows:

insert into users(username, password, enabled, salt) values ('https://
jamesgosling.myopenid.com/','unused',true,CAST(RAND()*1000000000 AS
varchar));
insert into group_members(group_id, username) select id,'https://
jamesgosling.myopenid.com/' from groups where group_
name='Administrators';

You'll note that this is similar to the other data that we inserted for our traditional
username-and password-based admin account, with the exception that we have
the value unused for the password. We do this, of course, because OpenID-based
login doesn't require that our site should store a password on behalf of the user!
The observant reader will note, however, that this does not allow a user to create an
arbitrary username and password, and associate it with an OpenID—we describe
this process briefly later in this chapter, and you are welcome to explore how to do
this as an advanced application of this technology.

At this point, you should be able to complete a full login using OpenID. The
sequence of redirects is illustrated with arrows in the following screenshot:

Chapter 8

[255]

We've now OpenID-enabled JBCP Pets login! Feel free to test using several OpenID
providers. You'll notice that, although the overall functionality is the same, the
experience that the provider offers when reviewing and accepting the OpenID
request differs greatly from provider to provider.

The OpenID user registration problem
Try using the same technique that we worked through previously with a Yahoo!
OpenID—for example, https://me.yahoo.com/pmularien. You will find that
it doesn't work, as it did with the other OpenID providers. This illustrates a key
problem with the structure of OpenID, and highlights the importance of
OpenID-enabled user registration.

How OpenID identifiers are resolved
The actual OpenID that Yahoo! returns will be similar to the following:
https://me.yahoo.com/pmularien#9a466. In OpenID terminology, the identifier
that the user enters in the login box is known as the user-supplied identifier. This
identifier may not actually correspond to the identifier that uniquely identifies the
user (the user's claimed identifier), but as part of the verification of ownership, the
OpenID Provider will take care of translating the user input to the identifier that the
provider can actually prove that the user owns.

The OpenID discovery protocol and the OpenID provider itself
actually have to be smart about figuring out what the user meant
based on what they supply upon OpenID authentication. For
example, try entering the name of an OpenID provider (for example,
www.yahoo.com) in the OpenID login box—you'll get a slightly
different interface that allows you to pick your OpenID, as you
didn't supply a unique OpenID in the login box. Pretty clever! For
details on this and other aspects of the OpenID specifications, check
out the specifications page (on the developers page) of the OpenID
Foundation website at http://openid.net/developers/.

Once the user is able to provide proof of ownership of their claimed identifier, the
OpenID provider will return to the requesting application a normalized version of
the claimed identifier, known as the OpenID Provider Local Identifier (or OP-Local
Identifier). This is the final, unique identifier that the OpenID provider indicates
that the user owns, and the one which will always be returned from authentication
requests to the provider. Hence, this is the identifier that the JBCP Pets should be
storing for user identification.

Opening up to OpenID

[256]

The flow of an OpenID login request handled by Spring Security proceeds
as follows:

The o.s.s.openid.OpenIDAuthenticationFilter is responsible
for listening for the pseudo-URL /j_spring_openid_security
check and responding to the user's login request, much as the
UsernamePasswordAuthenticationFilter does for the /j_spring_
security_check URL. We can see from the diagram that the o.s.s.openid.
OpenID4JavaConsumer delegates to the openid4java library to construct
the URL which ultimately redirects the user to the OpenID provider. The
openid4java library (via the org.openid4java.consumer.ConsumerManager)
is also responsible for the provider discovery process described earlier.
This filter is actually used in both phases of OpenID authentication—both
in formulating the redirect to the OpenID provider, and the handling of the
authentication response from the provider. The response from the OpenID
provider is a simple GET request, with a series of well-defined fields which
are consumed and verified by the openid4java library. While you won't be
dealing with these fields directly, some of the important ones are as follows:

•

Chapter 8

[257]

Field Name Description
openid.op_endpoint The OpenID Provider's endpoint URL used for verification.
openid.claimed_id The OpenID claimed identifier provided by the user.
openid.response_
nonce

The nonce calculated by the provider, used to create the
signature.

openid.sig The OpenID response signature.
openid.association The one-time use association generated by the requestor

and is used to calculate the signature, and determine the
validity of the response.

openid.identifier The OP-Local identifier.

We'll examine how some of these fields are used in verifying the validity of a response.
Let's look at the actors involved in processing the vendor's OpenID response:

Opening up to OpenID

[258]

We see that the user is redirected to /j_spring_openid_security_check
after they submit their credentials to the OpenID provider's site. The
OpenIDAuthenticationFilter performs some rather basic checks to see if the
invoking request is an OpenID request (from the JBCP Pets login form), or a possibly
valid OpenID response from a provider.

Once the request is determined to be an OpenID response, a complex series of
validations ensures to validate the correctness and authenticity of the response (refer
to the section Is OpenID secure? later in this chapter for more details on this). The
OpenID4JavaConsumer eventually returns a sparsely populated o.s.s.openid.
OpenIDAuthenticationToken, which is used by the filter to determine whether the
initial validation of the response was successful. The token is then passed along to
the AuthenticationManager, which treats it like any other Authentication object.

The o.s.s.openid.OpenIDAuthenticationProvider ends up being responsible
for performing final verification against the local authentication store (for example,
JdbcDaoImpl). It's important to remember that what is expected in the authentication
store is a username containing the OP-Local Identifier, which may not necessarily
match the identifier initially supplied by the user—this is the crux of the OpenID
registration problem. The flow from this point onward is very similar to traditional
username/password authentication, most notably in the retrieval of appropriate
group and role assignments from the UserDetailsService.

Implementing user registration with OpenID
For a user to be able to create an account on the JBCP Pets site, which will be OpenID
enabled, they'll need to first prove that they own the identifier. Thus, we'll allow the
user to supply an OpenID as part of the registration process. We've taken the liberty
of adding a registration process for standard username and password authentication,
which you can walk through using the Registration link in the header. Let's extend
this registration process to allow a user to register for an account using OpenID.

Adding the OpenID registration option
Initially, we'll need to add a simple form, much like the login form (actually, exactly
the same!) to the registration page, to allow the user to present and validate their
OpenID identifier. Add the following to the end of registration.jsp:

<h1>Or, Register with OpenID</h1>
<p>
 Please use the form below to register your account with OpenID.
</p>
<form action="j_spring_openid_security_check" method="post">
 <label for="openid_identifier">Login</label>:

Chapter 8

[259]

 <input id="openid_identifier" name="openid_identifier" size="50"
maxlength="100" type="text"/>

 <input type="submit" value="Login"/>
</form>

This form is, in fact, exactly the same as the form on the login page. How can we
differentiate between a login and a registration request?

Differentiating between a login and
registration request
We chose a very simple method of differentiating between a login and registration
request. If the user makes a successful OpenID authentication attempt, and
they haven't already got a valid account in our database, we'll assume that it's a
registration request and add them to the database. There are certainly ways to refine
this behavior (for example, displaying a confirmation message to the user before
creating an account!), but for the purposes of our example, this is sufficient.

We'll extend the standard AuthenticationFailureHandler in com.packtpub.
springsecurity.security.OpenIDAuthenticationFailureHandler class,
as follows:

package com.packtpub.springsecurity.security;
// imports omitted
public class OpenIDAuthenticationFailureHandler extends
 SimpleUrlAuthenticationFailureHandler {
 @Override
 public void onAuthenticationFailure(HttpServletRequest request,
 HttpServletResponse response, AuthenticationException exception)
 throws IOException, ServletException {
 if(exception instanceof UsernameNotFoundException
 && exception.getAuthentication() instanceof
OpenIDAuthenticationToken
 && ((OpenIDAuthenticationToken)exception.getAuthentication()).
getStatus().equals(OpenIDAuthenticationStatus.SUCCESS)) {
 DefaultRedirectStrategy redirectStrategy = new
DefaultRedirectStrategy();
 request.getSession(true).setAttribute("USER_OPENID_CREDENTIAL", ((Us
ernameNotFoundException)exception).getExtraInformation());
 // redirect to create account page
 redirectStrategy.sendRedirect(request, response, "/
registrationOpenid.do");

Opening up to OpenID

[260]

 } else {
 super.onAuthenticationFailure(request, response, exception);
 }
 }
}

We see that this code extends a sensible superclass for default behavior, redirecting
the user to the registrationOpenid.do URL only if the following criteria are true:

The user has encountered a UsernameNotFoundException
The user has successfully authenticated by the OpenID provider
(this is validated by checking the OpenIDAuthenticationToken's
OpenIDAuthenticationStatus value.

The code sets the value of the OP-Local Identifier returned by the OpenID provider
in the session, so that we can retrieve it after the redirection to the OpenID
registration URL.

Configuring a custom authentication failure handler
We'll need to configure this authentication failure handler with a simple adjustment
in the <openid-login> declaration in dogstore-security.xml:

<openid-login authentication-failure-handler-ref="openIdAuthFailureHa
ndler">

The corresponding bean can be declared in dogstore-base.xml:
<bean id="openIdAuthFailureHandler" class="com.packtpub.
springsecurity.security.OpenIDAuthenticationFailureHandler">
 <property name="defaultFailureUrl" value="/login.do"/>
</bean>

The defaultFailureUrl is the location where the user will be redirected if they
encounter a true login failure like providing invalid credentials.

Adding the OpenID registration functionality
to the controller
The handler for OpenID-based registration is very simple, and added to the
LoginLogoutController that we already have for standard username and
password registration:

@RequestMapping(method=RequestMethod.GET,value="/registrationOpenid.
do")
public String registrationOpenId(HttpServletRequest request) {

•
•

Chapter 8

[261]

 String userId = (String) request.getSession().getAttribute("USER_
OPENID_CREDENTIAL");
 if(userId != null) {
 userService.createUser(userId, "unused", null);
 setMessage(request, "Your account has been created. Please log in
using your OpenID.");
 return "redirect:login.do";
 } else {
 setMessage(request, "Please register using your OpenID.");
 return "redirect:registration.do";
 }
}

Next, we'll modify our IUserService interface and UserServiceImpl to build
a simple createUser method:

@Service
public class UserServiceImpl implements IUserService {
 @Autowired
 CustomJdbcDaoImpl jdbcDao;
// existing code omitted
 @Override
 public void createUser(String username, String password, String
email) {
 jdbcDao.createUser(username, password, email);
 }
}

You'll note that we also changed the @Autowired annotation to explicitly refer to our
CustomJdbcDaoImpl. We'll need to implement a custom createUser method in this
class, as follows:

@Transactional
public void createUser(String username, String password, String email)
{
 getJdbcTemplate().update("insert into users(username, password,
enabled, salt) values (?,?,true,CAST(RAND()*1000000000 AS varchar))",
username, password);
 getJdbcTemplate().update("insert into group_members(group_id,
username) select id,? from groups where group_name='Users'",
username);
}

Opening up to OpenID

[262]

This SQL may look familiar to you—it's the SQL we used to bootstrap users
in Chapter 4, Securing Credential Storage. Remember that we had to create the
DatabasePasswordSecurerBean to salt the passwords at startup? With the addition
of this createUser method, we could actually remove the need for the bootstrap
SQL, and bootstrap the users at startup using Java—how do you think we could
write code to do this? Why don't you try it—it will be an effective exercise for
testing your knowledge to this point.

If we did not have the custom users table with the salt field, we could simply
change our CustomJdbcDaoImpl to inherit from JdbcUserDetailsManager (as
discussed in Chapter 4) to pick up the createUser method already implemented
for us:

public class CustomJdbcDaoImpl
 extends JdbcUserDetailsManager
 implements IChangePassword {

This would necessitate some minor changes to the createUser method of
the UserServiceImpl:

@Override
public void createUser(String username, String password, String email)
{
 GrantedAuthority roleUser = new GrantedAuthorityImpl("ROLE_USER");
 UserDetails user = new User(username, password, true, true, true,
true, Arrays.asList(roleUser));
 jdbcDao.createUser(user);
}

You can see that there are two different ways of registering users, custom and out of
the box. Each method is an effective way to handle the OpenID registration problem.
Feel free to experiment with the sample application and pick the method that you
like best!

Once the user has been created via our IUserService functionality, the user is
redirected to the home page, and can successfully log in. If we wanted to enhance
the user experience here, we could make some additional code changes to retain
the OpenIDAuthenticationToken past the redirect and automatically authenticate
the user.

Chapter 8

[263]

Keep in mind that OP-Local identifiers can potentially be quite
long—in fact, the OpenID 2.0 specification does not supply a
maximum length for an OP-Local identifier. The default Spring
Security JDBC schema provides a relatively small username
column (which you may recall that we already extended from the
default to 100 characters). Depending on your needs, you may
wish to extend the username column further to accommodate long
identifiers, or subclass some portion of the OpenID handling chain
(for example, the OpenIDAuthenticationProvider or the
UserDetailsService) so that identifiers which are too long are
handled sensibly. This may include breaking the username into
multiple columns or storing a truncated URL and a hash of the full
URL, to uniquely identify the user.
Remember that authentication isn't an issue at this point, merely
being able to correctly identify the user in the database, based on
their OpenID. Some OpenID-enabled sites go one step further than
this, and allow a level of indirection between the OpenID identifier
and the username used for authentication (for example, allowing
multiple OpenIDs to be associated with the same user account).
The abstraction of the OpenID from the user's account name can be
helpful for those users who have multiple OpenIDs from different
providers that they may wish to use on your site—although this is
somewhat contrary to the goals of OpenID, it does happen, and you
need to keep it in mind when designing an OpenID-enabled site.

Part of the promise of OpenID, in addition to credential management and centralized
trusted authentication, is the ability for users to manage their personal information in
a single location and selectively release information to participating sites. This could
provide, for example, a significantly richer registration experience. Let's see how
Attribute Exchange hopes to solve this problem.

Opening up to OpenID

[264]

Attribute Exchange
One other interesting feature of OpenID is the ability for the OpenID provider to
supply (upon the user's consent) typical user registration data such as name, e-mail,
and date of birth, if the OpenID-enabled website requests it. This functionality is
called Attribute Exchange (AX). The following diagram illustrates how a request
for attribute exchange makes it into the OpenID request:

The AX attribute values (if supplied by the provider) are returned along with the rest
of the OpenID response, and inserted into the OpenIDAuthenticationToken as a
list of o.s.s.openid.OpenIDAttribute.

AX attributes can be arbitrarily defined by OpenID providers, but are always
uniquely defined by a URI. There has been an effort to standardize the available
and common attributes into a schema of sorts. Attributes such as the following are
available (the full list is available at http://www.axschema.org/types/):

Attribute name Description
http://axschema.org/contact/email User's e-mail address
http://axschema.org/namePerson User's full name

Chapter 8

[265]

The axschema.org site lists over 30 different attributes, with unique URIs and
descriptions. Note that you may need to reference schema.openid.net instead
of axschema.org in certain cases (we'll explain why in a short time).

Let's see how to configure attribute exchange with Spring Security!

Enabling AX in Spring Security OpenID
Enabling AX support in Spring Security OpenID is actually quite trivial, once you
know the appropriate attributes to request. We can configure AX support so that an
e-mail address is requested as follows:

<openid-login authentication-failure-handler-ref="openIdAuthFailureHa
ndler">
 <attribute-exchange>
 <openid-attribute name="email" type="http://schema.openid.net/
contact/email" required="true"/>
 </attribute-exchange>
</openid-login>

For this example, we'd suggest that you log in with your myOpenID identity. You'll
see that this time, when you are redirected to the provider, the provider informs you
that additional information is being requested by the JBCP Pets site. In the following
screenshot, we've actually included several more AX attributes in the request:

Opening up to OpenID

[266]

The attributes requested, if returned by the provider, are available in the
OpenIDAuthenticationToken (returned with the successful authentication request)
as name-value pairs, with the names as assigned in the <openid-attribute>
declarations. It's up to our site to check for this data, and then do something
with it. Typically, this data could be used to pre-populate a user profile or user
registration form.

For investigative purposes, you can augment the
OpenIDAuthenticationFailureHandler that we wrote to include
code to print the retrieved attributes to the console:

request.getSession(true).setAttribute("USER_OPENID_CREDENTIAL", ((User
nameNotFoundException)exception).getExtraInformation());
OpenIDAuthenticationToken openIdAuth = (OpenIDAuthenticationToken)exce
ption.getAuthentication();
for(OpenIDAttribute attr : openIdAuth.getAttributes()) {
 System.out.printf("AX Attribute: %s, Type: %s, Count: %d\n", attr.
getName(), attr.getType(), attr.getCount());
 for(String value : attr.getValues()) {
 System.out.printf(" Value: %s\n", value);
 }
}

redirectStrategy.sendRedirect(request, response, "/registrationOpenid.
do");

This will produce the following output in our example:

AX Attribute: email, Type: http://schema.openid.net/contact/email,
Count: 1
 Value: peter@mularien.com
AX Attribute: birthDate, Type: http://schema.openid.net/birthDate,
Count: 1
 Value: 1968-04-13
AX Attribute: namePerson, Type: http://schema.openid.net/namePerson,
Count: 1
 Value: Peter Mularien
AX Attribute: nickname, Type: http://schema.openid.net/namePerson/
friendly, Count: 1
 Value: pmularien
AX Attribute: country, Type: http://schema.openid.net/contact/country/
home, Count: 1
 Value: US

We can see that AX data is very easily retrieved from OpenID providers, which
support it and can be accessed with straightforward API calls. In typical usage
scenarios, as previously discussed, AX information would be used upon registration
to populate user profile or preference information, saving the user time in avoiding
re-keying of information they already have in their OpenID profile.

Chapter 8

[267]

Real-world AX support and limitations
Unfortunately, the promise of AX falls far short in reality. AX is very poorly
supported by the available OpenID providers in the market, with only a handful
of providers offering support (myOpenID and Google being the most prominent).
Additionally, there is a lot of confusion, even among providers that do support the
standard, of what attributes correspond to the data that they are willing to send. For
example, to query for a user's e-mail address, the attribute name to request differs
even between the two major providers who support AX!

Provider AX attribute supported
myOpenID http://schema.openid.net/contact/email

Google http://axschema.org/contact/email

As of the time of this writing, there is ongoing discussion on OpenID-related mailing
lists as to where and how to best document standard attributes, and to allow OpenID
providers to advertise which attributes they support.

An alternative to AX, known as Simple Registration (SReg) is supported by the
underlying openid4java library, but is not exposed through the Spring Security
OpenID layer (by the choice of the developers). This is regrettable, because SReg is
actually supported by many more providers than the ones who support AX. AX was
intended as a more open and flexible alternative to SReg, but lack of adoption and
standardization has hampered its uptake among providers.

Google OpenID support
Google has chosen to implement OpenID slightly differently, and doesn't assign
user-friendly OpenID identifiers to users. Instead, Google expects that sites choosing
to offer OpenID login through Google will use the Google canonical OpenID
provider URL, and users will provide credentials directly to Google. To make this
process more straightforward to users, it's common for sites to provide a Sign in
with Google button, which invokes the Google OpenID provider. We can add this
to the login page as follows:

<form action="j_spring_openid_security_check" method="post">
 <input name="openid_identifier" size="50" maxlength="100"
type="hidden" value="https://www.google.com/accounts/o8/id"/>
 <input type="submit" value="Sign in with Google"/>
</form>

Opening up to OpenID

[268]

We can see that the Google URL needn't be exposed to the user at all. The user is
presented with the typical login screen:

After the Google sign-in process is completed, the user's unique OP-Local Identifier
will be returned, and the registration / login process can proceed as with any other
OpenID provider.

Is OpenID secure?
As support for OpenID relies on the trustworthiness of the OpenID provider and the
verifiability of the provider's response, security and authenticity are critical in order
for the application to have confidence in the user's OpenID-based login.

Fortunately, the designers of the OpenID specification were very aware of this
concern, and implemented a series of verification steps to prevent response forgery,
replay attacks, and other types of tampering, which are explained in the following:

Response forgery is prevented due to the combination of a shared secret
key (created by the OpenID-enabled site prior to the initial request), and a
one-way hashed message signature on the response itself. A malicious user
tampering with the data in any of the response fields without having access
to the shared secret key and signature algorithm would generate an
invalid response.
Replay attacks are prevented due to the inclusion of a nonce, or a one-time
use, random key, that should be recorded by the OpenID-enabled site so that
it cannot ever be reused. In this way, even a user attempting to re-issue the
response URL themselves would be foiled because the receiving site would
determine that their nonce had been previously used and would invalidate
the request.

•

•

Chapter 8

[269]

The most likely form of attack that could result in a compromised user interaction
would be a man-in-the-middle attack, where a malicious user could intercept the
user's interaction between their computer and the OpenID provider. A hypothetical
attacker in this situation could be in a position to record the conversation between
the user's browser and the OpenID provider, and record the secret key used when
the request was initiated. The attacker in this case would need a very high level of
sophistication and a reasonably complete implementation of the OpenID signature
specification—in short, this is not likely to occur with any regularity.

Do note that although the openid4java library does support the use of persistent nonce
tracking using JDBC, Spring Security OpenID does not currently expose this as a
configuration parameter—thus nonces are tracked only in memory. This means that
a replay attack could occur after a server restart, or in a clustered environment, where
the in-memory store would not be replicated between JVMs on different servers.

Summary
In this chapter, we reviewed OpenID, a relatively recent technology for user
authentication and credentials management. OpenID has very wide reach on the
web, and has made great strides in usability and acceptance within the past year
or two. Most public-facing sites on the modern web should plan on some form of
OpenID support, and JBCP Pets is no exception!

In this chapter, we:

Learned about the OpenID authentication mechanism, and explored its high
level architecture and key terminology.
Implemented OpenID Login and automatic user registration with the JBCP
Pets site.
Explored the future of OpenID profile management through the use of
Attribute Exchange (AX).
Examined the security of OpenID login responses.

We covered the most common method of web-based external authentication in this
chapter. In the next chapter, we'll examine one of the most common methods of
directory-based enterprise authentication: LDAP. As we move onto the next chapter,
observe how external and internal authentication mechanisms differ, and how they
are similar.

•

•

•

•

LDAP Directory Services
In this chapter, we will review the Lightweight Directory Access Protocol (LDAP)
and how it might be integrated into a Spring Security enabled application
to provide authentication, authorization, and user information services to
interested constituents.

During the course of this chapter, we'll:

Learn some of the basic concepts related to the LDAP protocol and
server implementations
Configure a self-contained LDAP server within Spring Security
Enable LDAP authentication and authorization
Understand the model behind LDAP search and user matching
Retrieve additional user details from standard LDAP structures
Differentiate between LDAP authentication methods, and evaluate the pros
and cons of each type
Explicitly configure Spring Security LDAP using Spring Bean declarations
Connect to LDAP directories, including Microsoft Active Directory,
for authentication

•

•
•
•
•
•

•
•

LDAP Directory Services

[272]

Understanding LDAP
LDAP has its roots in logical directory models dating back over thirty
years—conceptually akin to a combination of an organizational chart and address
book. Today, LDAP is used more and more as a way to centralize corporate user
information, partitioning thousands of users into logical groups, and allowing
unified sharing of user information between many disparate systems.

For security purposes, LDAP is quite commonly used to facilitate centralized username
and password authentication—users' credentials are stored in the LDAP directory,
and authentication requests can be made against the directory, on the user's behalf.
This eases management for administrators, as user credentials—login, password, and
other details—are stored in a single location in the LDAP. Additionally, organizational
information such as group or team assignments, geographic location, and corporate
hierarchy membership, are defined based on the user's location in the directory.

LDAP
At this point, if you have never used LDAP before, you may be wondering what
it is. We'll illustrate with a screenshot of a sample LDAP schema, from the Apache
Directory Server 1.5 example directory.

Starting at a particular user entry for Albert Einstein (highlighted in the screenshot),
we can infer Mr. Einstein's organizational membership by starting at his node in
the tree and moving upward. We can see that the user aeinstein is a member of
the organizational unit (ou) users, which itself is a part of the domain example.
com (the abbreviation "dc" shown in the screenshot stands for "domain component").
Previous to this are organizational elements (the DIT and Root DSE) of the LDAP
tree itself, which don't concern us for now. The position of user aeinstein
in the LDAP hierarchy is semantically and definitively meaningful—you can
imagine a much more complex hierarchy easily illustrating the organizational and
departmental boundaries of a huge organization.

Chapter 9

[273]

The complete top to bottom path formed by walking the tree down to an individual
leaf node forms a string composed of all intervening nodes along the way, as with
Mr. Einstein's node path:

uid=aeinstein,ou=users,dc=example,dc=com

This node path is unique, and is known as a node's distinguished name (DN).
The distinguished name is akin to a database primary key, allowing a node to be
uniquely identified and located in a complex tree structure. We'll see a node's DN
used extensively throughout the authentication and searching process with Spring
Security LDAP integration.

We note that there are several other users listed at the same level of the organization
as Mr. Einstein. All of these users are assumed to be within the same organizational
position as Mr. Einstein. Although this example organization is relatively simple
and flat, the structure of LDAP is arbitrarily flexible, with many levels of nesting and
logical organization possible.

Spring Security LDAP support is assisted by the Spring LDAP module
(http://www.springsource.org/ldap), which is actually a separate project from
the core Spring Framework and Spring Security projects. It's considered to be stable,
and provides a helpful set of wrappers around standard Java LDAP functionality.

Common LDAP attribute names
Each actual entry in the tree is defined by one or more object classes. An object class
is a logical unit of organization, grouping a set of semantically related attributes.
By declaring an entry in the tree as an instance of a particular object class, such as
person, the organizer of the LDAP directory is able to provide users of the directory
with a clear indication of what each element of the directory represents.

LDAP has a rich set of standard schemas covering available LDAP object classes
and their applicable attributes (along with gobs of other information). If you are
planning on doing extensive work with LDAP, it's highly advised that you review
a good reference guide, such as the appendix of the Zytrax OpenLDAP book
(http://www.zytrax.com/books/ldap/ape/), or the Internet2 consortium's guide
to person-related schemas (http://middleware.internet2.edu/eduperson/).

In the last section, we were introduced to the fact that each entry in an LDAP tree has
a distinguished name, which uniquely identifies it in the tree. The DN is composed
of a series of attributes, one (or more) of which are used to uniquely identify the
path down the tree of the entry represented by the DN. As each segment of the path
described by the DN represents an LDAP attribute, you could refer to the available,
well-defined LDAP schemas and object classes to determine what each of the
attributes in any given DN means.

LDAP Directory Services

[274]

We've included some of the common attributes and their meanings in the following
table. These attributes tend to be organizing attributes—meaning that they are
typically used to define the organizational structure of the LDAP tree—and are
ordered top to bottom in the structure that you're likely to see in a typical
LDAP install.

Attribute Name Description Example
dc Domain Component—generally the

highest level of organization in an
LDAP hierarchy.

dc=jbcppets,dc=com

c Country— some LDAP hierarchies
are structured at a high level
by country.

c=US

o Organization name—a parent
business organization used for
classifying LDAP resources.

o=Sun Microsystems

ou Organizational unit—a divisional
business organization, generally
within an organization.

ou=Product Development

cn Common name—the common name
or unique or human readable name,
for the object. For humans, this
is usually the person's full name,
while for other resources in LDAP
(computers, and so on) typically
the hostname.

cn=Super Visor

cn=Jim Bob

uid User ID—although not
organizational in nature, the uid is
generally what Spring looks for user
authentication and search.

uid=svisor

userPassword User password—stores the
password for the person object to
which this attribute is associated. It
is typically one-way hashed using
SHA or similar.

userPassword=plaintext

userPassword={SHA}cry
ptval

Remember that there are hundreds of standard LDAP attributes—these represent
a very small fraction of those you are likely to see when integrating with a
fully-populated LDAP server. The attributes in the table do, however, tend to be
organizing attributes on the directory tree, and as such will probably form various
search expressions or mappings that you will use to configure Spring Security
to interact with the LDAP server.

Chapter 9

[275]

Running an embedded LDAP server
Spring Security allows for the use of an embedded LDAP server for testing purposes.
Much as we did with the embedded database, this allows the application to start an
in-memory LDAP server and populate it with bootstrap data. Such a configuration is
of course useful only for testing purposes, but it saves us a significant amount of time
in configuring a standalone LDAP server.

The embedded LDAP server functionality is supported through the use of Apache
Directory Server (DS) 1.5, a Java-based, open source, and fully-compliant LDAP server.
You can also, in fact, use Apache DS as a standalone server as well, as it is relatively
easy to configure, and is quite easy to acquire and install. The Dependencies directory
in the sample code for this chapter includes the requisite JARs for the embedded LDAP
server—if you're attempting to use it on your own, you'll have to either use Maven or
download Apache DS from http://directory.apache.org/.

Much as the embedded HSQL database allows bootstrapping using SQL load scripts,
the embedded database server provides a facility to populate the LDAP directory
with an LDAP Data Interchange Format (LDIF) file. LDIF is a concise, human-and
machine-readable data definition format that provides for flexible declaration of LDAP
resident objects and their supporting data. Several sample LDIF files are provided with
the source code for this chapter.

Configuring basic LDAP integration
Let's now enable JBCP Pets to support LDAP-based authentication. Fortunately, this
is a relatively simple exercise, using the embedded LDAP server and a sample LDIF
file. For this exercise, we will be using an LDIF file created for this book, intended
to capture many of the common configuration scenarios with LDAP and Spring
Security. We have included several more sample LDIF files, some from Apache DS
1.5, and one from the Spring Security unit tests, which you may choose to experiment
with as well.

Configuring an LDAP server reference
The first step is to declare the embedded LDAP server reference in the
dogstore-security.xml file. The LDAP server declaration occurs outside of the
<http> element, at the same level as <authentication-manager>:

<ldap-server ldif="classpath:JBCPPets.ldif" id="ldapLocal" root="dc=jb
cppets,dc=com"/>

LDAP Directory Services

[276]

We are loading the file JBCPPets.ldif from the classpath, and using it to populate
the LDAP server. This means (as you will remember from the embedded HSQL
database bootstrap) that we will expect to see a file named JBCPPets.ldif in the
WEB-INF/classes directory. The root attribute declares the root of the LDAP
directory using the specified DN. This should correspond to the logical root DN
in the LDIF file we're using.

Be aware that for embedded LDAP servers, the root is required, even
though the XML schema does not indicate as such. If it is not specified,
or specified incorrectly, you may receive several odd errors upon
initialization of the Apache DS server.

We'll reuse the bean ID defined here later in the Spring Security configuration files
when we declare the LDAP user service and other configuration elements. All other
attributes on the <ldap-server> declaration are optional for embedded LDAP mode.

Enabling the LDAP AuthenticationProvider
Next, we'll need to configure another AuthenticationProvider that
checks user credentials against the LDAP provider. Simply add another
AuthenticationProvider reference as follows:

<authentication-manager alias="authenticationManager">
<!-- Other authentication providers are here -->
 <ldap-authentication-provider server-ref="ldapLocal"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups"
 />
</authentication-manager>

We'll discuss these attributes a bit more later—for now, get the application back up
and running and try logging in with the username ldapguest and the password
password. You should be logged in!

Troubleshooting embedded LDAP
It is quite possible that you will run into hard to debug problems with embedded
LDAP. Apache DS is not usually very friendly with its error messages, doubly so in
Spring Security embedded mode. Some things to double-check if you can't get this
simple example running are:

Chapter 9

[277]

Ensure you have all of the required JARs from Apache DS in your web
application's classpath. There are a lot of them—it's best just to include
everything (the sample code does this for you).
Ensure the root attribute is set on the <ldap-server> declaration in your
configuration file, and make sure it matches the root defined in the LDIF file
that's loaded at startup. If you get errors referencing missing partitions,
it's likely that either the root attribute was missed, or doesn't match your
LDIF file.
Be aware that a failure starting up the embedded LDAP server is not a fatal
failure. In order to diagnose errors loading LDIF files, you will need to
ensure that the appropriate log settings, including logging for the Apache DS
server, are enabled, and at least at ERROR level. The LDIF loader is under the
org.apache.directory.server.protocol.shared.store package, and
this should be used to enable logging of LDIF load errors.
If the application server shuts down non-gracefully, you may be required to
delete some files in your temporary directory (%TEMP% on Windows systems)
in order to start the server again. The error messages regarding this are
(fortunately) fairly clear.

Unfortunately, embedded LDAP isn't as seamless and trivial to use as the embedded
HSQL database, but it is still quite a bit easier than trying to download and configure
many of the freely available external LDAP servers.

An excellent tool for troubleshooting or accessing LDAP servers in general is the
Apache Directory Studio project, which offers standalone and Eclipse plugin versions.
The free download is available at http://directory.apache.org/studio/.

Understanding how Spring LDAP
authentication works
We saw that we were able to log in using a user defined in the LDIF file, and
thus was present in the LDAP directory. What exactly happens when a user
issues a login request for a user in LDAP? There are three basic steps to the
LDAP authentication process:

Authenticate the credentials supplied by the user against the LDAP directory
Determine the GrantedAuthority that the user has, based on their
information in LDAP
Pre-load information from the LDAP entry for the user into a custom
UserDetails object, for further use by the application

•

•

•

•

•
•

•

LDAP Directory Services

[278]

Authenticating user credentials
For the first step, authentication against the LDAP directory, a custom authentication
provider is wired into the AuthenticationManager. The o.s.s.ldap.
authentication.LdapAuthenticationProvider takes the user's provided
credentials and verifies them against the LDAP directory, as illustrated in the
following diagram:

We can see that the o.s.s.ldap.authentication.LdapAuthenticator interface
defines a delegate to allow the provider to make the authentication request in
a customizable way. The implementation that we've implicitly configured to
this point, o.s.s.ldap.authentication.BindAuthenticator, attempts to use
the user's credentials to bind (log in) to the LDAP server as if it were the user
themselves making a connection. For an embedded server, this is sufficient for our
authentication needs; however, external LDAP servers may be stricter in which users
are allowed to bind to the LDAP directory. Fortunately, an alternative method
of authentication exists, which we will explore later in this chapter.

Chapter 9

[279]

As noted in the diagram, keep in mind that the search is performed under an
LDAP context created by the credentials specified in the <ldap-server> reference's
manager-dn attribute. With an embedded server, we don't use this information,
but with an external server reference, unless a manager-dn is supplied, anonymous
binding is used. To retain some control over the public availability of information in
the directory, is very common for organizations to require valid credentials to search
an LDAP directory, and as such, a manager-dn will be almost always required in
real-world scenarios. The manager-dn represents the full DN of a user with valid
access to bind the directory and perform searches.

Determining user role membership
After the user has been successfully authenticated against the LDAP server,
authorization information must be determined next. Authorization is defined by
a principal's list of roles, and an LDAP authenticated user's role membership is
determined as illustrated in the following diagram:

We can see that after authenticating the user against LDAP, the
LdapAuthenticationProvider then delegates to an LdapAuthoritiesPopulator.
The DefaultLdapAuthoritiesPopulator will attempt to locate the authenticated
user's DN in an attribute located at or below another entry in the LDAP hierarchy.

The DN of the location searched for user role assignments is defined in the
group-search-base attribute—in our sample, we set this to group-search-
base="ou=Groups". When the user's DN is located within an LDAP entry below the
DN of the group-search-base, an attribute on the entry in which their DN is found
is used to confer a role to them.

LDAP Directory Services

[280]

You'll note that we mix case of these attributes—groupSearchBase in
the class flow diagram vs. group-search-base referred to in the text.
This is intentional—the text refers to the XML configuration attributes,
while the diagram refers to the members on the relevant classes. They are
similarly named, but appropriately adjusted for the context (XML and
Java) in which they occur.

How Spring Security roles are associated with LDAP users can be a little confusing,
so let's look at the JBCP Pets LDAP repository and see how the association of a user
to a role works. The DefaultLdapAuthoritiesPopulator uses several attributes of
the <ldap-authentication-provider> declaration to govern the searching of roles
for the user. These attributes are used approximately in the following order.

group-search-base: It defines the base DN under which the LDAP
integration should look for one or more matches for the user's DN.
The default value performs a search from the LDAP root, which may
be expensive.
group-search-filter: It defines the LDAP search filter used to match the
user's DN to an attribute of an entry located under group-search-base. This
search filter is parameterized with two parameters—the first ({0}) being the
user's DN, and the second ({1}) being the user's username. The default value
is (uniqueMember={0}).
group-role-attribute: It defines the attribute of the matching entries,
which will be used to compose the user's GrantedAuthority. The default
value is cn.
role-prefix: The prefix that will be prepended to the value found in the
group-role-attribute to make a Spring Security GrantedAuthority.
The default value is ROLE_.

This can be a little abstract and hard for new developers to follow, because it's very
different than anything we've seen so far with our JDBC-based UserDetailsService
implementations. Let's work through the login process with the ldapguest user in
the JBCP Pets LDAP directory.

•

•

•

•

Chapter 9

[281]

The user's DN is uid=ldapguest,ou=Users,dc=jbcppets,dc=com and the
group-search-base is configured to ou=Groups. The LDAP tree for this ou
is as shown in the following screenshot:

We can see that under ou=Groups, there are two entries (cn=Admin and cn=User).
Each of these entries has the objectClass: groupOfUniqueNames (you'll recall we
discussed object classes earlier in this chapter). This type of LDAP object allows for
a multivalued list of DNs to be stored and logically grouped under the entry. The
attributes of the cn=User are as shown in the following screenshot:

We can see that the uniqueMember attribute of the entry cn=User is specified for
each LDAP user who is considered to be part of this group. You'll also notice that
the value of the uniqueMember attribute is the DN of the associated user.

Working through the role search logic should be more straightforward now.
Starting at ou=Groups (group-search-base), Spring will look for any uniqueMember
attribute with the value matching the DN of the user (group-search-filter). When
it finds entries matching these criteria, the cn value (group-role-attribute) of the
entry—in this case, User, will be prepended with ROLE_ (role-prefix) and then
converted to upper case to form the GrantedAuthority for the user. It's a bit simpler
to understand once we work through an example, isn't it?

LDAP Directory Services

[282]

Spring LDAP is as flexible as your gray matter
Keep in mind that although this is one way to organize an LDAP directory
to be compatible with Spring Security, typical usage scenarios are exactly
the opposite—an LDAP directory already exists that Spring Security needs
to be wired into. In many cases you will be able to reconfigure Spring
Security to deal with the hierarchy of the LDAP server; however, it's key
that you plan effectively and understand how Spring is working with
LDAP when it's querying. Use your brain, map out the user search and
group search, and come up with the most optimal plan you can think
of—keep the scope of searches as minimal and precise as possible.

If you are confused at this point, we'd suggest that you take a breather and try using
Apache Directory Studio to work through browsing the embedded LDAP server
configured by the running application. It can be easier to grasp the flow of Spring
Security's LDAP configuration if you can attempt to search the directory yourself,
by following the algorithm described previously.

Mapping additional attributes of UserDetails
Finally, once the LDAP lookup has assigned the user a set of GrantedAuthoritys,
the o.s.s.ldap.userdetails.LdapUserDetailsMapper will consult a
o.s.s.ldap.userdetails.UserDetailsContextMapper to retrieve any
additional details to populate the UserDetails for application use.

With the <ldap-authentication-provider> we've configured to this point, an
LdapUserDetailsMapper will be used to populate a UserDetails object with
information gleaned from the user's entry in the LDAP directory.

Chapter 9

[283]

We'll see in a moment how the UserDetailsContextMapper can be configured
to pull a wealth of information from standard LDAP person and inetOrgPerson
objects. With the baseline LdapUserDetailsMapper, little more than username,
password, and GrantedAuthority is stored.

Although there is more machinery involved behind the scenes in LDAP user
authentication and detail retrieval, you'll note that the overall process seems
somewhat similar (authenticating the user, populating GrantedAuthoritys)
to the JDBC authentication that we've studied in prior chapters. As with JDBC
authentication, there is a ability to perform advanced configuration of LDAP
integration–let's dive deeper and see what's possible!

Advanced LDAP configuration
Once we get beyond the basics of LDAP integration, there's a plethora of additional
configuration capability in the Spring Security LDAP module, while still remaining
within the security XML namespace style of configuration. These include
retrieval of user personal information, additional options for user authentication,
and use of LDAP as a UserDetailsService, in conjunction with a standard
DaoAuthenticationProvider.

Sample JBCP LDAP users
We've supplied a number of different users in the JBCP Pets LDIF file. The following
quick reference chart may help you with the advanced configuration exercises, or
in self-exploration. Note that the password of all users, except userwithphone
is password.

Username Role(s) Password encoding
ldapguest ROLE_USER Plaintext
anotherldapuser ROLE_USER Plaintext
ldapadmin ROLE_USER and ROLE_ADMIN Plaintext
shapassworduser ROLE_USER {sha}

sshapassworduser ROLE_USER {ssha}

userwithphone ROLE_USER Plaintext (in
telephoneNumber attribute)

We'll explain why the password encoding matters in the next section.

LDAP Directory Services

[284]

Password comparison versus
Bind authentication
Some LDAP servers will be configured so that certain individual users are not
allowed to bind directly to the server, or so that anonymous binding (what we have
been using for user search to this point) is disabled. This tends to occur in very large
organizations, which want a restricted set of users who are able to read information
from the directory. In these cases, the standard Spring Security LDAP authentication
strategy will not work, and an alternative strategy must be used, implemented by the
o.s.s.ldap.authentication.PasswordComparisonAuthenticator (a sibling class
of BindAuthenticator).

The PasswordComparisonAuthenticator binds to LDAP and searches for the DN
matching the username provided by the user. It then compares the user supplied
password with the userPassword attribute stored on the matching LDAP entry. If
the encoded password matches, the user is authenticated, and flow proceeds as with
the BindAuthenticator.

Chapter 9

[285]

Configuring basic password comparison
Configuring password comparison authentication instead of bind authentication
is as simple as adding a subelement to the <ldap-authentication-provider>
declaration, as follows:

<ldap-authentication-provider server-ref="ldapLocal"
 user-search-filter="(uid={0})" group-search-base="ou=Groups">
 <password-compare/>
</ldap-authentication-provider>

The default PasswordComparisonAuthenticator uses the LDAP password
encoding algorithm of SHA (recall that we discussed the SHA-1 password
algorithm extensively in Chapter 4, Securing Credential Storage). After restarting the
server, you can attempt to log in using the username shapassworduser, with
password password.

LDAP password encoding and storage
LDAP has general support for a variety of password encoding algorithms, ranging
from plain text to one-way hash algorithms similar to those we explored in Chapter
4, with database backed authentication. The most common storage formats for
LDAP passwords are SHA (SHA-1 one-way encrypted), and SSHA (SHA-1 one-way
encrypted, with a salt value). Other password formats often supported by many LDAP
implementations are thoroughly documented in RFC 2307, An Approach for Using
LDAP as a Network Information Service (http://tools.ietf.org/html/rfc2307).

The designers of RFC 2307 did a very clever thing with regards to password storage.
Passwords retained in the directory are of course encoded with whatever algorithm
is appropriate (SHA, and so on), but then are prefixed with the algorithm used to
encode the password. This makes it very easy for the LDAP server to support multiple
algorithms for password encoding. For example, an SHA encoded password is stored
in the directory as:

{SHA}5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

We can see the password storage algorithm is very clearly indicated (with the {SHA}
notation), and stored along with the password.

SSHA is an attempt to combine the strong SHA-1 hash algorithm with password
salting, to prevent dictionary attacks. As with password salting we reviewed in
Chapter 4, the salt is added to the password prior to calculating the hash. When the
hashed password is stored in the directory, the salt value is appended to the hashed
password. The password is prepended with {SSHA}, so that the LDAP directory knows
that the user-supplied password needs to be compared differently. The majority of
modern LDAP servers utilize SSHA as the default password storage algorithm.

LDAP Directory Services

[286]

The drawbacks of a Password Comparison
Authenticator
Now that you know a bit about how LDAP uses passwords, and we have the
PasswordComparisonAuthenticator set up, what do you think will happen if
you log in using our sshapassworduser user with their password stored in SSHA
format? Go ahead—put the book aside and try it, and then come back.

Your login was denied, right? And yet you were still able to log in as the user with
the SHA encoded password—why? The password encoding and storage didn't
matter to us when we were using bind authentication—why do you think that is?

The reason it didn't matter with bind authentication was because the LDAP server
was taking care of authentication and validation of the user's password. With
password compare authentication, Spring Security LDAP is responsible for encoding
the password in the format expected by the directory, and then matching it against
the directory to validate authentication.

For security purposes, password comparison authentication can't actually read
the password from the directory (reading directory passwords is often denied
by security policy). Instead, the PasswordComparisonAuthenticator performs
an LDAP search, rooted at the user's directory entry, attempting to match with a
password attribute and value as determined by the password that's been encoded
by Spring Security. So, when we try to log in with the sshapassworduser,
the PasswordComparisonAuthenticator is encoding the password using the
configured SHA algorithm, and attempting to do a simple match, which fails,
as the directory password for this user is stored in SSHA format.

What happens if we change the hash algorithm for the
PasswordComparisonAuthenticator to use SSHA as follows:

<password-compare hash="{ssha}"/>

Restart and try it out—it still doesn't work. Let's think why that might be.
Remember that SSHA uses a salted password, with the salt value stored in the LDAP
directory along with the password. However, PasswordComparisonAuthenticator
is coded so that it cannot read anything from the LDAP (this typically violates
security policy at companies which don't allow binding). Thus when the
PasswordComparisonAuthenticator computes the hashed password, it has
no way to determine what salt value to use.

In conclusion, the PasswordComparisonAuthenticator is valuable in certain limited
circumstances where security of the directory itself is a concern, but will never be as
flexible as straight bind authentication.

Chapter 9

[287]

Configuring the UserDetailsContextMapper
As we noted earlier, an instance of o.s.s.ldap.userdetails.
UserDetailsContextMapper is used to map a user's entry in the LDAP to a
UserDetails object in memory. The default UserDetailsContextMapper behaves
similarly to the JdbcDaoImpl in the level of detail that is populated on the returned
UserDetails—that is to say, not a lot of information is returned aside from
username and password information.

However, an LDAP directory potentially contains many more details about
individual users than usernames, passwords, and roles. Spring Security ships with
two additional methods of pulling more user data from two of the standard LDAP
object schemas—person and inetOrgPerson.

Implicit configuration of a UserDetailsContextMapper
In order to configure a different UserDetailsContextMapper than the default
implementation, we simply need to declare what LdapUserDetails class we want
the LdapAuthenticationProvider to return. The security namespace parser will be
smart enough to instantiate the correct UserDetailsContextMapper based on the
type of LdapUserDetails requested.

Let's reconfigure to use the inetOrgPerson version of the mapper.

<ldap-authentication-provider server-ref="ldapLocal"
 user-search-filter="(uid={0})" group-search-base="ou=Groups"
 user-details-class="inetOrgPerson">

If you restart the application and attempt to log in as an LDAP user, you won't see
that anything has changed. In fact, the UserDetailsContextMapper has changed
behind the scenes to read additional detail in the case where attributes from the
inetOrgPerson schema are available in the user's directory entry.

Viewing additional user details
To assist in this area, we'll add a View LDAP User Profile section to the JBCP Pets
account information page. We'll use this page to illustrate how the richer person
and inetOrgPerson LDAP schemas can provide additional (optional) information
to your LDAP-enabled application.

Add the following method and logic to the AccountController:

@RequestMapping(value="/account/viewLdapUserProfile.
do",method=RequestMethod.GET)
public void showViewLdapUserProfilePage(ModelMap model) {

LDAP Directory Services

[288]

 final Object principal = SecurityContextHolder.getContext().
getAuthentication().getPrincipal();
 model.addAttribute("user", principal);
 if(principal instanceof LdapUserDetailsImpl) {
 model.addAttribute("isLdapUserDetails", Boolean.TRUE);
 }
 if(principal instanceof Person) {
 model.addAttribute("isLdapPerson", Boolean.TRUE);
 }
 if(principal instanceof InetOrgPerson) {
 model.addAttribute("isLdapInetOrgPerson", Boolean.TRUE);
 }
}

This code will retrieve the UserDetails (principal) stored in the Authentication
object by the LdapAuthenticationProvider, and determine what type of
LdapUserDetailsImpl it is. The page code itself will then display various details
depending on the type of UserDetails that has been bound to the user's
authentication information, as we see in the following JSP code. This JSP should be
placed in WebContent/WEB-INF/views/account/viewLdapUserProfile.jsp.

<!-- Common Header and Footer Omitted -->
<h1>View Profile</h1>
<p>
 Some information about you, from LDAP:
</p>

 Username: ${user.username}
 DN: ${user.dn}
 <c:if test="${isLdapPerson}">
 Description: ${user.description}
 Telephone: ${user.telephoneNumber}
 Full Name(s):
 <c:forEach items="${user.cn}" var="cn">
 ${cn}

 </c:forEach>

 </c:if>
 <c:if test="${isLdapInetOrgPerson}">
 Email: ${user.mail}
 Street: ${user.street}
 </c:if>

Chapter 9

[289]

We can also add a link to WebContent/WEB-INF/views/account/home.jsp
as follows:

View LDAP User Profile

We've added two more users that you can use to examine the differences in
available data elements: shapasswordperson and shapasswordinetorgperson.
Restart the server, and examine the View LDAP User Profile page for each of the
three types of users (non-person, person, and inetOrgPerson). You'll note that,
when user-details-class is configured to use inetOrgPerson, although an
o.s.s.ldap.userdetails.InetOrgPerson is what is returned, the fields may or
may not be populated depending on the available attributes in the directory entry.

In fact, inetOrgPerson has many more attributes than what we've illustrated on this
simple page. You can review the full list in RFC 2798, Definition of the inetOrgPerson
LDAP Object Class (http://tools.ietf.org/html/rfc2798).

One thing you may notice is that there is no facility to support additional
attributes that may be specified on an entry, but don't fall into a standard schema.
The standard UserDetailsContextMappers don't support arbitrary lists of
attributes, but it is possible nonetheless to customize with a reference to your own
UserDetailsContextMapper through the use of the user-context-mapper-ref
attribute.

Using an alternate password attribute
In some cases, it may be necessary to use an alternate LDAP attribute, instead of
userPassword, for authentication purposes. This can happen on occasion when
companies have deployed custom LDAP schemas, or don't have the requirement of
strong password management (arguably, this is never a good idea, but it definitely
does occur in the real world).

The PasswordComparisonAuthenticator also supports the ability to verify the
user's password against an alternate LDAP entry attribute, instead of the standard
userPassword attribute. This is very easy to configure, and we can demonstrate
a simple example using the plaintext telephoneNumber attribute, as follows:

<ldap-authentication-provider server-ref="ldapLocal"
 user-search-filter="(uid={0})" group-search-base="ou=Groups"
 user-details-class="inetOrgPerson">
 <password-compare hash="plaintext" password-attribute="telephoneNum
ber"/>
</ldap-authentication-provider>

LDAP Directory Services

[290]

We can restart the server and attempt to log in with the user userwithphone and
password (telephone number) 1112223333.

Of course, this type of authentication has all the perils we discussed earlier about
PasswordComparisonAuthenticator based authentication; however, it's good to
be aware of if on the off chance that it comes up with an LDAP implementation.

Using LDAP as a UserDetailsService
One thing to note is that LDAP may also be used as a UserDetailsService.
Remember that a UserDetailsService is required to enable various other bits
of functionality in the Spring Security infrastructure, including the remember me
and OpenID authentication features.

Configuration of LDAP as a UserDetailsService functions very similarly
to the configuration of an LDAP AuthenticationProvider. Like a JDBC
UserDetailsService, an LDAP UserDetailsService is configured as a
sibling to the <http> declaration.

<ldap-user-service id="ldapUserService" server-ref="ldapLocal"
 user-search-filter="(uid={0})" group-search-base="ou=Groups"/>

Functionally, o.s.s.ldap.userdetails.LdapUserDetailsService is configured
almost exactly the same as the LdapAuthenticationProvider, with the exception
that there is no attempt to use the principal's username to bind to LDAP. Instead, the
credentials supplied by the <ldap-server> reference itself are used to perform the
user lookup.

Do not make the very common mistake of configuring an
<authentication-provider> with a user-details-service-ref
referring to an LdapUserDetailsService, if you are intending to
authenticate the user against LDAP itself!

As noted above, the LdapUserDetailsService uses the manager-dn supplied
with the <ldap-server> declaration to get its information—this means that it does
not attempt to bind the user to LDAP, and as such may not behave as you expect.
The LdapUserDetailsService is typically used to back other components of the
system, such as OpenID login or remember me where the authentication is already
handled, but detailed information about the user is not supplied as part of the
authentication process.

Chapter 9

[291]

Notes about remember me with an LDAP
UserDetailsService
You may note at this point that an attempt to start the server will fail with an error
similar to the following:

More than one UserDetailsService registered. Please use a specific Id
reference in <remember-me/> <openid-login/> or <x509 /> elements.

If we think back to the introduction of the remember me functionality in Chapter
3, Enhancing the User Experience and Chapter 4, Securing Credential Storage, we recall
that remember me relies on a UserDetailsService to look up the username
identified in the remember me cookie. Unfortunately, it's possible only for
AbstractRememberMeServices to look to a single UserDetailsService for
user information. Thus, we can only use the remember me feature with one of
the configured UserDetailsServices and not both. This makes it difficult to
realistically combine LDAP authentication with JDBC while using the same login
page, and still making the remember me feature available to users. Adjusting the
<remember-me> declaration to refer to a single UserDetailsService (by Spring
Bean ID) is sufficiently specific to tell Spring Security what you intended.

Configuration for an In-Memory remember
me service
Another note about using remember me functionality with LDAP—you must
(usually) use the JDBC-based persistent token remember me service in order
to provide remember me functionality to users authenticated using LDAP.

You may remember from discussion of the composition of the remember
me cookie in Chapter 3 that the in-memory remember me algorithm (in
InMemoryTokenRepositoryImpl) relies on both the username and password
being available in the UserDetails object. In many cases, LDAP servers
are configured not to allow reading of userPassword attributes (this is why
PasswordComparisonAuthenticator is written the way it is), and as such it is likely
that LdapUserDetailsMapper will be unable to populate the password field of the
UserDetails object. Lack of this critical data will cause creation of the remember me
cookie to fail, rather than potentially compromising the security of the cookie.

Avoiding this problem is simple—configure a JDBC resident remember me cookie
store, which relies only on the username to validate the cookie (as discussed
in Chapter 4).

LDAP Directory Services

[292]

Integrating with an external LDAP server
It is likely that once you test basic integration with the embedded LDAP server
you will want to interact with an external LDAP server. Fortunately, this is very
straightforward, and can be done using slightly different syntax along with the
same <ldap-server> instruction we provided to set up the embedded LDAP server.

The following code is a sample configuration used to connect to an external LDAP
server on port 10389:

<ldap-server url="ldap://localhost:10389/dc=jbcppets,dc=com"
id="ldapLocal"
 manager-dn="uid=admin,ou=system" manager-password="secret"/>

The notable differences here (aside from the LDAP URL) are that the DN and
password for an account are provided. The account (which is actually optional)
should be allowed to bind to the directory and perform searches across all relevant
DNs for users and group information. The binding resulting from the application of
these credentials against the LDAP server URL is what is used for remaining LDAP
operations across the LDAP secured system.

Be aware that many LDAP servers also support SSL-encrypted LDAP (LDAPS)—this
is of course preferred for security purposes, and is supported by the Spring LDAP
stack. Simply use ldaps:// at the beginning of the LDAP server URL. LDAPS
typically runs on TCP port 636.

Note that there are many commercial and non-commercial implementations of
LDAP. The exact configuration parameters that you will use for connectivity,
user binding, and population of GrantedAuthoritys will wholly depend on both
the vendor and the structure of the directory. We cover one very common LDAP
implementation, that is, Microsoft Active Directory, in the next section.

Explicit LDAP bean configuration
In this section, we'll lead you through the set of bean configurations required
to explicitly configure both a connection to an external LDAP server and the
LdapAuthenticationProvider required to support authentication against an
external server. As with other explicit bean-based configurations, you really want
to avoid doing this, unless you find yourself in a situation where the capabilities of
the security namespace style of configuration will not support your business or
technical requirements—in which case, read on!

Chapter 9

[293]

Configuring an external LDAP
server reference
To implement this configuration, we'll assume that we have a local LDAP
server running on port 10389, with the same configuration corresponding to the
<ldap-server> example provided in the previous section. The required bean
definition can be supplied in dogstore-base.xml, as follows:

<bean class="org.springframework.security.ldap.
DefaultSpringSecurityContextSource" id="ldapServer">
 <constructor-arg value="ldap://localhost:10389/dc=jbcppets,dc=com"/>
 <property name="userDn" value="uid=admin,ou=system"/>
 <property name="password" value="secret"/>
</bean>

Next, we'll need to configure the LdapAuthenticationProvider, which is a bit
more complex.

Configuring an LdapAuthenticationProvider
If you've read and understood the explanations throughout this chapter describing
how Spring Security LDAP authentication works behind the scenes, this bean
configuration will be perfectly understandable, albeit a bit complex. We'll configure
an LdapAuthenticationProvider with the following characteristics:

User credential binding authentication (not password compare).
Use of the InetOrgPerson in the UserDetailsContextMapper.

Let's get to it—we'll declare the LdapAuthenticationProvider first:

<bean class="org.springframework.security.ldap.authentication.
LdapAuthenticationProvider" id="ldapAuthProvider">
 <constructor-arg ref="ldapBindAuthenticator"/>
 <constructor-arg ref="ldapAuthoritiesPopulator"/>
 <property name="userDetailsContextMapper" ref="ldapUserDetailsConte
xtMapper"/>
</bean>

Next, the BindAuthenticator and the supporting FilterBasedLdapUserSearch
bean (used to locate the user's DN in the LDAP directory prior to binding):

<bean class="org.springframework.security.ldap.authentication.
BindAuthenticator" id="ldapBindAuthenticator">
 <constructor-arg ref="ldapServer"/>
 <property name="userSearch" ref="ldapSearchBean"/>

•
•

LDAP Directory Services

[294]

</bean>
<bean class="org.springframework.security.ldap.search.
FilterBasedLdapUserSearch" id="ldapSearchBean">
 <constructor-arg value=""/> <!-- user-search-base -->
 <constructor-arg value="(uid={0})"/> <!-- user-search-filter -->
 <constructor-arg ref="ldapServer"/>
</bean>

Finally, the LdapAuthoritiesPopulator and UserDetailsContextMapper, which
perform the roles we've examined earlier in the chapter:

<bean class="org.springframework.security.ldap.userdetails.
DefaultLdapAuthoritiesPopulator" id="ldapAuthoritiesPopulator">
 <constructor-arg ref="ldapServer"/>
 <constructor-arg value="ou=Groups"/>
 <property name="groupSearchFilter" value="(uniqueMember={0})"/>
</bean>
<bean class="org.springframework.security.ldap.userdetails.
InetOrgPersonContextMapper" id="ldapUserDetailsContextMapper"/>

The last element that's required is the reference to our explicitly configured
LdapAuthenticationProvider, which we'll declare by reference in
dogstore-security.xml:

<authentication-manager alias="authenticationManager">
 <authentication-provider ref="ldapAuthProvider"/>
</authentication-manager>

At this point, we have fully configured LDAP authentication with explicit Spring
Bean notation. As with the explicit bean configuration we first introduced in
Chapter 6, Advanced Configuration and Extension, use of this technique in LDAP
integration is useful in the few cases where the security namespace does not
expose certain configuration attributes, or where custom implementation classes
are required to provide functionality tailored to a particular business scenario. We'll
explore one such scenario next when we examine how to connect to Microsoft Active
Directory via LDAP.

Integrating with Microsoft Active Directory
via LDAP
One of the convenient features of Microsoft Active Directory is it's seamless
integration not only with Microsoft Windows-based network architectures, but it
can also be configured to expose the contents of Active Directory using the LDAP
protocol. If you are a Windows shop, it is probable that any LDAP integration you
do will be against your Active Directory instance.

Chapter 9

[295]

Depending on your configuration of Microsoft Active Directory (and the directory
administrator's willingness to configure it to support Spring Security LDAP), you
may have a difficult time not with the authentication and binding process, but with
the mapping of Active Directory information to user GrantedAuthoritys within the
Spring Security system.

The sample, Active Directory LDAP tree for JBCP Pets corporate within our LDAP
browser is as shown in the following screenshot:

LDAP Directory Services

[296]

What you do not see here is an ou=Groups as we saw in our sample LDAP structure
earlier—this is because Active Directory stores group membership as attributes on
the LDAP entries of users themselves. Out of the box (as of the time of publishing),
Spring Security does not offer an LdapAuthoritiesPopulator that can be
configured to support the structure of a typical Active Directory LDAP tree.

Let's use our recently acquired knowledge of explicit bean configuration to write
a simple LdapAuthoritiesPopulator implementation, which simply grants
ROLE_USER to anyone who has successfully authenticated against the LDAP
directory. We'll call this class as com.packtpub.springsecurity.security.
SimpleRoleGrantingLdapAuthoritiesPopulator:

public class SimpleRoleGrantingLdapAuthoritiesPopulator implements
 LdapAuthoritiesPopulator {
 protected String role = "ROLE_USER";
 public Collection<GrantedAuthority> getGrantedAuthorities(
 DirContextOperations userData, String username) {
 GrantedAuthority ga = new GrantedAuthorityImpl(role);
 return Arrays.asList(ga);
 }
 public String getRole() {
 return role;
 }
 public void setRole(String role) {
 this.role = role;
 }
}

Not very exciting, but keep in mind that you can use the o.s.ldap.core.
DirContextOperations object passed to perform many types of LDAP operations
if required, such as querying the directory for information about the user, and using
that information to fill out the roles returned.

Let's see how to alter our configuration to support our Active Directory structure
now, assuming we are starting with the bean configuration detailed in the
previous section:

 <bean class="org.springframework.security.ldap.
DefaultSpringSecurityContextSource" id="ldapServer">
 <constructor-arg value="ldap://corp.jbcppets.com/dc=corp,dc=jbcpp
ets,dc=com"/>
 <property name="userDn" value="CN=Administrator,CN=Users,DC=corp,D
C=jbcppets,DC=com"/>
 <property name="password" value="admin123!"/>
 </bean>
 <bean class="org.springframework.security.ldap.search.
FilterBasedLdapUserSearch" id="ldapSearchBean">
 <constructor-arg value="CN=Users"/>

Chapter 9

[297]

 <constructor-arg value="(sAMAccountName={0})"/>
 <constructor-arg ref="ldapServer"/>
 </bean>
 <bean class="com.packtpub.springsecurity.security.
SimpleRoleGrantingLdapAuthoritiesPopulator" id="ldapAuthoritiesPopula
tor"/>

The attribute sAMAccountName is the Active Directory equivalent of the uid attribute
we used in a standard LDAP entry—the remainder of the configuration changes are
typical of a standard Active Directory configuration.

Although most Active Directory LDAP integrations are likely to be more complex
than this example, this should give you a starting point to jump off and explore from
with your conceptual understanding of the inner workings of Spring Security LDAP
integration, supporting even a complex integration will be much easier.

Also be aware that another type of integration with Active Directory exists—Kerberos
authentication, which is a part of the Spring Security Extensions project, and covered
in Chapter 12, Spring Security Extensions. You may wish to review both types of
integration, and determine which is more suitable for your needs (we will compare
both LDAP and Kerberos authentication for Active Directory in Chapter 12).

Delegating role discovery to a
UserDetailsService
One final technique for populating user roles that is available to use with
explicit bean configuration is support for looking up a user by username
in a UserDetailsService, and getting their GrantedAuthority from this
source. Configuration is as simple as declaring the bean, with a reference to a
UserDetailsService (such as a JDBC-based one or such as the one we have
been using in prior chapters):

 <bean class="org.springframework.security.ldap.authentication.
UserDetailsServiceLdapAuthoritiesPopulator" id="ldapAuthoritiesPopula
tor">
 <constructor-arg ref="jdbcUserServiceCustom"/>
 </bean>

The logistical and managerial problem you may foresee with this is that the usernames
and roles must be managed both in the LDAP and the repository used by the
UserDetailsService—this is probably not a scalable model with a large user base.

LDAP Directory Services

[298]

The more common use of this scenario is when LDAP authentication is required
to ensure that users of the secured application are valid corporate users, but the
application itself wants to store authorization information. This keeps potentially
application-specific data out of the LDAP directory, which can be a beneficial
separation of concerns.

Summary
We have seen that LDAP servers can be relied upon to provide authentication and
authorization information, as well as rich user profile information, when requested.
In this chapter, we covered:

LDAP terminology and concepts, and understand how LDAP directories
might be commonly organized to work with Spring Security
Configuration of both standalone (embedded) and external LDAP servers
from a Spring Security configuration file
Authentication and authorization of users against LDAP repositories, and
subsequent mapping to Spring Security actors
Differences in authentication schemes and password storage and security
mechanisms in LDAP—and how they are treated in Spring Security
Mapping user detail attributes from the LDAP directory to the UserDetails
object for rich information exchange between LDAP and the
Spring-enabled application
Explicit bean configuration for LDAP, and the pros and cons of this approach

•

•

•

•

•

•

Single Sign On with Central
Authentication Service

In this chapter, we'll examine the use of Central Authentication Service (CAS) as a
single sign-on portal for Spring Security-based applications:

During the course of this chapter, we'll:

Learn about CAS, its architecture, and benefits to system administrators and
organizations of any size
Understand how Spring Security can be reconfigured to handle interception
of authentication requests and redirect to CAS
Configure the JBCP Pets application to utilize CAS single sign-on
Integrate CAS with LDAP, and pass data from LDAP to Spring Security
via CAS
Review the differences between the CAS 2.0 protocol and SAML 1.1

Introducing Central Authentication
Service
Central Authentication Service is an open source single sign-on portal, providing
centralized access control, and authentication to web-based resources within an
organization. The benefits of CAS are numerous to administrators supporting many
applications and diverse user communities:

Individual or group access to resources (applications) can be configured
in one location

•

•

•
•

•

•

Single Sign On with Central Authentication Service

[300]

Broad support for a wide variety of authentication stores (to centralize user
management) provides a single point of authentication and control to a
widespread, cross-machine environment
Wide authentication support is provided for web-based and non-web based
Java applications through CAS client libraries
A single point of reference for user credentials (via CAS), so that CAS client
applications are not required to have any knowledge of the user's credentials,
or how to verify them

We'll focus in this chapter not as much on the management of CAS, but specifically
on authentication and how CAS can act as an authentication point for users of our
site. Although CAS is commonly seen in intranet environments for enterprise or
educational institutions, it can also be found in use at high-profile locations such as
Sony Online Entertainment's and Dun and Bradstreet's public-facing sites.

High level CAS authentication flow
The basic authentication flow of CAS proceeds via the following actions:

The user attempts to access a protected resource on the website.
The user is redirected by the website security mechanism to the CAS portal
to present credentials.
The CAS portal is responsible for user authentication. If successfully
authenticated to CAS, the user is redirected back to the protected resource
with a unique CAS ticket assigned to the request.
The website security mechanism calls back to the CAS server to validate that
the ticket is acceptable (is valid, has not expired, and so on.). The CAS server
responds with an assertion indicating that trust has been established. If the
ticket is acceptable, trust has been established, and the user may proceed via
normal authorization checking.

Visually, this behaves as illustrated in the following diagram:

•

•

•

•
•

•

•

Chapter 10

[301]

We can see that there is a high level of interaction between the CAS server and the
secured application, with several data exchange handshakes required before trust of
the user can be established. The result of this complexity is a single sign-on protocol
that is quite hard to spoof through common techniques (assuming other network
security precautions, such as use of SSL and network monitoring are in place).

Now that we understand how CAS authentication works in general, let's see how it
applies to Spring Security.

Spring Security and CAS
Spring Security has a strong integration capability with CAS, although not as tightly
integrated into the security namespace style of configuration as the OpenID and
LDAP integrations we've explored thus far in the latter portion of this book. Instead,
much of the configuration relies on bean wiring and configuration-by-reference from
the security namespace elements to bean declarations.

Single Sign On with Central Authentication Service

[302]

The two basic pieces of CAS authentication involve the following:

Replacement of the standard AuthenticationEntryPoint—which typically
handles redirection of unauthenticated users to the login page—with an
implementation that redirects the user instead to the CAS portal.
Handling of the ticket assignment and presentment when the user is
redirected back from the CAS portal to the protected resource, through
the use of a custom servlet filter.

An important thing to understand about CAS is that in typical deployments,
CAS is intended to replace all alternative login mechanisms of your application.
As such, once you configure CAS for Spring Security, your users must use CAS
exclusively as an authentication mechanism to your application. In most cases, this
is not a problem, as we discussed in the previous section, CAS is designed to proxy
authentication requests to one or more authentication stores (similarly to what
Spring Security does when delegating to a database or LDAP for authentication). We
can see that in this diagram, our application is no longer checking the authentication
store to validate users (although a data source is still required to fully populate
UserDetails of the authenticated user).

When we have completed the basic CAS integration with Spring Security, we could
remove the Log In link from the home page, and instead enjoy automatic redirection
to CAS's login screen when we attempt to access a protected resource. Of course,
depending on the application, it can also be beneficial to still allow the user to
explicitly log in (so that they can see customized content, and so on).

CAS installation and configuration
CAS has the benefit of having an extremely dedicated team behind it which has done
an excellent job of developing both quality software and accurate, straightforward
documentation of how to use it. Should you choose to follow along with the examples
in this chapter, we'd encourage you to read the appropriate "Getting Started" manual
for your CAS platform. We will assume in the examples for this chapter that CAS is
deployed at the following location: http://localhost:8080/cas/

For this chapter, we'd also suggest running CAS and JBCP Pets in two different
instances of Tomcat. This will allow you to keep CAS running while you make code
changes to JBCP Pets. We'd recommend configuring the CAS server on port 8080,
and the JBCP Pets server on port 8081—our examples in this chapter will reflect this
configuration. Additionally, the examples in this chapter were written using the most
recent available version of CAS Server, 3.3.5 at the time of this writing.

•

•

Chapter 10

[303]

Be aware that some significant changes to some of the back-end classes
were made to CAS in the 3.x timeframe, so if you are on an earlier version
of the server, these instructions may be slightly or significantly different
for your environment!

Let's go ahead and configure the components required for CAS authentication!

Configuring basic CAS integration
The following diagram illustrates the relationships between the Spring Security
components that we'll be configuring to get CAS authentication integrated into our
JBCP Pets application. This should help you get your bearings as we run through
the bean configuration in the following exercises.

Single Sign On with Central Authentication Service

[304]

Adding the CasAuthenticationEntryPoint
You may recall from Chapter 6, Advanced Configuration and Extension, that the
implementation of AuthenticationEntryPoint is responsible for translating
exceptions related to authorization failure into concrete action—redirecting the
unauthenticated user to a login page, for example, or presenting the user lacking
appropriate authorization with an error page. From the high level architecture
diagram, we can see that there is an interception of a user's request to a protected
resource which redirects the user to the CAS portal page—this is accomplished
through the use of the o.s.s.cas.web.CasAuthenticationEntryPoint specifically
designed for this purpose.

We'll configure the bean supporting this behavior in dogstore-base.xml as follows:

<bean id="casAuthEntryPoint" class="org.springframework.security.cas.
web.CasAuthenticationEntryPoint">
 <property name="loginUrl" value="http://localhost:8080/cas/"/>
 <property name="serviceProperties" ref="casService"/>
</bean>

Following this, add a reference to the bean in the security namespace configuration
dogstore-security.xml file:

<http auto-config="true" …
 entry-point-ref="casAuthEntryPoint">

Finally, we will need to declare the serviceProperties reference on
the CasAuthenticationEntryPoint, which refers to an o.s.s.cas.
ServiceProperties object, declaring the properties of the service (application)
represented by our application. We'll refer to the URL defined by the CAS
authentication filter as follows:

<bean id="casService" class="org.springframework.security.cas.
ServiceProperties">
<property name="service" value="http://localhost:8081/JBCPPets/j_
spring_cas_security_check"/>
</bean>

We can see that the ServiceProperties object plays a role in coordinating data
exchange between the various CAS components—it is used as a data object,
to store CAS configuration settings that are shared (and are expected to match)
by the varying participants in the Spring CAS stack.

Chapter 10

[305]

CAS identifies resources needing authentication to access as services.
Services are identified by the use of a unique service URL. Within the
CAS administrative UI, services can be further defined and configured
as desired by CAS administrators.

The service property indicates to CAS the service to which the user will be
authenticated. Recall that CAS allows selective granting of access per user, per
application, based on configuration. We'll examine the particulars of this URL
in a moment, when we configure the servlet filter that is expected to process it.

If you start the application at this point and attempt to access a protected resource,
you will be immediately redirected to the CAS portal for authentication. An example
of a protected page in the application is the My Account page—which requires that
the user has been authorized with ROLE_USER privilege. The default configuration
of CAS allows authentication for any user, where the username is equal to the
password—thus, you should be able to log in with a username of admin and
a password of admin (or guest / guest).

You'll notice, however, that even after login, you will be immediately redirected
back to the CAS portal. This is because, although the destination application
was able to receive the ticket, it wasn't able to be validated, and as such the
AccessDeniedException is handled by CAS as a rejection of the ticket.

Enabling CAS ticket verification
Referring to the diagram that we saw earlier in the Configuring Basic CAS Authentication
section, we can see that Spring Security via the FilterSecurityInterceptor is
responsible for identifying an unauthenticated request and redirecting the user to CAS.
Adding the CasAuthenticationEntryPoint has overridden the standard redirect to
login page functionality, and provided the expected redirection from the application to
the CAS server. Now we need to configure things so that, once authenticated to CAS,
the user is properly authenticated to the application.

We remember from Chapter 8, Opening up to OpenID, that OpenID uses a similar
redirection approach, by redirecting unauthenticated users to the OpenID Provider
for authentication, and then back to the application with verifiable credentials. CAS
differs from OpenID in that, upon the user's return to the application, the application
is expected to call back to the CAS server to explicitly validate that the credentials
provided are valid and accurate. Contrast this with OpenID that uses the presence of
a date-based nonce and preshared key-based signature so that the credentials passed
by the OpenID Provider can be independently verified.

Single Sign On with Central Authentication Service

[306]

The benefit of the CAS approach is that the information passed on from the CAS
server to authenticate the user is much simpler—only a single URL parameter is
returned to the application by the CAS server. Additionally, the application itself
need not track the active or valid tickets, and instead can wholly rely on CAS to
verify this information. Much as we saw with OpenID, a servlet filter is responsible
for recognizing a redirect from CAS, and processing it as an authentication request.
We'll configure the servlet filter first as a Spring Bean in dogstore-base.xml
as follows:

<bean id="casAuthenticationFilter" class="org.springframework.
security.cas.web.CasAuthenticationFilter">
 <property name="authenticationManager" ref="authenticationManager"/>
</bean>

We'll then add the custom servlet filter to the security namespace configuration in
dogstore-security.xml:

 <http auto-config="true" ...>
 ...
 <custom-filter ref="casAuthenticationFilter" position="CAS_
FILTER"/>
 </http>

Finally, we noted that a reference to the AuthenticationManager was required by
the CasAuthenticationFilter—this is added (if not already present) with the alias
attribute of the <authentication-manager> declaration in dogstore-security.xml:

 <authentication-manager
 alias="authenticationManager">

You may have noticed that we referenced the CAS service name as the following
URL: http://localhost:8081/JBCPPets/j_spring_cas_security_check
when we configured the ServiceProperties object. As we've seen with other
authentication filters, the /j_spring_cas_security_check URL indicates a URL
signature recognized by the CasAuthenticationFilter as a special URL intended
to be used only by the redirect response from the CAS server.

Chapter 10

[307]

Modifying the CAS service URL
You may want to change the CAS Service URL from the
default of /j_spring_cas_security_check—this can be
done by setting the filterProcessesUrl property of the
CasAuthenticationFilter to any relative URL you want. It can
sometimes be beneficial to change the default URL in order to
obscure your application's use of Spring Security and/or CAS—
while such "security through obscurity" is not foolproof, it will
take care of some of the troublesome types of standardized bot
attacks that a publically facing site might experience.

The CasAuthenticationFilter populates an Authentication
(a UsernamePasswordAuthenticationToken) with special credentials that are
recognizable by the next, and final element of a minimal CAS configuration.

Proving authenticity with the
CasAuthenticationProvider
If you have been following the logical flow of Spring Security through the rest of
this book, hopefully you already know what comes next—the Authentication
token must be inspected by an appropriate AuthenticationProvider. CAS
is no different, and as such, the final piece of the puzzle is configuration of
an o.s.s.cas.authentication.CasAuthenticationProvider within the
AuthenticationManager.

First, we'll declare the Spring Bean in dogstore-base.xml as follows:

<bean id="casAuthenticationProvider" class="org.springframework.
security.cas.authentication.CasAuthenticationProvider">
 <property name="ticketValidator" ref="casTicketValidator"/>
 <property name="serviceProperties" ref="casService"/>
 <property name="key" value="jbcp-pets-dogstore-cas"/>
 <property name="authenticationUserDetailsService" ref="authenticatio
nUserDetailsService"/>
</bean>

Next, we'll configure a reference to this new AuthenticationProvider in
dogstore-security.xml, where our <authentication-manager>
declaration resides:

<authentication-manager alias="authenticationManager">
 <authentication-provider ref="casAuthenticationProvider"/>
</authentication-manager>

Single Sign On with Central Authentication Service

[308]

If you have any other AuthenticationProvider references remaining from
prior exercises, please remember to remove them for our work with CAS. Now,
we'll need to take care of the other attributes and bean references within the
CasAuthenticationProvider.

The ticketValidator attribute refers to an implementation of the org.jasig.
cas.client.validation.TicketValidator interface—as we are using CAS
2.0 authentication, we'll declare an org.jasig.cas.client.validation.
Cas20ServiceTicketValidator instance as follows:

<bean id="casTicketValidator" class="org.jasig.cas.client.validation.
Cas20ServiceTicketValidator">
 <constructor-arg value="http://localhost:8080/cas/"/>
</bean>

The constructor argument supplied to this class should refer (once again) to the
URL used to access the CAS server. You'll note that at this point, we have moved
out of the org.springframework.security package into org.jasig, which is part
of the CAS client JAR files. We'll see later in this chapter that the TicketValidator
interface also has implementations (still within the CAS client JAR files) that support
other methods of authentication against CAS such as SAML authentication.

Externalize URLs and environment-dependent settings
If you were configuring a real application with CAS, this is the point
where you should be thinking that coding URLs into Spring configuration
files is a bad idea. Typically, storage and consistent reference to URLs is
pulled out into a separate properties file, with placeholders consistent
with the Spring PropertyPlaceholderConfigurer. This allows
for reconfiguration of environment-specific settings via externalizable
properties files without touching the Spring configuration files, and is
generally considered good practice.

Next, we see the key attribute—this is simply used to validate the integrity of the
UsernamePasswordAuthenticationToken and can be arbitrarily defined.

Finally, the authenticationUserDetailsService attribute refers to an
o.s.s.core.userdetails.AuthenticationUserDetailsService object that is
used to translate the username information from the Authentication token to
a fully-populated UserDetails object, by referring to a UserDetailsService.
Obviously, this technique would only ever be used when we have confirmed
that the integrity of the Authentication token has not been compromised. We
configure this object with a reference to the JdbcDaoImpl implementation of the
UserDetailsService.

Chapter 10

[309]

<bean id="authenticationUserDetailsService"
 class="org.springframework.security.core.userdetails.
UserDetailsByNameServiceWrapper">
 <property name="userDetailsService" ref="jdbcUserService"/>
</bean>

We may wonder why a UserDetailsService isn't directly referenced—it's because
there will be additional advanced configuration options later which will allow details
from the CAS server to be used to populate the UserDetails object.

At this point, we should be able to go start to finish and log in through CAS, and be
redirected back to the JBCP Pets application. Excellent job!

Advanced CAS configuration
The CAS authentication framework supports additional configurations and data
exchange with the CAS service. We'll explore additional advanced CAS integration
capabilities in this section. Where we feel it's important, we'll include relevant CAS
configuration instructions, although keep in mind that CAS configuration is complex
and well outside the scope of this book!

Retrieval of attributes from CAS assertion
It is possible for CAS to pass information in the response to the ticket validation
check with the CAS server, based on the information retrieved by CAS during user
authentication. This information is passed in the form of name/value pairs, and can
contain any arbitrary data related to the user. We'll demonstrate the capacity to pass
arbitrary user attributes, in addition to GrantedAuthority information, with the
CAS response.

Single Sign On with Central Authentication Service

[310]

How CAS internal authentication works
Before we jump into CAS configuration, we'll briefly illustrate the standard behavior
of CAS authentication processing. The following diagram should help you follow the
configuration steps required to allow CAS to talk to our embedded LDAP server:

Chapter 10

[311]

While the previous diagram describes the internal flow of authentication within
the CAS server itself, it is likely that if you are implementing integration between
Spring Security and CAS, you will also need to adjust the configuration of the CAS
server as well. It's important, therefore, that you understand at a high level how CAS
authentication works.

The CAS server's org.jasig.cas.authentication.AuthenticationManager (not
to be confused with the Spring Security class of the same name) is responsible for
authenticating the user based on the provided credentials. Much as with Spring
Security, the actual processing of the credentials is delegated to one (or more)
processing class implementing the org.jasig.cas.authentication.handler.
AuthenticationHandler interface (we recognize that the analogous interface in
Spring Security would be AuthenticationProvider).

Finally, a org.jasig.cas.authentication.principal.
CredentialsToPrincipalResolver is used to translate the credentials passed
into a full org.jasig.cas.authentication.principal.Principal object (similar
behavior in Spring Security occurs in the implementation of UserDetailsService).

While not a full review of the behind-the-scenes functionality of the CAS server, this
should help you understand the configuration steps in the next several exercises.
We encourage you to read the source code for CAS, and consult the web-based
documentation available at the JA-SIG CAS wiki: http://www.ja-sig.org/wiki/
display/CAS.

Configuring CAS to connect to our embedded
LDAP server
The org.jasig.cas.authentication.principal.
UsernamePasswordCredentialsToPrincipalResolver that comes configured
by default with CAS doesn't allow us to pass back attribute information and
demonstrate this feature of Spring Security CAS integration, so we'd suggest
using an implementation which does allow this.

An easy authentication handler to configure and use (especially if you have gone
through the prior chapter's LDAP exercises) is an org.jasig.cas.authentication.
handler.AuthenticationHandler, which communicates with the embedded LDAP
server that we used in the previous chapter. We'll lead you through configuration of
CAS to return user LDAP attributes in the following guide.

All of the CAS configuration will take place in the WEB-INF/deployerConfigContext.
xml file of the CAS installation, and will typically involve inserting class declarations
into configuration file segments that already exist.

Single Sign On with Central Authentication Service

[312]

If the contents of this file look familiar to you, it's because CAS uses
the Spring Framework for its configuration, just like JBCP Pets! We'd
recommend using a good IDE with handy reference to the CAS source
code if you want to dig into what these configuration settings do.
Remember that in this section, and all sections where we refer to
WEB-INF/deployerConfigContext.xml, we are referring to the
CAS installation and not JBCP Pets.

First, we'll add a new AuthenticationHandler in place of the
SimpleTestUsernamePasswordAuthenticationHandler, which will attempt
to bind the user to LDAP (just as we did in Chapter 9, LDAP Directory Services).
The AuthenticationHandler will be placed in the authenticationHandlers
property of the authenticationManager bean:

<property name="authenticationHandlers">
 <list>
<!-- ... -->
 <bean class="org.jasig.cas.adaptors.ldap.
BindLdapAuthenticationHandler">
 <property name="filter" value="uid=%u" />
 <property name="searchBase" value="ou=Users,dc=jbcppets,dc=com" />
 <property name="contextSource" ref="contextSource" />
 </bean>

Don't forget to remove the reference to the
SimpleTestUsernamePasswordAuthenticationHandler, or at least move its
definition to after that of the BindLdapAuthenticationHandler, otherwise your
CAS authentication will not use LDAP and instead use the stub handler!

You'll note the bean reference to a contextSource bean—this defines the
org.springframework.ldap.core.ContextSource implementation, which CAS
will use to interact with LDAP (yes, CAS uses Spring LDAP as well). We'll define
this at the end of the file, as follows:

<bean id="contextSource" class="org.springframework.ldap.core.support.
LdapContextSource">
 <property name="urls">
 <list>
 <value>ldap://127.0.0.1:33389</value>
 </list>
 </property>
 <property name="userDn" value="uid=ldapadmin,ou=Administrators,ou=Use
rs,dc=jbcppets,dc=com"/>
 <property name="password" value="password"/>
 <property name="baseEnvironmentProperties">

Chapter 10

[313]

 <map>
 <entry>
 <key>
 <value>java.naming.security.authentication</value>
 </key>
 <value>simple</value>
 </entry>
 </map>
 </property>
</bean>

Much as we had discussed when configuring Spring Security to attach to an external
(non-embedded) LDAP server, CAS requires a user DN for an administrative user
in order to bind to the LDAP directory in the first place. In this case, we use the
administrative DN that we defined in the JBCPPets.ldif bootstrap exercise in
Chapter 9. The URL of ldap://127.0.0.1:33389 contains the port 33389, which
is used by the Spring Security embedded LDAP server by default. As we discussed
in Chapter 9, in a production configuration, you would most likely use LDAPS to
ensure network security of CAS's LDAP requests.

Finally, we'll need to configure a new org.jasig.cas.authentication.
principal.CredentialsToPrincipalResolver, which is responsible for translating
the credentials that the user has provided (that CAS has already authenticated using
the BindLdapAuthenticationHandler) to a full org.jasig.cas.authentication.
principal.Principal authenticated principal. You'll notice many configuration
options in this class, which we'll skim over, but which you are welcome to dive into
as you explore CAS further.

Add the following bean definition inline to the credentialsToPrincipalResolvers
property of the CAS authenticationManager bean:

<property name="credentialsToPrincipalResolvers">
 <list>
 <bean class="org.jasig.cas.authentication.principal.
CredentialsToLDAPAttributePrincipalResolver">
 <property name="credentialsToPrincipalResolver">
 <bean class="org.jasig.cas.authentication.principal.
UsernamePasswordCredentialsToPrincipalResolver" />
 </property>
 <property name="filter" value="(uid=%u)" />
 <property name="principalAttributeName" value="uid" />
 <property name="searchBase" value="ou=Users,dc=jbcppets,dc=com"
/>
 <property name="contextSource" ref="contextSource" />
 <property name="attributeRepository" ref bean="attributeReposit
ory" />
 </bean>

Single Sign On with Central Authentication Service

[314]

You'll notice that, as with Spring Security LDAP configuration, much of the same
behavior exists in CAS with principals being searched on property matches below
a subtree of the directory, based on a DN.

Note that we haven't yet configured the attributeRepository ourselves,
which should refer to an implementation of org.jasig.services.persondir.
IPersonAttributeDao. CAS ships with a default configuration that includes
a simple implementation of this interface, org.jasig.services.persondir.
support.StubPersonAttributeDao, which will be sufficient until we configure
LDAP-based attributes in a later exercise.

So, now we've configured basic LDAP authentication in CAS. At this point, you should
be able to restart CAS, start JBCP Pets (if it's not already running), and authenticate
using any of the LDAP users we created in Chapter 9 (username ldapguest with
password password is a good candidate). You'll get an ugly 403 Access Denied page
when returning to the application, however, due to the fact that the users present in
LDAP aren't found in the database, where our AuthenticationUserDetailsService
is pointing. Let's remedy this situation now.

Getting UserDetails from a CAS assertion
When we first set up CAS integration with Spring Security, we configured a
UserDetailsByNameServiceWrapper, which simply translated the username
presented to CAS into a UserDetails object from the UserDetailsService that we
had referenced (in our case, it was the JdbcDaoImpl). Now that CAS is referencing
the LDAP server, we could set up an LdapUserDetailsService as we discussed at
the tail end of Chapter 9, and things would work just fine.

Instead, we'll experiment with another capability of the Spring
Security CAS integration, the ability to populate a UserDetails from
the CAS assertion itself! This is actually as simple as switching the
AuthenticationUserDetailsService implementation to the o.s.s.cas.
userdetails.GrantedAuthorityFromAssertionAttributesUserDetailsService,
whose job it is to read the CAS assertion, look for a certain attribute, and map the value
of that attribute directly to GrantedAuthority for the user. Let's assume that there
is an attribute entitled role which will be returned with the assertion. We'll simply
configure a new authenticationUserDetailsService bean in dogstore-base.xml:

<bean id="authenticationUserDetailsService"
 class="org.springframework.security.cas.userdetails.
GrantedAuthorityFromAssertionAttributesUserDetailsService">
 <constructor-arg>
 <array>
 <value>role</value>

Chapter 10

[315]

 </array>
 </constructor-arg>
</bean>

Next, we'll add some minor debugging functionality to allow us to review the
contents of the assertion.

Examining the CAS assertion
To assist in our review of the information that CAS provides back to the JBCP Pets
application, we'll amend the AccountController to show some information about
the logged-in CAS user and the information that CAS provided us about them. First,
we'll add a simple URL handler method to AccountController:

@RequestMapping(value="/account/viewCasUserProfile.
do",method=RequestMethod.GET)
public void showViewCasUserProfilePage(ModelMap model) {
 final Authentication auth = SecurityContextHolder.getContext().
getAuthentication();
 model.addAttribute("auth", auth);
 if(auth instanceof CasAuthenticationToken) {
 model.addAttribute("isCasAuthentication", Boolean.TRUE);
 }
}

Next, we'll add a JSP which will display some interesting information about the
CasAuthenticationToken representing a user's authenticated CAS login. This
will be placed in WEB-INF/views/account/viewCasUserProfile.jsp.

<!-- Common Header and Footer Omitted -->
<h1>View Profile</h1>
<p>
 Some information about you, from CAS:
</p>

 Auth: ${auth}
 Username: ${auth.principal}
 Credentials: ${auth.credentials}
 <c:if test="${isCasAuthentication}">
 Assertion: ${auth.assertion}
 Assertion Attributes:
 <c:forEach items="${auth.assertion.attributes}" var="attr">
 ${attr.key}:${attr.value}

 </c:forEach>

Single Sign On with Central Authentication Service

[316]

 Assertion Attribute Principal: ${auth.
assertion.principal}
 Assertion Principal Attributes:
 <c:forEach items="${auth.assertion.principal.attributes}"
var="attr">
 ${attr.key}:${attr.value}

 </c:forEach>

 </c:if>

Add a simple link to the account home page, in WEB-INF/views/account/home.jsp:

<h1>Welcome to Your Account</h1>
<!-- omitted -->

 View CAS User Profile

Finally, we'll have to (temporarily) disable authorization checks for this page,
until we get assertion attribute-based authorization working. Do this with a
simple adjustment in dogstore-security.xml, so that logged in users of any
GrantedAuthority can access this page, and the My Account page:

<intercept-url pattern="/home.do" access="permitAll"/>
<intercept-url pattern="/account/home.do" access="!anonymous"/>
<intercept-url pattern="/account/view*Profile.do"
access="!anonymous"/>
<intercept-url pattern="/account/*.do" access="hasRole('ROLE_USER')"/>

Once you've completed these minor UI updates, restart the JBCP Pets application,
and try accessing this page. You'll see that it provides a lot of information about the
information contained within the assertion.

Mapping LDAP attributes to CAS attributes
The final piece of the puzzle requires us to map LDAP attributes to attributes in
the CAS assertion (including the role attribute that we're expecting to contain the
user's GrantedAuthority).

We'll add another bit of configuration to the CAS deployerConfigContext.xml.
This new bit of configuration is required to instruct CAS how to map attributes
from the CAS Principal object to the CAS IPersonAttributes object, which will
ultimately be serialized as a part of the ticket validation. This bean configuration
should replace the bean of the same name, attributeRepository.

Chapter 10

[317]

<bean id="attributeRepository" class="org.jasig.services.persondir.
support.ldap.LdapPersonAttributeDao">
 <property name="contextSource" ref="contextSource" />
 <property name="requireAllQueryAttributes" value="true" />
 <property name="baseDN" value="ou=Users,dc=jbcppets,dc=com" />
 <property name="queryAttributeMapping">
 <map>
 <entry key="username" value="uid" />
 </map>
 </property>
 <property name="resultAttributeMapping">
 <map>
 <entry key="cn" value="FullName" />
 <entry key="sn" value="LastName" />
 <entry key="description" value="role" />
 </map>
 </property>
</bean>

The functionality behind the scenes here is definitely confusing—essentially,
the purpose of this class is to map the Principal back to the LDAP directory
(this is the queryAttributeMapping property, mapping the username field of
the Principal to the uid attribute in the LDAP query). The baseDN provided
is searched using the LDAP query (uid=ldapguest), and attributes are read
from the matching entry. The attributes are mapped back to the Principal
using the key/value pairs in the resultAttributeMapping property—we
recognize the LDAP cn and sn attributes being mapped to meaningful
names, and the description attribute being mapped to the role that our
GrantedAuthorityFromAssertionAttributesUserDetailsService will be
looking for.

Part of the complexity here comes from the fact that a portion of this functionality
is wrapped up in a separate project, Person Directory (http://www.ja-sig.
org/wiki/display/PD/Home), which is intended to aggregate multiple sources of
information about a person into a single view. The design of Person Directory is
such that it is not directly tied to the CAS server, and could be reused as part of other
applications. The downside of this design choice is that it makes some aspects of
CAS configuration more complex than it initially seems should be required.

Single Sign On with Central Authentication Service

[318]

Some Gotchas on LDAP attribute mapping in CAS
We would love to set up the same type of query in LDAP as we used
with Spring Security LDAP in Chapter 9, to be able to map a Principal
to a full LDAP distinguished name, and then to use that DN to look up
group membership by matching on the basis of uniqueMember attribute
of a groupOfUniqueNames entry. Unfortunately, the CAS LDAP code
doesn't yet have this flexibility, leading to the conclusion that more
advanced LDAP mapping will require extensions to base classes in CAS.

Whoa there! Confused yet? We admit this is pretty confusing to us too, as the various
bits of CAS convert back and forth in several different ways between LDAP data
and CAS data. The CAS mailing lists and community wiki (http://www.ja-sig.
org/wiki/display/CASUM/Home) are great places to read about other peoples'
experiences with the product and ask questions to a knowledgeable audience.

Finally, returning the attributes in the CAS assertion
Unfortunately, the CAS 2.0 protocol does not specify a standard format for return
of attribute data. There have been several attempts, as documented in the CAS JIRA
bug tracking system, to implement this functionality, but these have been rejected, as
the CAS 2.0 protocol is stable and is probably not going to change in the near future.

That said, many users do extend the CAS response to include attribute data anyway.
Ultimately, CAS's response to the client application's ticket validation request is
rendered by a JSP, and as such, this is fairly easy to modify in your CAS installation
to include a response, which conforms to the attribute parsing expected by the
Cas20ServiceTicketValidator. In your CAS deployment, edit WEB-INF/view/
jsp/protocol/2.0/casServiceValidationSuccess.jsp and add the following:

<cas:authenticationSuccess>
 <cas:user>${fn:escapeXml(assertion.chainedAuthentications[fn:
length(assertion.chainedAuthentications)-1].principal.id)}</cas:user>
 <cas:attributes>
 <c:forEach var="attr"
 items="${assertion.chainedAuthentications[fn:length(assertion.
chainedAuthentications)-1].principal.attributes}"
 varStatus="loopStatus" begin="0"
 end="${fn:length(assertion.chainedAuthentications[fn:
length(assertion.chainedAuthentications)-1].principal.attributes)-1}"
 step="1">
 <cas:${fn:escapeXml(attr.key)}>${fn:escapeXml(attr.value)}</
cas:${fn:escapeXml(attr.key)}>
 </c:forEach>
 </cas:attributes>

Chapter 10

[319]

This will result in the following CAS response format:

<cas:serviceResponse xmlns:cas="http://www.yale.edu/tp/cas">
 <cas:authenticationSuccess>
 <cas:user>ldapguest</cas:user>
 <cas:attributes>
 <cas:FullName>LDAP Guest</cas:FullName>
 <cas:role>ROLE_USER</cas:role>
 <cas:LastName>Guest</cas:LastName>
 </cas:attributes>
 </cas:authenticationSuccess>
</cas:serviceResponse>

With these changes in place and both CAS and JBCP Pets restarted, you should be
able to log in as ldapguest and access areas of the application, which are protected
by ROLE_USER security. Additionally, you should see the View CAS Profile page
displaying the attributes returned via the CAS assertion.

Take note—we can see that the attribute names provided in the
LdapPersonAttributeDao.resultAttributeMapping are dropped
directly in the XML of the CAS response. This means that they can't
be entirely arbitrary, and must conform to valid XML element naming
conventions (for example, they cannot contain spaces). If you want to
change this behavior, you may require more complicated JSP code than
that which is demonstrated here.

Great job—this is a lot of configuration work across two complex products. Take
a break and have a cup of coffee!

Note that an alternative approach that some CAS developers choose to take is
to extend Cas20ServiceTicketValidator (on the Spring Security side of the
conversation) to perform custom processing of the ticket response returned by CAS.

Alternative Ticket authentication using SAML 1.1
SAML is a standard, cross-platform protocol for identity verification through
structured XML assertions. SAML is supported by a wide variety of products,
including CAS (in fact, we will look at support for SAML within Spring Security
itself in a later chapter).

Single Sign On with Central Authentication Service

[320]

The SAML security assertion XML dialect solves some of the issues with attribute
passing using the CAS response protocol we previously described. Happily,
switching between CAS ticket validation and SAML ticket validation is as simple as
changing the TicketValidator implementation configured in dogstore-base.xml.
Add a bean as follows:

<bean id="samlTicketValidator" class="org.jasig.cas.client.validation.
Saml11TicketValidator">
 <constructor-arg value="http://localhost:8080/cas/"/>
</bean>

Then update the CasAuthenticationProvider to use this SAML
TicketValidator instead:

<bean id="casAuthenticationProvider" class="org.springframework.
security.cas.authentication.CasAuthenticationProvider">
 <property name="ticketValidator" ref="samlTicketValidator"/>
 <property name="serviceProperties" ref="casService"/>

Restart the JBCP Pets application, and SAML responses will now be in use for ticket
validation. Note that CAS ticket responses are not logged by Spring Security CAS
classes, so you will need to either enable logging for the JA-SIG CAS client classes
(enable logging for org.jasig in log4j) or examine the differences in the responses
using a debugger.

In general, it's recommended that SAML ticket validation be used over CAS 2.0
ticket validation, as it adds more non-repudiation features, including timestamp
validation, and solves the attribute problem in a standard way.

How is Attribute Retrieval useful?
Remember that CAS provides a layer of abstraction for our application, removing the
ability for our application to directly access the user repository and instead, forcing
all such access to be performed through CAS as a proxy.

This is extremely powerful! It means that our application no longer cares what kind
of repository users are stored in, nor does it have to worry about the details of how
to access them—simply confirming authentication with CAS is sufficient to prove
that a user should be able to access our application. For system administrators, this
means that, should an LDAP server be renamed, moved, or otherwise adjusted, they
only need to reconfigure it in a single location – CAS. Centralizing access through
CAS allows for a high level of flexibility and adaptability in the overall security
architecture of the organization.

Chapter 10

[321]

Extend this story to the usefulness of attribute retrieval from CAS—now, all
applications authenticated through CAS have the same view of a user, and can
consistently display information across any CAS-enabled environment.

Be aware that, once authenticated, Spring Security CAS does not re-query the CAS
server unless the user is required to re-authenticate. This means that attributes and
other user information stored locally in the application in the user's Authentication
object may become stale over time and possibly out of sync with the source CAS
server. Take care to set session timeouts appropriately to avoid this potential issue!

Additional CAS capabilities
CAS offers additional advanced configuration capabilities outside of those which
are exposed through the Spring Security CAS wrappers. Some of these include
the following:

Providing transparent single sign-on for users who are accessing multiple
CAS-secured applications within a configurable (on the CAS server) time
window. Applications can force users to authenticate to CAS by setting
the renew property to true on the TicketValidator—you may want to
conditionally set this property in custom code, in the event where the user
is attempting to access a highly secured area of the application.
Providing ticket proxy capabilities to secondary applications which may
not be able to directly access CAS. When requesting a ticket from CAS,
the web application may request to grant tickets by proxy to a secondary
application. You may read more about this capability at the CAS website
(http://www.jasig.org/cas/proxy-authentication).
Coordinated single sign-out among participating applications where the
user has an active CAS session (note this is not directly supported by Spring
Security, but is supported by the CAS client through a combination of
HttpSessionListener and servlet filter).

We'd encourage you to explore the full capabilities of the CAS client and server, as
well as ask questions to the helpful folks in the JA-SIG community forums!

•

•

•

Single Sign On with Central Authentication Service

[322]

Summary
In this chapter, we learned about the Central Authentication System (CAS) Single
Sign-On portal, how it can be integrated with Spring Security and we also
covered the following:

The CAS architecture and communication paths between actors in a CAS
enabled environment
The benefits of CAS enabled applications for application developers and
system administrators
Configuring JBCP Pets to interact with a basic CAS installation
Updating CAS to interact with LDAP and sharing LDAP data with our CAS
enabled application
Implementing attribute exchange with CAS using both a modified CAS 2.0
protocol, as well as the industry standard SAML protocol

We hope this chapter was an interesting introduction to the world of single sign-on.
There are many other single sign-on systems in the marketplace, mostly commercial,
but CAS is definitely one of the leaders of the open source SSO world, and an
excellent platform to build out SSO capability in any organization.

In the next chapter, we'll move back to standard authentication, but this time we will
remove usernames and passwords altogether and instead rely on a completely new
authentication mechanism. Excited? So are we!

•

•

•
•

•

Client Certificate
Authentication

Although username and password authentication is extremely common, as we
discussed in Chapter 1, Anatomy of an Unsafe Application and Chapter 2, Getting Started
with Spring Security; forms of authentication exist that allow users to present different
types of credentials. Spring Security caters to these requirements as well, and in this
chapter we'll move beyond form-based authentication to explore authentication
using trusted client-side certificates.

During the course of this chapter we'll:

Learn how client certificate authentication is negotiated between the user's
browser and a compliant server
Configure Spring Security to authenticate users with client certificates
Understand the architecture of client certificate authentication in
Spring Security
Explore advanced configuration options related to client
certificate authentication
Review pros, cons, and common troubleshooting steps when dealing with
client certificate authentication

•

•
•

•

•

Client Certificate Authentication

[324]

How Client Certificate authentication
works
Client certificate authentication requires a request for information from the server,
and a response from the browser, to negotiate a trusted authentication relationship
between the user (and their browser) and the server application. This trusted
relationship is built through the use of the exchange of trusted and verifiable
credentials, known as certificates.

Unlike much of what we have seen to this point, with client certificate authentication,
the servlet container or application server itself is typically responsible for
negotiating the trust relationship between the browser and the server, by
requesting a certificate, evaluating it, and accepting it as valid.

Client certificate authentication is also known as mutual authentication, and is
part of the Secure Sockets Layer (SSL) protocol, and its successor, Transport Layer
Security (TLS). As mutual authentication is part of the SSL and TLS protocols, it
follows that an HTTPS connection (secured with SSL or TLS) is required in order
to make use of client certificate authentication. For more details on SSL/TLS
support in Spring Security, please refer to our discussion and implementation of
SSL/TLS in Chapter 4, Securing Credential Storage. Setting up SSL/TLS in Tomcat
(or the application server you have been using to follow along with the examples)
is required to implement client certificate authentication. As in Chapter 4, we will
refer to SSL/TLS as SSL for the remainder of this chapter.

The following sequence diagram illustrates the interaction between the client
browser and the web server, when negotiating an SSL connection and validating
the trust of a client certificate used for mutual authentication.

Chapter 11

[325]

We can see that the exchange of two certificates, the server certificate and the client
certificate, provides authentication that both parties are known and can be trusted to
continue their conversation securely. In the interest of clarity, we omit some details
of the SSL handshake and trust checking of the certificates themselves; however, you
are encouraged to do further reading in the area of the SSL and TLS protocols, and
certificates in general, as many good reference guides on these subjects exist. RFC
5246, The Transport Layer Security (TLS) Protocol V1.2 (http://tools.ietf.org/
html/rfc5246), is a good place to begin reading about client certificate presentation,
and if you'd like to get into more detail, SSL and TLS: Designing and Building Secure
Systems, by Eric Rescorla, is an incredibly detailed review of the protocol and
its implementation.

Client Certificate Authentication

[326]

An alternative name for client certificate-based authentication is X.509 authentication.
The term X.509 is derived from the X.509 standard, originally published by the ITU-T
organization, for use in directories based on the X.500 standard (the origins of LDAP,
as you may recall from Chapter 9, LDAP Directory Services). Later, this standard was
adapted for use in securing internet communications.

We mention this here because many of the classes in Spring Security related to this
subject refer to X.509. Remember that X.509 doesn't define the mutual authentication
protocol itself, but instead defines the format and structure of certificates and the
encompassing trusted certificate authorities.

Setting up a Client Certificate
authentication infrastructure
Unfortunately for you as an individual developer, being able to experiment with
client certificate authentication requires some non-trivial configuration and setup
prior to the relatively easy integration with Spring Security. As these setup steps
tend to cause a lot of problems for first-time developers, we felt it was important
to walk you through them.

We assume that you are using a local, self-signed server certificate, and self-signed
client certificates, as well as Apache Tomcat. This is typical of most development
environments; however, it's possible that you may have access to a valid server
certificate, a certificate authority (CA), or another application server. If this is
the case, you may use these setup instructions as guidelines, and configure your
environment in an analogous manner. Please refer to the SSL setup instructions in
Chapter 4 for assistance in configuring Tomcat and Spring Security to work with
SSL in a standalone environment.

Understanding the purpose of a public key
infrastructure
While this chapter focuses on setting up a self-contained development environment
for the purposes of learning and education, in most cases where you are integrating
Spring Security into an existing client certificate-secured environment, there will
be a significant amount of infrastructure (usually a combination of hardware
and software) in place to provide functionality such as certificate granting and
management, user self-service, and revocation. Environments of this type define
a public key infrastructure—a combination of hardware, software, and security
policies that result in a highly secure, authentication-driven network ecosystem.

Chapter 11

[327]

In addition to being used for web application authentication, certificates or hardware
devices in these environments can be used for secure, non-repudiated email (using
S/MIME), network authentication, and even physical building access (using PKCS
11-based hardware devices).

While the management overhead of such an environment can be high (and requires
both IT and process excellence to implement well), it is arguably one of the most
secure possible operating environments for technology professionals.

Creating a client certificate key pair
The self-signed client certificate is created in the same way as the self-signed server
certificate is created, by generating a key pair using the keytool command. A client
certificate key pair differs in that it requires the key store to be available to the web
browser, and requires the client's public key to be loaded into the server's trust store
(we'll explain what this is in a moment)

Create the client key pair as follows:

keytool -genkeypair -alias jbcpclient -keyalg RSA -validity 365 -
keystore jbcppets_clientauth.p12 -storetype PKCS12

When prompted to set up the first and last name (the common name, or CN,
portion of the owner's DN) for the client certificate, ensure that the answer to the
first prompt matches a user that we have set up in our Spring Security JDBC store,
for example admin:

What is your first and last name?
 [Unknown]: admin
... etc
Is CN=admin, OU=JBCP Pets, O=JBCP Pets, L=Anywhere, ST=NH, C=US
correct?
 [no]: yes

We'll see why this is important when we configure Spring Security to access the
information from the certificate-authenticated user. We have one final step before
we can set up certificate authentication within Tomcat.

Client Certificate Authentication

[328]

Configuring the Tomcat trust store
Recall that the definition of a key pair includes both a private and public key. Much
as with SSL certificates verifying and securing server communication, the validity
of the client certificate needs to be verified against the certifying authority which
created it.

As we have created our own self-signed client certificate using the keytool
command, the Java VM will not implicitly trust it as having been assigned
by a trusted certificate authority.

As such, we will need to force Tomcat to recognize the certificate as a trusted
certificate. We do this by exporting the public key from the key pair and adding
it to the Tomcat trust store.

First, we'll export the public key to a standard certificate file, named
jbcppets_clientauth.cer as follows:

keytool -exportcert -alias jbcpclient -keystore jbcppets_clientauth.
p12 -storetype PKCS12 -storepass password -file
jbcppets_clientauth.cer

Next, we'll import the certificate into the trust store (this will create the trust store,
but in a typical deployment scenario, you'd probably already have some other
certificates in the trust store):

keytool -importcert -alias jbcpclient -keystore tomcat.truststore -
file jbcppets_clientauth.cer

This will create the trust store called tomcat.truststore and prompt you for
a password. You'll also see some information about the certificate and, finally,
be asked to confirm that you do trust the certificate:

Owner: CN=admin, OU=JBCP Pets, O=JBCP Pets, L=Anywhere, ST=NH, C=US
Issuer: CN=admin, OU=JBCP Pets, O=JBCP Pets, L=Anywhere, ST=NH, C=US
Serial number: 4b3fb3d9
Valid from: Sat Jan 02 16:00:09 EST 2010 until: Sun Jan 02 16:00:09
EST 2011
Certificate fingerprints:
 MD5: 02:69:16:3B:D7:C2:74:9E:F7:FD:18:C9:C5:E4:C8:94
 SHA1: 65:57:94:6D:D2:83:7E:51:19:CF:58:94:ED:43:11:F6:AC:D0:
FB:EC
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes

Copy the new tomcat.truststore file to the conf directory of the Tomcat server
you are using. One final configuration step before we're ready to go!

Chapter 11

[329]

What's the difference between a Key Store and a Trust Store?
The Java Secure Socket Extension (JSSE) documentation defines a key
store as a storage mechanism for private keys and their corresponding
public keys. The key store (containing key pairs) is used to encrypt or
decrypt secure messages, and so on. The trust store is intended to store only
public keys for trusted communication partners, when verifying identity
(such as how we see the trust store used in certificate authentication). In
many common administration scenarios, however, the key store and trust
store are combined into a single file (in Tomcat, this would be done through
the use of the keystoreFile and truststoreFile attributes of the
Connector). The format of the files themselves can be exactly the same
(really, each file can be any JSSE supported keystore format, including Java
Key Store / JKS, PKCS 12, and so on).

Finally, we'll need to point Tomcat at the trust store, and enable client certificate
authentication. This is done by adding three additional attributes to the SSL
Connector in the Tomcat server.xml file:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 sslProtocol="TLS"
 keystoreFile="conf/tomcat.keystore"
 keystorePass="password"
 truststoreFile="conf/tomcat.truststore"
 truststorePass="password"
 clientAuth="true"
 />

This should be the remaining configuration required to trigger Tomcat to request a
client certificate when any SSL connection is made. At this point, we should be able
to restart Tomcat.

There's also a way to configure Tomcat to optionally use client certificate
authentication—we'll enable this later in the chapter. For now, we
require the use of client certificates to even connect to the Tomcat server
in the first place. This makes it easier to diagnose whether or not you
have set this up correctly!

The final step is to import the certificate into the client browser.

Client Certificate Authentication

[330]

Importing the certificate key pair into
a browser
Depending on what browser you are using, the process of importing a certificate
may differ. We will provide instructions for Firefox and Internet Explorer here, but if
you are using another browser, please consult its help or your favorite search engine
for assistance.

Using Firefox
Follow these steps to import the key store containing the client certificate key pair.

1.	 Open the Tools menu
2.	 Click on the Options... menu item.
3.	 Click on the Advanced button/icon.
4.	 Click on the Encryption tab.
5.	 Click on the View Certificates button. The Certificate Manager should

open up.
6.	 Click on the Your Certificates tab.
7.	 Click on the Import... button.
8.	 Browse to the location where you saved the jbcppets_clientauth.p12 file

and select it .
9.	 You will need to enter the password that you used when you created the file.

The client certificate should be imported, and you should see it in the list.

Using Internet Explorer
As Internet Explorer is tightly integrated into the Windows OS, it's a bit easier to
import the key store.

1.	 Double-click the jbcppets_clientauth.p12 file in Windows Explorer. The
Certificate Import Wizard should start.

2.	 Click on Next and accept defaults until you are prompted for the
certificate password.

3.	 Enter the certificate password and click on Next.
4.	 Accept the default Automatically select the certificate store option and

click on Next.
5.	 Click on Finish.

Chapter 11

[331]

To verify that the certificate was installed correctly, you will need to follow another
series of steps.

1.	 Open the Tools menu in Internet Explorer.
2.	 Click on the Internet Options menu item.
3.	 Click on the Content tab.
4.	 Click on the Certificates button.
5.	 Click on the Personal tab, if it is not already selected. You should see the

certificate listed here.

Wrapping up testing
You should now be able to connect to the JBCP Pets site using the client certificate. If
all is set up correctly, you should be prompted for a certificate when you attempt to
access the site—in Firefox, the certificate is displayed as follows:

You'll however notice that if you attempt to access a protected section of the site,
such as the My Account section, you'll be redirected to the login page. This is
because we haven't yet configured Spring Security to recognize the information
in the certificate—at this point, all the negotiation between client and server has
stopped at the Tomcat server itself.

Client Certificate Authentication

[332]

Troubleshooting Client Certificate
authentication
Unfortunately, if we said that getting client certificate authentication configured
correctly for the first time you tried without anything going wrong was easy,
then we'd be lying to you. The fact is, although this is a great and very powerful
security apparatus, it is poorly documented by both the browser and web server
manufacturers, and the error messages, when present, can be confusing at best,
and misleading at worst.

Remember that at this point we have not involved Spring Security in the equation
at all, so a debugger will most probably not help you (unless you have the Tomcat
source code handy). Some common errors and things to check are as follows:

You aren't prompted for a certificate when you access the site. There are
many possible causes for this, and this can be the most puzzling problem
to try to solve. Here are some things to check:

Ensure the certificate has been installed in the browser client
you are using. Sometimes you need to restart the whole browser
(close all windows), if you attempted to access the site previously
and were rejected.
Ensure you are accessing the SSL port for the server (typically
8443 in a development setup), and have selected the https
protocol in your URL. Client certificates are not presented for
insecure browser connections. Make sure the browser also trusts
the server SSL certificate, even if you have to force it to trust a
self-signed certificate.
Ensure you have added the clientAuth directive to your Tomcat
configuration (or equivalent for whatever application server you
are using).
If all else fails, use a network analyzer or packet sniffer, such as
Wireshark (http://www.wireshark.org/) or Fiddler2 (http://
www.fiddler2.com/) to review the traffic and SSL key exchange
over the wire (check with your IT department first—many
companies do not allow tools of this kind on their networks).

•

°

°

°

°

Chapter 11

[333]

If you are using a self-signed client certificate, make sure the public key has
been imported into the server's trust store. If you are using a CA-assigned
certificate, make sure the CA is trusted by the JVM, or the CA certificate is
imported into the server's trust store.
Internet Explorer in particular does not report details of client certificate
failures at all (it simply reports a generic Page Cannot be Displayed error).
Use Firefox for diagnosing whether an issue you are seeing is related to
client certificates.

Configuring Client Certificate
authentication in Spring Security
Unlike authentication mechanisms that we have utilized thus far, the use of client
certificate authentication results in the user's request having been pre-authenticated
by the server. As the server (Tomcat) has already established that the user has
provided a valid and trustworthy certificate, Spring Security can simply trust this
assertion of validity.

An important component of the secure login process is still missing, that is,
authorization of the authenticated user. This is where our configuration of Spring
Security comes in—we must add a component to Spring Security that will recognize
the certificate authentication information from the user's HTTP session (populated
by Tomcat), and then validate the presented credentials against the Spring Security
UserDetailsService. As with all UserDetailsService invocations, this will result
in the determination of whether or not the user declared in the certificate is known
to Spring Security at all, and then will assign GrantedAuthority as per usual
login rules.

Configuring Client Certificate authentication
using the security namespace
With all the complexity of LDAP and OpenID configuration, configuring client
certificate authentication is a welcome reprieve. If we are using the security
namespace style of configuration, the addition of client certificate authentication
is a simple one-line configuration change, added within the <http> declaration:

<http auto-config="true" ...>
<!-- Other content omitted -->
 <x509 user-service-ref="jdbcUserServiceCustom"/>
<!-- Other content omitted -->
</http>

•

•

Client Certificate Authentication

[334]

After restarting the application, you'll again be prompted for a client certificate, but
this time you should be able to access areas of the site requiring authorization. You
can see from the logs (if you have them enabled) that you have been logged in as the
admin user. Excellent job!

How Spring Security uses certificate
information
As previously discussed, Spring Security's involvement in certificate exchange
is to pick up information from the presented certificate, and mapping the user's
credentials to a user service. What we did not see in the use of the <x509> declaration
was the magic that makes this happen. Recall that when we had set up the client
certificate, a distinguished name (DN) similar to an LDAP DN was associated with
the certificate:

Owner: CN=admin, OU=JBCP Pets, O=JBCP Pets, L=Anywhere, ST=NH, C=US

Spring Security uses the information in this DN to determine the actual username
of the principal and that it will look for in the UserDetailsService. In particular,
it allows for specification of a regular expression, which is used to match a portion
of the DN established with the certificate and utilize this portion of the DN as the
principal name. The implicit, default configuration for the <x509> declaration would
be as follows:

<x509
 subject-principal-regex="CN=(.*?),"
 user-service-ref="jdbcUserService"/>

We can see that this regular expression would match the value admin as the
principal's name. This regular expression must contain a single matching group, but
it can be configured to support the username and DN issuance requirements of your
application—for example, if the DNs for your organization's certificates include the
email or userid fields, the regular expression can be modified to use these values
as the authenticated principal's name.

Chapter 11

[335]

How Spring Security certificate
authentication works
Let's review the various actors involved in the review and evaluation of the client
certificates, and translation into a Spring Security authenticated session with the
help of following diagram:

Client Certificate Authentication

[336]

We can see that the o.s.s.web.authentication.preauth.x509.
X509AuthenticationFilter is responsible for examining the request of an
unauthenticated user for presentation of client certificates. If it sees the request
includes a valid client certificate, it will extract the principal using an o.s.s.web.
authentication.preauth.x509.SubjectDnX509PrincipalExtractor, using
regular expression matching on the certificate owner's DN, as previously described.

Be aware that, although the diagram indicates that examination
of the certificate occurs for unauthenticated users, a check is also
done for presentment of a certificate for a different user than the
one which was already used to authenticate the user. This would
result in a new authentication request using the newly provided
credentials. The reason for this should be clear—any time a user
presents a new set of credentials, the application must be aware of
this, and react in a responsible fashion by ensuring the user should
still be able to access it.

Once the certificate has been accepted (or rejected/ignored), as with other
authentication mechanisms, an Authentication token is built, and passed
along to the AuthenticationManager for authentication. We can now review
the very brief illustration of the o.s.s.web.authentication.preauth.
PreAuthenticatedAuthenticationProvider's handling of the authentication token:

Chapter 11

[337]

If you have read through our review of CAS authentication in Chapter 10, Single
Sign On with Central Authentication Service, you may note some similarities between
the processing of client certificate authenticated requests and CAS requests—this is
intentional, and in fact a similar design affects other, less used, pre-authenticated
mechanisms supported by Spring Security including Java EE role mapping and
Site Minder-style authentication. If you understand the processing flow of client
certificate authentication, understanding these other authentication types is
significantly easier.

Other loose ends
One loose end that we need to tie up is the handling of authentication denial. In
Chapter 6, Advanced Configuration and Extension, we learned about the functionality
of the AuthenticationEntryPoint (we also revisited this topic in the CAS chapter).
In a default form login scenario, the LoginUrlAuthenticationEntryPoint is used
to redirect the user to a login page if they have been denied access to a protected
resource and are not authenticated.

In contrast, in typical client certificate authentication environments, alternative
methods of authentication are simply not supported (remember that Tomcat
expects the certificate well before the Spring Security form login would take
place anyway). As such, it doesn't make sense to retain the default behavior of
redirection to a form login page. Instead, we'll modify the entry point to simply
return an HTTP 403 Forbidden message, using the o.s.s.web.authentication.
Http403ForbiddenEntryPoint. We'll configure the bean in dogstore-base.xml,
where the rest of our Spring Beans are located as follows:

<bean id="forbiddenAuthEntryPoint" class="org.springframework.
security.web.authentication.Http403ForbiddenEntryPoint"/>

Next, a simple attribute assignment on the <http> declaration puts the new entry
point in use immediately:

<http ... entry-point-ref="forbiddenAuthEntryPoint">

Client Certificate Authentication

[338]

Now, if a user tries to access a protected resource and is unable to provide a valid
certificate, they will be presented with the following page:

Note that unlike configuration of the AccessDeniedHandler that we saw in Chapter
6, the Http403ForbiddenEntryPoint cannot be reconfigured to redirect the user
to a friendly page or Spring-managed URL. Instead, such configuration would need
to be managed through the web application deployment descriptor's <error-page>
declaration, as specified by the Java EE servlet specification, or by subclassing the
Http403ForbiddenEntryPoint to override this behavior.

Other configuration or application flow adjustments that are commonly performed
with client certificate authentication are as follows:

Removal of the form-based login page altogether
Removal of the Log Out link (as there's no reason to log out, because the
browser will always present the user's certificate)
Removal of functionality to rename the user account and change password.
Removal of user registration functionality (unless you are able to tie it into
the issuance of a new certificate)

Supporting Dual-Mode authentication
It is also possible that some environments may support both certificate-based and
form-based authentication. If this is the case in your environment, it is also possible
(and trivial) to support it with Spring Security 3. We can simply leave the default
AuthenticationEntryPoint (redirecting to the form-based login page) intact and
allow the user to log in using the standard login form, if they do not supply a
client certificate.

•
•

•
•

Chapter 11

[339]

If you choose to configure your application this way, you'll need to adjust the Tomcat
SSL settings (change as appropriate for your application server). Simply change the
clientAuth directive to want instead of true:

 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 sslProtocol="TLS"
 keystoreFile="conf/tomcat.keystore"
 keystorePass="password"
 truststoreFile="conf/tomcat.truststore"
 truststorePass="password"
 clientAuth="want"
 />

We'll also need to remove the entry-point-ref that we configured in the previous
exercise, so that the standard form-based authentication workflow takes over if the
user isn't able to supply a valid certificate upon the browser first being queried.

Although this is convenient, there are a few things to keep in mind about dual-mode
(form- and certificate-based) authentication.

Most browsers will not re-prompt the user for a certificate if they have
failed certificate authentication once, so make sure that your users
are aware that they may need to re-enter the browser to present their
certificate again.

Recall that a password is not required to authenticate users with certificates; however,
if you are still using a JDBC UserDetailsService to support your form-based
authenticated users, this may be the UserDetailsService that you are also using
to give the PreAuthenticatedAuthenticationProvider information about your
users. This presents a potential security risk, as users who you intend to sign in only
with certificates could potentially authenticate using form login credentials. There are
several ways to solve this problem, and they are described in the following list:

Ensure that the users authenticating with certificates have an appropriately
strong password in your JDBC user store
Consider customizing your JDBC user store to clearly identify users who are
enabled for form-based login. This can be tracked with an additional field
on the table holding user account information, and minor adjustments to
the SQL queries used by the JdbcDaoImpl
Configure a separate user details store altogether for users who are logging
in as certificate-authenticated users, to completely segregate them from users
allowed to use form-based login

•

•

•

Client Certificate Authentication

[340]

Dual-mode authentication can be a powerful addition to your site, and can be
deployed effectively and securely, provided that you keep in mind the situations
under which users will be granted access to it.

Configuring Client Certificate
authentication using Spring Beans
Earlier in this chapter, we reviewed the flow of the classes involved in client
certificate authentication. As such, it should be straightforward for us to configure
JBCP Pets using the bean-only configuration from dogstore-explicit-base.xml.
We'll add the following bean definitions, which correspond to all the beans we've
discussed thus far:

<bean id="x509Filter" class="org.springframework.security.web.
authentication.preauth.x509.X509AuthenticationFilter">
 <property name="authenticationManager" ref="customAuthenticationMan
ager"/>
</bean>
<bean id="preauthAuthenticationProvider" class="org.
springframework.security.web.authentication.preauth.
PreAuthenticatedAuthenticationProvider">
 <property name="preAuthenticatedUserDetailsService" ref="authenticat
ionUserDetailsService"/>
</bean>
<bean id="forbiddenAuthEntryPoint" class="org.springframework.
security.web.authentication.Http403ForbiddenEntryPoint"/>	
<bean id="authenticationUserDetailsService"
 class="org.springframework.security.core.userdetails.
UserDetailsByNameServiceWrapper">
 <property name="userDetailsService" ref="jdbcUserService"/>
</bean>

We'll also need to add the filter to our filter chain (and remove the login and logout
related filters):

<bean id="springSecurityFilterChain" class="org.springframework.
security.web.FilterChainProxy">
 <security:filter-chain-map path-type="ant">
 <security:filter-chain pattern="/**" filters="
 securityContextPersistenceFilter,
 x509Filter,
 anonymousProcessingFilter,
 exceptionTranslationFilter,
 filterSecurityInterceptor" />
 </security:filter-chain-map>
</bean>

Chapter 11

[341]

Finally, we'll need to add the AuthenticationProvider implementation to the
ProviderManager, and remove all the others that are present:

<bean id="customAuthenticationManager" class="org.springframework.
security.authentication.ProviderManager">
 <property name="providers">
 <list>
 <ref local="preauthAuthenticationProvider"/>
 </list>
 </property>
</bean>

At this point, our bean-based configuration is ready for use. If you'd like
to try it out, remember to switch the reference in web.xml to use the bean-only
configuration mechanism!

Additional capabilities of bean-based
configuration
The use of Spring bean-based configuration provides us with additional capabilities
through exposure of bean properties, which aren't exposed through the security
namespace style of configuration.

Additional properties available on the X509AuthenticationFilter are as follows:

Property Description Default
continueFilterChainOn
UnsuccessfulAuthentication

If false, a failed authentication will
throw an exception, rather than allowing
the request to continue. This would
typically be set in cases where a valid
certificate is expected, and required, to
access the secured site. If true, the filter
chain will proceed, even if there is a
failed authentication.

true

checkForPrincipalChanges If true, the filter will check to see if the
currently authenticated username differs
from the username presented in the client
certificate. If so, authentication against
the new certificate will be performed,
and the HTTP session will be invalidated
(optionally, see the next attribute). If
false, once the user is authenticated,
they will remain authenticated even if
they present different credentials.

false

Client Certificate Authentication

[342]

Property Description Default
invalidateSessionOn
PrincipalChange

If true, and the principal in the
request changes, the user's HTTP
session will be invalidated prior to
being reauthenticated. If false, the
session will remain—note that this may
introduce security risks.

true

The PreAuthenticatedAuthenticationProvider has a couple of interesting
properties available to us, which are listed in the following table:

Property Description Default
preAuthenticated
UserDetailsService

Used to build a full UserDetails object from
the username extracted from the certificate.

None

throwExceptionWhen
TokenRejected

If true, a BadCredentialsException will be
thrown if the token is not properly constructed
(does not contain a username or certificate).
Typically set to true in environments where
certificates are used exclusively.

false

In addition to these properties, there are a number of other opportunities for
implementing interfaces or extending classes involved in certificate authentication
to further customize your implementation.

Considerations when implementing
Client Certificate authentication
Client certificate authentication, while highly secure, isn't for everyone, and isn't
appropriate for every situation.

Pros:

Certificates establish a framework of mutual trust and verifiability that both
parties (client and server) are who they say they are
Certificate-based authentication, if implemented properly, is much more
difficult to spoof or tamper with than other forms of authentication
If a well-supported browser is used and configured correctly, client certificate
authentication can effectively act as a single sign-on solution, enabling
transparent login to all certificate-secured applications

•

•

•

Chapter 11

[343]

Cons:

Use of certificates typically requires the entire user population to have them.
This can lead to both a user training burden, and an administrative burden.
Most organizations deploying certificate-based authentication on a large
scale must have sufficient self-service and helpdesk support for certificate
maintenance, expiration tracking, and user assistance
Use of certificates is generally an all-or-none affair, meaning that mixed-mode
authentication, offering support for non-certificate users, is not provided due
to complexity of web server configuration or poor application support
Use of certificates may not be well supported by all users in your user
population, including mobile devices
Correct configuration of the infrastructure required to support
certificate-based authentication may require advanced IT knowledge

As we can see, there are both benefits and drawbacks to client certificate
authentication. When implemented correctly, it can be a very convenient mode of
access for your users, and has extremely attractive security and non-repudiation
properties. You will need to determine for your particular situation whether or not
this type of authentication is appropriate.

Summary
In this chapter, we examined the architecture, flow, and Spring Security support for
client certificate-based authentication. We have covered the following:

Reviewed the concepts and overall flow of client certificate (mutual)
authentication
Learned the important steps required to configure Apache Tomcat for
a self-signed SSL and client certificate scenario
Configured Spring Security to understand certificate-based credentials
presented by clients
Understood the architecture of Spring Security classes related to
certificate authentication
Discovered how to configure a Spring bean-style client certificate environment
Weighed the pros and cons of this type of authentication

It's quite common for developers unfamiliar with client certificates to be confused by
many of the complexities of this type of environment. We hope that this chapter has
made this complicated subject a bit easier to understand and implement!

•

•

•

•

•

•

•

•

•
•

Spring Security Extensions
In this chapter, we'll explore the capabilities of one of the Spring Security Extensions
project implementations—an exciting capability to integrate Windows Active
Directory authentication (or other Kerberos-enabled infrastructure) with Spring
Security to provide a seamless single-sign on experience for your intranet users.

During the course of this chapter, we will:

Learn about the Kerberos authentication protocol and its adaptation to
web-based credentials presentation
Understand how a Kerberos-enabled web application fits into a
Kerberos-based secure infrastructure
Configure the JBCP Pets application to provide single sign-on authentication
for Windows users, using an Active Directory authentication store
Explore methods of using Active Directory as an LDAP
UserDetailsService, to provide you with a single point of reference for
user data

Spring Security Extensions
The Spring Security Extensions project (available at http://static.
springsource.org/spring-security/site/extensions.html) functions as
an incubator for useful extensions to Spring Security that are built upon the core
Spring Security framework. Although the project is relatively new, it already has
three exciting modules covering Kerberos authentication (the successor to NTLM
authentication in Spring Security 2), Security Assertion Markup Language 2.0
authentication, and Portlet authentication.

•

•

•

•

Spring Security Extensions

[346]

In this chapter, we will cover the basic configuration and usage of Kerberos SPNEGO
authentication. At the time of this writing, none of the Spring Security Extensions
projects were officially released, but the Kerberos project is far enough along that the
configuration shouldn't change significantly by the time you read this. Consider this
chapter a peek into the experimental side of Spring Security through these unofficial,
community-developed extensions.

A primer on Kerberos and SPNEGO
authentication
Kerberos is a mutual authentication protocol used for authenticating clients—either
individual users or network resources—against a centralized credentials repository
known as the key distribution center (KDC). The negotiation between the client
and KDC is quite involved, and well documented in several internet standards
(primarily RFC 4120, The Kerberos Network Authentication Service (V5), available
at http://tools.ietf.org/html/rfc4120).

For the purposes of the discussion in this chapter, we will simplify the level of detail
with which we describe the credential checking activity as it relates to the Kerberos
infrastructure. The general purpose of Kerberos authentication and Kerberos
infrastructure is to provide secure and trustworthy authentication of principals,
whether they be individual users, network resources, or software applications.
Kerberos describes both the security protocol itself and a software implementation
originally developed at the Massachusetts Institute of Technology (MIT). Due to the
fact that Kerberos has such a robust history, there are many excellent books covering
Kerberos in a high level of detail.

On top of the Kerberos authentication protocol, the Generic Security Service
Application Program Interface (GSS-API) was developed, also through an RFC
standard (RFC 2078, Generic Security Service Application Program Interface, Version
2, http://tools.ietf.org/html/rfc2078). The GSS-API provides a standard,
cross-platform, cross-language authentication and security API, wrapping Kerberos
(and other authentication providers). Its development goal was to provide security
developers with a consistent high-level programming interface for authentication
and security without needing to know the details of a particular security protocol.

A standard implementation of the GSS-API in the Java language is defined in
another RFC standard (RFC 2853, Generic Security Service API Version 2: Java
Bindings, http://tools.ietf.org/html/rfc2853), which is implemented in
the Sun JVM in the org.ietf.jgss package.

Chapter 12

[347]

An important thing to understand about Kerberos and GSS-API
support in Java is that the code to implement this API, in addition
to the API itself, is part of the JRE and does not require the inclusion
of any third-party libraries. In fact, you may consult the Sun website
(http://java.sun.com/javase/6/docs/technotes/guides/
security/jgss/tutorials/index.html) for some significant
documentation of these capabilities of the Sun JVM. Be aware that
other JVM implementations may not have the same capabilities as the
Sun JVM in this area.

The wiring of GSS-API authentication to a web browser occurs through the use of a
message exchange standard known as Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO). SPNEGO is an algorithm specifying the behavior of two
GSS-API implementations in determining whether they can communicate with each
other over a common security protocol. In the case of Kerberos SPNEGO, we hope
that the common security protocol through which client and server negotiate
is Kerberos.

Although SPNEGO can be used when communicating between GSS-API-enabled
applications or systems, it is the adaptation of SPNEGO for use in web client
authentication that has cemented this technology in the lexicon of web application
developers and security designers. The Microsoft-sponsored RFC 4559
(SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft
Windows, http://tools.ietf.org/html/rfc4559) describes behavior by which
a server can request GSS-API authentication using an SPNEGO request sent over
the HTTP protocol. The client browser can then respond to the SPNEGO request
and collect credentials from the end user using the native operating system's
GSS-API support. Microsoft developed this specification to support two security
implementations of GSS-API for its Windows operating system—its proprietary
NT LAN Manager (NTLM) protocol and the open Kerberos protocol. Eventually,
the convenience of single sign-on from Windows-based clients to Kerberos-enabled
server resources led to the adaptation of browser-based SPNEGO in other browsers,
including Mozilla Firefox and Apple Safari.

Hopefully we didn't lose you in terminology soup! Let's get real and review how this
all works in a web-based authentication scenario.

Spring Security Extensions

[348]

The following diagram illustrates the interaction between the three participants in
the SPNEGO Kerberos authentication process:

There are two critical pieces in the HTTP exchange between the client browser and
the application server that are important to understand before jumping into the
Spring Security implementation of SPNEGO authentication via Kerberos.

When authentication is required, the application server must send an HTTP
response header with the value WWW-Authenticate: Negotiate to the
client. This tells the client that authentication is required, using the
SPNEGO protocol.
The client will determine the user's credentials (which may result in a
prompt, depending on the browser implementation and operating system),
and respond to the server with the credentials encoded in the HTTP
Authorize request header.

Here we focus more on the browser to application server interaction, because this is
the portion that most concerns Spring Security integrators.

•

•

Chapter 12

[349]

Although it is not required for successful implementation of SPNEGO,
we recommend the use of SSL in a production environment, so
that SSO credentials remain secure throughout the web client
authentication lifecycle.

Another important piece of infrastructure to consider is the Kerberos KDC
implementation. Open source options exist, most notably, the Kerberos
implementation from MIT (the famous university), which was one of the original
sponsors of the Kerberos technology; however, the most common implementation
developers are likely to see in an enterprise environment is Microsoft Active
Directory (AD). Windows Server implementations of Active Directory can serve a
dual function as Kerberos KDCs, and as such if an organization is using AD, it is
automatically enabled for Kerberos-based authentication as well.

Kerberos authentication in
Spring Security
Much as we saw with CAS and client certificate authentication, it is the intention that
Kerberos Single Sign-On (SSO) be the only supported authentication mechanism
for the Kerberos secured website (although we will see an alternative configuration
supporting form login towards the end of this chapter). Let's review the basic steps
of configuring Kerberos authentication for Spring Security; afterwards, we'll
cover some of the required configuration steps for other participants in the
Kerberos-secured environment.

Overall Kerberos Spring Security
authentication flow
As we discussed in the overview of the SPNEGO protocol design, the key piece of
the implementation is the exchange of messages between the client's browser and the
secured application. This is where Spring Security's Kerberos Extension comes in—to
handle the negotiation of authentication credentials.

As with a typical external authentication store, such as we've seen with CAS (in
Chapter 10, Single Sign On with Central Authentication Service and in Chapter 11, Client
Certificate Authentication), it is the combined responsibility of a servlet filter and a
custom AuthenticationProvider to perform the authentication with the external
store and verify that the returned response is trustworthy and verifiable.

Spring Security Extensions

[350]

Let's review the important classes involved in the process of SPNEGO authentication
with Spring Security using the following diagram:

We can see how the services of the o.s.s.extensions.kerberos.
KerberosServiceAuthenticationProvider are primarily responsible for
coordinating the validation of the SPNEGO response from the browser. In just
a moment, we'll dive into the details of the Spring Bean configuration required
to wire these classes together!

Getting prepared
The configuration of any Kerberos environment, especially if it is backed by
Microsoft Active Directory, can be time consuming and complicated, especially if
you do not have prior experience with Kerberos. If you are deploying a Kerberos-
enabled web application into an environment, make sure the environment is
correctly configured before you start, otherwise you may spend more time
diagnosing the environment than developing your application.

Chapter 12

[351]

We'll assume for the purposes of this tutorial that you are writing the application to
authenticate in a Microsoft Active Directory (AD) environment, which is (for most
users) the most likely scenario to combine Spring Security with Kerberos. If this
describes you, when you read "Kerberos principal", simply think of this as being
equivalent to an AD user.

Before you start, make sure:

You have set up a Kerberos principal for the web application itself. We will
perform additional required configuration on the application server using
this account.
The computer from which you are connecting to the website (the one
on which your web browser is running) must be part of the Kerberos
authentication realm. For Windows users, this means that the computer
must be part of the AD domain.
The computer running the web browser must be different than the computer
running the web application. A virtual machine is handy for this.

Remember that Kerberos SSO is typically deployed for intranet applications
running within an AD or Kerberos Realm, and wouldn't be used for public-facing
web applications.

Assumptions for our examples
We'll assume the following setup for the Kerberos examples in this chapter:

Configuration Value Description
Domain name jbcppets.com The domain name of our corporate

network and website.
AD domain corp.jbcppets.com The Active Directory domain—matches

the Kerberos realm name (abbreviated as
CORP for clarity)

Website principal CORP\website The AD user corresponding to the
website service principal.

•

•

•

Spring Security Extensions

[352]

Creating a keytab file
You will need to create a keytab file, which will be used to authenticate the web
application to the KDC and allow further authentication by proxy for credentials
presented by the user. A keytab file is an encrypted copy of the private key for
a Kerberos principal, and can function in lieu of a password for authenticating
a principal to the Kerberos server.

Our application is using web-based SPNEGO Kerberos authentication. The relevant
protocol RFC (RFC 4559) specifies that the keytab must map to a principal with the
identifier HTTP/fully.qualified.web.server.name (this must be exactly
as specified). In our sample configuration, we will assume that the JBCP Pets
web application is running at web.jbcppets.com within the Kerberos domain
corp.jbcppets.com, so the principal name expected in the keytab would be
HTTP/web.jbcppets.com@CORP.JBCPPETS.COM.

As we are running AD as our Kerberos KDC, we will need to map the AD user
CORP\website to the required Kerberos principal. We can do this using the
Microsoft ktpass tool (on the AD domain controller) as follows:

ktpass -princ HTTP/web.jbcppets.com@CORP.JBCPPETS.COM -mapuser CORP\
website -out website.keytab

You should be able to visually map the arguments of this command to the
configuration scenario that we've described as follows:

HTTP/web.jbcppets.com@CORP.JBCPPETS.COM: The name of the Kerberos
principal (HTTP/web.jbcppets.com) and realm (CORP.JBCPPETS.COM)
CORP\website: The name of the domain user to map to the
Kerberos principal

Take note that Kerberos realms are case sensitive, so make sure that you are
consistent with case across all aspects of your environment. By convention,
Kerberos realms are usually specified in uppercase.

This will create a file called website.keytab in the current directory. You'll need
to securely transfer this file to the machine running the web application in order
to configure Kerberos within Spring Security. Place it in the WEB-INF/classes
directory of the JBCP Pets web application—it'll be referenced in just a moment
when we configure the Spring Security Kerberos beans.

•

•

Chapter 12

[353]

Be very careful with the keytab file—it contains information equivalent
to a pre-authenticated set of credentials to your Kerberos realm. Do
not use insecure file transfer techniques to copy this file from the
source to destination servers, because this would leave you vulnerable
to a network sniffer. If the files were compromised, a malicious user
could use these credentials to log into your Kerberos realm as the web
application user!

Note that ktpass is included with Windows 2008 Server or later. Earlier versions
of Windows Server may need to install Kerberos support files to be able to use
these command line tools.

Configuring Kerberos-related Spring beans
As most of the Kerberos authentication takes place within the Sun JVM itself,
there's not a lot of configuration (or even code) behind Spring Security
Kerberos authentication.

First, we'll need to configure the AuthenticationEntryPoint responsible for
sending the WWW-Authenticate header that is the first step in the client machine
responding with Kerberos credentials. The following bean declaration in
dogstore-base.xml will be as follows:

<bean id="kerbEntryPoint" class="org.springframework.security.
extensions.kerberos.web.SpnegoEntryPoint" />

Next, we'll need to define the filter that will parse the incoming Authorization
HTTP request header and process this as a SPNEGO sign-on request as follows:

<bean id="kerbAuthenticationProcessingFilter"
 class="org.springframework.security.extensions.kerberos.web.
SpnegoAuthenticationProcessingFilter">
 <property name="authenticationManager" ref="authenticationManager"
/>
</bean>

Remember that, as with other SSO implementations we've seen to this
point, this filter is responsible for both parsing the expected SSO header
and actually attempting to authenticate the user based on that header. The
SpnegoAuthenticationProcessingFilter will populate an o.s.s.extensions.
kerberos.KerberosServiceRequestToken with the credentials found in the HTTP
Authorization header.

Spring Security Extensions

[354]

Now we need an AuthenticationProvider that will take the credentials presented
in the populated KerberosServiceRequestToken and validate them. Similar
to what we saw in CAS authentication, it's the responsibility of the Kerberos
AuthenticationProvider to validate the token against the ticket granter.

<bean id="kerberosServiceAuthenticationProvider"
 class="org.springframework.security.extensions.kerberos.
KerberosServiceAuthenticationProvider">
 <property name="ticketValidator" ref="ticketValidator"/>
 <property name="userDetailsService" ref="jdbcUserService" />
</bean>
<bean id="ticketValidator" class="org.springframework.security.
extensions.kerberos.SunJaasKerberosTicketValidator">
 <property name="servicePrincipal" value="HTTP/web.jbcppets.com@CORP.
JBCPPETS.COM" />
 <property name="keyTabLocation" value="classpath:website.keytab"/>
</bean>

The KerberosServiceAuthenticationProvider requires a reference to a delegate
o.s.s.extensions.kerberos.KerberosTicketValidator implementation, which
is used to validate the Kerberos ticket obtained from the authentication token. The
only implementation provided by the Spring Security Kerberos Extension is an
implementation that utilizes the Sun JVM's GSS-API to both validate the contents
of the keytab (that they match the principal configured in the servicePrincipal
attribute) and perform validation of the Kerberos ticket on behalf of the
service principal.

We recognize that the servicePrincipal and keyTabLocation are references to the
configurations that we made earlier on the Kerberos server.

Where should the keytab file be placed?
Recall that the keytab file effectively presents a high risk security element,
and as such, it's not recommended that you put it on the application
classpath (although this is certainly convenient for development). Instead,
it's recommended that you place this on the file system outside of your
web application deployment directory, in a secure location. You may
reference the file using the Spring standard file: syntax.

Chapter 12

[355]

You can see that we've configured (for the moment) a reference to the JDBC
UserDetailsService. You'll have to remember to add a new user to the JDBC
bootstrap SQL with a username matching the Kerberos identity of the user you're
going to try to log in with. For example, we'll try logging in to the application with
the user kerbuser, so the full username in the database should be the fully-qualified
Kerberos principal kerbuser@CORP.JBCPPETS.COM. Add this to WEB-INF/classes/
test-users-groups-data.sql as follows:

insert into users(username, password, enabled, salt) values
('kerbuser@CORP.JBCPPETS.COM','unused',true,CAST(RAND()*1000000000 AS
varchar));
insert into group_members(group_id, username) select id,'kerbuser@
CORP.JBCPPETS.COM' from groups where group_name='Administrators';

Keep in mind that with Active Directory, it makes a lot more sense to use an LDAP
UserDetailsService, or even a custom one specifically suited to your business
needs. We'll cover this style of configuration in a moment.

Wiring SPNEGO beans to the security
namespace
We will now need to wire up the beans that we've configured to the security
namespace configuration elements. First, we'll need to add a reference to our
new AuthenticationEntryPoint (much as we did with CAS configuration in
Chapter 10) as follows:

<http ...
 entry-point-ref="kerbEntryPoint">

Now we'll insert the SPNEGO filter into the Spring Security filter chain. A suitable
location would be to replace the form login filter with the SPNEGO one, so let's
do that:

<custom-filter ref="kerbAuthenticationProcessingFilter"
position="FORM_LOGIN_FILTER" />

Finally, we'll need an <authentication-provider> reference to the new
AuthenticationProvider responsible for handling SPNEGO tickets. Let's
add that now:

<authentication-manager alias="authenticationManager">
 <authentication-provider ref="kerberosServiceAuthenticationProvider
"/>
</authentication-manager>

Spring Security Extensions

[356]

That's all the additional configuration required to enable SPNEGO SSO security for
our application!

If your machine is already properly configured for Kerberos authentication, you may
be able to start the web application now and try to authenticate to it from another
machine that is on the domain.

Try to use Internet Explorer for the first test; IE requires little to no configuration
in order to allow the user to respond manually to the SPNEGO request. You should
see a prompt similar to the following as soon as you hit a protected page such as the
My Account page:

Congratulations—if you see this prompt, and then are able to view the My Account
page after presenting the correct credentials, you have successfully configured
Kerberos authentication for your web application!

Next up is to configure Internet Explorer to pass the user's network credentials
upon demand. The following configuration settings must be present in order for
IE to respond transparently to the SPNEGO SSO request:

Ensure that the site is added to the Local Intranet security zone. You can
manually add your site to the security zone using the Security tab of the
Internet Options dialog for Internet Explorer.
Ensure that Internet Explorer Protected Mode is enabled for the intranet zone
by checking the Enable Protected Mode checkbox.
On the Advanced tab, ensure that the Enable Integrated Windows
Authentication checkbox is checked.

•

•

•

Chapter 12

[357]

With all of these settings successfully verified (and Internet Explorer restarted),
you should see that the credentials of the logged-in domain user are automatically
presented to the site via SPNEGO authentication, and the user is immediately
logged in.

Adding the Application Server machine
to a Kerberos realm
One final step if you are working on a new machine—to configure the system-wide
Kerberos settings so that the Sun GSS-API can determine where to find the Kerberos
KDC for the realm (or realms) to which users will be authenticating. This requires
the creation of a krb5.ini file, which is typically located in the Windows installation
directory (c:\Windows, or equivalent).

While the configuration syntax of this file is outside of the scope of this book, the
following basic configuration is sufficient for a single-realm environment, with the
KDC located at corp.jbcppets.com.

[domain_realm]
.jbcppets.com = CORP.JBCPPETS.COM
[libdefaults]
default_realm = CORP.JBCPPETS.COM
[logging]
[realms]
CORP.JBCPPETS.COM = {

 kdc = corp.jbcppets.com

}

tInstead of using the krb5.ini file, it is also possible to specify the default realm and
KDC using the JVM properties indicated in the following table:

Parameter Description Example
-Djava.security.krb5.realm Default realm CORP.JBCPPETS.COM

-Djava.security.krb5.kdc Default KDC corp.jbcppets.com

Generally speaking, we would recommend use of the krb5.ini file, as this file may
also be used by other Kerberos-enabled applications.

Spring Security Extensions

[358]

Special considerations for Firefox users
By default, Firefox does not support Kerberos authentication. This has been
an historical oddity (there are claims by some that this increases security), but
regardless, out of the box, Firefox simply will not prompt users when presented
with a WWW-Authenticate: Negotiate request header.

Firefox users must modify a setting in the browser's about:config screen to
explicitly add the domain (or domains) for which credentials will automatically be
sent, by providing the domain name in the network.negotiate-auth.trusted-
uris parameter, as illustrated in the following screenshot:

With this setting altered from the default (empty) setting, Firefox should automatically
pass your Windows domain credentials to the site upon request. It's unfortunate that
this option is hidden from casual users, as if this were changed Firefox would be much
easier to configure for SPNEGO than Internet Explorer!

Troubleshooting
Unfortunately, Kerberos can be extremely complicated to configure correctly
(especially for first-time developers or administrators), and Kerberos-enabling
web applications adds to this complexity.

Chapter 12

[359]

Verifying connectivity with standard tools
First and foremost, make sure that the underlying Kerberos infrastructure works
properly. This means that you should be able to verify, using standard Kerberos
tools (such as kinit or ktab), or a graphical Kerberos client such as the MIT
Kerberos for Windows (KfW) client (available at http://web.mit.edu/Kerberos/).

kinit and ktab are part of a standard JDK distribution—a sample command line for
ktab is illustrated as follows:

ktab -a kerbuser@CORP.JBCPPETS.COM -k kerbuser.keytab
Password for kerbuser@CORP.JBCPPETS.COM:xxxxx
Done!
Service key for kerbuser@CORP.JBCPPETS.COM is saved in kerbuser.keytab

The MIT Kerberos implementation provides a graphical login and configuration
interface, and may be easier for new users to grasp.

Enabling Java GSS-API debugging
There's not much logging in the Java GSS-API, and as this library does the bulk of
the work in authenticating via Kerberos, it's helpful to be able to get a bit of a view
into what it does. You may either set the JVM property -Dsun.security.krb5.
debug=true or declare the debug property of the SunJaasKerberosTicketValidator
bean as follows:

<bean id="ticketValidator" class="org.springframework.security.
extensions.kerberos.SunJaasKerberosTicketValidator">
 <property name="servicePrincipal" value="HTTP/web.jbcppets.com@corp.
jbcppets.com" />
 <property name="keyTabLocation" value="classpath:website.keytab"/>
 <property name="debug" value="true"/>
</bean>

Either of these should output a bit more helpful information to the console of the
application server in the case of failure.

Spring Security Extensions

[360]

Other troubleshooting steps
A few more general suggestions wrap up the list of common issues when
kerberizing (applying Kerberos to) your web application with the
Spring Security Kerberos Extension:

Make sure that you have standard logging for Spring Security, at least
WARN level or higher, enabled for the org.springframework.security.
extensions.kerberos package. If configuration problems or ticket
validation problems exist on the application server, these are commonly
surfaced in standard Spring logging.
Use a network traffic monitor or packet sniffer to watch the traffic
between the application server and the KDC. This type of tool will also
help when monitoring the exchange between the client browser and the
application server.
If you are using Windows, do not attempt to use the browser on the same
machine as the application server to conduct testing—it will not work! This
is because Windows will automatically use NTLM authentication. NTLM
authentication uses a similar request/response header exchange, but with
different data formats. A way to identify this problem is to look in the Spring
logs for the Negotiate header returned by the client browser. If the header
starts with TlRM, it is an NTLM header and not SPNEGO. SPNEGO headers
will start with YII and should be quite long.
Make sure you are logged in to Windows with a domain account
and not a local machine account, otherwise Windows will attempt
NTLM authentication.
Make sure that DNS resolution for all participants in the Kerberos
authentication process works from both the server and client machines.

Even with these troubleshooting steps, you may find that successful deployment of
SPNEGO and Kerberos is quite challenging—don't give up, you can get it working!

•

•

•

•

•

Chapter 12

[361]

Configuring LDAP UserDetailsService
with Kerberos
For convenience, we have configured the JDBC UserDetailsService and hardcoded
the Kerberos user IDs. Usually when configuring Kerberos authentication (especially
with Active Directory), the user details will be retrieved from AD via LDAP. We'll
walk through a typical configuration of an LDAP UserDetailsService against
Microsoft AD when using Kerberos authentication. We'll skip much of the explanation
of Spring Security's integration with LDAP, although you're welcome to jump back to
Chapter 9, LDAP Directory Services where we covered LDAP in great detail, including
some specific suggestions about integration with AD via LDAP.

We can configure the authentication provider to reference an LDAP
UserDetailsService that can be defined in the dogstore-security.xml
file as follows:

<ldap-server url="ldaps://corp.jbcppets.com/DC=corp,DC=jbcppets,DC=co
m"
 id="ldapCorp" manager-dn="CN=Administrator,CN=Users,DC=corp,DC=jbcp
pets,DC=com"
 manager-password="apassword!"/>
<ldap-user-service id="ldapUserService" server-ref="ldapCorp"
 user-search-filter="(userPrincipalName={0})" user-search-
base="CN=Users"
 group-search-base="CN=Groups"/>

The key here is the user-search-filter, which searches by the
userPrincipalName LDAP attribute—this matches the Kerberos principal name
provided during SPNEGO authentication. Take care that you provide a manager-dn,
which simply has access to the AD and is not actually a domain administrator!

Next, simply adjust the KerberosServiceAuthenticationProvider to reference
this UserDetailsService in dogstore-base.xml as follows:

<bean id="kerberosServiceAuthenticationProvider"
 class="org.springframework.security.extensions.kerberos.
KerberosServiceAuthenticationProvider">
 <property name="ticketValidator" ref="ticketValidator"/>
 <property name="userDetailsService" ref="ldapUserService" />
</bean>

Spring Security Extensions

[362]

The only caveat with this configuration technique is the mapping of authorities to
the authenticated user. Recall from Chapter 9 that Spring Security LDAP expects the
user authorities to be retrievable from LDAP in a particular way—if your AD is not
set up in a way that is compatible with the out of the box LDAP user mapping, you
may be required to write your own LdapAuthoritiesPopulator implementation.
Should you need guidance in this area, please consult the implementation classes
for this interface for direction and a good starting point.

Also note that Active Directory itself can be extremely complex and difficult to map
directly in all cases. You may need to have conversations with the IT personnel who
manage the Active Directory that you are attempting to integrate with, in order to
determine the business requirements and appropriate application model to fit the
needs of your users, and the needs of the business.

Using form login with Kerberos
Although use of SPNEGO authentication for browser-based SSO is a very common
motivation for integrating Kerberos with Spring Security, it may be that you want
to simply use Kerberos login itself as an AuthenticationProvider mechanism
(similar to the way that LDAP bind authentication works—refer to Chapter 9 for
details on this).

The benefit of configuring Kerberos authentication in this way is that we can
seamlessly support Kerberos authenticated users alongside users authenticated
using other AuthenticationProviders (LDAP, JDBC, and so on.).

If you are trying out this exercise, make sure to remove the
configurations we performed in the first section of this chapter
– most importantly, the SpnegoEntryPoint must be removed
so that the user is redirected to the login form, otherwise users
without SPNEGO will simply be denied access.

Let's now review the configuration steps. The Spring Beans that must be configured
in dogstore-base.xml really don't overlap at all with the ones that we've
configured for SPNEGO style login, so you're welcome to configure both at the
same time (although realistically, as you can't easily have SPNEGO and form login
simultaneously, you would probably not do this).

Chapter 12

[363]

The following beans are required:

<bean id="kerberosAuthenticationProvider" class="org.springframework.
security.extensions.kerberos.KerberosAuthenticationProvider">
 <property name="kerberosClient" ref="kerbJaasClient"/>
 <property name="userDetailsService" ref="jdbcUserServiceCustom"/>
</bean>
<bean id="kerbJaasClient" class="org.springframework.security.
extensions.kerberos.SunJaasKerberosClient">
 <property name="debug" value="true"/>
</bean>
<bean id="kerbGlobalJaasConfig" class="org.springframework.security.
extensions.kerberos.GlobalSunJaasKerberosConfig">
 <property name="debug" value="true"/>
 <property name="krbConfLocation" value="/path/to/krb5.conf" />
</bean>

One aspect of this configuration that we've highlighted above is the
krbConfLocation property, which points to a Kerberos V5 configuration file. This
file can be formatted in exactly the same way as the sample krb5.ini file provided
earlier in the chapter (if you're curious about the meaning of the contents of the file,
please consult the relevant Kerberos V5 documentation page at http://web.mit.
edu/kerberos/krb5-1.5/krb5-1.5.1/doc/krb5-admin/krb5.conf.html).

Please take note that, unlike the earlier references to the Kerberos keytab
file, the value of this parameter must be a physical, canonical pathname on
the file system (for example, c:\spring\krb5.conf), and not a Spring-
style file: or classpath: reference. This is because the file path is
passed directly to the Sun JVM Kerberos subsystem, and not interpreted by
a Spring Bean, as the SunJaasKerberosTicketValidator does.
Also, take note that this style of configuration changes JVM property
settings, so it may affect other Kerberos-enabled applications deployed in
the same JVM.

The default_realm listed in the configuration file is utilized to authenticate user
credentials provided without a domain name through the user interface login form.
Users can also provide credentials with a domain name (for example, kerbuser@
jbcppets.com), and normal Kerberos KDC resolution rules will apply based on
the Kerberos configuration.

Spring Security Extensions

[364]

As the intention of this style of Kerberos configuration is to support form-based
login, we simply need to configure the KerberosAuthenticationProvider as
we would configure for any other AuthenticationProvider in the security
namespace configuration file dogstore-security.xml as follows:

<authentication-manager alias="authenticationManager">
 <authentication-provider ref="kerberosAuthenticationProvider"/>
</authentication-manager>

After these configuration adjustments, you should be able to restart the application
and use the form login to log in to your Kerberos back-end. Remember that you'll
still need a UserDetailsService implementation to resolve GrantedAuthority
mappings for users. Keep in mind that you can use this type of authentication for
other AuthenticationProvider-backed authentication techniques, including
basic authentication.

Summary
In this chapter, we learned how to adapt a Kerberos environment, such as that
offered by Microsoft Active Directory within a Windows Domain, to supply
integrated single sign-on for users of Windows operating systems. This provides a
seamless, high-quality login experience to users, and eases the burden on systems
administrators. In this chapter we have:

Studied an overview of the important elements behind the Kerberos
SPNEGO authentication protocol
Learned about the infrastructure requirements and important setup steps
to support a Kerberos-enabled web application
Configured JBCP Pets to support SPNEGO Kerberos-backed single
sign-on authentication
Reviewed common troubleshooting steps for Kerberos-enabled
web applications
Examined the configuration required to expand to use AD as an LDAP
backing store for user information
Learned how to configure form-based login with a Kerberos back-end system

The next and final chapter will cover topics regarding migration from earlier
versions of Spring Security. We hope you will enjoy it!

•

•

•

•

•

•

Migration to Spring Security 3
In this final chapter, we will review information relating to common migration issues
when moving from Spring Security 2 to Spring Security 3.

During the course of this chapter we'll:

Review important enhancements in Spring Security 3
Understand configuration changes required in your existing Spring
Security 2 applications when moving them to Spring Security 3
Illustrate the overall movement of important classes and packages in
Spring Security 3

Once you have completed the review of this chapter, you will be in a good position
to migrate an existing application from Spring Security 2 to Spring Security 3.

Migrating from Spring Security 2
You may be planning to migrate an existing application to Spring Security 3, or trying
to add functionality to a Spring Security 2 application and looking for guidance in the
pages of this book. We'll try to address both of your concerns in this chapter.

First, we'll run through the important differences between Spring Security 2 and
3—both in terms of features and configuration. Second, we'll provide some guidance
in mapping configuration or class name changes. These will better enable you to
translate the examples in the book from Spring Security 3 back to Spring Security 2
(where applicable).

A very important migration note is that Spring Security 3 mandates a migration
to Spring Framework 3 and Java 5 (1.5) or greater. Be aware that in many cases,
migrating these other components may have a greater impact on your application
than the upgrade of Spring Security!

•
•

•

Migration to Spring Security 3

[366]

Enhancements in Spring Security 3
Significant enhancements in Spring Security 3 over Spring Security 2 include
the following:

The addition of Spring Expression Language (SpEL) support for access
declarations, both in URL patterns and method access specifications, which
we have covered in Chapter 2, Getting Started in Spring Security and Chapter 5,
Fine-Grained Access Control.
Additional fine-grained configuration around authentication and accessing
successes and failures, which we have covered briefly in Chapter 2,
Chapter 5, and in detail in Chapter 6, Advanced Configuration and Extension.
Enhanced capabilities of method access declaration, including annotation-
based pre-and post-invocation access checks and filtering, as well as highly
configurable security namespace XML declarations for custom backing
bean behavior. These capabilities are examined in Chapter 5.
Fine-grained management of session access and concurrency control using
the security namespace, covered in Chapter 6.
Noteworthy revisions to the ACL module, with the removal of the legacy
ACL code in o.s.s.acl and some important issues with the ACL framework
are addressed. ACL configuration and support is reviewed in Chapter 7,
Access Control Lists.
Support for OpenID Attribute Exchange, and other general improvements
to the robustness of OpenID, illustrated in Chapter 8, Opening up to OpenID.
New Kerberos and SAML single sign-on support through the Spring Security
Extensions project that we discussed in Chapter 12, Spring Security Extensions.

Other more innocuous changes encompassed a general restructuring and cleaning
up of the codebase and the configuration of the framework, such that the overall
structure and usage makes much more sense. The authors of Spring Security have
made efforts to add extensibility where none previously existed, especially in the
areas of login and URL redirection.

If you are already working in a Spring Security 2 environment, you may not
find compelling reasons to upgrade if you aren't pushing the boundaries of the
framework. However, if you have found limitations in the available extension points,
code structure, or configurability of Spring Security 2, you'll welcome many of the
minor changes that we discuss in detail in the remainder of this chapter.

•

•

•

•

•

•

•

Chapter 13

[367]

Changes to configuration in Spring
Security 3
Many of the changes in Spring Security 3 will be visible in the security namespace
style of configuration. Although this chapter cannot cover all of the minor changes
in detail, we'll try to cover those changes that will be most likely to affect you as you
move to Spring Security 3.

Rearranged AuthenticationManager
configuration
The most obvious changes in Spring Security 3 deal with the configuration of the
AuthenticationManager and any related AuthenticationProvider elements. In
Spring Security 2, the AuthenticationManager and AuthenticationProvider
configuration elements were completely disconnected—declaring an
AuthenticationProvider didn't require any notion of an AuthenticationManager
at all.

<authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"
 />
</authentication-provider>

In Spring Security 2 to declare the <authentication-manager> element as a sibling
of any AuthenticationProvider.

<authentication-manager alias="authManager"/>
<authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"/>
</authentication-provider>
<ldap-authentication-provider server-ref="ldap://localhost:10389/"/>

In Spring Security 3, all AuthenticationProvider elements must be the children of
<authentication-manager> element, so this would be rewritten as follows:

<authentication-manager alias="authManager">
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"
 />
 </authentication-provider>
 <ldap-authentication-provider server-ref=
 "ldap://localhost:10389/"/>
</authentication-manager>

Migration to Spring Security 3

[368]

Of course, this means that the <authentication-manager> element is now required
in any security namespace configurations.

If you had defined a custom AuthenticationProvider in Spring Security 2, you
would have decorated it with the <custom-authentication-provider> element as
part of its bean definition, for example, the custom AuthenticationProvider that
we implemented in Chapter 6:

<bean id="signedRequestAuthenticationProvider"
 class="com.packtpub.springsecurity.security
 .SignedUsernamePasswordAuthenticationProvider">
 <security:custom-authentication-provider/>
 <property name="userDetailsService" ref="userDetailsService"/>
<!-- ... -->
</bean>

While moving this custom AuthenticationProvider to Spring Security 3, we would
remove the decorator element and instead configure the AuthenticationProvider
as we saw in Chapter 3, using the ref attribute of the <authentication-provider>
element as follows:

<authentication-manager alias="authenticationManager">
 <authentication-provider ref=
 "signedRequestAuthenticationProvider"/>
</authentication-manager>

Of course, the source code of our custom provider would change due to class
relocations and renaming in Spring Security 3—look later in the chapter for basic
guidelines, and in the code download for this chapter to see a detailed mapping.

New configuration syntax for session
management options
In addition to continuing support for the session fixation and concurrency control
features from prior versions of the framework, Spring Security 3 adds new
configuration capabilities for customizing URLs and classes involved in session and
concurrency control management, as described in detail in Chapter 6. If your older
application was configuring session fixation protection or concurrent session control,
the configuration settings have a new home in the <session-management> directive
of the <http> element.

In Spring Security 2, these options would be configured as follows:

<http ... session-fixation-protection="none">
<!-- ... -->
 <concurrent-session-control exception-if-maximum-exceeded

Chapter 13

[369]

 ="true" max-sessions="1"/>
</http>

The analogous configuration in Spring Security 3 removes the session-fixation-
protection attribute from the <http> element, and consolidates as follows:

<http ...>
 <session-management session-fixation-protection="none">
 <concurrency-control error-if-maximum-exceeded
 ="true" max-sessions="1"/>
 </session-management>
</http>

You can see that the new logical organization of these options is much more sensible
and leaves room for future expansion.

Changes to custom filter configuration
Many users of Spring Security 2 have developed custom authentication filters
(or other filters to alter the flow of a secured request). As with custom authentication
providers, such filters were previously indicated through decoration of a bean with
the <custom-filter> element. This made it a bit difficult in some cases to tie the
configuration of a filter directly to the Spring Security configuration.

Let's see an example of the configuration for the signed request header filter from
Chapter 6, as applied to a Spring Security 2 environment.

<bean id="requestHeaderFilter" class="com.packtpub
 .springsecurity.security.RequestHeaderProcessingFilter">
 <security:custom-filter after="AUTHENTICATION_PROCESSING_FILTER"/>
 <property name="authenticationManager"
 ref="authenticationManager"/>
</bean>

Contrast this with the same configuration from Spring Security 3, and you can see
that the bean definition and security wiring are done independently. The custom
filter is declared within the <http> element as follows:

<http ...>
<!-- ... -->
 <custom-filter ref="requestHeaderFilter"
 before="FORM_LOGIN_FILTER"/>
<!-- ... -->
</http>

Migration to Spring Security 3

[370]

The bean declaration remains the same as in Spring Security 2, although, as you'd
expect, the code for a custom filter is quite different. We've included the sample
code—using Spring Security 2 classes—for this filter along with this chapter, to
provide you with some guidance as to what a custom filter should look like before
and after translation to Spring Security 3.

Also, the logical filter names for some of the filters have changed in Spring
Security 3. We present the list of changes in the following list and a full table
for reference is provided in Appendix, Additional Reference Material:

Spring Security 2 Spring Security 3
SESSION_CONTEXT_INTEGRATION_FILTER SECURITY_CONTEXT_FILTER

CAS_PROCESSING_FILTER CAS_FILTER

AUTHENTICATION_PROCESSING_FILTER FORM_LOGIN_FILTER

OPENID_PROCESSING_FILTER OPENID_FILTER

BASIC_PROCESSING_FILTER BASIC_AUTH_FILTER

NTLM_FILTER Removed in Spring Security 3

You must make these changes in your configuration files in addition to relocating the
<custom-filter> element.

Changes to CustomAfterInvocationProvider
One final bean decoration from Spring Security 2 has been replaced by a straight,
inline element reference, a CustomAfterInvocationProvider declared by the
<custom-after-invocation-provider> element.

<bean id="customAfterInvocationProvider"
 class="com.packtpub.springsecurity.security
 .CustomAfterInvocationProvider">
 <security:custom-after-invocation-provider/>
</bean>

Similar to what we saw with the other bean decorators from Spring Security 2,
in Spring Security 3, this element has been moved within the <global-method-
security> declaration, with a simple bean reference.

<global-method-security ...>
 <after-invocation-provider ref="customAfterInvocationProvider"/>
</global-method-security>

We've explored this and other aspects of method security in Chapter 5, including
some of the interesting new options for method security added in Spring Security 3.

Chapter 13

[371]

Minor configuration changes
The following points will briefly state the additional changes in configuration
attributes between Spring Security 2 and 3:

While using the auto-config attribute in Spring Security 3, remember me
services are no longer configured by default. You will need to explicitly add
the <remember-me> declaration within your <http> element.
For LDAP configuration, the default value for group-search-base-
attribute (used in LDAP authorities search) changed in Spring Security 3
from ou=Groups to an empty string (the root of the LDAP tree). We used this
attribute in Chapter 9, LDAP Directory Services.
The <filter-invocation-definition-source> decoration element, used
for configuring a filter chain manually, has been renamed in Spring Security
3 to <filter-security-metadata-source>. We performed this type of
configuration in the explicit bean configuration in Chapter 6.
The attribute exception-if-maximum-exceeded, related to the
<concurrent-session-control> element, has been moved and renamed
in Spring Security 3 to error-if-maximum-exceeded, on the new
<concurrency-control> element.
While using the in memory DAO UserDetailsService, the password
attribute is no longer required in Spring Security 3 when declaring users
in the configuration file.
Built-in support for NTLM authentication has been removed in Spring
Securitiy 3 and is intended to be replaced with Kerberos authentication
(please refer to Chapter 12 for details on configuring Kerberos). This remains
a point of concern among upgrading users and some activity exists in the
Spring Security community to retrofit Spring Security 3 with NTLM support.
It is possible that, by the time the book has been published, a Spring Security
Extensions project may exist to support NTLM in Spring Security 3.

The remainder of the changes in the XML configuration dialect for Spring Security 3
represent additions to functionality, and will not cause migration issues for existing
applications configured with the security namespace.

Changes to packages and classes
Although in very straightforward applications of Spring Security 2, the locations of
classes in packages may not matter, most applications of Spring Security don't end
up being free from some kind of ties with the underlying code. So, we felt it would
be helpful to point you in the direction of many of the overall package migrations
and class renames that occurred between Spring Security 2 and 3.

•

•

•

•

•

•

Migration to Spring Security 3

[372]

Wherever possible, we have tried to map classes as accurately as we could—an
overview of the major package moves are provided here, and (should you need it) a
more comprehensive list is provided as a download with the source code. The table
indicates the biggest relocations of classes from Spring Security 2 to Spring Security
3—we've truncated the table to include majority of changes you're likely to see.

Number
of classes

Location in Spring 2 Location in Spring 3

13 o.s.s o.s.s.authentication

13 o.s.s.acls o.s.s.acls.model

13 o.s.s.event.authentication o.s.s.authentication.event

12 o.s.s.vote o.s.s.access.vote

11 o.s.s.ui.rememberme o.s.s.web.authentication.
rememberme

10 o.s.s.providers.jaas o.s.s.authentication.jaas

10 o.s.s.securechannel o.s.s.web.access.channel

10 o.s.s.userdetails.ldap o.s.s.ldap.userdetails

9 o.s.s.providers.encoding o.s.s.authentication.encoding

8 o.s.s.config o.s.s.config.authentication

8 o.s.s.util o.s.s.web.util

7 o.s.s.config o.s.s.config.http

7 o.s.s.context o.s.s.core.context

7 o.s.s.userdetails o.s.s.core.userdetails

6 o.s.s o.s.s.access

6 o.s.s.afterinvocation o.s.s.acls.afterinvocation

6 o.s.s.event.authorization o.s.s.access.event

6 o.s.s.util o.s.s.web

5 o.s.s.annotation o.s.s.access.annotation

5 o.s.s.authoritymapping o.s.s.core.authority.mapping

5 o.s.s.providers o.s.s.authentication

5 o.s.s.token o.s.s.core.token

5 o.s.s.ui o.s.s.web.authentication

If it appears to you that classes moved substantially, you are correct! Very few classes
were untouched in the overall package reorganization as part of Spring Security 3.
Hopefully, this overview points you in the right direction for classes that you may be
looking for. Again, please consult the downloads for this chapter to review a detailed
class-by-class mapping.

Chapter 13

[373]

The benefit to this reorganization is that the entire framework is now much more
modular, and fits into discrete JAR files containing only particular elements of
functionality, as indicated in the following table (we used nnn in place of the
release number):

JAR name Functionality
spring-security-acl-nnn.jar ACL support (see Chapter 7)
spring-security-cas-client-nnn.jar CAS support (see Chapter 10)
spring-security-config-nnn.jar Overall configuration support
spring-security-core-nnn.jar Core framework and classes
spring-security-ldap-nnn.jar LDAP support (see Chapter 9)
spring-security-openid-nnn.jar OpenID support (see Chapter 8)
spring-security-taglibs-nnn.jar JSP Tag Library support (see Chapters 3,

5, and 7)
spring-security-web-nnn.jar Web tier support

This modularization means that, for example, it is possible to deploy Spring Security
to a non-web application without any web dependencies (spring-security-config
and spring-security-core might even be enough for your needs).

Summary
This chapter reviewed the major and minor changes that you will find when
upgrading an existing Spring Security 2 project to Spring Security 3. In this
chapter we have:

Reviewed the significant enhancements to the framework that are likely
to motivate an upgrade
Examined upgrade requirements, dependencies, and common types of code
and configuration changes that will prevent applications from working
post-upgrade
Investigated (at a high level) the overall code-reorganization changes that the
Spring Security authors made as part of the codebase restructuring

If this is the first chapter you've read, we hope that you return to the rest of the book,
using this chapter as a guide, to allow your upgrade to Spring Security 3 to proceed
as smoothly as possible!

•

•

•

Additional Reference Material
In this appendix, we will cover some reference material which we feel is helpful (and
largely undocumented), but too comprehensive to insert into the text of the chapters.

Getting started with JBCP Pets
sample code
As we described in Chapter 1, Anatomy of an Unsafe Application, we have made the
assumption that you have access to the Eclipse 3.4 (or 3.5) IDE, with the Web Tools
Package (WTP). The sample code is structured into different ZIP files, one per
chapter, with a single large dependencies ZIP file containing all the dependencies
required to compile and run the sample application (note that these may be out of
date with the most current versions of Spring Security by the time you read this
book, but as the combination of sample code and dependencies are a static snapshot,
they are guaranteed to continue to work as they are in perpetuity).

We would suggest that you create a new Eclipse workspace for each chapter, this
way you can switch among workspaces without having to worry about opening
and closing projects.

The following steps should help you set up the new workspace. First, we will import
the Dependencies project into the workspace:

Select the File menu, and then the Import... option. Choose the General
folder, and Existing Projects into Workspace and click on Next.
Ensure the Select root directory option is checked, and click the Browse...
button next to this text box. Locate the directory where you expanded the
Dependencies.zip file and click on OK.
You should see the Dependencies project listed. Click on Finish.

•

•

•

Additional Reference Material

[376]

Next, we'll have to import an individual chapter source code ZIP file. Let's assume
you've unzipped the source code for Chapter 2, Getting Started with Spring Security,
into a directory.

Select the File menu, and the Import... option. Choose the General folder,
and Existing Projects into Workspace. Click on Next.
Ensure the Select root directory option is checked, and then click the
Browse... button next to this text box. Locate the directory where you
expanded the Chapter 2 source code ZIP file and click on OK.
You should see the JBCPPets project and the Servers project listed. Ensure
both are checked and click Finish.

Finally, we will need to deploy the JBCP Pets web application to an instance of
Tomcat (or your favorite application server).

Right-click the JBCPPets project and then select the Run As menu. Select the
Run on Server item from the submenu.
You may be required at this point to create a new application server instance.
Simply follow the prompts for your application server until the web
application is deployed.

At this point, you should be running the JBCP Pets application! If you run into
trouble, review the following checklist:

Does Eclipse list any build errors? If there are any Java errors or classpath
errors, these are true errors and should be corrected. In some cases, the
Spring IDE plugin will report errors or warnings that are spurious.
Review the application server startup console in Eclipse for errors indicating
an unsuccessfully deployed web application. The most common issue is a
missing classpath item, or forgetting to add all classpath items to the Java EE
Module Dependencies tab of the JBCPPets project. Although this should be
done for you, we can't be sure that this will work in every version of Eclipse!

Please contact us if you have any trouble with the sample code— it's vitally
important for you to understand the code and concepts presented!

Available application events
The following table, referenced in Chapter 6, Advanced Configuration and Extension,
lists the full set of events broadcasted by various Spring Security elements
and also provides list of authentication exceptions referenced in Chapter 2.
We've omitted the package names for brevity, because all events saved are
in the o.s.s.authentication.event (for authentication-related events) and
o.s.s.access.event (for authorization-related events).

•

•

•

•

•

•

•

Appendix

[377]

Class Name When is it fired? Maps to Exception
AbstractAuthenticationEvent Common superclass

of all authentication
events. Note that this is
an abstract exception,
which is never thrown
(although it may be
caught).

AbstractAuthenticationFailureEvent Common superclass
of all authentication
failure events. Note
that this is an abstract
exception, which is
never thrown (although
it may be caught).

AuthenticationFailureBadCredentials
Event

When credentials
presented (such
as username and
password) are not
valid. It can be used to
(intentionally) obscure
UsernameNotFound
Exception.

BadCredentials
Exception

UsernameNotFound
Exception

AuthenticationFailureConcurrent
LoginEvent

When concurrent
session maximum is
exceeded.

ConcurrentLogin
Exception

AuthenticationFailureCredentials
ExpiredEvent

When UserDetails
indicates that user
credentials are expired.

CredentialsExpired
Exception

AuthenticationFailureDisabledEvent When UserDetails
indicates that user
credentials are disabled.

DisabledException

AuthenticationFailureExpiredEvent When UserDetails
indicates that user
account is expired.

AccountExpired
Exception

AuthenticationFailureLockedEvent When UserDetails
indicates that user
account is locked.

LockedException

AuthenticationFailureProvider
NotFoundEvent

Configuration
error, when an
Authentication
Provider can't be
found to authenticate a
user request.

ProviderNotFound
Exception

AuthenticationFailureProxy
UntrustedEvent

Thrown when a CAS
proxy ticket is not
trusted.

Additional Reference Material

[378]

Class Name When is it fired? Maps to Exception
AuthenticationFailureService
ExceptionEvent

Generic exception
thrown when an
underlying service
(DAO Provider, and so
on) fails.

Authentication
ServiceException

AuthenticationSuccessEvent When a user
is successfully
authenticated.

AuthenticationSwitchUserEvent When a user
successfully performs a
switch user action.

InteractiveAuthenticationSuccess
Event

When a user
is successfully
authenticated by
presenting a full set
of credentials (similar
to IS_FULLY_
AUTHENTICATED
GrantedAuthority
criteria).

AbstractAuthorizationEvent Common superclass of
all authorization events.

AuthenticationCredentialsNot
FoundEvent

When a user has not
been authenticated, and
tries to invoke a method
requiring access check.

AuthorizationFailureEvent When an access check
before or after a method
fails.

AuthorizedEvent When an access check
before or after a method
succeeds.

PublicInvocationEvent When a non-
authenticated request
on a secured object
succeeds.

SessionCreationEvent When HttpSession is
created.

SessionDestroyedEvent When HttpSession is
destroyed.

Appendix

[379]

Spring Security virtual URLs
The following URLs are treated as virtual URLs by Spring Security, and watched
(and processed) as part of servlet filter processing, independently of your code.
Remember that these URLs are relative to your web application's context root.

/j_spring_security_check—checked by
UsernamePasswordAuthenticationFilter for username/password form
authentication.
/j_spring_openid_security_check—checked by
OpenIDAuthenticationFilter for OpenID returning authentication
(from the OpenID provider).
/j_spring_cas_security_check—used by CAS authentication upon
return from CAS SSO login.
/spring_security_login—the URL used by the
DefaultLoginPageGeneratingFilter when configured to auto-generate
a login page.
/j_spring_security_logout—used by LogoutFilter to detect a
log out action.
/saml/SSO—used by the Spring Security SAML SSO extension
SAMLProcessingFilter to process a SAML SSO sign-on request.
/saml/logout—used by the Spring Security SAML SSO extension
SAMLLogoutFilter to process a SAML SSO sign-out request.
/j_spring_security_switch_user—used by the SwitchUserFilter
to switch users to another user.
/j_spring_security_exit_user—used to exit the switch
user functionality.

Note that some of this functionality was not covered in this book, but we've
included everything for the sake of completeness.

Method security explicit bean
configuration
The dogstore-explicit-base.xml file in the Chapter 6 source code contains the
full set of bean declarations listed here. We chose not to include it in Chapter 6 itself,
because it doesn't have much associated explanation required (refer to Chapter 5,
Fine-Grained Access Control, for the roles of the individual beans involved).

•

•

•

•

•

•

•

•

•

Additional Reference Material

[380]

Here is the full configuration listing required to enable method security through
Spring Bean configuration:

<!-- ** -->
<!-- Method Authorization -->
<!-- ** -->

<bean class="org.springframework.security.access.intercept.
aopalliance.MethodSecurityInterceptor" id="methodSecurityInterceptor">
 <property name="accessDecisionManager" ref="methodAccessDecisionMan
ager"/>
 <property name="authenticationManager" ref="customAuthenticationMan
ager"/>
 <property name="securityMetadataSource" ref="delegatingMetadataSour
ce"/>
 <property name="afterInvocationManager" ref="afterInvocationManager
"/>
</bean>

<bean class="org.springframework.security.access.intercept.
aopalliance.MethodSecurityMetadataSourceAdvisor" id="methodSecurityMet
adataSourceAdvisor">
 <constructor-arg value="methodSecurityInterceptor"/>
 <constructor-arg ref="delegatingMetadataSource"/>
</bean>
<bean class="org.springframework.aop.framework.autoproxy.
DefaultAdvisorAutoProxyCreator" id="defaultAdvisorAutoProxyCreator">
 <property name="beanName" value="methodSecurityMetadataSourceAdviso
r"/>
</bean>

<bean class="org.springframework.security.access.intercept.
AfterInvocationProviderManager" id="afterInvocationManager">
 <property name="providers">
 <list>
 <ref local="postAdviceProvider"/>
 </list>
 </property>
</bean>

<bean class="org.springframework.security.access.vote.
AffirmativeBased" id="methodAccessDecisionManager">
 <property name="decisionVoters">
 <list>

Appendix

[381]

 <ref bean="preAdviceVoter"/>
 <ref bean="roleVoter"/>
 <ref bean="authenticatedVoter"/>
 <ref bean="jsr250Voter"/> <!-- For JSR 250 Method Annotations
-->
 </list>
 </property>
</bean>

<!-- Overall Delegating Metadata Source -->
<bean class="org.springframework.security.access.method.
DelegatingMethodSecurityMetadataSource" id="delegatingMetadataSource">
 <property name="methodSecurityMetadataSources">
 <list>
 <ref local="prePostMetadataSource"/>
 <ref local="securedMetadataSource"/>
 <ref local="jsr250MetadataSource"/>
 </list>
 </property>
</bean>

<!-- JSR 250 Method Voters -->
<bean class="org.springframework.security.access.annotation.
Jsr250MethodSecurityMetadataSource" id="jsr250MetadataSource"/>
<bean class="org.springframework.security.access.annotation.
Jsr250Voter" id="jsr250Voter"/>

<!-- Spring @Secured Beans -->
<bean class="org.springframework.security.access.annotation.
SecuredAnnotationSecurityMetadataSource" id="securedMetadataSource"/>

<!-- @Pre/@Post Method Advice Voters -->
<bean class="org.springframework.security.access.prepost.
PreInvocationAuthorizationAdviceVoter" id="preAdviceVoter">
 <constructor-arg ref="exprPreInvocationAdvice"/>
</bean>
<bean class="org.springframework.security.access.prepost.
PostInvocationAdviceProvider" id="postAdviceProvider">
 <constructor-arg ref="exprPostInvocationAdvice"/>
</bean>
<bean class="org.springframework.security.access.prepost.
PrePostAnnotationSecurityMetadataSource" id="prePostMetadataSource">
 <constructor-arg ref="exprAnnotationAttrFactory"/>
</bean>

Additional Reference Material

[382]

<!-- @Pre/@Post Method Expression Handler -->
<bean class="org.springframework.security.access.expression.method.
DefaultMethodSecurityExpressionHandler" id="methodExprHandler"/>
<bean class="org.springframework.security.access.expression.method.
ExpressionBasedPreInvocationAdvice" id="exprPreInvocationAdvice">
 <property name="expressionHandler" ref="methodExprHandler"/>
</bean>
<bean class="org.springframework.security.access.expression.method.
ExpressionBasedPostInvocationAdvice" id="exprPostInvocationAdvice">
 <constructor-arg ref="methodExprHandler"/>
</bean>
<bean class="org.springframework.security.access.expression.method.
ExpressionBasedAnnotationAttributeFactory" id="exprAnnotationAttrFact
ory">
 <constructor-arg ref="methodExprHandler"/>
</bean>

Please note that explicit bean configuration is very tightly coupled to the version
of Spring Security that you are using (as we also noted in Chapter 6). Refer to the
o.s.s.config.method.GlobalMethodSecurityBeanDefinitionParser if you are
encountering issues with the beans listed here in your version of Spring Security.

This configuration enables JSR-250 annotations, @Secured, and @Pre/@Post
annotations. You may comment or remove the relevant supporting beans
(for example @Secured) if you are not using them. Remember that both the
SecurityMetadataSource and AccessDecisionVoter should be removed.

Logical filter names migration reference
As discussed in Chapter 13, Migration to Spring Security 3, many of the logical filter
names (used in the <custom-filter> element) changed when we migrate from
Spring Security 2 and 3. We present a full table of the changes here, to ease your
migration of custom filter configuration from Spring Security 2 to 3:

Appendix

[383]

Spring Security 2 Spring Security 3
CHANNEL_FILTER CHANNEL_FILTER

CONCURRENT_SESSION_FILTER CONCURRENT_SESSION_FILTER

SESSION_CONTEXT_INTEGRATION_
FILTER

SECURITY_CONTEXT_FILTER

LOGOUT_FILTER LOGOUT_FILTER

PRE_AUTH_FILTER PRE_AUTH_FILTER

CAS_PROCESSING_FILTER CAS_FILTER

AUTHENTICATION_PROCESSING_FILTER FORM_LOGIN_FILTER

OPENID_PROCESSING_FILTER OPENID_FILTER

LOGIN_PAGE_FILTER is not present in
Spring Security 2

LOGIN_PAGE_FILTER

DIGEST_AUTH_FILTER is not present in
Spring Security 2

DIGEST_AUTH_FILTER

BASIC_PROCESSING_FILTER BASIC_AUTH_FILTER

REQUEST_CACHE_FILTER is not present in
Spring Security 2

REQUEST_CACHE_FILTER

SERVLET_API_SUPPORT_FILTER SERVLET_API_SUPPORT_FILTER

REMEMBER_ME_FILTER REMEMBER_ME_FILTER

ANONYMOUS_FILTER ANONYMOUS_FILTER

SESSION_MANAGEMENT_FILTER is not
present in Spring Security 2

SESSION_MANAGEMENT_FILTER

EXCEPTION_TRANSLATION_FILTER EXCEPTION_TRANSLATION_FILTER

NTLM_FILTER NTLM_FILTER is removed in Spring Security 3
FILTER_SECURITY_INTERCEPTOR FILTER_SECURITY_INTERCEPTOR

SWITCH_USER_FILTER SWITCH_USER_FILTER

Index
Symbols
<authorize> tag 128
<embedded-database> declaration 116
<intercept-url> declarations 119
<logout> element

about 66
attributes 66

@Autowired annotation 261
@PostFilter annotation

about 149
processing flow 150, 151

@Pre/@Post annotation 382
@PreAuthorize method annotation 136
@PreFilter annotation

about 149-153
features 153

@RolesAllowed annotation 139
@Secured annotation 222, 382 139

A
AbstractAuthenticationEvent 377
AbstractAuthenticationFailureEvent 377
AbstractAuthorizationEvent 378
access

configuring, SpEL expression used 51-54
access attribute 146
access control entries. SeeÂ€ ACEs
AccessDecisionManager

about 25, 46, 47
configuring 49, 220

access denied destination url
configuring 184

AccessDeniedException
causes 186
controller action handler method, adding

184, 185
AccessDeniedHandler

configuring 184
access denied page

writing 185
AccountController 315
ACEs

about 216
factors 216

Acess Control Lists. SeeÂ€ ACLs
ACL conceptual object

ACE 216
ACL 216
object identity 216
SID 216

ACL deployment
considerations 243-247

AclEntryVoter 229
ACLs

about 213
custom ACL permission declaration 231
Ehcache ACL caching 241
mutable ACLs 237
permissions 228, 229
SpEL support 235
Spring Security JSP tag library 234, 235
using, for business object 213, 215

ACL scalability matrix 245
ACL tables

adding, to HSQL database 218, 219
Active Directory (AD) 96
additionalAuthenticationChecks

method 167

[386]

advanced CAS configuration
about 309
attribute retrieval 309
attribute retrieval, uses 320
attributes, returning in CAS assertion 318,

319
CAS assertion, examining 315, 316
CAS capabilities 321
embedded LDAP server, connecting to

311-314
LDAP attributes, mapping to CAS

attributes 316, 317
SAML ticket validation 319
UserDetails, getting from CAS assertion

314
advanced CAS integration

about 309
CAS internal authentication, working 310,

311
advanced configuration, JdbcDaoImpl

about 95
custom SQL queries, using 100, 101
embedded HSQL database creation, updat-

ing 98
group-based authorization, configuring 96
initial load SQL script, modifying 97
JDBC SQL queries, determining 99
legacy database schema, using with data-

base-resident authentication 98, 99
properties, setting for using groups 97

advanced method security
about 144
method data, securing through Role-based

filtering 149
method parameter binding, working 147,

148
method parameters, incorporating 147
method security rules, bean decorators used

145, 146
advanced Spring Security bean-based

configuration
about 196
bean-based configuration 203
bean attributes, adjusting 196
configuration, selecting 204, 205
equivalent Spring bean configuration 202,

203

ExceptionTranslationFilter 202
explicit configuration, wrapping up 204
LogoutFilter 198
manual configuration, of services 197
missing filters, declaring 198
RememberMeAuthenticationFilter 199, 200

AffirmativeBased class 49
alternate password attribute 289
anonymous, SpEL properties 53
AnonymousAuthenticationFilter 193
AOP 139
AOP auto-proxying 143
Apache Commons Logging 208
Apache Tomcat, setting up for SSL

about 117
server key store, generating 118
SSL Connector, configuring 118, 119

application, securing
about 26
issues 30, 31
Spring DelegatingFilterProxy, adding to

web.xml file 27, 28
Spring Security XML configuration file,

adding to web.xml 28-30
Spring Security XML configuration file,

implementing 26, 27
application events 376
application functionality

about 124
application security, planning for 124
page-level security, planning for 126
user roles, planning 124

ApplicationListener 208
application security

planning 124
application server machine

adding, to Kerberos realm 357
application technology 12
array method 151
Aspect Oriented Programming. SeeÂ€ AOP
Attribute Exchange. SeeÂ€ AX
attribute retrieval, CAS

about 309
uses 320

authenticated, SpEL properties 54
authentication

about 15, 16, 22

[387]

credential-based authentication 22
hardware authentication 23
two-factor authentication 22

AuthenticationCredentialsNotFoundEvent
378

AuthenticationEntryPoint
features 187

authentication event handling 205, 206
authentication event listener

configuring 207
custom application event listener, building

207, 208
required bean dependencies, declaring 207

authentication exceptions
about 44, 45
BadCredentialsException 45
LockedException 45
UsernameNotFoundException 45

AuthenticationFailureBadCredentialsEvent
377

AuthenticationFailureConcurrentLogin-
Event 377

AuthenticationFailureCredentialsExpiredE-
vent 377

AuthenticationFailureDisabledEvent 377
AuthenticationFailureExpiredEvent 377
AuthenticationFailureLockedEvent 377
AuthenticationFailureProviderNotFound-

Event 377
AuthenticationFailureProxyUntrustedEvent

377
AuthenticationFailureServiceException-

Event 378
authentication flow, CAS 300, 301
authentication interface

about 39
AuthenticationManager 39
AuthenticationProvider 39
List<GrantedAuthority> getAuthorities()

method 39
methods 39
Object getCredentials() method 39
Object getDetails() method 39
Object getPrincipal() method 39

AuthenticationManager configuration
modifications 367

AuthenticationProvider
about 162
combining 167, 168
configuring 104
diagrammatic representation 163

AuthenticationSuccessEvent 378
AuthenticationSwitchUserEvent 378
authentication token

about 163
customizing 163, 164

authenticationUserDetailsService attribute
308

authorities 23
authorization

about 16, 23
example 23-25

AuthorizationFailureEvent 378
AuthorizedEvent 378
auto-config

about 36
functions 36

auto-config attribute 32
AX

about 264
attribute values 264
enabling, in Spring Security OpenID 265,

266
Google OpenID support 267
limitations 267

B
BaseController class 59
BasePermission object 228
boolean userExists(String username)

method 93
bootstrap password encoder

configuring 105, 106
bootstrap process 102
business tier security

about 134
business methods, securing 135
method security, ways 137
method security, working 141-144
post-authorization 134
pre-authorization 134

[388]

C
CAS

about 162, 299
advanced configuration capabilities 321
authentication flow 300, 301
benefits 299, 300
configuring 302
installing 302
Spring Security, integrating with 301

CasAuthenticationEntryPoint 304
CAS integration

authenticity, proving with CasAuthentica-
tionProvider 307, 309

CasAuthenticationEntryPoint, adding 304
CAS ticket verification, enabling 305, 306
configuring 303
with Spring Security 301

CAS internal authentication
working 310, 311

CAS ticket verification
enabling 305

Central Authentication Service. SeeÂ€ CAS
changePassword functionality

enhancing 111
changePassword method 94, 111, 137
client certificate authentication

about 324
advantages 342
configuring, in Spring Security 333
configuring, Spring Beans used 340, 341
disadvantages 343
infrastructure, setting up 326
testing 331
troubleshooting 332
working 324-326

client certificate authentication, in Spring
Security

configuring 333
configuring, security namespace used 333
dual-mode authentication, supporting

338-340
client certificate key pair

creating 327
importing, Firefox used 330
importing, IE used 330
importing, into browser 330

collection method 151
Common Table Expression (CTE) 223
concurrency control 170
concurrent session control

about 177, 178
active users count, displaying 179, 180
benefits 179
configuring 176, 177
testing 178
users information, displaying 180, 181

conditional rendering, Spring Security 2
way

conditional display, based on absence of
role 130

conditional display, based on all of a list of
roles 130

conditional display, based on one of a list of
roles 130

JSP Expressions, using 131
configuration, Spring Security ACL support

about 217
Access Decision Manager, configuring 220
ACL tables, adding to HSQL database 218,

219
simple ACL entry, creating 226, 227
simple target scenario, defining 217
supporting ACL Beans, configuring 221-

225
ConsensusBased class 49
considerations, ACL deployment

about 243
ACL scalability 243, 244
performance modelling 243, 244

constructor injection 221
controller logic

about 131
conditional display, adding to Log In link

131
model data, populating 132
using 131

Convention over Configuration (CoC) rules
29

core security concepts, Spring Security
about 22
authentication 22
authorization 23

createUser method 261

[389]

credential-based authentication 22
Cross-Site Scripting (XSS) 73, 175
custom ACL permission declaration 231-234
CustomAfterInvocationProvider

modifications 370
custom authentication failure handler

configuring 260
custom AuthenticationProvider

authentication token, customizing 162, 163
considerations, when writing 170
multiple AuthenticationProvider interfaces,

combining 167, 168
request header AuthenticationProvider,

writing 166, 167
request header processing servlet filter,

writing 164, 165
simple single sign-on, implementing 162
single sign-on, stimulating with request

headers 169, 170
writing 162

customersOnly property 149
custom implementation, SpEL expression

handler
building 210, 211

CustomJdbcDaoImpl class 111
custom JDBC UserDetailsService imple-

mentation
about 92
custom JDBC UserDetailsService class,

creating 92
Spring Bean declaration, adding 92

custom login page
implementing 59
login controller, implementing 59
login JSP, adding 60, 61

custom RememberMeServices
configuring 78, 79

custom salt source
baseline UserDetails implementation,

overriding 113
configuring 111
CustomJdbcDaoImpl functionality, extend-

ing 113-115
CustomJdbcDaoImpl UserDetails service,

tweaking 112
database schema, extending 112

custom security filter
IP filtering, at servlet filter level 158
writing 158

custom servlet filter
writing 158, 159

D
DaoAuthenticationProvider 104
database-backed authentication

about 88
custom JDBC UserDetailsService,

implementing 92
database-resident authentication store,

configuring 88
JDBC-based user management 93
working 90, 91

database-resident authentication store con-
figuration

about 88
default Spring Security schema, creating 88
HSQL embedded database, configuring 89
JdbcDaoImpl authentication store, configur-

ing 89
user definitions, adding to schema 90

database bootstrap passwordEncoder
writing 105

database credential security 16, 17
decide method 46
DefaultLoginPageGeneratingFilter class 61
denyAll, SpEL properties 53
dogstore-base.xml file 160
dogstore-explicit-base.xml file 379, 381
dual-mode authentication 338

E
Ehcache ACL caching

about 241
configuring 241

embedded LDAP server
running 275
troubleshooting 276, 277

exception handling
about 182
configuring 183

[390]

expired session redirect
configuring 179

explicit LDAP bean configuration
about 292
external LDAP server reference, configur-

ing 293
LdapAuthenticationProvider, configuring

293, 294
Microsoft Active Directory, integrating with

294, 296, 297
role discovery, delegating to UserDe-

tailsService 297
external LDAP server

integrating with 292
external LDAP server reference

configuring 293

F
filterCategories method 153
filter chain 33
FilterSecurityInterceptor 193, 194, 305
fine-grained authorization

about 123
methods 127

fine-grained authorization methods
about 127
controller logic, using 131
Spring Security tag library, using 128

Firefox
using, for importing client certificate 330

form login
configuring, with Kerberos 362-364

fullyAuthenticated, SpEL properties 54

G
Generic Security Service Application Pro-

gram Interface. SeeÂ€ GSS-API
getAllPrincipals method 181
getAllSessions(principal, includeExpired)

method 181
getCategories method 153
Google OpenID support 267
GrantedAuthority declarations 95
Group-Based Access Control (GBAC) 96
group-role-attribute 280
group-search-base attribute 279

group-search-filter attribute 280
GSS-API 346

H
hardware authentication 23
hasAnyRole(role) method 53
hash attribute 103
hasIpAddress(ipAddress) method 53
hasPermission function 236
hasRole(role) method 53
Health Insurance Privacy and Accountabil-

ity Act (HIPAA) 14
href attribute 66
HSQL embedded database

configuring 89
HTTPS 117

I
id attribute 78
identifier property 230
IE

using, for importing client certificate 330
ifAnyGranted attribute 130
implementation classes

LdapShaPasswordEncoder 103
Md4PasswordEncoder 103
Md5PasswordEncoder 103
PlaintextPasswordEncoder 103
ShaPasswordEncoder 103

in-memory credential store
change password handler, adding to Ac-

countController 84
change password page, building 83
extending 80
InMemoryDaoImpl, extending 81

in-page authorization
configuring 132, 133

infrastructure, client certificate authentica-
tion

about 326
client certificate key pair, creating 327
client certificate key pair, importing in

browser 330
public key infrastructure 326, 327
setting up 326
Tomcat trust store, configuring 328, 329

[391]

InMemoryDaoImpl
about 80
extending, InMemoryChangePasswordDao-

Impl used 81
InteractiveAuthenticationSuccessEvent 378
intersection 24
invalidate-session attribute 66
IP-aware remember me service

building 75
custom RememberMeServices, configuring

78, 79
TokenBasedRememberMeServices, extend-

ing 76-78
IP filtering, at servlet filter level 158
IP servlet filter

adding, to Spring Security filter chain 161
configuring 160

issues, Spring Security 30, 31

J
Java Standard Tag Library (JSTL) 131
JBCP pets application architecture

about 11
data access layer 11
service layer 11
web layer 11

JBCP Pets sample code 375, 376
JDBC-based user management 93, 94
JdbcDaoImpl

advanced configuration 95
configuring 92

JdbcDaoImpl authentication store
configuring 89

JdbcMutableAclService 238
interacting with 239, 241

JSPs
enabling, Spring Security JSP tag library

used 234, 235
JSR-250 compliant standardized rules 137

K
Kerberos 346
Kerberos-related Spring beans

configuring 353, 354

Kerberos authentication, Spring Security
about 349
application server machine, adding to

Kerberos realm 357
considerations, for Firefox users 358
flow 349
Kerberos-related Spring beans, configuring

353, 354
Kerberos environment, configuring 350,

351
keytab file, creating 352
SPNEGO beans, wiring to security name-

space 355, 356
troubleshooting 358

Kerberos environment
configuring 350, 351

Kerberos examples
AD domain 351
domain name 351
website principal 351

Kerberos Spring Security authentication
flow 349, 350

key attribute 72
key distribution center (KDC) 346
keytab file

about 352
creating 352

L
LDAP

about 272
attribute names 273
embedded LDAP server, running 275
integration, configuring 275
remember me functionality, using 291
sample LDAP schema 272

LDAP attribute names
c 274
cn 274
dc 274
o 274
ou 274
uid 274
userPassword 274

[392]

LDAP authentication process
about 277
user credentials, authenticating 278, 279
UserDetails attributes, mapping 282, 283
user role membership, determining 279-282

LDAP AuthenticationProvider
configuring 293, 294
enabling 276

LDAP configuration
about 283
alternate password attribute, using 289
LDAP, using as UserDetailsService 290
password comparison authenticator 284
sample JBCP LDAP users 283
UserDetailsContextMapper, configuring

287
LDAP Data Interchange Format. SeeÂ€ LDIF
LDAP integration

AuthenticationProvider, enabling 276
configuring 275
embedded LDAP, troubleshooting 276, 277
LDAP server reference, configuring 276
server reference, configuring 275

LdapShaPasswordEncoder class 103
LDAP UserDetailsService

configuring, with Kerberos 361, 362
LDIF 275
Lightweight Directory Access Protocol. SeeÂ€

LDAP
List<GrantedAuthority> getAuthorities()

method 39
logical filter names migration reference 382
login page

customizing 57
logout-success-url attribute 66
logout-url attribute 64, 66
logout functionality

about 63
logout configuration directives 66
logout link, adding to site header 63
logout URL, changing 66
working 64, 65

M
Massachusetts Institute of Technology

(MIT) 346

Md4PasswordEncoder class 103
MD5

about 68
working 68

Md5PasswordEncoder class 103
method attribute 128
method authorization types 141

comparing 140
method data

securing, Role-based filtering used 149
methodExprHandler 236
method parameter binding

working 147, 148
method parameters

incorporating 147
method security

@PreAuthorize method annotation, adding
136

@Secured annotation, using 139
AOP, using 139, 140
basics 135
enabling, through Spring Bean configura-

tion 379-382
JSR-250 compliant standardized rules 137,

138
method annotations, using 136
method authorization types, comparing

140, 141
method parameters, incorporating 147
Role-based data filtering, adding with @

PostFilter 150-152
security decorators, using 145, 146
validating 136
warning 154
ways 137
working 141-144

Microsoft Active Directory LDAP integra-
tion 294-297

minimal servlet filter set
configuring 191

minimal supporting object set
configuring 195

multitudes, application events 209
mutable ACLs

about 237
authorization 237

[393]

JdbcMutableAclService, interacting with
239, 241

Spring transaction manager, configuring
238

mutual authentication 324

N
Network Address Translation (NAT) 158
NT LAN Manager 347

O
Object getCredentials() method 39
Object getDetails() method 39
Object getPrincipal() method 39
ObjectIdentity 216, 223
onLoginSuccess method 76
OpenID

about 249
benefits 249
registration process, implementing 258
security 268
signing up 251

OpenID authentication
enabling, with Spring Security 252

OpenID identifiers
resolving 255-258

OpenID login form
writing 252, 253

OpenID provider 250
OpenID security 268
OpenID support

configuring, in Spring Security 253
OpenID user registration issue 255
OpenID users

adding 254, 255
OWASP Top Ten 74

P
page-level security

planning 126
password change management

features 85
implementing 80
in-memory credential store, extending 80

password comparison authentication, LDAP
about 284
configuring 285
limitations 286
password encoding 285
password storage 285

PasswordEncoder
configuring 104

password encoding
configuring 104

Payment Card Industry Data Security
Standard (PCI DSS) 14

permission implementation 228
permissions, ACLs

about 228
working 228,-230

permitAll, SpEL properties 53
Personally Identifiable Information (PII) 14
PlaintextPasswordEncoder class 103
post-authorization, business tier security

134
pre-authorization, business tier security 134
principal pseudo-property 148
processAutoLoginCookie method 77
PublicInvocationEvent 378
public key infrastructure, client certificate

authentication 326, 327

R
ReflectionSaltSource 108
registration process, OpenID

custom authentication failure handler, con-
figuring 260

implementing 258
login and registration request, differentiat-

ing between 259
OpenID registration functionality, adding

to controller 260-262
OpenID registration option, adding 258,

259
rememberMe, SpEL properties 54
remember me configuration

modifying 115
new SQL script, adding 116
remember me services, configuring 116
SQL, adding 115

[394]

remember me cookie 69
remember me feature

about 67
configuration directives 72
implementing 67, 68
security 73, 74
user lifecycle 71
working 68-71

remember me functionality 291
remember me implementation 115
remember me signature

customizing 79
request header AuthenticationProvider

writing 166, 167
request header processing servlet filter

writing 164-166
requests

authorizing 45, 46
processing 32

role-prefix attribute 280
roles 23

S
salted password

about 106-108
categories 107
configuring 108, 109
DatabasePasswordSecurerBean, augment-

ing 109, 110
PasswordEncoder, wiring to SaltSource 109
SaltSource Spring bean, declaring 109

SAML 319
SAML ticket validation 320
sample application

about 10
application technology 12
JBCP pets application architecture 11

sample JBCP LDAP users 283
sample LDAP schema 272, 273
scalability attributes

ACL_CLASS 244
ACL_ENTRY 244
ACL_OBJECT_IDENTITY 244
ACL_SID 244

secured resources 23

secure passwords
AuthenticationProvider, configuring 104
bootstrap password encoder, configuring

105
configuring 101, 102, 103
database bootstrap passwordEncoder, writ-

ing 105
PasswordEncoder, configuring 104
password encoding, configuring 104

Secure Sockets Layer. SeeÂ€ SSL
Secure Sockets Layer (SSL) protocol 324
security, remember me feature

about 73
authorization rules 74, 75
IP-aware remember me service, building 75
remember me signature, customizing 79
SSL, using 73

security audit
about 10
sample application 10

security audit results
authentication 15
authorization 16
database credential security 16
reviewing 13
sensitive information 17
transport-level security 17

SecurityContextPersistenceFilter 192
security identity. SeeÂ€ SID
security pruning 149
security trimming 149
sensitive information 17
series identifier 117
ServiceProperties object 304
service property 305
servlet filters 33

AnonymousAuthenticationFilter 35
BasicAuthenticationFilter 35
DefaultLoginPageGeneratingFilter 35
ExceptionTranslationFilter 35
LogoutFilter 34
RequestCacheAwareFilter 35
SecurityContextHolderAwareRequestFilter

35
SecurityContextPersistenceFilter 34
SessionManagementFilter 35
UsernamePasswordAuthenticationFilter 35

[395]

session-fixation-protection options
comparing 175
migrateSession 175
newSession 175
none 175

SessionCreationEvent 378
SessionDestroyedEvent 378
session fixation attacks

about 171
diagrammatic representation 172
preventing, Spring Security used 172, 173
simulating 173, 174
working 172

session fixation protection
configuring 171

session management
about 170
session fixation protection, configuring 171
user protection, enhancing 176

setCookie method 77
ShaPasswordEncoder class 103
SID 215
simple ACL entry

creating 226, 227
Simple and Protected GSS-API Negotiation

Mechanism. SeeÂ€ SPNEGO
simple target scenario

defining 217
single sign-on with request headers

simulating 169
site

portion, securing automatically 120, 121
portions, securing automatically 119
port mapping, securing 121
securing, SSL used 117

SiteMinder 162
SpEL expression 51
SpEL methods

hasAnyRole(role) 53
hasIpAddress(ipAddress) 53
hasRole(role) 53

SpEL properties
anonymous 53
authenticated 54
denyAll 53
fullyAuthenticated 54
permitAll 53

rememberMe 54
SpEL support, ACL 235, 236
SPNEGO 347
SPNEGO beans

wiring, to security namespace 355, 356
Spring_Security_login 41, 42
Spring ACL

Ehcache, using 242
Spring ACL system

about 215
object identity 216
SID 215

Spring bean-based configuration
properties 341, 342
using, for client certificate authentication

340, 341
Spring DelegatingFilterProxy

adding, to web.xml 27, 28
Spring Expression Language. SeeÂ€ SpEL

expression
Spring Security

ACLs 215
business tier, securing 134
certificate authentication, working 335-337
certificate information, using 334
concurrency control 170
configuring, to use as Spring MVC login

page 61-63
configuring, to use InMemoryChangePass-

wordDaoImpl 82
core security concepts 22
critical pieces, HTTP exchange 348
database-backed authentication 88
login page, customizing 57
logout functionality 63
password change management, implement-

ing 80
remember me feature 67
session management 171
virtual URLs 379

Spring Security-CAS integration 301, 302
Spring Security 2

Spring Security 3, migrating to 365
Spring Security 3

about 18
advantages 18
class renames 371

[396]

configuration, modifications 367
enhancements 366
features 18
migrating, from Spring Security 2 365
package migrations 371

Spring Security 3 configuration
AuthenticationManager configuration 367,

368
configuration attributes, modifications 371
configuration syntax, for session manage-

ment options 368
CustomAfterInvocationProvider modifica-

tions 370
custom filter configuration, modifications

369
Spring Security ACL 215
Spring Security ACL support

configuration 217
Spring Security architecture

about 32
auto-config 36
diagrammatic representation 32
filter chain 33
requests, authorizing 45-48
requests, processing 32-36
servlet filter 33
users, authenticating 37-41

Spring Security bean dependencies
overview 189

Spring Security environment
configuring 190, 191

Spring Security Extensions 345
Spring Security infrastructure beans

manual configuration 188
web application, reconfiguring 189

Spring Security LDAP support 273
Spring Security tag library

about 128
conditional rendering, based on Spring EL

Expressions 129
conditional rendering, based on URL access

rules 128
conditional rendering, Spring Security 2

way 130

Spring Security XML configuration file
adding, to web.xml 28, 30
implementing 26, 27

Spring Tool Suite 12
Spring transaction manager

configuring 238
SQL queries, JdbcDaoImpl

authoritiesByUsernameQuery 99
groupAuthoritiesByUsernameQuery 100
usersByUsernameQuery 99

SReg 267
SSHA 285
SSL

about 117
Apache Tomcat, setting up 117

success-handler-ref attribute 66
supporting ACL Beans

configuring 221-225
supports method 46, 167
SystemWideSaltSource 108

T
ticketValidator attribute 308
TLS 117
token-validity-seconds attribute 72
TokenBasedRememberMeServices 116
transport-level protection 17
Transport Layer Security. SeeÂ€ TLS
Transport Layer Security (TLS) protocol 324
troubleshooting

client certificate authentication 332
troubleshooting, Kerberos

about 358
connectivity, verifying with standard tools

359
Java GSS-API debugging, enabling 359
troubleshooting steps 360

two-factor authentication 22

U
UnanimousBased access decision manager

using 49, 50
UnanimousBased class 49

[397]

Uniform Resource Identifier (URI) 250
uniqueMember attribute 281
url attribute 128
user-related methods, JdbcUserDetailsMan-

ager
about 93
boolean userExists(String username) 93
void changePassword(String oldPassword,

String newPassword) 93
void createUser(UserDetails user) 93
void deleteUser(String username) 93
void updateUser(final UserDetails user 93

user-service-ref attribute 82
user class

administrator 125
consumer / customer 125
customer w/completed purchase 125
guest 125
supplier 125

user credentials
validating 43, 44

UserDetailsContextMapper
additional user details, viewing 287, 289
configuring 287
implicit configuration 287

user experience
enhancing 57

UsernamePasswordAuthenticationFilter
192

user protection
enhancing, concurrent session control used

176
user role membership, LDAP

determining 279
user roles

planning 124

V
VirtualFilterChain 34
virtual URLs, Spring Security 379
void changePassword(String oldPassword,

String newPassword) method 93
void createUser(UserDetails user) method

93
void deleteUser(String username) method

93
void updateUser(final UserDetails user)

method 93
voter 46
voter implementations

o.s.s.access.vote.AuthenticatedVoter 50
o.s.s.access.vote.RoleVoter 50

W
website.keytab file

creating 352

X
X.509 authentication 326

Thank you for buying
Spring Security 3

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Persistence with Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for
your enterprise Java application

1.	 Get to grips with Hibernate and its
configuration manager, mappings, types,
session APIs, queries, and much more

2.	 Integrate Hibernate and Spring as part of your
enterprise Java stack development

3.	 Work with Spring IoC (Inversion of Control),
Spring AOP, transaction management, web
development, and unit testing considerations
and features

Spring Python 1.1
ISBN: 978-1-849510-66-0 Paperback: 380 pages

Build powerful web applications, quickly and cleanly,
with the Django application framework

1.	 Maximize the use of Spring features in Python
and develop impressive Spring Python
applications

2.	 Explore the versatility of Spring Python by
integrating it with frameworks, libraries, and
tools

3.	 Discover the non-intrusive Spring way of
wiring together Python components

4.	 Packed with hands-on-examples, case studies,
and clear explanations for better understanding

Please check www.PacktPub.com for information on our titles

Spring Web Flow 2 Web
Development
ISBN: 978-1-847195-42-5 Paperback: 200 pages

Master Spring’s well-designed web frameworks to
develop powerful web applications

1.	 Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2.	 Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces

3.	 Stay up-to-date with the latest version of Spring
Web Flow

4.	 Walk through the creation of a bug tracker web
application with clear explanations

Django 1.1 Testing and
Debugging
ISBN: 978-1-847197-56-6 Paperback: 436 pages

Building rigorously tested and bug-free Django
applications

1.	 Develop Django applications quickly with
fewer bugs through effective use of automated
testing and debugging tools.

2.	 Ensure your code is accurate and stable
throughout development and production by
using Django’s test framework.

4.	 Understand the working of code and its
generated output with the help of debugging
tools.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright

	Credits

	Foreword

	About the Author

	About the Reviewers

	Table of Contents

	Preface
	Chapter 1: Anatomy of an Unsafe Application
	Security audit
	About the sample application
	The JBCP pets application architecture
	Application technology

	Reviewing the audit results
	Authentication
	Authorization
	Database Credential Security
	Sensitive Information
	Transport-Level Protection

	Using Spring Security 3 to address security concerns
	Why Spring Security?

	Summary

	Chapter 2
: Getting Started with Spring Security
	Core security concepts
	Authentication
	Authorization

	Securing our application in three easy steps
	Implementing a Spring Security XML configuration file
	Adding the Spring DelegatingFilterProxy to your web.xml file
	Adding the Spring Security XML configuration file reference to web.xml
	Mind the gaps!
	Common problems

	Security is complicated: The architecture of secured web requests
	How requests are processed
	What does auto-config do behind the scenes?
	How users are authenticated
	What is spring_security_login and how did we get here?
	Where do the user's credentials get validated?
	When good authentication goes bad

	How requests are authorized
	Configuration of access decision aggregation
	Access configuration using spring expression language

	Summary

	Chapter 3
: Enhancing the User Experience
	Customizing the login page
	Implementing a custom login page
	Implementing the login controller
	Adding the login JSP
	Configuring Spring Security to use our Spring MVC login page

	Understanding logout functionality
	Adding a Log Out link to the site header
	How Logout works
	Changing the Logout URL
	Logout configuration directives

	Remember me
	Implementing the remember me option
	How remember me works
	Remember me and the user lifecycle
	Remember me configuration directives

	Is remember me secure?
	Authorization rules differentiating remembered and fully authenticated sessions
	Building an IP-aware remember me service
	Customizing the remember me signature

	Implementing password change management
	Extending the in-memory credential store to support password change
	Extending InMemoryDaoImpl with InMemoryChangePasswordDaoImpl
	Configuring Spring Security to use InMemoryChangePasswordDaoImpl
	Building a change password page
	Adding a change password handler to AccountController
	Exercise notes

	Summary

	Chapter 4
: Securing Credential Storage
	Database-backed authentication with Spring Security
	Configuring a database-resident authentication store
	Creating the default Spring Security schema
	Configuring the HSQL embedded database
	Configuring JdbcDaoImpl authentication store
	Adding user definitions to the schema

	How database-backed authentication works
	Implementing a custom JDBC UserDetailsService
	Creating a custom JDBC UserDetailsService class
	Adding a Spring Bean declaration for the custom UserDetailsService

	Out of the box JDBC-based user management

	Advanced configuration of JdbcDaoImpl
	Configuring group-based authorization
	Configuring JdbcDaoImpl to use groups
	Modifying the initial load SQL script
	Modifying the embedded database creation declaration

	Using a legacy or custom schema with database-resident authentication
	Determining the correct JDBC SQL queries
	Configuring the JdbcDaoImpl to use customSQL queries

	Configuring secure passwords
	Configuring password encoding
	Configuring the PasswordEncoder
	Configuring the AuthenticationProvider
	Writing the database bootstrap passwordencoder
	Configuring the bootstrap password encoder

	Would you like some salt with that password?
	Configuring a salted password
	Declaring the SaltSource Spring bean
	Wiring the PasswordEncoder to the SaltSource
	Augmenting DatabasePasswordSecurerBean

	Enhancing the change password functionality
	Configuring a custom salt source
	Extending the database schema
	Tweaking configuration of the CustomJdbcDaoImpl UserDetails service
	Overriding the baseline UserDetails implementation
	Extending the functionality of CustomJdbcDaoImpl

	Moving Remember Me to the database
	Configuring database-resident Remember Me tokens
	Adding SQL to create the Remember Me schema
	Adding new SQL script to the embedded database declaration
	Configuring Remember Me services to persist to the database

	Are database-backed persistent tokens more secure?

	Securing your site with SSL
	Setting up Apache Tomcat for SSL
	Generating a server key store
	Configuring Tomcat's SSL Connector

	Automatically securing portions of the site
	Secure port mapping

	Summary

	Chapter 5
: Fine-Grained Access Control
	Re-thinking application functionality and security
	Planning for application security
	Planning user roles
	Planning page-level security

	Methods of Fine-Grained authorization
	Using Spring Security Tag Library to conditionally render content
	Conditional rendering based on URL access rules
	Conditional Rendering Based on Spring EL Expressions
	Conditionally rendering the Spring Security 2 way

	Using controller logic to conditionally render content
	Adding conditional display of the Log In link
	Populating model data based on user credentials

	What is the best way to configure in-page authorization?

	Securing the business tier
	The basics of securing business methods
	Adding @PreAuthorize method annotation
	Instructing Spring Security to use method annotations
	Validating method security

	Several flavors of method security
	JSR-250 compliant standardized rules
	Method security using Spring's @Secured annotation
	Method security rules using Aspect Oriented Programming
	Comparing method authorization types

	How does method security work?

	Advanced method security
	Method security rules using bean decorators
	Method security rules incorporating method parameters
	How method parameter binding works
	Securing method data through Role-based Filtering
	Adding Role-based data filtering with @PostFilter
	Pre-filtering collections with method @PreFilter
	Why use a @PreFilter at all?

	A fair warning about method security

	Summary

	Chapter 6
: Advanced Configuration and Extension
	Writing a custom security filter
	IP filtering at the servlet filter level
	Writing our custom servlet filter
	Configuring the IP servlet filter
	Adding the IP servlet filter to the Spring Security filter chain

	Writing a custom AuthenticationProvider
	Implementing simple single sign-on with an AuthenticationProvider
	Customizing the authentication token
	Writing the request header processing servlet filter
	Writing the request header AuthenticationProvider

	Combining AuthenticationProviders
	Simulating single sign-on with request headers
	Considerations when writing a custom AuthenticationProvider

	Session management and concurrency
	Configuring session fixation protection
	Understanding session fixation attacks
	Preventing session fixation attacks with Spring Security
	Simulating a session fixation attack
	Comparing session-fixation-protection options

	Enhancing user protection with concurrent session control
	Configuring concurrent session control
	Understanding concurrent session control
	Testing concurrent session control
	Configuring expired session redirect

	Other benefits of concurrent session control
	Displaying a count of active users
	Displaying information about all users

	Understanding and configuring exception handling
	Configuring "Access Denied" handling
	Configuring an "Access Denied" destination URL
	Adding controller handling of AccessDeniedException
	Writing the Access Denied page

	What causes an AccessDeniedException
	The importance of the AuthenticationEntryPoint

	Configuring Spring Security infrastructure beans manually
	A high level overview of Spring Security bean dependencies
	Reconfiguring the web application
	Configuring a minimal Spring Security environment
	Configuring a minimal servlet filter set
	Configuring a minimal supporting object set

	Advanced Spring Security bean-based configuration
	Adjusting factors related to session lifecycle
	Manual configuration of other common services
	Declaring remaining missing filters
	LogoutFilter
	RememberMeAuthenticationFilter
	ExceptionTranslationFilter

	Explicit configuration of the SpEL expression evaluator and Voter
	Bean-based configuration of method security
	Wrapping up explicit configuration
	Which type of configuration should I choose?

	Authentication event handling
	Configuring an authentication event listener
	Declaring required bean dependencies
	Building a custom application event listener
	Out of the box ApplicationListeners

	Multitudes of application events

	Building a custom implementation of an SpEL expression handler
	Summary

	Chapter 7
: Access Control Lists
	Using Access Control Lists for business object security
	Access Control Lists in Spring Security
	Basic configuration of Spring Security ACL support
	Defining a simple target scenario
	Adding ACL tables to the HSQL database
	Configuring the Access Decision Manager
	Configuring supporting ACL Beans
	Creating a simple ACL entry

	Advanced ACL topics
	How permissions work
	Custom ACL permission declaration
	ACL-Enabling your JSPs with the Spring Security JSP tag library
	Spring Expression Language support for ACLs
	Mutable ACLs and authorization
	Configuring a Spring transaction manager
	Interacting with the JdbcMutableAclService

	Ehcache ACL caching
	Configuring Ehcache ACL Caching
	How Spring ACL uses Ehcache

	Considerations for a typical ACL deployment
	About ACL scalability and performance modelling
	Do not discount custom development costs
	Should I use Spring Security ACL?

	Summary

	Chapter 8
: Opening up to OpenID
	The promising world of OpenID
	Signing up for an OpenID
	Enabling OpenID authentication with Spring Security
	Writing an OpenID login form
	Configuring OpenID support in Spring Security
	Adding OpenID users

	The OpenID user registration problem
	How OpenID identifiers are resolved
	Implementing user registration with OpenID
	Adding the OpenID registration option
	Differentiating between a login and registration request
	Configuring a custom authentication failure handler
	Adding the OpenID Registration functionality to the controller

	Attribute Exchange
	Enabling AX in Spring Security OpenID
	Real-World AX support and limitations
	Google OpenID support

	Is OpenID secure?
	Summary

	Chapter 9
: LDAP Directory Services
	Understanding LDAP
	LDAP
	Common LDAP attribute names
	Running an embedded LDAP server

	Configuring basic LDAP integration
	Configuring an LDAP server reference
	Enabling the LDAP AuthenticationProvider
	Troubleshooting embedded LDAP

	Understanding how Spring LDAP authentication works
	Authenticating user credentials
	Determining user role membership
	Mapping additional attributes of UserDetails

	Advanced LDAP configuration
	Sample JBCP LDAP users
	Password comparison versus Bind authentication
	Configuring basic password comparison
	LDAP password encoding and storage
	The drawbacks of a Password Comparison Authenticator

	Configuring the UserDetailsContextMapper
	Implicit configuration of a UserDetailsContextMapper
	Viewing additional user details

	Using an alternate password attribute
	Using LDAP as a UserDetailsService
	Notes about Remember Me with an LDAP UserDetailsService
	Configuration for an In-Memory Remember Me service

	Integrating with an external LDAP server
	Explicit LDAP bean configuration
	Configuring an external LDAP server reference
	Configuring an LdapAuthenticationProvider
	Integrating with Microsoft Active Directory via LDAP
	Delegating role discovery to a UserDetailsService

	Summary

	Chapter 10: Single Sign On with Central Authentication Service

	Introducing Central Authentication Service
	High level CAS authentication flow
	Spring Security and CAS
	CAS installation and configuration

	Configuring basic CAS integration
	Adding the CasAuthenticationEntryPoint
	Enabling CAS ticket verification
	Proving authenticity with the CasAuthenticationProvider

	Advanced CAS configuration
	Retrieval of attributes from CAS assertion
	How CAS internal authentication works
	Configuring CAS to connect to our embedded LDAP server
	Getting UserDetails from a CAS assertion
	Examining the CAS assertion
	Mapping LDAP attributes to CAS attributes
	Finally, returning the attributes in the CAS assertion
	Alternative Ticket authentication using SAML 1.1

	How is Attribute Retrieval useful?
	Additional CAS capabilities

	Summary

	Chapter 11
: Client Certificate Authentication
	How Client Certificate authentication works
	Setting up a Client Certificate authentication infrastructure
	Understanding the purpose of a public key infrastructure
	Creating a client certificate key pair
	Configuring the Tomcat trust store
	Importing the certificate key pair into a browser
	Using Firefox
	Using Internet Explorer

	Wrapping up testing
	Troubleshooting Client Certificate authentication

	Configuring Client Certificate authentication in Spring Security
	Configuring Client Certificate authentication using the security namespace
	How Spring Security uses certificate information
	How Spring Security certificate authentication works
	Other loose ends
	Supporting Dual-Mode authentication

	Configuring Client Certificate authentication using Spring Beans
	Additional capabilities of bean-based configuration

	Considerations when implementing Client Certificate authentication
	Summary

	Chapter 12
: Spring Security Extensions
	Spring Security Extensions
	A primer on Kerberos and SPNEGO authentication
	Kerberos authentication in Spring Security
	Overall Kerberos Spring Security authentication flow
	Getting prepared
	Assumptions for our examples
	Creating a keytab file

	Configuring Kerberos-related Spring beans
	Wiring SPNEGO beans to the security namespace
	Adding the Application Server machine to a Kerberos realm
	Special considerations for Firefox users
	Troubleshooting
	Verifying connectivity with standard tools
	Enabling Java GSS-API debugging
	Other troubleshooting steps

	Configuring LDAP UserDetailsService with Kerberos
	Using form login with Kerberos
	Summary

	Chapter 13
: Migration to Spring Security 3
	Migrating from Spring Security 2
	Enhancements in Spring Security 3
	Changes to configuration in Spring Security 3
	Rearranged AuthenticationManager configuration
	New configuration syntax for session management options
	Changes to custom filter configuration
	Changes to CustomAfterInvocationProvider
	Minor configuration changes

	Changes to packages and classes
	Summary

	Appendix:
Additional Reference Material
	Getting started with JBCP Pets sample code
	Available application events
	Spring Security Virtual URLs
	Method Security Explicit Bean Configuration
	Logical filter names migration reference

	Index

