
www.allitebooks.com

http://www.allitebooks.org

IBM WebSphere Application
Server v7.0 Security

Secure your WebSphere applications with Java EE and
JAAS security standards

Omar Siliceo

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IBM WebSphere Application Server v7.0 Security

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Production Reference: 1180211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849681-48-3

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Omar Siliceo

Reviewers
Domenico Cantatore

Ty Lim

Jose Mariano Ruiz Martin

Development Editor
Susmita Panda

Technical Editors
Neha Damle

Erika Fernandes

Gaurav Datar

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Vinodhan Nair

Project Team Leader
Priya Mukherji

Project Coordinator
Sneha Harkut

Proofreaders
Aaron Nash

Steve Maguire

Graphics
Geetanjali Sawant

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Omar Siliceo, a professional Systems Engineer with a Master of Science degree in
Electrical Engineering, started his IT career in the year 1991 as a Research Specialist,
performing the roles of systems specialist, Internet and Unix systems administrator,
and Internet systems consultant, when he was invited to join the Computer Center
group at Vanderbilt University. In 1994, he joined the information technology team
as a consultant, performing systems integration at the King Faisal Specialist Hospital
and Research Centre in Saudi Arabia. After returning to the United States of America
in 1997, he launched his IT consulting practice, creating partnerships with companies
such as CTG and Ajilon. During the period from 1997-2004 he spent most of it (1997-
2002) working with IBM in finding e-commerce solutions for customers such as
Macy's, the NBA Store and Blair, and event Cybercast Infrastructure Administration
for customers such as The Wimbledon Championships and The Masters Golf
Tournament. It was during this period that he became exposed to early WebSphere
technologies, including but not limited to WebSphere Application Server,
WebSphere Commerce Suite, WebSphere Portal, and WebSphere Everyplace Suite.

In his last year with IBM, he focused on providing design, programming
consultation, and problem solving to Fortune 500 software vendors and software
integrators who were IBM's business partners. Between 2002 and 2004, he served as a
consultant to The World Bank Group and Blue Cross Blue Shield of Florida. His role
was the administration of WebSphere environments including some special projects
such as the rollout of the latest version of their WebSphere environments. In 2004,
he interrupted his consulting practice when he was invited to join the IT engineering
team at Cummins, Inc. He served as Senior Web Technologies Engineer and later
on as the Web Deployment team manager. As Senior Engineer, he architected the
infrastructure environment for WebSphere 5.1, defining standards for platform
creation, WAS deployment, and integration with existing enterprise technologies
and services. In 2008, he resumed his consulting practice, supporting WebSphere
Application Server, WebSphere Portal, and WebSphere Edge Components efforts
and initiatives with Bank of America (2008), Blue Cross Blue Shield of Florida (2008
2009), and The World Bank Group, where he is currently Senior WebSphere Suite
consultant.

www.allitebooks.com

http://www.allitebooks.org

First and foremost, I would like to thank the Lord for providing
this unique, challenging, and rewarding opportunity as well as the
resources to complete this fun project. Secondly, I would also like to
thank my wife, Melissa, for her love, support, and encouragement
throughout this undertaking. In addition, I wish to extend my
gratitude to my sons, Tano and Chago, for allowing me to give up
time that otherwise I would have spent with them.

Furthermore, I would like to express my appreciation to Packt for
having reached out to me to propose this project. In particular, I
thank my editorial team and their management for all the support
provided in order to make this project a reality. I also would like
to thank the technical team of experts who painstakingly reviewed
each of the chapters for their corrections, observations, and most
welcomed suggestions to improve the quality of this work.

Finally, I want to thank the folks at The World Bank Group, in
particular Srini, Balaji, Suresh, and Ajay, for their encouragement
during this project. I think they promised to buy a copy each.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Domenico Cantatore is a senior IT Specialist working for IBM Software Group in
Dublin.

His areas of expertise include infrastructure architecture design, implementation,
problem determination and performance, analysis, and tuning on WebSphere
and Tivoli® products. These products include WebSphere Application Server,
WebSphere Portal Server, WebSphere Process Server, WebSphere Commerce Server,
WebSphere MQ, WebSphere Message Broker, and ITCAM. He has 10 years of
experience in IT and various industry certifications.

www.allitebooks.com

http://www.allitebooks.org

Ty Lim has worked for various software startup companies, consulting firms, and
was working in the Healthcare IT field for the last eight years. He now works in the
telecommunications industry.

Ty Lim has been in the IT industry for more than 15 years. He started out using
WebSphere Application Server back in 2003 and has been utilizing the technology
ever since. He has a background in JAVA programming, Unix/Linux Systems
administration and he keeps up to date with the latest open source technology.
He holds a degree in Computer Science from the University of the Pacific, and is
currently pursuing his Masters Degree in Information Systems at Boston University.
He has interests in application server technology, open source technology, network
security, and Java programming.

I would like to thank my parents (Lina and Roland) for giving me
what I needed growing up so that I could achieve what I needed to
accomplish thus far in my career. (A good home, a great education,
and a drive to keep going.) I love you guys so much. 'Thank you'
does not quite show the magnitude of what I owe you.

To Mike and Penny, both of you have shown me a lot over the last
several years. Thank you so much for being my friends. Both of you
have achieved what I have always sought. I hope this rolling stone can
someday put up roots somewhere. Give a big hug to my god daughter
Sophia for me. Tell her, her god father loves her very much.

To my sister Eileen and my brother-in-law Nguyen. Both of you
have been an inspiration to me over the last several years. I wish
both of you complete happiness.

To my colleagues in New York and New Jersey (BrianK, GeorgeT,
TomB, DonN, JonL, JohnW, MikeR, GregM, MarkD, JohnH, VinceH),
guys you're the best in the business. I can't be more prouder to call
both a colleague and a friend. Keep up the great work.

To Jenny, thank you for being my friend all these years, I cherish our
friendship very much.

To my friends and colleagues in CA and overseas, I hope to see all
of you soon (or someday). All of you have been my inspiration for
working my way back home.

To Geri, I just wanted you to know, that your happiness has always
meant very much to me. I hope you find happiness wherever you go.

www.allitebooks.com

http://www.allitebooks.org

Jose Mariano Ruiz Martin is a Computing Science Engineer and senior specialist
at Technologies of Information. He has worked at some of the most important
Spanish companies including Telefónica Spain, Vodafone Spain, Caja Madrid, and
Mapfre as systems engineer and technical leader.

After finishing his degree in Computing Science and completing a Master's in
Computer Networking and Communications, he has specialized in systems
engineering, obtaining several certifications such as Sun Certified Security
Administrator, Sun Certified System Administrator for Solaris 9, BEA Certified
WebLogic 9 Administrator, BEA Certified WebLogic 8.1 Administrator, and Cisco
Certified Network Associate. Besides this he has been a professor at several courses
on Information Systems Administration.

He is now working at IBM Spain on electronic commerce infrastructures and SOA/
BPM technologies as IT specialist on the IBM's WebSphere platform.

I would like to dedicate this book to all those who do not resign
themselves to be mere spectators in life, and work resolutely to
achieve their own goals; with a special mention to my father, who is
still the best example for both my brother and me, and has resisted
all the difficulties he has had to face.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy & paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: A Threefold View of WebSphere Application Server
Security	 7

Enterprise Application-server infrastructure architecture view	 8
Simple infrastructure architecture characteristics	 9
Branded infrastructure elements	 10
Generic infrastructure components	 10
Using the infrastructure architecture view	 11

WebSphere architecture view	 11
WebSphere Application Server simplified architecture	 12
WebSphere node component	 13
WebSphere JVM component	 13
Using the WebSphere architecture view	 14

WebSphere technology stack view	 14
OS platform security	 14
Java technology security	 16
WebSphere security	 16
Using the technology stack view	 17

Summary	 17
Chapter 2: Securing the Administrative Interface	 19

Information needed: Planning for security	 20
The LDAP and security table	 21

Enabling security	 23
Setting the domain name	 24

Starting at the console	 24
Continuing with the global security page	 24
Onto the SSO page	 25
Setting the SSO domain name	 26
Applying and saving your changes	 26

Table of Contents

[ii]

Configuring the user registry	 27
Locating the user registry configuration area	 27
Registry type selection	 28
LDAP—the preferred choice	 29
Reviewing the resulting standalone LDAP registry page	 29
Defining the WebSphere administrative ID	 30
Setting the type of LDAP server	 30
Entering the LDAP server parameters	 30
Providing the LDAP bind identity parameters	 31
Confirming other miscellaneous LDAP server parameters	 32
Applying and saving the standalone LDAP configuration	 32
Confirming the configuration	 33

Enabling the administrative security	 33
Locating the administrative security section	 34
Performing the administrative security configuration steps	 35
Applying and saving your changes	 36
Propagating new configuration	 36
Logging off from the console	 37
Restarting the deployment manager	 37
Logging in to the deployment manager console	 38

Administrative roles	 38
Disabling security	 39
Summary	 42

Chapter 3: Configuring User Authentication and Access	 43
Security domains	 44

What is a security domain	 45
Scope of security domains	 46
Benefits of multiple security domains	 48
Limitations of security domains	 48

Administrative security domain	 49
Configuring security domains based on global security	 50

Creating a global security domain clone	 50
Creating a security domain using scripting	 51

User registry concepts	 53
What is a user registry	 53
WebSphere use of user repositories	 53

Authentication	 54
Authorization	 56

Supported user registry types	 57
Local operating system	 58
Standalone LDAP	 59
Standalone custom registry	 60
Federated repositories	 60

Protecting application servers	 62

Table of Contents

[iii]

WebSphere environment assumptions	 62
Prerequisites	 63

Creating an application server	 63
Creating a virtual host	 63
Creating application JDBC Provider and DataSource	 63
Configuring the global security to use the federated user registry	 64
Creating a security domain for the application server	 64

Configuring user authentication	 64
Creating groups	 65
Creating users	 67
Assigning users to groups	 68

Configuring access to resources	 69
Testing the secured application server environment	 70

Deploying and securing an enterprise application	 70
Accessing the secured enterprise application	 72

Summary	 73
Chapter 4: Front-End Communication Security	 75

Front-end enterprise application infrastructure architectures	 77
WebSphere horizontal cluster classic architecture	 78
WebSphere horizontal cluster using dual-zone architecture	 79
WebSphere horizontal cluster using multi-zone architecture	 81

SSL configuration and management	 82
What is SSL	 83
How SSL works	 83
Certificates and CAs	 84

Securing front-end components communication	 86
Securing the IBM HTTP Server	 86

Environment assumptions	 86
SSL configuration prerequisites	 87
Creating the SSL system components	 88
Configuring IHS for SSL	 92

Summary	 97
Chapter 5: Securing Web Applications	 99

Securing web applications concepts	 99
Developer view of web application security	 100
Administrator view of web application security	 100

Securing a web application	 100
Project objectives	 101
Assumptions	 101
Prerequisites	 102
Enterprise application architecture	 102

Application groups	 102
Application users	 103

Table of Contents

[iv]

Application memberships	 103
Dynamic web modules	 106

Securing a J2EE web application	 106
Creating the enterprise application project	 106
Creating the dynamic web application projects	 108
Configuring dynamic web applications	 110
Configuring enterprise applications	 116
Adding content to dynamic web applications	 118
Packaging an enterprise application	 125
Deploying the enterprise application	 126
Testing the enterprise application	 127

Summary	 128
Chapter 6: Securing Enterprise Java Beans Applications 	 129

EJB application security concepts	 130
Declarative security	 130
Programmatic security	 131

EJB project design	 131
EJB application du jour	 131

Objective–security	 131
Objective–functional	 131

Project design–UI aspect	 132
Project design–programming component	 134
Project design–implementation phase	 137

EJB project prerequisites and assumptions	 139
Project assumptions	 139
Project prerequisites	 140

Creating an Enterprise Application Project	 141
Creating the project workspace	 142
Enterprise application project requirements	 142

EAR version	 142
Target runtime	 142

Creating the enterprise application project	 142
Selecting the project EAR version	 143
Creating a target runtime	 143
Creating the deployment descriptor	 143

Creating the portal Dynamic Web Project	 144
Creating the portal DWP	 144

Defining the DWP context root	 144
Creating the DWP deployment descriptor	 144

Configuring the portal DWP deployment descriptor	 145
Defining the welcome pages suite	 145
Adding login information	 145
Securing protected URI patterns and HTTP methods	 145
Defining application roles	 146
Defining the client-server transport type	 146

Table of Contents

[v]

Mapping module to virtual host	 146
Creating content for the portal DWP	 146

Location of files within the project	 147
Logical file organization	 148
Creating the common HTML files	 148
Creating the custom HTML files	 150
Creating the JSP files	 152

Pagelet selector JSP files	 152
Portal home selector JSP files	 156

Creating the Servlet PortalHomeSelectorServlet	 157
Creating a Java package	 157
Creating the Servlet	 157

Creating the code for PortalHomeSelectorServlet	 157
Package definition and import statements	 158
Declaration of class constants and variables	 158
HTTP methods	 158
Getting parameters	 159
Communicating with EJB	 159
Forwarding control to another component	 160

Creating an EJB project	 161
Creating the initial project	 161
Creating the Java packages	 161
Creating the EJB interfaces	 161

Creating IPortalSelectorSessionBean interface	 161
Creating the local and remote EJB interfaces	 162

Creating the EJB	 163
Creating the code for PortalSelectorSessionBean	 163

Package definition and import statements	 163
Class definition	 163
Instance variables	 163
Linking to the user context	 164
Programmatic security	 164
Declarative security	 165

The grand finale	 166
Packaging the enterprise project as an EAR	 166
Deploying the EAR	 166
Testing the application	 167

Summary	 167
Chapter 7: Securing Back-end Communication 	 169

LDAP: Uses of encryption	 171
Securing the LDAP channel	 171

Protocol: LDAP and the Internet Protocol Suite	 171
The importance of securing the LDAP channel	 172
Choices in securing the LDAP channel	 173

Table of Contents

[vi]

Enabling SSL for LDAP	 173
Creating a key ring for storing key stores	 174
Creating a trust db for storing trust stores	 176
Creating a key store for use with LDAP	 176
Creating a trust store to use with LDAP	 177
Creating an SSL configuration for LDAP	 178
Obtaining the LDAP server SSL certificate	 178
Configuring LDAP for SSL	 179

JDBC: WebSphere-managed authentication	 180
Protocol(s)	 180

The JDBC API	 181
Connection/Driver Manager and Data Source/JDBC provider	 181
The JDBC Application Layer 	 181

Choices to secure the database channel	 182
Examples of securing the JDBC connection	 182

Defining a new JDBC provider	 184
Defining a new Data Source	 185

Summary	 186
Chapter 8: Secure Enterprise Infrastructure Architectures 	 187

The enterprise infrastructure	 188
An Enterprise Application in relation to an Application Server	 188
WAS infrastructure and EA's application server interactions	 190

Securing the enterprise infrastructure using LTPA	 192
Why use the LTPA mechanism	 193
How the LTPA authentication mechanism works	 194
The main use for LTPA in a WebSphere environment	 195

Securely enhancing the user experience with SSO	 196
Required conditions to implement SSO	 197
Implementing SSO in WebSphere	 198

Fine-tuning authorization at the HTTP server level	 199
Why use an external access management solution	 201
How it works	 202
What tool to use	 203
Configuring the HTTP server to use an external access
management solution	 207

Fine-tuning authorization at the WAS level	 208
When to use TAI	 208
Configuring SiteMinder ASA for WebSphere (TAI)	 209

Summary	 211
Chapter 9: WebSphere Default Installation Hardening 	 213

Engineering the how and where of an installation	 216
Appreciating the importance of location, location, location!	 217

Table of Contents

[vii]

Customizing the executable files location	 217
Customizing the configuration files location	 218

Camouflaging the entrance points	 221
Understanding why it's important	 222
Methodology choices	 222
Identifying what needs to be configured	 224
Getting started	 226

Picking a good attorney	 227
Ensuring good housekeeping of an installation	 228

Keeping your secrets safe	 228
Using key stores and trust stores	 228
Storing passwords in configuration files 	 229
Adding passwords to properties files	 230

Summary	 232
Chapter 10: Platform Hardening 	 235

Identifying where to focus	 235
Exploring the operating system	 237

Appreciating OS interfaces	 237
Understanding user accounts	 238
Understanding service accounts	 239
Using kernel modules	 240

Creating the file system	 240
Influencing permission and ownership using process execution	 241
Running single execution mode	 242

Using executables	 242
Configuring	 243
Setting ownerships and permissions on log files	 244

Running multiple execution mode	 244
Safeguarding the network system	 246

Establishing network connections	 247
Communicating from process to process	 248

Summary	 248
Chapter 11: Security Tuning and Troubleshooting	 251

Tuning WebSphere security	 251
Tuning general security	 252

Tightening security using the administrative connector	 252
Disabling security attribute propagation	 253
Using unrestricted Java Cryptographic Extensions	 254

Tuning CSIv2 connectivity	 256
Using Active Authentication Protocol: Set it only to CSI	 256
Enforcing client certificates using SSL	 256
Enabling stateful sessions	 259

Tuning user directories and user permissions	 261
Configuring LDAP	 261

Table of Contents

[viii]

Tuning user authentication	 262
Troubleshooting WebSphere security-related issues	 267

Troubleshooting general security configuration exceptions	 267
Identifying problems with the Deployment
Manager—node agent communication blues	 267

Troubleshooting runtime security exceptions	 270
Troubleshooting HTTPS communication between WebSphere Plug-in
and Application Server	 270
Receiving the message WSVR0009E / ORBX0390E: JVM does not start due to
org.omg.CORBA.INTERNAL error	 275

Concluding WebSphere security-related tips	 277
Using a TAI such as SiteMinder: remove existing interceptors	 278

Summary	 279
Index	 281

Preface
IBM WebSphere Application Server Network Deployment is IBM's flagship J2EE
application server platform. It implements the J2EE technology stack. This stack
enables the WebSphere Application Server platform to execute the user's Java
enterprise applications that perform business functions. There are several roles who
use this platform such as architects, developers, and administrators, to mention
a few. Within the administrator role, in turn, there are several functions such as
installation, performance, security, and so on.

This book starts with an in-depth analysis of the global and administrative security
features of WebSphere Application Server v7.0, followed by comprehensive coverage
of user registries for user authentication and authorization information. Moving on
you will build on the concepts introduced and get hands-on with a mini project. In
the next chapter, you work with the different front-end architectures of WAS along
with the Secure Socket Layer protocol, which offer transport layer security through
data encryption.

You can learn user authentication and data encryption, which demonstrate how
a clear text channel can be made safer, by using SSL transport to encrypt its data.
This book will show you how to enable an enterprise application hosted in a
WebSphere Application Server environment to interact with other applications,
resources, and services available in a corporate infrastructure. Platform hardening,
tuning parameters for tightening security, and troubleshooting are some of the
aspects of WebSphere Application Server v7.0 security that are explored in the book.
Every chapter builds strong security foundations, by demonstrating concepts and
practicing them through the use of dynamic, web-based mini projects.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

What this book covers
Chapter 1, A Threefold View of WebSphere Application Server Security, uses a novel
approach to compare ways in which WebSphere security elements are perceived,
usually according to the role of the individual working with the technology. These
ways or views help you understand the foundations of WebSphere security, providing
multiple angles from where to analyze this set of technologies and communicate in
their language with different functional teams within your organization.

Chapter 2, Securing the Administrative Interface, walks you through the necessary steps
to secure access to the WebSphere graphical interface, known as the ISC (Integrated
Solutions Console). As a prerequisite to securing the ISC, you must first enable
the WebSphere Application Server platform security, known as global security.
During these processes, the chapter succinctly describes relevant security topics (for
example, user registries) and highlights what parameters are required in order to
perform each step.

Chapter 3, Configuring User Authentication and Access, provides concise technical
background on the security topics related to setting up user authentication
(validation of presented user credentials) and user access—determining if an
authenticated user has rights to access to the requests made. The chapter describes
some important concepts such as WebSphere Security Domains (a new feature in
version 7 of WAS), user registries (reviewed in more depth), as well as a review
of popular user registries available to be used in a WebSphere environment. The
chapter ends by binding all these concepts using a mini project that walks you
through protecting application servers.

Chapter 4, Front-End Communication Security, describes and compares popular
infrastructure architectures used to design front-end of a WebSphere environment.
The chapter goes on explaining a major security used to secure communication
channels, SSL, and describes several related aspects such as SSL certificates and CA
(certificate authority). At the end, the chapter walks you through the process, in the
way of a mini project, used to secure the front-end of a WebSphere environment
from the HTTP server (IHS) to the actual Application Server.

Chapter 5, Securing Web Applications, briefly introduces concepts related to securing
Java Web Applications (or more succinctly Web Applications). The chapter then
uses an in-depth mini project where you will be walked through in the various
stages to design, code, package, deploy, and configure a simple Web Application
that offers access to employees of a fictional corporation. Each type of employee will
have access only to sections of the Web Application. Therefore, you will configure
WebSphere in order to implement this secure functionality.

Preface

[3]

Chapter 6, Securing Enterprise Java Beans Applications, introduces concepts related to
Enterprise Java Beans (EJB) technologies such as declarative and programmatic
security. The chapter then uses the mini-project approach to walk you through
the stages needed to design, code, package, deploy, and configure a simple EJB
application. The mini-project in this chapter reuses modules from the previous
chapter to implement a very simple portal application that will offer a better user
experience to the employees of our fictional corporation.

Chapter 7, Securing Back-end Communication, focuses on two major concepts:
authentication and data encryption. Authentication is reviewed from the point of
view of trust between two infrastructure components, for example, WebSphere and
a back-end database. The chapter expands on the major topics by providing in detail
two examples of their use. It explores how encryption is used in the communication
between WebSphere and a popular type of user registry, LDAP. The chapter also
examines the use of authentication during the exchanges between WebSphere and
databases using the JDBC protocol.

Chapter 8, Secure Enterprise Infrastructure Architectures, describes areas that will enable
an enterprise application hosted in a WebSphere environment interact with possibly
other applications, resources, and services available in a corporation infrastructure.
It covers central concepts such as LTPA and SSO. The chapter ends by showing
you how to fine-tune authorization at the HTTP Server level as well as at the
WebSphere level.

Chapter 9, WebSphere Default Installation Hardening, deals with engineering the default
WebSphere installation by changing its default parameters in order to harden
the product's security side and customizing the files that hold the WebSphere
environment security certificates and signers. The chapter focuses on two major
aspects. While it points out what characteristics in the OS to review and modify, on
the other hand, it discusses securing files related to certificates—key
and trust stores—and files that hold passwords.

Chapter 10, Platform Hardening, looks at aspects of the platform where WebSphere is
hosted that can be modified to increase the environment security. The chapter breaks
down the OS into areas relevant to the WebSphere platform: generic operating
system characteristics (for example, user accounts), file system features (for example,
file permissions), and network system configuration.

Chapter 11, Security Tuning and Troubleshooting, overviews three major areas that
can be improved by tuning key parameters as well as a couple of troubleshooting
areas. The tuning section overviews general security, CSIv2 connectivity, and user
directories and user permissions. Finally, the troubleshooting section reviews
general security configuration exceptions and run time security exceptions.

Preface

[4]

What you need for this book
The following is a list of software that you will need to download for this book:

•	 IBM WebSphere Application Server Network Deployment version 7.0
(this is the specific software for which the book is written)

•	 Software used to write example code and to package examples so they can be
installed (deployed) into WebSphere

•	 IBM Application Server Toolkit for WebSphere Application Server
version 6.1

•	 IBM Rational Application Developer Assembly and Deployment Features for
WebSphere Software V7.5 for Multiplatforms

•	 Eclipse Java EE IDE for Web Developers version 3.5.2 (Open source available
at www.eclipse.org)

Who this book is for
If you are a system administrator or an IT professional who wants to learn about
the security side of the IBM WebSphere Application Server v7.0, this book will walk
you through the key aspects of security and show you how to implement them.
You do not need any previous experience in WebSphere Application Server, but
some understanding of Java EE technologies will be helpful. In addition, Java EE
application developers and architects who want to understand how the security
of a WebSphere environment affects Java EE enterprise applications will find this
book useful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Start the wsadmin interface."

A block of code is set as follows:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so
Listen [Server_IP]:8444
<VirtualHost [Server_IP]:8444>
SSLEnable
SSLServerCert ihs1.wasmaster

Preface

[5]

SSLProtocolDisable SSLv2
</VirtualHost>
KeyFile /opt/IBM/HTTPServer/ihsserverkey.kdb
SSLDisable

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

getParamAndForward(request, response);

Any command-line input or output is written as follows:

AdminTask.createSecurityDomain('-securityDomainName secappsvr01.
yourcompany.com -securityDomainDescription "Security domain for
SecureAppServer01" ')

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From the
list of links located at the bottom, on the right-hand side of the window, click the
Open WebSphere Bindings link"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com

A Threefold View of
WebSphere Application

Server Security
Imagine yourself at an athletic event. Hey! No, no-you are at the right place. Yes,
this is a technical book. Just bear with me for a minute. Well, now that the little
misunderstanding is out of the way let's go back to the beginning. The home
crowd is really excited about the performance of its team. However, that superb
performance has not been yet reflected on the scoreboard. When finally that
performance pays off with the long-waited score, 'it' happens! The score gets called
off. It is not at all unlikely that a controversial call would be made, or worse yet,
not made! Or so we think. There is a group of players and fans of the team that just
scored that 'see' the play as a masterpiece of athletic execution. Then there is another
group, that of players and coaches of the visiting team who clearly see a violation
to the rules just before the score. And there is a third group, the referees. Well, who
knows what they see! The fact is that for the same action, there may be several
perceptions of the same set of events. Albert Einstein and other scientists provided
a great example of multi-perception with the wave-particle duality concept. In a
similar fashion, a WebSphere based environment could be analyzed in a number
of forms. None of the forms or views is absolutely correct or incorrect. Each view,
however, helps to focus on the appropriate set of components and their relationships
for a given situation or need.

A Threefold View of WebSphere Application Server Security

[8]

WebSphere Application Server technology is a long and complex subject. This
chapter provides three WAS ND environment views, emphasizing security, which
will help the reader connect individual security tasks to the big picture. One view
aids the WebSphere administrator to relate isolated security tasks to the overall
middleware infrastructure (for example, messaging systems, directory services,
and back-end databases to name a few). This is useful in possible interactions with
teams responsible for such technologies. On the other hand, a second view helps the
administrator to link specific security configuration tasks to a particular Enterprise
Application (for example, EJB applications, Service Integration Bus, and many
more) set of components. This view will help the administrator to relate to possible
development team needs. The chapter also includes a third view, one that focuses
on the J2EE technology stack as it relates to security. This view could help blend
the former two views. So, in a nutshell, the three major parts that make up this first
chapter are:

•	 The Enterprise Application Server infrastructure architecture view
•	 The WebSphere Application Server architecture view
•	 The WebSphere technology stack view

Enterprise Application-server
infrastructure architecture view
This chapter starts with the Application Server infrastructure architecture view.
The actual order of each of these major chapter sub-sections is really unimportant.
However, since it needs to be a beginning, the infrastructure architecture view is
thus selected.

A possibly more formal name for what it is desired to convey in this section would be
the Enterprise J2EE Application server infrastructure architecture. In this way, the scope of
technologies that make up the application-centric architecture is well defined as that
pertaining to J2EE applications. Nevertheless, this type of architecture is not exclusive
to a WebSphere Application Server Network Deployment environment. Well, it's not
in a way. If the architecture does not mention specific implementations of a function,
it is a generic view of the architecture. On the other hand, if the architecture view
defines or includes specific branded technologies of a function (for example, IHS for a
web server function), then it is a specialized architecture. The point is that other J2EE
application server products not related to the WebSphere umbrella may use the same
generic type of infrastructure architecture.

Chapter 1

[9]

Therefore, this view has to do with J2EE application servers and the enterprise
infrastructure components needed to sustain such application servers in a way that
they can host a variety of enterprise applications (also known as J2EE applications).
The following diagram provides an example of a basic WebSphere Application
Server infrastructure architecture topology:

The use of multiple user registries is new in
version 7.0

Simple infrastructure architecture
characteristics
The architecture is basic since it only shows the minimum infrastructure components
needed by a WebSphere Application Server infrastructure to become functional. In
this diagram, the infrastructure elements are presented as they relate to each other
functionally. In other words, the diagram is generic enough that it only shows and
identifies the components by their main function. For instance, the infrastructure
diagram includes, among others, proxy and messaging servers. Nothing in the
diagram implies the mapping of a given functional component to a specific physical
element such as an OS server or a specialized appliance.

A Threefold View of WebSphere Application Server Security

[10]

Branded infrastructure elements
The infrastructure architecture presented in the diagram depicts a WebSphere
clustered environment. The only technologies identified by their brand are the
IBM HTTP Server (IHS) web server component (represented by the two rectangles
(light blue) labeled IHS) and the WebSphere Application Server (WAS) nodes
(represented by the rectangles (green) labeled WAS).

These two simple components offer a variety of architectural choices, such as:

•	 Hosting both components in a single OS host under a WAS node
•	 Host each component in their own OS host in the same sub-network

(normally an intranet)
•	 Host each component in different OS hosts in different sub-network

(normally a DMZ for the IHS and intranet for the WAS)

The choice for a specific architecture will be made in terms of a variety of
requirements for your environment, including security requirements.

Generic infrastructure components
The infrastructure diagram also includes a number of components that are only
identified by their function but no information is provided as to the specific
technology/product implementing the function. For instance, there are four shapes
(light yellow) labeled DB, Messaging, Legacy Systems, and Service Providers. In
your environment, there may be choices to make in terms of the specific component.
Take for instance, the DB component. Identifying what DB server or servers will
be part of the architecture is dependent on the type of database employed by
the enterprise application being hosted. Some corporations limit the number of
database types to less than a handful. Nevertheless, the objective of the WebSphere
Administrator responsible for the environment is to identify which type of databases
will be interfacing with the WAS environment. Once that fact is determined, the
appropriate brand/product could be added to the architecture diagram.

Other technologies/components that need to be identified in a similar way are the
user registry (represented by the shape (light purple) labeled User Registry), the
security access component (represented in the diagram by the oval (yellow) labeled
Security Access). A common type of user registry used in WebSphere environments
is an LDAP server. Furthermore, a popular security access product is SiteMinder
(formerly by Netegrity, now offered by CA).

Chapter 1

[11]

The remaining group of elements in the architecture has the function to front-end
the IHS/WAS environment in order to provide high availability and added security.
Proxy servers may be used or not, depending on whether the IHS function can be
brought to the DMZ in its own OS host. Specialized appliances offered by companies
such as CISCO or F5 normally implement load balancers. However, some software
products can be used to implement this function. An example to the latter is the
IBM WebSphere Edge suite. In general, most corporations already own and use
firewalls and load balancers; so for the WebSphere administrator, it is just a matter of
integrating them to the WebSphere infrastructure.

Using the infrastructure architecture view
Some of the benefits of picturing your WebSphere environment using the
infrastructure architecture view come from realizing the following important points:

•	 Identify the technology or technology choices to be used to implement a
specific function. For instance, what type of user registry to use.

•	 An immediate result of the previous point is identifying the corporate group
the WebSphere administrator would be working with in order to integrate
(that is, configure) said technology and WebSphere.

•	 Once the initial architecture has been laid out, the WebSphere administrator
will be responsible to identify the type of security involved to secure the
interactions between the various infrastructure architecture components. For
instance, what type of communication will take place between the IHS and
the Security Access component, if any. What is the best way to secure the
communication channel? How is the IHS component authenticated to the
Security Access component?

WebSphere architecture view
The next view to be presented is that of the WebSphere Application Server
product architecture. In a nutshell, the WebSphere Application Server product is an
implementation of the J2EE set of specifications with some added functionality only
found in this IBM product. Therefore, as opposed to the previous section, this view is
unique to WebSphere.

Consequently, this section briefly presents the salient components of the J2EE
technologies and their relation to each other from the functional and architectural
point of view. Furthermore, emphasis will be placed on aspects that affect or may be
affected by security considerations.

www.allitebooks.com

http://www.allitebooks.org

A Threefold View of WebSphere Application Server Security

[12]

WebSphere Application Server simplified
architecture
The following diagram depicts a simplified version of the WebSphere Application
Server architecture. It presents the application server in the context of a WebSphere
node. The application server is the implementation of a JVM. The JVM is made up
of various components and at the same time, the JVM interacts with several external
components that make up the WebSphere node. So, the diagram presents two major
components of a WebSphere environment. On the one hand, the JVM is represented
by the parallelogram (purple) labeled Application Server. On the other hand, a
larger parallelogram (teal) labeled node represents the WebSphere node.

Keep in mind that the simplification to the architecture has been done to concentrate
on how it relates to application hosting in a secure environment.

The concept of local security domains is new in version 7.0.

Chapter 1

[13]

WebSphere node component
The node component of this simplified architecture occupies itself with
administrative and thus security aspects between the WebSphere environment and
the infrastructure. In the previous diagram, three components can be observed. The
first component is the node agent; represented by the small parallelogram labeled
Node agent. Notice that the node agent in itself is implemented by a specialized
JVM, containing the components required to efficiently perform administrative
tasks, which will include security related tasks. The node agent will interact with
WebSphere environment administrative components externals to the node (and not
included in the diagram). The chief among those external WebSphere components is
the Deployment Manager. One of the responsibilities of the node agent as it pertains
to the node and thus, to the application server JVM, is to maintain updated and
valid copies of the node configuration repository. Such a repository may include
information dealing with security domain information, either inherited from the
WebSphere cell global security or customized for the node, represented by the
parallelogram (black) labeled Local Security Domain.

WebSphere JVM component
The second major component of this simplified architecture is the implementation
of a JVM. It is represented in the diagram by a large parallelogram (purple) labeled
Application Server. A WebSphere JVM is made of, among other components,
several containers such as the Web and EJB containers. Containers, on top of hosting
instantiations of Java classes such as servlets and beans, that is, offering the runtime
environment for those classes to execute, deal with security aspects of the execution.
For instance, a Web Container may, given the appropriate settings, oversee that
hosted resources only execute if the principal making the request has the required
proof that entitles such principal of receiving the result of said request.

In addition to containers, a WebSphere JVM may also instantiate a service integration
bus (SIB) if a hosted application makes use of the JVM messaging engine. In the
diagram, the arrow (brown) labeled SIB represents the bus. Finally, the other JVM
components included in this simplified architecture are the administrative component
and the JVM security mechanism. This mechanism will interact with the containers to
ensure that security is propagated to the classes executing in the said containers.

A Threefold View of WebSphere Application Server Security

[14]

From this discussion, it can be extrapolated that each vendor has certain leniency as
to the actual implementation of Sun's JVM. IBM is not an exception to this practice.
If you wish to find out more about the particulars of the IBM JVM implementation
for WebSphere please refer to the Information Center article "Specifications and
API" (http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.
jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rovr_specs.html). In
that article you will find out which Java specifications and application programming
interfaces are implemented as well as the version each implements. This information is
presented in a neat table that helps you compare each specification and API version to
earlier editions of the WebSphere Application Server product (that is, 5.1, 6.0 and 6.1).

Using the WebSphere architecture view
The main benefit of analyzing your WebSphere environment using this view is that
it will provide you with the vocabulary to better understand the needs of application
developers and architects and, equally important, to communicate back to them the
special features the WebSphere environment may offer them as well as any possible
restrictions imposed by security or other infrastructure characteristics.

An additional benefit provided by this view is that it offers alternatives to
troubleshooting application related issues, as you will become more familiar with
which JVM components are being used as the runtime environment for a given
enterprise application.

WebSphere technology stack view
Finally, the third view covered in this chapter is that of the WebSphere environment
technology stack. In other words, this view presents which technologies from the
operating system to the WebSphere Application product are involved, highlighting
the aspects related to security. This view is broken down into three categories, which
are described in the following paragraphs. The stack and its categories are depicted
in the diagram shown in the next sub-section.

OS platform security
At the bottom of the stack there are the primitive technologies. The term primitive in
this context does not carry the meaning of backward, but rather that of foundation
technologies. In the following diagram, the rectangular (bright green) area located at
the bottom of the stack represents the OS platform layer.

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rovr_specs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rovr_specs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rovr_specs.html

Chapter 1

[15]

In this layer, the presence of the underlying operating system can be observed. In
the end, it is the responsibility of the OS to provide the low-level resources needed
by the WebSphere environment. Furthermore, it is also its responsibility to enforce
any security policies required on such resources. Two of the more prominent OS
components as they relate to a WebSphere environment are the file system and the
networking infrastructure. Both the file systems and the networking infrastructure
are handlers of special resources.

A Threefold View of WebSphere Application Server Security

[16]

Java technology security
The next layer in this architecture is that of the Java technology. This layer
comprehends the core Java technologies and APIs used within the WebSphere
environment. In the previous diagram, the layer is represented by the rectangle (teal)
in the middle of the stack.

The layer is further broken down into three distinct groups among the Java stack.
At the bottom sit the foundational bricks. The Java Virtual Machine and the Java
Language Specification. The JVM is the enabler whereas the Language Specification
lays down basic and general rules that must obeyed by the entities that will populate
the JVM.

The middle brick of this layer is that of Java 2 Security. It includes more
sophisticated rules that will enable entities in the JVM to achieve more complex
behaviors in harmony with the rest of the inhabitants.

Finally, at the top of this layer there is the J2EE Security brick. It brings additional
enablers to the JVM and rules that must be followed by the entities that populate
these remote areas of the Java galaxy.

WebSphere security
At the top of the technology stack, sits the WebSphere security layer. It builds up
on the previous layers and brings on board open and proprietary security bricks to
supplement the Java foundation.

In other words, the WebSphere high-level security layer offers conduits using
a number of technologies such as LTPA, Kerberos, and so on, that make the
WebSphere environment more robust. This layer is represented in the previous
diagram by the rectangle (maroon) located at the top.

In general, the number of technologies supported by this layer as well as the
implementation version of such technologies is one of the aspects that make up each
new WebSphere release.

Chapter 1

[17]

Using the technology stack view
One of the main benefits of the technology stack view is that it helps WebSphere
practitioners involved in various roles to map the various technologies included
in this stack to the functional blocks that make up the other two views. Some
practitioners will benefit by selecting the most appropriate subset among the classes
offered by the WebSphere environment to implement a required functionality. Other
practitioners will benefit by integrating into the WebSphere environment the best
infrastructure component that will help to enable a piece of functionality required by
a hosted application.

Summary
This chapter presents an introduction to WebSphere security by taking the reader to
a tour that helps him observe the environment from three different angles. Each of
the views presented in a way supplements the other two. Aspects related to security
are at the center of each of the views described. In this chapter and in the remaining
part of the book experienced users will get acquainted with new security aspects
offered by the IBM WebSphere Application Server Network Deployment version
7.0. In addition, and perhaps more importantly, the material covered in this chapter
and the rest of the book is presented so no prior knowledge of WebSphere security
(as in earlier versions of WebSphere) is required. This fact makes it easier for new
WebSphere administrators to learn the security aspects of WebSphere version 7.0.
Throughout the rest of the book, the terms WebSphere Application Server Network
Deployment version 7 and WAS ND7 will be used interchangeably. Let's get started!

Securing the Administrative
Interface

Did your parents, or other adults, ever tell you when you were a child, "make sure
you lock the door when you leave the house"? Why was that? Normally, you have a
lock on the front door so only those persons who have the correct key can get in the
house. I say normally, because there may be people out there like my late grandfather
in-law, who used to live in a small town in Tennessee. He would keep his house
locked while he was at home and would keep it unlocked when nobody was home in
case a relative or friend would need to go inside his home. The same applies to your
WebSphere Application Server (WAS ND7) infrastructure. Not having a secured
administrative interface (that is, having global security disabled) is equivalent to
your house having a front door without a lock.

Out of the box, there is no security enabled. Why? IBM gives the freedom to use
whatever user registry infrastructure is already used by your company. Such registry
will contain a list of users and groups they belong to. Access to WebSphere resources
will be granted by user ID and user groups defined in the registry.

This chapter describes the following topics:

•	 Concepts surrounding the WebSphere web-based administrative interface
•	 How security affects the overall WebSphere infrastructure
•	 Presents the pieces of information that required to secure the administrative

interface
•	 A procedure to follow in order to secure the WebSphere global

administrative infrastructure.

Securing the Administrative Interface

[20]

Information needed: Planning for security
Continuing our analogy, if you want to secure your front door, you need to know
what tools and parts you will need to install a lock. Similarly, in order to implement
global security for your WebSphere environment, we need to figure out what is
needed to enable it and what procedure to follow to accomplish this task. Therefore
the purpose of this major section is to identify possible values and sources for the
parameters that are required throughout the Enabling security section. Consequently,
there may be a need in the rest of this chapter to reference the table in the following
subsection "The LDAP and security table", that summarizes this chapter's required
parameters and values. So, it may be a good idea to place a bookmark on the page
where the table starts for easy reference.

In order to simplify references from the rest of the chapter
to the table presented at the end of this section, it will be
denoted as the LDAP and security table.

The type of information required to enable the administrative security varies. It will
depend on the type of user registry. Most medium to large corporations would use
a type of user registry based on LDAP as the underlying technology. Therefore,
in this book, we will be using LDAP as our underlying user registry technology.
LDAP stands for Lightweight Directory Access Protocol. Describing the LDAP
technology itself is out of the scope of this book, as it would take a whole other book
to describe it. However, in the next few paragraphs it will be highlighted along with
the elements of LDAP-based registries that are needed in our task of enabling the
administrative security, focusing on the values that can be used with each parameter.
If you are interested in further exploring the concepts behind the LDAP technology,
you can start with the book "Understanding LDAP", by IBM, available online at:
http://www.redbooks.ibm.com/redbooks/SG244986/wwhelp/wwhimpl/js/html/
wwhelp.htm. In addition, a description for each of the parameters is readily available
from the LDAP configuration page, available by following the breadcrumb Security
| Global security | Standalone LDAP registry.

For all practical purposes, enabling the administrative security of
WebSphere is equivalent to enabling WebSphere global security.
Those terms will be used interchangeably in this book.

Chapter 2

[21]

Best practice: Gather required information beforehand
Use the table provided next as an information template of data that
needs to be collected before starting the process of enabling security. For
instance, for each of your cells, create a spreadsheet which summarizes
the required data.

The LDAP and security table
For LDAP-based global security configuration, you will need to gather the
following parameters:

SSO domain name:

This refers to the LDAP realm. It is the
common DNS domain shared across
multiple applications. SSO stands for single
sign-on. An example of SSO domain name
would be the top portion of your domain
name: yourcompany.com, which is the
value to be used for this parameter.

WebSphere administrative identity and
password:

This is an ID that already exists in the LDAP
registry and which will be used to log in to
the WebSphere Console (or more precisely,
the Integrated Solutions Console) once
global security is enabled. For our examples
throughout this chapter, we will use the ID
wasadm.

Server user identity and password:

This will be the primary administrative
ID for intercommunication within the
WebSphere cell. Infrastructure WebSphere
components, such as the deployment
manager and node agents, will present
these credentials to communicate with
each other. We will use the ID wasadm
also. Since this parameter is only available
when the Server identity that is stored in
the repository option is selected, just like
the other IDs, the ID used for server user
identity must already exist in the LDAP
repository.

Bind distinguished name and password:

This ID must exist in the LDAP registry. It
is the ID that WebSphere uses to connect to
and authenticate with the LDAP registry.
The major requirement for this ID is that
it must have read privileges to users
and groups under the LDAP domain.
Specifically, it should be able to read
starting at the LDAP base distinguished
name. (See below for additional
information.) This ID must be entered in an
LDAP distinguished name format. We will
use: uid=wasbind,ou=service,o=yourcomp
any.com.

Server user ID

This ID must exist in the OS. It is the ID that
will own the deployment manager process.
We will use the value wasid.

LDAP server Host name:

The fully qualified domain host name of
the LDAP server. We will use the value
jsdsdev01.yourcompany.com.

Securing the Administrative Interface

[22]

LDAP server TCP port:

It is the TCP port to which the LDAP server
is listening. (Verify with your LDAP team
whether WebSphere should use plain or
SSL protocol.) We will use the standard
LDAP un-encrypted port, 389.

LDAP base distinguished name:

Obtain this information from your LDAP
administration team. We will use the
value: o=yourcompany.com. Unless your
environment uses multiple DNS domain
names, yours may be similar to the one
we are using. When selecting this value,
extreme care must be taken to insure that
the value selected, which is the root of
all WebSphere LDAP queries, does not
include branches that won't return any
results. In other words, select this value
to avoid global searches and only focus
on the branches with the subset of users
and groups that will be accessing the
applications hosted in the WebSphere
environment.

URL to the Integrated Solutions Console:

URL you normally use to access your
deployment manager console.

Best practice: Personal WebSphere Administration IDs
When more than one person will be sharing the responsibilities of
administrating a WebSphere environment, it is customary to define
each user with the role of Administrator. In this way, a single ID could
be used for the WebSphere administrative ID and server ID, reducing
the overhead of having multiple IDs. In essence, you are reserving the
administrative ID for operational use only.

Your LDAP administrator should be able to provide you with the appropriate
distinguished name for your bind ID. As a prerequisite to enabling security, it is
likely that you will need to request the LDAP team to create this ID.

Chapter 2

[23]

Enabling security
After coming back from the hardware store with the parts (locks, keys, and so on)
and tools (drill, screwdriver, and so on) and perhaps some advice from the hardware
store assistant, you can confidently start the task of installing that lock system you
just bought for your front door. In a similar way, now you can begin to configure
your WebSphere global security.

As in many IT tasks, there may be more than one way to accomplish such a
task. This section will guide you thru enabling global security using the Integrated
Solutions Console. Throughout this chapter, we will also refer to the Integrated
Solutions Console by the names of the WebSphere Console and the Deployment
Manager Console.

If your organization has a large base of WebSphere Application
Server domains and you are considering enabling global security on
multiple consoles, it may be a good idea to automate this task using
the WebSphere administrative scripting interface, wsadmin.

The procedure we are going to follow in this section is carried out in three phases or
stages as indicated below.

1.	 Set the domain name.
2.	 Configure the user registry.
3.	 Enable the administrative security.

As already mentioned in the planning section at the beginning of this chapter, the
procedure described in this section will be using an LDAP-based registry. This type
of registry will be applicable to most organizations. However, you are encouraged
to experiment with another type of registry. In a laboratory setting, for instance, you
could use the local OS authentication mechanism. Working with a different type of
registry will help you better understand global security.

Securing the Administrative Interface

[24]

Setting the domain name
Our first task then, is to set the SSO domain name for the global security task. The
sections that follow will walk you through the process.

Starting at the console
Log in to the WebSphere Console. Before global security is enabled, the Console
will only have one field in which to enter an ID. This ID can actually be anything
since we have not linked our WebSphere environment to any user registry. (The
use of the term User ID may be misleading. At this stage, WebSphere uses that
field as a temporary tag to label an area in which to save any changes that may be
made during the session until they are either committed or discarded.) Access the
Deployment Manager Console using a browser, enter a value for User ID and click
the Log in button. Prior to enabling global security, part of the Console log in page
will look similar to the portion shown in the following screenshot.

Continuing with the global security page
We first need to open the Global security page. After logging in, expand the
Security leaf on the left pane of the console, and then click on the Global security
link as shown in the following figure. The global security page will be displayed on
the right hand pane.

Chapter 2

[25]

Onto the SSO page
Next, let's open the SSO page. Expand the Web and SIP security leaf under the
Authentication section on the right section of the Global security page (figure
shown previously). Click on the Single sign-on (SSO) link. A portion of the SSO
page is shown in the next screenshot.

Securing the Administrative Interface

[26]

Setting the SSO domain name
Under the General Properties section, enter the SSO domain name in the
corresponding field, as shown in the previous screenshot. Use the default selections
for the rest of the parameters.

If you check the Require SSL parameter, single sign-on will only
be in effect for SSL communications. If your HTTP server resides
in the same server as your WebSphere Application Server, you will
normally not want to use SSL for communications between the
WebSphere Plug-in running inside the HTTP server process, and
the WebSphere Application Server hosting an application.

Applying and saving your changes
Keeping as a reference the previous screenshot under the section Onto the SSO page,
saving the changes is in order. Click the OK button. You will be sent back to
the Global security page. A Messages box is displayed at the top of the page
giving you the opportunity to save your changes. The message is shown in the
following screenshot:

Save your work as you normally would have for any other configuration
modifications of your environment in the past, ensuring that the changes are
propagated to all your existing nodes in this cell.

Chapter 2

[27]

Learning WebSphere configuration internals
If you wish to learn which internal WebSphere parameters are
modified, created or deleted as you apply various configuration tasks
you may want to do the following. For this particular task, before
you commit the changes, make a copy of the file: <Dmgr_Profile_
Path>/config/cells/<cell_name>/security.xml. As you
save your work, you can compare the difference between the original
copy and the active version of the file to observe what has changed.

It is important to ensure that any of the changes made while enabling global security
are synchronized with all of the nodes in the cell as they are saved by the deployment
manager. Failing to do this may prevent the nodes from getting the new configuration
and they may be unable to communicate with the deployment manager.

Configuring the user registry
Once the SSO domain name has been set, we are now ready for the second phase
in the securing of the WebSphere Console, and we can proceed to select the user
registry. During this stage of the global security configuration, we are going to tell
WebSphere which type of registry to use, what server and port to connect to and
which user IDs and passwords to use. Once global security is enabled, WebSphere
uses the information from this repository to grant or deny access to resources as they
are requested (in accordance with settings in the enterprise applications and in their
installed configuration.

Locating the user registry configuration area
Open the WebSphere Console Global security page. If you have closed your browser,
you need to open the Deployment Manager Console and log in as you did in the
first stage. (If needed, refer to the section "Starting at the Console"). Next, expand
the Security leaf and click on the Global security link, as you did in the second
step of the first phase. During this stage, we will pay attention to the User account
repository section (shown in the following figure).

Securing the Administrative Interface

[28]

Registry type selection
We continue by selecting the user registry type. The first thing we need to tell
WebSphere is the type of user registry to which we wish WebSphere to connect. The
default type is the local OS authentication mechanism. The supported registry types
are shown in the following screenshot:

In the next sections, we look very briefly at each of the options supported by
WAS ND7.

Federated repository
The type Federated repository enables us to use a common interface to a collection
of heterogeneous repositories. In addition, it establishes a common realm that
WebSphere uses to query the user registry when needed. In other words, a federated
repository provides a logical realm and a mapping between the logical entity types
and the underlying repository entity types. There are four types of data stores that
can be used in a federated repository: file-based, LDAP, database, and custom
registry. In WebSphere, a federated repository is implemented using the Virtual
Member Manager. Moreover, there is a restriction to whether or not two data stores
can be logically combined, that each data store contains unique distinguished names
from the others.

Local operating system
Next is the type Local operating system. As the name implies, it uses the host OS
user and group schema as the repository for users. There are several limitations
to using this type of repository. On the one hand, for distributed systems such as
Unix, Linux and Windows OS, the authentication mechanism must use a domain
controller when the cell expands to more than one host. On the other hand, the built-
in authentication mechanism of the OS can be used as registry only if all of the cell
components are hosted in the same OS server. Furthermore, if the process owner for
the WebSphere environment is a non-root ID, the local OS cannot be used if the cell
components are spread over multiple OS hosts.

Chapter 2

[29]

LDAP
We continue with the type Standalone LDAP registry. The formal definition for
Lightweight Directory Access Protocol is: "provides access to distributed directory
services that act in accordance with X.500 data and service models" [RCF 4511:
Lightweight Directory Access Protocol (LDAP): The Protocol].

Standalone custom registry
Finally, the last type of supported registry is the Standalone custom registry. As
the name implies, this type of registry provides a custom access interface (or more
officially, custom adaptors) to a custom store. An example of a custom adaptor
(although written for WebSphere v6) can be found at: http://www.ibm.com/
developerworks/websphere/library/samples/vmmsampleadapter.html.

LDAP—the preferred choice
In most scenarios, it is likely that you will be using a type of standalone LDAP
server. Select the Standalone LDAP registry option from the Available realm
definitions pull-down menu. Once the standalone LDAP registry type is selected,
click the Set as current button. The value of the Current realm definition field
updates to the selected value as shown in the following screenshot:

Reviewing the resulting standalone LDAP registry
page
Simultaneously, as a result of the previous action, a warning message is displayed
at the top of the Standalone LDAP registry page, as shown in the next screenshot.
The deployment manager is just reminding us that the configuration we are about to
make will not become active until we turn on global security.

Securing the Administrative Interface

[30]

Defining the WebSphere administrative ID
Under the General Properties section, enter the value for the WebSphere
administrative ID in the Primary administrative user name field. For the purposes
of this chapter, we are using the fictitious value wasadm, as shown in the following
screenshot. For additional information on this value refer to the LDAP and security
table section.

Setting the type of LDAP server
Next, we need to select the type of LDAP server. The default type is the IBM
Tivoli Directory Server. The supported LDAP server types are shown in the next
screenshot. Obviously, your choice will depend on the type of LDAP server used by
your company.

Entering the LDAP server parameters
Using the values you gathered in the first section of this chapter, Information needed:
planning for security, enter the LDAP server host name value in the Host field. The
fictitious value jsdsdev01.yourcompany.com is being used in our example. Next,
enter the LDAP server TCP port value in the Port field. We are using the standard
TCP port 389. The following screenshot shows how these values are displayed in the
Standalone LDAP registry page.

Chapter 2

[31]

Providing the LDAP bind identity parameters
Once the primary parameters that identify the LDAP server have been specified,
we need to designate the parameters to be used by WebSphere to connect to the
LDAP registry. In the field designated as Base distinguished name (DN), enter
the value for LDAP Base Distinguished Name identified in the Information needed:
planning for security section. We will be using the value o=yourcompany.com. Next,
enter the Bind Identity value in the Bind distinguished name (DN) field. The full
value shown in the following screenshot is uid=wasbind,ou=service,o=yourcom
pany.com. Finally, enter the corresponding password for the bind ID in the field
that is designated as Bind password. These values are shown as displayed in the
Standalone LDAP registry page in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Securing the Administrative Interface

[32]

Confirming other miscellaneous LDAP server
parameters
In general, the default value of the remaining parameters for the LDAP server
works just fine in most situations. Normally, there will be no need to modify the
default values shown in the following screenshot. However, if for instance, the
LDAP server to be used with this particular WebSphere environment only accepts
SSL connections, that fact would have to be reflected by checking the SSL enabled
check box under the SSL settings section of the Standalone LDAP registry page.
In a similar way, if your particular LDAP server has other requirements that are
not covered by the default selections shown in the following figure, adjust the
corresponding parameter accordingly.

Applying and saving the standalone LDAP
configuration
At this point, all that is left to complete the configuration of the standalone LDAP
registry is to commit the new configuration values just entered. Click the Apply
button, located at the bottom of the page. In the resulting page, a Messages section
appears at the top of the page. Use the appropriate link to save your work, always
insuring that the changes are synchronized with any existing node agent.

Chapter 2

[33]

Confirming the configuration
Before concluding this portion of the configuration, it is best practice to confirm
that the deployment manager can connect and log in the LDAP server. Identify and
click on the Test connection button located near the top of the page, just above the
General Properties section. If your configuration is correct, a Messages section is
displayed at the top of the page, similar to the one shown in the next screenshot. If an
error occurred, a corresponding message will be displayed. Correct the error and test
the connection again.

Common errors that may take place while testing the LDAP connection
include mistyped hostnames, IDs and passwords. Another type of error,
a little more difficult to detect, could be that WebSphere cannot connect
to the LDAP server. This could be due to a possible firewall issue (by
either a real firewall appliance or a firewall application running on the
LDAP server host OS), or a temporary network slowdown.

Enabling the administrative security
Once the two first stages have been completed, we are now ready to start the last
phase in the securing of the WebSphere Console and can proceed to turn on the
administrative security.

Best practice: node activation
Ensure that all of the node agents in your cell are operational. If they
are not, the node agents will not be able to receive the changes to the
global security and additional steps will be required to allow them to
connect to the deployment manager.

By enabling administrative security, we are effectively turning on global security. In
order to enable the administrative security perform the following steps.

Securing the Administrative Interface

[34]

Locating the administrative security section
Open the WebSphere Console Global security page. If you have closed your
browser, you need to open the Deployment Manager Console and log in as you did
in the previous two stages. (If needed, refer to the first step of the first stage.) Next,
expand the Security leaf and click on the Global security link, as you did in the
second step of the first stage. This time we are going to focus on the Administrative
security section, as shown in the following screenshot:

Chapter 2

[35]

Performing the administrative security
configuration steps
Under the Administrative security section, check the Enable administrative
security box. You will notice that the box labeled Use Java 2 security to restrict
application access to local resources is checked automatically. Normally, you do
not want this box to be checked, so remove the check from Java 2 security. The main
reason for choice is that it is not uncommon for enterprise applications to require
Java 2 security access that surpasses the default security policies. When this fact
is present, enterprise applications are likely to either fail or function differently as
designed. Therefore, modifications to the application's app.policy or was.policy,
as appropriate, would be required. Additional information about these files can be
found at http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/
com.ibm.websphere.nd.doc/info/ae/ae/rsec_rpolicydir.html. An alternative
to employing Java 2 security is to use an external access control policy manager, for
example, IBM Tivoli Access Manager or the popular CA SiteMinder Policy Server.
Moreover, Chapter 3 describes alternative locations in the administrative console
where the Java 2 security can be enabled for a limited number of applications that
require it.

Your selections should be as those shown in the following screenshot:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rsec_rpolicydir.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rsec_rpolicydir.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rsec_rpolicydir.html

Securing the Administrative Interface

[36]

Applying and saving your changes
On the same Global security page, scroll down. Click the Apply button, located at
the bottom. It is likely that WebSphere may display a long Messages section as the
one shown in the next screenshot:

Summarizing these warning messages, they tell us what to do if one or more node
agents belonging to this cell are not active in order to propagate our configuration
changes to each node agent configuration repository.

Propagating new configuration
After reading the warning messages, click on the Save link to commit your changes
to the WebSphere configuration repository. However, if you have not enabled
automatic synchronization with the nodes after each save, then click on the Review
link instead so you have the chance to indicate that you wish these changes to be
propagated to the nodes in the cell.

Chapter 2

[37]

Logging off from the console
Once you have saved your changes, you need to allow WebSphere to make those
changes active. This is accomplished by restarting the deployment manager.
Although not necessary, it is always good practice to log off the console. If there were
pending tasks to be saved, the deployment manager would display a message to
either save or discard any pending changes before allowing you to log off.

Changes in the deployment manager console URL
Pay close attention to the URL used to access the WebSphere Console
until this point. The protocol used is HTTP. Make note of the port
being used. This port matches your WC_adminhost TCP transport.
After you activate the global security, this URL will change. First,
the protocol changes to HTTPS. Secondly, the port also changes. This
time your browser will be redirected to the WC_adminhost_secure
TCP transport. You can still use the old URL; the deployment
manager console will redirect your browser to the secure port.

When describing procedures that need to take place at the OS level, in this book it
will be assumed that we are working on a Unix or Unix-like environment. If you
are working on a different type of OS, it is likely that you are already familiar with
the various commands used and can perform the equivalent operations in your
particular OS.

Restarting the deployment manager
Log in to the command line interface of your OS on the server where the deployment
manager process is executing. Switch to the user ID used to stop and start the
deployment manager process as you normally do. Use the following command:

<Dmgr_Profile_Path>/bin/stopManager.sh

(Use stopManager.bat in Windows; or the Windows service for WAS). Now you
can start the deployment manager. Use the following command:

<Dmgr_Profile_Path>/bin/startManager.sh

(In Windows, use startManager.bat or the Windows services interface). Ensure
that the output does not display any errors.

Keep in mind that global security will take place only after the
deployment manager and all of the nodes in its cell are restarted.

Securing the Administrative Interface

[38]

Logging in to the deployment manager console
Using your browser, connect to the WebSphere Console using the same URL you
have used before. WebSphere will attempt to redirect you to its secure administrative
port. However, your browser will show you a warning message stating the SSL
certificate presented by the site is invalid. The deployment manager is presenting its
self-signed certificate and the warning message means that your browser does not
have a root CA certificate to validate it. This is fine, since it was the configuration
we just did that created the SSL certificate. Click on the OK button. Depending on
the browser being used you will be presented with the option to cancel or continue.
Firefox presents an Or you can add an exception link. IE presents a Continue to this
website (not recommended) link. Accept the SSL certificate.

The Integrated Solutions Console opens. One can tell that global security is on
by observing that the log in page now has two fields. One field is for the User ID
and the other is for the Password. Enter the appropriate credentials (WebSphere
administrative ID and password) and click on the Log in button.

Congratulations! You have successfully enabled global security.

When global security is enabled you will be asked to provide a user
ID and its corresponding password in order to issue commands that
are required to communicate with the WebSphere administrative
infrastructure (for example, node agents.) The parameters to supply
to most command line scripts are -username and -password. For
instance, to see the status of the deployment manager process, you
would enter: <Dmgr_Profile_Path>/bin/serverStatus.sh
-username wasadm -password <mysecretpwd>

Administrative roles
Let's assume for a moment that the type of lock system you installed in your house
is a very sophisticated one. With that lock system, you have the capability to issue
different kinds of keys. The master key, which very likely you will take charge of,
would be enabled to open all of the locks installed throughout your house. There
would be other keys that may not have the same capability. All of the keys will open
the front door. In addition, some may open the kitchen pantry and the door to the
garage; other keys may open the office but not the locks in the kitchen to the pantry
or the garage. OK, I admit: this is stretching the front door analogy a little bit too far.
Nevertheless, I hope the point is made.

Chapter 2

[39]

WebSphere provides several user roles; the most common ones will be briefly
described next.

•	 Monitor: Capable of viewing the current WebSphere configuration and the
state of the application servers (JVM's).

•	 Configurator: In addition to being able to do what the Monitor does, the
configurator is capable of performing activities related to configuration of the
application servers and the deployment of applications (for example, creating
resources like virtual hosts, mapping application servers, and so on.)

•	 Operator: Entitled to the same privileges of a Monitor, an Operator has the
ability to change the runtime status of the application servers.

•	 Deployer: In addition to be able to perform the tasks of a Monitor,
a Deployer has the capability to perform configuration and change
run status of applications.

•	 Administrator: Capable of performing any of the tasks of the previous roles
plus can assign add user to any of the roles, affect the configuration and
runtime status of the WebSphere infrastructure (for example, deployment
manager and node agents).

Additional information about roles can be found in the IBM
WebSphere V7 Information Center: http://publib.boulder.ibm.
com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.
ibm.websphere.nd.doc/info/ae/ae/rsec_adminroles.html.

For most organizations, using Monitor and Administrator will suffice. If there is an
Operations group in your company, you probably have written (or will write) simple
scripts to stop and start enterprise applications, thus there is no need for Operations
folks to need access to the WebSphere Console.

Disabling security
Like many analogies, there is always a place where they don't completely hold. Our
front door lock scenario is no different and it falls short when it comes to disabling
security, unless removing the front door lock would make any sense and it could be
considered as a possibility.

There are going to be situations in which you will need to temporarily disable global
security. For instance, during the installation of WebSphere Portal, which installs on
top of a WebSphere Application Server layer, you are asked to disable global security
to perform some of the configuration tasks.

Securing the Administrative Interface

[40]

In this chapter so far, we have been using the WebSphere Console. You will see in
the next few paragraphs how easily global security can be disabled. The word 'easily'
in the last sentence implies simplicity, not that it is unsecure. For this task, you will
need the following additional information:

•	 Connection type: Protocol to be used between the wsadmin.sh JVM and the
deployment manager. We will use SOAP.

•	 Port: The SOAP TCP transport to which the deployment manager is listening.

The TCP ports used by the deployment manager are stored in
the properties file portdef.props which is located under the
properties directory of the deployment manager profile, that is,
<Profile_Root_Directory>/properties/portdef.props

In addition, it is recommended to always create a backup of the XML configuration
file for global security, security.xml located in <Profile_Root_Directory/
config/cells/<Cell_Name>/security.xml. This file can be restored if there are
difficulties with security configuration modifications.

1.	 Log in to the command line interface.
Using either SSH or telnet, log in to the host where the deployment manager
is running.

Actually, you could log in to any host where a WebSphere 7
profile is installed and using the administrative script interface,
log in to the deployment manager.

2.	 Switch to the user who owns the deployment manager process.
Using sudo or another similar mechanism, switch to the OS user ID used
to start and stop the WebSphere administrative components such as the
deployment manager. In our case, it will be the wasid.

3.	 Change your working directory to the profile's bin directory.
Change your working directory to the deployment manager's bin directory,
that is, <Dmgr_Profile_Path>/bin. This is not necessary but it will ensure
that you are invoking the correct script (in case you have multiple profiles on
a host.)

Chapter 2

[41]

4.	 Start the WebSphere administrative command line interface (wsadmin).
Since you have global security turned on, in order to connect to any of the
administrative components using various scripts, including wsadmin.sh,
in addition to any script's required parameters, you will need to supply the
administrative ID and password. To start the administrative command line
interface, issue the command:
<Dmgr_Profile_Path>/bin/wsadmin.sh -conntype SOAP -host mydmgr
-port 10005 -user wasadm -password <mysecretpwd> -lang jython

If this is the first time you use Jython as scripting
language, the command will issue a long list of
libraries being loaded.

At the end of the output you should see similar lines to the ones shown next.

WASX7209I: Connected to process "dmgr" on node sb02Dmgr using SOAP
connector; The type of process is: DeploymentManager

WASX7031I: For help, enter: "print Help. help()"

wsadmin>

1.	 wsadmin.sh commands to execute to disable GS.
In order to verify that global security is enabled, type the command:
AdminTask.isGlobalSecurityEnabled()

Which should return true. To disable global security, type the command:
AdminTask.setGlobalSecurity ('[-enabled false]')

If the command is successful, it should return the value true. Now to confirm
the current status of global security, repeat the first command of this series.
It should return false this time. In order to commit this change you need to
save it to the WebSphere repository. Issue the command:
AdminConfig.save()

This should return an empty string (''). You can now exit the
wsadmin interface.

Food for thought: What would happen if you restart
the dmgr process and then attempt to re-enable global
security in this wsadmin session? Why is this?

2.	 Synchronize the changes with the other nodes in the cell.

Securing the Administrative Interface

[42]

Use your favorite method to synchronize all of the nodes in this cell.
3.	 Restart the deployment manager.

In order to make the change active you need to restart your administrative
environment, that is, the deployment manager and all of the node agents.

4.	 Log in to the WebSphere Console.
When you log in to the Administrative Console, you will notice that the Log
in page will look like the beginning with only a field for User ID.

5.	 Revert the change and re-enable global security.
Log off the WebSphere Console. Start the wsadmin interface. You can use
the command used before but you do not need to include the user and
password parameters. When you get the wsadmin> prompt, issue the
following command:
AdminTask.setGlobalSecurity ('[-enabled true]')

The output of this command should be true, if there were no
issues. Confirm that global security is enabled using the command
AdminTask.isGlobalSecurityEnabled() as you did before. Save
your results. Synchronize the changes with the nodes. Restart the
administrative components.
Your environment has global security turned on again.

Summary
In this chapter, you have learned about locks. Well, not really what you have learned
is that there are different types of user registry, LDAP being the most common. You
also learned the type of information you will need to be able to configure global
security. In addition, you learned that setting the SSO domain name and selecting and
configuring the user registry are prerequisites to enabling the administrative security.
Furthermore, you gained experience setting up global security using the WebSphere
Console. You now know some of the most common security roles that could be
used in your organization. Finally, you learned how to disable global security using
the administrative command line interface and how to re-enable it using the same
interface. This is quite an accomplishment. Congratulations. Time for a coffee break,
you've earned it!

Configuring User
Authentication and Access

Not too long before this chapter was written there was an interesting turn of events
that could help us visualize our topic. In November of 2009, the President of the
United States of America hosted a State Dinner honoring the Prime Minister of
India. In this type of formal and ceremonious event, there are well-defined groups
of participants. For instance, you may have the hosts, the guests of honor and other
important guests, security personnel, military members, service people, media,
and on occasions, crashers. The underlying principles that surround a State Dinner
may help us to better understand the concepts of security domains, user registries,
authentication, and authorization of users as they pertain to a WebSphere application
server environment.

This chapter deals with users, how they can be organized and managed to grant
access to the information and resources they are entitled to. In the next sections:

•	 You will be exposed to the concepts of security domains and user registries.
•	 The chapter provides a hands-on approach to creating security domains

using scripting.
•	 A mini project at the end will help you understand the various concepts

presented by protecting an application server. In this project,
the chapter describes the use of federated repositories by creating and
managing users and groups. It then uses that structure to deploy and
protect an application.

Configuring User Authentication and Access

[44]

Security domains
In terms of our State Dinner proceedings, we would observe that there may be
several organizations working in harmony with the sole purpose of making sure
the occasion is a successful one, and perhaps even memorable for all participants
involved. At first glance, we would observe two distinct groups: participants and
service. These two generic groups could be divided further down, at least a level.
On the one hand, take the participants, for instance. This group would be made of
hosts, guests of honor, important guests from the hosting government, and perhaps
important guests from the honored country. On the other hand, we have the service
group which would be made of the security organization, the press and the service
provider group. Each of these groups helps the event coordinator to delegate
responsibilities, so managing the occasion is feasible. In version seven, WebSphere
has introduced the use of multiple security domains.

Just as in the State Dinner analogy, where groups are assembled to manage a
group to accomplish a task, in WebSphere there is now the concept of multiple
security domains. With this new feature introduced in Version 7, it is now possible
to use multiple security settings at different levels or scopes in the WebSphere
infrastructure. In other words, a scope in the context of security defines where the
settings are applicable. Therefore, if there are differences in terms of the security
requirements among two or more enterprise applications, Version 7 makes it easier
to configure many of the security parameters customized to the need of each of those
enterprise applications.

Best practice: use multiple security domains
Take advantage of this new feature to increase the security of your
WebSphere infrastructure. Make a habit to define at least two security
domains. In other words, the global security domain should be reserved
for the administrative component of the WebSphere infrastructure.

WebSphere Version 7 supports the following scopes, which can include their own
custom security domain:

•	 Global security
•	 Cells
•	 Clusters
•	 Servers
•	 Service Integration Buses

Chapter 3

[45]

Keep in mind that in order to be able to configure a security
domain for cells, clusters, servers, or service integrations
buses, global security must be enabled and configured.

What is a security domain
A WebSphere security domain is a well-defined collection of security-related
parameters and settings that guide how resources are to be protected in a given
scope, as well as what type of services may be provided to entities requesting them.

There are a large number of settings that make up a security domain. A group
of those settings can only be defined at the global security level. The rest of the
security settings can be customized at lower security domains. Among the security
settings that can be superseded by non-global security domains, we can find the
following categories:

•	 Enablement of application security
•	 Java 2 security
•	 User realm (registry)
•	 Trust Association Interceptor (TAI)
•	 SPNEGO Web authentication
•	 RMI/IIOP Security (CSIv2 protocol)
•	 JAAS
•	 Authentication mechanism attributes
•	 Authorization provider
•	 Custom properties

On the other hand, the categories of security settings that can only be defined at the
global security domain are as follows:

•	 Web attributes (single sign-on)
•	 Secure communications attributes (SSL)
•	 Security auditing
•	 LTPA authentication mechanism
•	 Kerberos authentication mechanism

Configuring User Authentication and Access

[46]

Scope of security domains
In light of this new feature, an obvious question arises: given an enterprise
application, which security configuration would apply? The issue of which
security element can be applied to an enterprise application hosted in a WAS ND7
environment is determined by the following:

•	 When an enterprise application is executing on an application server or
a cluster and there is a security domain defined at either of those levels,
security parameters defined at the security domain level will be applied to
the enterprise application. Any security parameter that is not defined at the
security domain level will be obtained from the global security configuration.
This is applicable even if a security domain at the cell level is defined.

•	 When an enterprise application is running on an application server or cluster
that does not have an associated security domain, but there is a security
domain at the cell level, security values defined at the cell security domain
will be applied to the enterprise application. Any other security value not
defined in the cell security domain will be gathered from the global security
configuration.

When the previous two scenarios do not apply, security parameters will be obtained
from the global security configuration.

Therefore, in order to help us answer this question, let's refer to the next diagram.
In this diagram, global security has been defined, which is a prerequisite to define
additional security domains (as was stated earlier in this chapter). This fact is
illustrated by the long rectangle at the top of the diagram. In addition to the global
security, a security domain has been defined and assigned to the cell scope. In our
diagram, this security domain is represented by the rectangle underneath the global
security domain. In this diagram, we have two application servers. They could very
well be servers of other types or clusters or service integration buses. In this diagram,
both application servers are protected, using security settings (that is, security is
enabled).

In any event, the application server represented by the green rectangle and denoted
by the letter 'A' on the left of the diagram does not have a security domain defined.
Finally, the application server represented by the blue rectangle and denoted by
the letter 'B' is configured with its own security domain. Let's focus now on the
enterprise applications shown at the bottom of the diagram in order to see which
security domain governs them.

Chapter 3

[47]

Scenario 'A' background: Global security is enabled. Cell scope
security domain is defined and enabled. Application server security
is enabled, but it is not mapped to a specific security domain.

The enterprise application represented by the oval is running on the application
server 'A'. Since this server has security enabled but is not mapped to a custom
security domain, any security settings from the group of categories that can be
superseded by non-global security domains and would be defined at the cell scope
(for example, the enablement and configuration of trust association) would be
applied to this application. This fact is represented in the diagram by the middle
small triangle, located between the cell and the application server. Furthermore,
any security setting from the group of categories that can be superseded by non-
global security domain and would not be defined at the cell scope (for example,
authorization provider), would be applied from the global security domain. This
situation is represented in the diagram by the top small green triangle, located
between the global security domain and the cell level security domain.

Scenario 'B' background: Global security is enabled. Cell scope
security domain is defined and enabled. Application server scope
security domain is defined and enabled.

Configuring User Authentication and Access

[48]

Finally, for the enterprise application being hosted in the application server 'B', the
rules to identify which security settings are effective are much simpler. Any security
settings from the group of categories that can be superseded by non-global security
domains defined at the application servers 'B' level would be used for the enterprise
application. Any other security setting would be selected from the global security
domain. Cell level security settings are skipped altogether.

Benefits of multiple security domains
Since WebSphere 7 supports multiple security domains, we can see an added
amount of flexibility like never before. The more evident benefits are as follows:

•	 Security settings can be tailored to best fit a given scope (cells, clusters,
servers, or service integration buses).

•	 Since certain security configuration will take precedence at a given scope
over the global security configuration, a security domain can focus solely
on the aspects that need to be customized, and continue to use suitable
parameters from the global security.

•	 It is now possible to segregate administrative security configuration from
application configuration.

Limitations of security domains
There are some points that we need to keep in mind since they are not supported.
However, if we look closely at such restrictions, it may be to our benefit not to have
those settings at all levels.

Among the limitations, it can be mentioned that the categories of security settings
available for configuration are at the global security level and cannot be overridden.

Additionally, another limitation is the fact that there is only one federated repository,
and this can only be defined at the global security level.

Chapter 3

[49]

Administrative security domain
For the State Dinner analogy, it would be assumed that the local government has the
final word in terms of the implementation of the security for the event. One official,
or one department or group within a department, would be made responsible for
managing the event security. Let's denote this entity as the State Dinner Security
Management Team (SDSMT). It is likely that there would be other groups,
possibly not affiliated with the SDSMT, which would be delegated the overseeing
of security management for a specific aspect of the proceedings. For instance, one of
the responsibilities of the contracting agency would be to receive bids for the food
services. The contracting agency would have received, as part of its delegation of
authority, the guidelines for a food services provider. It would be the duty of the
contracting agency to ensure such guidelines are met by the selected food services
contractor. If there was a group providing certain types of services for which the
SDSMT would have not made the corresponding delegation of authority, the SDSMT
would have to directly oversee that particular group. Therefore, the party ultimately
responsible for any security related affair would be the SDSMT.

In WebSphere version 7 it is now possible, as mentioned earlier, to have multiple
security domains. When global security is enabled, an administrative security
domain should be defined. The security parameters defined at the global level will
be applied down to the application server or service integration bus levels. You have
already had some hands-on experience setting up the administrative security domain
in the Setting the domain name on Chapter 2, Securing the Administrative Interface. For
this chapter's project, an alternative procedure will be described.

Best practice: using the global security domain as the
administrative domain
Since WebSphere version 7 now supports multiple domains, it is
highly recommended to set aside the global security domain uniquely
for administrative purposes. Therefore, you also must create at
least one other security domain. If you are planning to use only one
additional security domain, define it at the cell level.

Configuring User Authentication and Access

[50]

Configuring security domains based on
global security
When global security is configured and enabled, it becomes by default the global
security domain. After you enable global security as described in Chapter 2, Securing
the Administrative Interface if you were to open the Security domains page (that is,
expand the Security leaf and click the Security domains link) you will see that it is
empty. Assuming that you wish to use multiple security domains, you may wish to
clone the global security domain and use it as it is, or with some customization at the
cell level. For instance, you may wish to use the federated repository realm for global
security and a standalone LDAP registry for the cell security domain.

In this section, we will learn to manipulate security domains by doing the following:

•	 Creating a global security clone and assigning it to the cell level using the
administrative console.

•	 Creating security domains from scratch using the wsadmin scripting tool.

In this section, the wsadmin tool will be used to create the administrative security
domain. The procedure that will be used is broken down in two stages. In the first
one, the security domain is created. In the second stage, the security domain is
mapped to a scope.

Creating a global security domain clone
This task will be demonstrated using the Deployment Manager Console. Log in to
the console, then expand the Security leaf and open the Security domains page. In
order to clone the global security domain, click the Copy Global Security button.
In the page that is displayed, type in a name for the domain and a description. For
simplicity, we will call it cell.yourcompany.com. Click the Apply button in order
to remain on the same page. When the page re-displays, several more sections are
added. Under the section Assigned Scopes, check the cell box as it is shown in the
following screenshot:

Chapter 3

[51]

Finally, scroll down and click the OK button to make the changes on the
configuration. Save and synchronize the changes.

Creating a security domain using scripting
The security domain secappsrv01.yourcompany.com will be created, and the
"Security domain for SecureAppServer01" will be set as its description. In order to
create this security domain using the wsadmin scripting tool, follow the procedure
shown next:

1.	 Log in to the Deployment Manager command line.
2.	 Change working directory to the bin directory.
3.	 Start the wsadmin command.
4.	 Issue the following command:

./wsadmin.sh -user wasadm -password <yourpwd> -lang jython

Best practice: use Jython as your scripting language
IBM encourages using Jython as your primary, if not the
only, scripting language to administrate your WebSphere
application server environment.

Configuring User Authentication and Access

[52]

5.	 Create a security domain using the AdminTask wsadmin object.
We will create the asecappsvr01.yourcompany.com security domain. It will
be assigned to an application server later in this chapter and used in the mini
project at the end of it. At the wsadmin> prompt, enter the following code:
AdminTask.createSecurityDomain('-securityDomainName secappsvr01.
yourcompany.com -securityDomainDescription "Security domain for
SecureAppServer01" ')

In the code above, the AdminTask wsadmin object offers the
createSecurityDomain command. The command, in its string
syntax form, takes a string that follows a format that includes two keys
and their corresponding value. The keys are denoted by a preceding
dash. The order of the elements is key, value, key, value (without
the commas.) The value for the parameter securityDomainName
is the name desired for the domain; the value for the key
securityDomainDescription is a string surrounded by double
quotes that designates the purpose of the security domain.

6.	 Save the configuration.
Use the wsadmin object AdminConfig and its command Save to make your
configuration changes permanent.

You can log in to the Deployment Manager console and go to the Security domains
page following the crumb trail Security | Security domains. The page should
include the security domain just created, as shown in the following screenshot:

Chapter 3

[53]

User registry concepts
It is likely that at the State Dinner there would be several lists that would help
manage all of the people expected to be on site at the event. There would be lists
of organizations that have personnel at the event site. It would be also probable
that each individual organization involved in the proceedings by offering services
would make available a roster of employees assigned to work at the event. Similarly,
there would be lists of guests. These lists would probably come from different
organizations as well, such as the local government and the embassy of the foreign
guest of honor.

In WebSphere, are the equivalents to the lists used at the State Dinner. They
are the user registries, also denoted as user repositories. These registries will
contain lists of groups, individuals, and perhaps other entities relevant to the
operation of an organization.

What is a user registry
As briefly mentioned in Chapter 2, Securing the Administrative Interface there are
various types of user registries. In essence, a user registry is a collection of records
that contains information about users. The fields, which represent the type of
information kept about users, who make up a record, will vary immensely. Each
field will be associated with relevant information about the users in the repository.
However, it is likely that at least some records will contain a field that stores the user
identification (user ID), and a field for storing an authentication token of some sort,
such as an encrypted password. In addition, the registry may include a hierarchy of
groups that best fit the needs of an organization. It is customary that each user in the
registry will be assigned to at least one of the groups.

Applications and a variety of IT systems will take advantage of this organization of
groups and users to provide different types of services according to an established
design. Let's see how the WebSphere application server uses these stores.

WebSphere use of user repositories
User repositories are used by WebSphere mainly for two purposes. Firstly, the
information available through a user repository may be used to certify that a user
is who the user says he is. This is known as authentication. Secondly, once a user is
authenticated, the information stored in the registry indicates the resources a user is
entitled to access. This is known as authorization. Let's look at each of these uses.

Configuring User Authentication and Access

[54]

Authentication
In our State Dinner analogy, a roster of authorized employees would be provided by
a food services company to the security agency handling the event. An entrance at
the location holding the State Dinner would be designated as the point of entry for
personnel working in matters relating to the banquet. In the diagram shown next, a
worker of the company offering food services is denoted as "Bill". His job is to help
fix a portion of the meal to be served to the guests. When Bill is ready to report to
work, he would be directed to the entrance assigned for the food services personnel.
His initial goal is to go to the kitchen or cooking area to be used for this event. His
purpose is represented in the diagram by the yellow rectangle labeled "Going to the
kitchen". A security guard, identified in our diagram as "Kim", would stand at the
entrance, ensuring that anyone wanting to enter presents the proper credentials,
for example, a photo ID provided by their employer. The security guard would
then insure that the name bored in the credential matches the name in the roster list
the guard received. The list is illustrated in the diagram by the oval labeled Food
Services Roster. Additionally, the guard would ensure that the person presenting
the ID is a match with the picture in the ID. We will assume that Bill has been asked
to work at the event and his name is on the roster. Kim will then give the OK and
provide an event badge that Bill must wear while working at the event.

Chapter 3

[55]

In WebSphere, at an abstract level, the mechanism used to verify the identity of a
user is very similar to our State Dinner analogy. Consider the following diagram:

In this simple diagram, User wants to get some Goodies. Let's find out what
interactions take place between the different components of the system. Interactions
are presented as a sequence of communications numbered from 1 through 8 and
depicted in small ovals. Ovals 1, 3 and 7 represent communications or messages sent
by User; Ovals 2, 4 and 6, in turn, represent messages originated from WebSphere;
5 is a message sent by Registry; and finally, 8 indicates communications sent by
Goodies. The sequence in the diagram is as follows:

1.	 User sends an identifier, such as a URL, of a resource or service requested.
2.	 WebSphere replies by asking for credentials (for example, a user ID and

password combination) in order to with grant the request. Let's assume that
User is entitled to access to the resource or service in question.

3.	 User provides an identification (for example, a login ID) and a password.
4.	 WebSphere asks Registry to validate if the ID and password match

its records.
5.	 Since we are assuming that User is entitled to the resource or service

requested, Registry responds to WebSphere in the affirmative. At this point,
many other subprocesses may take place, but for our purposes, we assume
that this is all that is required.

6.	 WebSphere answers User in the affirmative and, along with the answer, it
sends a token that User can include in subsequent requests. Again, other
subprocesses may take place at this point, which will be ignored until later.

Configuring User Authentication and Access

[56]

7.	 User makes the same request, but includes the token provided earlier by
WebSphere; WebSphere finds the token in the request and forwards it to
Goodies. (This is represented by the dotted line oval number 7.)

8.	 Finally, Goodies receives the request and responds back to WebSphere, who
then forwards the response to User.

Requests that may require proof of identification are not limited to
users using a browser. More and more applications interact with
each other. Therefore, it is not uncommon to find an application A,
having to identify itself when communicating with application B.

Authorization
When our friend Bill (the cook) has passed the security entrance, he would be led
to the area where he is expected to perform his job. In our State Dinner analogy,
badges that personnel wear represents their credentials, whereas the specific location
each of the workers attempts to go to represent the sought resource. In other words,
when Bill enters the premises, his blue badge would give him access to the kitchen.
If Bill wants to take a peek at the guests and attempts to go to the ballroom or the
lawn, when he tries to enter another area by presenting his badge, the security
person at that checkpoint would deny him access based on the color of his badge.
The security guard at the checkpoint would have received a list that summarizes
what color badges can enter that specific location. Such a list represents our registry
concept. There would be other people working at the State Dinner that would
have access to more than one working area. An example of this type of case would
probably be the security personnel at the event. Let's remember Kim, who checked
out Bill's credentials at the food services entrance. She probably would have been
granted access to all exterior areas. This would include all of the points of entry to
the building, the various gardens and the lawn where the banquet is to take place.
With that type of access, Kim can perform different duties. Each duty will place
her at a specific location of her assigned access areas. However, she cannot go into
the kitchen or the ballroom since they, being interior locations, fall outside of her
assigned areas of access. Essentially, the type of badge an employee is carrying will
indicate which areas this employee is authorized to go to based on custom lists used
at each checkpoint.

Chapter 3

[57]

In WebSphere, these principles apply as well. Let's make our User-WebSphere-
Registry-Goodies a little more complex. Refer to the diagram shown next. In it,
the Goodies component has been blown up. In this improved version, Goodies
contains three different areas, which could be mapped to applications with a unique
context root. One of the applications, Public, only requires that the user be registered
(for example, authenticated). There is no change in behavior between accessing
Public in this second revision and accessing Goodies in the first revision. Another
Goodies application, HR, in addition to be authenticated requires that the user
belongs to Registry group Human Resources. By design, any member of Human
Resources would also belong to the Registry group Employee. The final application,
Employees, in order to be accessed requires that the user be authenticated and that
also belongs to Registry group Employee.

Supported user registry types
User registries may vary from one another along many dimensions. WebSphere
version 7 supports four types of user registry:

•	 Local operating system
•	 Stand alone LDAP
•	 Stand alone custom registry
•	 Federated repositories

With the possibility of using multiple security domains, it is also possible to use
several user registries within a cell. A specific type of registry would have to be
mapped to a given security domain. It is therefore possible to have shared user
registries between two or more security domains.

Configuring User Authentication and Access

[58]

Best practice: use stand-alone LDAP
Most organizations use LDAP as the user registry. This is because
many IT components outside of a WebSphere environment that
require user authentication already make use of LDAP-based user
directory services as a central corporate user repository. LDAP-based
repositories can be used to grant access to employee's workstations,
Notes e-mail, Blackberry enterprise applications, and so on. It is
natural then to map WebSphere with an LDAP-based user repository.

Local operating system
Under this user registry type, WebSphere would use the users and groups defined
at the OS level where the Deployment Manager is executing. This principle is
depicted in the next diagram. In it, the deployment manager and other WebSphere
components (for example, node agents and application servers) are executing under
the same host, identified by the creative label 'Local OS'. Any security-related
operation within the WebSphere environment will draw its information from the OS
users and groups defined.

It is not recommended to use this type of repository if the following
two circumstances are met different WebSphere components execute
on different hosts hosts do not have a synchronized authentication
mechanism. In other words, each host has its own user repository.

Chapter 3

[59]

In our State Dinner analogy, an equivalent approach to the local OS registry is highly
unlikely. Let's see what would be the implications. From our past discussions, there
are multiple groups that are responsible for selected personnel. This is equivalent
to using multiple servers. Each group handles its own roster, so it would not be
possible to use a particular group's roster approach simply because it would contain
only that group's employees and no other personnel. For the local OS type of registry
to be feasible, it would require that each participating service group (for example,
Secret Service) would have to include all persons expected to be at the dinner in its
own roster. So, it is practically not possible.

Standalone LDAP
For the State Dinner occasion, let's recall that there will have been created individual
event (that is, official) badges that indicate the bearer is who the badge says the
person. In addition, the color of the badge will provide access to one or more
areas on site. Bill would present his official badge, after getting it from Kim, to any
security personnel who would ask for it on his way to the kitchen. All event badges
were ordered by only one group (after getting the rosters from all organizations
involved). So a single organization (most likely the security group) would handle the
distribution of the badges.

In the IT world, and in particular in WebSphere environments, an LDAP-based
server handles groups, users, and any specific objects that suit the needs of a
corporation. In the following diagram, WebSphere is running in a cluster model.
For any authentication or authorization needs, it will draw the required information
from the LDAP server and pass it on to the enterprise application, which will
act accordingly.

Configuring User Authentication and Access

[60]

Standalone custom registry
WebSphere gives a lot of flexibility. Among the low-level behavior that can be
altered is how authentication and authorization is carried out. This is not a new
feature in WebSphere Version 7. Essentially, in order to use a custom registry, the
WebSphere Java interface com.ibm.websphere.security.UserRegistry must be
implemented. Since the implementation requires not only a good understanding of
what an application needs, but programming to create a Java class that implements
the UserRegistry interface, it is outside of the scope of this book.

For those readers who would like to learn more about this interface,
you can go online to the WebSphere Version 7 information center at:
http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/
info/ae/ae/xsec_customuser.html

Federated repositories
In our State Dinner scenario, we saw earlier that having a single master roster as
a source is impractical. The security group could be assigned the task of creating
a master roster from multiple sources. Let's designate the sub-group within the
security group as the Master Roster Management group (MRM). MRM would
probably split the task into major efforts: collecting a list of all guests from different
sources; and gathering employee/contractor rosters from all of the non-guests which
would probably include the press plus the various service contracting agencies.
MRM would turn this master roster to whatever group is in charge of defining
categories of participants and what type of person would be assigned to each
category. Once the master roster and the master participant categories have been
combined, the event badges can be ordered. In this way, all non-guests involved
in the event have been identified and their records would contain the same type of
information. This information would be relevant only to the occasion.

The purpose of a federated repository is very similar to the State Dinner scenario.
There will be times in which information needed to provide users of a WebSphere
application authentication and access may be stored on more than one repository,
even perhaps using different storing techniques. Federated repositories make
transparent to WebSphere the actual source of the information. The types of user
registry supported in a federated repository are:

•	 File-based
•	 Database
•	 LDAP

Chapter 3

[61]

•	 Custom
•	 Local OS (see note below)

Initially in version WebSphere 7.0, only the first four registry
types were supported. Since fix pack 5, local OS is also
supported as a potential member of a federated repository.

In the following diagram, our former scenario seems a bit more complex. From
the WebSphere applications, perspective, nothing has changed. The fact that there
may be more components as back-end repositories is transparent to the enterprise
applications and other WebSphere components requiring this type of security
information. One of the additions to the diagram as compared with the LDAP-based
registry diagram is the presence of the VMM component. VMM stands for Virtual
Member Management. VMM is a component of the WebSphere ND v7 architecture.
It is used to create an interface with the federated repository. In the diagram,
four types of back-end registry make up the federated repository. Therefore, for
any authentication and authorization needs, WebSphere will obtain the required
information through its VMM infrastructure.

Configuring User Authentication and Access

[62]

However, there are certain restrictions in using a federated repository. The chief
restriction among them is that there can only be one federated repository per cell,
and it can only be used at the global security level. Another limitation is that a user
must be unique among all of the federated back-end repositories. If there is a query
a user to the federated repository, an exhaustive search is performed on all of the
federated repositories. If the result of the search returns more than one result, an
exception will be returned.

Protecting application servers
In this section, a simple process to enable security on an application server will be
shown in the form of a mini-project. At the end, you are expected to have a secured
application server that will challenge users with authentication credentials.

There are some prerequisites that need to be completed. Most of them, if not all, are
probably already familiar to you. The very next section states what elements are
expected to be available and ready to be used. You should not be required to perform
any task.

WebSphere environment assumptions
This mini-project assumes that the following architecture is available: one
WebSphere cell environment with at least one node federated to the cell. All of the
WebSphere environment components can reside on a single OS host. As before, the
procedures shown below are being carried out on a Linux OS.

The second assumption is that the original WebSphere file-based federated
repository is available. The name of the file is fileRegistry.xml. It is deployed
when a deployer manager is created in the directory: <Profile_Root_Directory>/
config/cells/<Cell_Name>.

The third and final assumption is that the IBM-provided enterprise application
DefaultApplication.ear is available for deployment. If not already deployed
on the application server server1, you should find it under the directory <WASND_
Install_Directory>/installableApplications.

If DefaultApplication.ear was not deployed on your
installation, run the WebSphere installer (install.sh)
on your media distribution, and select to add the Sample
Applications feature to your existing installation.

Chapter 3

[63]

Prerequisites
As stated earlier, the tasks included in this section should be familiar to you.
Therefore, only a brief description of what is needed will be provided. You may want
to use the deployment manager console or the wsadmin scripting interface to carry
out the tasks. Let's have fun.

Creating an application server
For this project, you need to add a new application server. In our example it is
called SecureAppServer01. You can give a name that best suits your organization
standards. The name is not relevant. The default parameters, when creating an
application server, can be used, as there are no special requirements other than that
the server must be the application server type.

Creating a virtual host
Create the employees_vh virtual host. Add the Web Container default and
administrative ports to it, making sure to remove any other ports added by default.

Creating application JDBC Provider and
DataSource
Both a JDBC Provider and a DataSource at the application server SecureAppServer01
level are required. On the one hand, the requirements for the JDBC Provider are
shown in the next screenshot:

On the other hand, the requirements for the DataSource are as follows:

Use the JDBC Provider just created. Name: Employee Data Source. JNDI
name: EMPDataSource. Database name: ${APP_INSTALL_ROOT}/${CELL}/
EmpDefaultApplication.ear/DeafaultDB.

Configuring User Authentication and Access

[64]

Configuring the global security to use the federated
user registry
You probably already have a WebSphere environment with the global security
enabled. If that is not the case, you can refer to the previous chapter (Securing the
Administrative Interface). Insure to select Federated repositories, under the Available
realm definitions pop-up menu. Click the Set as current button to make federated
repositories the new realm definition.

If you had to make this change, do not forget to restart the
environment (deployment manager and node agent or agents) so the
switch of repository becomes effective as you continue your work.

Creating a security domain for the application
server
This is probably a recent skill that you have acquired. If you are using the same
environment as when you created your first security domain in the administrative
security domain section, you can use the cell security domain as the basis for the
new one. Name the domain secappsvr01.yourcompany.com. Keep in mind that the
name of the security domain does not need to follow the format of a FQDN name, so
you could omit the yourcompany.com portion.

If you are creating the security domain from scratch, you could
go to the Security domains page as you have done before and
click on the Copy Global Security… button to ensure that this
new domain uses the federated registry as its realm.

Configuring user authentication
In order to make the sets of actions clearer, let's continue working with our User-
WebSphere-Registry-Goodies (UWRG) scenario. In this section, we will be creating
a couple of users and groups and will add them to our federated repository.

Federated repository feature
Currently, in WebSphere Version 7, only the federated repository is
supported for reading and writing to the back-end registry. The other
supported repository types are supported for reading only.

Chapter 3

[65]

Creating groups
Our goal in this section is to create two groups from the UWRG scenario. Drawing
our requirement from the diagram in the Authorization section, one group will
be Employee and the other, Human Resources. In order to create groups in the
federated repository follow the steps described next:

1.	 Log in to the Deployment Manager console.
2.	 Open the Manage Users page.

Expand the Users and Groups leaf on the left, click on the Manage Groups
link. The Manage Groups page is displayed as shown in the following
screenshot. Initially it is blank, as we have not defined any groups.

Configuring User Authentication and Access

[66]

3.	 Add the groups to the federated repository.
Click the Create… button. The Create Group page opens, as shown in the
following screenshot. Enter Employee in the Group name field. Optionally,
type All Employees in the Description box. Once the fields are completed,
click the Create button. You should get a notification stating that The group
was created successfully. Click the Close button. You are sent back to the
Manage Groups page, this time listing your newly created group.

Repeat the steps to create the Human Resources group. Optionally, create
the group Authenticated.

4.	 Display existing groups.

On the Manage Groups page, click the Search button. The groups just
created should be displayed in the results area; your screen should look
similar to the following screenshot. (The description fields may not match
those in the screenshot, but that does not have any relevance.)

Chapter 3

[67]

Creating users
The approach followed to create users follows similar mechanics as creating groups.
There are a few extra steps, however, in order to assign users to groups. Our goal is
to create at least two users. One, Ravi Employee, will be assigned to the Employee
group. The second is Lola HR, who is part of the Human Resources group.

1.	 Open the Manage Users page.
Expand the Users and Groups leaf on the left, click on the Manage Users
link. The Manage Users page is displayed as shown in the following
screenshot. Initially it is blank, as we have not defined any users.

2.	 Add the users to the federated repository.
The information needed for each user to be entered is: User ID, Name and
Last name, and password.

ID Name Last name
ravi Ravi Employee
lola Lola HR

Configuring User Authentication and Access

[68]

Click the Create… button. The Create User page opens, as shown in the next
screenshot. Fill the fields with the information provided. (Passwords are at
your discretion.) Then click create. A notification indicating the user creation
was successful is displayed. Repeat for the other user.

3.	 Display existing users.
On the Manage Users page, click the Search button. The groups just created
should be displayed in the results area.

Assigning users to groups
The final sub-task of this section is to assign users to groups. It is rather simple,
as you may imagine. Open the Manage Groups page. After doing so, click the
Employee group link. The Group properties section is then displayed. Click the
Members tab. In the section that is displayed next, click the Add Users… button. In
the new section that appears, click the Search button. Select the users ravi and lola
from the list, as shown in the next screenshot. Click the Add button. A confirmation
screen is shown stating that the addition was successful.

Chapter 3

[69]

As a simple exercise, go to the Employee group page and
confirm that the users are now members of the group.

Configuring access to resources
For the State Dinner scenario, people working at the event would need access to the
kitchen, hallways around the official gathering and residence surroundings and the
dining area. These areas are equivalent to resources in the WebSphere scenario. Each
area would be designated with a color-code that would match the color of the official
badges. Workers belong to a particular company or sub-contractor. Companies and
sub-contracting agencies are equivalent to the groups in our federated user registry.

Thankfully, it is very likely that you will not be in the business of managing users
and groups as most corporations use an LDAP type of registry. However, it is
always good to get a feel for what is under the hood, so to speak, when you have to
troubleshoot applications in the future.

What is left for this task is extremely easy to carry out since most of the work has
already been completed. Let's use a procedure so you can repeat this task easily in
the future.

1.	 Go to the required security domain page.
Open the secappsvr01.yourcompany.com security domain page. (Expand
Security, click the Security domains link, click the secappsvr01 link.)

Configuring User Authentication and Access

[70]

2.	 Assign the security domain to the application server.
In the section, Assigned Scopes, expand the cell tree all the way to the
SecureAppServ01 application server. Check the corresponding box.

3.	 Enable security at the application server level.
In a similar way, expand the Application Security tree. Click Customize for
this domain, and check the Enable application security box.

4.	 Save the changes.

Simple, wasn't it? What is left is also simple, but may take a while longer.

Testing the secured application server
environment
In order to test that we have enabled security for the application server, we will
deploy, as stated at the beginning of the Protecting application servers section, the
enterprise application DefaultApplication.ear.

Deploying and securing an enterprise application
Deploy the application using the Deployment Manager Console, as you normally
do with other enterprise applications. The following screenshot shows the start
of installing an enterprise application. To get to this page follow the breadcrumb
Applications | New Applications | New Enterprise Application (not shown). The
arrow indicates where to start.

Perform the EAR installation with the following specifics:

•	 Use Detailed installation (as opposed to Fast Path shown in the screenshot
above, and focus on the brown oval).

Chapter 3

[71]

•	 Use the default values, with the following exceptions:
°° In Step 1, change the Application name to EmpDefaultApplication:

(this name must match the DataSource database name).

°° In Step 2, map the modules to SecureAppServer01.

°° In Step 9, map the EJB module to the DataSource you created.

°° In Step 10, do the same as Step 9.
°° In Step 11, map to the employees_vh virtual host.
°° In Step 12, set the context root to /emp/.

www.allitebooks.com

http://www.allitebooks.org

Configuring User Authentication and Access

[72]

•	 Step 13 is the big one. Note that initially there are no users or groups mapped
to the application defined All Role role. Perform the following:

1.	 Map the Employee group to the All Role role.
Select the All Role. Click the Map Groups button. Click the Search
button. Add the Employee group to the Selected column. Click the
OK button.

2.	 Confirm that the group appears on the step summary.
Observe that under the column Mapped Groups, Employee is listed
as the only group.
For the rest of the steps, click the Next button and the Finish button
on Step 15.

Save and synchronize with the nodes. Then start the new application server.

Accessing the secured enterprise application
The last step is to access the application. Using your browser, open the application
server URL: http://<your-hostname>:<virtual-host-port>/emp/snoop. If
everything worked as expected, you should see a pop-up window asking for your
credentials as shown in the following screenshot:

If your credentials are correct, your browser will display the familiar snoop servlet.

Congratulations!

Chapter 3

[73]

Summary
In this chapter, you have learned about a new feature in WebSphere Version 7—that
of using multiple security domains. You also learned about user registries to be used
in the security domains as their realm. In addition, you gained hands-on experience
creating security domains and assigning them to a scope. You can do several of the
tasks using the administrative console and the wsadmin scripting tool. You went
through all of the steps to secure an application server using a custom security
domain, created groups and users and deployed an application that was protected
by that security domain. Way to go! Time for another break. How 'bout tea this time?

Front-End Communication
Security

Let's think for a few minutes about corporate (snail) mail. Our scenario would be
a large company with multiple locations, say in the same city. An external party to
this company would be trying to communicate with an employee of the purchasing
department using post office mail. It would be likely that the address on the
envelope would have a general street address for the company plus a mail stop of
the purchasing department or another group within the company. The external party
would not know by the address, the actual location of the employee. However, that
information is irrelevant. The combination of company street address, mail stop,
and employee name would be enough for the intra-corporate mail to deliver the
envelope. This company mail scenario is similar in a way, to how WebSphere front-
end communication architecture security works. Now, don't be skeptical.

You have already learned what's been described in the first three chapters. Let's see
how everything is fitting together. Consider the diagram shown next. The outer-
most rectangle (teal), labeled Global Security, represents the key concepts learned in
Chapter 2, Securing the Administrative Interface. Among such concepts, we have
the following:

•	 Global Security: This notion is extremely important. Without it there cannot
be security at the application level. Therefore, in our diagram, global security
encompasses all of the other security topics described so far.

•	 Administrative Security: In that same chapter, administrative security was
explained, as well as how to configure it. The concept is represented in the
diagram by the long rectangle (golden), labeled Administrative Security, at
the bottom.

Front-End Communication Security

[76]

•	 User registry: In that same chapter, an introduction to user registries was
provided as it pertains to the selection of a repository to be used with the
global security. Since a more in-depth description of the topic was offered
in Chapter 3, the rectangle (blue), labeled User Registry, on the left overlaps
portions of Chapter 2 (the rectangle labeled Global Security) and Chapter 3.

The rectangle (maroon) labeled Authentication and Authorization illustrates the key
concepts reviewed in Chapter 3, Configuring User Authentication and Access. They are
listed as follows:

•	 Security domains: Just like global security was the most important concept
in Chapter 2, the notion of the security domain is the chief idea in Chapter 3.
This is expressed in what was already mentioned in Chapter 3, when there
is only one security domain, it is equivalent to global security as everything
(that is, all scopes) in such cells will be dependent on the global security
configuration.

•	 User registries: Another very important principle described in Chapter 3
is that of user registries. Such registries help to secure resources based on
the presence of a user in the registry (authentication), and the memberships
such user holds that grant the user access to the services of an application
(authorization).

•	 Protecting Application Servers: As a practical application of the concepts
covered in Chapter 3, a project to protect a J2EE Application Server was
detailed, presenting the necessary steps to secure the JVM hosting an
application.

Chapter 4

[77]

By the end of this chapter, we will be adding to this diagram the concepts described
in the next sections. A WebSphere enterprise application may be accessed either by
users via browsers or by client applications. This chapter describes the most common
communication channels used on the front-end of the enterprise architecture.

At the end of the chapter you will learn about:

•	 Common front-end infrastructure architectures
•	 Best-practice architecture
•	 Secure Socket Layer protocol
•	 Certificate Authorities
•	 Public and private encryption keys
•	 Key databases or store keys

You will conclude this chapter by applying all of these concepts in securing through
encrypted communications the environment created in the last chapter.

Front-end enterprise application
infrastructure architectures
Let's recall the enterprise application server architecture view from Chapter 1.
During this chapter, we will concentrate on the front-end portion of the architecture.
The following figure shows the front-end of a classic WebSphere clustered
environment topology:

Front-End Communication Security

[78]

The main purpose of the architectures presented in this section
is to limit in-bound network traffic from the Internet into your
organization service networks.

WebSphere horizontal cluster classic
architecture
The diagram shown in the previous figure is a simplification of the classic
WebSphere horizontal cluster architecture. In such topology, each of the rectangles
(green) labeled WAS represents a WebSphere node, which may include a node agent
(the WebSphere notation for the name of the process is nodeagent) and one or more
Java application servers. This node is hosted on its own [OS] server. Therefore, in the
diagram, we have two servers hosting a WebSphere node each. It is in this layer, Java
Application Server, where the enterprise application executes.

Keep in mind that the Java Application Server, often referred to simply
as Application Server, executes in IBM's Java Virtual Machine (JVM).

In addition, going back to the previous diagram and taking a step closer to the
Internet (that is, moving towards the left), the rectangles (light blue) labeled IHS
represent the IBM HTTP Server version of the open source Apache HTTP server.
Since in this topology we are using proxy servers, it is common to place the IHS
server on the same OS host as the one used for the WebSphere node infrastructure.
As it is expected, the IHS component provides the HTTP/S layer to the environment.
Furthermore, taking another step towards the Internet, the rectangles (dark blue)
labeled Proxy represent HTTP proxy servers. They provide both performance and
security functionality to the architecture. Depending on the technical requirements,
the functionality of a proxy server can be implemented with WebSphere Edge
Components' Caching Proxy or even with another instance of IHS, just to name a
few options based on the WebSphere family of components. In any event, the proxy
servers are hosted in a different physical server. Moreover, moving one step closer
to the Internet, the rectangles (teal) labeled Load Balancer represent the function of
the load balancer. Normally, only one will be active and the second one is used for
high-availability. Finally, the long rectangle (orange) labeled Firewall at the left-most
position represents the firewall, which is our first line of security. The firewall is the
only internet-facing component of the infrastructure.

Chapter 4

[79]

The flow of a request made by a browser or an application client would be as
follows. The inbound network transactions from Internet entities would go through
the Internet firewall and be passed to the load balancer, which transparently would
forward the request to the corresponding proxy server. The proxy server will
terminate the traffic flow and create a new request that would be sent to the IHS/
WebSphere hosted application for processing. The result of such transaction will be
picked up by the proxy server and create a response to the Internet entity that made
the request in the first place.

The advantages, from the viewpoint of security, of this type of architecture are
as follows:

•	 Infrastructure is protected from Internet traffic via a firewall, which must be
configured to only allow traffic to specific service ports (for example, HTTP,
HTTPS, DNS).

•	 Proxy servers break the communication link between the browser (or entity
making the HTTP/S request) and the WebSphere host.

WebSphere horizontal cluster using dual-zone
architecture
A variant of the horizontal cluster classic architecture is one in which several of
the components are placed across two security zones. The horizontal cluster using
dual security zones architecture is shown in the following diagram. In this type of
architecture, an additional firewall (labeled DMZ firewall) has been placed to create
security network zones. For simplicity, the components used for authentication have
been omitted from the previous diagram.

Front-End Communication Security

[80]

It is a common practice to house the WAS/IHS servers in the corporate network
zone, in many cases referred as the intranet zone. The intranet zone has as its front-
end boundary the DMZ firewall. In addition, the outer most components of the
architecture are proxy servers and load balancer. This outer zone is normally referred
as the Demilitarized Zone (DMZ). As shown in the diagram, its front-end boundary
is made up by the Internet firewall and its back-end boundary is marked by the DMZ
firewall. The functionality of each of the components shown is the same as in the
previous case. The main difference of this architecture is the presence of a second
inner firewall. Its function is to provide further protection to the WAS infrastructure
in case a proxy server is compromised.

The way in which network traffic flows is as follows. Request traffic will originate
from browsers and possibly application clients located in the Internet. The traffic
flow would go through the Internet firewall and would pass to a load balancer,
which transparently would forward the traffic to the corresponding proxy server.
The proxy server would terminate the inbound network traffic and create a new
request to the IHS/WebSphere hosted application.

In addition to the benefits from the classic architecture, the dual-zone architecture
provides the following features:

•	 All in-bound network traffic is terminated in the DMZ zone.
•	 As an obvious offspring of the previous benefit, no inbound network traffic

into the intranet is originated in the Internet.

Chapter 4

[81]

•	 Application Server hosts and authentication infrastructure are further
protected by a second firewall in case a proxy server is compromised by
potential intruders.

•	 Flexibility of locating IHS and WAS servers on the same or different OS hosts.

WebSphere horizontal cluster using multi-
zone architecture
Many corporations are under the belief that the dual-zone architecture is very secure
against potential intruders. The fact of the matter is that such architecture, although
popular, misses protecting against internal threats. Therefore, we show next the
horizontal cluster with multi-security zones architecture. This architecture is based
on the dual-zone topology, with the addition of a third firewall (Production firewall)
placed between the service networks (DMZ and production) and the corporate
intranet as shown in the following diagram.

In this type of layout, inbound traffic into the DMZ zone may come from either the
Internet or the corporate intranet. The rest of the network traffic flow is the same
as in a dual-zone architecture environment. In addition, the diagram shows an
additional player, the WebSphere administrative user. Strictly speaking, this element
is not part of the front-end topology, however, it is included in the diagram to show
another use of the production firewall.

Front-End Communication Security

[82]

The added advantages of this architecture have been implicitly mentioned in the
previous paragraphs. In addition to the benefits provided by the classic and dual-
zone architectures, the multi-zone architecture provides the following advantages:

•	 Protection against potential internal threats by the use of a third firewall
•	 Added protection to accessing the administrative components of the

infrastructure

Best practice: Use a multi-zone architecture
In industries where the flow of network traffic contains highly
confidential and sensitive data such as the banking and healthcare
industries, using the horizontal cluster with multi-security zones is
the recommended architecture.

SSL configuration and management
The architectures discussed in the previous section provide the next step in securing
a java enterprise application server infrastructure, specifically at the front-end of the
architecture. In order to visualize this fact, we are in a position to add to the diagram
introduced at the beginning of this chapter. The updated diagram, which includes
architecture concepts, is shown as follows. The two dotted rectangles represent the
concepts to be reviewed in this and the next sections.

Chapter 4

[83]

What is SSL
SSL stands for Secure Socket Layer. It is a protocol that offers security at the transport
layer. In addition, security is increased by using encryption of data at that layer. What
does all that mean? According to the Internet Protocol Suite documentation (cf. RFC-
1122 "Requirement for Internet Hosts – Communication Layers" http://tools.ietf.org/
html/rfc1122) there are four major Internet protocol layers, as shown in the following
diagram. The most used protocol used on the web is HTTP, which would reside on the
top-most layer, the Application Layer. In contrast, SSL is a foundational protocol as
with others on the Transport Layer. Application Layer protocols rely on the Transport
Layer protocols to operate. In other words, HTTP uses TCP as its transport layer,
whereas HTTPS uses SSL as its transport layer.

How SSL works
It's been my experience that in order to understand a concept better, having an
example that employs such a concept makes things much clearer. With that in mind,
let's refer to the following diagram to see SSL in action. The objective in the diagram
is for the client to establish a series of secure transactions with the server. This
communication will take place using the HTTPS protocol. Using a simplified version
of the protocol, let's see the communications that take place. In the diagram, the
client (most likely, a browser) will send an HTTPS request, initially as an anonymous
user, to the server. Being this, the very first communication of the server with this
client, (a.k.a. session) the server will send its public SSL key 'inside' a signed SSL
certificate. This is denoted in the diagram by the label S-Public-Key inside the
rectangle (maroon) labeled Server Certificate.

Front-End Communication Security

[84]

Normally, the signer of a server certificate is a well-known Certificate Authority.
(Cf. next section for further details about CA's). In such case, the client will trust the
certificate sent by the server and retrieve the server's public key. From this point on,
the client will use the server public key to encrypt the data to be sent to the server.
The next step then to close the initial handshake is for the client to use the S-Public-
Key to encrypt its own C-public-key and send it to the server. The server would
use its S-Private-Key to decode the message sent by the client and would use the
client C-public-key to encrypt its communications to the client. The SSL topic is very
extensive and, therefore, it's out of the scope of this book to provide a more detailed
review of the technology. If you are interested in learning more about SSL please
refer to the Internet Draft document: The SSL Protocol Version 3.0 (available online
at http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00).

Certificates and CAs
In the previous section, Certificate Authorities (CA) were briefly mentioned. They
are the Internet official organizations that guarantee that an SSL certificate is genuine
and it comes from the server that sends it. CA root certificates refer to certificates
created by these organizations and such certificates would be normally included by
software vendors in browsers and client applications. This fact is very important, as
for a browser to trust a server certificate, the signer (CA) must already exist in the
client (browser) certificate vault, or keystore. The following diagram is an extension
of the previous diagram. In it, a server (or another entity within the server's
organization) generates a pair of asymmetric SSL keys to be used for encryption
(private key) and for decryption (public key).

Chapter 4

[85]

During this process, a Certificate request is created that includes the server's public
key. This request is then sent to one of the CA vendors, which after some identity
verification and exchange of currency, will return a signed certificate that includes
the server public key. Once the signed certificate is received, it will be installed, along
with the corresponding private key, in the server's keystore. This process is shown
by the process flow in our diagram:

•	 Generate certificate/keys
•	 Certificate Request
•	 Receive Certificate Request
•	 Sign Certificate
•	 Signed Certificate

Once the signed certificate is installed, the client-server communication process is as
described in the previous section.

Front-End Communication Security

[86]

Securing front-end components
communication
The concepts related to SSL, CAs, and so on, covered in the previous section help us
to add a new block to our road map. This new block is labeled Traffic encryption
(SSL). In this section, we will be able to finalize the diagram started at the beginning
of the chapter; filling in the details for the dotted rectangle in the diagram.

Securing the IBM HTTP Server
In this final subsection, a mini-project will be used to secure the front-end
communication from the HTTP server down to the Application Server. A the end,
you should have an IHS listening on a non-conventional port using HTTPS to
communicate with browsers; and through the WebSphere Plug-in, use SSL to talk to
the Application Server.

Environment assumptions
For the project, it is expected that the WebSphere environment would be very close
to how it was left in the previous chapter; that is, there would be a secure application
server hosting the Snoop servlet. It is also expected that an installation of the IBM
HTTP Server at least the same version level than that of the WebSphere version.
This IHS installation must include the security components that are part of the IHS
distribution software.

Chapter 4

[87]

In order to verify that the security components are included in
your installation, insure that the ikeyman utility is installed in
the IHS bin directory.

In addition, for the project to be successful, the environment must have already
IHS integrated with WebSphere, that is, the Application Server virtual host must
be configured to listen to the port IHS listens to and IHS must have the WebSphere
Plug-in configured and loaded. Finally, the certificate to be used at the IHS level will
be self-signed. In a production environment, you would need to use SSL certificates
signed by a Root CA.

SSL configuration prerequisites
As in the previous chapter, the tasks mentioned in this section should be already
familiar as they are activities performed by WebSphere administrators on routine basis.

Add SSL ports to WebSphere employees_vh virtual server
There will be two ports needed (listening ports, that is) in this setting. The first
one will be assigned to the HTTP server and it will be used as its HTTPS port. The
second port is already in use by the Application Server web container. It is the port
designated as WC_defaulthost_secure in the server's end points.

Select a port for the HTTPS communication that is not utilized (in this project, the
port will be 8444). Add this port to the WebSphere virtual host employees_vh,
created in the last chapter.

Best practice: Avoid using the wildcard * (star or asterisk) as the
host name.
Limit the range to the actual server (or servers) involved. Using
wildcards may leave your application vulnerable for an address
spoofing attack. For the host alias being added, replace the wildcard
and use the server host name value.

In order to enable the second port, WC_defaulthost_secure, its value must be
added to the employees_vh virtual host, making sure to replace the wildcard with a
hostname value.

Front-End Communication Security

[88]

Creating the SSL system components
Out of the box, the IHS installation does not include the basic elements needed to
enable SSL. The reason for this is that many companies choose to break the SSL link
at the load balancer or reverse proxy levels. However, if the data is sensitive, it is
highly recommended to continue the SSL link down to the IHS.

In this section, the following components or items will be created:

•	 A directory to store the various files related to the keystore
•	 A keystore in the format supported by IHS (CMS)
•	 A self-signed certificate with its public and private keys

Create the IHS SSL keystore
The first order of business is to create a place to save the IHS certificate that will be
created shortly. The item needed is a key database or keystore. There are multiple
ways to create one. However, keep in mind the following.

The type of keystore needed is a CMS keystore. (CMS refers to the
algorithm used, Cryptographic Message Syntax, to store the data.)
There are other types, but IHS v7 only supports this type.

One of the methods to create this type of keystore is to use the IHS command
gsk7capicmd, located in the bin directory.

Best practice: create a dedicated directory in which to keep the
files related to the certificates used.
In this project the directory certs will be created immediately
underneath the IHS root directory.

Execute the commands:

cd <IHS_Root>/certs

../bin/gsk7capicmd -keydb -create -db ws1key.kdb -pw <password> -stash

If desired, use the command gsk7capicmd -help to review the
various objects and actions available.

Chapter 4

[89]

The command gsk7capicmd takes as a first argument an object. In the command
above, it is -keydb, the object representing the keystore. The second parameter is
an action to perform on the object. In the command above, it is to create a keystore.
The rest of the commands are options to the first pair. The name of the database,
which is a file, is given by preceding the file name with the keyword -db. Next, is
the password to be assigned to the keystore (argument to the -pw keyword). The
final keyword indicates to the command to create a file where the password will
be stashed. In future interactions with the keystore, when a password is provided,
the system will first check if a stash file exists and use that value to authenticate the
action. If the file does not exist, the system will decrypt the password form within the
actual keystore.

In order to verify the success of the command, perform a directory listing. You
should see a list of files similar to the one shown next:

ls

total 129
drwxr-x--- 2 root root 176 May 23 18:04 .
drwxr-xr-x 25 root root 664 May 23 17:59 ..
-rw------- 1 root root 80 May 23 18:04 ws1key.crl
-rw------- 1 root root 115080 May 23 18:04 ws1key.kdb
-rw------- 1 root root 80 May 23 18:04 ws1key.rdb
-rw------- 1 root root 129 May 23 18:04 ws1key.sth

List built-in CA certificates included in keystore
This next step is not required; however it shows interesting information included
in the keystore created in the previous step. It is the built-in list of Root CAs. Any
certificate that is signed by one of the CA's certificates in this keystore will be trusted
by the server.

../bin/gsk7capicmd -cert -list all -db ws1key.kdb -pw <password>

The following is the list of CA certificates included:

Certificates found:
* default, - has private key, ! trusted
!	 Thawte Personal Premium CA
!	 Thawte Personal Freemail CA
!	 Thawte Personal Basic CA
!	 Thawte Premium Server CA
!	 Thawte Server CA
!	 VeriSign Class 3 Secure Server CA
!	 VeriSign International Server CA - Class 3
!	 VeriSign Class 4 Public Primary Certification Authority - G3

Front-End Communication Security

[90]

!	 VeriSign Class 3 Public Primary Certification Authority - G3
!	 VeriSign Class 2 Public Primary Certification Authority - G3
!	 VeriSign Class 1 Public Primary Certification Authority - G3
!	 VeriSign Class 4 Public Primary Certification Authority - G2
!	 VeriSign Class 3 Public Primary Certification Authority - G2
!	 VeriSign Class 2 Public Primary Certification Authority - G2
!	 VeriSign Class 1 Public Primary Certification Authority - G2
!	 VeriSign Class 3 Public Primary Certification Authority
!	 VeriSign Class 2 Public Primary Certification Authority
!	 VeriSign Class 1 Public Primary Certification Authority
!	 Entrust.net Global Secure Server Certification Authority
!	 Entrust.net Global Client Certification Authority
!	 Entrust.net Client Certification Authority
!	 Entrust.net Certification Authority (2048)
!	 Entrust.net Secure Server Certification Authority

Create self-signed certificate
It is now time to create the self-signed certificate that this IHS server will use in its
secure communications. The command takes as an object a certificate object, denoted
by the keyword -cert. The action to perform on the object is -create. The syntax for
the keystore and password is the same as before. The -label keyword takes as an
argument a string that will be used by the humans to identify the certificate. (This
label will be used later on, when configuring httpd.conf). The next keyword, -dn,
represents the distinct name. Its format is similar to the structure used for LDAP. The
available fields are:

•	 CN=common name
•	 O=organization
•	 OU=organization unit
•	 L=location
•	 ST=state, province
•	 C=country
•	 DC=domain component
•	 EMAIL=e-mail address

Chapter 4

[91]

Only CN is required. The only thing to be aware of is that for the field CN, no spaces
are allowed. If using additional fields, surround the distinct name with double
quotes. The rest of the keywords used below are optional. The keyword -size,
indicates the size of the public and private keys to be generated. Valid values are
from 512 to 4096. The default value is 1024. To designate the certificate as the default
certificate of the keystore, use the keyword -default_cert, and provide the value
'yes'. Finally, the length of validity of the certificate, in days, is provided using the
keyword -expire. Valid values are from 1 to 7300, which is equivalent to 20 years.
The default value is 365. Use the following command:

../bin/gsk7capicmd -cert -create -db ws1key.kdb -label ihs1.wasmaster -pw

<password> -dn "CN=wasmaster.yourcompany.com" -size 1024 -default_cert
yes -expire 365

The default values for the parameter's size and expire were used
in the command above so it is easy to remember.

Confirm the creation of self-signed certificate
In order to confirm the creation of the certificate, list all certificates.

../bin/gsk7capicmd -cert -list all -db ws1key.kdb -pw <password>

The start of the output generated by the command is shown below. Notice that our
certificate, ihs1.wasmaster is listed and designated as: 1) default (*); 2) with private
key (-); and is trusted (!).

Certificates found:
* default, - has private key, ! trusted
*-! ihs1.wasmaster
! Thawte Personal Premium CA

Finally, list content of self-signed certificate. The action keyword used is -details. In
order to identify which certificate to list, the keyword -label, must be used. Use the
following command.

../bin/gsk7capicmd -cert -details -label ihs1.wasmaster -db ws1key.kdb
-pw ws1key

Label : ihs1.wasmaster
Key Size : 1024
Version : X509 V3
Serial Number: 70647a8370bde1fe
Issuer : cn=wasmaster.yourcompany.com
Subject : cn=wasmaster.yourcompany.com
Valid From : Saturday, 22 May 2010 21:54:21 PM

Front-End Communication Security

[92]

To : Monday, 23 May 2011 21:54:21 PM
Finger Print : 0x0a0740e0b2b69e1960640dfb2eb00220000ae381
Extensions : NULL
Signature Algorithm: 1.2.840.113549.1.1.5
Trusted : enabled

Configuring IHS for SSL
After having created the SSL components we will proceed to configure the IHS
server to use these components. This configuration is made of the following stages:

•	 Modifications to the httpd.conf file
•	 Extraction of the WebSphere CA certificate
•	 Adding the certificate to the Plugin
•	 Validation of the SSL configuration

Modifications to httpd.conf
Enabling SSL in the httpd.conf file will be done using a virtual host to define the
HTTPS server. The lines below can be added at the end of the configuration file,
replacing the label Server_IP in bracket with the IP address of your server:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

Listen [Server_IP]:8444
<VirtualHost [Server_IP]:8444>
SSLEnable
SSLServerCert ihs1.wasmaster
SSLProtocolDisable SSLv2
</VirtualHost>
KeyFile /opt/IBM/HTTPServer/ihsserverkey.kdb
SSLDisable

The first line in our code indicates IHS to load the module that implements the
SSL protocol and enables HTTPS. The next two lines are standard IHS directives
used for virtual hosts. Next, the first line inside the virtual host indicates to enable
SSL form that point down until either we tell it to disable it or the end of the file,
whichever occurs first. The next line, which contains the directive SSLServerCert, is
to configure the label associated with our self-signed certificate, as it was indicated in
the previous section (under Create self-signed certificate). The last line inside the virtual
host indicates that we do not speak ancient languages, well not really. It just means
that we won't support the old version 2.

Chapter 4

[93]

Best practice: Do not use SSL protocol version 2 (SSLv2)
SSLv2 has several serious issues as stated in http://www.
kb.cert.org/vuls/id/386964, which makes it unsuitable for
secure communications.

The first line after the virtual host definition block indicates the file that contains the
keystore. The last line in our code indicates that SSL is disabled for the main
HTTP server.

Best practice: Isolate SSL configuration
Implementing an SSL-enabled IHS server is best done using virtual
hosts. It is easier to administer and troubleshoot.

Extract the WebSphere CA certificate
In order to enable the SSL communication between the Plug-in loaded in the IHS
and the application server (SecureAppServer01) hosting the application in question
(DefaultApplicationSecure) perform the procedure described that follows.

1.	 Open the NodeDefaultTrustStore page of the node where
SecureAppServer01 executes.
Traverse the following breadcrumb trail: Security | SSL certificate and key
management | Key stores and certificates | NodeDefaultTrustStore (scope:
(cell)wasmasterCell01:(node)wasmasterNode01 –in my particular case; your
cell and node names will vary).

2.	 Verify the filename of the trust store.
On that page, identify the location of the trust store for the node. Under the
General Properties section, find the value for the Path field. Its value will be
similar to:
${CONFIG_ROOT}/cells/wasmasterCell01/nodes/wasmasterNode01/trust.
p12
Insure that the filename is trust.p12.

3.	 Open the signer certificates.
Then, under the Additional Properties section, to the right of the page, click
the Signer Certificates link.

Front-End Communication Security

[94]

4.	 Identify the node's CA certificate.
From the list of certificates, find the one whose alias is root. Select it by
clicking the check box to its left.

5.	 Extract the CA certificate.
Click the Extract button. The Extract signer certificate page is displayed.
The goal now is to save the file that contains the WebSphere node signer
certificate in the same directory as the IHS key store files, that is, <IHS_Root_
Dir>/certs. In the field file name, enter a value for the CA file, for instance:
<IHS_Root_Dir>/certs/wasrootcert.arm. (The extension 'arm' is customary
for certificate files.)

Add WAS self-signed certificate to the plug-in
The two components between the HTTP server and the application server
that will engage in the SSL transactions are the Plug-in, loaded in IHS, and
SecureAppServer01. Therefore, the final configuration step is to add the certificate
extracted in the last section to the plug-in key store.

1.	 Find the location of the plug-in configuration file.
Do a search for the term WebSpherePluginConfig in the httpd.conf file.
The value of that directive is the location of the plug-in configuration file.
Its value may be similar to: <IHS_Root_Dir>/Plugins/config/<Server_ID>/
plugin-cfg.xml.

2.	 Find the location of the plug-in key store.
Open the file found in the previous step. Perform a search for the term
keyring. Insure that the definition is within the block that corresponds to the
SecureAppServer01 server. The value may be similar to: <IHS_Root_Dir>/
Plugins/etc/plugin-key.kdb.

3.	 Add the SecureAppServer01 root certificate.
Change your working directory to the directory where the plug-in key store
is. For the next commands, you will need the password for the key store.
Unless you have changed it, the default password should be WebAS. Execute
the following command in order to display the current list of certificates
found in the key store

<IHS_Root_Dir>/bin/gsk7capicmd -cert -list all -db plugin-key.kdb
-pw WebAS

Chapter 4

[95]

Next, use the following command to add the certificate to the key store:

<IHS_Root_Dir>/bin/gsk7capicmd -cert -add -db plugin-key.kdb -pw
WebAS -label SecureAppServer01RootCert -file /opt/IBM/HTTPServer/
certs/wasrootcert.arm

In this command, the object is -cert and the action is -add. The other required
options provide information about the key store, -db; its password, -pw;
the tag to be used to identify this certificate in the key store, -label; and
the location of the file that holds the certificate, -file. Repeat the listing of
certificates command to insure that the label SecureAppServer01Root
appears in the list.

Validation of the SSL configuration
Now, the moment that we have been waiting for—to see how all this ties together.
Restart the SecureAppServer01 application server. Restart the HTTP server. Open a
brand new browser. Enter the IHS SSL address, similar to https://<yourserver>.
yourcompany.com: :8444/emp/snoop?Hello

Your browser will alert you that the SSL certificate is not signed by a CA. The Firefox
browser warning looks similar to the following screenshot:

Front-End Communication Security

[96]

Click the Examine Certificate button. Verify that the DN you entered in the creation
of the certificate appears in the details window. For the Firefox browser running
under Linux, the screenshot is shown next.:

Click the close button. Accept the certificate for this session. After this, you should
see the same login dialog box you got during last chapter's project. Enter the
required credentials. Finally, you should see the Snoop servlet page. Review the
page, paying close attention to the elements that have to do with an SSL connection,
such as protocol (https), and so on. You are done!

SSL by itself will not provide a secure environment. It needs to be
supplemented by other means such as authentication and authorization.

With the help of the mini project completed in the last section, we have completed
the road map diagram, by incorporating the block 'Securing front-end components',
as shown in the following diagram:

Chapter 4

[97]

Summary
In this chapter you have learned the principles that will help you secure the
front-end of your J2EE Application Server architecture infrastructure, such
as the following:

•	 Front-end architectures
•	 SSL encryption, including CAs, private and public keys and key stores

We finished by putting all this new material into a mini project where you can do
the following:

•	 Created a key store
•	 Created a self-signed certificate
•	 Added the certificate to the key store
•	 Created a virtual host in IHS that uses the HTTPS protocol
•	 Configured the WebSphere Plug-in to communicate via SSL with the back

end application server

Well done! It's time for another well-deserved break. I do not know about you, but I
am going to check if there are any FIFA World Cup matches. I heard that Germany
was giving a spanking to somebody; I'm going to find out to whom.

Securing Web Applications
Securing web applications can be viewed differently, depending on the role of the
person. This chapter helps the administrator to gain an understanding of the security
components in which a team of developers may be most interested. It then describes
the aspects of securing web applications that will have an effect on or that will be
influenced by external components in the enterprise infrastructure. The chapter
describes the following:

•	 How to secure a WebSphere web application
•	 The function of groups in securing an application
•	 The function of roles in securing an application
•	 The use of deployment descriptors in securing applications
•	 Identify the type of information provided by deployment descriptors at the

time of application deployment that plays a role in security
•	 A procedure to build, package, and deploy a secure application made of

multiple modules

Securing web applications concepts
J2EE Applications can be made up of dynamic/Java web applications and EJB
applications. Dynamic web applications may consist of a combination of components
such as dynamic Java components (Servlets, JSP's, and so on) as well as static
components (for example, HTML, CSS, images--JPEG). Therefore, WebSphere
offers the capability to customize access to both types of applications: dynamic/
Java web applications and EJB applications. This chapter explores securing Java web
applications whereas the following chapter covers the securing of EJB applications.
In the next couple of sub-sections you will learn of two different views of web
application security.

Securing Web Applications

[100]

Developer view of web application security
In most cases, developer teams having a J2EE background outside of a WebSphere
environment tend to see security of their applications from a purely programmatic
point of view. Skilled developers use methods provided by the J2EE security API.

Through such a API, an application can gather information about the user making
the request. For instance, the API provides methods to obtain information such as
the request for user ID or to query the request object to find out if the user is enabled
with a particular role, to mention a couple of methods. Knowing the role of a user
will be useful to make decisions such as displaying or hiding objects on a resulting
web page.

This book will not cover the API, as it is a topic that falls within the development
realm. For our purposes, we will just mention one of the methods of the javax.
servlet.http.HttpServletRequest object: getRemoteUser(), which returns the user ID
value as a String object. This method will be used in this chapter's min-project later
in the chapter.

Administrator view of web application
security
The other view of web application security is based in making declarations about
J2EE components and the attributes that define how and by whom a particular
component may be made available. The places where these declarations are made
are called deployment descriptors. For instance, as we saw in Chapter 3, WebSphere,
through a user registry, is able to offer user information about the group or groups
a user belongs to. In addition, applications will include declarations about types
or classes that can have access (rights) to the application. These types or classes
are denoted as roles. Therefore, creating relationships from groups to roles, an
application can be made available only to the users that have, certain role. The
group-role mapping creates a relationship between users and roles, and therefore,
which users can access a given application.

Securing a web application
In this section, a mini-project will be used to enhance the understanding of the
concepts described earlier in the chapter in a pragmatic way. The methodology to be
followed is the declarative security approach. Get a cup of coffee and let's get
to work.

Chapter 5

[101]

Project objectives
The purpose of this mini-project is to deploy and secure a Java web application made
up of three modules. Each module will be configured so that it will only be available
to a segment of the users. In order to accomplish this, the project will rely on some of
the concepts and assets from previous chapters.

The modules that make up this enterprise application are:

•	 allemp.war: A module available to all employees of yourcompany.com
•	 hronly.war: A module available only to the Human Resources department of

yourcompany.com
•	 open.war: A module available to anyone that authenticates to the server

yourcompany.com
•	 CommonAssets.war: An optional module which contains a component that

could be use by any of the remaining modules in yourcompany.com

Assumptions
As in the previous chapter, the first assumption is that the current environment is
very close as to how it resulted at the end of last chapter. In essence:

•	 In the WebSphere environment, the global security domain is mapped to the
default federated user repository.

•	 There is an application server (SecureAppServer01), which has been
protected and is mapped to its own security domain. (secappsvr01.
yourcompany.com)

•	 There is a WebSphere virtual host (employees_vh) configured to the correct
TCP ports.

•	 There are at least three users defined in the user repository.
•	 There are at least three user groups defined in the user registry.
•	 There is an IHS installation with a defined server (webmaster). Moreover, the

webmaster server is integrated with WebSphere through its Plug-in module.
•	 You have experience deploying enterprise applications onto a WAS ND v7

environment.

Securing Web Applications

[102]

Prerequisites
For this project, you are going to need some additional tools and J2EE knowledge not
related to security. In order to create and package an enterprise application you
will need:

•	 A J2EE IDE. In this project, the screenshots and directions will be drawn from
the IBM product WebSphere Application Tool (AST). This application is part
of the WebSphere Application Server ND distribution.

The IBM product file that contains the AST as available through
their Passport Advantage program is C80UMML.tar.

•	 An alternative to AST is IBM Rational Application Developer. Furthermore,
you could also use the Eclipse platform (version 3.5.2 was the one tested)
which is available from: http://www.eclipse.org/downloads/.

•	 In addition, the project requires that the administrator have knowledge of
fundamental J2EE concepts such as EAR, WAR, deployment descriptor, JSP,
Servlet, and so on.

Enterprise application architecture
As mentioned briefly in the Project objectives section, above, the project uses four web
modules and a number of users classified into groups.

Application groups
The application has been designed to work with three different groups that contain
users and, in some circumstances, other groups. The required groups are shown in
the screenshot below. As mentioned earlier, these groups are assumed to already
exist. (Cf. Chapter 3 for details).

Chapter 5

[103]

Application users
In addition, each group hosts at least one user and perhaps a group. The required
users are shown in the following screenshot. These users were created in Chapter 3.
Refer to that chapter if necessary.

Application memberships
Each of the required groups must have members as indicated next. Since it is desired
that anybody who authenticates to the application is able to access the open.war
application we must perform some configuration to define this behavior.

There are two choices to assign access to resources. One choice is to form an ACL by
manipulating the structure of the user registry groups. On the other hand, an ACL
can be created by mapping, in a different way than before, user registry groups to
application roles.

ACLs based on user registry groups
In the first approach, user registry groups are configured so it is possible to configure
a group, using registry tools, to contain the necessary users. After doing so, the
group can then be mapped to the application role on a one-to-one relationship. For
instance, for the open.war web application should be accessed by anybody that
authenticates to the application. Basically, it is desired to add to the registry group
Authenticated any external user that has an ID on the website, for example they
have registered with the site. On top of the external users, the group Authenticated
must also contain all of the employees of the fictitious YourCompany INC. Before we
address this fact let's analyze the registry group Employee. Once that's done, we will
return to how best to add the employees to the Authenticated registry group.

Securing Web Applications

[104]

The registry group Employee includes, or should include, all of the employees
of YourCompany INC. There are many ways in which this could be achieved.
For this project, which does not focus on designing user registry architectures, all
regular 'individual' employees will be added directly to this group, plus the group
Human Resources. (In the above expression, interpret the term 'individual' as the
person's ID). The group Human Resources will contain only the members of the HR
department. So in this particular design, when a person working in HR is registered
to the system, they will be assigned to the Human Resources group and through
that group the new HR person will inherit the group Employees. The following
screenshot depicts what was just discussed:

Therefore, returning to the membership of the Authenticated group; based on the
definition of the Employee group, we can now add the Employee group to the
Authenticated group; solving our dilemma of how to include all of the employees of
this organization. The group membership is illustrated next:

Chapter 5

[105]

Finally, membership of the user registry group Human Resources is very simple,
compared to the other two. This group contains employees assigned to the HR
department. The group membership is shown in the screenshot that follows:

ACLs based on application roles
In the second methodology, user registry groups would contain mainly individuals.
In this case, during the packaging of the web application, a many-to-one relationship
would be created between groups and application roles. For the same example
as above, open.war, the groups Employee (which would not contain the Human
Resources group) and Human Resources would be mapped to the Employee
Role; the group Human Resources would be mapped to the HR Role; and the
groups Authenticated, Employee and Human Resources would be mapped to the
Authenticated Role.

Best practice: use group-based ACLs
Group-based ACLs are more flexible than application-role-based ACLs.
If changes are needed in terms of an ACL, they can take place at the
user registry level, whereas role-based ACL may require modifying the
application deployment descriptor in order to modify the groups to role
mappings. Furthermore, from the security standpoint, a security team
could be charged with administering groups-to-role administration.

As a result of this comparison in approaches, this project will use the group-based
ACL methodology.

Securing Web Applications

[106]

Dynamic web modules
The enterprise application is made up of three modules. One of the modules,
allemp.war, uses an additional module that contains a servlet. There is nothing to
the complexity of the modules. The application has been broken down in this way to
point out how the ACLs are being enforced.

In any event, the three modules are almost identical. Each contains a welcome file
(either an HTML document or a JSP—which is only an HTML document to which a
servlet redirects).

The project uses the modules to define which URI pattern and HTTP methods are
to be protected. In addition, the module declares to which role (or roles) is mapped.
On the other hand, the project uses its deployment descriptor to define the roles and
how user registry groups map to them.

Securing a J2EE web application
It is now time to put everything learned in this chapter into practice. This section
describes the procedure followed to create, pack, and deploy the YourCompanySite
enterprise application.

As stated earlier, this project uses AST to package the enterprise
application archive. As this book deals with security, those aspects of
packaging an EAR that deal with security will be highlighted. Other
aspects of the packaging process will be only briefly mentioned, as
the full process of packaging EAR files is outside of the scope of this
book. For those of you who would like to know about the packaging
and deployment of EAR files in more detail, refer to the following on-
line publication: WebSphere Application Server V7: Packaging Applications
for Deployment (Red Paper 4582 http://www.redbooks.ibm.com/
redpapers/pdfs/redp4582.pdf)

Creating the enterprise application project
Most J2EE IDE's require the creation of projects. We will be creating several during
this mini-project. In order to create our enterprise application project follow the
given steps:

1.	 Launch your IDE (AST in our case).
2.	 Select a convenient location for your workspace.
3.	 Close the Welcome page.

Chapter 5

[107]

4.	 From the Window menu, scroll down to Open Perspective and from that
menu select Other…. A new window, Select Perspective, opens.

5.	 From that new window, highlight and select the J2EE option. Click the OK
button.

Once in the J2EE perspective, carry out the next steps:

1.	 Select the Enterprise Applications branch. Right-click your mouse.
2.	 Select New from the pop-up menu.
3.	 Select the Project… option from the menu that follows. A wizard

window opens.
4.	 Expand J2EE and select Enterprise Application Project.

The next steps will guide you in naming the project:

1.	 Click the Next button.
2.	 Enter YourCompanySite in the Name field.

This is depicted in the next screenshot:

3.	 Click the Finish button.

The new project appears under the Enterprise Applications branch. There may
be a 'problem' listed under the Problems section towards the bottom of the AST
window. This can be safely ignored. It means that the project contains no modules.
For the enterprise application, the file that would be of most interest is named
application.xml, which contains the deployment descriptor of the application. It
can be accessed in different ways. One is by traversing the project tree as indicated
by the breadcrumb, as will be shown next.

Securing Web Applications

[108]

Enterprise Applications | YourCompanySite | META-INF | application.xml

Double click application.xml to open the deployment descriptor editor. Review
the various sections. When you are done, close any open editor.

Additional learning: Deployment descriptor
If you wish to get more familiar with the deployment descriptor, click
Source at the bottom of the editor. This file contains the XML code that
describes the descriptor. It is a very simple file when an EAR is just
created. Come back to this file as more items are added to the project so
you see how it is populated.

Creating the dynamic web application projects
The process for creating a dynamic web application project follows a similar pattern
to the procedure used to create the YourCompanySite project.

There is one assumption at this point, and it is that AST is still open. If that is not the
case, refer to the previous section in order to open the same workspace.

Once in the J2EE perspective, complete the following steps:

1.	 Select the Dynamic Web Projects branch. Right-click your mouse.
2.	 Select New from the pop-up menu.
3.	 Select the Dynamic Web Project option from the next menu.

Refer to the following screenshot:

A wizard window opens.
4.	 Enter name (allemp) and click the Show Advanced button.
5.	 Click the EAR project pop-up menu.
6.	 Select the YourCompanySite option.
7.	 Modify, if necessary, the context root field to /allemp/.

Chapter 5

[109]

8.	 Leave the other options with their default values.
9.	 Click the Finish button.

The new dynamic web application, allemp, is listed now under the Dynamic Web
Applications. In addition, note that the problems listed when YourCompanySite has
been removed. If desired, go back to YourCompanySite and open the application.
xml file. Observe the additional XML declarations; a definition for our module has
been added.

Repeat this procedure for the modules hronly and open. Using the values shown
in the screenshot, create the hronly project:

Securing Web Applications

[110]

Likewise, using the values shown in the next screenshot, create a dynamic web
project for the open module:

If desired, select any of the web application projects and open its deployment
descriptor. For a dynamic web application, the deployment descriptor is named web.
xml. It can be accessed by following the breadcrumb:

Dynamic Web Projects | your module (e.g., open) | WebContent | WEB-INF |
web.xml

Double-click web.xml and review its content. Notice that it is very simple at this
stage. Close all the editors once you are done with your review of web application
projects content.

Configuring dynamic web applications
We now turn to customizing each of the modules with the values that will enable the
enterprise application serve their content to the appropriate audience.

Defining welcome files
By default, a long list of files (six) is included in the file web.xml. For our project,
only one will suffice.

Chapter 5

[111]

For the open module, carry out the following steps:

1.	 Open the deployment descriptor editor (double-click the Deployment
Descriptor: open branch).

2.	 Click the Pages tab at the bottom of the editor.
3.	 In the editor, expand Welcome File List located under the Welcome Pages

section.
4.	 Select all but index.html. Refer to the following screenshot:

5.	 Click the Remove button.
6.	 Save your changes.

If desired, open the file source (web.xml) by clicking the editor Source tab. Notice
that the list has reduced to one entry.

For the module hronly, execute the same steps as for the module open with the
exception of keeping the file named index.jsp. The resulting Welcome Pages list
should similar to the following screenshot:

Securing Web Applications

[112]

In a similar fashion, for the module allemp, reduce the Welcome Pages list to
default.jsp.

Adding log in information
For all of the three modules (dynamic web applications) created, we now are
going to turn to define the type of authentication requested. Perform the following
directions for all of the web applications:

1.	 Open the deployment editor.
2.	 Select the Pages tab.
3.	 Scroll down to the Login section.
4.	 Set the value of Authentication method to BASIC.
5.	 Set the value of Realm name to YourCompanyINC.

Use as a reference the screenshot shown next:

Defining protected URI patterns and methods
At this moment, we need to define which URI patterns must be protected for each
of the dynamic web applications along with the HTTP methods that are allowed.
The series of steps to accomplish this is described below. Use the same steps for all
modules, except as noted.

1.	 Open the deployment editor. Select the Security tab. Scroll down to the
Security Constraints section. Click the button Add. A wizard opens.

2.	 Enter the following values:
°° For the allemp module: Constraint name<-Employee constraint
°° For the hronly module: Constraint name<-Human Resources

constraint
°° For the open module: Constraint name<-Authenticated constraint

Chapter 5

[113]

3.	 Click the Next button.
4.	 On the next window enter the following values:

For the allemp module enter:
°° Resource name<-Employee
°° Description<-Employee area
°° HTTP methods<-GET, POST
°° Pattern<-/*

For the hronly module enter:
°° Resource name<-Human Resources
°° Description<-Human Resources area
°° HTTP methods<-GET, POST
°° Pattern<-/*

For the open module enter:
°° Resource name<-Authenticated
°° Description<-Authenticated area
°° HTTP methods<-GET, POST
°° Pattern<-/*

5.	 Click the Finish button.
6.	 Save the configuration.

Creating application roles
Once the URI's patterns and methods have been created, it follows to create the
application roles. Later on, in the next section, these roles will be propagated to the
enterprise application level.

For each of the dynamic web application projects execute the series of steps
that follow:

1.	 Open the deployment editor for the module (web.xml). Select the Security
tab. Scroll up or down to the Security Roles section. Click the button Add. A
wizard opens.

Securing Web Applications

[114]

2.	 Enter the following values.
For the allemp module:

°° Name<-Employee Role
°° Description<-All regular employees role
°° For the hronly module:
°° Name<-HR Role
°° Description<-HR department members exclusive role

For the open module:

°° Name<-Authenticated Role
°° Description<-All authenticated users role

3.	 Click the Finish button.
4.	 Save the changes.

Assigning the application role
Next, it is required to assign the roles that will have access to the application. Use the
following methodology to make the assignments for each of the web modules.

1.	 Open the web module deployment editor. Select the Security tab. Scroll
down to the Security Constraints section. Select the corresponding
constraint.

°° For the allemp module: Employee constraint
°° For the hronly module: Human Resources constraint
°° For the open module: Authenticated constraint

2.	 Scroll down to the Authorized Roles section.
3.	 Click the Add button. A Define Authorization Constraint dialog box opens.
4.	 For each module perform the following.

For the allemp module:

i.	 Set Description<-YourCompany.com employee area.
ii.	 Check the Employee Role box.
iii.	 For the hronly module:
iv.	 Set Description<-HR restricted area.
v.	 Check the HR Role box.

Chapter 5

[115]

For the open module:

i.	 Set Description<-YourCompany.com OPEN area to authenticated
users.

ii.	 Check the Authenticated Role box.

An example of the Define Authorization Constraint box is shown for the al-
lemp module in the following screenshot:

5.	 Click the Finish button.
6.	 Save the changes.

The summary of this definition (in the Security tab of the deployment descriptor
editor) is shown in the next screenshot:

Securing Web Applications

[116]

Defining client-server transport type
In the next task for the web modules it is necessary to define the type of client-server
transport to be used to access the module. Perform the following procedure.

1.	 Open the web module deployment editor. Select the Security tab. Scroll
down to the Security Constraints section. Select the corresponding
constraint.

°° For the allemp module: Employee constraint
°° For the hronly module: Human Resources constraint
°° For the open module: Authenticated constraint

2.	 Scroll down to the User Data Constraint section.
3.	 For each module perform the following: From the Type pop-up menu select

the CONFIDENTIAL option.
4.	 Save the changes.

Mapping web modules to employees_vh
In order to simplify the deployment, each module will be mapped to the designated
WebSphere virtual host, employees_vh. Complete the following procedure for each
web module:

1.	 Open the deployment editor for the module (web.xml).
2.	 Select the Overview tab.
3.	 Scroll up or down to the WebSphere Bindings section.
4.	 Replace the default value, default_host, with the value employees_vh.
5.	 Save the changes.

Configuring enterprise applications
There are different configuration objects that will be needed by the enterprise
application modules. This section states what needs to be defined and the procedure
to do it.

Defining roles
The roles that had been defined at the web module level are:

•	 Authenticated role
•	 Employee role
•	 HR role

Chapter 5

[117]

Carry out the following steps in order to define the roles in application.xml:

1.	 Open the enterprise application deployment editor.
2.	 Select the Security tab.
3.	 In the Security section, click the button Gather.
4.	 Immediately, the three roles appear under the Security section.

The following screenshot shows the state of the editor:

5.	 Save the changes.

Mapping groups to roles
Next after defining the roles it is necessary to indicate to what user registry groups
they must be mapped. The groups that will be mapped, which come from the user
registry are:

•	 Authenticated
•	 Employee
•	 Human Resources

Starting from the Security page in the application deployment descriptor, complete
the following steps:

1.	 Identify the WebSphere Bindings section on the Security page.
2.	 Click on the first role under the Security section, Authenticated Role.
3.	 Check the Users/Groups box.
4.	 Scroll down to the Groups section.
5.	 Click the Add button. A wizard opens.
6.	 Enter the value Authenticated in the Group name field.

Securing Web Applications

[118]

7.	 Repeat steps 2-3 for the second role, Employee Role, using the value
Employee in the Group name field.

8.	 Repeat steps 2-6 for the last role, HR Role, using the value Human Resources
in the Group name field.

9.	 Save the changes.

A screenshot of the editor highlighting how the mapping between roles and groups
is displayed is shown next:

If so desired, click the Source tab to review the additions made to the application.
xml file.

Adding content to dynamic web applications
Up to this point we have focused on the configuration portion of the project.
Thankfully, we are not very ambitious and we will create just extremely simple
HTML.

Adding web files
This project will use three types of files: HTML, a JSP and a servlet. The general
methodology to add files is as follows. Start with all of the branches collapsed under
the Project Explorer.

1.	 Open the Dynamic Web Projects.
2.	 Right-click the desired web module.
3.	 Follow the breadcrumb

Dynamic Web Projects | <WebModule> | New | Other…
4.	 Click the Other... menu item. The Select wizard opens.

Chapter 5

[119]

At this point, the process may vary slightly, depending on the type of file. For HTML
and JSP files we can use this trick:

1.	 From the Select wizard, scroll down and expand the Simple folder.
2.	 Select the File option.
3.	 Click the Next button.
4.	 On the next screen, New File, expand the web module tree and highlight the

Web Content folder.
5.	 Type the name of the HTML or JSP file in the File name field.
6.	 Enter the file name:

°° For the module allemp, use the name empindex.jsp.
°° For the module hronly, use the file name index.jsp.
°° And for the module open, use the file name index.html.

7.	 Click the Finish button. The file is added under the path allemp/
WebContent and a generic editor opens with the blank file.

The content of the empindex.jsp file, which is part of the allemp module, is
shown in the screenshot that follows:

8.	 Enter the code as shown and save the file.

Securing Web Applications

[120]

As stated before, we are not really concerned with the content of the application but
that the content is protected in the correct way. The code for each of the file types
includes only the barebones of the language or markup language as can be derived
from the previous screenshot.

The analysis for empindex.jsp is as follows. Lines 1-2 are basic JSP declarations
regarding the document and some of its characteristics. Lines 3-4 are the standard
HTML document type declaration. Lines 5 and 21 delimit the HTML portion of the
document. Lines 6-8 define the HEAD element of the document. Lines 9-16 and 20
contain simple HTML directives. Lines 17-18 include simple Java commands that
attempt to gather the user name information from the HTTP request object in order to
provide some personalization of the page. Line 19 is a mix of HTML and JSP directive
retrieving the value of the variable id, defined in the previous JSP block, line 17.

The file index.jsp, part of the module hronly, is defined as a member of the
Welcome File List. The file content is shown in the next screenshot. In addition,
index.jsp is equivalent to empindex.jsp from the functional standpoint. In terms
of its content, it is just tailored to the hronly module.

The file index.html, shown in the following screenshot, is an equivalent although
older version, from the presentation point of view, of the previous two files. It uses
the same HTML directives. However, it lacks the personalization offered through the
JSP directives.

Chapter 5

[121]

Adding Java components
The final web module component is a servlet that will act as the home page for the
allemp module. This servlet, after 'performing' its function, will redirect the data
flow to the empindex.jsp component that will render the output returned as the
result of the request. Follow the course of action described next to add a servlet to
a web module. We assume we are starting the AST with all of the Project Explorer
branches collapsed.

1.	 Expand the Dynamic Web Projects branch according to the breadcrumb:
Dynamic Web Projects | allemp | Java Resources | JavaSource .

2.	 Right-click the JavaSource folder. A menu pops up. From the menu, follow
the breadcrumb: JavaSource | New | Other… .The Select a wizard window
opens.

Securing Web Applications

[122]

3.	 Scroll down the list of wizards to the Web collection/folder. Expand it. Select
the Servlet wizard. This is shown in the following screenshot:

4.	 Click the Next button. Enter the value HomePage under the Name field.
Note that by doing so, the URL mapping, /HomePage, is automatically
added.

5.	 Under the URL mappings section, click the Add button. The URL mappings
dialog opens. Enter the value /index.html.

6.	 Check the Generate an annotated servlet class box. Once that is completed,
click the OK button to apply these values. Then, click the Next button to
continue to the next screen.

7.	 In the screen that follows, Servlet, most of the fields are pre-populated. In the
Java package field enter the value yourcompany.common. After you finish
reviewing the screen, click the Next button. A new wizard screen opens.

8.	 Review values and selections of the modifiers, interfaces, and methods. Don't
change the default values; such values will work for this simple project.
When you finish reviewing the default values, click the Finish button.

9.	 Save the web.xml deployment descriptor. In the editor window, select the
Servlets tab. Observe what has been added.

10.	 Under the Servlets and JSPs section, select the HomePage servlet. Observe
that as you do it, the fields under the Details section become populated with
the information gathered by the wizard.

Chapter 5

[123]

11.	 If necessary, scroll down so you can review the content under the URL
mappings section. Save the changes.

If so desired, the Servlet could have been added to a fourth dynamic
web project in a similar way. The new project then would be added to
the enterprise application project. The content of this new web module
would then be available to any of the other web modules. As an optional
exercise, create a dynamic web project for it. You can name the DWP,
navigator, if so desired.

Completing the Java code
Close any open deployment descriptor editors. If the Java editor is not open, drill
down following the breadcrumb Dynamic Web Projects | allemp | Java Resources
| JavaSource | yourcompany.com | HomePage.java and open the Java file. We will
not analyze in detail the content of the file since development of Java assets is out of
the scope of this book. We will, however, briefly describe the sections in the class file.
Then, we will zoom in at the points where necessary additions and modifications
are needed to accomplish our goal with this component, that is, to redirect the HTTP
request to a JSP file.

Analysis of the initial servlet code
Lines 1-7 declare the package for the class being defined in the file and the external
class dependencies needed. Lines 8-21 contain servlet interface documentation in
the form of comments. Lines 22-25 and 43 include the class definition and the class
annotation and reference in the form of comments. Lines 26-28 define the class
constructor. Lines 29-42 consist of the doGet and doPost methods and their interface
annotation. Refer to the screenshot below:

Securing Web Applications

[124]

Completing the servlet code
What is needed to add to the code in order to enable the servlet to redirect the
request to the renderer component, that is, JSP, is rather simple.

The following screenshot shows the two additional packages needed by the coded
that will be added shortly:

The main contribution to the servlet is shown in the following code. A private
String variable is defined in line 32. Its role is to hold the value of the context
root embedded in the HTTP request object. Lines 34-40 show a private method
(doForwardRequest) whose function is to perform the actual redirection by using
a handful of methods from the RequestDispatcher object. Our method requires
an HttpServletRequest object, an HttpServletResponse object, and a String object
holding URL to which the request will be forwarded.

In the code shown below, the HttpServletRequest methods doGet and doPost
have as their main responsibility to build the target URL to which the request and
response objects will be forwarded. Both methods are identical. Lines 55 and 68
retrieve from the request object the context root. With that information, in lines
56 and 69, the methods build the required URL and invoke the private method
doForwardRequest that will do the actual forwarding.

Chapter 5

[125]

A no-no.
Please note that including the value empindex.jps within the code is
not encouraged. It was done in this way for the project in order to keep
modules as simple as possible so they are not a distraction. In production
systems, your development team probably can use properties files to
declare such values. Properties can be customized every time the servlet
class is deployed into a web application.

Our enterprise application project is ready for deployment.

Packaging an enterprise application
Our goal in this section is to export an EAR ready for deployment into our
WebSphere v7 environment. The following steps will help us:

1.	 Follow the breadcrumb: Enterprise Applications | YourCompanySite.
2.	 Next, right click the YourCompanySite branch and follow the breadcrumb

YourCompanySite | Export | EAR file. The EAR export wizard opens.
3.	 Enter a full path to where you wish to export your packaged project in the

Destination field.
4.	 Check the Include project build paths and meta-data files check box.
5.	 Click the Finish button.

Open a terminal window and review the content of your EAR. Use the following
command to list the content of the EAR file:

<WAS_Root>/java/jre/bin/jar -tvf <Absolute_Path>/YourCompanySite.ear

Securing Web Applications

[126]

The output to the command should look similar to the listing shown in the
next screenshot:

Deploying the enterprise application
As a final step to creating, configuring, and packaging an enterprise application
process, we have arrived at deploying it to our environment.

1.	 Log on to the Deployment Manager console. Go to the page New
Application and select New Enterprise Application for the type of
application to be installed.

2.	 In the next screen, provide the location of the EAR file containing the
application you just packaged in the previous section. Click the Next button
to go to the following screen.
The way in which the EAR was configured enables the administrator to per-
form a deployment using the Fast path. However, we will use the Detailed
option so we can observe how the various configuration settings that were
done during the creation of the enterprise application project fall neatly
into place.

3.	 In the screen that gets displayed you can observe several configuration
choices, many of which the install wizard has populated for you. Take a
look around and when finished, click the Next button, as this page does not
require any modifications.

4.	 The Map modules to servers page appears. Assign all three modules to the
SecureAppServer01 JVM. After doing so, click the Next button.

5.	 The JSP reloading options for Web modules page is shown next. Review the
settings. There is no need to change anything. Click the Next button.

6.	 The Map shared libraries page is displayed. Similarly to the previous step,
review the settings and click the Next button when ready.

Chapter 5

[127]

7.	 The Map shared libraries relationships page follows. We can also skip this
page. Click the Next button to advance to the following page.

8.	 The Map virtual hosts for Web modules page is shown. If you recall, while
creating the EAR, we spent some time making this mapping. Since the value
shown (employees_vh) is the one desired, we can skip this page as well.
Click the Next button to continue.

9.	 The Map context root for Web modules is now displayed. Again, the values
that appear are the values that are desired. We can continue without having
to make any modifications. Click the Next button.

10.	 The Map security roles to users or groups page appears next. Notice also
how this page has been populated with the groups. Click the Next button.

11.	 The Summary page appears. Review the current settings to insure that all the
values are correct. When done, click the Finish button.

12.	 As the last series of steps: save the changes, re-generate the plugin-cfg.xml
file. Restart all JVM's (dmgr, nodeagent and SecureAppServer01).

As stated earlier, the EAR file could have been deployed using the fast path method
since all of the required settings were already part of the EAR.

Testing the enterprise application
In order to ensure that the application has been configured correctly, we need to
test scenarios for all three types of users. The goal of the test is to have each of the
users attempt to access all three modules. The results should match the following
descriptions.

Module open, https://<yourserver>.yourcompany.com:8444/open/,
should be available to anyone that can log in to the server. Module allemp,
https://<yourserver>.yourcompany.com:8444/allemp/, should be open to
YourCompanyINC regular employees as well as members from the HR department.
Finally, module hronly, https://<yourserver>.yourcompany.com:8444/hronly/,
should be available to members of the HR department.

In order to carry out the test, log in as one of the users defined by attempting to
access the open application. Every time that a new user is logged in, the certificate
warning will be displayed. Remember to only accept it only for that session. If the
configuration is correct, after accepting the certificate a log in box will challenge you.
Enter the user ID and password. You should see for any accepted ID the welcoming
page (titled: YourCompany.com OPEN site). Start with the ID sam_visitor. Sam
should only be able to access the open module. Using the same browser, have Sam
access the allemp and hronly modules. For both attempts, you should get a 403
HTTP error: Authorization Failed.

Securing Web Applications

[128]

Proceed the same way for the other two users, ravi and lola. Each time that you test
for a different user, make sure to start a new browser. User ravi should be able to
access open and allemp, whereas he should get a 403 error. Finally, user lola should
be able to access all sites.

Summary
In this chapter you have learned the following:

•	 More about infrastructure front-end security
•	 The importance of group-role mapping in fine-tuning access to specific

modules within a web enterprise application
•	 The locations inside an EAR that contain security data
•	 The security application attributes that need to be defined
•	 How to build, configure, and package securable EARs

Securing Enterprise Java
Beans Applications

In the programming paradigm Model-View-Controller (MVC), an application
design/functionality is broken down into three main areas or layers: the model
layer, which represents the logic of an application; the view layer, which deals with
the presentation (sometimes referred as rendering) aspect of an application; and the
controller layer, which is that portion of an application that directs the flow between
the other two layers. Under the J2EE umbrella, EJBs often implement the model layer
of an application, whereas Servlets implement the controller layer, which leaves the
presentation layer to JSPs. In this chapter, you will:

•	 Learn the concepts surrounding security of EJB applications
•	 Design a simple EJB application in which the security concepts can be used

and observe the application behavior
•	 Create an EJB project using a GUI programming tool (RAD and Eclipse)
•	 Write code for your EJB application and perform the configuration of your

EAR package
•	 Deploy and test your EJB project

The approach followed in this chapter is very similar to the one used in the previous
chapter. It starts with some theory, in this case, some EJB concepts required to help
you understand the security configuration that surrounds this type of application.
The chapter then goes into a description of a mini-project in which a very simple
application that uses at its core an EJB will be developed, packaged, and deployed
onto a WebSphere v7 environment. This mini-project will be leveraging on the
previous two chapters' mini-projects. Portions of the full mini-project for this chapter
will not be included here as they are, by now, familiar to you and they will be left as
exercises to reaffirm the concepts reviewed in the previous chapters.

Securing Enterprise Java Beans Applications

[130]

For instance, this chapter mini-project will not address the HTTP server component;
it will be left as an exercise for you to complete its integration. You can use as a
starting point what you learned in Chapter 4, Front-End Communication Security under
the section Securing front-end components communication.

EJB application security concepts
As in other Java enterprise applications, there are two main aspects to the securing
of an EJB-based enterprise application; namely, the way the code is written and the
EAR deployment configuration. As WAS ND v7 supports the EJB 3.0 API (without
the need for a special feature pack) this chapter will focus on some of the new aspects
introduced by that version. Throughout this chapter, when the term EJB appears, it
refers to version three of the API.

The EJB 3.0 API introduced the concept of annotations for conveying security
configuration information. Therefore, the chapter will use this technique to show
how security can be defined and enforced. In essence, there are two security
mechanisms: declarative security and programmatic security.

Declarative security
In declarative security, security policies can be conveyed through XML entries in the
deployment descriptor or through annotations. As stated earlier, this chapter will
focus on the latter. The suite of annotations that can be used in EJB's is:

•	 RolesAllowed lists which roles are able to access a class or execute a method
•	 PermitAll indicates that the class or method is accessible to anyone
•	 DenyAll prevents access to a class or method
•	 DeclareRoles states, at the class level only, which roles will be referred in

a class
•	 RunAs is a mechanism used at the bean level (therefore, only allowed to be

declared at the class level) that allows an EJB to invoke another EJB using a
different role

Chapter 6

[131]

Programmatic security
In programmatic security, an EJB code will include calls to the security API in order
to determine the identity of an authenticated user and set a specific course of action
based on that information. The specification interface used for this purpose is javax.
ejb.EJBContext. This interface provides a couple of methods that can be used in an
EJB code:

•	 getCallerPrincipal() returns as a java.security.Principal Java object,
the name of the authenticated caller

•	 isCallerInRole(String role) returns a Boolean value depending on whether
or not the caller is in the stated role

EJB project design
The security EJB concepts mentioned in EJB application security concepts will be
explored in the remainder of this chapter by using a mini-project.

EJB application du jour
The application to be presented, implements a very rudimentary portal application.
In this application, the home page content is customized according to the group
(mapped to a role) the user belongs to. The EJB will be the core of the application.

Objective–security
One of the purposes of the application is to demonstrate how security is applied to
an EJB application. Although the code is short, the solution uses both declarative and
programmatic security.

Objective–functional
From the functional perspective, the project works around the concept of a portal
application. The intent is to present personalized content that is drawn from three
distinct applications. Users will see only the content that their group membership
allows them to access.

www.allitebooks.com

http://www.allitebooks.org

Securing Enterprise Java Beans Applications

[132]

Project design–UI aspect
The idea behind this project is rather simple, however, it will help demonstrate how
to use security on an EJB module. From the UI point of view, this project builds up
on the previous chapter mini-project. In other words, this project will re-use three
dynamic web applications (or modules), namely allemp.war, hronly.war, and
open.war. Therefore, this project will access the existing modules in the same way,
using the URI's /allemp/, /hronly/, and /open/.

The current mini-project will add a new home page, which will be available via the
URI / (slash). This page will be tailored according to the role a user belongs to. From
that page, which will be referred in the rest of the chapter as the portal home page (or
simply portal page), users will be able to navigate to the legacy applications from the
previous chapter. The following diagram depicts this simple architecture:

In the preceding figure, when a user requests the main URI /, (the full URL would
be something similar to https://<FQDN_hostname>:<IHS_port>/) that user will be
asked to log in (for example, authenticate). Upon successful authentication, the portal
page will be presented to the user. In the diagram, the portal page is represented by
the largest rectangle (gold) on the left. As stated previously, depending on the role
associated with the user ID, the portal home would present a snippet of content (or
functionality) from the legacy applications. For this project, the way the portal page
will customize its content is by displaying an appropriate banner for each portlet and
by providing a link to the legacy application the user is entitled to access. This fact is
represented in the preceding diagram by the smaller rectangles on the right.

Chapter 6

[133]

Depending on the user's role, the suitable number of arrows will be available on the
portal home. Recalling from the previous chapter, some of the roles are Employee Role
and HR Role. In addition, The HR Role is the category that provides the most access
to the portal content. Thus, the preceding diagram would be a representation of the
portal page for a user with the HR Role.

Furthermore, the following diagram offers a closer look at the UI architecture.
Diagram a) shows a generic architecture for the portal page. It is made of four main
components, namely: the portal body, the header, the footer, and the personalized
page. The portal body is represented by the outer rectangle (yellow) labeled Portal
Home Page, which in our case will be common to any authenticated user. The next
two components, header and footer, represented by the two small rectangles (gold)
at the top and bottom of the overall layout, could be used for many purposes,
including customized navigation of a legacy application. For this mini-project
(in order to keep things very simple) both header and footer will be common
to any authenticated user in the same way as the main portal body. Finally, the
personalization component, represented by the large square (purple) in diagram a),
is the core of our project and it will customize its content according to the role a user
is assigned. The remaining diagrams in the figure portrait possible scenarios for each
of the roles.

Securing Enterprise Java Beans Applications

[134]

The preceding diagram b) illustrates the scenario for a registered visitor of the web
site. The personalized component renders content appropriate for anybody who
has registered and given a valid ID. This fact is represented by the rectangle labeled
OPEN (orange) in the diagram. As stated earlier, the content of the personalized area
includes a welcome message directed to visitors and a link to access the legacy open
application.

Next, in diagram c), the scenario for a regular employee portal page is depicted. It
contains the same components as the generic architecture shown in diagram a). The
chief difference has to do with the personalized component of the portal page. In
addition to the OPEN rectangle presented to any authenticated user, the personalized
area adds a portlet with content/functionality of interest to a regular employee. This
employee-oriented content is denoted by the rectangle labeled EMP (green).

Finally, diagram d) presents the most complex situation in this mini-project.
This situation is related to the content personalization for members of the
Human Resources department. In addition to the OPEN and EMP rectangles, the
personalized area now includes an additional rectangle labeled HR (blue) that
represents content exclusive for the Human Resources members. The HR area
provides, similar to the previous cases, a link to the legacy application hronly.

Project design–programming component
In order to have a better understanding of the mini-project J2EE component
architecture layout and the securing of its components, let's review the MVC
paradigm in a visual way. Analyze the following diagram where the ovals represent
the main components of the paradigm; the solid lines stand for remote functionality
execution, whereas the dotted lines represent events taking place. Furthermore, in
the classic MVC representation for an application:

•	 The model component (represented by the oval—blue—labeled Model)
holds the application state and reveals the application functionality. One
of the model component obligations is to accept application state inquiries
(depicted by the full line—maroon—labeled State Query) from the view
component. In addition, the model component must alert the view
component when the application state changes by sending event notifications
(shown as the dotted line—blue—labeled Change notification).

Chapter 6

[135]

•	 The view component (represented by the oval—maroon—labeled 'View')
synthesizes the model according to a well-defined realm or context so users
can interact with the application. For instance, a realm could be the rendering
of the application suitable to be accessed by a smart phone device. Among
its obligations, the view component requests the model (represented by the
full line—maroon—labeled State Query) for changes in the application state.
Moreover, the view broadcasts event notifications to the controller of user
interactions with the view. These notifications are represented in the diagram
by the dotted line (maroon) labeled User response.

•	 Last, but not least, the controller component declares the application
functionality, selects the view to be displayed to users according to the well-
defined context and translates user's actions to model updates.

(Adapted from http://java.sun.com/blueprints/patterns/MVC-detailed.html)

Securing Enterprise Java Beans Applications

[136]

In light of the MVC classic model, we can now depict how it can be implemented
in a J2EE application. The following diagram shows the J2EE components and their
associations and interactions. In a nutshell, the controller is carried out by the Servlet;
the model is implemented by the EJB; and the view is instantiated by the JSP.

In the J2EE implementation of the MVC model, client requests (1) are intercepted by
the controller (2), namely the Servlet. A Servlet, then, has two main jobs to carry out.
On the one hand, it must map the user requests to the EJB functionality by making
remote method invocations (3). Therefore, the EJB implements the model component.
The EJB will then execute the request and return the result to the Servlet (4). On
the other hand, based on the request, the Servlet must decide what protocol (for
example, HTTP, WAP) and format (that is, WML, HTML) to use in order to select
the appropriate JSP that would assemble the response to the user. Once selected
or identified, the Servlet will pass the required information to the JSP (5). The
specialized JSP will then use the information received to produce the result object in
the appropriate format and sent using the corresponding protocol (6, 7).

In the last few paragraphs we have been focusing on the models and the J2EE
components to instantiate such models. It is time now to turn our attention to what
this book is all about. In particular for this chapter, the securing of the various J2EE
components used to make up the mini-project. Let's proceed to the next subsection.

Chapter 6

[137]

Project design–implementation phase
As we have experienced throughout this book, there is always more than way of
either analyzing (viewing) or synthesizing (implementing) a problem. Our mini-
project is not an exception. So, let's start by identifying the points of entry to the
overall application.

Such points of entry to the application are normally identified or referred to as URIs.
For the mini-project we have four:

•	 /: main point of entry to the overall site and access to the portal application
(module)

•	 /open/: main entrance for all authenticated users to the open application
•	 /allemp/: access point to the allemp application available to all regular

employees
•	 /hronly/: point of entry to the hronly application, an area restricted to

members of the HR department

In the previous chapter, the securing of the last three applications shown previously
was done by mapping each application to a role and then creating relationships
between the roles defined by the applications and user groups defined in the security
user registry used. The roles then were used to secure each of the applications.

The EJB v 3.0 model enables us to apply a more granular security schema by using
different approaches such as declarative and programmatic security. For this mini-
project, the declarative security will be used. Declarative security can be applied at
the class and even at the method level.

As a result of this, the portal application will be secured by granting access to the
application URI to all authenticated users and then tightening the security at the time
when remote method invocation is performed against the EJB.

At this point, we can point out what the main implementation components of the
mini-project are. Notice however, that on occasion the type of tool used may dictate a
certain course of action. Our case was not the exception. The tool selected to develop,
build, and package our project is IBM Rational Application Developer Assembly and
Deployment Features for WebSphere Software V7.5 for Multiplatforms (a mouthful of a
product name—please refer to the tip box at the end of this subsection for a brief
description about this selection).

Securing Enterprise Java Beans Applications

[138]

Therefore, the following major components make up this mini-project. All of the
components will be brought together through the enterprise project:

•	 chap6-EAR-miniproject enterprise application project used as an umbrella to
include all the modules needed. In other words, this would be the end-result
of all of the components packaged together.
Three of the components were created in Chapter 5, Securing Web Applications
and will be reused in this chapter's project which are as follows.

•	 chap6-allemp-webapp dynamic web application project: It is made of
the same components as allemp.war from Chapter 5. It uses group-role
relationships to implement authorization security. Implements the /allemp/
application. The minor components are:

°° HomePage Servlet: Enforces access to the application and forwards
request flow to JSP

°° empindex.jsp JSP: Displays employee-related content

•	 chap6-hronly-webapp dynamic web application project: It holds the same
components and configuration as hronly.war from Chapter 5. As its legacy
siblings do, it uses group-role relationships to implement authorization
security of resources. It implements the /hronly/ application. Its component
is: index.jsp JSP, which displays HR department related content

•	 chap6-open-webapp dynamic web project: It contains the same components
as open.war from Chapter 5. As the previous legacy applications, it also
keeps the same security configuration, using group-role relationships to
implement resource authorization. It implements the /open/ application. Its
component is: index.html web page, which displays content suitable to any
authenticated user.
Two new projects will supplement the previous modules and help us explore
EJB security much closer.

•	 chap6-portal-webapp dynamic web application: It consists of five
HTML files in addition to several JSP files and one Servlet class,
PortalHomeSelectorServlet. A combination of these components added
to the last module, chap6-portal-ejbean (cf. below), implement the portal
application. As this is the point of entry to the multiple applications, there
is not a formal context root. Therefore, the URI to access this module is /
(slash). The details of this module will be provided in the following sections.

Chapter 6

[139]

•	 chap6-portal-ejbean EJB project: It comprises an EJB class and three Java
interfaces that provide the means of accessing the functionality offered by
the EJB. The EJB class, named PortalSelectorSessionBean, is hidden from
the user. Its main functionality is to provide the Servlet from chap6-portal-
webapp (PortalHomeSelectorServlet) the parameters needed to assemble the
introductory portal. The parameters are selected based on the role of the user
that sent the request to the Servlet.

Selection of the IDE
Even though this book is not about writing code, in order to show
how security can be applied to an EJB application, it was necessary to
implement a very simple EJB that would behave differently according to
the role of the user making the request. The tools used in the last chapter,
specifically the AST and Eclipse, were not suitable for developing and
packaging an EAR that contains EJBs. Several combinations were made
to no avail. Therefore, the version of Rational Developer licensed with
WebSphere Application Server Network Deploy v7 was selected for use
in this chapter. If your company uses IBM's Passport Advantage to access
your entitlements, you will need to download the five packages that are
labeled IBM Rational Application Developer Assembly and Deployment Features
for WebSphere Software V7.5 for Multiplatform. The packages identifiers are:
C1KJ4ML (set up), C1KJ5ML (disk one), C1KJ6ML (disk two), C1KJ7ML
(disk three), C1KJ8ML (disk four), and C1KJ9ML (disk five).

EJB project prerequisites and
assumptions
In terms of assumptions and pre-requirements for this mini-project, they are very
similar to the ones listed in Chapter 5. A summary of them will be given next.

Project assumptions
The assumptions for this mini-project are as follows:

•	 The global security for the WebSphere cell uses the built-in federated user
registry. (Refer to Chapter 3, Configuring User Authentication and Access
subsection Configuring security domains based on global security, for details).

•	 There are at least three distinct user groups defined in the user repository.
(Please consult Chapter 5, section Enterprise application architecture and
subsection Application groups).

Securing Enterprise Java Beans Applications

[140]

•	 There are at least three different users defined in the federated user registry.
(For details, kindly refer to Chapter 5 section Enterprise application architecture
and subsection Application users).

•	 There is an IHS installation that is integrated through the WebSphere Plug-in
to the WebSphere Application Server v7 environment.

•	 You have completed the mini-project from Chapter 5. (Details can be found
under the section Creating the dynamic web application projects.) Therefore, the
following modules are available for use or for importing:

°° allemp.war

°° hronly.war

°° open.war

•	 The users and groups are organized in the same way as in Chapter 5. The
group-role mappings are also the same.

•	 You have access to the IBM Rational Application Developer Assembly and
Deployment Features for WebSphere Software V7.5 (which will be referred to
as IBM RAD or just RAD in the rest of this chapter) or similar IDE which
supports EJB v3.0 and it is capable of packaging EAR files compatible with
WebSphere AS v7.0

•	 IBM RAD is installed on the same host as the WAS ND v7 Deployment
Manager profile resides.

Project prerequisites
In order to get started with this chapter's mini-project, the following tasks must
be completed. As such tasks are either not related directly to security but familiar
enough to WebSphere administrators, or the task has been covered in the previous
chapters and the reader should be able to perform it without detailed guidance.

Using the Integrated Solutions Console perform the following:

1.	 Create a new Application Server. The one used in this project is named
Chap6AppServer.

Chapter 6

[141]

2.	 Create a new virtual host. Name it chap6_vh. (If you decide to name it
differently, you will have to use the custom value when references to chap6_
vh are made in the rest of this chapter.) Remove the default ports assigned to
it and add:

°° 9445: to be used as the JVM web container secure HTTP transport
port; if yours is different, modify this value to match your
Application Server WC_defaulthost_secure value.

°° 8445: to be used as the IHS server listening port.

3.	 Create a new security domain. Make this security domain by copying the
global security configuration. Name it chapt6.yourcompany.com. If so
desired, please refer to Chapter 3, subsection Configuring security domains based
on global security, for further details.

4.	 Assign domain. Customize domain.
5.	 After creating the enterprise project, you need to import the modules from

the last chapter (which are mentioned in the previous section). They will be
denoted as legacy applications in the rest of this chapter. When importing the
legacy applications assign them to the chap6-EAR-miniproject project.

Creating an Enterprise Application
Project
In order to get started, the IDE project must be created. As mentioned earlier, in this
chapter, directions and screenshots will be taken from IBM Rational. The following
excerpt was already mentioned previously. If you decide to get the WAS ND v7
version of Rational, please refer to the following information box. For further details,
refer to the preceding subsection Project design–Implementation phase.

If your company uses IBM's Passport Advantage to access your
entitlements, you will need to download the five packages that are labeled
IBM Rational Application Developer Assembly and Deployment Features for
WebSphere Software V7.5 for Multiplatform. The packages identifiers are:
C1KJ4ML (set up), C1KJ5ML (disk one), C1KJ6ML (disk two), C1KJ7ML
(disk three), C1KJ8ML (disk four), and C1KJ9ML (disk five).

Securing Enterprise Java Beans Applications

[142]

Creating the project workspace
It is desirable to start with a clean IDE workspace so no residual data from a
previous project can introduce unforeseen elements. To start with a clean workspace
environment, launch Rational or your selected IDE. Select a new clean directory. This
will create the desired workspace.

Next, if not already open, select a Java 2EE perspective. Using the Window menu,
navigate to: Window | Open Perspective | Other. An Open Perspective selector
window opens. Select Java 2EE.

Enterprise application project requirements
For a successful project, there are two important attributes of an enterprise
application project that need to be defined correctly. These attributes were the reason
for selecting RAD as an IDE tool and are defined as follows.

EAR version
In order for the project to be able to host an EJB 3.0 component, the project's EAR
version must be 5.0 or higher. This version is default when creating an enterprise
application project (referred to as EAP in the rest of this chapter) with RAD. This
selection will be given at the time of EAP creation.

Target runtime
In addition, to ensure that the code to be developed and deployed in WebSphere is
compatible with it, a new RAD Target Runtime must be created. This target runtime
will be configured to point at the root directory path of the WAS ND installation.
Although we can create a target runtime in different ways, in this chapter it will be
done while creating the EAP.

Creating the enterprise application project
This chapter's mini-project will include several J2EE components such as WARs
and JARs. The best type of RAD project suitable for deploying in a WebSphere
environment is the creation of an EAR. RAD calls EAR projects Enterprise
application projects.

Chapter 6

[143]

Selecting the project EAR version
Using the File menu, navigate to: File | New | Enterprise Application Project.
A New EAR Application Project wizard opens. Name the project chap6-EAR-
miniproject. Ensure that the EAR version selected is 5.0 or higher.

Creating a target runtime
While still on the first window of the wizard and under the Target Runtime section,
perform the following:

1.	 Click the New... button. A New Server Runtime Environment wizard opens.
2.	 If necessary, expand the IBM folder.
3.	 Select WebSphere Application Server v7.0. Click the Next button.
4.	 Name the new runtime: WebSphere Application Server 7.0 installation.
5.	 Under the Installation directory field enter the location of your WAS ND v7

installation (for example, /opt/IBM/WebSphere/AppServer in SuSE Linux).
6.	 Click the Finish button.

Creating the deployment descriptor
Once the target runtime has been created, back on the New EAR wizard, click
the Next button. Towards the bottom of the wizard window, click the Generate
Deployment Descriptor check box. The next step is to fill the EAR content field with
the value EarContent. Finally, click the Finish button to create the EAP.

RAD will point out errors and the appropriate icons are shown to reflect the fact that
at the moment, there aren't any modules associated with the chap6-EAR-miniproject
EAP. This is normal as we have yet to either create or import such modules.
The reason that RAD displays such error(s) is because the current content of the
deployment descriptor (application.xml) is missing the <module> directive, which
is required for this version of EAR descriptor. Once the first module is associated
with the EAP, the errors will disappear.

Securing Enterprise Java Beans Applications

[144]

Creating the portal Dynamic Web Project
The procedure for creating a dynamic web project was reviewed in Chapter 5
under the section Securing a web application | Securing a J2EE web application
| Creating the dynamic web application projects. For this reason, the following
description will not be very detailed. Only the aspects that are related to RAD and
specifics about the EAR version will be pointed out. For simplicity, the term dynamic
web project will be denoted as DWP in the rest of this chapter.

Creating the portal DWP
In RAD, using the File menu:

1.	 Follow the sequence: File | New Dynamic Web Project.
2.	 Name the project chap6-portal-webapp.
3.	 Ensure that the version for Dynamic Web Module is 2.5 or higher.
4.	 Under the section EAR membership, ensure that Add project to an EAR is

checked and that chap6-EAR-miniproject is selected.
5.	 Click the Next button.

The properties to be provided on the last screen of the wizard are very important, so
they are presented here as subsections to call attention to them.

Defining the DWP context root
The objective for this module is to become the main point of entry to the applications
contained in the EAP. Therefore, the context root selected is / (slash). Enter this value
under the field Context Root.

Any URI used to access this chapter application that does not
match the patterns /allemp/*, /hronly/*, or /open/* will be
routed to the portal application.

Creating the DWP deployment descriptor
On the same screen in the wizard, at the bottom, click the Generate deployment
descriptor check box so it appears checked. Leave the rest of the fields with their
default values. Then click the Finish button to create the initial (empty) DWP.

Chapter 6

[145]

Notice how the errors that appeared on the chap6-EAR-miniproject
have been fixed by adding a module to the EAP.

Configuring the portal DWP deployment
descriptor
The next task is to further customize the newly created DWP. Aspects that will be
customized are welcome file list and login information.

Defining the welcome pages suite
For the portal DWP we wish to reduce the welcome pages list to only index.html. In
order to do so, in RAD, open the DWP deployment descriptor (web.xml). On the left
pane, select the Welcome File List item. A list of built-in file names appears on the
right-hand side. Delete all but the index.html file name.

Adding login information
In order to add log-in information, using RAD and working with the DWP
deployment descriptor, click the Add… button. Select Login Configuration from the
list presented in the Add Item selector dialog. Click the OK button.

Under Properties for the login configuration section, enter BASIC for Authentication
Method. For the Realm Name field type Chapter 6 Mini-Project. Save the
configuration changes.

Securing protected URI patterns and HTTP methods
In order to secure the URI patterns and the HTTP methods, two aspects need to be
configured: security constraints and resource collections.

Defining security constraints
Continuing to edit the DWP deployment descriptor, click the Add… button
once more. This time select the Security Constraint item. Enter Authenticated
constraint in the Display Name field. Once the security constraint is defined, it is
possible to add resource collections.

Securing Enterprise Java Beans Applications

[146]

Defining resource collections
Expand the Security Constraint icon under Web Application. Select Web Resource
Collection. The right-hand side of the editor adjusts accordingly. In the HTTP method
section, click the Add button. Type GET. Repeat the steps but this time enter POST.

Go to the URL Pattern section. Click the Add button. Type /* as pattern. Moving
lower, under Web Resource Name, enter the text Authenticated. Save the work.

Defining application roles
As the portal application needs to be accessed by all registered users (including
registered visitors and employees) the Authenticated Role must be configured. In the
application deployment descriptor editor, select once more Web Application. Add a
Security Role. Enter Authenticated Role in the Role name field. Optionally, enter
All authenticated users role as its description.

Defining the client-server transport type
In order to force the HTTPS protocol between the Application Server and the IHS/
Plug-in perform the following sequence. Select the Security Constraint icon under
the Web Application Structure section. Under the User Data Constraint section at
the bottom right-hand side, select CONFIDENTIAL from the Transport Guarantee
pop-up menu. Save the changes to the file.

Mapping module to virtual host
The last piece needed is to map this module to the desired virtual host. In the editor,
select the Web Application icon. From the list of links located at the bottom, on the
right-hand side of the window, click the Open WebSphere Bindings link. A new
editor tab opens (file name: ibm-web-bnd.xml). Replace the text default_host with
chap6_vh.

This concludes the customization and configuration of the portal DWP, chap6-EAR-
miniproject. In the next section, the content that makes up the application will
be described.

Creating content for the portal DWP
Once the DWP has been configured, we can proceed to add the content that will
implement the functionality of this module. We could just provide a list of the files
that are part of the application, however, that would not help to understand how the
application operates and how it is protected.

Chapter 6

[147]

Location of files within the project
There are several HTML and JSP files used by the portal DWP. All of them are
located in the WebContent directory as shown in the following screenshot.
Furthermore, those files, which are components of a larger unit, are grouped under
the templates directory.

The preceding screenshot also shows a Servlet class, the PortalHomeSelectorServlet.
It is logically stored under the Java package was7sec.chap6.web. This Servlet is
mapped to the URI /index.html, therefore, it is the first component invoked when
the portal application is accessed.

Securing Enterprise Java Beans Applications

[148]

Logical file organization
The files that were shown in the previous section fall neatly onto the portal home
page. The following diagram depicts how each one of the files relates and fits within
the portal home:

Creating the common HTML files
In order to organize the files into the project as already described, create a folder
named templates and place it under the directory WebContent.

It is now possible to add content files. Start by adding the footerHome.html and
headerHome.html files. Give footerHome.html the content shown in the
following screenshot:

Chapter 6

[149]

In a similar way, give headerHome.html the content shown in the following
screenshot:

The actual content of the file is basic HTML markup. The main purpose in this project
is that the actual content helps us identify the component when it is rendered on the
portal page. Thus, most of the HTML and JSP files include their name as part of their
content. Cf. line 14 on the first of the screenshots and line 19 on the second screenshot.

Securing Enterprise Java Beans Applications

[150]

Creating the custom HTML files
The next three HTML files (_empPagelet.html—mapped to the rectangle—green—
labeled EMP in the preceding diagram, _hrPagelet.html—mapped to the rectangle—
blue—labeled HR, and _openPagelet.html—mapped to the rectangle—orange—
labeled OPEN) are the components that, from the UI point of view, control access to
the legacy applications. In this sense, control is implemented by providing a link to
the legacy application. The actual control is enforced by the EJB/Servlet/Domain
security configuration settings. So, structurally, they are very similar in which they
display some relevant content and links to applicable legacy application.

You can now create these three files and give them the content shown in the
following screenshots. Start with _empPagelet.html, giving it the content shown in
the next screenshot:

Continue with _hrPagelet.html, giving it the content shown in the next screenshot:

Chapter 6

[151]

Conclude this portion by giving _openPagelet.html the content shown in
the next screenshot:

Securing Enterprise Java Beans Applications

[152]

As can be seen, there is not special code used in these files. There is a simple H3
HTML directive plus the appropriate number of links, A directives, plus a page
identifier at the bottom.

Creating the JSP files
The portal module uses two sets of JSP files. One set (represented by the rectangle-
-purple--labeled Personalized Page in the diagram in previous section Logical file
organization) is used to select the number of Pagelets to display in the portal page.
The second set (represented by the large rectangle--gold--labeled Portal Home Page
in the same diagram) is used to select the appropriate portal page customized for a
particular role.

Pagelet selector JSP files
Create, under the /templates directory, the JSP files: HomePageEMPTemplate.jsp,
HomePageHRTemplate.jsp, and HomePageOPNTemplate.jsp. Give them the content
shown in the next three screenshots. To the HomePageEMPTemplate.jsp, give it the
content provided in the following screenshot:

Chapter 6

[153]

In a similar way, to the HomePageHRTemplate.jsp, give the content shown in
the following screenshot:

Securing Enterprise Java Beans Applications

[154]

Conclude this portion by giving HomePageOPNTemplate.jsp, the content provided
in the following screenshot:

The analysis for the files HomePageEMPTemplate.jsp, HomePageHRTemplate.jsp,
and HomePageOPNTemplate.jsp is as follows. Lines 1-9 are basic JSP document
type declarations (1-3) and standard HTML document introduction statements
(4-9). Lines 10-16 (for EMP and HR template files) and 10-14 (for OPN template
file) are JSP Scriptlets for variable assignment. Line 11 defines the page identifier.
The function of this variable, TpltID is to help us track the flow of processing.
If interested in performing this tracking, as an additional exercise, add JSP code
after line 16 (for EMP and HR) and 14 (for OPN), which prints a message to the
SystemOut.log file identifying that the JSP was executed. (Use the method System.
out.print and System.out.println to write to the standard output; cf. any of the
portal home JSP files). Lines 12-15 (for EMP and HR template files) and Lines 12-13
(for OPN template file) define and assign values to JSP variables needed to fill in the
customization areas in the templates.

Chapter 6

[155]

For all template files, openURITplt will hold the value of the URI to the open
application Pagelet. The value is stored as an attribute customframe.OpenURI in
the HTTP request object. For the EMP template, the JSP variable allempURITplt
will hold the value of the URI to the allemp application Pagelet. This value will
be obtained from the customframe.allempURI HTTP request object attribute.
Finally, for the HR template, the variable hronlyUIRTplt will hold the value of
the URI to the hronly application Pagelet. This value may be obtained from the
customframe.hrURI attribute in the HTTP request object.

Passing values between J2EE components: Servlet to JSP
In this project, the HTTPServletRequest Java class object attribute was
used to pass various parameters from the Servlet to a JSP. In this
model, JSP files know what attributes from the HTTPServletRequest
are needed; whereas the Servlet will collect both attribute name
and value from the EJB. PortalHomeSelectorServlet does not know
which particular attributes are needed by a particular JSP. The
Servlet requests from PortalSelectionSessionBean a custom object
(HomeComponents, which implements a Hashtable Java class) that
contains the information. Cf. Creating an EJB project for further details.

The remaining lines (Lines 18-38 for EMP and HR templates and Lines 16-35 for
the OPN template) include a mix of HTML code and JSP include directives used to
embed the corresponding Pagelet. Refer to the comments in the JSP files for
further details.

Securing Enterprise Java Beans Applications

[156]

Portal home selector JSP files
Create, under the WebContent folder, the JSP files: PortalHome4EMP.jsp,
PortalHome4HR.jsp and PortalHome4Open.jsp. Give them the content as shown in
the next screenshot, except as noted:

The content of the JSP files PortalHome4EMP.jsp, PortalHome4HR.jsp, and
PortalHome4Open.jsp is the same, except for line 36, which identifies the JSP
file. The reason for having three JSP files instead of a single one has to do with
security. Having a single JSP caused to cache its complied Java class the first time
the application was invoked. So if a member from the HR department was the first
user to access the application, the value for homepageBodyTplt would contain
HomePageHRTemplate.jsp in its value. This value would then be cached in the
compiled JSP. If another user, say external to the company but registered attempted
to access the application, the common home JSP file would attempt to return the
same HTML code as for the user form HR. This would cause many authorization
(403) HTTP errors, something not desirable. A quick solution was to have three
different JSP files from which to select according to the role of the user. (As stated
before, the author is not a developer, so there may be better ways to code the JSP file
to avoid the caching side effects.)

Chapter 6

[157]

The analysis for these JSP files is as follows. Lines 1-8 are standard JSP and HTML
document definition. Lines 9-18 make up a Scriptlet in Java. Lines 9-10 are the only
lines that are essential to the JSP as they declare the JSP variables needed in the main
body of the document, namely homepageTitle and homepageBodyTplt. Lines 11-
18 are used to track the flow of processing. Lines 19-38 are a combination of simple
HTML code and a couple of JSP directives. The HTML code provides the frame for
the portal page. In line 19, the title of the page is added by using a reference to the
JSP variable homepageTitle defined in line 9. In line 25, a JSP directive to include an
external file uses the variable homepageBodyTplt defined in line 20 to extract the
path to the file.

Creating the Servlet
PortalHomeSelectorServlet
The Servlet to be created in this section will be placed in its own package. So the next
major tasks are to create the Java package and then create a Servlet in that package.

Creating a Java package
In RAD, select the src folder of the portal DWP. Right-click and follow the sequence
New | Package. Name the package: was7sec.chap6.web.

Creating the Servlet
Again in RAD, select the newly created package. Right-click and follow the sequence
New | Servlet. Give it the name PortalHomeSelectorServlet. Ensure that all the
values shown match for the DWP. Ensure that a new Servlet mapping is created, /
index.html (second screen).

Creating the code for
PortalHomeSelectorServlet
As the source file for the Servlet contains 203 lines of code, this section will break
the contents down by logical definitions (that is, variables, methods, and so on). The
subsections that follow describe the most important definitions.

Securing Enterprise Java Beans Applications

[158]

Package definition and import statements
The following screenshot shows the declaration of the Java package in Line 1. Lines
3-13 declare the import packages or classes that the Servlet would refer to:

Declaration of class constants and variables
Among the class constants only serialVersionUID is required in Line 31. The
variable of interest to the project is nextJSP, which will hold the value of the JSP to
be used as portal home.

HTTP methods
Both doGet and doPut methods are identical. The only call of relevance in that
method is:

getParamAndForward(request, response);

The rest of the code is for process tracking purposes and can be ignored.

Chapter 6

[159]

Getting parameters
The method getParamAndForward objective is to trigger the action to populate
the HTML-related values that will be needed by other components down
the chain (for example, JSP files). That is achieved by invoking the method
collectHTMLComponents, as shown in Line 160.

Once the values needed by the JSP files have been gathered, Lines 161-165 compute the
URI to the portal home JSP to be used. When all of the required values are accounted
for, control is passed to the forwardToPage method, as shown in Line 171.

Communicating with EJB
The method collectHTMLComponents main objective is twofold. On the first hand,
it communicates with the EJB using RMI and the EJB remote interface in order to
retrieve a Hashtable object that contains the values to propagate down the chain. On
the other hand, it populates the request object with the values retrieved from the EJB
in the form of attribute-value pairs.

The analysis of the code is as follows. In Lines 105-119 an attempt to identify the EJB
remote interface object is made (specifically Lines 106-108). If successful, the code
requests the Hashtable containing the values to be used as attributes (Line 113). Lines
122-131 present the code that takes the pairs found in the Hashtable object retrieved
in line 113 and inject them as attributes of the request object (Lines 126-130).

Securing Enterprise Java Beans Applications

[160]

A special case of retrieved value is the Hashtable key controller.nextjsp. This
pair is extracted and removed from the Hashtable prior to populating the request
object attributes (Line 125).

Forwarding control to another component
The method forwardToPage is used to cede control to the next J2EE element down
the chain. In this particular case, control is given to the corresponding portal home
JSP file. As this method is the same in essence as the used for the Servlet HomePage
from Chapter 5, its content will not be included in this chapter. There are only two
aspects to be highlighted.

The first one is that the forwardToPage method uses the Servlet context object to
retrieve the RequestDispatcher object. In other words:

RequestDispatcher dispatcher = getServletContext().
getRequestDispatcher();

The second aspect to stress is that the forwardToPage method uses the
RequestDispatcher object method forward to cede control.

Chapter 6

[161]

Creating an EJB project
Once the portal DWP is completed, we can turn our attention to the final component
of this mini-project, the EJB. This project is made of a session EJB and three
interfaces. One of the interfaces is used as a common interface where the exposed EJB
methods are declared. In addition the security annotations from the EJB are declared
in this interface as well. The other two interfaces extend the common interface and
perform the function of local and remote interface to the EJB. The project is organized
in two Java packages. One package will hold the EJB and the other package will hold
the interfaces.

Creating the initial project
Using RAD to create an EJB project is very similar in principle to creating other
projects. From the File menu, select to create an EJB project. Give it the name
chap6-portal-ejbean. Ensure that EJB Module version is set to 3.0 or higher. In
addition, make sure to associate this new project with the mini-project's EAR project
(chap6-EAR-miniproject). On the second screen of the wizard, deselect the Create an
EJB Client JAR… option. We will create those interfaces manually and will include
them as part of this project. Click the Generate deployment descriptor check box so
it is selected.

Creating the Java packages
By now, you should have experience in creating Java packages. Expand the
chap6-portal-ejbean project and locate the ejbModule icon. From the File menu,
select New | Other | Java | Package to create a Java package. Ensure that its parent
directory (identified as Source folder) is the ejbModule item that you selected. Give
it the name was7sec.chap6.ejb. Repeat the process and create the Java package
was7sec.chap6.ejbclient.

Creating the EJB interfaces
As stated earlier, this project contains three interfaces. For all of them, select the last
Java package created, that is, was7sec.chap6.ejbclient.

Creating IPortalSelectorSessionBean interface
From the File menu, follow the sequence New | Interface. Ensure that source folder
and package are correct. Give it the name IPortalSelectorSessionBean. The Java
editor opens with the newly created interface.

Securing Enterprise Java Beans Applications

[162]

In order to complete the code, make this interface an extension of Serializable (cf. Line
13). Therefore, importing the class java.io.Serializable is required (cf. Line 6). It
is now time to declare the lone method that will be exposed from the upcoming EJB.
Declare a method named getHomeComponents without any arguments. The method
returns an object of the Hashtable class. (Cf. Line 16). Due to this, it is necessary to
import the java.util.Hashtable class (cf. Line 7). The code for this interface is shown
in the following screenshot:

Creating the local and remote EJB interfaces
In a similar way in which IPortalSelectorSessionBean was created, create
the following two interfaces. Give the first one the name PortalSelectorLocal
and the second PortalSelectorRemote. Each interface must extend the
IPortalSelectorSessionBean interface. (Cf. Line 13). For the local interface, add
a directive to import the javax.ejb.Local class. Similarly add a directive to the
remote interface to import the javax.ejb.Remote class (cf. Line 6). Finally, in the local
interface, the class declaration must be annotated with @Local. In a similar way, the
remote class declaration must be preceded with the @Remote annotation. (Cf. Line 12).

The remote interface PortalSelectorRemote is shown in the following screenshot.
The code for the local interface is very similar, changing only what was stated
previously.

Chapter 6

[163]

Creating the EJB
Creating an EJB is similar to creating other J2EE components. Using the
sequence File | New | Session Bean. In the wizard, give it the name
PortalSelectorSessionBean. Ensure that the source folder is that of the EJBP. In
addition, make sure that the package was7sec.chap6.ejb is selected. Under the field
superclass, enter java.lang.Object. Ensure that none of the business interfaces are
selected. Leave the other values as they appear.

Creating the code for
PortalSelectorSessionBean
The same technique used in analyzing the code for the Servlet will be employed in
this section, that is, breaking the code into logical segments and highlighting those
sections that convey security concepts or that are essential for the understanding
of the EJB.

Package definition and import statements
Line 1 defines the package to which the EJB belongs. Lines 3-9 show the external
classes and packages needed by the EJB. The imported classes that are relevant to EJB
security are shown in the following screenshot:

Class definition
Lines 15-17 show the class definition. It is defined as a Stateless class (line 15). In
addition, it extends the Object class (line 16) and implements our two interfaces,
namely PortalSelectorRemote and PortalSelectorLocal (line 17).

Instance variables
Line 33 declares the instance variable HomeComponents, which is an instance of the
Java class Hashtable. This is the object that will be created and then populated with
the values needed for assembling the portal page.

Securing Enterprise Java Beans Applications

[164]

Linking to the user context
Lines 37-38 show how the user context is accessed by the EJB. Using the Java
class javax.annotation.Resource the EJB is able to retrieve the user context.
Line 37 shows the annotation used whereas line 38 shows the use of the resource
SessionContext to achieve the EJB's purpose.

Programmatic security
Lines 115-143 contain how programmatic security is used by the method
getHomeComponents, the only exposed method of the EJB. The following screenshot
shows the content of the method's lines:

Line 115 contains the annotation for roles allowed to execute (remotely invoke) the
method. For our purposes, we wish to allow anyone that has authenticated access
to this method. (Cf. how users and groups have been assigned as members of other
groups and how groups and roles are mapped in Chapter 5).

Chapter 6

[165]

Lines 119-136 are the locations where programmatic security is used. The method
uses the SessionContext method isCallerInRole, which takes as an argument the
name of a role in the form of a String. This method is used in lines 119, 123, and 128.
The method first checks if the caller is in the role of highest security, HR Role, (line
119). If the caller is in the role, a method that only can be invoked by the HR Role is
invoked, (cf. line 122). However, if the user is not in that role it checks to see if the
caller is in the role next in security hierarchy, Employee Role, (line 123). If the caller
is in that role, a method only available to members of the Employee Role is invoked,
(line 126). If the caller is not in any of the previous roles, the method checks for the
caller role membership against the next role in the security hierarchy, Authenticated
Role, (line 128). If the caller membership matches the desired role, a method that
only those callers in the Authenticated Role can invoke is called, (cf. line 132). If the
caller does not belong to any of the stated groups, getHomeComponents would return
an empty HomeComponents Hashtable object. However, as getHomeComponents
can only be invoked in a context where the caller is in the role Authenticated Role,
this case should not happen. It is included for completeness sake in case that an
unforeseen change external to the EJB would break its security behavior. Therefore,
the else clause in lines 134-136 ensure that no information be retrieved.

Summing-up this section, the method isCallerInRole is that element of the security
API that helps developers to enforce security policies in their code.

Declarative security
Finally, although already observed previously, our bean PortalSelectorSessionBean
uses declarative security in the form of annotations to impose security policies.
The specific security annotation used is @RolesAllowed. The methods that use this
mechanism are getComponentsforHRRole, getComponentsforEmployeeRole, and
getComponentsforAuthenticatedRole. As their name implies, these methods can
only be invoked by callers in the role that is mentioned as part of the method's name.
For instance, the method getComponentsforEmployeeRole can only be invoked by
callers in the Employee Role, as shown in the following screenshot (cf. line 84). The
same goes for the other two methods.

Securing Enterprise Java Beans Applications

[166]

As can be observed, all the work these methods do is to populate the
HomeComponents Hashtable with the appropriate values (as called by the security
policies for each of the roles) that will help the other J2EE components to build a
customized portal home.

This example is very primitive but helps to show the point as to how to use security
for an EJB application. You are highly discouraged from using this type of solution
in a production environment. Many improvements need to be made in order to make
this simple and rudimentary portal application scalable and easy to maintain. One
improvement that comes to mind is to store the values that are to be passed from the
EJB to the other J2EE elements in a database. That will improve maintenance and add
flexibility. In order to improve scalability, a much better algorithm to identify the
role of a caller must be used. Doing so will improve performance and scalability.

The grand finale
Once that you have completed the previous sections you are in a position to finish
this mini-project.

Packaging the enterprise project as an EAR
Using RAD, once all of the deployment descriptors are configured based on
instructions throughout this chapter and the references to Chapter 5, export the
chap6-EAR-miniproject enterprise project as an EAR file. If RAD complains about
any of the modules, the error messages are very intuitive and will help you identify
any possible problem.

Deploying the EAR
In order to proceed with the deployment, the only thing to consider is to do it
the same way in which you have deployed EJB applications. If you do not have
much experience with this type of EAR, the only thing to pay close attention to
is that on the step number two. Make sure to indicate to deploy EJBs, which by
default is not selected. In addition, when appropriate select the application server
Chap6AppServer for deployment of all the modules. Ensure that the virtual host
is chap6_vh. The other point that may need close attention is when you get to the
Groups and Roles step. If you do not see the correct mapping, make the changes so
there is a one-to-one correspondence between groups and roles. That should be it.
Easy, don't you think?

Chapter 6

[167]

Testing the application
Once your EAR has been deployed, start the application server Chap6AppServer.
Monitor its SystemOut.log file. You should see towards the end when
your application and modules start. Using a browser access the main URL
(https://<your_hostname_FQDN:<VH_Port>/). Ensure that you use the same value
as the host name that was defined when creating the virtual host chap6_vh.

First, log in as the user in the Authenticated group, sam_visitor. Observe the portal
home displayed. It should contain only one link, to the /open/ legacy application.
With the same browser, attempt to manually enter the URLs for /allemp/ and /
hronly/. You should get authorization errors (403). Next, using a different browser,
do the same for the member of the Employee group, ravi. Observe the differences in
the portal home page. Finally, also using a new browser, login as lola who is Ms HR
and observe and compare her portal home with the others'. Well done!

Summary
In this chapter, you have learned quite a bit. You can now show off with colleagues
and tell them that you know all about:

•	 The two main mechanisms to apply security to EJB 3.0 applications
°° Declarative security using annotations
°° Programmatic security using the javax.ejb.SessionContext class

and in particular its method isCallerInRole(String)

•	 How to create EJB projects
•	 How to deploy secured EJB applications

You can also brag about having written a simple, very simple portal application.
Hmm, what do you think, why not go now and ask for a raise!

Securing Back-end
Communication

Almost no entity is completely independent in order to perform its designed
purpose. Plants in order to be plants at the very least require the sun and water;
animals, similarly, require nutrients to be animals. WebSphere enterprise applications
are no different; they probably require external resources (for example, a back-end
database) in order to provide their service.

Let's expand a little on the entity-purpose concept. For this, let's use a house as an
analogy. In most cases, for a house to be functional it requires different types of
services such as power, water, perhaps a source of natural gas. In more sophisticated
instances, a resident of a house may perceive as a need the addition of a telephone
line, cable television, and high-speed Internet. All of these 'connections' form a type
of backbone for that particular residence to provide the set of services expected by
the owners and possible guests.

For many or all of these connections/services, the person in charge of the house
would have to establish a contract with the company providing such services,
possibly agreeing as to how the consumer is to pay for the service, that is, whether a
billing period must be paid in advance or after the service is received. In any event,
for this analogy it will be considered that the establishment of an account would be
equivalent to the authentication aspect in WebSphere.

Securing Back-end Communication

[170]

In addition, some of the services, such as telephone and cable television, place an
additional security component to the location in which their infrastructure interface
connects at the house; mostly in the form of a locked container that only personnel
authorized by the service provider can access (for example, cable box). Stretching
this analogy, this could be compared to the encryption of the service channel; the
information in such a container can only be accessed with a special key; without it,
it is practically impossible to access whatever may be inside the container. In other
words, it's like securing a service channel in the WebSphere world using encryption
in a way that the information can be accessed only with certain keys. So, this
chapter presents possible methods to secure some of the communication channels
to infrastructure resources, such as using LDAP for authentication, that enable a
WebSphere enterprise application (EAR) accomplish its purpose for the intended
audience (that is, authenticated users).

The following diagram helps illustrate where this chapter belongs in our security
roadmap. Represented by the rectangle (light silver) labeled 'Back-End Security',
this chapter borrows from its predecessors and applies in new ways the concept
of authentication, which had been mostly applied to interactions of users with
applications. In addition, the chapter continues to build on the concept of
data encryption.

Chapter 7

[171]

The focus of the chapter is then summarized in two concepts:

•	 Authentication: The JDBC back channel will be used to illustrate how
authentication can be used by back-end services to remove the need for
applications to deal with user IDs and passwords, instead leaving to the
WebSphere infrastructure to be responsible for that aspect.

•	 Data encryption: The LDAP back channel will be used to show how a clear
text channel can be made safer by using an SSL transport to encrypt its data.
The chapter also shows how to create an additional layer of security isolation
by creating a complete new set of stores and configuration settings.

LDAP: Uses of encryption
The LDAP protocol (denoted as just LDAP in this chapter) is the back-end channel
used by the WebSphere infrastructure to obtain information about users and groups.
There are mainly two uses in a WebSphere Application Server infrastructure for
this type of information: authentication and authorization, as reviewed in Chapter
3, Configuring User Authentication and Access. Usually, the data transmitted between
the WebSphere infrastructure and an LDAP server is very sensitive in nature as it
may contain user credentials information among other things. Therefore, this section
will highlight the aspects that allow securing the WebSphere-LDAP communication
channel.

Securing the LDAP channel
The next three subsections will briefly describe the importance of securing the
WebSphere-LDAP channel. In addition, these sections point out the choices that the
WebSphere Application Server ND v7 offers for securing the WebSphere-LDAP
channel.

Protocol: LDAP and the Internet Protocol Suite
If you recall, in Chapter 4 under the SSL configuration and management section, and
subsection, the protocol combination HTTP/SSL was placed within the Internet
Protocol Suite model. The following diagram depicts how LDAP is related to the
model. As it can be observed, LDAP falls in the same category as the HTTP protocol,
that is, they belong to the Application Layer family of protocols. This is represented
in the diagram as the rectangle labeled with the text LDAP. Thus, LDAP is a clear-
text type of protocol. In other words, the information exchanged between an LDAP
server and, in this case, the WebSphere infrastructure, is not encrypted by default
since it is transported using the TCP transport layer protocol.

Securing Back-end Communication

[172]

Additional information about the Internet Protocol Suite can be found
in RFC 1122, available online at http://tools.ietf.org/html/
rfc1122.

The importance of securing the LDAP channel
As mentioned earlier, the transfer of data between the WebSphere infrastructure
and LDAP is rather sensitive; for instance it may include service accounts (that
is, administrative) passwords that are used to bind to the LDAP server, that is to
establish the initial communication between WebSphere and LDAP that will create a
trusted channel between them. It may also include sensitive information about users,
depending on what type of data the hosted application may require. Depending on
the local laws where the application is hosted, there may be security policies that
may need to be applied to the WebSphere-LDAP communication channel. Therefore,
it is not only important that the authorization aspect of the communication is
enforced, but also that the data flowing through the channel is encrypted.

Chapter 7

[173]

Choices in securing the LDAP channel
From the previous diagram, the choices for a transport layer protocol are TCP, UDP,
and SSL. The only two suitable to be used for LDAP are TCP and SSL. As such,
WebSphere Network Deploy V7 provides two ways of accessing an LDAP server:
using the LDAP protocol over the TCP transport layer or using the LDAP protocol
over the SSL transport layer. Of the two transport layers, by design, only the SSL
layer can be encrypted. Therefore, the only choice to secure the LDAP channel
is to encrypt the communication by using the LDAP/SSL transport-application
layers combination. In the previous diagram, this selection would be represented
by the rectangle labeled LDAP (located at the application layer level) and the small
rectangle labeled SSL (located at the transport layer level).

Enabling SSL for LDAP
As the LDAP/SSL combination is the only choice offered by WebSphere to protect
the data from prying eyes, this section and its subsections that follow highlight
the procedure to enable and enforce SSL to communicate with the LDAP server.
However, Chapter 2 under its section Enabling security and subsection Configuring the
user registry has already covered how to do the basic configuration for LDAP. That
aspect of the configuration will not be repeated here. The reader is encouraged to
refer to that chapter for further details.

There are two major components to configuring SSL for LDAP:

•	 The first and most simple is to set the flag to enable SSL
•	 The second is to configure the SSL certificates between WebSphere and

LDAP server

The second component (that is, SSL certificates) was also reviewed in Chapter 2,
thus the following subsections only highlight the process that needs to be followed.
Furthermore, this same methodology can be applied to secure via encryption other
service channels that the WebSphere Application Server may employ, such as
Messaging (JMS) and Web Services.

Best practice: Use a separate key ring for an LDAP SSL configuration
In order to avoid possible confusion with other channels and, more
importantly, to provide another level of isolation, it is best practice to
use a brand new key ring and SSL configuration for LDAP or other back-
end channels being secured through encryption. The creation of an SSL
configuration requires both a key store and a trust store.

Securing Back-end Communication

[174]

Therefore, the way in which the next subsections present the SSL configuration
stages, will be done in a manner that it can be applied to additional back-end
communication conduits other than the LDAP channel. The high level procedure to
be followed is as given here:

•	 Create a key ring (create a file)
•	 Create a trust db file (create a file)
•	 Create a key store (associate store with file)
•	 Create a trust store (associate store to file)
•	 Create an SSL configuration
•	 Import LDAP (or back-end server) signer certificate

Creating a key ring for storing key stores
As mentioned in Chapter 4 under the subsection Creating the SSL system component,
a new directory should be created in which all of the files associated with the LDAP
key store will be kept. The location of this directory should match the scope for
the LDAP configuration. For our purposes, we will assume that the WebSphere
environment uses this LDAP registry as its global security user registry. Therefore,
place it under the <DeploymentManager_Profile_Root>/config/cells<cell_
name>/ directory and give it a meaningful name that matches your organization
standards. For instance, we will use the name ldapts (that is, LDAP Trust Store).

We are now in position to create the key ring file suite. In Chapter 4, the
gsk7capicmd tool was used. We will use the ikeyman.sh graphical interface
provided by WebSphere. Execute the command:

<DeploymentManager_Profile_Root>/bin/ikeyman.sh &

Select the New... option from the Key Database File menu. Select the type PKCS12
as shown in the following screenshot, ensuring that the location is the desired one.
We use, <DeploymentManager_Profile_Root>/config/cells<cell_name>/
ldapts.

For the key ring file name, provide one that follows your corporate standards. We
use, ldap_key.p12.

Chapter 7

[175]

If there is an error stating that there is a problem with the policy files, perform
the steps indicated next, in the subsection "JCE Policy files"; otherwise, enter a
password for the file and terminate the ikeyman utility. The key ring creation is now
completed. The file <DeploymentManager_Profile_Root>/config/cells<cell_
name>/ldapts/ldap_key.p12 must now exist.

JCE Policy files
JCE stands for Java Cryptographic Extension. By default, WebSphere includes a
restricted or limited-size encryption keys policy files. If you get an error message
indicating that the WebSphere JRE is using restricted policy files, it is necessary to
apply a manual patch to use an unrestricted JCE set of policy files. What this really
means is that the current set of policies do not allow the WebSphere JRE to handle
long encryption keys, which is something desirable. In order to get the patch, use
your corporate account to access the URL:

https://www14.software.ibm.com/webapp/iwm/web/reg/pick.
do?source=jcesdk&lang=en_US

Once you have logged in, select and download the JCE policy files for version 1.4.2+
as shown in the following screenshot:

Un-archive the file. Backup the original JCE files (US_export_policy.jar and
local_policy.jar), which are located in the directory <WAS_Root>/java/jre/
lib/security. Copy the files that were just extracted with the same names in
the security directory. Once completed, restart the ikeyman utility and continue
creating the key ring.

Securing Back-end Communication

[176]

Creating a trust db for storing trust stores
In a very similar way as to creating a key ring, create a file to hold the trust store.
Using ikeyman.sh, create a PKCS12 db and name it ldap_trust.p12.

Keep in mind that both the key ring and the trust db are files
structured as empty skeletons to hold binary structures (stores) that
will keep certificates. These files must exist before they can be assigned
certificate stores.

Creating a key store for use with LDAP
During this step, we are telling WebSphere to use the key ring file as the OS
component to be used as a certificate store. Using the Deployment Manager Console,
follow the breadcrumb Security | SSL certificate and key management | Key stores
and certificates | New.

Prior to clicking the New button, ensure that the Keystore usages drop-
down menu has selected SSL keystores, which is the default value.

Enter the values for the following (values used in our environment are indicated in
parenthesis):

•	 Name (LDAPKeystore)
•	 Description (Keystore for the LDAP SSL encrypted channel)
•	 Management scope (cell)
•	 Path (${USER_INSTALL_ROOT}/config/cells/${WAS_CELL_NAME}/ldapts/

ldap_key.p12)
•	 Type (PKCS12)

For password, use the one utilized when the key ring was created. After the key
store has been created, its configuration page should look similar to the following
screenshot:

Chapter 7

[177]

Creating a trust store to use with LDAP
The procedure to create a trust store is the same as that used for creating a key store.
As such, we are telling WebSphere to use the trust db as the OS component to be
used as certificate store. Create a trust store, so that it is similar to the screenshot
shown next:

Securing Back-end Communication

[178]

Key and Trust Stores passwords
As the creation of a certificate store is in essence the mapping of
the store binary structure to an OS file created with ikeyman, the
passwords used while creating the key and trust stores must match the
password of the key ring and trust db accordingly.

Creating an SSL configuration for LDAP
After completing the key store, we can create the SSL configuration component.
Follow the breadcrumb: Security | SSL certificate and key management | SSL
configurations | New. Create the LDAPSSLSettings configuration using the
keystore and truststore just created, as shown in the following screenshot:

Obtaining the LDAP server SSL certificate
There are a couple of ways to import the LDAP server signer certificate:

•	 One would be requesting from the LDAP server administration team to
provide an export of the signer certificate

•	 The other is to directly download the signer certificate using the Deployment
Manager Console

•	 We will demonstrate the latter

Chapter 7

[179]

Using the Deployment Manager Console, follow the breadcrumb Security | SSL
certificate and key management | SSL configurations | LDAPSSLSettings | Key
stores and certificates | LDAPTruststore | Signer certificates | Retrieve from
port. Provide the SSL server information, including IP and SSL port. The following
screenshot shows an example of this configuration:

This procedure will also work with other types of servers that use
SSL, not only LDAP. For example, this method could be used between
the WebSphere Plugin loaded in an HTTP server such as IHS and
the WebSphere infrastructure when SSL is enabled between Plugin
and WebSphere. The reason is that WebSphere will extract the server
certificate during the initial handshake and place it in its trust store.

Configuring LDAP for SSL
The final step in this process is to enable SSL for LDAP. Using the Deployment
Manager Console, open the page for configuring LDAP. Once there, change the
LDAP server port to the server SSL port. Scroll down and check the box for SSL
enabled. Save the changes. Perform a test connection. When successful, restart the
Deployment manager and node agents for the changes to take effect.

Securing Back-end Communication

[180]

JDBC: WebSphere-managed
authentication
The next service pipeline (or back-end resource provider) that is going to be
discussed is probably the most common resource for gathering and storing
application data. WebSphere includes this resource under the generic term data access
resources. The chief among them is the connectivity to application databases. Because
each brand of database supported by WebSphere varies a great deal in terms of its
configuration due to the database implementation by the vendor, this section will
present brief general descriptions of a concept, followed by an example using one or
two of the most popular databases used in a WebSphere v7 environment.

Protocol(s)
The protocol used to communicate with application databases that will be reviewed
in this section is the Java Database Connectivity (JDBC), which is an API and an
Application Layer transfer protocol:

•	 The API aspect of it provides a layer of independence for accessing
databases. This layer offers well-defined Java-oriented mechanisms for
performing a variety of operations on relational databases.

•	 The Application layer aspect is implemented as modules implemented by
vendor-specific drivers used to communicate with their database.

Let's look into this architecture more closely.

Chapter 7

[181]

The JDBC API
The previous diagram depicts the JDBC architecture from the point of view of a
WebSphere environment. The JDBC implementation in WebSphere is shown by the
large rectangle, which is made up of several high-level components. As stated above,
JDBC, on the one hand, is an API. The API component is represented in the diagram
by the tall rectangle labeled API. The API provides the developer a suite of Java
Objects and methods to interact with a database. The Java packages in which these
Objects and methods are defined are the java.sql and javax.sql packages.

Connection/Driver Manager and Data Source/JDBC
provider
Furthermore, these packages provide different approaches to establish a connection
with a database. The two most commonly used in WebSphere J2EE applications are
the Connection/Driver Manager method, illustrated by the small rectangle labeled
Conn Mgr, and the Data Source Object technique, pictured by the small rectangle
labeled DS Obj. The main difference between those two methodologies from the
security point of view is that the former requires that the code include a database
user and access password, whereas the latter does not require it in the code. From
the WebSphere point of view, the authentication information is provided at the
environment configuration, that is, when a Data Source is first defined.

The JDBC Application Layer
On the other hand, JDBC is a proprietary Application Layer transfer protocol
implemented within the Connection/Driver Manager and the Data Source/JDBC
Provider by each database vendor. In addition, WebSphere ND v7 supports several
databases that can be used as an application database. Moreover, three of the most
popular vendor databases are included in the diagram above and are represented by
the long and short rectangles labeled ORACLE, DB2, and Sybase.

For an up-to-date list of databases and their versions that are supported
by WebSphere please refer to IBM's page http://www-01.ibm.com/
support/docview.wss?rs=180&uid=swg27012369, an entry
port to the supported software for WebSphere ND v7. From that page,
you would need to drill down, depending on your OS to find out the
list of supported databases. For instance, for a system running Solaris
on a SPARC architecture, the list of software (including databases)
can be accessed at http://www-01.ibm.com/support/docview.
wss?rs=180&uid=swg27012419.

Securing Back-end Communication

[182]

Choices to secure the database channel
In terms of the approach or approaches to secure the JDBC channel, it is a sector
dependent upon the proprietary vendor choices and many of which do not
yet support encryption. In addition, currently in WebSphere ND v7 there is no
mechanism to encrypt the link between WAS and the back-end database. If the
back-end data is of a very sensitive nature, it is recommended to use virtual private
network techniques to encrypt the channel. That, however, is a realm that normally
would fall under the jurisdiction of a networks group within a corporation; therefore
the advice given here is to work with the DBA and Network groups in your
organization to implement a VPN channel between WAS and the database server.

In order to learn more about VPN, from some of the leaders in the field,
refer to the white papers at http://www.vpnc.org/white-papers.
html. In addition, if there is a desire to get some hands-on experience
with this technology, an article that appeared on Network World Online
can be useful. (How to set up a Virtual Private Network: http://www.
networkworld.com/news/2010/060410-how-to-set-up-a.
html). Its content, however, should not be the basis for a production-level
environment implementation. Check with your network group.

Nevertheless, there are a few things that can be done to tighten the security of
accessing back-end connections to databases. One of them is selecting the Data
Source mechanism to communicate back and forth with a back-end application
database. The main reason for this selection, in terms of the security of the database
link, is to centralize the handling and management of authentication data at the
administration level. In other words, developers would not need to concern about
users and passwords to gain access to databases.

Examples of securing the JDBC connection
In order to use a Data Source there are two configuration stages that need to
take place:

•	 On one hand, it is necessary to define a JDBC Provider, that is, it is required
to indicate to WebSphere which is the Java class supplied by the vendor that
implements the JDBC functionality to communicate with a specific database
in addition to some vendor-specific parameters.

Chapter 7

[183]

•	 On the other hand, the second configuration stage is the creation of the actual
Data Source configuration. WebSphere indicates which are the required
parameters for the particular provider. Among those parameters we may
have the values needed to fully configure a data source such as:

°° Database server
°° Database port
°° Authorization information

Let's look at this more closely. In the previous diagram, an enterprise application
(represented by the rectangle labeled EAR) will connect to an Oracle database
(illustrated in the diagram by the cylinder labeled ORACLE RDBMS) using the
JDBC API (in turn, depicted in the diagram by the rectangle labeled API. The
application will employ a subset of the API that invokes the use of a Data Source
(javax.sql.DataSource Java class), which is shown in the diagram above by
the rectangle labeled Data Source Object. The internals of the Java class will be
implemented by the vendor's database driver (also known in the WebSphere world
as the JDBC Provider). The database driver is pictured as a rectangle labeled JDBC
Provider – ORACLE. It is the driver that actually creates the connection to the
database (Oracle, in this example) and uses the vendor's proprietary protocol to
enable the communication between the EAR and Oracle.

Securing Back-end Communication

[184]

Database drivers are referred as JDBC providers in WebSphere.

The next sub-sections will briefly indicate the procedure to be followed in
WebSphere to define a JDBC provider and to create and configure a Data Source that
uses the provider.

Defining a new JDBC provider
The procedure to define a JDBC provider is probably already familiar to you. This
section will just highlight aspects of the procedure to increase the level of security
of your environment. In addition, it is a good idea to create a one-to-one mapping
between a JDBC Provider and the Data Source that talks to the database.

With that in mind, the first characteristic to consider is the scope of the definition
and area of influence of the data source. Therefore, it is best to define the JDBC
components as close as possible to the level in which the enterprise application
executes. Thus, if the application is defined in a cluster, the JDBC provider should be
defined at that cluster scope. Consequently, if an enterprise application is hosted in
a single Application Server, the JDBC Provider should be defined at that scope also.
Using the Administrative Console, you would follow the breadcrumb Resources |
JDBC | JDBC Providers. Then, at that screen you would select the desired scope
Cluster or Application Server.

The next step in the process is to select the type of database. This will be dictated
by what brand of the actual database is used. For instance, select Oracle. It follows
now to select the provider type; in the case of Oracle select the Oracle JDBC Driver.
After that, select the desired implementation type for the driver. The Oracle client
installation and that of the Oracle server installation will dictate the implementation
type. In our example the Connection pool data source will be selected. The rest of
the values will be driven by how the environment is set up. Complete the creation of
the data source. In the data source screen it will be noticed that the implementation
class name used is oracle.jdbc.pool.OracleConnectionPoolDataSource. For a
DB2 connection pool based JDBC provided, this class would be com.ibm.db2.jcc.
DB2ConnectionPoolDataSource.

Chapter 7

[185]

Defining a new Data Source
The process of defining a Data Source should be familiar to you as one was already
created in Chapter 3. (Refer to the section Protecting application servers, subsection
Create application JDBC Provider and DataSource). Therefore, only a very brief
summary will be given in this section.

Details of creating a Data Source can be found in the WASND7
information center article Configuring a data source using the
administrative console. (http://publib.boulder.ibm.com/
infocenter/wasinfo/v7r0/topic/com.ibm.websphere.
nd.doc/info/ae/ae/tdat_ccrtpds.html)

The easiest way is to go to the recently created Data Source and in that screen select
the Data sources link from under the Additional Properties section. Create the Data
Source that matches your environment. The characteristics of the data source being
created are the following. The JNDI name given to invoke it from the Context class:
this value would probably be available from the application development team. The
following screenshot shows an example of a DB2 data source:

The other aspect to highlight is to select a container managed authentication
alias. If the alias has not been created, it can be defined by clicking the JASS- J2C
authentication data link under the Related Items area on the right-hand side of the
page. Creating a JASS-JC2 authentication alias requires of three values:

•	 Alias: The name to be used by the Data Source
•	 User ID: Database user

Securing Back-end Communication

[186]

•	 Password: Database user's password

The following screenshot depicts an example of the security aspects of a data
source configuration:

If needed, provide the alias name, user ID, and database password. Finally, back
in the data source screen, be sure to select the "Use this data source in container
managed persistence". After restarting the node where the data source has been
created, you can test the connectivity to it using the Administrative Console.

Summary
This chapter covered two powerful concepts that will enable you to add security to
your WebSphere environment. They are authentication as applied to resources and
data encryption:

•	 Whenever possible, move the authentication to resources aspect out of the
application. Create JASS-J2C aliases at the resource level to provide the
credentials needed to access the back-end resource. This technique can be
easily applied to JDBC Data Sources and to JMS Queues.

•	 If the nature of the data exchanged with a back-end resource is sensitive,
apply encryption to the channel. The preferred form is to use SSL
communication. If that is not possible, research other alternatives such
as VPNs.

I feel full of energy; I am not sure about you. This chapter seemed short in
comparison with the previous one. Perhaps I miss having a mini project. So go
get a cup of tea and let's move onto the next chapter, WebSphere default installation
hardening. What do you say?

Secure Enterprise
Infrastructure Architectures

This chapter describes areas that will enable an enterprise application hosted in
a WebSphere Application Server ND v7 (WAS ND7) environment to interact
with possibly other applications, resources, and services available in a corporation
infrastructure. An example of such external application would be an application
running under Domino. The two main areas are indicated as follows:

•	 Describe the mechanisms used to enable WAS infrastructure components
intercommunication. Moreover:

°° Explain an additional way in which the same mechanisms can be
used to enable WAS infrastructure components communication with
external (IBM products) servers, services, and resources.

•	 Discuss the techniques that will enable users access to SSO across multiple
applications in a corporation.

Furthermore, this chapter also covers the following topics that help to round up
securing the enterprise infrastructure architecture:

•	 At the HTTP server level: external security policy manager
•	 At the Application Server level: trust association interceptor

The chapter will now introduce this book's definition of enterprise infrastructure
centered on services provided by a WebSphere Application Server ND v7
environment.

Secure Enterprise Infrastructure Architectures

[188]

The enterprise infrastructure
In this chapter, we define enterprise infrastructure architecture or simply enterprise
infrastructure as that collection of technologies used in corporate IT environments
that perform a very specific job and take a well-defined role among all of the other
infrastructure members with the overall objective to supplement each other's part
in carrying out a corporation's mission. (Well, that was quite a mouthful). As is
expected, a WAS ND7 environment (be it a full WAS ND7 cell or just an enterprise
application) is only a small piece of the whole enterprise infrastructure puzzle.
Nevertheless, in order for that WAS ND 7 environment to accomplish its purpose,
very likely it will depend on various pieces of information that may be logically
scattered across multiple technologies supported by the enterprise infrastructure.

An Enterprise Application in relation to an
Application Server
Consider the drawing in the following diagram. It is centered around the Enterprise
Application (EA). We can distinguish two areas of an Application Server that will
interact with the EA: that related to the EA and its data and that of the EA and the
environment administrative and support services.

On the one hand, an EA would probably require external data to carry out its
function. For example, patient ID to pull medical history, or employee number in
order to process pay roll information, and so on. The container capabilities will help
the EA obtain any given data needed; be it from a back-end database or from a back-
end process

In the diagram, an EA, represented by the solid gold rectangle labeled Enterprise
Application, sits on the Web Container (blue rectangle) and the EJB Container (light
green rectangle). In addition, several of the major components that may support
that particular EA are also shown. For instance, inside the Web Container the EA
could require the services of a Portlet Container (tiny red rectangle); or perhaps if the
application were involved in some sort of streaming, it could use the services of the
SIP Container (tiny orange rectangle). Therefore, the EA should concentrate on its
function and data and let the containers supply the means to obtain and save data as
well as the mechanisms (such as Java libraries) needed to process the data.

Chapter 8

[189]

On the other hand, the second form in which an EA will interact with the Application
Server is for administrative and support service purposes. The Application Server
architecture provides components to supply specific support services such as
user registry in which approved user lists reside. This type of information will be
defined by the security domain in place; portrayed in the preceding diagram by the
rectangle(gray rectangle). In addition, such information would be enforced by the
Application Server security components (maroon rectangles).

Furthermore, any configuration changes to the overall WebSphere environment
would be handled by the administration interface (orange rectangle), which would
keep a copy of the overall environment configuration locally (small green rectangle).
The node agent (small dark teal rectangle) is the runtime component that helps
Application server members interact with other runtime entities of the WebSphere
environment. For instance, if you were using the file-based built-in federated
repository as the user registry of your environment and would make a modification
such as adding a new member while monitoring the SystemOut.log file of the
node agent, you would see that it would be reported the addition of a user. So the
WebSphere security infrastructure would alert members to such changes. Let's do a
simple observation exercise.

Secure Enterprise Infrastructure Architectures

[190]

WAS infrastructure and EA's application
server interactions
For this simple exercise the following requirements are assumed to be in place and
available:

•	 At least one of the Application Servers created in previous chapters is
available

•	 The global security is using the built-in file-based federated user registry
•	 Users and groups still exist as defined in prior chapters

Once you insure that the assumption-requirements are in place, proceed to
complete the steps given as follows. In this exercise, the Application Server
SecureAppServer01 will be used:

1.	 Open three terminal sessions to your host.
2.	 In the first terminal session, change your working directory to the node agent

logs directory.
3.	 Start monitoring the SystemOut.log file.

The tail command given as follows could be used:
tail -f SystemOut.log

4.	 In the second terminal session, change your working directory to the
SecureAppServer01 logs directory.

5.	 Start monitoring the SystemOut.log file of the SecureAppServer01 server.
As in step 3, the tail command can be used in the same way.
If needed, that is if the deployment manager or the node agent processes are
not running, perform steps 6-X, as necessary.

6.	 Change your working directory to the bin directory of the appropriate
profile, Deployment Manager, to start the dmgr process or to the Application
Server profile to start the nodeagent process.

7.	 Use the adequate start script to start the dmgr or nodeagent process.
For the dmgr, use the command:
startManager.sh [-nowait]

Using the -nowait flag will free up your terminal faster in case you also need
to start the nodeagent process.
For the nodeagent, use the command:
startNode.sh [-nowait]

Chapter 8

[191]

8.	 Return focus to terminals one and two.
9.	 Using a browser, connect to the Deployment Manager Console.
10.	 Follow the breadcrumb shown to navigate to the Manage Users screen:

Users and groups | Manage Users

11.	 Optionally, perform a search for users to see currently defined users.
12.	 Enter data to create a new user.
13.	 Click the Create… button. For User ID enter the value hassan. Type Hassan

in the First name: field. Type Employee in the Last name field. Use the string
hassan for password. Then click the Create button.

14.	 If desired, enter a couple of blank lines in terminals one and two.
In order to isolate the log data from the upcoming messages (as they are just
a long line per screen), you can press Enter return a couple of times while the
tail command is running. If desired, do this on both terminals.

15.	 Back in the browser, create the User ID hassan.

Return focus to the browser and click the Create button. Immediately observe
the output on terminals one and two. You should see almost identical
messages on both log files monitors.

The preceding screenshot is the output captured from the nodeagent's SystemOut.
log file. The first line displays a notification that a user registry change event has
taken place. This notification has been sent by the dmgr process to be broadcast
by the administrative/security elements as needed. Furthermore, the nodeagent
forwards this event notification to Application Servers members of the node.

The next screenshot is practically identical to the first screenshot. This one shows log
messages from the SecureAppServer01 and it displays the portion in which the event
related to the creation of a new user in the federated registry is received.

Secure Enterprise Infrastructure Architectures

[192]

By default, the location of the process log files can be found
under the path <WAS_Profile_Root_Directory>/
logs/<Process>. Here, <Process> could represent an
application server name or the process nodeagent.

Securing the enterprise infrastructure
using LTPA
The first area mentioned in the introduction of the chapter is the use of an IBM
proprietary security protocol named LTPA, which stands for Lightweight Third-
Party Authentication. You may have already discovered that when, in Chapter 2,
the administrative (that is, global) security was enabled, the LTPA authentication
mechanism was selected as the default authentication using default trust stores and
other encryption components.

In order to visualize this, log in to the Administrative Console and follow the
breadcrumb Security | Global Security and review the authentication section,
which can be found on the right-hand side of the page. It should look similar to the
screenshot shown as follows:

Chapter 8

[193]

Why use the LTPA mechanism
So the question that might arise is, why do we have to bother with the LTPA
authentication mechanism? However, perhaps a better question might be, when do
we have to pay attention as to how LTPA is configured in a WebSphere Application
Server ND v7 environment? The LTPA mechanism empowers a WAS ND v7
installation to send security-related, mainly authentication, information in an
encrypted and safe way between itself and:

•	 Other WebSphere Application Server cell members executing on a remote OS
host to the Deployment Manager OS host.

•	 Other WebSphere Application Server environments (for example, different
cells).

•	 Other IBM products that support the LTPA-based security communication,
such as products under the Lotus brand (for example, Domino, WebSphere
Portal, Lotus WCM, and so on); products under the WebSphere brand (for
example, MQ, EBS, Process Server, and so on) to name some.

In other words, a WAS ND v7 environment can be configured with a particular
LTPA set of encryption keys. These signer keys can then be shared with other
products that support the LTPA authentication mechanism and for which it is
desired to allow them to be trusted. Let's review this concept in more detail.

Secure Enterprise Infrastructure Architectures

[194]

How the LTPA authentication mechanism
works
Once that such products have also been configured with the same set of keys, a
trusted communication of security data (that is, authentication) can take place
between them and the WAS ND v7 installation. One of the components, say a
Lotus Domino application, would encrypt and sign the authentication information
required by the target WSA ND v7. Upon receiving the encrypted information, WAS
would use its LTPA key to decrypt and verify the identity of the Domino application.
After completing the verification WAS would then allow the intercommunication
with the Domino application in a trusted fashion.

An alternative way of seeing how this mechanism works is depicted in the diagram
above. Using a variant of the EAR—Application Server diagram presented at the
beginning of this chapter, this new diagram blows up the EJB container and the
authentication module component of the security functionality. In this scenario, a
user has been authenticated and he/she uses those credentials to request a specific
resource. Moreover, the data flow sequence is as follows:

1.	 An authenticated request is received in one of the inbound Container
Transports. In the diagram, we can see a Web Container Transport Chain.

Chapter 8

[195]

2.	 The request goes through the authentication modules, that is, Web
authenticator and the login module.

3.	 The request and credentials are validated at the LTPA section of the diagram.
Using the default trust association interceptor for LTPA, the authorization
components verify if the credentials presented are entitled to the requested
resource and if so, the credentials are deemed certified.

4.	 The LTPA/TAI component requests the required information about the user
from the registry.

5.	 If found, a trusted token is created and stamped with the LTPA signer key.
The new token is encrypted and only entities that share the same signer keys
would be able to assert the authenticity of the credentials.

6.	 The new credentials are then sent to the Web Container.
7.	 With the new certified credentials, the request is given a green light to move

forward.
8.	 The EA now is ready to process the request. The result will be added to the

new token credentials to be passed to possibly other J2EE modules or back to
the requestor.

The main use for LTPA in a WebSphere
environment
Once we have reviewed how LTPA works in general terms, it's time to bring up that
one of the main jobs of the LTPA infrastructure is to make attainable a highly desired
functionality between web applications: allow SSO.

As covered in Chapter 2, Securing the Administrative Interface, SSO stands for Single
Sign-On. It is a mechanism that establishes trust across two or more applications
located on different OS hosts such that when a user, for example, US2, authenticates
against one enterprise application, for example, EAi, US2 is guaranteed to access,
without having to re-authenticate, a different enterprise application, for example,
EAii, for which US2 has authorization to access—given that EAi and EAii share the
same LTPA keys and their realm is the same. (What? No smart-alec remark? How
disappointing!)

Secure Enterprise Infrastructure Architectures

[196]

Securely enhancing the user experience
with SSO
In a simplified way, the diagram that follows depicts the way in which the
authentication and authorization take place. For this scenario, it is assumed that the
browser utilized is a brand new browser process; that is, no cookies from a previous
session are active/stored.

The following steps briefly describe requesting secured resources from two
applications that share the same LTPA signers:

1.	 A user through a browser BR would request a page from EAi. The request
won't include any session-related cookies.

2.	 The environment in which EAi is hosted would receive the request and it
would be determined that BR must authenticate and, upon successfully
doing so, BR must include the corresponding credentials to access the
resource hosted by EAi.

3.	 EAi answers BR's requests by asking for a validation token. BR might
be redirected to a generic authentication form and it is assumed that
successfully would enter the required information and would receive an
LTPA-encrypted token that includes the information about the user needed
to validate her identity.

Chapter 8

[197]

4.	 BR, at this point would send the request sent in one but the headers of the
HTTP request would include a cookie that holds the LTPA-encrypted token
received from the log in page. EAi would then accept the request after
analyzing and validating the LTPA token.
It could be possible that at one point EAi would include a link on one of its
pages that would redirect a user to a sister application EAii. Or, on the other
hand, after finishing her interactions with EAi, BR's user may decide to ac-
cess EAii. In any case, the following scenario would take place:

5.	 BR would request a page from application EAii. The request would include
the same credentials used with EAi because both enterprise applications
belong to the same realm (or cookie domain).

6.	 EAii would receive the request from BR. Given that EAii and EAi share the
same LTPA key set, EAii could decode the types of information shown in the
following list. EAii would not have to make further demands from BR. All
the information would be included in the token. So at this point EAii would
process the BR request:

°° The identity of the EAi application, certifying the validity of the token
°° User-related so the identity of BR would be guaranteed
°° User-related so the authorization of BR could be determined

Due to the sensitivity of the information contained in an LTPA-
encrypted token, tokens have an expiration time. After a token has
expired, users would be requested to re-authenticate.

Required conditions to implement SSO
Most corporations use more than one type of applications. In addition, there may
also be multiple independent WAS ND7 environments that may need to share a
common login structure. The obvious solution is the implementation of SSO among
such applications.

There are a couple of conditions that must be met so an environment is SSO-able.
They are listed as follows. In such list, the term SSO cluster will be used to denote
the group of infrastructure components in which applications are hosted. It is not an
official term used in the WebSphere world.

•	 The OS servers that host the EAs that are to be in the same SSO cluster or
group must belong to the same DNS domain.

Secure Enterprise Infrastructure Architectures

[198]

•	 The application environments (for example, WAS ND7, a Lotus Domino
server, and so on) must use the same user registry. Therefore, it is very
important to select the type and brand of user registry that is supported by
all of the application environments involved in the SSO cluster.

•	 In addition, verify if the products that will be involved in the SSO cluster
have the capability to use multiple user registries of the type LDAP. If that is
not the case, your SSO cluster will be restricted to using only one LDAP.

Implementing SSO in WebSphere
As you already have the experience of configuring SSO from Chapter 2 (Setting the
domain name) this section will just briefly describe the possible parameters that can
be used in configuring SSO. The following screenshot displays the SSO configuration
page. As you may recall, in order to get to this page the following breadcrumb needs
to be followed:

Global Security | Single sign-on (sso) (under sections Authentication | Web and
SIP security)

The preceding screenshot is the actual configuration that has been used for the
exercises and mini projects from previous chapters. Several of the parameters are
self-explanatory. Let's take a look.

Chapter 8

[199]

Remember: in order to enable SSO, global security must
also be enabled.

The Enabled check box is used to turn on SSO. If you wish to disable SSO either
permanent or for troubleshooting purposes, this configuration box can be used for
that purpose.

The next check box, Requires SSL, indicates that SSO is in effect only for transactions
using SSL. If this is the case for you, ensure that either at the IHS server or even
before that at the load balancer level any request that is made using plain HTTP is
redirected to HTTPS; otherwise, SSO will not be active in transactions made in clear
text (for example, non-SSL).

The field that follows, Domain name, specifies a portion of a DNS domain entry to
which all servers involved in the SSO cluster must belong. It is possible to enter more
than one domain name in that filed to allow servers from multiple trusted domains
be part of the SSO cluster; names in the field must be separated by semicolons (for
example: yourcompany.com; yourothercompany.com). Moreover, if in the Domain name
field the special value UseDomainFromURL is included, the other names in that
field are matched not against the DNS domain of the host where the application
executes, but rather the DNS domain is taken from the URL included in the request.

The next check box, Interoperability Mode, is used to signal to the SSO mechanism
in WAS ND7 to include an old format of the cookie sent to the browser; in this way
SSO would also work with WAS environments prior to version 6.

Finally, the check box Web inbound security attribute propagation, an optional
parameter, indicates that it is desired that during the login operation at a front-
end server, information be added which will then be forwarded to other front-end
servers. With such information, it would be possible for a server other than the one
where the SSO token was generated to identify the originating server, in case that it
is needed or desired to retrieve original serialized authentication information.

Fine-tuning authorization at the HTTP
server level
As it was reviewed in Chapter 3, Configuring User Authentication and Access it is
possible to define users and groups employing the interface provided by the selected
user registry. Keep in mind that the content of groups may be users (or more
technically correct User IDs) and groups (group IDs) as well.

Secure Enterprise Infrastructure Architectures

[200]

Infrastructure component: User Registry (aka, LDAP server)
The first external component to the WebSphere environment involved
in configuring the IHS server is the LDAP server. (In more general
terms, the user registry). This server would probably already exist in
your organization as part of the IT infrastructure. It is used to provide
information about users and groups they belong.

This type of approach requires that security policy rules be enforced at the
application deployment level or during the packaging of the EAR. Recall how in
Chapters 5, Securing Web Applications and 6, Securing Enterprise Java Beans Applications
there was a need to map groups to access roles. Consequently, a scalable solution to
manage security policies would be needed. For an organization (such as department
within a larger corporation) with a small deployment of J2EE applications the
methodology used in Chapters 5 and 6 may be just fine. However, for large
corporations with a common infrastructure designed to serve different types of IT
solutions there would be a significant number of deployed J2EE applications, the
method used in those chapters could be prone to human error or may be completely
impractical.

Infrastructure component: Centralized Access Manager
The second external component, which is part of the enterprise IT
infrastructure, used to fine-tune the IHS server, is a centralized Access
Manager (or simply an AM), which must be compatible with the user
registry selected (LDAP being the most popular).

Furthermore, most large corporations would already be using a type of centralized
AM solution serving different types of IT user applications (for example, Lotus
Notes applications) and service applications (for example, ERP systems); and not
only WebSphere EAR applications or Web applications. Moreover, it would be likely
that in such type of corporation there would include some sort of IT security team
managing the security policies and how LDAP is to be organized.

Chapter 8

[201]

Why use an external access management
solution
Therefore, embracing a practice in which using an external security policy/access
manager that is part of the enterprise infrastructure is a more general solution.
Contrary to what Orson Wells stated:

"We're born alone, we live alone, we die alone. Only through our love and
friendship can we create the illusion for the moment that we're not alone"

In the WebSphere world there are no illusions, we're not alone. As such, it is very
likely that an enterprise may have adopted an access manager as its solution for all
types of IT applications. Moreover, there may be an IT group dedicated to manage
this type of infrastructure. It follows that it is beneficial and probably necessary for
the WebSphere environment to tap into that infrastructure-level solution

In view of what has been presented, the benefits of using a, possibly existing,
centralized AM solution are as follows:

•	 Policies involved in authorization are kept centralized, making it easier to
perform audits.

•	 In the same way, the centralization of this information makes it easier to
perform troubleshooting of applications.

•	 One of the most evident reasons for using an external AM is that the SSO
solution can include members that don't support the LTPA technology
(that is, non-IBM products. So an external AM standardized SSO at the IT
corporate level, if so desired.

Secure Enterprise Infrastructure Architectures

[202]

How it works
In general, the technique most often used to integrate Web servers with an external
centralized AM infrastructure, is to use a Web Agent. The agent will execute inside
of the IHS process as a module. Depending on the AM implementation, the Web
Agent module may spawn an external process that is tightly coupled to the httpd
process. The way in which a centralized AM solution works in the IHS sphere is, at a
high-level, shown in the following figure:

In the diagram, the assumption is that the user has already authenticated with the
application and the diagram is showing the normal data flow for a request made to
the enterprise application:

1.	 A user, employing a browser that is represented in the diagram by the dark
teal desktop computer, requests a URL from an enterprise application. The
request would possible travel through routers, firewalls, and load balancers
(represented by the gray cloud shape in the diagram) before reaching the IHS
web server.

2.	 When the request reaches the IHS TCP port, the web agent module intercepts
the request. It analyzes if the URI is protected by a security policy rule, if so it
requests information about the user making the request from the centralized
AM.

3.	 The centralized AM requests information about the principal making the
request.

4.	 The directory server forwards group information about the principal to the
centralized AM.

Chapter 8

[203]

5.	 The centralized AM obtains group information about the requester and
determines, using the defined set of security policy rules, if she has
authorization for the resource (that is, URI) requested. Therefore, the
centralized AM forwards to the Web Agent whether access is granted or not.

6.	 If access is granted for the request, the Web Agent forwards it to the next
module within IHS, that is the WebSphere Plug-in.

7.	 The WAS Plug-in analyzes the URI to find out to which port of the
WebSphere Application Server and using what protocol the request should
be forwarded, if any. Once the route has been identified, the WebSphere
Plug-in forwards the request to the appropriate enterprise application (that
is, host and port).

8.	 The selected WebSphere Application Server hosting the enterprise
application would then process the requested resource and will return the
result back to the WebSphere Plug-in.

9.	 The WAS Plug-in forwards the response to the IHS server, indicating that it
has been processed.

10.	 Finally, the IHS core module(s) receives the response from the Plug-in and
sends it to the requestor.

Probably after reviewing the dataflow just described an obvious question would rise.
How does an external AM may affect the performance of my application? The way
this dilemma is solved varies by product. However, it would suffice to mention that
the use of caching techniques at the Web Agent level in addition to other technical
tricks, I mean solutions, would answer any concern regarding possible
poor performance.

What tool to use
The obvious question now is what tool to use for this purpose. IBM offers the
product Tivoli Access Manager WebSeal Plug-in for Web Servers. However, there is
another product that has proven to be more popular and this chapter will describe its
infrastructure in relation to a WebSphere Application Server ND v7 environment. For
those readers that use WebSeal, you can refer to the IBM documentation provided with
the product and follow along the description and procedures that follow.

The third-party product is the SiteMinder WebAgent formerly known as Netegrity
SiteMinder WebAgent (now rebranded as CA eTrust SiteMinder) in conjunction with
the SiteMinder Policy Server.

Secure Enterprise Infrastructure Architectures

[204]

Due to this rebranding, it is sometimes difficult to find SiteMinder
documentation using online search engines. In order to find
documentation about using SiteMinder that is still valid and that was
created prior to the CA acquisition, a query such as the following
could be useful (tested in Google): (Netegrity | CA) ("Web Agent" |
WebAgent) +SiteMinder eTrust

If we take the generic diagram from the previous section, omitting the data flow,
and then we instantiate the Centralized Access Manager with the SiteMinder
infrastructure, we obtain the branded diagram shown as follows. The main additions
and modifications are as follows:

The branded SiteMinder Web Agent has replaced the generic Web Agent component.
In addition, the branded diagram includes a local configuration file that directs the
behavior of the SiteMinder Web Agent. Furthermore, the SiteMinder Policy Server
has replaced the Centralized AM. In order to show how each component can be
tailored to the requirements of the application and its security, the branded diagram
shows the various configuration files that tune in the behavior of the WebSphere
Plug-in as well as that of the IBM HTTP Server.

It is now possible to show what the dataflow for a request is and how it is handled
by the infrastructure. The following diagram presents a simplified dataflow in a
branded environment:

Chapter 8

[205]

1.	 As in the case of the generic transaction data flow described in the previous
section, a user (U1), employing a browser that is represented in the diagram
by the dark teal desktop computer, requests a URL (resource) from an
enterprise application (EA1). The request would possible travel through
routers, firewalls, and load balancers (represented by the gray cloud shape in
the diagram) before reaching the IHS web server.

2.	 In our branded case, when the request reaches the IHS TCP port, the
SiteMinder WebAgent (SMW) module intercepts the request. It analyzes if
the URI is protected by a security policy rule, and if so it challenges U1 for
credentials.

3.	 U1 receives the challenge for credentials. This challenge could be made in
the form of a basic authentication dialog box or a login form page or even a
redirection to an external authentication application (XA2) that is external to
the intended target application EA1 where the user can enter his credentials
and send them to the application EA1.

4.	 Once the credentials are received, SMW intercepts the transaction flow and
it determines that the credentials need to be validated. Therefore, SM1 sends
the credentials to the SiteMinder Policy Server (SPS) to validate the data sent
by U1.

5.	 At this point, SPS receives the inquiry to verify U1 credentials. In order to do
so, SPS requests a user search from the LDAP Directory Server (LDS).

6.	 LDS receives the request to verify that U1 exists in the user directory. LDS
performs a search and sends the results back to SPS. In this example, it will
be assumed that U1 exists to demonstrate the normal flow for a request.

Secure Enterprise Infrastructure Architectures

[206]

7.	 Once that LDS has confirmed that U1 exists in the user directory, SPS creates
a session token to be sent along with a response to U1. At this stage, it sends
SMW a confirmation that U1's credentials are correct and therefore validated.
The confirmation includes the session token.

8.	 With the credentials confirmation and the session token available, SMW is
ready to convert the request into an authorized request. This is accomplished
by adding a cookie, SMSESSION, to the headers of the HTTP request. The
SMSESSION cookie contains in encrypted format, all the information that
the SiteMinder infrastructure needs to identify the user plus information
that indicates that U1 is authorized for the current session. Once the HTTP
headers have been modified, SMW passes the request to the WebSphere
Plug-in (PLG) module, which is the next module to continue processing the
request within the IHS engine.

Troubleshooting tip: Using the SMSESSION cookie
When troubleshooting an application that is front-ended by an HTTP
server integrated to the SiteMinder infrastructure using a Web Agent,
using the presence or absence of the SMSESSION cookie in the headers of
the HTTP request and response will help pin down where the issue may
be. For instance in a scenario where an application is being developed or
tested, consider that a user requests a URL that is protected by rules in the
Policy Server and the application (in this particular case referring to the
whole infrastructure that supports the enterprise application) returns the
URL requested w/o requesting for credentials. An administrator could
look at the headers for the request, by either indicating the IHS server to
include header information in its log files or by using a tool at the browser
level that shows that information. If the request headers do not include
the SMSESSION cookie, it could be an indication that there may be a
missing policy rule to protect the URI. Therefore, the Web Agent would
not intercept the request and would pass it to the next IHS module. If
there is an SMSESSION cookie, it is an indication that the browser has
been used in a prior access to the application or to an application sharing
the same SSO.

9.	 From this point, the data flow is similar to the case described in the previous
section. PLG then analyzes the URL to find out whether or not it is handled
by the WebSphere application. If so, PLG would select a route to which
port of the WebSphere Application Server and using what protocol the
request should be forwarded, if any. Once the route has been identified, PLG
forwards the request to the appropriate enterprise application component
(WebSphere Application Server and Container) according to the information
provided through the plugin-cfg.xml file.

Chapter 8

[207]

10.	 Once the request is received, the selected WebSphere Application Server
hosting the enterprise application would then process the requested resource
and would return the result (response) back to PLG. This response would
include the SMSESSION cookie that the browser employed by U1 would
have to include in any subsequent request.

11.	 Back at the PLG module in the IHS server, PLG receives the response from
the Application server. It then identifies what IHS module is next in the
process chain, one that handles responses, and it forwards the response to the
identified module.

12.	 At that point, the IHS module receives the response from PLG. It may or
not perform a last analysis and forwards the response back to the browser.
After traversing back through firewalls and routers, the response get to the
browser, who renders the response code, including headers and content, onto
U1 display.

Configuring the HTTP server to use an
external access management solution
There are different schools as to what IT team is responsible for the client software
(for example, Oracle drivers, SiteMinder Web Agent, and so on) needed by a WAS
ND7 installation to interact with other components of the IT corporate infrastructure.
In some, the team responsible for the technology server component (for example,
DB2 server) would be also responsible for the DB2 client components on the resource
requestor software (in our case, WAS ND7). In others schools, the client or resource
requestor software team would also be responsible for any drivers or clients under
the guidance of the resource server team.

In any event, when the SiteMinder Web Agent is installed on the servers where IHS
instances are installed, among many things, it customizes the IHS configuration
file adding information about the library that implements the Web Agent Apache
module, represented by the light blue tall rectangle located inside the IBM HTTP
server (maroon rectangle) in the previous diagram. Furthermore, the Web Agent
installer also adds a directive to indicate the location of the SiteMinder Web Agent
configuration file.

Secure Enterprise Infrastructure Architectures

[208]

The preceding screenshot shows a sample of the Web Agent configuration included
in the IHS httpd.conf file. One of the directives is the LoadModule, an IHS-
defined directive. It provides IHS the location of the Web Agent module. The second
directive, SmInitFile, is defined in the Web Agent module and it indicates to it the
location of its configuration file.

Troubleshooting tips: Identifying SiteMinder-related errors
There are a few complications that may take place while integrating IHS
to the SiteMinder infrastructure. If at startup you see an error message
stating that there is a syntax error related to the keyword SmInitFile, it
means that the Web Agent module failed to load. If IHS complains about
not finding components of the Web Agent module, it is possible that the
LD_LIBRARY_PATH does not include the location of the SiteMinder Web
Agent library directory. Add this definition in the envvars file in the IHS
bin directory.

Fine-tuning authorization at the
WAS level
The final major topic of this chapter is the trust association interceptor (TAI). In a
very simplified way, the TAI component of the WAS ND7 security infrastructure is
the equivalent to the Web Agent component for the IHS Server. Both establish a link
from the application infrastructure to the security policy-based tier.

When to use TAI
In most cases, in-house custom applications will not rely on TAI on the WAS ND7
side unless there is a business requirement. However, there may be third-party
solutions and off-the-shelf products that have been designed with their security
centered on TAI. For instance, a third-party solution could be the application
that authenticates users implemented as an EA hosted on the WAS environment
itself. The SiteMinder J2EE modules rely on TAI to communicate with the
SiteMinder Policy Server to establish the identity of authenticate users as well
as the authorization side of their interactions. On the other hand, an off the shelf
product could be a popular IBM application that relies on using TAI for managing
personalization, the WebSphere Portal product. In this case, the authentication of
users is lead by the IHS and SiteMinder Web Agent; whereas the authorization and
other functionalities could be lead by the SiteMinder Application Server Agent for
WebSphere.

Chapter 8

[209]

Configuring SiteMinder ASA for WebSphere
(TAI)
There are two phases to configure a SiteMinder-based TAI. The first one takes
place when the SiteMinder ASA component is installed on the nodes where the
Application Server runs. As part of the installation, SiteMinder adds several
libraries to the WAS ND7 base installation (that is, not in the profile area but in the
executables area).

The second phase is the actual configuration of the WAS ND7 component. This
involves a few steps as follows:

1.	 Install the SM ASA configuration file:
Copy the file smagent.properties from the SM ASA conf directory to the
Application Server profile properties directory.

2.	 Enable TAI on the ISC:
Using a browser connect to the Deployment Manager Console. Follow the
breadcrumb Security | Global Security | Trust association (under sections
Authentication | Web and SIP security) The following screenshot may help
with locating the Trust association link towards the bottom of the shot:

3.	 Enable TAI:
Check the Enable trust association box. Then click the Apply button. Click
the Interceptors link.

Secure Enterprise Infrastructure Architectures

[210]

4.	 Define SiteMinder TAI Java class:
On the page that appears, you may see existing TAI classes (by default, out
of the box, SPENGO and TAM interceptors are defined). Click the New
button. In the field Interceptor class name, enter the value com.netegrity.
siteminder.websphere.auth.SmTrustAssociationInterceptor. In the
field Name, under Custom properties, enter the value /opt/netegrity/
siteminder/smwasatai/AsaAgent-assertion.conf (or the location where
SiteMinder ASA TAI was installed). The following screenshot shows the
configuration as stated:

5.	 Click the Apply button and save the changes.
6.	 Restart the environment.

Chapter 8

[211]

Summary
Besides a quite lengthy definition for enterprise infrastructure architecture, this
chapter presented the following major themes:

•	 The role that LTPA plays in extending the security from a WAS ND7 cell to
other WebSphere environments and several other IBM products.

•	 The concept of SSO, how it works across remote servers, what is required to
implement it, and how to configure WAS ND7 for SSO.

•	 The use of Centralized Authorization Managers, and how they extend the
reach of the WAS ND7 infrastructure beyond LTPA. A specific case using the
SiteMinder brand of components was analyzed. How to integrate the front-
end component IHS with the SiteMinder access management infrastructure
using the SiteMinder Web Agent.

•	 The concept of Trust Association Interceptor. Analyzed the Web Agent
complementary SiteMinder Component SMASA for WebSphere. A specific
case configuring SMASA for WebSphere was described.

Do you feel like learning another lengthy definition? I didn't think so. OK, I'll give
you a break this time. See you on the next page!

WebSphere Default
Installation Hardening

There is a class of products that when we purchase them they need to be changed
in order for them to be useful to us. Consider for an instance that I was travelling
to Las Vegas, NV and decided to buy a watch. (Why would I be buying watches in
Las Vegas? Well, it beats me; but that is a different story.) It is very likely that I may
need to change the time, and perhaps time zone (for some sophisticated watches) to
match the time where I live. This change was necessary to make the product useful
to me. We also have a class of products that we may want to change to increase
their security. Take for instance a GPS. Many of the recent models allow the owner
to define a PIN that must be entered for the user to start the device. So only those
persons that know the PIN would be able to use it; perhaps deterring thieves from
stealing it; or if they do, so they cannot use it or resell it easily. In any event, a watch
or a GPS are examples of very simple types of products. A product such as the
WebSphere Application Server Network Deployment version 7 (WAS ND v7) is an
example of a much more complex product. This chapter deals with the following:

•	 Engineering the default WAS ND v7 installation by changing its default
parameters in order to harden the product's security side

•	 Customizing the files that hold the WAS ND v7 environment security
certificates and signers

WebSphere Default Installation Hardening

[214]

Such modifications of default parameters could be grouped in two major categories.

•	 On one hand, there is the category labeled in this chapter as 'engineering'. In
a nutshell, this term is used for planning and execution activities that modify
the product's (in this case, WAS ND7) structural features used in a default (or
sometimes also coined as "out-of-the-box") installation. The term structural in
this context denotes those changes that although possible, may be impractical
to carry out.

•	 On the other hand, there are those changes that, in this chapter, are labeled
as housekeeping or 'home improvement' type of changes and which can be
carried out during or after an installation is completed.

Let's look at the engineering of the installation. The WAS ND7 default installation
parameters are a good start. But why settle for good when you can attain the best?"
The security installation engineering aspect will concentrate on the features depicted
in the following diagram and summarized as follows:

•	 Customizing the location of key root directories:
°° Base product installation
°° Application Server profile root directories
°° Log file root directories

•	 Customizing the TCP port range for host ('regular' Application Servers) and
administrative (deployment manager and node agents) JVMs.

•	 Customizing the process execution user and group owners.

Chapter 9

[215]

Accordingly with the diagram, the first section of the chapter deals with actions that
can be taken before (planning), during (engineering) and after (customizing) the
installation process. Among the installation factors that can be planned for are the
three main groups shown in the previous diagram.

The first group is the Key root directories, which is represented in the diagram as
the horizontal rectangle (yellow). It is a good practice to split the location of the
base (sometimes referred to as binaries or executable and represented by the thin
blue rectangle), files from the configuration files (represented by the thin maroon
rectangle), in the case of WAS ND7, the different profiles in the environment. Finally,
it is also highly desirable to place the log files not only on a different directory than
the configuration files but in a different file system altogether. The ID and group
ownership of each of these three groups of root directories will be closely related
to the process owner. In other words, the two long rectangles labeled UID (yellow)
and GID (light red) Owner rectangles must agree between process execution, top
rectangle, and the root directories.

In addition, in terms of the second major group that we referred to as the
housekeeping type of changes, the following diagram portrays the concept, which
can be summarized as follows.

•	 Base installation clean-up
°° IHS/Plug-in clutter clean-up
°° WAS clean-up

WebSphere Default Installation Hardening

[216]

•	 Protection of sensitive configuration files
°° Configuration files containing passwords
°° Private key files

In the previous diagram, the portions of the installation process that should not
be present in a production environment installation are represented by the puzzle
pieces. Some of the puzzle pieces are located under the IHS installation (orange
puzzle); others, under the WebSphere Plug-in (blue puzzle); and yet others under
the WAS installation (red puzzle). Finally, the document-shaped rectangles at the top
of the diagram represent configuration files (mostly XML files, represented by the
yellow document-shaped rectangle) and the key store files (represented by the light
blue document-shaped rectangle).

Engineering the how and where of an
installation
As stated at the beginning of the chapter, there are some actions that can take place
prior to performing the installation of your WAS ND7 environment. It is likely that
you already perform all of them or most of them. However, they are included here
for those readers for which WAS ND7 is their first experience with a WebSphere
environment.

Chapter 9

[217]

Appreciating the importance of location,
location, location!
As in real estate, the location selected for a house (or the product files in our case) is
very important. File systems can be a blessing and a curse. They are a blessing in that
they help control how our data is organized. They would be a curse if planning is
done poorly and the environment runs out of space after your enterprise applications
are installed and they have been executing only for a while.

Your corporation may have some established policies and standards that would
apply to most third party software packages. If that is your case, your installation
should meet those requirements. However, if organizing your directory structure
is something that will be carried out as you create your WebSphere environment,
then this is a unique opportunity for creating a clean split between executable,
configuration, and log files.

In the following subsections the file systems /executable, /
configuration and /logfiles will be used as an example of
proposed location based on the content type. WAS ND 7 binaries will be
installed under the /executable file system. The WebSphere profiles
will be created under the /configuration file system. And finally, the
application log files will be stored under the /logfiles file system. It is
very likely that your company already has standards for such directory
name conventions.

Customizing the executable files location
An example of what could be the root directory for your executables for WAS ND7
could be:

/executable/WebSphere/AppServer

This directory path would be the value assigned to the IBM WAS variable WAS_HOME
once the installation is completed. Therefore, the directory /executable would
be the root directory for all of the third party products that may be needed in your
system. Among them, aside from WebSphere ND7, the directory could include
the root directory for your database drivers (or DB client software, if required),
monitoring software, and so on. So, if this were the case, the path /executable/
oracle could be the root directory for the Oracle database drivers. It is highly
desirable to create a file system on the mount point /executable that has enough
disk space to hold the various products that you are planning to install.

WebSphere Default Installation Hardening

[218]

If you are performing your WAS ND7 installation using the silent method, the
parameter installLocation would need to be set to the value given above, for
example, /executable/WebSphere/AppServer.

Customizing the configuration files location
It would be under this root directory that your WAS ND7 profiles would reside. It
is also highly desirable to create a very clear split between the executable and the
profile root directories. If we would follow a similar approach to the one used in the
previous sub-section, the root directory for WAS ND7 profiles could be as follows:

/configuration/WASprofiles/<Your_AS_profile>

Similar to the executable directory, it is highly recommended to create a file system
on the mount point /configuration that has more than enough disk space to host
your current plus future enterprise applications. If at the time of installing your WAS
ND7 executable, you create a default or managed profile, in the silent installation
method you would need to define the installer property PROF_profilePath as the
location stated above, that is, /configuration/WASprofiles/Your_AS_profile.

Customizing the log files location
The last directory structure that it is desirable to customize and split out of the
default installation is the log file directory structure. Let's first view the default
configuration for the location of these files. The following procedure will help:

1.	 Using a browser, log in as an administrator user to the Integrated Solutions
Console.

2.	 Open the JVM logs screen of one of your Application servers.
3.	 The generic path to the page can be found by following the breadcrumb

Servers | WebSphere Application Servers | <Your_AppServer> |
Logging and Tracing | JVM logs. Where the string <Your_AppServer>
in the breadcrumb above needs to be replaced with an appropriate value.
(The value used here is the first Application Server that was created, that is:
SecureAppServer01.)

4.	 Observe the file name for the System.out section.
5.	 In the following screenshot, it can be observed that the absolute path to the

file name field under the section System.out includes a WebSphere variable,
the full path being: ${SERVER_LOG_ROOT}/SystemOut.log.

Chapter 9

[219]

6.	 Observe the filename for the System.err section
Similarly, down the same page (as illustrated in the previous screenshot)
observe the value for filename field under the section System.err . The
default setting is ${SERVER_LOG_ROOT}/SystemErr.log.

Our goal is twofold. On the one hand, it is desirable (if not a requirement) to change
the location of all of the Application Server's log files to a directory that complies
with your standards. In order to follow our simple scheme, let's assume that it is
desirable to have all of the log files written to the file system on the mount point
/logfiles. The section allocated to the WAS ND7 Application Servers could
be /logfiles/WebSphere and the directory specific to hold the log files for our
Application Server would then be /logfiles/WebSphere/SecureAppServer01.
It seems very simple to just go ahead and on the page shown in the previous
screenshot, in Step 3, replace the value of the WebSphere (environment) variable
SERVER_LOG_ROOT with the value we just defined. However, this may not be the best
approach. Let's see why.

WebSphere Default Installation Hardening

[220]

It is likely that a corporate WAS ND7 environment will be made of several
Application Servers. Replacing this value on the JVM logs page would imply
repeating this procedure on every Application Server. The second side to our initial
goal is to minimize effort and therefore, minimize error. How do we go about this?
Let's analyze how SERVER_LOG_ROOT is defined.

1.	 Using the same browser, go to the WebSphere variables screen.
To get to the page, follow the breadcrumb Environment | WebSphere
variables.
At this point, we need to find the definition for SERVER_LOG_ROOT and, if
necessary, other variables involved.

2.	 Set the scope to All Scopes.
On the WebSphere Variables screen, if required, set the scope of the variable
search to All Scopes.

3.	 Open search.
This step is a little bit tricky to explain with words. Therefore, refer to the fol-
lowing screenshot. In order to open the search function, click the Show filter
function identified in the screenshot by the circle.

4.	 Search for SERVER_LOG_ROOT.
In the area that opens, replace the single asterisk (*) with the string SERVER_
LOG_ROOT. Insure that the Filter pull-down menu value is set to Name. Then
click the Go button.

So, what did we get? The result set returned a list of rows in which the defini-
tion for SERVER_LOG_ROOT depends on yet another variable, namely LOG_
ROOT. Hmm!? What now? It would seem as if this business of changing the
location of the log files is getting too complicated and changing the value of
the path directly on the Application Server JVM logs screen is simpler. Well,
actually it is not so. Check this out.
In the first place, observe that each definition for SERVER_LOG_ROOT has been
made at the Application Server scope. Let's now continue our procedure.

Chapter 9

[221]

5.	 Search for variables SERVER_LOG_ROOT and LOG_ROOT.
On the same browser page, change the SERVER_LOG_ROOT search string to
*LOG_ROOT. Then perform a search. Your result may be similar to the top of
the screenshot:

The screenshot above shows that there are two similar definitions for the variable
LOG_ROOT. One is defined at the node level and the other at the cell level. In both
cases, LOG_ROOT is defined in terms of yet one more variable, USER_INSTALL_ROOT
that matches the path to the Application Server profile, but that is not important at
the moment. What is important is that there is a choice to make and to make sure
that SERVER_LOG_ROOT is also defined. The choice is whether to define LOG_ROOT at
both scopes or just at one, the node level. There is no real right or wrong answer, it
all depends on what you wish to accomplish. One option that seems like a general
solution is to delete the LOG_ROOT variable defined at the node level and define
LOG_ROOT at the cell level as /logfiles/WebSphere. Those two changes help us
accomplish our twofold goal. There are no more changes needed in this particular
environment no matter how many other Application Servers are created afterwards.
Therefore, WebSphere will resolve SERVER_LOG_ROOT as /logfiles/WebSphere/
SecureAppServer01 for the application server SecureAppServer01.

Camouflaging the entrance points
A really fun part of engineering a WebSphere environment in general and a
WAS ND7 in particular is to define the TCP ports that will be used for the dmgr,
nodeagent and JVM processes. I could write a dissertation about this topic, but there
is no need to worry, I won't. Keep in mind that what we are customizing is how our
WAS ND7 infrastructure is going to communicate with other support technologies
and to client applications: for example, databases, LDAP, and so on.

WebSphere Default Installation Hardening

[222]

Understanding why it's important
There are two reasons why this subject is addressed in this chapter. On the one hand,
we have the security factor. It is highly desirable to customize the value assigned to
the various TCP ports for each of the JVM processes running. The default values and
how they are incremented every time a new JVM is created are widely documented.
This fact could provide a backdoor to someone wanting to gain access to unauthorized
resources. On the other hand, customizing the TCP ports will help in the areas of
organization of the infrastructure, provide adhesion to corporate standards and by
using port ranges it makes it easier to administer and protect using firewall rules.

Furthermore, most corporations using WebSphere environments split the overall
enterprise IT environment into at least two major and independent infrastructure
segments. One is the tier of infrastructure that actually delivers the services for
which the IT infrastructure exists in the first place. Many corporations refer to this
portion of the overall infrastructure as the production environment. The second piece
of the enterprise wide infrastructure could also be split in two or more well defined
segments. The most common setting is to have three major infrastructure segments,
namely production, quality assurance-load testing, and development environments.

What's more, there are basically two schools of thought as to how to select the range
for the needed TCP ports used by the various administrative and application JVMs.

Methodology choices
One school of thought argues to use the same port range for the same application
across all infrastructure segments. For instance, if our application server
SecureAppServer01 would be assigned the TCP port 10020 for its BOOTSTRAP_
ADDRESS port in the development environment, when the higher infrastructure
segments are built they would also use TCP port 10020 for the same use in those
segments (for example, test and production). Among the benefits of this approach,
the following can be mentioned:

•	 There is a large capacity for selecting unique ports for all of the JVM's in
the environment (for example, 10000-30000 could be made available for this
purpose).

•	 It is easier to move from one infrastructure segment to another for the same
application since the ports of the application's URL will be exactly the same.

•	 Automation by creating scripts to perform a number of tasks such as
administrative, auditing, and so on is also simplified.

Chapter 9

[223]

The other school of thought takes the approach of having unique ports for all of
the applications, even across infrastructure segments. What this means is that
in this technique, a much narrower range, in comparison with the first method,
is allocated for one of the infrastructure segments. For instance, let's assume
that for a development infrastructure segment or environment the range 10000-
19999 is allocated to be used by the various WebSphere components. In a similar
way, the range 20000-29999 is assigned to the next environment and so forth.
Therefore, for the same example as in the first technique, in a three-infrastructure
segment (which we will refer to as development, test and production), for the
SecureAppServer01application server, its port for BOOTSTRAP_ADDRESS will be
assigned the value of 10020 in development, 20020 in test and 30020 in production.
The next variant is also popular: higher infrastructure segments are assigned
the lower TCP ranges (that is, TCP ports for the production environment will
be assigned from the pool 10000-19999, for testing from 20000-29999, and for
development from 30000-39999).

In any event, the lesson here is to select a methodology for selecting and assigning
ports for your application servers and stick to it. It will prove to help you in the
administration and auditing of your various infrastructure segments.

WebSphere Default Installation Hardening

[224]

Identifying what needs to be configured
The screenshot shown next displays the name of the ports required by the dmgr.
Although the screenshot includes twelve ports, if you are not using the IBM
DataPower appliance, you can omit the definition for the port DataPowerMgr_
inbound_secure, leaving a total of eleven ports used up by the dmgr process. So you
could use a range nn000—nn010 of consecutive ports reserved for the
Deployment Manager.

Chapter 9

[225]

The next table displays a summary of all of the ports used by the dmgr, nodeagent,
and application servers. It shows the default ports that WAS ND7 will assign to
those processes unless you tell it otherwise. From the table, it can be deducted that
the number of ports needed by a nodeagent process is eleven. You have a decision to
make here. If you are planning to host on the same OS host a deployment manager
profile and a federated managed profile, you would need to stack the port ranges.
Furthermore, if you are not currently combining deployment manager and node, but
there is a possibility that in the future that combination be supported, then it is better
to make everything uniform and stack the port ranges. So, the first nodeagent could
be assigned the range nn011—nn021. And no, I did not misspeak when I said 'first'.
If there is any chance that there may be vertical nodes in your environment, might as
well plan for them. So you could reserve the rest of the ports in that 100 count (that
is, nn022—nn098) for other nodeagents.

In a similar way, we can engineer the port ranges for the application servers.
From the previous table, it can be deduced that there are 18 ports required for an
application server.

WebSphere Default Installation Hardening

[226]

Getting started
When starting a brand new installation, the task of assigning ports is not as
overwhelming as one would think. The key is to perform silent installations using
response files. And, more importantly, when creating profiles, make sure you
provide a value to the property portsFile giving the path to an external ports file.
In the case of federating a node, you can provide to the addNode.sh utility the value
to the -portprops argument that is the path to the ports than should be used by the
nodeagent.

If you wish to change the ports of existing profiles, it requires a little more work.
Doing this task through the Integrated Solutions Console is not appealing at all.
So we must turn to a script-based solution. The method provided by the wsadmin
interface is modifyServerPort from the object AdminTask. The syntax that can
be used for existing TCP ports for the method is AdminTask.modifyServerPort
('<AppServer>', '[-nodename <NodeName> -endPoint <TCPPortName>
-port <NewPort>]'). The syntax provided will work for most of the ports.
However, there are a few ports that need an extended version of the syntax
above. The ports that can use the syntax above are those ports shown in the table
above that under the column Transport Details the value is set to No associated
transports. The remaining ports for which the value of the same column is View
associated transports, require an additional parameter as follows: AdminTask.
modifyServerPort ('<AppServer>', '[-nodename <NodeName> -endPoint
<TCPPortName> -port <NewPort> -modifyShared true]'). A script can be
written to parse a file where the port assignments are made and then execute the
appropriate modifyServerPort method call.

If changing the TCP ports of an existing Deployment Manager profile, ensure that
the port values in the <ProfileRootDir>/properties/nodeportdef.props file
match accordingly for all profiles.

Chapter 9

[227]

Picking a good attorney
It is very likely that almost everybody wants to protect his or her hard-earned
income, especially when it comes to saving for retirement. Also, when it comes
to somebody's estate, you want the most trustworthy person to handle his or her
affairs. In both cases you want the help from the individuals (or perhaps even
institutions) most adequate for the task; normally an investor for the former and an
executor for the latter. In the WebSphere world, it is also desirable to have the best
choice to execute the various WebSphere components processes so your environment
runs both smoothly and securely. If you install the product as root, it is most likely
that, by default, the profiles created would be configured to be executed as root.
In the majority of the cases, this is not desirable since any enterprise application is
then running with the privileges of root. At the minimum, it is desired that all the
non-administrative JVMs execute as non-root. There may be a couple of options to
engineer what is the best setting for process ownership. For both options, however, it
is a good practice to leave the executable portion of the installation owned by root, so
no file can be altered by mistake or malice.

If all of the JVMs may execute as the same process owner, then the best approach is
to have a service type of account to become the process owner for all the WAS ND7
components, that is, administrative and application JVMs. The OS administrator may
create an OS account, for example, wasadm, and a corresponding group, for example,
was. Thus, after the necessary profiles are created, all of their files should be assigned
the ownership of wasadm and was. In this way, all processes must be started as the
non-root service account.

However, if there is a requirement that states that groups of applications must
execute as their own and unique user and group owner so there is no possibility
that communication across applications and their data take place unless the system
components are configured to do so, then the scenario is a bit more complex than the
first one in which everything is executed as a single non-root owner and group.

Best Practice: Use the command chutils to do file owner/group changes
The use of the command chutils is covered in the Information Center
article Verifying and setting file permissions (available at: http://publib.
boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.installation.nd.doc/info/ae/ae/cins_nonroot_
permissions.html)

WebSphere Default Installation Hardening

[228]

Ensuring good housekeeping of an
installation
In addition to the engineering aspect of hardening your default installation, there
are a couple or three things that can be carried out after the installation is completed.
This section will briefly describe them.

Keeping your secrets safe
There are two aspects in terms of your WebSphere secrets that need some attention.
The first one is the WAS ND7 environment default passwords for the various stores.
The second is insuring that there are no clear text passwords of any type included in
the various properties and XML configuration files.

Using key stores and trust stores
Up until WAS ND6.0 all installations came with the same private key. That changed
in WAS ND6.1. So in WAS ND7, this key and the other security artifacts associated
with it are created at the time of the profile creation. However, the default password
for such stores is the same for any installation! If you still have not changed this
default password, place a bookmark right here, take this book with you, rush to
the data center where your servers are, get on your server's console and change the
password. By the way, on your way to the data center make sure you look alarmed
and move hastily to your destination, but at the same time you must look confident
in what you are doing. Then go to see your supervisor and report that you just saved
the company from a potential break in and eliminated a security breach. Maybe she'll
be so impressed that she'll offer you a bonus! Make sure to tell her that you learned
about it from this book! Hey, you never know, she may order a few more copies!
Back to our point, change the default password (WebAS) to something that follows
your company standards. The job can be done in several ways. One would be using
scripting. The other would be through the ISC or Integrated Solutions Console.

The following procedure can be used to change the password of all key stores
at once.

1.	 Open a command session to the Deployment Manager host.
2.	 Optional: if necessary, switch to the ID that is used to administrate WAS.
3.	 Start the wsadmin interface.

The following command can be used:
wsadmin.sh -lang jython -conntype SOAP -host $(hostname) -port
<DM_SOAP_PORT>

Chapter 9

[229]

wsadmin will ask for credentials. Enter user name and appropriate password.
Executing the command in this way prevents the password being exposed
had you used the arguments "-user <WASADM> -password <WASPWD>" on
the command line.

4.	 Use the AdminTask method changeMultipleKeyStorePasswords.
5.	 The changeMultipleKeyStorePasswords method of the AdminTask object

will change the passwords of all key stores and trust stores with a single call.
At the prompt, the following command can be entered:
wsadmin> AdminTask.changeMultipleKeyStorePasswords
['(-keyStorePassword WebAS -newKeyStorePassword <NewPass>
-newKeyStorePasswordVerify <NewPass>]')

A few comments regarding the command that may not be evident from
the way it is printed. On the one hand, the command is issued in a single
line. In addition, there is no space or breaks between the dash (-) and
the property name. On the other hand, when substituting the string
<NewPass> with your new password, do not include the angle brackets
since they are not part of the method syntax.

6.	 Save the changes.
7.	 Terminate the wsadmin session.

The new password is encrypted and stored in XML configuration files. This brings us
to our next topic.

Storing passwords in configuration files
WAS ND7 uses several XML files to store encoded passwords. They are mentioned
below.

<ProfileRootDirectory>/config/cells/<CellName>/security.xml

Keeps the passwords for the following properties when defined: Cryptographic
token device, Keystore, LDAP user registry bind, LTPA, Truststore and the user
registry server. In addition, it also stores the JAAS authentication data.

<ProfileRootDirectory>/config/cells//<CellName>/nodes/<NodeName>/
servers/ <AppServer>/resources.xml

WebSphere Default Installation Hardening

[230]

Keeps the password for the following Application Server level properties when
defined: mailStore, mailTransport, MQQueue queue mgr, and WAS40Datasource.

<ProfileRootDirectory>/config/cells//<CellName>/nodes/<NodeName>/
servers/ <AppServer>/security.xml

Keeps the passwords for the following Application Server level properties when
defined: Cryptographic token device, DRS client data replication, Keystore, Session
persistence, and Truststore.

By default, when a password is defined through the Integrated Solutions Console
or some other type of WAS ND7 interface, WebSphere encodes the passwords. An
indication that a password field is encoded is that the content of the field starts with
the string {XOR}. When a password has not been defined the only content of the
password field will be the identifying string, {XOR}.

Adding passwords to properties files
Each profile contains a properties directory. Under it, there are several files in
which various passwords can be defined. One of the most common ones among
those files is the soap.client.props properties file, which is used when issuing
WAS commands that require authentication, for example, stopManager.sh,
and the appropriate credentials are included in that file. In order to enable using
this file for the command line, the following properties must be set: com.ibm.
SOAP.SecurityEnabled (true), com.ibm.SOAP.loginUserid (for example,
wasadm) and com.ibm.SOAP.loginPassword. When you enter the password,
ensure that the encoded version of the password is used. The WAS ND7 utility,
PropFilePasswordEncoder.sh can be used for this purpose. Using the same
file mentioned above, the following procedure can be used to add an encrypted
password to a properties file.

1.	 Open a command session to the Deployment Manager host as administrative
user.

2.	 Change the working directory to the DM profile properties directory.
3.	 Edit the soap.client.props file as follows:

Set the value of the property com.ibm.SOAP.SecurityEnabled to true. Add
the administrative ID on the line for the property com.ibm.SOAP.loginU-
serid. Set the value of the property com.ibm.SOAP.loginPassword to the
password for the ID just added (in not decoded format). Save the changes.

Chapter 9

[231]

4.	 Encode the password using PropFilePasswordEncoder.sh.
Issue the following command:
../bin/PropFilePasswordEncoder.sh soap.client.props com.ibm.SOAP.
loginPassword

The syntax of the PropFilePasswordEncoder.sh command is:
PropFilePasswordEncoder.sh <PropertyFile>
<PropertyName>

Best Practice: Property files and passwords
Never store clear text (not-decoded) passwords in properties
files in particular and in configuration files in general. However,
it is still possible to decode passwords that were encoded with
the WebSphere supplied utilities. So in addition to encoding
passwords in files, to add another layer of security, lock such
files so they are only readable by the UID used to execute the
WebSphere processes.

Manually adding a password - a bonus tip
A limitation of PropFilePasswordEncoder.sh is that it only can be used in
properties files; it won't work with XML files. If for some reason you need to
manually add a password in one of the XML files the following trick can be used.

1.	 Create a text file using your favorite editor.
Create a file named, say, encpwd.tmp.

2.	 Add a line using the format "property=password".
For instance the following line can be added
com.mycompany.rwehvngfn=openpassword

3.	 Encode password
Issue the command:
<ProfileRootDir>/bin/PropFilePasswordEncoder.sh encpwd.tmp com.
mycompany.rwehvngfn

That file now has the encoded version of the password that can be added to the
target XML file.

WebSphere Default Installation Hardening

[232]

Encoding vs. encryption
Encoding passwords with WebSphere supplied utilities implies to rewrite
the password in an obscure format, so to speak. Such utilities use the Java
class com.ibm.ws.security.util.PropFilePasswordEncoder
to perform the encoding operation. In IT and Computer Science (CS)
encoding is normally used to make information more usable rather
than more secure. Therefore, keep in mind that it is possible to use a
supplemental WebSphere-supplied Java class to perform the opposite
operation to decode such passwords. Consequently, although it is
possible to keep the password from the naked eye, someone with access
to such WebSphere classes could potentially decode it. Encryption, on the
other hand, uses a cipher (encrypting algorithm) and a key. The strength
of the resulting encrypted data depends on the cipher and the length of
the key. The only way in which the data can be decrypted to its original
value is to use the cipher and the key. Without the key it is practically
impossible to decrypt the data. In IT and CS encryption is used to secure
information rather than for usability purposes. In WebSphere, there is a
way to use encrypted rather than encoded passwords in properties and
XML configuration files. Describing such a method is out of the scope of
this book. For further details, please refer to the WAS ND v7 information
center articles: Plug point for custom password encryption (http://
publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/
com.ibm.websphere.nd.doc/info/ae/ae/csec_plugpoint_
custpass_encrypt.html) and Enabling custom password encryption
(http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/
topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_enable_
custpass_encrypt.html)

Summary
In this chapter, you were introduced to two major areas that will help harden a
default WAS ND7 installation:

•	 Engineering the default installation and initial configuration of the WAS ND7
infrastructure components

°° Modifying the file location of the major WAS ND7 components
°° Customizing the TCP port ranges used by the WASND 7 JVMs

Chapter 9

[233]

•	 Hardening the security of the WAS ND7 installation components
°° Changing the default password of key and trusted stores
°° Identifying properties and XML configuration files that contain

passwords in order to lock them down
o	 Learn about the existence of an advanced method to secure

passwords by using encryption rather than encoding
We have pinned down one more chapter. Decisions; keep working on the next
chapter or go out to celebrate. Life is hard!

Platform Hardening
When I went to college, during my freshman year, I used to love Physics. Everything,
at least it seemed that way back then, looked as though it was very logical. I
developed a strategy to commit to rote memory only initial formulas from which
others could be derived following a series of logical steps. That strategy, believe
it or not, helped me remember more about the subject than having to remember
every single formula. Now, when it came to Chemistry, all those methods that I
have developed for Physics failed. To me, Chemistry seemed like a large collection
of recipes; my poor brain could not find a way to find a logical path from one to
the other. Well, when it comes to platform hardening, it is probably closer to my
experience with Chemistry than with Physics. In this chapter, you will be exposed to
the following:

•	 Affecting the OS default configuration to increase security
•	 Identifying boundaries between the OS and WAS to help identify areas to

secure
•	 Hardening areas such as user accounts, service accounts, and kernel modules
•	 Hardening file system organization and configuration
•	 Hardening network services

Identifying where to focus
It would be practically impossible for a vendor to create an OS/hardware
configuration that would securely and efficiently cover all customers' needs. When at
IBM, I heard co-workers sometimes exclaim how creative our customers were when
it came to finding ways to either use or configure one of our products that we had
not thought about. It is probably the same when in your organization systems are
configured to better cope with a specific job, that job being a database server or a
J2EE application server or what have you.

Platform Hardening

[236]

One of the keys to unlock the art of hardening the default installation of your
underlying OS is to identify borders between the WAS ND7 environment and the
OS/hardware. Finding such borders will make the task a little easier since it will
help to narrow the scope of what needs to be analyzed.

The previous diagram, in a very abstract fashion, depicts the salient borders between
a WAS instance and the basic systems within the OS. So, let's take a closer look at
the diagram. In the first place, the ovals represent systems and sub-systems that
belong to the platform where WAS has been deployed. In addition, systems that are
not part of the OS but are hosted by the OS are shown in a shape different than an
oval. Therefore, the OS is represented by the large oval labeled OS (lavender); and
two of its major subsystems that are closely related to security are the file system,
represented by the oval labeled F (red) and the network system represented by
the oval labeled N (yellow). In the diagram, one can observe that there is a border
between the WAS installation and the file system. In addition, the diagram shows
a border between WAS and the network system. Finally, the diagram also shows
borders between the OS and WAS.

Consequently, the remaining sections of this chapter focus on the aspects of each of
the identified systems that can or should be altered in order to achieve the desired
level of security.

Chapter 10

[237]

Exploring the operating system
Other than the File System and the Network System, there are still additional
subsystems and components that can be explored. Thus, selecting what subsystems
to explore is not an easy task. It is a well-known fact that accomplishing a task in
different types of Unix can sometimes be tricky, especially when dealing with OS
specific commands. For instance if we want to know what are the kernel modules
that are currently loaded, the command is different for AIX, HP/UX, Linux and
Solaris, as shown here:

•	 AIX: genkex
•	 HP/UX: kmadmin -s
•	 Linux: lsmod
•	 Solaris: modinfo

If you ever wondered how to accomplish a specific familiar task in
a different flavor of Unix, there is a nice site that offers the way to
perform many administrative tasks using the commands unique to
that flavor of Unix. The site is known as the Rosetta Stone for Unix:
http://bhami.com/rosetta.html.

In terms of a WAS ND7 installation, although this book is not about the actual
installation procedure, it is important to highlight that such a procedure will
vary depending on the target OS. If you wish to explore your Operating System
alternatives, visit the Information Center article "Preparing the operating system for
product installation". (http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/tins_
prepare.html).

Appreciating OS interfaces
Therefore, identifying which OS subcomponents to analyze is somewhat dependent
on the Unix flavor. As such, using our proposed approach of finding the borders
between WAS ND7 and the OS, some generic categories will serve as guidelines to
further analyze the specific Unix flavor implementation.

http://bhami.com/rosetta.html
http://bhami.com/rosetta.html

Platform Hardening

[238]

Accordingly, this section attempts to analyze changes that may be required on the
following four general categories:

•	 User accounts (UA): OS IDs assigned to individuals (such as administrators)
•	 Service accounts (SA): OS IDs that are used by the process owner of

applications
•	 Kernel modules (KM): OS custom-enabled core services
•	 [(x)inetd] services (IS)

These general categories are visually depicted in the diagram that follows, which
zooms in a portion of the previous diagram. In the following diagram, a small flag
with its corresponding label, which can be mapped to the list above, represents those
categories. It is a way to visually represent some possible dependencies between
WAS and the general categories. For instance, the diagram shows that WAS ND7 has
a dependency on Service Accounts (SA). Therefore, the rest of this section will look
into each of these general categories.

Understanding user accounts
In most corporations there are two schools of thought when it comes to the
administration of Unix/Linux Systems. Let's look into each school philosophy.

In one school, there are at least two distinct administrative groups. One is
responsible for maintaining the underlying OS and may be referred to as the Unix
administrators team. Among their responsibilities, they create accounts, allocate disk
space, create file systems, and so on. The second administrative team is responsible
for the infrastructure application. In our case, the various components included in
WAS ND7, that is, Application Server, Deployment Manager, HTTP Server, and
WebSphere Plug-in. This team may be referred to as the WebSphere administrators
team or similar names.

Chapter 10

[239]

Under this school, in production systems, the only user accounts that should be
created on the Unix server are those of the Unix and WebSphere administrators.
No other user accounts should be created unless there is a secondary (read,
support) infrastructure application such as SiteMinder or databases, if such support
applications are present in the Unix host.

On the other hand, the second school of thought includes only one team of
administrators. They are responsible for both the underlying Unix OS functionality
and, in addition, the administration of the infrastructure application and its support
applications. So this team creates user accounts, file systems, and maintains and
updates both the OS and the infrastructure applications. In other words, this group
performs all or most of the tasks that are performed by the two administrative
groups in the first school of thought. Therefore, in this case, only the user accounts
for the WebSphere administrators should be created. Furthermore, a variant of
this scenario is that although there are two teams as in the first case, WebSphere
administrators working closely with the Unix administrators team are able
to perform some of the functions that are closely related to the infrastructure
application (for example, creating user accounts, changing the ownership of
directories and files where the infrastructure application is installed, and so on).
Most of these tasks would be performed through a tool such as sudo.

Understanding service accounts
Service accounts are those OS accounts that are normally associated with
infrastructure applications. They are not used to open interactive sessions with the
OS. In other words, when an infrastructure application, such as WAS ND7 or IHS
executes, it must run as a particular OS UID. The objective then, is to only give the
service account the privileges it needs to execute the infrastructure application and
nothing else. In order to accomplish this goal, the following characteristics should
be considered.

•	 OS group: As any type of OS account, service accounts must belong to an OS
group. It is highly advisable to create a new OS group, which will be the OS
UID primary group. Ideally, no other UID should belong to this group.

•	 Numeric IDs: There should be consistency between servers across multiple
infrastructure segments when it comes to the numeric ID assigned to user
IDs and groups. Therefore, if in a development infrastructure segment
the service account ID wasadm is assigned the numeric ID 500, it is highly
recommended to use the same ID and numeric ID in the rest of the
infrastructure segments. One of several reasons for doing so is that if there
is a need to transfer files from one infrastructure segment to another (say, in
a tarball archive) the chances of the transferred files to be given the incorrect
ownership are decreased.

Platform Hardening

[240]

•	 Directory access: Service accounts should only be allowed to read
configuration files and execute infrastructure application binaries. In
addition, service accounts should only be able to write to log files directories
and nowhere else.

Using kernel modules
As mentioned at the beginning of this chapter, it is very unlikely that the default
configuration of kernel modules will be 100% suitable to your WebSphere host.
Many of the possible module targets may be tied to a service that is not suitable for
a server or may involve drivers to hardware that is not present in the system. The
following commands can be used to show the modules loaded by the kernel (this list
was also shown at the beginning of this section).

•	 AIX: genkex
•	 HP/UX: kmadmin -s
•	 Linux: lsmod
•	 Solaris: modinfo

For additional information on these commands, depending on your Operating
System flavor, you can refer to the system's main pages.

One such module that may not be needed for the normal operation of a server and
which may introduce some level of security risk is the module that allows USB
memory drives to be mounted. (An example of an unwanted operation involving the
use of a USB memory drive would be the unauthorized transfer of large amounts of
files from the HD to the USB device.) For further information as to how to disable
loading of the USB module, consult your OS documentation.

Creating the file system
The use of the term file systems may be a little bit broad for what is desired to
communicate. However, the benefit of using it is that it is an expression easy to
remember. In any event, the objective of this section is to convey the message of
paying attention with ownership and permissions of key directories and files. IBM
states that the use of Java 2 Security is enough to secure a WebSphere installation;
however, there are a few additional tasks that can be carried out increasing the
security of OS files and WAS ND7 files.

Chapter 10

[241]

In terms of actual file systems, it is a good practice to create an exclusive file system
for log files. It makes it easier to monitor the growth of the data in such a file
system to make sure it does not fill up. If log files reside on the same file system
as the WAS ND7 installation, as new enterprise applications are installed, it's
not as easy to identify if a spike in disk usage growth is due to a new enterprise
upgrade or installation or by a burst in some log file. For more information about
recommendations regarding log files directories placing, refer to Chapter 9, WebSphere
Default Installation Hardening.

In a similar way to log files, it is also a good practice to create a dedicated file system
for the WAS ND7 installation and ideally another file system for the WAS ND7
profiles. Again as in the previous case, additional information about the location
for the WAS ND7 profiles can be found in Chapter 9, WebSphere Default Installation
Hardening.

Influencing permission and ownership using
process execution
As also mentioned in Chapter 9, WebSphere Default Installation Hardening, it is not
desirable to execute the WAS ND7 environment as root. There may be instances in
which it may not be possible to execute all of the WAS ND7 components as a non-
root ID. The various options in which the WAS ND7 environment can be set up for
execution are basically the following:

•	 Run all the WAS environment processes as root
•	 Execute all the WAS environment processes as the same non-privileged

service account
•	 Run the node agents as root and the Application Servers (JVM's) as one or

several non-privileged service accounts

IBM recommends the second option. However, there are organizations, and
yours may be one, whose security policies state that enterprise applications must
execute as their own service account. So, we need to identify what ownership and
permissions need to be put in place depending on the execution mode your WAS
ND7 environment may use. However, right off the bat, the first execution mode, that
is, running everything as root, will be discarded.

Platform Hardening

[242]

Running single execution mode
In this mode, as the name implies, all components of the WAS ND7 environment
will execute as the same non-privileged service account. Under this mode, the
prerequisites are:

•	 There must exist a service account
•	 There must be its corresponding OS group

Consequently, we will look at three areas of the environment.

Using executables
The first section is the WAS ND7 executables. Everything under <WAS_Root_
Directory> must have the ownership: root:<svcgrp>. The following command can
be used to set the ownership as desired:

chown -R root:<svcgrp> <WAS_Root_Directory>

In addition, the file permissions must be 750 for directories and either 640 or 750 for
files. So, on the first hand, for directories, the following command can be used to set
the desired permission:

find <WAS_Root_Directory> -type d -exec chmod 750 {} \; -print

On the other hand, for files, it may seem tricky at the beginning since it is desired
that if the user permission is 7, then the group permission must be 5, which means
that the file should have executable mode; or if the owner permission is 6, then the
group permission must be 4, that is, read mode. Both cases can be summarized as:
group permission must be non-writable. The following command will remove the
group write bit to only those files that have it set, all the while setting the other bits
permission to zero:

find <WAS_Root_Directory> -type f –exec chmod o-xrw {} \; -perm -g+w
-exec chmod g-w {} \;

Recursive file permission modification, chmod, and file ownership
modification, chown, can be dangerous if applied incorrectly. Always
back-up your files before applying recursive operations on files.

Chapter 10

[243]

Configuring
The next sector of the environment is the WAS ND7 configuration (profiles). This
situation is just a little bit more complex than the executable area. The challenge
here is that the application server processes (JVMs) will have to have access to write
onto log directories. The level of complexity depends on whether you have split and
engineered the location of the log files directories.

For this configuration section, the same approach as the one followed for the
executable area will be used. In terms of file ownership, all files and directories
under the <WAS_Profile_Directory> must have the ownership root:<svcgrp>.
The following command can be used:

chown -R root:<svcgrp> <WAS_Profile_Directory>

The complication that arises in this scenario is that application servers must be able
to write on a number of directories. In general, the following top-level directories
should not be modified in terms of file permissions:

•	 logs
•	 tranlog
•	 configuration
•	 installedApps

It is possible that you have moved out of the profile area of the directories that
contain the log files. Therefore, the following command could be used to set the
permission of the rest of the files to be not writable by group and inaccessible to
other. It can always be modified in case logs and tranlog are not present:

find <WAS_Profile_Directory> -exec chmod o-xrw {} \; \(-name logs -o
-name tranlog -o -name configuration -o -name installedApps -prune \) -o
\(-perm g+w -exec chmod g-w {} \; -print \)

In essence, the command is to skip the directories identified above and their children,
and then remove the group write permission from those files and directories that
have the bit set under the other top directories.

Platform Hardening

[244]

Setting ownerships and permissions on log files
The final region is the log files directories. Of the three WAS ND7 environment
regions, this one is the most straight-forward of all. As in the previous sections,
it is desirable to set the ownership to root:<svcgrp> for all files and directories
under <Log_Files_Directory>. As a result, the command to be used is practically
identical to the equivalent command used in the previous environment sections:

chown -R root:<svcgrp> <Log_Files_Directory>

The simplification for this situation comes in terms of setting the permissions.
The desired permissions are broken down in two groups: directories 770 and files
660. Notice that there should not be any executable files under the log directories.
Consequently, the following single command can be used to accomplish setting the
desired permissions:

find <Log_Files_Directory> \(-type d -exec chmod 770 {} \; \) –o \(
-type f -exec chmod 660 {} \; \) -print

Running multiple execution mode
This third method is only valid in a shared environment in which enterprise
applications from different groups within an organization must execute. Therefore,
the method for executing a WAS ND7 environment is to have the nodeagent process
run as the root ID and the application server processes (JVMs) as their own service
account where each application server will execute as a different service account
from the other application servers.

IBM does not recommend this scenario, as it is not well documented. However, since
there may be a business reason for using it, such a scenario cannot be overlooked.
A commercial scenario in which this type of setting may be needed would be at
an application hosting company. In order to provide an economic advantage to
its customers, the hosting company offers a shared environment in which hosted
applications leverage on a common WebSphere infrastructure (for example, license,
system maintenance, and so on). In order to increase the level of privacy and security
for each hosted application, they must run as a different OS service ID so their
working area and application files cannot be accessed by other applications (which in
turn would be executing with their own OS service ID).

Therefore, in this section the areas in which the administrator must pay close
attention to will be highlighted, based on the same WAS ND7 environment segments
used in the single execution mode.

Chapter 10

[245]

The first consideration is what service IDs and service groups to create and how
to organize them. For our purposes, let the term Business Service Account/Group
(BSA/G) be an OS ID assigned to one or a small group of enterprise applications
belonging to the same business organizational entity. Such a group of applications
will execute in a single JVM or a small number of JVMs on the same host as other
groups' applications execute.

In addition, there should be an extra service group to which all service accounts
must belong. Let this group be referred to as Common Service Group (CSG). This
completes the configuration of the OS user and group IDs.

Thus, the executable segment of the WAS ND7 installation must be configured to be
owned by root:<CSG>. The permissions for files and directories are the same as in
the single execution mode, that is, 750. This guarantees that only those processes that
belong to the CSG OS group will be able to access the executable area.

Furthermore, the configuration section of the WAS ND7 installation is trickier to
configure since certain areas need to be made available to all application servers
such as the properties directory, and similar directories should have the ownership
root:<CSG>, a 750 directory permission, and a file permission of either 750 or 640. Be
that as it may, there are other directories that should be available only to a specific
BSG OS group and no one else. Among some of the directories that would need to
be configured for specific BSG access are those under the installedApps directory;
specifically the directories under:

<WAS_Profile_Directory>/installedApps/<Cell_Name>/

which are the root of each of the enterprise applications expanded EARs. For each of
those enterprise application directories, the ownership should be root:<BSG>, where
each BSG must match its corresponding EAR. Moreover, the permission should be
750 for directories and either 750 or 640 for files.

What's more, the top-level directory configuration may need to be accessed by all
JVMs. Therefore, the ownership of all of the files under it should be root:<CSG>.
Initially, the file and directory permissions should not be changed. However, some
JVMs may need write permission and that will be evident from the log files. Adjust
permissions accordingly. Alternatively, the permissions for all directories under
<WAS_Profile_Directory>/configuration could be set to 770.

As for the third section of the WAS ND7 installation, the log directories, it is not any
more difficult than the single execution mode. The only difference is that each of
the JVM log directories must be owned by the corresponding root:<BSG> and the
directory permission should be 770.

Platform Hardening

[246]

If for some reason you are dealing with a very complex configuration environment
and are running out of time to deliver the WAS ND7 infrastructure, there is still
another approach. I do not particularly care for it, but it will get you out of the hole
while you buy time to engineer a more sound solution. In this solution, I hate to call
it that, you will have to create multiple profiles on the same OS host. Each profile
will be dedicated to a particular BSA:BSG. Each profile, therefore, would need to be
configured as if it were a single execution scenario. Ugly, I know, but will help you
achieve the solution required by the business. As the late PG Wodehouse, through
his character Bertie Wooster stated it: We're not put into this world for pleasure alone.

Safeguarding the network system
The network system or simply networking is an area that has improved security
over the years. It is also the area that is exploited the most since through it, potential
attackers could gain access to unauthorized resources from a remote location.
However, there are a few points that should be highlighted. Whenever possible, do
not enable any of the following services/protocols and 'siblings'.

Connectivity services: There are several protocols (communication services) that
were popular in the early days of the Internet. Those protocols are very weak in
terms of security as they are 'clear text' protocols; that is, user IDs and passwords are
transmitted without encryption. Among them, the following are the most common:

•	 FTP
•	 telnet
•	 TFTP
•	 rlogin

File sharing services: Another area in which production servers may be
compromised is that of file sharing. The two most popular are shown next. They are
application level protocols that lack the use of encryption, thus open to be a point of
exploit of a system.

•	 nfs
•	 smb

Many corporations struggle with the decision of what technology to use when a
technical solution requires file sharing. In WAS ND7 environments, the use of shared
file systems could be avoided. However, if an unavoidable requirement calls for file
sharing, there are other more secure alternatives such as AFS and its derivative, DFS.

Chapter 10

[247]

Miscellaneous services: There are a couple of services/protocols that have been
used for multiple purposes. In a WAS ND7 environment, there is no need for them
and they should be at least disabled, or better yet uninstalled if they reside on your
production systems. The most common of them in this area are the following two:

•	 rpc-based services
•	 nis services

For additional network services specific to your platform, the Center for Internet
Security website is a great resource (http://cisecurity.org/). Specifically, look
for the corresponding Security Configuration Benchmark for your specific OS.

In the event that any of the aforementioned services or protocols must be enabled
due to a business reason and not a technical solution, the following trick could be
used to mask your WAS ND7 network configuration and usage.

In the first place, ensure that the weak service or protocol can be bound to a specific
IP address and not use a wildcard '*' configuration. This is the prerequisite for this
trick. In addition, create an IP alias (or if you can afford it, add an extra network
card to your system). Only one of the IP addresses will be returned by the command
hostname. Let's call the IP associated with the result of the hostname command,
the principal IP. The IP alias, which must resolve to a different host name than that
returned by hostname, will be denoted as a secondary IP. Moreover, the procedure
is to configure the weak service so it binds to the principal IP. All of the TCP/UDP
ports required for the WAS ND7 environment and any of its support technologies
running on the same host must be configured to bind to the secondary IP address.
In that way, if the weak protocol is discovered, no other services are offered through
that IP and it would make it harder to find a relation between the principal and the
secondary IPs through the weak protocol.

In order to wrap up this section and the chapter, let's look at two categories of
network security possibilities.

Establishing network connections
WAS ND7 is fully dependent on network connectivity, that is, the capability to
establish communication channels to both the front-end and the back-end of the
infrastructure architecture.

Platform Hardening

[248]

If the native protocol used by the WAS ND7 environment offers the use of
encryption, make sure it is enabled. If, on the other hand, the native protocol does
not offer encryption but it accepts the use of SSL communication, make sure to use it.
This will require the exchange of SSL certificates and update the key stores and trust
stores accordingly. Lastly, should the target protocol not offer either data encryption
or support for SSL, then it may be necessary to use SSH tunneling between the WAS
ND7 host and the remote host, such as a database server.

Using any of the three methods mentioned can help you comply with any business
requirement that calls for a secure channel for data transmission.

Communicating from process to process
The second category is that of inter process communication; that is, communication
channels between processes executing on the same OS host. In order to secure the
channel, the preferred method, if the processes involved are flexible enough, is to
configure the processes to bind to the OS host private IP address, 127.0.0.1. Using
this port prevents the OS to expose the data communication flowing between the
processes.

If one of the processes to be involved in the communication does not allow to bind
to the OS host private IP address, then the same approaches that were used between
network connections can be used between process-to-process communication.

Again, if there is a business requirement that calls for an encrypted (or secured)
transfer of data between processes running in the same OS host, you can deliver that
type of solution.

Summary
By this point, you have been introduced to the art of platform hardening. As one
works with various WAS ND environments and discovers creative ways of how
enterprise applications operate, one will be gaining experience in this somehow
obscure art. Specifically, you have been exposed to the following:

•	 Identifying OS areas that may need further attention to make them more
secure.

•	 Breaking down complex OS to a few main categories that can then be worked
on to increase the security of your WAS ND7 environment.

•	 Techniques to use to your advantage regarding user and service accounts,
elimination of kernel modules, and so on.

Chapter 10

[249]

•	 One of the major OS areas that have a high relationship with a WAS
ND7 installation is that of log files; you've reviewed some organizational
techniques as well as appropriate configuration of ownership and
permissions.

•	 The other major OS area, that of network services, is also very closely
related to how the WAS ND7 environment operates. This chapter presented
techniques to increase the security of the network layer.

Security Tuning and
Troubleshooting

Writing about WebSphere Application Server security tuning and troubleshooting
could take a full chapter. But wait! We have already allotted a chapter … oh yeah
… let's rephrase that. Each topic could use up at least a full chapter, and perhaps
a book. No wonder there are practitioners out there who specialize in said areas.
Therefore, in this chapter some of the salient aspects of each area will be covered.
Furthermore, at the end, a summary of additional security related tips is provided.

So, in this chapter you will learn about:

•	 Tuning general security, CSIv2 connectivity and authentication
related settings

•	 Troubleshooting general security configuration and runtime exceptions
•	 Selecting security tips

Tuning WebSphere security
The generic term "tuning security … " some say, it's an oxymoron. Why so? Well, in
many cases, tightening up security is normally reflected in poor performance. So,
if a portion of your environment is performing poorly, it may need a review of the
security configuration in order to see if loosening it a bit does not compromise the
environment itself. This section briefly describes tuning in three major areas:

•	 General security configuration
•	 CSIv2 connectivity
•	 LDAP and Web authentication

Security Tuning and Troubleshooting

[252]

Tuning general security
There are several general security aspects of a WebSphere environment that can be
tweaked to either loosening or tightening the security level. This tweaking will have
an inversely proportional effect on performance of the WebSphere system. This
section briefly describes some of them.

Tightening security using the administrative
connector
The administrative connectors are used for communication of various WAS
ND7 components such as the deployment manager, node agents, application
servers, and the wsadmin interface. On the one hand, by default the connector for
communication between WAS ND7 components located in different physical hosts
(remote connector) uses the SOAP protocol. On the other hand, the connector for
communication between WAS ND7 components located on the same physical host
(local connector) by default uses the IPC protocol.

The recommendation for the remote connector is to use the RMI connector. The
reason for doing this is because the RMI API uses stateful connections, whereas the
SOAP protocol uses stateless communication.

This parameter can be changed on the application servers Administration services
page. In order to get to an Administration services page, one needs to follow a
breadcrumb similar to: Servers | Server Types | Application servers | AppServer_
Name | Administration services. The resulting page should be similar to the one
shown in the following screenshot:

It is always a good idea to perform a benchmark to ensure that performance is not
being significantly affected.

Chapter 11

[253]

Disabling security attribute propagation
Security Attribute Propagation (SAP) is the capability of WAS ND7 to carry
principal (the caller) static and dynamic security related information from one server
to another in the infrastructure according to your configuration. Static security
information may include data normally derived from the user registry. On the other
hand, dynamic security information may include information about the principal
context such as the identity, IP, and so on.

If enterprise applications are not using this type of propagation, it is recommended
to disable SAP in order to avoid its overhead. In SAP, security attributes would need
to be serialized using Java serialization to carry out the propagation. Therefore, by
disabling this feature, the serialization portion of the process is eliminated.

Disabling SAP is accomplished by adding and setting to false the property com.ibm.
CSI.disablePropagationCallerList. The location where this property must be
defined is at the global security level. Therefore, follow the breadcrumb Security |
Global security | Custom properties. On that page you need to click the New button
and you will be presented with a page similar to the one shown in the following
screenshot:

For additional information on Security Attributes Propagation, refer to
the WAS ND7 Information Center link:
http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/csec_
secattributeprop.html

Security Tuning and Troubleshooting

[254]

Using unrestricted Java Cryptographic Extensions
The JCE have been part of the Java SDK since version 1.4.x. JCE, very succinctly,
is the Java technology that offers a scheme and realization for encryption, key
generation, and key agreement. In addition, the JCE policy files are the portion of the
JCE which determines the strength of the encryption to be supported. Furthermore,
due to several country laws, the JCE policy files that are included with the WAS
ND7 SDK only enables to perform strong and limited cryptography in a way that
can be shipped to any country in the world. For instance, the local policy file limits
encryption of various methods to the values shown in the following screenshot:

IBM states that there is a possibility that the restricted policy files may affect
performance. Therefore, it is strongly advised to use unrestricted encryption JCE
policy files.

Warning: Before you replace the JCE policy libraries with their
unrestricted version, it is imperative that you check your local
laws regarding encryption.

Should you determine that it is permissible to use unrestricted encryption, the
following procedure describes how to obtain and install the Unrestricted JCE policy
files. In order to download the JAR files, you must be registered with IBM. Use your
company's authentication credentials when they are requested.

Obtaining the Unrestricted JCE policy files
The first stage in the procedure is to obtain from IBM the ZIP file unrestricted.zip
that contains the Unrestricted JCE policy files.

1.	 Open the URL https://www14.software.ibm.com/webapp/iwm/web/reg/
pick.do?source=jcesdk&lang=en_US.
Using a browser open the Unrestricted JCE files page at ht-
tps://www14.software.ibm.com/webapp/iwm/web/reg/pick.
do?source=jcesdk&lang=en_US.

Chapter 11

[255]

2.	 Select the libraries for version 1.4.2+.
From the choices presented, select Unrestricted JCE Policy files for SDK for
all newer versions. Version 1.4.2+.

3.	 Click the Continue button.
4.	 Log on with your company's credentials.

Provide or update information as needed. Check the I agree check box. Click
the I confirm button.

5.	 Download the unrestricted.zip file.
6.	 Click the Download now link.

Installing the Unrestricted JCE policy files
Once the policy files have been downloaded, you can proceed to install them.

1.	 Log on to the host where WAS ND7 is installed.
Do this procedure for each WAS ND node (Deployment Manager host and
node hosts), that is, every host in which you have installed the WAS ND7
binaries for your environment.

2.	 Stop all profiles associated with the binary installation.
3.	 Extract the JAR files.

Create a temporary directory and in it un-archive the content of unrestricted.
zip. The content is two JAR files: local_policy.jar and US_export_poli-
cy.jar

4.	 Change the working directory to security Java directory.
Change the working directory to <WAS_BIN_ROOT>/java/jre/lib/secu-
rity

5.	 Backup existing policy files.
Make a copy of the files: local_policy.jar and US_export_policy.jar
located in the security directory.

6.	 Install the Unrestricted JCE policy files.
Copy the policy files obtained in the previous subsection into the security
directory.

7.	 Restart the WAS ND7 environment.

Security Tuning and Troubleshooting

[256]

Tuning CSIv2 connectivity
In WAS ND7, the Common Secure Interoperability Version 2 (CSIv2) is the
authentication protocol used by EJBs. CSIv2 is the security protocol that undertakes
the stipulations of CORBA security for interoperability authentication, delegation,
and entitlements. Therefore, if your environment is using EJBs, the following tasks
can improve performance without compromising security.

Using Active Authentication Protocol: Set it only
to CSI
When an enterprise WebSphere environment is made up of WebSphere Application
nodes of multiple versions, there may be a need for setting the CSIv2 authentication
protocol to both, CSI and SAS (Security Authentication Service). However, in WAS
ND7, the SAS has been deprecated for communicating with WAS versions 5 and
newer. Therefore, it is highly recommended to set the property com.ibm.CSI.
protocol to the value csiv2. When the protocol is set to CSI, WebSphere ND7
eliminates, on both server and client, a call to an interceptor for each request that a
client makes.

In order to configure the protocol to CSI, the file <Profile_Root_Directory>/
properties/sas.client.props must be edited by adding the line shown below:

com.ibm.CSI.protocol=csiv2

Other possible values for this property are:

•	 ibm: Should be used if the clients connecting to the WAS ND7 environment
are hosted in a WebSphere Application Server version 4 or earlier setup

•	 both: Should be used if the clients that communicate with the WAS ND7
environment are hosted in WebSphere Application Server installations
versions 4 or earlier and versions 5 or newer

In order to make the change effective, the complete WAS ND7 cell needs to
be restarted.

Enforcing client certificates using SSL
When a WebSphere client sends secure requests to an enterprise application hosted
in a WAS ND7 setup, the requestor can be authenticated either using a user ID and
password combination or an SSL certificate. Since the channel is already secure,
employing ID and password to validate the communication adds overhead to
both client and server. Therefore, it is recommended to select the use of client SSL
certificates to perform the authentication of client requests.

Chapter 11

[257]

The configuration to enforce the use of certificates for authentication can be done at
the global security level or at the security domain level. The recommendation is to do
it at the global security level and use this setting in all security domains.

The procedure to set the use of certificates over user IDs and passwords at the global
security level is as follows

1.	 Log on to the ISC (Deployment Manager).
2.	 Follow the breadcrumb Security | Global security | (Authentication |

RMI/IIOP security) CSIv2 inbound communications.
Refer to the next screenshot to identify the link to the CSIv2 inbound
communications.

Security Tuning and Troubleshooting

[258]

3.	 Enforce the use of client SSL certificates.
Set the following parameters as shown in the following screenshot:

°° Client certificate authentication (required)
°° Transport (SSL-required)
°° Message layer authentication (never)

Note, however, that if client fails when the message layer authentication is
set to never, it may need to be modified to the supported value.

4.	 Ensure not to override setting in security domains.
Finally, for each security domain that is defined in your WAS ND7
environment it is recommended to set the RMI/IIOP security using the glo-
bal security settings, as shown in the following screenshot:

Chapter 11

[259]

However, if additional customization of the security domain RMI/IIOP
is needed, ensure to set the values for CISv2 Transport Layer and CISv2
Message Layer as those shown in step three.

5.	 Save the changes of configuration. Log off.

Enabling stateful sessions
When using stateful sessions, the first communication between client and server
must fully authenticate. If stateful sessions are not enabled, full authentication must
take place for each request. Therefore, it is a best practice to enable stateful sessions,
in order to eliminate the authentication overhead per request. Under this scenario,
the appropriate session credentials are included in each request, which minimizes
the authentication process of the requestor.

By default, stateful sessions are enabled, thus this task only calls for ensuring that
they have not been modified. On the server side, this setting is available on the CISv2
inbound communications screen in the ISC. On the client side, the setting is found in
the <Profile_Root_Directory>/properties/sas.client.props file.

Security Tuning and Troubleshooting

[260]

Configuring the server
In order to review and change if necessary the setting for the server, use this
procedure.

1.	 Log on to the ISC (Deployment Manager).
2.	 Follow the breadcrumb Security | Global security | (Authentication |

RMI/IIOP security) CSIv2 inbound communications.
3.	 Review the section Additional Properties.

The setting for session should match the configuration shown in the follow-
ing screenshot:

4.	 Save any changes made.

Configuring the client
The procedure for insuring that the session configuration is set to stateful on the
client side is as follows:

Chapter 11

[261]

Tuning user directories and user permissions
In the area of user registry and permissions, there are several opportunities to
improve performance by making a few key modifications to the default settings. This
section briefly describes some simple changes in the areas of user directories (LDAP)
and user authentication.

Configuring LDAP
When selecting an LDAP server as user registry, there is an opportunity to
improve performance of the communication between the WAS ND7 administrative
constituent and the LDAP server. In order to configure the LDAP, follow the
breadcrumb Security | Global security | (User account repository | Available
realm definitions) Standalone LDAP registry to get to the LDAP configuration. The
following screenshot shows the portion of the Global security page that is used to
open the LDAP configuration page.

Reusing the established connection
In the normal course of interactions, WAS ND7 security components will
communicate with an LDAP server on multiple occasions. For instance, when users
log on to enterprise applications hosted in the WAS environment, the security
mechanisms will collect the required data from the LDAP server. For this reason, it
is important to reduce any overhead that may take place between WAS ND7 and the
LDAP server. Selecting to reuse the connection will ensure to keep alive a connection
between those entities after the connection has first been established. Selecting this
option is particularly important if using the recommended SSL protocol between
WAS and LDAP.

Security Tuning and Troubleshooting

[262]

Therefore, on the Standalone LDAP registry configuration page ensure that Reuse
connection is checked as shown in the following screenshot and highlighted by the
maroon arrow pointing to the right.

Ignoring case during authorization
Another opportunity to improve performance of the interactions with an LDAP
server is to ignore the case when performing LDAP default authentication.
Furthermore, this setting may be required by the brand of LDAP server in use in
your organization. For instance, one of the popular LDAP brands is the Sun One
Directory server (rebranded as Oracle Directory Server) which requires this setting.
It is recommended that you verify the requirements of the particular brand of LDAP
server used in your environment to help you decide if this setting is supported, in
which case it is recommended to do so.

So, in order to turn on ignoring case during LDAP default authentication, refer to
the screenshot shown previously. The blue arrow pointing to the left highlights the
desired setting, that is, Ignore case for authorization.

Tuning user authentication
In the area of user authentication to J2EE applications, there are several opportunities
for tuning security parameters that will increase the performance of the user
authentication process without compromising security. However, as always is
the case when lessening security, care needs to be taken in analyzing a specific
organization environment and its needs which are always unique. In this section,
two of them, authentication cache timeout, and enabling SSO, will be presented as
identified in the following screenshot. The screenshot was taken from the Global
Security configuration screen. (Breadcrumb: Security | Global security.)

Chapter 11

[263]

Increasing authentication cache timeout
In WAS ND7 environments, security information related to beans, access to
resources and authentication credentials is kept in a cache. In our specific case,
operations requiring authentication information first access the authentication
cache in order to access the required information. Therefore, the cache helps to
accelerate the continuity of such operations. Elements in the authentication cache
that have not been accessed for the period indicated by the authentication cache
timeout are removed from the cache. When a subsequent operation that requires
the authentication information takes place, additional actions to obtain the required
information are executed. These actions could involve accessing the user registry
and perhaps even a database lookup. Such operations are expensive in terms of
performance. Moreover, this type of tuning needs to take into consideration the
following facts:

•	 In a non-secure environment, such as users accessing your application
from the Internet, increasing the authentication cache timeout may allow a
potential hacker from stealing an authentication token and give the hacker
enough time to penetrate the system before the token expiration. This should
not be the case if your application is accessed only within your intranet.

•	 A short period for the timeout will affect performance in that the system
would have to request the desired information from back-end and support
systems more often.

Security Tuning and Troubleshooting

[264]

•	 A long period for the cache timeout may also affect performance if your
application is used by a large number of simultaneous users since the
memory used by the cache will increase accordingly.

The default value for the authentication cache timeout is ten minutes. You may wish
to consider tuning this value in your load-testing environment by stressing your
application under the peak user load and systematically increase the value of the
cache timeout.

The selected value of the authentication cache timeout must be less
than the value of the LTPA timeout, by default set to 120 minutes.

Infrastructure architecture tip
One thing to keep in mind is that the value for the authentication cache
timeout can be modified at the global security level and overridden at
the security domain level. What this means is that if your environment
has a set of enterprise applications with similar security and user load
requirements, they should be placed in the same custom security domain.
This simplifies the configuration and maintenance of your environment.

In order to access the global security level authentication cache configuration screen,
follow the breadcrumb Security | Global security | (Authentication [page section]
) Authentication cache settings. On the other hand, to access a security domain
authentication cache settings screen follow the breadcrumb Security | Security
domains | Custom_Security_Domain | (Authentication Mechanism Attributes
[expand] | Customize for this domain [select] |) Authentication cache settings, as
it is shown in the following screenshot.

Chapter 11

[265]

Finally, to tune the value for the timeout, ensure that the Enable authentication cache
box is checked. Followed by the desired minutes value, set in the cache timeout field.
The following screenshot shows a timeout of 30 minutes.

Security Tuning and Troubleshooting

[266]

Enabling SSO
It is not uncommon for an organization that employs WebSphere Application Server
as its J2EE application server hosting environment to run a number of applications
that require the same type of authentication credentials for users. In other words, in
order for a user to authenticate against one of such applications, his credentials would
be matched to the same user registry that other applications in the environment use.
It, therefore, does not make sense on the user experience aspect of the environment
to require users to log in individually to each application. On the other side, it is also
expensive from the performance point of view, having to re-authenticate users every
time they switch applications in the same environment (or domain).

What is needed in this type of setting is the capability to re-use the authentication
credentials used in one application when attempting to access another application
in the same domain. Therefore, the solution to this scenario is enabling and
configuring Single Sign-On (SSO). SSO was covered in detail in Chapter 2, Securing
the Administrative Interface consequently, if you need a refresher, please refer to the
sub-section Setting the domain name. In order to access the SSO settings page follow
the breadcrumb Security | Global security | (Authentication [page section] |
Web and SIP security [expand] |) Single sign-on (SSO). On that page, check the
Enabled checkbox and enter the name of the SSO domain under the Domain name
field as shown in the following screenshot:

Chapter 11

[267]

Troubleshooting WebSphere
security-related issues
It is not uncommon to run into issues when global security is first enabled in a
WebSphere environment. Some of those situations may occur due to performing
tasks out of order. Other problematic conditions related to security configuration
may take place due to inadvertently omitting one or more steps in a set up process.
Moreover, a third category of errors that may happen due to security configuration is
caused by using the wrong values to one or more parameters.

This section presents a set of some conditions that may appear in a WebSphere
Application Server ND version 7 (WAS ND7) when global security is first enabled.
The first subsection covers circumstances that may come about during the
configuration phase. Next, a subsection is included that presents circumstances that
may happen at runtime.

Troubleshooting general security
configuration exceptions
The selected cases in this subsection concerns the situations when various aspects of
configuring security are carried out and, as a result, error conditions occur.

Identifying problems with the Deployment
Manager—node agent communication blues
Several of the problems that may take place due to either wrong or incomplete
security configuration are found in the communication of the administrative layers
of the WebSphere environment, i.e., between the deployment manager and the
node agent(s).

A couple of the most common situations are shown below, along with
recommendations as to how to correct the condition.

Security Tuning and Troubleshooting

[268]

Receiving the message HMGR0149E: node agent rejected
The message HMGR0149E is the result of the Deployment Manager rejecting a
request to connect from the node agent. This type of error and the display of this
message normally takes place when security changes in the Deployment Manager
were not synchronized with the node in question. An example of log file clip where
this message is found can be seen in the following screenshot:

One way to fix this problem is by using the syncNode.sh command. The syntax for
this command is:

syncNode.sh dmgr_host [dmgr_port] [-conntype <type>]
 [-stopservers] [-restart] [-quiet] [-nowait]
 [-logfile <filename>] [-replacelog] [-trace]
 [-username <username>] [-password <password>]
 [-localusername <localusername>]
 [-localpassword <localpassword>]
 [-profileName <profile>]
syncNode.sh [-help]

Furthermore, a very simple procedure to correct this problem is given next:

1.	 Stop the affected node agent(s).
2.	 Execute, on the node agent OS host, the syncNode.sh command.
3.	 Monitor the SystemOut.log file for both dmgr and nodeagent processes.
4.	 Start the node agent.

For additional information on messages from the high availability
manager, refer to the WAS ND7 Information Center link:
http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/topic/com.ibm.websphere.messages.doc/com.ibm.
ws.hamanager.nls.HAManagerMessages.html

Chapter 11

[269]

Receiving the message ADMS0005E: node agent unable
to synchronize
This message, ADMS0005E, is the result of the node agent attempting to synchronize
configuration with the Deployment Manager. It is likely caused when changes in
security-related configuration occurred and the node agent were not available. The
following screenshot shows an example of this type of error.

One way to solve the issue is to shut down the node agent, and then, manually
execute the command syncNode.sh from the node OS host using a user ID and
password that has administrative privileges on the Deployment Manager. For syntax
or usage information about this command, kindly refer to the previous example.

In case this action does not solve the problem, follow the next procedure:

1.	 Stop the node agent(s)
2.	 Using the ISC, disable global security
3.	 Restart the Deployment Manager
4.	 Start the node agent(s)
5.	 Perform a full synchronization using the ISC
6.	 Using the ISC, enable global security
7.	 Synchronize changes with all nodes
8.	 Stop the node agent(s)
9.	 Restart the Deployment Manager to activate global security
10.	 Start the node agent(s)

For additional information on messages about the administrative
synchronization, refer to the WAS ND7 Information Center link:
http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/topic/com.ibm.websphere.messages.doc/com.ibm.
ws.management.resources.sync.html

Security Tuning and Troubleshooting

[270]

Troubleshooting runtime security exceptions
To close the section on troubleshooting, this subsection presents several cases of
error or exception conditions that occur due to security configuration of various
WAS ND7 environment components. Such components can be all within WAS or
some components could be external, for example, the IHS/WebSphere Plug-in.

Troubleshooting HTTPS communication between
WebSphere Plug-in and Application Server
When setting up the HTTPS communication between the WebSphere Plug-in and
the WebSphere Application Server there may be instances in which exceptions and
errors may occur during the configuration phase. Some of the most common are
listed next.

Receiving the message SSL0227E: SSL handshake fails
The message SSL0227E is a common one when the main IHS process is attempting
to retrieve the SSL certificate indicated by the property SSLServerCert located in
the httpd.conf file. What this message is stating is that the intended SSL certificate
cannot be found by its label from the key ring indicated by the directive KeyFile in
the same configuration file.

If you need a refresher on certificate labels, please review the section
Create self-signed certificate in Chapter 4, Front-end Communication Security
that can be found following the breadcrumb: Securing front-end
components communication | Securing the IBM HTTP Server | Create
the SSL system components.

An example of this type of message is shown in the following screenshot. In order to
correct this error, there are two possibilities that can be explored.

On the one hand, one needs to insure that the directive KeyFile is pointing to the
correct key ring file. That is, that the key ring file actually stores the target SSL
certificate to be used with this IHS server.

Chapter 11

[271]

On the other hand, there may be a typographic error in the value of the property
SSLServerCert. In other words, the label that is mapped to the target SSL certificate
was misspelled in the httpd.conf file.

In both cases, the command gsk7capicmd can be used to list the content of the key
ring file. The syntax for listing the contents of a key ring file is:

<IHS_ROOT_Directory>/bin/gsk7capicmd -cert -list all -db <Path_To_kdb_
File> -pw <kdb_File_Password>

Remember to review Chapter 4 for details on this command.

For additional information on messages about handshaking issues, refer
to the IHS v7 Information Center link:
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/
topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/rihs_
troubhandmsg.html

Receiving ws_config_parser errors while loading the plug-
in configuration file
If the configParserParse message of the ws_config_parser component is
observed in the errors log file of the IBM HTTP Server; the following screenshot is
an example of a possible output that may be found in the error logs. There may be a
couple of reasons for this type of message to appear in the logs.

One reason for this type of message is that it occurs at the time in which the IHS
process is being brought down. The WebSphere Plug-in module is in its cycle to re-
parse the plugin-cfg.xml file while the IHS process is shutting down, therefore
the ws_config_parser component does not have enough resources to perform the
parsing of the configuration file and throws this message, possibly multiple times
in a row. In order to ensure that this is the correct interpretation of the message, it is
necessary to find an indicator, such as a 'shutting down' type of message like the one
shown in the next screenshot:

Security Tuning and Troubleshooting

[272]

The other reason why this message may appear in the logs is very likely that the
process owner of the IHS process does not have the correct privileges to read the
plugin-cfg.xml file. In this case, ensure that the definition for the property User
in the httpd.conf file has enough privileges to read the plug-in configuration file
defined for the property WebSpherePluginConfig of the httpd.conf file.

For additional information on messages about WebSphere Plug-in issues,
refer to the article Error message definitions for WebSphere Application
Server's webserver plugin component.
http://www-01.ibm.com/support/docview.
wss?rs=180&uid=swg21381320

Receiving the message GSK_ERROR_BAD_CERT: No
suitable certificate found
The message GSK_ERROR_BAD_CERT appears in log files when the WebSphere
Plug-in is attempting to establish an SSL connection with the back-end WebSphere
Application Server and it does not have a way to validate the SSL certificate sent by
the WebSphere Application Server. An example of this type of message is shown in
the next screenshot:

One way to solve this problem is by adding to the IHS key ring file the signer
certificate from the WebSphere Application Server. When doing this, care must be
taken to correctly select the WebSphere trust store. In other words, the correct scope
for your target Application Server needs to be identified so that the appropriate trust
store can be accessed.

For instance, if it was desired to obtain the root certificate (aka, signer certificate)
used by the Chap7AppServer Application Server, one needs to identify the scope for
that application server. Therefore, one should start with the following breadcrumb
in the ISC (Deployment Manager console): Security | SSL certificate and key
management | Manage endpoint security configurations. The following screenshot
illustrates a portion of the resulting page:

Chapter 11

[273]

Once the appropriate scope is identified, continue by completing the breadcrumb:
Security | SSL certificate and key management | Manage endpoint
security configurations | Chap7AppServer | Key stores and certificates |
NodeDefaultTrustStore | Signer certificates. The following screenshot shows a
portion of a resulting page.

You are now in position to extract the Application Server signer SSL certificate. Once
this certificate is extracted, it needs to be imported into the IHS key ring file as a
root certificate.

Security Tuning and Troubleshooting

[274]

If you need a refresher on certificate labels, please review the sections
Extract the WebSphere CA certificate and Add WAS self-signed certificate to
the Plug-in in Chapter 4 that can be found following the breadcrumb:
Securing front-end components communication | Securing the IBM
HTTP Server | Configure IHS for SSL.

Receiving the message GSK_KEYFILE_IO_ERROR: No
access to key file
The message GSK_KEYFILE_IO_ERROR is normally found in log files when the IHS
process cannot access the IHS key ring file indicated by the directive KeyFile.
One common reason is file permissions. It is very likely that the IHS process owner
does not have the appropriate access file permissions to the key ring file or one
of the parent directories. An example of this type of message is shown in the
following screenshot:

In order to find out the file permission of the target key ring file, the following shell
commands could be used:

CurFileOrDir=$(grep ^KeyFile <IHS_Root_directory>/conf/httpd.conf |
awk '{print $2}')
while [[CurFileOrDir " != ""]]; do
 /bin/ls $LS_OPTIONS -ld $CurFileOrDir;
 CurFileOrDir=${CurFileOrDir%/*};
done

The first line extracts the value of the KeyFile directive. The next line is a while loop
that makes sure that the variable defined in line one is not empty. If it is empty,
the loop ends. The first line inside the loop does a full listing of the current file or
directory. This type of listing will show the file permissions. The second line in the
loop trims off the last portion of the full path, shrinking the path by one, and assigns
the resulting value to the initial variable used in the while loop.

Chapter 11

[275]

For additional information on messages about GSKit issues, refer to the
following appendix link:
http://publib.boulder.ibm.com/tividd/td/ITAME/SC32-
0845-00/en_US/HTML/am39_error_ref08.htm

Receiving the message WSVR0009E / ORBX0390E:
JVM does not start due to org.omg.CORBA.
INTERNAL error
The message WSVR0009E is a generic error message that indicates that a start-up error
has occurred and the cause is unknown. However, one needs to look for additional
information on the same line that can shed a light as to what the possible cause of
the problem may be. An example of this type of error is shown in the following
screenshot. As additional information, a node agent generated the log file from
where this snippet was extracted.

In the first place, it is observed that following the WSVR0009E message, an indicator
is provided, that is, the class org.omg.CORBA.INTERNAL returned an error of the
type CREATE_LISTENER_FAILED_4. In addition, before the WSVR0009E message an
ORBX0390E message is included in the log file. The additional information this first
message provides is that the node agent was unable to bind to one of its ports since
that port was already in use by another process.

Therefore, we know that another process, unknown to us up to this point, is using
one of the ports required by the node agent. We have the option of either assigning a
different port to the node agent or find out what process is currently using the port.
Depending on the process, one may wish to disable it or if it is a required process
at that point we may have to revisit our port assignment strategy and correct the
problem by selecting a different port or a different port range for the node agent.

Security Tuning and Troubleshooting

[276]

So, how then can we go about identifying the active process using up the TCP port in
question? There is a Unix command that can be used to find out what process is using
the conflicting port. It is the lsof command (list open files). Without any arguments, the
command will list all the open files in the Unix system. (Remember that in Unix any
resource—file, Unix pipe, TCP ports, and so on—are taken as files.) There are a few
variants for this command, so depending on your flavor of Unix, you may need to tune
the syntax given next. In order to find out the process ID of the process currently using
the TCP port in question, use the following call for the lsof command:

lsof -P -i:<PORT>

The capital -P indicates to the command not to convert the port numbers into names
(that is, names derived from the /etc/services file). The lowercase I flag tells lsof
to use its value as an internet address pattern. In our case, we only wish to indicate
the port portion of it, which is signified by the preceding colon. A sample output is
shown in the following screenshot.

The screenshot shows, in this example, that a java process with the PID of 7581 is
using the TCP port 9402. With this information, using the commands ps and grep,
one can find out what exact java process we are dealing with (or any other process
for that matter).

In versions of WAS ND earlier than 7.0.0.7 the node agent restart action would launch
two node agents and this type of error would appear in the logs. If you currently are
experiencing this error, make sure that your WAS ND version is at least 7.0.0.7.

For additional information on messages in the series WSVR00, refer to
the following information center link
http://publib.boulder.ibm.com/infocenter/wasinfo/
v7r0/topic/com.ibm.websphere.messages.doc/com.ibm.
ws.runtime.runtime.html

Chapter 11

[277]

Concluding WebSphere security-related
tips
We conclude this chapter by listing several tips that may come in handy as you
continue your work with WAS ND7, specifically in the area of security. The tips
included next are in no particular order.

Using wildcards in virtual hosts: never do it!
Many times, when creating virtual hosts, some administrators do not bother to fine-
tune the default configuration for the hostname, focusing only on the port. When
one clicks on the New button to create a new alias, one sees a page that contains the
portion shown in the following screenshot:

Never use the alias pair: host name "*"; port "80".

Ensuring best practice: set tracing from wide to specific
search pattern
When turning on tracing in order to troubleshoot any type of problem in general and
security in particular, one needs to keep in mind that WebSphere logging and tracing
parses the trace string from left to right. This means that the trace string element at
the left can be overridden by another element at its right. It is, therefore, best to place
the more generic trace strings at the beginning and the most specific trace strings at
the end.

Security Tuning and Troubleshooting

[278]

For instance, if your WAS ND7 environment was using a custom J2C principal
mapping module (cf. http://www14.software.ibm.com/webapp/wsbroker/redir
ect?version=compass&product=was-nd-dist&topic=rsec_pluginj2c) and you
wanted to trace its activity to solve an issue, a possible helpful trace string would be
similar to the one shown in the following screenshot.

Using a TAI such as SiteMinder: remove existing
interceptors
WAS ND7 includes two trust association interceptors by default. If you are planning
to use a different type such as the CA/Netegrity SiteMinder TAI it is highly
recommended that you remove those configurations from the interceptors list. The
following screenshot shows the default interceptors included.

Chapter 11

[279]

One of the many reasons for removing the interceptors shown in the screenshot
above is that when TAI is enabled and a different interceptor is configured and
enabled, the SystemOut.log file would include exception messages thrown by
these interceptor classes.

Once you have removed these class name definitions you can proceed to create a new
definition for SiteMinder. An example of class name that could be used (for version
6.x) is com.netegrity.siteminder.websphere.auth.SmTrustAssociationInterceptor.
Refer to Chapter 8, Secure Enterprise Infrastructure Architecture], under the section
"Fine-tuning authorization at the WAS level", for configuration steps.

Summary
With the objective to round up this volume, this chapter ended the journey of
learning about WebSphere Application Server Network Deployment version 7
security by offering two important aspects of the field: the aspects of security tuning
and security troubleshooting. In a similar way to the subject of security in which
sometimes it is left as an afterthought in a WAS ND7 installation, security tuning is
often left as an afterthought in WAS ND7 security. Therefore this chapter presented
key elements that will help you in improving performance by lessening some aspects
of security without compromising the environment. Consequently, after completing
this chapter you would have learned about:

•	 Tuning general security aspects of WAS ND7 such as the administrative
connector, security attribute propagation, and Java Cryptographic Extensions

•	 Tuning particular aspects of the active authentication protocol, improving
the use of SSL, and stateful sessions

•	 Tuning user-related aspects such as LDAP and authentication
•	 Troubleshooting general security configuration exceptions and security

runtime exceptions
•	 Selecting simple to apply but powerful security related tips

It is the hope of Packt Publishing and the author that this volume not only has
proven to provide you essential security information about the WebSphere
Application Network Deployment version 7 product but that it its style has been
engaging and fun to follow. So long for now and we wish you all the best in your
IT career. Until we meet again.

Index
Symbols
 45
/configuration 218
[(x)inetd] services (IS) 238

A
Access Manager (AM) 200
ACLs

application roles based 105
user registry groups based 103

administrative connectors 252
administrative roles 38, 39
administrative security 75
administrative security configuration steps

performing 35
administrative security domain

about 49
global security domain clone, creating 50,

51
security domain creating, scripting used 51,

52
security domains based on global security,

configuring 50
administrative security section

locating 34
administrator view, web application 100
ADMS0005E 269
AIX 240
application groups, enterprise application

architecture 102
application JDBC Provider

creating 63
application memberships, enterprise appli-

cation architecture

about 103
ACLs, application roles based 105
ACLs, user registry groups based 103

application server
Enterprise Application (EA), in relation to

188, 189
protecting 76

application server, security
about 62
access to resources, configuring 69, 70
application JDBC Provider, creating 63
application server, creating 63
DataSource, creating 63
enterprise application, deploying 70
enterprise application, securing 70, 71
global security configuring, to use federated

user registry 64
prerequisites 63
secured enterprise application, accessing 72
security domain, creating 64
testing 70
user authentication, configuring 64
virtual host, creating 63
WebSphere environment, assumptions 62

application users, enterprise application
architecture 103

authentication 171
authentication cache timeout 263-265
authorization

fine-tuning, at HTTP server level 199, 200
fine-tuning, at WAS level 208

B
BOOTSTRAP_ADDRESS port 222, 223
borders 236

[282]

both 256
branded infrastructure elements 10
built-in CA certificates

included in keystores, listing 89, 90
Business Service Account/Group (BSA/G)

245

C
CA root certificates 84
centralized access manager 200
Certificate Authorities (CA) 84
CommonAssets.war 101
Common Secure Interoperability Version 2.

See CSIv2 connectivity, WebSphere
security

Common Service Group (CSG) 245
Connection/Driver Manager method 181
CSIv2 connectivity, WebSphere security

active authentication protocol 256
client, configuring 260
server, configuring 260
SSL 256, 258, 259
stateful sessions 259
tuning 256

D
database channel

securing, choices 182
data encryption 171
DataSource

creating 63
Data Source/JDBC provider 181
declarative security 130
DeclareRoles 130
Demilitarized Zone (DMZ) 80
DenyAll 130
deployment descriptor, enterprise applica-

tion project
creating 143

deployment manager
logging in 38
restarting 37

developer view, web application 100
directory access 240
DWP context root

defining 144

DWP deployment descriptor
creating 144

dynamic web application projects, J2EE web
application

creating 108, 110
dynamic web applications, J2EE web ap-

plication
application role, assigning 114, 115
application roles, creating 113, 114
client-server transport type, defining 116
configuring 110
content, adding to 118
initial servlet code, analysis 123
Java code, completing 123
Java components, adding 121-123
log in information, adding 112
protected URI patterns and methods, defin-

ing 112
servlet code, completing 124, 125
web files, adding 118-120
web modules, mapping to employees_vh

116
welcome files, defining 110-112

dynamic web modules, enterprise applica-
tion architecture 106

E
EAR version, enterprise application project

142
EJB application security

concepts 130
declarative security 130
programmatic security 131

EJB interfaces, EJB project
creating 161

EJB project
assumptions 139, 140
creating 161
prerequisites 140, 141

EJB project, creating
class definition 163
declarative security 165
EJB, creating 163
EJB interfaces, creating 161
import statements 163
initial project, creating 161

[283]

instance variables 163
IPortalSelectorSessionBean interface, creat-

ing 161
Java packages, creating 161
local EJB interfaces, creating 162
package definition 163
PortalSelectorSessionBean code, creating

163
programmatic security 164, 165
remote EJB interfaces, creating 162
user context, linking to 164

EJB project design
about 131
EJB application du jour 131
objective-functional 131
objective-security 131
project design-implementation phase 137,

138, 139
project design-programming component

134, 136
project design-UI aspect 132-134

enterprise application architecture
about 102
ACLs, application roles based 105
ACLs, user registry Groups based 103
application groups 102
application memberships 103
application users 103
dynamic web modules 106

Enterprise Application (EA)
about 188
and WAS infrastructure application server,

interactions 190-192
in relation, to application server 188, 189

enterprise application, J2EE web application
deploying 126, 127
packaging 125
testing 127, 128

enterprise application project
creating 141
requisites 142
workspace, creating 142

enterprise application project, creating
deployment descriptor, creating 143
project EAR version, selecting 143
target runtime, creating 143

enterprise application project, J2EE web

application
creating 106-108

enterprise application project, requisites
EAR version 142
target runtime 142

enterprise application-server infrastructure
architecture, overview 8
branded infrastructure elements 10
general infrastructure components 10, 11
sample infrastructure architecture, charac-

teristics 9
enterprise applications, J2EE web applica-

tion
configuring 116
groups, mapping to roles 117, 118
roles, defining 116, 117

enterprise infrastructure
architecture 188
securing, LTPA used 192

enterprise project
application, testing 167
EAR, deploying 166
packaging, as EAR 166

external access management solution
HTTP server, configuring 207, 208
need for 201
working 202, 203

F
federated repositories 60
file sharing services 246
file system

about 240, 241
configuration, single execution mode 243
executables, single execution mode 242
log files, single execution mode 244
multiple execution mode 244-246
process execution 241
single execution mode 242

front-end components communication
securing 86

front-end enterprise application infrastruc-
ture

architecture 77, 78
WebSphere horizontal cluster classic archi-

tecture 78, 79

[284]

WebSphere horizontal cluster, dual-zone
architecture used 79, 80, 81

WebSphere horizontal cluster, multi-zone
architecture used 81, 82

G
general security, WebSphere security

about 252
administrative connectors 252
Java Cryptographic Extensions (JCE) 254
Security Attribute Propagation (SAP) 253
unrestricted JCE policy files, installing 255
unrestricted JCE policy files, restricting 254

generic infrastructure components 10, 11
getCallerPrincipal() 131
getParamAndForward objective 159
getRemoteUser() 100
global security

about 75
configuring, to use federated user registry

64
GSK_ERROR_BAD_CERT 272, 273
GSK_KEYFILE_IO_ERROR 274

H
HMGR0149E 268
HP/UX 240
hronly.war 101
httpd.conf

modifications 92, 93
HTTP server level

fine-tuning authorization 199, 200

I
ibm 256
IBM HTTP Server

securing 86
IBM HTTP Server, configuring for SSL

about 92
httpd.conf, modifications 92
SSL configuration, validation 95
WAS self-signed certificate, adding to plug-

in 94, 95
WebSphere CA certificate, extracting 93, 94

IBM HTTP Server (IHS) web server compo-

nent 10
IBM HTTP Server, securing

about 86
configuring, for SSL 92
environment assumptions 86, 87
SSL configuration, prerequisites 87
SSL system components, creating 88

IHS SSL keystore
creating 88, 89

implementation phase 137-139
infrastructure architecture view 11
initial project, EJB project

creating 161
installLocation 218
internet protocol suite

and LDAP 171, 172
IPortalSelectorSessionBean interface, EJB

project
creating 161, 162

isCallerInRole 131

J
J2EE web application, securing

about 106
dynamic web application projects, creating

108-110
dynamic web applications, configuring 110
dynamic web applications, content adding

to 118
enterprise application, deploying 126, 127
enterprise application, packaging 125
enterprise application project, creating 106,

108
enterprise applications, configuring 116
enterprise application, testing 127, 128

Java Cryptographic Extension (JCE) Policy
files 175

Java Cryptographic Extensions (JCE)
about 254
unrestricted JCE policy files, installing 255
unrestricted JCE policy files, obtaining 254

Java Database Connectivity (JDBC)
about 180
API 181
application layer 181
Connection/Driver Manager method 181

[285]

connection securing, examples 182, 183
database channel securing, choices 182
Data Source/JDBC provider 181
protocol(s) 180

Java Database Connectivity (JDBC) connec-
tion securing, examples

new Data Source, defining 185, 186
new JDBC provider, defining 184

Java packages, EJB project
creating 161

Java technology security 16
Java Virtual Machine (JVM) 78
javax.servlet.http.HttpServletRequest object

100
JSP files

creating 152
pagelet selector JSP files 152-155
portal home selector JSP files 156, 157

JVM's 244

K
kernel modules 238, 240
key ring

creating, for storing key stores 174, 175
key store

creating, for use with LDAP 176
KM. See kernel modules

L
LDAP

about 20
and internet protocol suite 171, 172
case, ignoring during authentication 262
channel, securing 171
channel securing, choices 173
channel securing, importance 172
established connection, reusing 261
LDAP-based global security configuration

21
protocol 171
SSL, enabling 174
using, as user registry 261

LDAP-based global security configuration,
parameters

bind distinguished name and password 21
Integrated Solutions Console, URL 22

LDAP base distinguished name 22
LDAP server Host name 21
LDAP server TCP port 22
Server User ID 21
server user identity and password 21
SSO domain name 21
WebSphere administrative Identity and

password 21
LDAP bind identity parameters 31
LDAP for SSL

configuring 179
LDAP server

type, setting 30
LDAP server parameters 30, 32
LDAP server SSL certificate

obtaining 178, 179
Lightweight Directory Access Protocol. See

LDAP
Lightweight Third-Party Authentication. See

LTPA
Linux 240
local interfaces, EJB project

creating 162
local operating system 58, 59
LOG_ROOT variable 221
LTPA

authentication mechanism, working 194,
195

used, for securing enterprise infrastructure
192

uses 193
uses, in websphere environment 195

M
Master Roster Management group (MRM)

60
miscellaneous services 247
Model-View-Controller (MVC) 129
multiple execution mode, file system 244-

246
multi-zone architecture 82

N
network connections 247
network system

about 246, 247

[286]

connectivity services 246
file sharing services 246
miscellaneous services 247
network connections 247, 248
process to process communication 248

numeric IDs 239

O
open.war 101
operating system

about 237
kernel modules 240
OS interfaces 237, 238
service accounts 239
user accounts 238, 239

OS group 239
OS interfaces 238
OS platform security 14

P
pagelet selector JSP files 152-155
PermitAll 130
portal DWP. See portal Dynamic Web

Project
portal DWP deployment descriptor

configuring 145
portal DWP deployment descriptor, config-

uring
application roles, defining 146
client-server transport type, defining 146
HTTP methods, securing 145
login information, adding 145
module, mapping to virtual host 146
protected URI patterns, securing 145
resource collections, defining 146
security constraints, defining 145
welcome pages suite, defining 145

portal Dynamic Web Project
application roles, defining 146
class constants, declaring 158
client-server transport type, defining 146
common HTML files, creating 148, 149
content, creating for 146
control, forwarding to another component

160
creating 144

custom HTML files, creating 150, 152
DWP context root, defining 144
DWP deployment descriptor, creating 144
EJB, communicating with 159
file organizing, logically 148
files location, within project 147
HTTP methods 158
HTTP methods, securing 145
import statements 158
Java package, creating 157
JSP files, creating 152
login information, adding 145
login information, securing 145
module, mapping to virtual host 146
package definitions 158
pagelet selector JSP files 152-155
parameters, getting 159
portal DWP deployment descriptor, config-

uring 145
portal home selector JSP files 156, 157
PortalHomeSelectorServlet code, creating

157
resource collections, defining 146
security constraints, defining 145
Servlet, creating 157
Servlet PortalHomeSelectorServlet, creating

157
variables, declaring 158
welcome pages suite, defining 145

PortalHomeSelectorServlet
class constants, declaration 158
code, creating for 157
control, forwarding to another component

160
EJB, communicating with 159, 160
getParamAndForward objective 159
HTTP methods 158
import statements 158
package definition 158
parameters, getting 159
variables, declaration 158

PortalSelectorSessionBean
class definition 163
code, creating for 163
declarative security 165, 166
import statements 163
instance variables 163

[287]

package definition 163
programmatic security 164, 165
user context, linking to 164

process execution, file system 241
process to process communication 248
programming component 134, 136
project EAR version, enterprise application

project
selecting 143

R
remote connector 252
remote EJB interfaces, EJB project

creating 162
RolesAllowed 130
RunAs 130

S
SA. See service accounts
Secure Socket Layer. See SSL
security

disabling 39-42
Security Attribute Propagation (SAP) 253
security domains

about 44, 45, 76
administrative security domain 49
configuring, global security based 50
creating, for application server 64
multiple security domains 44
multiple security domains, benefits 48
scope 44-48

self-signed certificate
creating 90, 91
creation, confirming 91

SERVER_LOG_ROOT 220
Service Accounts (SA) 238, 239
service groups

directory access 240
numeric IDs 239
OS group 239

Servlet PortalHomeSelectorServlet
creating 157
Java package, creating 157
Servlet, creating 157

Sign-On (SSO) 266
single execution mode, file system

about 242
configuration 243
executables 242
log files 244

Single Sign-On (SSO)
about 195
implementing, conditions 197
implementing, in WebSphere 198, 199
user experience, enhancing 196, 197

SiteMinder 278
SiteMinder ASA

configuring, for WebSphere (TAI) 209, 210
SmInitFile 208
Solaris 240
SSL

about 83
configuration 82
configuration, for LDAP 178
configuring, for LDAP 173
management 82
working 83, 84

SSL0227E 270
SSL configuration

validation 95, 96
SSL configuration, prerequisites

about 87
SSL ports, adding to WebSphere employ-

ees_vh virtual server 87
SSL, enabling for LDAP

about 174
Java Cryptographic Extension (JCE) policy

files 175
key ring, creating for storing key stores

174, 175
key store, creating for use with LDAP 176
LDAP, configuring for SSL 179
LDAP server SSL certificate, obtaining 178,

179
SSL configuration, creating 178
trust db, creating for storing trust stores

176
trust store, creating to use with LDAP 177

SSL system components
creating 88

SSL system components, creating
built-in CA certificates included in keystore,

listing 89, 90

[288]

IHS SSL keystore, creating 88, 89
self-signed certificate, creating 90, 91
self-signed certificate creation, confirming

91
stand-alone custom registry 60
stand-alone LDAP 59
standalone LDAP configuration 32
State Dinner Security Management Team

(SDSMT) 49
stateful sessions

client, configuring 260
server, configuring 260

System.out section 218, 219

T
TAI

about 278
need for 208

tarball archive 239
target runtime, enterprise application pro-

ject
creating 143

technology stack view
using 17

Trust Association Interceptor (TAI) 45
trust db

creating, for storing trust stores 176
trust store

creating, to use with LDAP 177
password 178

U
UA. See user accounts
UI aspect 132-134
user accounts 238, 239
user authentication

about 262
authentication cache timeout, increasing

263-265
SSO, enabling 266

user authentication, configuring
groups, creating 65, 66
users, assigning to groups 68
users, creating 67, 68

user directories, WebSphere security
authentication cache timeout, increasing

263-265
case, ignoring during authentication 262
established connection, reusing 261
LDAP 261
SSO, enabling 266
tuning 261
user authentication 262

user permissions. See user directories, Web-
Sphere security

user registry
about 53, 76
concepts 53
types 57

User Registry (aka, LDAP server) 200
user registry, types

federated repositories 57,-61
local operating system 57-59
stand-alone custom registry 57, 60
stand-alone LDAP 57-59

user repositories, websphere uses
authentication 54, 55
authorization 56

V
Virtual Member Management (VMM) 61

W
WAS_HOME 217
WAS infrastructure

and Enterprise Application (EA) application
server, interactions 190-192

WAS level
fine-tuning authorization 208

WAS ND 7. See WAS ND v7
WAS ND7 Information Center link

URL 253
WAS ND v7

about 187, 213, 214
BOOTSTRAP_ADDRESS port 222, 223
chutils 227
configuration files location 218
configuration files, passwords in 229, 230
dmgr process 224
entrance points 221
executable files location 217
features 214, 215

[289]

key stores 228, 229
log files location 218-221
methodology, choices 222, 223
-portprops argument 226
properties files, passwords in 230, 231
PropFilePasswordEncoder.sh, limitation

231, 232
trust stores 228, 229

WAS self-signed certificate
adding, to plug-in 94, 95

web application
securing 99, 100

web application, securing
assumptions 101
prerequisites 102
project, objectives 101

web application security
administrator view 100
developer view 100

WebSphere
Single Sign-On (SSO), implementing 198,

199
WebSphere Application Server ND v7. See

WAS ND v7
WebSphere Application Server Network

Deployment version 7. See WAS ND
v7

WebSphere application server technology 8
WebSphere Application Server (WAS)

nodes 10
WebSphere architecture view

about 11
using 14
WebSphere application server 12
WebSphere JVM component 13
WebSphere node component 13

WebSphere CA certificate
extracting 93, 94

WebSphere employees_vh virtual server
SSL ports, adding 87

WebSphere environment
LTPA, uses 195

WebSphere horizontal cluster
dual-zone architecture used 79-81
multi-zone architecture used 81, 82

WebSphere horizontal cluster classic
architecture 78, 79

WebSphere JVM component 13
WebSphere node component 13
WebSphere security

about 16
CSIv2 connectivity, tuning 256
general security, tuning 252
tips 277-279
troubleshooting 267
tuning 251

WebSphere security, troubleshooting
general security configuration exceptions

267
GSK_ERROR_BAD_CERT 272, 273
GSK_KEYFILE_IO_ERROR message 274
node agent rejected 268
node agent synchronization, issues 269
runtime security exceptions 270
SSL handshake fails 270
ws_config_parser error 271
WSVR0009E / ORBX0390E 275, 276

WebSphere (TAI)
SiteMinder ASA, configuring 209, 210

WebSphere technology stack view
Java technology security 16
OS platform security 14
technology stack view, using 17
WebSphere security 16

WebSphere Variables screen 220
WebSphere web-based administrative

interface
administrative security configuration steps,

performing 35
administrative security, enabling 33
administrative security section, locating 34
changes, applying 26, 27, 36
changes, saving 26, 27, 36
configuration, configuring 33
console, logging off from 37
console, starting 24
deployment manager console, logging into

38
deployment manager, restarting 37
domain name, setting up 24
federated repository 28
global security page 24
LDAP 29
LDAP-based global security configuration

[290]

21, 22
LDAP bind identity parameters 31
LDAP server parameters, entering 30
LDAP server type, setting 30
local operating system 28
miscellaneous LDAP server parameters,

confirming 32
new configuration, propogating 36
registry type selection 28
security, enabling 23
security, planning for 20, 21
SSO domain name, setting 26
SSO page, opening 25
standalone custom registry 29
standalone LDAP configuration, applying

32
standalone LDAP registry page 29
user registry configuration area, locating 27
user registry, configuring 27
WebSphere administrative ID, defining 30

workspace, enterprise application project
creating 142

WSVR0009E / ORBX0390E 275, 276

Thank you for buying
IBM WebSphere Application Server v7.0 Security

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WebSphere Application Server 7.0
Administration Guide
ISBN: 978-1-847197-20-7 Paperback: 344 pages

Manage and administer your WebSphere Application
Server to create a reliable, secure, and scalable
environment for running your applications

1.	 Create a reliable, secure, and flexible
environment to build and run WebSphere
applications efficiently

2.	 Learn WebSphere security, performance tuning,
and debugging concepts with a variety of real-
life examples

3.	 No previous knowledge of WebSphere is
expected

Application Development for IBM
WebSphere Process Server 7 and
Enterprise Service Bus 7
ISBN: 978-1-847198-28-0 Paperback: 548 pages

Build SOA-based flexible, economical, and efficient
applications

1.	 Develop SOA applications using the
WebSphere Process Server (WPS) and
WebSphere Enterprise Service Bus (WESB)

2.	 Analyze business requirements and rationalize
your thoughts to see if an SOA approach is
appropriate for your project

3.	 Quickly build an SOA-based Order
Management application by using some
fundamental concepts and functions of WPS
and WESB

Please check www.PacktPub.com for information on our titles

WS-BPEL 2.0 for SOA Composite
Applications with IBM WebSphere 7
ISBN: 978-1-849680-46-2 Paperback: 644 pages

Define, model, implement, and monitor real-world
BPEL 2.0 business processes with SOA-powered BPM

1.	 Develop BPEL and SOA composite solutions
with IBM's WebSphere SOA platform

2.	 Automate business processes with WS-BPEL
2.0 and develop SOA composite applications
efficiently

3.	 Detailed explanation of advanced topics, such
as security, transactions, human workflow,
dynamic processes, fault handling, and more—
enabling you to work smarter

IBM WebSphere eXtreme Scale 6
ISBN: 978-1-847197-44-3 Paperback: 292 pages

Build scalable, high-performance software with IBM's
data grid

1.	 Get hands-on experience with eXtreme Scale
APIs, and understand the different approaches
to using data grids

2.	 Introduction to new design patterns for both
eXtreme Scale and data grids in general

3.	 Tutorial-style guide through the major data
grid features and libraries

4.	 Start working with a data grid through code
samples and clear walkthroughs

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Threefold View of WebSphere Application Server Security
	Enterprise Application-Server infrastructure architecture view
	Simple infrastructure architecture characteristics
	Branded infrastructure elements
	Generic infrastructure components
	Using the infrastructure architecture view

	WebSphere architecture view
	WebSphere Application Server simplified architecture
	WebSphere node component
	WebSphere JVM component
	Using the WebSphere architecture view

	WebSphere technology stack view
	OS platform security
	Java technology security
	WebSphere security
	Using the technology stack view

	Summary

	Chapter 2: Securing the Administrative Interface
	Information needed: planning for security
	The LDAP and security table

	Enabling security
	Setting the domain name
	Starting at the Console
	Continuing with the global security page
	Onto the SSO page
	Setting the SSO domain name
	Applying and saving your changes

	Configuring the user registry
	Locating the user registry configuration area
	Registry type selection
	LDAP-the preferred choice
	Reviewing the resulting Standalone LDAP registry page
	Defining the WebSphere administrative ID
	Setting the type of LDAP server
	Entering the LDAP server parameters
	Providing the LDAP bind identity parameters
	Confirming other miscellaneous LDAP server parameters
	Applying and saving the standalone LDAP configuration
	Confirming the configuration

	Enabling the administrative security
	Locating the administrative security section
	Performing the administrative security configuration steps
	Applying and saving your changes
	Propagating new configuration
	Logging off from the console
	Restarting the deployment manager
	Logging in to the deployment manager console

	Administrative roles
	Disabling security
	Summary

	Chapter 3: Configuring User Authentication and Access
	Security domains
	What is a security domain?
	Scope of security domains
	Benefits of multiple security domains
	Limitations of security domains

	Administrative security domain
	Configuring security domains based on global security
	Creating a global security domain clone
	Creating a security domain using scripting

	User registry concepts
	What is a user registry?
	WebSphere use of user repositories
	Authentication
	Authorization

	Supported user registry types
	Local operating system
	Stand alone LDAP
	Standalone custom registry
	Federated repositories

	Protecting application servers
	WebSphere environment assumptions
	Prerequisites
	Creating an application server
	Creating a virtual host
	Creating application JDBC Provider and DataSource
	Configuring the global security to use the federated user registry
	Creating a security domain for the application server

	Configuring user authentication
	Creating groups
	Creating users
	Assigning users to groups

	Configuring access to resources
	Testing the secured application server environment
	Deploying and securing an enterprise application
	Accessing the secured enterprise application

	Summary

	Chapter 4: Front-End Communication Security
	Front-end enterprise application infrastructure architectures
	WebSphere horizontal cluster classic architecture
	WebSphere horizontal cluster using dual-zone architecture
	WebSphere horizontal cluster using multi-zone architecture

	SSL configuration and management
	What is SSL?
	How SSL works
	Certificates and CAs

	Securing front-end components communication
	Securing the IBM HTTP Server
	Environment assumptions
	SSL configuration prerequisites
	Create the SSL system components
	Configure IHS for SSL

	Summary

	Chapter 5: Securing Web Applications
	Securing web applications concepts
	Developer view of web application security
	Administrator view of web application security

	Securing a web application
	Project objectives
	Assumptions
	Prerequisites
	Enterprise application architecture
	Application groups
	Application users
	Application memberships
	Dynamic web modules

	Securing a J2EE web application
	Creating the enterprise application project
	Creating the dynamic web application projects
	Configuring dynamic web applications
	Configuring enterprise applications
	Adding content to dynamic web applications
	Packaging an enterprise application
	Deploying the enterprise application
	Testing the enterprise application

	Summary

	Chapter 6: Securing Enterprise Java Beans Applications
	EJB application security concepts
	Declarative security
	Programmatic security

	EJB project design
	EJB application du jour
	Objective–Security
	Objective–Functional

	Project design–UI aspect
	Project design–Programming component
	Project design–Implementation phase

	EJB project prerequisites and assumptions
	Project assumptions
	Project prerequisites

	Creating an Enterprise Application Project
	Creating the project workspace
	Enterprise application project requirements
	EAR version
	Target runtime

	Creating the enterprise application project
	Selecting the project EAR version
	Creating a target runtime
	Creating the deployment descriptor

	Creating the portal Dynamic Web Project
	Creating the portal DWP
	Defining the DWP context root
	Creating the DWP deployment descriptor

	Configuring the portal DWP deployment descriptor
	Defining the welcome pages suite
	Adding login information
	Securing protected URI patterns and HTTP methods
	Defining application roles
	Defining the client-server transport type
	Mapping module to virtual host

	Creating content for the portal DWP
	Location of files within the project
	Logical file organization
	Creating the common HTML files
	Creating the custom HTML files
	Creating the JSP files
	Pagelet selector JSP files
	Portal home selector JSP files

	Creating the Servlet PortalHomeSelectorServlet
	Creating a Java package
	Creating the Servlet

	Creating the code for PortalHomeSelectorServlet
	Package definition and import statements
	Declaration of class constants and variables
	HTTP methods
	Getting parameters
	Communicating with EJB
	Forwarding control to another component

	Creating an EJB project
	Creating the initial project
	Creating the Java packages
	Creating the EJB interfaces
	Creating IPortalSelectorSessionBean interface
	Creating the local and remote EJB interfaces

	Creating the EJB
	Creating the code for PortalSelectorSessionBean
	Package definition and import statements
	Class definition
	Instance variables
	Linking to the user context
	Programmatic security
	Declarative security

	The Grand Finale
	Packaging the enterprise project as an EAR
	Deploying the EAR
	Testing the application

	Summary

	Chapter 7: Securing Back-End Communication
	LDAP: Uses of encryption
	Securing the LDAP channel
	Protocol: LDAP and the Internet Protocol Suite
	The importance of securing the LDAP channel
	Choices in securing the LDAP channel

	Enabling SSL for LDAP
	Creating a key ring for storing key stores
	Creating a trust db for storing trust stores
	Creating a key store for use with LDAP
	Creating a trust store to use with LDAP
	Creating an SSL configuration for LDAP
	Obtaining the LDAP server SSL certificate
	Configuring LDAP for SSL

	JDBC: WebSphere-managed authentication
	Protocol(s)
	The JDBC API
	Connection/Driver Manager and Data Source/JDBC provider
	The JDBC Application Layer

	Choices to secure the database channel
	Examples of securing the JDBC connection
	Defining a new JDBC provider
	Define a new Data Source

	Summary

	Chapter 8: Secure Enterprise
Infrastructure Architectures
	The enterprise infrastructure
	An Enterprise Application in relation to an Application Server
	WAS infrastructure and EA's application server interactions

	Securing the enterprise infrastructure using LTPA
	Why use the LTPA mechanism?
	How the LTPA authentication mechanism works
	The main use for LTPA in a WebSphere environment

	Securely enhancing the user experience with SSO
	Required conditions to implement SSO
	Implementing SSO in WebSphere

	Fine-tuning authorization at the HTTP server level
	Why use an external access management solution
	How it works
	What tool to use
	Configuring the HTTP server to use an external access management solution

	Fine-tuning authorization at the
WAS level
	When to use TAI
	Configuring SiteMinder ASA for WebSphere (TAI)

	Summary

	Chapter 9: WebSphere Default Installation Hardening
	Engineering the how and where of an installation
	Appreciating the importance of location, location, location!
	Customizing the executable files location
	Customizing the configuration files location

	Camouflaging the entrance points
	Understanding why it's important
	Methodology choices
	Identifying what needs to be configured
	Getting started

	Picking a good attorney

	Ensuring good housekeeping of an installation
	Keeping your secrets safe
	Using key stores and trust stores
	Storing passwords in configuration files
	Adding passwords to properties files

	Summary

	Chapter 10: Platform Hardening
	Identifying where to focus
	Exploring the Operating System
	Appreciating OS interfaces
	Understanding user accounts
	Understanding service accounts
	Using kernel modules

	Creating the file system
	Influencing permission and ownership using process execution
	Running single execution mode
	Using executables
	Configuring
	Setting ownerships and permissions on log files

	Running multiple execution mode

	Safeguarding the network system
	Establishing network connections
	Communicating from process to process

	Summary

	Chapter 11: Security Tuning and Troubleshooting
	Tuning WebSphere security
	Tuning general security
	Tightening security using the administrative connector
	Disabling security attribute propagation
	Using unrestricted Java Cryptographic Extensions

	Tuning CSIv2 connectivity
	Using Active Authentication Protocol: set it only
to CSI
	Enforcing client certificates using SSL
	Enabling stateful sessions

	Tuning user directories and user permissions
	Configuring LDAP
	Tuning user authentication

	Troubleshooting WebSphere
security-related issues
	Troubleshooting general security configuration exceptions
	Identifying problems with the Deployment
Manager – node agent communication blues

	Troubleshooting runtime security exceptions
	Troubleshooting HTTPS communication between WebSphere Plug-in and Application Server
	Receiving the message WSVR0009E / ORBX0390E: JVM does not start due to org.omg.CORBA.INTERNAL error

	Concluding WebSphere security-related tips
	Using a TAI such as SiteMinder. remove existing interceptors

	Summary

	Index

